
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-7-2012

Host and Network Optimizations for Performance
Enhancement and Energy Efficiency in Data
Center Networks
Hao Jin
Florida International University, hjin001@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Jin, Hao, "Host and Network Optimizations for Performance Enhancement and Energy Efficiency in Data Center Networks" (2012).
FIU Electronic Theses and Dissertations. Paper 735.
http://digitalcommons.fiu.edu/etd/735

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/735?utm_source=digitalcommons.fiu.edu%2Fetd%2F735&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

HOST AND NETWORK OPTIMIZATIONS FOR PERFORMANCE

ENHANCEMENT AND ENERGY EFFICIENCY IN DATA CENTER

NETWORKS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Hao Jin

2012



To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Hao Jin, and entitled Host and Network Optimization-
s for Performance Enhancement and Energy Efficiency in Data Center Networks,
having been approved in respect to style and intellectual content, is referred to you
for judgment.

We have read this dissertation and recommend that it be approved.

Niki Pissinou

Jean Andrian

Jason Liu

Deng Pan, Major Professor

Date of Defense: November 7, 2012

The dissertation of Hao Jin is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2012

ii



c© Copyright 2012 by Hao Jin

All rights reserved.

iii



DEDICATION

To my wife and my parents.

iv



ACKNOWLEDGMENTS

I would like to express my sincerest gratitude to my major professor Dr. Deng

Pan. Without his insightful advice and consistent encouragement throughout my

Ph.D. study, this work would not have been possible. I am extremely grateful for

his patient, continued guidance at the beginning stage of my Ph.D. research. His

hardworking and never-ending pursuit of excellence has been and will always be a

tremendous source of inspiration to me.

I would like to thank Dr. Pissinou, Dr. Kang Yen and the Telecommunication

and Information Technology Institute (IT2) for offering me the opportunity to pur-

sue my doctoral degree at FIU. I also want to thank my dissertation committee

members, Dr. Jean Andrian and Dr. Jason Liu, for their enlightening comments

and suggestions. I sincerely thank the Department of Electrical and Computer En-

gineering (ECE) and the School of Computing and Information Sciences (SCIS) for

the financial supports of my Ph.D. study.

My special thanks go to all the lab mates in IT2 and SCIS. In particular, I want

to thank Dr. Qian Wang, Dr. Kai Chen, Xinyu Jin, Pasd Putthapipat, Yubin Li, Dr.

Xiaowen Zhang and Yu Li for their help and friendship. My appreciation also goes

to Olga Carbonell, Pat Brammer, Maria Benincasa for their kind administrative

support. Thanks to Dr. Geoffrey Smith, Professor of SCIS for developing and

sharing the disseration Latex template.

Finally, and most importantly, I want to thank my wife and my parents for their

unconditional love. Their company and understanding has been a imence motivation

of my Ph.D. life.

v



ABSTRACT OF THE DISSERTATION

HOST AND NETWORK OPTIMIZATIONS FOR PERFORMANCE

ENHANCEMENT AND ENERGY EFFICIENCY IN DATA CENTER

NETWORKS

by

Hao Jin

Florida International University, 2012

Miami, Florida

Professor Deng Pan, Major Professor

Modern data centers host hundreds of thousands of servers to achieve economies of

scale. Such a huge number of servers create challenges for the data center network

(DCN) to provide proportionally large bandwidth. In addition, the deployment of

virtual machines (VMs) in data centers raises the requirements for efficient resource

allocation and find-grained resource sharing. Further, the large number of servers

and switches in the data center consume significant amounts of energy. Even though

servers become more energy efficient with various energy saving techniques, DCN

still accounts for 20% to 50% of the energy consumed by the entire data center.

The objective of this dissertation is to enhance DCN performance as well as

its energy efficiency by conducting optimizations on both host and network sides.

First, as the DCN demands huge bisection bandwidth to interconnect all the server-

s, we propose a parallel packet switch (PPS) architecture that directly processes

variable length packets without segmentation-and-reassembly (SAR). The proposed

PPS achieves large bandwidth by combining switching capacities of multiple fab-

rics, and it further improves the switch throughput by avoiding padding bits in

SAR. Second, since certain resource demands of the VM are bursty and demon-

strate stochastic nature, to satisfy both deterministic and stochastic demands in

vi



VM placement, we propose the Max-Min Multidimensional Stochastic Bin Pack-

ing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for

the stochastic demands, and maximizes the minimum resource utilization ratio of

each server. Third, to provide necessary traffic isolation for VMs that share the

same physical network adapter, we propose the Flow-level Bandwidth Provision-

ing (FBP) algorithm. By reducing the flow scheduling problem to multiple stages

of packet queuing problems, FBP guarantees the provisioned bandwidth and delay

performance for each flow. Finally, while DCNs are typically provisioned with full

bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a

joint host-network optimization scheme to enhance the energy efficiency of DCNs

during off-peak traffic hours. The proposed scheme utilizes a unified representation

method that converts the VM placement problem to a routing problem and employs

depth-first and best-fit search to find efficient paths for flows.

vii



TABLE OF CONTENTS

CHAPTER PAGE

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.1 Needs for Larger Network Capacity . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Needs for Effective Resource Allocation and Management . . . . . . . . 3
1.2.3 Needs for Fine Granularity Performance Guarantee . . . . . . . . . . . 5
1.2.4 Needs for Better Energy Efficiency . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Background and Related Works . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Parallel Packet Switch Architecture . . . . . . . . . . . . . . . . . . . . . 12
2.2 Virtual Machine Placement Scheme . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Multiple Resource Demands . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Stochastic Resource Demands . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Bandwidth Provisioning in DCNs . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Port-level Bandwidth Provisioning . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Flow-level Bandwidth Provisioning . . . . . . . . . . . . . . . . . . . . 16
2.4 Energy Conservation Optimization . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Network-Side Optimization . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Host-Side Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3. Parallel Packet Switch without Segmentation-and-Reassembly . . . . . . . 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 1× 1 Variable-Length Parallel Packet Switch . . . . . . . . . . . . . . . . 21
3.2.1 Switch Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Policy A: ICB based Packet Distribution . . . . . . . . . . . . . . . . . 23
3.2.3 Policy B: OCB based Packet Distribution and Retrieval . . . . . . . . 25
3.3 General Variable-Length Parallel Packet Switch . . . . . . . . . . . . . . 29
3.3.1 Switch Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4. Efficient VM Placement with Multiple Deterministic and Stochastic Re-
sources in Data Centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Problem Formulation of Multidimensional Stochastic VM Placement . . 37
4.3 Max-Min Multidimensional Stochastic Bin Packing (M3SBP) Algorithm . 39

viii



4.3.1 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Illustration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.1 Simulation Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Number of Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.3 Server Availability Guarantee . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.4 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5. OpenFlow based Flow-Level Bandwidth Provisioning for CICQ Switches . 52
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Flow-Level Bandwidth Provisioning for CICQ Switches . . . . . . . . . . 56
5.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Service Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.2 Delay Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.3 Crosspoint Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.5 Implementation Advantages . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.6 Comparison with Existing Solutions . . . . . . . . . . . . . . . . . . . 68
5.4 OpenFlow based Implementation . . . . . . . . . . . . . . . . . . . . . . 69
5.4.1 FBP Enabled OpenFlow Software Switches . . . . . . . . . . . . . . . 70
5.4.2 Bandwidth Provisioning NOX Component . . . . . . . . . . . . . . . . 73
5.4.3 Scalability of OpenFlow based Implementation . . . . . . . . . . . . . 75
5.5 Simulation and Experiment Results . . . . . . . . . . . . . . . . . . . . . 76
5.5.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6. Host-Network Energy Efficiency Co-Optimization for Data Center Networks 86
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Optimization Challenges and Solutions . . . . . . . . . . . . . . . . . . . 88
6.3 Host-Network Energy Efficiency Optimization Scheme . . . . . . . . . . . 90
6.4 Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4.1 Hardware and Software Configuration . . . . . . . . . . . . . . . . . . 93
6.4.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 Prototype Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

ix



7. Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1.1 Utilizing Parallel Packet Switch Architecture to Increase DCN’s Band-

width Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1.2 Multidimensional Stochastic VM Placement to Improve DCN’s Re-

source Utilization . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.1.3 Enabling Performance Guarantees on Flow Level . . . . . . . . . . . . 107
7.1.4 Host-Network Co-Optimization to Enhance DCN’s Energy Efficiency . 107
7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

x



LIST OF FIGURES

FIGURE PAGE

3.1 1× 1 Variable-Length Parallel Packet Switch . . . . . . . . . . . . . . . 21

3.2 A 1× 1 vPPS with ICBs of size L is not work conserving. . . . . . . . . 23

3.3 General Variable Length Parallel Packet Switch . . . . . . . . . . . . . . 30

4.1 Number of servers used by different placement algorithms . . . . . . . . 46

4.2 Percentage of servers violating the target violation probability threshold 48

4.3 Number of servers and percentage of violated servers of Max-Min when
gradually increasing the enlargement ratio from 1.00 to 1.30. . . . . . 50

5.1 GPS as Ideal Fairness Model . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Structure of CICQ switches . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Event-driven Scheduling of FBP Enabled OpenFlow Software Switch . . 72

5.4 Service Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Delay Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Crosspoint Buffer Occupancy . . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 Experiment with Single Flow and Single Switch . . . . . . . . . . . . . . 81

5.8 Experiment with Multiple Flows and Single Switch . . . . . . . . . . . . 82

5.9 Topology of Experiment OpenFlow Network . . . . . . . . . . . . . . . 83

5.10 Experiment with Multiple Flows and Multiple Switches . . . . . . . . . 85

6.1 Unified representation of VM placement and flow routing. . . . . . . . . 89

6.2 Photo of our prototype. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Major processes of the optimization. . . . . . . . . . . . . . . . . . . . . 95

6.4 Fat-tree topology of the prototype. . . . . . . . . . . . . . . . . . . . . . 98

6.5 Measured incoming and outgoing traffic of Host 4. . . . . . . . . . . . . 102

6.6 Power consumption comparison before and after optimization. . . . . . . 103

xi



CHAPTER 1

INTRODUCTION

1.1 Overview

Data centers, which provide enormous computing power and data storage space

[NUM], have become more and more important for today’s economy [MY10]. During

the last decade, large corporations, like Microsoft [GHJ+09] and Google [AMW+10],

have kept expending the scale of their data centers to accommodate the ever increas-

ing needs for more computational power. Large data centers, such as Microsoft’s

Chicago data center, are reported to hold over 300,000 servers. Such fast expansion

creates serious performance and efficiency challenges for the data center network (D-

CN) to provide sufficient and efficient network connectivity for the servers [AFLV08]

[GLM+08]. For example, the massive deployment of bandwidth intensive applica-

tions and services, such as MapReduce and Internet video streaming, is demanding

for larger and more cost-efficient DCN bandwidth. Further, virtual machines (VMs)

significantly improve the efficiency of data centers by sharing resources of physical

servers. However, such benefit highly relies on efficient resource allocation and find-

grained resource sharing. In addition, data centers can be easily listed as one of

the top local electricity consumers, and DCN accounts for a notable portion of the

data center’s total energy consumption. Thus, to increase DCN’s energy efficiency

is critical for the current and future data center designs. This dissertation aims to

address these challenges by enhancing the DCN’s performance and energy efficiency,

so that the DCN can adapt to the rapid growth of the data center scale.

1.2 Motivations

In order to provide high performance network services, data centers gather large

numbers of servers together at a central location and interconnect them with high

1



speed switches. As the size of the data center has grown dramatically, the DCN faces

several performance and efficiency challenges. Bandwidth intensive applications,

such as search engine and cloud data storage, are more and more popular in data

centers. As a result, DCN needs to expand its network capacity continuously to

keep pace with the data center scale. Another recent development of data centers is

the wide deployment of VMs. Because multiple VMs can share the resources of the

same physical server, the server utilization of data centers can be greatly improved.

However, as the number of VMs getting larger, the resource allocation task becomes

more complicated. It is impossible for the DCN operators to manually allocate

resources for tens of thousand VMs, and at the same time optimize the overall

server utilization. Finally, due to the huge energy consumption of data centers,

the DCN needs to be more energy efficient so that the data centers can be both

cost-effective and environmentally sustainable.

1.2.1 Needs for Larger Network Capacity

The bandwidth demands in DCNs are dramatically increasing. There are several fac-

tors that have contributed to such increase. First, bandwidth intensive applications

become more and more popular in people’s daily life. For example, as the quality

of the online video getting better and the price getting lower, more people choose

to watch videos online rather than renting discs from local video stores. Another

example is the cloud based computing, in which clients rely on adequate network

bandwidth to work properly. Second, the wide deployment of VMs intensifies the

network usage of DCNs. As the server capacity and resource separation technique

greatly improved, it is not difficult to host tens even hundreds of VMs on a single

server. As a result, VMs may experience constant network congestions if the servers

fall short on bandwidth resources. In addition, many distributed computing appli-

2



cations, such as MapReduce, may create significant amount of inter-communication

traffics among servers and VMs, which further aggravate DCN’s bandwidth pressure.

Traditional single switching fabric based switches are more and more difficult to

meet such rapid growing bandwidth demands. This is mainly because of the slower

growth pace of the switch memory access speed when comparing to the growth pace

of the switch line speed. It is found that the speed of DRAM increase 10% every 18

months while the switch line speed increases 100% every 7 months [AC04]. Switches

use DRAM to implement most of their large buffers in order to be cost-efficient. As

a result, if the line speed keeps increasing, the switch may not be able to buffer

packets as fast as they arrive and depart.

A popular solution to this challenge is the Parallel Packet Switch (PPS) [IM03]

architecture, which combines several lower-speed switching fabrics or center stage

switches to provide huge aggregate bandwidth. Since it uses only inexpensive com-

modity switches, PPS can greatly reduce the cost of the DCN while providing

sufficient bandwidth. Most existing PPSs handle only fixed length packets, also

called cells. Since packets in data centers are of variable length, existing PPSs need

segmentation-and-reassembly (SAR) to process such packets, which will introduce

padding bits and waste precious bandwidth. Therefore, it becomes highly necessary

to design a PPS architecture that directly supports variable length packet.

1.2.2 Needs for Effective Resource Allocation and Management

VMs are attractive to modern data centers because they may significantly promote

the efficiency and flexibility [BKB07]. However, such an incentive highly relies on

an effective VM management scheme [SMLF09]. This is because an ineffective VM

management scheme may result in lower resource utilization and thus needs more

physical servers, which will further lead to not only higher capital investments on

3



equipment and facilities, but also increased operational expenditures on energy and

labor. In addition, since the number of VMs in the data center increase significantly,

manual VM management is no longer feasible. The key of an effective VM manage-

ment is how to efficiently allocate physical resource to VMs so that each VM obtains

its required share, and meanwhile, the overall server utilization is maximized. VM

placement, which assigns the host server for each VM, is the primary stage where the

physical resource allocations take place. Therefore, a well-designed VM placement

scheme is critical for DCN to effectively manage a large number of VMs.

Multiple VM characteristics need to be considered in finding the VM placement.

First, each VM may have demands on various server resources. CPU and memory are

traditionally the two major criteria. More recently, due to the increasing concerns

on data center energy [AMW+10] and emerging bandwidth intensive applications

[BAM10], VMs’ power consumption and bandwidth requirement are also taken into

account when computing the placement. Second, some of the VM’s resource de-

mands may be highly bursty and time varying. The real demands of these resources

are fluctuating, and it is difficult to obtain an accurate fixed-value measure. One

such example is the network bandwidth. It is shown that such bursty bandwidth

demands of VMs in data centers can be approximated by certain stochastic pro-

cesses [KSG+09]. As a result, besides supplying fixed-value resources requested by

VMs, servers need to provide an availability guarantee for such stochastic resources

in the form of a violation probability threshold, specified in the data center’s service

level agreement (SLA). The threshold gives the worst-case likelihood that a server

cannot satisfy the dynamical demands of a VM for stochastic resources.

4



1.2.3 Needs for Fine Granularity Performance Guarantee

In data centers, virtualization technology is heavily deployed. It requires resources,

such as network bandwidth, to be allocated and shared at fine granularity [CIM05].

In particular, bandwidth allocation or bandwidth provisioning on switches can be on

different levels, namely port level and flow level. Port level bandwidth provisioning

assures bandwidth for the traffic from an input port to an output port, by which

switches can support traffic isolation between VLANs. Since a switch port may

belong to a single or multiple VLANs, bandwidth provisioning at the port level

ensures the bandwidth of each VLAN and makes one VLAN transparent to the

other. On the other hand, flow level bandwidth provisioning ensures bandwidth

for an individual flow, which may be a subset of the traffic from the input port to

the output port. A flow may be the sequence of packets generated by a specific

application or departing from an IP address, and in general can be flexibly defined

by a combination of the twelve packet header fields [MSA+06].

Flow level bandwidth provisioning is particularly necessary and important for

virtualization based DCNs, as it differentiates traffic at sufficiently fine granularity

[GKP+08]. In such a DCN, multiple VMs reside in a single physical server, and

their traffic shares the same physical network adapter and is correspondingly fed

into the same switch port. Since flows from different VMs may require different

bandwidth allocations and delay guarantees, port level bandwidth provisioning is

no longer sufficient [CIM05]. In contrast, flow level bandwidth provisioning is able

to allocate bandwidth resource on a per flow basis, so that each flow can have its

guaranteed bandwidth and thus guaranteed delay performance.

5



1.2.4 Needs for Better Energy Efficiency

As the data center size increases dramatically, energy efficiency becomes a critical

metric in the DCN design [dat]. It is estimated that total 44 million servers of

data centers all over the world consume 0.5% of the total electricity [Kat09], and

20% to 50% of the total data center electricity is consumed by the DCN [SLX10]

[AMW+10]. However, nowadays, DCNs suffer from low energy efficiency, especially

during off-peak hours. With the huge number of servers in a data center, the DCN

needs proportionally large bandwidth to interconnect the servers. In addition, a

DCN is typically provisioned with full bisection bandwidth [GWT+08] to support

burst all-to-all communication. However, since DCN traffic demonstrates fluctuating

patterns, the fully provisioned bandwidth cannot be always well utilized during off-

peak hours, resulting in resource underutilization and energy waste. Specifically,

due to the non-linearity relationship between the load and power consumption of

the devices, including servers and switches, idle devices still consume as much as

60% of their peak power [Kat09]. Thus, an energy efficient network design for DCNs

is highly desirable. Such design should consolidate the services and traffics during

the off-peak period to avoid the huge energy overhead.

1.3 Research Objectives

The primary objective of this dissertation is to design a performance and energy

efficiency enhancement scheme for the DCN, so that as the data center size get-

ting larger and larger, the DCN can still provide sufficient bandwidth, manage the

resources effectively and achieve high energy efficiency.

1. Traditional single switching fabric based switches are more and more difficult

to meet the increasing bandwidth demand in the DCN. Thus, our first goal

is to design a PPS architecture that combines multiple low-speed switches to

6



provide larger aggregate bandwidth. In addition, the parallel packet switch

should also be able to directly process variable length packets to avoid band-

width wastes on the padding bits of the fixed length cells.

2. VMs in data centers may demands multiple types of physical resources, and

some of the resource demands can be bursty and be modeled as stochastic

processes. Thus, our second goal is to design an efficient VM placement scheme

which achieves better server utilization while satisfying multiple deterministic

and stochastic demands.

3. Since multiple VMs may share the bandwidth of a single physical network

adapter, port level traffic isolation is insufficient to guarantee performance for

each VM. Thus, the third goal of this dissertation is to design a practical flow

level performance guarantee scheme which ensures the provisioned bandwidth

and delay performance for each individual flow in the DCN.

4. During the off-peak traffic hours, DCNs suffers from low energy efficiency and

thus huge energy waste. Thus, the last goal of this dissertation is to design

an optimization scheme to improve the energy efficiency of the DCN during

off-peak traffic time.

1.4 Our Contributions

Following the research goals, we propose a joint host-network optimization scheme

to enhance performance and energy efficiency of the DCN. We have evaluated the

performance of the proposed scheme with theoretical analysis, program simulations

and realistic prototypes. In specific, we have made the following contributions.

7



1. Variable Length Parallel Packet Switch to Increase Switch Bandwidth

[JPP11]

To effectively and cost-efficiently increase the DCN’s network capacity, we propose

a variable length PPS (vPPS) architecture that directly handles variable-length

packets without SAR and with low hardware cost.

• We investigate a simplified 1× 1 vPPS which is similar to the traditional in-

verse multiplexing system. We show that two additional buffers, namely input

conversion buffer (ICB) and output conversion buffer (OCB), are required to

accommodate the rate difference between the input/output line and the center

stage switch (CSS).

• We design two different scheduling policies to limit the size of the ICB and

OCB for the simplified 1× 1 vPPS, respectively. We show that both ICB size

and OCB size can be bounded by 2L, where L is the maximum packet length.

Moreover, we prove that the second policy enables the switch to emulate an

FIFO OQ switch.

• We investigate the general N×N vPPS by expanding the 1×1 switch structure

and combining its two scheduling policies. We design a scheduling policy based

on the policies from the simplified 1 × 1 vPPS case to limit the size of ICB

and OCB, respectively. We prove that the presented vPPS architecture with

the proposed scheduling policy can emulate an FIFO OQ switch with speedup

of 2.

2. Multidimensional Stochastic VM Placement to Improve Resource U-

tilization [JPXP12]

To improve resource utilizations in DCNs with various deterministic and stochastic

resources, we propose a multidimensional stochastic VM placement scheme.

8



• We model the VM placement with multiple deterministic and stochastic re-

sources as a Multidimensional Stochastic VM Placement (MSVP) problem,

with the objective to minimize the number of required servers while satisfy

the service level agreement (SLA) availability guarantee. We prove that this

problem is NP-hard.

• We propose a polynomial time algorithm named Max-Min Multidimensional

Stochastic Bin Packing (M3SBP) to solve this problem. The basic idea is to

maximize the minimum utilization ratio of all the resources of a server, while

satisfying the VMs’ demands for both deterministic and stochastic resources.

• We demonstrate by extensive simulations that that M3SBP guarantees the

availability requirement for the stochastic resource while employing fewer server-

s than other benchmark algorithms do. We also show that, compared to the

modified deterministic algorithms that simply implement over-provisioning for

stochastic resources, M3SBP obtains more efficient placement schemes.

3. Flow Level Network Performance Guarantee [JPLP12]

To provide the fine-grained performance assurance in the DCN, we propose a flow

level traffic scheduling technique to provision bandwidth for each individual flow.

• We propose the Flow-level Bandwidth Provisioning (FBP) algorithm, which

assures the provisioned bandwidth and thus delay guarantees for each individ-

ual flows in the DCN. FBP reduces the switch scheduling problem to multiple

instances of fair queuing problems, each utilizing a well studied fair queuing al-

gorithm. As a result, FBP can closely emulate the ideal Generalized Processor

Sharing (GPS) model and accurately guarantee the provisioned bandwidth.

• We theoretically analyze the performance of FBP, and prove that it achieves

constant service guarantees and tight delay guarantees. We prove that FBP is

9



economical to implement with bounded crosspoint buffer sizes and no speedup

requirement, and is fast with low time complexity and distributed scheduling.

• We implement FBP in the OpenFlow software switch [MSA+06] and inte-

grate FBP with the NOX controller as one of its components. We validate

the constant service guarantees and tight delay guarantees by the empirical

simulation results. We demonstrate by prototype experiment results that our

prototype can accurately provision bandwidth at the flow level and is practical

to implement in the DCN.

4. Joint Host-Network Optimization to Enhance DCN’s Energy Efficien-

cy [JCL+ed]

To improve the energy efficiency of the DCN during off-peak traffic time, we inves-

tigate the the optimization scheme which reduces the number of active devices in

the network while maintaining the required network services. We propose a host-

network energy efficiency co-optimization scheme for DCN that combines VM place-

ment and flow routing optimization, so that the energy efficiency can be improved

on both sides.

• We develop a unified representation method which transforms the VM place-

ment problem to adapt the flow routing problem. We develop a topology-aware

recursive multi-path routing algorithm which utilizes the depth first search al-

gorithm to traverse the hierarchies of the DCN, and utilizes the best fit to

find the most proper flow routing path. We introduce a parallel processing

approach which divides the target data center into clusters and optimizes the

clusters simultaneously.

