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ABSTRACT OF DISSERTATION 

EFFECT OF PH AND TEMPERATURE ON THE CARBONATE PROMOTED 

DISSOLUTION OF SODIUM META-AUTUNITE 

by 

Ravi Krishna Prasanth Gudavalli 

Florida International University, 2012 

Miami, Florida 
Professor Berrin Tansel, Major Professor 

Release of uranium from Na-autunite, an artificial mineral created as a result of 

polyphosphate injection in the subsurface at the DOE Hanford Site, takes place during 

slow dissolution of the mineral structure. Stability information of the uranyl-phosphate 

phases is limited to conditions involving pH, temperature, and a few aqueous organic 

materials. The carbonate ion, which creates very strong complexes with uranium, is the 

predominant ion in the groundwater composition.  

The polyphosphate technology with the formation of autunite was identified as the most 

feasible remediation strategy to sequester uranium in contaminated groundwater and soil 

in situ. The objectives of the experimental work were (i) to quantify the effect of 

bicarbonate on the stability of synthetic sodium meta-autunite created as a result of 

uranium stabilization through polyphosphate injection, (ii) calculate the kinetic rate law 

parameters of the uranium release from Na-autunite during dissolution, and (iii) to 

compare the process parameters with those obtained for natural calcium meta-autunite. 

Experiments were conducted using SPTF apparatus, which consists of syringe pumps for 

controlling flow rate, Teflon reactors and a heating/cooling system. 0.25 grams of 
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synthetic Na-autunite was placed in the reactor and buffer solutions with varying 

bicarbonate concentrations (0.0005 to 0.003 M) at different pH (6 - 11) were pumped 

through the reactors. Experiments were conducted at four different temperatures in the 

range of 5 - 60oC. 

It was concluded that the rate of release of uranium from synthetic Na-autunite is directly 

correlated to the bicarbonate concentration. The rate of release of uranium increased from 

1.90 x 10-12 at pH 6 to 2.64 x 10-10 (mol m-2 s-1) at pH 11 at 23oC over the bicarbonate 

concentration range tested. The activation energy values were invariant with the change 

in the bicarbonate concentration; however, pH is shown to influence the activation energy 

values. Uranyl hydroxides and uranyl carbonates complexes helped accelerate the 

dissolution of autunite mineral.  



vi 
 

TABLE OF CONTENTS 

CHAPTER          PAGE 

CHAPTER ONE ................................................................................................................. 1 

ABSTRACT ........................................................................................................................ 1 

1.0 INTRODUCTION ................................................................................................... 2 

2.0 LITERATURE REVIEW ........................................................................................ 8 
2.1 Uranium Geochemistry .........................................................................................8 
2.2 Polyphosphate Remediation Technology ............................................................14 
2.3 Chemical Weathering ..........................................................................................17 
2.4 Surface-controlled Ligand Promoted Dissolution Mechanism of Minerals ........19 
2.5 Hanford’s 300 Area Uranium Plume Characterization .......................................21 

3.0 OBJECTIVES ........................................................................................................ 23 
3.1 Research Hypothesis ...........................................................................................23 

4.0 METHODOLOGY ................................................................................................ 24 
4.1 Synthesis of Uranyl Phosphates Mineral ............................................................24 
4.2 Characterization of Sodium Meta-Autunite ........................................................24 

4.2.1 Scanning Electron Microscopy (SEM) ....................................................... 25 
4.2.2 X-Ray Diffraction (XRD) ........................................................................... 29 

4.3 Carbonate Buffer Solutions .................................................................................30 
4.4 Single-Pass Flow-Through (SPFT) Experiments ................................................32 

4.4.1 Dissolution Rate Calculations ..................................................................... 33 
4.4.2 Error Analysis ............................................................................................. 35 

4.5 Groundwater Modeling .......................................................................................36 
4.6 Sample Preparation .............................................................................................37 

5.0 RESULTS AND DISCUSSION ............................................................................ 38 
5.1 Steady-State Concentrations ...............................................................................38 
5.2 Effect of Bicarbonate Concentrations .................................................................38 

6.0 CONCLUSIONS.................................................................................................... 54 

REFERENCES ................................................................................................................. 56 

CHAPTER TWO .............................................................................................................. 62 

ABSTRACT ...................................................................................................................... 62 

8.0 INTRODUCTION ................................................................................................. 63 



vii 
 

9.0 MATERIALS AND METHODS ........................................................................... 65 
9.1 Synthesis of Sodium Meta-autunite ....................................................................65 
9.2 Single-Pass Flow-Through (SPFT) Experiments ................................................66 
9.3 Dissolution Rate Calculations .............................................................................68 
9.4 Groundwater Modeling .......................................................................................68 

10.0 RESULTS AND DISCUSSION ............................................................................ 69 
10.1 Effect of Bicarbonate ..........................................................................................69 
10.2 Estimation of thermodynamic parameters (Activation Energy of dissolution) ...69 
10.3 Visual MINTEQ speciation modeling .................................................................76 

11.0 CONCLUSIONS.................................................................................................... 81 

REFERENCES ................................................................................................................. 82 

CHAPTER THREE .......................................................................................................... 85 

ABSTRACT ...................................................................................................................... 85 

13.0 INTRODUCTION ................................................................................................. 86 

14.0 MATERIALS AND METHODS ........................................................................... 89 
14.1 Autunite Specimens .............................................................................................89 
14.2 Single-Pass Flow-Through (SPFT) Experiments ................................................90 
14.3 Quantification of Dissolution Rate ......................................................................92 
14.4 Groundwater Modeling .......................................................................................92 

15.0 RESULTS AND DISCUSSION ............................................................................ 93 
15.1 Effect of Bicarbonate ..........................................................................................93 
15.2 Estimation of Thermodynamic Parameters (Activation Energy of Dissolution)100 

16.0 CONCLUSIONS.................................................................................................. 106 

REFERENCES ............................................................................................................... 107 

APPENDIX ..................................................................................................................... 111 

VITA.. ............................................................................................................................. 123 
 

  



viii 
 

LIST OF FIGURES 

Figure 1 Uranium-235 chain reaction (Source www.hk-phy.org) ...................................... 3 

Figure 2 Production of plutonium-239 from uranium-238 ................................................. 4 

Figure 3 Hanford Site water monitoring areas .................................................................... 6 

Figure 4 Uranium plume at the 300 Area of the Hanford Site ............................................ 7 

Figure 5 pe-pH diagram for aqueous species and solids in the U-O2-CO2-H2O system .. 10 

Figure 6 Eh-pH diagrams of the system U-O-H ............................................................... 11 

Figure 7 Eh-pH diagrams of the system U-O-H ............................................................... 12 

Figure 8 Dominant aqueous complexes of uranium in the presence of ligands ............... 13 

Figure 9 Schematic showing the step-wise hydrolysis of sodium tri-polyphosphate ....... 15 

Figure 10 Hydrolysis of polyphosphate as a function of pH ............................................ 16 

Figure 11 Photomicrograph of synthetic sodium meta-autunite before washing ............. 26 

Figure 12 Photomicrographs of synthetic sodium meta-autunite after washing ............... 27 

Figure 13 Compositional peaks of elements before washing ........................................... 28 

Figure 14 Compositional peaks after washing .................................................................. 29 

Figure 15 X-Ray diffraction patterns of synthetic Na-autunite mineral ........................... 30 

Figure 16 Graphical representation of experimental setup ............................................... 33 

Figure 17 Change in the uranium concentration over time for 3mM bicarboante at 23oC39 

Figure 18 Uranium rate of release as a function of bicarbonate concentration at pH 6 ... 43 

Figure 19 Uranium rate of release as a function of bicarbonate concentration at pH 7 ... 43 

Figure 20 Uranium rate of release as a function of bicarbonate concentration at pH 8 ... 44 

Figure 21 Uranium rate of release as a function of bicarbonate concentration at pH 9 ... 46 

Figure 22 Uranium rate of release as a function of bicarbonate concentration at pH 10 . 47 

Figure 23 Uranium rate of release as a function of bicarbonate concentration at pH 11 . 47 



ix 
 

Figure 24 3D representation of uranium release from Na-autuntie at 5 - 60oC ................ 49 

Figure 25 Sodium and Phosphate rate of release as a function of bicarbonate 
concentration at pH 6 and pH 11 ...................................................................................... 52 

Figure 26 Activation energies of the Na-autunite dissolution at various pH values ........ 72 

Figure 27 Changes in the U(VI) release as a function of bicarbonate .............................. 74 

Figure 28  Changes in the pseudo equilibrium constant as a function of inverse 
temperature for Na-autunite .............................................................................................. 76 

Figure 29 A) Visual MINTEQ U(VI) speciation modeling summary for U species at 
0.0005 M HCO3

⎯; B) Visual MINTEQ U(VI) speciation modeling summary of the total 
hydroxide and carbonate U(VI) species at 0.0005 M HCO3

⎯. ........................................... 79 

Figure 30 A) Visual MINTEQ U(VI) speciation modeling summary for U species at 
0.003 M HCO3

⎯; B) Visual MINTEQ U(VI) speciation modeling summary of the total 
hydroxide and carbonate U(VI) species at 0.003 M HCO3

⎯. ............................................. 80 

Figure 31 SEM images of precipitated (a) Na-autunite and natural Ca-autunite sample (b, 
c) ....................................................................................................................................... 90 

Figure 32 Change in U(VI) release rate from Ca-autunite as a function of bicarbonate 
concentration ..................................................................................................................... 95 

Figure 33 SEM image of post-reacted Na-autunite .......................................................... 99 

Figure 34 Activation energy of the Ca-autunite dissolution at various pH values ......... 102 

Figure 35 Variations in the uranium dissolution as a function of bicarbonate 
concentration ................................................................................................................... 104 

Figure 36 Pseudo equilibrium constant for uranium release from Ca-autunite at different 
temperatures .................................................................................................................... 105 

  



x 
 

LIST OF TABLES 

Table 1 Reduction potentials of uranium half reactions ..................................................... 9 

Table 2 Environmentally significant uranyl phosphate minerals ..................................... 17 

Table 3 Dissociation reactions and associated solubility products ................................... 19 

Table 4 Composition of 300 area groundwater collected from various excavations ........ 22 

Table 5 Elemental composition of sodium meta-autunite before washing ....................... 28 

Table 6 Elemental composition of sodium meta-autunite after washing .......................... 29 

Table 7 Composition of solutions of bicarbonate concentrations used ............................ 31 

Table 8 Saturation indices of uranyl compounds from geochemical model ..................... 42 

Table 9 Effect of bicarbonate on the dissolution of uranium from Na-autunite ............... 50 

Table 10 Activation energies of sodium autunite dissolution ........................................... 73 

Table 11 Pseudo equilibrium constants and enthalpy values at various temperatures ..... 75 

Table 12 Power law coefficients and intrinsic rate constants ........................................... 96 

Table 13 Species distribution data for Ca-autunite ........................................................... 98 

Table 14 Changes in activation energies of autunite dissolution .................................... 101 

Table 15 Pseudo equilibrium constants and enthalpy values at various pH for Ca-autunite 
and Na-autunite ............................................................................................................... 105 
 

  



xi 
 

ABBREVIATIONS 

AMERI  Advanced Materials Engineering Research Institute 

DDIW Distilled De-Ionized Water 

DOE Department of Energy 

EDS Energy Dispersive X-Ray Spectroscopy  

EPA Environmental Protection Agency 

ICP-OES Inductively-Coupled Plasma-Optical Emission Spectroscopy 

IEER Institute for Energy and Environmental Research 

KPA Kinetic Phosphorescence Analyzer 

LLD Lower Limit of Detection 

NPL National Priorities List 

ORP Oxidation Reduction Potential 

PFA Perfluroalkoxide 

PNNL Pacific Northwest National Laboratory 

PPB Parts Per Billion 

PPM Parts Per Million 

SEM Scanning Electron Microscopy 

SPFT Single-Pass Flow-Through 

TRIS Tris (hydroxymethyl) aminomethane 

XRD X-Ray Diffraction



1 
 

CHAPTER ONE 

Effect of bicarbonate on the dissolution of sodium meta-autunite 

ABSTRACT 

Release of uranium from Na meta-autunite, a mineral frequently found in contaminated 

sediments as the long-term controlling phase of uranium, takes place during slow 

dissolution of the mineral structure. Single-pass flow-through (SPTF) experiments were 

conducted to estimate the rate of release of uranium from Na meta-autunite, 

Na2[(UO2)2(PO4)2]·3H2O, as a function of bicarbonate (0.0005 - 0.003 M) in the pH 

range of 6 - 11 and a temperature range of 5 - 60oC. The rate of uranium release from Na 

meta-autunite in the presence of low bicarbonate concentrations increased over 300 fold 

when compared to the rate of release of uranium in the absence of bicarbonate. At a 

constant pH, the rate of release of uranium showed little increase with an increase in 

bicarbonate concentration.  
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INTRODUCTION  

Uranium is a naturally occurring radioactive element that is commonly found in very 

small quantities in rocks (2 - 4 ppm), soil, seawater (3.3 ppb) and plants. Weakly 

radioactive by nature, uranium contributes to low levels of natural background radiation 

in the environment (EPA, 2011). Significant concentrations of uranium occur in some 

substances such as phosphate rock deposits and minerals such as uraninite in uranium-

rich ores. Refined silvery white uranium is weakly radioactive and is 65% denser than 

lead. Uranium is found naturally as three different isotopes U-238, U-235, and U-234, 

and has half-lives of 4.46 billion years, 704 million years and 245,000 years, respectively 

(IEER, 2005). Uranium can be released into the environment via wind and water erosion 

and volcanic eruptions. Industries involved in mining, milling and processing of uranium 

are also contributors of uranium released into the environment (Keith, 2011). In air, 

uranium exists as dust; very small dust-like particles fall out onto water, plants and land. 

Uranium deposited on land can be reincorporated into soil, washed into surface water, or 

adsorbed onto plant roots. Uranium in the surface water can be transported large 

distances. Alpha particles emitted by uranium-238 are less penetrating than the gamma 

rays and, as long as the uranium remains outside of the body, it poses little health hazard. 

However, radioactivity from uranium poses increased risks of lung and bone cancers 

when inhaled or ingested. At high concentrations, uranium is chemically toxic and can 

damage internal organs such as kidneys (EVS, 2011). Depleted uranium is used as 

shielding material to protect army tanks and also in parts of missiles and bullets. The 

enriched uranium is used to power nuclear propelled ships, submarines and in nuclear 

weapons. Uranium’s ability to undergo fission, splitting into smaller parts when 
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bombarded with neutrons releasing energy, is the important property for nuclear weapons 

and nuclear power production. As shown in Figure 1, uranium-235 has the ability to 

absorb a neutron and fissions into two new atoms (krypton and barium) while releasing 

two neutrons and a large amount of energy. These neutrons help sustain the chain 

reaction so that the fission process in maintained without external source of neutrons 

(Makhijani et al., 2004). As shown in Figure 2, uranium-238 absorbs one of the neutrons 

released during the fission of uranium-235 and converts into uranium-239; uranium-239 

releases a β-particle and converts into neptunium-239 which releases a β-particle and 

converts into plutonium-239 (Settle, 2009) that was used in the first atomic bomb tested 

and dropped on Nagasaki. 

 
Figure 1 Uranium-235 chain reaction (Source www.hk-phy.org) 
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Figure 2 Production of plutonium-239 from uranium-238 

Uranium occurs in high concentrations at several contaminated sites in the United States 

(Eisenbud et al., 1997) and is an important risk-driving contaminant at the Hanford Site 

(Zachara, 2007). Due to the potential threat on human health, the U.S. Environmental 

Protection Agency (USEPA) has set a maximum contaminant level of 30 µg L-1 for 

uranium concentration in groundwater (EPA, 2011).  

DOE’s Hanford Site covers approximately 586 square miles and was established to 

produce nuclear material for national defense (EPA, 2011). The Hanford Site was placed 

on the National Priorities List (NPL) in 1989 and was divided into 4 NPL sites, including 

the 100 Area, 200 Area, 300 Area, and 1100 Area (Figure 3). The 300 Area of the 

Hanford Site consists of a 0.52 square-mile industrial complex area that was used for 

uranium fuel fabrication as well as research and development activities. After operations 

at the 300 Area began in 1943, these activities led to the contamination of streams, soil 

and groundwater, primarily with 58,967 kg of uranium. Furthermore, waste from the 
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operations was disposed of in designated landfills/burial grounds and discharged to 

unlined surface ponds and trenches. The primary cleanup activities that have taken place 

in the 300 Area include removal of contaminated soils and debris, treatment of the 

material to reduce the toxicity and mobility of the contaminants, and disposal of the 

material in an appropriate long-term waste management facility. Currently, the 

contaminated groundwater in the 300 Area is being monitored to ensure that the 

contamination levels are decreasing through natural processes. The uranium 

concentration is associated with contamination remaining in the deep vadose zone and 

smear zone, where the smear zone is the area where free product occurred in the soil and 

was then smeared across the soil when the water table fluctuated between historic high 

and low water table elevations. Uranium in its soluble form is of concern because of its 

chemical toxicity and risk of radiological exposure, even though the concentrations in 

groundwater for chemical toxicity are lower than those associated with exceeding 

radiological dose standards. Currently, elevated uranium concentrations are entering the 

Columbia River along the shoreline and enter the riparian and river biota through seeps. 

