Florida International University FIU Digital Commons

FIU Electronic Theses and Dissertations

University Graduate School

11-2-2012

Ab Initio Quantum Chemical Studies on Neutral-Radical Reactions of Ethynyl (C2H) and Cyano (CN) with Unsaturated Hydrocarbons

Adeel Jamal Florida International University, adeel.jamal@gmail.com

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Recommended Citation

Jamal, Adeel, "Ab Initio Quantum Chemical Studies on Neutral-Radical Reactions of Ethynyl (C2H) and Cyano (CN) with Unsaturated Hydrocarbons" (2012). *FIU Electronic Theses and Dissertations*. Paper 736. http://digitalcommons.fiu.edu/etd/736

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fu.edu.

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

AB INITIO QUANTUM CHEMICAL STUDIES ON NEUTRAL-RADICAL REACTIONS OF ETHYNYL (C2H) AND CYANO (CN) WITH UNSATURATED HYDROCARBONS

A dissertation in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

CHEMISTRY

by

Adeel Jamal

To: Dean Kenneth Furton College of Arts and Sciences

This dissertation, written by Adeel Jamal and entitled Ab Initio Quantum Chemical Studies on Neutral-Radical Reactions of Ethynyl (C_2H) and Cyano (CN) with Unsaturated Hydrocarbons, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved.

Jeffrey Joens

David Chatfield

Yong Cai

John Zweibel

Alexander Mebel, Major Professor

Date of Defense: November 2, 2012

The dissertation by Adeel Jamal is approved.

Dean Kenneth Furton College of Arts and Sciences

Dean Lakshmi N. Reddi University Graduate School

Florida International University, 2012

© Copyright 2012 by Adeel Jamal

All rights reserved.

DEDICATION

This work is dedicated to the three women in my life; my mother, Farida Jamal, my sister, Rabiya Jamal, and my grandmother, Zubaida Jamal. They were encouraging when times were good and supportive when times were tough. I strive to excel in life because they strived in excelling me in life.

And in loving memory of my late father, Mohammed Jamal, and my late brother, Umer Jamal.

ACKNOWLEDGMENTS

First and foremost, I would like to thank Alexander Mebel, my major professor, for being a mentor, friend, and an inspiration. It was his aid that paved my way through the Doctor of Philosophy process, both from a professional and personal level. He is the reason why I chose theoretical chemistry. I only hope to be a mentor of future scientists the way he was a mentor to me.

A big consideration goes out to my committee members. Dr. Jeff Joens was instrumental in my understanding of physical and quantum chemistry. His style of teaching was very conversational and his ability to reflect abstract concepts using mathematics was refreshing. Dr. David Chatfield has been a part of my memories since I first entered college. His style of teaching made me admire and respect the value of chemistry. Dr. Yong Cai was the graduate director and was integral during the commencement of my graduate studies. Finally, Dr. John Zweibel has been approachable and receptive, despite having the disfamiliarity with the chemical sciences, and his enthusiasm towards quantum chemistry was well appreciated .

Last, but certainly not least, my family and friends for sticking through all these years and being supportive. I couldn't have done this without your love and compassion To Reby Valdi, who has been by my side during much of my graduate studies. A big consideration goes out to my colleagues during my graduate studies, especially Alexander Lander and Armando Pardillo. Our conversations could never get dull as long as we have science to discuss. Nash Naviwala, for being a brother and an uncle. He always believed I can accomplish anything as long as I pursue it. And finally, Jeff West and Marcelo Delgado, for being brothers from another mother, and often times reflections of myself from a parallel universe.

Also, to every person and experience that I have encountered, good or bad, for making me who I am today.

ABSTRACT OF THE DISSERTATION

AB INITIO QUANTUM CHEMICAL STUDIES ON NEUTRAL-RADICAL REACTIONS OF ETHYNYL (C₂H) AND CYANO (CN) WITH UNSATURATED HYDROCARBONS

by

Adeel Jamal

Florida International University, 2012

Miami, Florida

Professor Alexander Mebel, Major Professor

An *Ab Initio*/RRKM study of the reaction mechanism and product branching ratios of neutral-radical ethynyl (C₂H) and cyano (CN) radical species with unsaturated hydrocarbons is performed. The reactions studied apply to cold conditions such as planetary atmospheres including Titan, the Interstellar Medium (ISM), icy bodies and molecular clouds. The reactions of C₂H and CN additions to gaseous unsaturated hydrocarbons are an active area of study. NASA's Cassini/Huygens mission found a high concentration of C₂H and CN from photolysis of ethyne (C₂H₂) and hydrogen cyanide (HCN), respectively, in the organic haze layers of the atmosphere of Titan. The reactions involved in the atmospheric chemistry of Titan lead to a vast array of larger, more complex intermediates and products and may also serve as a chemical model of Earth's primordial atmospheric conditions. The C₂H and CN additions are rapid and exothermic, and often occur barrierlessly to various carbon sites of unsaturated hydrocarbons. The reaction mechanism is proposed on the basis of the resulting potential energy surface (PES) that includes all the possible intermediates and transition states that can occur, and all the products that lie on the surface. The B3LYP/6-311g(d,p) level of theory is employed to determine optimized electronic structures, moments of inertia, vibrational frequencies, and zero-point energy. They are followed by single point higher-level CCSD(T)/cc-vtz calculations, including extrapolations to complete basis sets (CBS) of the reactants and products. A microcanonical RRKM study predicts single-collision (zero-pressure limit) rate constants of all reaction paths on the potential energy surface, which is then used to compute the branching ratios of the products that result. These theoretical calculations are conducted either jointly or in parallel to experimental work to elucidate the chemical composition of Titan's atmosphere, the ISM, and cold celestial bodies.

TABLE OF CONTENTS

CHAPTER		PAGE	
1.		INTRODUCTION	1
	1.	Titan's Chemistry	2
	2.	Photochemical Models	4
	3.	Ethynyl and Cyano Radicals	7
2.		BACKGROUND	10
	1.	Astrochemical Observations	10
	2.	Previous Ab Initio Studies	13
3.		COMPUTATIONAL METHODS	16
	1.	Molecular Orbital Theory	19
		1. Variational Principle	20
		2. Born-Oppenheimer Approximation	21
		3. Self-Consistent Field Method	22
	2.	Ab Initio Quantum Chemistry	23
		1. Hartree-Fock Theory	23
		2. Coupled Cluster Theory	25
	2.	Basis Set	27
		1. Gaussian-Type Functions	27
		2. Split-Valence Functions	29
		3. Polarization Functions	30
		4. Diffuse Functions	30
	-	5. Correlation Consistent Functions	31
	3.	Density Functional Theory	31
		1. Kohn Sham Self-Consistent Field	32
		2. Hybrid Functionals	33
	4.	Statistical Theory of Reaction Rates	34
		1. Transition State Theory	35
		2. Lindemann-Hinshelwood Theory	36
		3. RRK Theory	38
		4. RRKM Formalism	39
		5. Master-Equation Methods	40
4.		C ₂ H RADICAL REACTIONS	42
	1.	$C_2H + Allene$	43
		1. Reaction Mechanism	43
	_	2. Product Brancing Ratios	56
	2.	C_2H + Methylacetylene	61
		1. Reaction Mechanism	62
		2. Product Brancing Ratios	66
	3.	$C_2H + 1,3$ -Butadiene	68

		1. Reaction Mechanism	69
		2. Product Brancing Ratios	71
	4.	$C_2H + 1,2$ -Butadiene	72
		1. Reaction Mechanism	72
		2. Product Brancing Ratios	82
	5.	$C_2H + 1$ -Butyne	84
		1. Reaction Mechanism	86
		2. Product Brancing Ratios	97
	6.	$C_2H + 2$ -Butyne	100
		1. Reaction Mechanism	101
		2. Product Brancing Ratios	103
5.		CN RADICAL REACTIONS	104
	1.	CN + Diacetylene	104
		1. Reaction Mechanism	105
	2.	CN + 1,2-Butadiene	107
		1. Reaction Mechanism	108
		2. Product Brancing Ratios	114
	3.	CN + 1- Butyne	116
		1. Reaction Mechanism	117
		2. Product Brancing Ratios	121
	4.	CN + 2-Butyne	123
		1. Reaction Mechanism	124
		2. Product Brancing Ratios	126
6.		COMPARISONS WITH EXPERIMENT	128
	1.	Reaction of $C_2H + C_3H_4$	128
	2.	Reaction of $C_2H + 1,3$ -Butadiene	130
	3.	Reaction of $C_2H + 1$ -Butyne	133
	4.	Reaction of CN + Diacetylene	140
7.		CONCLUSIONS	143
	1.	H-loss vs CH ₃ -loss Reaction Channels	144
	2.	Isoelectronic Product Comparisons	148
RE	EFEI	RENCES	150
AF	PE	NDICES	157
VI	ТΔ		276
V I	ıл		270

LIST OF TABLES

TABLE	PAGE
Table 4.1: Product Branching Ratios of C ₂ H + allene	58
Table 4.2: Product Branching Ratios of C ₂ H + methylacetylene	67
Table 4.5: Product Branching Ratios of C ₂ H + 1-butyne	98
Table 4.6: Product Branching Ratios of C ₂ H + 2-butyne	103
Table 5.2: Product Branching Ratios of CN + 1,2-butadiene	115
Table 5.3: Product Branching Ratios of CN + 1-butyne	122
Table 5.4: Product Branching Ratios of CN + 2-butyne	127
Table 6.3: Adiabadic & Vertical Ionization Potential of C_2H + 1-butyne	e 139
Table A1: Ab Initio Parameters of $C_2H + C_3H_4$	157
Table A2: RRKM Rate Constants of $C_2H + C_3H_4$	175
Table A3: Ab Initio Parameters of C ₂ H + 1,3-butadiene	177
Table A4: Ab Initio Parameters of C ₂ H + 1,2-butadiene	183
Table A5: RRKM Rate Constants of C ₂ H + 1,2-butadiene	216
Table A6: Product Branching Ratios of C ₂ H + 1,2-butadiene	218
Table A7: Ab Initio Parameters of C_2H + 1- and 2-butyne	222
Table A8: RRKM Rate Constants of $C_2H + 1$ - and 2-butyne	245
Table A9: Product Branching Ratios of $C_2H + 1$ - and 2-butyne	251
Table A10: Product Branching Ratios of C ₂ H + 1- and 2-butyne	252
Table A11: Ab Initio Parameters of CN + 1- and 2-butyne	253
Table A12: RRKM Rate Constants of CN + 1- and 2-butyne	272
Table A13: RRKM Rate Constants of CN + 1,2-butadiene	273

Table A14: Product Branching Ratios of CN + 1- and 2-butyne	274
Table A15: Product Branching Ratios of CN + 1,2-butadiene	275

LIST OF FIGURES

FIGURE	PAGE
Figure 1.2a: Photochemical Model Producing Ethynyl Radical	5
Figure 1.2b: Photochemical Model Producing Cyano Radical	7
Figure 4.1a: PES of C_2H + allene	45
Figure 4.1b: Potential Energy Map of C_2H + allene	49
Figure 4.1c: PES of cyclopentadienyl decomposition	52
Figure 4.2a: PES of C_2H + methylacetylene	63
Figure 4.2b: Potential Energy Map of C_2H + methylacetylene	64
Figure 4.3a: PES of $C_2H + 1,3$ -butadiene	70
Figure 4.4a: PES of terminal addition of $C_2H + 1,2$ -butadiene	75
Figure 4.4b: Potential Energy Map of terminal addition	76
Figure 4.4c: Potential Energy Map of central addition	78
Figure 4.4d: PES of central addition to C2 of $C_2H + 1,2$ -butadiene	79
Figure 4.4e: PES of central addition to C3 of $C_2H + 1,2$ -butadiene	81
Figure 4.5a: PES of terminal addition of C_2H + 1-butyne	88
Figure 4.5b: PES of central addition of $C_2H + 1$ -butyne	90
Figure 4.5c: Potential Energy Map of C ₂ H + 1-butyne	92
Figure 4.6a: PES of C_2H + 2-butyne	102
Figure 5.1a: PES of CN + diacetylene	106
Figure 5.2a: PES of terminal addition of CN + 1,2-butadiene	109
Figure 5.2b: PES of central addition to C2 of CN + 1,2-butadiene	111
Figure 5.2c: PES of central addition to C3 of CN + 1,2-butadiene	113

Figure 5.3a: PES of terminal addition of CN + 1-butyne	117
Figure 5.3b: PES of central addition of CN + 1-butyne	119
Figure 5.4a: PES of CN + 2-butyne	125
Figure 7.1a: Overall reactions studied for C ₂ H addition	145
Figure 7.1b: Overall reactions studied for CN addition	146

INTRODUCTION

The neutral-radical reactions of unsaturated hydrocarbons with radicals has been an active area of research in astrochemistry, since it involves studies of gas-phased constituents of planetary atmospheres, the Intersteller Medium (ISM), and icy bodies such as comets. The neutral free radicals are generated through photodissociation processes from irradiation directly from the sun or deflections from neighboring planetary bodies. Being free radicals, they are highly reactive and react readily in addition-type reactions with any molecular species they encounter. The radical addition can occur to several possible sites on an unsaturated hydrocarbon, yielding a vast amount of larger, more complex products that can result.^{23-35, 55-64} The products are generated either immediately upon the radical addition to the unsaturated hydrocarbon or through various isomerization steps including cyclizations, followed by an atom or polyatomic group loss.

The neutral-radical reactions of unsaturated hydrocarbons in the atmosphere of Titan, Saturn's biggest moon, is an active topic since NASA's Cassini/Hyugens mission in 2004.³⁻²⁸ Titan has atmospheric conditions and constituents similar to what is considered to of early Earth. It also has a hydrocarbon-rich haze layer analogous to Earth's ozone layer. Understanding the reactions involved, starting from those of simple free radicals with unsaturated hydrocarbons that produce larger, more complex products, is paramount in understanding the vast and rich chemistry found on Earth, both living and nonliving. One of the simplest unsaturated hydrocarbon free radical is ethynyl radical, C_2H (X² Σ^+), while the simplest nitrogen-bearing unsaturated free radical is cyano radical,

1.

CN $(X^2\Sigma^+)$, ultimately produced from photochemical reactions initiating from methane (CH₄) and nitrogen (N₂), the second and first most abundant atmospheric constituent of Titan, respectively.⁵⁻²⁰

This *ab initio* quantum chemistry study of neutral-radical reactions with unsaturated hydrocarbons consists of two fundamental parts. The first is an investigation of the reaction mechanism, derived from quantum chemical calculations of the ethynyl or cyano addition reaction to the unsaturated hydrocarbon. From this, the full potential energy surface is constructed, which includes all of the individual reaction species and steps, including the intermediates that exist from isomerizations and the barriers that must be overcome through a transition state. Highly accurate electronic energies, optimized electronic structures, moments of inertia, and vibrational frequencies are calculated. The second fundamental part is a quantitative kinetic treatment of the forward and reverse individual reaction steps. Once the reaction rates are known, the product distribution or branching ratios can be determined through steady-state calculations, giving the relative yield of the products. The reactions studied are either coupled either jointly or in parallel with experiments to determine the reaction mechanisms and product branching ratios of the atmospheric constituents of Titan.

1.1 Titan's Chemistry

In 1997, the Cassini/Huygens spacecraft was launched as a joint collaborative mission from the National Aeuronatical Space Administration (NASA), European Space Agency (ESA), and Italian Space Agency (ASI). The mission was aimed at studying the

planetary bodies of the outer solar system, including Saturn and its many natural satellites, or moons, such as Titan.⁸⁷ The spacecraft contained the Cassini orbiter, used for fly-by studies of Saturn, its rings, and its many moons, and the Huygens probe, aimed specifically for studying Titan's atmosphere and surface. It contained several on-board spectrometers and imaging instruments, including a gas chromatograph to separate constituents, mass spectrometer to analyze the mass and defragmenting patterns of the constituents, and a pyrolyzer to analyze aerosols. In mid 2004, the spacecraft finally reached Saturn, and at the end of 2004, the Huygens probe separated from the orbiter and entered Titan's atmosphere where it descended and landed in the beginning of 2005. Along its descent, it analyzed the atmospheric constituents at various altitudes.

The atmospheric chemistry of Titan has been an active area of research from the Hyugens findings. Many astrochemists and planetary scientists consider it to be a planetary scale laboratory and analogous to pre-biotic Earth. The rich chemistry found on Titan is analogous to a frozen pre-biotic Earth and is a model for the complex chemistry including that of life found on Earth.⁸⁷ It is the second largest moon in our solar system and its volume is larger then the planet Mercury. Titan is the only planetary body besides Earth that has a thick atmosphere of 1.5 atm, liquid bodies on its surface, and an organic hydrocarbon haze layer analogous to the Earth's ozone layer. Like Earth, its atmosphere is very dense mainly nitrogen based, and contains hydrocarbons to a lesser extent. Of these, methane is the prevalent atmospheric constituent. Methane is so abundant that it condenses out and forms into methane clouds that rain liquid methane, which eventually forms methane lakes and rivers in its higher altitude polar caps; these lakes and rivers also contain significant amounts of ethane. The trace constituents include molecular

clouds of many small unsaturated hydrocarbons. Nitrogen accounts for 98.4% of the atmospheric constituent, while methane accounts for 1.4% and the remainder 0.2% are unsaturated hydrocarbons. The simplest of these unsaturated hydrocarbons is acetylene (C_2H_2) , while hydrogen cyanide (HCN) is the simplest unsaturated N-containing hydrocarbon.⁵⁻¹⁹

The opaque haze layer is rich in hydrocarbons and shields Titan from the constant bombardment of ultraviolet rays and charged particles coming from the Sun and deflections from Saturn's magnetic poles, thus acting like a pre-biotic ozone layer.³⁻²⁸ It is these ultraviolet rays and charged particles that initiate chemical reactions, such as photolysis of the simplest unsaturated hydrocarbons and N-bearing hydrocarbons such as acetylene and hydrogen cyanide, respectively.

1.2 Photochemical Models

The photochemical models are important because they start from the simplest atmospheric constituents, and are developed to describe most of the atmospheric species and processes that result through photochemistry from the Sun, giving rise to atmospheric free radicals from simple photodissociation reactions. It is these atmospheric free radicals that react with other stable gas-phased species, such as unsaturated hydrocarbons, that this work aims to study. Starting from methane, the most abundant hydrocarbon of Titan, several photochemical reactions must take place to eventually produce ethynyl radical, the simplest unsaturated free radical.¹⁸ Figure 1.2a illustrates all of the photochemical reaction models starting with methane.

Figure 1.2a. A photochemical model starting with methane that shows the formation of ethynyl radical.

First, methane photodissociates to form methyl radical by the following reaction:

$$CH_4 \rightarrow CH_3 + H$$

Methyl radical, being the simplest free radical, combines with another methyl radical to produce ethane, C_2H_6 . Ethane can then lose one or two H_2 molecules through photodissosication processes and collisions with a third-body, respectively, to produce

ethane (C_2H_4) and acetlylene (C_2H_2), respectively. Acetylene can further photodissociate to produce ethynyl radical + H:

$$C_2H_2 \rightarrow C_2H + H$$

Alternatively, ethynyl radical can be produced from gas-phased C₂ reaction with an H atom:

$$C_2 + H \rightarrow C_2 H$$

Cyano radical formation occurs through similar photochemical reactions, starting with the most abundant atmospheric constituent, nitrogen gas (N_2) . Here, the nitrogen molecule splits into two nitrogen atoms, which reacts with atmospheric methyl radical and/or ethynyl radical to form H₂CN. After an H-loss, the stable hydrogen cyanide (HCN) forms. Hydrogen cyanide photodissociates into cyano radical by the following reaction:

$$HCN \rightarrow CN + H$$

Alternatively, two equivalents of cyano radical can be generated by the photochemical cleavage of cyanogen (C_2N_2). Cyanogen is formed by a self-recombination reaction of HC₂N.

Figure 1.2b. A photochemical model starting with nitrogen that shows the formation of cyano radical.

1.3 Ethynyl and Cyano Radicals

My work will address the hypothesis that the ethynyl radical can efficiently react with unsaturated hydrocarbons and these reactions prefer a C_2H -for-H reaction mechanism, which causes a two carbon-unit growth, while competing with the C_2H -for-CH₃ reaction mechanism, which causes a CH₂-unit growth. For the former reaction mechanism, ethynyl radical associates barrierlessly to the unsaturated hydrocarbon in either the terminal carbon or one of the central carbons of the unsaturated hydrocarbon, causing a growth of the unsaturated hydrocarbon moiety by two carbon units and one hydrogen. Then, any number of different H-losses (via the C₂H-for-H reaction mechanism) can occur, leading to a product that is larger by two carbon units. The latter reaction mechanism adds ethynyl radical to the unsaturated hydrocarbon barrierlessly as well, however, a CH₃-loss occurs (opposite to an H-loss), which results in a product that is one carbon larger, yet three hydrogen atom deficient. These products can form either instantly upon ethynyl radical addition to the unsaturated hydrocarbon, or after various isomerization steps (that may include cyclization/decyclization processes). For the case of cyano radical reaction mechanisms with unsaturated hydrocarbons, the CN-for-H reaction mechanism competes with the CN-for-CH₃ reaction mechanism in a similar fashion to the ethynyl radical addition mechanisms. The overall reaction scheme for the C₂H-for-H and C₂H-for-CH₃ mechanism to an unsaturated hydrocarbon of the form C_xH_y can be summarized as:

$$C_{2}H + C_{x}H_{y} \rightarrow C_{x+2}H_{y+1} \rightarrow C_{x+2}H_{y} + H$$
$$C_{2}H + C_{x}H_{y} \rightarrow C_{x+2}H_{y+1} \rightarrow C_{x+1}H_{y-2} + CH_{3}$$

Here, both the first and second equations depict a potential energy surface of $C_{x+2}H_{y+1}$ which arose from the addition of an ethynyl radical to one of many sites of the C_xH_y unsaturated hydrocarbon. Then, any number of isomerization steps can occur, followed by either a loss of an H, giving a $C_{x+2}H_y$ product as shown in the first equation, or a loss of CH₃, giving a $C_{x+1}H_{y-2}$ product as shown in the second equation. Similarly,

for the case of cyano radical addition, the overall reaction scheme for the CN-for-H and CN-for-CH₃ mechanism to an unsaturated hydrocarbon of the form C_xH_y can be summarized as:

$$CN + C_xH_y \rightarrow C_{x+1}H_yN \rightarrow C_{x+1}H_yN + H$$

 $CN + C_xH_y \rightarrow C_{x+1}H_yN \rightarrow C_xH_{y-3}N + CH_3$

Both of the equations show a $C_{x+1}H_yN$ potential energy surface from the addition of a cyano radical to a C_xH_y unsaturated hydrocarbon. Isomerization steps can occur in the $C_{x+1}H_yN$ PES as well, which eventually leads either to a $C_{x+1}H_yN$ or $C_xH_{y-3}N$ product from H-loss or CH₃-loss, respectively.

Our second hypothesis addresses the overall products that result between the two isoelectronic radicals, ethynyl and cyano radical; the products of these two reactions should be isoelectronically equivalent, where the CH moiety of ethynyl radical is replaced by the N moiety of cyano radical. For instance, reactions of ethynyl radical and cyano radical with a specific unsaturated hydrocarbon should result in an isoelectronic equivalent product.

BACKGROUND

In this chapter, a survey of previously studied reactions of ethynyl radical and cyano radical with unsaturated hydrocarbons will be addressed, both from an experimental and a theoretical stand-point. This chapter is divided into two fundamental parts, one addressing astrochemical observations and the other describing previous ab initio studies that included these astronomical species and therefore are useful to be incorporated into astrochemical models. Overall, it is important to compare the reactions studied in this work to those that have been previously studied for the sake of consistency and the inclusion of novel systems that produce important planetary and intergalactic constituents. These constituents include polyenes (unsaturated hydrocarbons with one or more double bonds), polyynes (unsaturated hydrocarbons with more than one triple bonds), polyenynes (unsaturated hydrocarbons with one or more double bonds and one or more triple bonds), cyclic structures including aromatics, and polycyclic structures including polycyclic aromatic hydrocarbons (PAHs). Their nitrogen-bearing counterparts includes cyanopolyenes, cyanopolyynes, N-containing cyclic structures including Ncontaining aromatics, and N-containing PAHs (N-PAHs).

2.1 Astrochemical Observations

Of the over 150 different molecular species detected in the interstellar and circumstellar media, approximately 50 contain 6 or more atoms.¹¹¹ Polyynes and cyanopolyynes have been implicated in the astrochemical evolution of the interstellar

2.

medium such as of cold molecular clouds such as TMC-1, the planetary nebula CRL 618, and the circumstellar envelope of the carbon star IRC+10216.¹¹² In cold molecular clouds, all cyanopolyynes up to HC₆N have been detected.¹¹² Diacetylene H-(C=C)₂–H and triacetylene H-(C=C)₃–H have been monitored toward CRL 618.

Polycyclic aromatic hydrocarbons (PAHs) and related species such as (de)hydrogenated, ionized, and substituted PAHs are presumed to be ubiquitous in the interstellar medium (ISM). Today, PAH-like species account for up to 30% of the cosmic carbon, they have been implicated in the chemical evolution of the interstellar medium, and provide critical nucleation sites for the formation of carbonaceous dust particles.¹⁰³ They are thought to play an important role in astrobiology. Formation of PAH has been modeled in carbon-rich circumstellar envelopes. They have been also linked to the unidentified infrared (UIR) emission bands observed in the range of 3-14 μ m (3300-700 cm⁻¹)ⁱ and to the diffuse interstellar bands (DIBs), discrete absorption features superimposed on the interstellar extinction curve ranging from the blue part of the visible (400 nm) to the near-infrared (1.2 μ m). Although significant works have been dedicated to the observation of PAHs and their aromatic building blocks in the interstellar medium, only benzene was proposed to exist in the protoplanetary nebula CRL-618.¹⁰³

The remainder of this section will focus on atmospheric constituents that have been either already been observed on Titan, or could possibly form from reactions with ethynyl or cyano radical and unsaturated hydrocarbons. The simplest members of the polyacetylene and cyanopolyyne families that have been observed in the gas phase on Titan is diacetylene and cyanoacetylene.¹¹² Dicyanodiacetylene is suggested to exist as a solid on Titan. The cyanoacetylene molecule is known to be formed in the Miller–Urey

experiment, an experiment which presumably mimics the chemical processing of the atmosphere of early Earth.¹¹³ Since the C₂H addition is highly exothermic and takes place without a barrier, with the final dissociation products lying lower in energy than the initial reactants, the reactions of the ethynyl and cyano radical with unsaturated hydrocarbons are fast even at very low temperatures and hence can drive the growth of complex hydrocarbon molecules under low-temperature conditions.⁸³⁻⁹⁰ Detections via Gas Chromatograph-Mass Spectrometer (GC-MS) aboard the Huygens probe and recent photochemical models based on the vertical temperature profile derived by the Huygens Atmospheric Structure Instrument (HASI) suggest Titan lakes to consist of about 76-79% ethane, 7-8% propane, 5-10% methane, 2-3% hydrogen cyanide, and less then 1% of butane, butane, and acetylene.¹⁰⁷ A large fraction of the major unsaturated species C_2H_2 , $C_{2}H_{4}$, HCN, and HC₃N with mixing ratios of about 3×10^{-6} , 10^{-7} , 10^{-8} , respectively, reside in Titan's atmosphere between 150 and 500 km before they condense near the tropopause. Titan's haze layer, located in the mesosphere, is a hub of rich organic molecules.¹⁰⁸ It contains aerosols that span to the troposphere, and contain key compounds such as benzene, the simplest aromatic, thought to be the starting point towards PAH formation. Laavas et. al.¹¹⁴ modeled the formation of aerosol through the growth of PAHs. In their simulations, benzene produced in the thermosphere reacts with radical species and grows to form larger aromatic structures. The large abundance of benzene that is observed in Titan's thermosphere by Vuitton¹¹⁵ and co-workers, the discovery of heavy ions of several hundred amu's by Coates and co-workers¹¹⁶ and neutral molecules up to 91 amu observed by Vuitton¹¹⁵ and co-workers in the upper atmosphere, as well as PAHs with two or three rings detected above 950 km by Crary and

co-workers with the Cassini/CAPS-IBS sensor,¹¹⁷ all strongly support the formation of aerosols at much higher altitudes in Titan's atmosphere than previous thought prior to the Cassini mission. Aside from aromatics and PAHs, a whole array of straight chain and branched hydrocarbons and nitrogen bearing hydrocarbons exist. The next section covers the evolution and fate of these hydrocarbons. Methane plays an important role in the thermal structure of the atmosphere through the greenhouse effect caused by CH_{4-} N₂ collisions as reported by Lorenz and co-workers¹¹⁸, and through the anti-greenhouse effect due to the formation of the haze via photolysis. Titan's methane cycle may be analogous to the hydrological cycle on Earth. Retrieving the methane vertical profile provides information regarding the relative degree of methane condensation and CH_{4-} N₂ saturation, and the recycling of gaseous methane via surface–atmosphere interactions.

2.2 Previous Ab Initio Studies

Extensive crossed-beam and *ab initio* work exists in the literature that involves either carbon (C) or dicarbon (C₂) atom reactions with unsaturated hydrocarbons. They start from the simplest unsaturated hydrocarbon, ethene, and continue with an increase in the carbon chain length to systems as big as six carbons, such as benzene (C₆H₆). However, the focus of this section will be towards reactions that involve C₂H, since this is the simplest hydrocarbon bearing two carbons. Furthermore, it is one of the main reactants of this work. Noteworthy is an emerging research area with other radical reactants simpler then C₂H, which include CH₃, CH₂, and CH. This sudy, however, will focus on C₂H and CN.

Since C_2H arises from acetylene (C_2H_2) as discussed in the last chapter, a natural starting point is C₂H additions to the simplest unsaturated hydrocarbon, ethyne. Le et. al.⁸³ showed this reaction forms diacetylene (C_4H_2) almost exclusively. Ethene (C_2H_4)^{28,29} is similar to acetylene but bears a double bond instead of a triple bond, and consequently two more hydrogens. C_2H additions to ethene has been performed by Bouwman and coworkers¹⁰² and showed exclusive formation of vinylacetylene (C₄H₄). Next in the series of reactions involving C₂H would be to increase the carbon chain length to allene and methylacetylene (C_3H_4). This reaction is studied in this work and its results are given in the successive chapters.⁸⁶ Having one less degree of unsaturation from C₃H₄ leads to propene (C_3H_6) .^{54,102} Reactions of C₂H with propene (C_3H_6) have also been studied by Bouwman and co-workers¹⁰², who found $85 \pm 10\%$ vinylacetylene (C₄H₄) to form via CH_3 -loss and the remainder being C_5H_6 isomers of mainly 4-penta-1-yne via H-loss. Next up the hierarchy of carbon chain length brings us to four carbons. The simplest four carbon system is diacetylene (C_4H_2). Landera and co-workers^{30,56} studied C_2H + diacetylene, which almost exclusively forms triacetylene (C₆H₂). For C₄H₄, several isomers exist. They are vinylacetylene, butatriene (cumulene), and cyclobutadiene. Zhang et. al.¹⁰³ studied C₂H additions to vinylacetylene, and showed its implications of leading to PAHs by the formation of ortho-benyzyne (C_6H_4). Reactions of C_2H with butatriene and cyclobutadiene have not been reported in the literature. For the reactions of C₂H with C₄H₆, this work encompasses all of the reactions involved with the C₄H₆ isomers, including 1,3-butadiene,¹¹² 1,2-butadiene,⁹⁷ 1-butyne, and 2-butyne.⁸⁹ Their results are given in successive chapters. Finally, the last class of compounds with four carbons are of the C₄H₈ isomers 1- and 2-butene. Reactions of C₂H with these isomers has not been

reported in the literature. Similarly, there has been no reported studies of C_2H with any unsaturated hydrocarbons with five carbons (i.e. C_5H_4 , C_5H_8 , etc.). For the case of six carbons, although C_2H additions to systems such as benzyne (C_6H_4) has not been reported, extensive work has been conducted towards C_6H_6 since key compounds such as benzene bear the C_6H_6 molecular formula. For instance, Jones et. al.¹⁰⁴ studied the formation of phenylacetylene (C_8H_6) from C_2H additions to benzene. Although there isn't any studies on seven carbon systems such as toluene (C_7H_8), C_2H additions to styrene (C_8H_8)⁸⁴ has shown to produce substituted naphthalene ($C_{10}H_9$ and $C_{12}H_9$) at low temperatures relevant to Titan. Reactions of larger unsaturated hydrocarbons with ethynyl radical is an active area of research, however, most of their applications are towards combustion chemistry since addition to a PAH ring usually involves a barrier. Here, the C_2H is generated from acetylene flames and often involves other radicals such as phenyl radical (C_6H_5).

Our focus will now divert to reactions involving the isoelectronic equivalent to C_2H , namely CN. Again, starting from the simplest unsaturated hydrocarbon, acetylene (C_2H_2) , Huang and co-workers¹⁰⁵ showed CN addition to C_2H_2 yields about 85% of cyanoacetylene (HC₃N). Balucani and co-workers¹⁰⁶ studied CN additions to a whole host of unsaturated hydrocarbons, including ethylene (C_2H_4), allene and methylacetylene (C_3H_4), and benzene (C_6H_6). CN additions to diacetylene (C_4H_2)⁹⁹, a long with the C_4H_6 isomers of 1,2-butadiene, 1-butyne, and 2-butyne is covered in this work, and is presented in the successive chapters.

COMPUTATIONAL METHODS

3.

The reaction mechanism of a radical reactant species with an unsaturated hydrocarbon is determined by the potential energy surface (PES) of the radical bonded onto a site on the unsaturated hydrocarbon. The reaction begins with initial adducts or intermediates that are usually exothermic, based upon the addition site on the unsaturated hydrocarbon. The radical additions can occur on either the terminal carbon(s), any one of the center carbon(s), or the sp²- or the sp-hybridized bonds of the unsaturated hydrocarbon.⁵⁵⁻⁶⁴ For some radicals, these additions may occur barrierlessly in cold conditions such as interstellar media, planetary and icy bodies, resulting to a plethora of individual reaction steps that leads to products. The situation is different in the hot conditions of combustion flame, where the radical additions occurring with a barrier are also possible and the entrance barrier height often dictates the reaction paths and products. After the formation of the initial adduct, several isomerization steps can occur, including 1,2-, 1,3-, 1,4- and 1,5-hydrogen shifts, cyclization and decycyclization processes, shift of moieties, etc. All of the isomerization reaction barriers compete with product forming reaction barriers in each individual step. These product forming reaction barriers may lead to a hydrogen H-loss, a methyl CH₃-loss, an ethyl C₂H₅-loss, and/or a vinyl C₂H₃-loss products. Noteworthy that based on the initial adduct that forms (i.e. which carbon of the unsaturated hydrocarbon the radical species initially bonds to), a certain product will form. Therefore, it is important to address the energetically favorable paths to product forming based upon the initial adduct that forms.

The structures of all of the reactants, products, intermediates, and transition states studied were calculated in this study using density functional theory employing the Becke, three-parameter, Lee-Yang-Parr (B3LYP) hybrid-functional.⁴² The basis functions used with the B3LYP functional is the Pople-type split-valence 6-311g(d,p) basis set, which includes six primitives for the core functions and a valence triple- ζ basis for the valence functions.⁴³ The basis set also includes polarization functions of d for carbon and p for hydrogens. Optimized geometries in Cartesian coordinates, moments of inertia, vibrational frequencies, and zero-point energy (ZPE) were obtained using the B3LYP/6-311g(d,p) level of theory. The optimized structure was used for single-point energy calculations at a higher level of quantum chemistry, usually at the coupled cluster with singles, double, and perturbed triple excitation level of theory (CCSD(T)). This level of theory is considered the "gold standard" in the computational chemistry community. Dunning's correlation-consistent polarized triple zeta (cc-pVTZ) basis set was used with the CCSD(T) calculations.⁴⁴⁻⁴⁸ The CCSD(T)/cc-pVDZ, CCSD(T)/cc-pVTZ, and CCSD(T)/cc-pVQZ were assigned cardinal number 2, 3, and 4, respectively, and substituted into the following formula⁴⁸:

$$E_{\text{tot}}(x) = E_{\text{tot}}(\infty) + Be^{-C}$$

where x is the cardinal number of the basis set (2, 3, and 4) and $E_{tot}(\infty)$ is the CCSD(T)/CBS total energy. Basis set extrapolations to the infinite, or complete basis set (CBS) limit was done for the reactants and all of the products by also calculating the coupled cluster energy at the double-zeta basis set (CCSD(T)/cc-pVDZ) and quadruple-

zeta-basis set (CCSD(T)/cc-pVQZ) levels of theory. It should be noted that the T1 diagnostic values in CCSD(T) calculations were within 0.01-0.02 for all species on the PES indicating that their wave functions do not exhibit a strong multi-reference character and thus the CCSD(T) approach should be reliable for energy evaluation. We expect that our CCSD(T)/CBS + ZPE(B3LYP/6-311G**) relative energies should be accurate within 1-2 kcal/mol.⁵⁶⁻⁶⁴

Single-collision (zero-pressure limit) microcanonical rate constants for each reaction step were calculated using the Rice-Ramsperger-Kassel-Marcus (RRKM) theory.⁵¹⁻⁵³ This theory is an *ab initio* quantum mechanical variation of transition state theory (TST) and uses the calculated energies, individual reaction steps, and vibrational frequencies to calculate forward and reverse rate constants as functions of the internal energy, k(E). According to RRKM theory, the rate constant k(E) at an internal energy E for a unimolecular reaction $A^* \rightarrow A^{\#} \rightarrow P$ can be expressed as⁵⁶⁻⁶⁰:

$$k(E) = \frac{\sigma W^{*}(E - E^{*})}{h\rho(E)}$$

where σ is the reaction path degeneracy, *h* is the Plank constant, $W^{\#}(E-E^{\#})$ denotes the total number of states for the transition state (activated complex) A[#] with a barrier $E^{\#}$, $\rho(E)$ represents the density of states of the energized reactant molecule A*, and P is the products.

The following sections provide a more in-depth description and derivations of the theories involved in these calculations.

Molecular Orbital Theory

3.1.

Quantum Mechanics (QM) is the foundation of *ab initio* quantum chemistry. It describes the phenomenon that occurs at the atomic and subatomic level, which includes electrons and nuclei, in contrast to Classical Mechanics (CM) which describes processes at the macroscopic level from condensed phases to planetary motion. The heart of quantum mechanics lies in the operator-expectation value approach, which is generally stated as:

$\hat{O}\Psi = O\Psi$

Here, the operator \hat{O} operates on a wave function Ψ is equal to the product of the observable O and the wave function. The observable O is a scalar property of the system that results from a particular operator. When this equation holds true, the wave function Ψ is considered an eigenfunction and the observable O is considered an eigenvalue. However, a more practical representation is the Schrödinger equation⁹⁰, which succinctly states:

$\hat{H}\Psi = E\Psi$

Here the \hat{H} is the Hamiltonian operator describing the wave function and E is the total energy of the system. This is the common form found as a starting point in many

quantum mechanical formalisms. For an electronic time-independent implementation of the Hamiltonian, it is described as^{91,92}:

$$\hat{\mathbf{H}} = -\sum_{i} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} - \sum_{k} \frac{\hbar^{2}}{2m_{k}} \nabla_{k}^{2} - \sum_{i} \sum_{k} \frac{e^{2}Z_{k}}{r_{ik}} \nabla_{i}^{2} + \sum_{i < j} \frac{e^{e}}{r_{ij}} + \sum_{k < l} \frac{e^{e}Z_{k}Z_{l}}{r_{il}}$$

where $\hbar = \frac{h}{2\pi}$ and $\nabla_i^2 = \frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + \frac{\partial^2}{\partial z_i^2}$. The Hamiltonian consists of two

fundamental parts, the first two terms relate to the kinetic energy of the electrons and nuclei, respectively, while the last three terms describe the potential energy of the subatomic particles: the interactions of the electron with the nuclei, the electron-electron repulsions, and the nuclei-nuclei repulsions, respectively.

3.1.1. Variational Principle

If we assign an arbitrary function, Φ , which is an eigenfunction for the Shrödinger equation, and since we defined the set of orthonormal wave functions Ψ_i to be complete, the function Φ must be some linear combination of the Ψ_i as shown below:

$$\Phi = \sum_{i} c_{i} \Psi_{i}$$

An exact solution of the Schrödinger equation for any atomic or molecular system with more then one electrons cannot be achieved. However, approximate solutions can be found using the variational principle. ^{91,92} In the set of all E_i there must be a lowest energy value corresponding to the ground state, E_0 . By combining equations, it follows that:

$$\int \Phi H \Phi \partial r - E_o \int \Phi^2 \partial r = \sum_i c_i^2 (E_i - E_o)$$

Assuming the coefficients c_i and E_i-E_o are real positive numbers, we get:

$$\frac{\int \Phi H \Phi \partial r}{\int \Phi^2 \partial r} \ge E_o$$

When Φ is normalized, we get the variational principles result of: $\int \Phi H \Phi \partial r \geq E_{o}$. The variational principle provides a mathematical way to find the Schrödinger equation solutions through minimization of a function, here $\int \Phi H \Phi \partial r$. The equation resulting from such minimaztion process is called a secular equation and its form and complexity depends on the form of the chosen wavefunction Φ .

3.1.2. Born Oppenheimer Approximation

The nuclei of molecular systems are moving much more slowly than the electrons. It is convenient to compute the electronic energies for fixed nuclear positions by decoupling it from electronic motion. Correlation in the attractive electron-nuclear potential energy term is eliminated, and the repulsive nuclear-nuclear potential energy
term becomes a constant for a given geometry. The electronic Schrödinger equation becomes the Born-Oppenheimer approximation^{91,92}:

$$(H_{\rm el} + V_{\rm N})\Psi_{\rm el}(q_{\rm i};q_{\rm k}) = E_{\rm el}\Psi_{\rm el}(q_{\rm i};q_{\rm k})$$

The Born-Oppenheimer has very profound consequences including the concept of a potential energy surface (PES), the surface defined by E_{el} over all possible nuclear coordinates. This further includes the concepts of equilibrium and transition state geometries, since these are defined as critical points on the PES.

3.1.3. Self-Consistent Field Method

In the Born-Oppenheimer approximation, the separable Hamiltonian does not include the electron-electron repulsion term, which is tedious since it depends not on one electron but on all possible simultaneous pair wise interactions. In 1928, the English physicist Douglas Hartree developed the self-consistent field (SCF) method to overcome this hurdle. In the first SCF process, one guesses the wave function Ψ for all of the occupied molecular orbitals and uses these to construct the necessary one-electron operators h.^{91,92} Solution of each one-electron Schrödinger equation provides a new set of wave function Ψ , presumably different (and more accurate) then the initial guess. Then, recursively, one uses this new wave function Ψ to construct an even more accurate wave function Ψ . At some point, the difference between a newly determined set and the immediately preceding set is below some threshold criterion, and the final set of Ψ is referred to as the 'converged' SCF orbitals. In constructing antisymetric wave functions, a Slater determinant is used where the sign changes when two rows or columns are interchanged. The Slater determinant can be expressed as:

$$\Psi(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \chi_{1}(\mathbf{x}_{1}) & \chi_{2}(\mathbf{x}_{1}) & \cdots & \chi_{N}(\mathbf{x}_{1}) \\ \chi_{1}(\mathbf{x}_{2}) & \chi_{2}(\mathbf{x}_{2}) & \cdots & \chi_{N}(\mathbf{x}_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_{1}(\mathbf{x}_{N}) & \chi_{2}(\mathbf{x}_{N}) & \cdots & \chi_{N}(\mathbf{x}_{N}) \end{vmatrix} = \begin{vmatrix} \chi_{1} & \chi_{2} & \cdots & \chi_{N} \end{vmatrix},$$

3.2. Ab Initio Quantum Chemistry

Ab initio methods, latin for "from the beginning" methods are so called because they do not make references to any empirical parameters, and thus construct a solution from first principles. They include Hartree Fock (HF) theory, Coupled Cluster (CC) theory, and even density functional theory (DFT).⁹¹⁻⁹³

3.2.1. Hartree-Fock Theory

Hartree-Fock (HF) theory makes an assumption that each electron sees all of the others as an average field by neglecting electron correlation and consisting of only of the exchange integral. The HF molecular orbitals consist of Slater Determinant wave functions that include the exchange effects of the electrons. Solving the secular equation, which originates from the variational principle, determines the orbital coefficients, which is used in the HF SCF method.⁹¹⁻⁹³ Vladimir Fock proposed an extension to Hartree's

SCF method to include Slater-determinant wave functions. Similar to Hartree product orbitals, the Hartree-Fock molecular orbitals can be individually determined as eigenfunctions of a set of one-electron operators, but the interaction of each electron with the static field of all other electrons includes exchange effects on the Coulomb repulsion. The one-electron Fock operator is defined for each electron i^{91-93} :

$$fi = \frac{1}{2} \nabla_{i}^{2} - \sum_{k}^{nuclei} \frac{Z_{k}}{r_{ik}} + V_{i}^{HF} \{j\}$$

Just as in the Hartree method, the HF method follows a SCF procedure: first we guess the orbital coefficients and then we iterate to convergence. From a practical standpoint, HF theory had some very challenging technical problems to early computational chemists, such as the choice of a basis set. The MO-LCAO (Molecular Orbitals as Linear Combonations of Atomic Orbitals) approach using hydrogenic orbitals is attractive but this basis set requires numerical solution of the tedious four-index integrals, with each index spanning over the total number of basis functions, creating a quartic scaling behavior which is ultimately the bottleneck in HF calculations.

A great deal of work has been towards developing mathematical and computational techniques to reach the HF limit, which is to solve the HF equations with the equivalent of an infinite basis set. If the HF limit is achieved, then the energy error associated with the HF approximation for a given system, the electron correlation energy E_{corr} can be determined as $E_{corr} = E - E_{HF}$.

3.2.2. Coupled Cluster Theory

To overcome the electron correlation energy problem for molecular systems, several theories were developed for applications to many-body systems. They are often considered post-Hartree-Fock ab initio quantum chemistry methods, and have become a commonplace to modern computational chemistry. One such theory is coupled cluster (CC) theory, where the full-configuration interaction (CI) wave function can be described as⁹¹⁻⁹³:

$$\Psi = e^{T} \Psi_{HF}$$

where the CC operator is: $\check{T} = \check{T}_1 + \check{T}_2 + \check{T}_3 + ... \check{T}_n$ and \check{T}_1 is the operator of all single excitations, \check{T}_2 is the operator of all double excitations and so forth. Taking into consideration the structure of \check{T} the exponential operator $e^{\check{T}}$ may be expanded into Taylor series:

$$\Psi_{CCD} = e^{\check{T}}\Psi_{HF} = (1 + \check{T} + \check{T}^2/2! + ...)\Psi_{HF} = (1 + \check{T}_1 + \check{T}_2 + \check{T}_1^2/2 + \check{T}_1\check{T}_2 + \check{T}_2^2/2 + ...)\Psi_{HF}$$

here, CCD implies the double-excitation operator. The first two terms define the CI method, while the remaining terms involve excitation operators. This ensures size consistency since the square of \check{T}_2 generates quartet excitations, and so on. Therefore, it is

important to observe T_1 values for reliability. After determining the cluster amplitude, the coupled cluster energy becomes:

$$\langle \Psi_{\rm HF} | H | e^{\check{T}} \Psi_{\rm HF} \rangle = E_{\rm CC}$$

Single excitations are included in CC calculations, to obtain CCSD energies. One can also use perturbation theory to evaluate the contribution of triple excitations CCSD(T). Here, the single and double excitations are included fully while the triple excitation is solved non-iteratively. The coupled-cluster method described above is also known as the single-reference (SR) coupled-cluster method because the exponential ansatz involves only one reference function. For single-reference calculations, it is considered the "gold standard" when there is no significant multireference character in the wave function. A measure of the multireference character T_1 diagnostic should be below 0.02.

$$T_1 = \frac{\sqrt{\sum_{i=a}^{occ} \sum_{i=a}^{vir} (t_i^a)^2}}{n}$$

The standard generalizations of the SR-CC method are the multi-reference (MR) approaches: state-universal coupled cluster (also known as Hilbert space coupled cluster), valence-universal coupled cluster. A T_1 value greater then 0.02 is indicative of multireference character, in which an active space level of theory will deem suitable.

3.3. Basis Set

An arbitrary wave function Ψ function can be represented by a combination of more convenient functions called a basis set. Other then the simplest system, the hydrogen atom, H, the Schrödinger equation cannot be solved exactly because of the absence of the electron-electron repulsion term. Therefore, one needs to apply an approximation to solve the system of interest and constructing wave functions.⁹¹⁻⁹³ Molecules consist of atoms with electrons that share molecular orbitals, so Molecular Orbital (MO) theory describes the spread of electrons across these atomic orbitals. Hence the Linear Combination of Atomic Orbitals (LCAO) consists of the MO that encompasses this span. The basis is the set of mathematical functions, or basis functions, from which the wave function is constructed.

Each MO in HF theory is expressed as a linear combination of basis functions, the coefficients from which are determined from the iterative solution of HF SCF equations. The full HF wave function is expressed as a Slater determinant formed from the individual occupied MOs. In principle, the HF limit is achieved by use of an infinite basis set, however, in practice, one cannot make use of an infinite basis set. A more in-depth description and examples of basis sets can be found in the following sections.

3.3.1. Gaussian Type Functions

Historically, the use of atomic orbitals was in the form of Slater Type Orbitals (STO), which closely resemble hydrogenic orbitals. However, there is no solution for the

two-electron integrals needed with the use of STO. In 1950, Samuel Francis Boys suggested normalizing the STOs which uses polar coordinates ⁹⁴:

$$\boldsymbol{\varphi} (\mathbf{r}, \theta, \phi; \varsigma, \mathbf{n}, \mathbf{l}, \mathbf{m}) = \frac{(2\zeta)^{n+1/2}}{[(2n)!]^{1/2}} \mathbf{r}^{\mathbf{n}-1} \mathbf{e}^{-\varsigma \mathbf{r}} \mathbf{Y}_{\mathbf{l}}^{\mathbf{m}}(\theta, \phi)$$

into a more convenient Gaussian Type Orbitals (GTO), which basically turns the e^{-r} term to e^{-r^2} and uses Cartesian coordinates:

$$\varphi(\mathbf{x},\mathbf{y},\mathbf{z};\alpha,\mathbf{i},\mathbf{j},\mathbf{k}) = (\frac{2a}{\pi})^{3/4} \left[\frac{(8a)^{i+j+k} i! j! k!}{(2i)!(2j)!(2k)!}\right] \mathbf{x}^{\mathbf{i}} \mathbf{y}^{\mathbf{j}} \mathbf{z}^{\mathbf{k}} e^{-a(x^2+y^2+z^2)}$$

Here, the term in the exponent is squared so that the product of the Gaussian "primitives" (original Gaussian equations) is another Gaussian. The downfall of this is the loss of accuracy, but the use of more Gaussian equations compensates for the accuracy.

When a basis function is defined as a linear combination of Gaussians, it is considered as a 'contracted' basis function or individual Gaussians 'primitives'. The degree of contraction, M, is the total number of primitives used to make all of the contracted functions.

In 1969, John Pople and coworkers successfully determined optimal coefficients and exponents for contracted GTOs, which can be used in place of STOs for solving the two electron integrals. Here, they used the Slater-Type Orbital approximated by M Gaussians, or STO-MG.⁴³ The STO-3G basis set has only one basis function defined for each type of core or valence orbital, and is known as a 'single- ζ ' or minimal basis. One

way to increase the flexibility of a basis set is to de-contract it. This is done by taking the STO-3G basis set, and instead of contracting each basis function as a linear combination of three Gaussians, we could construct two basis functions for each AO, the first being a contraction of the first two primitive Gaussians and the second the normalized third primitive. Since we would have to evaluate all the same individual integrals as before, the basis set would not double, rather the size of our secular equation would increase. A basis set with two functions for each AO – 'double- ζ ' basis. We could de-contract further and treat each primitive as a new basis function, known as a 'triple- ζ ' basis, and we could then decide to add more functions indefinitely creating higher and higher multiple- ζ basis sets. This brings the basis set closer to the HF limit.

3.3.2 Split-Valence Functions

Valence orbitals can vary. Atoms bonded to significantly more electronegative elements take on partial positive charge from loss of valence electrons. Therefore, it is more beneficial to have flexibility in the valence basis functions than in the core. This sprouts the development of split-valence basis sets, where the core orbitals continue to be represented by a contracted single basis function but valence orbitals are split into arbitrarily many functions. The most widely used split-valence basis sets include 3-21G, 6-31G, 6-311G. The first number indicates the number of primitives used in the contracted core functions. The numbers after the hyphen indicate the number of primitives used in the valence functions, if there are two numbers, it is a valence-double- ζ basis, if there are three numbers, it is a valence- triple- ζ basis.⁴³

3.3.3. Polarization Functions

Atomic orbitals are centered about the atom's nucleus, so they can be accurately represented with s functions, p functions, etc. Molecular orbitals are spanned about several atomic nuclei, therefore it is necessary for them to be more flexible. This means that although atomic orbitals are good approximations, a better approximation is to acknowledge and account for the fact that sometimes molecular orbitals, such as those of hydrogen, share qualities of s and p-type orbitals, while p-block elements such as carbon, nitrogen, and oxygen share qualities of p and d-type orbitals, and not necessarily have characteristics of only one or the other.⁹¹⁻⁹³ This is especially true when atoms are brought close to one another, and their charge distribution causes a polarization effect. The use of an additional quantum number of higher angular momentum than the valence orbitals provides the necessary flexibility for these shared characteristics, and is known as polarization functions. The nomenclature consists of "(d)" (or "*") for the d-type GTOs, and "(p,d)" (or "**") for both p and d-type GTOs.

3.3.4. Diffuse Functions

In the case of anions or excited states, certain regions of the wavefunction become increasingly important. As the nuclear separation increases, the energy of the system decreases. The small exponents used in this "tail region" of the wave function are characterized by diffuse functions. Molecular complexes involving transition metals also are sensitive to diffuse functions. The nomenclature consists of "+" for the p-orbitals, and

"++" for both s and p-orbitals. Particularly for the calculations of acidities and electron affinities, diffuse functions are absolutely required. They have found more practical usage in condensed phased systems. This study, however, will focus on gas phased atmospheric reactions.

3.3.5. Correlation-Consistent Functions

Correlation-consistent basis sets of Dunning includes double-zeta or cc-pVDZ, triple-zeta or cc-pVTZ, quarternary-zeta or cc-pVQZ, and quintet-zeta or cc-pV5Z. Their exponents and contraction coefficients are variationally optimized not only for HF calculations, as in Pople-type split-valence basis sets developed earlier, but also including electron correlation.⁴⁷⁻⁴⁸

3.4 Density Functional Theory

The Hamiltonian depends only on the positions, atomic numbers of the nuclei, and the total number of electrons. A useful physical observable would be the electron density ρ , because integrated over all space, it gives the total number of electrons. Therefore, it is convenient to consider the electron cloud as a cluster oppose to individual electron movement:

$$\mathbf{N} = \int \rho(\mathbf{r}) \,\partial\mathbf{r}$$

Thus, given a known density, one could form a Hamiltonian operator, solve the Schrödinger equation, and determine the wave functions and energy eigenvalues. The motivation towards DFT was to avoid using the Schrödinger equation, so the energy must be determined directly from density. By using the density over wave functions, it is much more cost-effective.⁴⁰⁻⁴³

Since electrons interact with one another and with an external potential such as charges and position of nuclei, the Hohenberg-Kohn theorem states that the Hamiltonian operator can be determined from the ground state density. Similar to the variational approach, by choosing different densities and wave functions, one can find lower energies.

3.4.1. Kohn-Sham Self-Consistent Field Method

Kohn and Sham treated a system with interacting electrons as a system with noninteracting electrons and calculate the ground-state density. The energy of the system can be expressed as⁹⁵:

$$E [\rho(r)] = T_{ni} [\rho(r)] + V_{ne} [\rho(r)] + V_{ee} [\rho(r)] + \Delta T [\rho(r) + \Delta V_{ee} [\rho(r)]$$

where T_{ni} is kinetic energy of non-interacting electrons, V_{ne} is the potential of nuclearelectron interaction, V_{ee} is the potential of the electron-electron repulsion, ΔT is the correction to the kinetic energy deriving from the interacting nature of the electrons, and ΔV_{ee} is the corrections to the electron-electron repulsion energy. It is convenient to couple ΔT and ΔV_{ee} into the exchange correlation energy E_{xc} . DFT, by optimizing a density, is exact, unlike HF, which optimizes a wave function, is an approximation and becomes exact towards a limit. The only thing necessary is E_{xc} as a function of ρ . This is stated as:

$$E_{xc} \left[\rho(\mathbf{r}) \right] = \int \rho(\mathbf{r}) \varepsilon_{xc} \left[\rho(\mathbf{r}) \right] d\mathbf{r}$$

where ε_{xc} is the energy density. In the Kohn-Sham SCF method, the main difference from HF SCF is the use of Kohn-Sham secular equation and orbitals. Local density approximation (LDA)) developed to describe a uniform electronic gas was originally used to indicate any DFT method where the value of ε_{xc} at some position r could be computed exclusively from the value of ρ at that position. LDA approach has limitations and appeared to be inaccurate for chemical system where electron density is far from uniform.

3.4.1. Hybrid Functionals

One way to improve the correlation potential is to make it depend not only on the local value of the density, but on the extent to which the density is locally changing. This introduces the idea of generalized gradient approximation (GGA). Most gradient-corrected functionals are constructed by adding a correction term to the LDA functional. The commonly used GGA functional is the Becke (B) functional, which has correct asymptotic behavior at long range for the energy density and incorporates a single empirical parameter the value of which is optimized by fitting to the exactly known

exchange energies of the six noble gas atoms He-Rn. The inclusion of correlation functionals makes GGA functionals very robust. For instance, the LYP functional (named after Lee, Yang, and Parr) does not correct the LDA expression but computes the full correlation energy. LYP is the only functional that provides an exact cancellation of the self-interaction error in one-electron system. The methods which incorporate HF and DFT exchange are called hybrid DFT methods. A hybrid exchange-correlation functional is usually constructed as a linear combination of the Hartree-Fock exact exchange functional, E_x^{HF} and any number of exchange and correlation explicit density functionals. Another useful method is to combine the exchange-correlation functional with the exact exchange that can be obtained from Hartree-Fock calculations⁹¹⁻⁹³:

$$E_{xc} = (1-a)E_{xc}^{DFT} + aE_{x}^{HF}$$

The B3LYP exchange-correlation functional can then be expressed as 4^{1-42} :

$$E_x^{B3LYP} = E_x^{LDA} + a_o(E_x^{HF} - E_x^{LDA}) + a_x(E_x^{GGA} + E_x^{LDA}) + a_c(E_c^{GGA} - E_c^{LDA})$$

3.5 Statistical Theory of Reaction Rates

The potential energy surface (PES) along with *ab initio* calculations of electronic structure, energies and vibrational frequencies are used in microcannonical Rice–Ramsperger–Kassel–Marcus (RRKM) calculations to determine individual reaction steps and product branching ratios of unimolecular single-collision reactions. RRKM theory, a

commonly used variation of transition state theory (TST) proposed by Rudolph Marcus in 1952, uses a quantum chemical approach in which zero-point energies have been taken into account.⁴⁹⁻⁵³ TST was introduced by Henry Erying in 1935, and later reformulated by Rice and Ramsperger in 1927 and Kassel in 1928 into RRK theory. The steps to RRKM formalism on unimolecular reaction rates starts with Transition State Theory, Lindemann-Hinshelwood Theory, RRK theory, and eventually RRKM theory. The latter of which has become a common-place in theoretical chemical kinetics. Reaction dynamics is also necessary to consider but not included in this study.

3.5.1. Transition State Theory

Before the development of transition state theory (TST), the Arrhenius rate law was widely used to determine energies for the reaction barrier. The Arrhenius rate law is given by:

$$\mathbf{k} = \mathbf{A} \, e^{\left(-\frac{Ea}{RT}\right)} \, .$$

The Arrhenius equation derives from empirical observations and ignores any reaction mechanisms that play a role. The only thing needed is the activation energy E_a and the temperature T. TST is a semi-empirical method that is successful in calculating the standard enthalpy of activation ($\Delta^{\ddagger}H^{*}$), the standard entropy of activation ($\Delta^{\ddagger}S^{*}$), and the standard Gibbs energy of activation ($\Delta^{\ddagger}G^{*}$) for a particular reaction if its rate constant

has been experimentally determined. It assumes a special type of chemical equilibrium (quasi-equilibrium) between reactants and activated transition state complexes, or saddle points on the PES. The activated complexes can convert into products which allow collision theory to calculate the rate of this conversion. In early 1900, Max Trautz and William Lewis studied the rate of the reaction using collision theory, which treats molecules as hard spheres, based on the kinetic theory of gases. Some forrmalisms involve the Maxwell-Boltzman distribution law to obtain the following equation for the rate constant of the forward reaction.^{49-53, 65, 91-93}. Much of these formalisms start with the basic Maxwell-Boltzman distribution law stated as:

$$\mathbf{k}_{1} = \frac{k_{b}T}{h} (1 - e^{(\frac{-hv}{k_{b}T})}) e^{(\frac{-E\Theta}{-RT})}$$

where E^{Θ} is the dissociation energy at absolute zero, k_B is the Boltzmann constant, h is the Planck constant, T is thermodynamic temperature, v is vibrational frequency of the bond. This expression is very important since it is the first time that the factor k_BT/h , which is a critical component of TST, has appeared in a rate equation.

3.5.2. Lindemann-Hinshelwood Theory

A gas-phased unimolecular reaction is a pseudo first-order reaction because it requires a second-body M such as a gas bath.⁶³ The overall reaction steps of a bimolecular reaction is given by:

$$\mathbf{A} + \mathbf{M} \leftrightarrows_{k_{-1}}^{k_1} \mathbf{A}^* + \mathbf{M}$$
$$\mathbf{A}^* \rightarrow^{k_1} \mathbf{P}$$

where A is the reactant, A^* is an activated complex, P is the product. Then, after steadystate approximation, the concentration for A^* is:

$$[\mathbf{A}^*] = \frac{k_1[A][M]}{k_{-1}[M] + k_2}$$

and the overall rate is^{63} :

$$\frac{d[P]}{dT} = k_2[A^*] = \frac{k_1k_2[A][M]}{k_{-1}[M] + k_2} = k_{eff}[A]$$

At high pressures, collisional deactivation of A^* is more likely than unimolecular reaction, k_{eff} reduces to $\frac{k_1k_2}{k_{-1}}$, which makes the reaction a true first-order. Hinshelwood included the internal modes of A by having s equivalent simple harmonic oscillators of

frequency n and using statistical methods to determine the probability of the molecule being collisionally activated to a reactive state. The fraction of molecules in state v is given by the Boltzman distribution:

$$\frac{n_v}{N} = \frac{g_v e^{\frac{-vhv}{kt}}}{q}$$

where

$$q = (\frac{1}{1 - e^{\frac{-hv}{kT}}})^3$$
 and $g_v = \frac{(v + s - 1)!}{v!(s - 1)!}$

After integrating over all energies with a rate equation that involves the density of states between E and E + dE, we obtain:

$$k_{1} = \frac{Z}{(s-1)!} \left(\frac{E_{o}}{kT}\right)^{s-1} e^{\frac{-E_{o}}{kT}}$$

3.5.3. RRK Theory

RRK theory starts with an additional step that includes the activated complex A^{\ddagger} which the excited molecule A^{\ast} converts into. The Lindemann reaction becomes:

$$A^* \rightarrow {}^{k_{2a}} A^{\#} \rightarrow {}^{k_*} P$$

Since $k_{2a} \ll k^{\#}$, we obtain $k_{2a} = k^{\#} \frac{[A^{\#}]}{[A^{*}]}$. Through considerations to quantum states,

energy levels, an harmonic and anharmonic frequencies, RRK define k2 as:

$$k_2(E) = k^{\#} (1 - \frac{E_o}{E})^{s-1}$$

3.5.4. RRKM Formalism

In RRKM theory, the energy of the molecule is partitioned into fixed and nonfixed components. Only the non-fixed component E^* , which can flow freely around the various modes of motion of the molecule, can contribute to reaction. The various terms of the rate expression are now evaluated using statistical mechanics. The thermal rate constant is obtained by integrating E over E_0 to ∞ :

$$k = \int_{E_0}^{\infty} \frac{k_2(E)\partial k_1(E)[M]}{k_{-1}[M] + k_2(E)}$$

RRKM theory has a pseudo equilibrium A^* and $A^{\#}$, but not between A^* and A. However, at high pressures A^* and A are also in equilibrium. In the high pressure limit, RRKM theory reduces to transition state theory. Transition state theory assumes that the activated

complex $A^{\#}$ is in thermal equilibrium with the reactants. This then leads to the kinetic expression as a function of internal energy *k*(*E*) used in this study:

$$k(E) = \frac{\sigma W^{\#}(E - E^{\#})}{h\rho(E)}$$

3.5.5. Master Equation Methods

To solve a multiple-well system with the rate law as a function of energy k(E), contrary to a function of temperature and/or pressure k(p,T), master-equations must be used to describe the time-evolution of a system that can be modeled as being in exactly one of countable number of states at any given time, and where switching between states is treated probabilistically. The equations are usually a set of differential equations for the variation over time of the probabilities that the system occupies at each different states. The most primitive form of the master equation can be written as

$$\frac{\partial n_i(t)}{\partial t} = \sum_j (p_{ij}n_j(t) - p_{ji}n_i(t))$$

where $n_i(t)$ is the probability of finding the system (molecule) in state *i* at time *t* and p_{ij} is the probability per unit time of a transition from state *j* to state *i*. This equation is also sometimes called the Pauli master equation, after Wolfgang Pauli derived an equation of the same form in 1928 using the Schrödinger equation describing the time evolution of a many-body system. Generally the transition probabilities are of only two types, reactive and collisional.

In the Car-Parrinello (CP) approach to *ab initio* MD for example, the electronic structure is described using the Kohn-Sham formulation of the density functional theory, and the Kohn-Sham orbitals are expanded in a plane wave basis. The CP approach usually employs periodic boundary conditions, plane wave basis sets, and density functional theory. The expansion coefficients are treated as a set of fictitious dynamical variables that are propagated adiabatically with respect to the nuclei, so that, at each time step, they describe the instantaneous ground state Born-Oppenheimer surface.

C₂H RADICAL REACTIONS

Ethynyl radical $C \equiv CH$ can add to an unsaturated hydrocarbon by the carbon bearing the unpaired electron C, resulting in CH being at the terminal. However, a more energetically unfavorable addition can occur by the CH of ethynyl radical, resulting in a terminal acetylenic carbon atom with an unpaired electron C. From hereon, only the addition which results in a terminal CH will be considered in determining the energetically favorable reaction steps in forming a product.

There are two common forms of gas-phased C_3H_4 , one being allene CH_2CCH_2 bearing two π -bonds, and the other as methylacetylene CH_3CCH bearing a triple bond. Allene and methylacetylene have been observed in combustion reactions and in planetary atmospheres and are included in kinetic models of these systems. Allene has one more carbon then the simplest alkene, ethylene C_2H_4 , which lies in a linear fashion. Methylacetylene is the simplest substituted alkyne and has a net one carbon and two hydrogen's more then the simplest alkyne, acetylene C_2H_2 .

The C₄H₆ molecule has four main isomers, 1,3-butadiene, 1,2-butadiene, 1butyne, and 2-butyne. The first two are alkenes bearing two π -bonds in various locations on the carbon chain, while the last two are alkynes bearing a triple-bond in various locations. Namely, 1,3-butadiene has a repeating double-single bond moiety, while 1,2butadiene has both double bonds consecutively, similar to a methyl substituted allene. The 1-butyne and 2-butyne isomers have a triple bond lying in the terminal and central carbons, respectively. This gives 1-butyne one of two addition sites while 2-butyne has only one due to symmetry.

4.1. $C_2H + Allene$

Ethynyl radical addition to allene (CH₂CCH₂) can occur on the terminal allylic sp^2 -hybridized carbon forming a linear initial adduct, on the π -bond between the terminal carbon and the central carbon forming a 3-membered cyclic initial adduct, or the central double sp^2 -hybridized carbon. Due to symmetry, only these additions can occur. The C₂H reactions with allene can consist of one of three possible reaction routes:

$$C_{2}H + CH_{2}=C=CH_{2} \rightarrow C_{5}H_{5} \rightarrow C_{5}H_{4} + H$$
$$C_{2}H + CH_{2}=C=CH_{2} \rightarrow C_{5}H_{5} \rightarrow C_{4}H_{2} + CH_{3}$$
$$C_{2}H + CH_{2}=C=CH_{2} \rightarrow C_{5}H_{5} \rightarrow C_{3}H_{3} + C_{2}H_{2}$$

The first reaction consists of an H-loss process producing C_5H_4 products, the middle reaction consists of a CH₃-loss process producing C_4H_2 products such as diacetylene, and the third reaction consists of isothermal fragmentation leading to C_3H_3 and C_2H_2 .

4.1.1. Reaction Mechanism

We first consider the reaction mechanism of the ethynyl radical with allene. The calculated potential energy diagram for this system together with the optimized structures of various intermediates and products is illustrated in Figure 4.1a.