• We build a 4-pod and 16-host, HP ProCurve OpenFlow switches and VMware

vSphere based prototype based on the proposed optimization scheme. We

10



develop an Equinox framework bundle in the original Beacon controller to

implement our optimization algorithm. We demonstrate the effectiveness of

the proposed optimization scheme by empirical experiment results.

1.5 Dissertation Outline

The rest of the dissertation is organized as follows. Chapter 2 describes the back-

ground and related works. Chapter 3 presents the N × N vPPS architecture that

directly handles variable-length packets without SAR and with low hardware cost.

Chapter 4 investigates efficient VM placement problem in data centers with mul-

tiple deterministic and stochastic resources. In addition, Chapter 4 proposes a

polynomial time algorithm to solve the problem, and evaluates the performance by

theoretical analysis and prototype experiments. Chapter 5 studies the flow-level

bandwidth provisioning problem for data centers with OpenFlow context. Chapter

5 also proposes an efficient flow-level bandwidth provisioning algorithm with con-

stant service guarantees, and to experimentally demonstrate a practical flow-level

bandwidth provisioning solution based on the OpenFlow protocol. Chapter 6 s-

tudies the energy efficiency optimization problem in data centers, and proposes a

host-network energy efficiency co-optimization scheme which considers the VM and

flow consolidation simultaneously. Further, Chapter 6 evaluates the performance of

the proposed scheme via a OpenFlow hardware switch based prototype. Finally,

Chapter 7 concludes this dissertation and provides directions for future works.

11



CHAPTER 2

BACKGROUND AND RELATED WORKS

In this chapter, we describe existing solutions that address the DCN challenges

highlighted in the previous chapter.

2.1 Parallel Packet Switch Architecture

Parallel Packet Switch (PPS) architecture combines multiple parallel switching fab-

rics and provides huge aggregate bandwidth. In a PPS, when packets arrive at the

input ports, they will be first distributed by a demultiplexor to one of the internal

low-speed switches. The low-speed switch is selected according to the PPS’s pack-

et distribution policy whose major goal is to achieve PPS work conserving. After

switching at the internal switch stages, packets will be aggregated by a multiplexor

and forwarded to the output ports of the PPS. Similarly to the demulitplexor, the

multiplexor employs a packet collection policy, which controls the packet collection

order and time, to assure the work conserving property of the PPS.

Existing PPS designs in literatures can be divided into two categories, bufferless

PPS and buffered PPS. A bufferless PPS uses no high-speed buffer at the demul-

tiplexor or multiplexor. In this way, the PPS can greatly lower the hardware cost.

This is because that the high-speed buffers are usually implemented by using Static

Random Access Memory (SRAM), which is significantly expensive comparing to

normal switch memories. In order to achieve work conserving, current bufferless

PPS designs have to use speedup at the internal switches as a trade-off. A speedup

of n means that the internal switch’s line speed needs to be n times faster than

the internal switch’s switching fabric speed. [IAM00] proposes a bufferless PPS by

using k OQ switches as internal switches, where k is the ratio between the external

line rate and internal line rate. Each arriving packet is divided into fixed length

12



cells first, and then sent into the switch. [IAM00] also shows that, such a PPS can

emulate a FIFO OQ switch with speedup of 2 [KK01] studies the minimum require-

ment for a general bufferless OQ PPS to work conserving. It obtains a tight lower

bound for the number of internal OQ switches, k, and for the speedup s. [KK01]

proves that k ≥ 2dR/re−1 is necessary and sufficient for a bufferless PPS with port

speed of R and internal switch speed of r to work conserving. In addition, [KK01]

proves that to work conserving, the speedup s of a bufferless PPS should satisfy:

s ≥ k/dk/2e.

To eliminate the speedup, buffered PPS architectures are studied. [IM03] shows

that with extra buffer at each input and output port, the PPS eliminates the need for

speedup when emulating the FIFO OQ switch. [AC04] employs virtual input queues

(VIQ) at multiplexers and proposes corresponding cell dispatch-and-reassembly al-

gorithms to eliminate the speedup. It also can achieve load balancing and in-order

cell delivery. [LS06] proposes the multiple input-output-queued (MIOQ) switch that

has two parallel center stage switches. It is showed that MIOQ switch can emulate

an OQ switch with no speedup of any component.

2.2 Virtual Machine Placement Scheme

Several models and heuristics are proposed in recent literatures to improve DCN’s

resource utilization with effective virtual machine (VM) placement. Those pro-

posed solutions can be divided into two categories, multiple resource demands VM

placement and stochastic resource demands VM placement. The former takes ac-

count multi-type resource constraints in calculating VM placement, while the latter

recognizes the bursty nature of certain resource demands and considers it in the

placement.

13



2.2.1 Multiple Resource Demands

VM placement problem with multiple resource demands can be modeled as a variant

of Multidimensional Bin Packing (MBP) problem. The classic MBP problem is to

determine the way to pack items into the least number of size-fixed bins. There are

extensive studies focusing on finding a fast and effective solution to this NP-hard

problem. [CGJ97] provides a detailed survey. In VM placement problem, some of

the resource requirements are hard-constraints while others are soft-constraints. To

reflect such characteristic, [XF10] models VM placement as a multi-objective op-

timization problem. A fuzzy multi-objective evaluation aided genetic algorithm is

proposed to search large solution space for large scale data centers. While [XF10]

considers CPU, memory, power consumption and thermal dissipation as its place-

ment criteria, [MPZ10] focuses their attention on network bandwidth. Their goal

is to find an optimized VM placement scheme to improve the network scalability

for traffic-intensive data centers. An approximation algorithm aiming to reduce the

average traffic latency is proposed. The algorithm takes a two-tier approach that

first divides VMs and servers into clusters respectively, and then matches VMs and

servers at the cluster and server levels consequently.

2.2.2 Stochastic Resource Demands

An effective approach to deal with stochastic resource demands is to calculate an

equivalent bandwidth to represent the the stochastic demands as closely as possible.

[KRT00] focuses on allocating bandwidth for busty connections. [KRT00] models the

stochastic bandwidth demands as Bernoulli type distributions and applies an mod-

ified bin packing algorithm to reduce the number of connection and to achieve load

balancing. [GI99] proposes polynomial time approximation algorithms to solve the

stochastic bin packing and load balancing problem for stochastic demands with Pois-

14



son or exponential distributions. [GI99] also proposes a quasi-polynomial approx-

imation scheme for Bernoulli-distributed demands. [WMZ11] proposes a method

that first calculates a total equivalent demand for all VMs that are hosted by the

same server, and then compares the total equivalent demand with the server’s ca-

pacity to determine whether a placement is valid. In [WMZ11], bandwidth demands

are considered to follow Poisson distribution

2.3 Bandwidth Provisioning in DCNs

The current main approach of bandwidth provisioning on switches is to emulate

PIFO OQ switches. In a PIFO OQ switch, all packets are buffered at output ports,

either on a per input port or per flow basis. Each output port runs a fair queuing

algorithm [DKS89] to emulate the ideal GPS model and provide guaranteed band-

width for each output queue. OQ switches achieve the optimal performance but are

not practical because they need speedup of N [PY09]. Based on the granularity

level, existing bandwidth provisioning solutions can be divided into two categories,

port-level and flow-level.

2.3.1 Port-level Bandwidth Provisioning

The following solutions provide port-level bandwidth provisioning. [MRS03] shows

that a buffered crossbar switch with speedup of two satisfying non-negative slackness

insertion, lowest-time-to-live blocking, and lowest-time-to-live fabric scheduling can

exactly emulate a PIFO OQ switch. [MH03] proposes the Modified Current Arrival

First - Lowest Time To Leave First scheduling algorithm, for a one-cell buffered

crossbar switch with speedup of two to emulate a PIFO OQ switch without time

stamps. [CIM05] shows that with speedup of two, a buffered crossbar switch can

mimic a PIFO OQ switch with the restriction that the cells of an input-output pair

depart in the same order as they arrive. [HSG+08] proposes the rate based Smooth

15



Multiplexing algorithm for a CICQ switch with a two-cell buffered crossbar, and

shows that the algorithm provides bandwidth and throughput guarantees. [Tur09]

presents the Packet Group by Virtual Output Queue and Packet Least Occupied

Output First scheduling algorithms for buffered crossbar switches, and shows that

they can emulate PIFO OQ switches with speedup of two or more. [SZ98] proposes

the Joined Preferred Matching algorithm for CIOQ switches, and proves that the

algorithm can emulate a general class of OQ service disciplines. [AHK10] proposes

frame-based schedulers for Combined Input Output Queued (CIOQ) switches han-

dling variable length packets to mimic an ideal OQ switch with bounded delay, and

demonstrates a trade-off between the switch speedup and the relative queuing delay.

[WYHL09] considers high-speed packet switches with optical fabrics, and proposes

scheduling algorithms to provide performance guaranteed switching. [KHK09] in-

troduces the Crosspoint Queued switch with large crosspoint buffers and no input

queues, and proposes scheduling algorithms for it to emulate an ideal OQ switch.

2.3.2 Flow-level Bandwidth Provisioning

The following solutions provide flow-level bandwidth provisioning. [CIM05] shows

that in order for a buffered crossbar switch with speedup of two to provide flow-level

bandwidth provisioning, a separate crosspoint buffer must be available for each flow.

Alternatively, the switch structure must first be modified with a more complicated

buffering scheme (similar to that of OQ switches) and then a total of N3 crosspoint

buffers must be provided. Unfortunately, both schemes greatly increase the total

number of crosspoint buffers and are not scalable. Another option is to increase

the speedup of the crossbar to three, which will drop the maximum throughput

of the switch by one third. The additional speedup of one is used to eliminate the

crosspoint blocking. [CGMP99] proposes several algorithms for CIOQ switches with

16



speedup of two to emulate PIFO OQ switches. The Critical Cell First (CCF) algo-

rithm needs N2 iterations and global information. The Delay Till Critical (DTC)

algorithm reduces the iteration number to N , but still needs global information. On

the other hand, the Group by Virtual Output Queue (GBVOQ) algorithm does not

need global information, but its iteration number is unbounded. [PY08] presents a

scheme to achieve trade-offs between those in [CIM05] and [CGMP99]. It conducts

distributed scheduling in the average case, but still needs speedup of two and N

iterations in the worst case.

2.4 Energy Conservation Optimization

Existing energy saving solutions for DCNs can be divided into two broad categories:

network-side optimization and host-side optimization. All solutions only focus on

saving DCN energy from the perspective of their own side. As a result, the energy

consumption of the other side of the DCN may increase significantly.

2.4.1 Network-Side Optimization

ElasticTree [HSM+10] proposes a DCN-wide power efficiency controller. The con-

troller finds switch groups and flow routing paths to satisfy all of the network service

requirements and minimize the overall power consumption. In order to improve the

robustness of the DCN after the network optimization, ElasticTree leaves certain

safety margin for each network link. It also builds a prototype to demonstrate the

feasibility and scalability of the power efficiency controller. To save energy in wide

area networks, GreeTE [ZYLZ10] proposes a flow routing path management scheme

which utilizes the least number of switches to meet the performance demands, such

as bandwidth and packet delay. When the flows are moved onto fewer numbers of

switches, those idle switches are then powered off to save energy. [FSR10] studies

the energy efficiency problem inside the bundle of links which usually interconnects

17



core layer switches. The link bundles are designed to provide high bandwidth ca-

pacity or to provide redundant routing path options. Based on the network traffic

conditions, [FSR10] proposed a optimization scheme that reorganizes the flow routes

and consolidates flows onto fewer number of links. Then [FSR10] shuts down the

idle links and their associate line cards to save energy.

2.4.2 Host-Side Optimization

On the host side, the major energy saving approach is to increase the server uti-

lization by consolidating VMs onto less number of physical servers. Thus those idle

servers can be powered off to save energy. The VM consolidation is usually carried

out by VM placement [MPZ10] [WMZ11] and VM live migration [CFH+05]. VM

placement calculates the optimum VM locations that have the highest overall ener-

gy efficiency, and VM live migration moves the VMs to their new locations without

interrupting their services. [MPZ10] identifies large traffic flows and then localize

them to lower layer switches so that the switches on higher layers of the network

may have less load and thus less energy consumption. In addition, [MPZ10] powers

off idle switches and servers to further reduce the energy consumption. [WMZ11]

shows that because of the burst characteristic of the network traffics, the VM place-

ment problem in DCN can be modeled as stochastic bin packing problem. [WMZ11]

proves the NP-hardness of the problem and proposes an approximation algorithm

to find the placement result in polynomial time. Idle servers are shut down to save

energy. Another approach to save energy on the host side for DCNs is to improve the

hosts energy proportionality. PowerNap[MGW09] proposes a server energy saving

scheme which quickly lowers the servers power when its traffic is low.

18



CHAPTER 3

PARALLEL PACKET SWITCH WITHOUT

SEGMENTATION-AND-REASSEMBLY

This chapter investigates the challege of the DCN network capacity, to make it

meet the ever increasing demands for more bandwidth at DCN’s core switches and

routers. We study the parallel packet switch (PPS) architecture, which combines

multiple parallel switching fabrics and provide huge aggregate bandwidth. Most

existing PPSs handle only fixed length packets, also called cells, mainly because

traditional switching fabrics can process only cells. Since packets in the data cen-

ters are of variable length, existing PPSs need segmentation-and-reassembly (SAR)

to process such packets, which will introduce padding bits and waste precious band-

width. To tackle this bandwidth waste issue, we propose a PPS to directly handle

variable-length packets without SAR.

First, We present a simplified 1 × 1 variable-length PPS (vPPS). We design

the packet distribution and collection algorithms, and show that input and output

conversion buffers are bounded by 2L, where L is the maximum packet length. Next,

we present a general N ×N vPPS, and propose a corresponding packet scheduling

algorithm. vPPS controls each packet’s in- and out-queue time, and the in- and

out-queue orders, so that every packet can be forwarded to its destination output

port within a guaranteed maximum time. We prove that vPPS can emulate a

first-in-first-out (FIFO) output queued (OQ) switch with speedup of two and with

small, bounded extra packet buffers. In other words, vPPS achieves full combined

switching speed with low hardware cost.

19



3.1 Introduction

With the booming of broadband multimedia applications, there is an ever increasing

demand for more bandwidth at core routers. However, traditional single switching

fabric based switches are more and more difficult to meet this bandwidth demand

both technically and financially. A popular solution to this challenge is the PPS

[IM03], which combines several lower-speed switching fabrics or center stage switches

to provide huge aggregate bandwidth.

In Chapter 2, we have describe several exiting PPS designs. However, all of them

are based on the assumption that packets are segmented into fixed length cells at

the input and then reassembled back at the output. This SAR [McK99] process

simplifies the switch design [MSS02] [LK10], but may significantly affect the switch

performance [Tur09].

Recent advances in switching techniques have made it possible to directly process

variable-length packets without SAR [Tur09]. Variable-length packet switches (or

packet switches for short) have some unique advantages. First, packet switches can

better utilize available bandwidth and achieve higher throughput. Cell switches

may waste significant bandwidth on extra traffic including cell overheads and cell

padding. In contrast, packet switches do not have such bandwidth waste. Second,

since there is no segmentation and reassembly in packet switches, packets have

shorter queuing delay than in cell switches. Therefore, packet switches reduce the

latency that a packet experiences. Finally, no extra buffer space is needed at the

input port or output port to segment and reassemble packets, which lowers hardware

cost.

The goal of this chapter is to extend the packet switch design from single-fabric

switches to PPSs, so that PPSs can utilize the advantages and achieve better perfor-

mance with lower cost. Although there are a few studies on packet based PPSs, they

20



Demultiplexer
Input Conversion Buffer

(ICB)

1 x 1 OQ Center Stage Switch (CSS)

Multiplexer
Output Conversion Buffer

(OCB)

R R

R R

r r

K CSSs

Figure 3.1: 1× 1 Variable-Length Parallel Packet Switch

are not able to process arbitrary variable-length packets. [ZXZ05] handles variable-

length packets by sending logical cells that belong to the same packet through the

same switching plane. Although less overhead is needed, extra padding bits, which

lower the overall throughput, are still required when the packet size is smaller than

the cell size. [SXL07] proposes the Flow-Mapping PPS (FM-PPS) with flow level

load balancing. It guarantees the packet order of each micro-flow and thus elimi-

nates the costly resequencing. However, FM-PPS works only when packets can be

organized as micro flows and it needs k buffers at each demultiplexer which increases

hardware cost.

3.2 1× 1 Variable-Length Parallel Packet Switch

Before presenting the general vPPS, we first describe a simplified vPPS with one

input and one output, which will be the basis to design the scheduling algorithms

for the general case.

3.2.1 Switch Structure

A 1× 1 vPPS, as shown in Figure 3.1, consists of a demultiplexer with bandwidth

R, K 1×1 CSSs each with bandwidth r = R/K, and a multiplexer with bandwidth

21



R. The demultiplexer distributes variable-length packets to CSSs, from where the

packets are collected by the multiplexer. Since a 1 × 1 switch needs no switching,

the CSS in this case is simply a queue. The demultiplexer and the CSS have dif-

ferent bandwidth, and therefore each CSS needs an ICB to accommodate the speed

difference. When the demultiplexer dispatches a packet to a CSS, it first sends the

packet to the corresponding ICB, from where it will be retrieved by the CSS. If

there are multiple packets in the ICB, they are stored as a first-in-first-out queue.

Similarly, each CSS also has an OCB for the speed difference with the multiplexer.

Note that the demultiplexer has no high-speed buffer to buffer the arriving packets,

and similarly the multiplexer has no high-speed buffer to store the outgoing packets.

We are interested in the scheduling policies and conversion buffer sizes for the

demultiplexer and multiplexer to be work conserving, i.e. keeping busy if there are

packets to transmit. This seems trivial for fixed length cells, which can be easily

accomplished with a round-robin packet distribution policy and L buffer space at

each ICB and OCB, where L is the maximum packet length. However, with variable

length packets, the problem becomes more challenging, which we will illustrate using

the following example. Consider a 1×1 vPPS with two CSSs. The bandwidth of the

demultiplexer and multiplexer is L/s, and that of the CSS is L/2s. Each ICB has L

buffer space. Three packets A,B, and C with length of L, 2L/3, and L, respectively,

arrive at the demultiplexer back to back, as shown in Figure 3.2(a). Without loss

of generality, assume that at time 0s the demultiplexer start dispatching the first

packet A to the first ICB, and the dispatch will finish at 1s. Next, during [1s, 5/3s],

the demultiplexer dispatches the second packet B to the second ICB. Note that the

first and second ICBs will not become empty earlier than 2s and 7/3s, respectively.

However, as shown in Figure 3.2(b), the demultiplexer finished dispatching packet

B and should start dispatching the third one C at 5/3s. Therefore, although the

22



B

ABC

ICB 1

AC

L/s L/s

L/s

L/s L/s

L/s

L/2s

L/2s

(a) Time 0s: packet A arrives (b) Time 5/3s: packet C arrives

ICB 2

ICB 1

ICB 2
L/2s

L/2s

Figure 3.2: A 1× 1 vPPS with ICBs of size L is not work conserving.

total bandwidth of the two CSSs is the same as that of the demultiplexer, but the

demultiplexer cannot be work conserving with L ICB space.

In the rest of this section, we propose two scheduling policies for packet distri-

bution and collection, and analyze the conversion buffer size bounds.

3.2.2 Policy A: ICB based Packet Distribution

This policy considers only packet distribution at the demultiplexer, and is based on

the shortest queue first (SQF) algorithm. Specifically, when a new packet arrives, the

demultiplexer checks the queue lengths of all the K ICBs, and selects the shortest

queue to send the packet. If multiple ICBs have the same shortest length, the

demultiplexer selects the one with the smallest index.

We will first analyze the characteristic of ICBs and prove later that, with Policy

A, the size of any ICB is bounded by a small value, i.e. 2L, while the demultiplexer

is guaranteed to be work conserving. Denote the queue length of the ith ICB as

B̂i. (Since we always consider the values of different variables at the same time

point, we omit the time parameter in the notation for simplicity.) Due to the space

limitation, we only show the proofs of part of the lemmas and theorems.

Lemma 1 The difference of queue lengths between any two ICBs is less than or

equal to L, i.e.

|B̂i − B̂j| ≤ L (3.1)

23



Proof. Assume the queue length difference between any two ICBs could be greater

than L, or B̂i−B̂j > L. Since the length L̂n of the last packet n of the ith ICBs is less

than or equal to largest packet size L, we have (B̂i− L̂n)−B̂j > L− L̂n > L−L = 0.

In other words, when packet n was selecting its CSS, it did not choose the one

with the shortest ICB length and this contradicts the scheduling policy. Hence the

assumption is not possible.

Based on whether all the CSSs are retrieving packets from their ICBs, we define

two statuses. In the partially-busy status, at least one CSS is idle (with empty

ICBs), while in the fully-busy status, all CSSs are busy (without empty ICBs).

Theorem 1 In the partially-busy status, the queue length of any ICB is bounded by

the largest packet length, L, i.e.

B̂i ≤ L (3.2)

Proof. In the partially-busy status, the minimum queue length of ICB equals to zero

when the ICB is idle. Also from Lemma 1 we know that the maximum queue length

difference between two queues are less than or equal to L. Thus the maximum ICB

queue length is less than or equal to L when system is in the partially-busy status.

Lemma 2 In the fully-busy status, the total length of all ICBs is less than or equal

to (K − 1)L, i.e.

K∑
i=1

B̂i ≤ (K − 1)L (3.3)

Lemma 3 In the fully-busy status, the maximum value of the minimum ICB queue

length is less than or equal to (1− 1
K

)L, i.e.

min{B̂i} ≤ (1− 1

K
)L (3.4)

24



Theorem 2 In the fully-busy status, the queue length of any ICB is bounded by two

times of the largest packet length, 2L, i.e.

B̂i ≤ 2L (3.5)

Proof. Theorem 2 can be proved by Lemma 1 and 3.

Theorem 3 For a 1× 1 vPPS adopting the SQF scheduling policy, the ICB queue

length is bounded by 2L, i.e.

B̂i ≤ 2L (3.6)

Proof. By Theorem 1 and 2, Theorem 3 is proved.

3.2.3 Policy B: OCB based Packet Distribution and Retrieval

We now present the second policy for the 1 × 1 vPPS, which controls both the

packet distribution and collection schedules, as well as the switching at CSS. First,

we describe the detail processes and parameter definitions of each phase, namely

Packet Distribution, Switching at CSSs and Packet Collection. Then we show by

lemmas and theorems that by employing Policy B, the 1× 1 vPPS emulates FIFO

OQ switch with small bounded OCB size.

Packet Distribution

When packet n arrives, the demultiplexer distributes packets to different CSSs. The

basic idea is that the demultiplexer selects the CSS i with the earliest OCB Entry

Start time ̂OESn,i. If multiple CSSs have the same earliest OCB entry start time,

the one with the smallest index will be selected.

The calculation of ̂OESn,i, which represents packet n’s entry start time of the

ith OCB, is different for different packet categories. To simplify the analysis, we

25



use a fixed time T̂ to represent the maximum delay from the input port to the CSS

output queue. Denote the Input port Arrival time of packet n as ÎAn and its CSS

output queue Arrival time as ĈAn. Then we have ĈAn = ÎAn + T̂ .

For the first K packets, according to the policy, each of them selects the CSS

with an empty OCB and with the same index. When these packets arrive at the

CSS output queues, the OCB entry is available. However, they will not enter OCB

but wait until time X̂, where X̂ = ĈA1 + L
r
. Thus, the first K packets have the

same OCB entry start time, i.e.

̂OES1,1 = ... = ̂OESK,K = X̂ = ĈA1 +
L

r
(3.7)

On the other hand, when a packet after the first K one arrives at the CSS, the

output queue may already have packets. Packet n will not start entering OCB until

the last packet in the CSS output queue finishes its OCB entry. Denote the last

packet in CSS i as packet m and its OCB Entry Finish time as ̂OEFm,i. Then

̂OESn,i is calculated as

̂OESn,i = max(ĈAn, ̂OEFm,i);∀n > K (3.8)

Then the demultiplexer selects the CSS which has the smallest OCB entry start

time as the destination CSS for packet n.