Figure 4 shows the concentrations of uranium in the 300 area of the Hanford Site. 
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Figure 3 Hanford Site water monitoring areas
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Figure 4 Uranium plume at the 300 Area of the Hanford Site 
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LITERATURE REVIEW 

1.1 Uranium Geochemistry 

Solubility of uranium in the aqueous system is controlled by oxidation-reduction 

potential (ORP), pH and dissolved carbonate (Giammar, 2001). Uranium in the aqueous 

environment can exist in various oxidation states such as +III, +IV, +V and +VI; 

however, under environmental conditions, only two oxidation states (+IV and +VI) are 

stable. The reduction half-reactions and associated potentials for all of the uranium 

oxidation states are given in Table 1 (Grenthe, 1992). Uranyl (VI) species are 

predominantly found in oxidizing environments, and uranium (IV) prevails in reducing 

environments. Both of these species have a strong tendency towards complexation with 

other chemicals and are greatly affected by aquifer characteristics such as pH, redox 

status, and concentrations of dissolved constituents (Merkel et al., 2005; Zhang et al., 

2002). The thermodynamic properties of uranium minerals and aqueous species govern 

reactions that may control U concentrations and its mobility in the subsurface. The major 

contributors to uranium geochemistry have been made by publications of the Nuclear 

Energy Agency’s (NEA) database for uranium (Grenthe, 1992) and updates for uranium 

databases published by Lemire et al., (1980). Langmuir (1997) published several 

important corrections and additions to the thermodynamics data. The term pe is a 

measure of the oxidation-reduction capacity of natural water. Natural water with a high 

pe (low electron activity) would be considered to be oxidizing, and water with a low pe 

(high electron activity) would be considered to be reducing. Just as pH is important to 

mineral solubility and the speciation of acid-base pairs, pe is important to the solubility of 
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minerals containing elements with variable oxidation states, and the speciation of redox 

pairs. Eh is the potential of a solution relative to the standard hydrogen electrode. High 

values of Eh or pe correspond to oxidizing conditions, and low values of Eh or pe 

correspond to reducing conditions. A pe-pH plot showing the domains of stability of 

dissolved and solid uranium species is given in Figure 5. At high pe and high pH, 

uranium tends to form complexes with carbonate. 

Table 1 Reduction potentials of uranium half reactions 
Reaction Eh (V) pe logK 

U4+ + e- = U3+ -0.553 -9.35 -9.35 

4H+ + UO2
2+ +2e- = 2H2O(l) + U4+ +0.267 4.51 4.51 

UO2
2+ + e- = UO2

+ +0.088 1.49 1.49 

UO2
2+ + 2e- = UO2(s) +0.411 6.95 13.89 

U4O9(s) + 2H+ + 2e- = 4UO2(s) + H2O(l) +0.456 7.71 15.41 

4β-U3O7(s) + 2H+ +2e- = 3U4O9(s) + H2O(l) +0.517 8.74 17.48 

U3O8(s) + 2H+ + 2e- = β-U3O7(s) + H2O(l) +0.565 9.55 19.10 
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Figure 5 pe-pH diagram for aqueous species and solids in the U-O2-CO2-H2O system 

Takeno (2005) reported intercomparison of thermodynamic databases by means of Eh-pH 

diagrams for understanding geochemical behavior of uranium. The Eh-pH diagram 

(Figure 6 and Figure 7) depicts the dominant aqueous species and stable solid phases in 

the absence of ligands predicted by different geochemical models. The solid stability area 

in the Eh-pH diagram provides essential understanding of solute and radionuclide 

transport in groundwater which is related to the saturation condition. The dominant 

aqueous species gives fundamental information on sorption and colloid phenomena as 

well as surface characteristics of materials. Figure 8 shows the aqueous complexes of 

uranium in the presence of sulfate, carbonate, and uranium (Krupka et al., 2002). 
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Figure 6 Eh-pH diagrams of the system U-O-H 
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Figure 7 Eh-pH diagrams of the system U-O-H 
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Figure 8 Dominant aqueous complexes of uranium in the presence of ligands 

Uranium(IV) complexes with hydroxide or fluoride are the only dissolved species under 

reducing conditions (Gascoyne, 1992), while the precipitation of uranium(IV) under 

reducing conditions is the dominant process leading to naturally enriched zones of 

uranium in the subsurface (Osmond et al., 1992). In oxidizing aqueous environments, 

uranium (VI) is present as the linear uranyldioxo ion (UO2
2+) and an array of 

mononuclear and polynuclear hydrolysis species. With increasing carbonate 

concentrations, mononuclear uranyl carbonate species become increasingly important. In 

oxidizing groundwater conditions, soluble uranyl ion (UO2
2+) creates strong complexes 

with carbonate. Wellman et al., (2008) reported that at pH of ~8.5, uranyl ion form 

carbonate complexes: 27% as UO2(CO3)2
2- and 68% as UO2(CO3)3

4-, 3% as UO2(OH)2
0 

and 2% as UO2(OH)3
1-. The highly water soluble uranyl carbonate complexes can greatly 
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increase the solubility of uranium minerals and facilitate uranium desorption reactions 

from soil and sediments (Langmuir, 1997). Serne (2002) reported that the uranium 

adsorption Kd values ranged from 7 to 2 mL g-1 in the presence of bicarbonate 

concentrations between 0.9 to 2.2 mM; however, Kd values were reduced from 0.3 to 0 

mL g-1 when bicarbonate concentrations increased to 2.5 - 13 mM.  

1.2 Polyphosphate Remediation Technology 

By changing the chemical speciation, toxic and mobile species can be converted to 

nontoxic and immobile species (Knox, 2008). Uranium has a high affinity to form strong 

and the most stable complexes with phosphate amongst oxygen-containing ligands 

(Giammar, 2001; Sowder et al., 2000). The presence of phosphate in groundwater can 

limit the mobility of the uranyl cation (UO2
2+) in the subsurface due to the formation of 

sparingly insoluble autunite minerals. 

Water soluble phosphate compounds can be injected into contamination plumes by using 

strategically placed wells as chemical stabilizers for uranium and other heavy metals. 

Soluble amendments allow treatment of plumes situated deep within the subsurface and 

act to sequester uranium by precipitating insoluble uranium minerals. Arey (1999) and 

Shi (2009) used water soluble phosphate compounds to sequester uranium but with little 

success. Wellman et al., (2007) demonstrated that the compounds such as tribasic sodium 

phosphate will rapidly form phosphate phases, occluding ~30% of the fluid-filled pore 

space and reducing hydraulic conductivity. However, the use of soluble long-chain 

polyphosphate compounds has been demonstrated to delay the precipitation of phosphate 

phases (Figure 9). Precipitation of phosphate minerals occur when the phosphate 
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compounds degrade in water, due to the hydrolysis, to yield orthophosphate molecules 

(PO4
3-). The longer the polyphosphate chain, the slower the hydrolysis reaction leading to 

orthophosphate products (Shen et al., 1973) Figure 10. Hence, the drastic change in the 

hydraulic conductivity of the system will not occur due to the use of long-chain 

polyphosphate. 

 
Figure 9 Schematic showing the step-wise hydrolysis of sodium tri-polyphosphate 
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Figure 10 Hydrolysis of polyphosphate as a function of pH 

In situ stabilization of uranium by polyphosphate amendments has gained popularity at 

some of the DOE sites contaminated with uranium (Knox, 2008; Wellman et al., 2007). 

Injection of a soluble sodium tripolyphosphate amendment into the uranium 

contaminated groundwater and soil have been shown to effectively sequester uranium 

through the formation of insoluble uranyl phosphate minerals. The uranyl phosphates are 

a large family of minerals, X1-2[(UO2)(PO4)]2-1·nH2O, where X is any monovalent of 

divalent cation (Vermeul, 2008). Table 2 lists several of the most commonly observed 

uranyl phosphate minerals (Finch et al., 1999) that can be formed due to the 

polyphosphate injection. 
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Table 2 Environmentally significant uranyl phosphate minerals 

Name  Composition  

autunite  Ca(UO2)2(PO4)2•10H2O  

meta-autunite  Ca(UO2)2(PO4)2•(2-6)H2O  

uranyl orthophosphate  (UO2)3(PO4)2•4H2O  

chernikovite  (H3O)2(UO2)3(PO4)2•4H2O  

sodium meta-autunite  Na2(UO2)2(PO4)2•8H2O  

meta-ankoleite  K2(UO2)2(PO4)2•6H2O  

phosphuranylite  Ca(UO2)3(PO4)2(OH)2•6H2O  

saleeite  Mg(UO2)2(PO4)2•10H2O  

1.3 Chemical Weathering 

Chemical weathering is one of the dominating processes controlling the 

hydrogeochemical cycle of elements. It involves complex chemical reactions that alter 

the structure of minerals through dissolution, hydration, oxidation and hydrolysis. Soil 

pore water and groundwater rich in dissolved carbon dioxide, mineral cations and organic 

molecules are the primary agents in the dissolution reactions. Chemical weathering takes 

place in soils and groundwater and mainly depends on the nature of the minerals material, 

water acidity, and temperature (Langmuir, 1997).  

Release of uranium from autunite takes place during slow dissolution of the mineral 

structure. The solubility products of uranyl phosphate, log Ksp, reported in the literature 

have been measured from 49 to 53 (Table 3) (Grenthe, 1992; Sandino et al., 1992) which 

is slightly less soluble then other autunite phases such as calcium (log Ksp = 45) or 

sodium (log Ksp = 48) (Langmuir, 1997).  Gorman - Lewis et al., (2009) reported in their 

recent solubility study on well- characterized natural Ca-U-P and uranyl orthophosphate 

stability constant values, log Ksp, of -48.36 and -49.36, respectively. Environmental 
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factors, such as pH, temperature, dissolved organic matter, and redox potential, have 

tremendous effects on both uranium and polyphosphates. For example, hydrolysis of 

polyphosphates has been found to take place at lower pH ranges (Henk-Jan, 1998), which 

in turn can influence its reaction rate with uranium. Similarly, pH and redox potential can 

also have influence on these chemicals, either by changing their oxidation states 

(uranium) or by influencing hydrolysis (polyphosphates). 

Information on the stability of uranyl-phosphate phases is limited to pH, temperature, and 

a few aqueous organic materials (Wellman et al., 2006). Kinetic dissolution studies of 

autunite conducted in the wide range of pH and temperatures in flow-through and batch 

experiments illustrated a strong dependency of dissolution rates on pH but were relatively 

insensitive to temperature variations (Wellman et al., 2006, 2007). Yet, limited data is 

available about autunite stability as it relates to complexation with ligands. The ability of 

ligands to form complexes tends to increase the solubility of minerals. Sowder (1998) 

investigated the dissolution of meta-autunite in a variety of leaching solutions. 

Dissolution in 100 mM EDTA and acetic acid resulted in release of 5 - 25% of the total 

uranium after 2 weeks. Dissolution of meta-autunite was rapid with 100% recovery after 

only 8 hours with 100 mM sodium bicarbonate. 

As shown in other studies (Davis, 2003 & 2004; Curtis, 2004), U(VI) sorption to soil and 

sediments is extremely sensitive to the alkalinity value due to aqueous carbonate 

complexation. However, the effect of carbonate complexation on uranyl phosphate (Na-

autunite) dissolution has not been evaluated. The dissociation reactions of some of the 
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uranyl phosphate minerals along with the solubility product constants are listed in Table 

3. 

Table 3 Dissociation reactions and associated solubility products 

Reaction  Log Ksp  

(UO2)3(PO4)2•4H2O(s)  ----->  4H2O(l) + 2PO4

3- 

+ 3UO2

2+ 

 -49.371,-53.322 

UO2HPO4•4H2O(s)  ----->    4H2O(l) + H
+ 

+ PO4

3- 

+ UO2

2+ 

 -24.201  

Ca(UO2)2(PO4)2•xH2O(s)  ----->   xH2O(l) + Ca
2+

+ 2PO4

3-

+ 2UO2

2+

 -44.703  

Na2(UO2)2(PO4)2•xH2O(s) ----> •xH2O(l) + 2Na+ + 2PO4
3- +2UO2

2+ -47.4094 

1-Grenthe et al, (1992), 2- Sandino and Bruno (1992), 3-Van Haverbeke et al. (1996), 4-Visual MINTEQ 

Carbonate/bicarbonate leaching solutions are traditionally used to extract uranium from 

contaminated soils. Manson (1997) examined carbonate leaching of uranium from 

contaminated soil at the Fernald Site, Ohio. The leach solution of KHCO3/K2CO3 at 1:1 

ratio and the total concentration of CO3
2- 0.5 M effectively removed 80% of uranium 

from soil within 48h and an additional 5% over the next 288h in column experiments. 

Increases in the reaction temperature often enhance the solution reaction rate. However, 

no appreciable changes were noted in the removal rate at temperatures of 25, 45, and 

65oC using 0.5 M HCO3
- as a leaching solution (Manson, 1997). 

1.4 Surface-controlled Ligand Promoted Dissolution Mechanism of Minerals 

The dissolution transforms minerals to solutes through several steps which involve mass 

transport, adsorption, surface chemical reactions, and desorption processes (Stumm et al., 

1990). Recent studies using surface spectroscopy of the mineral dissolution reactions by 

ligands have revealed that the overall reaction is surface-controlled. In these reactions, 

the concentrations of solutes close to the surface are equal to the bulk solution 
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concentration. The dissolution kinetics is zero-order if steady-state conditions exist on the 

surface (Stumm et al., 1990 & 1996): 

kA
dt

dC
r ==         (1) 

Where: 

r = the dissolution rate (M s-1), 

A = the surface area of the mineral A (m-2), and 

k =the reaction rate constant (mol m-2 s-1)  

The important reactants in the dissolution process are H2O, H+, OH-, ligands, and 

reductants and oxidants in case of reducible or oxidizable minerals. The latter is not the 

case for the uranyl ion sequestrated into the stable uranyl phosphate minerals under the 

aerobic groundwater conditions that are typically present at the Hanford Site.  

There are two important mechanisms in the surface-control reactions (Stumm et al., 1990; 

Sparks 1999): 

i. Fast bonding of the reactants to the surface sites, and 

ii. Slow and rate-limiting detachment of metal species from the surface into 

solution. 

Surface site + Reactants (Ligands) ⎯⎯→⎯Fast  Surface Species  (2) 

Surface Species ⎯⎯⎯⎯⎯⎯⎯ →⎯ metalofachmentSlow det   M (aq)   (3) 
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The dissolution reaction begins with the surface complexation with ligands that tend to 

weaken metal bonds, causing detachments of the metal cation into the solution phase. 

Since detachment of metal from the surface is rate limiting, the rate law of the dissolution 

reaction depends on the concentration of the surface species, Cj (mol m-2): 

 kCjR =       (4) 

Where: 

k = the rate constant for ligand-promoted dissolution (time-1), and 

Cj = the surface concentration of the ligand (mol m-2) 

1.5 Hanford’s 300 Area Uranium Plume Characterization 

The aqueous bicarbonate system is important in the environment because of the high 

abundance of carbon dioxide and carbonate containing minerals (Clark et al., 1995). 

Aqueous carbonate at a common groundwater CO2 pressure of 10-2 to 10-3.5 atmosphere is 

the predominant species affecting the dissolution of actinides and facilitating uranium 

desorption reactions from soil and sediments, thus increasing uranium mobility in natural 

waters (Langmuir, 1997). The composition of groundwater collected at several locations 

within the uranium contaminated area at the Hanford Site has revealed relatively constant 

concentrations for the major anions, cations, and pH. The groundwater ionic strength 

ranging 3 - 8 mmol L-1 was dominated by Ca2+, Na+, Mg2+, HCO3
-, and SO4

2-. Zachara 

(2005) reported that computerized speciation model (MINTEQA2) indicated that 300 

Area groundwater was supersaturated with CO2(g) and Ca2UO2(CO3)3
0 and UO2(CO3)2

2- 

are the predominant U(VI) aqueous species. The concentration of uranium exceeds the 
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maximum contaminant level for drinking water of 30 mg L-1 required by EPA as shown 

in Figure 4. Table 4 lists the groundwater composition collected from various excavations 

of the 300 Area uranium plume.  