 C_2H can add to one of the terminal carbon atoms of CH_2CCH_2 to form the initial adduct (1), HCCCH₂CCH₂, to a double C=C bond to produce a three-member-ring intermediate (2), or to the central C to give structure (3), $HCCC(CH_2)_2$. The C₂H addition is highly exothermic, with the C₅H₅ isomers (1), (2), and (3) residing 55.6, 37.8, and 80.4 kcal/mol lower in energy than the initial reactants, respectively. We were not able to locate any transition state connecting the intermediates (1)-(3) with $C_2H + CH_2CCH_2$. All attempts to optimize a saddle point in the entrance channel converged to the separated reactants indicating that no barrier exists for the C_2H addition to allene. This is common for the reactions of ethynyl radicals with unsaturated hydrocarbons, as supported both by theoretical calculations for a variety of systems, including $C_2H + C_2H_2$, $^{28,29}C_2H +$ C_2H_4 , $^{55,56}C_2H + C_4H_2$, $^{30}C_2H + C_6H_6$, 57,58 and by experimentally measured reaction rate constants, which are fast even at very low temperatures and exhibit no apparent activation energies.⁵⁹ The question which of the three adducts is preferably formed at the initial reaction step remains open. Different downhill trajectories can in principle lead from the reactants to any of the (1)-(3) isomers and dynamics calculations would be required to address this issue, which is beyond the scope of the present study. We will see however that the product branching ratios are practically independent of relative initial concentrations of the initial adducts.

The primary C_5H_5 isomers (1)-(3) can rearrange to each other relatively easily because barriers for their mutual rearrangements are much lower as compared to those for all other isomerization or dissociation processes involving (1)-(3) and the corresponding transition states lie below the $C_2H + CH_2CCH_2$ reactants. For instance, (1) transforms to (2) by C_2H shift (three-member-ring closure) via a barrier of 23.5 kcal/mol at TS 1

residing 32.1 kcal/mol lower in energy than $C_2H + CH_2CCH_2$. The transition state TS 2 connecting (2) and (3) was located at the B3LYP/6-311G** level, at which the ring opening barrier (including ZPE) is 3.6 kcal/mol.

Jamal, A.; Mebel, A. Phys. Chem. Chem. Phys. 2010, 12, 2606.

Figure 4.1a. Potential Energy map of the terminal and central addition of ethynyl radical to allene. Most energetically favorable routes are given.

However, at the CCSD(T)/cc-pVTZ level, the transition state energy is lower than that of (2) indicating that the cyclic intermediate is likely to be only a metastable structure and TS 1 connects (1) directly to (3), which is the most thermodynamically favorable initial adduct.

Now we consider possible fates of the intermediate (1). $HCCCH_2CCH_2$ (1) can lose hydrogen atoms from the central or terminal CH₂ groups to produce ethynylallene $HC \equiv C-CH = C = CH_2$ (18) and 1,4-pentadiyne $HC \equiv C-CH_2-C \equiv CH$ (20) via transition states TS M and TS N, respectively. The overall reaction energies to form the C_5H_4 products (18) and (20) from $C_2H + CH_2CCH_2$ are calculated to be -24.2 (-24.8) and -19.7 (-20.5) kcal/mol, respectively at the CCSD(T)/cc-pVTZ (CCSD(T)/CBS) levels with ZPE corrections included (see Figure 4.1b). The reaction energy to produce ethynylallene is very close to the value obtained by Stahl et al. at the B3LYP/6-311+G** level (-24.5 kcal/mol), but for 1,4-pentadiyne the deviation of the DFT result (-15.6 kcal/mol) from our supposedly more accurate value is significant. The barriers at TSs M and N are 37.4 and 39.6 kcal/mol, respectively. Relative energies of these transition states with respect to C_2H + allene are computed to be -18.2 (-19.2) kcal/mol for TS M and -16.0 (-17.3) kcal/mol for TS N, which corresponds to exit barriers (or H addition barriers to ethynylallene and 1,4-pentadiyne) of 6.0 (5.6) and 3.7 (3.2) kcal/mol at the CCSD(T)/ccpVTZ (CCSD(T)/CBS) levels of theory. Because of their critical importance in determining the branching ratios of (18) and (20), geometries of TS M and TS N were additionally re-optimized using the QCISD/6-311G** approach. The QCISD geometries appeared to be very similar to the B3LYP optimized structures, with the only exception being the length of the breaking C-H bond, which is 0.04-0.05 Å shorter at the QCISD

level as compared to the value obtained at B3LYP. Nevertheless, the CCSD(T)/CBS//QCISD/6-311G** and CCSD(T)/CBS//B3LYP/6-311G** energies of the transition states agree within 0.1 kcal/mol, indicating that the barrier heights are not sensitive to the choice of the geometry optimization method, QCISD or B3LYP.

The products (18) and (20) can also be formed from (1) via less favorable twostep routes. For instance, 1,2-H shift from the central CH₂ group in (1) to the cumulenic carbon leads to isomer (5), HCCCHCHCH₂, 85.4 kcal/mol below the reactants, after clearing a barrier of 39.7 kcal/mol at TS 4. (5) in turn can lose the hydrogen atom displaced in the previous step and produce ethynylallene with an exit barrier of 3.8 kcal/mol (TS D). Alternatively, 1,2-H migration from the terminal CH₂ group in (1) gives intermediate (4), HCCCH₂CHCH (-53.3 kcal/mol). The barrier for this process occurring via TS 3 is higher, 48.1 kcal/mol. The shifted H atom in (4) can be eliminated at the following reaction step leading to the formation of 1,4-pentadiyne (2) via an exit barrier of 6.2 kcal/mol.

Another possible isomerization route for (1) involves 1,2-H shift from the central CH_2 to the neighboring acetylenic C atom producing structure (16), HCCHCHCCH₂ (-56.2 kcal/mol), via a 37.6 kcal/mol barrier at TS 5. One can see that, in terms of the barrier heights, several rearrangement/dissociation channels of (1) can be competitive.

Now we return to the intermediate (5) and consider its isomerization pathways. 1,5-H shift from the terminal CH_2 group to the opposite end of the molecule leads to the isomer (16) via a barrier of 60.6 kcal/mol (TS 22); this barrier is 4.4 kcal/mol lower than that for the H elimination via TS D. H elimination from the CH_3 group produces ethynylallene (18) via TS F with a barrier of 39.6 kcal/mol (an exit barrier of 3.1 kcal/mol). Splitting an H atom from the central CH group in (6) gives a product indicated in the figures. Moskaleva and Lin⁴¹ have carefully investigated this segment of the C_5H_5 PES using chemically accurate G2M(RCC,MP2) and CASPT2 calculations and so we can rely on their results in our discussion here. They located three different conformers of the CHCHCHCCH₂ isomer, cis carbon chain – cis HCCH ((16) in the present paper and **3a** in their work), cis carbon chain – trans HCCH (**3b**), and trans carbon chain – trans HCCH (**3c**) – see Figure 4.1b.

methyldiacetylene product HCCCCCH₃ (21) via a lower barrier of 37.4 kcal/mol at TS E. Methyldiacetylene is the most stable C₅H₄ isomer found in the present work (and according to our previous detailed exploration of the C_5H_4 PESⁱⁱ), as HCCCCCH₃ + H lie 30.1 (30.2) kcal/mol below the initial reactants according to the CCSD(T)/cc-pVTZ (CCSD(T)/CBS) calculations. This means that the exit barrier at TS E is 6.7 kcal/mol. Alternatively to the H elimination pathways, (6) can be subjected to further isomerization by hydrogen migrations. For instance, 1,2-H shift from the central CH group to the bare C atom next to the CH₃ end of the molecule forms isomer (7), HCCCCHCH₃ (-68.1 kcal/mol), via a 44.4 kcal/mol barrier (TS 10). 1,2-H migration from the same CH group but in the opposite direction produces intermediate (8), HCCHCCCH₃ (-59.6 kcal/mol), via a slightly lower barrier of 43.3 kcal/mol. Finally, (6) can undergo a three-member ring closure to form a cyclic intermediate (10) (-39.6 kcal/mol) with a much smaller barrier of 27.9 kcal/mol at TS 20. We will see in the next Section that (10) can be one of initial adducts in the ethynyl + methylacetylene reaction. The HCCCCHCH₃ structure (7)can lose the H atom from the vicinal CH group leading to methyldiacetylene (21) via TS G overcoming a 42.0 kcal/mol barrier (exit barrier of 4.0 kcal/mol).

Figure 4.1b. Potential energy diagram for the $C_2H + CH_2CCH_2$ (allene) reaction. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the $CCSD(T)/cc-pVTZ/B3LYP/6-311G^{**} + ZPE(B3LYP/6-311G^{**})$ level of theory and at CCSD(T)/CBS (in parentheses, for the products). Calculated product branching ratios (in %) are also shown

Meanwhile, (7) can also serve as a precursor for the C_4H_2 (diacetylene) + CH_3 (methyl radical) products (22), which are 36.5 (36.3) more exothermic than the $C_2H + CH_2CCH_2$ reactants at the CCSD(T)/-cc-pVTZ (CCSD(T)/CBS) levels. C₄H₂ + CH₃ are produced from (7) by elimination of the CH₃ group occurring via TS P with a barrier of 38.6 kcal/mol and the exit barrier of 7.0 kcal/mol. The isomer (8) can also split the H atom from the vicinal CH group producing methyldiacetylene via TS H overcoming a 33.3 kcal/mol barrier (exit barrier of 3.8 kcal/mol). Otherwise, migration of the same hydrogen to the CH end gives another intermediate (9), CH_2CCCCH_3 (-71.5 kcal/mol), over a higher barrier of 42.8 kcal/mol (TS 6). There are two possible H elimination routes from (9): H loss from the CH₂ end gives the most stable C_5H_4 methyldiacetylene product (21) via TS A with a barrier of 43.8 kcal/mol (exit barrier of 2.4 kcal/mol), whereas a hydrogen atom splitting from the CH₃ group produce a fourth feasible C₅H₄ product, D_{2d}symmetric pentatetraene CH_2CCCCH_2 (19). The overall exothermicity of the C_2H + $CH_2CCH_2 \rightarrow CH_2CCCCH_2 + H$ reaction, which can be considered as a formal extension of the cumulene chain by a C₂ unit, is calculated to be 21.9 kcal/mol. Interestingly, the H elimination from the CH₃ group in (9) takes place via a very late TS B, with the C-H distance for the breaking bond of 5.225 Å. The corresponding exit barrier at the B3LYP/6-311G** level with ZPE is only 0.1 kcal/mol and it practically disappears at the CCSD(T)/cc-pVTZ level, indicating that the reverse H addition to a terminal CH₂ group of pentatetraene is barrierless and actually occurs without a distinct transition state.

The CHCHCHCCH₂ intermediate (16), which can be produced from (1) or (5), deserves a special attention because it represents a pivotal structure connecting the region of the C_5H_5 surface accessed by the $C_2H + C_3H_4$ reaction with the most stable C_5H_5 isomer, cyclopentadienyl radical. All three conformations have very close energies within 2 kcal/mol and are separated from each other by rotational barriers of 2-5 kcal/mol. Therefore, mutual isomerizations between the three structures should be much faster than any other process involving them and for kinetics consideration they can be regarded as a single isomer. (16) (or **3a**) can undergo a five member ring closure via a barrier of 17.0 kcal/mol to form a cyclic –CH-CH-CH-CH₂-C– intermediate 2, which is then subjected to 1,2-H shift from CH₂ to the bare carbon producing cyclopentadienyl 1 over a 32.8 kcal/mol barrier. At the G2M(RCC,MP2) level, cyclopentadienyl is 58.9 kcal/mol more stable than CHCHCHCCH₂ (16) and our CCSD(T)/cc-pVTZ calculations give a very similar energy difference of 59.0 kcal/mol. The cyclopentadienyl radical lies 115.2 kcal/mol lower in energy than $C_2H + CH_2CCH_2$ and represents the deepest well on the C_5H_5 PES, which can be achieved from the reactants via intermediates (1) and (16). The formation of cyclopentadienyl from ethynyl radical and C_3H_4 is therefore quite feasible and at high-pressure conditions this $c-C_5H_5$ radical can be stabilized by collisions and thus become an important reaction product. However, at single-collision conditions of crossed molecular beams experiments or in low-pressure ($\leq 1 \text{ mbar}$) Titan's stratosphere, such collisional stabilization would not occur and chemically activated $c-C_5H_5$ produced in the $C_2H + C_3H_4$ reaction would have to dissipate its energy through fragmentation. A direct H loss from $c-C_5H_5$ to produce $c-C_5H_4$ is highly unfavorable as the strength of the C-H bond in cyclopentadienyl was earlier evaluated as 113.7 kcal/mol.ⁱⁱⁱ This result puts the c-C₅H₄ + H products only 1.4 kcal/mol below the initial C_2H + CH_2CCH_2 reactants, much higher than all other reaction products considered here. Therefore, it will be much more facile for the energized cyclopentadienyl to undergo the 1,2-H shift and ring

opening resulting in the chain isomer (16) and then decompose via some of more favorable routes.

Figure 4.2c. Composite potential energy diagram for the reaction channels connecting intermediate (16) with the cyclopentadienyl radical and the $C_2H_2 + C_3H_3$ products based on the results of the present calculations and the data from refs.

If the collisional stabilization of $c-C_5H_5$ does not occur, it only serves as a kinetic dead end on the surface, which should not affect relative product yields.

Intermediate (16) can split an H atom from the middle CH group and produce ethynylallene (18) via TS I overcoming a barrier of 38.2 kcal mol (exit barrier of 6.2

kcal/mol). However, another dissociation channel is significantly more favorable energetically. A cleavage of the central CH-CH bond produces C_2H_2 (acetylene) + C_3H_3 (propargyl), the most thermodynamically stable reaction products residing 41.1 (41.6) kcal/mol below the initial reactants at the CCSD(T)/cc-pVTZ (CCSD(T)/CBS) levels of theory. This fragmentation takes place with a barrier of 30.2 kcal/mol relative to (16) via TS Q, which actually connects the products with another CHCHCHCCH₂ conformer 3c. The barrier for the reverse $C_2H_2 + C_3H_3$ reaction computed presently at CCSD(T)/ccpVTZ + ZPE is 15.2 kcal/mol, is in close agreement with the G2M(RCC,MP2) value of 15.0 kcal/mol reported by Moskaleva and Lin.⁴¹ Another possibility for (16) is to be subjected to 1,2-H shift to the terminal CH group giving a chain isomer (15), CH₂CCHCCH₂ (-65.8 kcal/mol relative to the reactants) via TS 18 and over a barrier of 44.8 kcal/mol. Next, (15) can lose a hydrogen atom from a terminal CH₂ group producing ethynylallene via TS K (barrier 43.8 kcal/mol, exit barrier 2.2 kcal/mol) or from the central CH moiety with formation of pentatetraene (19) through TS J (barrier 49.8 kcal/mol, exit barrier 5.9 kcal/mol). The remaining isomerization pathway for (16) is a four-member ring closure to a cyclic $-(CH_2)C-CH-CH-CH-$ structure (17) (-80.4 kcal/mol) via a barrier of 20.1 kcal/mol at TS 19.

Now we can return to the fate of another initial $C_2H + CH_2CCH_2$ reaction adduct (3). The energetically most preferable pathway for its rearrangement is (3) \rightarrow TS 2 \rightarrow (2) \rightarrow TS 1 \rightarrow (1) with the barrier of 48.3 kcal/mol at TS 1 if we do not regard (2) as a local minimum. Otherwise, (3) can undergo a four-member ring closure to (12), -(CH_2)C-C-CH-CH_2- (-57.8 kcal/mol), via a somewhat higher barrier of 49.9 kcal/mol (TS 11). The four-member ring in (12) can then re-open along the (CH_2)C-CH_2 bond giving rise to

another chain intermediate (13), CH₂CCCHCH₂ (-82.8 kcal/mol) overcoming a 30.0 kcal/mol barrier at TS 14. The structure (13) can dissociate to pentatetraene (19) either directly by the H loss from the vicinal CH group via TS L (barrier 64.0 kcal/mol, exit barrier 3.1 kcal/mol) or by two-step routes starting with 1,2-H migrations from the CH group to neighboring CH₂ or bare carbon atom and completed by H eliminations: (13) \rightarrow TS 7 \rightarrow (9) \rightarrow TS B \rightarrow (19) or (13) \rightarrow TS 17 \rightarrow (15) \rightarrow TS J \rightarrow (19). The H shift barriers here are rather high, 64.9 and 70.9 kcal/mol, respectively. Alternatively, the (13) \rightarrow TS 7 \rightarrow (9) \rightarrow TS A \rightarrow (21) pathway leads from (13) to the most stable C₅H₄ methyldiacetylene product. The four-member cyclic isomer (12) can be subjected to H migrations instead of the ring opening, but this reaction channel is energetically unfavorable. For instance, the H shift from CH to the H-less carbon in the ring produces (14), -(CH₂)C-CH-C-CH₂- (-57.8 kcal/mol), via TS 13 and a 62.1 kcal/mol barrier. Noteworthy, TS 13 is the only transition state found in the present reaction scheme, which has its relative energy above the initial reactants (4.3 kcal/mol). In the unlikely event if the intermediate (14) is formed, it can either ring-open to (15) via TS 15 over a barrier of 31.0 kcal/mol or undergo one more 1,2-H shift from CH₂ to the bare C atom in the ring (TS 16, barrier 52.8 kcal/mol) to form the most stable four-member ring structure (17). It should be mentioned that both (15) and (17) can be produced by more competitive reaction channels passing through the intermediate (16).

Another isomerization pathway initiating from (3) involves 1,3-H migration between the two CH_2 group making one of them CH and the other CH_3 in the isomer (11). The latter resides 56.0 kcal/mol below the reactants and can be produced as an initial adduct in the $CH_2 + CH_3CCH$ reaction. The 1,3-H shift barrier in (3) located at TS 12 is computed to be 61.0 kcal/mol, so that this is the least favorable rearrangement of (3). (11) serves a precursor for the $C_4H_2 + CH_3$ products, which can be formed from it by elimination of the methyl group via TS O (barrier 32.0 kcal/mol, exit barrier 12.5 kcal/mol). Alternatively, a three-member ring closure in (11) gives the cyclic structure (10) via TS 21 and a 22.9 kcal/mol barrier. We already know that (10) is connected with (6) by TS 20, and so other reaction channels can be accessed from the initial adduct (3) via the intermediates (11), (10), and (6) as well as via (12), (13), (15), and (16) or (12), (13), and (9).

The complete reaction scheme (Fig. 4.1b) is rather complex and intertwined, but at this stage we can at least summarize the most energetically preferable pathways leading to various products and specify their kinetic bottlenecks – the critical transition states with the highest relative energy with respect to the initial reactants:

$$C_2H + CH_2CCH_2 \rightarrow [(3) \rightarrow] (1) \rightarrow TS M \rightarrow ethynylallene + H (18)$$

(TS M, -18.2 kcal/mol)

 \rightarrow [(3) \rightarrow] (1) \rightarrow TS N \rightarrow 1,4-pentadiyne + H (20)

(TS N, -16.0 kcal/mol)

 \rightarrow [(3) \rightarrow] (1) \rightarrow TS 4 \rightarrow (5) \rightarrow TS D \rightarrow 1,4-pentadiyne + H (20)

(TS 4, -15.9 kcal/mol)

 $\rightarrow [(1) \rightarrow] (3) \rightarrow \text{TS } 11 \rightarrow (12) \rightarrow \text{TS } 14 \rightarrow (13) \rightarrow \text{TS } L \rightarrow$

(TS L, -18.8 kcal/mol)

pentatetraene + H(19)

$$\rightarrow$$
 [(1) \rightarrow] (3) \rightarrow TS 11 \rightarrow (12) \rightarrow TS 14 \rightarrow (13) \rightarrow TS 7 \rightarrow (9) \rightarrow

TS B \rightarrow pentatetraene + H (19) (TS 7, -17.9 kcal/mol) \rightarrow [(1) \rightarrow] (3) \rightarrow TS 11 \rightarrow (12) \rightarrow TS 14 \rightarrow (13) \rightarrow TS 7 \rightarrow (9) \rightarrow (TS 7, -17.9 kcal/mol) TS A \rightarrow methyldiacetylene + H (21) \rightarrow [(1) \rightarrow] (3) \rightarrow TS 12 \rightarrow (11) \rightarrow TS 21 \rightarrow (10) \rightarrow TS 20 \rightarrow (6) \rightarrow TS $10 \rightarrow (7) \rightarrow$ TS G \rightarrow methyldiacetylene + H (21) (TS 10, -16.3 kcal/mol) \rightarrow [(1) \rightarrow] (3) \rightarrow TS 12 \rightarrow (11) \rightarrow TS O \rightarrow C₄H₂ + CH₃ (22) (TS 12, -19.4 kcal/mol) \rightarrow [(1) \rightarrow] (3) \rightarrow TS 12 \rightarrow (11) \rightarrow TS 21 \rightarrow (10) \rightarrow TS 20 \rightarrow (6) \rightarrow TS $10 \rightarrow (7) \rightarrow$ TS P \rightarrow C₄H₂ + CH₃ (22) (TS 10, -16.3 kcal/mol) \rightarrow [(3) \rightarrow] (1) \rightarrow TS 5 \rightarrow (16) \rightarrow TS Q \rightarrow C₂H₂ + C₃H₃ (TS 5, -18.0 kcal/mol) \rightarrow [(3) \rightarrow] (1) \rightarrow TS 4 \rightarrow (5) \rightarrow TS 22 \rightarrow (16) \rightarrow TS Q \rightarrow

 $C_2H_2 + C_3H_3$ (TS 4, -15.9 kcal/mol)

One can see that in principle all the product channels can be competitive, however, the consideration only in terms of the bottleneck transition states is oversimplistic.

4.1.2. Product Branching Ratios

Rate constants for individual reaction steps on the C_5H_5 PES were calculated using RRKM theory for collision energies ranging from 0 to 5.3 kcal/mol (the value used in the most recent crossed molecular beams experiments by Kaiser's group³⁹) and are tabulated in Table A2 of the Appendix. Product branching ratios computed at various E_{col} are collected in Table A2 of the Appendix. The calculations indicate that 1,4-pentadiyne (20), pentatetraene (19), and ethynylallene (18) should be the most important reaction products with the branching ratio of 37/35/20 at zero collision energy and 48/25/21 at 5.3 kcal/mol. The other products give only minor contributions, about 4% for C₄H₂ + CH₃, 2-3% for methyldiacetylene, and virtually zero for acetylene + propargyl radical. The outcome is practically independent of the choice of the initial adduct in the C₂H + CH₂CCH₂ reaction, (1), (2), or (3), and therefore the reaction dynamics in the entrance channel is not expected to notably affect the relative product yields. This result owes to the fact that the isomerization barriers between the initial adducts are significantly lower than those for their other rearrangements and so the equilibration between (1), (2), and (3) occurs on a faster scale than their dissociation.

Let us now compare the present theoretical results with the available experimental measurements. Goulay et al. reported the relative yields of 45-30% 1,4-pentadiyne, 35-45% ethynylallene, and 20-25% methyldiacetylene.³⁵ Whereas the theory and experiment agree that 1,4-pentadiyne and ethynylallene should be the major products, the calculations underestimate the relative yield of methyldiacetylene and overestimate that of pentatetraene, which was not detected by Goulay et al. It is possible that, because the pathway on the C_5H_5 PES from (1)-(3) to CHCCCCH₃ is multi-step and is hindered by higher barriers, the observation of the methyldiacetylene product by Goulay et al. may be due to secondary collisions of the primary C_5H_4 products with hydrogen atoms in the slow flow reactor.
		Product Branching Ratios (%)									
$E_{\rm col}$,	Initial	ethynylalle	pentatetrae	1,4-	methyldiacetyle	C ₄ H	C ₂ H				
kcal/m	adduc	ne	ne	pentadiyn	ne	2 +	2 +				
ol	t	(18)	(19)	e	(21)	CH_3	C_3H				
				(20)		(22)	3				
							(23)				
0.0	(1)	19.9	24.2	49.4	4.0	2.2	0.2				
	(2)										
	(3)	19.5	25.3	48.4	4.2	2.3	0.2				
1.0	(1)	19.9	22.8	51.2	3.7	2.2	0.2				
	(2)										
	(3)	19.4	24.1	50.0	3.9	2.3	0.2				
2.0	(1)	19.8	21.4	53.0	3.4	2.2	0.2				
	(2)										
	(3)	19.4	22.8	51.7	3.6	2.3	0.2				
3.0	(1)	19.8	20.1	54.7	3.1	2.1	0.2				
	(2)										
	(3)	19.3	21.6	53.2	3.4	2.3	0.2				
4.0	(1)	19.7	18.8	56.3	2.8	2.1	0.2				
	(2)										
	(3)	19.2	20.5	54.7	3.1	2.3	0.2				
5.26	(1)	19.7	17.3	58.2	2.5	2.1	0.2				
	(2)										
	(3)	19.1	19.2	56.4	2.8	2.3	0.2				

Table 4.1. Product branching ratios in the $C_2H + CH_2CCH_2$ (allene) reaction calculated for different collision energies and with various C_5H_5 initial adducts (1)-(3).

For instance, the pathway from pentatetraene to methyldiacetylene, $CH_2CCCCH_2 + H$ (19) \rightarrow TS B \rightarrow (9) \rightarrow TS A \rightarrow CHCCCCH₃ + H (21), is rather straightforward, exothermic by ~8 kcal/mol, can occur practically without a barrier, and therefore can contribute to the formation of methyldiacetylene. The fast secondary reaction of pentatetraene with H might also be responsible for the non-observation of pentatetraene in experiment. However, given that the rate constants of the primary (C₂H + CH₂CCH₂) and secondary (CH₂CCCCH₂ + H) reactions are close to each other since both of them are barrierless, the initial C₂H concentration in experiment should be comparable to the initial C₃H₄ concentration for the secondary reaction to influence the product distribution in a major way. This does not appear to be the case; a rough estimate of the C₂H concentration, based on the absorption cross section of the CF₃CCH precursor and the experimental laser intensity, gives ~10¹³ cm⁻³, about a factor of 50 lower than the C₃H₄ concentration, 5.1×10^{14} cm⁻³.³⁹ Thus, although the H atom reaction could transfer substantial population from pentatetraene to methyldiacetylene, it seems unlikely that it could erase a 35% contribution of pentatetraene, especially as pentatetraene is the C₅H₄ isomer with the lowest ionization energy (8.67 eV) and hence easiest to see in a timedependent photoionization efficiency spectrum, but no evidence of its formation was observed. The disagreement between theory and experiment concerning the yield of pentatetraene may be due to deviations from the statistical behavior of the reaction system; dynamics factors should favor the direct production of 1,4-pentadiyne and ethynylallene from the initial adduct (1) rather than the multistep route to pentatetraene.

Nevertheless, the hypothesis that methyldiacetylene is a secondary reaction product is supported by the fact that no evidence of methyldiacetylene was observed in the crossed molecular beams experiments under single collision conditions. Kaiser and coworkers³⁹ have concluded that ethynylallene is the major product of the C₂H + CH₂CCH₂ reaction, with 1,4-pentadiyne possibly contributing up to 20%. Their conclusion is mostly based on the analysis of the reaction energetics, i.e., on the comparison experimental reaction exothermicity derived from the high-energy cut-off of translational energy distribution with the product exothermicities computed at the B3LYP level of theory. For instance, the experimental reaction energy was deduced as -22.2 ± 3.6 kcal/mol, which compares more favorably with the B3LYP computed energy to produce ethynylallene (-24.4 kcal/mol) than with that to form 1,4-pentadiyne (-15.8 kcal/mol).³⁴ Although the present more reliable CCSD(T)/CBS calculations do not significantly alter the reaction energy for the formation of ethynylallene (-24.8 kacl/mol), they give a notably different result for 1,4-pentadiyne (-20.5 kcal/mol). The reaction energy to produce pentatetraene is -21.9 kcal/mol and therefore the computed reaction exothermicities are within the error limits of the experimental measurements for the three C_5H_4 isomers, ethynylallene, 1,4-pentadiyne, and pentatetraene, and we can conclude that the formation of these three products is consistent with the translational energy distribution observed in the crossed molecular beams experiments. The CCSD(T)/CBS calculated energy to produce methyldiacetylene (-30.2 kcal/mol) is close to the previous B3LYP value (-29.6 kcal/mol) and hence the formation of a significant amount of this product is indeed inconsistent with the experimental observations. Our computed branching ratio for methyldiacetylene, only 2-3%, corroborates the conclusion of Kaiser's group that the contribution of this product is insignificant at least under single-collision conditions. In addition, the present theoretical result that the dominant reaction products should be 1,4-pentadiyne and ethynylallene is consistent with the fact that no H atom loss was observed in the reaction of C₂H with D₄-allene;³⁹ if these products are formed via the most favorable reaction route, i.e., directly from the adduct (1), only D elimination can be observed. On the other hand, the most favorable pathway to pentatetraene, $(3) \rightarrow TS 11$ \rightarrow (12) \rightarrow TS 14 \rightarrow (13) \rightarrow TS L \rightarrow (19), should lead, in the case of the C₂H + CD_2CCD_2 reaction, to the $CD_2CCCCD_2 + H$ products via H elimination at the last step, which is contradictory to the experimental finding. The comparison with experiment also indicates that the calculated branching ratio for 1,4-pentadiyne is somewhat

overestimated, whereas that for ethynylallene is underestimated. We now try to understand a possible origin of this discrepancy. The dominant pathways leading to these products are (1) \rightarrow TS N \rightarrow (18) and (1) \rightarrow TS M \rightarrow (20), respectively. The barrier at TS N is 2.2 kcal/mol higher than that at TS M, however, the rate constant for the $(1) \rightarrow (18)$ reaction step appears to be faster than for $(1) \rightarrow (20)$. This is a consequence of the fact that TS N is a significantly looser transition state (with the three lowest vibrational frequencies of 47, 135, and 228 cm⁻¹) as compared to TS M (137, 224, and 299 cm⁻¹) and hence TS N has a higher number of states than TS M in the range of internal energies considered here. However, the treatment of the lowest 47 cm⁻¹ frequency in TS N as a harmonic oscillator may introduce certain inaccuracy in the calculations of its number of states and therefore of the rate constant for $(1) \rightarrow (18)$. Moreover, B3LYP values for low frequencies are often uncertain and dependent on the basis set size. Systematic calculations of vibrational frequencies in the C₅H₅ system at a higher theoretical level, such as QCISD or CCSD(T), and the RRKM treatment taking into account anharmonic effects are rather expensive and cumbersome and we leave them beyond the scope of the present paper.

4.2. $C_2H + Methylacetylene$

Ethynyl radical addition to methylacetylene (CH₃CCH) can occur to the terminal acetylenic sp-hybridized carbon forming a linear initial adduct, to the triple-bond forming a 3-membered cyclic initial adduct, or to the central acetylenic sp-hybridized carbon

forming a branched initial adduct. The overall reaction for the H-loss, CH₃-loss, and decomposition is the following, respectively:

$$\begin{split} &C_2H+CH_3\text{-}C\equiv\!CH\rightarrow C_5H_5\rightarrow C_5H_4+H\\ &C_2H+CH_3\text{-}C\equiv\!CH\rightarrow C_5H_5\rightarrow C_4H_2+CH_3\\ &C_2H+CH_3\text{-}C\equiv\!CH\rightarrow C_5H_5\rightarrow C_3H_3+C_2H_2 \end{split}$$

4.2.1. Reaction Mechanism

The potential energy diagram for the $C_2H + CH_3CCH$ reaction is shown in Figure 4.2a. Note that for consistency all relative energies in Fig. 4.2a are still given with respect to $C_2H + CH_2CCH_2$ and the 'zero' energy level lies at -1.0 kcal/mol, because at the present level of theory methylacetlene is computed to be 1.0 kcal/mol more stable than allene. Similarly to the allene reaction, C_2H can add to methylacetylene without barrier to form three different initial adducts. The additions to the acetylenic carbons connected to H and CH₃ give isomers (6), HCCCHCCH₃, and (11), HCCC(CH)CH₃, respectively, and the addition to the triple C=C bond produces the cyclic intermediate (10). The calculated exothermicities of the initial reaction steps are 59.7, 55.0, and 38.6 kcal/mol for (6), (11), and (10), respectively. Again, dynamics calculations would be required to determine which of the three additions is preferable, but the barriers separating the three entrance isomers from each other are lower than those for their other isomerzation or dissociation processes. In particular, (6) can ring-close to (10) via a barrier of 27.9 kcal/mol at TS 20 and (10) can in turn ring-open to (11) overcoming a 6.5 kcal/mol barrier (TS 21). The

three-member ring intermediate (10) is kinetically more stable than the cyclic adduct (2) produced in the ethynyl + allene reaction because (10) is separated from (6) and (11) by

Jamal, A.; Mebel, A. Phys. Chem. Chem. Phys. 2010, 12, 2606.

Figure 4.2a. Potential Energy diagram of the terminal and central addition of ethynyl radical to methylacetylene.

the barriers of 6-7 kcal/mol, whereas (2) is at best a metastable structure. The intermediate (6) can directly decompose by H elimination to two C_5H_4 isomers. The third, C_5H_4 isomer, pentatetraene (19), can be produced in the three-step mechanism

Figure 4.2b. Potential energy diagram for the $C_2H + CH_3CCH$ (methylacetylene) reaction. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the CCSD(T)/cc-pVTZ//B3LYP/6-311G** + ZPE(B3LYP/6-311G**) level of theory and at CCSD(T)/CBS (in parentheses, for the products). Calculated product branching ratios (in %) are also shown.

Which starts with $(6) \rightarrow TS 9 \rightarrow (8) \rightarrow TS 6 \rightarrow (9) \rightarrow TS B \rightarrow (19)$. The pathways leading to the fourth C₃H₄ isomer 1,4-pentadiyne (19) either have to go through TS 8 with a high barrier of 50.7 kcal/mol relative to (6) or involve numerous steps (for example, via the intermediates (10), (11), (3), (2), and (1)). The formation of diacetylene + methyl can achieved in two steps, H migration to produce (7) via a barrier of 44.4 kcal/mol followed by CH₃ elimination.

On the other hand, another initial reaction adduct (11) is a more feasible precursor for the production of diacetylene because the CH₃ loss can occur directly from (11) via a relatively low barrier of 32.0 kcal/mol. Actually, besides the isomerization pathway from (11) to (6) via (10), the elimination of CH₃ is the most energetically favorable channel for the evolution of (11). Otherwise, this intermediate can rearrange to (3) by the 1,3-H shift via TS 12 and a barrier of 36.6 kcal/mol and then enter the rearrangement pathways of (3) described in the previous Section.

Here is a summary of the most energetically favorable pathways of the ethynyl + methylacetylene reaction resulting in the various products:

$$C_{2}H + CH_{3}CCH \rightarrow (6) \rightarrow TS E \rightarrow methyldiacetylene + H (21)$$
(TS E, -22.4 kcal/mol)

$$\rightarrow (6) \rightarrow TS F \rightarrow ethynylallene + H (18)$$
(TS F, -20.1 kcal/mol)

$$\rightarrow (16) \rightarrow TS O \rightarrow C_{4}H_{2} + CH_{3} (22)$$
(TS O, -23.0 kcal/mol)

$$\rightarrow (6) \rightarrow TS 10 \rightarrow (7) \rightarrow TS P \rightarrow C_{4}H_{2} + CH_{3} (22)$$
(TS 10, -15.3 kcal/mol)

 \rightarrow (6) \rightarrow TS 10 \rightarrow (7) \rightarrow TS G \rightarrow methyldiacetylene + H (21)

(TS 10, -15.3 kcal/mol)

 \rightarrow (6) \rightarrow TS 9 \rightarrow (8) \rightarrow TS H \rightarrow methyldiacetylene + H (21)

(TS 9, -16.4 kcal/mol)

 \rightarrow (6) \rightarrow TS 9 \rightarrow (8) \rightarrow TS 6 \rightarrow (9) \rightarrow TS A \rightarrow

(TS 6, -15.8 kcal/mol)

 \rightarrow (6) \rightarrow TS 9 \rightarrow (8) \rightarrow TS 6 \rightarrow (9) \rightarrow TS B \rightarrow pentatetraene + H (19)

(TS 6, -15.8 kcal/mol)

(TS N, -15.0 kcal/mol)

(TS 5, -17.0 kcal/mol)

$$\rightarrow$$
 (16) \rightarrow TS 12 \rightarrow (3) \rightarrow TS 2 \rightarrow (2) \rightarrow TS 1 \rightarrow (1) \rightarrow TS N \rightarrow

1,4-pentadiyne (20)

methyldiacetylene + H(21)

 \rightarrow (16) \rightarrow TS 12 \rightarrow (3) \rightarrow TS 2 \rightarrow (2) \rightarrow TS 1 \rightarrow (1) \rightarrow TS 5 \rightarrow (16)

 \rightarrow TS Q \rightarrow C₂H₂ + C₃H₃ (23)

This list is not complete as the $C_2H + CH_3CCH$ reaction can eventually access the same C_5H_5 isomers as the reaction with allene and the other pathways described in the previous section may follow. Again, we can see that a prediction of product branching ratios would not be possible without kinetics calculations.

4.2.2. Product Branching Ratios

Calculated branching ratios for the reaction of C_2H with methylacetylene are presented in Table A2 of the Appendix. In this case, the results appeared to be sensitive to the choice of the initial reaction adduct, (6), (10), or (11), and hence to the dynamics in the entrance reaction channel. Methyldiacetylene and diacetylene + methyl appear to be the major reaction products, with ethynylallene contributing in the range of 3-7%,

		Product Branching Ratios (%)						
$E_{\rm col},$	Initial	ethyny	pentatetrae	1,4-	methyl-	$C_4H_2 +$	$C_2H_2 + C_3H_3$	
kcal/m	adduc	lallene	ne	pentadiyne	diacetylene	CH ₃	(23)	
ol	t	(18)	(19)	(20)	(21)	(22)		
0.0	(6)	8.0	0.0	0.0	60.5	31.4	0.0	
	(10)	6.4	0.0	0.0	48.5	44.9	0.0	
	(11)	4.8	0.0	0.1	36.4	58.6	0.0	
1.0	(6)	8.2	0.0	0.0	61.3	30.3	0.0	
	(10)	6.5	0.0	0.0	48.4	44.9	0.0	
	(11)	4.8	0.0	0.1	35.4	59.6	0.0	
2.0	(6)	8.4	0.0	0.0	62.1	29.3	0.0	
	(10)	6.6	0.0	0.0	48.4	44.9	0.0	
	(11)	4.7	0.0	0.1	34.5	60.6	0.0	
3.0	(6)	8.7	0.0	0.0	62.9	28.3	0.0	
	(10)	6.7	0.0	0.0	48.3	44.9	0.0	
	(11)	4.6	0.0	0.1	33.5	61.6	0.0	
4.0	(6)	8.9	0.0	0.0	63.7	27.3	0.0	
	(10)	6.7	0.0	0.1	48.2	44.9	0.0	
	(11)	4.6	0.0	0.1	32.6	62.6	0.0	
5.26	(6)	9.1	0.1	0.0	64.6	26.1	0.0	
	(10)	6.8	0.1	0.1	48.1	44.9	0.0	
	(11)	4.5	0.1	0.2	31.4	63.9	0.0	

Table 4.2. Product branching ratios in the $C_2H + CH_3CCH$ (methylacetylene) reaction calculated for different collision energies and with various C_5H_5 initial adducts (6), (10), and (11)

whereas 1,4-pentadiyne, pentatetraene, and $C_2H_2 + C_3H_3$ have negligibly small branching ratios. The relative yield of $C_4H_2 + CH_3$ is calculated to be in the range of 38-62% at zero collision energy and to slightly change to 31-66% at $E_{col} = 5.3$ kcal/mol. The largest amount of diacetylene + methyl is produced with (11) being the initial adduct, while the smallest amount of these products is formed if the initial adduct is (6). This result can be understood in terms of the corresponding reaction pathways on the PES. For instance, $C_4H_2 + CH_3$ can be formed by direct methyl loss from (11) and the barrier for this process at TS O is 9 kcal/mol higher than that for the isomerization of (11) to another initial adduct (10) via TS 21. The rate constant for the (11) $\rightarrow C_4H_2 + CH_3$ step is only a factor of ~3 lower than that for (11) \rightarrow (10) and, as a result, a full equilibration between all three possible initial adducts is not achieved before isomer (11) decomposes. On the contrary to diacetylene + methyl, the production of methyldiacetylene + H is favored by the formation of the initial adduct (6) in the entrance reaction channel. (6) can directly lose a hydrogen atom to give methyldiacetylene and, as a consequence, the relative yield of the latter is 55-61% if the reaction starts from (6), but only 30-34% when the initial adduct is (11).

The computed product branching ratios are in good agreement with the experimental results by Goulay et al.³⁵ (50-70% diacetylene, 43-24% methyldiacetylene, and 10-5% ethynylallene) and with the 80-90% / 20-10% ratio measured by Kaiser and coworkers³³ for the C_5H_4 products.

4.3. C₂H + 1,3-Butadiene

The C_4H_6 isomer of 1,3-butadiene consists of two π -bonds in alternating doubledouble-single double bond configuration. This makes 1,3-butadiene attractive for being the seed to benzene, the aromatic cyclic compound at the cornerstone of many-body structure and systems. 1,3-butadiene can have ethynyl radical additions to the terminal or central allylic carbons only due to symmetry, forming a linear and branched initial adduct, respectively. The major reaction scheme expected is the H-loss process from the C_6H_7 PES:

$$C_2H + CH_2 = CH = CH_2 \rightarrow C_6H_7 \rightarrow C_6H_6 + H_2$$

here, C₆H₆ can be a linear product or the cyclic benzene, as described below.

4.3.1. Reaction Mechanism

Our electronic structure calculations were conducted at an adequate level of theory to predict relative energies of all local minima, transition states, and products of the reactions of the ethynyl and D1-ethynyl radical with 1,3-butdiene to an accuracy of about 5 kJmol⁻¹ (^{iv}) (Figure 4.3a). The calculations depict that the reaction has no entrance barrier. An initial addition of the ethynylic radical center to one of the terminal carbon atoms of the 1,3-butadiene molecule leads to an acyclic reaction intermediate [i1], which is stabilized by 282 kJmol⁻¹ with respect to the reactants.

This collision complex can undergo unimolecular decomposition by emitting a hydrogen atom via a tight exit transitions state forming an acyclic C_6H_6 isomer: 1,3-hexadien-5-yne. The overall reaction was computed to be exoergic by 116 kJmol⁻¹. Alternatively, intermediate [i1] can isomerize to the cyclic structure [i4].

A comparison of the height of transition states involved in the initial steps of the reaction sequence $[i1] \rightarrow [i2] \rightarrow [i4]$ versus $[i1] \rightarrow [i3] \rightarrow [i4]$ suggests that [i1] preferentially undergoes ring closure followed by hydrogen migration. Our statistical

calculations support this conclusion and we find that over a range of collision energies from 0 kJmol⁻¹ to 50 kJmol⁻¹, a large fraction near 99 % of [i1] reaches the hydrogenated benzene molecule [i4] via [i2]. Once formed, the cyclic intermediate [i4] emits a hydrogen atom via a tight exit transition state located 13 kJmol⁻¹ above the separated pro-

the

aromatic

benzene

molecule.

ducts

forming

Jones, B.; Zhang, F.; Kaiser, R.; Jamal, A.; Mebel, A.; Cordiner, M.; Charnley, S. Proc. Nat. Acad. Sci. 2011, 108, 452-457.

Figure 4.3a. Potential energy surface (PES) for the reaction of ground state ethynyl radicals $[C_2D(X^2\Sigma^+)]$ with 1,3-butadiene $[CH_2CHCHCH_2(X^1A_g)]$. Relative energies are given in units of kJ mol⁻¹. Energies in parenthesis refer to the energetics of the reaction with the D1-ethynyl radicals. Also indicated are electronic wave functions and point groups of the reactants, intermediates, and transition states. Optimized Cartesian coordinates for all structures are given in Table A3 of the Appendix.

4.3.2. Product Branching Ratios

It is also important to discuss the branching ratios of the two isomers formed. This is crucial, if we transfer our findings to real, interstellar environments. Note that the crossed molecular beam experiment was conducted at a collision energy of ~ 45 kJmol⁻¹. The temperature equivalent of this collision energy of about 5,400 K is significantly higher than the average translational temperature in cold molecular clouds (10 K); it is however comparable with temperatures in the circumstellar envelopes of carbon-rich stars close to the photosphere holding up to a few 1,000 K^v. Our computations suggest that this is the case. At the limit of zero pressure and zero collision energy, which resembles conditions on cold molecular clouds, about 40 % of the products are benzene. As the collision energy rises to 45 kJmol⁻¹, this fraction drops monotonically to about 20%. This can be rationalized in terms of the reduced lifetime (which is still higher than its rotational period) of the initial addition intermediate [i1] and hence less favorable cyclization step to [i2] versus a decomposition to form the acyclic isomer. In our experiment, we find benzene fractions of about 30 ± 10 %, in good agreement with the computational predictions. Finally, we would like to address briefly a competing reaction pathway at elevated collision energies and temperatures: the hydrogen abstraction forming acetylene and resonantly stabilized $n-C_4H_5$ radicals. Here, the direct hydrogen abstraction from the terminal and central carbon atoms of 1,3-butadiene involve barriers of about 4 and 7 kJmol⁻¹. Hence, in low temperature interstellar clouds, these pathways are closed, but might be relevant in interstellar environments of elevated temperatures.

4.4. $C_2H + 1,2$ -Butadiene

The C_4H_6 isomer of 1,2-butadiene can be thought of as a methyl substituted allene. So, similar to the C_2H + allene reaction, ethynyl radical additions can occur to the terminal or central carbon in one of the following reaction schemes:

$$C_{2}H + CH_{2}=C=CHCH_{3} \rightarrow C_{6}H_{7} \rightarrow C_{6}H_{6} + H$$

$$C_{2}H + CH_{2}=C=CHCH_{3} \rightarrow C_{6}H_{7} \rightarrow C_{5}H_{4} + CH_{3}$$

$$C_{2}H + CH_{2}=C=CHCH_{3} \rightarrow C_{6}H_{7} \rightarrow C_{4}H_{2} + C_{2}H_{5}$$

These may form various C_6H_7 intermediates and transition states via initial C_2H addition to 1,2-butadiene followed by H migrations and cyclization/decyclization processes. These intermediates can eventually decompose leading to different isomers of the C_6H_6 , C_5H_4 , or C_4H_2 products via H, CH₃, or C_2H_5 loss channels, respectively. Here, we present the results of *ab initio* calculations of the PES followed by RRKM computations of individual reaction rate constants and product branching ratios with the goal to understand the reaction mechanism and to predict the reaction outcome under singlecollision conditions.

4.4.1 Reaction Mechanism

Our consideration of the reaction mechanism is based on *ab initio* calculations of the C_6H_7 PES. It should be noted that we targeted all possible C_6H_7 intermediates and

transition states that connect them, but here we present only most favorable channels related to the $C_2H + 1,2$ -butadiene reaction. Ethynyl radical can attack various sites in 1,2-butadiene. In particular, C₂H additions can occur to the terminal CH₂ carbon (designated C1) resulting in a linear initial adduct, and to the central carbon atoms including the second allenic carbon C2 or the third sp²-hybridized carbon C3, producing branched initial adducts. Furthermore, C₂H additions can take place to one of the two C=C double bonds, one between C1 and C2, and the other between C2 and C3, forming three-membered cyclic intermediates. The overall potential energy maps for the terminal and central C₂H additions are depicted in Figures 4.4b and 4.4c, respectively. All relative energies of the intermediates and transition states shown on the maps and discussed hereafter are calculated at the CCSD(T)/cc-pVTZ//B3LYP/6-311G** + ZPE(B3LYP/6- $311G^{**}$) level of theory. For the reactants, $C_2H + 1,2$ -butadiene, and all of the products the values given in parentheses show CCSD(T)/CBS extrapolated results. We will see that product branching ratios depend on the initial adduct that forms, and so we first address the results separately for each initial ethynyl radical addition channel, before summarizing the general picture. Figure 4.4b and Figure 4.4c has the full potential energy map of the terminal and central addition, respectively.

Terminal addition to C1:

The potential energy diagram for the most important channels following terminal addition of ethynyl radical to 1,2-butadiene is depicted in Figure 4.4a. This barrierless addition to the C1 sp²-carbon of H₂C=C=CHCH₃ results in the initial intermediate INT 1 and is exothermic by 57.0 kcal/mol. Several products can be formed directly from INT 1,

including penta-1,4-diyne by CH_3 -loss on the opposite terminal of INT 1 via TS 22 and a barrier of 35.4 kcal/mol as well as hexa-3,4-diene-1-yne and hexa-1,4-diyne by H eliminations via TSs 10 and 13 via barriers of 38.1 and 38.3 kcal/mol, respectively. The products, penta-1,4-diyne + CH₃, hexa-3,4-diene-1-yne + H, and hexa-1,4-diyne + H, were found to be exothermic relative to the reactants by 31.2, 25.4, and 23.8 kcal/mol, respectively, at the CCSD(T)/CBS level of theory. Alternatively to the direct fragmentation, INT 1 can undergo several (de)cyclization and/or H migration steps leading to other intermediates on the C₆H₇ surface and decompose after that. In particular, another favorable C₆H₆ product, 2-ethynyl-1,3-butadiene, exothermic by 39.1 kcal/mol, can be formed through a sequence of three reaction steps. These include ring closure, ring opening, and an H-loss processes on the following overall pathway, $C_2H +$ 1,2-butadiene \rightarrow INT 1 \rightarrow INT 18 \rightarrow INT 7 \rightarrow 2-ethynyl-1,3-butadiene. INT 1 rearranges to the 3-membered-ring adduct INT 18 with a barrier of 24.2 kcal/mol via TS 49. This occurs by a cyclization of the added ethynyl moiety towards the C1=C2 bond of 1,2-butadiene, where the reverse process leading back to INT 1 has a barrier of 14.0 kcal/mol. Notably, INT 18 serves as the initial adduct of the central addition to the C=C bond between C1 and C2 and resides 46.8 kcal/mol below the $C_2H + 1,2$ -butadiene reactants. INT 18 can further ring-open to produce the branched adduct INT 7, which lies 81.4 kcal/mol below the reactants. This decyclization process occurs with a low barrier of 2.1 kcal/mol via TS 50, whereas the reverse process leading back to INT 18 has a barrier of 36.7 kcal/mol. INT 7 is also the initial adduct of the central C_2H addition to the C2 atom in 1,2-butadiene. Finally, INT 7 can exhibit an H-loss from the CH₃ terminal leading to the 2-ethynyl-1,3-butadiene product with a barrier of 46.6 kcal/mol via TS

Channels include 1,3-H shift in INT1 leading to INT3 via a barrier of 40.3 kcal/mol, with subsequent dissociation of INT 3 by H elimination to hexa-1,3-diene-5-yne or hexa-4,5-diene-1-yne with barriers of 45.0 and 61.3 kcal/mol, respectively, 1,2-H shift from INT 1 to INT 5 via a barrier of 38.8 kcal/mol with two possible:

Figure 4.4a. Composite potential energy diagram of terminal addition with the most favorable product formation channels.

Figure 4.4b. Potential energy diagram map for the $C_2H + 1,2$ -butadiene reaction of terminal addition forming INT 1 and central addition of the C1=C2 bond forming INT 18. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the CCSD(T)/cc-pVTZ//B3LYP/6-311G** + ZPE(B3LYP/6-311G**) level of theory and at CCSD(T)/CBS (in parentheses, for the products).

A pathway leading to the formation of the aromatic benzene molecule is also worth mentioning. The intermediate INT 3 can cyclize to INT X via a barrier of 23.9 kcal/mol, which then undergoes an H shift to the hydrogen-less C atom in the ring followed by H elimination from the remaining CH_2 group producing the most stable C_6H_6 isomer benzene, 102.4 kcal/mol lower in energy than the $C_2H + 1,2$ -butadiene reactants. Since INT 3 is the initial adduct in the $C_2H + 1,3$ -butadiene reaction, this channel has been described in detail in our previous work.

For C₂H + 1,2-butadiene, this path is not likely to be accessed because the INT 1 \rightarrow INT 3 rearrangement has a higher barrier than that for the CH₃ loss in INT 1 producing penta-1,4-diyne as well as those on the INT 1 \rightarrow INT 18 \rightarrow INT 7 \rightarrow 2ethynyl-1,3-butadiene pathway and for the H losses leading to hexa-3,4-diene-1-yne and hexa-1,4-diyne. Figure 4.4a depicts the PES of the terminal addition with the most favorable pathways and products.

Central addition to C2:

The potential energy diagram for the central addition of ethynyl radical to the C2 carbon of 1,2-butadiene is depicted in Figure 4.4d. This barrierless addition results in INT 7 and is exothermic by 81.4 kcal/mol relative to the products. The only significant product that can be formed directly from INT 7 is 2-ethynyl-1,3-butadiene, via an H loss and a barrier of 46.6 kcal/mol, with the overall C₂H + 1,2-butadiene \rightarrow INT 7 \rightarrow 2-ethynyl-1,3butadiene + H reaction being 39.1 kcal/mol exothermic. Alternatively, INT 7 can isomerize to INT 1 via INT 18 by migration of the C₂H moiety over the C1=C2 bond, with highest barrier of 48.6 kcal/mol relative to INT 7.

Figure 4.4c. Potential energy diagram map for the $C_2H + 1,2$ -butadiene reaction of central additions forming INT 7 and INT 13, and central addition to the C1=C2 bond and C2=C3 bond forming INT 18 and INT 12, respectively. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the CCSD(T)/cc-pVTZ//B3LYP/6-311G** + ZPE(B3LYP/6-311G**) level of theory and at CCSD(T)/CBS (in parentheses, for the products).

Figure 4.4d. Composite potential energy diagram of central addition to C2 of 1,2-butadiene with the most favorable product formation channels.

This pathway connects INT 7 with the area of the surface accessed by the terminal C_2H addition to C1 and described in the previous section. The C_2H group can also migrate

over C2=C3 resulting in INT 13 via a cyclic intermediate INT 12, with the critical transition state lying 47.7 kcal/mol above INT 7. INT 13 is the initial adduct for the central addition to C3 and we consider its possible transformations in the next section. The other reaction channels from INT 7 shown in Figure 4.4d are less likely to compete.

Those worth mentioning include INT 7 \rightarrow TS 23 (1,2-H shift) \rightarrow INT 8 \rightarrow TS 39 (H loss) \rightarrow 2-ethynyl-1,3-butadiene, with a critical barrier of 48.4 kcal/mol with respect to INT 7; INT 7 \rightarrow TS 23 (1,2-H shift) \rightarrow INT 8 \rightarrow TS 32 (1,4-H shift) \rightarrow TS 24 (C₂H₅ loss) \rightarrow diacetylene + ethyl radical, with the highest barrier of 56.4 relatively INT 7, and INT 7 \rightarrow TS 26 (1,3-H shift) \rightarrow INT 11 \rightarrow TS 43 (CH₃ loss) \rightarrow methyldiacetylene + CH₃, where the highest in energy transition state resides 57.4 kcal/mol above INT 7. Figure 4.4d depicts the PES of the central addition to C2 with the most favorable pathways and products.

Central addition to C3:

The potential energy diagram of the central addition of ethynyl radical to the C3 carbon of 1,2-butadiene is illustrated in Figure 4.4e. In this case, the barrierless addition produces INT 13 and is 56.3 kcal/mol exothermic. From INT 13, ethynylallene can be formed by the CH₃ loss with a barrier of 32.3 kcal/mol via TS 45. Ethynylallene + CH₃ are 35.5 kcal/mol exothermic with respect to the reactants. However, a more probable dissociation mechanism of INT 13 involves its initial isomerization to INT 7 (via INT 12) followed by an H loss leading to 2-ethynyl-1,3-butadiene, C₂H + 1,2-butadiene \rightarrow INT 13 \rightarrow INT 12 \rightarrow INT 7 \rightarrow 2-ethynyl-1,3-butadiene. The highest barrier on this pathway (relative to INT 13) is found for the first step, with the corresponding transition state TS

31 residing only 22.6 kcal/mol above INT 13. The H loss channels from INT 13 producing 3-ethynyl-1,2-butadiene and 3-ethynyl-1-butyne exhibit prohibitively high barriers of 37.6 and 40.5 kcal/mol, respectively (Fig. 4.4c) and are unlikely to contribute.

Figure 4.4e. Composite potential energy diagram of central addition to C3 of 1,2-butadiene with the most favorable product formation channels.

Central additions to the C1=C2 and C2=C3 bonds:

This barrierless C_2H addition to C1=C2 results in the 3-membered cyclic intermediate INT 18 and is exothermic by 46.8 kcal/mol. This intermediate cannot directly decompose and would rather decyclize to INT 7 or INT 1 via 2.1 and 14.0 kcal/mol barriers, and enter the areas of the PES accessed by the ethynyl additions to C2 and C1, respectively, described in the previous sections. Clearly, the rearrangement to INT 7 is preferable and therefore, the 2-ethynyl-1,3-butadiene + H products are expected to be dominante. The ethynyl addition to C2=C3 is also predicted to occur without a barrier and to form INT 12, 46.3 kcal/mol below $C_2H + 1,2$ -butadiene. INT 12 can ringopen to INT 7 or INT 13 overcoming respective barriers of 4.1 and 12.6 kcal/mol. As for INT 18, the isomerization of INT 12 to INT 7 is more favorable and thus we can expect the 2-ethynyl-1,3-butadiene + H products to dominate following the C_2H addition to C2=C3. Figures 4.4d and 4.4e includes the PES of the central addition to the C1=C2 bond and C2=C3 bonds, respectively, along with the most favorable pathways and products.

4.4.2. Product Branching Ratios

In this section, we move from the qualitative discussion of the reaction mechanism to a quantitative consideration of product branching ratios obtained from kinetic calculations based on RRKM rate constants. All of the rate constants for every channel are given in Table A5 of the Appendix. The calculations were carried out at collision energies of 0-7 kcal/mol assuming any one of the adducts, INT 1, INT 7, INT

12, INT 13, and INT 18, are the only initial intermediates that form. The results are also given in Table A5 of the Appendix. We then considered 20% concentrations of each initial adduct to give an insight of the formation of products when equal probabilities of any of the initial adducts are considered. The results of this equal probability product branching ratios are given in Table A6 of the Appendix.

For the case of terminal addition leading to the formation of INT 1, the two major products is the H-loss product of 2-ethynyl-1,3-butadiene + H and the CH₃-loss product of penta-1,4-diyne + CH₃. The statistical producing branching ratio at 0 kcal collision energy is 66.8% and 32.2%, respectively. The trend of increasing collision energy is a decrease on the formation of 2-ethynyl-1,3-butadiene + H and an increase on the formation of penta-1,4-diyne + CH₃. At 7 kcal collision energy, the formation of 2ethynyl-1,3-butadiene + H drops to 43.6% while the formation of penta-1,4-diyne + CH₃ increases to 54.4%.

For the case of central addition to C2 leading to the formation of INT 7, central addition of C2=C3 leading to the formation of INT 12, and central addition to C1=C2 leading to the formation of INT 18, the major product is 2-ethynyl-1,3-butadiene + H. For the collision energies in the range of 0-7 kcal, the formation of 2-ethynyl-1,3-butadiene + H shows a decreasing trend. With the formation of INT 7, the statistical branching ratio of 2-ethynyl-1,3-butadiene + H is 99.2% to 98.7% in this collision energy range. The formation of INT 12 leads to branching ratios of 2-ethynyl-1,3-butadiene + H of 98.9% to 97.8% in this collision energy range. Finally, the formation of INT 18 has branching ratios of 98.5% to 96.8% for the 2-ethynyl-1,3-butadiene + H product.

The central addition to C3 leading to the formation of INT 13 also has 2-ethynyl-1,3-butadiene + H as a major product, however, a minor product is worth mentioning. In the 0-7 kcal collision energy range, 2-ethynyl-1,3-butadiene + H shows a branching ratio of 90.6% to 81.5%. The minor product observed in this range is the CH₃-loss product of ethynylallene + CH₃, having a branching ratio of 8.2% to 15.4%.

Finally, with 20% initial concentrations of each initial adduct of INT 1, INT 7, INT 12, INT 13, and INT 18, the 2 major products observed were the H-loss product of 2-ethynyl-1,3-butadiene + H and the CH₃-loss product of penta-1,4-diyne + CH₃. This was done to simulate an equal probability of initial adduct formation so the overall general trend of the statistical product branching ratios can be observed. Similar to the situation of terminal addition to INT 1, the 2-ethynyl-1,3-butadiene + H showed a decrease in the 0-7 kcal collision energy range, while penta-1,4-diyne + CH₃ showed an increase. The product branching ratio of 2-ethynyl-1,3-butadiene + H went from 66.8% to 43.6% in the 0-7 kcal collision energy range. The product branching ratio of penta-1,4-diyne + CH₃ went from 32.2% to 54.4% in the 0-7 kcal collision energy range.

4.5. $C_2H + 1$ -Butyne

The C_4H_6 isomer of 1-butyne (CHCCH₂CH₃) is similar in moiety to the C_3H_4 isomer methylacetylene. Here, the methyl group in methylacetylene is replaced by an ethyl group, or ethylacetlyene. Similar to ethynyl radical additions to methylacetylene, terminal addition of ethynyl radical can occur to the sp-hybridized carbon forming a

linear initial adduct, the triple bond forming a 3-membered cyclic initial adduct, or to the central acetylenic sp-hybridized carbon forming a branched initial adduct.

$$C_{2}H + HC \equiv CCH_{2}CH_{3} \rightarrow C_{6}H_{7} \rightarrow C_{6}H_{6} + H$$

$$C_{2}H + HC \equiv CCH_{2}CH_{3} \rightarrow C_{6}H_{7} \rightarrow C_{5}H_{4} + CH_{3}$$

$$C_{2}H + HC \equiv CCH_{2}CH_{3} \rightarrow C_{6}H_{7} \rightarrow C_{4}H_{2} + C_{2}H_{5}$$

The $C_2H + 1$ -butyne reaction has been studied experimentally by Soorkia et al.¹⁰⁰ The authors have measured rate constants in a pulsed Laval nozzle apparatus over the temperature range of 74-295 K and found the reaction to be fast, with nearly temperatureindependent rate coefficients of $\sim 2.5 \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹, close to the collision limit. They also analyzed the reaction products by means of multiplexed photoionization mass spectrometry coupled to the tunable vacuum ultraviolet synchrotron radiation. Although benzene was not detected, somewhat unexpectedly, the authors observed less stable cyclic C_6H_6 isomers, fulvene (18+5%) and dimethylenecyclobut-1-ene (DMCB, 32+8%). The other identified C_6H_6 products included 2-ethynyl-1,3-butadiene (8±5%), 3,4hexadiene-1-yne ($28\pm8\%$), and 1,3-hexadiyne ($14\pm5\%$). The C₅H₄ + CH₃ product channel was also found, with the linear C₅H₄ isomers ethynylallene and methyldiacetylene observed in a 4:1 ratio. The formation of the $C_4H_2 + C_2H_5$ products was recognized to be thermodynamically feasible, but could not be detected owing to experimental limitations. The authors suggested the reaction mechanism, which included isomerization pathways followed by dissociation to all observed reaction products, however, these pathways were not verified by theoretical calculations of the potential energy surface (PES).

4.5.1. Reaction Mechanism

We start our consideration with a survey of the reaction mechanism based on ab initio calculated potential energy diagrams for various reaction channels. It should be noted that in our systematic calculations we targeted all possible C_6H_7 isomers and transition states connecting them, but here we present only the most favorable channels related to the C_2H + CHCCH₂CH₃/CH₃CCCH₃ reactions as well as the pathways suggested by Soorkia et al.¹⁰⁰ to explain the experimentally observed reaction products. 1-Butyne possesses one triple C=C bond and no double bonds and hence, C₂H addition can occur to either of the two acetylenic carbon atoms, terminal C¹ or central C², or to the triple bond itself. On the other hand, ethynyl addition to highly-symmetric 2-butyne can proceed to one of the middle carbon atoms or to the central triple C=C bond.

Terminal C_2H *addition to* 1*-butyne:*

The potential energy diagram of the reaction pathway initiated by the terminal C₂H addition is illustrated in Figure 4.5a. One can see that this addition takes place without a barrier and produces the initial adduct INT A with exothermicity of 60.2 kcal/mol, as calculated at the CCSD(T)/cc-pVTZ//B3LYP/6-311G** + ZPE(B3LYP/6-311G**) level. Note that this energy gain is similar to those for C₂H additions to acetylene (58.5 kcal/mol, G2M(MP2))²⁹ and for the terminal addition to diacetylene (63.9 kcal/mol, CCSD(T)/cc-pVTZ).³⁰ The most energetically favorable dissociation channel of INT A is elimination of the CH₃ group from the opposite end of the molecule producing a C₅H₄ isomer ethynylallene. The barrier for the CH₃ loss is 32.7 kcal/mol relative to INT

A and the overall exothermicity of the $C_2H + 1$ -butyne \rightarrow ethynylallene + CH₃ reaction is 36.7 (36.9) kcal/mol at the CCSD(T)/cc-pVTZ (CCSD(T)/CBS) levels, with the reverse barrier for CH₃ addition to the CH₂ terminal of ethynylallene of 9.2 kcal/mol. INT A can also lose H atoms from two different positions. H elimination from the CH₂ group gives 3,4-hexadiene-1-yne via a barrier of 37.3 kcal/mol and the products reside 29.4 kcal/mol below the initial reactants. Alternatively, INT A can split an H atom from the attacked carbon forming 1,3-hexadiyne (26.6 kcal/mol lower in energy than $C_2H + 1$ -butyne) via a slightly higher barrier of 38.4 kcal/mol. The other two H eliminations are not likely to compete as they would produce unfavorable diradical or carbene C₆H₆ isomers CHCCHCCH₂CH₂ or CCCHCCH₂CH₃. The initial adduct can also isomerize by the 1,3-H shift from the CH₃ group leading to the CHCCHCHCH₂CH₂ intermediate INT B, which is 8.4 kcal/mol more stable than INT A. The H migration barrier is calculated to be 38.7 kcal/mol, slightly higher than those for the H eliminations. In turn, INT B can eliminate a hydrogen atom from the vicinal CH₂ group producing 1,3-hexadiene-5-yne via a barrier of 33.7 kcal/mol. The calculated exothermicity of the C₂H + 1-butyne \rightarrow 1,3-hexadiene-5-yne reaction is 41.3 kcal/mol at the CCSD(T)/CBS level. Finally, INT A can undergo a two-step C₂H migration over the neighboring C=C bond producing a branched intermediate INT 1 (57.6 kcal/mol below the reactants) via a three-member ring intermediate INT C-T. The barriers for the isomerization of INT C-T back to INT A and forward to INT 1 are rather low, 6.8 and 6.3 kcal/mol, respectively. Note that both INT C-T and INT 1 can be produced directly from the reactants by barrierless C₂H additions to the C=C bond and the C2 carbon of 1-butyne, respectively. No other competitive pathways starting from INT A were found.

Figure 4.5a. Potential energy diagram for the terminal C_2H addition to 1-butyne. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the CCSD(T)/cc-pVTZ//B3LYP/6-311G** + ZPE(B3LYP/6-311G**) level of theory and at CCSD(T)/CBS (in parentheses, for the products).

Central C₂*H addition to* 1*-butyne:*

Reaction channels originating from the intermediate INT 1, which can be produced as an initial adduct of the central addition, are illustrated in Figure 4.5b. The only plausible fragmentation pathway of INT 1 is elimination of the C₂H₅ group to form diacetylene. The corresponding barrier for the C-C bond cleavage via TS 1x is 32.0 kcal/mol and the $C_4H_2 + C_2H_5$ products are exothermic by 36.6 kcal/mol relative to the initial reactants. Neither CH₃ nor H eliminations from INT 1 can be competitive as they would lead to higher-energy carbene or diradical products. Otherwise, INT 1 can be subjected to H migrations followed by various rearrangements and dissociations. For instance, a 1,4-H shift from the CH₃ group to CH occurring via TS 1-4 with a relatively low barrier of 16.2 kcal/mol produces another branched intermediate INT 4 (68.6 kcal/mol below the reactants). The latter can lose a hydrogen atom from the vicinal CH_2 group forming 2-ethynyl-1,3-butadiene via a 34.3 kcal/mol barrier. The overall exothermicity of the C₂H + 1-butyne \rightarrow 2-ethynyl-1,3-butadiene reaction is 40.3 kcal/mol. A 1,3-H shift from the vicinal CH₂ group in INT 1 gives INT 2, which is 25.0 and 14.0 kcal/mol more stable than INT 1 and INT 4, respectively. However, the barrier for the 1,3-H migration, 35.3 kcal/mol, is much higher than that for the 1,4-H shift. A more feasible path from INT 1 to INT 2 is two-step, INT 1 \rightarrow INT 4 followed by 1,2-H migration from CH₂ to CH₂ in INT 4. The highest in energy transition state along the INT $1 \rightarrow INT 4 \rightarrow INT 2$ path, TS 2-4, lies 22.5 kcal/mol higher in energy than INT 1. INT 2 can lose a hydrogen atom from the CH₃ group producing 2-ethynyl-1,3-butadiene via TS2x located 37.0 kcal/mol below the reactants. Alternatively, another 1,3-H shift from vicinal CH to CH_2 in INT 2 gives rise to INT 3.

Figure 4.5b. Potential energy diagram for the central C_2H addition to 1-butyne. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the $CCSD(T)/cc-pVTZ/B3LYP/6-311G^{**} + ZPE(B3LYP/6-311G^{**})$ level of theory and at CCSD(T)/CBS (in parentheses, for the products).