Switching at CSSs

As mentioned before, the CSS of 1× 1 PPS can be treated as a queue. Thus, when

packet n arrives at the CSS, it will stay in the output queue until the OCB entry

start time comes and then start to enter the OCB.

26



Packet Collection

Finally, the multiplexer collects packets from OCBs. Specifically, the multiplexer

collects packets one by one according to their arrival order to the input port. Recall

that the first packet enters the OCB at time X̂. The multiplexer will start to collect

the first packet at time D̂, where D̂ = X̂ + L
r
. Denote the OCB Departure Start

time of packet n from the ith OCB as ̂ODSn,i. Therefore,

̂ODS1,i = D̂ = X̂ +
L

r
(3.9)

Lemma 4 With Policy B, at any time after the OCB entry start time of the first

packet, all OCB entries are busy.

Lemma 5 Packet n is already in the OCB when the multiplexer starts to collect it.

In other words, packet n’s OCB departure start time ̂ODSn,i is greater than or equal

to its OCB entry finish time ̂OEFn,i, i.e.

̂ODSn,i ≥ ̂OEFn,i (3.10)

Proof. Since the multiplexer collects packets by their arriving order at rate R, we

can calculate the ̂ODSn,i as,

̂ODSn,i = ̂ODS1,i +

∑n−1
x=1 Lx
R

(3.11)

By (3.9), we have

̂ODSn,i = X̂ +
L

r
+

∑n−1
x=1 Lx
R

(3.12)

While

̂OEFn,i = ̂OESn,i +
Ln
r
≤ ̂OESn,i +

L

r
(3.13)

27



The OCB entry start time ̂OESn,i of packet n is maximized when all K CSSs has

the same OCB entry start time. Since all OCBs start the packet entry at the same

time and are always busy, the maximal ̂OESn,i is calculated by

̂OESn,i ≤ ̂OES1,1 +

∑n−1
x=1 Lx
Kr

(3.14)

By (3.7) and (3.14), (3.13) becomes

̂OEFn,i ≤ X̂ +

∑n−1
x=1 Lx
R

(3.15)

The lemma is proved by subtracting (3.15) from (3.12).

Theorem 4 The 1× 1 vPPS with Policy B emulates a 1× 1 FIFO OQ switch.

Proof. The multiplexer collects packet one by one by their arriving order. In Lemma

5, we proved that every packet is ready in the OCB when the multiplexer starts

to collect it. In other words, the multiplexer does not wait between two packet

collections. Thus the switch is working conserving. On the other hand, the switch

departure start time (OCB departure start time) of the first packet is bounded.

Thus all packets leave the switch continuously with a bounded delay. Hence, the

1× 1 vPPS with Policy B emulates an FIFO OQ switch.

Theorem 5 With Policy B, the queue length Ĉi of any OCB is bounded by 2L, i.e.

Ĉi ≤ 2L (3.16)

Proof. The queue length of any OCB keeps increasing until the multiplexer collects

packet from it. So when packet n is being collected by the multiplexer, the current

queue length Ĉn,i of the ith OCB equals to the differences between the total packets

arrived Ên,i and the total packets left D̂n,i, i.e.

Ĉn,i = Ên,i − D̂n,i (3.17)

28



In Lemma 4, it is proved that all CSSs send packets to OCB continuously. Thus

when packet n starts to depart from OCB i at time ̂ODSn,i, Ên,i is calculated as

Ên,i = ( ̂ODSn,i − ̂OES1,1)r =

∑n−1
x=1 Lx
K

+ L

When the nth packet departs from the ith OCB, all of the previous packets entered

the same OCB have already left from the OCB. Thus, D̂n,i should equal to the total

length of all the previous packets in the same OCB, P̂n,i. Since the OCB entry is

always busy. P̂n,i is minimized when the OCB enter time of packet n is minimized.

In this case, the output queue length of the ith CSS is L shorter than the queue

lengths of other CSS. Then we have

D̂n,i = P̂n,i ≥
∑n−1
x=1 Lx − (K − 1)L

K
(3.18)

Thus, by (3.18) and (3.18)

Ĉn,i = Ên,i − D̂n,i = (2− 1

K
)L ≤ 2L (3.19)

Hence, the queue length of any OCB i is bounded by 2L.

3.3 General Variable-Length Parallel Packet Switch

In this section, we present the general vPPS. We first describe the switch architec-

ture, scheduling algorithms and parameter definitions. Then, we show by analysis

that vPPS can emulate an FIFO OQ switch with speedup of 2.

3.3.1 Switch Architecture

As shown in Figure 3.3, an N×N vPPS consists of N demultiplexers, 2K−1 CSSs,

and N multiplexers. The vPPS has bandwidth of R, and each CSS has bandwidth

r, where r = R/K. Each demultiplexer acting as an input of the vPPS, distributes

arriving packets to the CSSs. The packets are then transmitted through the C-

SSs, and finally collected by multiplexers, which act as outputs of vPPS. Similar

29



Demultiplexer ICB N x N OQ CSS MultiplexerOCB

R

R

R R

R

R

RrrR

N Inputs N Outputs

2K-1 CSSs

Figure 3.3: General Variable Length Parallel Packet Switch

with 1 × 1 vPPS, each input (output) of the CSS has an ICB (OCB) accommo-

date the bandwidth difference with the demultiplexer (multiplexer). Note that the

demultiplexers and multiplexers do not have high speed buffers.

3.3.2 Scheduling Algorithms

The demultiplexers and multiplexers work as follows.

Packet Distribution

In general, the packet distribution in the vPPS can be divided into two stages,

and each stage uses a policy similar to Policy A and Policy B of the 1 × 1 vPPS,

respectively. In the first stage, the demultiplexer chooses K candidates out of all

2K − 1 CSSs based on their ICB length. Specifically, when packet n arrives, the

demultiplexer checks the ICB status of each CSS and then selects the K CSSs with

the shortest ICB queue length as candidates. In the second stage, the demultiplexer

chooses the final CSS from the K candidates based on their OCB entry start time.

To be specific, the demultiplexer selects the CSS i with the earliest OCB Entry

Start time OESn,i. If multiple CSSs has the same earliest OCB entry start time,

the one with the smallest index will be selected.

30



The vPPS also calculates the OESn,i differently for different packet categories.

Similarly, we use a fixed time T to represent the maximum delay from the input

port to the CSS output queue. Denote the Input port Arrival time of packet n as

IAn and its CSS output queue Arrival time as CAn. Then we have CAn = IAn+T .

For the first K packets, each of them selects the CSS with an empty output

queue and with the same index. For example, packet 1 will select CSS1. When

these packets arrive at the CSS output queue, the OCB entry is available. However,

they will not enter OCB until time X, where X = CA1 + L
r
. Thus, the first K

packets have the same OCB entry start time, i.e.

OES1,1 = ... = OESK,K = X = CA1 +
L

r
(3.20)

On the other hand, for packets after the first K ones, they may have to wait to

enter the OCB until the last packet in the same CSS output queue finishes its OCB

entry. Denote the last packet in CSS i as packet m and its OCB Entry Finish time

as OEFm,i. The OCB entry start time of packet n is calculated as

OESn,i = max(CAn, OEFm,i),∀n > K (3.21)

Then the demultiplexer selects the CSS which has the smallest OCB entry start

time as the destination CSS for packet n.

Switching at CSSs

For simplicity, we assume all the CSSs are output queued switches. Therefore, after

a packet arrives at the CSS, it will stay in the output queue until the OCB entry

start time comes and then start to enter the OCB.

Packet Collection

The multiplexer collects packets one by one according to their arrival order at the

input port. Recall that the first packet enters the OCB at time X. The multiplexer

31



will start to collect the first packet at time D, where D = X + L
r
. Denote the OCB

Departure Start time of packet n from the ith OCB as ODSn,i. Therefore,

ODS1,i = D = X +
L

r
(3.22)

3.3.3 Performance Analysis

Theorem 6 In the vPPS, the queue length Bi of any ICB is bounded by 2L, i.e.

Bi ≤ 2L (3.23)

Proof. Recall that in the first stage of the packet distribution policy, all 2K − 1

CSSs will be divided in two groups, one with K−1 CSSs and another with K CSSs.

Denote the former as Group 1 and the latter as Group 2. In the second stage, one

of the CSS i in Group 2 will be chosen as the final CSS of the arrival packet. From

the policy, we know that the ICB queue length of CSS i is less than or equal to

the queue length of any other CSSs in Group 1. Then if we consider CSS i and all

K − 1 CSSs in Group 1 together as a new Group 3, we find that the ICB queue

length of CSS i is the shortest among the all K CSSs in Group 3. In other words,

the CSS selection in vPPS can be considered as selecting the CSS with the shortest

ICB length among K selected CSSs. Thus by Theorem 3, we can prove that the

queue length of any CSS in Group 3 is bounded by 2L. Since the CSS in Group 3

has the largest ICB queue length, the ICB queue length of CSSs in both Group 1

and Group 2 is bounded by 2L.

Lemma 6 In the vPPS, packet n is already in the OCB when the multiplexer starts

to collect it. In other words, packet n’s OCB departure start time ODSn,i is greater

than or equal to its OCB entry finish time OEFn,i, i.e.

ODSn,i ≥ OEFn,i (3.24)

Proof. Lemma 6 can be proved by using the similar method in Lemma 5.

32



Theorem 7 The vPPS can emulate an FIFO OQ switch with speedup of 2.

Proof. Similar to the proof of Theorem 4, the FIFO OQ switch emulation can be

proved by Lemma 6. The total bandwidth of the 2K−1 CSSs is (2−1/K)R, which

indicates speedup of 2.

Theorem 8 In the vPPS, the queue length Ci of any OCB i is bounded by 2L, i.e.

Ci ≤ 2L (3.25)

Proof. The queue length of any OCB keeps increasing until the multiplexer collects

packet from it. In other words, Ci may reach its maximum only at the time when

packet n departs from the OCB, i.e. at ODSn,i.

It is observed that, by the time ODSn,i, all the packets that have entered OCB

i prior to packet n have already left. Thus at this moment, the OCB length Cn,i

should equal to the total amount of packets that entered OCB i during OESn,i to

ODSn,i. And this total amount is maximized if the ith OCB entry keeps busy during

OESn,i to ODSn,i, i.e.

Cn,i ≤ (ODSn,i −OESn,i)r (3.26)

By (3.20), (3.21) and (3.22), we have

Cn,i ≤ (ODSn,i − CAn)r = 2L

Hence, the queue length of any OCB i is bounded by 2L.

3.4 Summary

In this chapter, we study the PPS architecture which handles variable-length packets

directly without SAR. We first describe a 1×1 variable-length PPS. Two scheduling

policies are presented. With the first policy, it is proved that input conversion

33



buffers of size 2L are sufficient. With the second policy, it is proved that output

conversion buffers are bounded by 2L as well. Next, we present the general N ×N

variable-length PPS. It extends the 1×1 PPS by expanding the switch structure and

combining the two scheduling policies. It is showed that such a PPS can emulate an

FIFO OQ switch, i.e. emulating an FIFO OQ switch with bandwidth R by 2K − 1

center stage switches each with bandwidth r, where r = R/K. Further we prove

that input and output conversion buffers of size 2L are sufficient.

34



CHAPTER 4

EFFICIENT VM PLACEMENT WITH MULTIPLE

DETERMINISTIC AND STOCHASTIC RESOURCES IN DATA

CENTERS

This chapter investigates the virtual machine (VM) placement challenge to maximize

the resource utilizations of the DCN. Existing VM placement algorithms usually

assume that VMs’ demands for resources are deterministic and stable. However, for

certain resources, such as network bandwidth, VMs’ demands are bursty and time

varying, and demonstrate stochastic nature. In this chapter, we propose a Max-Min

Multidimensional Stochastic Bin Packing (M3SBP) algorithm to find the effective

placement results for VMs with multiple deterministic and stochastic resources.

We first formulate VM placement in DCN as Multidimensional Stochastic VM

Placement (MSVP) problem, with the objective to minimize the number of required

servers and at the same time satisfy a predefined resource availability guarantee.

As the MSVP problem is proven NP-hard, we propose the polynomial time M3SBP

algorithm to quickly find solutions. The basic idea of is to maximize the minimum

utilization ratio of all the resources of a server, while satisfying the demands of VMs

for both deterministic and stochastic resources. We also conduct simulations to eval-

uate the performance of M3SBP. The results demonstrate that M3SBP guarantees

the availability requirement for stochastic resources, and M3SBP needs the smallest

number of servers to provide the guarantee among the benchmark algorithms.

4.1 Introduction

VMs are attractive to modern data centers because they may significantly promote

the efficiency and flexibility [BKB07] [HMGW08] [XF11]. However, such an incen-

tive highly relies on a well-designed VM placement scheme [SMLF09] [VT09]. This is

35



because an inefficient placement scheme may result in lower resource utilization and

thus needs more physical servers, which will further lead to not only higher capital

investments on equipment and facilities, but also increased operational expenditures

on energy and labor.

VM placement needs to consider VMs’ demands for various resources. CPU

and memory are traditionally the two major considerations. More recently, due to

the increasing concerns on data center energy [AMW+10] [HSM+10] and emerg-

ing bandwidth intensive applications [BAM10] [KSG+09], VMs’ power consumption

[KZLK10] [KAGS11] and bandwidth requirement are also taken into account when

computing the placement. It has started attracting attention in the research commu-

nity to find optimal VM placement for VMs with multiple resource demands. One

common assumption of the existing works [XF10] [MPZ10] is that, all resources

are deterministic resources for which the demands are stable over time. The place-

ment computing for this type of resource can be simply done by comparing the

VM’s resource demand with the server’s available capacity. We refer VM placement

algorithms handling only deterministic resources as deterministic algorithms.

However, recent studies [BAM10] [CZS+11] [KSG+09] [KRT00] indicate that

VMs’ demands for certain resources are highly bursty, and can be modeled as s-

tochastic processes. In other words, the real demands of these stochastic resources

are fluctuating, and it is difficult to obtain an accurate fixed-value measure. One

such example is network bandwidth, and it is shown [KSG+09] [WMZ11] that band-

width demands of VMs in data centers can be approximated by the normal distribu-

tion. As a result, besides supplying fixed-value deterministic resources requested by

VMs, servers provide an availability guarantee for stochastic resources in the form

of a violation probability threshold, specified in the service level agreements (SLAs).

The threshold gives the worst-case likelihood that a server cannot satisfy the dy-

36



namical demands of a VM for stochastic resources. It may seem straightforward for

deterministic algorithms to handle stochastic resources by estimating an equivalent

fixed-value demand. However, it has been shown in [WMZ11] that this estimation

is not accurate, since the equivalent demand for a stochastic resource of individual

VMs vary under different placement schemes. Such a naive approach may result in

either waste of server resources or violation of servers’ availability guarantee.

4.2 Problem Formulation of Multidimensional Stochastic VM Placement

In this section, we describe the MSVP problem and present the problem formulation.

We consider a scenario in which there are n VMs with m kinds of resources to be

placed into a number of servers. Among the m resources, there are both determin-

istic and stochastic resources. Taking into account the homogeneous architectures

of modern data centers [AFLV08] [GHJ+09], the servers are assumed to have iden-

tical capacities. In order to host VM vi, server s needs to meet all of its resource

demands. For the deterministic resource, this can be simply done by assigning the

same amount of resource as requested. However, the demand of stochastic resource

is time-varying, and it is challenging to calculate an accurate resource allocation.

Thus, for each stochastic resource, a violation probability threshold is defined to

specify the maximum probability that the server’s capacity of this resource is ex-

ceeded. In our scenario, we assume all stochastic resources share the same violation

probability threshold α as in the SLA. Therefore, considering the multidimensional

and stochastic characteristics of VM’s demands, a placement scheme is considered

valid only if it satisfies the following two conditions:

Condition 1) The capacities of the server’s deterministic resources should not be

exceeded by the total amount of demands of all hosted VMs;

37



Condition 2) The probability that the capacities of the server’s stochastic re-

sources are exceeded is no larger than the given violation probability threshold.

Thus, the objective of the MSVP problem becomes that to find a VM placement

scheme, such that the above two conditions are satisfied and the number of required

servers in the network is minimized.

Denote the demand of a deterministic resource p of VM vi as Dp(vi) and server

s’s corresponding capacity as Cp(s). Condition 1 can be represented as follows,

∀p ∈ P,
∑
i∈U

Dp(vi) ≤ Cp(s) (4.1)

where P is the set of all deterministic resources and U is the set of VMs hosted

by s. Assume the demand of stochastic resource q of VM vi independently follows

a normal distribution N(µq(vi), σ
2
q (vi)). An equivalent total demand of all VMs

within the same server for each stochastic resource can be calculated based on each

VM’s distribution and the server’s violation probability threshold α as follows,

∀q ∈ Q,
∑
i∈U

µq(vi) + Φ−1(1− α)
√∑
i∈U

σ2
q (vi) (4.2)

where Q is the set of stochastic resources of vi, U is the set of VMs already placed

in the current server, and Φ−1(1 − α) is the quantile of N(0, 1) at probability α.

Thus, Condition 2 can be quantified by the equivalent total demand as follows,

Quantified Condition 2 : The capacities of each server’s stochastic resources

should not be exceeded by the equivalent total demand of all hosting VMs.

Denote server s’s capacity of stochastic resource q as Cq(s). Then, Condition 2

can be formulated as follows,

∀q ∈ Q,
∑
i∈U

µq(vi) + Φ−1(1− α)
√∑
i∈U

σ2
q (vi) ≤ Cq(s) (4.3)

We define the TCR ratio for each resource of a server to be the ratio between the

total demand of all VMs within the same server and the server’s capacity for this

38



resource. Denote Rp(s) and Rq(s) as the TCRs of deterministic resource p and

stochastic resource q, respectively. Then we have,

∀p ∈ P,Rp(s) =

∑
i∈U Dp(vi)

Cp(s)
(4.4)

∀q ∈ Q,Rq(s) =

∑
i∈U µq(vi) + β

√∑
i∈U σ2

q (vi)

Cq(s)
(4.5)

where β = Φ−1(1− α).

Therefore, by combining (4.1), (4.3), (4.4) and (4.5) , the MSVP problem can

be formulated as follows,

minimize |S|

s.t. ∀p ∈ P, ∀s ∈ S,Rp(s) ≤ 1

∀q ∈ Q,∀s ∈ S,Rq(s) ≤ 1 (4.6)

where S is the set of servers to host the VMs and |S| is the size of S.

We can see that the classic NP-hard multidimensional bin packing problem is a

special case of the MSVP problem, with the standard deviation of the demand of

each stochastic resource set to 0. Thus, MSVP is also an NP-hard problem.

4.3 Max-Min Multidimensional Stochastic Bin Packing (M3SBP) Algorithm

In this section, we present the Max-Min Multidimensional Stochastic Bin Packing

(M3SBP) algorithm that finds an approximation result for the MSVP problem. This

algorithm is inspired by First Fit Decreasing (FFD) [CJGMV98], and Dominant

Resource First (DRF) [GZH+11]. FFD solves the classical bin packing problem, by

first sorting the items in the decreasing order of their sizes and then packing larger

items with higher priorities. DRF tackles the fair resource allocation problem, where

bins with multiple resources are shared by different users. The user’s dominant share

is defined as the maximum share that the user has been allocated of any resource.

39



DRF seeks to maximize the minimum dominant share across all users. Both FFD

and DRF yield higher server utilizations and thus fewer servers than other näıve bin

packing algorithms do.

The basic idea of M3SBP is as follows. For each newly powered-on server (new

server in short), M3SBP finds a set of VMs which can maximize its minimum TCR,

so that the minimum resource utilization of each server is maximized and hence the

total number of servers needed to power on is minimized. M3SBP runs in iterative

rounds, and in each round one VM is selected and placed into the new server. If

there still exist VMs without placement when the new server is full, another server

will be powered on. The iteration repeats until all VMs find their placement.

4.3.1 Algorithm Description

Initially, all VMs are marked as unplaced and added into the unplaced-VM set V .

M3SBP employs the set V and the resource capacities of server s as inputs. The

algorithm runs in iterations, and in each iteration, one VM will be placed into s

and removed from V . M3SBP ends when V is empty and then outputs the mapping

between VMs and servers as the result. Specifically, each iteration of M3SBP can

be further divided into two steps: Candidate Finding and Placement. Pseudo-codes

are shown in Algorithm 1.

Step 1 Candidate Finding: The goal of Step 1 is to find a set of candidate

VMs that can be potentially placed in the new server s. For each VM vi in V ,

M3SBP calculates the TCRs of all resources of s as if vi was placed in s. By (4.4)

and (4.5), the TCRs of deterministic and stochastic resources can be computed by

using following equations, repectively,

∀p ∈ P,Rp(vi, s) =
Dp(vi) +

∑
j∈U Dp(vj)

Cp(s)
(4.7)

40



∀q ∈ Q,Rq(vi, s) =

(µq(vi) +
∑
j∈U µq(vj)) + β

√
σ2
q (vi) +

∑
j∈U σ2

q (vj)

Cq(s)
(4.8)

The minimum and the maximum TCRs, Rmin(vi, s) and Rmax(vi, s), are then de-

rived. If Rmax(vi, s) is no greater than 1, it indicates that vi can be placed in s.

Then, the algorithm records Rmin(vi, s) and adds vi into set V ′ that stores the can-

didate VMs. If V ′ is empty after all VMs are tested, M3SBP powers on another new

server s and repeat Step 1. Otherwise, the algorithm continues with Step 2.

Step 2 Placement: In this step, M3SBP compares the minimum TCR values

of all candidate VMs in V ′ and chooses the VM vF , which has the maximum value,

as the selected VM. Then, M3SBP places vF into server s and adds it into set U .

Finally, M3SBP removes vF from V .

4.3.2 Illustration Example

In this subsection, we give a simple example to illustrate the algorithm. Assume that

each server has identical capacities of memory, CPU, power and network bandwidth,

denoted by Cm, Cc, Cp and Cb, respectively. In this example, their values are set

to be 8 GB, 4 GHz, 1000 W and 1 Gbps. We assume that there are 3 VMs, v1,

v2 and v3, to be placed into the servers. Each VM has deterministic demands

on memory, CPU and power consumption resources, denoted by Dm(vi), Dc(vi)

and Dp(vi), respectively, and has a stochastic demand on the network bandwidth

resource, which follows a normal distribution N(µb(vi), σ
2
b (vi)). Table 4.1 summaries

all demands of the 3 VMs. The violation threshold α is set as 0.01%.

Initially, all VMs are added to unplaced-VM set V and the first server s1 is

powered on. In the first step, Candidate Finding, M3SBP calculates the TCR for

each of the 3 VMs as if the VM was already placed in the server. By (4.7) and (4.8),

we have Rm(v1, s) = 0.625, Rc(v1, s) = 0.25, Rp(v1, s) = 0.225, Rb(v1, s) = 0.208.

41



Algorithm 1 Max-Min Multidimensional Stochastic Bin Packing (M3SBP)

1: procedure M3SBP(V , s)
2: while V 6= Ø do

// Step 1: Candidate Finding
3: for all vi ∈ V do
4: CalculateTCR(vi, s);
5: if Rmax(vi, s) ≤ 1 then
6: Record Rmin(vi, s);
7: Add vi into V ′;
8: end if
9: end for

10: if V ′ = Ø then
11: Power on a new server s;
12: Repeat Step 1 ;
13: end if

// Step 2: Placement
14: R(vF , s)← max{∀vi ∈ V ′, Rmin(vi, s)}
15: Add vF into U ;
16: Remove vF from V ;
17: end while
18: end procedure

19: procedure CalculateTCR(vi, s)
// Deterministic Resources

20: ∀p ∈ P,Rp(vi, s)←
Dp(vi)+

∑
j∈U

Dp(vj)

Cp(s)
;

// Stochastic Resource
21: ∀q ∈ Q,Rq(vi, s)←

22:
(µq(vi)+

∑
j∈U

µq(vj))+β

√
σ2
q (vi)+

∑
j∈U

σ2
q (vj)

Cq(s)
;

// Derive Max and Min TCRs
23: Rmin(vi, s)← min{∀r ∈ {P,Q}, Rr(vi, s)};
24: Rmax(vi, s)← max{∀r ∈ {P,Q}, Rr(vi, s)};
25: end procedure

42



Dm(vi) Dc(vi) N(µb, σ
2
b ) Dp(vi)

v1 5.0 GB 1.0 GHz (200, 22) Mbps 225 W
v2 2.0 GB 1.5 GHz (500, 52) Mbps 300 W
v3 1.0 GB 2.5 GHz (300, 32) Mbps 150 W

Table 4.1: Summary of Resource Demands of 3 VMs

Then the maximum and minimum TCR of v1 can be derived as Rmax(v1, s) = 0.625

and Rmin(v1, s) = 0.208. Since Rmax(v1, s) ≤ 1, the server has enough resource for

v1. Thus v1 is added to the candidate set V ′ and Rmin(v1, s) is recorded. Repeat the

same calculation for v2 and v3, we have Rmax(v2, s) = 0.519, Rmin(v2, s) = 0.25 and

Rmax(v3, s) = 0.625, Rmin(v3, s) = 0.125. Thus both v2 and v3 are added to V ′ and

their Rmin are recorded. Then, in the second step Placement, M3SBP compares the

Rmin(vi, s) of VMs in V ′ and finds v2 with the maximum value. As a result, M3SBP

places v2 into s1 by adding v2 into s1’s set of hosting VMs, U . Repeat the above

two steps for v1 and v3. The final result is that, v1 and v2 are placed in s1, while v3

is placed in s2.