The Columbia River total inorganic carbon concentration is about 0.5 mM; 

concentrations in the range of 1.2 - 2.7 mM were determined in the groundwater at the 

300 Area, and more than 10 mM were detected in the vadose zone porewater.  

Table 4 Composition of 300 area groundwater collected from various excavations 

Parameter Range 

pH 7.71 - 8.11 

Ionic strength, (mmol L-1)  3.50 - 8.20 

Ca, (μmol L-1) 0.60 - 1.31 

K, (μmol L-1) 0.06 - 0.20 

Na, (μmol L-1) 0.77 - 2.65 

Inorganic carbon, (mmol L-1) 1.2 - 2.71 

U(μmol L-1) 0.3 - 4.96 
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OBJECTIVES  

The objective of the experimental work was to quantify the effect of bicarbonate on the 

stability of synthetic meta-autunite created as a result of uranium stabilization through 

polyphosphate injection. The polyphosphate technology with the formation of autunite 

was identified as the most feasible remediation strategy to sequester uranium in 

contaminated groundwater and soil in situ. The experimental work helped to quantify the 

dissolution kinetics of meta-autunite minerals in the presence of bicarbonate. 

This was accomplished through a series of dissolution experiments conducted in a single-

pass flow-through (SPFT) reactor using a mixture of carbonate and TRIS as a buffer 

solution subjected to various temperatures.  

The parameters that were tested are as follows: 

i. Carbonate concentration: 0.5, 1.0, 2.0, and 3.0 mmol L-1  

ii. pH:    6 - 11 

iii. Temperature:   5 - 60oC 

1.6 Research Hypothesis 

Bicarbonates’ ability to complex with uranium yields highly soluble and mobile species 

in the subsurface environment. The presence of bicarbonate ions in the solution are 

expected to enhance the solubility of uranium-bearing minerals by complexation 

reactions with carbonate. 
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METHODOLOGY 

1.7 Synthesis of Uranyl Phosphates Mineral  

Several published methods have described procedures for synthesis of synthetic autunite 

salts (Zheng, 2006; Sowder et al., 2000). A review of literature revealed two main 

approaches to synthesize uranium phosphate minerals by using direct and indirect 

precipitation. Wellman et al., (2005) described the direct precipitation method modified 

from (Vochten et al., 1980) for synthesis of Na-autuntie. The precipitation of Na-autunite 

was accomplished by mixing uranyl nitrate, UO2(NO3)2·6H2O, solution and sodium 

phosphate dibasic, Na2HPO4
.7H2O, in a volumetric ratio of 1:7.5 while stirring at 70oC. 

The overall reaction is as follows: 

Na2HPO4·7H2O + UO2(NO3)2·6H2O  ----> Na[UO2PO4]·nH2O + NaNO3 + HNO3         (5) 

Heating was terminated after a yellowish green precipitate was formed rapidly and 

stirring was continued until the solution returned to room temperature. The solids were 

allowed to cure at room temperature for 24 hours without stirring. Solids were recovered 

from solution using vacuum filtration with a 0.45 µm disposable Nalgene filter; the solids 

were then washed with DI water heated to 70oC followed by rinsing with isopropyl 

alcohol. Solids were dried at room temperature until a constant weight was achieved 

(Wellman et al., 2005). 

1.8 Characterization of Sodium Meta-Autunite 

The synthesized and partially reacted autunite solids were characterized by JSM-5900-

LV low vacuum scanning electron microscope (SEM) at 15kV for identification of 
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particle size. Energy Dispersive X-Ray Spectroscopy (EDS) was used to determine the 

composition and purity of the solids. The composition of the particles was analyzed using 

a Noran System Six Model 200 SEM Energy Dispersive X-Ray Spectroscopy (EDS). 

Pre-experimental surface area analysis was conducted following the N2-adsorbtion BET 

method (Brunauer et al., 1938) by using a  micromeritics ASAP 2020 surface and 

porosity analyzer at Pacific Northwest National Laboratory (PNNL) and compositional 

analysis using Bruker 5000D XRD instruments. 

1.8.1 Scanning Electron Microscopy (SEM) 

SEM with EDS analysis was performed in the Advanced Materials Engineering Research 

Institute (AMERI) at Florida International University (FIU) by using a JSM-5900-LV 

low vacuum SEM at 15kV. The sample was mounted on a double-sided carbon tape as 

the mineral has a very low electrical conductivity and can be electrostatically charged 

during imaging. Initial analysis of the sample showed that the mineral has impurities, 

shown as non-uniform colored areas in Figure 11. The solids were washed with DI water 

heated to 70oC to remove impurities, followed by washing with isopropyl alcohol to 

reduce aggregation. Repeated SEM analysis showed that the impurities were washed out, 

showing a uniform color in Figure 12. 



26 
 

 
Figure 11 Photomicrograph of synthetic sodium meta-autunite before washing 

The compositional analysis was performed on both samples using EDS; composition of 

the solids was conducted at three (3) locations for sodium (Na), oxygen (O), phosphorous 

(P), nitrogen (N), and uranium (U), and the data is presented in Table 5, Figure 13 and 

Table 6, Figure 14. Presence of N is shown in Figure 13 before washing and Figure 14 

shows absence of N after washing. Average compositions of the elements were divided 

by molecular weight of the element to obtain molar quantities of the elements. Molar 

quantities of elements were divided with the lowest molar quantity to obtain the chemical 

formula of the mineral. Based on the data shown in Table 5, the chemical formula of the 

synthesized mineral’s atomic ratio does not match that of autunite. However, after 
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washing, the mineral matches the atomic ratio of autunite (Table 6) and the chemical 

formula of the synthesized mineral is Na [UO2 PO4].  

 
Figure 12 Photomicrographs of synthetic sodium meta-autunite after washing 
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Figure 13 Compositional peaks of elements before washing 

Table 5 Elemental composition of sodium meta-autunite before washing 

Element Sample 1 Sample 2 
Sample 3 

Average 
Molecular 

wt. 

Molar 

Quantity 

Atomic 

Ratio 

Na 0.89 1.36 0.79 1.01 23 0.04 1.00 

O 10.94 12.96 6.71 10.20 16 0.64 14.47 

P 8.74 8.68 7.38 8.27 31 0.27 6.05 

U 75.97 74.01 82.26 77.41 238 0.33 7.38 

N 3.27 2.97 2.74 2.99 14 0.21 4.85 
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Figure 14 Compositional peaks after washing 

Table 6 Elemental composition of sodium meta-autunite after washing 

Element Sample 1 Sample 2 Sample 3 Average 
Molecular 

Wt. 

Molar 

Quantity 

Atomic 

Ratio 

Na 5.14 6.29 6.91 6.11 23 0.27 1.08 

O 20.37 21.93 25.11 22.47 16 1.40 5.69 

P 7.3 7.77 7.87 7.65 31 0.25 1.00 

U 65.25 62.1 56.54 61.30 238 0.26 1.04 

1.8.2 X-Ray Diffraction (XRD) 

X-ray diffraction analysis was performed on the synthesized autunite mineral at 40 kV 

and 40 mA using a Bruker 5000D XRD instrument. Diffraction patterns were obtained 

using a copper radiation source with a tungsten filter. The sample was analyzed in the 

range of 2 to 35o for the 2-theta (2�) with 0.04o step increment and a two-second count 

time at each step. As shown in Figure 15, XRD patterns obtained for synthesized autunite 
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matched, but at higher intensity, the diffraction patterns of the known autunite PDF 

obtained from PNNL for comparison. 

 
Figure 15 X-Ray diffraction patterns of synthetic Na-autunite mineral 

1.9 Carbonate Buffer Solutions 

Buffer solutions prepared with distilled de-ionized water (DDIW) at 23oC consisting of 

0.05 M tris (hydroxymethyl) aminomethane (TRIS, (HOCH2)3CNH2) buffer and aqueous 

bicarbonate concentration in the range of 0.0005 to 0.003 M were used to investigate the 

uranium release from synthetic autunite mineral over a pH interval of 6 to 11. The pH of 

the buffer solutions was adjusted using 0.1 M hydrochloric (HCl) acid and potassium 

hydroxide (KOH) and composition of the buffer solutions are shown in Table 7. 
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Table 7 Composition of solutions of bicarbonate concentrations used 

Solution Composition pH @ 23oC

1 0.05 M Tris + 0.0005 M HCO3
- + 0.01096 M HCl 5.96 

2 0.05 M Tris + 0.0005 M HCO3
- + 0.0103M HCl 7.00 

3 0.05 M Tris + 0.0005 M HCO3
- + 0.00779 M HCl 8.01 

4 0.05 M Tris + 0.0005 M HCO3
- + 0.00256 M HCl 9.01 

5 0.05 M Tris + 0.0005 M HCO3
- + 0.000147 M HCl 10.02 

6 0.05 M Tris + 0.0005 M HCO3
- + 0.00083 M KOH 11.00 

7 0.05 M Tris + 0.001 M HCO3
- + 0.0112 M HCl 6.01 

8 0.05 M Tris + 0.001 M HCO3
- + 0.0103 M HCl 7.02 

9 0.05 M Tris + 0.001 M HCO3
- + 0.00654 M HCl 8.00 

10 0.05 M Tris + 0.001 M HCO3
- + 0.00265 M HCl 9.01 

11 0.05 M Tris + 0.001 M HCO3
- + 0.000147 M HCl 10.00 

12 0.05 M Tris + 0.001 M HCO3
- + 0.00116 M KOH 11.00 

13 0.05 M Tris + 0.002 M HCO3
- + 0.0118 M HCl 6.01 

14 0.05 M Tris + 0.002 M HCO3
- + 0.0108 M HCl 6.99 

15 0.05 M Tris + 0.002 M HCO3
- + 0.00798 M HCl 7.99 

16 0.05 M Tris + 0.002 M HCO3
- + 0.00267 M HCl 9.01 

17 0.05 M Tris + 0.002 M HCO3
- + 0.00006 M KOH 10.00 

18 0.05 M Tris + 0.002 M HCO3
- + 0.00192 M KOH 11.00 

19 0.05 M Tris + 0.003 M HCO3
- + 0.0125 M HCl 6.01 

20 0.05 M Tris + 0.003 M HCO3
- + 0.01077 M HCl 7.01 

21 0.05 M Tris + 0.003 M HCO3
- + 0.00784 M HCl 8.01 

22 0.05 M Tris + 0.003 M HCO3
- + 0.00240 M HCl 9.01 

23 0.05 M Tris + 0.003 M HCO3
- + 0.000379 M KOH 9.99 

24 0.05 M Tris + 0.003 M HCO3
- + 0.002747 M KOH 11.00 
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1.10 Single-Pass Flow-Through (SPFT) Experiments 

The SPFT test was designed to conduct experiments under controlled pH and temperature 

conditions with constant fresh water flowing through a reaction cell filled with a mineral 

sample. The well-mixed batch type reactor was used in the current study to measure the 

dissolution rates of autunite minerals under strictly controlled conditions. The most 

important feature of this test was to remove the ions released into solution as a result of 

autunite dissolution by continuously flowing fresh water into the system. This test has 

been widely used to measure reaction rates of minerals and could be easily adapted to 

operate with various flow rates, solution composition, and sample mass, temperature 

variations to ensure accurate rate determinations (McGrail, 1997; Wellman et al., 2006).  

The SPFT system, shown in Figure 16, includes a programmable Kloehn V6 syringe 

pump (55022) that transferred carbonate buffered fresh solution from an influent 

reservoir (R) via Teflon lines into two-port (1/4”) 60 mL capacity perfluoroalkoxide 

(PFA) Teflon reactor vessels (Re) obtained from Savillex (Minnetonka, MN). The 

transport of the influent solution from the reservoir to the reactors was accomplished via 

1/16-inch Teflon tubing and the effluent solution was transported via 1/32-inch Teflon 

tubing. The reactors were kept in an oven and refrigerator under the temperature 

controlled conditions during continuous system operation to maintain them at a specific 

temperature in the range of 5 to 60oC. A thin sample solids layer resting at the bottom of 

the reactor interacted with solution flowing through the reactor. 

The solution flow rate was in the range of 1 - 2.5 L d-1. A blank solution sample was 

collected prior to the addition of Na-autunite. The effluent solution was continuously 
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collected until steady state conditions were attained, which occurred after the transfer of 

~8 reactor volumes; aliquots samples were retained for pH measurements and 

concentrations analysis of the dissolved elements (mainly U, P and Na). The 

concentrations of Na and P were determined by inductively coupled plasma mass 

spectroscopy (ICP-MS) and the total uranium concentration was measured using a kinetic 

phosphorescence analyzer (KPA). 

 
Figure 16 Graphical representation of experimental setup 

1.10.1 Dissolution Rate Calculations 

Surface area measurements of autunite solids were carried out at PNNL by using the N2-

adsorption BET method (Brunauer et al., 1938). A micromeritics surface and porosity 

analyzer, Model ASAP 2020, was used to measure the surface area of the synthetic 
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autunite samples. After the surface area was determined, the normalized dissolution rate 

was calculated for each component and at each sampling interval using the following 

formula 

Sf

q
CCR

i
ibii )( −=

     
(6)

 

Where: 

Ri = the normalized dissolution rate for element i (g m-2 d-1), 

Q = flow rate, (L d-1), 

Ci = concentration of component i in the effluent (g L-1), 

Cib = mean background concentration of component i (g L-1), 

 fi = the mass fraction of the element in the metal (dimensionless), and 

S = the surface area of the sample (m2). 

Flow rates, q, were determined gravimetrically by measuring fluid collected upon the 

sampling event. The background concentration of metals, Cib, was determined by 

triplicate analyses of the influent solution. The value of fi was calculated from the sample 

chemical composition. 

SPFT experiments were designed to limit the accumulation of reaction products using a 

sufficient ratio of the flow rate to the surface area of the mineral sample (q/S) to ensure 

that maximum dissolution rate or forward rate was achieved. By varying the flow rate 

and surface area (either increasing the flow rate or decreasing the surface area), the value 
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of q/S can be increased, consequently increasing the difference in chemical potential 

between the solid phase and the solution. This allowed achievement of the dissolution 

plateau, which is equated to the forward rate of dissolution. 

1.10.2 Error Analysis 

The lower limit of detection (LLD) of the instrument was used for the element where the 

element concentration is below the detection limit. The LLD of the instrument for an 

element is the lowest concentration of calibration standards that is reproducible within 

±10% error. 

The standard deviation of the dissolution rate is determined according to the uncertainty 

associated with each parameter shown in Equation 6. Standard deviation for uncorrelated 

random errors is given by: 


=









∂
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2

2

σσ           (7) 

Where: 

fσ  = standard deviation of the function f; 

ix  = parameter i, and 

iσ  = standard deviation of parameter i.  

Substituting Equation 6 into 7 and converting to relative standard deviations, x
f

r

σσ =
, 

gives the following equation: 
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Relative errors include: 

cσ = final concentration 10%, 

bσ = background concentration 10%,  

fiσ = mass distribution error 5%, 

sσ = surface area error 15%, and 

qσ = flow rate error 5%. 

Wellman et al., (2006) reported that this error analysis results in typical 2  uncertainties 

of approximately ±35% for SPFT-measured dissolution rates (or ±0.2 log units). The 

conservative evaluation of errors assigned to parameters in Equation 8, in addition to the 

practice of setting detection threshold values to background concentrations, results in 

typical uncertainties of nearly ±35% on the dissolution rate (Wellman et al., 2009). 

1.11 Groundwater Modeling 

Steady state concentrations were used to determine the aqueous speciation and saturation 

state of the effluent solution with respect to solid and liquid phases by using geochemical 

modeling Visual MINTEQ version 3.0, (maintained by Jon Petter Gustafsson at KTH 

Royal Institute of Technology, Sweden). Visual MINTEQ is a geochemical equilibrium 

speciation model capable of computing equilibria among the dissolved, adsorbed, solid, 



37 
 

and gas phases in an environmental setting. Visual MINTEQ uses the well-developed 

thermodynamic database of the U.S. Geological Survey’s WATEQ3 model and can be 

used to calculate the mass distribution between the dissolved, adsorbed, and multiple 

solid phases under a variety of conditions including a gas phase with constant partial 

pressure. MINTEQ has an extensive thermodynamic database that is adequate for solving 

a broad range of problems. 

1.12 Sample Preparation 

The presence of organic content in the leach solutions interfered with KPA; hence, 

samples collected during the experiments were pre-processed by wet ashing followed by 

dry ashing. A modified ashing technique described by John, et al., (2000) was used to wet 

and dry ash samples. 

Wet ashing: To a 20 ml scintillation vial, 1 ml of sample, 0.5 ml of concentration of 

nitric acid and 0.5 ml of 34% hydrogen peroxide were added. The contents were mixed 

and placed on a hot plate and dried slowly until white precipitate was obtained. 

Occasionally, some samples turned yellow while ashing; 0.5 ml of peroxide was added to 

those samples and the process was continued until a white precipitate was obtained. 

Dry ashing: After wet ashing was completed, samples were placed in a muffle furnace 

preheated to 450oC for about 15 - 20 minutes to dry ash the samples. 