Two dissociation channels of INT 3 are feasible, elimination of the vicinal CH₃ group producing methyldiacetylene via a barrier of 33.9 kcal/mol and a hydrogen atom loss

from terminal CH₃ forming 1,1-ethynylmethylallene (3-methyl-1,2-pentadiene-4-yne) with a barrier of 40.1 kcal/mol. The overall exothermicities of the methyldiacetylene + CH_3 and 1,1-ethynylmethylallene + H channels of the C_2H + 1-butyne reaction are computed to be 42.0 and 27.4 kcal/mol, respectively. At this point, we can summarize the most important reaction pathways leading to acyclic products and originating from the initial adduct INT 1 formed as a result of central C₂H addition to 1-butyne: INT 1 \rightarrow $C_4H_2 + C_2H_5$ (the highest in energy transition state TS 1x, -25.6 kcal/mol relative to C_2H + 1-butyne, the barrier relative to INT 1 – 32.0 kcal/mol), INT 1 \rightarrow INT 4 \rightarrow 2-ethynyl-1,3-butadiene (TS 4x, -34.3 kcal/mol, 23.3 kcal/mol), INT 1 \rightarrow INT 4 \rightarrow INT 2 \rightarrow 2ethynyl-1,3-butadiene (TS 2-4, -35.1 kcal/mol, 22.5 kcal/mol), INT $1 \rightarrow$ INT $4 \rightarrow$ INT 2 \rightarrow INT 3 \rightarrow methyldiacetylene + CH₃ (TS 2-3, -25.2, 32.4 kcal/mol), and INT 1 \rightarrow INT $4 \rightarrow INT 2 \rightarrow INT 3 \rightarrow 1.1$ -ethynylmethylallene + H (TS 3x2, -23.9, 33.7 kcal/mol). Note that since the INT $1 \rightarrow INT C-T \rightarrow INT A$ isomerization features the highest in energy transition state at -32.5 kcal/mol relative to $C_2H + 1$ -butyne (25.1 kcal/mol above INT 1), the aforementioned dissociation channels have to compete with the C_2H shift and hence with the dissociation pathways of INT A described in the previous Section.

Next, we consider reaction pathways involving ring closures and leading to the formation of cyclic C_6H_6 products, fulvene and DMCB, illustrated in Figure 4.4c. INT 4 can easily undergo cyclization into a five-member ring isomer INT 5, which resides 82.4 kcal/mol below the reactants, overcoming a low barrier of 2.3 kcal/mol at TS 4-5. However, INT 5 has two adjacent CH₂ groups and one bare C atom in the ring and therefore cannot serve as an immediate precursor of fulvene. Soorkia et al.⁹³ suggested

that a 1,3-H shift from CH_2 to the hydrogen-less carbon atom in the ring can produce a fulvene precursor.

Figure 4.5c. Potential energy map of the $C_2H + 1$ -butyne reaction including channels leading to the formation of fulvene and DMCB.

Our calculations show that this hydrogen shift can occur via TS 5-8 to form INT 8, but the corresponding barrier is very high, 78.1 kcal/mol, with the transition state lying only 4.3 kcal/mol lower in energy than the reactants. This makes the INT 5 \rightarrow INT 8 rearrangement highly unlikely. Alternatively, the 1,3-H shift can be replaced by a series of 1,2-H migrations. At the first step, a hydrogen atom migrates from the CH group in the ring to the neighboring bare carbon to produce INT 6. The barrier for this process is 58.7 kcal/mol, almost 20 kcal/mol lower than that for the 1,3-H shift. Then, a second 1,2-H shift can occur from a CH₂ group in the ring to the adjacent C atom, which lost its hydrogen at the previous step. This results in the formation of INT 7 via TS 6-7, residing 116.8 and 42.5 kcal/mol below the C_2H + 1-butyne reactants, respectively. INT 7 possesses only one CH₂ group in the ring, in *ortho* position with respect to the out-of-ring CH₂ moiety, and can directly decompose to fulvene by splitting an H atom from the ring's CH₂ group. The H loss takes place via TS 7x lying 62.1 kcal/mol lower in energy than the reactants. The reverse H addition barrier to fulvene to form INT 7 is calculated to be 8.5 kcal/mol at the CCSD(T)/cc-pVTZ + ZPE level and the overall exothermicity of the C₂H + 1-butyne \rightarrow fulvene + H reaction is 70.6 and 72.3 kcal/mol according to the CCST(T)/cc-pVTZ and CCSD(T)/CBS calculations including ZPE corrections. INT 7 can isomerize to INT 8 by yet another 1.2-hydrogen shift from CH₂ to CH in the ring via TS 7-8 lying at -67.5 kcal/mol below the reactants. INT 8 has the ring CH₂ group in a *meta* position and is 5.4 kcal/mol less stable than INT 7, 111.4 kcal/mol lower in energy compared to $C_2H + 1$ -butyne. INT 8 can lose an H atom from the ring's CH_2 group to form fulvene via TS 8x, which lies 6.1 kcal/mol lower in energy than TS 7x. Thus, the H addition barrier to the meta C atom in fulvene to produce INT 8 is only 2.4 kcal/mol,
making this process preferable as compared to the *ortho* H addition forming INT 7. In terms of the energetics, the most favorable pathway from the reactants to fulvene is the following: $C_2H + 1$ -butyne \rightarrow INT $1 \rightarrow$ INT $4 \rightarrow$ INT $5 \rightarrow$ INT $6 \rightarrow$ INT $7 \rightarrow$ INT $8 \rightarrow$ fulvene + H, with the highest in energy transition state TS 5-6 residing 23.7 kcal/mol below the reactants or 33.9 kcal/mol above INT 1. One can see that in terms of the height of the critical barrier this pathway is comparable with the channels leading to C_4H_2 + C_2H_5 , pentadiyne + CH₃, and 1,1-ethynylmethylallene + H, but less favorable than the channels producing 2-ethynyl-1,3-butadiene. The mechanism proposed by Soorkia et al., $C_2H + 1$ -butyne \rightarrow INT $1 \rightarrow$ INT $4 \rightarrow$ INT $5 \rightarrow$ INT $8 \rightarrow$ fulvene + H, is clearly unfavorable to the high barrier for the 1,3-H shift at TS 5-8.

Several reaction channels can lead to the formation of the four-member ring DMCB product (Fig. 4.5c). For instance, INT 2 can ring-close to a four-member ring intermediate INT 14 via TS 2-14 at -33.4 kcal/mol relative to $C_2H + 1$ -butyne. Soorkia et al. suggested that a 1,3-H migration in INT 14 can form INT 16, which is a precursor of DMCB. However, despite a careful search we were not able to locate a saddle point corresponding to such rearrangement. Instead, we found a two-step pathway connecting INT 14 and INT 16 via another intermediate INT 15. Along this path, 1,2-H migration takes place from the C(H)(CH₃) group to the neighboring CH group in the ring via a high barrier of 68.2 kcal/mol, with TS 14-15 residing 7.8 kcal/mol above the initial reactants. At the second step, an H atom shifts from the CH₂ group in the ring to the adjacent bare C atom to produce INT 16 via TS 15-16 at -9.6 kcal/mol. Finally, INT 16 can lose an H atom from the out-of-ring CH₃ to form DMCB without an exit (reverse) barrier and the overall energy of the C₂H + 1-butyne \rightarrow DMCB + H reaction is -42.7 kcal/mol at the

CCSD(T)/CBS + ZPE level. One can see that the $C_2H + 1$ -butyne $\rightarrow INT 1 \rightarrow INT 2 \rightarrow$ INT $14 \rightarrow INT 15 \rightarrow INT 16 \rightarrow DMCB + H$ channel is not expected to be competitive. Alternative pathways producing DMCB involve five-member ring intermediates. INT 7 can ring-open to a chain intermediate INT 9 via a barrier of 34.6 kcal/mol, with TS 7-9 residing 82.2 kcal/mol below the reactants. Next, INT 9 can undergo a four-member ring closure to INT 10 overcoming a barrier of 31.2 kcal/mol. INT 10 possesses a C(H)(CH₂) group in one of the ring vertices and can lose the H atom from this moiety producing DMCB via a barrier of 37.2 kcal/mol. Alternatively, the INT 10 intermediate can rearrange to INT 16 via a 36.6 kcal/mol barrier and then dissociate to DCMB + H. INT 10 can be also produced from INT 8 via a two-step process. At the first step, a ring opening along the CH₂-CH bond produces INT 11 via a 52.4 kcal/mol barrier and after that a four-member ring closes to form INT 10 overcoming a lower barrier of 18.8 kcal/mol. The third DMCB precursor is INT 13. This intermediate can be formed in one step by 1.2-H shift in INT 10 via TS 10-13 lying 29.8 kcal/mol below the reactants, or by a two-step isomerization of INT 9 involving a 1,2-hydrogen migration to form INT 12 followed by a four-member ring closure, with the corresponding transition states TS 9-12 and TS 12 -13 residing 20.5 and 46.7 kcal/mol below the initial reactants, respectively. Now we can identify the most energetically favorable pathways to DMCB as the following: C₂H + 1-butyne \rightarrow INT 1 \rightarrow INT 4 \rightarrow INT 5 \rightarrow INT 6 \rightarrow INT 7 \rightarrow INT 9 \rightarrow INT 10 (\rightarrow INT 16) \rightarrow DMCB + H and C₂H + 1-butyne \rightarrow INT 1 \rightarrow INT 4 \rightarrow INT 5 \rightarrow INT $6 \rightarrow INT 7 \rightarrow INT 8 \rightarrow INT 11 \rightarrow INT 10 (\rightarrow INT 16) \rightarrow DMCB + H.$ Similar to the fulvene pathways, the critical transition state is TS 5-6 at -23.7 kcal/mol. However, for DMCB to be produced, the rearrangements of INT 7 and INT 8 eventually leading to

INT 10 and H elimination from INT 10 have to compete with the H losses from INT 7 and INT 8, which are clearly energetically preferable.

Ι

nterestingly, according to the calculations by Senosiain and Miller⁸⁸ at the similar QCISD(T)/CBS level of theory, who studied the C₆H₇ PES in relation to the C₄H₅ + C₂H₂ reaction, a pathway exists connecting the intermediate INT 8 with the benzene + H products. Along this pathway, INT 8 undergoes a ring opening along the (CH₂)C-CH bond, then re-closes to a six-member ring c-(CH₂CHCCH₂CHCH) structure, which in turn is subjected to 1,2-H migration from CH₂ in the ring to the bare C atom to c-(CH₂CHCHCHCHCHCH), and the latter loses an H atom from CH₂ to form benzene. Using the relative energies with respect to INT 8 for various species along this pathway as reported by Senosiain and Miller,⁸⁸ we can evaluate their relative energies in context of the C₂H + 1-butyne reaction as follows: INT 8 (-111.4 kcal/mol) \rightarrow five-member ring opening TS (-51.1 kcal/mol) \rightarrow CH₂CCHCH₂CHCCH (-53.3 kcal/mol) \rightarrow six-member ring closure TS (-45.3 kcal/mol) \rightarrow c-(CH₂CHCCH₂CHCCH) (-87.6 kcal/mol) \rightarrow H loss TS (-94.1 kcal/mol) \rightarrow benzene + H (-99.7 kcal/mol).

C_2H addition to the C=C bond in 1-butyne

Ethynyl addition to the triple C=C bond in 1-butyne forms a three-member ring intermediate INT C-T without a barrier and with exothermicity of 39.3 kcal/mol. Whereas dissociation channels of INT C-T are not expected to be competitive as they

may produce only high-lying C_6H_6 or C_5H_4 isomers, this initial adduct can easily isomerize to INT 1 or INT A overcoming relatively low barriers with the corresponding transition states at -32.5 and -33.0 kcal/mol below the reactants. After that, the reaction accesses the areas of the PES described in the previous Sections.

4.5.2. Product Branching Ratios

RRKM rate constants computed at collision energies varying from 0.0 to 7.0 kcal/mol in the reactions of C₂H with 1-butyne is given in Table A8 of the Appendix. They were used in calculations of product branching ratios, which were carried out using the kinetic scheme encompassing all considered reaction channels and taking INT 1, INT C-T, and INT A (1-butyne) or INT 3 (2-butyne) as the initial chemically activated reaction intermediates. The resulting branching ratios are collected in Tables 1 and 2 for $C_2H + 1$ -butyne and $C_2H + 2$ -butyne, respectively. One can see that for the reaction with 1-butyne, the outcome strongly depends on the choice of the initial adduct. If the reaction starts from INT A (terminal ethynyl addition), the major reaction product (61.7-71.7%) is expected to be ethynylallene C_5H_4 formed by a direct CH_3 loss from INT A and the relative yield of ethynylallene increases with the collision energy. Ethynylallene is followed by four C_6H_6 isomers, 2-ethynyl-1,3-butadiene (26.0-13.3%), 1,3-hexadiene-5yne (6.7-4.1%), 3,4-hexadiene-1-yne (2.5-2.1%), and 1,3-hexadiyne (1.7-3.1%), of which the last two are produced by direct H eliminations from INT A and 1,3-hexadiene-5-yne is formed via 1,3-H migration followed by an H loss, INT A \rightarrow INT B \rightarrow 1,3-hexadiene-5-yne.

	Initial	$E_{\rm col}$, kcal/mol							
Products	Adduct	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0
C ₆ H ₆ (isomers) + H									
2-ethynyl-1,3-butadiene	INT A	26.0	24.4	22.9	17.7	16.4	15.3	14.2	13.3
	INT C-T	57.8	56.5	55.3	42.1	40.6	39.3	37.9	36.6
	INT 1	87.3	86.5	85.6	65.0	63.4	61.8	60.3	58.8
1.3-hexadiene-5-vne	INT A	6.7	7.3	7.9	3.2	3.4	3.6	3.9	4.1
-,	INT C-T	3 5	39	4 2	19	2.0	2.1	2.3	2.4
	INT 1	0.6	0.6	0.7	0.6	0.7	0.7	0.8	0.8
3 4-hexadiene-1-vne	INT A	2.5	27	29	17	1.8	19	2.0	2.1
	INT C-T	13	14	15	1.0	11	11	1.2	1.2
	INT 1	0.2	0.2	0.3	0.3	0.4	0.4	0.4	0.4
1.3 havadiyna		1.7	1.0	2.0	2.4	2.6	28	2.0	3.1
1,5-nexaciyite		0.0	1.9	2.0	2.4 1 4	2.0	2.0 1.6	2.9	J.1 1 0
	INT 1	0.9	1.0	1.1	1.4	1.3	1.0	1./	1.8
1 1 41		0.1	0.2	0.2	0.5	0.5	0.5	0.0	0.6
1,1-ethynyimethylallene	INIA DITOT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
г 1		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fulvene	INI A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT C-I	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INTI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DMCB	INT A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT C-T	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C ₅ H ₄ (isomers) + CH ₃									
Ethynylallene	INT A	61.1	61.7	62.2	69.7	70.4	70.9	71.3	71.7
	INT C-T	32.2	32.6	32.9	40.9	41.4	41.6	41.9	42.1
	INT 1	5.3	5.4	5.5	13.9	14.0	14.0	14.1	14.1
methyldiacetylene	INT A	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1
	INT C-T	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.2
	INT 1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.3
$C_4H_2 + C_2H_5$									
Diacetylene	INT A	1.9	2.0	2.1	5.3	5.4	5.5	5.6	5.7
	INT C-T	4.2	4.6	5.0	12.5	13.3	14.1	14.9	15.6
	INT 1	6.4	7.0	7.7	19.4	20.8	22.2	23.6	25.1

Table 4.5. Product branching ratios in the C_2H + 1-butyne reaction calculated for different collision energies and with various C_6H_7 initial adducts INT A, INT C-T, and INT 1.

Interestingly, the critical transition state TS AB for the formation of 1,3hexadiene-5-yne is slightly higher in energy than TS A1 and TS A2 leading to 3,4hexadiene-1-yne and 1,3-hexadiyne, but the rate constant for the INT A \rightarrow INT B step appears to be higher that those for H losses from INT A. This is mostly due to the higher symmetry factor of 3 owing to the fact that any of the CH_3 group H atoms can undergo the 1,3-shift via TS AB, as the methyl group rotation is quasi-free in INT A. 2-Ethynyl-1,3-butadiene is produced via C₂H migration over the attacked C=C bond, INT A \rightarrow INT $C-T \rightarrow INT$ 1, followed by H migrations to form INT 4 and INT 2 and finally, H loss from either of these two intermediates. A noticeable amount of diacetylene + C_2H_5 (1.9-5.7%) can be also produced from INT 1 following the C_2H migration steps. When the reaction starts from the central C₂H addition (from the initial adduct INT 1), the product distribution is calculated to be quite different. 2-Ethynyl-1,3-butadiene formed via the INT 1 \rightarrow INT 4 (\rightarrow INT 2) \rightarrow H elimination pathway is predicted to be the most important product, with the relative yield decreasing from 87.3% to 58.8%, as E_{col} rises from 0 to 7 kcal/mol. The $C_4H_2 + C_2H_5$ pair produced by the direct decomposition of INT 1 is the second significant product and its contribution rises from 6.4% to 25.1% with the collision energy. The third product in the order of importance is ethynylallene $+ CH_3$ (5.3-14.1%) and it is formed after the C₂H migration, INT $1 \rightarrow$ INT C-T \rightarrow INT A, followed by decomposition of INT A. The other C₆H₆ isomers, 1,3-hexadiene-5-yne, 3,4hexadiene-1-yne, and 1,3-hexadiyne, which can be also produced from INT A, give only minor contributions of less than 1%. According to our calculations, regardless of the initial adduct, no cyclic fulvene and DMCB C₆H₆ isomers can be formed. If the reaction

starts from C₂H addition to the triple C=C bond in 1-butyne (INT C-T), the calculated branching ratios are in the middle between those obtained with INT A and INT 1 as the initial adducts. This result follows from the fact that INT C-T is not expected to dissociate directly and rate constants for its isomerization to INT A and INT 1 are very high and close to each other; for example, their values at zero collision energy are 1.51×10^{12} and 1.62×10^{12} s⁻¹, respectively (Table A8 of the Appendix).

Summarizing, if the C₂H + 1-butyne reaction follows a statistical behavior and the three initial adducts are created with equal probabilities, the following major products are expected to be formed: 2-ethynyl-1,3-butadiene (57% at zero collision energy and 36% at 7 kcal/mol), ethynlallene + CH₃ (33% at $E_{col} = 0$ and 43% at $E_{col} = 7$ kcal/mol), and diacetylene + C₂H₅ (4% at $E_{col} = 0$ and 15% at $E_{col} = 7$ kcal/mol). The other acyclic C₆H₆ isomers are minor products, with the order of their contributions being: 1,3-hexadiene-5-yne (3.6-2.4%) > 3,4-hexadiene-1-yne (1.3-1.2%) > 1,3-hexadiyne (0.9-1.8%). The yield of 2-ethynyl-1,3-butadiene + H and C₄H₂ + C₂H₅ may be increased by 30-23% and 2-10%, respectively, if the reaction starts exclusively from INT 1 whereas in the case of terminal C₂H addition (INT A) the yield of ethynylallene + CH₃ may rise by 28-29%.

4.6. $C_2H + 2$ -Butyne

The C_4H_6 isomer of 2-butyne (CH₃CCCH₃) can be considered as a di-methylated acetylene. Therefore, only central addition of ethynyl radical to the acetylenic sphybridized carbon can occur, leading to a branched initial adduct. Addition of ethynyl radical to the triple bond can also occur, but decyclization processes are usually barrierless and lead to the central addition adduct. Due to symmetry, only one of the central sp-hybridized carbon is considered. The overall reaction scheme is the following:

$$C_{2}H + CH_{3}C \equiv CCH_{3} \rightarrow C_{6}H_{7} \rightarrow C_{6}H_{6} + H$$

$$C_{2}H + CH_{3}C \equiv CCH_{3} \rightarrow C_{6}H_{7} \rightarrow C_{5}H_{4} + CH_{3}$$

$$C_{2}H + CH_{3}C \equiv CCH_{3} \rightarrow C_{6}H_{7} \rightarrow C_{4}H_{2} + C_{2}H_{5}$$

4.6.1 Reaction Mechanism

The potential energy map shown in Fig. 4.5c also allows us to deduce the mechanism of the C₂H reaction with 2-butyne, which is shown explicitly in Figure 4.6a. 2-butyne is a highly symmetric molecule and the barrierless C₂H addition can occur to either of the two middle carbons linked by a triple bond to form the INT 3 initial adduct. The exothermicity of this addition is 59.0 kcal/mol. Next, INT 3 can either lose a hydrogen atom to form 1,1-ethynylmethylallene or CH₃ to produce methyldiacetylene via the barriers of 40.1 and 33.9 kcal/mol. The overall energies of the C₂H + 2-butyne reaction channels leading to the formation of 1,1-ethynylmethylallene + H and methyldiacetylene + CH₃ are 22.4 and 37.0 kcal/mol, respectively. Alternatively, INT 3 can either decompose to 2-ethynyl-1,3-butadiene + H or pursue the other isomerization and dissociation pathways shown in Fig. 4.5c and described in the previous sections. No other reaction pathways are expected due to high barriers.

Figure 4.6a. Potential energy diagram for the $C_2H + 2$ -butyne reaction. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the CCSD(T)/cc-pVTZ//B3LYP/6-311G** + ZPE(B3LYP/6-311G**) level of theory and at CCSD(T)/CBS (in parentheses, for the products).

Barrierless C₂H addition to the C=C bond in 2-butyne is also possible and leads to the formation of INT CYC, 40.7 kcal/mol below the reactants. However, due to symmetry, it is only sufficient to consider one entrance channel as C₂H addition can occur only on the acetylenic carbon and not the single bonded carbon.

4.6.2. Product Branching Ratios

The product distribution in the $C_2H + 2$ -butyne reaction appears to be much simpler. Methyldiacetylene formed via the direct CH₃ loss from the initial adduct INT 3 is predicted to be the dominant product (98.6-97.7%), whereas 1,1-ethynylmethyl produced by the H loss from INT3 (1.1-1.7%) and 2-ethynyl-1,3-butadiene generated via isomerization of INT 3 to INT 2 and H elimination (0.4-0.5%) are only minor products.

Table 4.6.	Product	branching	ratios ir	the	C_2H -	+ 2-butyne	reaction	calculated	for	different	collision
energies wit	th INT 3 a	as the initia	al adduct.								

	E _{col} , kcal/mol							
Products	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0
C ₆ H ₆ (isomers) + H								
2-ethynyl-1,3-butadiene	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5
1,3-hexadiene-5-yne	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3,4-hexadiene-1-yne	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,3-hexadiyne	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,1-ethynylmethylallene	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7
Fulvene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DMCB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C ₅ H ₄ (isomers) + CH ₃								
Ethynylallene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pentadiyne	98.6	98.5	98.4	98.3	98.1	98.0	97.9	97.7
$C_4H_2 + C_2H_5$								
Diacetylene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

CN RADICAL REACTIONS

Cyano radical is isoelectronic to ethynyl radical, where a CH group on ethynyl has been replaced by an N atom. Cyano radical $C \equiv N$, similar to ethynyl radical, can add by the carbon bearing the unpaired electron C, resulting in the nitrogen atom at the terminal. However, a more energetically unfavorable addition can occur by the nitrogen, resulting in a terminal acetylenic carbon atom with an unpaired electron C. From hereon, only the addition which results in a terminal nitrogen will be considered in determining the energetically favorable reaction steps in forming a product.

5.1. CN + Diacetylene

Diacetylene (C_4H_2) can be thought of as two acetylenes joined together. Therefore it contains two triple sp-bonds, and 3 possible entrance channels. The overall reaction can be summed up as an H-loss, yielding cyanodiacetylene

$$CN + C_4H_2 \rightarrow C_5H_2N \rightarrow C_5HN + H$$

The first is terminal addition of CN to the terminal carbon, forming a linear initial adduct, to the triple bond, forming a 3-membered cyclic adduct, or the first central carbon, forming an initial adduct. No other initial adducts are expected due to symmetry. Therefore, only one addition channel can be considered and all other are assumed to not play a role.

5.1.1. Reaction Mechanism

To guide the subsequent discussion of the underlying reaction mechanism and the chemical dynamics, it is useful to discuss the computed H_2C_5N surface (Fig. 5.1a). This enables us to combine the experimental with the theoretical data so that a comprehensive picture of the reaction mechanism emerges. The computations reveal the existence of two low lying closed shell HC₅N isomers: the linear, C_{ν} symmetric cyanodiacetylene (HCCCCCN; [p1]) and isocyanodiacetylene molecules (HCCCCNC; [p2]). The cyanodiacetylene structure [p1] is lower in energy by kJ / mol 112 ± 5^{-1} compared to [p2]; this energy difference agrees nicely with a previous study computing kJ / mol 100^{-1} . Therefore, the reaction pathway to [p2] is endoergic by kJ / mol 32^{-1} . Considering our collision energy of kJ / mol 27.3^{-1} , we conclude that isomer [p2] can neither be formed in our experiments nor in low temperature extraterrestrial environments such as in planetary atmospheres and cold molecular clouds. For completeness, it should be mentioned that three more isomers exist which are energetically even less favorable: HNCCCCC [p3], CC(H)CCCN [p4], and CCCC(H)CN [p5] by 255, 209, and kJ / mol 206⁻¹ compared to cyanodiacetylene, respectively. Hence, the following discussion focuses on the formation of the cyanodiacetylene molecule via the bimolecular reaction of cyano radicals with diacetylene. Three entrance channels were identified. The electron-deficient cyano radical can add without entrance barrier to the terminal carbon atom (C1), to the center carbon atom (C2), or to both C1 and C2 simultaneously. The electrophilic radical addition to the π system leads to doublet radical intermediates [1], [2], and [3], respectively. Here, isomer [1] is the lowest in energy and stabilized by kJ /

Zhang, F.; Kim, S.; Kaiser, R. Jamal, A.; Mebel, A. J. Chem. Phys. 2009, 130, 234-308.

Figure 5.1a. PES of the reaction of cyano radicals with diacetylene molecules under single collision conditions to form cyanodiacetylene in low temperature environments computed at the CCSD(T)/cc- $pVTZ//B3LYP/6-311G^{**}$ level of theory. Relative energies are given with respect to the separated reactants in kJ / mol⁻¹. Bold numbers show relative energies of the products calculated at the CCSD(T)/CBS/B3LYP/6-311G^{**} level. The accuracy of all energies is expected to be kJ / mol $\pm 5^{-1}$. Also shown are the structures of higher energy isomers of cyanodiacetylene. Bond angles and lengths are given in degrees and angstrom, respectively, for selected species.

mol 251^{-1} with respect to the separated reactants. The cyclic structure [2] is formally an intermediate which also can be accessed via the cyano group migration from C1 (in [1]) via [3] to the C2 atom (in [2]). All barriers involved are lower in energy than the cyano

and diacetylene reactants. A C1–C2 hydrogen shift in [1] leads to a fourth H_2C_5N isomer: structure [4]. Both intermediates [1] and [4] can emit a hydrogen atom via tight exit transition states located 20 and kJ / mol 25^{-1} above the separated products, respectively. Other isomerization channels shown in Fig. 5.1a do not compete with the hydrogen loss from [1] and [4] owing to much higher barriers. For instance, consecutive 1,2-H shifts in [4] in the direction of the terminal CH group can lead to intermediates [5] and [6], whereas 1,2-hydrogen migrations in [1] toward the nitrogen atom can produce [7] and then [8]. All isomers [5]–[8] can serve as precursors for the formation of the main reaction product, cycanodiacetylene, by hydrogen elimination; however, none of them are likely to be accessed in this reaction because, at each step, the hydrogen loss barrier is significantly lower than the barrier for the hydrogen shift. Isomer [3] could rearrange to [5] via a four-member ring intermediate [9] by ring closure-ring opening processes, but the corresponding transition states reside kJ / mol 21^{-1} above the initial reactants, rendering such rearrangement uncompetitive. Note finally that the cyano versus ethynyl exchange and the hydrogen abstraction channel were found to be endoergic by 40 and kJ $/ \text{ mol } 33^{-1}$.

5.2. CN + **1**,**2**-**butadiene**

The CN radical addition to 1,2-butadiene consists of similar overall reaction schemes as in the case of C_2H radical addition to 1,2-butadiene. The overall product forming schemes can be an summarized as either an H-loss, CH₃-loss, or a C₂H₅-loss, respectively:

$$CN + CH_2 = C = CHCH_3 \rightarrow C_5H_6N \rightarrow C_5H_5N + H$$
$$CN + CH_2 = C = CHCH_3 \rightarrow C_5H_6N \rightarrow C_4H_3N + CH_3$$
$$CN + CH_2 = C = CHCH_3 \rightarrow C_5H_6N \rightarrow C_3HN + C_2H_5$$

5.2.1. Reaction Mechanism

The barrierless addition to the C^1 sp²-carbon of 1,2-butadiene results in the initial adduct INT D1 and is exothermic by 52.0 kcal/mol relative to the reactants energy. The CH₃-loss product that can be formed directly from INT D1 via TS D1-1 and a barrier of 34.9 kcal/mol is 1-cyano-prop-3-yne. This product is exothermic by 25.8 (26.2) kcal/mol relative to the reactants. Alternatively, the H-loss product 2-cyano-1,3-butadiene can be formed through a sequence of three reaction steps. These include ring closure forming INT D2, then ring opening to form INT E1, and finally elimination of the H atom from the terminal CH₃ group of INT E1.

The overall pathway is CN + 1,2-butadiene $\rightarrow INT D1 \rightarrow INT D2 \rightarrow INT E1 \rightarrow$ 2-cyano-1,3-butadiene + H exothermic by 30.0 (33.7) kcal/mol. This pathway begins with INT D1 rearranging to the 3-membered-ring adduct INT D2 via a barrier of 27.3 kcal/mol at TS D1-D2. This occurs by a cyclization of the added cyano moiety towards the C¹=C² bond of 1,2-butadiene, where the reverse process leading back to INT D1 has a barrier of 7.6 kcal/mol. However, the decyclization process of INT D2 to form INT E1 appears to occur barrierlessly, because a small barrier found at B3LYP disappears at the CCSD(T) level of theory. Thus, we can assume that INT D2 is likely to be only a

Jamal, A.; Mebel, A. In Preparation..

Figure 5.2a. Potential energy diagram for the CN + 1,2-butadiene reaction pathways involving CN additions to C¹ and to the C¹=C² bond. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the CCSD(T)/cc-pVTZ//B3LYP/6-311G** + ZPE(B3LYP/6-311G**) level of theory and at CCSD(T)/CBS (in parentheses, for the products).

metastable intermediate if at all a stationary point on the PES and the central CN addition to the $C^1=C^2$ bond leads directly to INT E1. Finally, INT E1 exhibits an H-loss process leading to 2-cyano-1,3-butadiene via a barrier of 48.1 kcal/mol. Reaction channels to all other intermediates that can be formed by 1,2- and 1,3-H shifts from INT D1 have high barriers and cannot compete with the most favorable pathways depicted in Fig. 5.2a.

Central CN addition to C^2 :

The potential energy diagram for the central addition of CN to the C^2 carbon of 1,2-butadiene is depicted in Fig. 5.2b. This barrierless addition results in INT E1 and is exothermic by 76.8 kcal/mol relative to the reactants energy. INT E1 is identical to the INT B3 intermediate considered in Section 3.1.2. The only significant product that can be formed directly from INT E1 is 2-cyano-1,3-butadiene, through an H loss via a barrier of 48.1 kcal/mol, with the overall CN + 1,2-butadiene \rightarrow 2-cyano-1,3-butadiene + H reaction being 30.0 (33.7) kcal/mol exothermic. A 1,2-H shift can occur, leading to INT E3 (the same as INT B2 in the CN + 1-butyne reaction), which also loses an H atom to form 2-cyano-1,3-butadiene. The INT E1 \rightarrow INT E3 \rightarrow 2-cyano-1,3-butadiene + H reaction has a critical barrier height of 34.5 kcal/mol relative to INT E3 at TS E3-1. INT E3 can also undergo a C_2H_5 loss process yielding diacetylene + ethyl radical, preceded by a 1,4-H shift to INT E4 (INT B1), however this route involves a C₂H₅-cleavage barrier of 29.6 kcal/mol at TS E4-1, which is the highest lying transition state on the PES corresponding to the central CN addition to C^2 . Alternatively, INT E1 can isomerize into INT D1 via metastable INT D2 by migration of the CN moiety over the $C^1=C^2$ bond with a barrier of 52.1 kcal/mol at TS D1-D2. The CN group can also migrate over the $C^2=C^3$

bond to form INT F1 via a metastable INT E2 intermediate, which exists as a stationary structure only at the B3LYP level. The barrier separating INT E2 from INT E1 disappears at the CCSD(T) level as the corresponding TS E1-E2 becomes lower in energy than INT E2. The critical transition state on the path from INT E1 to INT F1 is TS E2-F1 and the barrier is 51.4 kcal/mol relative to INT E1.

Jamal, A.; Mebel, A. In Preparation ..

Figure 5.2b. Potential energy diagram for the CN + 1,2-butadiene reaction pathways involving CN additions to C² and to the C¹=C² and C²=C³ bonds. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the CCSD(T)/cc-pVTZ//B3LYP/6-311G** + ZPE(B3LYP/6-311G**) level of theory and at CCSD(T)/CBS (in parentheses, for the products).

The other reaction channels from INT E1 are not shown in Fig. 5.2b as they have higher barriers and are less likely to compete. One of them worthy mentioning involves a CH_3 -loss process via the INT E1 (INT B3) \rightarrow INT C1 \rightarrow 1-cyano-prop-1-yne + CH₃ path (see Fig. 5.2b) with an overall exothermicity of 33.2 (33.0) kcal/mol relative to the CN + 1,2-butadiene reactants, but with a high 1,3-H shift barrier of 58.5 kcal/mol relative to INT E1.

Central CN addition to C^3 :

The potential energy diagram of the central addition of cyano radical to the C^3 carbon of 1,2-butadiene is illustrated in Fig. 5.2c. In this case, the barrierless addition produces INT F1 and is exothermic by 51.1 kcal/mol relative to the reactants energy. From INT F1, cyanoallene can be formed by the CH₃ loss overcoming a barrier of 32.0 kcal/mol via TS F1-1. The cyanoallene + CH₃ products are 30.0 (30.1) kcal/mol exothermic with respect to the reactants.

However, a more probable dissociation mechanism of INT F1 involves its initial isomerization to INT E1 (via metastable INT E2) followed by an H loss leading to 2cyano-1,3-butadiene, CN + 1,2-butadiene \rightarrow INT F1 \rightarrow INT E2 \rightarrow INT E1 \rightarrow 2-cyano-1,3-butadiene. The highest barrier on this pathway (relative to INT F1) is found for the first step, with the corresponding transition state TS E2-F1 residing only 25.7 kcal/mol above INT F1. Also, H loss channels from INT F1 producing 3-cyano-1,2-butadiene and 3-cyano-1-butyne exhibit prohibitively high barriers of 38.0 and 40.3 kcal/mol, respectively and are unlikely to contribute.

Central CN additions to the $C^1 = C^2$ and $C^2 = C^3$ bonds:

The barrierless CN addition to $C^1=C^2$ results in the 3-membered cyclic intermediate INT D2 and is exothermic by 32.3 kcal/mol. This intermediate cannot directly decompose and transforms into INT E1 by a barrierless decyclization process.

Figure 5.2c. Potential energy diagram for the CN + 1,2-butadiene reaction pathways involving CN additions to C³ and to the C²=C³ bond. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the CCSD(T)/cc-pVTZ//B3LYP/6-311G** + ZPE(B3LYP/6-311G**) level of theory and at CCSD(T)/CBS (in parentheses, for the products).

The CN addition to $C^2=C^3$ is also predicted to occur without a barrier and to form INT E2, 28.6 kcal/mol below CN + 1,2-butadiene. INT E2 can ring-open to INT E1 or INT F1, however, the formation of INT E1 occurs barrierlessly while the path to INT F1 involves a 3.2 kcal/mol barrier. Since both CN additions to the $C^1=C^2$ and $C^2=C^3$ bonds result in metastable 3-membered cyclic intermediates, which decyclize to form INT E1 through barrierless ring-opening, 2-cyano-1,3-butadiene + H is expected to be the major product as described in the previous sections.

5.2.2. Product Branching Ratios

The calculations were carried out at collision energies of 0-5 kcal/mol, assuming that one of the adducts, INT D1, INT E1, and INT F1, is the only initial intermediate that forms in the entrance channel. We also considered a 1:1:1 concentrations of each initial adduct as done before for the CN + 1-butyne reaction, to give an insight of the formation of products when the three initial adducts are formed with equal probabilities. The resulting product branching ratios are collected in Table 3.

For the case of terminal addition of the cyano radical to C^1 , leading to the formation of INT D1, two major products include the H-loss product 2-cyano-1,3-butadiene and the CH₃-loss product 1-cyano-prop-3-yne. The computed branching ratio for the H-loss channel at the collision energy of 0 kcal/mol is 42.1%, but it drops to 26.1% at 5 kcal/mol. This results in an increase of the branching ratio for the CH₃-loss product 1-cyano-prop-3-yne formed directly from INT D1 from 57.8% to 73.9% in the 0-5 kcal/mol collision energy range. For the case of central addition of CN to C² leading to

the formation of INT E1, central addition to $C^2=C^3$ leading to INT E2, and central addition to $C^1=C^2$ leading to INT D2, the dominant product is 2-cyano-1,3-butadiene + H. For the collision energies in the range of 0-5 kcal/mol, the yield of 2-cyano-1,3-butadiene + H shows a decreasing trend for all aforementioned central additions. For the cyano radical addition to C^2 yielding INT E1, the 2-cyano-1,3-butadiene + H branching ratio decreases only slightly from 99.4% to 99.2%, while CN addition to the $C^1=C^2$ bond

	Initial						
Product	Adduct	0.0	1.0	2.0	3.0	4.0	5.0
1-cyano-prop-3-yne + CH ₃	INT D1	57.8	61.8	65.3	68.5	71.3	73.9
	INT E1	0.4	0.4	0.5	0.5	0.5	0.5
	INT F1	0.3	0.3	0.3	0.3	0.3	0.3
	1:1:1	19.5	20.8	22.0	23.1	24.0	24.9
2-cyano-1,3-butadiene + H	INT D1	42.1	38.1	34.6	31.5	28.6	26.1
	INT E1	99.4	99.4	99.3	99.3	99.3	99.2
	INT F1	67.7	65.0	62.4	60.0	57.3	55.0
	1:1:1	69.7	67.5	65.4	63.6	61.7	60.1
cyanoallene + CH ₃	INT D1	0.0	0.0	0.0	0.0	0.0	0.0
	INT E1	0.2	0.2	0.2	0.2	0.2	0.3
	INT F1	32.1	34.7	37.4	40.0	42.4	44.7
	1:1:1	10.8	11.6	12.5	13.4	14.2	15.0

Table 5.2 Product branching ratios (%) in the CN + 1,2-butadiene reaction calculated for different collision energies and with various initial adducts INT D1, INT E1, and INT F1.

yielding INT D2, gives this product with the branching ratio in the 96.2-93.6% range. Finally, following CN addition to $C^2=C^3$ forming INT E2, 2-cyano-1,3-butadiene is produced with the branching ratio of 95.8-93.0%. Central CN addition to C^3 leading to the formation of INT F1 also has 2-cyano-1,3-butadiene + H as a major product with a decreasing branching ratio of 67.7-55.0% in the specified collision energy range. However, the CH₃-loss product cyanoallene is additionally formed in significant amounts, with the branching ratio varying from 32.1 to 44.7%.

With initial concentrations of each initial adduct INT D1, INT E1, and INT F1 set to be equal at a 1:1:1 ratio, the major product predicted by our calculations is 2-cyano-1,3-butadiene + H with the branching ratio of 80.2 to 73.4% in the 0-5 kcal/mol collision energy range. The CH₃-loss products 1-cyano-prop-3-yne and cyanoallene give relatively minor contributions of 12.5-16.3% and 7.3-10.3%, respectively.

5.3. CN + 1-Butyne

1-Butyne possesses one triple C=C bond and CN addition can occur to either of the two acetylenic carbon atoms, terminal C^1 or central C^2 , or to the triple bond itself. Similar to the C2H reactions with 1-Butyne, CN reactions with 1-Butyne are expected to have the overall reaction scheme of:

$$CN + CH_3C \equiv CCH_3 \rightarrow C_5H_6N \rightarrow C_5H_5N + H$$
$$CN + CH_3C \equiv CCH_3 \rightarrow C_5H_6N \rightarrow C_4H_3N + CH_3$$
$$CN + CH_3C \equiv CCH_3 \rightarrow C_5H_6N \rightarrow C_3HN + C_2H_5$$

However, only the most favorable reaction pathways are described and the least likely are given, but not explained in detail.

5.3.1. Reaction Mechanism

Terminal CN addition to 1-butyne:

The potential energy diagram of the reaction route initiated by the terminal CN addition to C¹ is illustrated in Figure 5.3a. The addition takes place barrierlessly and produces the intermediate INT A1 with an exothermicity of 55.6 kcal/mol. The barrier at TS A1-1 for the CH₃-loss is 35.3 kcal/mol relative to INT A1 and the overall exothermicity of the CN + 1-butyne \rightarrow cyanoallene + CH₃ reaction is 31.2 (31.3) kcal/mol at the CCSD(T)/cc-pVTZ(CBS) levels. H elimination can also occur from the CH₂ group giving 1-cyano-1,2-butadiene + H via a 39.3 kcal/mol barrier at TS A1-2 and

Figure 5.3a. Potential energy diagram for the terminal CN addition to 1-butyne. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the CCSD(T)/cc-pVTZ//B3LYP/6-311G(d,p) + ZPE(B3LYP/6-311G(d,p)) level of theory and at CCSD(T)/CBS (in parentheses, for the products).

the overall exothermicity to produce 1-cyano-1,2-butadiene + H is 21.0 (21.6) kcal/mol. Alternatively, INT A1 can lose an H atom from the terminal acetylenic carbon forming via TS A1-3 with a barrier of 40.6 kcal/mol. This CN + 1-butyne \rightarrow INT A1 \rightarrow TS A1-3 \rightarrow 1-cyano-1-butyne + H reaction path completes at the products lying 21.4 (21.6) kcal/mol lower in energy than the reactants. The terminal H elimination from the CH₃ group in INT A1 is not likely to compete as it would produce an unfavorable diradical C_6H_5N isomer. An isomerization process involving a 1,3-H shift from the CH₃ group leads to the NCCHCHCH₂CH₂ intermediate INT A3, which is 7.5 kcal/mol lower in energy than INT A1. The H migration barrier at TS A1-A3 is 39.0 kcal/mol, comparable to those for H eliminations. An H elimination in INT A3 can occur from the vicinal CH₂ group producing 1-cyano-1,3-butadiene + H via a barrier at TS A3-1, residing 33.7 kcal/mol above INT A3. The calculated exothermicity of the CN + 1-butyne \rightarrow 1-cyano-1,3-butadiene + H reaction is 35.2 (35.9) kcal/mol at the CCSD(T)/cc-pVTZ(CBS) levels. Finally, INT A1 can undergo a two-step CN migration over the neighboring C=C bond producing a branched intermediate INT B1, residing 51.6 kcal/mol below the reactants, via a three-member ring intermediate INT A2. The barriers for the isomerization of INT A2 back to INT A1 (via TS A1-A2) and forward to INT B1 (via TS A2-B1) are rather low, 3.6 and 3.7 kcal/mol, respectively.

Central CN addition to 1-butyne:

The potential energy diagram resulting from central addition is depicted in Figure 5.3b. This barrierless addition proceeds with cyano radical addition to the non-terminal acetylenic carbon atom C^2 , resulting in INT B1 with an exothermicity of 51.6 kcal/mol

relative to the reactants. The only plausible fragmentation pathway of INT B1 is elimination of the C₂H₅ group to form cyanoacetylene + C₂H₅. The barrier for the C-C bond cleavage via TS B1-1 is 32.6 kcal/mol relative to INT B1. The overall exothermicity of the CN + 1-butyne \rightarrow cyanoacetylene + C₂H₅ reaction is 27.2 (27.1) kcal/mol. Neither CH₃ nor H eliminations from INT B1 will result as they would lead to higher-energy carbene or diradical products. Otherwise, INT B1 can be subjected to H

Figure 5.2b. Potential energy diagram for the central CN addition to 1-butyne. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the CCSD(T)/cc-pVTZ/B3LYP/6-311G(d,p) + ZPE(B3LYP/6-311G(d,p)) level of theory and at CCSD(T)/CBS (in parentheses, for the products).

migrations followed by various rearrangements and dissociations. For instance, a 1,4-H shift from the CH₃ group to CH occurring via TS B1-B2 with a relatively low barrier of 16.0 kcal/mol produces another branched intermediate INT B2, residing 63.2 kcal/mol below the reactants. Then, INT B2 can lose an H atom from the vicinal CH₂ group via TS B2-1 and a barrier of 34.6 kcal/mol relative to INT B2. The overall exothermicity of the CN + 1-butyne \rightarrow 2-ethynyl-1,3-butadiene reaction is 34.2 (34.9) kcal/mol relative to the reactants. A 1,3-H shift from the vicinal CH₂ group of INT B1 gives INT B3, which is 22.4 and 14.8 kcal/mol lower in energy than INT B1 and INT B2, respectively. However, the barrier for the 1,3-H migration, 35.6 kcal/mol, is much higher than that for the 1,4-H shift. A more feasible path from INT B1 to INT B3 is two-step, INT B1 \rightarrow INT B2 followed by 1,2-H migration between two neighboring CH₂ groups INT B2 \rightarrow INT B3. The highest in energy transition state along the INT B1 \rightarrow INT B2 \rightarrow INT B3 path, TS B2-B3, lies 21.0 kcal/mol higher in energy than INT B1. INT B3 can lose a hydrogen atom from the CH₃ group producing 2-cyano-1,3-butadiene via TS B3-1 located 30.0 kcal/mol below the reactants. As mentioned in the previous section, INT B1 can rearrange to the terminal addition adduct INT A1 via the 3-membered cyclic intermediate INT A2 via the barrier via of 26.6 kcal/mol at TS A2-B1, so that this isomerization and the subsequent dissociation channels of INT A1 may compete with the dissociation channels of INT B1 shown in Fig. 5.3a.

CN addition to the *C*=*C* bond in 1-butyne:

Cyano radical addition to the triple C=C bond in 1-butyne occurs barrierlessly forming the three-member ring intermediate INT A2 with an exothermicity of 28.7

kcal/mol. As discussed above, this intermediate can easily isomerize to INT B1 or INT A1 overcoming relatively low barriers. INT B1 or INT A1 would then dissociate via the pathways illustrated in Figs. 1 and 2.

5.3.2. Product Branching Ratios

The calculations were carried out assuming that the reaction starts from either the terminal addition adduct INT A1 or the central addition adduct INT B1. We then considered a 1:1 ratio of the initial concentrations of INT A1 and INT B1, to get an insight on the product branching ratios under the conditions when the initial adducts are formed in the entrance channel with equal probabilities. The computed branching ratios are presented in Table 1. For the terminal addition, the major product is cyanoallene + CH₃ yielding 51.3-57.5% of the total product yield in the 0-5 kcal/mol collision energy range. This is due to the fact that the CN + 1-butyne \rightarrow cyanoallene + CH₃ product formation channel had the lowest barrier relative to the adduct INT A1 among all direct dissociation processes involving this intermediate. Meanwhile, the two-step process leading from INT A1 to INT B1 has an even lower barrier and can compete with the direct dissociation, bringing the system in the region of the PES accessed by the central CN addition. As a result of this competition, the second most abundant product is 2cyano-1,3-butadiene + H produced from INT B1 via INT B2, with the 39.4-28.1% branching ratios in the specified range of collision energies. The overall reaction path leading to this product is CN + 1-butyne $\rightarrow INT A1 \rightarrow INT A2 \rightarrow INT B1 \rightarrow INT B2 \rightarrow$ 2-cyano-1,3-butadiene + H. The other reaction products are minor and contribute 4.26.4% (1-cyano-1,2-butadiene + H), 1.4-2.5% (1-cyano-1-butyne + H), 1.1-1.7% (cyanoacetylene + C_2H_5), and 1.2-1.6% (1-cyano-1,3-butadiene + H). For central addition, the major product is 2-cyano-1,3-butadiene + H with the yield of 96.0-92.7% in the specified collision energy range. The overall reaction path for this channel is CN + 1-butyne \rightarrow INT B1 \rightarrow INT B2 \rightarrow 2-cyano-1,3-butadiene + H. The C_2H_5 elimination channel from CN + 1-butyne \rightarrow INT B1 \rightarrow cyanoacetylene + C_2H_5 accounts for 2.7-5.5%, whereas the other product channels are negligible. With equal initial concentrations of INT A1 and INT B1, the results showed 2-cyano-1,3-butadiene + H formed from the central addition adduct to be the major product at 67.7-60.4% in the 0-5 kcal collision energy, whereas cyanoallene + CH₃ formed from the terminal addition adduct, exhibits the 26.3-29.5% yield. We then considered a 1:1:1 concentrations of each initial adduct to give an insight of the formation of products when the three initial adducts are formed with equal probabilities. The central addition product of 2-cyano-1,3-butadiene + H had a product branching ratio of 66.7-59.3% if any one of the initial adducts are formed.

	Initial						
Product	Adduct	0.0	1.0	2.0	3.0	4.0	5.0
1-cyano-1,3-butadiene + H	INT B1	0.0	0.0	0.0	0.0	0.0	0.0
	INT A1	1.2	1.2	1.3	1.4	1.5	1.6
	INT A2	0.7	0.7	0.8	0.8	0.9	0.9
	1:1:1	0.6	0.6	0.7	0.7	0.8	0.8
1-cyano-1,2-butadiene + H	INT B1	0.1	0.1	0.1	0.1	0.1	0.2
	INT A1	4.2	4.6	5.0	5.5	6.0	6.4
	INT A2	2.4	2.6	2.8	3.1	3.4	3.6
	1:1:1	2.2	2.4	2.6	2.9	3.2	3.4

Table 5.3. Product branching ratios (%) in the CN + 1-butyne reaction calculated for different collision energies and with various initial adducts INT A1 and INT B1.

2-cyano-1,3-butadiene + H	INT B1	96.0	95.6	94.8	94.1	93.4	92.7
	INT A1	39.4	37.1	34.3	32.2	30.1	28.1
	INT A2	64.6	62.9	61.3	59.9	58.4	57.0
	1:1:1	66.7	65.2	63.5	62.1	60.6	59.3
3-cyano-1,2-butadiene + H	INT B1	0.0	0.0	0.0	0.0	0.0	0.0
	INT A1	0.0	0.0	0.0	0.0	0.0	0.0
	INT A2	0.0	0.0	0.0	0.0	0.0	0.0
	1:1:1	0.0	0.0	0.0	0.0	0.0	0.0
cyanoacetylene + C ₂ H ₅	INT B1	2.7	3.1	3.7	4.3	4.9	5.5
	INT A1	1.1	1.2	1.3	1.5	1.6	1.7
	INT A2	1.8	2.1	2.4	2.7	3.0	3.4
	1:1:1	1.9	2.1	2.5	2.8	3.2	3.5
1-cyano-1-butyne + H	INT B1	0.1	0.1	0.1	0.1	0.1	0.1
	INT A1	2.7	3.1	3.5	3.9	4.3	4.8
	INT A2	1.5	1.7	2.0	2.2	2.4	2.7
	1:1:1	1.4	1.6	1.9	2.1	2.3	2.5
1-cyano-prop-1-yne + CH ₃	INT B1	0.0	0.0	0.0	0.0	0.0	0.0
	INT A1	0.0	0.0	0.0	0.0	0.0	0.0
	INT A2	0.0	0.0	0.0	0.0	0.0	0.0
	1:1:1	0.0	0.0	0.0	0.0	0.0	0.0
cyanoallene + CH ₃	INT B1	1.1	1.2	1.3	1.3	1.4	1.5
	INT A1	51.3	52.8	54.4	55.5	56.5	57.5
	INT A2	29.0	30.2	30.7	31.3	31.8	32.4
	1:1:1	27.1	28.1	28.8	29.4	29.9	30.5

5.4. **CN** + 2-Butyne

The CN radical addition to the C_4H_6 isomer of 2-butyne has a similar overall reaction scheme to the other C_4H_6 isomers of 1,2-butadiene and 1-butyne. The overall reaction scheme can be summarized as:

$$CN + CH_3C \equiv CCH_3 \rightarrow C_5H_6N \rightarrow C_5H_5N + H$$
$$CN + CH_3C \equiv CCH_3 \rightarrow C_5H_6N \rightarrow C_4H_3N + CH_3$$
$$CN + CH_3C \equiv CCH_3 \rightarrow C_5H_6N \rightarrow C_3HN + C_2H_5$$

5.4.1. Reaction Mechanism

The potential energy diagram for the CN + 2-butyne reaction is shown in Fig. 5.4a. CN addition to a highly-symmetric 2-butyne molecule can proceed to one of the middle acetylenic carbon atoms or to the central triple C=C bond. The addition of CN to either of the two middle carbons linked by a triple bond occurs without a barrier to form INT C1, with an exothermicity of 54.3 kcal/mol. Next, INT C1 can either lose a hydrogen atom (via TS C1-2) to form 3-cyano-1,2-butadiene + H or CH₃ (via TS C1-1) to form 1cyano-prop-1-yne + CH_3 via the barriers 41.1 and 35.6 kcal/mol, respectively. The overall energies of the CN + 2-butyne \rightarrow 3-cyano-1,2-butadiene + H and CN + 2-butyne \rightarrow TS C1-1 \rightarrow 1-cyano-prop-1-yne + CH₃ reactions are calculated to be -16.7 (-17.1) and -29.4 (-29.0) kcal/mol, respectively. Alternatively, INT C1 can isomerize into INT B3 via TS B3-C1 overcoming a 39.8 kcal/mol barrier, after which INT B3 can either decompose to 2-ethynyl-1,3-butadiene + H or pursue the other isomerization and dissociation pathways shown in Fig. 5.4a and described in the previous section. Earlier, the CN + 2butyne reaction was studied theoretically at the B3LYP/6-311+G** level. Two conformations (cis and trans) were found for INT C1, but since their energies are close to each other and the isomerization barrier between them was calculated to be only 4.6 kcal/mol relative to the slightly (by 1.2 kcal/mol) less stable *cis* form, kinetically both conformations can be taken as the same intermediate on the surface the rate constants for their mutual isomerization are much faster than any other reaction involving INT C1.

Jamal, A.; Mebel, A. In Preparation ..

Figure 5.4a. Potential energy diagram for the CN + 2-butyne reaction. Numbers show relative energies (in kcal/mol) of the reactants, intermediates, transition states, and products calculated at the CCSD(T)/cc-pVTZ//B3LYP/6-311G(d,p) + ZPE(B3LYP/6-311G(d,p)) level of theory and at CCSD(T)/CBS (in parentheses, for the products).

Based on this, we consider only the more stable *trans* form (INT C1) in RKKM calculations in the next section. Cyano radical addition to the triple bond forms a 3-membered ring intermediate designated as INT C2. Although a low barrier between INT C1 and INT C2 exists at the B3LYP level, at the CCSD(T) level the decyclization of INT C2 occurs barrierlessly leading INT C1. At the B3LYP/6-311+G** level, the *trans* adduct INT C1, TSs C1-2 and C1-1, and the 3-cyano-1,2-butadiene (1-cyano-1-methylallene) + H and 1-cyano-prop-1-yne + CH₃ products reside 57.5, 17.6, 25.0, 19.2, and 36.0 kcal/mol lower in energy than the initial reactants, respectively,²⁷ which agrees with the present CCSD(T) values shown in Fig. 3 within reasonable margins. Although the CCSD(T)/cc-pVTZ(CBS) calculated exothermicities of the 3-cyano-1,2-butadiene + H products, 19.2 and 16.7 (17.1) kcal/mol, respectively, are within the error bars of the experimental value of 21.5 ± 4.8 kcal/mol measured in crossed molecular beams.²⁷

5.4.2. Product Branching Ratios

The product distribution in the CN + 2-butyne reaction is dominated by the CH_3 loss product 1-cyano-prop-1-yne from the initial adduct INT C1, with the branching ratios in the 0-5 kcal/mol collision energy range being 99.1-98.8%. Only small amounts of the H elimination product 3-cyano-1,2-butadiene + H are formed due to high barriers at TS C1-2. Nevertheless, the H loss product, 3-cyano-1,2-butadiene (1-cyano-1-methylallene) was detected in crossed molecular beam experiments on the CN + 2-butyne

reaction, where unfavorable kinematics prevented the authors from observing the $\ensuremath{CH_3}$

loss channel.

Table 5.4. Product branching ratios in the CN + 2-butyne reaction calculated for different collision energies with INT	3
as the initial adduct.	

	Collision Energy, kcal/mol								
Product	0.0	1.0	2.0	3.0	4.0	5.0			
1-cyano-prop-1-yne + CH ₃	99.1	99.5	99	98.9	98.8	98.8			
3-cyano-1,2-butadiene + H	0.3	0.3	0.3	0.3	0.3	0.3			

<u>COMPARISON WITH EXPERIMENTS</u>

Integrating laboratory experiments to *ab initio* studies is crucial in understanding the reaction mechanism and product branching ratios of ethynyl and cyano radical additions to unsaturated hydrocarbons. Experimenters often detect product masses, and determining the isomer of these masses is key to understanding which product prevails. Furthermore, understanding the reaction mechanism involved in forming these products is key since that governs the fate of the reaction. The theoretical calculations need to be supported with laboratory findings to confirm the proposed mechanisms are indeed correct. From the ethynl and cyano radical reactions with unsaturated hydrocarbons studied, only the reactions of $C_2H + C_3H_4$ (both allene and methyacetylene), $C_2H + 1,3$ butadiene, and CN + diacetylene have been jointly investigated through crossed molecular-beam experiments by Kaiser's group at University of Hawaii. The reaction of $C_2H + 1$ -butyne has been investigated in parallel with experiments using the Synchotron at the Advanced Light Source by Stephen Leone's group at University of California, Berkeley. The experimental findings are discussed below.

6.1 Reactions of $C_2H + C_3H_4$

The experimental data on product branching ratios for the C_2H + allene reaction are somewhat controversial. Goulay et al. reported the following results from their measurements of relative yields: 35-45% ethynylallene, 20-25% methyldiacetylene, and 45-30% 1,4-pentadiyne. They also concluded that diacetylene most likely was not produced in the $C_2H + H_2CCCH_2$ reaction and derived an upper limit of 30% for its branching fraction. On the other hand, in their new crossed molecular beams study of this reaction under single-collision conditions at a collision energy of 5.3 kcal/mol, Kaiser and coworkers⁷⁸ concluded that ethynylallene is the major product with 1,4-pentadiyne possibly contributing up to 20% and no evidence for methyldiacetylene was found. The difference in the results of the two groups for the ethynyl + allene reaction can be caused by the difference in the experimental conditions and detection methods. On one hand, in the slow flow reactor study secondary collisions may affect the reaction mechanism and the relative product yields, but on the other, the detection of the products is based on the measurements of their ionization potentials and fitting the corresponding photoionization efficiency curves, which should be more accurate than deriving the branching ratios based on a comparison of the fitted kinetic energy distribution curves of the products with theoretically computed energies of the corresponding product channels, as in the crossed beams experiments. One can also see that the results of both experiments exhibit significant error bars for the branching ratios.

Kaiser and coworkers investigated the mechanism and dynamics of the C₂H reaction with methylacetylene and its deuterated isotopomers in crossed molecular beams under single-collision conditions with a focus on the detection of C₅H₄ products. Combining their experimental results with a theoretical study of the reaction potential energy surface (PES) using a density functional theory (DFT) approach, they were able to estimate relative yields of C₅H₄ isomers as 80-90% for methyldiacetylene, CH₃-C=C-C=CH, and 10-20% for ethynylallene, CH₂=C=CH-C=CH. However, the isotope-labeling technique they applied did not allow them to detect a third thermodynamically favorable
C_5H_4 isomer 1,4-pentadiyne, HC=C-CH₂-C=CH. Goulay et al. measured product branching ratios of the $C_2H + C_3H_4$ reactions in a slow flow reactor at 4 Torr and 293 K using an experimental setup combining tunable ultraviolet radiation with time-resolved mass spectrometry. They found that the reaction with methylacetylene gives 50-70% diacetylene (channel 5b) and 50-30% C_5H_4 (channel 5a), with an isomer distribution of 85-80% methyldiacetylene and 15-20% ethynylallene, which is in an agreement with the results of Kaiser's group.

6.2 Reactions of C₂H + 1,3-Butadiene

The mechanism and products of the $C_2H + 1,3$ -butadiene reaction have been recently probed in a combined experimental (crossed molecular beams) and theoretical (ab initio/RRKM) study,¹¹² which demonstrated that this reaction can indeed produce benzene under single-collision conditions. According to the experimental results, the relative yield of benzene was $30\pm10\%$ at the collision energy of ~45 kJ mol⁻¹, whereas 1,3-hexadien-5-yne was the second major product. RRKM calculations showed that the relative fraction of benzene is expected to increase to ~40% for very low and zero collision energies pertinent for cold interstellar clouds.

Having verified the formation of the aromatic benzene molecule under single collision conditions, we applied these findings to the 'real' interstellar medium. Most important, our studies indicate that the reaction has no entrance barriers, all barriers involved in the formation of benzene are below the energy of the separated reactants, and the overall reaction to form benzene is exoergic. These findings represent crucial prerequisite for this reaction to be important in low temperature molecular clouds. If any barrier lies above the energy of the separated reactants or if the reaction is endoergic, the low temperatures of the molecular clouds such as the Taurus Molecular Cloud (TMC-1) would typically inhibit the formation of benzene. In constructing a chemical reaction network for the gas phase formation of benzene in interstellar clouds, two input parameters are crucial: the reaction products (benzene and its acyclic isomer) and the rate constants. In our network, we implemented a rate constant of 3.0×10^{-10} cm³s⁻¹ and accounted for the branching fractions of benzene versus the 1,3-hexadien-5-yne isomer as elucidated in our present study. We recognize that Leone et al.'s data were recorded at temperatures between 104 K and 296 K. However, an analysis of ethynyl radical reactions with unsaturated hydrocarbons shows that their rate constants are almost invariant on the temperature even down to 10 K.⁸⁴ Therefore, a rate constant of 3.0×10^{-10} 10 cm³s⁻¹ for cold interstellar clouds with benzene fractions of 40 % versus 60 % of the 1,3-hexadien-5-yne isomer presents sensible input parameter. The results of our astrochemical models for dark clouds like TMC-1 have important implications.

We would like to stress that alternative neutral-neutral reactions to form benzene in the interstellar medium have been 'borrowed' from the high temperature, combustion chemistry community and incorporated in previous interstellar chemistry models. These bimolecular processes involve, for instance, reactions of resonantly stabilized free radicals such as n-C₄H₃ and n-C₄H₅ with acetylene (C₂H₂). However, these reactions have significant entrance barriers of about 20-31 kJ / mol⁻¹ (^{vi}) to 23 kJ / mol⁻¹ (^{vii}), respectively, which cannot be overcome at molecular cloud temperatures of 10 K. Likewise, the self-recombination of the propargyl radical (C₃H₃) followed by isomerization and stabilization of the benzene intermediate via a third body collision had been discussed to form benzene in flames. However, although this reaction has no entrance barrier, third body collisions are on the order of magnitude of 10^9 years and, hence, clearly absent in interstellar clouds with typical number densities of a $10^2 - 10^4$ cm⁻³ for which the time scale is much larger than the typical life time of a cold molecular cloud at $10^5 - 10^6$ years. This leads to the conclusion that three body processes are unimportant in molecular clouds. Therefore, reactions which may lead to the formation of benzene under combustion relevant conditions cannot yield benzene under those low temperature and pressure conditions in cold molecular clouds. However, the newly investigated ethynyl radical mediated formation of benzene overcomes these problems, and the aromatic benzene molecule can be formed via a single collision of two neutral particles under bimolecular conditions without entrance barrier in interstellar space.

To summarize, we have presented compelling evidence that the aromatic benzene molecule – the central building block of polycyclic aromatic hydrocarbons - can be formed under single collision conditions via the gas phase reaction of ethynyl radicals with 1,3-butadiene. The formation of an aromatic, closed shell molecule via a rapid neutral – neutral reaction also presents a first step toward a systematic understanding how complex PAHs and related molecules might be formed in the interstellar medium via neutral – neutral reactions involving benzene. Electronic structure calculations predicted that the phenylacetylene molecule (C_6H_5CCH), synthesized from exoergic, barrier-less reactions of benzene with the ethynyl radical can even react with a second ethynyl radical to form 1,2-diethynylbenzene ($C_6H_4(C_2H)_2$) plus a hydrogen atom. The reaction of 1,2-diethynylbenzene with a third ethynyl radical in turn produces an intermediate, which

isomerizes via ring closure and emits atomic hydrogen to yield a dehydrogenated, aromatic and bicyclic naphthalene core. Therefore, neutral – neutral reactions of aromatic molecules such as benzene and naphthalene with ethynyl radicals could present a versatile, hitherto overlooked reaction class to yield complex, PAH (like) structures via ring expansions at temperatures as low at 10 K as present in cold molecular clouds.

6.3 Reactions of $C_2H + 1$ -Butyne

The experimental measurements of relative product yields in the $C_2H + 1$ -butyne reaction by Soorkia et al.⁹³ showed that both the C_6H_6 + H and C_5H_4 + CH₃ products are formed, whereas the $C_4H_2 + C_2H_5$ product was not ruled out but could not be observed due to experimental limitations. For $C_5H_4 + CH_3$, they detected ethynylallene and methyldiacetylene in a 4:1 ratio and concluded that the latter most likely to be formed in a secondary reaction of isomerization of the former, providing that ethynyl has sufficient internal energy. This observation is an agreement with our calculation results showing that ethynylallene is the dominant C_5H_4 isomer produced in the reaction. Meanwhile, since the calculated highest barrier on the isomerization pathway from ethynylallene to methyldiacetylene is ~69 kcal/mol relative to the former,¹⁰⁰ the unimolecular rearrangement seems to be unlikely. In our view, a more plausible explanation for the observation of a small amount of methyldiacetylene would be an H atom assisted isomerization of ethynylallene, i.e., H addition to the CH₂ group to form CH₃CCHCCH via a barrier of 2.7 kcal/mol followed by the H loss from the vicinal CH group via a transition state residing 0.6 kcal/mol higher in energy than the initial ethynylallene + H

reactants, as follows from our recent calculations of the C_5H_5 PES.⁸⁹ This would require secondary collisions of the C_5H_4 and H primary products, which might be possible in the experimental flow tube at 4 Torr.

A significant qualitative disagreement is however found for the C₆H₆ isomeric product distribution. Soorkia et al.¹⁰⁰ detected cyclic DMCB and fulvene as the most significant C₆H₆ products and, among the acyclic isomers, the order of the measured branching ratios was 3,4-hexadiene-1-yne > 1,3-hexadiyne > 2-ethynyl-1,3-butadiene. In our calculations, none of the cyclic isomers are formed and 2-ethynyl-1,3-butadiene is the major acyclic product, with minor contributions from 1,3-hexadiene-5-yne, 3,4hexadiene-1-yne, and 1,3-hexadiyne. How to explain the discrepancy between theory and experiment? One can argue that the experimental conditions of the room temperature (295 K) and 4 Torr (5.33 mbar) pressure are not exactly compatible with the singlecollision ($E_{col} = 0.7$ kcal/mol) conditions assumed in our kinetic calculations. The collision energies used in the calculations cover the kinetic energy range typical for 295 K, but the nonzero pressure in the experiment implies a possibility of collisional stabilization of C₆H₇ intermediates and also secondary reactions in the system. Multichannel-multiwell RRKM/Master Equation (RRKM-ME) calculations would be required to evaluate the product distribution at the experimental conditions. However, the recent RRKM-ME study by Woon⁵⁴ for a slightly larger $C_2H + C_6H_6$ system showed that collisional stabilization of the energized radical intermediates was appreciable only at higher pressures. For instance, the yield of the stabilized intermediates was found to exceed 50% at 300 K only at pressures above 117.9 mbar and to be negligibly small at 5 mbar at room temperature. In addition, the collisional stabilization of the C_6H_7 species is

not expected to enhance the yield of the cyclic fulvene and DMCB products because the pathways leading to them involve numerous isomerization steps, which would become even less probable if the C_6H_7 intermediates are collisionally stabilized.