4.3.3 Complexity Analysis

The complexity of the M3SBP algorithm can be calculated in two phases. First, we

count the number of execution times of while loop. Denote the size of V during

while loop’s kth execution as lk. Initially, V contains all VMs. Thus l0 = n, where

n is the total amount of VMs. During each iteration of the while loop, exact one

VM finds its placement and the size of V decreases by one. Thus, after n times of

execution, V will be empty, i.e. ln = 0. Therefore, the execution time of the while

loop is the same as the number of VMs, n. In addition, lk can be calculated by

using the following equation, lk = n− k.

Second, we calculate the complexity inside the while loop. In Candidate Finding

phase, it takes O(logm) time to find the minimum and maximum TCRs for each

43



VM in V , where m is the total number of resources. Since there are lk unplaced VMs

in the kth iteration, it needs a total of O(lk × logm) time to finish the candidate

searching. In the Placement phase, it takes O(log l′k) time to find the maximum

of the minimum TCRs, where l′k denotes the size of candidate VM set V ′ of the

kth while loop iteration. In the worst-case scenario, l′k can be as large as lk. Then

the time complexity of the Placement phase becomes O(log lk). Thus, the time

complexity inside the while loop is

O(lk × logm) +O(log lk) (4.9)

It is showed that l = n− k, and thus (4.9) becomes

O((n− k)× logm) +O(log(n− k)) (4.10)

Since O(n− k) > O(log(n− k)) and typically n >> m, (4.10) can be simplified to

O(n − k). By combining the complexity of inside and outside of the while loop

together, the total time complexity of M3SBP is O(n(n− k)) = O(n2).

4.4 Performance Evaluation

In this section, we present the performance evaluation configuration and results

analysis of the M3SBP algorithm. We have conducted multiple simulations to eval-

uate different aspects of the performance, including the number of used servers, the

guarantee of violation probability threshold and the algorithm effectiveness. Detail

simulation configurations are described in Section 4.4.1. Results and analysis are

shown in Section 4.4.2, Section 4.4.3 and Section 4.4.4.

4.4.1 Simulation Configuration

In the simulations, each VM is assumed to have four types of resource demands:

CPU, memory, power consumption and bandwidth. The first three are determinis-

tic, while the bandwidth demand is stochastic and follows the normal distribution.

44



We employ the resource-Demand to server-Capacity Ratio (DCR) to identify the

demand intensity of each resource. For each VM, we define the resource, which has

the largest DCR value among all resources, as the intensive resource, and define

others as the non-intensive resources. A data center may have VMs with different

resource intensities, such as memory-intensive and CPU-intensive VMs. This kind

of data centers demands the most resources from the multidimensional placemen-

t algorithm. It is because that if all VMs have the same intensive resource, the

placement problem is then reduced to the classical one-dimensional VM placement

problem.

To simulate the mixed-intensity situation, we configure 4 groups of VMs each

with a different intensive resource, and each group contains 1/4 of all VMs. For

each VM, the intensive resource randomly selects its DCR value from a higher

range between 30% to 40%, and other non-intensive resources randomly select their

DCR values from a lower range between 5% to 10%. For the stochastic bandwidth

demand, the selected DCR value represents the ratio between the mean of the band-

width demand and the server capacity. The bandwidth’s standard deviation is set

to be 0.5% of the mean demand by default. This percentage may change later in

different simulations. Servers are assumed to have the same capacity of, 24 GHz (8

cores × 3.0 GHz/core) of CPU, 48 GB of memory, 2000 W of power supply and 1

Gbps of bandwidth. Then we can calculate the demands by multiplying the DCRs

with the server’s capacities. The total number of VMs is set to be 2000 and the

SLA violation probability is set to be 0.01%.

The following example illustrates how resource demands of a Memory-intensive

VM are configured. The memory resource’s DCR is randomly selected between

30% to 40%, assuming 34%. CPU’s and power consumption’s DCR are randomly

selected between 5% to 10%, assuming 6% and 7.5%, respectively. The DCR of

45



!""#

!$"#

!%"#

!&"#

!'"#

%""#

%$"#

%%"#

%&"#

%'"#

(""#

)*# **# **+# ,-./,01# 2/)*# 2/**# 2/**+#
!
"
#
$
%
&
'(
)'
*
%
&
+
%
&,
'

23-14-54#+670-891#:#";(<#9=#,6-1# 23-14-54#+670-891#:#><#9=#,6-1#

,!2?@#

Figure 4.1: Number of servers used by different placement algorithms

bandwidth mean is also randomly selected from the lower range, assuming 5.5%.

The standard deviation is set be 0.5% of the mean demand which in this case

is 5.5% × 0.5% = 0.0275% of server’s bandwidth capacity. Then, from server’s

capacities, we can derive VM’s demands as 48 GB × 34% = 16.32 GB of memory,

24 GHz × 6% = 1.44 GHz of CPU, 2000 W × 7.5% = 150 W of power and 1 Gps

× 5.5% = 55 Mbps mean with 0.275 Mbps standard deviation of bandwidth.

4.4.2 Number of Servers

In this subsection, we present the simulation results on the number of used servers.

We compare M3SBP with other bin packing algorithms, including both determinis-

tic and stochastic algorithms. Deterministic algorithms, which compute placement

only with fixed value demands, includes Next-Fit (NF) [CJGMV98], First-Fit (FF)

[CJGMV98], FFD and Max-Min. NF places the VM into the current server if the

demands of all resources are satisfied, or otherwise starts a new server. FF looks at

all existing bins and places the VM into the lowest numbered server if it fits, or oth-

erwise powers on a new server. FFD employs the same packing strategy as that of

FF, except that, before the placement, FFD sums the DCRs of all resources of each

VM and sorts the VMs in the decreasing order of their DCR summations. Max-Min

46



has identical procedures as those of M3SBP except that it treats the bandwidth as

a deterministic resource and employ the mean bandwidth demand in the placement

computing. Same as Max-Min, all other deterministic algorithms view bandwidth

as a deterministic resource, and also employ the mean bandwidth demand when

computing the placement.

Comparison stochastic algorithms include stochastic NF (S-NF), stochastic FF

(S-FF) and stochastic FFD (S-FFD). These algorithms are modified based on the

classic NF, FF and FFD algorithms, respectively. The modified algorithms calculate

the equivalent TCR for stochastic resources by using the same equation (4.8) as in

M3SBP. We have conducted two sets of simulations. Both of them follow the same

default configurations described in Section 4.4.1, except that each simulation uses a

different standard deviation to mean ratio. The standard deviation represents the

burst level of the VM’s traffic. In the first set, the standard deviation is 0.5% of the

mean, while in the second set the ratio is 1%.

Figure 4.1 illustrates the results. The solid and strip columns show results when

the standard deviation is equal to 0.5% and 1% of the mean, respectively. Comparing

the number of servers used by M3SBP with that of all other stochastic algorithms, we

can see that M3SBP uses the fewest servers in both simulations. Then if we compare

M3SBP with the deterministic algorithms, we can find that M3SBP still uses almost

the least number of servers when VM’s traffic burst level is low. When VM’s traffic is

more bursty, the number of servers used by all stochastic algorithms increase. This is

reasonable since stochastic algorithms take the increasing burst into consideration,

and allocate more server resources for VMs to prevent their network traffic from

exceeding server’s capacity. On the other hand, however, deterministic algorithms

cannot detect the change of VM’s burst level. This brings negative influence on

server availability guarantees which is discussed in detail in Section 4.4.3.

47



!"#

$"#

%!"#

%$"#

&!"#

&$"#

'!"#

'$"#

(!"#

)*# **# **+# ,-./,01# 2/)*# 2/**# 2/**+#!
"
#$
"
%
&'
(
"
)*
+)
,
"
#-
"
#.
)/
0&
1
)2
0*
3'
4
*
%
.)

23-14-54#+670-891#:#!;$"#9<#,6-1# 23-14-54#+670-891#:#%"#9<#,6-1#

,'2=>#

Figure 4.2: Percentage of servers violating the target violation probability threshold

4.4.3 Server Availability Guarantee

In this subsection, we evaluate how well the M3SBP algorithm guarantees the avail-

ability requirement when VMs demand for stochastic resources. Stochastic algo-

rithms compute placement based on the target violation probability threshold. After

the VM placement, we verify whether the availability requirement is guaranteed by

comparing the real traffic with the server’s bandwidth capacity. In each simulated

second, we carry out the following procedures. First, we generate traffic for all VMs

according to their stochastic parameters. Then, we calculate the total traffic amount

for each server by adding up the traffic of all its hosted VMs. Lastly, we compare

the total traffic amount with server’s bandwidth capacity. If the former is larger, we

say that in this second the bandwidth capacity is exceeded and the server’s avail-

ability requirement is violated, and count the second as a violated second. At the

end, the real violation ratio is calculated by dividing the total number of simulated

seconds by the total number of violated seconds. Then, if the real violation ratio is

higher than the target violation probability threshold, we say that this server failed

to guarantee the availability requirement. The target violation probability threshold

is set to 0.01% and the simulation emulates 7 days of network traffic.

48



Following these procedures, we evaluate the placement results of the previous

simulations. Figure 4.2 shows the percentage of servers which have violated the

target violation probability threshold. We can see that all deterministic algorithms

have violated servers. Moreover, when the traffic is more bursty, the number of

violated servers of deterministic algorithms rises up dramatically. Both FF, FFD

and Max-Min have more than 30% of servers violates the target violation probability

threshold when standard deviation is equal to 1% of the mean. In contrast, none of

the stochastic algorithms, including M3SBP, has violated servers. This demonstrates

that M3SBP can guarantee the server’s availability well.

4.4.4 Effectiveness

In this subsection, we evaluate the effectiveness of M3SBP algorithm. Effectiveness

of a placement algorithm is defined as follows: 1) if two algorithms consume the

same number of servers, the more effective one possesses less percentage of server

violations; or 2) if two algorithms all have zero server violation, the more effective

one uses a smaller number of servers.

By applying these definitions to the results in Figure 4.1 and 4.2, we find that

M3SBP is more effective than all other stochastic algorithms. This is because it is

compliant with the second part of the effectiveness definition that M3SBP requires

the fewest number of servers while obtaining zero server violation.

However, it is not straightforward to compare the effectiveness between M3SBP

and deterministic algorithms, which possess a higher violation ratio but need fewer

servers. One solution is to gradually enlarge the demand of stochastic resources

used by deterministic algorithms in placement computing, so that the deterministic

algorithms will use more servers and generate fewer violations.

49



!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

%!!#

%%!#

%'!#

%)!#

%*!#

&!!#

&%!#

&'!#

&)!#

&*!#

'!!#

$# $+!'# $+!*# $+$%# $+$)# $+%# $+%'# $+%*#

!
"#
$"
%
&#
'(
)*
+
",
*
-.
*
-/
""

0
1
2
3
*
-"
#
$"
,
*
-.
*
-/
"

45'(-6*2*5)"7(8#"

,-./01#23#4015014#-406#

/7#89:;8<=#

"#23#><2?9@06#A01501#23#

89:;8<=#

8&ABCD#

9:;"/*-.*-/<"

=!".&#'()*+"/*-.*-/"

89:;8<=D#

9:>"/*-.*-/<"

=?@;!".&#'()*+"/*-.*-/"

Figure 4.3: Number of servers and percentage of violated servers of Max-Min when
gradually increasing the enlargement ratio from 1.00 to 1.30.

In our simulation, we gradually increase the demand of bandwidth resource in the

deterministic Max-Min algorithm from the original value to 1.30 times of it. From

Figure 4.3, we can see that, as expected, when the bandwidth demand increases, the

number of used servers of Max-Min also increases and the percentage of violated

server decreases. When the bandwidth demand is enlarged to 1.24 times of the

original value, Max-Min uses more servers than M3SBP does. However, there are

still 0.26% of servers in Max-Min violates the target violation probability threshold.

Thus, M3SBP finds better placement in shorter amount of time than Max-Min. In

other words, M3SBP is more effective than Max-Min. Due to space limitations,

the results of comparisons between M3SBP and other deterministic algorithms are

omitted. All comparisons lead to the same conclusion. Therefore, we can say that

M3SBP is more effective than all benchmark algorithms.

4.5 Summary

In this chapter, we have studied VM placement in data centers when the VMs have

multiple demands for various resources and some of them are stochastic resources.

50



We formulate the Multidimensional Stochastic VM Placement (MSVP) problem.

Because MSVP is NP-hard, we propose a fast algorithm named Max-Min Multi-

dimensional Stochastic Bin Packing (M3SBP), to calculate the VM placement for

large scale data centers. Numerical simulations are conducted to evaluate M3SBP’s

performance. In the simulations, each VM requests four types of resources, CPU,

memory, power consumption and bandwidth. Among those resources, the first three

are deterministic while bandwidth is stochastic, and we employ the normal distri-

bution to model the bandwidth demand. The results show that M3SBP uses fewer

servers than other benchmark algorithms, while guaranteeing the server’s availabil-

ity requirement. In addition, the results also demonstrate that M3SBP is more

effective in finding the desired placement result than other benchmark algorithms.

51



CHAPTER 5

OPENFLOW BASED FLOW-LEVEL BANDWIDTH PROVISIONING

FOR CICQ SWITCHES

This chapter investigates the flow level bandwidth provisioning challenge to effec-

tively isolate traffic of different VMs hosted by the same server. Existing flow-level

bandwidth provisioning solutions suffer from a number of drawbacks, including high

implementation complexity, poor performance guarantees, and inefficiency to pro-

cess variable length packets. In this chapter, we propose the Flow-level Band-

width Provisioning (FBP) algorithm for Combined Input Crosspoint Queued (CIC-

Q) switches, which reduces the switch scheduling problem to multiple instances of

fair queuing problems and provides guaranteed bandwidth to each flow in the DCN.

FBP can closely emulate the ideal Generalized Processing Sharing model, and

accurately guarantee the provisioned bandwidth. We also implement FBP in the

OpenFlow software switch to obtain realistic performance data by a prototype.

Leveraging the capability of OpenFlow to define and manipulate flows, we exper-

imentally demonstrate a practical flow-level bandwidth provisioning solution. In

addition, we conduct extensive simulations and experiments to evaluate the design.

The simulation data verify the correctness of the analytical results, and show that

FBP achieves tight performance guarantees. The experiment results demonstrate

that our OpenFlow based prototype can conveniently and accurately provision band-

width at the flow level.

5.1 Introduction

Bandwidth provisioning at the flow level is necessary, as it differentiates traffic at

sufficiently fine granularity [GKP+08]. It is particularly important for virtualization

based data centers. In such an environment, VMs reside in a single physical server,

52



and their traffic shares the same physical network adapter and is correspondingly

fed into the same switch port. Flow-level bandwidth provisioning is able to iso-

late traffic of different VMs and make the shared underlying network infrastructure

transparent to the VMs. The recently proposed Virtual Ethernet Port Aggregator

(VEPA) protocol [VEP] off-loads all switching activities from hypervisor-based vir-

tual switches to actual physical switches. As can be seen, VEPA requires flow-level

bandwidth provisioning on switches to support traffic isolation between VMs.

Existing algorithms [CIM05] [CGMP99] [PY08] achieve flow-level bandwidth

provisioning by emulating PIFO OQ switches, but they suffer from a number of

drawbacks. First, they have high hardware complexity and time complexity. Specif-

ically, they require a crossbar with speedup of at least two, i.e. the crossbar having

twice bandwidth as that of the input port or output port, and they may need large

expensive on-chip memories for the crossbar. In addition, they run in a centralized

mode with up to N iterations for an N ×N switch, or in other words the schedul-

ing time increases proportionally with the switch size. Second, they cannot achieve

constant service guarantees. Constant service guarantees mean that for any flow,

the difference between its service amount in a specific algorithm and in the ideal

Generalized Processing Sharing (GPS) [PG93] model is bounded by constants, i.e.

the equations in Theorem 1 of [BZ96]. The reason is that Worst-case Fair Weighted

Fair Queueing (WF2Q) (including its variants) [BZ96], the only known fair queu-

ing algorithm to achieve constant service guarantees, does not use a PIFO queuing

policy [IM03], and hence the PIFO OQ switch emulation approach does not work.

Third, although there have been switch designs [SPK08] in the literature to directly

handle variable length packets, the existing flow-level bandwidth provisioning algo-

rithms can only handle fixed length cells. The SAR process may waste bandwidth

due to padding bits [Tur09].

53



In this chapter, we study the flow-level bandwidth provisioning problem in the

OpenFlow and CICQ context. Our objective is twofold: to design an efficient flow-

level bandwidth provisioning algorithm with constant service guarantees, and to

experimentally demonstrate a practical flow-level bandwidth provisioning solution

based on the OpenFlow protocol. CICQ switches are special crossbar switches with

an on-chip buffer at each crosspoint, which is made available by recent development

in VLSI technology [Kor06] [PKC07], and thus they are also called buffered crossbar

switches. We consider CICQ switches because the crosspoint buffers decouple input

ports and output ports, and greatly simplify the scheduling process.

OpenFlow [MSA+06] is an open protocol that gives access to the forwarding

plane of switches and routers, so that users can control their traffic in the network.

It has been deployed in large-scale testbeds like GENI [opea], and considered in

many recent data center designs [MPF+09] [AfRR+10]. OpenFlow provides a rich

set of options to define flows based on a combination of packet header fields, and use

a flow table to allow users to flexibly control their traffic. Bandwidth provisioning

has been recognized as an essential component of OpenFlow, to isolate traffic of

different users or different types [sli]. Bandwidth provisioning is also recognized as

an essential component for OpenFlow [sli]. The current OpenFlow implementation

supports a Hierarchical Token Bucket (HTB) [htb] based framework called slicing,

which is necessary but not sufficient to provide tight performance guarantees [BZ96].

As stated in [sli], slicing is a minimum but not complete QoS scheme. Slicing utilizes

the HTB technique, which is a combination of token bucket traffic shaping and

deficit round robin fair queuing [SV96]. HTB assures only minimal bandwidth, and

cannot accurately guarantee the provisioned bandwidth. In addition, OpenFlow has

a special controller called FlowVisor [flo], which creates slices of network resources,

such as network bandwidth, and provides traffic isolation between different slides.

54



(a) For Switches (b) For Shared Output Links

Figure 5.1: GPS as Ideal Fairness Model

In our OpenFlow based bandwidth provisioning solution, there will be a cen-

tral controller and a number of switches. On the one hand, the controller collects

resource and request information from the switches, allocates bandwidth for flows,

and updates the flow tables of switches to enforce the provisioned bandwidth. On

the other hand, the switches receive flow definition and bandwidth allocation infor-

mation from the controller, and run the proposed switch scheduling algorithm to

guarantee the allocated bandwidth. The focus of this chapter is for the switches to

accurately guarantee the allocated bandwidth of each flow by emulating the ideal

GPS model. In GPS, each flow has a virtual dedicated channel with the allocated

bandwidth, as shown in Figure 5.1(a). Thus, there is no interference between differ-

ent flows, and each flow always receives the exact amount of its allocated bandwidth.

Our goal is to bound the difference between the service amount of any flow in our

algorithm and in GPS by constants, or in other words to achieve constant service

guarantees. A more detailed problem formulation will be presented in Section 5.2.1.

55



5.2 Flow-Level Bandwidth Provisioning for CICQ Switches

In this section, we formulate the flow-level bandwidth provisioning problem, and

present the FBP algorithm for CICQ switches.

5.2.1 Problem Formulation

The considered CICQ switch structure is shown in Figure 5.2. The switch has N

input ports and N output ports. Denote the ith input port as Ini and the jth output

port as Outj. The input ports and output ports are connected by a buffered crossbar

without speedup. In other words, each input port or output port has bandwidth of

R, and so does the crossbar. For flow-level bandwidth provisioning, it is necessary

for input ports to separate the traffic of different flows, i.e. storing incoming packets

on a per flow basis. Denote the kth flow from Ini to Outj as Fijk, and the queue

at Ini to store its packets as Qijk. Besides a queue for each flow, Ini has a virtual

output buffer for each Outj, denoted as Bij, to store the next packet departing from

Ini to Outj. Note that Bij is not a physical buffer, but a pointer pointing to the

head packet of one of the queues from Ini to Outj. Each crosspoint of the crossbar

has a small buffer. Denote the crosspoint buffer connecting Ini and Outj as Xij.

There are no buffers at output ports.

Our objective is to accurately provision bandwidth for each flow by emulating

the ideal GPS model. GPS views flows as fluids of continuous bits, and creates a

virtual dedicated channel for each flow based on its allocated bandwidth, as shown

in Figure 5.1(a). Because GPS is a fluid based system, a flow can smoothly stream

from the input port to the output port without buffering in the middle. We thus

assume that packets in GPS will skip the virtual output buffers and crosspoint

buffers. GPS is also the ideal packet scheduling model of fair queuing algorithms

for shared output links, as shown in Figure 5.1(b).

56



Figure 5.2: Structure of CICQ switches

Assume that a flow Fijk has been allocated a certain amount of bandwidth Rijk.

Use toOijk(0, t) and t̂oOijk(0, t) to represent the numbers of bits transmitted by Fijk

to the output port during interval [0, t] in our algorithm and GPS, respectively. For-

mally, the objective is to bound the difference |toOijk(0, t)−t̂oOijk(0, t)| by constants,

independent of Rijk and t. Note that for feasible bandwidth allocation, no input or

output should have over-subscription, i.e. ∀i,∑j,k Rijk ≤ R, and ∀j,∑i,k Rijk ≤ R.

The feasibility requirement is only for bandwidth allocation. Temporary overload

is allowed for any input port and output port, with overloading packets being tem-

porarily stored in input buffers.

5.2.2 Algorithm Description

The basic idea of the FBP algorithm is to reduce the switch scheduling problem to

three stages of fair queuing, which we call flow scheduling, input scheduling, and

output scheduling, respectively. Flow scheduling selects a packet from one of the

flow queues Qijk from Ini to Outj, and sends it to the virtual output buffer Bij.

57



Input scheduling selects a packet from one of the N virtual output buffers Bij of Ini,

and sends it to the corresponding crosspoint buffer Xij. Output scheduling selects a

packet from one of the N crosspoint buffers Xij of Outj, and sends it to the output

port. The detailed description of each scheduling stage is as follows.

Flow Scheduling

Flow scheduling utilizes the WF2Q [BZ96] fair queuing algorithm to multiplex d-

ifferent flows of the same input-output pair as a single logical flow, to simplify

input scheduling. For easy description, denote the nth packet of Fijk as P n
ijk. Flow

scheduling calculates two time stamps for each packet p: virtual flow start time

F̂S(p) and finish time F̂F (p). They are the departure time of the first bit and last

bit of p in GPS, and are calculated as F̂S(P n
ijk) = max(A(P n

ijk), F̂F (P n−1
ijk )) and

F̂F (P n
ijk) = F̂S(P n

ijk) + L(P n
ijk)/Rijk, where A(p) is the arrival time of p, and L(p)

is the packet length.