Samples were allowed to cool after the wet and dry ashing and 1 ml of 2 M nitric acid 

was added to bring the sample to the original volume; aliquots from the sample were used 

for analysis.  
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RESULTS AND DISCUSSION 

1.13 Steady-State Concentrations 

Concentrations used to calculate the dissolution rates were obtained when the system 

reached equilibrium. The results presented in Figure 17 are representative of the 

observations for all experiments and illustrate that steady-state conditions are met for 

different aqueous bicarbonate concentrations (0.0005 - 0.003 M) at the four temperatures 

(5, 23, 40, and 60°C) studied. For the pH range of 6 - 11, the graph shows the 

achievement of steady-state conditions, illustrated by the plateau region, after 

approximately eight reactor volumes where the concentrations of uranium released from 

synthetic Na-autunite are invariant with respect to time. This figure also depicts the 

strong effect of pH in the dissolution rate of autunite, increasing uranium release as a 

function of pH; this is consistent with previous studies on dissolution rate of autunite 

minerals (Wellman et al., 2006). 

1.14 Effect of Bicarbonate Concentrations 

Bicarbonate concentrations ranging from 0.0005 to 0.003 M in 0.1 M TRIS buffer 

solutions were used to investigate the effect of bicarbonate, pH and temperature on the 

dissolution rate of synthetic Na-autunite. The solutions pH values were varied from 6 to 

11 at temperatures of 5, 23, 40, and 60oC. Even though the temperature of the 

groundwater at the Hanford Site is 22oC (Schalla et al., 2001) and it would be impractical 

to raise groundwater temperature to 60oC, experiments were conducted up to 60oC to 

examine the effects of a broader temperature range.    



39 
 

 
Figure 17 Change in the uranium concentration over time for 3mM bicarboante at 23oC 

A normalized dissolution rate was calculated for each component and at each sampling 

interval using the following formula (effluent concentrations of uranium, dissolution rate 

are presented in appendix): 

Sf

q
CCR

i
ibii )( −=

      
(9)

 

Where: 

Ri = the normalized dissolution rate for element i (g m-2 d-1), 

q = Flow rate, (L d-1), 

Ci, Cib = concentration of component i in the effluent, mean background 

concentration (g L-1), 

fi = the mass fraction of the element in the metal (dimensionless), and 
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S = the surface area of the sample (m2). 

From the experimental results, the dissolution rate of Na-autunite in bicarbonate solution 

was derived using: 

    η
THCOkR ][ 3

−=       (10) 

Where: 

R = the dissolution rate (mol m-2 s-1),  

k = the intrinsic rate constant (mol m-2 s-1),  

[HCO3
-]T = the total bicarbonate concentration (mol L-1), and 

� = the power law coefficient (dimensionless). 

A non-linear regression was performed at each temperature to determine the slope (power 

law coefficient), �. The resulting regression coefficient over the entire data helped to 

determine the intrinsic rate constant, k (mol m-2 s-1). 

Figure 18 shows the rate of uranium release from synthetic Na-autunite at pH 6 across 

aqueous bicarbonate concentrations from 0.0005 to 0.003 M and temperature values of 5, 

23, 40 and 60oC. Under these conditions, the increase in the rate of uranium release from 

Na-autunite increased from 2.74 x 10-12 (mol m-2 s-1) at 0.0005 M and 5oC to 4.58 x 10-11 

(mol m-2 s-1) at 0.003 M and 60oC. It is evident that there is 16.7 fold increase in the 

uranium release with an increase in the bicarbonate concentration at a constant slope (η) 

value of 0.66 ± 0.08. However, the rate constant (k) showed dependency on the 

temperature with a shift in the values at 40 and 60oC when compared to the values at 5 

and 23oC; the average rate constant was estimated as 4.82 x 10-10 (mol m-2 s-1). Figure 19 

presents the rate of uranium release as a function of bicarbonate concentration from 
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synthetic Na-autunite at pH 7; the rate of release of uranium increase was in the range of 

1.7 - 2.7. The rate of uranium release increased from 3.60 x 10-12 (mol m-2 s-1) at 0.0005 

M and 5oC to 6.00 x 10-11 (mol m-2 s-1) at 0.003 M and 60oC. On average, the uranium 

release increased by 3.4 fold at pH 7 when compared to the release of uranium at pH 6. 

The nonlinear regression of the data at pH 7 was performed for temperatures 23, 40 60oC; 

resulting regression coefficients were determined as �= 0.03 ± 0.02 and k = 3.85 x 10-10 

(mol m-2 s-1). Geochemical modeling results based on steady state effluent concentrations 

for Na-autunite are presented in Table 8. At pH 6 - 7, the system is under-saturated with 

Schoepite and β-UO2(OH)2 at all bicarbonate concentrations tested and (UO2)3(PO4)2(s) 

is saturated at pH 6 and 7; therefore, there is a potential for a secondary phase formation 

with respect to (UO2)3(PO4)2(s). This potential formation indicates that the concentration 

of uranium is not attributed only to the dissolution of Na-autunite, but also to the 

secondary phase controlling the net uranium concentrations.  
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Table 8 Saturation indices of uranyl compounds from geochemical model 

pH 
Bicarbonate 

(M) 
(UO2)3(PO4)2(s) Schoepite β-UO2(OH)2 

6 

0.0005 5.079 -0.11 -0.338 
0.001 4.902 -0.206 -0.435 
0.002 4.572 -0.382 -0.61 
0.003 4.305 -0.522 -0.75 

7 

0.0005 3.388 0.189 -0.039 
0.001 2.799 -0.114 -0.342 
0.002 1.846 -0.595 -0.824 
0.003 1.224 -0.907 -1.136 

8 

0.0005 0.963 0.368 0.139 
0.001 -0.094 -0.163 -0.391 
0.002 -1.265 -0.748 -0.976 
0.003 -1.962 -1.096 -1.324 

9 

0.0005 -1.583 0.58 0.352 

0.001 -2.377 0.183 -0.045 

0.002 -3.543 -0.399 -0.627 

0.003 -4.242 -0.747 -0.975 

10 

0.0005 -4.609 0.569 0.341 
0.001 -4.738 0.505 0.277 
0.002 -5.147 0.302 0.074 
0.003 -5.678 0.037 -0.191 

11 

0.0005 -8.669 0.342 0.112 

0.001 -8.739 0.32 0.09 

0.002 -8.948 0.254 0.024 

0.003 -9.285 0.144 -0.086 
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Figure 18 Uranium rate of release as a function of bicarbonate concentration at pH 6 

 
Figure 19 Uranium rate of release as a function of bicarbonate concentration at pH 7 
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The increase in the rate of uranium release over the bicarbonate concentrations tested at 

pH 8 was in the range of 3.2 - 5.6 (Figure 20). The rate of uranium release at pH 8 

amplified by ~1.7 fold from 7.02 x 10-12 to 6.89 x 10-11 (mol m-2 s-1) when compared to 

the rate at pH 7. The nonlinear regression of data at pH 8 provided regression coefficient 

values of k = 1.48 x 10-9 (mol m-2 s-1) and � = 0.56 ± 0.03. According to the geochemical 

modeling data (Table 8), Schoepite, β-UO2(OH)2, and (UO2)3(PO4)2(s) were saturated at 

low bicarbonate concentration 0.5mM while they remained under-saturated at 

bicarbonate concentrations higher than 1mM. This suggests that the concentrations of 

uranium are solely attributed to dissolution of autunite. 

 
Figure 20 Uranium rate of release as a function of bicarbonate concentration at pH 8 

The rate of release of uranium from synthetic Na-autunite at pH 9 is shown in Figure 21. 

The dissolution of uranium at 5oC showed only a minor variation with the change in the 
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bicarbonate concentration; however, at other temperatures, the rate of dissolution varied 

at a constant slope (�) of 0.61 ± 0.04 and the k value was estimated as 3.19 x 10-9 (mol 

m-2 s-1). The rate of dissolution shown to improve at ~3.3 fold over the range of 

bicarbonate concentrations tested at pH 8. At pH 9, the effect of bicarbonate resulted in 

1.8 - 4.7 times increase in the rate of uranium release for all bicarbonate concentrations 

tested. The value of uranium release at 5oC and 0.0005 M bicarbonate was estimated to 

be 3.66 x 10-11 and increased to 2.04 x 10-10 (mol m-2 s-1) at 60oC and 0.003 M 

bicarbonate concentration. Geochemical modeling data at pH 9 (Table 8) predicted that 

(UO2)3(PO4)2(s) was under-saturated at all bicarbonate concentrations tested and 

Schoepite was found under-saturated at 0.002 - 0.003 M of bicarbonate. At 0.0005M of 

bicarbonate, Schoepite was saturated, resulting in secondary mineral formation that 

controls the net concentration of uranium in the system. 
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Figure 21 Uranium rate of release as a function of bicarbonate concentration at pH 9 

Figure 22 and Figure 23 show the rate of release of uranium from Na-autunite at pH 10 

and pH 11 over the conditions tested. At pH 10 and pH 11, temperature showed on 

influence on the dissolution of uranium from Na-autunite. The regression coefficient 

values of k and � at pH 10 and 11 were evaluated to be k = 4.25 x 10-9 and 5.80 x 10 -9 

(mol m-2 s-1) and � = 0.39 ± 0.02 and 0.51 ± 0.02, respectively. The increase in the 

dissolution at pH 10 - 11 was found to be in the order of ~ 1.5 - 2.0 times and 2.0 - 2.7 

times, respectively. Schoepite and β-UO2(OH)2 became saturated at pH 10 – 11 creating a 

possibility for secondary phase formation which controls the concentration of uranium in 

the solution. 
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Figure 22 Uranium rate of release as a function of bicarbonate concentration at pH 10 

 
Figure 23 Uranium rate of release as a function of bicarbonate concentration at pH 11 
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3D graphs were constructed with bicarbonate concentrations, pH and the rate of release 

of uranium along the X, Y, and Z-axes, respectively. 2D graphs show the change in the 

release of uranium with one variable (bicarbonate concentration) at constant pH whereas 

3D graphs provide insight into how the rate of release of uranium changed within the 

system with the change in bicarbonate concentration and pH. 

Figure 24 shows the change in the rate of uranium release from Na-autunite at different 

temperatures (5 - 60oC) with the change in the bicarbonate concentration (0.0005 - 0.003 

M) and pH (6 - 11) on a 3D plot. It is evident from the figures that at low pH values, 6 - 

8, the rate of uranium release increases with an increase in the bicarbonate concentration; 

however, at high pH values, 9 - 11, the effect of pH dominates the system and the 

addition of bicarbonate shows a modest quantifiable increase in the uranium release. At 

lower pH values, the increase in the rate of uranium release increased with the change in 

the bicarbonate concentrations; the amount of dissolution at high bicarbonate 

concentrations is much higher compared to the dissolution at low bicarbonate 

concentration at the same pH values. At high pH values, the effect of bicarbonate was 

reduced considerably at all bicarbonate concentrations tested. 
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Figure 24 3D representation of uranium release from Na-autuntie at 5 - 60oC 
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Table 9 shows the comparison of the uranium release rates from Na-autunite in the 

presence and absence of bicarbonate. Literature data presented by Wellman et al., (2006) 

for uranium release from Na-autunite in the absence of bicarbonate was compared to the 

current study at 23oC in a pH range of 7 - 10. At pH 7, the increase in the bicarbonate 

concentration caused the increase in the uranium rate of release from Na-autunite in the 

order of magnitude of 370. However, with the increase in the pH values (8 - 10), the 

observed increase in the uranium rate of release from Na-autunite was only 30, 25, and 

4.0 fold, respectively. At low pH values, bicarbonate concentrations showed higher 

influence on the system while the effect of bicarbonate was noticed to reduce at higher 

pH values, consistent with the results showed in 3D plots. 

Table 9 Effect of bicarbonate on the dissolution of uranium from Na-autunite 

pH 
HCO3

- Rate of U Ratio to 
0 M HCO3

- (M) (mol m-2 s-1) 

7 

0.0000 1.15E-13* 1.00 
0.0005 2.08E-11 181.59 
0.0010 2.48E-11 215.91 
0.0020 2.86E-11 249.13 
0.0030 4.23E-11 368.52 

8 

0.0000 2.79E-12* 1.00 
0.0005 2.54E-11 9.10 
0.0010 3.58E-11 12.85 
0.0020 3.59E-11 12.88 
0.0030 8.13E-11 29.18 

9 

0.0000 8.75E-12* 1.00 
0.0005 8.56E-11 9.77 
0.0010 1.27E-10 14.50 
0.0020 2.13E-10 24.30 
0.0030 1.55E-10 17.66 

10 

0.0000 3.48E-11* 1.00 
0.0005 7.83E-11 2.25 
0.0010 8.23E-11 2.37 
0.0020 1.35E-10 3.89 
0.0030 1.27E-10 3.66 

* Indicates uranium release date from (Wellman et al., 2006). 
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Figure 25 depict the dissolution rate of sodium and phosphorus from Na-autunite at pH 6 

and pH 11 across bicarbonate concentrations of 0.0005 to 0.003 M and across a 

temperature range of 5 to 60oC. Sodium release from Na-autunite exhibits on deviation 

with the increase in the temperature (5 - 60oC) and bicarbonate concentration (0.0005 - 

0.003 M). Interlayer cations (i.e., Na+) release from minerals is generally subjected to two 

separate reactions: matrix dissolution and alkali-hydrogen exchange. The mechanism that 

may contribute to the release of interlayer cations from the structure depends on the 

saturation state of the system. When the system is near saturation, the activities of 

dissolved species near and/or in contact with the solid phase increase, resulting in a 

decrease in the matrix dissolution rate. Concurrently, the chemical potential difference 

between autunite and solution will be the driving force for cation diffusion. Dissolution 

of the autunite matrix will also contribute to the concentration of dissolved cations in 

solution, therefore, two distinct mechanisms, ion exchange and matrix dissolution, 

account for Na+. 

Phosphorus release from Na-autunite showed no differentiable change with the change in 

temperature and bicarbonate concentration. Geochemical modeling data suggested that 

the possible secondary minerals containing phosphorus are saturated, limiting the amount 

of phosphorus available for dissolution. 
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Figure 25 Sodium and Phosphate rate of release as a function of bicarbonate concentration at pH 6 and pH 11 
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The change in the rate of release of sodium (Na) from Na-autunite with respect to 

bicarbonate concentration (0.0005 - 0.003M) and pH (6 - 11) at a temperature of 5, 23, 

40, and 60oC are shown in appendix (Figure A1 - A4) respectively. It is evident from the 

graphs that the change in the rate of release of sodium from Na-autunite with the increase 

in pH and bicarbonate concentration is invariant. The rate of release of phosphorus from 

Na-autunite at varying bicarbonate concentrations (0.0005 - 0.003M) and pH (6 - 11) and 

at a temperature of 5, 23, 40, and 60oC is shown in appendix (Figure A5 - A8). The 

phosphorus rate of release is not affected by the increase in the pH as well as the increase 

in the bicarbonate concentration. 
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CONCLUSIONS 

The rate of dissolution of Na-autunite was evaluated under different bicarbonate 

concentrations ranging from 0.0005 to 0.003 M via single-pass flow-through cell 

experiments, which provide insight to the geochemical cycle of the uranium system, the 

hydro-geochemical parameters that affect the mobility of uranium. The experiments 

conducted were designed to evaluate the effects of pH (6 - 11) and temperature (5 to 

60oC) on the carbonate promoted dissolution of synthetic Na-autunite. 

The rate of release of uranium from Na-autunite is directly correlated to the concentration 

of bicarbonate. The bicarbonate ion has a tendency to form soluble complexes with 

uranium, thus releasing uranium from Na-autunite. Results from the experiments showed 

that the rate of uranium release increased with an increase in the bicarbonate 

concentrations at lower pH and the effect of bicarbonate was higher at high bicarbonate 

concentrations (0.003 M) tested. As the pH of the system increased, the effect of 

bicarbonate reduced due to the dominance of the pH effect. The increase in the uranium 

release was in the order of 1.5 - 5.0 times with an increase in the bicarbonate 

concentration at pH of 6 - 11 and temperature of 5 - 60oC. 

The geochemical modeling data from Visual MINTEQ showed that, at low pH (pH 6 and 

pH 7), some of the possible secondary phases that contain uranium are saturated and 

some are unsaturated. At pH 8 and pH 9, the system became mostly unsaturated, 

suggesting an increase in the rate of release of uranium from Na-autunite and secondary 

phase minerals. At pH 10 and 11, the system is saturated with respect to Schoepite and β-

UO2(OH)2, resulting in the lower release of uranium at high pH. 
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The rate of release of sodium and phosphate shows no differentiable change with change 

in the concentration of bicarbonate. The geochemical modeling data showed that the 

amount of sodium and phosphate dissolved is much lower than the amount of sodium and 

phosphate precipitated.  
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CHAPTER TWO 

Quantification of kinetic rate law parameters for the dissolution of sodium meta-

autunite as a function of aqueous bicarbonate concentration 

ABSTRACT 

Singe-pass flow-through (SPFT) experiments were used to quantify the dissolution of 

synthetic Na-autunite and calculate kinetic rate law parameters under bicarbonate 

concentrations ranging from 0.0005 to 0.003 M, pH 6 to 11 and temperature variations 

from 5 to 60oC. Results indicate the activation energies were unaffected by temperature 

and bicarbonate concentration variations, but were strongly dependent on pH conditions. 