Meanwhile, there exists a secondary reaction that can lead to the formation of fulvene as the dominant product. It starts with the H addition to 2-ethynyl-1,3-butadiene to produce INT 11 via a barrier of 6.2 kcal/mol with the exothermicity of 32.1 kcal/mol (see Fig. 4.5c). Next, INT 11 ring closes to INT 8 via a TS 8-11 residing 19.4 kcal/mol below the H + 2-ethynyl-1,3-butadiene reactants and then INT 8 can eliminate an H atom to form fulvene overcoming a barrier at TS 8x lying 28.6 kcal/mol lower in energy than the reactants. Overall, the H + 2-ethynyl-1,3-butadiene \rightarrow INT 11 \rightarrow INT 8 \rightarrow fulvene + H reaction is 32.0 kcal/mol exothermic. However, two conditions are required for the secondary reaction to influence the product distribution in a major way: first, the rate constants of the primary (C_2H + 1-butyne) and the secondary (H + 2-ethynyl-1,3butadiene) should be close to each other and second, the initial C₂H concentration in experiment should be comparable to the initial 1-butyne concentration. At thermal conditions at 295 K, the H + 2-ethynyl-1,3-butadiene reaction occurring via a relatively high 6.2 kcal/mol barrier is expected to be much slower than the barrierless C₂H addition to 1-butyne; moreover, H additions to 2-ethynyl-1,3-butadiene producing INT 2 and INT 4 exhibit lower barriers and hence are more competitive than the H addition leading to INT 11. On the other hand, 2-ethynyl-1,3-butadiene produced in the $C_2H + 1$ -butyne reaction may have an internal vibrational energy content of up to ~40 kcal/mol (at zero collision energy), which may render it much more reactive towards the H addition, if this product is not fully thermalized. In this view, a possibility of a fast H + 2-ethynyl-1,3-

butadiene \rightarrow INT 11 reaction may not be completely excluded. A rough estimate of the C_2H concentration, based on the absorption cross section of the CF₃CCH precursor and the experimental laser intensity, $^{35, 100}$ gives at most $\sim 10^{13}$ cm⁻³, a factor of 50 lower than the 1-butyne concentration, 5.0×10^{14} cm⁻³. All this indicates that the secondary H + 2ethynyl-1,3-butadiene encounters are not likely to affect the relative product yield significantly, but may account for the formation of a small amount of fulvene. It is highly improbable that DMCB can be formed from INT 11, because the highest barrier on the INT $11 \rightarrow INT 10 \rightarrow DMCB + H$ pathway, 37.5 kcal/mol relative to INT 11 at TS 10x, is 24.8 kcal/mol higher than that on the INT 11 \rightarrow INT 8 \rightarrow fulvene + H pathway, at TS 8-11. Using a simplified steady-state treatment, the rate constants to form fulvene and DMCB from INT 11 are $\frac{k_{8-H}k_{11-8}}{k_{8-11}+k_{8-H}}$ and $\frac{k_{10-H}k_{11-10}}{k_{10-11}+k_{10-H}}$, respectively. Using the individual rate constants computed at zero collision energies (Table A2 of the Appendix), these rate constants are calculated as 5.55×10^{10} and 3.35×10^{7} s⁻¹, i.e., the formation of fulvene is preferable by a factor of more than 10^3 . Thus, the experimental observation of

A secondary reaction of CH₃ with ethynylallene may also lead to the formation of fulvene. As illustrated in Figure 4.5c, the methyl radical can add to a hydrogen-less carbon atom in ethynylallene overcoming a barrier of ~12 kcal/mol to form INT 17. Next, INT 17 can either dissociate to propyne + C_3H_3 or ring close to INT 18 via barriers of 28.4 and 15.6 kcal/mol, respectively. In turn, INT 18 can be subjected to 1,2-H migration in the ring to produce a very stable intermediate INT 19, which is a precursor of fulvene. INT 19 can lose a hydrogen atom from the out-of-ring CH₃ group without an exit barrier

DMCB cannot be attributed to the secondary H + 2-ethynyl-1,3-butadiene reaction.

giving rise to fulvene + H. However, the ethynylallene + CH_3 reaction is expected to be slow at the experimental temperature of 295 K due to its high entrance barrier. Moreover, the barrier to form INT 17 from the ethynylallene and CH_3 reactants is about 3 kcal/mol higher than that to produce INT A (Fig. 5.4c) and hence the reaction path leading to fulvene would be less competitive.

Can inaccuracies in our calculations be a source of the disagreement with experiment? Relative energies of various transition states computed at the CCSD(T)/ccpVTZ level are expected to have error bars of +2 kcal/mol. In order to verify whether such errors could affect the relative yield of fulvene, we decreased the critical barrier on the pathway leading to fulvene (at TS 5-6) by 2 kcal/mol, while increasing the highest barriers on the pathways leading to the acyclic C_6H_6 isomers, ethynylallene + CH_3 , and diacetylene + C_2H_5 also by 2 kcal/mol. Using these adjusted energetics, we repeated the RRKM calculations of the rate constants and first-order kinetics calculations of the branching ratios. The results showed that still virtually no fulvene can be produced. In general, the ± 2 kcal/mol variations in the energies of the critical transition states may significantly affect the ratio of the 2-ethynyl-1,3-butadiene + H, ethynylallene + CH₃, and diacetylene + C_2H_5 products, which are already sensitive with respect to the choice of the initial adduct. For the C₆H₆ isomers, the relative yields can be affected for the minor products, 3,4-hexadiene-1-yne, 1,3-hexadiyne, and 1,3-hexadiene-5-yne, because the critical transition states on their formation pathways lie within a 1.4 kcal/mol range. However, the conclusion that 2-ethynyl-1,3-butadiene is the major C₆H₆ isomer to be produced is not expected to change because the critical barrier for its formation is at least 10 kcal/mol lower than those for the other C_6H_6 species. Deviations from the statistical

(RRKM) behavior may enhance direct dissociation of the initial adducts, especially the cleavage of the bonds nearest to the carbon atom attacked by C_2H . In this case, an increase of branching ratios may be expected for 1,3-hexadiyne + H (from INT A) and diacetylene + C_2H_5 (from INT 1). Thus, neither the inaccuracies in the energetic parameters nor possible deficiency of the statistical approach to the calculations of branching ratios can explain the observations of fulvene and DMCB as major C_6H_6 products.

Soorkia et al.¹⁰⁰ evaluated branching ratios of various C₆H₆ isomers based on the fit of the experimental photoionization efficiency (PIE) curve in terms of individual contributions of these isomers. The authors utilized experimental PIE curves for some of the C₆H₆ isomers and, apparently, theoretically simulated curves for others. Such theoretical simulations require the knowledge of the adiabatic ionization energies (AIEs), ionization Franck-Condon factors and the vibrational temperature of these molecules. The vertical and adiabatic ionization energies for the C_6H_6 isomers, which may be produced in the $C_2H + 1$ -butyne/2-butyne reactions, calculated in the present work at the CCSD(T)/CBS//B3LYP/6-311G** level of theory (with ZPE(B3LYP/6-311G**) included for the AIEs) are collected in Table 3. One can see that the agreement of our results with the literature data is rather close. Also, it is apparent that the AIEs of four C₆H₆ isomers, 1,3-hexadiene-5-yne, DMCB, 2-ethynyl-1,3-butadiene, and 3,4-hexadiene-1-yne, lie within a relatively narrow range of 8.66-9.02 eV, which complicates their assignment based on the PIE curves. Could 2-ethynyl-1,3-butadiene (AIE = 8.99 eV), which is the major C_6H_6 product according to our calculations (>90% among the C_6H_6 species), be incorrectly assigned to DMCB (AIE = 8.79 eV)? Since AIE for the former is

0.2 eV higher than that for the latter, this would be possible if a significant amount of

Isomers	CCSD(T)/C	CBS//B3LYP	Literature (adiabatic)			
	vertical	adiabatic	CBS-QB3 ^a	exp.		
Fulvene	8.64	8.40	8.40	8.36 ^b		
1,3-hexadiene-5-yne	8.83	8.66	8.63	9.2 ^{c,d}		
DMCB	9.01	8.79	8.75	8.80^{b}		
2-ethynyl-1,3-butadiene	9.16	8.99	8.95			
3,4-hexadiene-1-yne	9.27	9.02	8.99			
1,3-hexadiyne	9.60	9.39	9.37	9.41 ^c		
1,1-ethynylmethylallene	9.62	8.89				

Table 6.3. Calculated vertical and adiabatic ionization energies (eV) of various C_6H_6 isomers produced in the reaction of C_2H with 1- and 2-butynes in comparison with the literature data.

^aFrom Ref. 43. ^bFrom Ref. 62. ^cFrom Ref. 63. ^dElectron impact value minus 0.3 eV as reported in Ref. 63.

vibrationally excited 2-ethynyl-1,3-butadiene is present in the flow tube reactor when it is subjected to the ionizing VUV synchrotron radiation. 2-Ethynyl-1,3-butadiene is formed in the $C_2H + 1$ -butyne reaction with the exothermicity of ~40 kcal/mol (~1.7 eV). Some fraction of this released energy goes to the kinetic energy of the $C_6H_6 + H$ dissociation products. However, it is plausible that a part of the energy remains in the form of the internal vibrational energy of 2-ethynyl-1,3-butadiene resulting in a reduction of its ionization energy. Soorkia et al. apparently used in their fit individual PIE curves measured or simulated at 300 K, which is close to the experimental temperature. If the 2ethynyl-1,3-butadiene product does not have sufficient time to completely thermalize before it is ionized under the experimental conditions, it may have an internal vibrational energy distribution different from that typical for the room temperature, further complicating the fit of the measured PIE curve. Our hypothesis therefore is that the experimental observation of a rise in the ionization intensity around 8.8 eV assigned to DMCB may be in fact due to vibrationally excited 2-ethynyl-1,3-butadiene.

6.4 Reactions of CN + Diacetylene

The combination of the crossed molecular beams data and the electronic structure calculations provides a comprehensive picture of the underlying reaction mechanism. First of all, let us consider the energetics of the reaction. The experimentally derived reaction energy of kJ mol -87 ± 15^{-1} agrees very well with the computed data to form the cyanodiacetylene isomer [p1] plus a hydrogen atom kJ / mol (-79 ± 5^{-1}) . Based on these energetical constraints, the isocyanodiacetylene isomer [p2] cannot be formed since this reaction would be too endoergic. Consequently, the cyanodiacetylene molecule is the sole molecular product of the bimolecular gas phase reaction of cyano radicals with diacetylene in our experiment, in hydrocarbon-rich atmospheres of planets and their satellites, and in the interstellar medium. We would like to propose the following reaction mechanism to form this important molecule. Dictated by a barrierless addition with its unpaired electron at the carbon atom, the cyano radical adds to the carbon-carbon triple bond of the diacetylene molecule leading to the H_2C_5N intermediates [1], [2], and/or [3]. The barrierless addition suggests that large impact parameters dominate the formation of the reaction intermediate. This likely results in a preferential formation of [1] via addition to the terminal (C1) carbon atom of the diacetylene molecule. The indirect nature of this process was verified by the CM angular distribution and flux contour map which depict flux over the complete angular range. Also, the fraction of available energy channeling

into the translational degrees of freedom of the reaction products of $30(\pm 5\%)$ suggested indirect scattering dynamics via reaction intermediate(s). What is the fate of these reaction intermediates? The structure of the cyclic intermediate [2] cannot lead within one step to the cyanodiacetylene reaction product. The calculations suggest that [2] isomerizes via ring opening to [1] and/or [3]. Considering the inherent barriers to rearrangement of 23 and kJ / mol 3^{-1} , it is likely that [2] rearranges preferentially to intermediate [1]. Intermediate [3] itself can either fragment back to the initial reactants or isomerize to [2] which in turn yields [1]. Since the barrierless entry channel is far above the barriers to rearrangement from the intermediates, the hydrogen atom might migrate fairly freely in the intermediates involved. Nevertheless, all initial reaction intermediates yield eventually isomer [1]. The latter can either undergo a hydrogen migration to form [4] or decomposes via hydrogen elimination. This process involves a tight exit barrier and a transition state located kJ / mol 20^{-1} above the final products. The tight nature of an exit transition state is also supported by the distribution maximum of the CM translational energy distribution peaking at about kJ / mol 20^{-1} . Therefore, both the electronic structure calculations and the experiments support the existence of a tight exit transition state. In other words, the reversed reaction of an addition of a hydrogen atom to a carbon-carbon triple bond of a closed shell molecule involves an entrance barrier. The magnitude of this barrier is close to the one of kJ / mol 18^{-1} documented in the addition of a hydrogen atom to acetylene forming the vinyl radical. For completeness, it should be mentioned that [4] could also decompose to the cyanodiacetylene product. However, [4] can only be formed via hydrogen shift from [1]. Considering the barriers involved in the hydrogen migration from [1] versus the unimolecular decomposition of [1] to

cyanodiacetylene plus a hydrogen atom, we expect that [1] fragments preferentially to cyanodiacetylene. Our statistical calculations confirm this deduction. 96.7% of cyanodiacetylene was found to be formed via unimolecular decomposition of intermediate [1].

CONCLUSIONS

7.

An ab initio study of PES of involving ethynyl and cyano radicals with unsaturated hydrocarbons was conducted. This allowed the reaction mechanism to be determined, and the parameters of the PES were used in RRKM theory eventually determine the branching ratios of the products.⁵⁵⁻⁶⁴ The unsaturated hydrocarbons include diacetylene (C_4H_2) , ⁹⁹ C_3H_4 isomers allene and methylacetylene, ⁸⁶ and C_4H_6 isomers 1,3butadiene,¹¹² 1,2-butadiene,⁹⁷ 1-butyne, and 2-butyne.⁸⁹ The parameters obtained from the *ab initio* calculations includes optimized electronic structure, moments of inertia, vibrational frequencies, and zero-point energy at the hybrid-functional B3LYP/6-311g(d,p) level of theory. They were followed by single-point calculations at the CCSD(T)/cc-pVTZ level of theory, with CBS extrapolations of the reactants and products. The unimolecular single-collision rate constant was calculated for all forward and reverses individual reaction steps using the RRKM theory, which after steady-state calculations gave the product branching ratios. This work aimed to study the H-loss reaction mechanisms versus the CH₃-loss reaction mechanisms. When ethynyl radical or cyano radical reacted with an unsaturated hydrocarbon, either an H-loss product occured, or a CH₃-loss product occurred when there was a methyl group on the unsaturated hydrocarbon. The following sections summarize the H-loss reaction mechanisms and the CH₃-loss reaction mechanisms when a methyl group existed in the potential energy surface.

The first hypothesis of the C_2H -for-H reaction mechanism is preferable over the C_2H -for-CH₃ reaction mechanism (or H-loss is preferred over CH₃-loss) holds true for

143

most cases. However, the opposite case where the C_2H -for- CH_3 reaction mechanism is preferable is pronounced in certain reactions discussed below, especially ones that contain methyl groups on the unsaturated hydrocarbon. The same situation occurs when using cyano radicals instead of ethynyl radical, where CN-for-H is preferable for most cases, and CN-for- CH_3 is strongly pronounced only under specific conditions.

The second hypothesis that substituting cyano radical for ethynyl radical produces isoelectronic equivalent products holds true for the cases studied. A survey of these reactions and commentary in this trend is also given below.

7.1 H-loss vs CH₃-loss Reaction Channels

H-loss channels are the most common reaction paths since there are several hydrogen atoms that can be lost. Therefore, the amount of products one observes in a full PES should be mainly H-loss products. Unsaturted hydrocarbons that do not contain a methyl group exhibit only H-loss products. Even when there exists a methyl group on the unsaturated hydrocarbon, as in the case of $C_2H/CN + 1$ -butyne, there is four possible H-loss products and only one CH₃-loss product, yet this CH₃-loss channel that forms ethynylallene is the prelevant product. For the case of $C_2H + \text{allene}^{86}$, the C_2H -for-H is the dominant mechanism for both terminal and central addition, giving 1,4-pentadiyne after the initial adduct forms. This can be explained by the absence of a methyl group, allowing only H-loss products to occur. The opposite is true for the case of $C_2H + \text{methylacetylene}$, which contains a terminal methyl group. Terminal addition of ethnyl radical gives arise to the H-loss product methyldiacetylene. Here, a CH₃-loss cannot

occur since it would lead to a highly unfavorable acetylenic radical. However, through central addition of ethynyl radical to the middle carbon, the C_2H -for- CH_3 reaction mechanism is favorable,

Figure 7.1a. Overall reactants and products from ethnyl radical additions to unsaturated hydrocarbons studied in this work. Both terminal and central addition are given, where applicable. Given percentage is product branching ratios using RRKM theory.

giving rise to diacetylene + CH₃. Here, the methyl group is not terminal, but branched, allowing its cleavage to occur with a low barrier after the initial adduct forms.

Noteworthy is that only CH3-loss can occur, H-loss would produce a diradical species. The reaction of $CN + C_3H_4$ was not studied in this work.

Figure 7.1b. Overall reactants and products from cyano radical additions to unsaturated hydrocarbons studied in this work. Both terminal and central addition are given, where applicable. Given percentage is product branching ratios using RRKM theory.

For the case of $C_2H + 1,3$ -butadiene¹¹², only C_2H -for-H reaction mechanisms are observed. 1,3-Butadiene bears no methyl group, so only H-loss products were expected. The H-loss product of 1-ethynyl-1,3-butadiene occurred mainly from the initial adduct from the terminal addition of ethynl radical to 1,3-butadiene. The aromatic product of benzene was also observed after cyclization and isomerization steps, followed by an Hloss. The reaction of CN + 1,3-butadiene was not studied in this work.

For the case of $C_2H + 1,2$ -butadiene⁹⁷, CH_3 -loss was expected to occur since 1,2butadiene contains a terminal methyl group. Terminal addition of ethynyl radical to 1,3butadiene follows the C₂H-for-CH₃ mechanism producing 1,4-pentadiyne. However, central addition to both central carbons produces the C₂H-for-H product 2-ethynyl-1,3butadiene. Unlike central ethynyl radical addition to methylacetylene reaction, central ethynyl radical addition to 1,2-butadiene could lose a CH₃, however the C₂H-for-H reaction is energetically favorable. The similar situation occurred for CN + 1,2-butadiene. Terminal addition of cyano radical to 1,2-butadiene had the CN-for-CH₃ mechanism, whch gave rise to 1-cyano-prop-3-yne. Central addition of cyano radical to 1,2-butadiene from the CN-for-H mechanism, despite being able to produce the CN-for-CH₃ reaction path.

As previously mentioned, 1-butyne bears a terminal methyl group. So the terminal addition of ethynl radical to 1-butyne⁸⁹ produced the C_2H -for- CH_3 mechanism, leading to cyanoallene. Here, C2H-for-H products could be formed, but the C_2H -for- CH_3 is the preferred reaction path. For central addition, CH_3 -loss would produce a diradical, so the C_2H -for-H reaction mechanism is preferred. For the case of CN + 1-butyne, similarly, terminal addition of cyano radical to 1-butyne gives rise to CN-for- CH_3 while central addition of cyano radical to 1-butyne gives CN-for-H.

Ethynyl radical addition to 2-butyne⁸⁹ leads to C₂H-for-CH₃ reaction mechanism, giving rise to methyldiacetylene. This is so since 2-butyne has two terminal methyl groups, any which can cleave upon ethynyl radical addition. Similarly, cyano radical addition to 2-butyne gives the CN-for-CH₃ reaction mechanism, giving rise to 1-cyano-prop-1-yne. Lastly, cyano radical addition to diacetylene gives the CN-for-H product cyanodiacetylene.⁹⁹ Diacetylene doesn't contain any methyl group, so only H-loss products are expected.

To summarize, C_2H -for-H reaction mechanisms are preferred when the unsaturated hydrocarbon contains no methyl group. However, when there is a methyl group on the unsaturated hydrocarbon, the C_2H -for- CH_3 reaction mechanism prevails. If the CH₃-loss produces a diradical, then the H-loss would prevail in a methylated unsaturated hydrocarbon. The only exception to this was central addition of ethynyl radical to 1,2-butadiene, which could either follow a C_2H -for-CH₃ reaction mechanism or a C_2H -for-H reaction mechanism, in which the latter case was favorable from a significant difference in barrier heights (10.4 kcal/mol).

7.2 Isoelectronic Product Comparisons

Ethynyl radical is isoelectronic to cyano radical, so to address the products that form from ethynyl radical additions to unsaturated hydrocarbons versus cyano radical additions to the same unsaturated hydrocarbons, the products from both reactions are remarkably isoelectronic as well, and follow similar mechanisms as discussed in the previous section. In general, the CH group of ethnyl radical gets replaced by an N atom from the cyano group, producing isoelectronic reactants and consequently products. Here, ethynyl radical and cyano radical addition reactions to 1,2-butadiene, 1-butyne, and 2butyne were compared, since they both used the same unsaturated hydrocarbon species.

For ethynl radical and cyano radical addition to 1,2-butadiene⁹⁷, terminal additions gave the CH₃-loss isoelectronic products of penta-1,4-diyne and 1-cyano-prop-3-yne, respectively. For these products, the terminal CH group from ethynyl radical was replaced by an N atom from cyano radical. Similarly, central addition gave rise to 2ethynyl-1,3-butadiene and 2-cyano-1,3-butadiene, respectively, from an H-loss mechanism.

Ethynyl radical additions and cyano radical additions to the terminal carbon of 1butyne⁸⁹ also gave the CH₃-loss isoelectronic products of penta-1,4-diyne and cyanoallene, respectively. Central addition gave the H-loss isoelectronic products of 2ethynyl-1,3-butadiene and 2-cyano-1,3-butadiene, respectively.

Finally, ethynyl radical addition and cyano radical addition to 2-butyne⁸⁹ gave the CH₃-loss isoelectronic products of methyldiacetylene and 1-cyano-prop-1-yne, respectively.

In general, C_2H and CN radical additions to unsaturated hydrocarbons can lead to a growth of larger and more complex organic molecules including aromatics in cold environments such as Titan and the interstellar medium.^{86,89,97,99,112} The former radical reaction leads to a two carbon unit growth for C_2H -for-H reaction mechanisms and one carbon unit growth for C_2H -for-CH₃ reaction mechanisms. The latter radical reaction leads to a carbon and nitrogen unit growth in CN-for-H reaction mechanisms and a nitrogen unit growth in CN-for-CH₃ reaction mechanisms.

<u>REFERENCES</u>

1. Y. L. Yung and W. D. De More, Photochemistry of Planetary Atmospheres, Oxford University Press, Oxford, 1999.

2. A-S. Wong, Y. L. Yung and A. J. Friedson, Geophys. Res. Lett., 2003, 30, 1447.

3. E. H. Wilson and S. K. Atreya, Planet. Space Sci., 2003, 51, 1017.

4. X. Gu, Y. S. Kim, R. I. Kaiser, A. M. Mebel, M. C. Liang and Y. L. Yung, Proc. Nat. Acad. Sci., 2009, 106, 16078.

5. H. Okabe, J. Chem. Phys., 1983, 78, 1312.

6. A. M. Wodtke and Y. T. Lee, J. Phys. Chem., 1985, 89, 4744.

7. B. A. Balko, J. Zhang and Y. T. Lee, J. Chem. Phys., 1991, 94, 7958.

8. J. Segall, Y. Wen, R. Lavi, R. Singer and C. Wittig, J. Phys. Chem., 1991, 95, 8078.

9. K. Seki and H. Okabe, J. Phys. Chem., 1993, 97, 5284.

10. A. Läuter, K. S. Lee, K. H. Jung, R. K. Vatsa, J. P. Mittal and H.-R. Volpp, Chem. Phys. Lett., 2002, 358, 314.

11. G. Apaydin, W. H. Fink and W. M. Jackson, J. Chem. Phys., 2004, 121, 9368.

12. W. M. Jackson and A. Scodinu, Astrophys. Space Sci. Lib., 2004, 311, 85.

13. C. N. Keller, V. G. Anicich and T. E. Cravens, Planet. Space Sci., 1998, 46, 1157.

14. M. Banaszkiewicz, L. M. Lara, R. Rodrigo, J. J. Lopez-Moreno and G. J. Molina-Cuberos, Icarus, 2000, 147, 386.

15. P. Rannou, F. Hourdin, C. P. McKay and D. Luz, Icarus, 2004, 170, 443.

16. D. Toublanc, J. P. Parisot, J. Brillet, D. Gautier, F. Raulin and C. P. McKay, Icarus, 1995, 113, 2.

17. L. M. Lara, E. Lellouch and V. Shematovich, Astron. Astrophys., 1999, 341, 312.

18. E. H. Wilson and S. K. Atreya, J. Geophys. Res., 2004, 109, E06002.

19. R. D. Lorenz, C. P. McKay and J. I. Lunine, Science, 1997, 275, 642.

20. E. H. Wilson, S. K. Atreya and A. Coustenis, J. Geophys. Res., 2003, 108, 5014.

21. L. M. Lara, E. Lellouch, J. J. Lopez-Moreno and R. Rodrigo, J. Geophys. Res., 1996, 101, 12151.

22. M. C. Gazeau, H. Cottin, V. Vuitton, N. Smith and F. Raulin, Planet. Space Sci., 2000, 48, 437.

23. J. O. P. Pedersen, B. J. Opansky and S. R. Leone, J. Phys. Chem., 1993, 97, 6822.

24. H. Van Look and J. Peeters, J. Phys. Chem., 1995, 99, 16284.

25. B. Ceursters, H. M. T. Nguyen, J. Peeters and M. T. Nguyen, Chem. Phys., 2000, 262, 243.

26. D. Chastaing, P. L. James, I. R. Sims and I. W. M. Smith, Faraday Disc., 1998, 109, 165.

27. A. B. Vakhtin, D. E. Heard, I. W. M. Smith and S. R. Leone, Chem. Phys. Lett., 2001, 344, 317.

28. R. I. Kaiser, F. Stahl, P. v. R. Schleyer and H. F. Schaefer, III, Phys. Chem. Chem. Phys., 2002, 4, 2950.

29. N. Le, A. M. Mebel and R. I. Kaiser, J. Comp. Chem., 2001, 22, 1522.

30. A. Landera, S. P. Krishtal, V. V. Kislov, A. M. Mebel and R. I. Kaiser, J. Chem. Phys., 2008, 128, 214301.

31. D. Carty, V. Le Page, I. R. Sims and I. W. M. Smith, Chem. Phys. Lett., 2001, 344, 310.

32. R. J. Hoobler and S. R. Leone, J. Phys. Chem. A, 1999, 103, 1342.

33. R. I. Kaiser, C. C. Chiong, O. Asvany, Y. T. Lee, F. Stahl, P. V. Schleyer and H. F. Schaefer, J. Chem. Phys., 2001, 114, 3488.

34. F. Stahl, P. V. Schleyer, H. F. Schaefer and R. I. Kaiser, Planet. Space Sci., 2002, 50, 685.

35. F. Goulay, D. L. Osborn, C. A. Taatjes, P. Zou, G. Meloni and S. R. Leone, Phys. Chem. Chem. Phys., 2007, 9, 4291.

36. T. Fouchet, E. Lellouch, B. Bezard, H. Feuchtgruber, P. Drossart and T. Encrenaz, Astron. Astrophys., 2000, 355, L13.

37. T. A. Cool, K. Nakajima, T. A. Mostefaoui, F. Qi, A. McIlroy, P. R. Westmoreland, M. E. Law, L. Poisson, D. S. Peterka and M. Ahmed, J. Chem. Phys., 2003, 119, 8356.

38. C. F. Cullis, D. J. Hucknall and J. V. Shepherd, Proc. R. Soc. London, Ser. A, 1973, 335, 525.

39. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom and W. G. Mallard (National Institute of Standards and Technology, Gaithersburg, MD, 2003), http://webbook.nist.gov.

- 40. L. V. Moskaleva and M. C. Lin, J. Comput. Chem., 2000, 21, 415.
- 41. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 42. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 43. J. A. Pople, M. Head-Gordon and K. Raghavachari, J. Chem. Phys., 1987, 87, 5968.
- 44. G. D. Purvis and R. J. Bartlett, J. Chem. Phys., 1982, 76, 1910.
- 45. G. E. Scuseria, C. L. Janssen and H. F. Schaefer, III, J. Chem. Phys., 1988, 89, 7382.
- 46. G. E. Scuseria, and H. F. Schaefer, III, J. Chem. Phys., 1989, 90, 3700.
- 47. T. H. Dunning, Jr., J. Chem. Phys., 1989, 90, 1007.
- 48. K. A. Peterson and T. H. Dunning, Jr., J. Chem. Phys., 1995, 99, 3898.
- 49. O. Rice, H. Ramsperger. J. Am. Chem. Soc. 1927, 49, 1617.
- 50. L. Kassel. J. Phys. Chem. 1928, 32, 225.

51. H. Eyring, S. H. Lin and S. M. Lin, Basic Chemical Kinetics, Wiley, New York, 1980.

52. P. J. Robinson and K. A. Holbrook, Unimolecular Reactions, Wiley, New York, 1972.

53. J. I. Steinfield, J. S. Francisco and W. L. Hase, Chemical Kinetics and Dynamics; Prentice Hall, Engelwood Cliffs, NJ, 1999.

54. D. E. Woon and J.-Y. Park, Icarus, 2009, 202, 642.

55. S. P. Krishtal, A. M. Mebel and R. I. Kaiser, J. Phys. Chem. A, 2009, 113,

56. A. Landera, A. M. Mebel and R. I. Kaiser, Chem. Phys. Lett., 2008, 459, 54.

57. E. Hébrard, M. Dobrijevic, P. Pernot, N. Carrasco, A. Bergeat, K. M. Hickson, A. Canosa, S. D. Le Picard and I. R. Sims, J. Phys. Chem. A, 2009, 113,

58. A. M. Mebel, V. V. Kislov and R. I. Kaiser, J. Phys. Chem. A, 2006, 110, 2421.

59. T. L. Nguyen, T. N. Le and A. M. Mebel, J. Phys. Org. Chem., 2001, 14, 131.

60. D. E. Woon, Chem. Phys., 2006, 331, 67.

61. Y. L. Yung W. D. De More, Photochemistry of Planetary Atmospheres, Oxford University Press, Oxford, 1999.

62. A.-S. Wong, Y. L. Yung A. J. Friedson, Geophys. Res. Lett. 2003, 30, 1447.

63. S. Cole, J. Wilder. J. Appl. Math. 1991, 51, 1489.

64. X. Gu, Y. S. Kim, R. I. Kaiser, A. M. Mebel, M. C. Liang Y. L. Yung, Proc. Natl. Acad. Sci. 2009, 106, 16078.

65. J. Maxwell. Nature. 1873, 417, 903.

66. A. M. Wodtke Y. T. Lee, J. Phys. Chem. 1985, 89, 4744.

67. B. A. Balko, J. Zhang Y. T. Lee, J. Chem. Phys. 1991, 94, 7958.

68 J. Segall, Y.Wen, R. Lavi, R. Singer C.Wittig, J. Phys. Chem. 1991, 95, 8078.

69. K. Seki H. Okabe, J. Phys. Chem. 1993, 97, 5284.

70. A. Lauter, K. S. Lee, K. H. Jung, R. K. Vatsa, J. P. Mittal H.-R. Volpp, Chem. Phys. Lett. 2002, 358, 314.

71. G. Apaydin, W. H. Fink W.M. Jackson, J. Chem. Phys. 2004, 121 9368.

72. W. M. Jackson A. Scodinu, Astrophys. Space Sci. Lib. 2004, 311 85.

73. C. N. Keller, V. G. Anicich T. E. Cravens, Planet. Space Sci. 46 1998, 1157.

74. M. Banaszkiewicz, L. M. Lara, R. Rodrigo, J. J. Lopez-Moreno G. J. Molina-Cuberos, Icarus. 147 2000, 386.

75. P. Rannou, F. Hourdin, C. P. McKay D. Luz, Icarus. 170 2004, 443.

76. D. Toublanc, J. P. Parisot, J. Brillet, D. Gautier, F. Raulin C. P. McKay, Icarus. 118 1995, 1132.

77. L. M. Lara, E. Lellouch V. Shematovich, Astron. Astrophys. 341 1999, 312.

78. F. Zhang, S. Kim and R. I. Kaiser, Phys. Chem. Chem. Phys., 2009, 11, 4707.

79. R. D. Lorenz, C. P. McKay J. I. Lunine, Science. 275 1997, 642.

80. E. H. Wilson, S. K. Atreya A. Coustenis, J. Geophys. Res. 2003, 108 5014.

81. L. M. Lara, E. Lellouch, J. J. Lopez-Moreno R. Rodrigo, J. Geophys. Res. 101 1996, 23261.

82. M. C. Gazeau, H. Cottin, V. Vuitton, N. Smith F. Raulin, Planet. Space Sci. 48 2000, 437.

83. T. N. Le, A. M. Mebel R. I. Kaiser, J. Comput. Chem. 22 2001, 1522.

84. D. Chastaing, P.L James, I.R. Sims, I.W.M. Smith, Far, Disc. 1996, 109, 165.

85. R. J. Hoobler and S. R. Leone, J. Phys. Chem. A, 1999, 103, 1342.

86. A. Jamal, A. M. Mebel Phys. Chem. Chem. Phys. 12 2010, 2606.

87. A. Suits. J. Phys. Chem. A. 2009, 113, 11097.

88. Senosiain, J. P.; Miller, J. A. J. Phys. Chem. A 2007, 111, 3740.

89. A. Jamal, A. M. Mebel. J. Phys. Chem. A. 115 2011, 2196.

90. E. Schrodinger. Phys. Rev. 1926, 28, 1049

91. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd Edition), R. Resnick, R. Eisberg, John Wiley & Sons, 1985

92. C. J. Cramer Essentials of Computational Chemistry, John Wiley & Sons (2002).

93. I. Levine. Quantum Chemistry. Englewood Cliffs, New Jersey: Prentice Hall. (1991)

94. S.F. Boys, Proc. R. Soc. London Ser. A 1950, 200, 542.

95. W. Kohn, L. Sham. Phys. Rev. 1965, 140, 1133

96. J. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 1993, 77, 3865.

97. A. Jamal, A. Mebel. Chem. Phys. Lett. 2011, 518, 29.

98. E. Huckel. Trans. Faraday Soc. 1934, 30, 40.

99. F. Zhang, Y. S. Kim, R. I. Kaiser, A. Jamal, A. M. Mebel, J. Chem. Phys. 2009, 130, 234308.

100. Soorkia, S.; Trevitt, A. J.; Selby, T. M.; Osborn, D. L.; Taatjes, C. A.; Wilson, K. R.; Leone, S. R. J. Phys. Chem. A 2010, 114, 3340.

101. R. Kaiser. A. Mebel. Chem. Soc. Rev. 2012, 41, 5490.

102. J. Bouwman, F. Goulay, S. Leone, K. Wilson. J. Phys. Chem. A. 2012, 116, 3907-3917.

103. F. Zhang, D. Parker, Y. Kim, R. Kaiser, A. Mebel. Astrophysical J. 2011, 728, 141.

104. B. Jones, F. Zhang, P. Maksyutenko, A. Mebel, R. Kaiser. J. Phys. Chem. A. 2010, 114, 5256-5262.

105. L. Huang, O. Asvany, A. Chang, N. Balucani, S. Lin, Y. Lee, R. Kaiser. J. Chem. Phys. 2000, 113. 8656.

106. N. Balucani, O. Asvany, L. Huang, Y. Lee, R. Kaiser, Y. Osamura, H. Bettinger. Astrophysical J. 2000, 545, 892.

107. D. Cordier, O. Mousis, J. Lunine, P. Lavvas, V. Vuitton. Astrophys. arXiv:0911.1860

108. R. Jacovi, D. Laufer, V. Dimitrov, A. Bar-Nun. J. Geophys. Research. 2010, 115, 7006.

109. S. Vinatier, P. Rannou, C. Anderson, B. Bezard, R. Samuelson. Icarus. 2012. 219, 5.

110. C. Anderson, E. Young, N. Chanover, C. McKay. Icarus. 2008, 194, 721.

111. E. Herbst, E. Dishoeck. Astro. & Astrophys. 2009, 47, 427.

112. B. Jones, F. Zhang, R. Kaiser, A. Jamal, A. Mebel, M. Cordiner, S. Charnley. Proc. Nat. Acad. Sci. 2011, 108, 452.

113. S. Miller, H. Urey. Science 1959, 130, 245.

114. P. Lavvas, M. Sander, M. Kraft, H. Imanaka. ApJ. 2011, 728, 80.

115. V. Vuitton, R. Yelle, P. Lavvas. Phil. Trans. R. Soc. A. 2009, 367, 729. 116. A. Coates, F. Crary, G. Lewis, D. Young, J. Waite, E. Sittler. Geophys. Research Lett. 2007, 34, 22103.

117. F. Crary, B. Magee, K. Mandt, J. Waite, J. Westlake, D. Young. Planet. & Space Sci. 2009, 56, 1847.

118. R. Lorenz, C. McKay, J. Lunine. Icarus. 1999, 137, 56.

119. M. J. Frisch et al., Gaussian 98, Revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.

120. MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles with contributions from ed. R. D. Amos, et al., MOLPRO version 2002.6 University of Birmingham, Birmingham, UK, 2003,.

APPENDICES

Table A1. B3LYP and CCSD(T) calculated total energies at 0 K, zero-point energy corrections (ZPE), B3LYP/6-311G** optimized Cartesian coordinates, unscaled vibrational frequencies (v_i), and moments of inertia (I_i) of all species involved in the C₂H + C₃H₄ reaction.

Species,	Energies, a.u.	i	I_i ,	Cart	tesian coor	dinates, an	gstroms	$v_i, {\rm cm}^{-1}$
(point group)			a.u.					
electronic state								
				Atom	Х	Y	Z	
Н (18-21)	$ZPE(B3LYP/6-311G^{**}) = 0.0$ E(B3LYP/6-311G^{**}) = -0.502155930011 E(CCSD(T)/CC-PVDZ) = -0.499278 E(CCSD(T)/CC-PVTZ) = -0.49980982 E(CCSD(T)/CC-PVQZ) = -0.499906 E(CCSD(T)/CC-PV5Z) = -0.499995 E(CCSD(T)/CBS) = -0.49999							
$\begin{array}{c} C_2 H \\ (C_{\infty V}) \\ \hline \end{array}$	ZPE(B3LYP/6-311G**) = 0.014445 E(B3LYP+ZPE) = -76.615013 E(CCSD(T)/CC-PVDZ) = -76.398687 E(CCSD(T)/CC-PVTZ) = -76.46769892 E(CCSD(T)/CC-PVQZ) = -76.4876915 E(CCSD(T)/CC-PV5Z) = -76.4936542 E(CCSD(T)/CBS) = -76.49585	A B C	0.00000 40.54466 40.54466	C H C	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	-0.473068 -1.536812 0.729203	370, 416, 2089, 3465
CH ₂ CCH ₂ Allene (D _{2d})	ZPE(B3LVP/6-311G**) = 0.054873 E(B3LVP+ZPE) = -116.638325 E(CCSD(T)/CC-PVDZ) = -116.314014 E(CCSD(T)/CC-PVDZ) = -116.43338571 E(CCSD(T)/CC-PVQZ) = -116.46524 E(CCSD(T)/CC-PV5Z) = -116.476317 E(CCSD(T)/CBS) = -116.47946	A B C	12.21789 203.15738 203.15833	C C H H C H H	0.000002 1.306511 1.877635 1.877580 -1.306511 -1.877613 -1.877615	0.000014 0.000001 0.662901 -0.662926 -0.000037 -0.639697 0.639851	0.000058 -0.000019 0.639704 -0.639744 -0.000055 0.662927 -0.662796	369, 369, 896, 921, 921, 1055, 1108, 1466, 1508, 2041, 3114, 3116, 3187, 3187

CH ₃ CCH	ZPE(B3LYP/6-311G**) = 0.055468	Α	11.25810	С	-1.420160	-0.000001	0.000001	339, 340, 666, 943, 1057,
Mothyl Acotylono	E(B3LYP+ZPE) = -116.635302	В	210.15954	Н	-2.482190	-0.000004	0.000006	1057, 1417, 1480, 1480, 2231,
Methyl Acetylene	E(CCSD(1)/CC-PVDZ) = -116.315233 E(CCSD(T)/CC-PVTZ) = -11(.42520440)	С	210.15977	С	-0.219254	0.000001	-0.000005	3025, 3084, 3084, 3479
(C _{3v})	E(CCSD(T)/CC-PV(TZ) = -116.45520449 E(CCSD(T)/CC-PV(OZ) = -116.46871			С	1.238135	0.000001	-0.000001	
<u>~</u>	E(CCSD(T)/CBS) = -116.4817			Н	1.629948	1.011755	-0.138100	
€- Θ-Θ - Q				Н	1.629948	-0.386271	0.945252	
				Н	1.629969	-0.625488	-0.807125	
$HCCCH_2CCH_2(1)$	ZPE(B3LYP/6-311G**) = 0.075116	Α	88.19176	С	-2.365351	-0.508426	0.041871	89, 196, 316, 328, 434, 577,
(C)	E(B3LYP+ZPE) = -193.341599	В	694.82838	С	-1.318329	0.077818	0.026158	669, 686, 859, 895, 909, 976,
(\mathbf{C}_1)	E(CCSD(T)/CC-PVTZ) = -192.99550682	С	747.59397	С	-0.044912	0.801351	0.008989	1046 1223 1315 1412 1439
				Н	-0.129227	1.657627	-0.672050	17/1 2231 20/5 3020 3033
				С	1.114161	-0.033911	-0.386572	1741, 2251, 2745, 5020, 5055, 2152, 2470
				С	2.246218	-0.440266	0.125118	5155, 5479
				Н	2.542024	-0.174286	1.144727	
				Н	2.943916	-1.061725	-0.429228	
				Н	-3.292194	-1.027136	0.053979	
				Н	0.144756	1.226129	1.009186	
$CH_2CCH_2CCH(2)$	ZPE(B3LYP/6-311G**) = 0.075371	А	154.79121	С	1.864712	-0.790976	0.000436	228, 292, 440, 473, 528, 672,
(\mathbf{C})	E(B3LYP+ZPE) = -193.329691	В	414.62452	Н	2.929174	-0.621528	0.001276	703, 759, 792, 797, 816, 1037,
$(\mathbf{C}_{\mathbf{s}})$	E(CCSD(T)/CC-PVTZ) = -192.8706069	С	557.26723	С	0.763447	-0.117911	-0.000791	1061 1113 1219 1358 1469
				С	-0.653852	0.000629	-0.001027	1500 1783 3142 3143 3234
Ç.				С	-1.834567	-0.599390	0.000331	3724 3746
				Н	-2.754445	-0.025221	0.001721	5254, 5240
				Н	-1.912396	-1.680414	-0.000044	
				С	0.096972	1.276890	0.000247	
				Н	0.158070	1.854831	0.919553	
				Н	0.159329	1.856887	-0.917688	
HCCC(CH ₂) ₂ (3)	ZPE(B3LYP/6-311G**) = 0.075198	Α	172.72704	С	2.172908	0.000045	-0.001555	192, 265, 405, 526, 542, 571,
(\mathbf{C})	E(B3LYP+ZPE) = -193.382714	В	438.31183	С	0.970003	-0.001116	0.002549	625, 657, 687, 767, 797, 800,
(\mathbb{C}_{2v})	E(CCSD(T)/CC-PVTZ) = -193.03509924	С	611.03798	С	-0.468552	-0.000015	0.000278	981, 1038, 1292, 1367, 1474,
				С	-1.136488	1.222109	-0.000241	1518 2212 3148 3155 3255
				Н	-0.595453	2.158006	0.001079	2212, 5140, 5155, 5255, 5255, 5257, 5257, 5477
0-0-0-0				С	-1.138116	-1.221315	-0.000101	5257, 5477
				Н	-0.598452	-2.158024	-0.000043	
•				Н	-2.220784	-1.250613	-0.001827	
				Н	3.235223	-0.000981	-0.001871	
				H	-2.219064	1.253369	-0.002925	
HCCCH ₂ CHCH (4)	ZPE(B3LYP/6-311G**) = 0.075444	Α	91.02892	С	-2.326649	-0.411202	-0.129762	90, 190, 335, 372, 489, 666,

(C ₁)	E(B3LYP+ZPE) = -193.336569	В	670.89859	С	-1.255792	0.127744	-0.053153	678, 682, 806, 843, 935, 968,
(-1)	E(CCSD(T)/CC-PVTZ) = -192.99220308	С	704.65729	С	0.055066	0.763763	0.052778	1016, 1206, 1271, 1317, 1464,
				Н	0.304313	1.262707	-0.887986	1668, 2222, 3014, 3064, 3107.
				С	1.159866	-0.229627	0.423064	3736 3477
				С	2.245624	-0.427191	-0.274200	5250, 5477
3				Н	2.701276	-0.074222	-1.187797	
				Н	-3.274741	-0.884725	-0.202589	
				Н	0.013410	1.543497	0.823386	
				Н	0.987057	-0.788181	1.342623	
CHCCHCHCH ₂ (5)	ZPE(B3LYP/6-311G**) = 0.075850	Α	130.93286	С	2.189719	2.189719	0.000000	158, 225, 383, 435, 559, 562,
(C)	E(B3LYP+ZPE) = -193.394519	В	530.92725	Н	3.087318	3.087318	0.000000	651 667 736 863 943 997
(C_s)	E(CCSD(T)/CC-PVTZ) = -193.04363509	С	661.86011	С	1.167048	1.167048	0.000000	1037 1150 1260 1415 1434
				С	0.000000	0.000000	0.000000	1057, 1159, 1200, 1415, 1454, 1544, 2104, 2142, 2164
Conc.				Н	0.120051	0.120051	0.000000	1544, 2104, 5145, 5140, 5104,
				С	-1.309155	-1.309155	0.000000	3240, 3471
				Н	-2.114271	-2.114271	0.000000	
				С	-1.638382	-1.638382	0.000000	
Č.				Н	-2.673087	-2.673087	0.000000	
				Н	-0.875400	-0.875400	0.000000	
	ZPE(B3LYP/6-311G**) = 0.075191	Α	40.27641	С	2.618037	-0.254102	-0.000165	148, 154, 199, 328, 409, 526,
	E(B3LYP+ZPE) = -193.352873	В	812.27235	Ċ	1.458463	0.070739	0.000131	626 684 789 889 1042
(C_s)	E(CCSD(T)/CC-PVTZ) = -193.00374491	С	841.34594	С	0.104738	0.511669	-0.000252	1046 1050 1284 1307 1451
		-		Ċ	-0.956317	-0.274313	-0.000904	1040, 1057, 1204, 1577, 1451, 1471, 1727, 2206, 2006, 2000
				Ċ	-2.417319	-0.161949	0.000401	14/1, 1/2/, 2206, 2966, 3009,
				Ĥ	-2.731697	0.893098	0.001892	3048, 3070, 3478
				Н	-2.852785	-0.642014	-0.881971	
3				Н	-2.851289	-0.644147	0.882316	
				Н	3.635758	-0.557674	0.001956	
				Н	-0.045599	1.598469	0.000546	
$CHCCCHCH_{2}(7)$	ZPE(B3LYP/6-311G**) = 0.074183	Α	47.69908	С	2.669314	-0.207850	0.000349	54, 144, 226, 292, 379, 440,
	E(B3LYP+ZPE) = -193.371149	В	805.87018	С	1.457646	0.013512	-0.000077	512 610 721 788 1035
(C_s)	E(CCSD(T)/CC-PVTZ) = -193.01445218	С	842.40451	С	0.154860	0.214972	-0.001572	10/8 1087 132/ 1300 1/82
				С	-1.112963	0.539260	0.000338	1407, 1007, 1524, 1577, 1402, 1407, 1910, 2010, 2016, 2046
Q.				С	-2.269943	-0.429323	0.000225	1467, 1610, 2010, 5010, 5040,
2 -2				Н	-1.925628	-1.463697	-0.001322	3063, 3120, 3469
				Н	-2.900626	-0.271043	0.881681	
				Н	-2.902385	-0.268972	-0.879594	
				Н	3.717227	-0.379286	0.001744	
				Н	-1.382060	1.599571	0.001919	

CHCHCCCH ₂ (8)	ZPE(B3LYP/6-311G**) = 0.075493	Α	51.97354	С	-2.472756	0.159901	-0.000048	29, 139, 194, 313, 388, 501,
(C)	E(B3LYP+ZPE) = -193.350468	В	805.72700	Н	-2.773300	0.796914	-0.837438	694, 718, 873, 911, 1050,
(C_1)	E(CCSD(T)/CC-PVTZ) = -193.00216449	С	846.45706	Н	-3.016444	-0.785306	-0.085878	1054 1178 1268 1416 1478
4				С	-1.033433	-0.061081	-0.000112	1478 1623 2330 3020 3075
- <u>6</u>				С	0.160479	-0.236549	0.000103	1470, 1023, 2330, 3020, 3073, 2001, 2007, 2027
				С	1.568754	-0.469596	0.000007	3081, 3087, 3237
				Н	1.892762	-1.511266	-0.000069	
0				С	2.476585	0.487705	-0.000023	
				н	2.495092	1.567891	0.000052	
				Н	-2.795878	0.6494890	0.923768	
	ZPE(B3LYP/6-311G**) = 0.073725	Α	17.41919	С	2.606751	0.004845	0.000011	26, 56, 136, 143, 324, 358,
(C)	E(B3LYP+ZPE) = -193.378718	В	924.78311	Н	3.003110	-0.480185	0.898428	550, 675, 871, 980, 1027,
(C_1)	E(CCSD(T)/CC-PVTZ) = -193.01947811	С	930.95599	н	3.002317	1.027154	-0.028634	1039 1142 1411 1444 1465
				С	1.156707	-0.009818	-0.000198	1471 1850 2101 3000 3040
				С	-0.077120	-0.002344	-0.000034	1471, 1059, 2101, 5000, 5049, 2057, 2064, 2114
				С	-1.394209	0.002666	-0.000018	3037, 3004, 3114
0-0-0-0 -0.				С	-2.700866	0.001581	0.000010	
				Н	-3.280050	0.925357	0.000074	
•				Н	3.005384	-0.530542	-0.868576	
				Н	-3.278347	-0.923363	0.000080	
HCCCHCCH ₃ (10)	ZPE(B3LYP/6-311G**) = 0.075191	Α	40.27641	С	2.618037	-0.254102	-0.000165	148, 154, 199, 328, 409, 526,
(\mathbf{C})	E(B3LYP+ZPE) = -193.352873	В	812.27235	С	1.458463	0.070739	0.000131	626, 684, 789, 889, 1042,
(C_s)	E(CCSD(T)/CC-PVTZ) = -193.00374491	С	841.34594	С	0.104738	0.511669	-0.000252	1046 1059 1284 1397 1451
\sim				С	-0.956317	-0.274313	-0.000904	1471 1727 2206 2966 3009
				С	-2.417319	-0.161949	0.000401	30.49 30.70 34.79
				Н	-2.731697	0.893098	0.001892	3040, 3070, 3470
				н	-2.852785	-0.642014	-0.881971	
T.				н	-2.851289	-0.644147	0.882316	
<u>é</u>				Н	3.635758	-0.557674	0.001956	
				Н	-0.045599	1.598469	0.000546	
HCCC(CH)CH ₂ (11)	ZPE(B3LYP/6-311G**) = 0.075097	Α	184.90177	С	0.606730	-2.071418	0.000000	171, 179, 271, 369, 532, 539,
(C)	E(B3LYP+ZPE) = -193.34202	В	437.53394	С	0.337147	-0.896757	0.000000	643, 678, 692, 771, 853, 1029,
(C_s)	E(CCSD(T)/CC-PVTZ) = -192.99616215	С	611.18936	С	0.000000	0.495810	0.000000	1053 1194 1404 1481 1482
7				С	0.972514	1.390987	0.000000	16/2 2101 2021 2080 212/
				Н	2.051922	1.392526	0.000000	1072, 2171, 3031, 3007, 3124,
6- 6- 9				С	-1.476434	0.878336	0.000000	3242, 34/0
				Н	-1.718437	1.472235	0.883862	
6				Н	-1.718437	1.472235	-0.883862	
				Н	-2.103331	-0.013036	0.000000	

CH₂CCCHCH₂ (12)	ZPE(B3LYP/6-311G**) = 0.078256	Α	123.22462	С	-1.887631	-0.044439	0.000132	219, 350, 525, 714, 715, 771,
(\mathbf{C})	E(B3LYP+ZPE) = -193.34283	В	369.83729	Н	-2.423036	0.897963	-0.000202	837, 891, 899, 955, 981, 1086,
(C_s)	E(CCSD(1)/CC-PV1Z) = -193.00216744	С	481.36137	С	-0.562632	-0.083550	-0.000230	1099, 1180, 1219, 1432, 1459,
				С	0.574426	0.970073	-0.000019	1563 1740 3023 3085 3140
				Н	0.604309	1.588447	0.901971	3774 3743
				С	1.541779	-0.228937	0.000014	5224, 5245
~~~~~				С	0.512331	-1.082677	0.000016	
				Н	-2.473768	-0.956071	-0.000035	
<u> </u>				Н	0.604502	1.589700	-0.901094	
C				Н	2.618355	-0.302864	-0.000122	
<b>CH₂CCCHCH₂ (13)</b>	ZPE(B3LYP/6-311G**) = 0.075347	А	46.81254	С	-2.566363	0.178257	-0.000250	143, 178, 312, 330, 447, 536,
$(\mathbf{C})$	E(B3LYP+ZPE) = -193.395824 E(CCSD(T)/CC)DVTZ) = -102.02002804	В	793.15635	Н	-2.966951	1.185527	0.000372	645, 749, 769, 893, 978, 1031,
$(C_s)$	E(CCSD(1)/CC-PV1Z) = -193.03902804	С	839.96877	Н	-3.271326	-0.645291	-0.000475	1067, 1284, 1314, 1435, 1492,
				С	-1.236092	-0.042967	0.000839	1568, 2047, 3122, 3131, 3147.
~~				С	-0.014198	-0.235980	-0.000688	3215 3242
C 🔎-C				С	1.355027	-0.487221	-0.000019	5215, 5242
				Н	1.654973	-1.533577	0.000644	
				С	2.319247	0.467164	-0.000013	
0 0				Н	3.367615	0.196571	0.000483	
				Н	2.069961	1.521248	-0.000240	
CH ₂ CCHCCH ₂ (14)	ZPE(B3LYP/6-311G**) = 0.078278	Α	150.84209	С	1.790073	0.003270	0.000089	209, 351, 461, 692, 711, 828,
(C)	E(B3LYP+ZPE) = -193.341591	В	326.46169	Н	2.373878	0.916533	-0.000198	841, 876, 907, 999, 1059,
(Cs)	E(CCSD(T)/CC-PVTZ) = -192.63246835	С	465.73102	С	0.459008	0.035917	-0.000265	1125 1148 1215 1436 1470
X				С	-0.618607	-1.072974	0.000182	1558 1711 3050 3100 3137
				Н	-0.653868	-1.693831	0.897510	1550, 1711, 5059, 5109, 5157, 2024, 2025
				С	-1.528814	0.149237	-0.000484	3224, 3235
				С	-0.576232	1.091317	0.000213	
				Н	-0.545485	2.170652	0.000532	
•				Н	2.326826	-0.938055	-0.000576	
				Н	-0.653918	-1.695897	-0.895680	
	ZPE(B3LYP/6-311G**) = 0.073680	Α	74.21263	С	-2.371748	-0.437567	0.002227	122, 134, 154, 351, 435, 497,
	E(B3LYP+ZPE) = -193.368438	В	739.56529	Н	-2.882372	-0.692966	0.931639	611, 868, 893, 895, 945, 975,
(U _s )	E(CCSD(T)/CC-PVTZ) = -192.40831791	С	789.16665	С	-1.207599	0.135452	-0.008520	979 1042 1330 1437 1453
				С	-0.000320	0.755923	0.000286	187/ 1020 3053 3057 2099
				С	1.211277	0.143743	0.007565	10/ <del>1</del> , 1727, 3033, 3037, 3000, 2100, 2110
				С	2.370167	-0.439846	-0.002098	5109, 5110

Н 0.848539 -3.105709 0.000000

				Н	2.892596	-0.704762	0.917902	
				Н	2.881425	-0.696812	-0.930686	
				Н	-2.897256	-0.698882	-0.916982	
Ţ				Н	-0.005059	1.847198	0.001370	
	7DE(D21 VD/( 211C**) = 0.074711	•	124 20550	0	2 1 ( 50 1 5	0.4(1531	0.000220	00 151 204 510 (21 (50
<b>CHCHCHCCH2</b> (16)	$ZPE(B3LYP/0-311G^{**}) = 0.0/4/11$ E(D3LVD+7DE) = 102.347159	A	124.38559	C	-2.165015	-0.461721	0.000220	88, 151, 324, 512, 631, 670,
(C.)	$E(DSL 1 \Gamma + L\Gamma E) = -193.347138$ E(CCSD(T)/CC-PVTZ) = -102.00507307	B	5/1.81295	Н	-2.650249	-0.755769	0.927030	828, 858, 876, 907, 924, 1008,
	E(CCSD(1)/CC-1 + 12) = -1)2.55373577	С	683.83396	C	-1.049928	0.206877	-0.000246	1149, 1276, 1368, 1472, 1642,
				C	0.071346	0.886930	-0.000233	2035, 3026, 3107, 3131, 3176,
				C	1.432164	0.318924	0.000328	3249
				C	1.773529	-0.950581	-0.000219	
				Н	2.685567	-1.526950	-0.000009	
e y				Н	-2.649806	-0.756925	-0.926491	
6				Н	0.006855	1.972634	-0.000877	
				H	2.235060	1.064440	0.001251	
CH ₂ CCCHCH ₂ (17)	ZPE(B3LYP/6-311G**) = 0.078256	Α	108.86016	С	-1.915316	0.000007	0.172090	217, 349, 530, 664, 703, 744,
$(\mathbf{C})$	E(B3LYP+ZPE) = -193.318882	В	403.20921	Н	-2.466144	-0.929290	0.242033	775, 830, 842, 879, 1008,
(C _s )	E(CCSD(T)/CC-PVTZ) = -192.97455064	С	451.59396	С	-0.599589	0.000118	0.013135	1010, 1032, 1107, 1160, 1172,
				С	0.579933	-0.811345	-0.265808	1318 1452 1800 3147 3154
4				Н	0.723481	-1.488009	-1.099985	2172 2170 2022
				С	1.595069	-0.000565	0.400189	5175, 5179, 5255
~~~~~				Н	2.041897	-0.001259	1.387720	
				С	0.580611	0.812199	-0.265105	
				Н	0.724534	1.487805	-1.100070	
				Н	-2.468014	0.928268	0.243300	
CHCCHCCH ₂ (18)	ZPE(B3LYP/6-311G**) = 0.064999	Α	67.01045	С	2.387584	-0.457475	-0.000060	141, 297, 350, 360, 606, 627,
(\mathbf{C})	E(B3LYP+ZPE) = -192.791208	В	694.44424	С	1.306211	0.071666	0.000230	644, 691, 883, 885, 951, 1005,
(C_s)	E(CCSD(T)/CC-PVDZ) = -192.74687	С	749.06097	С	0.054188	0.748983	-0.000010	1140 1353 1465 2042 2209
	E(CCSD(T)/CC-PVTZ) = -192.43544689			С	-1.113745	0.147053	0.000000	1140, 1355, 1405, 2042, 2209, 2100, 2114, 2102, 2479
	E(CCSD(T)/CC-PVQZ) = -192.989055			С	-2.276429	-0.431525	-0.000001	5109, 5114, 5182, 5478
	E(CCSD(T)/CBS) = -193.01056			н	-2.781054	-0.686694	-0.927852	
				н	-2.781744	-0.685251	0.927855	
The second se				н	3.334931	-0.937879	-0.000071	
C				Н	0.081017	1.837618	-0.000884	
CH_2CCCCH_2 (19)	$ZPE(B3LYP/6-311G^{**}) = 0.064422$	Α	12.37911	С	-2.583997	0.000715	0.000060	152, 152, 334, 335, 541, 541,
(D ₂₄)	E(BSLYP+ZPE) = -192.796005	В	860.38907	Н	-3.149512	-0.189074	-0.907465	698, 754, 853, 853, 1006,
(2 2u)	E(CCSD(T)/CC-PVDZ) = -192./42365	С	860.39132	С	-1.274193	-0.000807	0.000220	1006, 1323, 1432, 1512.
	E(CCSD(T)/CC-PVTZ) = -192.43106043			С	0.000012	0.000122	-0.000603	1955, 2228, 3113, 3114, 3187
	E(CCSD(T)/CC-PVQZ) = -192.984279			С	1.274214	-0.001202	0.000208	

(-	E(CCSD(T)/CBS) = -193.00539			C H H H	2.584047 3.147368 -3.149294 3.150940	0.000465 0.909710 0.189591 -0.905985	-0.000238 -0.188465 0.907917 0.190134	3187
СНССН ₂ ССН (20) (С _{2v})	ZPE(B3LYP/6-311G**) = 0.065461 E(B3LYP+ZPE) = -192.776766 E(CCSD(T)/CC-PVDZ) = -192.738614 E(CCSD(T)/CC-PVTZ) = -192.42855099 E(CCSD(T)/CC-PVQZ) = -192.982539 E(CCSD(T)/CBS) = -193.00419	A B C	92.35018 636.98044 718.27985	C C C H C H H H	-2.243144 -1.228322 1.227941 2.243400 3.138402 -0.000017 0.000518 -3.138138 0.000067	-0.569563 0.070116 0.069409 -0.569223 -1.141487 0.869907 1.529935 -1.141860 1.529532	-0.000373 -0.000418 0.000176 0.000457 0.000724 0.000038 -0.875961 -0.000367 0.876324	137, 307, 327, 334, 562, 670, 672, 689, 691, 903, 931, 999, 1243, 1341, 1455, 2231, 2237, 3013, 3037, 3477, 3478,
CHCCCCH ₃ (21) (C _{3v})	ZPE(B3LYP/6-311G**) = 0.065682 E(B3LYP+ZPE) = -192.800155 E(CCSD(T)/CC-PVDZ) = -192.755153 E(CCSD(T)/CC-PVTZ) = -192.4454355 E(CCSD(T)/CC-PVQZ) = -192.998799 E(CCSD(T)/CBS) = -193.0198	A B C	11.27539 882.41245 882.41455	C H C C C C H H H	-2.511633 -2.902582 -1.058321 0.151062 1.515812 2.723345 -2.895734 3.785350 -2.908628	-0.001382 -0.817579 0.003766 -0.000120 0.000239 -0.000989 -0.129842 -0.000386 0.938733	0.002036 -0.612142 -0.005300 -0.000792 -0.000041 0.001426 1.018489 0.001796 -0.392110	148, 148, 335, 335, 539, 540, 643, 644, 680, 1047, 1048, 1182, 1413, 1473, 1474, 2167, 2351, 3022, 3081, 3083, 3479
CH ₃ (22) (D _{3h})	ZPE(B3LYP/6-311G**) = 0.029569 E(B3LYP+ZPE) = -39.853757 E(CCSD(T)/CC-PVDZ) = -39.715785 E(CCSD(T)/CC-PVTZ) = -39.760817 E(CCSD(T)/CC-PVQZ) = -39.772271 E(CCSD(T)/CC-PVZZ) = -39.775614 E(CCSD(T)/CBS) = -39.77618	A B C	6.30449 6.30449 12.60896	С Н Н Н	0.000000 0.000000 0.935876 -0.935876	0.000000 1.080657 -0.540328 -0.540328	0.000273 -0.000545 -0.000545 -0.000545	501, 1402, 1402, 3108, 3288, 3288
$HC_{4}H(22)$ (C_{ovv})	ZPE(B3LYP/6-311G**) = 0.037493 E(B3LYP+ZPE) = -153.528449693 E(CCSD(T)/CC-PVDZ) = -153.047959522 E(CCSD(T)/CC-PVTZ) = -153.195968803 E(CCSD(T)/CC-PVQZ) = -153.2579899667 E(CCSD(T)/CC-PV5Z) = -153.250397472 E(CCSD(T)/CBS) = -153.25465	A B C	0.00000 408.53335 408.53335	C H C C C H	0.000000 0.000000 0.000000 0.000000 0.000000	0.000000 0.000000 0.000000 0.000000 0.000000	1.889186 2.951597 0.682650 -0.682650 -1.889186 -2.951597	235, 236, 527, 527, 663, 663, 663, 663, 917, 2111, 2285, 3475, 3477
C ₂ H ₂ (23) (D _{∞h})	ZPE(B3LYP/6-311G**) = 0.026978 E(B3LYP+ZPE) = -77.354698 E(CCSD(T)/CC-PVDZ) = -77.108671 E(CCSD(T)/CC-PVTZ) = -77.187388	A B C	0.00000 50.62104 50.62104	C H C H	0.000000 0.000000 0.000000 0.000000	0.000000 0.000000 0.000000 0.000000	0.599026 1.661350 -0.599026 -1.661350	642, 642, 773, 773, 2071, 3420, 3523

6-0-0-6	E(CCSD(T)/CC-PVQZ) = -77.20918 E(CCSD(T)/CC-PV5Z) = -77.215664 E(CCSD(T)/CBS) = -77.21752							
$C_{3}H_{3}(23)$	ZPE(B3LYP/6-311G**) = 0.040938	Α	6.22440	С	1.251382	-0.000031	-0.000030	352, 403, 468, 638, 681, 1031,
(\mathbf{C})	E(B3LYP+ZPE) = -116.037356	В	188.46833	Н	1.806638	0.929996	0.000248	1089, 1455, 2013, 3140, 3230,
(C_{2v})	E(CCSD(T)/CC-PVDZ) = -115.662911	С	194.69273	Н	1.806819	-0.929830	0.000248	3469
	E(CCSD(T)/CC-PVTZ) = -115.777715 E(CCSD(T)/CC-PV0Z) = -115.9100(1)			С	-0.115826	-0.000114	-0.000084	
0-0-0-0	E(CCSD(T)/CC-PVQZ) = -115.810001 E(CCSD(T)/CC-PV5Z) = -115.810503			С	-1.337807	0.000056	-0.000042	
Ċ	E(CCSD(T)/CBS) = -115.82275			Н	-2.399952	-0.000002	0.000445	
TS 1	ZPE(B3LYP/6-311G**) = 0.075117	Α	88.25421	С	2.365364	-0.508112	0.041053	683i, 135, 190, 317, 355, 489.
	E(B3LYP+ZPE) = -193.341599	В	694.68250	Н	3.290389	-1.030182	0.053593	509 689 853 907 938 957
(C ₁)	E(CCSD(T)/CC-PVTZ) = -192.99550331	С	747.44558	С	1.318049	0.077640	0.026580	1025 1118 1103 1428 1444
				С	-1.114513	-0.032652	-0.387106	1023, 1110, 1173, 1420, 1444, 1765, 1965, 2014, 2042, 2070
				С	-2.245628	-0.440886	0.125008	1705, 1905, 3014, 3045, 3070,
5				Н	-2.539416	-0.179149	1.146344	3149, 3410
2 -				Н	-2.944887	-1.059414	-0.430676	
_				С	0.044965	0.801484	0.009595	
				Н	-0.145004	1.225108	1.010276	
				Н	0.129493	1.658787	-0.670313	
TS 2	ZPE(B3LYP/6-311G**) = 0.072708	Α	161.50255	С	0.570890	-1.970145	0.000000	633i, 208, 245, 312, 390, 419,
	E(B3LYP+ZPE) = -193.323918	В	416.34377	С	0.223286	-0.766800	0.000000	611, 678, 768, 796, 850, 916,
(C_s)	E(CCSD(T)/CC-PVTZ) = -192.9694158	С	565.39468	С	0.000000	0.625945	0.000000	950 1021 1168 1417 1451
<u> </u>				С	0.664213	1.776277	0.000000	1704 1004 2122 2141 2228
				Н	0.132486	2.720801	0.000000	1704, 1904, 5125, 5141, 5220, 5222, 5295
				Н	1.747121	1.797287	0.000000	3233, 3385
				С	-1.349129	0.062109	0.000000	
				Н	-1.894403	-0.045482	0.930019	
3				Н	1.253639	-2.791445	0.000000	
				Н	-1.894403	-0.045482	-0.930019	
TS 3	ZPE(B3LYP/6-311G**) = 0.068827	Α	87.54154	C	-2.358826	-0.498711	0.059510	1612i, 127, 144, 287, 374,
(\mathbf{C})	E(B3LYP+ZPE) = -193.265084	В	696.43452	С	-1.314486	0.092304	0.031286	443, 518, 589, 680, 725, 768,
(C_1)	E(CCSD(T)/CC-PVTZ) = -192.91262339	С	751.19732	С	-0.045346	0.816142	-0.001395	869, 1003, 1013, 1267, 1430,
				Н	-0.092397	1.597989	-0.767676	1466 1759 1939 2034 3058
				С	1.145919	-0.062093	-0.275711	31/3 31/0 3731
				С	2.300635	-0.452790	0.147152	5145, 5147, 5251
				Н	3.049517	-0.383746	0.936265	
3				Н	1.840850	-0.883803	-0.980033	
-				Н	-3.281910	-1.023625	0.085618	
				Н	0.116571	1.324077	0.960777	