The first step of flow scheduling identifies eligible packets. A packet is eligible

for flow scheduling if it has started transmission in GPS. Specifically, a packet p is

eligible at time t if its virtual flow start time is less than or equal to t, i.e. F̂S(p) ≤ t.

The second step selects among eligible packets the one p with the smallest virtual

flow finish time, i.e. ∀p′, F̂ S(p′) ≤ t → F̂F (p′) ≥ F̂F (p). The selected packet

will be sent to the corresponding virtual output buffer Bij, to participate in input

scheduling. If there are no eligible packets, flow scheduling will wait until the next

earliest virtual flow start time. Additionally, we define two time stamps for p: actual

flow start time FS(p) and finish time FF (p), to represent the actual departure time

of its first bit and last bit from Qijk in flow scheduling. Flow scheduling multiplexes

all flows from Ini to Outj as a logical flow Fij, which has bandwidth Rij =
∑
k Rijk.

Thus, the last bit of p will leave Qijk at FF (p) = FS(p) + L(p)/Rij.

58



Note that flow scheduling is only a logical operation of the input port buffer to

determine the sequence of packets to participate in input scheduling. There is no

actual packet transmission for flow scheduling, because the packet is in the input

buffer both before and after flow scheduling.

Input Scheduling

Input scheduling uses WF2Q to multiplex the logical flows Fij of the same input Ini

to share the bandwidth to the crosspoint buffers. Input scheduling also calculates

two time stamps for each packet p: virtual input start time ÎS(p) and finish time

ÎF (p), which are equal to the actual flow start and finish time, respectively, i.e.

ÎS(p) = FS(p) and ÎF (p) = FF (p). Similar as flow scheduling, the first step of

input scheduling identifies eligible packets whose virtual input start time is no later

than the current scheduling time. The second step finds among eligible packets

the one with the smallest virtual input finish time. The selected packet is then

sent from the virtual output buffer to the crosspoint buffer. Additionally, we define

the actual input start time IS(p) and finish time IF (p) to represent the time that

the first bit and last bit of p leave Bij in input scheduling, respectively. We have

IF (p) = IS(p) + L(p)/R, since the bandwidth of the crossbar is R.

Output Scheduling

Output scheduling utilizes the WFQ [PG93] fair queuing algorithm to allow the

crosspoint buffers of the same output to share the bandwidth to the output link.

We can use WFQ instead of WF2Q for output scheduling because input scheduling

has restricted admission of packets into the crosspoint buffers. Output scheduling

uses only one time stamp for a packet p: virtual output finish time ÔF (p), which

can be calculated as ÔF (p) = ÎF (p) +Lm/R+Lm/Rij, where Lm is the maximum

packet length. Output scheduling simply retrieves the packet with the smallest

59



virtual output finish time from the crosspoint buffers of an output and send it to the

output link. Additionally, define the actual output start time OS(p) and finish time

OF (p) to represent the actual departure time of the first bit and last bit of p from

Xij. Since the bandwidth of the crossbar is R, we have OF (p) = OS(p) + L(p)/R.

5.3 Performance Analysis

We now analyze the performance of FBP, and will show that it achieves constan-

t service guarantees, tight delay guarantees, and bounded crosspoint buffer sizes.

Since the three scheduling stages of FBP use the well studied WF2Q [BZ96] and

WFQ [PG93] fair queuing algorithms, our analysis will leverage the existing results

for them. Both WF2Q and WFQ schedule packets of multiple flows to emulate the

ideal GPS model, and share some features in common. As indicated in [BZ96] and

[PG93], there is an important property between the virtual departure time F̂(p) of

a packet p in the virtual dedicated channel and the actual departure time F(p) in

the physical multiplexed channel with bandwidth R: F(p) ≤ F̂(p) + Lm/R.

Recall that flow scheduling uses WF2Q to multiplex all the flows from Ini to

Outj, which share bandwidth of Rij, as a logical flow. By the above property, we

have FF (p) ≤ F̂F (p) + Lm/Rij. Input scheduling uses WF2Q to multiplex the

logical flows from Ini to different Outj as an aggregate flow. For input scheduling,

we can view the virtual input finish time ÎF (p)(= FF (p)) as the departure time of

p in the virtual dedicated channel. Since the physical multiplexed channel for input

scheduling, i.e., the channel from the input buffer to the crossbar, has bandwidth of

R, we can obtain IF (p) ≤ ÎF (p) + Lm/R.

Output scheduling uses WFQ to multiplex flows from different crosspoint buffers,

and we show below that ÔF (p) is the departure time of p in the virtual dedicated

channel for packets from Xij to Outj and the its bandwidth is denoted as Rij .

60



For easy representation, denote the nth packet from Ini to Outj as P n
ij, and define

ÔS(P n
ij) = ÔF (P n

ij)− L(P n
ij)/Rij.

Lemma 7 By ÔS(P n
ij), P n−1

ij has left Xij and P n
ij has arrived at Xij in the virtual

dedicated channel.

Proof. First, it is easy to see that ÔS(p) ≥ ÎF (p) + Lm/R ≥ IF (p), which means

that p has arrived at the crosspoint buffer by ÔS(p), and thus can start transmission

in the virtual dedicated channel. Second, by the definition

ÔS(P n+1
ij ) = ÎF (P n+1

ij ) +
Lm
R

+
Lm
Rij

−
L(P n+1

ij )

Rij

≥ ÎF (P n
ij) +

Lm
R

+
Lm
Rij

= ÔF (P n
ij) (5.1)

we know that P n−1
ij has left Xij in the virtual dedicated channel by ÔS(P n

ij), and

thus P n
ij can start transmission without conflict.

According to Lemma 7, we can safely view ÔS(p) as the departure time of the

first bit of p in the virtual dedicated channel, and thus ÔF (p) is the departure time

of the last bit of p in the virtual dedicated channel. Therefore, we have

OF (p) ≤ ÔF (p) +
Lm
R

(5.2)

5.3.1 Service Guarantees

We now show that FBP achieves accurately provisioned bandwidth, in the sense

that the difference between the service amount of any flow in FBP and GPS at any

time is bounded by constants.

Define toOijk(t1, t2), toXijk(t1, t2), and toBijk(t1, t2) to denote the numbers of bits

transmitted by Fijk during interval [t1, t2] to Outj, Xij, and Bij in FBP, respective-

ly. Correspondingly, use t̂oBijk(t1, t2) to represent the number of bits transmitted

61



by Fijk to Bij during [t1, t2] in GPS. With the virtual dedicated channel of Fijk,

t̂oBijk(t1, t2) is also the number of bits sent by Fijk to Outj during [t1, t2] in GPS.

Lemma 8 When a packet P n
ijk starts transmission to its destination output port

in FBP, the number of bits transmitted to the output port by its flow Fijk in FBP

is greater than or equal to that in GPS minus 4Lm, i.e. toOijk(0, OS(P n
ijk)) ≥

t̂oBijk(0, OS(P n
ijk))− 4Lm.

Proof. By the definition ofOS(P n
ijk), P

n−1
ijk has finished output scheduling atOS(P n

ijk)

in FBP, i.e.

toOijk(0, OS(P n
ijk)) =

n−1∑
a=1

L(P a
ijk) (5.3)

On the other hand

t̂oBijk(0, OS(P n
ijk))

= t̂oBijk(0, OF (P n
ijk)−

L(P n
ijk)

R
)

≤ t̂oBijk(0, ÔF (P n
ijk) +

Lm
R
−
L(P n

ijk)

R
)

= t̂oBijk(0, ÎF (P n
ijk) +

2Lm
R

+
Lm
Rij

−
L(P n

ijk)

R
)

≤ t̂oBijk(0, F̂F (P n
ijk)) +Rijk(

2Lm
R

+
2Lm
Rij

−
L(P n

ijk)

R
)

=
n∑
a=1

L(P a
ijk) +Rijk(

2Lm
R

+
2Lm
Rij

−
L(P n

ijk)

R
) (5.4)

62



By (5.3) and (5.4), we have

t̂oBijk(0, OS(P n
ijk))− toOijk(0, OS(P n

ijk))

≤ L(P n
ijk) + 2Lm

Rijk

R
+ 2Lm

Rijk

Rij

− L(P n
ijk)

Rijk

R

= L(P n
ijk)(1−

Rijk

R
) + 2Lm

Rijk

R
+ 2Lm

Rijk

Rij

≤ Lm(1− Rijk

R
) + 2Lm

Rijk

R
+ 2Lm

Rijk

Rij

≤ Lm(1 +
Rijk

R
) + 2Lm

Rijk

Rij

≤ 4Lm (5.5)

The following theorem shows that FBP achieves constant service guarantees.

Theorem 9 At any time, the difference between the numbers of bits transmitted by

a flow to the output port in FBP and GPS is greater than or equal to −4Lm and

less than or equal to Lm, i.e. −4Lm ≤ toOijk(0, t)− t̂oBijk(0, t) ≤ Lm.

Proof. Without loss of generality, assume that t ∈ [OF (P n
ijk), OF (P n+1

ijk )). First, we

prove toOijk(0, t)− t̂oOijk(0, t) ≥ −4Lm as follows.

If t ∈ [OF (P n
ijk), OS(P n+1

ijk )), by noting toOijk(t, OS(P n+1
ijk )) = 0, we have

toOijk(0, t)− t̂oBijk(0, t)

= toOijk(0, OS(P n+1
ijk ))− toOijk(t, OS(P n+1

ijk ))−

t̂oBijk(0, OS(P n+1
ijk )) + t̂oBijk(t, OS(P n+1

ijk ))

= (toOijk(0, OS(P n+1
ij ))− t̂oBijk(0, OS(P n+1

ijk ))) +

+t̂oBijk(t, OS(P n+1
ij ))

≥ −4Lm + t̂oBijk(t, OS(P n+1
ijk ))

≥ −4Lm (5.6)

63



Otherwise, if t ∈ [OS(P n+1
ij ), OF (P n+1

ij )), by noting toOijk(OS(P n+1
ijk ), t) = (t −

OS(P n+1
ijk ))R, we have

toOijk(0, t)− t̂oBijk(0, t)

= toOijk(0, OS(P n+1
ijk )) + toOijk(OS(P n+1

ijk ), t)−

t̂oBijk(0, OS(P n+1
ijk ))− t̂oBijk(OS(P n+1

ijk ), t)

≥ −4Lm + (t−OS(P n+1
ijk ))R− t̂oOijk(OS(P n+1

ijk ), t)

≥ −4Lm + (t−OS(P n+1
ijk ))(R−Rijk)

≥ −4Lm (5.7)

Next, we prove toOijk(0, t) − t̂oBijk(0, t) ≤ Lm. Since flow scheduling uses

WF2Q, by Theorem 1 in [BZ96], we have toBijk(0, t) ≤ t̂oBijk(0, t) + Lm and thus

toOijk(0, t) ≤ toBijk(0, t) ≤ t̂oBijk(0, t) + Lm.

5.3.2 Delay Guarantees

FBP also achieves delay guarantees as stated by the following theorem. Note that

OF (p) and F̂F (p) are the departure time of a packet p in FBP and GPS, respectively.

Theorem 10 For any packet P n
ijk , the difference between its departure time in FBP

and GPS is greater than or equal to L(P n
ijk)(2/R− 1/Rijk) and less than or equal to

2Lm(1/R + 1/Rij), i.e.

L(P n
ijk)(2/R− 1/Rijk) ≤ OF (P n

ijk)− F̂F (P n
ijk) ≤ 2Lm(1/R + 1/Rij)

Proof. First, we prove OF (P n
ijk)− F̂F (P n

ijk) ≥ L(P n
ijk)(2/R − 1/Rijk). By the flow

scheduling and input scheduling policies, we have IS(p) ≥ FS(p) ≥ F̂S(p), or

IF (P n
ijk)−

L(P n
ijk)

R
≥ F̂F (P n

ijk)−
L(P n

ijk)

Rijk

(5.8)

64



By the output scheduling policy, we know OS(p) ≥ IF (p), or

OF (P n
ijk)−

L(P n
ijk)

R
≥ IF (P n

ijk) (5.9)

Combining (5.8) and (5.9), we then have proved that

OF (P n
ijk)− F̂F (P n

ijk) ≥ L(P n
ijk)(2/R− 1/Rijk). (5.10)

Next, we prove OF (P n
ijk)− F̂F (P n

ijk) ≤ 2Lm(1/R + 1/Rij). By (5.2), we know

OF (P n
ijk) ≤ ÔF (P n

ijk) +
Lm
R

= ÎF (P n
ijk) +

Lm
R

+
Lm
Rij

+
Lm
R

≤ F̂F (P n
ijk) +

2Lm
R

+
2Lm
Rij

(5.11)

5.3.3 Crosspoint Buffers

A nice feature of FBP is that it has a size boundary for the crosspoint buffers, which

are significantly expensive on-chip memories. Define toXij(t1, t2) and toOij(t1, t2)

to be the numbers of bits transmitted by Fij during interval [t1, t2] to Xij and Outj

(i.e. out of Xij) in FBP, respectively.

Lemma 9 When a packet P n
ij starts transmission to the output in FBP, the number

of buffered bits at its crosspoint buffer Xij is bounded by 3Lm, i.e. toXij(0, OS(P n
ij))−

toOij(0, OS(P n
ij)) ≤ 3Lm.

Proof. By the definition of OS(P n
ij), P

x−1
ij has finished its output scheduling at time

OS(P n
ij), then we have,

toOij(0, OS(P n
ij)) =

n−1∑
a=1

L(P a
ij) (5.12)

65



On the other hand,

toXij(0, OS(P n
ij))

= toXij(0, OF (P n
ij)−

L(P n
ij)

R
)

≤ toXij(0, ÔF (P n
ij) +

Lm
R
−
L(P n

ij)

R
)

= toXij(0, ÎF (P n
ij) +

2Lm
R

+
Lm
Rij

−
L(P n

ij)

R
) (5.13)

Define t̂oX ij(0, t) to represent the number of bits sent by the logical flow Fij in the

virtual dedicated channel with bandwidth Rij during interval [0, t]. Recall that input

scheduling uses the WF2Q scheduling algorithm. Thus, by Theorem 1 in [BZ96], we

know toXij(0, t) ≤ t̂oX ij(0, t) + Lm(1−Rij/R), and

toXij(0, OS(P n
ij))

≤ t̂oX ij

(
0, ÎF (P n

ij) +
2Lm
R

+
Lm
Rij

−
L(P n

ij)

R

)
+ Lm(1− Rij

R
)

≤ t̂oX ij

(
0, ÎF (P n

ij)
)

+Rij

(
2Lm
R

+
Lm
Rij

−
L(P n

ij)

R

)
+ Lm(1− Rij

R
)

=
n∑
a=1

L(P a
ij) +Rij

(
2Lm
R

+
Lm
Rij

−
L(P n

ij)

R

)
+ Lm(1− Rij

R
)

By (5.12) and (5.14), we can obtain

toXij(0, OS(P n
ij))− toOij(0, OS(P n

ij))

≤ L(P n
ij) + 2Lm

Rij

R
+ Lm − L(P n

ij)
Rij

R
+ Lm(1− Rij

R
)

≤ L(P n
ij)(1−

Rij

R
) + Lm

Rij

R
+ 2Lm

≤ Lm(1− Rij

R
) + Lm

Rij

R
+ 2Lm

≤ 3Lm (5.14)

The following theorem gives the bound of the crosspoint buffer size.

66



Theorem 11 In FBP, the maximum number of bits buffered at any crosspoint buffer

at any time is bounded by 3Lm, i.e. toXij(0, t)− toOij(0, t) ≤ 3Lm.

Proof. Without loss of generality, we assume that t ∈ [OF (P n
ij), OF (P n+1

ij )). If

t ∈ [OF (P n
ij), OS(P n+1

ij )), we have

toXij(0, t)− toOij(0, t)

= toXij(0, OS(P n+1
ij ))− toOij(0, OS(P n+1

ij ))−

toXij(t, OS(P n+1
ij )) + toOij(t, OS(P n+1

ij ))

≤ 3Lm − toXij(t, OS(P n+1
ij ))

≤ 3Lm (5.15)

Otherwise, if t ∈ [OS(P n+1
ij ), OF (P n+1

ij ))

toXij(0, t)− toOij(0, t)

= toXij(0, OS(P n+1
ij ))− toOij(0, OS(P n+1

ij )) +

toXij(OS(P n+1
ij ), t)− toOij(OS(P n+1

ij ), t)

≤ 3Lm + toXij(OS(P n+1
ij ), t)− toOij(OS(P n+1

ij ), t)

≤ 3Lm + toXij(OS(P n+1
ij ), t)− (t−OS(P n+1

ij ))R

≤ 3Lm (5.16)

5.3.4 Complexity Analysis

As can be seen, in order to transfer an incoming packet to the output link, flow

scheduling, input scheduling, and output scheduling each is conducted once. The

time complexity of both WF2Q and WFQ has been shown to be O(logM) [Val07]

[DKS89] to schedule M flows. Assuming that an input-output pair has at most M

67



flows, then the time complexity of flow scheduling is O(logM). The time complexity

of input scheduling and output scheduling is the same O(logN), because each of the

two scheduling stages handles N flows. Regarding space complexity, a packet needs

two time stamps, for the virtual start time and finish time of a scheduling stage.

5.3.5 Implementation Advantages

FBP is practical to implement with a number of advantages. First, FBP can be

implemented in a distributed manner, since there is no centralized scheduler, and

different input ports or output ports need no information exchange. The virtual

output finish time of a packet can be calculated based on its virtual input finish

time by the input port and carried by the packet to the crosspoint buffer for out-

put scheduling. Second, FBP can directly process variable length packets without

SAR. Because of distributed scheduling, there is no synchronized operation between

different input ports and output ports, and thus each can independently process

packets of variable length one by one. Note that packets in most real networks

are of variable length. Compared with fixed length cell scheduling, variable length

packet scheduling can achieve higher throughput and shorter latency [Tur09, PY09].

Finally, FBP requires no speedup and has a small bounded crosspoint buffer size of

3Lm, reducing the hardware cost.

5.3.6 Comparison with Existing Solutions

We summarize the comparison of FBP and existing flow-level bandwidth provision-

ing algorithms in [CGMP99] and [CIM05] in Table 5.1. First of all, we can notice

that only FBP achieves O(1) service guarantees, and avoids SAR for variable length

packets. Since the other algorithms emulate PIFO OQ switches that run fair queu-

ing algorithms at output ports, their performance guarantees are proportional to

the number of flows at the output port, i.e. O(MN). Also, they can only schedule

68



Table 5.1: Comparison with Existing Algorithms
More speedup, CCF, DTC, FBP
more buffers GBVOQ

Service guarantees O(MN) O(MN) O(1)

SAR for var. Yes Yes No
len. packets

Crossbar speedup 3, 2 2 1

# of crosspoint buffers O(N2), O(N3) 0 O(N2)

Time complexity O(logM + logN) O(logM + N logN), O(logM + logN)
O(logM + logN),

unbounded

Distributed scheduling Yes No, No, Yes Yes

fixed length cells. Next, comparing FBP with the algorithms in [CGMP99], we can

see that FBP needs less speedup and fewer crosspoint buffers. Finally, comparing

FBP with the algorithms in [CIM05], we can see that FBP achieves better time

complexity and enables distributed scheduling. The trade-off is that FBP uses the

CICQ switch structure with N2 crosspoint buffers.

5.4 OpenFlow based Implementation

As stated in the introduction, Section 5.1, our second objective is to build an exper-

imental prototype based on FBP to demonstrate a practical flow-level bandwidth

provisioning solution. The prototype includes two components: OpenFlow switches

running the FBP algorithm, and a NOX [nox] OpenFlow controller with a self-

developed bandwidth provisioning component. On the one hand, we implement

FBP in the OpenFlow version 1.0 software switch [opeb], which converts a Linux

PC with multiple NICs to an OpenFlow switch. Implementing the FBP algorithm

will enable the software switch to accurately guarantee the provisioned bandwidth

at the flow level. On the other hand, we develop a NOX component as the control

console for bandwidth provisioning, where the network administrator can define a

flow and specify its allocated bandwidth. Leveraging the flow manipulation capa-

bility of the OpenFlow protocol, our prototype can flexibly define flows, allocate

69



bandwidth, and ensure the allocated bandwidth. In the following, we describe the

implementation detail. The realistic performance data obtained from the prototype

will be presented in Section 5.5.

5.4.1 FBP Enabled OpenFlow Software Switches

We implement FBP in the OpenFlow version 1.0 software switch, which is a user

space program. In the earlier versions of the OpenFlow software switch, the datap-

ath that manages the flow table was implemented as a kernel module. Starting from

version 1.0, the entire program is implemented in the user space. The advantages

of such a user space implementation include flexible development environment and

good portability, but the trade-off is performance degradation caused by frequent

context switches. Note that the main objective of the software switch is to provide

a reference OpenFlow design for test and demonstration purposes, but not for use

in production networks. Therefore, the software switch considers more about con-

venience of deployment and less about performance. In our case, the user space

software switch allows us to develop the prototype faster and more economically

than hardware switches.

The original software switch acts as a shared-memory OQ switch. When a packet

arrives at the input NIC, the program copies the packet from the input NIC buffer

to the main memory. It then searches the flow table for a matching flow for the

packet. If there is a matching flow, the program will obtain the output NIC from

the table entry, and immediately transfer the packet from the main memory to the

output NIC buffer, from where the packet will be sent to the output link. Otherwise,

if there is no matching flow, which means that the packet is the first one of a new

flow, the program will forward the packet to the controller, and the controller will

create a new entry in the flow table.

70



As can be seen, there is no concept of a crossbar in the original OpenFlow

software switch, and thus our first task is to create a virtual buffered crossbar to

emulate the CICQ switch. We allocate space in the memory for the VOQ buffers Bij,

and create the flow queues Qijk on demand, i.e. setting up a new flow queue when

the controller creates a new entry in the flow table. We configure the bandwidth of

the crossbar to be the same as that of the NIC and emulate the transmission delay

from the VOQ buffer to the crosspoint buffer and from the crosspoint buffer to the

output port. In the FBP enabled OpenFlow software switch, after a packet arrives at

the input NIC, it is immediately retrieved to the flow queue in the memory using the

netdev recv function. The packet is then transmitted through the virtual crossbar,

and finally delivered to the output NIC using the netdev send function. netdev recv

and netdev send are existing functions of the netdev module that manages the NICs.

The next challenge is to maintain accurate time stamps. For most Linux systems,

the minimum time resolution is 1 µs [GET]. Further, to avoid excessive overhead

by signal handling, the minimum time resolution provided by the timeval module

of the original software switch is 1 ms. However, the effectiveness of FBP relies

on accurate time stamps, and the existing time resolution is not sufficiently fine,

especially for high speed switches. For example, assume that the minimum time

resolution is 1 µs, and a software switch equipped with Gigabit NICs has 1 Gbps

bandwidth. For simplicity, also assume that Fij1 is the only flow of Ini and Outj,

and thus Rij =1 Gbps. If a packet P n
ij1 has length L(P n

ij1) of 400 bits, and its

actual flow start time FS(P n
ij1) is 5 µs, then its actual flow finish time will be

FF (P n
ij1) = FS(P n

ij1)+L(P n
ij1)/Rij = 5+0.4 = 5.4 µs. However, since the minimum

time resolution is 1 µs, there is no way to differentiate 5 µs and 5.4 µs, and we

have to round the latter to the former, which means the departure of P n
ij1 from its

flow queue takes no time. More importantly, the error caused by the coarse time

71



Event List
Update

Aribiter

FBP

Out Scheduling
Crosspoint 

Buffer
Output 
Line

In Scheduling
VOQ 
Buffer

Crosspoint 
Buffer

Flow Scheduling
Flow 

Queue
VOQ 
Buffer

Event List

Time Type Packet 
Info.

System Status
Current

Time Buffer Port

Figure 5.3: Event-driven Scheduling of FBP Enabled OpenFlow Software Switch

resolution will accumulate over time. To address the challenge, we maintain accurate

logical time within the virtual crossbar, so as to calculate correct time stamps for

scheduling. Only the packet arrival time is based on the original system time, and all

other operations of FBP are based on the accurate logical time. Specifically, when

a packet p is retrieved from the input NIC buffer, we call the existing time msec

function in the timeval module to obtain the packet arrival system time A(p), which

is an integer with ms time resolution. We then convert the integer system time value

to the logical time as a double-precision floating-point number, and represent all the

subsequent time stamps used by FBP as double-precision floating-point numbers.