As pH increased from 6 to 11, activation energy values were observed to decrease from 

29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface 

controlled dissolution mechanism, as previously suggested. Geochemical modeling 

results supported an increased dominance of aqueous uranyl hydroxide and bicarbonate 

complexes as a function of pH.  The presence of these complexes decreases the chemical 

affinity of uranium within the system and concurrent increase in the dissolution rate of 

synthetic sodium autunite. 
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INTRODUCTION 

Uranium (VI) is a key contaminant of concern at several of DOE sites in the United 

States, where large quantities of radioactive waste was released into the environment 

from the past operations of nuclear weapon production. Once released, uranium persists 

in the environment and can have toxic effects on living organisms. The behavior of 

uranium in the environment, especially in the groundwater, is influenced by many 

environmental factors such as temperature, pH and the presence of various ligands. 

Common ligands in the environment that form stable uranyl solid phases include 

hydroxyl, phosphate, carbonate, silicate and organic substances (Burns et al., 1996; 

Lenhart et al., 2000; Davis, 2001). Uranyl ion- ligand complexation reactions often result 

in the precipitation of U-bearing minerals or formation of mobile aqueous species (Finch 

et al., 1999).  

The presence of phosphate in groundwater promotes the formation of sparingly insoluble 

autunite minerals, X3-n
(n)+[(UO2)2(PO4)2]·xH2O, greatly limiting the mobility of the uranyl 

cation (UO2
2+) in the subsurface (Wellman et al., 2006). Information on the stability of 

uranyl- phosphate phases is limited to conditions involving pH, temperature, and a few 

aqueous organic materials (Wellman et al., 2006). Kinetic dissolution studies of autunite 

conducted in a wide range of pH and temperatures in flow-through and batch experiments 

illustrated a strong linear dependency of dissolution rates on pH but were relatively 

insensitive to temperature variations (Wellman et al., 2006 & 2007; Zheng et al., 2006).  

A literature investigation on uranium geochemistry indicates that bicarbonate anion is an 

important complexing agent for U(VI) and in an oxidized environment is one of the main 
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variables that affect the dissolution of actinides and facilitate uranium desorption 

reactions from soil and sediments (Langmuir, 1997; Casas et al., 1998; Perez et al., 

2000). Under circumneutral pH conditions, the formation of highly soluble and stable 

uranyl carbonate complexes, UO2CO3
0, UO2(CO3)2

2- and UO2(CO3)3
4-, explains the 

mobility of uranyl ions  (Langmuir, 1978; Guillaumont et al., 2003). The strength of 

uranyl carbonate complexes makes bicarbonate the most effective extractant in terms of 

dissolution rate and extent for recovery of U from uranyl - bearing mineral phases 

(Sowder et al., 2001; Perez et al., 2000). Ilton et al. (2006) evaluated the solubility of a 

synthetic Na-boltwoodite over a range of bicarbonate concentrations representative for 

pore water compositions at Hanford. They found that U dissolution rates as well as 

solubility were increased with increasing bicarbonate concentration and pH values from 

7.9 to 9.5 and indicated that both factors related to surface reactions controlled the 

dissolution kinetics. The surface- controlled dissolution is described as fast attachment of 

the reactants to the mineral surface and then slow detachment of metal species from the 

surface into solution (Sparks, 1999). Uranyl ions release from autunite proceeds by a two 

steps process: surface coordination of HCO3⎯ on U(VI) mineral surface and then 

detachment of uranyl carbonate species (Pablo et al., 1999; Liu et al., 2004). 

Considering that literature dealing with the effect of bicarbonate ions on the dissolution 

of uranium-bearing minerals is limited, the release of uranium during the autunite 

dissolution experiments was quantified as a function of aqueous bicarbonate 

concentrations under various pH and temperature conditions. The goal of this study was 

to experimentally determine rate law parameters for the dissolution kinetics of synthetic 

Na-autunite. Measurements were conducted via a single-pass flow-through (SPFT) 
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apparatus using bicarbonate TRIS (tris hydroxymethyl aminomethane)-buffered solutions 

for autunite dissolution experiments. 

MATERIALS AND METHODS 

1.15 Synthesis of Sodium Meta-autunite 

Sodium meta-autunite was synthesized by following the direct precipitation method 

described by Wellman et al. (2005), which involves mixing 110 mM of uranyl nitrate 

with 15 mM of sodium phosphate dibasic in 1 to 7.5 volumetric ratios at 70oC while 

stirring. A rapid yellowish green precipitate indicated the formation of sodium meta-

autunite; at this time, heating was terminated while stirring was continued until the 

solution reached room temperature. The precipitate was cured at room temperature for 

about 24 hours; the precipitate was filtered using vacuum filtration with a 0.45 µm 

disposable Nalgene filter and was washed with DI water heated to 70oC followed by 

rinsing with isopropyl alcohol. 

( ) ( )( )[ ]
33

2422422232 76

NaNOHNO

OnHPOUONaOHHPONaOHNOUO

++
⋅→⋅+⋅

      
(11) 

The synthesized autunite solids were characterized by JSM-5900-LV low vacuum 

scanning electron microscope (SEM) at 15kV for identification of particle size. The 

composition and purity of the solids was determined via a Noran System Six Model 

200SEM energy dispersive x-ray spectroscopy (EDS). The atomic molar ratios of 

sodium, oxygen, phosphorus and uranium determined by means of EDS analysis were 

correlated to an ideal empirical formula of Na [UO2PO4]. Pre-experimental surface area 

analysis was conducted following the N2-adsorbtion BET method (Brunauer et al., 1938) 
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by using a Micromeritics ASAP 2020 surface and porosity analyzer at Pacific Northwest 

National Laboratory (PNNL). A Bruker 5000D XRD instrument was used for 

compositional analysis. 

1.16 Single-Pass Flow-Through (SPFT) Experiments 

The prediction of the effect of bicarbonate on the long-term stability of autunite minerals 

requires detailed knowledge of the kinetic rate law and associated parameter values on 

the dissolution process. A general kinetic rate equation can be used to describe the 

dissolution reaction of autunite and compute the flux of elements released into the 

aqueous phase. The equation is based on the Transition State Theory (TST) of chemical 

kinetics, in which the overall reaction rate is governed by the slowest elementary reaction 

(Aagaard, 1982; McGrail et al., 1997) and is given by 
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Where 

r = the dissolution rate (g m-2 d-1), 

k = the intrinsic rate constant (g m-2 d-1), 

ѵi = the stoichiometric coefficient of element i,  

aj = the activity of the j-th aqueous species that acts as an inhibitor or catalyst, 

Ea = the activation energy (kJ mol-1), 

R = the gas constant (kJ mol-1 K-1), 

T = the temperature (oK), 

Q = the ion activity product, 
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Kg = the pseudo equilibrium constant, 

Q/Kg = chemical affinity term, 

η = the power law coefficient, and 

σ = the Temkin coefficient 

The dissolution of the Na-autunite mineral was determined using a single-pass flow-

through (SPFT) apparatus over a temperature range of 5 to 60oC and a controlled pH 

from 6 to 11. Bicarbonate -bearing solutions prepared in the range of 0.0005 to 0.003 M 

were buffered with 0.05 M tris hydroxymethyl aminomethane (TRIS). 0.1 M hydrochloric 

acid and potassium hydroxide were used to adjust the pH, ranging from 6 to 11 (Table 7). 

The SPFT test was designed to limit the accumulation of reaction products using a 

sufficient ratio of the flow rate to the surface area of the mineral sample (q/S) to ensure 

the maximum dissolution rate or forward rate was achieved. These conditions allow 

maintaining the chemical affinity term, Q/K, at a value near zero in Equation 12. By 

observing changes in the dissolution rate over the range of experimental parameters 

tested, k, Ea, and η can be easily obtained by means of standard non-linear regression. 

The schematic and detailed procedures of the experiments are presented in Wellman et al. 

(2006, 2007). 

Surface area of the autunite solids was determined using a micromeritics surface and 

porosity analyzer by N2-adsorption BET method. Samples analysis for U(VI) followed 

John et al. (2000) for wet/ashing procedures to completely convert the organic matter into 

inorganic. The details of sample preparation and analysis are presented in Section 4.6. 

The concentrations of sodium (Na) and phosphorus (P) were determined with an Optima 
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7300 ICP-OES (Perkin Elmer). For all samples, three replicate intensities were recorded 

from which the average and standard deviation were calculated. The total uranium 

concentrations were measured using a kinetic phosphorescence analyzer (KPA-11) 

(Chemcheck Instruments, Richland, WA). 

1.17 Dissolution Rate Calculations 

The normalized dissolution rate equation described by Equation 6 was used to determine 

the experimental rate of dissolution of sodium meta-autunite. Concentrations used to 

calculate the dissolution rates were obtained when the system reached equilibrium. The 

steady-state conditions were achieved after approximately six reactor volumes and the 

concentrations of uranium released from natural Na-autunite became invariant with 

respect to time for all pH and bicarbonate ranges tested. 

Uncertainty associated with each parameter was considered when calculating the 

dissolution rate; relative errors included are final concentration (10%), background 

concentration (10%), mass distribution (5%), surface area (15%), and flow rate (5%). 

Detailed procedures for error calculations are presented in Wellman et al. (2006, 2009). 

The experimental results were correlated by linear regression using SigmaPlot-11.2 

(Systat Software Inc.). 

1.18 Groundwater Modeling 

Steady state elemental concentrations in the effluent solution after the system reached 

equilibrium were used to identify the predominant uranium species in aqueous solution. 

The speciation modeling was performed by means of geochemical modeling software 

Visual MINTEQ v. 3.0 [maintained by J.Gustafsson at KTH, Sweden, available at 
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http://www.lwr.kth.se/English/OurSoftware/vminteq/ updated with the Nuclear Energy 

Agency’s thermodynamic database for uranium (Guillaumont et al., 2003)].  

RESULTS AND DISCUSSION 

1.19 Effect of Bicarbonate 

The effect of bicarbonate on the dissolution of Na-autunite from experimental results was 

evaluated by applying common logarithm to Equation 6, resulting equation 13: 

[ ]−+= 3logloglog HCOkr η
    (13) 

Where: 

R = the dissolution rate (mol m-2 s-1),  

k = the intrinsic rate constant (mol m-2 s-1),  

HCO3
- = the bicarbonate concentration (mol L-1), and 

� = the power law coefficient (dimensionless). 

A non-linear regression was performed for each temperature with dissolution rates as a 

function of bicarbonate concentration to determine slope and the power law coefficient, 

�. The resulting regression coefficient over the entire data helped to determine the 

intrinsic rate constant, k (mol m-2 s-1). 

1.20 Estimation of thermodynamic parameters (Activation Energy of dissolution) 

Activation energy, Ea, is an important parameter affecting the dissolution rate constants. 

It depends on the nature of the chemical reaction and usually “fast" reactions have a small 

Ea; those with a large Ea proceed slowly. Ea is independent of temperature and 

concentrations; however, Ea has exhibited pronounced pH dependence (Zhang et al., 
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2001). The activation energy can help to explain the rate-controlling process.  In the case 

of transport-controlled dissolution, the activation energy of the dissolution process with 

values lower than 20 kJ mol-1 stands for surface diffusion as the rate-controlling process 

(Bemer, 1978; Jordan et al., 1996). Surface controlled dissolution usually results in high 

activation energy; Lasaga (1984) reported that the surface controlled dissolution of 

silicates have activation energies in the range of 60 - 80 kJ mol-1 and similar activation 

energy values (72 - 86 kJ mol-1) were reported by various authors for alkaline earth 

flourides whose dissolution rates are believed to be surface controlled. The effect of 

bicarbonate ions in the wide range of pH and temperature variations on the activation 

energy of the dissolution reactions of uranyl- phosphate minerals has not been studied 

before. The previous studies on uranium-bearing materials suggested a surface controlled 

dissolution mechanism for estimated activation energies ranging between 12 - 60 kJmol-1 

(Scott et al., 1977; Zhang et al., 2001; Pablo et al., 1999). 

Activation energy values for this study of a bicarbonate - promoted dissolution reaction 

of autunite were estimated using a modified Equation 12 describing the rate of reaction as 

a function of pH, temperature, saturation state of the system, and the activities of the rate 

enhancing or inhibiting species (McGrail, 1997), which can be described as: 

[ ]η−
−

= 3HCOekr RT

Ea

      (14) 

Where 

r = the dissolution rate (mol m-2 s-1) experimentally determined from SPTF tests, 

k = the intrinsic rate constant (mol m-2 s-1), 
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[HCO3
-] = the bicarbonate concentration (mol L-1), 

� = the power law coefficient (dimensionless), 

Ea = activation energy (kJ mol-1), 

R = the universal gas constant (J mol-1 K-1), and 

T = temperature (oK). 

At constant bicarbonate concentrations, the normal logarithmic values of the rate of 

dissolution (ln r) were plotted against the values of inverse temperature (1/T) (Figure 26). 

The slope of the linear regression line at each pH value was calculated and the data is 

presented in Table 10; values are in agreement with estimates reported by Heisbourg et 

al. (2003) for thorium-uranium complexes. These values also revealed a weak 

dependency of the dissolution rate on the temperature. The average activation energy at 

pH 6 and 7 was estimated to be 29.94 kJ mol-1 and 26.87 kJ mol-1, respectively. These 

values are higher than the average activation energy observed at higher pH values, 

suggesting that the dissolution is faster at high pH. The activation energy observed at pH 

6 and 7 also suggests that the dissolution process is surface controlled; whereas at higher 

pH values, the transfer of uranium may be due to adsorption or ion exchange. The 

calculated activation energies are in good agreement with that reported in the literature 

for similar materials (Zhang et al., 2001, Heisbourg et al., 2003). 



72 
 

 
Figure 26 Activation energies of the Na-autunite dissolution at various pH values 
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Table 10 Activation energies of sodium autunite dissolution 

[HCO3
-] 

(M) 
0.0005 0.001 0.002 0.003 

pH Ea (kJ mol-1) 

6 27.465 26.387 34.295 31.61 

7 28.285 30.426 24.872 23.882 

8 9.824 16.872 18.751 17.091 

9 11.417 16.553 14.983 13.863 

10 4.031 9.028 7.627 7.579 

11 14.831 12.947 12.955 11.511 

The pseudo equilibrium constant, Kg, was estimated using Equation 15, based on the 

assumption that the concentration of bicarbonate is the rate limiting factor that controls 

the reaction.  

[ ]−= 3HCOKr g      
(15) 

Where: 

r = the rate of dissolution (g m-2 d-1), and 

[HCO-
3] = the total bicarbonate concentration (M). 

The values of U(VI) rate dissolution (Y-axis) at different pH values were plotted against 

variations of bicarbonate concentrations (X-axis) (Figure 27). The resulting slopes of the 

regression lines provided values of Kg and are listed in Table 11. 
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Figure 27 Changes in the U(VI) release as a function of bicarbonate 
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Table 11 Pseudo equilibrium constants and enthalpy values at various temperatures 

Temp 
(oC) 

Kg 

pH 6 pH 7 pH 8 pH 9 pH 10 pH 11 

5 0.024 0.056 0.114 0.261 1.395 0.828 

23 0.063 0.167 0.415 1.746 0.481 1.245 

40 0.146 0.179 0.432 1.833 1.836 1.544 

60 0.282 0.246 0.422 1.252 2.523 1.595 

∆H 
(kJ mol-1) 

34.85 19.39 17.24 24.80 12.44 9.41 

We next examined the relationship between the pseudo equilibrium constant, Kg, and the 

temperature to estimate the enthalpy of the system: 

gKRT ln−=ΔΗ
                     

(16) 

Where: 

∆H = the enthalpy (kJ mol-1), 

R = the universal gas constant (J mol-1 K-1), and 

T = temperature (oK).  

The plot of normal logarithmic Kg values on the Y-axis and the variation of inverse 

temperature (1/T) on the X-axis is presented on Figure 28; the resulting slope of the 

regression lines at each pH provided the enthalpy values. These values represent a change 

in enthalpy for the endothermic reactions that absorb energy to break U(VI) bonds during 

autunite dissolution. Calculations showed that Kg parameter is increased at larger pH and 

temperature, which invokes a chemical affinity term, Q/Kg, to decrease. The change in 
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affinity term caused by the presence of ligands has been previously suggested to affect 

the dissolution rate (Kraemer et al., 1997). 

 
Figure 28  Changes in the pseudo equilibrium constant as a function of inverse temperature for Na-

autunite 

The theoretical rate of uranium release was calculated taking into account experimentally 

determined parameters associated with Equation 12, including estimated activation 

energies and Kg values. The theoretically determined rate of U(VI) release differs from 

the experimentally determined values within an error range of ±10%. 