TS 4	ZPE(B3LYP/6-311G**) = 0.070135	Α	57.91029	С	2.494666	-0.361986	-0.077479	1936i, 130, 211, 313, 374,
	E(B3LYP+ZPE) = -193.284176	В	759.69038	С	1.373023	0.078652	-0.033589	504, 588, 658, 697, 822, 871,
(C_1)	E(CCSD(T)/CC-PVTZ) = -192.92729569	С	786.01678	С	0.067244	0.633584	0.020167	914 1015 1086 1127 1283
				н	-0.411609	0.419537	1.224136	1/3/ 1686 2108 2182 3058
the contract				С	-1.112257	-0.159839	0.249537	1434, 1000, 2100, 2102, 3030, 2071, 2177, 2476
				С	-2.361047	-0.287206	-0.163833	30/1, 31/7, 34/6
5				Н	-2.641598	-0.019716	-1.184809	
				Н	-3.138594	-0.713000	0.460968	
				Н	3.478228	-0.760426	-0.122460	
				Н	-0.056203	1.654369	-0.346646	
TS 5	ZPE(B3LYP/6-311G**) = 0.067262	Α	81.86631	С	-2.359856	-0.529603	-0.108710	1683i, 126, 179, 326, 359,
	E(B3LYP+ZPE) = -193.274281	В	705.64046	С	-1.304775	0.085075	0.037428	425, 559, 614, 645, 753, 896,
(C_1)	E(CCSD(T)/CC-PVTZ) = -192.90903759	С	759.63745	С	-0.032815	0.761340	-0.047611	902 954 993 1100 1206
				Н	-0.086986	1.840726	-0.170518	1340 1440 1008 2044 3054
5				С	1.164390	0.141943	-0.194089	1340, 1449, 1900, 2044, 3034,
				С	2.291289	-0.457374	0.057692	3127, 3133, 3433
				Н	2.626262	-0.645746	1.080049	
				н	2.953870	-0.801997	-0.733465	
€Ţ				н	-3.280125	-1.005867	0.136607	
				Н	-0.762418	0.604599	1.219075	
TS 6	ZPE(B3LYP/6-311G**) = 0.068305	Α	21.09378	С	2.580507	-0.044832	-0.000010	2122i, 22, 137, 140, 228, 289,
	E(B3LYP+ZPE) = -193.288697	В	906.50110	н	2.956596	-0.571462	-0.882807	369, 477, 583, 662, 851, 1044,
(C_s)	E(CCSD(T)/CC-PVTZ) = -192.92781170	С	916.35704	Н	3.011405	0.961821	-0.001415	1045 1141 1413 1471 1475
				С	1.128187	-0.002667	-0.000014	1043, 1141, 1413, 1471, 1473, 1960, 2050, 2216, 2012, 2071
6 6				С	-0.087195	0.000826	0.000013	1000, 2250, 2510, 5015, 5041,
				С	-1.448164	0.168893	0.000045	3066, 30/4
				Н	-2.283534	1.125211	-0.000114	
0				С	-2.712191	-0.119780	-0.000007	
				Н	-3.407955	-0.961227	-0.000074	
				Н	2.956622	-0.568988	0.884246	
TS 7	ZPE(B3LYP/6-311G**) = 0.069880	Α	26.84858	С	-2.632898	0.100677	0.027544	1825i, 125, 157, 254, 368,
(\mathbf{C})	E(B3LYP+ZPE) = -193.297773	В	863.30179	н	-3.132615	1.017173	-0.273050	507, 541, 600, 756, 811, 856,
(U1)	E(CCSD(T)/CC-PVTZ) = -192.93017430	С	880.18384	Н	-3.264442	-0.720480	0.354906	1008, 1039, 1119, 1244, 1444
				С	-1.317757	-0.012707	-0.006805	1471 1707 2007 2138 3054
				С	-0.050836	-0.104480	-0.037143	210 <i>1</i> 2176 2199
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				С	1.228457	-0.313333	-0.161965	3104, 3170, 3188
e				Н	2.025071	-0.858369	0.673471	
				С	2.499893	0.254696	0.037053	
				H	3.366634	-0.217839	-0.411592	
				Н	2.644203	1.230394	0.504153	
---	--	---	-----------	---	-----------	-----------	-----------	--
TS 8	ZPE(B3LYP/6-311G**) = 0.070596	Α	123.53907	С	2.223016	-0.557910	-0.034624	1808i, 126, 267, 298, 424,
(\mathbf{C})	E(B3LYP+ZPE) = -193.288867	В	573.66116	С	1.232541	0.132787	0.017987	521, 581, 641, 676, 792, 902,
(C_1)	E(CCSD(T)/CC-PVTZ) = -192.91833706	С	684.61966	С	0.072462	0.941339	0.061364	957 1038 1090 1150 1348
				С	-1.162420	0.451085	-0.209748	1461 1557 2158 2164 3042
Sec. Sec.				С	-1.845487	-0.755929	0.038372	1401, 1557, 2150, 2104, 5042, 2141, 2177, 2476
Y				Н	-2.270477	0.433268	0.466847	5141, 5177, 5470
				н	-2.687058	-1.029995	-0.590339	
				Н	-1.467142	-1.513871	0.728678	
				н	3.094832	-1.162732	-0.078137	
U				Н	0.209177	2.005097	0.232837	
TS 9	ZPE(B3LYP/6-311G**) = 0.068305	Α	21.09372	С	2.580510	-0.044848	0.000026	2120i, 22, 137, 140, 228, 289,
(\mathbf{C})	E(B3LYP+ZPE) = -193.288697	В	906.50213	Н	2.956664	-0.563358	0.887587	369, 477, 583, 662, 850, 1044,
(C_s)	E(CCSD(T)/CC-PVTZ) = -192.92781084	С	916.35782	Н	2.956573	-0.577059	-0.879429	1045, 1141, 1413, 1471, 1475,
				С	1.128192	-0.002668	-0.000052	1868 2258 2315 3013 3040
9				С	-0.087193	0.000872	-0.000045	3066 3074
0-0-0-0				С	-1.448169	0.168896	-0.000131	5000, 5074
				н	-2.283652	1.125176	0.000172	
Ū Ū				С	-2.712172	-0.119808	0.000109	
				н	-3.407996	-0.961205	-0.000027	
				Н	3.011408	0.961777	-0.007752	
TS 10	ZPE(B3LYP/6-311G**) = 0.06934	Α	52.54852	С	2.637057	-0.298176	0.000051	2122i, 103, 134, 226, 270,
(\mathbf{C})	E(B3LYP+ZPE) = -193.286166	В	810.63449	С	1.454752	-0.023583	0.000002	353, 504, 517, 545, 659, 714,
(C_s)	E(CCSD(T)/CC-PVTZ) = -192.92707077	С	851.99585	С	0.167825	0.455387	-0.000068	1020, 1021, 1068, 1386, 1463,
				С	-1.129132	0.442443	-0.000086	1473 1901 2151 2299 2992
\sim				С	-2.340230	-0.420612	0.000018	3073 3000 3475
				н	-2.956707	-0.222802	-0.880802	5075, 5090, 5475
				н	-2.053053	-1.480224	-0.001169	
				Н	-2.955216	-0.224416	0.882250	
6				Н	3.661539	-0.577708	-0.000103	
_				H	-0.438189	1.572395	0.000324	
TS 11	ZPE(B3LYP/6-311G**) = 0.073345	Α	153.16575	С	1.829353	-0.318068	-0.000062	698i, 65, 346, 374, 534, 596,
(\mathbf{C})	E(B3LYP+ZPE) = -193.301073	В	380.50619	Н	2.197717	-1.336617	-0.000062	625, 708, 739, 808, 902, 923,
(U s)	E(UCSD(T)/CC-PVDZ) = -192.76620644 E(CCSD(T)/CC-PVTZ) = -102.052649	С	521.25854	Н	2.559311	0.483105	-0.000218	953, 1027, 1236, 1404, 1435.
The second se	E(CCSD(1)/CC-PVOZ) = -192.953649 E(CCSD(T)/CC-PVOZ) = -193.00753348			С	0.523901	-0.057841	0.000073	1711, 1736, 3107, 3144, 3217
Come C	E(CCSD(T)/CBS) = -193.00753348			С	-0.215373	1.258555	0.000033	3737 3371
	_((-),),			Н	-0.275686	1.817948	-0.928366	5252, 5571
				С	-1.743812	-0.359047	-0.000116	
				С	-0.626783	-0.946300	0.000143	

				Н	-0.276798	1.817178	0.928813	
				Н	-2.808262	-0.245409	-0.000593	
TS 12	ZPE(B3LYP/6-311G**) = 0.069824	Α	141.90739	С	-2.276147	-0.096972	0.000101	2152i, 185, 236, 461, 511,
(\mathbf{C})	E(B3LYP+ZPE) = -193.285473	В	497.44486	С	-1.076117	0.014637	-0.000192	524, 569, 659, 670, 713, 849,
(C_s)	E(CCSD(T)/CC-PVTZ) = -192.93245570	С	627.12882	С	0.335326	0.107221	-0.000243	954, 984, 1047, 1102, 1210,
				С	1.174858	1.141623	-0.000036	1420 1630 1857 2202 3060
φ				Н	1.100997	2.226368	0.000792	1420, 1059, 1057, 2202, 5009, 2145, 2160, 2476
<u></u>				С	1.355967	-1.005919	0.000121	5145, 5109, 5470
				Н	1.488614	-1.571173	0.921463	
				н	1.489602	-1.570591	-0.921451	
<u>.</u>				н	-3.334811	-0.185708	0.000285	
				Н	2.172274	0.137568	0.000397	
TS 13	ZPE(B3LYP/6-311G**) = 0.07173	Α	130.73052	С	-1.860758	-0.068880	0.012333	941i, 179, 350, 430, 467, 715,
(\mathbf{C})	E(B3LYP+ZPE) = -193.246693	В	363.78264	Н	-2.378542	-1.020663	-0.011915	724, 841, 854, 876, 941, 947,
(C1)	E(CCSD(T)/CC-PVTZ) = -192.896689	С	475.30140	С	-0.539836	-0.015132	-0.027518	1101, 1143, 1156, 1401, 1423,
Y				С	0.575462	1.005104	0.015570	1438 1735 2208 3063 3134
				Н	0.662368	1.610343	0.917829	2127 2004
				С	1.635647	-0.210197	-0.072790	5157, 5224
TT				С	0.561082	-1.051622	-0.100959	
				Н	1.254861	-0.996569	0.946444	
				Н	-2.461058	0.833034	0.067295	
				H	0.692782	1.618214	-0.879470	
TS 14	$ZPE(B3LYP/6-311G^{**}) = 0.074465$	Α	135.04743	С	1.998726	0.171867	-0.085620	682i, 208, 264, 515, 531, 604,
$(\mathbf{C}_{\mathbf{r}})$	E(B3LYP+ZPE) = -193.301102	В	424.14188	Н	2.320809	1.196109	0.052090	713, 819, 835, 851, 965, 987,
	E(CCSD(T)/CC-PVDZ) = -192.76351055 E(CCSD(T)/CC-PVTZ) = -102.05052205	С	541.96621	С	0.748560	-0.191293	0.099829	1019, 1126, 1263, 1416, 1455,
	E(CCSD(T)/CC-PVOZ) = -192.95052295 E(CCSD(T)/CC-PVOZ) = -193.00443295			С	-1.063626	0.994006	0.020964	1523, 1797, 3075, 3123, 3186,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E(CCSD(T)/CBS) = -193.02627			Н	-1.335456	1.729675	-0.737722	3198 3215
	_(0 0.2_(1), 0.2.2)			С	-1.460051	-0.404611	-0.094692	5176, 5215
				С	-0.299050	-1.062667	0.136555	
				Н	2.744657	-0.557174	-0.390455	
<b>—</b>				Н	-0.854602	1.388310	1.007905	
C				H	-2.422761	-0.800734	-0.394028	
TS 15	ZPE(B3LYP/6-311G**) = 0.074698	Α	159.82214	С	1.878758	-0.329586	-0.075733	638i, 219, 283, 406, 579, 656,
$(\mathbf{C}_{\mathbf{r}})$	E(B3LYP+ZPE) = -193.298423	В	381.94223	Н	2.627868	0.307357	-0.544214	702, 815, 870, 918, 961, 1011,
	E(UUSD(1)/UU-PV1Z) = -192.94847058	С	520.07059	С	0.664089	0.129587	0.142020	1038, 1134, 1270, 1422, 1478.
				С	-1.179516	-0.983960	0.035942	1511, 1758, 3094, 3094, 3175
				Н	-1.087354	-1.301227	1.070703	3195 3200
				С	-1.393827	0.366367	-0.232371	5175, 5200
				С	-0.311540	1.134753	0.076281	

in and				Н Н Н	-0.214096 2.179510 -1.453713	2.195820 -1.333730 -1.771187	0.266797 0.195287 -0.665405	
TS 16	ZPE(B3LYP/6-311G**) = 0.071515	Α	130.36624	С	1.860319	-0.066162	0.020885	1201i, 199, 341, 453, 654,
	E(B3LYP+ZPE) = -193.259869	В	358.14053	Н	2.476132	0.826078	0.037863	708, 719, 806, 861, 912, 920.
(C ₁ )	E(CCSD(T)/CC-PVTZ) = -192.9106839	С	481.03667	С	0.527203	0.017086	-0.031417	946 1073 1160 1202 1263
				С	-0.627028	-0.954280	-0.055842	1203 1/39 1681 2030 3130
Q.				н	-1.408461	-0.758413	0.949009	1275, 1450, 1001, 2057, 5157, 2161, 2105, 2027
6 b.c				С	-1.637400	0.088934	-0.062226	5161, 5195, 5227
				С	-0.498831	1.054934	-0.009860	
TT				н	-0.468989	2.137110	0.027460	
<u>é-é</u>				н	2.366149	-1.024264	0.045727	
				Н	-0.710411	-2.023578	-0.229300	
TS 17	ZPE(B3LYP/6-311G**) = 0.068384	Α	23.25507	С	2.581159	0.074446	0.052075	1612i, 127, 144, 287, 374,
$(\mathbf{C})$	E(B3LYP+ZPE) = -193.28886	В	862.07388	н	3.362945	-0.576070	0.434838	443, 518, 589, 680, 725, 768,
$(\mathbf{C}_1)$	E(CCSD(T)/CC-PVTZ) = -192.91833706	С	874.49871	С	1.315894	-0.300226	0.036033	869, 1003, 1013, 1267, 1430,
				С	0.032321	-0.013847	-0.178784	1466 1759 1939 2034 3058
6 6				С	-1.254093	0.021556	-0.001360	<b>31/3 31/0 3731</b>
60-0-0-0				С	-2.585847	-0.032601	0.071153	5145, 5149, 5251
				Н	-3.123527	-0.789094	-0.488090	
				Н	-3.152109	0.662657	0.675970	
				Н	2.905970	1.049823	-0.315014	
				Н	-0.529877	1.156714	-0.182406	
TS 18	ZPE(B3LYP/6-311G**) = 0.068079	Α	91.33058	С	2.279424	-0.584546	-0.017549	2093i, 91, 183, 277, 281, 314,
$(\mathbf{C}_{\mathbf{r}})$	E(B3LYP+ZPE) = -193.280253	В	686.67776	Н	2.743234	-1.287986	-0.712379	504, 606, 647, 823, 861, 879,
$(\mathbf{C}_{\mathbf{i}})$	E(CCSD(1)/CC-PV1Z) = -192.918796	С	750.65042	С	1.268156	0.200701	0.135711	914, 1003, 1099, 1328, 1458,
				С	-0.004758	0.803046	-0.140025	1886 1994 2319 3038 3094
6				С	-1.154719	0.160649	-0.062567	3124 3161
				С	-2.285842	-0.469741	0.059595	5124, 5101
				н	-2.772683	-0.938404	-0.792098	
				н	-2.790106	-0.554550	1.019823	
E.				н	2.211326	0.250966	0.989799	
				H	-0.005341	1.869317	-0.356134	
TS 19	$ZPE(B3LYP/6-311G^{**}) = 0.073879$	Α	141.53011	С	-1.973096	0.253200	0.098451	674i, 241, 270, 448, 583, 640,
$(\mathbf{C}_{\mathbf{A}})$	E(B3LYP+ZPE) = -193.314200	В	418.37554	Н	-2.621665	-0.274438	0.793805	719, 766, 839, 856, 899, 989,
	E(UUSD(1)/UU-PV1Z) = -192.96311109	С	543.13004	С	-0.742695	-0.155621	-0.124363	1024, 1043, 1218, 1332, 1439.
				С	0.312195	-1.014724	-0.118901	, ,

<u> </u>				С	1.466643	-0.195312	0.176304	1515, 1828, 3109, 3130, 3158,
, <b>D</b> .				С	1.069182	1.052960	-0.111364	3190, 3194
				Н	-2.368345	1.147467	-0.369573	,
				Η	2.415410	-0.529991	0.589046	
<b></b>				Н	1.485836	2.052015	-0.052252	
e e				Н	0.295388	-2.038065	-0.481789	
TS 20	ZPE(B3LYP/6-311G**) = 0.072673	А	123.82773	С	-2.137536	-0.599064	0.000006	667i, 128, 185, 228, 388, 426,
	E(B3LYP+ZPE) = -193.311422	В	530.00290	н	-2.701422	-1.503851	0.000254	513, 517, 781, 870, 946, 1036,
$(C_s)$	E(CCSD(T)/CC-PVTZ) = -192.95670401	С	642.68166	С	-1.099533	0.097533	0.000023	1042 1167 1396 1462 1469
				С	0.663410	0.098668	-0.000385	1701 1886 2001 3061 3076
Q Q				С	-0.128419	1.136049	-0.000006	1771, 1000, 2771, 5001, 5070, 2126, 2404
				н	-0.129143	2.222224	0.000516	3130, 3404
				С	1.998852	-0.511519	0.000087	
				Η	2.129339	-1.148686	0.880229	
Y				Η	2.130151	-1.148829	-0.879824	
C				Η	2.790432	0.249136	0.000475	
TS 21	ZPE(B3LYP/6-311G**) = 0.072473	Α	159.25289	С	-2.022918	-0.618418	-0.000092	710i, 138, 227, 249, 419, 460,
$(\mathbf{C})$	E(B3LYP+ZPE) = -193.310158	В	441.32817	н	-3.087719	-0.653871	0.001331	507, 550, 646, 728, 777, 979,
$(C_s)$	E(CCSD(T)/CC-PVTZ) = -192.957026	С	589.39571	С	-0.881320	-0.116934	-0.000233	1044 1191 1401 1475 1482
				С	0.518590	0.158859	-0.000270	1734 1912 3032 3090 3119
Ç.				С	0.059243	1.380793	0.000043	2725 2416
<u>é</u>				Η	0.251556	2.443051	0.000470	5255, 5410
				С	1.762271	-0.662222	0.000125	
				Η	1.786803	-1.308707	0.881780	
				Η	1.787148	-1.309220	-0.881141	
C				Н	2.647019	-0.023715	0.000120	
TS 22	ZPE(B3LYP/6-311G**) = 0.070741	Α	190.66106	С	-1.061477	-1.068328	-0.003118	1251i, 255, 360, 442, 529,
$(\mathbf{C}_{\mathbf{r}})$	E(B3LYP+ZPE) = -193.295704	В	306.89863	С	-1.203290	0.265334	-0.066167	622, 666, 704, 786, 852, 890,
(C1)	E(CCSD(T)/CC-PVTZ) = -192.941906	С	492.15912	С	-0.079047	1.175357	-0.006375	948, 1024, 1148, 1218, 1337,
				С	1.138143	0.564597	-0.059488	1358 1488 1765 1906 3097
<i>\</i>				С	1.459107	-0.679905	0.067838	3185 3736 3738
				Н	-1.753961	-1.895582	-0.060411	5165, 5250, 5256
				Н	-2.199066	0.698042	0.038392	
II				Н	-0.239944	2.208548	0.275441	
				Н	0.510712	-1.226841	0.586866	
				H	2.161651	-1.326494	-0.436431	
TS A	ZPE(B3LYP/6-311G**) = 0.066205	Α	28.04697,	С	-2.601986	0.061610	-0.000065	349i, 17, 132,148, 234, 337,
$(\mathbf{C}_{\mathbf{A}})$	E(B3LYP+ZPE) = -193.301336	В	917.30124,	н	-2.981133	0.320379	0.993055	353, 527, 539, 633, 681, 697,
	E(CCSD(T)/CC-PVTZ) = -192.94211051	С	934.07103	н	-3.041591	-0.897620	-0.289725	1046, 1047, 1185, 1414, 1472.
								, , , , , ,

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	335
$ (C_1) \qquad \begin{array}{c} E(B3LYP+ZPE) = -193.298109 \\ E(CCSD(T)/CC-PVDZ) = -192.74088721 \\ E(CCSD(T)/CC-PVTZ) = -192.92928836 \end{array} \qquad \begin{array}{c} B \\ C \\ C \\ C \\ S83.80697 \end{array} \qquad \begin{array}{c} H \\ 3.210866 \\ C \\ C \\ S83.80697 \end{array} \qquad \begin{array}{c} -0.236363 \\ -0.00366 \\ C \\ C \\ C \\ -0.092692 \\ C \\ -0.008128 \\ C \\ -0.000240 \\ -0.000106 \\ C \\ C \\ -0.000284 \\ C \\ -0.000284 \\ C \\ -0.000085 \\ H \\ -3.293900 \\ -0.836864 \\ -0.000744 \\ H \\ 3.058563 \\ -0.238083 \\ 0.931975 \\ H \\ -3.200431 \\ 1.024902 \\ 0.001312 \end{array} \qquad \begin{array}{c} 541, 541, 698, 754, 852 \\ 1006, 1007, 1323, 1432 \\ 1955, 2228, 3113, 3187 \\ C \\ -2.688260 \\ H \\ -3.200431 \\ 1.024902 \\ 0.001312 \end{array} \qquad \begin{array}{c} 541, 541, 698, 754, 852 \\ 1006, 1007, 1323, 1432 \\ 1955, 2228, 3113, 3187 \\ C \\ -2.688260 \\ H \\ -3.200431 \\ 1.024902 \\ 0.001312 \end{array} \qquad \begin{array}{c} 541, 541, 698, 754, 852 \\ 1006, 1007, 1323, 1432 \\ 1955, 2228, 3113, 3187 \\ C \\ -2.688260 \\ H \\ -3.200431 \\ 1.024902 \\ 0.001312 \end{array} \qquad \begin{array}{c} 541, 541, 698, 754, 852 \\ 1006, 1007, 1323, 1432 \\ 1955, 2228, 3113, 3187 \\ C \\ -2.28883 \\ 0.931975 \\ H \\ -3.200431 \\ 1.024902 \\ 0.001312 \end{array} \qquad \begin{array}{c} 541, 541, 698, 754, 852 \\ 1006, 1007, 1323, 1432 \\ 1955, 2228, 3113, 3187 \\ C \\ -2.2888260 \\ 0.000744 \\ H \\ 3.058563 \\ -0.238083 \\ 0.931975 \\ H \\ -3.200431 \\ 1.024902 \\ 0.001312 \end{array}$	,,
$ \begin{array}{c} (C_1) & E(CCSD(1)/CC-PVTZ) = -192.74068/21 \\ E(CCSD(T)/CC-PVTZ) = -192.92928836 \\ \hline C & 983.80697 \\ E(CCSD(T)/CC-PVTZ) = -192.92928836 \\ \hline C & 1.180925 \\ C & -0.092692 \\ C & -0.092692 \\ C & -0.000128 \\ C & -1.376869 \\ 0.000420 \\ C & -2.688260 \\ 0.065946 \\ 0.000085 \\ H \\ -3.293900 \\ -0.836864 \\ -0.000744 \\ H \\ 3.058563 \\ -0.238083 \\ 0.931975 \\ H \\ -3.200431 \\ 1.024902 \\ 0.001312 \\ \hline \\ $	, 852,
$\begin{array}{c} C & 1.180925 & -0.126315 & 0.000128 \\ C & -0.092692 & -0.058128 & -0.000284 \\ C & -1.376869 & 0.000420 & -0.000106 \\ C & -2.688260 & 0.065946 & 0.000085 \\ H & -3.293900 & -0.836864 & -0.000744 \\ H & 3.058563 & -0.238083 & 0.931975 \\ H & -3.200431 & 1.024902 & 0.001312 \end{array}$	1511,
$ \begin{array}{c} C & -0.092692 & -0.058128 & -0.000284 \\ C & -1.376869 & 0.000420 & -0.000106 \\ C & -2.688260 & 0.065946 & 0.000085 \\ H & -3.293900 & -0.836864 & -0.000744 \\ H & 3.058563 & -0.238083 & 0.931975 \\ H & -3.200431 & 1.024902 & 0.001312 \\ \hline TS C \\ (C_1) & \begin{array}{c} ZPE(B3LYP/6-311G^{**}) = 0.066832 \\ E(B3LYP+ZPE) = -193.273502 \\ E(CCSD(T)/CC-PVTZ) = -192.92133116 \\ C & 729.44174 \\ \end{array} \begin{array}{c} A & 101.69504 \\ C & -2.291140 \\ C & -1.265411 \\ 0.080781 \\ -0.034406 \\ 459, 562, 656, 674, 691 \\ C & 729.44174 \\ H \\ 0.028392 \\ 1.493478 \\ -0.893661 \\ H & 0.080561 \\ -0.094403 \\ 0.058956 \\ \end{array} \right) \begin{array}{c} 650i, 96, 160, 321, 347, \\ -0.027965 \\ 0.862885 \\ 0.001477 \\ 900, 935, 997, 1242, 13 \\ H \\ 0.028392 \\ 1.493478 \\ -0.893661 \\ 1456, 2146, 2236, 3022 \\ \end{array} \right)$	3187
$ \begin{array}{c} \label{eq:constraint} \begin{array}{c} C & -1.376869 & 0.000420 & -0.000106 \\ C & -2.688260 & 0.065946 & 0.000085 \\ H & -3.293900 & -0.836864 & -0.000744 \\ H & 3.058563 & -0.238083 & 0.931975 \\ H & -3.200431 & 1.024902 & 0.001312 \end{array} \\ \hline \begin{array}{c} TS \ C \\ (C_1) \end{array} \begin{array}{c} ZPE(B3LYP/6-311G^{**}) = 0.066832 \\ E(B3LYP+ZPE) = -193.273502 \\ E(CCSD(T)/CC-PVTZ) = -192.92133116 \end{array} \begin{array}{c} A & 101.69504 \\ C & 729.44174 \end{array} \begin{array}{c} C & -2.291140 \\ C & -1.265411 \\ H & 0.080781 \\ -0.034406 \\ H & -0.034406 \\ 459, 562, 656, 674, 691 \\ C & 729.44174 \end{array} \begin{array}{c} C & -0.027965 \\ H & -0.027965 \\ C & 1.265411 \\ H \\ H & 0.028392 \\ H & -0.023478 \\ -0.893661 \\ H \\ -0.080781 \\ -0.034406 \\ 459, 562, 656, 674, 691 \\ H \\ -0.028392 \\ H \\ -0.028392 \\ H \\ -0.028392 \\ H \\ -0.028392 \\ H \\ -0.093478 \\ -0.893661 \\ H \\ -0.89361 \\ H \\ -0.893661 \\ H \\ -0.893661 \\ H \\ -0.893661 \\ H \\ -0.89361 \\ H \\ -0.893661 \\ H \\ -0.893661 \\ H \\ -0.89361 \\ H$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c} \textbf{TS C} \\ (\textbf{C}_1) \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \textbf{ZPE(B3LYP/6-311G^{-n}) = 0.066832} \\ \textbf{E(B3LYP+ZPE) = -193.273502} \\ \textbf{E(B3LYP+ZPE) = -193.273502} \\ \textbf{E(CCSD(T)/CC-PVTZ) = -192.92133116} \end{array} \begin{array}{c} \textbf{A} & 101.69504 \\ \textbf{B} & 668.21254 \\ \textbf{C} & 729.44174 \end{array} \begin{array}{c} \begin{array}{c} \textbf{C} & -2.291140 \\ \textbf{-1.265411} & 0.080781 \\ \textbf{-0.080781} & -0.034406 \\ \textbf{-0.027965} & 0.862885 \\ \textbf{0.001477} \\ \textbf{H} & 0.028392 \\ \textbf{1.493478} & -0.893661 \\ \textbf{C} & 1.197402 \\ \textbf{0.044043} \\ \textbf{0.058956} \end{array} \begin{array}{c} \textbf{-1.265, 110} \\ $	40.
$ \begin{array}{c} (C_1) \\ (C_1) \\ E(CCSD(T)/CC-PVTZ) = -192.92133116 \\ C \\ \end{array} \begin{array}{c} B \\ C \\ C \\ \end{array} \begin{array}{c} 668.21254 \\ C \\ 729.44174 \\ H \\ 0.028392 \\ C \\ 1 \\ 197402 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	407,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	, 694,
$\begin{array}{c} H & 0.028392 & 1.493478 & -0.893661 \\ C & 1.197402 & 0.044043 & 0.058956 \\ \end{array}  1456, 2146, 2236, 3022 \\ \end{array}$	40,
	, 3051,
C = 2.252538 - 0.491682 - 0.195003	
H 3.16/904 -1.02498 -0.285629	
H = -3.194803 = -1.047654 = -0.101765	
H = -0.052459 = 1.541455 = 0.800945	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	393,
$ \begin{array}{c} (C_1) \\ (C_2) \\ (C_1) \\ (C_2) $	, 870,
C = 12 $C = -0.148054 - 0.551614 0.364191 897, 953, 1003, 1130, 1 0.000000000000000000000000000000000$	352,
H = -0.0/8/15 = -1.32300/1.12/3000/1459, 1987, 2197, 3117	, 3119,
H = 2.254261 = 5.985680 = 0.602139	
$\mathbb{V}$ U 2.541951 -0.527457 -0.175297 U 2.766291 1.060999 0.506025	
H -3.319040 0.00/331 -0.41428/	
TS E $ZPE(B3LYP/6-311G^{**}) = 0.066708$ A 29.31110, C 2.707186 -0.152710 0.000006 780i, 85, 140, 162, 308,	342,
E(BSLYF+ZFE) = -195.294969 B 875.44956, C 1.508559 -0.020480 -0.000002 488, 525, 560, 653, 654	, 707,

(C _s )	E(CCSD(T)/CC-PVTZ) = -192.93576183	С	893.47955	С	0.143907	0.142060	-0.000005	1033, 1050, 1175, 1409, 1466,
	E(CCSD(T)/CC-PVDZ) = -192.74456623			С	-1.056710	-0.090125	-0.000025	1470, 2138, 2278, 3010, 3067,
6	E(CCSD(T)/CC-PVQZ) = -192.9898/29/ E(CCSD(T)/CPS) = -193.01123			С	-2.506015	-0.114107	0.000012	3082, 3478
e	E(CCSD(1)/CBS) = -195.01125			Н	-2.904580	0.907359	-0.000676	)
				Н	-2.892500	-0.628349	-0.884860	
C-0-0-0-0				Н	-2.892469	-0.627150	0.885593	
				Н	3.762168	-0.275588	0.000019	
				Н	0.145810	2.035908	0.000011	
TS F	ZPE(B3LYP/6-311G**) = 0.066086	Α	69.60471	С	-2.519677	-0.386181	0.000175	408i, 127, 167, 242, 345, 368,
$(\mathbf{C})$	E(B3LYP+ZPE) = -193.291486	В	750.73793	С	-1.415141	0.092035	0.000022	378, 606, 637, 671, 6912,
$(C_s)$	E(CCSD(T)/CC-PVTZ) = -192.931495 E(CCSD(T)/CC-PVTZ) = -102.7417917(	С	807.98144	С	-0.131529	0.707399	-0.000094	8867, 899, 943, 1009, 1129,
	E(CCSD(T)/CC-PVDZ) = -192.74178170 E(CCSD(T)/CC-PVDZ) = -192.98565055			С	1.005651	0.053069	-0.000620	1346 1460 2005 2211 3100
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E(CCSD(T)/CBS) = -193.00729			С	2.177914	-0.527290	0.000068	3116 3100 3478
				Н	3.591229	1.072050	0.001521	5110, 5190, 5478
				Н	2.648384	-0.840995	0.927042	
1 0				Н	2.649405	-0.841461	-0.926224	
0				Н	-3.488860	-0.820939	0.000306	
				Н	-0.103461	1.797149	0.000045	
TS G	ZPE(B3LYP/6-311G**) = 0.06687	Α	29.24966,	С	2.754632	-0.045447	0.000001	523i, 133, 146, 162, 346, 379,
(\mathbf{C})	E(B3LYP+ZPE) = -193.298989	В	885.48922,	С	1.545965	-0.036609	0.000001	395, 529, 534, 642, 644, 687,
(C_s)	E(CCSD(1)/CC-PV1Z) = -192.94027/66	С	903.51365	С	0.185951	-0.034684	0.000001	1040, 1055, 1178, 1412, 1471,
				С	-1.028753	0.046717	-0.000013	1476 2147 2288 3027 3090
0				С	-2.472080	-0.164227	0.000004	3092 3477
6				Н	-2.694569	-1.235377	-0.000138	5072, 5477
				Н	-2.934348	0.284352	0.883115	
				Н	-2.934408	0.284600	-0.882949	
e				Н	3.816778	-0.051748	0.000004	
				Н	-1.167738	2.123672	0.000005	
TS H	$ZPE(B3LYP/6-311G^{**}) = 0.066571$	Α	28.21390	С	-2.553271	-0.059205	0.000003	861i, 24, 150, 157, 346, 349,
(\mathbf{C})	E(B3LYP+ZPE) = -193.293577	В	885.61895	Н	-2.927882	-0.582545	0.884726	466, 531, 544, 613, 648, 705,
(C_s)	E(CCSD(1)/CC-PV1Z) = -192.93412939	С	902.56663	Н	-2.976533	0.949611	-0.000160	1048, 1175, 1414, 1473, 1474,
				С	-1.101070	-0.012778	0.000012	2065 2344 3022 3081 3082
Sec. Sec.				С	0.106447	0.021234	-0.000033	3461
·····				С	1.479919	0.073857	0.000017	3401
<u>}</u>				Н	1.577770	1.936580	-0.000001	
				С	2.657543	-0.253254	-0.000003	
<u> </u>				Н	3.717097	-0.339937	0.000021	
				<u>H</u>	-2.927866	-0.582829	-0.884559	
TS I	$ZPE(B3LYP/6-311G^{**}) = 0.0652\overline{30}$	Α	86.56636	С	2.416310	-0.301927	0.074511	3i, 27, 81, 141, 295, 350, 359,

(C1)	E(B3LYP+ZPE) = -193.293238	В	747.75705	Н	2.963118	-0.621138	-0.808262	606, 625, 642, 693, 883, 884,
(01)	E(CCSD(T)/CC-PVTZ) = -192.93529151	С	818.65408	С	1.212546	0.177385	-0.012424	951, 1004, 1139, 1352, 1465,
				С	0.002031	0.680286	-0.102326	2042 2208 3111 3115 3183
				С	-1.192732	-0.091031	-0.043565	3478
				С	-2.226016	-0.707585	0.000712	3478
				Н	-3.137485	-1.251438	0.040037	
				Н	2.915521	-0.406414	1.033705	
e e				Н	-0.109562	1.755877	-0.230322	
÷				Н	-3.904425	1.980347	0.463398	
TS J	ZPE(B3LYP/6-311G**) = 0.065456	Α	31.81967	С	2.573627	-0.133868	0.000018	737i, 135, 152, 186, 309, 344,
	E(B3LYP+ZPE) = -193.291537	В	852.69972	Н	3.160625	0.782259	0.000422	462 535 556 664 766 853
(C_s)	E(CCSD(T)/CC-PVTZ) = -192.92267825	С	872.12636	С	1.266814	-0.095824	-0.000041	858 001 1003 1317 1426
				С	-0.000069	0.151130	0.000031	030, 771, 1003, 1317, 1420, 1504, 1029, 2164, 2100, 2115
6				С	-1.271834	-0.000557	-0.000029	1504, 1928, 2104, 5100, 5115,
				С	-2.570229	-0.150559	0.000011	3176, 3190
in the second				Н	-3.130568	-0.216829	-0.927800	
				Н	-3.130412	-0.217689	0.927855	
E.				Н	3.118139	-1.073431	-0.000421	
				Н	-0.007642	2.103760	0.000000	
TS K	ZPE(B3LYP/6-311G**) = 0.065638	Α	86.34344	С	-2.344543	-0.458770	-0.044864	296i, 60, 141, 200, 310, 360,
	E(B3LYP+ZPE) = -193.292555	В	736.25040	Н	-2.787200	-0.950300	0.816951	365 607 633 681 686 883
(C_1)	E(CCSD(T)/CC-PVTZ) = -192.9325076	С	777.28364	С	-1.196000	0.140589	0.035697	99 <i>A</i> 05 <i>A</i> 1001 1139 1352
and the second se				С	-0.040997	0.764367	0.121846	1462 2025 2176 2111 2116
				С	1.215760	0.147692	-0.112849	1402, 2055, 2170, 5111, 5110,
				С	2.307230	-0.350101	-0.256256	3183, 3474
C T				Н	2.821920	-1.072399	1.829400	
				Н	3.249652	-0.764582	-0.517875	
				н	-2.899206	-0.495409	-0.978304	
				Н	-0.033865	1.820021	0.388386	
TSL	ZPE(B3LYP/6-311G**) = 0.065644	Α	31.39458	С	-2.620812	-0.029126	0.000098	503i, 145, 149, 171, 337, 365.
	E(B3LYP+ZPE) = -193.295087	В	865.39902	Н	-3.185422	-0.023919	-0.927432	391 541 541 691 754 853
(C_s)	E(CCSD(T)/CC-PVTZ) = -192.92734667	С	884.40603	Н	-3.185115	-0.023604	0.927814	866 1005 1008 1321 1/33
	E(CCSD(T)/CC-PVDZ) = -192.73763885			С	-1.308597	-0.039587	-0.000115	000, 1003, 1000, 1321, 1433, 1500, 1022, 2175, 2115, 2120
6	E(CCSD(T)/CC-PVQZ) = -192.98123192			Ċ	-0.038123	-0.056460	-0.000136	1508, 1932, 2175, 3115, 3120,
-	E(UC5D(1)/UB5) = -193.00201			Ċ	1.243327	0.014800	-0.000013	3190, 3205
6.				Ĥ	1.258263	2.202849	0.000018	
				С	2.543438	-0.164404	0.000057	
				Н	3.242143	0.663483	-0.000011	
E.				Н	2.954727	-1.170147	0.000268	

TS M	ZPE(B3LYP/6-311G**) = 0.066464	Α	88.57461	С	2.373190	-0.511783	0.075322	758i, 137, 224, 299, 352, 422,
(\mathbf{C})	E(B3LYP+ZPE) = -193.287252	В	702.11105	С	1.305960	0.029396	-0.041948	461, 591, 625, 644, 695, 886,
(\mathbf{C}_1)	E(CCSD(T)/CC-PVDZ) = -192.73721161	С	756.50068	С	0.054952	0.701818	-0.211983	932, 944, 988, 1119, 1344,
	E(CCSD(T)/CC-PVTZ) = -192.9272013 E(CCSD(T)/CC-PVOZ) = -102.09144609			Н	0.123433	1.745097	1.401138	14/0 1086 2217 300/ 3122
Con Bel	E(CCSD(T)/CC-PVQZ) = -192.98144098 E(CCSD(T)/CRS) = -193.00312			С	-1.117594	0.078810	-0.117573	1449, 1900, 2217, 3094, 3122, 2166, 2477
	E(CC3D(1)/CD3) = -100.00012			С	-2.275561	-0.466827	0.086693	3100, 3477
				Н	-2.777696	-1.051983	-0.679275	
Te				Н	-2.785333	-0.360871	1.042709	
0 -				Н	3.311550	-0.996620	0.188181	
				Н	0.082366	1.675891	-0.695827	
TS N	ZPE(B3LYP/6-311G**) = 0.066255	Α	100.48035	С	2.345559	-0.550846	0.084584	495i, 47, 135, 228, 315, 334,
	E(B3LYP+ZPE) = -193.276769	В	689.06848	С	1.323405	0.073127	0.017570	401, 567, 674, 675, 694, 767,
(C_1)	E(CCSD(T)/CC-PVTZ) = -192.923465	С	757.70184	С	0.086084	0.854270	-0.064788	901 927 999 1239 1339
	E(CCSD(T)/CC-PVDZ) = -192.7324797			Н	0.011986	1.511444	0.811860	1450 2170 2236 3004 3022
6. K	E(CCSD(T)/CC-PVQZ) = -192.9/80062 E(CCSD(T)/CDS) = -102.00081			С	-1.125101	0.036990	-0.143974	1450, 2179, 2250, 5004, 5052,
	E(CCSD(1)/CBS) = -192.99981			С	-2.169538	-0.567410	-0.110860	3462, 3478
				Н	-3.014256	-1.196605	-0.255277	
				Н	-3.140162	0.200648	1.540545	
CL .				Н	3.247273	-1.109328	0.145149	
				Н	0.132706	1.517046	-0.937465	
Τς Ο	ZPE(B3LYP/6-311G**) = 0.069696	Α	251.92532	С	2.173010	0.078516	0.000017	537i, 82, 153, 244, 265, 457.
	E(B3LYP+ZPE) = -193.295352	В	457.08837	Ċ	1.010064	-0.240075	-0.000043	477 515 553 561 644 662
(C _s)	E(CCSD(T)/CC-PVTZ) = -192.939559	Ē	696.71458	Č	-0.330042	-0.577759	-0.000030	477, 515, 555, 501, 044, 002,
	E(CCSD(T)/CC-PVDZ) = -192.74704437	-		Ċ	-1.250124	-1.398366	0.000038	0/1, 002, 910, 1410, 1420,
(ef	E(CCSD(T)/CC-PVQZ) = -192.9933327			č	-1.158258	1.534194	0.000016	1953, 2223, 3090, 3254, 3256,
	E(CCSD(T)/CBS) = -193.01417			Ĥ	3.202132	0.341407	0.000086	3440, 3477
				Н	-2.216298	-1.845201	-0.000001	
				Н	-2.227329	1.365452	-0.000197	
				Н	-0.713335	1.879642	0.924367	
				Н	-0.713069	1.879640	-0.924244	
тя р	ZPE(B3LYP/6-311G**) = 0.069269	Α	127.87370	С	2.596323	-0.496948	0.000192	377i, 51, 88, 239, 275, 409
	E(B3LYP+ZPE) = -193.306685	B	826.58756	č	1.498866	0.013322	-0.000124	A30 A07 53A 612 6A0 650
(C _s)	E(CCSD(T)/CC-PVTZ) = -192.947917	Č	942.01434	č	0.275047	0.600528	-0.000490	437, 477, 334, 012, 040, 037, (10, 1417)
		U		č	-0.877163	1.006979	0.000306	000, //4, 922, 1409, 1417,
(- ()				č	-2.503755	-0.796398	-0.000019	2034, 2198, 3096, 3261, 3272,
				й	3.558710	-0.946488	0.000510	3435, 3476
-				н	-1 690875	1 692766	0.001210	
				н	-1.813102	-1.627401	-0.004513	
				н	_2 993665	_0 545410	0.031635	
				11	-2.775005	-0.545410	0.751055	

				Н	-2.996982	-0.538367	-0.928033	
TSO	ZPE(B3LYP/6-311G**) = 0.069747	Α	85.95354	С	-2.451418	0.034725	0.000000	599i, 24, 123, 262, 309, 381,
(\mathbf{C})	E(B3LYP+ZPE) = -193.302420	В	816.17722	С	-1.213466	0.530121	0.000000	486, 548, 649, 713, 765, 767,
$(\mathbf{C}_{\mathbf{s}})$	E(CCSD(T)/CC-PVTZ) = -192.942732	С	889.73957	С	0.000000	0.861462	0.000000	793, 875, 1029, 1150, 1463,
				С	1.341320	-0.831016	0.000000	1836 1951 3127 3208 3347
				С	2.536442	-0.558564	0.000000	3355 3455
				Н	-2.980031	-0.155144	0.927759	3333, 3433
				Н	-2.980031	-0.155144	-0.927759	
				Н	0.651469	1.710611	0.000000	
				Н	0.546212	-1.545170	0.000000	
				Н	3.485114	-0.075527	0.000000	

Reaction Transition Collision Energy, kcal/mol 0.00 1.00 2.00 3.00 4.00 5.26 step state $1 \rightarrow 2$ TS 1 9.84E+09 1.10E+10 1.23E+10 1.36E+10 1.51E+10 1.70E+10 $2 \rightarrow 1$ TS₁ 1.40E+08 1.18E+08 1.64E+08 1.93E+08 2.25E+08 2.71E+08 $1 \rightarrow 4$ TS 3 1.20E+05 2.18E+05 3.78E+05 6.28E+05 1.01E+06 1.75E+06 $4 \rightarrow 1$ TS 3 1.36E+06 2.65E+05 4.79E+05 8.25E+05 2.17E+06 3.74E+06 $1 \rightarrow 5$ TS 4 8.45E+06 1.14E+07 1.53E+07 2.01E+07 2.61E+07 3.56E+07 TS₄ $5 \rightarrow 1$ 4.08E+04 5.89E+04 8.38E+04 1.17E+05 1.62E+05 2.38E+05 $1 \rightarrow 16$ TS 5 1.48E+04 2.85E+04 5.19E+04 9.02E+04 1.51E+05 2.73E+05 $16 \rightarrow 1$ TS 5 1.35E+04 2.62E+04 4.77E+04 8.30E+04 1.39E+05 2.52E+05 $1 \rightarrow 18$ TS M 1.22E+08 1.60E+08 2.07E+08 2.65E+08 3.35E+08 4.44E+08 $1 \rightarrow 20$ TS N 3.26E+08 5.97E+08 4.44E+08 7.91E+08 1.03E+09 1.43E+09 $2 \rightarrow 3$ TS 2 3.06E+05 4.13E+05 5.51E+05 7.27E+05 9.49E+05 1.31E+06 $3 \rightarrow 2$ TS 2 3.33E+07 4.25E+07 5.37E+07 6.72E+07 8.34E+07 1.08E+08 $3 \rightarrow 11$ TS 12 7.97E+07 1.30E+08 1.57E+08 6.71E+07 9.42E+07 1.11E+08 $11 \rightarrow 3$ TS 12 1.09E+11 1.23E+11 1.40E+11 1.57E+11 1.77E+11 2.03E+11 $3 \rightarrow 12$ TS 11 8.85E+07 3.17E+07 4.55E+07 6.40E+07 1.20E+08 1.73E+08 $12 \rightarrow 3$ TS 11 7.81E+02 1.31E+03 2.12E+03 5.16E+03 8.63E+03 3.35E+03 $4 \rightarrow 20$ TS C 6.26E+04 2.14E+05 3.93E+04 9.66E+04 1.45E+05 3.37E+05 $5 \rightarrow 6$ TS 8 4.67E+05 5.92E+05 7.43E+05 9.27E+05 1.15E+06 1.49E+06 $6 \rightarrow 5$ TS 8 8.87E+07 1.05E+08 1.24E+08 1.46E+08 1.70E+08 2.05E+08 $5 \rightarrow 18$ TS D 2.09E+06 2.88E+06 3.92E+06 5.27E+06 7.00E+06 9.87E+06 $6 \rightarrow 7$ TS 10 1.54E+07 2.12E+07 2.89E+07 3.88E+07 5.13E+07 7.17E+07 $7 \rightarrow 6$ TS 10 5.67E+05 7.98E+05 1.10E+06 1.50E+06 2.02E+06 2.88E+06 $6 \rightarrow 8$ **TS 9** 2.67E+08 3.63E+08 4.87E+08 6.44E+08 8.42E+08 1.16E+09 $8 \rightarrow 6$ TS 9 7.37E+07 1.00E+08 1.34E+08 1.77E+08 2.31E+08 3.17E+08 $6 \rightarrow 10$ TS 20 6.54E+09 7.33E+09 8.19E+09 9.38E+09 5.14E+09 5.81E+09 $10 \rightarrow 6$ TS 20 2.78E+12 2.91E+12 3.04E+12 3.18E+12 3.31E+12 3.48E+12 $6 \rightarrow 18$ TS F 2.61E+08 3.34E+08 4.23E+08 5.30E+08 6.58E+08 8.55E+08 $6 \rightarrow 21$ TS E 1.73E+09 2.15E+09 2.65E+09 3.24E+09 3.93E+09 4.96E+09 $7 \rightarrow 21$ TS G 9.79E+07 1.21E+08 1.49E+08 1.82E+08 2.20E+08 2.77E+08 $7 \rightarrow 22$ TS P 2.05E+09 2.47E+09 2.95E+09 3.50E+09 4.14E+09 5.06E+09 $8 \rightarrow 9$ TS 6 7.42E+07 1.01E+08 1.35E+08 1.78E+08 2.32E+08 3.19E+08 $9 \rightarrow 8$ TS 6 3.63E+05 5.06E+05 6.94E+05 9.40E+05 1.26E+06 1.78E+06 $8 \rightarrow 21$ TS H 3.95E+09 4.80E+09 5.78E+09 6.91E+09 8.22E+09 1.01E+10 $9 \rightarrow 13$ TS 7 1.24E+04 1.69E+04 2.26E+04 2.99E+04 3.91E+04 5.39E+04 $13 \rightarrow 9$ TS 7 1.53E+05 2.12E+05 2.91E+05 3.93E+05 5.25E+05 7.44E+05 $9 \rightarrow 19$ TS B 2.97E+07 2.09E+07 4.15E+07 5.72E+07 7.76E+07 1.12E+08 $9 \rightarrow 21$ TS A 1.02E+08 1.25E+08 1.53E+08 1.86E+08 2.24E+08 2.81E+08 $10 \rightarrow 11$ TS 21 2.76E+12 2.89E+12 3.01E+12 3.15E+12 3.28E+12 3.44E+12 $11 \rightarrow 10$ TS 21 3.05E+10 2.74E+10 4.14E+10 4.67E+10 3.39E+10 3.75E+10 $11 \rightarrow 22$ TS O 9.07E+09 1.12E+10 1.36E+10 1.65E+10 1.98E+10 2.47E+10 $12 \rightarrow 13$ TS 14 8.95E+09 1.03E+10 1.18E+10 1.35E+10 1.53E+10 1.78E+10 $13 \rightarrow 12$ TS 14 3.84E+06 1.86E+06 2.25E+06 2.70E+06 3.23E+06 4.74E+06 $12 \rightarrow 14$ TS 13 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.65E+01

Table A2. RRKM calculated rate constants for individual reaction steps of the $C_2H + C_3H_4$ reaction on the C_5H_5 potential energy surface at collision energies of 0-5.3 kcal/mol.

$14 \rightarrow 12$	TS 13	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.57E+01
$13 \rightarrow 15$	TS 17	6.18E+03	9.89E+03	1.54E+04	2.35E+04	3.50E+04	5.63E+04
$15 \rightarrow 13$	TS 17	6.25E+04	9.65E+04	1.45E+05	2.14E+05	3.09E+05	4.77E+05
$13 \rightarrow 19$	TS L	1.13E+06	1.58E+06	2.19E+06	3.00E+06	4.06E+06	5.83E+06
$14 \rightarrow 15$	TS 15	3.07E+09	3.60E+09	4.19E+09	4.85E+09	5.59E+09	6.64E+09
$15 \rightarrow 14$	TS 15	6.53E+06	7.76E+06	9.17E+06	1.08E+07	1.26E+07	1.52E+07
$14 \rightarrow 17$	TS 16	8.95E+03	1.75E+04	3.23E+04	5.65E+04	9.48E+04	1.73E+05
$17 \rightarrow 14$	TS 16	3.93E+01	8.07E+01	1.56E+02	2.85E+02	5.01E+02	9.66E+02
$15 \rightarrow 16$	TS 18	7.76E+04	1.23E+05	1.89E+05	2.83E+05	4.15E+05	6.54E+05
$16 \rightarrow 15$	TS 18	1.74E+06	2.69E+06	4.03E+06	5.91E+06	8.48E+06	1.30E+07
$15 \rightarrow 18$	TS K	1.33E+08	1.72E+08	2.22E+08	2.82E+08	3.55E+08	4.70E+08
$15 \rightarrow 19$	TS J	2.31E+06	3.31E+06	4.66E+06	6.44E+06	8.78E+06	1.27E+07
$16 \rightarrow 17$	TS 19	5.72E+09	6.22E+09	6.74E+09	7.29E+09	7.87E+09	8.63E+09
$17 \rightarrow 16$	TS 19	5.27E+08	6.06E+08	6.95E+08	7.93E+08	9.03E+08	1.06E+09
$16 \rightarrow 18$	TS I	2.16E+08	2.89E+08	3.82E+08	4.99E+08	6.43E+08	8.73E+08
$16 \rightarrow 23$	TS Q	3.23E+10	3.88E+10	4.62E+10	5.47E+10	6.44E+10	7.84E+10

Table A3. Optimized Cartesian coordinates of the $C_2H + 1,3$ -butadiene reaction.

Center	Ator	nic A	tomic	Coordinate	es (Angstro
Number	Nu	mber	Туре	X Y	Z
1	6	0	-1.323343	-2.274031	0.000000
2	6	0	-1.329240	-1.072881	0.000000
3	6	0	-1.346653	0.387628	0.000000
4	6	0	0.000000	1.064440	0.000000
5	6	0	1.228778	0.430541	0.000000
6	6	0	2.450503	1.079131	0.000000
7	1	0	-1.323729	-3.336295	0.000000
8	1	0	-1.923322	0.732848	0.870774
9	1	0	-1.923322	0.732848	-0.870774
10	1	0	-0.032405	2.150982	0.000000
11	1	0	1.227606	-0.656798	0.000000
12	1	0	3.380514	0.525585	0.000000
13	1	0	2.514392	2.161859	0.000000

1) [i1], C_s , ²A"

2) [i2], C_s, ²A'

Center	Ate	omic A	tomic	Coor	linate	s (Ang	stroms)
Number	N	lumber	Туре	Х	Y		Z
1	6	0	-1.188922	-0.86	9676	0.000	000
2	6	0	0.004410	-1.412	2820	0.000	000
3	6	0	-1.333729	0.645	5941	0.000	000
4	6	0	0.000000	1.348	3225	0.000	000
5	6	0	1.180019	0.731	477	0.000	000
6	6	0	1.341700	-0.780)308	0.000	000
7	1	0	-2.099914	-1.46	3504	0.000	000
8	1	0	-1.922474	0.964	4037	0.872	407
9	1	0	-1.922474	0.964	1037	-0.872	407
10	1	0	-0.026351	2.434	1773	0.000	000
11	1	0	2.097265	1.315	5191	0.000	000
12	1	0	1.926539	-1.095	5783	-0.874	594
13	1	0	1.926539	-1.095	5783	0.874	594

3) [i3], C_s, ²A'

Center Number	At N	omic At Number	omic Type	Coordinate X Y	es (Angstroms) Z
1	6	0	-0.958044	-1.970730	0.000000
2	6	0	-1.681030	-0.868852	0.000000
3	6	0	-1.253532	0.532525	0.000000
4	6	0	0.000000	1.035237	0.000000
5	6	0	1.240562	0.287413	0.000000
6	6	0	2.451597	0.860638	0.000000
7	1	0	-1.147906	-3.033553	0.000000
8	1	0	-2.770060	-1.002801	0.000000
9	1	0	-2.071003	1.246704	0.000000
10	1	0	0.100341	2.118363	0.000000
11	1	0	1.163305	-0.796759	0.000000
12	1	0	3.360034	0.270377	0.000000
13	1	0	2.567969	1.940286	0.000000

4) [i4], C_s, ²A"

Center	A	tomic At	omic	Coordinate	es (Angstroms)
Number		Number	Type	X Y	ZZ
1	6	0	0.000000	1.401048	0.000000
2	6	0	-1.207021	0.768270	0.000000
3	6	0	1.296032	0.643067	0.000000
4	6	0	1.115934	-0.847260	0.000000
5	6	0	-0.118346	-1.425654	0.000000
6	6	0	-1.301819	-0.646270	0.000000
7	1	0	0.050163	2.484840	$\begin{array}{c} 0.000000\\ 0.000000\\ 0.865461 \end{array}$
8	1	0	-2.118664	1.357375	
9	1	0	1.911396	0.948871	
10	1	0	1.911396	0.948871	-0.865461
11	1	0	2.008768	-1.463671	0.000000
12	1	0	-0.199810	-2.508135	0.000000
13		0	-2.271932	-1.12/358	0.000000

5) TS [i1]-H, C₁, ²A

Center	Atomic	Atomic	Coordinates (Angstroms)

Number		Number	Туре	Х	Y	Ζ
1	6	0	-2.529040	-0.935	5976	-0.012017
2	6	0	-1.700433	-0.062	2178	-0.052368
3	6	0	-0.749940	0.992	810	-0.124184
4	6	0	0.602528	0.817	811	-0.132846
5	6	0	1.284994	-0.440	230	0.037448
6	6	0	2.621414	-0.564	328	0.033536
7	1	0	-3.258772	-1.706	6916	0.029084
8	1	0	-1.149249	1.978	3462	-0.338909
9	1	0	1.221198	1.702	028	-0.257052
10	1	0	0.663703	-1.321	045	0.171973
11	1	0	3.102031	-1.526	595	0.160830
12	1	0	3.270681	0.295	467	-0.098224
13	1	0	-1.026734	1.731	145	1.834885

6) TS [i1]-[i2], C₁, ²A

Center Number	At N	omic Ate Number	omic Type	Coordinate X Y	es (Angstroms) ZZ
1	6	0	0.048309	1.715733	-0.260568
2	6	0	-0.969909	1.037770	-0.091615
3	6	0	-1.444607	-0.320228	0.223895
4	6	0	-0.364399	-1.335078	-0.124065
5	6	0	0.953575	-1.042433	-0.160825
6	6	0	1.557270	0.180138	0.312722
7	1	0	0.586374	2.611904	-0.478308
8	1	0	-2.357228	-0.560555	-0.330527
9	1	0	-1.719264	-0.371559	1.287308
10	1	0	-0.709301	-2.299814	-0.481434
11	1	0	1.614249	-1.760991	-0.643553
12	1	0	1.368869	0.514219	1.324877
13	1	0	2.534868	0.451389	-0.075620

7) TS [i1]-[i3], C₁, ²A

Center	Atomic	A A	tomic	Coordinat	es (Angstroms)
Number	Numb		Type	X Y	Z Z
1	6	0	-3.128632	-0.407060	-0.154021
2	6	0	-1.997668	0.074897	0.021694

3	6	0	-0.652611	0.565997	-0.045543
4	6	0	0.502007	-0.218282	0.001231
5	6	0	1.812913	0.333155	-0.024181
6	6	0	2.960395	-0.385798	0.003020
7	1	0	-4.081706	-0.703015	0.227568
8	1	0	-0.558626	1.638047	-0.201058
9	1	0	0.392239	-1.295950	0.075030
10	1	0	1.884595	1.418388	-0.081552
11	1	0	2.947581	-1.469221	0.057509
12	1	0	3.929459	0.095321	-0.032746
13	1	0	-1.491964	0.538972	1.142044

8) TS [i2]-[i4], C₁, ²A

Center Number	At N	comic At Number	comic Type	Coordinate X Y	es (Angstroms) ZZ
1	6	0	0.892783	-1.106617	-0.174283
2	6	0	-0.405356	-1.370651	0.069200
3	6	0	1.406607	0.269892	0.218001
4	6	0	0.344772	1.312394	-0.092388
5	6	0	-0.967874	1.024713	-0.119662
6	6	0	-1.395300	-0.350853	0.170199
7	1	0	1.548162	-1.792482	-0.699177
8	1	0	2.328399	0.494649	-0.330359
9	1	0	1.684298	0.337731	1.282240
10	1	0	0.679203	2.329328	-0.278533
11	1	0	-1.707125	1.788805	-0.335746
12	1	0	-2.327121	-0.539675	0.695686
13	1	0	-1.459596	-1.291627	-0.760519

9) TS [i3]-[i4], C₁, ²A

Center Number	A	tomic At Number	omic Type	Coordinat X Y	es (Angstroms) Z Z
1	6	0	1.158517	1.288238	-0.087342
2	6	0	1.555412	0.023000	-0.083437
3	6	0	0.739823	-1.158509	0.164853
4	6	0	-0.611159	-1.245460	0.039355
5	6	0	-1.477301	-0.130962	-0.249135
6	6	0	-1.297335	1.116574	0.249128
7	1	0	1.658963	2.225236	-0.290609
8	1	0	2.595148	-0.191205	-0.352404
9	1	0	1.289874	-2.082189	0.317497

10	1	0	-1.052282	-2.239280	0.035426
11	1	0	-2.283262	-0.305192	-0.959744
12	1	0	-1.903124	1.948661	-0.092886
13	1	0	-0.713059	1.286685	1.142188

10) TS [i3]-H, C_s, ²A'

Center	At	omic At	omic	Coordinate	es (Angstroms)
Number	N	lumber	Туре	X Y	Z
1	6	0	-1.226381	-2.172594	0.000000
2	6	0	-1.401525	-0.966395	0.000000
3	6	0	-1.208093	0.449274	0.000000
4	6	0	0.000000	1.054897	0.000000
5	6	0	1.291437	0.398974	0.000000
6	6	0	2.454196	1.063319	0.000000
7	1	0	-1.242142	-3.235606	0.000000
8	1	0	-2.101456	1.061416	0.000000
9	1	0	0.009413	2.141789	0.000000
10	1	0	1.292101	-0.686777	0.000000
11	1	0	3.404689	0.543695	0.000000
12	1	0	2.488507	2.148343	0.000000
13	1	0	-3.308917	-0.937712	0.000000

11) TS [i4]-H, C₁, ²A

Center	At	omic At	omic	Coordinat	es (Angstroms)
Number	N	lumber	Туре	X Y	ZŽ
1	6	0	-0.643728	-1.215319	-0.093169
2	6	0	0.740734	-1.210645	-0.000127
3	6	0	-1.356531	0.000879	-0.080717
4	6	0	-0.642148	1.216231	-0.093143
5	6	0	0.742407	1.209719	0.000151
6	6	0	1.437451	-0.000934	0.058078
7	1	0	-1.185054	-2.152806	-0.144772
8	1	0	1.284679	-2.148537	0.016948
9	1	0	-2.417330	0.001632	-0.301278
10	1	0	-1.182240	2.154488	-0.145552
11	1	0	1.287550	2.146911	0.017430
12	1	0	2.519137	-0.001675	0.130145
13	1	0	-1.975856	0.000406	1.680641

Center	At	omic Ate	omic	Coordinat	es (Angstroms)
Number	N	Jumber	Туре	ХУ	ΖΖ
1	6	0	-1.648212	-2.155300	0.000000
2	6	0	-1.423481	-0.970491	0.000000
3	6	0	-1.208103	0.431186	0.000000
4	6	0	0.000000	1.035884	0.000000
5	6	0	1.281441	0.359699	0.000000
6	6	0	2.457052	1.000580	0.000000
7	1	0	-1.840877	-3.199937	0.000000
8	1	0	-2.102298	1.047677	0.000000
9	1	0	0.021371	2.122315	0.000000
10	1	0	1.259883	-0.726449	0.000000
11	1	0	3.397086	0.462290	0.000000
12	1	0	2.512657	2.084754	0.000000

12) ac-C₆H₆, hexa-1,3-dien-5-yne, C_s , ¹A'

13) C₆H₆, benzene, D_{6h}, ${}^{1}A_{1g}$

Center Number	Ator r Nu	mic At umber	omic Type	Coordinate X Y	es (Angstroms) Z
1	6	0	0.000000	1.393916	0.000000
2	6	0	1.207167	0.696958	0.000000
3	6	0	-1.207167	0.696958	0.000000
4	6	0	1.207167	-0.696958	0.000000
5	6	0	-1.207167	-0.696958	0.000000
6	6	0	0.000000	-1.393916	0.000000
7	1	0	0.000000	2.478341	0.000000
8	1	0	2.146306	1.239170	0.000000
9	1	0	-2.146306	1.239171	0.000000
10	1	0	2.146306	-1.239171	0.000000
11	1	0	-2.146306	-1.239171	0.000000
12	1	0	0.000000	-2.478341	0.000000

Species, (point group), electronic state	Energies, a.u.	i	<i>I_i</i> , a.u.	Cart	tesian coor	dinates, an	gstroms	v_i, cm^{-1}
				Atom	Х	Y	Z	
H ² S	ZPE(B3LYP/6-311G**) = 0.0 E(B3LYP/6-311G**) = -0.502155930011 E(CCSD(T)/CC-VDZ) = -0.499278 E(CCSD(T)/CC-VTZ) = -0.49980982 E(CCSD(T)/CC-VQZ) = -0.499946 E(CCSD(T)/CBS) = -0.49999							
C ₂ H (D _{∞h})	ZPE(B3LYP/6-311G**) = 0.014445 E(B3LYP+ZPE) = -76.619455742 E(CCSD(T)/CC-VDZ) = -76.398687 E(CCSD(T)/CC-VTZ) = -76.46769892 E(CCSD(T)/CC-VQZ) = -76.4876915 E(CCSD(T)/CBS) = -76.49585	A B C	0.00000 40.54466 40.54466	C H C	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	-0.473068 -1.536812 0.729203	370, 416, 2089, 3465
CH ₃ (C ₁)	ZPE(B3LYP/6-311G**) = 0.029569 E(B3LYP+ZPE) = -39.853757 E(CCSD(T)/CC-PVDZ) = -39.715785 E(CCSD(T)/CC-PVTZ) = -39.760817 E(CCSD(T)/CC-PVQZ) = -39.772271 E(CCSD(T)/CC-PV5Z) = -39.775614 E(CCSD(T)/CBS) = -39.77618	A B C	6.30449 6.30449 12.60896	C H H H	0.000000 0.000000 -0.935876 0.935876	0.000000 1.080657 -0.540328 -0.540328	0.000273 -0.000545 -0.000545 -0.000545	507, 1404, 1404, 3102, 3281, 3281
C ₂ H ₅ (C ₁)	ZPE(B3LYP/6-311G**) = 0.058983 E(B3LYP+ZPE) = -79.124669 E(CCSD(T)/CC-VDZ) = -78.91573206 E(CCSD(T)/CC-VTZ) = -79.00226044 E(CCSD(T)/CC-VQZ) = -79.02545788 E(CCSD(T)/CBS) = -79.03395	A B C	17.39033 79.41224 85.68530	C H H C H H H	-0.794278 -1.351038 -1.351038 0.693124 1.107217 1.107217 1.094572	0.000000 -0.926566 0.926566 0.000000 -0.886126 0.886127 -0.000001	-0.019123 0.042622 0.042622 -0.001749 -0.492768 -0.492766 1.025521	105, 474, 813, 980, 1063, 1192, 1401, 1465, 1482, 1483, 2941, 3034, 3077, 3140, 3241

Table A4. B3LYP and CCSD(T) calculated total energies at 0 K, zero-point energy corrections (ZPE), B3LYP/6-311G** optimized Cartesian coordinates, unscaled vibrational frequencies (v_i), and moments of inertia (I_i) of all species involved in the C₂H + 1,2-butadiene reaction.