When the packet is sent to the output NIC, we obtain the logical time for the actual

output finish time OF (p), and use it to deduct the logical time A(p) to derive the

delay as a double-precision floating-point number. In this way, all the scheduling

decisions of FBP are based on the more accurate double-precision logical time.

Finally, we extend the event driven mechanism of the original software switch to

control the operation of the virtual crossbar, as illustrated in Figure 5.3. The original

72



program uses an event driven mechanism, and monitors two types of events: packet

arrival and time out. The program is normally blocked, and wakes up to process

the assigned job when an event happens. We add all the possible types of events of

the virtual crossbar to the event list, each with the necessary information, including

the event time, event type, and associated packet. All the events are linked in an

increasing order of the event time. When a timer triggers, the program retrieves

the first event in the event list and processes it. Note that processing an event may

insert new events to the list. Because of the coarse resolution of the system time,

multiple events may happen when the program wakes up, in which case the program

will continue processing the event at the head of the event list until the time of the

next event is in the future.

5.4.2 Bandwidth Provisioning NOX Component

NOX is an open-source OpenFlow controller written in C++ and Python. The C++

code provides fundamental low-level APIs that are compliant with the the OpenFlow

protocol. The Python code implements the high-level control functionality, and

interacts with the underlying C++ APIs. NOX enables customization with new

functionality by adding new components written in Python.

We have developed a NOX component as the control console for the new band-

width provisioning functionality. It accepts flow definition and bandwidth allocation

as inputs, and sends OpenFlow commands as outputs to switches to set up flow table

entries. For example, the network administrator can use the new NOX component

to define the traffic from IP address 130.94.11.22 to 131.94.33.44 as a flow, and as-

sign it 10 Mbps bandwidth. In our implementation, we use a configuration file to

store all the flow definition and bandwidth allocation. The NOX component peri-

odically checks the configuration file, and communicates the specified information

73



to the OpenFlow switches. Each line of the configuration file contains 13 entries.

The first 12 entries are the packet header fields to define a flow [OPEc], and the

last entry gives the allocated bandwidth of this flow. We add a timer for the NOX

component to read the configuration file every five seconds, and use an array to

store all the flow definition and bandwidth allocation information, with each array

item corresponding to a defined flow.

Every time when the NOX component reads the configuration file, it compares

the information read from the file with that already in the array. In the first case,

if it detects a new flow defined in the configuration file, it adds the information to

the array. When the first packet of the new flow arrives at a switch, the packet will

be forwarded to the NOX controller. Our NOX component has a packet in callback

function, which will be triggered by such a packet arrival event. By checking the

packet header fields, the component recognizes that the packet belongs to the new

defined flow, and uses the standard Layer 2 self-learning process to find a path for

the flow. Next, the component adds a new entry in the flow table of each switch on

the path, along with the provisioned bandwidth, by sending a flow table modification

message of type OFPFC ADD.

To send the provisioned bandwidth information from the controller to the switch,

we need to modify the OpenFlow message format, the message sending function of

the controller, and the message receiving function of the switch. First, we modify the

flow modification message structure ofp flow mod in the openflow.h header file by

adding a field named bw of type uint32 t. openflow.h defines the OpenFlow protocol

format, and is shared by the controller and switch. To allow backward compatibility,

for a regular flow without provisioned bandwidth, its bw field can be set to 0.

Second, for the controller, we enhance the Python function send flow command in

the core.py module and the C++ function Pycontext::send flow command in the

74



pycontext.cc module, to add the bandwidth information to the message sent to the

switch. Third, for the switch, when it receives the OFPFC ADD message, it adds

a new flow table entry with the provisioned bandwidth. In addition, to store the

bandwidth information in the flow table, we modify the structure of sw flow, which

stores all the information of a flow and is located in switch-flow.h header file. We

add a new filed named bw of type uint32 t to store the bandwidth information.

Future packets of the flow will match the newly added flow table entry, and will be

transmitted by using the provisioned bandwidth.

In the second case, if the component detects that an already defined flow was

removed from the configuration file, it sends a flow table modification message of

type OFPFC DELETE to the switches to delete the corresponding flow table entry.

Future packets of this flow will be processed by default without reserved bandwidth.

In the third case, if the component detects that the allocated bandwidth of a de-

fined flow changed, it first updates the bandwidth in the array. Although the Open-

Flow protocol defines a flow table modification message of type OFPFC MODIFY,

it can only modify the associated actions. Alternatively, our component sends a

flow table modification message of type OFPFC DELETE to delete the existing

flow table entry of each switch. When the next packet of this flow arrives at a

switch, the switch will treat it as if it was the first packet of a new flow and send

it to the controller. The controller will then set up a new flow table entry for each

switch, but with the updated bandwidth. Future packets of the flow will then be

transmitted with changed bandwidth.

5.4.3 Scalability of OpenFlow based Implementation

A good bandwidth provisioning solution needs to be scalable to support large num-

bers of flows and high traffic rates. We analyze the scalability of the OpenFlow

75



based implementation from the aspects of the switches and controller, respectively.

For the switches, we have shown that our scheduling algorithms have low logarith-

mic time complexity, and thus can scale to high traffic rates. Further, it enhances

scalability for switches of different roles to define flows at different granularity lev-

els. Edges switches have only a small number of connected hosts, and thus can

define a flow as the traffic generated by a single VM or application for flexible con-

trol. On the contrary, core switches handle enormous traffic, and the flows already

shaped by edge switches can be combined as an aggregate flow to reduce manage-

ment overhead. For the controller, it has been shown that an OpenFlow controller

can handle all the flows of an enterprise network with tens of thousands of hosts

[CFP+07]. In addition, OpenFlow has been considered in many recent data center

designs [MPF+09] [AfRR+10], and the experiments demonstrate the feasibility to

use a central controller to manage large scale data centers. Finally, there are several

recent proposals [YRFW10] [CMT+11] to scale the control of OpenFlow-like flow

networks, and they can be utilized to enhance the scalability of the controller.

5.5 Simulation and Experiment Results

We have implemented the FBP algorithm in a Java based network simulator and the

OpenFlow software switch. In this section, we present the numerical results from

the simulations and experiments, to evaluate our design and validate the analytical

results in Section 5.3.

5.5.1 Simulation Results

In the simulations, we consider a 16 × 16 CICQ switch without speedup. Each

input port or output port has 1 Gbps bandwidth. There are two flows from Ini to

Outj with Rij2 = 2Rij1, and thus the total number of flows is 16 × 16 × 2 = 512.

The packet length is uniformly distributed between 40 and 1500 bytes, and packets

76



0 0.2 0.4 0.6 0.8 16000

4000

2000

0

2000

4000

16x16 Switch, Uniform Poisson Traffic

Effective Load

Se
rv

ic
e 

D
iff

er
en

ce
 (b

yt
es

)

 

 

Maximum
Minimum
Upper Bound
Lower Bound

0 0.2 0.4 0.6 0.8 16000

4000

2000

0

2000

4000

16x16 Switch, Nonuniform Poisson Traffic

Unbalanced Probability

Se
rv

ic
e 

D
iff

er
en

ce
 (b

yt
es

)

 

 

Maximum
Minimum
Upper Bound
Lower Bound

(a) Uniform Traffic (b) Nonuniform Traffic

Figure 5.4: Service Difference

arrive based on a Markov modulated Poisson process [PY09]. We use two traffic

patterns. For traffic pattern one, or uniform traffic, we set Rij = R/N , and change

the effective load of the incoming traffic from 0.1 to 1 by step 0.1. For traffic pattern

two, or nonuniform traffic, we fix the effective load to 1, and define Rij by i, j and

an unbalanced probability w as follows

Rij =


R(w + 1−w

N
), if i = j

R 1−w
N
, if i 6= j

(5.17)

where w is increased from 0 to 1 by step 0.1.

Service Guarantees

By Theorem 9, we know that the service difference of a flow in FBP and GPS at

any time has a lower bound of −4Lm and upper bound of Lm. We first look at

the simulation data on service guarantees. Figure 5.4(a) shows the maximum and

minimum service differences among all the flows during the entire simulation run

under uniform traffic. As can be seen, the maximum service difference increases

with the traffic load, but does not exceed the theoretical upper bound. The mini-

77



mum service difference is comparatively constant and always greater than the lower

bound. The gap between the minimum service difference and the lower bound is

caused by rounding the ratios of Rijk/Rij and Rijk/R to integers in the proof of

Lemma 8. In other words, the minimum service difference is determined by the

bandwidth ratios but not the traffic load. Figure 5.4(b) shows the simulation data

under nonuniform traffic. We can see that the maximum service difference is almost

coincident with the upper bound. Note that the maximum service difference drop-

s when the unbalanced probability becomes one. The reason is that in this case,

all packets of Ini go to Outi. Thus, there is no switching necessary, and packet

scheduling is only conducted between the two flows of the same input-output pair.

Therefore, the maximum service difference is Lm(Rij2/Rij) = 1000 bytes. On the

other hand, the minimum service difference is always greater than the lower bound.

It drops gradually when the unbalanced probability increases, and rises when the

unbalanced probability becomes one, for the same reason as above. The low bound

looks tighter under nonuniform traffic, because maxi,j,k{Rijk/R} now has a greater

value. The minimum service difference can keep getting closer to the lower bound

by increasing the bandwidth ratios Rijk/Rij and Rijk/R.

Delay Difference

Recall that Theorem 10 gives the upper bound and lower bound for the delay dif-

ference of a flow in FBP and GPS. Because the lower bound value in the theorem

depends on the lengths of individual packets, it is not convenient to plot the figure.

To eliminate the dependency, we calculate the lower bound for all packets as follows

L(P n
ijk)(

2

R
− 1

Rijk

) ≥


Lm( 2

R
− 1

Rijk
), if Rijk ≤ R

2

0, if Rijk >
R
2

(5.18)

78



0 0.2 0.4 0.6 0.8 1

−5

0

5

10

15
x 10

−4 16x16 Switch, Uniform Poisson Traffic

Effective Load

D
el

ay
 D

iff
er

en
ce

 (
se

co
nd

)

 

 

Maximum
Average
Minimum
Upper Bound
Lower Bound

0 0.2 0.4 0.6 0.8 1
−6

−4

−2

0

2

4

6
x 10

−416x16 Switch, Nonuniform Poisson Traffic

Unbalanced Probability

D
el

ay
 D

iff
er

en
ce

 (
se

co
nd

)

 

 

Maximum
Average
Minimum
Upper Bound
Lower Bound

(a) Uniform Traffic (b) Nonuniform Traffic

Figure 5.5: Delay Difference

Figure 5.5(a) shows the maximum, average, and minimum delay differences of

one representative flow F111 under uniform traffic. As can be seen, the minimum

delay difference is almost coincident with the lower bound. The maximum delay

difference is always less than the upper bound, and has a small value. This shows

that under uniform traffic, FBP can well emulate GPS and a packet will not depart

too late after its departure time in GPS. Note that the average delay difference is

less than zero for all effective loads, which means that most packets leave earlier

in FBP than in GPS when the incoming traffic is uniformly distributed. Figure

5.5(b) plots the data under nonuniform traffic. We can see that the simulation data

fall perfectly within the theoretical bounds. With the increase of the unbalanced

probability, the maximum delay difference increases, and the minimum and average

delay differences increase.

Crosspoint Buffer Occupancy

We now look at the crosspoint buffer occupancy data and compare them with The-

orem 11. Figure 5.6(a) shows the maximum and average crosspoint occupancies

79



0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000
16x16 Switch, Uniform Poisson Traffic

Effective Load

C
ro

ss
po

in
t B

uf
fe

r 
O

cc
up

an
cy

 (
by

te
s)

 

 

Maximum
Average
Theoretical Bound

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000
16x16 Switch, Nonuniform Poisson Traffic

Unbalanced Probability

C
ro

ss
po

in
t B

uf
fe

r 
O

cc
up

an
cy

 (
by

te
s)

 

 

Maximum
Average
Theoretical Bound

(a) Uniform Traffic (b) Nonuniform Traffic

Figure 5.6: Crosspoint Buffer Occupancy

under uniform traffic. As can be seen, the maximum crosspoint occupancy is less

than the theoretical bound 3Lm for all the effective loads. In addition, the average

crosspoint occupancy is always less than 400 bytes, much lower than the maximum

value. Figure 5.6(b) presents the data under nonuniform traffic. We can see that the

theoretical crosspoint buffer size bound is tight. Specifically, the maximum cross-

point occupancy increase constantly with the unbalanced probability, and drops to

3000 bytes when the unbalanced probability becomes one. The average crosspoint

occupancy is close to 300 bytes and drop to around 100 bytes when unbalanced

probability becomes one.

5.5.2 Experiment Results

We install the FBP enabled OpenFlow software switch on Linux PCs for the fol-

lowing experiments. Each PC has an Intel Core 2 Duo 2.2 GHz processor, 2 GB

RAM, and multiple 100 Mbps Ethernet NICs. The PC operating system is Ubuntu

10.04LTS with Linux kernel version 2.6.33. NOX version 0.8 [nox] is deployed as

the OpenFlow controller.

80



2 4 6 8 10
0

20

40

60

80

100
FBP Enabled OpenFlow Switch

Provisioned Bandwidth (Mbps)

B
an

dw
id

th
 (

M
bp

s)

 

 

Ideal Rate
Actual Rate

Figure 5.7: Experiment with Single Flow and Single Switch

Single Flow and Single Switch

In the first experiment, we compare the provisioned bandwidth of a flow with the

measured bandwidth. We use a switch to connect two hosts, and set up an IPerf [ipe]

TCP flow between the two hosts. By TCP congestion control, the TCP flow can

automatically probe the available bandwidth in the link. We adjust the provisioned

bandwidth of the flow from 10 Mbps to 100 Mbps by step 10 Mbps. Note that

because the NIC has maximum bandwidth of 100 Mbps, its ideal throughput is also

100 Mbps. As shown in Figure 5.7, when the provisioned bandwidth is less than 90

Mbps, the throughput measured from the Iperf flow perfectly matches the expected

value. However, when the provisioned bandwidth becomes 100 Mbps, the measured

bandwidth is about 92.1 Mbps. The reasons might include the implementation

overhead and the possibility that the NIC cannot reach its ideal throughput. As

a comparison, the original OpenFlow software switch without FBP can achieve

maximum bandwidth of about 94.5 Mbps.

81



2 4 6 8 10
0

2000

4000

6000

8000

10000
OpenFlow Switch

Load of Flow B (Mbps)

A
ve

ra
ge

 D
el

ay
 P

er
 P

ac
ke

t (
m

se
c)

 

 

Flow A with FBP
Flow B with FBP
Flow A w/o Flow Scheduling
Flow B w/o Flow Scheduling

Figure 5.8: Experiment with Multiple Flows and Single Switch

Multiple Flows and Single Switch

In the second experiment, we compare FBP with a port-level bandwidth provisioning

algorithm, i.e. without the flow scheduling phase. Similar as in the first experiment,

a switch connects two hosts. There are now two IPerf UDP flows between the two

hosts, which we call Flow A and Flow B, and they share the same switch input port

and output port. We provision the bandwidth of each flow to be 1 Mbps. We fix the

bandwidth of Flow A at 1 Mbps, and adjust the bandwidth of Flow B from 1 Mbps

to 10 Mbps by 1 Mbps step. As shown in Figure 5.8, with the flow level bandwidth

provisioning FBP, the average delay of Flow A remains constant no matter what

the load of Flow B is. The average delay of Flow B rises quickly, because it injects

traffic at a high rate than its provisioned bandwidth. On the contrary, with port

level bandwidth provisioning, the average delay of both flows grow steadily with

the load of Flow B. The results fully demonstrate that FBP is effective in achieving

traffic isolation among flows and providing flow-level bandwidth provisioning.

82



Controller

(NOX)

FBP Enabled 

OpenFlow Switch

2

100M Ethernet

TCP Flow A TCP Flow B

TCP Flow C TCP Flow D

Secure Channel

FBP Enabled 

OpenFlow Switch

1

FBP Enabled 

OpenFlow Switch

3

Host 1

VM 1A

VM 1B

Host 2

VM 2A

VM 2B

Host 3

VM 3A

VM 3B

Figure 5.9: Topology of Experiment OpenFlow Network

Multiple Flows and Multiple Switches

In the third experiment, we set up an OpenFlow network with one controller, three

switches, and three hosts, with the topology shown in Figure 5.9. Switch 1 connects

Host 1, Switch 2, and Switch 3. Switch 2 connects Switch 1 and Host 2. Switch 3

connects Switch 1 and Host 3. Each host runs VirtualBox version 4.1.4 with two

VMs. The VMs are configured with bridged networking [VIR] so that they will have

public IP addresses. Denote the VMs on Host 1 as 1A and 1B, which emulate two

TCP servers. Denote the VMs on Host 2 as 2A and 2B, and those on Host 3 as

3A and 3B, all emulating TCP clients. We set up four IPerf TCP flows: Flow A

between VMs 1A and 2A, Flow B between VMs 1A and 3A, Flow C between VMs

1B and 3B, and Flow D between VMs 1B and 2B.

In the initial configuration, we set the provisioned bandwidth of Flows A, B, C,

and D to be 15, 12, 8, and 6 Mbps, respectively. To measure the actual bandwidth of

83



each flow, we install WireShark on Switch 1 to capture packets of all the four flows.

Figure 5.10 shows the continuous bandwidth measure of each flow by WireShark.

Each pixel on the curve shows the average bandwidth of the flow during a one-

second interval. We can see that the measured bandwidth of each flows perfectly

matches the provisioning amount, demonstrating that our solution is effective in a

multi-switch and multi-flow environment.

Before the 30th second, we modify the configuration to increase the provisioned

bandwidth of Flow A to 20 Mbps. When the NOX component reads the configu-

ration, it detects the changed bandwidth allocation, and sends a command to the

switches to realize this change. As can be seen from the figure, the measured band-

width of Flow A quickly changes from 15 Mbps to 20 Mbps, and the measured

bandwidth of the other flows remains the same. In a similar manner, before the 60th

second, we modify the configuration to exchange the provisioned bandwidth amounts

of Flows B and C, and before the 90th second, we reduce the provisioned bandwidth

of Flow D to 2 Mbps. We can see that the prototype successfully handles all band-

width change requests, with the bandwidth of designated flows smoothly changing

to the new values, and the bandwidth of the remaining flows keeping stable.

5.6 Summary

Flow-level bandwidth provisioning ensures allocated bandwidth for individual flows,

and is especially important for virtualization based computing environments such

as data centers. However, existing solutions suffer from a number of drawbacks,

including high hardware and time complexity, inability to achieve constant service

guarantees, and inefficiency to process variable length packets. In this chapter, we

have studied flow-level bandwidth provisioning for CICQ switches in the OpenFlow

context. First, we propose the FBP algorithm, which reduces the scheduling prob-

84



0 20 40 60 80 100 120
0

0.5

1

1.5

2
x 10

7 OpenFlow Network

Time (s)

T
hr

ou
gh

pu
t (

bp
s)

 

 

Flow A
Flow B
Flow C
Flow D

Figure 5.10: Experiment with Multiple Flows and Multiple Switches

lem on CICQ switches to multiple stages of fair queuing, with each stage utilizing a

well studied fair queuing algorithm. We show by theoretical analysis that FBP can

closely emulate the ideal GPS model, and achieve constant service guarantees and

tight delay guarantees. FBP is economical to implement with bounded crosspoint

buffer sizes and no speedup requirement, and is fast with low time complexity and

distributed scheduling. In addition, we implement FBP in the OpenFlow software

switch to build an experimental prototype. In conjunction with the existing capabil-

ity of OpenFlow to flexibly define and manipulate flows, we have thus demonstrated

a practical flow-level bandwidth provisioning solution. Finally, we conduct extensive

simulations and experiments to evaluate our design. The simulation data success-

fully validate the analytical results, and the experiment results demonstrate that

our prototype can accurately provision bandwidth at the flow level.

85



CHAPTER 6

HOST-NETWORK ENERGY EFFICIENCY CO-OPTIMIZATION

FOR DATA CENTER NETWORKS

This chapter investigates the energy efficiency challenge for the DCN to achieve high

energy conservation during off-peak traffic hours. Although there exist a number of

energy optimization solutions for DCNs, they consider only either the hosts or net-

work, but not both. Such separated optimization processes may lead to low energy

saving performance and decline in the DCN’s service quality. In this chapter, we

propose a joint optimization scheme that simultaneously optimizes VM placement

and network flow routing to maximize energy savings, and avoids server and network

congestions to guarantee the service quality.

To effectively combine host and network based optimization, the joint optimiza-

tion scheme utilize a unified representation method that converts the VM placement

problem to a routing problem. In addition, to accelerate processing the large num-

ber of servers and an even larger number of VMs, the scheme takes a parallelizing

approach that divides the DCN into clusters based on subnet IP addresses, and

processes the clusters in parallel for fast completion. Further, to quickly find effi-

cient paths for flows, the scheme employs a fast topology oriented multipath routing

algorithm that uses depth-first search to quickly traverse the network and uses the

best-fit criterion to maximize flow consolidation. We also build an OpenFlow based

prototype to experimentally demonstrate the effectiveness of the scheme.

6.1 Introduction

Recent years, the size of data centers are growing rapidly. Some modern data centers

are reported to contain more than 300k servers [NUM]. The energy consumptions

of these huge data centers also increase significantly. It is estimated that 100 billion

86



kWh of energy are consumed by data centers annually and number is still growing

[dat]. Therefore, improving the energy efficiency has become one of the top consid-

erations when designing new data centers. Among the total energy consumption of

a data center, the networking part accounts for 20% to 50% [SLX10] [AMW+10].

The data center network (DCN) provides connections with full bisection bandwidth

to the servers in the data center. Because of the burty nature of the data center

traffic, DCN might not be able to fully utilize the provisioned bandwidth. From the

traffic pattern of any data centers, it is clear that there are huge differences between

daytime and nighttime traffic volume, and between weekdays and weekends traffic

volume. In traditional data center, even during the off-peak period, all switches and

servers are powered on [GLF+00] [PBS+03]. And due to the huge energy overhead

of the servers and switches, data center’s energy consumption is not linear with its

total load. In other words, energy is wasted in traditional data centers which has

no energy efficiency optimization mechanism.

The general method of saving energy in data centers is to power off unnecessary

devices. In literatures, two directions of finding unnecessary devices are studied

[GWT+08] [GLL+09] [GLM+08] [GHJ+09] [MPF+09] [AFLV08]. One direction is

to consolidate Virtual Machines (VMs) into fewer number of servers so that the idle

servers can be powered off [HSM+10]. The other direction targeting the network

side is to consolidate network flows onto fewer number of switches, and then power

off those idle ones [MPZ10].

In this chapter, we study the energy efficiency optimization problem in data

center networks, and propose a novel host-network energy efficiency co-optimization

scheme which considers the VM and network flow consolidation simultaneously.

There are several challenges. Our first challenge is how to coordinate the VM place-

ment optimization and the flow routing optimization. We propose an unified rep-

87



resentation method which transforms the VM placement problem to adapt the flow

routing problem. Therefore, one single optimization scheme can solve both prob-

lems. The next challenge is the speed of the flow routing path search. We propose a

topology-aware recursive multipath routing algorithm which utilizes the depth first

search algorithm to quickly traverse the hierarchy of the DCN, and utilizes the best

fit to find the most proper flow routing path. Finally, the last challenge is how to

increase the scalability of the optimization scheme so that it can be implemented in

large data centers. We propose a parallel processing approach which divides the tar-

get data center into clusters and optimizes the clusters simultaneously. In addition,

we have implemented the proposed scheme in a prototype, and conducted extensive

experiments to evaluate the performance of the proposed scheme. The experiment

results have demonstrated that our host-network energy efficiency co-optimization

is effective and practical in improving the data center’s energy efficiency.

6.2 Optimization Challenges and Solutions

In this section, we describe the design considerations in order for the host-network

energy efficiency co-optimization scheme to be both efficient and scalable.