1.21 Visual MINTEQ speciation modeling 

Geochemical modeling suggests that uranyl speciation is strongly dependent on pH and 

the concentration of carbonate ions in the solution (Figures 29, 30). At pH 6 and a 
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concentration of bicarbonate in the solution of 0.0005 M HCO3
⎯, uranium-carbonate 

complexes, UO2(CO3)2
-2, UO2CO3 (aq), are found as the predominant species. At 

bicarbonate concentration of 0.0005 M and between pH 7 and 10, uranyl tri-carbonate 

[UO2(CO3)3
-4] is a prevailing aqueous U species in the test effluent solution; though, at 

pH 11, negative hydroxide species, (UO2)3(OH)7
⎯ and uranyl di-carbonate [UO2(CO3)2

2-] 

are observed at the highest concentrations. When bicarbonate concentration increases to 

0.003 M, UO2(CO3)3
-4 governs the speciation at any pH; however, at pH 10 and 11, 

negative hydroxide species, (UO2)3(OH)7
⎯ and UO2(CO3)2

2-, were found to increase to 

noticeable amounts. At 0.003 M of HCO3 and pH 11, the dominance of uranyl 

bicarbonate species in the solution was found at 57%; yet, the total sum of hydroxide 

species is comparable to uranyl bicarbonate, just slightly less at 43%. These changes in 

the predominant uranyl species confirmed that dissolution of uranyl phosphate phases is a 

function of the solution composition (Sowder, 2001), which can explain the mechanism 

of autunite dissolution and the reduction in activation energy values noted at pH ≥ 8.  At 

higher pH conditions in the presence of dissolved bicarbonate ions, uranyl carbonates and 

uranyl hydroxide species play a role as two main activated complexes. The existence of 

those two powerful complexes on the surface of autunite induces the reduction in both 

chemical affinity term, (Q/Kg), and the activation energies determined at basic pH 

regions, which decreases the cohesion of uranium ions present at the surface of autunite 

and accelerates the dissolution reaction. Likely, at high pH, the surface is saturated with 

hydroxide and bicarbonate complexes that facilitate release of uranium from the autunite 

structure. Enhanced dissolution attributed to complexation of ligands on the mineral 
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surface induces a change in bond strengths weakening the crystal structure (Stumm, 

1992). 
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Figure 29 A) Visual MINTEQ U(VI) speciation modeling summary for U species at 0.0005 M HCO3

⎯; B) Visual MINTEQ U(VI) speciation 
modeling summary of the total hydroxide and carbonate U(VI) species at 0.0005 M HCO3

⎯. 
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Figure 30 A) Visual MINTEQ U(VI) speciation modeling summary for U species at 0.003 M HCO3

⎯; B) Visual MINTEQ U(VI) speciation modeling 
summary of the total hydroxide and carbonate U(VI) species at 0.003 M HCO3

⎯. 
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CONCLUSIONS 

The rate of dissolution of Na-autunite was evaluated under bicarbonate concentrations 

ranging from 0.0005 to 0.003 M, pH 6 to 11 and temperature variations from 5 to 60oC 

via single-pass flow-through cell experiments.  

The study confirmed a strong influence of bicarbonate ligands on the autunite dissolution 

rates, which is probably due to the high values of carbonate species thermodynamic 

constants relative to actinides. In the range of bicarbonate concentrations tested, the 

intrinsic rate constant of autunite dissolution was increased about 12 times from 4.54 x 

10-10 to 5.51 x 10-09 as pH rose from 6 to 11. The overall increase in the U(VI) rate of 

release was found to be 16.7 times when comparing the U(VI) rates of release obtained at 

0.0005 M, 5oC and  0.003 M, 60oC. The activation energy values were unaffected by 

temperature and bicarbonate concentration variations but were strongly dependent on pH 

conditions. The activation energy averaged 29.94 kJ mol-1 and 26.87 kJ mol-1 for pH 6 

and 7, respectively. In the pH range 8 - 11, activation energies ranged from 15.6 to 13.1 

kJ mol-1. Geochemical modeling suggested that uranyl speciation is strongly dependent 

on pH and the concentration of carbonate ions in the solution. At high pH, the mineral 

surface is saturated with hydroxide and carbonate uranyl complexes that accelerate the 

release of U(VI) ions out of the autunite structure. The calculated theoretical and 

experimental values of U(VI) rate of release differ within a ±10% error range. To the best 

of our knowledge, this is the first investigation that has quantified the kinetic rate law 

parameters of Na-autunite in bicarbonate-bearing solutions under these temperatures and 

pH ranges.  
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CHAPTER THREE 

Comparison of the kinetic rate law parameters for the dissolution of natural and 

synthetic autunite in the presence of bicarbonate ions 

ABSTRACT 

This research evaluated the effect of aqueous bicarbonate on the uranium rate of release 

from natural Ca-autunite and quantified the process kinetic rate law for better prediction 

of the stability of autunite-group minerals. Testing was accomplished via a single-pass 

flow-through (SPFT) apparatus using buffered aqueous bicarbonate (0.0005 to 0.003M) 

at temperatures of 23° - 90°C and pH values of 7 - 11. The release rate of uranium from 

Ca-autunite was directly correlated to increasing bicarbonate concentrations and showed 

strong pH dependency. Ca-autunite kinetic rate law parameters were compared to the 

values obtained for synthetic Na-autunite. The power law coefficient and intrinsic rate 

constant were higher at pH 9 - 11 for Ca-autunite than for Na-autunite. The lower 

stability of Ca-autunite was attributed to the high Ca-autunite surface cracking, fractures 

and basal plane cleavages as compared to Na-autunite and the formation of aqueous 

calcium uranium species, altering the solution saturation state. 
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INTRODUCTION 

Globally, uranium (U) occurs as an essential component in different minerals and the 

majority of naturally occurring uranium deposits are oxides, silicates, vanadates, and 

phosphate minerals such as autunite (Burns, 1999). Uranium is one of the most frequently 

found radionuclides in groundwater as a result of reactor operations, nuclear fuel 

production and waste reprocessing (Riley, 1992). Autunite minerals 

{(Xm)2/m[(UO2)(PO4)]2·xH2O} are an important group known for their low solubility that 

largely controls the mobility of U in the subsurface. The autunite-group is very diverse, 

permits a wide range of cation and anion substitutions, and varying degrees of hydration 

(Burns, 1999). Many arid and semi-arid environments, including areas used for the 

storage of high-level radioactive waste at the U.S. Department of Energy (DOE) sites, 

contain elevated concentrations of sodium that in the presence of phosphorus (P) and 

uranium U(VI) rapidly form sodium uranyl phosphate phases. Chernikov et al. (1957) 

conducted characterization of the hydrated sodium meta-autunite discovered in the Kuruk 

uranium deposit of northern Tajikistan and found that it is similar in properties to the 

autunite group. Mills et al., (2012) reported that metanatroautunite from the Lake Boga 

granite, Victoria, Australia, was similar to synthetic Na[(UO2)(PO4)]·(H2O)3 and featured 

identical corrugated polyhedral sheets as the meta-autunite-group minerals, consisting of 

corner-sharing uranyl square pyramids and phosphate tetrahedra. 

Calcium, as one of most abundant metals in the earth's crust, promotes the formation of 

calcium-autunite, Ca[(UO2)(PO4)]2·(H2O)11. This phase has been recognized as the 

dominant form of autunite (Burns, 1999). The crystal structure contains the well-known 

autunite type sheet with composition [(UO2)(PO4)]
–, resulting from the sharing of 
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equatorial vertices of the uranyl square bipyramids with the phosphate tetrahedra. The 

calcium atom in the interlayer is coordinated by seven H2O groups and two longer 

distances from uranyl ion oxygen atoms (Locock et al., 2003). 

Fairchild (1929) showed that in artificial autunites sodium was replaced by calcium and 

the exchange reactions take place rapidly with compounds of the autunite type. 

According to Anthony et al. (2000), two distinct changes occur during the exchange of 

sodium for calcium in the autunite structure. Primarily, two sodium cations are 

exchanged for the calcium ion to maintain the charge balance of the structure. The 

exchange of sodium for calcium is also associated with an increase in waters of hydration 

(Wellman et al., 2005). These changes in the chemical and structural composition of 

autunite raise questions on the impact of environmental factors on the stability of 

autunite-group minerals. 

Literature data suggest the low solubility and high stability of many uranyl-phosphate 

minerals (Felmy et al., 2003; Gorman - Lewis et al., 2009). The solubility constant of the 

calcium form of autunite, log Ksp, has been measured as - 44.7 (Grenthe et al., 1992; 

Langmuir, 1997). A recent solubility study on natural Ca-U-P stability constant values for 

aqueous complexes yielded a log Ksp value of - 48.36 with 2σ uncertainty values of ±0.03 

(Gorman - Lewis et al., 2009). Associated solubility products are shown in Equation 17. 

( ) ( ) +−+ +++→⋅ 2
2

3
4

2
222422 2233 UOPOCaOHOHPOUOCa     (17) 

Different environmental variables including temperature and pH have been extensively 

investigated (Wellman et al., 2006) on the dissolution of synthetic Na meta-autunite 

(herein designated as Na-autunite) and natural Ca meta-autunite minerals (herein 

designated as Ca-autunite). Their results indicated that meta-autunite dissolution kinetics 
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is strongly dependent on pH and independent of temperature variation (Wellman et al., 

2006; Wellman et al., 2007). Ca-rich carbonate-bearing subsurface environments, typical 

for the arid areas of the western U.S., afford the formation of aqueous calcium uranyl-

carbonate and hydroxide complexes, which are mobile and promote U(VI) migration in 

natural waters (Clark et al., 1995; Kalmykov et al., 2000; Bernhard et al., 2001). The 

strength of uranyl carbonate complexes makes bicarbonate the most effective extractant 

in terms of the dissolution rate and the extent of recovery of U from uranyl - bearing 

mineral phases (Sowder et al., 2001; Perez et al., 2000). Single-pass flow-through (SPFT) 

experiments, investigated the rate of U(VI) release from Na-autunite, 

Na2[(UO2)2(PO4)2]·3H2O, as a function of bicarbonate concentrations ranging from 0.5 

mM to 3.0 mM in the pH range of 6-11 and temperature between 5 - 60oC. They noted 

that the rate of U(VI) release from Na-autunite in the presence of low bicarbonate 

concentrations was increased over 300 fold when compared to the rate of U(VI) release in 

the absence of bicarbonate. Quantification of kinetic rate law parameters for the 

dissolution reaction of sodium meta-autunite suggested that activation energies were 

unaffected by temperature and bicarbonate concentrations but strongly depended on pH 

conditions. Considering rapid exchange reactions of sodium for calcium in the autunite 

structure, the study of the effect of aqueous bicarbonate concentrations on the rate of 

U(VI) release from Ca-autunite can be extended to better understand U(VI) mobilization 

in groundwater.   

The objectives of this research were (i) to investigate the effect of low concentrations of 

bicarbonate on the dissolution of U(VI) from Ca-autunite via SPFT experiments and 

determine the U(VI) rate of release, (ii) to quantify the  kinetic rate law parameters of Ca-
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autunite dissolution, and (iii)  to compare the results with the dissolution of Na-autunite 

for better prediction of the impact of bicarbonate on the release of U(VI) and the 

dissolution process of the autunite minerals group. This information is critical for the 

prediction of autunite stability and long-term fate and transport of uranium in the 

subsurface. 

MATERIALS AND METHODS 

1.22 Autunite Specimens 

Synthesis of Na-autunite, Na2[(UO2)2(PO4)2]·3H2O, was followed by a modified direct 

precipitation method described by Wellman, et al., (2005). Synthesis procedures and 

solids composition assessment are presented in detail in Section 4.1. The structure of 

synthesized autunite solids, characterized by JSM-5900-LV low vacuum scanning 

electron microscope (SEM) at 15kV, exhibited a smooth surface without distinctive 

cleavage planes (Figure 31a). 

Natural Ca-autunite, Ca[(UO2)(PO4)]2·3H2O, obtained from Excalibur Mineral 

Corporation (Peekskill, New York), was previously characterized using ICP-OES, ICP-

MS analyses, X-ray diffraction and SEM/EDS  to confirm the mineral composition, 

structure, and morphology as 98-99% pure autunite (Wellman et al., 2006).  Scanning 

electron micrographs (SEM) of Ca-autunite illustrate the multilayer structure resulting 

from the negatively charged [(UO2)(PO4)]2
2- layers. The morphology features perfect 

(001) basal, cleavage producing planes characteristic of autunite minerals (Anthony et al., 

2000). As illustrated in the scanning electron micrographs (Figures 31b and 31c), surface 

cracking, fractures, and basal plane cleavage are greater in Ca-autunite, resulting in a 
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greater surface area in comparison to the Na-autunite. The autunite sample was powdered 

to the size fraction of 75 to 150 μm (-100 to + 200 mesh) corresponding to an average 

surface area of 0.88 m2 g-1 (Wellman et al., 2006).  

 
Figure 31 SEM images of precipitated (a) Na-autunite and natural Ca-autunite sample (b, c) 

1.23 Single-Pass Flow-Through (SPFT) Experiments 

The release rate of elements from solids into solution is frequently controlled by reaction 

rates (i.e. kinetics). It has been accepted practice by geochemists to use the transition 

 

a b

c
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state theory (TST) to describe the dissolution reaction of autunite and compute the flux of 

elements released into the aqueous phase (Nagy, 1995). A general form of rate equation 

(equation 12) is based on the TST of chemical kinetics, centered on the prediction that the 

overall reaction rate is governed by the slowest elementary reaction (Aagaard, 1982; 

McGrail et al., 1997).  

The dependence of the dissolution rate of the Ca-autunite mineral on bicarbonate 

concentration was quantified via single-pass flow-through (SPFT) experiments conducted 

over a temperature range of 23o to 90oC and a controlled pH range from 7 to 11. The 

schematic and detailed procedures of the experiments are presented in Wellman et al., 

(2006, 2007, 2009). A series of buffer compositions, all prepared with distilled, de-

ionized water (DDIW), consisting of 0.01 M tris (hydroxymethyl) aminomethane (TRIS) 

buffer and aqueous bicarbonate concentrations ranging from 5 x 10-4 to 3 x 10-3 M, were 

used to investigate U(VI) release from natural Ca-autunite mineral over the pH (23°C) 

interval of 7 to 11. Concentrated spectroscopy-grade nitric acid (HNO3 at 15.8 M) and 5 

M lithium hydroxide (LiOH) solutions were used for adjusting the pH of the solutions. 

The SPFT test was designed to limit the accumulation of reaction products using a 

sufficient ratio of the flow rate to the surface area of the mineral sample (q/S) to ensure 

the maximum dissolution rate or forward rate was achieved. These conditions allow 

maintaining the chemical affinity term, Q/Kg, at a value near zero in Equation 12. By 

observing changes in the dissolution rate over the range of experimental parameters 

tested, k, Ea, and η can be easily obtained by non-linear regression. 
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1.24 Quantification of Dissolution Rate 

The normalized dissolution rate of Ca-autunite solids was calculated from Equation 6 

when the system reached equilibrium (McGrail et al., 1997). The steady-state conditions 

were achieved after approximately six reactor volumes and the concentrations of uranium 

released from natural Na-autunite became invariant with respect to time for all pH and 

bicarbonate ranges tested. 

Uncertainty associated with each parameter was considered when calculating the 

dissolution rate; relative errors included are final concentration (10%), background 

concentration (10%), mass distribution (5%), surface area (15%), and flow rate (5%). The 

error analysis determining the standard deviations of the dissolution rates was performed 

by following the procedures described in Wellman et al. (2009). The experimental results 

were correlated by linear regression using SigmaPlot-11.2 (Systat Software Inc.). 

1.25 Groundwater Modeling 

Steady state elemental concentrations in the effluent solution after the system reached 

equilibrium were used to identify the predominant uranium species in aqueous solution. 

The speciation modeling was performed by means of geochemical modeling software 

Visual MINTEQ v. 3.0 [maintained by J. Gustafsson at KTH, Sweden, available at 

http://www.lwr.kth.se/English/OurSoftware/vminteq/ and updated with the Nuclear 

Energy Agency’s thermodynamic database for uranium (Guillaumont et al., 2003)].  
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RESULTS AND DISCUSSION 

1.26 Effect of Bicarbonate 

The effect of bicarbonate on the dissolution of Ca-autunite was estimated from 

experimental results using Equation 12. Figure 32 illustrates the rate of U(VI) release 

from Ca-autunite under the range of pH 7 - 11, across the aqueous bicarbonate 

concentrations tested and the temperature range of 23o to 90oC. This figure depicts the 

strong effect of pH on the uranium rate of release, which is consistent with previous 

studies on the dissolution rate of autunite minerals (Wellman et al., 2006 & 2007 & 

2009). At pH 7, the increase in the rate of U(VI) release was noted to be ~18 fold as the 

bicarbonate concentration increased from 0.3 mM to 3 mM. The value of the power law 

coefficient, �, calculated from the slope of U(VI) rate of release as 0.50 ± 0.12 was 

further used to estimate the intrinsic rate constant, k, of 1.09 x 10-09 (mol m-2 s-1). 