1.2-butadiene	ZPE(B3LYP/6-311G**) = 0.083589	Α	52.08749	С	-1.937452	-0.214047	0.000671	168, 211, 340, 541, 572, 872,
1,2 Suturitie	E(B3LYP+ZPE) = -155.937771	В	431.02690	н	-2.476449	-0.382537	0.928581	879, 897, 1022, 1060, 1091,
	E(CCSD(T)/CC-VDZ) = -155.51539788	С	459.59117	н	-2.482576	-0.381185	-0.923877	1150 1361 1408 1472 1486
	E(CCSD(T)/CC-VTZ) = -155.67550978			С	-0.692698	0.173968	-0.002479	1505 2057 2010 2065 2104
	E(CCSD(1)/CC-VQZ) = -155.72038959 E(CCSD(T)/CBS) = -155.73787			С	0.553314	0.559152	0.000663	1505, 2057, 5019, 5005, 5104,
	E(CCSD(1)/CDS) = -135.75787			н	0.758980	1.628786	0.002691	3111, 3120, 3181
				С	1.746391	-0.364833	-0.000077	
				н	2.373927	-0.188003	-0.879758	
				н	2.371588	-0.191692	0.882119	
				Η	1.437198	-1.410811	-0.002424	
hexa-1.3-diene-5-	ZPE(B3LYP/6-311G**) = 0.094365	Α	65.60308	С	-0.787242	2.809482	0.000000	134, 139, 207, 309, 446, 461,
	E(B3LYP+ZPE) = -232.112802	В	1271.55338	н	0.226340	3.197324	0.000000	555, 628, 668, 681, 880, 938,
yne	E(CCSD(T)/CC-VDZ) = -231.47434583	С	1337.15647	н	-1.590453	3.536090	0.000000	960 976 1037 1043 1195
(C_s)	E(CCSD(T)/CC-VTZ) = -231.70247712			С	-1.031247	1.492856	0.000000	100, 770, 1057, 1045, 1175, 1096, 1214, 1221, 1453, 1643
	E(CCSD(1)/CC-VQZ) = -231.76781018 E(CCSD(T)/CBS) = -231.70703			н	-2.060899	1.141318	0.000000	1200, 1314, 1331, 1433, 1043, 1097, 2106, 2120, 2121, 2120
	E(CCSD(1)/CDS) = -231.79403			С	0.000000	0.475912	0.000000	1687, 2196, 3129, 3131, 3138,
				н	1.032891	0.813954	0.000000	3153, 3225, 3477
T I				С	-0.254784	-0.849069	0.000000	
				н	-1.287394	-1.191738	0.000000	
				С	0.740856	-1.856011	0.000000	
				С	1.563266	-2.737928	0.000000	
				н	2.294416	-3.508395	0.000000	
hexa-1.4-divne	ZPE(B3LYP/6-311G**) = 0.093849	А	145.03599	С	2.946786	-0.486889	0.000203	14, 92, 196, 248, 323, 365,
nenu i,i uijne	E(B3LYP+ZPE) = -232.024441	В	1212.38035	н	3.134842	-1.105425	0.884717	372, 522, 615, 636, 773, 937.
- - - - -	E(CCSD(T)/CC-VDZ) = -231.44560010	С	1335.11507	н	3.681513	0.325930	0.000736	948 1058 1058 1168 1236
	E(CCSD(T)/CC-VTZ) = -231.67620993 E(CCSD(T)/CC-V0Z) = -231.741(0550)			н	3.135699	-1.105029	-0.884401	1345 1427 1467 1401 1402
	E(CCSD(1)/CC-VQZ) = -231.74160559 E(CCSD(T)/CBS) = -231.76740			С	1.582820	0.033719	-0.000378	1343, 1427, 1407, 1471, 1472, 2047, 2026, 2040
×.	E(CCSD(1)/CDS) = -231.70743			С	0.452379	0.459991	-0.000373	2247, 2581, 5014, 5056, 5040,
				С	-0.918667	0.988023	0.000193	3101, 3101, 3492
				Η	-1.062991	1.636594	0.876059	
				Η	-1.063396	1.637209	-0.875146	
				С	-1.955057	-0.053759	0.000055	
				С	-2.817337	-0.897594	-0.000045	
				H	-3.571219	-1.650230	0.000100	

hexa-1,3-diyne (C _s)	ZPE(B3LYP/6-311G**) = 0.094491 E(B3LYP+ZPE) = -232.095506 E(CCSD(T/CC-VDZ) = -231.45392185 E(CCSD(T/CC-VTZ) = -231.68483829 E(CCSD(T/CC-VQZ) = -231.74971853 E(CCSD(T/CBS) = -231.77507	A B C	82.18487 1354.95574 1414.83463	C H H C H H C	2.348113 2.622076 2.928835 2.622076 0.840428 0.591718 0.591718 0.000000	1.419454 0.840218 2.345089 0.840218 1.738845 2.348869 2.348869 0.548862	0.000000 0.883992 0.000000 -0.883992 0.000000 0.876363 -0.876363 0.000000	100, 132, 231, 240, 351, 464, 537, 553, 638, 642, 673, 787, 953, 1076, 1103, 1176, 1286, 1350, 1412, 1474, 1496, 1506, 2164, 2344, 3015, 3037, 3040, 3106, 3113, 3478
				C	-0.685553 -1 459564	-0.448562 -1 572306	0.000000	
				Č	-2.144899	-2.566670	0.000000	
				Ĥ	-2.747575	-3.441006	0.000000	
hexa-3.4-diene-1-	ZPE(B3LYP/6-311G**) = 0.093476	Α	137.96166	С	-2.638823	-0.582793	-0.291469	100, 147, 187, 229, 349, 447,
who	E(B3LYP+ZPE) = -232.091546	В	1176.58711	Н	-2.235402	-0.878824	-1.260224	539, 611, 629, 688, 755, 874,
yne	E(CCSD(T)/CC-VDZ) = -231.44919472 E(CCSD(T)/CC-VTZ) = -231.67943565	С	1240.61861	Н	-3.541473	0.013841	-0.457456	897, 985, 1059, 1090, 1156,
(C ₁)	E(CCSD(T)/CC-VTZ) = -231.07843505 E(CCSD(T)/CC-VOZ) = -231.74368420			Н	-2.941046	-1.485333	0.249094	1303, 1407, 1438, 1485, 1501,
· · · · · · · · · · · · · · · · · · ·	E(CCSD(T)/CBS) = -231.76964			C	-1.627238	0.198908	0.510824	2044, 2207, 3023, 3072, 3100,
				Н	-1.939744	0.537782	1.498601	3107 3122 3479
				C	-0.421689	0.490510	0.118805	0107,0122,0179
¥ • •					0.791434	0.797613	-0.285586	
e e				H C	0.94/800	1./30315	-0.825857	
				Ċ	1.940803	-0.013973	-0.003380	
				н	3 809708	-1 255468	0.254805	
have 15 diana 1	$ZPE(B3LYP/6-311G^{**}) = 0.093402$	Α	124,55056	<u> </u>	2.846333	-0.431626	-0.246459	57 165 216 327 351 459
nexa-4,5-ulene-1-	E(B3LYP+ZPE) = -232.084116	B	1172.53876	Ĥ	3.059024	-1.459943	-0.523168	546 600 666 682 876 870
yne	E(CCSD(T)/CC-VDZ) = -231.44399277	Ē	1211.92123	Н	3.657570	0.284382	-0.338713	540,000,000,002,070,079, 010 056 1020 1021 1144
(C ₁)	E(CCSD(T)/CC-VTZ) = -231.67335978			С	1.669175	-0.074283	0.183582	717, 750, 1020, 1021, 1144, 1210, 1206, 1274, 1466, 1470
	E(CCSD(T)/CC-VQZ) = -231.73884848 E(CCSD(T)/CPS) = -231.76502			С	0.489798	0.283507	0.606484	1210, 1500, 1574, 1400, 1470, 2059, 2224, 2010, 2000, 2115
-0-0-0	E(CC3D(1)/CB3) = -231.70302			Н	0.263847	0.235244	1.669070	2058, 2224, 3010, 3000, 3115,
				С	-0.626054	0.776670	-0.302294	3135, 3187, 3479
20				Н	-0.837201	1.829272	-0.075141	
				Н	-0.293332	0.741054	-1.343332	
				C	-1.859762	0.005505	-0.149883	
				C	-2.867757	-0.632135	-0.007879	
				H	-3.760306	-1.195836	0.109974	

2-ethynyl-1.3-	ZPE(B3LYP/6-311G**) = 0.094322	Α	378.57720	С	-2.040225	-1.082399	0.000001	149, 162, 262, 309, 471, 499,
hutadiana	E(B3LYP+ZPE) = -232.107249	В	512.23169	Н	-2.860249	-1.757849	0.000049	621, 652, 688, 717, 754, 775,
Dutaulelle	E(CCSD(T)/CC-VDZ) = -231.47209420	С	890.80889	С	-1.121383	-0.304988	-0.000098	926 946 953 1021 1061
(C ₁)	E(CCSD(1)/CC-V1Z) = -231.70074472 E(CCSD(1)/CC-V0Z) = -221.7(00711)			С	-0.011165	0.600579	-0.000004	1317 1325 1417 1455 1635
	E(CCSD(T)/CC-VQZ) = -231.70009711 E(CCSD(T)/CRS) = -231.70225			С	-0.218293	1.931323	0.000062	1517, 1525, 1417, 1455, 1055, 1655, 1600, 2200, 2140, 2140, 2151
<u> </u>	E(CCSD(1)/CDS) = -251.77225			Н	-1.215955	2.349834	0.000113	1090, 2208, 5140, 5148, 5151,
I				Н	0.617918	2.620864	0.000165	3230, 3243, 3477
				С	1.351620	0.043609	-0.000102	
				Н	2.145212	0.786131	-0.000278	
				С	1.660551	-1.254139	0.000079	
Y Y U				Н	0.893647	-2.020270	0.000336	
© ©				Н	2.692797	-1.582612	-0.000019	
1.1-	ZPE(B3LYP/6-311G**) = 0.093119	А	320.49455	С	0.180572	1.832358	-0.000206	136, 163, 200, 226, 343, 486,
ath ym ylwn ath ylallan a	E(B3LYP+ZPE) = -232.091295	В	685.71042	Н	0.736449	2.160013	-0.883055	531, 608, 631, 649, 686, 706,
etnynyimetnylallene	E(CCSD(T)/CC-VDZ) = -231.45011218	С	982.62420	Н	-0.798102	2.312470	-0.000048	884 995 1009 1059 1180
(C ₁)	E(CCSD(T)/CC-VTZ) = -231.67940331 E(CCSD(T)/CC-VOZ) = -221.744(2092)			Н	0.736817	2.160167	0.882351	1202 1404 1463 1481 1400
Q	E(CCSD(T)/CC-VQZ) = -231.74402982 E(CCSD(T)/CPS) = -231.77056			С	0.037781	0.319436	-0.000044	1292, 1404, 1403, 1401, 1499, 2041, 2002, 2021, 2007, 2105
à	E(CC3D(1)/CB3) = -231.77030			С	1.239191	-0.455976	-0.000044	2041, 2203, 3031, 3087, 3105,
The second se				С	2.281643	-1.058824	-0.000046	3125, 3175, 3477
•				Н	3.191561	-1.606725	-0.000063	
1				С	-1.137672	-0.271589	0.000106	
				С	-2.307248	-0.839378	0.000261	
				Н	-2.816081	-1.090961	0.927065	
5 ~ 0				Н	-2.816243	-1.091130	-0.926408	
3_ethynyl_1_butyne	ZPE(B3LYP/6-311G**) = 0.093714	А	329.23816	С	0.000912	1.757258	-0.239490	133, 197, 207, 240, 346, 471,
5-cellynyl-1-butyne	E(B3LYP+ZPE) = -232.073636	В	655.70650	Н	-0.888158	2.316549	0.056992	562 565 675 676 685 687
(C ₁)	E(CCSD(T)/CC-VDZ) = -231.43960817	С	925.00665	н	0.890547	2.315505	0.057288	787 030 1027 1075 1130
	E(CCSD(T)/CC-VTZ) = -231.67002328			н	0.001025	1.647305	-1.324650	107, 350, 1027, 1075, 1157, 1202, 1220, 1409, 1402, 1400
	E(CCSD(T)/CC-VQZ) = -231.73552751			С	-0.000022	0.364662	0.439954	1302, 1330, 1408, 1493, 1499,
	E(CCSD(1)/CBS) = -231.76155			Н	-0.000054	0.522454	1.526770	2223, 2229, 3002, 3045, 3120,
A				С	1.214513	-0.392790	0.106477	3126, 3477, 3478
Ψ				Ċ	2.223588	-0.983476	-0.165131	
and a second				Н	3.110477	-1.515847	-0.407019	
				С	-1.215255	-0.391580	0.106279	
				Ċ	-2.224538	-0.982079	-0.164990	
				Н	-3.109026	-1.517938	-0.407973	
methyldiacetylene	ZPE(B3LYP/6-311G**) = 0.065681	A	11.27122	C	0.000000	0.000000	-2.511237	148, 148, 336, 336, 540, 540,
(C_{i})	E(B3LYP+ZPE) = -192.800165	В	882.32687	Н	0.000000	1.021724	-2.903005	643, 643, 681, 1048, 1048.
(U ₁)								

•	E(CCSD(T)/CC-VDZ) = -192.25588599	С	882.32687	Η	0.884839	-0.510862	-2.903005	1183, 1415, 1474, 1474, 2167,
	E(CCSD(T)/CC-VTZ) = -192.44543586			Н	-0.884839	-0.510862	-2.903005	2351, 3020, 3079, 3079, 3479
	E(CCSD(T)/CC-VQZ) = -192.49885120 E(CCSD(T)/CDS) = 102.51091			С	0.000000	0.000000	-1.058254	, , , , ,
•	E(CCSD(1)/CBS) = -192.51981			С	0.000000	0.000000	0.151150	
				С	0.000000	0.000000	1.515712	
				С	0.000000	0.000000	2.723262	
				Н	0.000000	0.000000	3.785214	
ethynylallene	ZPE(B3LYP/6-311G**) = 0.064997	Α	67.05107	С	2.386836	-0.458322	0.000000	141, 295, 350, 359, 606, 626,
(\mathbf{C})	E(B3LYP+ZPE) = -192.791209	В	694.24010	н	3.334697	-0.937599	0.000028	643, 691, 883, 884, 951, 1004,
(\mathbf{C}_1)	E(CCSD(T)/CC-VDZ) = -192.24756563	С	748.90726	С	1.306493	0.072655	0.000014	1140 1352 1465 2042 2210
	E(CCSD(T)/CC-VTZ) = -192.43544406 E(CCSD(T)/CC-VOZ) = -192.490108(2)			С	0.054208	0.749300	-0.000026	3111 3115 3184 3478
	E(CCSD(T)/CC-VQZ) = -192.48910803 E(CCSD(T)/CRS) = -192.51057			н	0.079958	1.837856	0.000051	5111, 5115, 5104, 5476
	E(CCSD(1)/CDS) = -1)2.51057			С	-1.113200	0.146341	-0.000028	
I				С	-2.276359	-0.431301	0.000012	
				н	-2.781272	-0.686235	-0.927443	
				Н	-2.781247	-0.686065	0.927529	
diacetylene	ZPE(B3LYP/6-311G**) = 0.037493	Α	0.00000	С	0.000000	0.000000	1.889186	237, 237, 525, 525, 663, 663,
	E(B3LYP+ZPE) = -153.490932	В	408.53335	н	0.000000	0.000000	2.951597	671, 671, 917, 2111, 2285,
(\mathbf{C}_1)	E(CCSD(T)/CC-VDZ) = -153.04796948	С	408.53335	С	0.000000	0.000000	0.682650	3476 3478
0- 0-0-0 -0-0	E(CCSD(T)/CC-VTZ) = -153.19597363 E(CCSD(T)/CC-VTZ) = 152.22700420			С	0.000000	0.000000	-0.682650	0170,0170
	E(CCSD(T)/CC-VQZ) = -153.25799420 E(CCSD(T)/CRS) = -153.25465			С	0.000000	0.000000	-1.889186	
	E(CCSD(1)/CDS) = -135.23403			Η	0.000000	0.000000	-2.951597	
hexa-1.2.3.4-	ZPE(B3LYP/6-311G**) = 0.093073	Α	65.29496	С	-2.882561	-0.555752	0.000009	104, 124, 176, 237, 319, 454,
1 c A a a a a a a	E(B3LYP+ZPE) = -232.096700	В	1406.66504	н	-3.529049	-0.474365	-0.880495	506, 537, 554, 719, 801, 855,
tetraene	E(CCSD(T)/CC-VDZ) = -231.44520208	С	1448.42871	н	-2.418917	-1.542489	-0.000437	977 1011 1048 1095 1262
(C ₁)	E(CCSD(T)/CC-VTZ) = -231.67456647 E(CCSD(T)/CC-VTZ) = -231.7202(291)			н	-3.528679	-0.474980	0.880841	1403 1407 1490 1492 1531
	E(CCSD(T)/CC-VQZ) = -231.75936281 E(CCSD(T)/CPS) = -231.76488			С	-1.848089	0.539056	0.000175	1403, 1407, 1400, 1402, 1331, 1057, 2222, 2017, 2001, 2001, 2104
200 C	E(CC3D(1)/CB3) = -231.70488			н	-2.216491	1.564515	0.000655	1957, 2222, 3016, 3061, 3104,
80-0-0-0				С	-0.549553	0.348935	-0.000111	3109, 3123, 3181
				С	0.711289	0.160862	-0.000414	
				С	1.972303	-0.024360	0.000003	
				С	3.268947	-0.215066	0.000164	
				Н	3.829391	-0.297659	0.927058	
				Н	3.829732	-0.297074	-0.926577	

nenta-1.4-divne	ZPE(B3LYP/6-311G**) = 0.065459	Α	92.29024	С	2.243641	-0.569100	0.000002	137, 307, 327, 334, 562, 670,
	E(B3LYP+ZPE) = -192.776767	В	637.14767	Н	3.138749	-1.141176	0.000023	672, 689, 691, 903, 931, 999,
(C_1)	E(CCSD(T)/CC-VDZ) = -192.23933457	С	718.38928	С	1.228168	0.069521	-0.000014	1243 1341 1455 2232 2237
	E(CCSD(T)/CC-VTZ) = -192.42855012 E(CCSD(T)/CC-V0Z) = -192.42855012			С	-0.000002	0.869635	0.000006	3013 3036 3477 3478
	E(CCSD(T)/CC-VQZ) = -192.48259268 E(CCSD(T)/CDS) = -102.5042			Н	0.000040	1.529580	0.876071	5015, 5050, 5477, 5478
	E(CCSD(1)/CBS) = -192.3042			Н	0.000023	1.529600	-0.876045	
				С	-1.228232	0.069644	0.000005	
<u></u>				С	-2.243603	-0.569146	-0.000018	
				Н	-3.138641	-1.141330	0.000069	
hexa-1.2-diene-4-	ZPE(B3LYP/6-311G**) = 0.093219	Α	104.600721	С	2.953259	-0.658506	0.000000	13, 95, 186, 250, 312, 380, 396,
	E(B3LYP+ZPE) = -232.098292	В	314.292301	С	1.888301	0.086096	0.000000	551, 633, 802, 880, 887, 1007,
yne	E(CCSD(T)/CC-VDZ) = -231.43961046	С	395.28034	С	0.823444	0.856322	0.000000	1051 1054 1070 1207 1365
(C ₁)	E(CCSD(1)/CC-V1Z) = -231.67002641 E(CCSD(T)/CC-V0Z) = -231.67002641			С	-0.519179	0.383272	0.000000	1416 1471 1478 1479 2040
	E(CCSD(T)/CC-VQZ) = E(CCSD(T)/CPS) =			С	-1.671787	0.028128	0.000000	1710, 1771, 1770, 1777, 2070
	E(CCSD(1)/CBS) =			С	-3.057814	-0.419079	0.000000	2340, 3019, 3073, 3078, 3103,
				Н	3.416048	-0.986127	0.926967	3107, 3176
				н	3.416048	-0.986127	-0.926967	
T				Н	0.969595	1.936013	0.000000	
•				Н	-3.276672	-1.026281	0.883725	
				Н	-3.745701	0.431437	-0.000019	
				Н	-3.276661	-1.026313	-0.883706	
henzene	ZPE(B3LYP/6-311G**) = 0.100166	Α	316.09731	С	-1.290906	-0.526176	-0.000001	413, 413, 623, 623, 689, 723,
	E(B3LYP+ZPE) = -232.208373	В	316.14596	С	-1.101095	0.854806	0.000007	862 863 981 982 1013 1017
(C_1)	E(CCSD(T)/CC-VDZ) = -231.58054764	С	632.24327	С	0.189715	1.380922	-0.000011	1023 1050 1060 1174 1107
6	E(CCSD(T)/CC-VTZ) = -231.80581896			Ċ	1.290929	0.526122	0.000001	1023, 1037, 1000, 1174, 1177, 1107, 1224, 1291, 1512, 1512
	E(CCSD(T)/CC-VQZ) = -231.87178577			С	1.101131	-0.854759	0.000008	1197, 1554, 1581, 1512, 1515,
	E(CCSD(1)/CBS) = -231.8991			С	-0.189773	-1.380914	-0.000005	1637, 1637, 3156, 3165, 3165,
				н	-2.295091	-0.935474	0.000002	3181, 3181, 3192
1: 1				н	-1.957753	1.519697	0.000014	
				н	0.337277	2.455243	0.000001	
				н	2.295060	0.935551	0.000002	
1				н	1.957705	-1.519760	0.000004	
				н	-0.337196	-2.455254	-0.000014	
INT 1	ZPE(B3LYP/6-311G**) = 0.103852	Α	189.32461	С	2.548491	-0.991634	-0.000004	92, 103, 181, 241, 247, 325.
	E(B3LYP+ZPE) = -232.642830	В	1029.38255	н	3.191979	-1.836872	0.000006	389, 642, 667, 678, 740, 823
(U ₁)	E(CCSD(T)/CC-VTZ) = -232.23979124	С	1196.51923	С	1.833875	-0.026000	0.000000	936 941 1034 1060 1006
				С	0.927003	1.126369	0.000006	100, 711, 1007, 1000, 1070, 1020,
				Н	1.137657	1.753529	0.875246	1233, 1284, 1319, 1400, 1457,
				н	1.137682	1.753554	-0.875210	1485, 1490, 1769, 2217, 3007,
								3017, 3025, 3027, 3065, 3111,

				С	-0.507719	0.736140	-0.000016	3476
				С	-1.253177	-0.339848	0.000001	
				Н	-0.748136	-1.312831	0.000013	
				С	-2.759869	-0.370412	0.000001	
				н	-3.136803	-0.901265	0.880485	
				Н	-3.177196	0.637496	-0.000016	
				Н	-3.136803	-0.901303	-0.880457	
INT 2	ZPE(B3LYP/6-311G**) = 0.104385	Α	202.37243	С	2.660953	-0.859630	-0.046105	45, 116, 204, 231, 328, 374,
	E(B3LYP+ZPE) = -232.648233	В	1017.42147	Н	3.398396	-1.623255	-0.011026	499, 624, 632, 683, 795, 804,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.24392426	С	1131.93657	С	1.825054	0.007552	-0.085379	825 968 1028 1083 1100
Q				С	0.842959	1.043811	-0.136526	123, 900, 1020, 1005, 1100, 1071, 1206, 1335, 1411, 1455
<u> </u>				Н	1.192433	2.031942	-0.433794	1271, 1290, 1333, 1411, 1433, 1409, 150(, 1702, 2002, 2002)
				С	-0.434148	0.859267	0.155464	1498, 1506, 1703, 2193, 2962,
- Y Y S.O.				С	-1.355993	-0.204413	0.576976	3024, 3036, 3103, 3104, 3108,
				Н	-1.786530	0.060274	1.550513	3477
				н	-0.773327	-1.125644	0.736123	
e				С	-2.489883	-0.468833	-0.430380	
				Н	-2.086470	-0.773232	-1.398468	
				Н	-3.143698	-1.264654	-0.065684	
				Н	-3.094458	0.428049	-0.581965	
INT 3	ZPE(B3LYP/6-311G**) = 0.103749	Α	218.13846	С	2.423233	-1.025899	0.000036	98, 130, 199, 292, 330, 420,
	E(B3LYP+ZPE) = -232.678518	В	908.93329	Н	3.060762	-1.875612	0.000041	541 664 670 684 720 790
(C_1)	E(CCSD(T)/CC-VTZ) = -232.27389648	С	1116.15573	С	1.706910	-0.061738	0.000002	8/3 073 063 1008 1077
- Q				С	0.845193	1.117604	0.000097	1205 1220 1207 1205 1277
				Н	1.099370	1.739364	0.871222	1205, 1220, 1267, 1505, 1507,
				Н	1.099924	1.740008	-0.870345	1457, 1501, 1523, 2225, 2978,
Q Q-6				С	-0.638440	0.851419	-0.000244	2988, 3135, 3140, 3146, 3234,
				Н	-1.263937	1.740519	-0.000288	3477
				С	-1.241468	-0.392476	-0.000192	
- 10 b				Н	-0.588484	-1.261897	-0.000446	
•				С	-2.608508	-0.605583	0.000166	
				Н	-3.307712	0.223556	0.000559	
				Н	-3.021448	-1.605908	0.000065	
INT 4	ZPE(B3LYP/6-311G**) = 0.103386	Α	243.59925	С	-2.359969	-1.171236	-0.000004	100, 103, 184, 229, 236, 332.
	E(B3LYP+ZPE) = -232.644276	В	918.91218	Н	-2.913398	-2.077670	-0.000010	374, 654, 664, 676, 714, 815
(C ₁)	E(CCSD(T)/CC-VTZ) = -232.24019738	С	1140.32211	С	-1.727973	-0.150198	-0.000001	952 955 1045 1050 1067
				С	-0.977148	1.102007	0.000005	132, 133, 1043, 1030, 1007, 1025, 1065, 1050, 1007, 1050, 1065, 1050, 1050, 1057, 1050, 1057, 1050,
				Н	-1.272817	1.697884	-0.873413	1235, 1205, 1350, 1377, 1455,
				Н	-1.272809	1.697868	0.873437	1400, 14/5, 1///, 2229, 2959,
								2998, 3010, 3019, 3046, 3071,

				С	0.533457	0.946724	-0.000008	3479
The second secon				С	1.201915	-0.178096	0.000018	
				С	2.581232	-0.678727	-0.000002	
				Н	2.781398	-1.294858	-0.882325	
				н	3.304074	0.152316	-0.000010	
				н	2.781428	-1.294872	0.882303	
				н	1.083043	1.896492	-0.000037	
Ŭ b								
INT 5	ZPE(B3LYP/6-311G**) = 0.103676	Α	77.81082	С	-3.198641	-0.411704	0.000352	120, 129, 191, 237, 299, 430,
	E(B3LYP+ZPE) = -232.698536	В	1330.81768	Н	-4.176107	-0.826976	0.000443	453, 527, 558, 666, 742, 804,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.28830833	С	1397.54097	С	-2.079414	0.058848	-0.000230	938 984 1031 1040 1130
				С	-0.803333	0.616038	-0.000193	1100 1270 1202 1410 1420
				н	-0.731050	1.700682	-0.000124	1109, 1270, 1505, 1410, 1450,
				С	0.385103	-0.141188	-0.000302	1476, 1488, 1555, 2091, 3001,
T T				н	0.281634	-1.224100	-0.000753	3037, 3092, 3128, 3134, 3144,
				С	1.643389	0.394526	0.000186	3473
				н	1.743840	1.478265	0.000823	
				С	2.907326	-0.401825	0.000090	
				н	3.523491	-0.169566	-0.877302	
				Н	3.523231	-0.170550	0.877892	
				Н	2.708380	-1.475929	-0.000396	
INT 6	ZPE(B3LYP/6-311G**) = 0.103466	А	105.72929	С	-3.116302	0.219307	-0.131814	100, 130, 177, 219, 287, 393,
(\mathbf{C})	E(B3LYP+ZPE) = -232.651657	В	1279.91939	н	-4.042702	0.719921	0.103680	525, 588, 634, 762, 777, 850,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.24306173	С	1312.77508	С	-1.849355	0.303326	0.212645	898 917 1057 1081 1097
				н	-1.546605	1.065856	0.938072	1163 1235 1306 1407 1434
	6			С	-0.773801	-0.553290	-0.297791	1405, 1205, 1500, 1407, 1404
0-0-6				н	-1.057566	-1.318416	-1.017015	1465, 1501, 1041, 2059, 5020,
6 - 5				С	0.484194	-0.446436	0.063990	3035, 3067, 3095, 3119, 3128,
Ū.				С	1.733185	-0.340518	0.420098	3249
				н	2.074761	-0.918398	1.279258	
				С	2.764941	0.522130	-0.266115	
				н	3.186271	1.251136	0.433740	
				н	3.595310	-0.089299	-0.634176	
				Н	2.333357	1.062087	-1.109634	

INT 7 (C ₁)	ZPE(B3LYP/6-311G**) = 0.103094 E(B3LYP+ZPE) = -232.683924 E(CCSD(T)/CC-VTZ) = -232.27798985	A B C	220.94625 804.29176 1014.10236	С Н Н С С С Н С Н С Н Н Н	0.155945 -0.640320 1.175685 -0.124675 -1.500802 -2.650685 -3.666277 0.860395 0.526336 2.330988 2.647239 2.900445 2.629899	1.606798 2.337944 1.968265 0.247150 -0.172001 -0.526763 -0.837926 -0.751870 -1.782456 -0.481585 0.038592 -1.409575 0.154780	0.000318 -0.000101 0.002257 -0.001084 -0.000853 0.000717 0.002676 -0.001592 0.003296 0.000019 0.913441 -0.065074 -0.841638	36, 151, 167, 288, 319, 481, 534, 555, 592, 640, 686, 703, 787, 808, 946, 1013, 1092, 1101, 1260, 1307, 1404, 1459, 1481, 1488, 1528, 2209, 2998, 3034, 3107, 3161, 3183, 3258, 3477
INT 8 (C1)	ZPE(B3LYP/6-311G**) = 0.102458 E(B3LYP+ZPE) = -232.657429 E(CCSD(T)/CC-VTZ) = -232.25472982	A B C	228.92736 784.41894 992.41029	С Н Н С С Н Н С Н Н С Н	0.222168 -0.539241 1.256939 -0.104839 0.914793 0.623543 0.776238 2.339211 3.117364 2.638200 -1.472805 -2.608135 -3.615401	1.605547 2.374630 1.920312 0.307088 -0.830042 -1.548441 -1.374064 -0.439403 -0.895965 0.197830 -0.106845 -0.508082 -0.843889	0.054179 0.026660 0.107945 0.033690 0.079079 -0.705942 1.020376 -0.094071 0.503060 -0.917588 -0.014550 -0.050292 -0.082712	77, 121, 165, 269, 301, 445, 516, 531, 563, 646, 680, 745, 770, 858, 937, 940, 1049, 1098, 1213, 1251, 1353, 1428, 1456, 1465, 1672, 2200, 2939, 3035, 3142, 3150, 3239, 3246, 3476
INT 9 (C ₁)	ZPE(B3LYP/6-311G**) = 0.102431 E(B3LYP+ZPE) = -232.648143 E(CCSD(T)/CC-VTZ) = -232.24719167	A B C	307.24834 709.83164 940.14899	С Н С Н С Н С Ц С Ц	-2.204954 -2.390260 -2.978892 -1.081893 -0.911394 0.032225 -0.225411 1.316761 2.365800 3.293401 0.090433	-0.793413 -0.701012 -1.268889 -0.351081 -0.455371 0.359472 0.310118 -0.322639 -0.881796 -1.378109 1.803296	0.120037 1.185903 -0.471575 -0.435306 -1.503180 0.330390 1.396960 0.137008 -0.036644 -0.183619 -0.086908	95, 147, 179, 210, 299, 388, 483, 526, 552, 673, 676, 695, 817, 925, 945, 1023, 1065, 1083, 1111, 1261, 1313, 1326, 1440, 1448, 1689, 2220, 2996, 3127, 3145, 3152, 3213, 3262, 3477

Н	-0.686344	2.478313	0.248945
Н	0.788670	2.131923	-0.844890

INT 10	ZPE(B3LYP/6-311G**) = 0.103593	Α	247.01869	С	0.264311	1.632423	0.000019	61, 160, 169, 280, 297, 464,
(\mathbf{C})	E(B3LYP+ZPE) = -232.695830	В	756.12454	Н	0.858021	1.897322	0.881872	492, 529, 575, 641, 664, 739,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.28825483	С	991.95115	Н	0.858428	1.897320	-0.881581	857 973 996 1024 1043
				Н	-0.637515	2.243345	-0.000232	1255 1292 1210 1402 1429
				С	-0.076614	0.162815	-0.000056	1255, 1265, 1510, 1402, 1456,
				С	0.934134	-0.836551	-0.000056	1483, 1496, 1551, 2085, 3013,
				Н	0.587005	-1.865810	-0.000129	3056, 3126, 3148, 3154, 3236,
				С	2.275911	-0.606532	0.000083	3471
				Ĥ	2.979773	-1.429085	0.000045	
—				Н	2.691244	0.393983	0.000158	
				Ĉ	-1.421245	-0.216544	-0.000137	
				Č	-2 595795	-0 524826	0.000026	
				н	-3 621164	-0.801790	0.000598	
					-5.021104	-0.001790	0.000370	
INT 11	ZPE(B3LYP/6-311G**) = 0.103641	Α	415.53350	С	-0.997120	1.782934	-0.000031	113, 128, 163, 214, 236, 292,
	E(B3LYP+ZPE) = -232.653490	В	577.83016	Н	-1.641785	1.833572	0.882280	420, 565, 586, 624, 679, 704,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.24878482	С	970.94005	Н	-0.330523	2.646001	0.000041	944 1079 1040 61 1108
				Н	-1.641812	1.833505	-0.882290	1101 1201 1402 1455 1469
				С	-0.196206	0.494155	0.000005	1191, 1391, 1403, 1455, 1408,
•				С	-0.932393	-0.736696	0.000219	1481, 1488, 1/25, 2186, 29/8,
1				Ċ	-1.560200	-1.765903	-0.000125	3027, 3 9, 3068, 3082, 3119,
				Н	-2.115615	-2.671305	-0.000053	3476
T D				Ē	1 128234	0.471100	-0.000120	
				Č	2.242369	-0.482526	-0.000001	
				н	2.877014	_0 351991	-0 882597	
				н	2.077014	-0.351724	0 882845	
1				н	1 867066	1 516/30	0.002043	
				11	1.00/900	-1.510457	0.000092	

INT 12	ZPE(B3LYP/6-311G**) = 0.103530	Α	439.40585	С	1.602632	-1.395145	-0.140071	164, 192, 194, 226, 374, 395,
(\mathbf{C})	E(B3LYP+ZPE) = -232.628818	В	454.18908	Н	2.581603	-1.109620	-0.508616	526, 642, 667, 719, 793, 818,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.22249192	С	818.88307	Н	1.415898	-2.451848	0.020977	850 910 1016 1051 1091
<u></u>				С	0.668557	-0.490044	0.107079	1110 1144 1327 1408 1440
				С	0.275603	0.894100	0.098473	1110, 1144, 1327, 1400, 1449, 1490, 1407, 1691, 1992, 2096
T				С	0.467690	2.152456	-0.116563	1489, 1497, 1681, 1823, 3026,
<u> </u>				Н	1.240735	2.823927	-0.454860	3078, 3087, 3108, 3127, 3211,
				С	-0.713518	-0.180283	0.538562	3251
				Н	-0.895220	-0.209425	1.613696	
				С	-1.914629	-0.519698	-0.326483	
- Y CY				Н	-2.257711	-1.539384	-0.126617	
				Н	-2.742746	0.164657	-0.124508	
				н	-1.660569	-0.446626	-1.386064	

$(C_1) = (CCSD(T)/CC-VTZ) = -232.23844946 = CCSD(T)/CC-VTZ) = -232.23844946 = -232.23846 = -232.23844946 = -232.23846 = -232.23846 = -232.23846 = -232.23846 = -232.23846 = -232.23846 = -232.23846 = -232.23846 = -232.23846 = -232.23846 = -232.23846 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23844946 = -232.23846 = -232.238446 = -232.238$	76, 780, 078,
$ \begin{array}{c} (C_1) \\ (C_1) \\ (C_2) $	078,
H 0.307821 1.659660 -1.406183 1126 1296 1315 1402	070,
	3 1400
$ \begin{array}{c} \bullet \\ \bullet $	2, 1400,
H = 0.178464 = 0.791180 = 1.529653 = 1493, 1500, 1737, 2209, 173	9, 2998,
$\bigcirc \qquad \qquad$	1, 3153,
C = 1.824217 = -1.387486 = -0.116734 = -3476	
Н 2.516298 -2.158916 -0.350433	
C -1.308453 0.081356 0.227000	
C -1.961978 -0.969041 -0.195120	
Н -1.440865 -1.879647 -0.501003	
Н -3.046615 -0.984667 -0.257997	
INT 1.4 ZPE(B3LYP/6-311G**) = 0.103091 A 252.81483 C -0.446541 1.642478 0.000055 136, 160, 164, 258, 278,	8.460.
$\begin{array}{c} (1) \\ (2) \\ (3) \\ (4) \\ (5) \\ (6) \\ (5) \\ (6) \\$	6 843
(C1) $E(CCSD(T)/CC-VTZ) = -232.24474913$ C 989.52309 H 0.412514 2.313033 0.000024 967, 509, 509, 1014 10	1050
H = -1.060347 = 1.852858 = -0.880880 = 0.52, 0.05, 1013, 1014, 107	1059,
C = -0.010731 = 0.192991 = -0.000084 = 1218, 1233, 1314, 1405,	5, 1465,
C = 1.259568 = -0.145942 = -0.000422 = 1481, 1499, 1634, 2034, 1499, 14900, 1490, 14900, 1490, 14900, 1490, 14900, 14900, 14900, 14900, 14900, 14900	4, 3027,
C = 2.517780 = -0.480461 = 0.000174 = 3040, 3079, 3101, 3125, 1000000000000000000000000000000000000	5, 3169,
H $3.067780 - 0.626035 - 0.926521 - 3250$	
H 3.068722 -0.626257 -0.925575	
C = -1.051661 = -0.850890 = -0.000014	

С	-2.349233	-0.635547	0.000052
Н	-3.256644	-1.219136	0.000169

INT 15	ZPE(B3LYP/6-311G**) = 0.103374	Α	325.66157	С	-2.238439	-0.879910	-0.217612	92, 181, 205, 239, 327, 387,
(\mathbf{C})	E(B3LYP+ZPE) = -232.634282	В	681.51375	Н	-3.147184	-1.395662	0.052041	511, 543, 669, 676, 679, 739,
(C1)	E(CCSD(T)/CC-VTZ) = -232.23441699	С	937.27643	С	-1.159655	-0.425659	0.360446	839, 866, 936, 1053, 1083,
				Н	-1.022756	-0.546573	1.440930	1141 1235 1309 1333 1406
				С	-0.026524	0.305582	-0.352268	1404 1409 1670 2217 2026
Y				Н	-0.242158	0.287614	-1.425432	1494, 1496, 1070, 2217, 3020,
				С	1.246614	-0.386581	-0.129591	3035, 3040, 3107, 3112, 3248,
7				С	2.291297	-0.946188	0.069939	3477
				Н	3.213822	-1.445019	0.238745	
				С	0.051291	1.778814	0.107498	
				Н	0.862628	2.297316	-0.407569	
				Н	-0.889693	2.287755	-0.111638	
				Н	0.237835	1.838220	1.182454	
INT 16	ZPE(B3LYP/6-311G**) = 0.102332	Α	141.60120	С	-2.945252	0.626949	0.125651	76, 103, 130, 176, 238, 347,
(\mathbf{C})	E(B3LYP+ZPE) = -232.668475	В	1253.10151	Н	-3.574752	0.473471	1.002906	434, 489, 602, 746, 852, 877,
(\mathbf{C}_{1})	E(CCSD(T)/CC-VTZ) = -232.25317510	С	1313.55832	Н	-3.275925	1.401998	-0.567176	892 978 984 1054 1057
- Q - Q_				С	-1.866451	-0.064969	-0.078587	1007 1302 1360 1401 1447
i ka se				С	-0.745440	-0.791085	-0.323551	1097, 1502, 1509, 1401, 1447, 1495, 1402, 1976, 1024, 2010
				Н	-0.872927	-1.710800	-0.897686	1405, 1492, 1670, 1954, 5016,
				С	0.514247	-0.475595	0.076230	3037, 3054, 3067, 3081, 3108,
÷ •				С	1.716868	-0.215099	0.495059	3116
				Н	2.028560	-0.599898	1.471099	
				С	2.758626	0.592867	-0.247959	
				н	3.065393	1.460674	0.345155	
				н	3.655374	-0.009303	-0.427882	
				Н	2.378688	0.945448	-1.207474	

INT 17 (C ₁)	ZPE(B3LYP/6-311G**) = 0.103935 E(B3LYP+ZPE) = -232.638741 E(CCSD(T)/CC-VTZ) = -232.23804379	A B C	211.87286 818.35328 1007.95617	С Н С С С Н С Н Н С Н Н Н Н Н Н	-2.691573 -3.703806 -1.551729 -0.173748 0.157216 1.055897 0.840851 0.624564 0.624618 2.308383 2.554426 2.953559 2.554342	-0.425309 -0.747366 -0.037508 0.356058 1.633773 2.230092 -0.793652 -1.417328 -1.417987 -0.372499 0.220855 -1.254183 0.220735	0.000117 0.000350 -0.000139 -0.000400 0.000082 0.000569 0.000088 0.874631 -0.874006 0.000006 0.884555 0.000026 -0.884645	78, 157, 234, 279, 283, 428, 536, 544, 648, 675, 681, 754, 794, 825, 1004, 1074, 1089, 1140, 1287, 1347, 1413, 1475, 1498, 1507, 1643, 2202, 3022, 3031, 3049, 3095, 3098, 3253, 3477
INT 18 (C ₁)	ZPE(B3LYP/6-311G**) = 0.103532 E(B3LYP+ZPE) = -232.630789 E(CCSD(T)/CC-VTZ) = -232.22322260	A B C	170.71829 859.76801 1007.26453	С Н С Н Н С Н Н Н Н Н Н Н	2.558306 2.980410 1.405408 0.672721 0.704053 0.701038 -0.027239 -1.174404 -1.138266 -2.530187 -3.108859 -2.457039 -3.108962	-0.627940 -1.620018 -0.044956 1.290179 1.875782 1.875795 -0.015677 -0.681318 -1.768404 -0.040099 -0.347391 1.048922 -0.345816	0.000070 0.002525 -0.000957 0.000016 0.916934 -0.917017 0.000595 -0.000384 -0.001572 0.000288 0.878804 0.001267 -0.878705	140, 160, 163, 302, 336, 384, 510, 645, 646, 801, 823, 851, 962, 963, 1020, 1030, 1048, 1057, 1126, 1348, 1410, 1446, 1481, 1490, 1695, 1835, 3012, 3053, 3069, 3103, 3136, 3148, 3254
INT 19 (C _s)	ZPE(B3LYP/6-311G**) = 0.104274 E(B3LYP+ZPE) = -232.665167 E(CCSD(T)/CC-VTZ) = -232.26020277	A B C	65.71132 1300.02267 1365.73399	С Н С Н С Н С Н С Н С Н Н Н Н	-0.957972 -1.148052 -1.681005 -2.770013 -1.253551 -2.070988 0.000000 0.100402 1.240522 1.163259 2.451575 2.567995 3.359982	-1.970663 -3.033462 -0.868792 -1.002869 0.532575 1.246791 1.035233 2.118355 0.287363 -0.796802 0.860545 1.940187 0.270241	0.000000 0.000000 0.000000 0.000000 0.000000	57, 137, 161, 323, 380, 441, 582, 684, 702, 796, 844, 867, 930, 938, 992, 1002, 1042, 1165, 1281, 1282, 1317, 1406, 1476, 1610, 1645, 1688, 3007, 3125, 3131, 3139, 3162, 3219, 3240

	INT 20 (C ₁)	ZPE(B3LYP/6-311G**) = 0.108284 E(B3LYP+ZPE) = -232.746121 E(CCSD(T)/CC-VTZ) = -232.34640585	A B C	337.39947 343.16379 669.78451	С С С С С С Н Н Н Н Н Н Н Н Н Н	0.624360 -0.738240 -1.453545 -0.741019 0.621450 1.446697 1.151537 -1.291883 -2.536340 -1.296699 1.147058 2.133255 2.134852	1.254359 1.225403 0.001588 -1.223869 -1.255785 -0.001448 2.202605 2.159124 0.002939 -2.156388 -2.204878 -0.002685 -0.002205	-0.000186 0.000000 0.000197 0.000000 -0.000261 0.000167 -0.000423 0.000010 -0.000377 0.000086 -0.000429 0.866104 -0.864479	173, 384, 527, 566, 593, 636, 726, 774, 870, 933, 968, 968, 974, 987, 997, 1110, 1171, 1182, 1198, 1307, 1369, 1416, 1437, 1455, 1545, 1610, 2902, 2918, 3150, 3152, 3170, 3171, 3194
	INT 21 (C ₁)	ZPE(B3LYP/6-311G**) = 0.108644 E(B3LYP+ZPE) = -232.688062 E(CCSD(T)/CC-VTZ) = -232.18661895	A B C	322.62762 371.08553 671.74715	С С С С С С Н Н Н Н Н Н Н Н Н	-0.258158 1.018369 1.465860 0.274734 -1.000594 -1.432326 -0.493426 1.807062 2.100199 -1.780237 -2.071288 -2.070629 2.101010	1.323004 0.944639 -0.508836 -1.385644 -1.081584 0.378469 2.384144 1.692719 -0.706424 -1.839481 0.577829 0.577610 -0.706687	-0.000085 -0.000172 0.000216 -0.000156 -0.000199 0.000234 -0.000251 -0.000475 0.874981 -0.000410 -0.871969 0.872972 -0.873881	133, 365, 398, 525, 575, 655, 751, 850, 900, 907, 948, 963, 978, 1003, 1029, 1185, 1199, 1205, 1254, 1324, 1351, 1403, 1470, 1473, 1709, 1746, 2983, 2993, 2994, 3005, 3129, 3131, 3153
¢	TS 1 (C ₁)	ZPE(B3LYP/6-311G**) = 0.097660 E(B3LYP+ZPE) = -232.576675 E(CCSD(T)/CC-VTZ) = -232.16278271	A B C	241.33836 806.31815 974.31940	С Н С Н С Н Н Н Н Н Н	2.443404 3.137381 1.393030 0.790867 1.406673 -0.505188 -1.213326 -1.431346 0.180104 -2.217208 -1.896724 -2.348359 -3.197209	-0.878500 -1.682999 -0.201670 1.131425 1.952226 1.138338 0.036256 0.023046 -0.701169 -0.708240 -0.747855 -1.729091 -0.219811	-0.021668 0.061301 0.023367 -0.220375 -0.564406 0.048372 0.520452 1.591280 0.444564 -0.332620 -1.375501 0.035280 -0.297684	2026i, 127, 177, 200, 281, 382, 461, 515, 575, 607, 708, 820, 872, 882, 939, 1033, 1068, 1108, 1135, 1238, 1382, 1404, 1474, 1487, 1496, 1701, 1887, 3020, 3073, 3078, 3111, 3203, 3425

TS 2 (C ₁)	ZPE(B3LYP/6-311G**) = 0.098341 E(B3LYP+ZPE) = -232.578290 E(CCSD(T)/CC-VTZ) = -232.17018738	A B C	169.64077 984.90200 1131.36937	С Н С Н Н С С Н С Н Н С Н Н Н Н	-2.625532 -3.370644 -1.793358 -0.748476 -0.864776 -0.864769 0.632896 1.205546 0.777508 2.646883 3.222264 1.970510 3.222162	-0.795188 -1.552308 0.071760 1.093881 1.744293 1.744319 0.502340 -0.689992 -1.685981 -0.262820 -0.376471 0.982560 -0.376299	0.000018 0.000032 0.000005 -0.000011 -0.875065 0.875023 -0.000007 -0.000028 -0.000084 0.000025 -0.918630 -0.000046 0.918766	2166i, 88, 113, 231, 310, 328, 464, 470, 668, 672, 705, 812, 888, 940, 943, 990, 1046, 1051, 1117, 1225, 1227, 1312, 1430, 1456, 1724, 1822, 2215, 3015, 3036, 3059, 3150, 3182, 3478
TS 3	ZPE(B3LYP/6-311G**) = 0.097834	А	152.99259	С	-2.919013	-0.718376	-0.024336	2116i, 30, 106, 167, 201, 272,
(C.)	E(B3LYP+ZPE) = -252.569091 E(CCSD(T)/CC VTZ) = -232.1590(0.47)	В	1227.80928	Н	-3.770449	-1.338482	-0.160718	330, 381, 434, 523, 666, 677,
	E(UUSD(1)/UU-V1Z) = -252.15896047	С	1271.37002	С	-1.955065	-0.019197	0.129429	789, 918, 942, 993, 1036, 1044,
				С	-0.782114	0.832294	0.316574	1214, 1295, 1389, 1453, 1468,
.				Н	-1.043955	1.867445	0.071463	1477, 1919, 2226, 2338, 2980.
				Н	-0.490042	0.824035	1.376637	2004 3030 3070 3001 3480
				С	0.406542	0.413113	-0.517151	2994, 5059, 5070, 5091, 5400
	R			С	1.625096	-0.019604	-0.474799	
				Н	1.036991	0.172543	-1.614874	
				C	2.788895	-0.456326	0.345746	
				Н	3.052716	-1.492770	0.120186	
				Н	3.666798	0.160440	0.137160	
				H	2.561896	-0.384635	1.417372	
TS 4	$ZPE(B3LYP/6-311G^{**}) = 0.098588$	A	170.84743	C	2.753711	-0.871561	0.099867	1941i, 90, 150, 195, 237, 276,
(C 1)	E(BSLYP+ZPE) = -232.58/158 E(CCSD(T)/CCVTZ) = -232.17275664	B	1111.70864	Н	3.498936	-1.625381	0.167721	380, 447, 598, 638, 677, 695,
	E(CC3D(1)/CC-V1Z) = -232.17273004	С	1234.44543	C	1.906203	-0.017122	0.008037	817, 861, 982, 1052, 1097,
~				C	0.899546	0.986136	-0.036279	1127, 1134, 1298, 1366, 1407,
W				Н	0.153718	1.204574	1.011260	1481, 1488, 1710, 2094, 2168,
<u> </u>	P			Н	1.207149	1.995966	-0.296755	3010 3036 3053 3108 3130
	lie -			C	-0.514989	0.712653	-0.048476	3475
				C	-1.378949	-0.236143	-0.376806	5475
0	-			н	-1.099531	-0.909/49	-1.194033	
				C H	-2.742248	-0.436262	0.220185	
					-2.829355	-1.433004	0.005/22	
					-2.9482/3	0.305/8/	0.995202	
				н	-3.522288	-0.363738	-0.546279	

TS 5 (C1)	ZPE(B3LYP/6-311G**) = 0.098668 E(B3LYP+ZPE) = -232.575320 E(CCSD(T)/CC-VTZ) = -232.16474351	A B C	340.48370 621.79606 934.02602	С Н С С Н Н С С С С Н Н Н Н Н Н Н Н Н Н	2.027117 2.536015 1.446895 0.773376 1.019452 1.199596 -0.742773 -1.509588 -1.626238 -1.089855 -2.597919 -2.086481 -1.193538	-1.129742 -2.058612 -0.081103 1.209932 1.662870 1.887426 1.193023 0.120211 -1.259093 -1.704861 -0.358722 -1.929918 2.182447	-0.082994 -0.162488 0.000963 0.101656 1.073127 -0.649423 -0.057154 -0.217808 0.116741 0.953723 0.296740 -0.600997 -0.079102	1932i, 68, 121, 215, 331, 350, 388, 449, 661, 677, 701, 773, 822, 853, 938, 984, 1031, 1086, 1130, 1225, 1289, 1368, 1447, 1464, 1691, 2172, 2223, 2982, 3014, 3067, 3125, 3189, 3478
TS 6 (C ₁)	ZPE(B3LYP/6-311G**) = 0.097151 E(B3LYP+ZPE) = -232.545358 E(CCSD(T)/CC-VTZ) = -232.12728861	A B C	207.63165 1024.16542 1210.17185	С Н С С Н Н С С С Н Н Н Н Н	2.592955 3.251292 1.845211 0.977387 -0.051966 1.360020 -0.513600 -1.267723 -2.683028 -2.898674 -3.320512 -3.013715 -1.033662	-1.028167 -1.860780 -0.072675 1.011444 1.010635 2.022987 0.875124 -0.281580 -0.637385 -1.125328 0.259239 -1.324535 1.817220	0.009818 0.030000 -0.009194 -0.057255 1.085658 -0.078065 -0.013512 -0.122187 0.025291 0.986440 -0.035134 -0.761984 -0.224682	1587i, 96, 110, 120, 238, 267, 383, 430, 487, 565, 681, 688, 805, 844, 968, 1022, 1051, 1154, 1190, 1287, 1357, 1395, 1444, 1475, 1529, 2119, 2264, 2951, 2998, 3020, 3036, 3196, 3476
TS 7 (C ₁)	ZPE(B3LYP/6-311G**) = 0.098860 E(B3LYP+ZPE) = -232.590159 E(CCSD(T)/CC-VTZ) = -232.17510583	A B C	189.92971 1027.10722 1170.65428	С Н С С Н С С Н Н С С Н Н С Н Н Н Н Н Н	2.652611 3.361064 1.849937 0.906928 1.289120 -0.434709 -1.289292 -1.376810 -0.911963 -2.609568 -2.477783 -3.369477 -2.969590	-0.917123 -1.708074 -0.012073 1.039454 2.055832 0.813370 -0.170745 1.127407 -0.836668 -0.536596 -1.431093 -0.768476 0.263353	-0.049612 -0.058173 -0.036956 -0.041523 -0.059992 -0.139589 0.399108 0.696686 1.183259 -0.225699 -0.845255 0.525264 -0.876171	1674i, 98, 165, 204, 249, 316, 416, 508, 564, 620, 675, 765, 816, 884, 996, 1031, 1098, 1113, 1140, 1309, 1383, 1408, 1480, 1492, 1521, 2147, 2154, 3017, 3029, 3071, 3108, 3142, 3477

TS (C1	8)	ZPE(B3LYP/6-311G**) = 0.095639 E(B3LYP+ZPE) = -232.574496 E(CCSD(T)/CC-VTZ) = -232.15222058	A B C	165.43867 1155.85506 1216.98765	С Н С С Н Н С С Н С С Н С Н Н Н Н Н	-2.884543 -3.694277 -1.888633 -0.727993 -1.192643 -0.917486 0.476563 1.692018 2.153608 2.551025 2.826730 2.031821 3.481622	0.625543 1.314905 0.040574 -0.777061 0.262958 -1.664522 -0.633090 -0.271277 -0.671936 0.679920 1.551797 1.028146 0.190999	-0.312782 -0.363077 0.107241 0.372678 1.317058 0.973173 -0.231060 -0.530862 -1.435583 0.275523 -0.327011 1.169432 0.581586	1663i, 74, 126, 172, 206, 339, 353, 471, 487, 586, 657, 748, 784, 845, 932, 965, 1052, 1065, 1091, 1161, 1312, 1386, 1399, 1484, 1493, 1921, 2048, 3018, 3068, 3071, 3114, 3119, 3435
TS (C1	9)	ZPE(B3LYP/6-311G**) = 0.096526 E(B3LYP+ZPE) = -232.580462 E(CCSD(T)/CC-VTZ) = -232.16166586		167.30879 1160.05338 1252.04109	С Н Н С С Н С Н С Н Н Н Н	-2.769759 -2.984989 -3.011087 -1.929219 -0.748474 -0.899913 0.470265 1.661298 1.972542 2.668846 2.939443 3.590148 2.276114	0.843670 -0.294745 1.822952 -0.131307 -0.847003 -1.737762 -0.533200 -0.241764 -0.652850 0.627900 1.490125 0.069463 0.993044	0.109535 0.721192 -0.310769 0.027339 -0.362247 -0.969179 0.039365 0.478802 1.440869 -0.234540 0.383613 -0.431086 -1.184162	2088i, 77, 135, 155, 179, 213, 284, 406, 491, 540, 640, 741, 826, 867, 879, 940, 1056, 1082, 1135, 1296, 1404, 1412, 1485, 1497, 1886, 1999, 2317, 3018, 3030, 3066, 3078, 3115, 3117
		ZPE(B3LYP/6-311G**) = 0.095038 E(B3LYP+ZPE) = -232.587547 E(CCSD(T)/CC-VTZ) = -232.17036273	A B C	155.59388 1197.51882 1235.81355	С Н С Н Н С Н Н Н Н Н Н	2.924215 3.798005 1.927400 0.766462 0.600039 0.941638 -0.435088 -1.638105 -1.954046 -2.650698 -2.951975 -2.246922 -3.551855	-0.689205 -1.289578 -0.020953 0.812541 0.787576 1.874986 0.422473 0.031369 0.069829 -0.486400 -1.505837 -0.490389 0.134463	-0.043779 -0.108694 0.033252 0.116853 2.024260 0.274756 -0.307673 -0.602550 -1.645802 0.393447 0.133555 1.405969 0.378658	761i, 97, 133, 171, 214, 317, 351, 403, 480, 570, 610, 637, 692, 775, 869, 938, 977, 1057, 1082, 1139, 1296, 1403, 1413, 1485, 1496, 1989, 2215, 3025, 3076, 3091, 3115, 3125, 3478

TS 11 (C ₁)	ZPE(B3LYP/6-311G**) = 0.094987 E(B3LYP+ZPE) = -232.589955 E(CCSD(T)/CC-VTZ) = -232.17293857	A B C	150.43376 1209.58174 1289.34552	С Н С С Н С С Н Н С Н Н Н Н Н Н Н	-3.032230 -3.928710 -2.008386 -0.825507 -0.938052 0.371942 1.615799 1.916311 2.419032 2.563794 2.222749 3.567322 2.628869	-0.614975 -1.162175 -0.005563 0.753658 1.684062 0.410883 0.179505 0.479584 1.939939 -0.730587 -0.898061 -0.301663 -1.699206	0.110362 0.268867 -0.061527 -0.291414 -0.850061 0.122369 0.480080 1.482881 -0.059977 -0.272591 -1.294426 -0.303778 0.232828	570i, 93, 138, 180, 216, 271, 382, 407, 454, 533, 613, 636, 690, 786, 869, 917, 980, 1055, 1090, 1144, 1297, 1407, 1424, 1488, 1498, 1990, 2209, 3032, 3088, 3092, 3111, 3129, 3478
TS 12 (C1)	ZPE(B3LYP/6-311G**) = 0.094495 E(B3LYP+ZPE) = -232.589859 E(CCSD(T)/CC-VTZ) = -232.17294381	A B C	155.13636 1196.52770 1262.31607	С Н С С Н С Н С Н Н Н Н Н Н	-2.941357 -3.791463 -1.967510 -0.853015 -1.053837 0.399997 1.003201 1.543818 1.688608 2.684742 2.912436 3.589582 2.451430	-0.723212 -1.358458 -0.015183 0.861178 1.924028 0.449252 1.354491 -0.049262 -0.138485 -0.506186 -1.557877 0.069104 -0.392325	0.089316 0.134350 0.036667 -0.026032 0.093620 -0.168253 1.665673 -0.553045 -1.630789 0.314217 0.114085 0.093207 1.372633	511i, 41, 112, 144, 206, 277, 357, 431, 441, 524, 618, 627, 686, 756, 865, 891, 997, 1059, 1086, 1158, 1306, 1406, 1426, 1481, 1496, 1985, 2193, 3024, 3073, 3092, 3119, 3124, 3476
TS 13 (C ₁)	ZPE(B3LYP/6-311G**) = 0.095194 E(B3LYP+ZPE) = -232.582071 E(CCSD(T)/CC-VTZ) = -232.17016156	A B C	157.56344 1238.64928 1351.82689	С Н С С Н Н С С Н С С Н Н С Н Н Н Н Н	2.881938 3.655073 2.003434 0.944948 1.035494 1.101003 -0.408761 -1.561151 -1.963119 -2.882785 -3.657155 -2.899832 -3.137209	-0.866489 -1.589081 -0.055785 0.950714 1.677309 1.518848 0.394889 0.049748 1.213678 -0.573723 0.175052 -1.296657 -1.095266	0.099419 0.191988 -0.002393 -0.131624 0.687751 -1.056951 -0.118753 0.030295 1.575895 -0.064733 -0.248294 -0.884688 0.861034	562i, 47, 89, 147, 182, 250, 320, 387, 413, 488, 537, 671, 689, 779, 925, 945, 1050, 1062, 1155, 1238, 1342, 1415, 1451, 1478, 1483, 2233, 2286, 2996, 3026, 3032, 3095, 3096, 3478

TS 14 (C1)	ZPE(B3LYP/6-311G**) = 0.094457 E(B3LYP+ZPE) = -232.583146 E(CCSD(T)/CC-VTZ) = -232.16882078	A B C	326.89573 714.46456 1018.01679	C H C C H H C H C C H H H H	1.995141 2.403146 1.527240 0.964369 1.337570 1.337383 -0.555403 -0.965858 -1.378790 -2.198665 -2.604688 -1.025724 -2.605177	1.301045 2.281674 0.195563 -1.149321 -1.698432 -1.698148 -1.220352 -2.229268 -0.212347 0.812033 1.205478 2.572897 1.206071	-0.000137 -0.000250 -0.000006 0.000150 -0.873762 0.874321 0.000043 0.000109 -0.000439 0.000028 0.926316 0.001228 -0.925788	432i, 80, 103, 212, 228, 317, 327, 341, 450, 588, 670, 684, 695, 828, 881, 898, 952, 1000, 1025, 1142, 1236, 1300, 1372, 1463, 1475, 2027, 2231, 3005, 3024, 3111, 3120, 3195, 3480
TS 15	ZPE(B3LYP/6-311G**) = 0.095034	Α	192.83225	С	-2.717987	-0.998835	-0.000094	480i, 54, 101, 112, 198, 226,
(\mathbf{C}_{1})	E(B3LYP+ZPE) = -232.582909 E(CCSD(T)/CCYTZ) = -232.17007465	В	1133.65400	Н	-3.422512	-1.793816	-0.000170	322, 380, 388, 448, 568, 670,
	E(CCSD(1)/CC-V1Z) = -232.17097403	С	1304.21341	C	-1.917337	-0.104977	-0.000011	688, 754, 933, 950, 1046, 1056,
<u> </u>				C	-0.958608	1.003606	0.000093	1161, 1245, 1339, 1414, 1458,
				Н	-1.138394	1.640348	-0.873663	1473, 1478, 2231, 2298, 3019,
				Н	-1.138326	1.640123	0.874031	3021 3043 3075 3086 3479
				C	0.445346	0.557861	-0.000004	5021, 5045, 5075, 5000, 5475
				H	1.230225	2.421719	-0.001007	
<i>a</i>				C	1.490084	-0.054156	0.000364	
e				C	2.816025	-0.651141	-0.000097	
				Н	2.969086	-1.274816	0.885082	
				Н	2.968324	-1.275003	-0.885275	
				H	3.586458	0.127289	-0.000505	
TS 16	$ZPE(B3LYP/6-311G^{**}) = 0.094764$	Α	127.97713	С	-2.923163	0.568421	0.006847	656i, 51, 79, 180, 222, 329,
(\mathbf{C}_{1})	E(BSLYP+ZPE) = -252.581219 E(CCSD(T)/CCVTT) = -232.16721696	B	1201.45613	H	-3.825737	1.114531	0.131437	409, 458, 493, 558, 618, 669,
	E(CCSD(1)/CC-V1E) = -232.10/21090	С	1247.34025	C	-1.901158	-0.044378	-0.142522	685, 855, 895, 907, 956, 1017,
				C	-0.652430	-0.789372	-0.302923	1022, 1135, 1218, 1301, 1375,
				Н	-0.839598	-1.846049	-0.070474	1462, 1471, 1986, 2224, 3005,
				Н	-0.326010	-0.750170	-1.345530	3069 3122 3139 3208 3478
40				C	0.457329	-0.281682	0.599021	0007,0122,0107,0200,0470
6				Н	0.221120	-0.182798	1.655638	
				C	1.629534	0.132967	0.159489	
				Н	1.002263	1.962997	-0.357849	
				C	2.8/8646	0.262814	-0.203288	
				Н	3.546814	-0.592886	-0.159174	
Н 3.288601 1.201750 -0.553796

TS 17 (C ₁)	ZPE(B3LYP/6-311G**) = 0.094408 E(B3LYP+ZPE) = -232.614911 E(CCSD(T)/CC-VTZ) = -232.20234012	A B C	118.03208 1412.99698 1461.76804	С Н С Н С Н С Н С Н С Н Н Н Н Н	-3.265465 -4.273475 -2.117587 -0.782532 -0.641283 0.294635 0.149257 1.653945 1.785628 2.728594 3.728539 5.545028 2.636768	-0.095010 -0.317573 0.148081 0.467612 1.366733 -0.262121 -1.159555 0.079414 0.979680 -0.638409 -0.345478 2.820184 -1.541396	0.304817 0.554971 0.026549 -0.321017 -0.917139 0.036384 0.631898 -0.328553 -0.925160 0.022099 -0.273603 1.870321 0.617037	26i, 5, 18, 134, 139, 207, 308, 446, 461, 555, 627, 668, 681, 881, 937, 960, 976, 1037, 1043, 1195, 1286, 1315, 1331, 1453, 1643, 1687, 2196, 3129, 3131, 3138, 3153, 3224, 3476
TS 18 (C ₁)	ZPE(B3LYP/6-311G**) = 0.097687 E(B3LYP+ZPE) = -232.600752 E(CCSD(T)/CC-VTZ) = -232.18104339	A B C	98.54634 1181.70319 1268.32619	С Н С Н Н С Н С Н С Н С Н Н Н	-3.096685 -4.082924 -1.879898 -0.458439 -1.268241 -0.121905 0.467546 0.077167 1.889691 2.451736 2.599794 2.130424 3.681686	0.030770 0.057869 -0.187043 -0.334505 -0.618482 -1.337351 0.704264 1.709633 0.544102 1.474436 -0.608769 -1.584285 -0.594731	-0.116000 0.294202 0.011568 -0.106768 1.074956 -0.352886 0.008979 0.123363 -0.006813 -0.006813 -0.039829 0.015691 0.079567 -0.019310	1690i, 94, 139, 207, 261, 420, 484, 553, 580, 622, 630, 773, 811, 863, 985, 1001, 1006, 1018, 1114, 1256, 1300, 1319, 1450, 1498, 1599, 1699, 1987, 3134, 3140, 3152, 3172, 3227, 3384
TS 19 (C ₁)	ZPE(B3LYP/6-311G**) = 0.095537 E(B3LYP+ZPE) = -232.590328 E(CCSD(T)/CC-VTZ) = -232.17523560	A B C	103.80292 1360.99460 1417.01005	C H C C H C C	-3.289562 -4.317957 -2.120360 -0.790496 -0.957452 0.412117 1.847965	-0.361715 -0.621685 -0.071318 0.267343 1.526413 0.320425 0.537029	-0.061154 -0.114703 -0.006136 0.066177 1.471860 -0.153748 -0.219704	777i, 60, 102, 129, 239, 263, 318, 446, 498, 542, 554, 652, 653, 704, 786, 954, 1077, 1096, 1166, 1281, 1348, 1414, 1466, 1497, 1507, 2134, 2274, 2998, 3035, 3040, 3110, 3115, 3478

0- 0-6					Н Н С Н Н	2.100531 2.113607 2.675293 2.460752 3.741945 2.448835	1.368041 0.870699 -0.707592 -1.535922 -0.479927 -1.032650	0.452956 -1.229523 0.154242 -0.523670 0.093678 1.171348	
°€-0	TS 20 (C ₁)	ZPE(B3LYP/6-311G**) = 0.094045 E(B3LYP+ZPE) = -232.592448 E(CCSD(T)/CC-VTZ) = -232.16630266	A B C	85.31246 1415.40906 1441.20142	H H C C H C H H H	3.236000 3.765242 3.828073 1.942803 0.695283 0.779389 -0.566332 -1.858074 -2.221694 -2.891371 -3.466830 -3.602533 -2.431497	0.269388 0.760540 -0.059225 0.076229 -0.212417 -1.037844 -0.335975 -0.461945 -1.362620 0.547675 0.897399 0.094358 1.409662	-0.052914 -0.864252 0.799144 -0.089815 0.081619 1.841037 -0.103097 -0.278343 -0.771970 0.148076 -0.715526 0.846776 0.631632	736i, 92, 122, 135, 172, 249, 296, 421, 467, 511, 542, 569, 730, 795, 855, 974, 993, 1050, 1095, 1257, 1400, 1405, 1477, 1483, 1525, 1929, 2155, 3018, 3065, 309, 6, 3106, 3125, 3172
0 0 0 0	TS 21 (C ₁)	ZPE(B3LYP/6-311G**) = 0.094136 E(B3LYP+ZPE) = -232.592914 E(CCSD(T)/CC-VTZ) = -232.17543530	A B C	165.76401 1203.35129 1278.25692	С Н С С Н С С Н С Н Н Н Н Н	2.863131 2.909068 3.749768 1.871301 0.703464 0.835362 -0.505987 -1.705759 -2.048609 -2.670842 -2.946988 -3.592405 -2.238049	0.482262 2.241718 0.914829 -0.112595 -0.808327 -1.606058 -0.543495 -0.292994 -0.824031 0.686203 1.460985 0.177705 1.168526	-0.332677 1.078635 -0.726173 0.017494 0.429092 1.158839 -0.019244 -0.453322 -1.341433 0.169669 -0.552254 0.469927 1.046378	299i, 59, 99, 145, 188, 195, 255, 352, 458, 540, 613, 675, 679, 756, 875, 897, 988, 1059, 1089, 1153, 1303, 1407, 1435, 1485, 1500, 2037, 2174, 3024, 3074, 3101, 3109, 3124, 3474
	TS 22 (C ₁)	ZPE(B3LYP/6-311G**) = 0.097706 E(B3LYP+ZPE) = -232.587816 E(CCSD(T)/CC-VTZ) = -232.17734193	A B C	377.78863 804.42286 1158.83561	C H C C H H C	-2.136881 -2.577653 -1.637872 -1.038543 -1.400575 -1.400508 0.426206	1.280267 2.246882 0.188635 -1.151675 -1.705328 -1.705313 -1.145108	0.000038 -0.000086 -0.000022 -0.000012 0.875273 -0.875334 0.000031	468i, 21, 45, 69, 183, 310, 330, 343, 460, 500, 551, 657, 671, 688, 725, 833, 898, 932, 983, 1244, 1332, 1412, 1423, 1453, 2081, 2227, 3008, 3030, 3089, 3246, 3262, 3404, 3478

				С Н С Н Н	1.621400 2.658240 2.132594 2.692500 1.134431 2.692132	-0.900958 -1.148719 1.353237 1.398568 1.768442 1.399077	0.000022 -0.000003 -0.000009 -0.925985 -0.000316 0.926165	
TS 23	ZPE(B3LYP/6-311G**) = 0.098996	Α	230.46509	С	-0.147918	1.639163	-0.023465	1813i, 125, 166, 272, 304, 410,
(\mathbf{C})	E(B3LYP+ZPE) = -232.609360	В	784.99480	Н	0.651453	2.363995	0.042958	475, 552, 610, 630, 646, 671,
(C1)	E(CCSD(T)/CC-VTZ) = -232.19865066	С	1005.35302	н	-1.160280	2.014388	-0.096140	687, 782, 821, 860, 937, 1067,
Y				С	0.119748	0.304415	-0.037986	1146 1227 1266 1405 1430
•				С	-0.900059	-0.731531	-0.069539	1467 1571 2199 2202 3159
1				Н	-1.518313	-0.909397	1.005373	1407, 1571, 2177, 2202, 5157, 2177, 2179, 2202, 5157, 2177, 2190, 2751, 2797, 2479
Ψ				Н	-0.594942	-1.715717	-0.404665	51/2, 5160, 5251, 5267, 5476
				С	-2.353964	-0.486042	0.002862	
				Н	-3.036646	-1.277074	-0.269638	
Y To				Н	-2.739625	0.492686	0.243772	
é è				C	1.474430	-0.160926	0.004339	
				C 	2.606223	-0.572322	0.028185	
-				<u>H</u>	3.607584	-0.925420	0.051964	
TS 25	$ZPE(B3LYP/6-311G^{**}) = 0.098173$ E(D3LYD+7DE) = 232 596727	A	208.66113	C .	-0.423915	1.477098	0.046484	28871, 146, 174, 349, 429, 489,
(C 1)	E(BSLYP+ZPE) = -252.586727 E(CCSD(T)/CC-VTZ) = -232.17214560	B	767.71315	Н	-1.253728	1.819781	-0.568916	535, 564, 596, 610, 675, 716,
	E(CC3D(1)/CC-V1E) -232.17214300	C	959.84314	н	-1.582876	0.699461	0.793959	808, 861, 915, 931, 960, 1052,
I				н	0.242784	2.27/401	0.349777	1199, 1233, 1256, 1351, 1415,
				C	0.120140	0.200166	-0.162534	1449, 1533, 1542, 2136, 3075,
				C II	-0.853922	-0.894/67	-0.136902	3095, 3158, 3182, 3185, 3472
T				H C	-0.495335	-1.906938	0.012408	
· · · ·				С и	-2.1/24/2	-0.525040	0.1035/2	
					-2.00/552	-1.203024	0.432999	
T o I				С	-2.001119	0.237739	-0.500015	
				Č	1.40/075	0.054504	0.050044	
6 U				н	3.696043	-0.601893	0.148122	