The first challenge is to solve the VM placement problem and the flow rout-

ing problem simultaneously for effective joint optimization. An idea solution is an

unified representation of these two problems. Hierarchical structure of DCNs is an-

alyzed in order to identify the unified representation of the VM placement and the

flow routing. A multiple-layer fat tree based DCN is shown in Figure 6.1(a). It

is shown that the VM and host relationship is similar to that of host and switch,

since a VM picks the server just as a host picks the hosting switches. Based on this

observation, we add an additional hierarchical VMs layer to the DCN. Specifically,

a new node is added for each VM, and it connects with the host by a link if it can

88



V2V1 V3 V4 V2V1 V3 V4

(a) Initial state. (b) Adding hierarchical layer of VMs.

V2V1 V3 V4
V1 V3 V4V2

(c) Adding dummy nodes for (d) Optimization results.
memory capacity constraints.

Figure 6.1: Unified representation of VM placement and flow routing.

migrate to the host. One simple example is shown in Figure 6.1(b). Figure 6.1(b)

shows that V1, V2, and V3 are able to migrate to any host that is connected by the

same aggregation switch. Also, V4 is able to migrate to any server that is connected

by the same ToR switch. In the host-network energy efficiency co-optimization, the

routing paths are searched for flows between VM pairs. If there is a path between

a VM and a host, the VM will be hosted by that host. This provides a unified view

for VM placement and flow routing.

In order to determine the capacity of the newly added links between VMs and

host, we let the VMs connect to dummy nodes instead of to the hosts. Specifically,

as shown in Figure 6.1(c), a dummy node is created for each host, and a link is

added to connect the dummy node and the VMs. The capacities of the links are the

89



memory capacities of the hosts, since the host memory capacity may constrain the

connection between the VMs and the host. It should be noticed that the VM node

is different from physical server node when calculating flow routings, since a VM

sends all its flows through the same host, and it selects only one link to connect to

different dummy noes. Therefore, all the multiple traffic flows of a VM should share

the same path between the VM and the hosting host. This should be considered

when developing the unified representation of both types of optimization problems.

The other challenge is how to accelerate the processing of huge number of VMs

in a data center The main idea is to use a parallelizing approach which divides the

DCN into clusters based on subnet IP addresses, and processes them in parallel for

fast completion. We assume that a VM will only migrate within its own subnet

[MPF+09], and the servers and VMs in the same subnet are organized as a cluster.

Intra-cluster and inter-cluster processing are separated to reduce the scale of the

problem. For intra-cluster processing, we find routing paths for all flows between

VMs in the same cluster and also determine the placement of the VMs. For VM-

s that only have inter-cluster flows, their placements are calculated according to

their memory and bandwidth demands in inter-cluster processing. This is because

taht DCN topology is usually symmetric, and the VM placement may not affect

inter-cluster flow routing. The cluster-based parallel processing method reduces the

solution search space and allows faster completion. In addition, intra-cluster pro-

cessing in different clusters can be done in parallel to reduce the processing time

since they are independent.

6.3 Host-Network Energy Efficiency Optimization Scheme

In this section, we present a topology aware multipath routing algorithm that quickly

finds routing paths for inter-cluster and intra-cluster flows.

90



The key of the algorithm is to utilize the depth-first search to find a series

of best-fit connections among the DCNs switch hierarchy. A DCN usually has a

hierarchical network architecture which consists of multiple layers of switches. The

depth-first search will traverse the hierarchy quickly to find the necessary layers to

interconnect the two VMs. For redundancy considerations, there are usually more

than one links between two switches. In order to better consolidate the flows, we

employ the best-fit criterion to find the link that provide the smallest and sufficient

bandwidth capacity. If the search cannot find any link with sufficient bandwidth, the

search needs to backtrack to the previous layer and use best-fit to find another link

among the rest of the links. As disused in Section 6.2, we divide the routing search

into two processing stages, intra-cluster processing and inter-cluster processing.

First, the scheme searches routing paths for intra-cluster flows. It sorts the

VMs by their memory demands in a descending order. Then, the scheme starts the

unified VM placement and flow routing path search. It selects the VM with the

largest memory demand and search for the routing path of its inter-cluster flows

one by one. The routing path search has the following three steps. The first step

is to determine the lowest connecting layer of the DCN hierarchy that connects the

source and destination VMs. The lowest connecting layer becomes the highest layer

that the routing path search is allowed to go up to. In other words, we localize

the routing paths and thus save the higher layer switches for future flows. Since

the network topology and the IP address assignment rules are known in advance,

we can easily determine the lowest connecting layer by comparing the IP addresses

of the source and destination VMs. After the lowest connecting layer is found,

the scheme employs the depth-first and best-fit method to search routing paths for

intra-cluster flows. Starting from the source VM, the scheme searches upstream

in the network hierarchy and choose the link to the higher layer with the best-

91



fit available bandwidth. When reaching the connecting layer, the scheme changes

the search direction downstream. It will apply the same depth-first and best-fit

method. The search stops when it reaches the destination VM. As a result, the

switch sequence along the search path becomes the routing path of the intra-cluster

flow. As described in Section 6.2, we convert the VM placement problem to be part

of the unified flow routing path problem. In other words, the scheme searches for

the optimum VM placement and the optimum flow routing path simultaneously. If

one or more VMs of the flow do not have hosting server before the routing path

search, the server(s) on the routing path is(are) the new hosting server(s). When all

the flows of the VM find their routing paths, the scheme will continue the search for

the VM with the next largest memory demand. Table 6.1 shows the pseudo code of

the depth-first and best-fit search.

Then the scheme searches routing paths for Inter-cluster flows. It applys the

depth-first and best-fit approach to find the routing paths for the flows whose source

and destination VM are in different clusters by . In the intra-cluster processing

stage, all VMs that have intra-cluster flows, have found their placement hosts and

corresponding ToR switches. If an inter-cluster flow is associated with one of such

VMs, the scheme will only determine the routing path between the two hosts that

are hosting the source and destination VMs. The scheme uses the same depth-first

and best-fit approach as in the intra-cluster processing stage. If either the source or

destination VM has not found its placement host, the routing algorithm will include

the VM placement section in the routing path finding by adding a dummy node

layer in the network hierarchy. Figure 6.1(d) illustrates the host-network energy

efficiency co-optimization result of the example DCN in Figure 6.1(a).

92



DFS(G, a, b, d) // G: network, a: source, b: destination, d: demand
1 H = necessary-layer-to-connect(G, a, b);
2 path = {};
3 u = a; // temp variable indicating current location
4 next = 1; // flag indicating search direction, 1: upstream, -1: downstream
5 return SEARCH(u, path, next);

SEARCH(u, path, next) {
1 path = path + u;
2 if (u = b) return true;
3 if ( layer-of(u) = H) next = −1; // reverse search direction

// after reaching connecting layer
4 if ( next = −1 && layer-of(u) = 1) return false; // failure at bottom layer
5 links = links of u to layer (layer-of(u) + next) and with available bandwidth ≥ d;
6 found = false;
7 while (links 6= ∅ && found = false) {
8 v = best-fit(links); links = links \ {v};
9 found = SEARCH(v, path, next);
10 };
11 return found;
}

Table 6.1: Pseudo code description of depth-first best-fit search.

6.4 Prototype Implementation

In this section, we describe our implementation of the proposed scheme in a pro-

totype using the Beacon OpenFlow controller, HP ProCurve OpenFlow switches,

VMware vCenter server, and VMware ESXi hypervisor.

6.4.1 Hardware and Software Configuration

We have built a 4-pod and 16-host fat-tree prototype, as shown in Figure 6.2, to

demonstrate the effectiveness and practicalness of our optimization algorithm in

real networks. We utilize 2 OpenFlow enabled 48-port HP ProCurve 6600 switches

running firmware version K.15.06.5008, and create 20 virtual switches. Each virtual

switch is assigned with 4 ports, except that the first core layer switch has 3 extra

93



Figure 6.2: Photo of our prototype.

ports to allow connections for management nodes, including VMware vCenter server,

Network File System (NFS) server, and DHCP server. All switches are managed by

Beacon OpenFlow controller version 1.0.0 with a self-developed Equinox framework

bundle that implements our optimization algorithm. Each host is running VMware

ESXi hypervisor version 5.0.0 to host VMs running operating system of Ubuntu

Server 12.04.1 LTS 64 bit. The hosts and VMs are configured to request IP address

upon startup through DHCP protocol. When the controller detects the DHCP

discovery message sent by a host or a VM, it records the host’s or the VM’s MAC

address and location based on which input port of which ToR switch received the

message. The IP address of the host or VM is updated when the controller detects

the DHCP offer message. All hosts and VMs are remotely managed by VMware

vCenter server version 5.0.0. Each VM’s file system is provided by a NFS server

implemented on a Linux PC running Ubuntu version 12.04.

94



Beacon Controller

OpenFlow SwitchesVmware vCenter

Optimizer

1. VM Update

3. Network Info.

5. Live VM Migration

4. Routing Paths

9. Power off Idle Hosts

6. RARP Packets

11. All Packets

2
. F

lo
w

 U
p

d
at

e

7
. R

A
R

P
 P

ac
ke

ts

8
. D

el
et

e 
O

ld
 F

lo
w

 E
n

tr
ie

s

1
0

. P
o

w
er

 o
ff

 Id
le

 S
w

it
ch

es

1
2

. P
ac

ke
t-

in

1
3

. B
ro

ad
ca

st
o

r 
In

st
al

l N
ew

 F
lo

w
 T

ab
le

Routing Path Database

Figure 6.3: Major processes of the optimization.

Iperf UDP flows are employed to emulate the production traffic in data centers.

The controller assigns initial routing paths to the flows. The initial routing paths

are calculated by using Shortest Path Routing algorithm. If there exist multiple

routing paths from the source to the destination, the controller selects one of them

randomly. For each switch on the routing path, the controller also calculates each

flow’s input and output ports. The controller installs the flow table entries to all

the switches on the routing path by sending them ofp flow mod messages with the

flow’s match information and the calculated input and output ports.

6.4.2 Optimization

Since the Beacon controller has the view of the entire network, we integrate the

optimizer into the controller as one of its Equinox framework bundles. The optimizer

can access all the information gathered in the initialization stage. The optimization

95



executes cycle by cycle and each cycle follows the four steps described below. The

major exchanged data in one optimization cycle are shown in Figure 6.3.

Network Status Update

Before executing the optimization algorithm, the controller takes a snapshot of the

current network. The main purpose of this step is to update the network topology,

the VMs information and the flows information that might have changed between

two optimization cycles.

For the switches and links, the controller utilizes the Link Layer Discovery Pro-

tocol (LLDP) implemented in the original Beacon controller. The network topology

information is stored inside the controller and will be used later in the optimization

stage describe in the next subsection. The memory and CPU capacities of each host

are fetched from the host management node - VMware vCenter. Specifically, the

controller sends Get-VMHost command with the host’s IP address to the VMware

vCenter through the VMware vSphere PowerCLI interface. The VMs location and

capacity information can be gathered by using the similar methods. For the VM

information, the controller sends a Get-VM command to the VMware vCenter to

update each VM’s location, CPU demand and memory demand. For the flow in-

formation, the controller sends ofp stats request messages of type OFPST FLOW to

each virtual switch to request the flow statistics. From the statistic reply messages,

each flow’s average bandwidth demand can be estimated by the flow’s duration and

total traffic amount. The controller stores the updated information in its database.

Note that only the bandwidth of large flows will be stored, since these flows have

the major impacts on the optimization result.

96



Optimal Network Scheme Calculation

Based on the network status snapshot, the optimizer executes the host-network joint

optimization described in Section 6.3. An optimal network scheme, including the

VM’s new location and the flow’s new routing path, is calculated. The routing path

of each large flow are stored in a HashMap dictionary in the controller. The key

of each map entry is a string that uniquely identifies each individual flow. The

value of each map entry contains the flow table information of each switch on the

routing path, including the switch’s datapath ID, and the input and output port of

the flow. In our prototype, Iperf UDP flows among VMs are the large flows. We

concatenate the source VM’s MAC address, the destination VM’s MAC address and

the transport layer port number of the destination VM to form the HashMap key.

For example, one Iperf flow is from VM 2 with MAC address 00:00:00:00:00:02

to VM 6 with MAC address 00:00:00:00:00:06 on transport layer port 5001. First

we transform the MAC address to Long type and the source and destination MAC

addresses become 2 and 6, respectively. Then, the HashMap key should be the string

of "265001". As shown in Figure 6.4, we assume that the optimized locations of

VM 2 and VM 6 are on host 1 and host 4, respectively.We also assume that the

optimized routing path of this Iperf flow is from ToR switch 301’s port 1 to port 2,

then from aggregation switch 202’s port 12 to port 14 and then from ToR switch

302’s port 7 to port 8. Then the routing path of this flow should be <<301, 1, 2>,

<202, 12, 14>, <302, 7, 8>>.

VM Location and Flow Routing Path Adjustment

In this stage, the controller passes the optimization result to the VMWare vCenter

which will execute live VM migrations to adjust the VM locations. Then the con-

troller will adjust the flow routing paths accordingly. In out prototype, the live VM

97



202

301 302

vCenter NFS DHCP
Secure Channel Beacon 

Controller

Core 
Switches

Aggregation 
Switches

ToR 
Switches

Host
s

1

Host 1 Host 4

2
12 14

7

8

Switches in Spanning Tree Switches not in Spanning Tree

VM 2 VM 6

Figure 6.4: Fat-tree topology of the prototype.

migration is implemented by the VMware vMotion migration command Move-VM.

Switches and hosts will be powered on if they are included in the optimization result.

Upon the completion of each VM’s live migration, the VM will broadcast several

RARP messages to announce its new location. When the controller detects such

messages, it will delete flow table entries that are calculated based on the VM’s

old location. To be specific, the controller sends two messages to each switch to

delete all flow entries that are related to the just migrated VM. One message is to

delete flow entries whose source is the VM, while the other message is to delete flow

entries whose destination is the VM. The two messages have the similar structure.

They are both ofp flow mod messages of command type OFPFC DELETE. The only

differences are in the the flow match attribute and in the wildcards attributes. One

sets the data link layer source address in the wildcard attributes as the address of

98



the migrated VM and set the wildcards to OFPFW ALL^OFPFW DL SRC. The other one

sets the data link layer destination address as the address of the migrated VM and

set the wildcards to OFPFW ALL^OFPFW DL DST.

Powering Off Idle Hosts, Switch Ports and Switches

In this stage, the controller sends commands to power off idle hosts, idle switch

ports and idle switches. A host is considered idle if it is not hosting any active VM.

A switch port is considered idle if no traffic is on the port currently, and according

to the optimization result, no traffic will pass through this port before the next

optimization cycle. A switch is considered idle if all of its ports are idle. For the

idle hosts, the controller sends out Stop-VMHost commands through the VMware

PowerCLI interface to power them off. For the idle switch ports and idle switches,

the controller sends port down commands and switch power off command through

the switch’s command line interface to power them off, repectively.

The optimization cycle completes, when all idle hosts and idle switches are pow-

ered off. After this moment, when a packet is sent to the controller to find the

routing path, 1) if the packet is a broadcast packet, the controller will ask the

switches in the spanning tree to flood this packet; 2) if the packet is a unicast pack-

et and belongs to a large flow with a stored routing path, the controller will fetch

the path in the HashMap database and then install flow table entries to switches on

the routing path; 3) if the packet is an unicast packet but belongs to a flow without

a stored routing path, the controller will calculate a random routing path based on

the current topology by using the Shortest Path Routing algorithm.

6.5 Prototype Experiments

We have conducted experiments in our prototype to evaluate the performance of the

optimization scheme. In this subsection, we first describe the experiments configura-

99



tion, and then present the experiment results to demonstrate that the optimization

scheme is effective and practical.

Experiment Configuration

Two experiments are executed. In the fist experiment, the average memory and

traffic load of the prototype is set to be 15%, while in second experiment, the load is

set to be 30%. VMs and network flows are generated according to the load and the

following rules. Each VM’s memory is randomly selected between 250 MB and 500

MB, and its CPU demand is randomly selected between 250 MHz and 500 MHz.

The initial location of each VM is also randomly selected among the hosts. We

adjust the number of VMs to meet the host utilization goal of each experiment.

Each VM is configured to send out one Iperf UDP flow in average. The normal size

of the flows are randomly selected between 20 Mbps and 250 Mbps and we adjust

the flow size to meet the network utilization goal of each experiment if necessary.

For the experiment with 15% memory and traffic load, 21 VMs and 24 Iperf UDP

flows are generated; while for the second experiment with 30% memory and traffic

load, 42 VMs and 49 Iperf UDP flows are generated.

Both experiments run the following processes. Initially all switches, hosts and

VMs are powered on and all flows are started. We measure and record the current

power consumption. Then, we run one full optimization cycle. After the optimiza-

tion completes, we measure the power consumption again and compare it with the

value before. Note that only the power consumption of the hosts are measured both

before and after the optimization. This is because that the physical switches con-

tains huge power consumption overhead and the power consumption of each virtual

switch cannot be accurately measured. We employ Kill-A-Watt power meter model

P4320 to measure the power consumption.

100



Flow Direction Flow Bandwidth Outgoing Traffic Incoming Traffic
(Mbps) of Host 4 (Mbps) of Host 4 (Mbps)

VM 4 → VM 7 83.7 - 83.7

VM 7 → VM 19 90.1 90.1 -

Total 173.8 90.1 83.7

(a) Before Optimization

Flow Direction Flow Bandwidth Outgoing Traffic Incoming Traffic
(Mbps) of Host 4 (Mbps) of Host 4 (Mbps)

VM 4 → VM 7 83.7 - -

VM 4 → VM 17 27.8 27.8 -

VM 7 → VM 19 90.1 - -

VM 9 → VM 3 26.8 26.8 -

VM 11 → VM 9 22.7 - -

VM 11 → VM 20 56.0 56.0 -

VM 19 → VM 3 119.1 119.1 -

Total 396.2 229.7 0

(b) After Optimization

Table 6.2: Flow configuration and traffic amount of Host 4

Experiment Results - Routing Path Control

In order to verify whether the optimization adjusts the flow’s routing paths correctly,

we study the traffic amount of the hosts to see if they are as same as expected. Due

to space limitation, we only present the result of Host 4 in this chapter. The results

of other hosts follow the similar pattern and lead to the same conclusion.

Table 6.2(a) and (b) give the detailed configuration of the flows and traffic

amount of Host 4, before and after the optimization, respectively. The VMs with

bold name are the ones hosted by Host 4. Thus, before the optimization, only VM

7 is hosted by Host 4; and after the optimization, 3 additional VMs are hosted by

Host 4, including VM 4, VM 11 and VM 19. If either a flow’s source or destination

VM is on Host 4, this flow accounts Host 4’s network traffic. The traffic’s direction

and amount is the same as the flow’s direction and bandwidth, respectively. For ex-

ample, after the optimization, the flow from VM 4 to VM 17 accounts 27.8 Mbps of

Host 4’s total outgoing traffic. If both the source and destination VMs of a flow are

101



0	  

50	  

100	  

150	  

200	  

250	  

300	  

350	  

400	  

0	   100	   200	   300	   400	   500	   600	   700	   800	   900	   1000	   1100	   1200	   1300	   1400	   1500	  

N
et
w
or
k	  
Tr
affi

c	  
(M

bp
s)
	  

Time	  (s)	  

Outgoing	  Traffic	  
Incoming	  Traffic	  

VM	  
MigraEons	  

AGer	  
OpEmizaEon	  

Before	  
OpEmizaEon	  

Figure 6.5: Measured incoming and outgoing traffic of Host 4.

on Host 4, the flow does not account any of Host 4’s traffic. One example is the flow

from VM 7 to VM 19 after the optimization. The total outgoing traffic and total

incoming traffic of Host 4 should be the summation of each flow’s outgoing traffic

amount and the summation of each flow’s incoming traffic amount, respectively.

Figure 6.5 shows the measured total outgoing and the measured total incom-

ing traffic of Host 4 before and after the optimization. We can find that, before

the optimization and the VM migrations, the amount of outgoing traffic and the

amount of incoming traffic of Host 4 are the same as the calculated amount shown

in Table 6.2(a). During the optimization, Host 4’s incoming traffic amount changes

dramatically. This is due to the VM migration traffics that has Host 4 as the desti-

nation. After the optimization, the total outgoing traffic of Host 4 stabilizes around

225 Mbps which has less than 2% difference as the calculated amount shown in

Table 6.2(b). The incoming traffic amount of Host 4 after the optimization drops

to zero which is the same as calculated in Table 6.2(b). In summary, by comparing

the measured traffic amount with the calculated traffic amount, we show that the

optimization can adjust the flow’s routing paths correctly.

102



1139	  

466	  

100%	  

41%	  

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

120%	  

Before	  Op2miza2on	   A9er	  Op2miza2on	  
0	  

200	  

400	  

600	  

800	  

1000	  

1200	  

1400	  

1600	  

Pe
rc
en

ta
ge
	  

Po
w
er
	  c
on

su
m
p2

on
	  (w

)	  
1228	  

742	  

100%	  

60%	  

0%	  

20%	  

40%	  

60%	  

80%	  

100%	  

120%	  

0	  

200	  

400	  

600	  

800	  

1000	  

1200	  

1400	  

1600	  

Before	  Op1miza1on	  A8er	  Op1miza1on	  

Pe
rc
en

ta
ge
	  

Po
w
er
	  c
on

su
m
p1

on
	  (w

)	  

(a) Memory and traffic load = 15%. (b) Memory and traffic load = 30%.

Figure 6.6: Power consumption comparison before and after optimization.

Experiment Results - Power Consumption Reduction

Figure 6.6(a) and 6.6(b) illustrates the comparison of the power consumptions before

and after the optimization when system load is equal to 15% and 30%, respectively.

Both figures show that the power consumption after the optimization is lower than

before the optimization. Specifically, Figure 6.6(a) shows that when system load

is equal to 15%, the total power consumption drops from 1139W to 466W or from

100% to 41%. In other words, the optimization saves 59% of the original power

consumption. Figure 6.6(b) shows that when system load is equal to 30%, the total

power consumption drops from 1228W to 742W or from 100% to 60%. In other

words, the optimization saves 40% of the original power consumption. It is worth

noting that the optimization yields larger reduction of the power consumption when

system load is lighter. This is because that, when the system load is lighter, VMs

will be consolidated into fewer number of hosts and thus more idle hosts can be

powered off to further reduce the power consumption. The experiment results have

demonstrated that our joint host-network optimization is effective and practical in

improving the data center’s energy efficiency.

103



6.6 Summary

A host-network co-optimization scheme is presented to improve the energy efficiency

of data center networks. A unified representation method is first used to convert a

virtual machine placement problem to a routing problem, and then a parallelizing

approach is used to divide the DCN into clusters, which can be solved in parallel for

fast completion. A fast topology-aware multipath routing algorithm is also presented

for quick path finding. Finally a 4-pod and 16-host prototype is described to evaluate

performance of our design through extensive experiments. Results illustrate that our

design superior over existing host- or network-only optimization solutions, and it is

ideally suitable for improving the energy efficiency of DCNs.

104



CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

In this dissertation, we presented a comprehensive optimization scheme, including

optimizations on both host and network sides, to enhance the performance and en-

ergy efficiency of the data center network (DCN). The scheme consists of a parallel

packet switch architecture to cost-efficiently increase DCN’s bandwidth, a multidi-

mensional virtual machine (VM) placement solution to improve the DCN’s resource

utilization, a flow level bandwidth provisioning algorithm to enable traffic isola-

tion and performance guarantees for VMs, and a energy efficiency optimization to

save DCN energy consumption during off-peak traffic hours. We also conducted

theoretical analysis as well as empirical simulations and prototype experiments to

demonstrate the feasibility, scalability and effectiveness of the scheme. The major

contributions made by this dissertation are summarized as follows.

7.1.1 Utilizing Parallel Packet Switch Architecture to Increase DCN’s Band-

width Capacity

To effectively and cost-efficiently increase the DCN’s network capacity , we pro-

posed a variable length PPS (vPPS) architecture which combines several lower-speed

switches to provide huge aggregate bandwidth and is able to process variable length

packet directly. We studied a simplified 1×1 vPPS which is similar to the tradition-

al inverse multiplexing system. We showed that two additional buffers, namely the

input conversion buffer (ICB) and the output conversion buffer (OCB), are required

to accommodate the rate difference between the input/output line and the center

stage switch (CSS). We designed two different scheduling policies to limit the size of

ICB and OCB for the simplified 1×1 vPPS, respectively. We showed that both ICB

105



size and OCB size can be bounded by 2L, where L is the maximum packet length.