Saturation indexes at pH 7 showed that potential secondary phases such as schoepite and 

β-UO2(OH)2 were under-saturated at all bicarbonate concentrations suggesting that the 

release of U(VI) was solely due to the dissolution of Ca-autunite. At pH 8 and 9, the rate 

of U(VI) release was observed to increase approximately 6.5 times with an increase in the 

bicarbonate concentration and by 17 - 65 fold, correspondingly, with respect to the rate of 

release at pH 7. The power law coefficients calculated from the slope of U(VI) release 

rate and the resulting intrinsic rate constant, k, at pH 8 and 9 are presented in comparison 

with similar parameters obtained for Na-autunite in Table 12. Calculations showed that at 

pH 9 values of � and k were 1.6 and 19 times higher for the Ca-autunite, compared to 

Na-autunite, respectively (Table 12). The rate of U(VI) release at pH 10 and 11 over the 
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aqueous bicarbonate concentration interval tested was higher by approximately 18.5 fold 

and 14 fold, respectively, and by 300 - 400 fold with respect to the rate of U(VI) release 

at pH 7. For the same pH range, values of � and k were higher for the Ca-autunite by 1.8 

- 2.8 and 126 - 484 times, correspondingly, compared to Na-autunite, indicative of the 

greater stability of Na-autunite. The values of the power law coefficient were observed to 

be unvarying over the temperature interval, indicating that the dissolution process within 

experimental error is independent of temperature (Figure 32). 



95 
 

 
Figure 32 Change in U(VI) release rate from Ca-autunite as a function of bicarbonate concentration 
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Table 12 Power law coefficients and intrinsic rate constants 

pH 
Ca-autunite   Na-autunite 

ƞ k (mol m-2 s-1)  ƞ k (mol m-2 s-1) 

7 0.50 ± 0.12 1.09 x 10-09  0.42 ± 0.13 3.62 x 10-10 

8 0.52 ± 0.10 3.15 x 10-09  0.57 ± 0.04 1.48 x 10-09 

9 0.79 ± 0.08 5.60 x 10-08  0.48 ± 0.12 2.86 x 10-09 

10 1.09 ± 0.11 1.58 x 10-06  0.39 ± 0.03 3.26 x 10-09 

11 0.94 ± 0.06 6.99 x 10-07  0.51 ± 0.02 5.51 x 10-09 

It was previously determined that the dissolution kinetics of Ca and Na autunite minerals 

is a surface-mediated reaction with the uranium polyhedral (Wellman et al., 2006, 2007). 

This reaction is described by fast sorption of the reactants to the mineral surface and then 

slow detachment of metal species from the surface into solution (Sparks, 1999). Uranyl 

ions release from autunite under the influence of bicarbonate ions proceeds by a two-step 

process: surface coordination of HCO3⎯ on the U(VI) mineral surface and then 

detachment of the uranyl carbonate species back in to solution (Pablo et al., 1999; Liu et 

al., 2004). The autunite minerals structure is characterized by the relatively weak forces 

holding successive sheets together (Wellman et al., 2009). The liberation of U(VI) 

influences congruent reactions to release Ca and P from the mineral structure and their 

presence in the aqueous solution profoundly effect the system . An increase in the 

aqueous bicarbonate concentrations at pH 8 - 9 correlated with a decrease in the 

saturation indices of potential secondary phases as schoepite and β-UO2(OH)2, suggesting 

a faster release of U(VI) from autunite under these conditions. Starting from pH 9, 

hydroxyapatite was super saturated at all bicarbonate concentrations; besides, the 

speciation modeling indicated that at pH 10 and 11, the system was potentially saturated 
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with respect to various secondary Ca-P phases (Table 13). At pH interval 7-11, highly 

soluble and stable uranyl-carbonate and calcium uranyl carbonate complexes, 

UO2(CO3)3
4- and CaUO2(CO3)3

2-, became predominate species. The percentage of Ca-U-

CO3 species increased to about 10%-27.7% in the pH range 9-11, while U-CO3 species 

were ranging between 52-76%. Aqueous Ca and P release into solution during Ca-

autunite dissolution was noted to increase as a function of pH. The concentration of Ca 

and P-bearing species increased 26 fold from 1.18 x 10-05 mol L-1 and 2.36 x 10-05 mol L-1 

at pH 7 to 3.02 x 10-04 mol L-1 and 6.06 x 10-04 mol L-1 at pH 11, respectively. As 

predicted by speciation modeling, the formation of secondary Ca-P, uranyl phosphate 

secondary phases and Ca-U-CO3 aqueous species can control the net release of uranium. 

Similar observations were noted in the bio-enhanced release of U(VI) from Ca-autunite in 

the presence of aqueous bicarbonate (Katsenovich et al., 2012). 
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Table 13 Species distribution data for Ca-autunite 

pH 
HCO3

- 
(M) 

Schoepite β-UO2(OH)2 Hydroxyapatite β-Ca3(PO4)2 
Ca3(PO4)2 

(am2) 
Ca3(PO4)2 

(am1) 
Ca4H(PO4)3·3H2O(s) 

7 

0.0005 0.028 -0.202      
0.001 -0.2 -0.43      
0.002 -0.522 -0.752      
0.003 -0.735 -0.965      

8 

0.0005 0.335 0.105 -0.948     
0.001 -0.016 -0.245 0.279     
0.002 -0.428 -0.657 1.744     
0.003 -0.678 -0.908 2.658     

9 

0.0005 0.575 0.346 5.996     
0.001 0.381 0.151 6.231     
0.002 0.039 -0.191 7.48     
0.003 -0.382 -0.611 8.195     

10 

0.0005 0.659 0.429 14.6 3.979 3.142 0.384 2.543 
0.001 0.605 0.375 13.485 3.318 2.481 -0.277 1.675 
0.002 0.351 0.121 11.948 2.398 1.561 -1.197 0.452 
0.003 -0.826 -1.055 11.653 2.218 1.382 -1.377 0.209 

11 

0.0005 0.25 0.02 15.121 3.86 3.023 0.265 1.665 
0.001 0.209 -0.021 14.78 3.66 2.823 0.065 1.406 
0.002 0.06 -0.17 14.223 3.33 2.494 -0.265 0.975 
0.003 -0.257 -0.487 13.915 3.146 2.309 -0.449 0.729 
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Evaluation of the solid phase’s surface morphology suggested that the synthetic Na-

autunite did not exhibit cleavage planes prior to dissolution (Figure 31). SEM images of 

reacted synthetic minerals have only revealed the minor formation of cleavage planes 

during the dissolution process, showing generally undisturbed post-experimental uranyl-

phosphate sheets in the Na-autunite structure (Figure 33). Comparably, the crystals 

structure of post-reacted Ca-autunite showed a dramatic degree of distortion and layers 

separation (Wellman et al., 2006). 

 
Figure 33 SEM image of post-reacted Na-autunite  

Perhaps surface structural differences between Na and Ca autunite minerals along with 

the formation of secondary uranyl phosphate phases and Ca-U-CO3 aqueous species 

contribute to the increased rate of U(VI) dissolution observed via SPFT Ca-autunite 

dissolution experiments. The separation of the sheet structure within the natural Ca-

autunite minerals increases the probability that dissolution could occur through attack by 

aqueous bicarbonate ions on the surface structural defects. 
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1.27 Estimation of Thermodynamic Parameters (Activation Energy of Dissolution) 

An important factor affecting the dissolution rate is activation energy, Ea, which depends 

on the nature of chemical reactions. Fast reactions have small activation energy and those 

with large activation energy usually progress slowly. Previous studies showed that pH 

has a pronounced effect on activation energy (Zhang et al., 2001). Bemer (1978) and 

Jordan (1996) reported that the activation energy can help identify the rate-controlling 

process of dissolution: activation energy values lower than 20 kJ mol-1 represent surface 

diffusion as the rate-controlling process. Surface controlled dissolution usually results in 

higher activation energy; Lasaga (1984) reported that the surface controlled dissolution of 

silicates have activation energies in the range of 60 - 80 kJ mol-1, and similar activation 

energy values (72 - 86 kJ mol-1) were reported by various authors for alkaline earth 

fluorides whose dissolution rates are believed to be surface controlled. Previous studies 

on uranium-bearing materials suggested a surface controlled dissolution mechanism for 

measured activation energies calculated in the range of 12 - 60 kJmol-1 (Scott et al., 1977; 

Zhang et al., 2001; Pablo et al., 1999). In this study, the effect of bicarbonate ions on the 

activation energy of the dissolution reactions of Ca-autunite in a wide range of pH and 

temperatures is conducted by comparison with Ea values for Na-autunite dissolution. 

Activation energy values were estimated using a modified transition state theory equation 

describing the rate of reaction as a function of pH, temperature, and the activities of the 

rate enhancing or inhibiting species, described by Equation 15. 

At constant bicarbonate concentrations, the normal logarithmic values of the dissolution 

rate (Ln r) were plotted against inverse temperature values (1/T). The slope of the linear 
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regression line at each pH value was calculated and the data is presented in Table 14. 

Data comparison for Ca-autunite with estimates obtained for Na-autunite revealed a weak 

dependency of the dissolution rate on the temperature for both materials. The average 

activation energy at pH 7 for Ca-autunite was estimated to be 25.50 kJ mol-1, suggesting 

that the dissolution process is surface controlled, which is also in agreement with the 

average activation energy value reported for Na-autunite at pH 7 (26.86 kJ mol-1). The 

average values of activation energy for Ca-autunite at pH 8 - 11 were estimated in the 

range of 8 - 18 kJ mol-1, suggesting that the dissolution is faster at high pH. These values 

are similar to ones reported for Na-autunite, indicating that the transfer of uranium may 

be due to adsorption or ion exchange. The calculated activation energies for both Ca and 

Na autunite are in good agreement with that reported in the literature for similar materials 

(Zhang et al., 2001; Heisbourg et al., 2003). 

Table 14 Changes in activation energies of autunite dissolution 

[HCO3
-] 

(M) 

 Ca-autunite   Na-autunite 

0.0005 0.001 0.002 0.003 0.0005 0.001 0.002 0.003 

pH Ea (kJ mol-1) Ea (kJ mol-1) 

7 21.87 26.39 27.72 26.00 28.285 30.426 24.872 23.882

8 22.41 20.72 15.57 13.95 9.824 16.872 18.751 17.091

9 2.63 13.07 8.95 7.32 11.417 16.553 14.983 13.863

10 8.17 16.68 15.05 15.17 4.031 9.028 7.627 7.579 

11 11.39 10.19 12.23 11.78 14.831 12.947 12.955 11.511
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Figure 34 Activation energy of the Ca-autunite dissolution at various pH values 

The pseudo equilibrium constant, Kg, was estimated using Equation 14, based on the 

assumption that the concentration of bicarbonate is the rate limiting factor that controls 
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the reaction. The values of U(VI) rate dissolution (Y-axis) at different pH values were 

plotted against variations of bicarbonate concentrations (X-axis). The resulting slopes of 

the regression lines (Figure 35) provided values of Kg and are listed in Table 15. 

Enthalpy of the system was evaluated using the correlation between the pseudo 

equilibrium constant, enthalpy, and the temperature of the system, described by Equation 

17. A slope of a linear graph (Figure 36) with inverse temperature (1/T) on the X-axis 

and the normal logarithmic values of pseudo equilibrium constant, Ln Kg, on the Y-axis 

were used to estimate the enthalpy of the system at various pH values (Table 15). 

The pseudo equilibrium rate constant values pertaining to Ca-autunite were found to be 4 

times higher at low pH values (7 - 9) and 21 times higher at high pH values (10 - 11) than 

that for Na-autunite (Table 15). This data suggests that the reaction occurred slowly at 

low pH values and significantly faster at high pH values. A similar trend was shown by 

the intrinsic rate constant values. The change in enthalpy of Ca-autunite was found to be 

0.5 - 1.5 times higher compared to the value of Na-autunite (Table 15). 
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Figure 35 Variations in the uranium dissolution as a function of bicarbonate concentration  



105 
 

 
Figure 36 Pseudo equilibrium constant for uranium release from Ca-autunite at different 

temperatures 

Table 15 Pseudo equilibrium constants and enthalpy values at various pH for Ca-autunite and Na-
autunite 

pH 
Ca-autunite  Na-autunite 

Kg 
∆H 

(kJ mol-1)
 

Kg 
∆H 

(kJ mol-1)

7 0.65 28.58  0.16 19.39 

8 0.79 11.83  0.35 17.24 

9 4.20 11.90  1.39 24.80 

10 25.97 15.88  1.34 12.44 

11 27.75 13.84  1.30 9.41 

The theoretical rate of uranium release was calculated, taking into account experimentally 

determined parameters associated with Equation 12, including estimated activation 
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energies and Kg values. The theoretically determined rate of U(VI) release differs from 

the experimentally determined values within an error range ±10%. 

CONCLUSIONS 

The rate of dissolution of Ca-autunite was evaluated under bicarbonate concentrations 

ranging from 0.0005 to 0.003 M, pH 7 to 11 and temperature variations from 23 to 90oC 

via single-pass flow-through cell experiments. The power law coefficient (�) for Ca-

autunite in the range of the experimental parameters tested was observed between 0.5 and 

1.0. Similar to Na-autunite, there was no quantifiable dependency of Ca-autunite 

dissolution on temperature. The activation energy (Ea) data at pH 7 showed that the rate 

of dissolution was surface controlled while, at pH 8 - 11, the rate of dissolution was 

achieved by mass transfer, which is consistent with Na-autunite behavior. Pseudo 

equilibrium and enthalpy data showed that the dissolution process is slower at pH 7-8 and 

at higher pH the speed of dissolution increased. The kinetic rate law parameters for Ca-

autunite were found to be higher than that for Na-autunite, suggesting a higher stability of 

Na-autunite. These differences were due to the active surface features of Ca-autunite and 

the formation of calcium uranium species, altering the solution saturation state. The 

dissolution rate data indicates that a low concentration of bicarbonate in the subsurface 

environments can impact the stability of the uranyl phosphate minerals. The information 

presented here provides necessary fundamental data to refine the bulk kinetic parameters 

currently being used to predict the fate of uranium in the subsurface.  
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APPENDIX 

Table A1. Single-pass flow-through experimental conditions and dissolution rates of Na-autunite 

Sample ID 
Surface 

Area (m2) 
Temp 
(oC) 

pH 
(23oC) 

Flow Rate 
(mL d-1) 

U  
(µg L-1) 

U Release 
(mol m-2 s-1) 

0.0005M HCO3
- 

SAUT-01 1.07 5 6 1014 24.3 
2.74E-12 

(5.31E-13) 

SAUT-02 1.09 5 7 1021 41.2 
3.600E-12 
(6.98E-13) 

SAUT-03 1.03 5 8 1022 79.5 
7.02E-12 

(1.36E-12) 

SAUT-04 0.97 5 9 976 404.8 
3.66E-11 

(7.10E-12) 

SAUT-05 0.65 5 10 1020 2057.8 
2.94E-10 

(4.09E-11) 

SAUT-06 0.59 5 11 1003 414.7 
6.30E-11 

(1.22E-11) 

SAUT-07 1.59 23 6 1016 245.9 
1.90E-12 

(3.69E-13) 

SAUT-08 1.18 23 7 976 279.4 
2.084E-11 

(4.036E-12) 

SAUT-09 1.59 23 8 952 1025.2 
2.54E-11 

(1.45E-11) 

SAUT-10 1.18 23 9 1030 1075.8 
8.55E-11 

(2.46E-11) 

SAUT-11 1.60 23 10 822 2070.4 
7.83E-11 

(8.77E-12) 

SAUT-12 1.59 23 11 997 2799.0 
1.12E-10 

(2.17E-11) 

SAUT-13 0.89 40 6 1483 85.6 
1.28E-11 

(2.49E-12) 

SAUT-14 0.89 40 7 1500 177.7 
2.685E-11 
(5.19E-12) 

SAUT-15 1.63 40 8 1474 496.0 
4.06E-11 

(1.43E-11) 

SAUT-16 0.88 40 9 1513 706.7 
1.10E-10 

(2.12E-11) 

SAUT-17 1.58 40 10 1512 1652.9 
1.43E-10 

(3.84E-11) 

SAUT-18 1.12 40 11 1508 1161.0 
1.33E-10 

(2.58E-11) 

SAUT-19 0.88 60 6 1910 68.6 
1.32E-11 

(2.55E-12) 

SAUT-20 1.61 60 7 2429 214.9 
2.94E-11 

(7.92E-12) 

SAUT-21 1.14 60 8 2448 640.7 
1.24E-11 

(2.41E-12) 

SAUT-22 0.89 60 9 2425 1766.7 
4.35E-11 

(6.46E-12) 

SAUT-23 1.16 60 10 2442 1816.2 
3.52E-10 

(6.81E-11) 

SAUT-24 0.89 60 11 2435 681.9 
1.90E-10 

(3.68E-11) 
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Table A1 - Continued 

Sample ID 
Surface 

Area (m2) 
Temp 
(oC) 

pH 
(23oC) 

Flow Rate 
(mL d-1) 

U  
(µg L-1) 

U Release 
(mol m-2 s-1) 