TS 26 (C1)	ZPE(B3LYP/6-311G**) = 0.097945 E(B3LYP+ZPE) = -232.592738 E(CCSD(T)/CC-VTZ) = -232.18130163	A B C	368.56792 646.94404 992.14469	С Н Н С С С С Н С С Н Н Н Н Н Н	0.027939 -0.198234 1.367916 -0.198024 -0.140434 -1.333186 -2.358421 -3.260987 1.145375 1.955498 2.603285 2.601865 1.303553	1.926737 2.464766 1.466955 2.464684 0.427013 -0.334909 -0.969883 -1.529947 0.065907 -1.175420 -1.222542 -1.223403 -2.057182	0.000019 0.919948 -0.000228 -0.920010 0.000032 0.000006 -0.000018 -0.000039 0.000007 0.000000 -0.880869 0.881870 -0.000940	2164i, 125, 130, 196, 269, 296, 464, 495, 571, 619, 638, 673, 709, 965, 1016, 1038, 1046, 1068, 1114, 1217, 1389, 1425, 1461, 1473, 1716, 1839, 2195, 3003, 3065, 3069, 3073, 3160, 3476
TS 27 (C1)	ZPE(B3LYP/6-311G**) = 0.097629 E(B3LYP+ZPE) = -232.596735 E(CCSD(T)/CC-VTZ) = -232.18319512	A B C	241.59931 767.96524 996.71455	С Н С С Н Н С Н Н С Н Н	0.161728 -0.659479 1.170266 -0.089224 0.981716 0.588690 0.439763 2.332281 3.006768 2.767131 -1.440956 -2.569646 -3.568532	1.673389 2.374359 2.061043 0.305157 -0.753858 -1.764307 -0.252720 -0.548289 -1.393333 0.439252 -0.177317 -0.586352 -0.940682	-0.028855 -0.020170 -0.065494 0.072948 0.038088 0.032659 1.183893 -0.111359 -0.114982 -0.189755 -0.004131 -0.079315 -0.150408	1729i, 151, 172, 279, 290, 474, 494, 528, 553, 622, 646, 697, 703, 732, 771, 900, 934, 1059, 1135, 1210, 1276, 1372, 1421, 1503, 1551, 1672, 2212, 3158, 3168, 3176, 3249, 3268, 3477
TS 28 (C1)	ZPE(B3LYP/6-311G**) = 0.098726 E(B3LYP+ZPE) = -232.608334 E(CCSD(T)/CC-VTZ) = -232.19829604	A B C	407.10682 531.30620 926.08482	С Н Н С Н С Н С Н Н Н Н Н Н Н Н Н Н Н Н	-1.785148 -1.092737 -2.843349 -1.358447 -2.088802 0.040990 0.201902 1.089998 1.979350 2.763602 0.378182 -0.422299 1.412132	-1.178021 -2.010410 -1.404385 0.087154 0.892508 0.523714 1.276765 -0.437882 -1.250567 -1.965041 1.968218 2.675576 2.259293	-0.060049 -0.107220 -0.097046 0.033605 0.069464 0.101874 1.073763 0.023598 -0.023598 -0.025889 -0.076808 -0.131275 -0.288398 -0.224941	1789i, 139, 153, 248, 289, 394, 442, 508, 573, 586, 611, 699, 703, 758, 905, 925, 1004, 1047, 1165, 1205, 1312, 1328, 1419, 1444, 1655, 2174, 2190, 3133, 3147, 3170, 3233, 3300, 3476,

TS 29 (C ₁)	ZPE(B3LYP/6-311G**) = 0.098339 E(B3LYP+ZPE) = -232.589747 E(CCSD(T)/CC-VTZ) = -232.17586200	A B C	406.85059 568.01582 947.23067	С Н Н С С С Н С Н Н Н Н Н	-0.646618 -1.144618 0.165763 -1.386668 -0.114250 -1.043638 -1.834831 -2.531080 1.198686 2.078663 2.969299 2.277746 1.821491	1.884651 2.028020 2.607239 2.095818 0.475639 -0.597448 -1.511489 -2.313373 0.203578 -0.833332 -1.016281 0.446660 -1.577676	0.076343 1.040784 -0.012209 -0.702775 -0.048634 -0.019772 -0.010492 -0.000201 -0.277879 0.098315 -0.495233 0.406197 0.856150	1806i, 126, 138, 209, 243, 273, 400, 493, 556, 589, 618, 672, 723, 904, 980, 1033, 1052, 1140, 1189, 1241, 1404, 1462, 1478, 1487, 1565, 2152, 2157, 3017, 3040, 3064, 3113, 3173, 3476
TS 30 (C ₁)	ZPE(B3LYP/6-311G**) = 0.101178 E(B3LYP+ZPE) = -232.624667 E(CCSD(T)/CC-VTZ) = -232.21352992	A B C	442.80125 463.28481 830.18610	С Н С С С Н С Н С Н Н Н Н Н	-0.417687 -1.358397 0.385336 -0.248998 -0.928744 -1.642908 -2.560348 0.745859 0.819430 1.864669 2.767914 2.123749 1.589162	2.053221 2.427349 2.762680 0.762102 -0.472378 -1.495001 -1.989521 -0.215942 -0.399211 -0.692692 -0.087634 -1.733050 -0.616470	-0.147217 -0.532718 0.017374 0.120400 0.034501 -0.102365 -0.344431 0.562406 1.630280 -0.320985 -0.168708 -0.106927 -1.375310	36i, 151, 167, 288, 319, 481, 534, 555, 592, 640, 686, 703, 787, 808, 946, 1092, 1101, 1260, 1307, 1404, 1459, 1481, 1488, 1528, 2209, 2998, 3034, 3106, 3183, 3258, 3477
TS 31 (C ₁)	ZPE(B3LYP/6-311G**) = 0.101065 E(B3LYP+ZPE) = -232.608832 E(CCSD(T)/CC-VTZ) = -232.20001398	A B C	414,19635 521,46898 862,98255	С Н Н С С С Н С Н С Н С Н Н Н Н Н	-1.964689 -2.060469 -2.897009 -0.802377 1.023821 2.008006 2.534288 0.064931 0.074444 0.043047 -0.847336 0.928709 0.030943	-1.023760 -2.049606 -0.464468 -0.487393 -0.423269 -1.114354 -1.984212 0.626008 0.827006 1.916688 2.501722 2.517625 1.688419	-0.141842 -0.487826 -0.026901 0.131958 0.132087 -0.156287 -0.478116 0.508544 1.585762 -0.314889 -0.071945 -0.096554 -1.381841	665i, 120, 173, 191, 223, 296, 366, 475, 490, 617, 689, 816, 837, 905, 1016, 1046, 1077, 1087, 1206, 1310, 1404, 1435, 1492, 1495, 1760, 1957, 3022, 3036, 3042, 3106, 3118, 3145, 3409

TS 33 (C1)	ZPE(B3LYP/6-311G**) = 0.098179 E(B3LYP+ZPE) = -232.580911 E(CCSD(T)/CC-VTZ) = -232.17197475	A B C	361.64004 602.56494 889.06201	С Н Н С Н С С Н С С Н Н Н Н	-0.415537 -0.486408 -0.098565 -1.636423 0.053995 0.086694 1.302436 2.323893 3.229700 -1.238129 -1.617320 -2.611309 -0.939713	1.725273 2.693300 1.734728 1.046832 0.514098 0.788985 -0.132106 -0.687310 -1.169310 -0.198943 -1.420632 -1.631630 -2.265187	-0.337453 0.151778 -1.375461 -0.292350 0.499896 1.560247 0.126219 -0.180048 -0.455020 0.186235 -0.137950 -0.515210 -0.015371	2080i, 117, 151, 202, 332, 383, 498, 567, 593, 665, 668, 674, 800, 900, 928, 978, 1026, 1052, 1109, 1206, 1229, 1328, 1407, 1428, 1698, 1839, 2217, 3025, 3090, 3100, 3194, 3212, 3477
TS 34 (C ₁)	ZPE(B3LYP/6-311G**) = 0.098572 E(B3LYP+ZPE) = -232.585360 E(CCSD(T)/CC-VTZ) = -232.17273481	A B C	396.77853 598.48816 954.45435	С Н Н С Н С С Н С Н Н Н	-0.443520 0.365009 -1.370530 -0.581033 -0.084979 0.601007 -1.110653 -1.980981 -2.743100 1.304119 2.114600 1.886525 3.050616	1.895353 2.557336 2.187117 2.026877 0.450125 0.466615 -0.536126 -1.371351 -2.110008 0.069847 -0.919365 -1.549077 -1.109760	0.158220 -0.159462 -0.339329 1.236189 -0.137841 -1.256697 -0.031478 0.005458 0.049759 -0.186848 0.159464 1.021390 -0.353701	1901i, 124, 184, 212, 227, 301, 413, 544, 584, 618, 628, 672, 706, 854, 962, 976, 1038, 1116, 1180, 1250, 1410, 1430, 1480, 1499, 1665, 2084, 2166, 3026, 3066, 3086, 3113, 3180, 3475
TS 35 (C1)	ZPE(B3LVP/6-311G**) = 0.098336 E(B3LYP+ZPE) = -232.589749 E(CCSD(T)/CC-VTZ) = -232.17586032	A B C	406.81577 568.13666 947.30255	С Н Н Н С С С Н С С Н Н Н Н Н Н Н Н Н Н	0.646210 1.387299 -0.166162 1.142859 0.114253 1.043895 1.835337 2.531778 -1.198812 -2.078736 -2.277468 -2.969788 -1.821404	1.884697 2.096073 2.607174 2.028021 0.475600 -0.597273 -1.511101 -2.312810 0.203268 -0.833604 0.446280 -1.016266 -1.577990	0.076548 -0.701519 -0.013012 1.041697 -0.049310 -0.019771 -0.010495 0.000457 -0.278000 0.098403 0.406612 -0.494624 0.856141	1806i, 126, 138, 209, 243, 273, 400, 493, 556, 589, 618, 672, 723, 904, 980, 1033, 1052, 1140, 1189, 1241, 1404, 1462, 1478, 1487, 1565, 2152, 2157, 3017, 3040, 3064, 3113, 3173, 3476

TS 36 (C ₁)	ZPE(B3LYP/6-311G**) = 0.098431 E(B3LYP+ZPE) = -232.584640 E(CCSD(T)/CC-VTZ) = -232.17218890	A B C	275.75636 764.09443 996.05825	С Н Н С Н С С Н С Н Н Н Н Н	0.113274 1.062430 -0.704848 0.135684 -0.077360 0.360532 -1.391701 -2.519750 -3.506878 1.050578 2.316379 2.651524 3.053037	1.705351 2.026878 2.270067 1.932211 0.209752 -0.343086 -0.320500 -0.720103 -1.087870 -0.684537 -0.731386 -0.197900 -1.351755	0.024667 -0.408396 -0.425247 1.095912 -0.176100 -1.286786 -0.002588 0.143706 0.279828 -0.193853 0.197116 1.088789 -0.301786	1887i, 131, 179, 185, 217, 337, 427, 491, 540, 597, 660, 696, 718, 851, 973, 1008, 1037, 1064, 1178, 1237, 1397, 1436, 1480, 1491, 1664, 2089, 2182, 3023, 3061, 3088, 3120, 3174, 3476
TS 37 (C ₁)	ZPE(B3LYP/6-311G**) = 0.101705 E(B3LYP+ZPE) = -232.704756 E(CCSD(T)/CC-VTZ) = -232.29721921	A B C	330.45782 341.54836 648.66883	С С С С С С Н Н Н Н Н Н Н Н Н Н Н	-0.642990 0.741569 1.437427 0.741552 -0.643007 -1.356574 -1.183711 1.286106 2.519108 1.286075 -1.183740 -1.974235 -2.417473	-1.215779 -1.210171 0.000010 1.210181 1.215769 -0.000008 -2.153681 -2.147720 0.000018 2.147737 2.153664 -0.000012 -0.000017	-0.093230 -0.000050 0.058141 -0.093230 -0.080550 -0.145513 0.016986 0.130284 0.016985 -0.145512 1.681229 -0.300637	772i, 289, 367, 422, 471, 618, 619, 696, 733, 848, 890, 980, 993, 996, 1017, 1041, 1047, 1057, 1173, 1188, 1197, 1328, 1379, 1498, 1508, 1606, 1621, 3160, 3169, 3170, 3184, 3185, 3194
TS 38 (C1)	ZPE(B3LYP/6-311G**) = 0.097119 E(B3LYP+ZPE) = -232.563724 E(CCSD(T)/CC-VTZ) = -232.15622049	A B C	411.56535 555.91293 897.36967	С Н Н Н С Н С С Н С С Н Н	0.219168 -0.590994 1.173299 0.192315 0.052774 0.081702 1.122100 1.964157 2.719464 -1.293604 -1.923495 -1.846072 -2.576324	1.859820 2.545317 2.327523 1.676262 0.535803 0.763725 -0.418927 -1.233691 -1.943914 -0.099762 -1.156565 -2.191345 -0.097639	-0.324199 -0.066625 -0.074635 -1.399640 0.451688 1.524109 0.154303 -0.115199 -0.346549 0.172901 -0.213464 -0.542756 0.149918	2089i, 104, 129, 193, 205, 242, 317, 400, 530, 594, 648, 666, 673, 757, 813, 881, 1028, 1078, 1120, 1279, 1318, 1405, 1492, 1501, 1837, 2207, 2352, 3016, 3040, 3095, 3114, 3119, 3477

TS 39 (C ₁)	ZPE(B3LYP/6-311G**) = 0.095706 E(B3LYP+ZPE) = -232.604030 E(CCSD(T)/CC-VTZ) = -232.19351107	A B C	395.53436 536.05847 900.57829	С Н С С С С Н С Н Н С Н Н Н Н Н Н	-0.228602 -1.219775 -0.043771 -1.162295 -2.088751 -2.916132 1.318611 1.602949 2.122961 1.597901 2.622198 0.811579 0.617659	1.930624 2.362280 0.600975 -0.290658 -1.058364 -1.724035 0.020625 0.195638 0.747687 -1.289718 -1.636027 -2.033847 2.607403	-0.100731 -0.141241 -0.023273 0.016129 0.050209 0.083580 0.007991 1.935282 -0.047008 -0.164569 -0.220927 -0.202843 -0.121371	715i, 114, 162, 251, 310, 354, 418, 473, 521, 622, 652, 691, 715, 749, 754, 918, 931, 942, 1027, 1058, 1304, 1309, 1409, 1451, 1597, 1657, 2208, 3147, 3149, 3157, 3240, 3244, 3476
TS 40 (C1)	ZPE(B3LYP/6-311G**) = 0.094583 E(B3LYP+ZPE) = -232.604656 E(CCSD(T)/CC-VTZ) = -232.19525356	A B C	274.02864 768.62325 979.68374	С Н Н С Н С С Н Н С С Н	-2.217869 -2.535836 -2.232160 -2.973441 -0.958495 -0.672576 0.134125 -0.058225 -1.037433 0.761006 1.442419 2.525434 3.486108	-0.467077 0.330091 -1.880821 -1.177821 -0.565140 -1.408072 0.377531 1.697765 2.139583 2.355033 -0.194783 -0.714426 -1.161212	0.006536 0.669319 2.155919 -0.305408 -0.427821 -1.050647 -0.094101 0.075732 -0.060586 0.336803 0.018577 0.100472 0.178226	88i, 75, 105, 146, 172, 272, 294, 437, 547, 566, 648, 686, 723, 758, 790, 931, 945, 951, 1022, 1089, 1246, 1324, 1428, 1452, 1640, 1676, 2205, 3139, 3151, 3153, 3227, 3244, 3476
TS 41 (C1)	ZPE(B3LYP/6-311G**) = 0.094296 E(B3LYP+ZPE) = -232.590727 E(CCSD(T)/CC-VTZ) = -232.17583125	A B C	341.25676 704.30406 986.04315	С Н Н Н С С Н С Н Н С С Н Н Н С С Н С Н	0.218836 -0.756717 0.740040 0.812759 0.071243 -1.117083 -1.278687 -2.266163 -2.908706 -2.613639 1.261926 2.298316 3.202501	1.834187 2.317192 2.185562 2.131447 0.325255 -0.262210 0.097704 -0.850242 -1.128819 -1.084102 -0.457197 -1.071479 -1.628874	-0.073476 -0.125776 0.821704 -0.942019 -0.037761 0.026339 2.142408 -0.148803 0.678700 -1.152253 -0.009956 0.003647 0.017292	472i, 102, 143, 148, 207, 231, 369, 393, 488, 549, 607, 636, 659, 686, 709, 895, 992, 1006, 1054, 1186, 1282, 1403, 1456, 1479, 1495, 1992, 2194, 3031, 3087, 3112, 3128, 3193, 3476

TS 42 (C1)	ZPE(B3LYP/6-311G**) = 0.094237 E(B3LYP+ZPE) = -232.591404 E(CCSD(T)/CC-VTZ) = -232.17546033	A B C	355.30557 693.33427 1025.07345	С Н Н С С С С Н С С Н Н Н Н Н	-0.450239 -1.041420 0.462620 -1.042725 -0.125308 -1.223865 -2.181858 -3.015577 1.110783 2.329265 2.878876 2.878958 2.126596	1.871202 2.127564 2.466995 2.127520 0.386271 -0.529769 -1.259092 -1.917295 -0.059840 -0.540443 -0.682587 -0.682741 -2.649420	0.000176 0.883545 -0.000502 -0.882324 -0.000034 -0.000061 -0.000079 -0.000097 -0.000148 -0.000202 -0.926219 0.925731 0.001953	429i, 118, 157, 197, 198, 209, 287, 347, 489, 546, 606, 638, 688, 704, 707, 901, 991, 1014, 1057, 1175, 1277, 1403, 1458, 1480, 1496, 2003, 2203, 3031, 3089, 3110, 3125, 3183, 3477
TS 43 (C ₁)	ZPE(B3LYP/6-311G**) = 0.098041 E(B3LYP+ZPE) = -232.604437 E(CCSD(T)/CC-VTZ) = -232.18924278	A B C	319.64357 877.23177 1173.36634	С Н Н С С С Н С Н Н Н Н Н	0.308237 0.863658 -0.714349 0.863695 0.077364 1.418559 2.596572 3.629107 -1.120040 -2.571191 -2.947672 -2.975766 -2.975688	2.015861 2.119699 2.372598 2.119113 -0.235768 -0.568294 -0.828758 -1.076731 -0.539396 -0.513430 0.517910 -1.017162 -1.016714	0.000009 -0.923217 0.000113 0.923271 -0.000015 -0.000007 0.000009 -0.000011 -0.000047 0.000015 -0.000259 -0.883377 0.8833700	533i, 75, 85, 112, 148, 153, 336, 345, 463, 475, 540, 564, 638, 646, 675, 87 1023, 1049, 1163, 1408, 1418, 1419, 1466, 1470, 2071, 2229, 2995, 3053, 3074 089, 3246, 3254, 3479
TS 44 (C1)	ZPE(B3LVP/6-311G**) = 0.094477 E(B3LYP+ZPE) = -232.573220 E(CCSD(T)/CC-VTZ) = -232.16482711	A B C	367.45172 652.87169 952.53691	С Н Н С Н С С Н С С Н Н	0.226613 -0.585833 1.180381 0.190054 0.085072 0.126685 1.195720 2.117598 2.926433 -1.212195 -2.238037 -1.651701 -3.234642	1.807765 2.481543 2.275531 1.637429 0.464946 0.682171 -0.446781 -1.171333 -1.821384 -0.167874 -0.751700 -2.576508 -1.088915	-0.316786 -0.038859 -0.067092 -1.393419 0.443565 1.519355 0.134030 -0.122349 -0.325092 0.174479 -0.082857 -0.815372 -0.235018	530i, 26, 118, 195, 206, 234, 288, 384, 477, 562, 570, 661, 678, 688, 772, 789, 926, 1026, 1075, 1137, 1301, 1327, 1407, 1493, 1500, 2169, 2226, 3001, 3045, 3121, 3128, 3461, 3478

TS 45 (C ₁)	ZPE(B3LYP/6-311G**) = 0.097845 E(B3LYP+ZPE) = -232.597554 E(CCSD(T)/CC-VTZ) = -232.18134165	A B C	396.16016 737.90944 1037.36873	С Н Н С Н С С Н С С Н Н	0.287520 -0.599631 1.228159 0.322430 0.017903 0.074331 1.232171 2.264176 3.169548 -1.183840 -2.358285 -2.933987 -2.818722	2.077946 2.579349 2.337059 1.861423 -0.004690 0.422799 -0.576928 -1.044137 -1.465808 -0.463489 -0.684593 -1.576424 0.016944	-0.200057 0.168235 0.270804 -1.259941 0.616012 1.614653 0.109999 -0.294278 -0.655558 0.213389 -0.293729 -0.055391 -0.990822	516i, 111, 115, 133, 153, 323, 351, 382, 532, 552, 563, 599, 631, 691, 822, 888, 925, 952, 984, 1101, 1336, 1419, 1424, 1446, 1927, 2213, 3067, 3084, 3118, 3138, 3241, 3250, 3478
TS 46	ZPE(B3LYP/6-311G**) = 0.094195	Α	298.83437	С	0.242182	1.792603	0.000014	656i, 70, 164, 168, 213, 246,
(\mathbf{C})	E(B3LYP+ZPE) = -232.587350	В	738.23381	Н	0.815759	2.087981	-0.882674	354, 452, 495, 531, 589, 636,
(C1)	E(CCSD(1)/CC-V1Z) = -232.17171860	С	1013.47574	Н	-0.709029	2.324876	-0.000297	649, 657, 719, 884, 998, 1007,
				Н	0.815203	2.088036	0.883048	1060, 1163, 1293, 1404, 1462,
				С	0.014581	0.288236	-0.000009	1480, 1499, 2043, 2110, 3032,
				C	-1.197268	-0.222473	-0.000002	3089 3108 3126 3178 3465
				C	-2.416186	-0.674210	-0.000012	5009, 5100, 5120, 5170, 5405
				H	-2.943858	-0.881407	-0.927040	
				H	-2.943874	-0.881406	0.927007	
				C	1.200496	-0.524066	-0.000012	
				Н	0.333822	-2.30/546	0.000216	
				С И	2.371449	-0.850599	-0.000025	
	7DE(D21 VD/C 211C++) = 0.004021		220 22004	<u>н</u> С	3.340454	-1.28/481	0.000014	021: 122 150 100 221 200
TS 4 7	$E(B3LYP/0-511G^{**}) = 0.094921$ E(B3LYP+ZPE) = -232585017	A	338.32904 701.15266	с п	0.184217	1.825798	-0.11499/	8211, 133, 179, 189, 221, 308,
(C ₁)	E(CCSD(T)/CC-VTZ) = -232.16987990	В С	101.15200	n u	-0./02231	2.329391	0.001031	442, 477, 496, 559, 593, 628,
		U	704./0/03	п	0.74/130	2.220303	0.333103	646, 690, 717, 886, 990, 992,
				C II	0.400370	2.022001	-1.143440	1058, 1164, 1275, 1405, 1446,
				н	0.040304	0.310400	1 966258	1484, 1496, 1976, 2210, 3039,
()				C	1 242777	-0 465570	0.012085	3087, 3107, 3134, 3159, 3477
Г				č	2.275880	-1.076034	-0.068996	
				й	3.180548	-1.629126	-0.132340	
				c	-1.141457	-0.283750	-0.069484	
				Č	-2.308873	-0.849299	-0.052128	
				Н	-2.825037	-1.135982	-0.964838	
				н	-2.813496	-1.065223	0.888820	

TS 48 (C ₁)	ZPE(B3LYP/6-311G**) = 0.095064 E(B3LYP+ZPE) = -232.570378 E(CCSD(T)/CC-VTZ) = -232.16307390	A B C	337.05796 687.94752 949.26209	C H C H C H C	-2.286061 -3.212170 -1.205080 -0.729956 0.019311 -0.042376 1.236654	-0.914271 -1.414432 -0.369111 -0.485518 0.355199 0.457131 -0.408561	-0.009418 0.139785 -0.020200 1.908547 -0.426105 -1.517519 -0.126372	624i, 114, 176, 206, 241, 256, 385, 452, 475, 558, 569, 653, 675, 688, 690, 786, 930, 1026, 1076, 1139, 1301, 1324, 1406, 1491, 1500, 2140, 2227, 3009, 3044, 3120, 3126, 3466, 3478
, e e e e e				С Н С Н Н	2.253584 3.146020 0.076074 0.958603 -0.817298 0.130281	-1.004371 -1.540905 1.777905 2.301646 2.338690 1.722647	0.100918 0.311267 0.178793 -0.192274 -0.102208 1.266710	
TS 49 (C ₁)	ZPE(B3LYP/6-311G**) = 0.101461 E(B3LYP+ZPE) = -232.608812 E(CCSD(T)/CC-VTZ) = -232.19889103	A B C	152.50580 981.69611 1111.31092	C H C C H H C C H H H H	2.694545 3.259098 1.679776 0.675600 0.652910 0.653192 -0.143812 -1.294580 -1.302013 -2.651300 -3.229487 -2.565241 -3.229838	-0.617707 -1.522219 0.087732 1.155778 1.774873 1.774953 -0.052381 -0.681122 -1.771198 -0.011089 -0.310541 1.077099 -0.310234	0.000125 0.000436 0.000026 -0.000039 0.902383 -0.902407 -0.000276 -0.000185 -0.000397 0.000198 0.881040 0.000368 -0.880518	661i, 64, 118, 160, 283, 313, 368, 476, 549, 678, 763, 812, 898, 941, 1017, 1049, 1084, 1117, 1195, 1335, 1399, 1443, 1482, 1490, 1776, 1967, 3009, 3014, 3062, 3064, 3090, 3109, 3410
TS 50 (C1)	ZPE(B3LYP/6-311G**) = 0.101243 E(B3LYP+ZPE) = -232.628859 E(CCSD(T)/CC-VTZ) = -232.21766821	A B C	174.48938 856.05986 1007.00248	С Н С Н Н С С Н С Н Н Н Н Н	2.559960 3.612685 1.383978 0.526632 0.633341 0.633943 -0.004647 -1.154189 -1.107277 -2.506619 -3.085818 -2.431532 -3.086032	-0.670050 -0.476603 -0.226075 1.349069 1.895885 1.896009 -0.018814 -0.692434 -1.777992 -0.051586 -0.357552 1.037476 -0.357888	0.000097 -0.000035 0.000000 0.000025 0.929592 -0.929395 -0.000217 -0.000006 0.000069 0.000037 0.878623 -0.000176 -0.878289	619i, 136, 168, 169, 303, 315, 376, 502, 596, 619, 705, 783, 818, 859, 1007, 1016, 1054, 1059, 1145, 1350, 1411, 1435, 1481, 1489, 1718, 1910, 3012, 3053, 3103, 3120, 3152, 3224, 3355

TS 51 (C ₁)	ZPE(B3LYP/6-311G**) = 0.095353 E(B3LYP+ZPE) = -232.606490 E(CCSD(T)/CC-VTZ) = -232.19373011	A B C	106.48851 1170.45186 1250.26729	C H C H H C H C H C H C H H C C	3.085758 4.139624 1.889225 0.483620 0.146627 0.258318 -0.415242 -0.028509 -1.860615 -2.394073 -2.575102 -2.114452 -3.653394	0.006943 0.128490 -0.125631 -0.304203 -1.231441 -1.524307 0.677299 1.631863 0.569306 1.516091 -0.563524 -1.541771 -0.540556	-0.022475 0.031249 -0.073713 -0.166014 -0.620091 1.603284 0.110762 0.454835 -0.010848 -0.040824 -0.054633 0.027980 -0.154909	483i, 98, 145, 182, 254, 279, 303, 445, 503, 591, 632, 643, 684, 873, 938, 978, 995, 1005, 1026, 1110, 1298, 1316, 1344, 1455, 1599, 1669, 2199, 3136, 3142, 3149, 3163, 3226, 3477
TS 52 (C1)	ZPE(B3LYP/6-311G**) = 0.094569 E(B3LYP+ZPE) = -232.598119 E(CCSD(T)/CC-VTZ) = -232.17907902	A B C	124.11695 1335.87696 1400.20060	С Н Н С С Н С С Н С С Н С Н Н Н Н Н	2.984521 3.440939 3.449169 1.924488 0.861454 1.008913 -0.475250 -1.630627 -1.724108 -3.007075 -3.170269 -3.716791 -3.232918	-0.663581 -0.943879 -1.042149 0.085168 0.860359 1.938122 0.387535 0.028297 0.100894 -0.430327 -1.383307 0.292255 -0.566647	0.014841 0.960294 -0.891622 -0.029022 -0.075469 -0.132477 -0.057079 0.032911 2.143753 -0.139488 0.370079 0.271265 -1.201457	429i, 57, 93, 138, 196, 256, 319, 370, 399, 436, 556, 633, 803, 882, 885, 1002, 1045, 1060, 1068, 1203, 1364, 1414, 1467, 1476, 1480, 2030, 2280, 3026, 3085, 3092, 3107, 3110, 3178
TS 53 (C ₁)	ZPE(B3LYP/6-311G**) = 0.094564 E(B3LYP+ZPE) = -232.588080 E(CCSD(T)/CC-VTZ) = -232.17088167	A B C	127.06443 1250.35871 1300.49224	С Н С Н С Н С Н С Н Н Н Н Н Н	-3.063933 -4.014045 -1.914865 -1.004597 -0.753000 -0.934382 0.472762 1.701682 2.025768 2.718503 3.062880 3.596112 2.301369	0.458795 0.929549 0.062493 1.559853 -0.747313 -1.685620 -0.461290 -0.220678 -0.559771 0.515254 1.413841 -0.114021 0.812596	-0.027143 0.045234 -0.027342 0.888780 -0.236407 -0.759325 0.141035 0.493364 1.477109 -0.343668 0.177693 -0.522462 -1.306062	656i, 81, 114, 154, 204, 243, 383, 450, 457, 531, 602, 632, 659, 757, 873, 895, 978, 1058, 1090, 1159, 1298, 1407, 1437, 1485, 1501, 2046, 2115, 3024, 3073, 3103, 3109, 3124, 3466

TS 54 (C ₁)	ZPE(B3LYP/6-311G**) = 0.103469 E(B3LYP+ZPE) = -232.654717 E(CCSD(T)/CC-VTZ) = -232.25136952	A B C	311.47599 611.51720 847.25230	С Н С Н С Н С Н С Н С Н Н С Н Н	-1.313797 -1.782835 -1.694522 -2.749152 -0.879145 -1.423285 0.433926 0.869937 1.356232 1.586665 1.948434 1.757509 2.634384	-1.372197 -2.342632 -0.154155 -0.006498 1.067809 1.975926 1.177761 2.175116 0.077673 -0.032573 -0.731884 -0.652638 -1.506744	0.210189 0.278152 -0.113379 -0.375001 -0.149114 -0.392266 0.100671 0.074216 0.454222 1.514433 -0.421701 -1.486595 -0.098267	117i, 81, 141, 280, 342, 487, 574, 657, 734, 751, 843, 858, 940, 958, 987, 994, 1018, 1097, 1245, 1279, 1314, 1414, 1456, 1630, 1673, 1698, 3014, 3099, 3115, 3133, 3154, 3217, 3235
TS 55 (C ₁)	ZPE(B3LYP/6-311G**) = 0.095868 E(B3LYP+ZPE) = -232.607078 E(CCSD(T)/CC-VTZ) = -232.19367632	A B C	208.86028 897.35999 1106.22027	С Н Н С Н С Н С Н С Н С Н С Н	2.627108 3.266012 3.120453 1.292073 0.681669 0.593571 1.212931 -0.745901 -1.140003 -1.702342 -3.263051 -2.236276 -2.847409	-0.501928 0.375714 -1.466322 -0.396835 -1.294756 0.872078 1.765283 1.051185 2.059897 -0.010297 1.086672 -1.105970 -1.975893	0.000024 0.000015 0.000043 0.000012 0.000022 -0.000018 -0.000028 -0.000028 -0.000059 -0.000059 -0.000022 0.0000449 -0.000043 0.000048	732i, 26, 134, 147, 285, 332, 452, 483, 520, 622, 665, 690, 734, 811, 894, 946, 983, 990, 1044, 1170, 1271, 1318, 1396, 1466, 1619, 1683, 2092, 3133, 3145, 3162, 3185, 3223, 3461
TS 56 (C ₁)	ZPE(B3LVP/6-311G**) = 0.103095 E(B3LYP+ZPE) = -232.626656 E(CCSD(T)/CC-VTZ) = -232.22077838	A B C	353.29763 438.19913 768.33465	С С С С С С Н Н Н Н Н Н Н Н Н Н	-1.226158 -0.152477 1.861628 1.118737 -0.011654 -1.324059 -2.205188 -0.054898 2.283737 -0.067545 -1.919775 -1.916629 2.284202	0.839288 1.599789 0.309105 -0.790232 -1.436970 -0.673046 1.333660 2.678731 0.696304 -2.522812 -0.985639 -0.984396 0.696545	0.000013 -0.000650 0.000443 -0.000135 -0.000479 0.000028 -0.000269 0.923112 -0.001851 -0.868816 0.872289 -0.921936	414i, 150, 185, 356, 368, 476, 558, 630, 720, 825, 860, 870, 889, 919, 968, 1010, 1028, 1117, 1219, 1245, 1317, 1367, 1462, 1480, 1665, 1955, 2987, 3001, 3012, 3113, 3127, 3187, 3188

TS 57 (C ₁)	ZPE(B3LYP/6-311G**) = 0.103188 E(B3LYP+ZPE) = -232.625123 E(CCSD(T)/CC-VTZ) = -232.22199700	A B C	329.13791 350.74785 643.25417	C C C	-0.344624 0.968038 1.394837	1.312394 1.024588 -0.350872	-0.092324 -0.120092 0.170453	1867i, 205, 401, 473, 521, 581, 663, 752, 815, 841, 889, 945, 963, 987, 992, 1098, 1157,
				C C C H	0.405366 -0.892784 -1.406424 -0.679070	-1.370412 -1.106496 0.269895 2.329448	0.069193 -0.174563 0.218140 -0.277799	1188, 1195, 1281, 1317, 1391, 1394, 1464, 1538, 1633, 2010, 2948, 3028, 3141, 3146, 3166,
				H H H H	1.707281 2.326303 -1.548207 -2.328122 1.684460	1.788641 -0.539806 -1.792278 0.494700 0.337786	-0.336344 0.696534 -0.699339 -0.330379 1 282293	3171
ő b				H	1.459817	-1.293070	-0.759798	

Channel	Barrier	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00
INT 1 \rightarrow INT 3	TS 2	6.38E+05	8.93E+05	1.23E+06	1.67E+06	2.24E+06	2.96E+06	3.88E+06	5.02E+06
INT $3 \rightarrow INT 1$	TS 2	1.44E+03	2.14E+03	3.12E+03	4.48E+03	6.34E+03	8.85E+03	1.22E+04	1.66E+04
$INT 1 \rightarrow INT 4$	TS 3	1.71E+04	3.00E+04	5.07E+04	8.27E+04	1.31E+05	2.02E+05	3.05E+05	4.51E+05
INT $4 \rightarrow INT 1$	TS 3	1.41E+04	2.47E+04	4.17E+04	6.82E+04	1.08E+05	1.67E+05	2.53E+05	3.73E+05
INT 1 \rightarrow INT 5	TS 4	1.77E+06	2.42E+06	3.26E+06	4.33E+06	5.69E+06	7.39E+06	9.49E+06	1.21E+07
INT 5 \rightarrow INT 1	TS 4	5.19E+02	7.64E+02	1.11E+03	1.58E+03	2.23E+03	3.11E+03	4.27E+03	5.81E+03
INT 1 \rightarrow INT 6	TS 8	5.81E+02	1.17E+03	2.23E+03	4.06E+03	7.09E+03	1.19E+04	1.95E+04	3.09E+04
INT 6 \rightarrow INT 1	TS 8	2.71E+02	5.51E+02	1.06E+03	1.94E+03	3.41E+03	5.78E+03	9.50E+03	1.52E+04
INT 1 \rightarrow INT 18	TS 49	2.07E+09	2.36E+09	2.68E+09	3.03E+09	3.41E+09	3.82E+09	4.27E+09	4.75E+09
INT 18 \rightarrow INT 1	TS 49	2.56E+11	2.80E+11	3.06E+11	3.33E+11	3.61E+11	3.91E+11	4.22E+11	4.55E+11
INT 1 \rightarrow 1,4-hexadiyne + H	TS 13	1.62E+07	2.25E+07	3.08E+07	4.15E+07	5.53E+07	7.28E+07	9.47E+07	1.22E+08
INT 1 \rightarrow 3,4-diene-1-hexyne + H	TS 10	6.77E+06	9.32E+06	1.27E+07	1.69E+07	2.24E+07	2.93E+07	3.80E+07	4.87E+07
INT 1 \rightarrow + CH ₃	TS 22	9.57E+08	1.27E+09	1.67E+09	2.18E+09	2.80E+09	3.56E+09	4.49E+09	5.61E+09
INT 2 \rightarrow INT 5	TS 7	1.28E+06	1.72E+06	2.28E+06	2.99E+06	3.87E+06	4.97E+06	6.31E+06	7.94E+06
INT 5 \rightarrow INT 2	TS 7	7.17E+02	1.03E+03	1.46E+03	2.04E+03	2.81E+03	3.84E+03	5.18E+03	6.93E+03
INT 2 \rightarrow INT 6	TS 1	6.49E+03	1.01E+04	1.54E+04	2.30E+04	3.36E+04	4.82E+04	6.79E+04	9.44E+04
INT 6 \rightarrow INT 2	TS 1	5.79E+03	9.03E+03	1.37E+04	2.05E+04	2.99E+04	4.28E+04	6.04E+04	8.38E+04
INT 2 \rightarrow 3,4-diene-1-hexyne + H	TS 11	1.10E+07	1.49E+07	1.98E+07	2.61E+07	3.40E+07	4.38E+07	5.59E+07	7.07E+07
INT 2 → 1,3-hexadiyne + H	TS 19	2.73E+07	3.62E+07	4.74E+07	6.15E+07	7.89E+07	1.00E+08	1.26E+08	1.58E+08
INT $3 \rightarrow INT 4$	TS 5	1.65E+02	2.67E+02	4.22E+02	6.53E+02	9.89E+02	1.47E+03	2.15E+03	3.10E+03
$INT 4 \rightarrow INT 3$	TS 5	5.98E+04	9.16E+04	1.37E+05	2.01E+05	2.89E+05	4.08E+05	5.66E+05	7.75E+05
INT 3 \rightarrow INT 12	TS 18	1.00E-08							
INT 12 \rightarrow INT 3	TS 18	1.00E-08							
INT 3 \rightarrow 4,5-diene-1-hexyne + H	TS 16	1.57E+04	2.37E+04	3.53E+04	5.16E+04	7.43E+04	1.05E+05	1.48E+05	2.04E+05
INT 3 \rightarrow 3,5-diene-1-hexyne + H	TS 51	8.13E+07	9.93E+07	1.21E+08	1.46E+08	1.75E+08	2.09E+08	2.49E+08	2.95E+08
INT $4 \rightarrow INT 5$	TS 6	1.00E-09							
$INT 5 \rightarrow INT 4$	TS 6	1.00E-09							

Table A5. RRKM calculated rate constants for individual reaction steps of the $C_2H + 1,2$ -butadiene reaction on the C_6H_7 potential energy surface at collision energies of 0-7.0 kcal/mol.

INT 4 \rightarrow 1,4-hexadiyne + H	TS 15	2.13E+07	2.93E+07	3.97E+07	5.32E+07	7.04E+07	9.21E+07	1.19E+08	1.53E+08
INT 4 \rightarrow 4,5-diene-1-hexyne + H	TS 14	8.00E+06	1.12E+07	1.54E+07	2.10E+07	2.81E+07	3.72E+07	4.88E+07	6.32E+07
INT 5 \rightarrow 3,4-diene-1-hexyne + H	TS 12	2.55E+04	3.67E+04	5.22E+04	7.33E+04	1.02E+05	1.39E+05	1.89E+05	2.54E+05
INT 5 \rightarrow 3,5-diene-1-hexyne + H	TS 17	5.53E+10	6.62E+10	7.87E+10	9.33E+10	1.10E+11	1.29E+11	1.51E+11	1.77E+11
INT $6 \rightarrow INT 16$	TS 9	5.97E+04	9.61E+04	1.50E+05	2.30E+05	3.43E+05	5.01E+05	7.20E+05	1.02E+06
INT 16 \rightarrow INT 6	TS 9	3.43E+03	5.63E+03	8.97E+03	1.40E+04	2.12E+04	3.16E+04	4.62E+04	6.63E+04
INT 7 \rightarrow INT 8	TS 23	3.03E+06	3.66E+06	4.40E+06	5.26E+06	6.27E+06	7.42E+06	8.76E+06	1.03E+07
INT 8 \rightarrow INT 7	TS 23	9.69E+07	1.13E+08	1.32E+08	1.52E+08	1.75E+08	2.01E+08	2.30E+08	2.62E+08
INT 7 \rightarrow INT 10	TS 25	2.64E+02	3.81E+02	5.44E+02	7.64E+02	1.06E+03	1.45E+03	1.97E+03	2.64E+03
INT 10 \rightarrow INT 7	TS 25	1.17E+02	1.71E+02	2.47E+02	3.52E+02	4.94E+02	6.85E+02	9.40E+02	1.27E+03
$INT 7 \rightarrow INT 11$	TS 26	1.00E-09							
INT 11 \rightarrow INT 7	TS 26	1.00E-09							
$INT 7 \rightarrow INT 12$	TS 30	3.57E+07	4.08E+07	4.65E+07	5.28E+07	5.97E+07	6.74E+07	7.58E+07	8.50E+07
INT 12 \rightarrow INT 7	TS 30	8.55E+12	8.79E+12	9.03E+12	9.27E+12	9.51E+12	9.75E+12	9.98E+12	1.02E+13
INT 7 \rightarrow INT 18	TS 50	7.26E+07	8.19E+07	9.20E+07	1.03E+08	1.15E+08	1.28E+08	1.43E+08	1.59E+08
INT 18 \rightarrow INT 7	TS 50	1.17E+13	1.19E+13	1.21E+13	1.23E+13	1.25E+13	1.27E+13	1.29E+13	1.31E+13
INT 7 \rightarrow 2-ethynyl-1,3-butadiene + H	TS 40	9.20E+07	1.12E+08	1.36E+08	1.64E+08	1.97E+08	2.35E+08	2.80E+08	3.31E+08
INT 8 \rightarrow INT 9	TS 27	1.20E+06	1.53E+06	1.93E+06	2.42E+06	3.01E+06	3.71E+06	4.54E+06	5.53E+06
INT 9 \rightarrow INT 8	TS 27	2.49E+06	3.13E+06	3.89E+06	4.81E+06	5.90E+06	7.19E+06	8.69E+06	1.05E+07
$INT 8 \rightarrow INT 17$	TS 32	4.78E+08	5.34E+08	5.95E+08	6.61E+08	7.32E+08	8.08E+08	8.91E+08	9.79E+08
INT 17 \rightarrow INT 8	TS 32	5.78E+10	6.25E+10	6.74E+10	7.26E+10	7.79E+10	8.36E+10	8.94E+10	9.55E+10
INT 8 \rightarrow 2-ethynyl-1,3-butadiene + H	TS 39	1.31E+08	1.56E+08	1.84E+08	2.17E+08	2.54E+08	2.96E+08	3.44E+08	3.97E+08
$INT 9 \rightarrow INT 10$	TS 28	2.41E+08	2.78E+08	3.19E+08	3.65E+08	4.16E+08	4.72E+08	5.33E+08	6.01E+08
INT 10 \rightarrow INT 9	TS 28	1.61E+06	1.98E+06	2.41E+06	2.92E+06	3.53E+06	4.23E+06	5.05E+06	6.01E+06
INT 9 \rightarrow INT 13	TS 33	4.71E+04	6.54E+04	8.95E+04	1.21E+05	1.61E+05	2.12E+05	2.77E+05	3.58E+05
INT 13 \rightarrow INT 9	TS 33	1.95E+06	2.66E+06	3.57E+06	4.75E+06	6.22E+06	8.07E+06	1.04E+07	1.32E+07
INT 10 \rightarrow INT 13	TS 34	1.74E+02	2.57E+02	3.73E+02	5.33E+02	7.51E+02	1.05E+03	1.44E+03	1.96E+03
INT 13 \rightarrow INT 10	TS 34	1.08E+06	1.47E+06	1.97E+06	2.61E+06	3.42E+06	4.43E+06	5.67E+06	7.20E+06
INT 10 \rightarrow 3-ethynyl-1,2-butadiene + H	TS 41	1.97E+04	2.76E+04	3.83E+04	5.24E+04	7.10E+04	9.53E+04	1.27E+05	1.67E+05
INT 11 → INT 13	TS 35	1.21E+06	1.63E+06	2.17E+06	2.84E+06	3.69E+06	4.74E+06	6.04E+06	7.62E+06
INT 13 → INT 11	TS 35	5.48E+06	7.21E+06	9.37E+06	1.21E+07	1.54E+07	1.94E+07	2.42E+07	3.00E+07

INT 11 \rightarrow pentadiyne + CH ₃	TS 43	1.67E+09	2.05E+09	2.49E+09	3.02E+09	3.63E+09	4.33E+09	5.15E+09	6.09E+09
INT 11 \rightarrow 3-ethynyl-1,2-butadiene + H	TS 42	2.18E+07	2.89E+07	3.80E+07	4.94E+07	6.36E+07	8.11E+07	1.03E+08	1.29E+08
INT 12 \rightarrow INT 13	TS 31	3.19E+11	3.47E+11	3.76E+11	4.06E+11	4.38E+11	4.71E+11	5.05E+11	5.40E+11
INT 13 \rightarrow INT 12	TS 31	3.67E+09	4.14E+09	4.66E+09	5.23E+09	5.84E+09	6.50E+09	7.22E+09	7.98E+09
INT 13 → INT 14	TS 36	1.00E-09							
INT 14 \rightarrow INT 13	TS 36	1.00E-09							
INT 13 → INT 15	TS 38	5.73E+03	1.07E+04	1.92E+04	3.29E+04	5.46E+04	8.77E+04	1.37E+05	2.10E+05
INT 15 → INT 13	TS 38	7.18E+03	1.33E+04	2.36E+04	4.01E+04	6.60E+04	1.05E+05	1.63E+05	2.48E+05
INT 13 \rightarrow ethynylallene + CH ₃	TS 45	3.14E+08	3.99E+08	5.02E+08	6.26E+08	7.75E+08	9.52E+08	1.16E+09	1.40E+09
INT 13 \rightarrow 3-ethynyl-1-butyne + H	TS 44	1.19E+07	1.76E+07	2.57E+07	3.68E+07	5.17E+07	7.16E+07	9.78E+07	1.32E+08
INT 13 \rightarrow 3-ethynyl-1,2-butadiene + H	TS 47	3.19E+06	4.40E+06	5.97E+06	8.01E+06	1.06E+07	1.39E+07	1.80E+07	2.30E+07
INT 15 \rightarrow 3-ethynyl-1-butyne + H	TS 48	5.46E+05	8.30E+05	1.23E+06	1.79E+06	2.56E+06	3.59E+06	4.96E+06	6.75E+06
INT 16 \rightarrow 1,2,3,4-hexatetraene	TS 20	6.31E+04	9.33E+04	1.35E+05	1.93E+05	2.71E+05	3.76E+05	5.14E+05	6.94E+05
INT 16 \rightarrow 1,2-hexadiene-4-yne	TS 52	1.23E+07	1.60E+07	2.05E+07	2.62E+07	3.30E+07	4.14E+07	5.15E+07	6.36E+07
INT 17 \rightarrow diacetylene + C ₂ H ₅	TS 24	1.39E+09	1.74E+09	2.16E+09	2.66E+09	3.24E+09	3.93E+09	4.73E+09	5.65E+09
INT 19 \rightarrow INT 20	TS 54	1.02E+12	1.03E+12	1.05E+12	1.06E+12	1.07E+12	1.09E+12	1.10E+12	1.12E+12
INT 20 \rightarrow INT 19	TS 54	2.11E+09	2.34E+09	2.59E+09	2.87E+09	3.16E+09	3.48E+09	3.83E+09	4.20E+09
INT 20 → benzene	TS 37	4.37E+11	4.55E+11	4.73E+11	4.92E+11	5.11E+11	5.30E+11	5.50E+11	5.70E+11

Table A6. Statistical branching ratios of all products via the formation of the indicated initial adduct on the $C_2H + 1,2$ -butadiene reaction at collision energies of 0-7.0 kcal/mol.

Product	Initial Adduct	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0
hexa-1,4-diyne + H	INT 1	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2
	INT 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	INT 13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 18	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1
hexa-3,4-diene-1-yne + H	INT 1	0.2	0.3	0.3	0.3	0.4	0.4	0.4	0.5
	INT 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
hexa-1,2,3,4-tetraene + H	INT 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ethynylallene + CH ₃	INT 1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	INT 7	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2
	INT 12	0.4	0.5	0.5	0.6	0.7	0.8	0.9	1.0
	INT 13	8.2	9.1	10.1	11.1	12.2	13.2	14.3	15.4
	INT 18	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2
3-ethynyl-1-butyne + H	INT 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 12	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1
	INT 13	0.3	0.4	0.5	0.7	0.8	1.0	1.2	1.5
	INT 18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2-ethynl-1,3-butadiene + H	INT 1	66.8	63.3	59.8	56.2	52.9	49.6	46.5	43.6
	INT 7	99.2	99.1	99.0	99.0	98.9	98.8	98.7	98.7
	INT 12	98.9	98.7	98.6	98.4	98.3	98.1	98.0	97.8
	INT 13	90.6	89.4	88.3	87.0	85.7	84.3	82.9	81.5
	INT 18	98.5	98.3	98.1	97.8	97.6	97.3	97.1	96.8
3-ethynyl-1,2-butadiene + H	INT 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	INT 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 13	0.1	0.2	0.2	0.2	0.3	0.3	0.4	0.4
	INT 18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
penta-1,4-diyne + CH ₃	INT 1	32.2	35.5	38.9	42.4	45.5	48.6	51.6	54.4
	INT 7	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.8
	INT 12	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.8
	INT 13	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.7
	INT 18	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6
benzene + H	INT 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
diacetlyne + C ₂ H ₅	INT 1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	INT 7	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	INT 12	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2
	INT 13	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	INT 18	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2
hexa-4,5-diene-1-yne + H	INT 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
hexa-3,5-diene-1-yne + H	INT 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

	INT 18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
hexa-1,2-diene-4-yne + H	INT 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	INT 18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table A7. B3LYP, CCSD(T), MP2, and G3 calculated energies at 0 K, zero-point energy corrections (ZPE), B3LYP/6-311G** optimized Cartesian coordinates, unscaled vibrational frequencies (v_i), moments of inertia (I_i), and rotational constants (B_i) of all species involved in the studied indene formation mechanisms.

Species,	Energies, a.u.	i	I_i ,	Cart	tesian coor	dinates, ar	ngstroms	v_i, cm^{-1}
(point group),			a.u.					
electronic state								
				Atom	Х	Y	Z	
H ² S	ZPE(B3LYP/6-311G**) = 0.0 1. E(B3LYP/6-311G**) = - 0.502155930011 E(CCSD(T)/CC-VDZ) = -0.499278 E(CCSD(T)/CC-VTZ) = -0.49980982 E(CCSD(T)/CC-VQZ) = -0.499946 E(CCSD(T)/CBS) = -0.49999							
C₂H (D∞h)	ZPE(B3LYP/6-311G**) = 0.014445 E(B3LYP+ZPE) = -76.619455742 E(CCSD(T)/CC-VDZ) = -76.398687 E(CCSD(T)/CC-VTZ) = -76.46769892 E(CCSD(T)/CC-VQZ) = -76.4876915 E(CCSD(T)/CBS) = -76.49585	A B C	0.00000 40.54466 40.54466	C H C	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	-0.473068 -1.536812 0.729203	370, 416, 2089, 3465
CH ₃ (C ₁)	ZPE(B3LYP/6-311G**) = 0.029569 E(B3LYP+ZPE) = -39.824188 E(CCSD(T)/CC-VDZ) = -39.44618541 E(CCSD(T)/CC-VTZ) = -39.50031087 E(CCSD(T)/CC-VQZ) = -39.51444526 E(CCSD(T)/CBS) = -39.51944	A B C	6.30449 6.30449 12.60896	С Н Н	0.000000 0.000000 -0.935876 0.935876	0.000000 1.080657 -0.540328 -0.540328	0.000273 -0.000545 -0.000545 -0.000545	507, 1404, 1404, 3102, 3281, 3281
C ₂ H ₅ (C ₁)	ZPE(B3LYP/6-311G**) = 0.058983 E(B3LYP+ZPE) = -79.124669 E(CCSD(T)/CC-VDZ) = -78.91573206 E(CCSD(T)/CC-VTZ) = -79.00226044 E(CCSD(T)/CC-VQZ) = -79.02545788 E(CCSD(T)/CBS) = -79.03395	A B C	17.39033 79.41224 85.68530	С Н Н С Н Н Н	-0.794278 -1.351038 -1.351038 0.693124 1.107217 1.107217 1.094572	0.000000 -0.926566 0.926566 0.000000 -0.886126 0.886127 -0.000001	-0.019123 0.042622 0.042622 -0.001749 -0.492768 -0.492766 1.025521	105, 474, 813, 980, 1063, 1192, 1401, 1465, 1482, 1483, 2941, 3034, 3077, 3140, 3241

1-butvne	$ZPE(B3LYP/6-311G^{**}) = 0.084380$	Α	65.43102	С	1.960054	-0.262471	0.000000	201, 224, 360, 519, 665, 673,
(\mathbf{C})	E(B3LYP+ZPE) = -155.930477	В	400.10341	н	2.955614	-0.632552	0.000000	789, 846, 1020, 1089, 1109,
(C_1)	E(CCSD(T)/CC-VDZ) = -155.51300878	С	443.24411	С	0.833687	0.156349	0.000000	1288 1349 1411 1479 1497
<u></u>	E(CCSD(T)/CC-VTZ) = -155.67431685 E(CCSD(T)/CC-V0Z) = -155.71022528			С	-0.542362	0.647396	0.000000	1507 2222 3020 3035 3045
	E(CCSD(T)/CC-VQZ) = -155.71932538 E(CCSD(T)/CPS) = -155.73674			Н	-0.691652	1.288389	0.876126	1507, 2222, 5020, 5055, 5045, 2102, 2110, 2479
	E(CCSD(1)/CDS) = -135.75074			Н	-0.691652	1.288389	-0.876126	3103, 3110, 3478
0- 0-0- Q				С	-1.588182	-0.482763	0.000000	
\sim				Н	-2.598554	-0.065958	0.000000	
				Н	-1.476467	-1.114665	-0.883611	
				Н	-1.476467	-1.114665	0.883611	
2-butyne	ZPE(B3LYP/6-311G**) =0.083756	Α	22.47396	С	-2.060490	-0.000003	0.000019	15, 201, 202, 383, 384, 725,
	E(B3LYP+ZPE) = -155.941156	В	536.41053	Н	-2.456450	0.388735	-0.943151	1054, 1054, 1057, 1057, 1170,
(C_1)	E(CCSD(T)/CC-VDZ) = -155.52061932	С	536.41124	Н	-2.456369	0.622455	0.808283	1/17 1/20 1/82 1/82 1/82
- C	E(CCSD(T)/CC-VTZ) = -155.68158969			Н	-2.456280	-1.011240	0.134966	1417, 1420, 1402
	E(CCSD(T)/CC-VQZ) = -155.72674319 E(CCSD(T)/CDS) = -155.74435			С	-0.601495	0.000018	-0.000037	1462, 2505, 5016, 5019, 5074,
	E(CCSD(1)/CDS) = -135.74455			С	0.601495	-0.000026	-0.000028	30/4, 30/4, 30/4
- U b				С	2.060490	0.000007	0.000014	
-				Н	2.456434	-0.622458	-0.808213	
				Н	2.456282	1.011245	-0.134918	
				Н	2.456383	-0.388717	0.943219	
ethynylallene	ZPE(B3LYP/6-311G**) = 0.064997	Α	67.05107	С	2.386836	-0.458322	0.000000	141, 295, 350, 359, 606, 626,
(C)	E(B3LYP+ZPE) = -192.791209	В	694.24010	Н	3.334697	-0.937599	0.000028	643 691 883 884 951 1004
(C_1)	E(CCSD(T)/CC-VDZ) = -192.24756563	С	748.90726	С	1.306493	0.072655	0.000014	1140 1352 1465 2042 2210
	E(CCSD(T)/CC-VTZ) = -192.43544406			С	0.054208	0.749300	-0.000026	$\begin{array}{c} 1140, 1552, 1405, 2042, 2210, \\ 2111, 2115, 2104, 2470 \end{array}$
	E(CCSD(T)/CC-VQZ) = -192.48910863 E(CCSD(T)/CDS) = -102.51057			Н	0.079958	1.837856	0.000051	5111, 5115, 5104, 5476
	E(CCSD(1)/CBS) = -192.51057			С	-1.113200	0.146341	-0.000028	
T				С	-2.276359	-0.431301	0.000012	
•				Н	-2.781272	-0.686235	-0.927443	
				Н	-2.781247	-0.686065	0.927529	
nentadivne	ZPE(B3LYP/6-311G**) = 0.065681	Α	11.27122	С	0.000000	0.000000	-2.511237	148, 148, 336, 336, 540, 540,
pentautyne	E(B3LYP+ZPE) = -192.800165	В	882.32687	Н	0.000000	1.021724	-2.903005	643 643 681 1048 1048
(C_1)	E(CCSD(T)/CC-VDZ) = -192.25588599	С	882.32687	Н	0.884839	-0.510862	-2.903005	1183 1415 1474 1474 2167
Q	E(CCSD(T)/CC-VTZ) = -192.44543586			н	-0.884839	-0.510862	-2.903005	1103, 1413, 1474, 1474, 2107, 2251, 2020
	E(CCSD(T)/CC-VQZ) = -192.49885120			С	0.000000	0.000000	-1.058254	2351, 3020, 3079, 3079, 3479
	E(CCSD(T)/CBS) = -192.51981			Ċ	0.000000	0.000000	0.151150	
-				Ċ	0.000000	0.000000	1.515712	
				С	0.000000	0.000000	2.723262	
				Ĥ	0.000000	0.000000	3.785214	
diacetylene	ZPE(B3LYP/6-311G**) = 0.037493	Α	0.00000	С	0.000000	0.000000	1.889186	237, 237, 525, 525, 663, 663,
v -								

(C1)	E(B3LYP+ZPE) = -153.490932	В	408.53335	Н	0.000000	0.000000	2.951597	671, 671, 917, 2111, 2285,
	E(CCSD(T)/CC-VDZ) = -153.04796948	С	408.53335	С	0.000000	0.000000	0.682650	3476, 3478
	E(CCSD(T)/CC-VTZ) = -153.19597363			С	0.000000	0.000000	-0.682650	
	E(CCSD(T)/CC-VQZ) = -153.23799420 E(CCSD(T)/CDS) = 152.25465			С	0.000000	0.000000	-1.889186	
	E(CCSD(1)/CBS) = -153.25465			Н	0.000000	0.000000	-2.951597	
3 4-hexadiene-1-vne	ZPE(B3LYP/6-311G**) = 0.094491	Α	82.18487	С	2.348113	1.419454	0.000000	100, 132, 231, 240, 351, 464,
	E(B3LYP+ZPE) = -232.095506	В	1354.95574	Н	2.622076	0.840218	0.883992	537, 553, 638, 642, 673, 787,
(C_1)	E(CCSD(T)/CC-VDZ) = -231.45392185	С	1414.83463	Н	2.928835	2.345089	0.000000	953 1076 1103 1176 1286
	E(CCSD(T)/CC-VTZ) = -231.68483829			Н	2.622076	0.840218	-0.883992	1350 1412 1474 1406 1506
	E(CCSD(T)/CC-VQZ) = -231.74971853 E(CCSD(T)/CDS) = -221.77507			С	0.840428	1.738845	0.000000	1350, 1412, 1474, 1490, 1500,
-0-0-0 U	E(CCSD(1)/CBS) = -231.7/507			Н	0.591718	2.348869	0.876363	2164, 2344, 3015, 3037, 3040,
<u> </u>				Н	0.591718	2.348869	-0.876363	3106, 3113, 3478
e				С	0.000000	0.548862	0.000000	
				С	-0.685553	-0.448562	0.000000	
				С	-1.459564	-1.572306	0.000000	
				С	-2.144899	-2.566670	0.000000	
				Н	-2.747575	-3.441006	0.000000	
1 3-hevedivne	ZPE(B3LYP/6-311G**) = 0.093476	Α	137.96166	С	-2.638823	-0.582793	-0.291469	100, 147, 187, 229, 349, 447,
1,5-nexactly ne	E(B3LYP+ZPE) = -232.091546	В	1176.58711	H	-2.235402	-0.878824	-1.260224	539 611 629 688 755 874
(C_1)	E(CCSD(T)/CC-VDZ) = -231.44919472	С	1240.61861	Н	-3.541473	0.013841	-0.457456	807 085 1050 1000 1156
	E(CCSD(T)/CC-VTZ) = -231.67843565	-		Н	-2.941046	-1.485333	0.249094	677, 763, 1037, 1070, 1130, 1202, 1407, 1420, 1407, 1501
	E(CCSD(T)/CC-VQZ) = -231.74368420			С	-1.627238	0.198908	0.510824	1303, 1407, 1438, 1485, 1501,
	E(CCSD(1)/CBS) = -231.76964			Ĥ	-1.939744	0.537782	1.498601	2044, 2207, 3023, 3072, 3100,
				С	-0.421689	0.490510	0.118805	3107, 3122, 3479
				Č	0.791434	0.797613	-0.285586	
				H	0.947860	1.730515	-0.825857	
				С	1.940885	-0.013975	-0.063586	
				Ċ	2.938780	-0.667349	0.101185	
				Н	3.809708	-1.255468	0.254805	
1 3 havadiana 5 yna	ZPE(B3LYP/6-311G**) = 0.094365	Α	65.60308	С	-0.787242	2,809482	0.000000	134, 139, 207, 309, 446, 461,
1,5-nexautene-5-yne	E(B3LYP+ZPE) = -232.112802	В	1271.55338	Ĥ	0.226340	3.197324	0.000000	555 628 668 681 880 938
(C _s)	E(CCSD(T)/CC-VDZ) = -231.47434583	Ē	1337.15647	Н	-1.590453	3.536090	0.000000	060, 076, 1037, 1043, 1105
	E(CCSD(T)/CC-VTZ) = -231.70247712	~		C	-1.031247	1.492856	0.000000	700, 770, 1037, 1043, 1195,
	E(CCSD(T)/CC-VQZ) = -231.76781018			Ĥ	-2.060899	1.141318	0.000000	1280, 1314, 1331, 1453, 1643,
	E(UU5D(1)/UBS) = -231.79403			C	0.000000	0.475912	0.000000	1687, 2196, 3129, 3131, 3138,
I L				Ĥ	1.032891	0.813954	0.000000	3153, 3225, 3477
• •				C	-0.254784	-0.849069	0.000000	
				Ĥ	-1.287394	-1.191738	0.000000	
				C	0.740856	-1.856011	0.000000	

С	1.563266	-2.737928	0.000000
Н	2.294416	-3.508395	0.000000

2-ethvnvlbutadiene	ZPE(B3LYP/6-311G**) = 0.094322	Α	378.57720	С	-2.040225	-1.082399	0.000001	149, 162, 262, 309, 471, 499,
$(\mathbf{C}_{\mathbf{r}})$	E(B3LYP+ZPE) = -232.107249	В	512.23169	Н	-2.860249	-1.757849	0.000049	621, 652, 688, 717, 754, 775,
(C1)	E(CCSD(T)/CC-VDZ) = -231.47209420 E(CCSD(T)/CC-VDZ) = -231.70074472	С	890.80889	С	-1.121383	-0.304988	-0.000098	926, 946, 953, 1021, 1061,
<u></u>	E(CCSD(T)/CC-VTZ) = -231.700/44/2 E(CCSD(T)/CC-VOZ) = -231.76600711			С	-0.011165	0.600579	-0.000004	1317 1325 1417 1455 1635
⊷ - 6	E(CCSD(T)/CC-VQZ) = -231.70009711 E(CCSD(T)/CRS) = -231.70225			С	-0.218293	1.931323	0.000062	1617, 1023, 1417, 1433, 1053, 1653, 1603, 1600, 2000, 2140, 2140, 2151
	E(CCSD(1)/CDS) -231.77225			н	-1.215955	2.349834	0.000113	1090, 2200, 5140, 5140, 5151,
₩- ••				Н	0.617918	2.620864	0.000165	3230, 3243, 3477
				С	1.351620	0.043609	-0.000102	
				н	2.145212	0.786131	-0.000278	
				С	1.660551	-1.254139	0.000079	
<u> </u>				н	0.893647	-2.020270	0.000336	
•				н	2.692797	-1.582612	-0.000019	
3-methyl-3.4-diene-	ZPE(B3LYP/6-311G**) = 0.093119	Α	320.49545	С	0.180327	1.832375	0.000056	135, 163, 199, 226, 343, 486,
1 non4vno	E(B3LYP+ZPE) = -232.091295	В	685.69629	н	0.736322	2.160330	-0.882602	530, 608, 630, 649, 686, 706,
1-pentyne	E(CCSD(T)/CC-VDZ) = -231.45010853	С	982.61139	Н	-0.798444	2.312308	0.000145	884 995 1009 1059 1180
(C ₁)	E(CCSD(T)/CC-VTZ) = -231.67940149 E(CCSD(T)/CC-V0Z) = -221.744(2820)			н	0.736343	2.160045	0.882805	1202 1404 1463 1481 1400
	E(CCSD(T)/CC-VQZ) = -231.74402829 E(CCSD(T)/CPS) = -231.77056			С	0.037808	0.319403	-0.000193	1292, 1404, 1405, 1401, 1499, 2041, 2002, 2021, 2007, 2105
	E(CC3D(1)/CB3) = -231.77030			С	-1.137617	-0.271726	-0.000059	2041, 2203, 3031, 3087, 3105,
				С	-2.307131	-0.839504	0.000064	3125, 3175, 3477
				Н	-2.816129	-1.091262	-0.926604	
1				Н	-2.816061	-1.091011	0.926836	
				С	1.239323	-0.455739	-0.000058	
00				С	2.281676	-1.058780	0.000068	
				н	3.191645	-1.606591	0.000155	
fulvene	ZPE(B3LYP/6-311G**) = 0.097539	Α	219.73865	С	0.125762	1.178086	-0.000153	208, 345, 492, 636, 680, 691,
	E(B3LYP+ZPE) = -232.154466	В	473.08717	С	1.402604	0.737479	0.000133	779, 791, 808, 909, 930, 943,
(C_1)	E(CCSD(T)/CC-VDZ) = -231.52854118	С	692.82581	С	1.402654	-0.737440	-0.000086	962 963 1000 1102 1104
	E(CCSD(T)/CC-VTZ) = -231.75340884			С	0.125817	-1.178084	-0.000045	1253 1334 1360 1453 1532
Ψ	E(CCSD(T)/CC-VQZ) = -231.81924900 E(CCSD(T)/CPS) = -231.84651			Н	-0.219030	2.202277	-0.000359	1255, 1554, 1507, 1455, 1552, 1616, 1701, 2126, 2107, 2207
	E(CC3D(1)/CB3) = -231.84031			Н	2.294628	1.349622	0.000590	1616, 1/01, 5136, 5197, 5207,
				н	2.294702	-1.349562	-0.000229	3221, 3224, 3230
				н	-0.218912	-2.202293	0.000259	
				С	-0.759635	-0.000012	0.000032	
				С	-2.100227	-0.000023	0.000080	
				Н	-2.666593	-0.924931	-0.000038	