Moreover, we proved that the second policy enables the switch to emulate an FIFO

OQ switch. We investigated the general N×N vPPS by expanding the 1×1 switch

structure and combing its two scheduling policies. We designed a scheduling policy

based on the policies from the simplified 1×1 vPPS case to limit the size of ICB and

OCB, respectively. We proved that the presented vPPS switch architecture with the

proposed scheduling policy can emulate an FIFO OQ switch with speedup of 2, i.e.

emulating an FIFO OQ switch with bandwidth R by using 2K − 1 CSSs each with

bandwidth r, where r = R/K.

7.1.2 Multidimensional Stochastic VM Placement to Improve DCN’s Re-

source Utilization

To improve the DCN’s resource utilization when VMs demanding for various deter-

ministic and stochastic resources, we proposed a multidimensional stochastic VM

placement scheme. We modeled the VM placement in data centers as a Multidimen-

sional Stochastic VM Placement (MSVP) problem, with the objective to minimize

the number of required servers while satisfy the service level agreement (SLA) avail-

ability guarantee. We proved that this problem is NP-hard. We proposed a poly-

nomial time algorithm named Max-Min Multidimensional Stochastic Bin Packing

(M3SBP) to solve this problem. The basic idea is to maximize the minimum uti-

lization ratio of all the resources of a server, while satisfying the VMs’ demands for

both deterministic and stochastic resources. We demonstrated by simulations that

that M3SBP guarantees the availability requirement for the stochastic resource while

employing fewer servers than other benchmark algorithms do. We also showed that,

compared to the modified deterministic algorithms that simply do over-provisioning

for stochastic resources, M3SBP finds the results more efficiently.

106



7.1.3 Enabling Performance Guarantees on Flow Level

To provide the fine-grained performance assurance in the DCN, we proposed a flow

level traffic scheduling technique to provision bandwidth for each individual flow.

We proposed the Flow-level Bandwidth Provisioning (FBP) algorithm, which assures

the provisioned bandwidth and thus delay guarantees for each individual flows in

the DCN. We analyzed the performance of FBP, and prove that it achieves constant

service guarantees and tight delay guarantees. We proved that FBP is economical

to implement with bounded crosspoint buffer sizes and no speedup requirement,

and is fast with low time complexity and distributed scheduling. We implemented

FBP in the OpenFlow software switch and integrate it with the NOX controller.

We validated the constant service guarantees and tight delay guarantees by the

empirical simulation results. We demonstrated by prototype experiment results that

our prototype can accurately provision bandwidth at the flow level and is practical

to implement in the DCN.

7.1.4 Host-Network Co-Optimization to Enhance DCN’s Energy Efficiency

To improve the energy efficiency of the DCN during off-peak traffic time, we in-

vestigated the the optimization scheme which reduces the number of active devices

in the network while maintaining the required network services. We proposed a

host-network energy efficiency co-optimization scheme for DCN that combines VM

placement and flow routing optimization, so that the energy efficiency can be im-

proved on both sides. We developed an unified representation method which trans-

forms the VM placement problem to adapt the flow routing problem. We developed

a topology-aware recursive multi-path routing algorithm which utilizes the depth

first search algorithm to traverse the hierarchies of the DCN, and utilizes the best

fit to find the most proper flow routing path. We introduced a parallel process-

107



ing approach which divides the target data center into clusters and optimizes the

clusters simultaneously. We built an OpenFlow hardware switch based prototype

based on the proposed optimization scheme. We demonstrated the effectiveness and

practicalness of the proposed optimization scheme by empirical experiment results.

7.2 Future Directions

One future research direction is to improve the vPPS architecture so that it can

emulate a Push-In-First-Out (PIFO) OQ switch without speedup. The proposed

vPPS in this dissertation can only emulates FIFO OQ switch, in which the packet

output order is the same as that when the packet arrives at the switch. In contrast,

in PIFO OQ switches, the arrival order and output order of each packet can be

different. In other words, PIFO OQ switches allows the implementations of various

QoS packet scheduling disciplines such as General Processor Sharing (GPS) and

Weighted Fair Queueing (WFQ). The potential modification of the proposed vPPS

in this dissertation is to add packet buffers at the demultiplexers and multiplexers.

As a result, packets in the vPPS can be stored in the added buffers for extra time

until the their output time required by the scheduling discipline comes.

Another research direction is to investigate the VM placement in DCNs with

correlations between different resource demands. In this dissertation, we assume that

all resource demands are independent from each other. However, in some situations,

the change of one resource demand may affect other demands. For example, [CG05]

shows that there is a strong, near-linear relationship between the network I/O speed

and the CPU utilization. Modeling and considering such correlation in the VM

placement calculation can further improve the DCN’s resource utilization.

The performance evaluation method of the flow level performance guarantee is

also worth future studies. This dissertation only evaluates FBP on an Openflow

108



software switch based prototype which runs on Linux user space. To evaluate F-

BP’s performance in a more realistic environment, we can implement FBP on a

Network FPGA based hardware Openflow switch prototype. Network FPGA plat-

form not only supports the Openflow protocol, but more importantly, it allows the

implementation of the CICQ switch architecture. In addition, the entire Openflow

switch can work in Linux kernel space which is greatly faster than in the user space.

As a result, the performance evaluation will be more realistic and results will be

more persuasive.

109



BIBLIOGRAPHY

[AC04] A. Aslam and K. J. Christensen. A parallel packet switch with multi-
plexors containing virtual input queues. Computer Communications,
13(13):1248–1263, Aug. 2004.

[AFLV08] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In ACM SIGCOMM, Seattle, WA, Aug.
2008.

[AfRR+10] M. Al-fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vah-
dat. Hedera: dynamic flow scheduling for data center networks. In
USENIX NSDI, San Josa, CA, Apr. 2010.

[AHK10] H. Attiya, D. Hay, and I. Keslassy. Packet-mode emulation of output-
queued switches. IEEE Transactions on Computers, 59(10):1378–1391,
Oct. 2010.

[AMW+10] D. Abts, M. Marty, P. Wells, P. Klausler, and H. Liu. Energy propor-
tional datacenter networks. In ACM/IEEE ISCA, Saint-Malo, France,
Jun. 2010.

[BAM10] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics
of data centers in the wild. In ACM IMC, Melbourne, Australia, Nov.
2010.

[BKB07] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of virtual
machines for managing sla violations. In IFIP/IEEE IM, Munich,
Germany, May 2007.

[BZ96] J. Bennett and H. Zhang. Wf2q: worst-case fair weighted fair queueing.
In IEEE INFOCOM, San Francisco, CA, Mar 1996.

[CFH+05] C. Clark, K. Fraser, S. Hand, F. G. Hansen, E. Jul, C. Limpach, I. Prat-
t, and A. Warfield. Live migration of virtual machines. In USENIX
NSDI, Berkeley, CA, Apr. 2005.

[CFP+07] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Mckeown, and
S. Shenker. Ethane: taking control of the enterprise. In ACM SIG-
COMM, Kyoto, Japan, Aug. 2007.

110



[CG05] L. Cherkasova and R. Gardner. Measuring cpu overhead for i/o process-
ing in the xen virtual machine monitor. In USENIX ATEC, Anaheim,
CA, Apr. 2005.

[CGJ97] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation
algorithms for NP-hard problems. PWS Publishing Co., 1997.

[CGMP99] S. Chuang, A. Goel, N. McKeown, and B. Prabhkar. Matching out-
put queueing with a combined input output queued switch. In IEEE
INFOCOM, New York, NY, Mar. 1999.

[CIM05] S. Chuang, S. Iyer, and N. McKeown. Practical algorithms for perfor-
mance guarantees in buffered crossbars. In IEEE INFOCOM, Miami,
FL, Mar. 2005.

[CJGMV98] E. G. Coffman Jr., G. Galambos, S. Martello, and D. Vigo. Bin pack-
ing approximation algorithm: combinatiorial analysis. Handbook of
Combinatorial Optimization, 1998.

[CMT+11] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Shar-
ma, and S. Banerjee. Devoflow: Scaling flow management for high-
performance networks. In ACM SIGCOMM, Toronto, ON, Canada,
Aug. 2011.

[CZS+11] M. Chen, H. Zhang, Y. Y. Su, X. Wang, G. Jiang, and K. Yoshihira.
Effective vm sizing in virtualized data centers. In IFIP/IEEE IM,
Dublin, Ireland, May 2011.

[dat] U.s. environmental protection agencys data center report to congress.
http://www.energystar.gov/ia/partners/prod_development/

downloads/EPA_Datacenter_Report_Congress_Final1.pdf.

[DKS89] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a
fair queueing algorithm. In ACM SIGCOMM, Austin, TX, Sep. 1989.

[flo] Flowvisor. http://www.openflowswitch.org/wk/index.php/

FlowVisor.

[FSR10] W. Fisher, M. Suchara, and J. Rexford. Greening backbone networks:
reducing energy consumption by shutting off cables in bundled links. In

111



ACM SIGCOMM Workshop on Green Networking, New Delhi, India,
Aug. 2010.

[GET] Man page for gettimeofday. http://www.kernel.org/doc/

man-pages/online/pages/man2/gettimeofday.2.html.

[GHJ+09] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible
data center network. In ACM SIGCOMM, Barcelona, Spain, 2009.

[GI99] A. Goel and P. Indyk. Stochastic load balancing and related problems.
In IEEE FOCS, New York City, NY, Oct. 1999.

[GKP+08] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker. Nox: towards an operating system for networks. ACM SIG-
COMM Computer Communication Review, 38(3):105–110, Jul. 2008.

[GLF+00] D. Grunwald, P. Levis, K. I. Farkas, C. B. Morrey, III, and M. Neufeld.
Policies for dynamic clock scheduling. In USENIX OSDI, San Diego,
CA, Oct. 2000.

[GLL+09] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu. Bcube: a high performance, server-centric network architecture
for modular data centers. In ACM SIGCOMM, Barcelona, Spain, Aug.
2009.

[GLM+08] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. To-
wards a next generation data center architecture: scalability and com-
moditization. In ACM SIGCOMM PRESTO, Seattle, WA, Aug. 2008.

[GWT+08] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: a scal-
able and fault-tolerant network structure for data centers. In ACM
SIGCOMM, Seattle, WA, Aug. 2008.

[GZH+11] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: fair allocation of multiple re-
source types. In USENIX NSDI, Boston, MA, Mar. 2011.

[HMGW08] C. Hyser, B. Mckee, R. Gardner, and B. J. Watson. Autonomic virtual
machine placement in the data center. Technical report, HP Technical
Report HPL-2007-189, Feb. 2008.

112



[HS08] M. Hosaagrahara and H. Sethu. Max-min fairness in input-queued
switches. IEEE Transactions on Parallel and Distributed Systems,
19(4):462–475, Apr. 2008.

[HSG+08] S. He, S. Sun, H. Guan, Q. Zheng, Y. Zhao, and W. Gao. On guar-
anteed smooth switching for buffered crossbar switches. IEEE/ACM
Transactions on Networking, 16(3):718–731, Jun. 2008.

[HSM+10] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown. Elastictree: saving energy in data
center networks. In USENIX NSDI, Berkeley, CA, USA, 2010.

[htb] Hierarchical token bucket theory. http://luxik.cdi.cz/~devik/

qos/htb/manual/theory.htm.

[IAM00] S. Iyer, A. Awadallah, and N. McKeown. Analysis of a packet switch
with memories running slower than the line-rate. In IEEE INFOCOM,
Tel Aviv, Israel, Mar. 2000.

[IM03] S. Iyer and N. McKeown. Analysis of the parallel packet switch archi-
tecture. IEEE/ACM Transactions on Networking, 11(2):314–324, Apr.
2003.

[ipe] Iperf: the tcp/udp bandwidth measurement tool. http://

sourceforge.net/projects/iperf/.

[JCL+ed] H. Jin, T. Cheocherngngarn, D. Levy, A. Smith, D. Pan, J. Liu, and
N. Pissinou. Joint host-network optimization for energy-efficient data
center networking. In IEEE IPDPS, Boston, MA, May 2013 (Submit-
ted).

[JPLP12] H. Jin, D. Pan, J. Liu, and N. Pissinou. Openflow based flow-level
bandwidth provisioning for cicq switches. IEEE Transactions on Com-
puters, 2012.

[JPP11] H. Jin, D. Pan, and N. Pissinou. Parallel packet switch without
segmentation-and-reassembly. In IEEE Global Communications Con-
ference, Houston, TX, Dec. 2011.

[JPXP12] H. Jin, D. Pan, J. Xu, and N. Pissinou. Efficient vm placement with
multiple deterministic and stochastic resources in data centers. In
IEEE GLOBECOM, Anaheim, CA, Dec. 2012.

113



[KAGS11] B. Krishnan, H. Amur, A. Gavrilovska, and K. Schwan. Vm power
metering: feasibility and challenges. ACM SIGMETRICS Performance
Evaluation Review, 38:56–60, Apr. 2011.

[Kat09] R. H. Katz. Tech titans building boom. IEEE Spectrum, 46(2):40–54,
2009.

[KHK09] Y. Kanizo, D. Hay, and I. Keslassy. The crosspoint-queued switch. In
IEEE INFOCOM, Rio de Janeiro, Brazil, Apr. 2009.

[KK01] D. A. Khotimsky and S. Krishnan. Stability analysis of a parallel pack-
et switch with bufferless input demultiplexors. In IEEE ICC, helsinki,
Finland, Jun. 2001.

[Kor06] G. Kornaros. Bcb: a buffered crossbar switch fabric utilizing shared
memory. In EUROMICRO, Cavtat/Dubrovnik, Croatia, Aug. 2006.

[KRT00] J. Keinber, Y. Rabani, and E. Tardos. Allocating bandwidth for bursty
connections. SIAM Journal on Computing, 30:191–217, Apr. 2000.

[KSG+09] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
nature of datacenter traffic: measurements and analysis. In ACM IMC,
Chicago, IL, Nov. 2009.

[KZLK10] A. Kansal, F. Zhao, J. Liu, and N. Kothari. Virtual machine power
metering and provisioning. In ACM SOCC, Indianapolis, IN, Jun.
2010.

[LK10] B. Lin and I. Keslassy. The concurrent matching switch architecture.
IEEE/ACM Transactions on Networking, 18(4):1330–1343, Aug. 2010.

[LS06] H.-I. Lee and S.-W. Seo. Matching output queueing with a multiple
input/output-queued switch. IEEE/ACM Transactions on Network-
ing, 14(1):121–132, Feb. 2006.

[McK99] N. McKeown. The islip scheduling algorithm for input-queued switches.
IEEE/ACM Transactions on Networking, 7(2):188–201, Apr. 1999.

[MGW09] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap: eliminating
server idle power. In ASPLOS, Washington, DC, Mar. 2009.

114



[MH03] L. Mhamdi and M. Hamdi. Output queued switch emulation by a one-
cell-internally buffered crossbar switch. In IEEE GLOBECOM, San
Francisco, CA, Dec. 2003.

[MPF+09] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Rad-
hakrishnan, V. Subramanya, and A. Vahdat. Portland: a scalable
fault-tolerant layer 2 data center network fabric. In ACM SIGCOMM,
pages 39–50, New York, NY, USA, 2009.

[MPZ10] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data
center networks with traffic-aware virtual machine placement. In IEEE
INFOCOM, San Diego, CA, Mar. 2010.

[MRS03] B. Magill, C. Rohrs, and R. Stevenson. Output-queued switch emula-
tion by fabrics with limited memory. IEEE Journal on Selected Areas
in Communications, 21(4):606–615, May 2003.

[MSA+06] N. Mckeown, S. Shenker, T. Anderson, L. Peterson, J. Turner, H. Bal-
akrishnan, and J. Rexford. Openflow: enabling innovation in cam-
pus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, Apr. 2006.

[MSS02] S. Mneimneh, V. Sharma, and K.-Y Siu. Switching using parallel input-
output queued switches with no speedup. IEEE/ACM Transactions on
Networking, 10(5):653–665, Oct. 2002.

[MY10] J. Mudigonda and P. Yalagandula. Spain: Cots data-center ethernet
for multipathing over arbitrary topologies. In USENIX NSDI, San
Josa, CA, Apr. 2010.

[nox] Nox: an openflow controller. http://www.noxrepo.org.

[NUM] Who has the most web servers? http://www.datacenterknowledge.

com/archives/2009/10/13/facebook-now-has-30000-servers/.

[opea] Geni openflow backbone deployment at internet2. http://groups.

geni.net/geni/wiki/OFI2.

[opeb] Openflow 1.0 release. http://www.openflowswitch.org/wk/index.

php/OpenFlow_v1.0.

115



[OPEc] Openflow switch specification version 1.0.0. http://www.openflow.

org/documents/openflow-spec-v1.0.0.pdf.

[PBS+03] C. Patel, C. Bash, R. Sharma, M. Beitelmam, and R. Friedrich. Smart
cooling of data centers. In InterPack, Maui, HI, Jul. 2003.

[PG93] A. Parekh and R. Gallager. A generalized processor sharing approach
to flow control in integrated services networks: the single node case.
IEEE/ACM Transactions on Networking, 1(3):344–357, Jun. 1993.

[PKC07] I. Papaefstathiou, G. Kornaros, and N. ChrysosUsing. Buffered cross-
bars for chip interconnection. In Great Lakes Symposium on VLSI,
Stresa-Lago Maggiore, Italy, Mar. 2007.

[PY07] D. Pan and Y. Yang. Max-min fair bandwidth allocation algorithms
for packet switches. In IEEE IPDPS, Long Beach, CA, Mar. 2007.

[PY08] D. Pan and Y. Yang. Providing flow based performance guarantees for
buffered crossbar switches. In IEEE IPDPS, Miami, FL, Apr. 2008.

[PY09] D. Pan and Y. Yang. Localized independent packet scheduling
for buffered crossbar switches. IEEE Transactions on Computers,
58(2):260–274, Feb. 2009.

[rsv] Resource reservation protocol (rsvp) – version 1 functional specifica-
tion. http://www.ietf.org/rfc/rfc2205.txt.

[sli] Openflow slicing. http://www.openflowswitch.org/wk/index.php/

Slicing.

[SLX10] Y. Shang, D. Li, and M. Xu. Energy-aware routing in data center
network. In ACM SIGCOMM Workshop on Green Networking, New
Delhi, India, Aug. 2010.

[SMLF09] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. Virtual in-
frastructure management in private and hybrid clouds. IEEE Internet
Computing, 13(5):14–22, 2009.

[SPK08] D. Simos, I. Papaefstathiou, and M. Katevenis. Building an foc using
large, buffered crossbar cores. IEEE Design & Test of Computers,
25(6):538–548, Nov. 2008.

116



[SV96] M. Shreedhar and G. Varghese. Efficient fair queuing using deficit
round robin. IEEE/ACM Transactions on Networking, 4(3):375–385,
Jun. 1996.

[SXL07] L. Shi, G. Xia, and B. Liu. Performance guarantees for flow-mapping
parallel packet pwitch. In IEEE IPCCC, New Orleans, LA, Apr. 2007.

[SZ98] I. Stoica and H. Zhang. Exact emulation of an output queueing switch
by a combined input output queueing switch. In IEEE/IFIP IWQoS,
San Francisco, CA, May 1998.

[Tur09] J. Turner. Strong performance guarantees for asynchronous crossbar
schedulers. IEEE/ACM Transactions on Networking, 17(4):1017–1028,
Aug. 2009.

[Val07] P. Valente. Exact gps simulation with logarithmic complexity, and its
application to an optimally fair scheduler. IEEE/ACM Transactions
on Networking, 15(6):1454–1466, Dec. 2007.

[VEP] Edge virtual bridge proposal. http://ieee802.org/1/files/

public/docs2008/new-congdon-vepa-1108-v01.pdf.

[VIR] Virtualbox virtual networking. http://www.virtualbox.org/

manual/ch06.html.

[VT09] H. N. Van and F. D. Tran. Autonomic virtual resource management
for service hosting platforms. In IEEE CLOUD, Vancouver, Canada,
May 2009.

[WMZ11] M. Wang, X. Meng, and L. Zhang. Consolidating virtual machines
with dynamic bandwidth demand in data centers. In IEEE INFOCOM,
Shanghai, China, Apr. 2011.

[WYHL09] B. Wu, K. Yeung, M. Hamdi, and X. Li. Minimizing internal speedup
for performance guaranteed switches with optical fabrics. IEEE/ACM
Transactions on Networking, 17(2):632–645, Apr. 2009.

[XF10] J. Xu and J. A. B. Fortes. Multi-objective virtual machine place-
ment in virtualized data center environments. In IEEE GREENCOM,
Hangzhou, China, Dec. 2010.

117



[XF11] J. Xu and J. A. B. Fortes. A multi-objective approach to virtual ma-
chine management in datacenters. In ACM ICAC, Karlsruhe, Ger-
many, Jun. 2011.

[YRFW10] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable flow-based
networking with difane. In ACM SIGCOMM, New Delhi, India, Aug.
2010.

[ZMB07] X. Zhang, S. Mohanty, and L. Bhuyan. Adaptive max-min fair schedul-
ing in buffered crossbar switches without speedup. In IEEE INFO-
COM, Anchorage, AK, May 2007.

[ZXZ05] H. Zhong, D. Xu, and Z. Zhu. A parallel packet switch supporting
variable-length packets. In IEEE ICCCAS, Hong Kong, China, May
2005.

[ZYLZ10] M. Zhang, C. Yi, B. Liu, and B. Zhang. Greente: Power-aware traffic
engineering. In IEEE ICNP, Koyoto, Japan, Oct. 2010.

118



VITA

HAO JIN

2006 B.S., Electrical Engineering
Nanjing University
Nanjing, China

2012 Doctoral Candidate, Electrical Engineering
Florida International University
Miami, Florida

PUBLICATIONS

H. Jin, T. Cheocherngngarn, D. Pan, J. Liu, J. Andrian and N. Pissinou, “Joint

Host-Network Optimization for Energy-Efficient Data Center Networking,” IEEE

International Parallel & Distributed Processing Symposium, submitted.

H. Jin, D. Pan, J. Xu and N. Pissinou, “Efficient VM Placement with Multiple

Deterministic and Stochastic Resources in Data Centers,” IEEE Global Communi-

cations Conference , Anaheim, CA, Dec. 2012.

T. Cheocherngngarn, H. Jin, J. Andrian, D. Pan and J. Liu, “Depth-first Worst-fit

Search based Multipath Routing for Data Center Networks,” IEEE Global Commu-

nications Conference , Anaheim, CA, Dec. 2012.

H. Jin, D. Pan, J. Liu, and N. Pissinou, “OpenFlow based flow level bandwidth

provisioning for CICQ switches,” IEEE Transactions on Computers, accepted for

publication.

H. Jin, D. Pan and N. Pissinou, “Parallel Packet Switch without Segmentation-and-

Reassembly,” IEEE Global Communications Conference, Houston, TX, Dec. 2011.

S. Jiang, S. Georgekopoulos and H. Jin, “Effects of Periodic Reinforced-Concrete

119



Structures on Power Transmission,” IEEE International Conference on RFID, Or-

lando, FL, Apr. 2012.

H. Jin, D. Pan, J. Liu, and N. Pissinou, “OpenFlow based flow level bandwidth pro-

visioning for CICQ switches,” IEEE International Conference on Computer Com-

munications, Shanghai, China, Apr. 2011.

H. Jin, D. Pan, N. Pissinou, and K. Makki, “Achieving flow level constant perfor-

mance guarantees for CICQ switches without speedup,” IEEE Global Communica-

tions Conference, Miami, FL, Dec. 2010.

120


	Florida International University
	FIU Digital Commons
	11-7-2012

	Host and Network Optimizations for Performance Enhancement and Energy Efficiency in Data Center Networks
	Hao Jin
	Recommended Citation


	Host and Network Optimizations for Performance Enhancement and Energy Efficiency in Data Center Networks