0.001M HCO3
- 

SAUT-25 0.46 5 6 990 9.573 
1.94E-12 

(1.98E-13) 

SAUT-26 0.77 5 7 989 32.123 
3.70E-12 

(7.16E-13) 

SAUT-27 0.77 5 8 1003 99.458 
1.18E-11 

(2.28E-12) 

SAUT-28 0.76 5 9 1021 414.558 
5.04E-11 

(9.76E-12) 

SAUT-29 0.69 5 10 1002 2131.330 
2.79E-10 

(3.88E-11) 

SAUT-30 0.55 5 11 986 683.31 
1.10E-10 

(2.12E-11) 

SAUT-31 1.17 23 6 976 14.4 
1.4E-12 

(2.1E-13) 

SAUT-32 0.88 23 7 973 48.5 
2.47E-11 

(6.99E-13) 

SAUT-33 1.18 23 8 980 654.0 
3.58E-11 

(5.98E-12) 

SAUT-34 1.18 23 9 971 1605.6 
1.27E-10 

(2.46E-11) 

SAUT-35 0.88 23 10 1001 799.9 
8.23E-11 

(8.77E-12) 

SAUT-36 1.14 23 11 1000 1303.3 
1.00E-10 

(1.94E-11) 

SAUT-37 0.88 40 6 1509 102.6 
1.59E-11 

(3.09E-12) 

SAUT-38 0.88 40 7 1514 191.4 
2.99E-11 

(5.80E-12) 

SAUT-39 0.88 40 8 1518 315.4 
5.36E-11 

(9.54E-12) 

SAUT-40 0.89 40 9 1528 832.0 
1.09E-10 

(2.12E-11) 

SAUT-41 1.59 40 10 1495 1589.8 
1.88E-10 

(2.61E-11) 

SAUT-42 1.13 40 11 1507 1548.1 
1.92E-10 

(3.71E-11) 

SAUT-43 0.89 60 6 2430 21.2 
7.15E-12 

(1.35E-12) 

SAUT-44 0.87 60 7 2443 64.9 
3.64E-11 

(2.44E-12) 

SAUT-45 1.12 60 8 2412 194.3 
3.78E-11 

(7.33E-12) 

SAUT-46 1.16 60 9 2452 615.2 
1.17E-10 

(2.26E-11) 

SAUT-47 1.13 60 10 2442 2433.2 
4.60E-10 

(9.21E-11) 

SAUT-48 1.55 60 11 2447 1757.6 
2.50E-10 

(4.85E-11) 
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Table A1 - Continued 

Sample ID 
Surface 

Area (m2) 
Temp 
(oC) 

pH 
(23oC) 

Flow Rate 
(mL d-1) 

U  
(µg L-1) 

U Release 
(mol m-2 s-1) 

0.002M HCO3
- 

SAUT-49 0.61 5 6 977 20.3 
2.95E-12 

(4.11E-13) 

SAUT-50 0.84 5 7 1037 68.2 
7.65E-12 

(1.48E-12) 

SAUT-51 1.03 5 8 1019 152.6 
1.37E-11 

(2.65E-12) 

SAUT-52 0.82 5 9 976 551.1 
5.90E-11 

(1.14E-11) 

SAUT-53 0.59 5 10 1003 2060 
3.13E-10 

(4.36E-11) 

SAUT-54 0.59 5 11 1004 946.1 
1.49E-10 

(2.89E-11) 

SAUT-55 0.88 23 6 994 13.9 
1.73E-12 

(2.08E-13) 

SAUT-56 1.18 23 7 961 388.2 
2.86E-11 

(5.54E-12) 

SAUT-57 1.18 23 8 966 393.1 
3.59E-11 

(6.34E-12) 

SAUT-58 1.59 23 9 955 3851.3 
2.12E-10 

(5.57E-11) 

SAUT-59 1.12 23 10 976 1727.2 
1.35E-10 

(1.88E-11) 

SAUT-60 0.89 23 11 978 1154.2 
1.16E-10 

(2.21E-11) 

SAUT-61 0.88 40 6 1492 191.4 
2.70E-11 

(5.23E-12) 

SAUT-62 0.86 40 7 1504 265.5 
4.17E-11 

(8.09E-12) 

SAUT-63 0.86 40 8 1506 460.3 
7.26E-11 

(1.40E-11) 

SAUT-64 0.87 40 9 1517 1576.9 
2.49E-10 

(4.83E-11) 

SAUT-65 1.63 40 10 1512 3386.3 
2.77E-10 

(5.40E-11) 

SAUT-66 1.14 40 11 1502 2196.0 
2.62E-10 

(5.07E-11) 

SAUT-67 0.86 60 6 2432 55.7 
1.86E-11 

(2.11E-12) 

SAUT-68 1.15 60 7 2450 241.3 
4.65E-11 

(9.01E-12) 

SAUT-69 1.14 60 8 2455 203.4 
4.64E-11 

(7.65E-12) 

SAUT-70 0.89 60 9 2440 633.5 
1.75E-10 

(2.33E-11) 

SAUT-71 0.88 60 10 2445 1833.1 
4.70E-10 

(6.78E-11) 

SAUT-72 1.17 60 11 2430 1723.1 
3.23E-10 

(6.26E-11) 
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Table A1 - Continued 

Sample ID 
Surface 

Area (m2) 
Temp 
(oC) 

pH 
(23oC) 

Flow Rate 
(mL d-1) 

U  
(µg L-1) 

U Release 
(mol m-2 s-1) 

0.003M HCO3
- 

SAUT-73 0.60 5 6 1016 34.7 
5.41E-12 

(7.52E-13) 

SAUT-74 0.83 5 7 990 92.8 
9.85E-12 

(1.91E-12) 

SAUT-75 0.82 5 8 994 204.2 
2.22E-11 

(4.31E-12) 

SAUT-76 0.88 5 9 973 709.5 
7.08E-11 

(1.37E-11) 

SAUT-77 0.64 5 10 973 3380.0 
4.64E-10 

(6.45E-11) 

SAUT-78 0.65 5 11 995 1218.6 
1.69E-10 

(3.28E-11) 

SAUT-79 1.19 23 6 986 150.8 
9.88E-12 

(2.18E-12) 

SAUT-80 1.19 23 7 995 427.9 
4.23E-11 

(6.25E-12) 

SAUT-81 0.88 23 8 1001 798.8 
8.13E-11 

(1.21E-11) 

SAUT-82 0.89 23 9 982 1329.5 
1.55E-10 

(2.57E-11) 

SAUT-83 1.12 23 10 982 1487.4 
1.17E-10 

(1.63E-11) 

SAUT-84 0.89 23 11 978 2670.8 
2.64E-10 

(3.92E-11) 

SAUT-85 0.87 40 6 1501 188.1 
2.94E-11 

(5.69E-12) 

SAUT-86 0.87 40 7 1508 305.1 
4.76E-11 

(9.22E-12) 

SAUT-87 1.14 40 8 1501 1113.4 
1.32E-10 

(2.56E-11) 

SAUT-88 1.12 40 9 1504 2748.5 
3.31E-10 

(6.42E-11) 

SAUT-89 0.87 40 10 1477 1665.9 
2.54E-10 

(3.77E-11) 

SAUT-90 1.15 40 11 1512 2737.6 
3.26E-10 

(6.31E-11) 

SAUT-91 1.15 60 6 2431 238.9 
4.58E-11 

(8.86E-12) 

SAUT-92 1.59 60 7 2442 310.8 
6.00E-11 

(1.16E-11) 

SAUT-93 0.86 60 8 2432 274.9 
6.98E-11 

(1.03E-11) 

SAUT-94 0.87 60 9 2426 743.7 
2.04E-10 

(2.76E-11) 

SAUT-95 0.86 60 10 2429 2736.3 
6.98E-10 

(1.03E-10) 

SAUT-96 1.14 60 11 2421 2026.7 
3.89E-10 

(7.53E-11) 
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Table A2 Single-Pass flow-through experimental conditions and dissolution rates of Ca-autunite 

Sample ID 
Surface 

Area (m2) 
Temp 
(oC) 

pH 
(23oC) 

Flow Rate 
(mL d-1) 

U  
(µg L-1) 

U Release 
(mol m-2 s-1) 

0.0005 M HCO3
- 

AUT-261 0.195 23 7 847 48 
1.40E-11 

(1.72E-12) 

AUT-262 0.198 23 8 991 88 
3.70E-11 

(3.58E-12) 

AUT-263 0.199 23 9 971 341 
1.40E-10 

(1.39E-11) 

AUT-264 0.197 23 10 998 696 
2.97E-10 

(2.89E-11) 

AUT-265 0.196 23 11 954 1090 
4.44E-10 

(4.43E-11) 

AUT-266 0.197 40 7 1510 53 
3.38E-11 

(3.29E-12) 

AUT-267 0.196 40 8 1510 84 
5.45E-11 

(5.30E-12) 

AUT-268 0.197 40 9 1500 222 
1.42E-10 

(1.38E-11) 

AUT-269 0.196 40 10 1490 793 
5.06E-10 

(4.91E-11) 

AUT-270 0.198 40 11 1490 889 
5.64E-10 

(5.45E-11) 

AUT-271 0.202 60 7 2290 69 
6.52E-11 

(6.32E-12) 

AUT-272 0.197 60 8 2200 109 
1.02E-10 

(9.87E-12) 

AUT-273 0.196 60 9 2180 153 
1.43E-10 

(1.41E-11) 

AUT-274 0.199 60 10 2380 506 
5.11E-10 

(4.96E-11) 

AUT-275 0.202 60 11 2340 699 
6.81E-10 

(6.61E-11) 

AUT-276 0.201 90 7 2620 66 
7.25E-11 

(7.05E-12) 

AUT-277 0.197 90 8 2620 54 
6.13E-11 

(5.93E-12) 

AUT-278 0.197 90 9 2620 154 
1.72E-10 

(1.67E-11) 

AUT-279 0.195 90 10 2710 507 
5.93E-10 

(5.74E-11) 

AUT-280 0.199 90 11 2690 929 
1.06E-09 

(1.03E-10) 
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Table A2 - Continued 

Sample ID 
Surface 

Area (m2) 
Temp 
(oC) 

pH 
(23oC) 

Flow Rate 
(mL d-1) 

U  
(µg L-1) 

U Release 
(mol m-2 s-1) 

0.001 M HCO3
- 

AUT-281 0.201 23 7 1090 38 
1.77E-11 

(1.85E-12) 

AUT-282 0.199 23 8 1100 113 
5.15E-11 

(5.01E-12) 

AUT-283 0.200 23 9 1100 362 
1.62E-10 

(1.58E-11) 

AUT-284 0.198 23 10 1110 980 
4.45E-10 

(4.32E-11) 

AUT-285 0.199 23 11 1080 1110 
5.25E-10 

(5.50E-11) 

AUT-286 0.202 40 7 1340 48 
2.77E-11 

(2.81E-12) 

AUT-287 0.198 40 8 1350 101 
5.74E-11 

(5.59E-12) 

AUT-288 0.199 40 9 1350 315 
1.77E-10 

(1.73E-11) 

AUT-289 0.197 40 10 1340 808 
4.54E-10 

(4.43E-11) 

AUT-290 0.198 40 11 1340 1300 
7.59E-10 

(7.63E-11) 

AUT-291 0.197 60 7 2310 75 
7.44E-11 

(7.20E-12) 

AUT-292 0.197 60 8 2170 187 
1.71E-10 

(1.66E-11) 

AUT-293 0.197 60 9 2190 354 
3.29E-10 

(3.19E-11) 

AUT-294 0.200 60 10 2330 1330 
1.30E-09 

(1.26E-10) 

AUT-295 0.196 60 11 2330 1150 
1.15E-09 

(1.12E-10) 

AUT-296 0.202 90 7 2550 108 
1.15E-10 

(1.12E-11) 

AUT-297 0.199 90 8 2620 183 
2.03E-10 

(1.97E-11) 

AUT-298 0.197 90 9 2660 321 
3.63E-10 

(3.53E-11) 

AUT-299 0.201 90 10 2720 1120 
1.28E-09 

(1.24E-10) 

AUT-300 0.197 90 11 2660 965 
1.09E-09 

(1.07E-10) 
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Table A2 - Continued 

Sample ID 
Surface 

Area (m2) 
Temp 
(oC) 

pH 
(23oC) 

Flow Rate 
(mL d-1) 

U  
(µg L-1) 

U Release 
(mol m-2 s-1) 

0.002 M HCO3
- 

AUT-301 0.201 23 7 990 48 
1.99E-11 

(1.93E-12) 

AUT-302 0.201 23 8 997 203 
8.51E-11 

(8.27E-12) 

AUT-303 0.200 23 9 995 623 
2.62E-10 

(2.56E-11) 

AUT-304 0.198 23 10 1030 2010 
8.80E-10 

(8.56E-11) 

AUT-305 0.198 23 11 968 2380 
9.82E-10 

(9.58E-11) 

AUT-306 0.202 40 7 1500 79 
4.91E-11 

(4.86E-12) 

AUT-307 0.197 40 8 1520 137 
8.95E-11 

(8.70E-12) 

AUT-308 0.198 40 9 1520 456 
2.95E-10 

(2.87E-11) 

AUT-309 0.200 40 10 1520 2040 
1.31E-09 

(1.27E-10) 

AUT-310 0.201 40 11 1520 2500 
1.59E-09 

(1.54E-10) 

AUT-311 0.202 60 7 2250 110 
1.02E-10 

(9.92E-12) 

AUT-312 0.199 60 8 1910 247 
1.71E-10 

(1.93E-11) 

AUT-313 0.201 60 9 2450 406 
4.17E-10 

(4.04E-11) 

AUT-314 0.196 60 10 2450 2180 
2.30E-09 

(2.24E-10) 

AUT-315 0.202 60 11 2440 2720 
2.78E-09 

(2.71E-10) 

AUT-316 0.198 90 7 2520 150 
1.60E-10 

(1.56E-11) 

AUT-317 0.197 90 8 2390 225 
1.53E-10 

(2.26E-11) 

AUT-318 0.202 90 9 2960 396 
4.91E-10 

(4.78E-11) 

AUT-319 0.196 90 10 2820 2150 
2.60E-09 

(2.52E-10) 

AUT-320 0.199 90 11 2800 1740 
2.59E-09 

(2.52E-10) 
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Table A2 - Continued 

Sample ID 
Surface 

Area (m2) 
Temp 
(oC) 

pH 
(23oC) 

Flow Rate 
(mL d-1) 

U  
(µg L-1) 

U Release 
(mol m-2 s-1) 

0.003 M HCO3
- 

AUT-321 0.198 23 7 940 99 
3.96E-11 

(3.85E-12) 

AUT-322 0.199 23 8 1010 227 
9.73E-11 

(9.43E-12) 

AUT-323 0.199 23 9 1030 1310 
5.74E-10 

(5.54E-11) 

AUT-324 0.201 23 10 805 4130 
1.76E-09 

(1.97E-10) 

AUT-325 0.199 23 11 1010 5070 
2.17E-09 

(2.12E-10) 

AUT-326 0.196 40 7 1500 94 
6.03E-11 

(5.84E-12) 

AUT-327 0.200 40 8 1560 168 
1.10E-10 

(1.07E-11) 

AUT-328 0.197 40 9 1540 774 
5.11E-10 

(4.96E-11) 

AUT-329 0.197 40 10 1220 5090 
2.98E-09 

(3.34E-10) 

AUT-330 0.197 40 11 1540 4840 
3.17E-09 

(3.07E-10) 

AUT-331 0.201 60 7 2400 151 
1.53E-10 

(1.55E-11) 

AUT-332 0.201 60 8 2270 268 
2.56E-10 

(2.49E-11) 

AUT-333 0.202 60 9 2270 791 
7.44E-10 

(7.25E-11) 

AUT-334 0.197 60 10 2260 4670 
4.52E-09 

(4.38E-10) 

AUT-335 0.197 60 11 2270 3830 
3.71E-09 

(3.59E-10) 

AUT-336 0.201 90 7 2800 217 
2.53E-10 

(2.46E-11) 

AUT-337 0.201 90 8 2810 204 
2.40E-10 

(2.32E-11) 

AUT-338 0.199 90 9 2790 779 
9.19E-10 

(8.90E-11) 

AUT-339 0.196 90 10 2700 4740 
5.50E-09 

(5.30E-10) 

AUT-340 0.199 90 11 2640 5440 
6.08E-09 

(5.88E-10) 
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Figure A1 3D representation of sodium release from Na-autunite at 5oC 

 
Figure A2 3D representation of sodium release from Na-autunite at 23oC 
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Figure A3 3D representation of sodium release from Na-autunite at 40oC 

 
Figure A4 3D representation of sodium release from Na-autunite at 60oC 
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Figure A5 3D representation of phosphorus release from Na-autunite at 5oC 

 
Figure A6 3D representation of phosphorus release from Na-autunite at 23oC 
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Figure A7 3D representation of phosphorus release from Na-autunite at 40oC 

 
Figure A8 3D representation of phosphorus release from Na-autunite at 60oC
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