				Н	-2.666634	0.924859	0.000015	
DMCB	ZPE(B3LYP/6-311G**) = 0.095572	Α	321.68822	С	-1.361972	-1.487204	0.000000	202, 244, 297, 416, 695, 698,
	E(B3LYP+ZPE) = -232.110019	В	425.11889	Н	-2.355935	-1.055313	0.000000	723, 765, 770, 822, 889, 893,
(\mathbf{C}_1)	E(CCSD(T)/CC-VDZ) = -231.47933896	С	746.80711	Н	-1.288690	-2.568757	0.000000	905 918 948 1070 1155
$\varphi = \varphi$	E(CCSD(T)/CC-VTZ) = -231.70492116			С	-0.277141	-0.718603	0.000000	1101 1205 1425 1451 1540
	E(CCSD(T)/CC-VQZ) = -231.7/052116 E(CCSD(T)/CDS) = -231.70742			С	0.000000	0.769243	0.000000	1191, 1295, 1455, 1451, 1540,
	E(CCSD(1)/CBS) = -231.79742			С	1.191418	-0.913690	0.000000	1/21, 1/64, 3139, 3139, 3199,
				Н	1.821633	-1.793185	0.000000	3222, 3222, 3226
				С	-0.732042	1.879288	0.000000	
				Н	-0.270852	2.860173	0.000000	
				С	1.440349	0.421865	0.000000	
				Н	2.345231	1.014941	0.000000	
				Н	-1.815061	1.836744	0.000000	
ΙΝΤ Δ	ZPE(B3LYP/6-311G**) = 0.103935	Α	111.89615	С	-3.186171	0.454680	-0.102140	97, 110, 138, 232, 326, 369,
	E(B3LYP+ZPE) = -232.648342	В	1301.71146	Н	-4.158327	0.853546	-0.256206	455 534 627 684 770 806
(\mathbf{C}_1)	E(CCSD(T)/CC-VTZ) = -232.24312927	С	1356.24956	С	-2.077370	0.014098	0.061113	883 060 1055 1087 1008
				С	-0.788811	-0.545988	0.290896	124(1200, 1241, 1411, 1455)
				Н	-0.747861	-1.376077	1.007195	1240, 1299, 1541, 1411, 1455,
				С	0.332813	-0.149482	-0.283666	1497, 1506, 1720, 2206, 2944,
				С	1.763021	-0.484605	-0.275160	3008, 3023, 3036, 3105, 3109,
O O				Н	1.915416	-1.357898	0.381284	3478
				Н	2.063844	-0.802987	-1.280871	
				С	2.665048	0.675572	0.184271	
				Н	2.413364	0.984893	1.200972	
				Н	3.714358	0.371537	0.166664	
				Н	2.548026	1.541333	-0.470921	
INT R	ZPE(B3LYP/6-311G**) = 0.102422	Α	99.42838	С	-3.153614	-0.342130	0.035745	86, 114, 131, 175, 342, 381,
	E(B3LYP+ZPE) = -232.659855	В	1274.41547	Н	-4.158043	-0.665184	0.157586	474, 494, 560, 631, 682, 782,
(C ₁)	E(CCSD(T)/CC-VTZ) = -232.25491033	С	1308.21648	С	-2.010474	0.016566	-0.093158	851 982 991 1035 1073
				С	-0.675094	0.467508	-0.276419	1009 1202 1207 1220 1240
				Н	-0.530205	1.248341	-1.020779	1098, 1203, 1307, 1329, 1340,
				С	0.382994	-0.000515	0.400282	1458, 1458, 1684, 2203, 2944,
<u>له</u> له				Н	0.234284	-0.785245	1.137346	3017, 3123, 3138, 3151, 3246,
				С	1.797573	0.471857	0.198580	3478
				Н	2.175193	0.897197	1.137238	
				Н	1.793925	1.302300	-0.526654	
				С	2.716557	-0.616143	-0.257118	
				Н	2.394045	-1.318785	-1.015673	
				H	3.743149	-0.661485	0.083461	

INT C-T (C1)	ZPE(B3LYP/6-311G**) = 0.103512 E(B3LYP+ZPE) = -232.615309 E(CCSD(T)/CC-VTZ) = -232.20940060	A B C	256.19103 728.58134 912.27383	С Н С Н С Н Н С Н Н Н	-2.052553 -3.069024 -1.313149 -1.041408 -1.431595 -0.026773 1.406988 1.919929 1.473879 2.083767 3.125080 1.572550	-1.196684 -1.520956 -0.141332 1.268001 2.218181 0.544349 0.397169 1.349522 0.175444 -0.733427 -0.843031 -1.683835	0.135356 0.002659 0.015035 -0.298871 -0.628652 0.110911 0.451737 0.286137 1.523547 -0.341489 -0.030662 -0.175695	63, 141, 192, 265, 368, 430, 464, 570, 632, 750, 793, 808, 841, 937, 1006, 1037, 1087, 1155, 1290, 1342, 1415, 1476, 1499, 1508, 1649, 1861, 3019, 3039, 3060, 3106, 3113, 3240, 3282
				H	2.067956	-0.523783	-1.413408	
INT 1 (C ₁)	ZPE(B3LYP/6-311G**) = 0.104105 E(B3LYP+ZPE) = -232.640085 E(CCSD(T)/CC-VTZ) = -232.23908322	A B C	360.99887 612.55375 887.65055	Н С С С С Н С Н Н С Н Н Н Н Н	2.067956 -0.347802 -1.172395 -0.141826 -1.226239 -2.127399 -2.926561 1.216559 1.094629 1.885616 1.823442 2.783586 1.164150 1.990566	-0.523783 1.894276 2.495849 0.639240 -0.297872 -1.097365 -1.796725 0.128647 -0.311508 0.985997 -0.909722 -1.265137 -1.773370 -0.478326	-1.413408 -0.263915 -0.616976 0.094187 0.046115 0.015405 -0.013025 0.557586 1.553304 0.660686 -0.395424 -0.012388 -0.509689 -1.385642	80, 155, 212, 241, 333, 376, 535, 619, 645, 678, 696, 731, 805, 852, 973, 1069, 1094, 1192, 1289, 1344, 1411, 1484, 1497, 1508, 1633, 2189, 3029, 3031, 3077, 3096, 3106, 3239, 3476
INT 2	$ZPE(B3LYP/6-311G^{**}) = 0.103166$	Α	403.93313	C	-1.929655	-0.879932	0.000044	94, 160, 189, 272, 299, 460,
(C ₁)	E(B3LYP+ZPE) = -232.085188 E(CCSD(T)/CC-VTZ) = -232.27941324	B	536.94373	C	-1.208411	0.424022	-0.000291	532, 615, 621, 650, 685, 731,
(-1)		C	929.79308	C	0.177447	0.604011	-0.000095	757, 771, 918, 1021, 1043,
				C	0.760783	-0.341433	0.000157	1145, 1250, 1372, 1411, 1434,
				č	1.786297	-1.491715	-0.000001	1478, 1490, 1512, 2206, 2996,
				н	-2.588777	-0.964368	-0.873380	3028, 3113, 3146, 3152, 3256,
				Н	-2.577460	-0.970242	0.881474	3476
				Н	-1.242669	-1.726835	-0.006827	
<u> </u>				Н	-1.813309	1.326726	0.000038	
				H	1.834558	1.993078	0.000196	
- 79				H U	0.140003	2./38234	0.000287	
				п	2.442010	-2.32/40/	0.0004/4	

INT 3 (C1)	ZPE(B3LYP/6-311G**) = 0.103641 E(B3LYP+ZPE) = -232.653490 E(CCSD(T)/CC-VTZ) = -232.24878482	A B C	415.53350 577.83016 970.94005	С Н Н С С С С Н С С Н Н Н Н	-0.997120 -1.641785 -0.330523 -1.641812 -0.196206 -0.932393 -1.560200 -2.115615 1.128234 2.242369 2.877014 2.876653 1.867966	1.782934 1.833572 2.646001 1.833505 0.494155 -0.736696 -1.765903 -2.671305 0.471100 -0.482526 -0.351991 -0.351724 -1.516439	-0.000031 0.882280 0.000041 -0.882290 0.000005 0.000219 -0.000125 -0.000053 -0.000120 -0.000001 -0.882597 0.882845 0.000092	113, 128, 163, 214, 236, 292, 420, 565, 586, 624, 679, 704, 944, 1029, 1040, 1061, 1108, 1191, 1391, 1403, 1455, 1468, 1481, 1488, 1725, 2186, 2978, 3027, 3049, 3068, 3082, 3119, 3476
INT 4 (C ₁)	ZPE(B3LYP/6-311G**) = 0.102330 E(B3LYP+ZPE) = -232.657592 E(CCSD(T)/CC-VTZ) = -232.25478985	A B C	376.73722 590.63838 881.71152	С Н С С Н С Н Н С Н Н Н Н	-0.111765 -1.034159 -0.059127 -1.223029 -2.182845 -3.035003 1.229805 1.068008 1.982154 1.734629 2.243622 1.675252 0.774118	1.865492 2.333401 0.565486 -0.262571 -0.989644 -1.622791 -0.115575 -0.595806 0.671002 -1.119425 -2.016024 -0.920200 2.487841	-0.218043 -0.538499 0.101519 0.034043 0.003322 -0.032156 0.541657 1.513104 0.711626 -0.441644 -0.112446 -1.504387 -0.162357	72, 90, 169, 226, 328, 393, 478, 557, 644, 660, 677, 742, 758, 834, 935, 952, 1046, 1091, 1183, 1288, 1339, 1436, 1458, 1464, 1669, 2201, 2953, 3039, 3141, 3142, 3233, 3249, 3476
INT 5 (C1)	ZPE(B3LYP/6-311G**) = 0.107974 E(B3LYP+ZPE) = -232.679660 E(CCSD(T)/CC-VTZ) = -232.28445820	A B C	225.95006 529.65649 733.32957	С Н Н С Н С С Н С С Н Н Н Н	-1.519368 -2.075256 -2.093135 -0.061333 0.135190 0.863033 -1.341424 -2.168892 -0.046904 2.198448 2.751526 2.771008 0.124841	0.585953 0.911135 0.918992 1.143712 1.770757 -0.084969 -0.927072 -1.624749 -1.212234 -0.093847 -1.025060 0.826577 1.753094	0.006012 0.891981 -0.865355 -0.005766 0.866827 -0.001297 -0.000854 -0.001188 -0.003735 0.003837 0.005509 0.006219 -0.893172	43, 280, 356, 516, 611, 716, 752, 755, 843, 847, 894, 897, 944, 1004, 1008, 1154, 1188, 1229, 1241, 1300, 1310, 1441, 1470, 1493, 1633, 1696, 3020, 3046, 3052, 3090, 3141, 3200, 3226

INT 6 (C1)	ZPE(B3LYP/6-311G**) = 0.107984 E(B3LYP+ZPE) = -232.680926 E(CCSD(T)/CC-VTZ) = -232.28611197	A B C	236.96932 506.18497 720.82673	С Н Н С Н С С С С С Н Н Н Н Н Н Н Н	-1.656997 -2.242957 -2.269397 -0.262655 -0.148076 0.790173 -1.236048 0.067995 2.115636 2.792701 2.562696 -0.160064 0.556467	-0.412397 -0.661248 -0.668973 -1.133733 -1.785649 -0.020401 1.016698 1.263955 -0.187542 0.659007 -1.175699 -1.756587 2.229674	-0.008581 -0.898613 0.860940 0.008837 -0.860035 0.001683 0.000921 0.004407 -0.005863 -0.008771 -0.009489 0.900453 0.007093	43, 296, 360, 491, 607, 671, 761, 814, 836, 873, 881, 914, 960, 969, 1014, 1154, 1209, 1223, 1233, 1271, 1310, 1441, 1468, 1493, 1632, 1691, 3033, 3053, 3058, 3092, 3132, 3201, 3213
INT 7 (C ₁)	ZPE(B3LYP/6-311G**) = 0.106970 E(B3LYP+ZPE) = -232.738830 E(CCSD(T)/CC-VTZ) = -232.33821563	A B C	226.38596 507.05360 722.33024	С Н С С С С С Н Н Н Н Н Н	-1.504999 -2.411437 -0.117179 0.065459 0.785757 -1.426327 -0.071899 2.145797 2.714669 2.706002 0.064260 0.269648 -2.275499	-0.610384 -1.199899 -1.192200 -1.824382 0.038817 0.757330 1.175944 0.025312 0.947824 -0.902277 -1.822270 2.202630 1.429458	-0.000518 -0.000697 0.000421 -0.877097 0.000060 -0.000208 0.000355 -0.000426 -0.000403 -0.000472 0.879815 0.000969 -0.000218	183, 355, 394, 529, 617, 638, 661, 779, 819, 820, 856, 927, 944, 952, 987, 1043, 1109, 1147, 1258, 1268, 1308, 1395, 1416, 1443, 1510, 1567, 3016, 3039, 3137, 3189, 3206, 3219, 3223
INT 8 (C ₁)	ZPE(B3LYP/6-311G**) = 0.106566 E(B3LYP+ZPE) = -232.729189 E(CCSD(T)/CC-VTZ) = -232.32921337	A B C	225.32654 513.28453 727.56777	С Н Н С Н С С Н С С Н С Н С Н Н Н Н	1.482387 2.038100 2.038129 0.052367 -0.263752 -0.803089 1.355377 2.204944 0.063862 -0.320079 -2.185008 -2.743723 -2.748998	-0.688500 -1.054860 -1.055051 -1.140344 -2.174780 -0.028072 0.815913 1.486301 1.172422 2.185123 -0.022278 0.905315 -0.946897	-0.000041 0.875870 -0.875823 0.000057 0.000314 0.000114 -0.000153 -0.000401 0.000174 0.000114 -0.000114 -0.000295 -0.000292	217, 351, 356, 532, 586, 643, 655, 744, 773, 792, 915, 918, 939, 953, 960, 1016, 1108, 1126, 1251, 1273, 1320, 1365, 1430, 1443, 1514, 1630, 2985, 2997, 3144, 3188, 3207, 3212, 3235

INT 9	ZPE(B3LYP/6-311G**) = 0.104036	Α	285.76703	С	2.346568	0.676925	0.000791	93, 152, 273, 277, 315, 478,
(\mathbf{C})	E(B3LYP+ZPE) = -232.695742	В	705.31924	Н	2.763444	1.070507	-0.924321	544, 584, 762, 768, 868, 869,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.28415688	С	978.74796	н	2.762531	1.068419	0.927205	878 911 993 1001 1046
				С	1.391744	-0.205788	-0.000581	1004 1204 1276 1364 1436
				С	0.470812	-1.166562	-0.000887	1094, 1204, 1270, 1304, 1430,
				н	0.865213	-2.182381	-0.001119	1451, 1478, 1569, 1952, 3084,
••• 6 •				С	-0.953578	-1.066562	0.000262	3106, 3127, 3148, 3153, 3168,
				н	-1.470954	-2.020058	0.000857	3246
				С	-1.777901	0.084689	0.000731	
C V V				Н	-2.845547	-0.123746	0.002307	
				С	-1.403492	1.395171	-0.000701	
÷				Ĥ	-2.152821	2.177514	-0.000176	
				Н	-0.366785	1.702502	-0.002450	
INT 10	ZPE(B3LYP/6-311G**) = 0.104154	Δ	341 45957	<u> </u>	1.565977	-1.111252	-0.353335	133 174 234 317 396 537
	E(B3LYP+ZPE) = -232.662755	B	442.18774	н	2.161297	-1.895993	0.095593	647 609 714 706 903 997
(C ₁)	E(CCSD(T)/CC-VTZ) = -232.26304406	Č	714 24430	н	1.557534	-1.026449	-1.433786	047, 070, 714, 770, 005, 802,
		e	/11121100	C II	0.732228	-0.201636	0.460662	893, 925, 957, 1039, 1095,
L I				č	-0.780345	-0.078094	0.068571	1138, 1155, 1181, 1296, 1338,
				č	0 745303	1 295570	0.092257	1440, 1461, 1585, 1725, 3043,
				Ĥ	1.550791	2.019420	0.080438	3132, 3136, 3180, 3211, 3215,
Y Y				Ĉ	-1.783015	-0.949278	0.006723	3242
				Ĥ	-2.775219	-0.648320	-0.312295	
				Ĉ	-0.563402	1.343512	-0.220479	
				Ĥ	-1.222849	2.133332	-0.559601	
				Н	-1.638519	-1.990488	0.271670	
				Н	0.866491	-0.384428	1.531588	
INT 11	$ZPE(B3LVP/6-311G^{**}) = 0.104054$	Δ	423 73801	<u> </u>	-1 909692	-0 637440	0.000182	95 169 238 352 399 447
	E(B3LYP+ZPE) = -232.663753	R	440 71944	н	-2 743784	0.054376	0.000102	597 600 723 735 773 947
(C ₁)	E(CCSD(T)/CC-VTZ) = -232.26155974	Č	864 45743	н	-2.145764	-1 694505	0.000242	507,009,755,755,772,047,
		C	0110710	Ċ	-0 632823	-0 206268	-0.000103	864, 925, 946, 984, 1018,
Y h				Č	-0 383784	1 248620	-0.000105	1070, 1263, 1329, 1347, 1417,
<u> </u>				н	-1 299172	1.240020	0.000105	1460, 1629, 1652, 1697, 3010,
				Ċ	0 760175	1.894438	-0 000047	3125, 3131, 3143, 3215, 3228,
				н	1 077130	2 926562	0.000047	3240
				Ċ	0.455115	-1.195768	-0.000207	
				н	0 111350	-2 227756	_0 000832	
				Ċ	1.769161	-0.964515	0.000212	
Ũ				Ĥ	2.476253	-1.786317	-0.000058	
						1	0.0000000	

						010101/2		
INT 12	ZPE(B3LYP/6-311G**) = 0.103165	Α	193.38011	С	-2.724367	-0.496432	-0.292561	51, 147, 181, 220, 343, 424,
(\mathbf{C})	E(B3LYP+ZPE) = -232.648708	В	1012.93945	Η	-2.837191	-1.504406	-0.680547	468, 552, 609, 864, 875, 886,
(\mathbf{C}_1)	E(CCSD(T)/CC-VTZ) = -232.24038753	С	1111.55300	Н	-3.602192	0.142653	-0.309992	906, 910, 1000, 1017, 1019,
				С	-1.584387	-0.073854	0.178253	1136 1208 1297 1359 1408
ų.				С	-0.444138	0.359012	0.637547	1150, 1200, 1277, 1557, 1400, 1400, 1400, 1400, 1474, 1740, 2000
				Н	-0.203822	0.223330	1.689697	1400, 14/4, 1/40, 2040, 3000, 2040, 2050, 2114, 2121, 2144
				С	0.620923	1.035396	-0.218733	3040, 3058, 3114, 3131, 3144,
				Н	0.852363	2.019584	0.208237	3186
U 670				Н	0.226043	1.218817	-1.222611	
_				С	1.864654	0.242343	-0.309481	
				С	2.344390	-0.932258	0.008637	
				Н	1.731373	-1.690752	0.503560	
				Н	3.370977	-1.214462	-0.210326	
INT 13	ZPE(B3LYP/6-311G**) = 0.104863	Α	339.13828	С	1.478763	-1.350857	-0.000133	159, 248, 294, 420, 508, 571,
	E(B3LYP+ZPE) = -232.689598	В	440.23569	Н	1.066957	-2.354510	-0.000293	664, 691, 743, 763, 779, 877,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.28583447	С	767.99788	Н	2.559430	-1.260082	-0.000156	901 941 969 974 1085
• •				С	0.694746	-0.279825	0.000183	1160 1210 1240 1208 1400
				С	-0.777235	-0.030024	0.000024	1100, 1210, 1249, 1508, 1400,
				С	0.947034	1.238752	0.000136	1439, 1467, 1508, 1736, 3006,
· · · · · · · · · · · · · · · · · · ·				Н	1.459170	1.626300	-0.888692	3037, 3131, 3144, 3200, 3211,
				С	-1.884049	-0.849586	0.000063	3237
				Н	-2.885047	-0.435295	0.000051	
<u>с</u> то				С	-0.565893	1.357540	-0.000249	
				Н	-1.234365	2.208959	-0.000415	
				Н	-1.784991	-1.927822	0.000169	
				Н	1.458650	1.626444	0.889198	
INT 14	ZPE(B3LYP/6-311G**) = 0.106223	Α	332.02336	С	0.615803	-0.153891	0.474635	176, 223, 253, 328, 402, 625,
	E(B3LYP+ZPE) = -232.642565	В	454.61698	С	-0.856960	0.086720	0.036221	705 710 780 794 847 900
(C_1)	E(CCSD(T)/CC-VTZ) = -232.24568978	С	719.55060	С	-0.421135	1.442570	-0.311973	022 1045 1060 1000 1005
				С	0.860780	1.310630	0.043407	922, 1043, 1000, 1090, 1093, 1195, 1210, 1225, 1406, 1424
				С	-1.961579	-0.646042	0.002699	1185, 1219, 1525, 1400, 1454,
				С	1.380375	-1.239168	-0.276633	1491, 1494, 1561, 1736, 3020,
				Н	0.688767	-0.283137	1.560902	3024, 3085, 3098, 3137, 3220,
				Н	1.739821	1.937699	0.050221	3235
				Н	-2.893959	-0.238223	-0.370461	
				н	-1.965740	-1.674379	0.345932	
				Н	2.445054	-1.204624	-0.026806	
C				Н	1.277134	-1.110058	-1.356895	

				Н	1.005213	-2.232201	-0.013031	
INT 15	ZPE(B3LYP/6-311G**) = 0.104079	Α	303.48609	С	-0.498853	0.176854	-0.354246	102, 200, 278, 307, 406, 549,
(\mathbf{C})	E(B3LYP+ZPE) = -232.621247	В	491.03569	С	0.866217	-0.158421	-0.040793	573, 610, 694, 778, 796, 929,
(C1)	E(CCSD(T)/CC-VTZ) = -232.21944549	С	707.90255	С	0.108206	-1.109553	0.685151	957, 1015, 1021, 1049, 1099,
				С	-1.102550	-1.166226	-0.272445	1152 1225 1302 1402 1438
				С	2.136997	0.330869	-0.107615	1132, 1223, 1302, 1402, 1430, 1475, 1490, 1401, 1557, 2000
				С	-1.196769	1.410744	0.152047	1475, 1488, 1491, 1557, 3008,
				Η	-2.100155	-1.255965	0.156745	3065, 30/4, 3109, 3135, 3152,
T d				н	-0.934735	-1.866249	-1.088580	3249
				Η	2.917916	-0.102559	0.503730	
				н	2.391690	1.139691	-0.779738	
<u> </u>				н	-1.826243	1.178458	1.019776	
				н	-1.849128	1.820757	-0.625354	
				н	-0.478836	2.180262	0.440828	
INT 16	ZPE(B3LYP/6-311G**) = 0.104574	Α	336.40874	С	0.681937	0.079982	-0.000411	94, 210, 219, 247, 411, 509,
	E(B3LYP+ZPE) = -232.686715	В	460.31749	С	-0.780485	-0.253858	-0.000049	668, 680, 726, 754, 848, 878,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.28363230	С	785.59039	С	-1.032643	1.214051	0.000174	889 927 1013 1018 1138
				С	0.357311	1.449661	-0.000146	1152 1241 1246 1404 1420
				С	-1.510765	-1.367748	-0.000054	1155, 1241, 1540, 1404, 1459,
				С	1.923811	-0.729527	0.000210	1468, 1469, 1510, 1735, 2996,
				Н	-1.917014	1.833172	0.000841	3031, 3093, 3137, 3196, 3219,
T T				Η	0.958744	2.350316	-0.000292	3237
				Н	-2.594101	-1.332396	0.000230	
				Η	-1.044879	-2.346722	-0.000334	
U U				Н	2.811422	-0.092646	0.000938	
				Н	1.976042	-1.383392	-0.879371	
				н	1.974791	-1.383700	0.879644	
INT CVC	ZPE(B3LYP/6-311G**) = 0.103089	Α	452.28841	С	1.843434	-1.194150	0.000164	128, 135, 163, 195, 200, 402,
	E(B3LYP+ZPE) = -232.627267	В	492.50342	С	2.453456	-0.968013	0.880227	453 500 530 664 687 810
(C ₁)	E(CCSD(T)/CC-VTZ) = -232.21912408	С	922.51645	С	1.607255	-2.260743	-0.000015	903 1035 1050 1099 1121
		-		Ċ	2.454182	-0.967965	-0.879381	075, 1055, 1050, 1000, 1121, 1000, 1121, 10000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000
				Ċ	0.620405	-0.365059	-0.000300	1194, 1401, 1406, 14/4, 14/5,
				C	0.075690	1.002328	-0.000286	1480, 1482, 1661, 1940, 3022,
				Ĥ	0.156973	2.296265	0.000332	3025, 3076, 3079, 3099, 3105,
				H	0.895533	3.078087	-0.000223	3276
				Ĥ	-0.687729	-0.238289	-0.000295	
				Н	-2.042725	-0.830088	0.000160	
				Ĥ	-2.600080	-0.493256	-0.879210	
				н	-2.006898	-1.921518	0.000439	

3 -0								
TS A-1	ZPE(B3LYP/6-311G**) = 0.101420	Α	234.43474	С	-2.385696	-1.003508	0.087673	664i, 60, 124, 170, 257, 364,
(\mathbf{C})	E(B3LYP+ZPE) = -232.606854	В	849.21563	Н	-2.674538	-2.001084	0.329151	412, 474, 512, 526, 771, 802,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.19645236	С	1013.40169	С	-1.587508	-0.049260	-0.038646	813, 945, 1001, 1081, 1092.
				С	-0.950115	1.198230	-0.280878	1164 1276 1331 1412 1464
				Н	-1.245942	2.187349	-0.618567	1407 1507 1783 1883 2074
				С	0.079230	0.504652	0.123849	1497, 1507, 1705, 1005, 2974, 2020, 2029, 2107, 2111, 2125
				С	1.509237	0.366216	0.448120	3030, 3038, 3106, 3111, 3135,
				н	2.018270	1.321240	0.251036	3402
				Н	1.601352	0.177566	1.524408	
Ψ				С	2.198650	-0.770118	-0.327347	
				Н	3.249828	-0.841145	-0.038467	
•				Н	1.717577	-1.728022	-0.120217	
				Н	2.150661	-0.593174	-1.403966	
TS 1-A	ZPE(B3LYP/6-311G**) = 0.101161	Α	283.95122	С	-2.093516	-1.164830	0.084624	710i, 63, 156, 192, 265, 350,
$(\mathbf{C}_{\mathbf{r}})$	E(B3LYP+ZPE) = -232.605579	В	697.62189	Н	-3.048856	-1.626171	-0.014369	434, 489, 506, 578, 662, 721,
(C1)	E(CCSD(T)/CC-VTZ) = -232.19692925	С	904.83206	С	-1.239116	-0.257029	0.051043	747, 800, 964, 1045, 1086,
				С	-0.930691	1.447548	-0.303339	1188 1294 1342 1414 1478
				Н	-1.146187	2.463101	-0.599339	1400 1507 1728 1000 3025
				С	-0.068791	0.559504	0.112443	1499, 1507, 1720, 1909, 5025, 2026, 2060, 2103, 2109, 2024
				С	1.362339	0.336119	0.483876	5050, 5009, 5105, 5106, 5254,
				Н	1.900117	1.282876	0.381673	3414
				Н	1.397193	0.054688	1.542469	
•				С	2.023675	-0.763224	-0.360569	
				н	3.052452	-0.930036	-0.033023	
<u> </u>				н	1.479229	-1.705651	-0.268268	
				Н	2.042644	-0.487331	-1.417610	
TS A1	ZPE(B3LYP/6-311G**) = 0.095539	Α	103.81970	С	3.289494	-0.361835	-0.061183	777i, 60, 102, 129, 239, 263,
$(\mathbf{C}_{\mathbf{r}})$	E(B3LYP+ZPE) = -232.590326	В	1360.95148	Н	4.317869	-0.621875	-0.114796	319, 446, 498, 542, 554, 652,
(C_1)	E(UCSD(1)/UU-V1Z) = -232.17523393	С	1416.99030	С	2.120318	-0.071347	-0.006114	653, 704, 786, 954, 1077,

Н -2.599731 -0.492631 0.879506

H 0.957790 152022 1.1471429 1466, 1497, 1507, 2134, 2274, 2998, 3035, 3040, 3110, 3115, 3478 C -1.847984 0.536997 -0.15364 -2998, 3035, 3040, 3110, 3115, 3478 C -1.847984 0.536997 -0.219766 3478 H -2.113575 0.870521 -1.229635 C -2.47233 -070763 0.15140 0.10236 TS A2 2PF(B3LVP(6-311G**) = 0.094985 A 150.05140 C -3.031988 -0.015141 0.110286 5691, 93, 138, 180, 216, 270, 400, 785, 869, 917, 980, 1055, 106, 1812 C(C) E(B3LVP+ZPE) - 232,17294478 B 150.05140 C -2.4080578 -0.005461 -0.005461 600, 785, 869, 917, 980, 1055, 1090, 1141, 297, 1407, 1424, 1488, 1498, 1990, 2209, 3032					С	0.790502	0.267512	0.066232	1096, 1166, 1281, 1348, 1414,
C -0.412109 0.32520 -0.153649 2098, 3035, 3040, 3110, 3115, 3115, 3115, 3115, 3115, 3115, 3115, 3115, 3115, 3478 C -1.347940 0.538068 -0.452763 3478 H -2.100726 1.368068 -0.45265 -0.45265 C -2.475233 -0.707663 0.154265 -0.45269 H -2.41072 -0.02569 1.171364 -0.907763 C(1) E(EBLVP6-311G**) - 0.094985 A 150.50240 C -2.400278 -0.005486 -0.01548 C(1) E(CSD(T)/CC-VTZ) = -322.17294478 C 1289.21216 C -2.008278 -0.005486 -0.615141 0.110286 322, 447, 454, 533, 613, 636, 60, 785, 809, 917, 980, 1055, 1090, 1144, 808, 1090, 2099, 3022, 316, 316, 600, 785, 809, 917, 980, 1055, 1090, 1144, 808, 1090, 209, 3022, 114, 808, 1090, 209, 3022, 114, 808, 1090, 209, 3022, 114, 808, 1092, 201, 3088, 3092, 3111, 3129, 3478 C L 2592, 21216 C 2.208278 -0.005486 -0.2171 3088, 3092, 3111, 3129, 3478 C L 289, 21216 C L 289, 21216 C 0.217711 H88, 344, 510, 550, 667, 710, 900, 9032, 209, 3022, 209, 3023, 209, 3025, 209, 3028, 209, 3028,					Н	0.957790	1.526922	1.471429	1466, 1497, 1507, 2134, 2274,
C -1.347984 0.536997 -0.219756 3478 C -1.347984 0.536997 -0.219756 3478 C -2.41875 0.876521 -1.229635 3478 C -2.44782 0.876521 -1.229635 C -2.478129 -0.408068 0.457233 -0.70763 0.151246 C -2.44782 -0.80975 -1.229635 -1.239635 -1.23959 C -2.46085 -1.33595 -0.523643 -1.53595 -0.523643 C(1) E(CSD(T)/CC-VTZ)232.17294478 B 1209.39980 C -3031988 -0.615141 0.110286 6091, 758, 809, 917, 980, 1055, 104, 7940 C 1289.21216 C -0.008278 -0.008486 -0.061541 0.907, 758, 809, 917, 980, 1055, 102, 717, 1424, 1297, 1407, 1424, 1297, 1407, 1424, 1297, 1407, 1424, 1297, 1407, 1424, 1297, 1407, 1424, 1297, 1407, 1424, 1297, 1407, 1424, 1297, 1407, 1424, 1297, 1407, 1424, 1297, 1404, 1289, 1404, 1289, 1404, 1289, 1407, 1424, 1297, 1404, 1289, 1407, 1424, 1297, 1407, 1424, 1297, 1404, 1289, 1401, 14289, 1401, 14289, 1401, 14289, 1401, 141, 1297, 1401, 141, 1297, 1401, 141, 1297, 1401, 141, 1297, 1401, 141, 1297, 1401, 141, 1297, 1401, 141, 1297, 1401, 141, 1297, 1401, 141, 1297, 1401, 141,					С	-0.412109	0.320520	-0.153649	2998 3035 3040 3110 3115
TS A2 ZPE(B3LYP/6-311G**) = 0.094985 E(R3LYP+2/PL) = -322.67956 A 150.50340 1209.39980 C -2.408702 -2.468702 H -2.468702 -2.468703 H -2.468685 -2.468703 H -2.468685 -2.468703 H -2.468703 -2.468685 H -2.27653 -2.22643 H -2.27653 -2.226434 H -2.27653 -2.226434 H -2.27653 -2.226434 H -2.27653 -2.226434 H -2.27653 -2.226434 H -2.27653 -2.226434 H -2.27653 -2.226434 H -2.27653 -2.226434 H -2.27653 -2.226434 H -2.2767 -2.208278 H -2.27675 -2.208278 H -2.27675 -2.208278 H -2.2767 -2.208278 H -2.2767 -2.208278 H -2.2767 H -2.27674 H -2.272674 H <td></td> <td></td> <td></td> <td></td> <td>С</td> <td>-1.847984</td> <td>0.536997</td> <td>-0.219756</td> <td>2//0, 5055, 5040, 5110, 5115,</td>					С	-1.847984	0.536997	-0.219756	2//0, 5055, 5040, 5110, 5115,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>				Н	-2.100726	1.368068	0.452763	3478
C -2.675233 -0.70763 0.1524265 H -2.448702 -1.03268 1.171364 H -3.741899 -0.480063 0.093733 H -2.460825 -1.535995 -0.523643 C(1) E[031.17+2FE] = -322.80956 B 1209.39980 H -3.928319 -1.162565 0.268464 (C1) E[CCSD(I)/CC-VTZ] = -232.17294478 C 1289.21216 C -2.008278 -0.06546 -0.061541 0.01026 5691, 93, 138, 180, 216, 270, 382, 407, 454, 533, 613, 636, 60, 785, 860, 917, 980, 1055, 1090, 1144, 1297, 1407, 1424, 1429, 1401, 1429, 1407, 1424, 14297, 1407, 1424, 14297, 1407, 1424, 14297, 1407, 1424, 14297, 1407, 1424, 1428, 1079467 -0.825444 0.753801 -0.271674 H 2.219156 -0.828444 0.75384 -0.37086 -0.272674 H 2.219156 -0.30215 -0.30215 -0.30215 -0.30215 TS A3 ZPE(B3LVP/6-311G**) = 0.098047 A 335.14923 C 2.502554 1.039261 0.000013 4381, 62, 73, 136, 188, 335, 14923 C(1) E(B3LVP/-ZEE) = -232.602265 B					Н	-2.113575	0.870521	-1.229635	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					С	-2.675233	-0.707663	0.154265	
H -3.741899 -0.480053 0.093753 H -2.460685 -1.535995 -0.523643 TS A2 ZPE(B3LYP/6-311G**) = 0.094985 EIB3LYP+ZPE) = -232.589956 A 150.50340 C -3.031998 -0.615141 0.110286 569i, 93, 138, 180, 216, 270, 2.0083748 (C1) EICCSD(T)/CC-VTZ) = -232.17294478 B 1209.39980 H -3.928319 -1.162565 0.208864 382, 407, 454, 533, 613, 636, 600, 758, 869, 917, 980, 1055, C -0.0371960 0.411268 -0.017946 -0.017946 -0.001844 -0.0371960 0.411268 0.122711 1488, 1498, 1990, 2209, 3032, 01090, 1144, 1297, 1407, 1424, H -0.371960 0.411268 0.122711 1488, 1498, 1990, 2209, 3032, C 2.563434 -0.73981 -0.208274 H 2.49145 1.940148 -0.401090 H 1.916554 0.479731 1.482838 -0.20837 0.23215 C 2.628620 -1.699357 0.232915 -1.699357 0.232915 TS A3 ZPE(B3LYP/6-311G**) = 0.099847 E(B3LYP+ZPE) = -332.602265 B 909.58922 H 3.153464 1.892947 <					Н	-2.448702	-1.032689	1.171364	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	-3.741899	-0.480053	0.093753	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Н	-2.460685	-1.535995	-0.523643	
Kind E(B3LYP+ZPE) = -232.589956 B 1209.39980 H -3.928319 -1.162565 0.268864 382, 407, 454, 533, 613, 636, 690, 785, 869, 917, 980, 1055, 400, 1144, 1057, 1407, 11424, 1090, 1144, 1297, 1407, 11424, 1090, 1144, 1297, 1407, 11424, 1090, 1144, 1297, 1407, 11424, 1090, 1144, 1297, 1407, 11424, 1090, 1144, 1297, 1407, 11424, 1090, 1144, 1297, 1407, 11424, 1090, 1144, 1297, 1407, 11424, 1090, 1144, 1290, 2209, 3032, 3088, 3092, 3111, 3129, 3478 TS A3 ZPE(B3LYP/6-31IG**) = 0.098047 A 335.14923 C 2.268620 -1.089357 0.23215 338, 62, 73, 136, 188, 335, 122, 3274 TS A3 ZPE(B3LYP/6-31IG**) = 0.098047 A 335.14923 C 2.202954 1.039261 0.000043 438i, 62, 73, 136, 188, 335, 142, 136, 118, 335, 142, 120, 2814 TS A3 ZPE(B3LYP/6-31IG**) = 0.098047 A 335.14923 C 1.20954 1.039261 0.000043 348, 384, 514, 520, 580, 627, 67, 72, 136, 188, 335, 142, 220, 2814 C10 E(CSD(T)/CC-VTZ) = -232.18503241 C 1.220.29814 C 1.075700 0.000012 348, 384, 514, 520, 580, 627, 687, 720, 805, 867, 908, 934, 1416, 1424, 1424, 1424, 1424, 1424, 1424, 1424, 1424, 1422, 2202, 900, 3087, 3088, 3042, 3114, 3188, 3244, 3255, 3477 TS AB ZPE(B3LYP/6-31IG**) = 0.098596 A 145,68249 C 2.093184 -0.0100022	TS A2	ZPE(B3LYP/6-311G**) = 0.094985	Α	150.50340	С	-3.031988	-0.615141	0.110286	569i, 93, 138, 180, 216, 270,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		E(B3LYP+ZPE) = -232.589956	В	1209.39980	Н	-3.928319	-1.162565	0.268864	382, 407, 454, 533, 613, 636,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(\mathbf{C}_1)	E(CCSD(T)/CC-VTZ) = -232.17294478	С	1289.21216	С	-2.008278	-0.005486	-0.061541	690 785 869 917 980 1055
H -0.937996 1.684104 -0.850211 105, 1147, 1297, 1307, 1424, C 0.371960 0.411268 0.122711 0.488193 1.090, 2209, 3032, 3088, 3092, 3111, 3129, 3478 C 1.615824 0.179467 0.480191 H 2.419145 1.940148 -0.061099 H 1.916554 0.479731 1.482838 C 2.563434 -0.73086 -0.272674 H 2.221956 -0.898478 -1.294337 H 3.566994 -0.302015 -0.304352 H 2.628620 -1.699357 0.232915 TS A3 ZPE(B3LYP/6-311G**) = 0.098047 A 335.14923 C 2.502954 1.039261 0.000043 438i, 62, 73, 136, 188, 335, (C 1) E(B3LYP+ZPE) = -232.602265 B 909,58922 H 3.135464 1.89261 0.000070 348, 384, 514, 520, 580, 627, E(CCSD(T)/CC-VTZ) = -232.18503241 C 1220.29814 C 1.775903 0.079111 -0.00017 648, 7920, 803, 484, 514, 520, 580, 627, H 1.466899 -2.046145 0.000049 1451, 1929, 2203, 3087, 3088, C -0.361061 -1.057670 0.000036 1451, 1929, 2203, 3087, 3088, C -1.670287 -0.842783 0.000014 1451, 1929, 2203, 3087, 3088, C -2.135564 1.413400 -0.000049 1451, 1929, 2032,	•••••				С	-0.825444	0.753801	-0.291409	$1000 \ 1144 \ 1207 \ 1407 \ 1424$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					н	-0.937996	1.684104	-0.850211	1090, 1144, 1297, 1407, 1424, 1499, 1499, 1499, 1000, 2000, 2020
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					С	0.371960	0.411268	0.122711	1488, 1498, 1990, 2209, 3052,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e 1°				С	1.615824	0.179467	0.480191	3088, 3092, 3111, 3129, 3478
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-				Н	2.419145	1.940148	-0.061099	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	1.916554	0.479731	1.482838	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					С	2.563434	-0.730836	-0.272674	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					н	2.221956	-0.898478	-1.294337	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					н	3.566994	-0.302015	-0.304352	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	2.628620	-1.699357	0.232915	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TS A3	ZPE(B3LYP/6-311G**) = 0.098047	Α	335.14923	С	2.502954	1.039261	0.000043	438i, 62, 73, 136, 188, 335,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(\mathbf{C})	E(B3LYP+ZPE) = -232.602265	В	909.58922	Н	3.135464	1.892497	0.000070	348, 384, 514, 520, 580, 627,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(C_1)	E(CCSD(T)/CC-VTZ) = -232.18503241	С	1220.29814	С	1.775903	0.079111	-0.000127	687, 720, 805, 867, 908, 934,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E Carlo				С	0.951889	-1.086012	0.000053	1032 1105 1334 1416 1424
$\frac{C}{C} = -0.361061 = -1.057670 = 0.000036 \\ C = -1.670287 = -0.842783 = 0.000014 \\ H = -2.232849 = -0.957128 = -0.921224 \\ H = -2.232940 = -0.955984 = 0.921343 \\ C = -2.135564 = 1.413400 = -0.000043 \\ H = -1.651325 = 1.709544 = -0.921420 \\ H = -3.218865 = 1.375840 = -0.000022 \\ H = -1.651388 = 1.709536 = 0.921347 \\ \hline \mathbf{TS} \ \mathbf{AB} = \frac{ZPE(B3LYP/6-311G^{**}) = 0.098596}{E(B3LYP+ZPE) = -232.587854} = \mathbf{A} = 145.68249 \\ \mathbf{E}(B3LYP+ZPE) = -232.587854 \\ \mathbf{C}(C_1) = \frac{ZPE(B3LYP/6-311G^{**}) = 0.098596}{E(B3LYP+ZPE) = -232.587854} = \mathbf{A} = 145.68249 \\ \mathbf{B} = 1102.53077 \\ \mathbf{H} = -3.942791 \\ \mathbf{O} = -232.587854 \\ \mathbf{B} = 1102.53077 \\ \mathbf{H} = -3.942791 \\ \mathbf{O} = -3927023 \\ \mathbf{O} = -39277023 \\ \mathbf{O} = -39277023 \\ \mathbf{O} $					н	1.468899	-2.046145	0.000049	1052, 1105, 1554, 1410, 1424, 1451, 1020, 2202, 2007, 2009
$ \begin{array}{c} C & -1.670287 & -0.842783 & 0.000014 \\ H & -2.232849 & -0.957128 & -0.921224 \\ H & -2.232940 & -0.955984 & 0.921343 \\ C & -2.135564 & 1.413400 & -0.000043 \\ H & -1.651325 & 1.709544 & -0.921420 \\ H & -3.218865 & 1.375840 & -0.000022 \\ H & -1.651388 & 1.709536 & 0.921347 \\ \hline \mathbf{TS AB} & \begin{array}{c} ZPE(B3LYP/6-311G^{**}) = 0.098596 \\ E(B3LYP+ZPE) = -232.587854 \\ E(B3LYP+ZPE) = -232.587854 \\ E(B3LYP+ZPE) = -232.587854 \\ E(CSDCT)/CC-VTZ) = -232.17604097 \\ \end{array} \begin{array}{c} A & 145.68249 \\ B & 1102.53077 \\ H & -3.942791 \\ 0.975014 & -0.091163 \\ -0.091163 \\ 473, 533, 619, 646, 682, 780, \end{array} $					С	-0.361061	-1.057670	0.000036	1451, 1929, 2205, 5067, 5068,
$\frac{H}{H} = \frac{-2.232849}{-2.232940} = \frac{-0.957128}{-0.921224} = \frac{-0.921224}{-0.955984} = \frac{-0.921224}{-0.921343} = \frac{-0.92124}{-0.921343} = \frac{-0.92124}{-0.921343} = \frac{-0.921343}{-0.921343} = \frac{-0.921343}{-0.921343} = \frac{-0.921343}{-0.921420} = \frac{-0.921325}{-0.921343} = \frac{-0.921325}{-0.921343} = \frac{-0.92132}{-0.921343} = \frac{-0.92132}{-0.921343} = \frac{-0.92132}{-0.921343} = \frac{-0.92132}{-0.921343} = \frac{-0.92132}{-0.921343} = \frac{-0.921224}{-0.921343} = \frac{-0.92132}{-0.921343} = \frac{-0.92132}{-0.921344} = \frac{-0.921420}{-0.921344} = \frac{-0.92142}{-0.92144} = -0.$					С	-1.670287	-0.842783	0.000014	3114, 3188, 3244, 3255, 3477
$F_{1,2,2,2,2,2,2,3,2,3,3,3,3,4,3,3,3,3,3,3,4,3,3,3,3$					н	-2.232849	-0.957128	-0.921224	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					н	-2.232940	-0.955984	0.921343	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I				С	-2.135564	1.413400	-0.000043	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					н	-1.651325	1.709544	-0.921420	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	-3.218865	1.375840	-0.000022	
TS AB $ZPE(B3LYP/6-311G^{**}) = 0.098596$ A145.68249C-2.9994380.491091-0.0303812019i, 95, 149, 167, 343, 386,(C_1) $E(CSD(T)/CC-VTZ) = -232.587854$ B1102.53077H-3.9427910.975014-0.091163473, 533, 619, 646, 682, 780,(C_1) $E(CCSD(T)/CC-VTZ) = -232.17604097$ C1210.00(52)C1.0238820.0477010.027023					<u> </u>	-1.651388	1.709536	0.921347	
$\begin{array}{c} \text{(C_1)} \\ \text{(C_1)} \\ \text{(CSD(T)/CC-VTZ)} = -232.587854 \\ \text{(CCSD(T)/CC-VTZ)} = -232.17604097 \\ \text{(C_1)} \\ \text{(C_2VTZ)} = -232.17604097 \\ \text{(C_2VTZ)} = -232.1760407 \\ (C_2$	TS AB	ZPE(B3LYP/6-311G**) = 0.098596	A	145.68249	С	-2.999438	0.491091	-0.030381	2019i, 95, 149, 167, 343, 386,
U(1) E(CCSD(T)/CC-VTZ) = -232.17604097 C 1210.00(52 C 1.022992 0.047701 0.027022	(\mathbf{C})	E(B3LYP+ZPE) = -232.587854	В	1102.53077	Н	-3.942791	0.975014	-0.091163	473, 533, 619, 646, 682, 780.
C = 1210.00052 + C = -1.922882 + 0.047791 + 0.027055 + 823.949.959.997.1062.	(U1)	E(CCSD(T)/CC-VTZ) = -232.17604097	С	1210.00652	С	-1.922882	-0.047791	0.027033	823, 949, 959, 997, 1062.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					С	-0.676451	-0.718307	0.130462	1083, 1189, 1222, 1240, 1279,
TS B1 ZPE(B3LYP/6-311G ⁴⁺) = 0.099701 A 83.16458 C 3180723 -0.313581 3043, 3065, 3085, 3102, 3211, 3478 TS B1 ZPE(B3LYP/6-311G ⁴⁺) = 0.099701 A 83.16458 C 3180723 -0.310887 0.144091 I 2.44641 1.300452 1.163811 18.259116 -0.551105 IC (1) E/E(B3LYP/6-311G ⁴⁺) = 0.099701 A 8.3.16458 C 3.180723 -0.340887 0.026469 7581, 131, 138, 170, 306, 306, 306, 307, 3076, 1034, 10399 IC (1) E/CCSD(T)/CC-VTZ) = -232.098744 B 12.99.41584 II 41.418039 -0.69540 0.0023452 407944 -3.318723 IC (1) E/CCSD(T)/CC-VTZ) = -232.1945301 C 1355.19576 C 2.042277 0.051522 -0.030452 608, 874, 898, 953, 976, 1034, 1047, 1388, 1668, 2179, 73131, 138, 1278, 176, 73131, 731444 -0.315424 1443, 1588, 1668, 2197, 73131, 73143, 731444 -0.315424 -0.315424 1443, 1589, 31542 IC (1) E/E(CSD)(T)/CC-VTZ) = -232.17668561 A 315, 20161 C 0.182569 1.1756164 211919, 123, 168, 219, 228, 131, 13					Н	-0.696495	-1.710849	0.587297	1424, 1480, 1659, 1855, 2200,
C 1.22306 -0.56505 -0.06198 3478 C 1 2.17107 -1.21060 0.7723 3478 H 2.17107 -1.21060 0.7723 -0.3328 0.144091 H 2.19461 1.304022 1.163811 1.38,170,306,360, H 2.19461 1.304022 1.163811 H 2.09245 H 4.18039 -0.405640 0.002366 417,461,471,556,631,642, G(C) E(CSD(T)/CC-VTZ)232.19456301 C 1.355,19576 C 2.042277 0.051522 -0.024420 683,874,898,953,976,1034, H 0.471929 0.511208 0.25250 0.02149 1443,1588,1668,2197,3131, H 0.87254 -0.10225 0.0602450 1443,1588,1668,2197,3131, H -3.287720 -0.55626 0					С	0.493076	-0.245582	-0.313581	3043, 3065, 3085, 3102, 3211,
H 2.137107 -1.210600 0.797287 0.7103 H 2.2144307 -0.963624 -0.9337091 -0.563624 -0.937091 C 2.194431 1.304692 1.163811 -0.340827 -0.55105 H 2.244307 -0.93624 -0.933238 0.144091 H 2.2194431 1.304692 1.163811 H 2.248377 0.026469 758i, 131, 138, 170, 306, 360, 417, 461, 471, 556, 631, 642, 600 (C1) E(B3LYP/6-311G**) = 0.095701 A 8.3.16458 C 3.180723 -0.340887 0.002469 758i, 131, 138, 170, 306, 360, 417, 461, 471, 556, 631, 642, 600 (C1) E(B3LYP/C-311G**) = 0.095701 A 8.1299, 41594 H 4.180399 -0.055122 0.022469 758i, 131, 138, 170, 306, 360, 417, 461, 471, 556, 631, 642, 642, 778, 600, 502, 576, 576, 577, 597, 597, 597, 597, 597, 597, 597					С	1.929306	-0.565605	-0.060198	3478
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T U				Н	2.137107	-1.210060	0.797287	5478
C 2.193432 0.933328 0.144091 H 2.194641 1.304692 1.163811 H 2.85517 1.442633 -0.551105 H 2.85517 1.442633 -0.535591 (C1) E(B3LYP-E2)=-232.608944 B 1299.41594 H 4.80399 -0.026469 758i, 131, 138, 170, 306, 360, 417, 461, 471, 556, 631, 642, 631, 642, 643, 671, 632, 643, 674, 895, 976, 1034, 1047, 1180, 1284, 1293, 1326, 1047, 1180, 1284, 1293, 1326, 1047, 1180, 1284, 1293, 1326, 1047, 1180, 1284, 1293, 1326, 1047, 1180, 1284, 1293, 1326, 1047, 1180, 1284, 1293, 1326, 1047, 1180, 1284, 1293, 1326, 1047, 1180, 1284, 1293, 1326, 1047, 1180, 1284, 1293, 1326, 1047, 1384, 1294, 1323, 1314, 3159, 3234, 3476 C -1.734398 0.327256 0.060225 0.060244 H -0.288127 -1.254459 0.106864 C -1.734398 0.327256 0.066283 H -2.841358 -0.482209 -1.154567 0.066283 H -2.841358 -0.482219 -0.106864 -0.2775614 C1 -2.841358 -0.48229 -0.106864 -0.277514 (C1) E(C3LVP/6-311G**) = 0.098190 A 315.20161<	•				Н	2.446307	-0.963624	-0.937091	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					С	2.193432	0.933328	0.144091	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	2.194641	1.304692	1.163811	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Н	2.855517	1.442623	-0.551105	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Н	0.903458	1.079404	-0.353591	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TS B1	ZPE(B3LYP/6-311G**) = 0.095701	А	83.16458	С	3.180723	-0.340887	0.026469	758i, 131, 138, 170, 306, 360,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(\mathbf{C})	E(B3LYP+ZPE) = -232.608944	В	1299.41594	Н	4.180399	-0.695640	0.082365	417, 461, 471, 556, 631, 642,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(\mathbf{C}_1)	E(CCSD(T)/CC-VTZ) = -232.19456301	С	1355.19576	С	2.042277	0.051522	-0.032452	683 874 898 953 976 1034
H 0.617001 1.612808 -0.32759 -0.032759 -0.032759 -0.043219 -1433, 1583, 1684, 1237, 1321, 3139, 3143, 3159, 3234, 3476 -0.387254 -0.196225 0.06204 -0.282827 -1.254459 0.284158 -0.48290 -1.434158, 1668, 1237, 1321, 3139, 3143, 3159, 3234, 3476 -0.282827 -1.254459 0.284158 -0.48229 -0.104824 -0.282827 -1.254459 0.284158 -0.48229 -0.104824 -0.315422 -0.51644 -1.536526 0.066283 -1.750164 -1.536526 0.066283 -1.2750164 -1.536526 0.066283 -1.2750977 -0.220120 -0.55644 -0.278618 -2.775204 -1.536526 0.066283 -1.276977 -0.220120 -0.55644 -0.278618 -2.775204 -0.55644 -0.278618 -2.775204 -0.55644 -0.278618 -2.775204 -0.55644 -0.278618 -0.308609 -0.278618 -0.308609 -0.278618 -0.308699 -0.278618 -0.308699 -0.278618 -0.308699 -0.278618 -0.308699 -0.278618 -0.308699 -0.278618 -0.308699 -0.278618 -0.308699 -0.55404 -0.278618 -0.308699 -0.278618 -0.308699 -0.55404 -0.278618 -0.308699 -0.55404 -0.278618 -0.308699 -0.55404 -0.278618 -0.308699 -0.55404 -0.278618 -0.308699 -0.55404 -0.278618 -0.308699 -0.55404 -0.278618 -0.308699 -0.55404 -0.278618 -0.308699 -0.55404 -0.55567 -0.78970 -0.022717 -0.22170 -2.459857 -0.78970 -0.022717 -0.022717 -0.022171 -0.308569 -0.28079 -0.022717 -0.022717 -0.022109 -0.022717 -0.022110 -0.022717 -0.022109 -0.022717 -0.022110 -0.00105 -0.22998-3 -0.38983 -0.38983 -0.38983 -0.38983 -0.38882 -0.38983 -0.38882 -0.38983 -0.388983 -0.388983 -0.38882 -0.38983 -0.38	6. Q Q				С	0.719329	0.551299	-0.112109	1047 1180 1284 1203 1326
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Н	0.617001	1.612808	-0.327596	1047, 1100, 1204, 1295, 1520, 1442, 1599, 1669, 2107, 2121
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					С	-0.387254	-0.196225	0.062024	1445, 1588, 1008, 2197, 5151,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 02				Н	-0.282827	-1.254459	0.284158	3139, 3143, 3159, 3234, 3476
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					С	-1.743498	0.327325	-0.048290	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	-1.838877	1.376443	-0.315422	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	-1.896780	1.005043	1.756164	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					С	-2.841358	-0.468229	-0.106864	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	-2.772504	-1.536526	0.066283	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Н	-3.827720	-0.056494	-0.278618	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TS 1-2	ZPE(B3LYP/6-311G**) = 0.098190	А	315.20161	С	0.182569	1.759977	-0.220120	2119i, 123, 168, 219, 228,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(\mathbf{C})	E(B3LYP+ZPE) = -232.586892	В	694.83678	Н	-0.308609	2.655402	-0.595042	341, 521, 557, 598, 655, 670,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(C_1)	E(CCSD(T)/CC-VTZ) = -232.17688561	С	938.14899	С	-0.184621	0.514567	0.079072	722 766 827 950 1017
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					С	-1.423545	-0.166210	0.017058	1060 1082 11/8 1210 1326
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	29				С	-2.459857	-0.780970	-0.022717	1000, 1002, 1140, 1210, 1320, 1402, 1402, 1404, 1400, 1625, 1947
$\frac{C}{(C_1)} = \frac{1.159676}{E(CSD(T)/CC-VTZ) = -232.20826355} = \frac{C}{C} = \frac{1.159676}{972.84213} = \frac{-0.021303}{C} = \frac{0.525716}{1.607190} = \frac{2198}{3000, 3064, 3080, 3102, 3136, 3476} = \frac{2198}{3136, 3476} = \frac{2198}{3136, 3476} = \frac{2198}{3136, 3476} = \frac{1.576148}{3136, 3476} = \frac{-0.021303}{1.607190} = \frac{1.576148}{1.607190} = \frac{-0.021303}{1.607190} = \frac{1.576148}{1.607190} = \frac{-0.021303}{1.607190} = \frac{1.576148}{1.607190} = \frac{-0.021303}{1.607190} = \frac{1.576148}{1.607190} = \frac{-0.021303}{1.607190} = \frac{1.576}{1.607190} = \frac{1.576}{1.60382} = \frac{-0.021303}{1.607190} = \frac{1.576}{1.607190} = \frac{1.576}{1.60382} = \frac{-0.021303}{1.607190} = \frac{1.576}{1.607190} = \frac{1.576}{1.607190} = \frac{1.576}{1.60382} = \frac{1.576}{1.198457} = \frac{1.576}{1.600382} = \frac{-0.00170}{1.198457} = \frac{1.576}{1.198457} = 1.5$					Н	-3.379845	-1.310784	-0.061277	1405, 1484, 1488, 1655, 1847,
$\frac{H}{(C_1)} = \frac{1.276148}{E(CSD(T)/CC-VTZ) = -232.20826355} + \frac{H}{C} = \frac{1.276148}{C} + \frac{-0.114396}{1.305182} + \frac{-0.07190}{0.205175} + \frac{3136}{5.09}, \frac{3476}{5.09} + \frac{3136}{5.09}, \frac{3136}{5.09}, \frac{3476}{5.09}, \frac{3136}{5.09}, \frac{3476}{5.09} + \frac{3136}{5.09}, \frac{3136}{5.09}, \frac{3476}{5.09}, \frac{3136}{5.09}, \frac{3476}{5.09}, \frac{3136}{5.09}, \frac{3476}{5.09}, \frac{3136}{5.09}, \frac{3476}{5.09}, \frac{3136}{5.09}, \frac{3136}{5.09}, \frac{3476}{5.09}, \frac{3136}{5.09}, \frac{3476}{5.09}, \frac{3136}{5.09}, \frac{3476}{5.09}, \frac{3476}{5.09}, \frac{3136}{5.09}, \frac{3476}{5.09}, \frac{3476}{5.09}, \frac{347}{5.09}, 34$					С	1.159676	-0.021303	0.525716	2198, 3000, 3064, 3080, 3102,
$\frac{H}{(C_1)} + \frac{1.467693}{E(CSD(T)/CC-VTZ) = -232.20826355} + \frac{H}{C} + \frac{1.467693}{C} + \frac{1.305182}{1.305182} + \frac{0.205175}{-0.308963} + \frac{1.306382}{-0.308963} + \frac{0.205175}{-0.227712} + \frac{1.366133}{1.305182} + \frac{1.305182}{-0.308963} + \frac{0.205175}{-0.227712} + \frac{1.366095}{-0.227712} + \frac{1.366113}{-0.011962} + \frac{1.42092}{-0.000170} + \frac{1.732i}{-1.366113} + \frac{1.42092}{-0.000116} + \frac{1.32i}{-509} + \frac{1.32i}{-55} + \frac{1.366}{-509} + \frac{1.366}{-500} + \frac{1.366}{-509} + \frac{1.366}{-500} + \frac{1.366}{-500$					Н	1.276148	-0.114396	1.607190	3136, 3476
$\frac{C}{(C_1)} + \frac{C}{E(CSD(T)/CC-VTZ) = -232.20826355} + \frac{C}{C} + \frac{1.863558}{2.897005} + \frac{-1.060382}{-1.198457} + \frac{-0.308963}{0.017500} + \frac{-0.227712}{1.366113} + \frac{1.354830}{-2.030055} + \frac{-0.227712}{-0.227712} + \frac{-22220826355}{-1.366113} + \frac{-0.011962}{-2.420541} + \frac{-0.00170}{0.000116} + \frac{1732i}{509} + \frac{110}{524} + \frac{524}{524} + \frac{525}{524} + \frac{525}{52} + \frac{525}{52} + \frac{525}{52} + $					Н	1.467693	1.305182	0.205175	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•				С	1.863558	-1.060382	-0.308963	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	2.897005	-1.198457	0.017500	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•				Н	1.354830	-2.030055	-0.227712	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	1.866095	-0.780965	-1.366113	
$\begin{array}{c} \text{(C_1)} \\ \text{(C_1)} \\ \text{E(B3LYP+ZPE)} = -232.616575 \\ \text{E(CCSD(T)/CC-VTZ)} = -232.20826355 \\ \text{C} \\ \text{972.84213} \\ \text{C} \\ \text{972.84213} \\ \text{C} \\ \text{9.141516} \\ \text{9.212291} \\ \text{-0.000102} \\ \text{755} \\ \text{842} \\ \text{852} $	TS 1-4	ZPE(B3LYP/6-311G**) = 0.099176	Α	186.60310	С	-0.424981	1.420092	-0.000170	1732i, 110, 165, 254, 452,
$(U_1) \qquad E(CCSD(T)/CC-VTZ) = -232.20826355 \qquad C \qquad 972.84213 \qquad C \qquad 0.141516 \qquad 0.212291 \qquad -0.000102 \qquad 755 \qquad 842 857 962 978 97$	(\mathbf{C})	E(B3LYP+ZPE) = -232.616575	В	809.12453	Н	-0.011962	2.420541	0.000116	509, 524, 547, 632, 648, 671.
	(U ₁)	E(CCSD(T)/CC-VTZ) = -232.20826355	С	972.84213	С	0.141516	0.212291	-0.000102	755 842 852 946 989 1081

C 2.719445 -0.289091 0.000126 1455, 1491, 1621, 1696,	2195,
	=170,
H = 3.761463 - 0.495546 = 0.000234 = 3.036 = 3.004 = 3.172	3200
C -0.879099 -0.928678 -0.000233 -3476	5207,
Н -0.734546 -1.565874 0.877462 5476	
Н -0.734946 -1.565301 -0.878417	
C -2.238531 -0.231465 0.000268	
Н -2.835119 -0.327307 -0.904470	
Н -2.834470 -0.327379 0.905423	
Н -1.762137 0.995224 0.000099	
TS 2-3 ZPE(B3LYP/6-311G**) = 0.097946 A 368.43400 C 0.027867 1.926475 0.000009 2164i, 125, 130, 196, 26	9.
E(B3LYP+ZPE) = -232.592737 B 647.25090 H -0.197899 2.464316 0.920118 296, 464, 495, 571, 619.	638.
$(C_1) \qquad E(CCSD(T)/CC-VTZ) = -232.18130382 \qquad C \qquad 992.31382 \qquad H \qquad 1.367503 \qquad 1.466561 \qquad 0.000000 \qquad 673 709 965 101 103 103$	8
H -0.197844 2.464352 -0.920094 10.467 1114 1217	1380
∇ C -0.140642 0.426734 -0.000010 1425 1475 1717	1040
C -1.333540 -0.334966 -0.00008 1425, 1401, 1475, 1710, 1475, 1710, 1475, 1710, 1475, 1710, 1475, 1710, 1475, 1710, 1475, 1710, 1475, 1710, 1475, 1710, 1475, 1710, 1475, 1475, 1710, 14755, 1475, 1475, 1475, 1475,	1840,
C -2.358884 -0.969766 0.000005 2195, 3003, 3065, 3069,	3073,
Н -3.261570 -1.529638 0.000002 3161, 3476	
C 1.145338 0.065872 -0.000013	
C 1.956238 -1.175036 0.000006	
Н 2.603329 -1.222132 -0.881375	
Н 2.603316 -1.222109 0.881399	
Н 1.304900 -2.057221 0.000014	
TS 2-4 ZPE(B3LYP/6-311G**) = 0.098670 A 406.40968 C 0.629385 1.905745 -0.043982 1828i, 144, 155, 258, 29	7.
E(B3LYP+ZPE) = -232.609020 B 522.76845 H 1.690325 2.111247 -0.065402 397.455.601.603.637.	651.
$(C_1) \qquad E(CCSD(T)/CC-VTZ) = -232.19774150 \qquad C \qquad 919.07086 \qquad C \qquad 0.160319 \qquad 0.626118 \qquad -0.002694 \qquad 665 687 749 809 85$	923
\sim C 1.080652 -0.471585 0.003349 10.00 11.50 12.31 130.	1271
$C \qquad 1.828043 \qquad -1.416164 \qquad 0.012487 \qquad 1027, 1130, 1231, 1300, 1301, 13$	13/1,
H = 2.503785 - 2.235788 = 0.019496 = 1421, 1450, 1506, 219	2200,
\sim C -1.256346 0.317778 0.053726 3149, 3165, 3169, 3248,	3291,
Н -1.938281 1.156999 -0.030238 3476	
Н -1.585283 -0.354760 1.057533	
С -1.855197 -1.031061 -0.103461	
Ш	
Н -1.216681 -1.896213 -0.199035	
Н -0.052310 2.747637 -0.060200	
TS 2-14 ZPE(B3LYP/6-311G**) = 0.102007 A 405.77420 C -0.679396 -0.286052 0.485992 641i, 101, 173, 234, 248	, 409,
E(B3LYP+ZPE) = -232.603262 B 449.92895 C 0.508505 0.564443 0.102486 576, 596, 624, 680, 731,	776,
$(C_1) \qquad E(CCSD(1)/CC-VTZ) = -232.19843707 \qquad C \qquad 794.43410 \qquad C \qquad 1.468860 \qquad -0.496748 \qquad -0.158172 \qquad 816, 916, 948, 998, 10666$	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					С	0.972597	-1.657938	-0.090191	1111, 1234, 1337, 1399, 1433,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					С	0.605768	1.885566	-0.045417	1478, 1480, 1702, 1726, 2963.
H -0.776612 -0.557366 1.537991 3360 H 0.93099 -2.72738 -0.468812 H 1.537991 2.346775 -0.368812 H 1.537991 2.346775 -0.368812 H -2.246635 -1.012802 0.005792 H -2.246635 -1.012802 0.005792 H -2.396179 0.745709 -0.02032 C(1) E(ESLTP*2E)32.64544 E 518.18242 H 2.2496179 0.745709 -0.02012 E(CSD(T)CC-VTZ)232.549341 E S18.18242 H 2.470139 -0.022141 0.00012 1103, 120, 135, 135, 1437, 113, 1280, 1355, 1437, 144, 135, 1437, 144, 135, 1437, 144, 135, 1437, 144, 135, 1437, 144, 135, 1437, 144, 135, 1437, 144, 135, 1437, 144, 135, 1437, 144, 135, 1437, 144, 135, 1437, 144, 145, 145, 145, 145, 145, 145, 145					С	-1.972539	-0.195621	-0.261769	3052 3096 3139 3143 3230
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	-0.716612	-0.557366	1.537991	2260
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					н	0.953099	-2.727358	-0.148910	3300
H -0.238424 2.537365 0.144941 H -2.646625 -1.01200 0.005792 H -2.496179 0.745709 -0.032032 TS 4-5 ZPE(B3LVP/6-311G**) = 0.101670 A 407.11040 C -1.648235 -1.274137 -0.000011 110, 40, 170, 265, 309, 435, 440, 537, 601, 641, 682, 724, 40, 537, 601, 641, 682, 724, 40, 537, 601, 641, 682, 724, 40, 537, 601, 641, 682, 724, 40, 537, 601, 641, 682, 724, 40, 537, 601, 641, 682, 724, 40, 535, 420, 0.000021 F(C) ECCSD(r)/CC-VTZ) = -232.25987170 C 914.41896 H -2.673193 -1.6242341 0.000021 440, 537, 601, 641, 682, 724, 40, 735, 879, 184, 933, 1016, 413, 682, 724, 40, 735, 879, 184, 933, 1016, 413, 682, 724, 600, 916, 735, 879, 184, 933, 1016, 735, 879, 184, 933, 1016, 735, 879, 184, 933, 1016, 735, 879, 184, 933, 1016, 735, 879, 184, 933, 1016, 735, 879, 184, 933, 1016, 735, 879, 184, 933, 1016, 735, 879, 184, 933, 1016, 735, 879, 184, 933, 1016, 735, 879, 184, 933, 1016, 735, 879, 184, 933, 1016, 735, 879, 184, 933, 1016, 735, 879, 184, 933, 1013, 315, 33233, 3262, 70, 91187, 0.265425 -0.000021 1146, 1458, 1661, 2197, 2958, 706, 942, 938, 914, 744, 745, 947, 743, 756, 7473, 756, 7473, 756, 7473, 756, 7473, 756, 7473, 756, 7473, 756, 7473,					н	1.531923	2.346575	-0.365812	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					н	-0.238424	2.537365	0.148491	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					н	-2.646625	-1.012802	0.005792	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>				н	-1.809952	-0.214026	-1.343093	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	•				Н	-2.496179	0.745709	-0.032032	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TS 4-5	ZPE(B3LYP/6-311G**) = 0.101670	Α	407.11040	С	-1.648235	-1.274137	-0.000013	110i, 40, 170, 265, 309, 435,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 + 5	E(B3LYP+ZPE) = -232.654344	В	518.18242	н	-2.673193	-1.622341	0.000021	440 537 601 641 682 724
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(C_1)	E(CCSD(T)/CC-VTZ) = -232.25087170	С	914.41896	Н	-0.850381	-2.002772	-0.000107	735 879 918 933 1016
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					С	-1.376938	0.187875	0.000021	1113 1103 1280 1235 $1/37$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- V				Н	-1.865262	0.655542	0.869132	1113, 1173, 1200, 1333, 1437, 1446, 1459, 1661, 2059
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1				С	0.091187	0.628445	0.000000	1440, 1458, 1001, 2197, 2958,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					С	1.969049	-1.216804	0.000023	2962, 3140, 3153, 3233, 3262,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Н	2.731590	-1.956425	-0.000028	3477
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					С	1.115161	-0.366552	-0.000005	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					С	0.419263	1.928164	-0.000012	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	1.452002	2.251786	-0.000016	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	-0.346405	2.696693	-0.000018	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Н	-1.865273	0.655566	-0.869072	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TS 5-6	ZPE(B3LYP/6-311G**) = 0.101938	Α	240.86963	С	1.549262	-0.508269	0.196304	1393i, 111, 279, 367, 473,
$\frac{(C_1)}{(C_1)} = \frac{E(CCSD(T)/CC-VTZ) = -232.18484478}{E(B3LYP/6-311G^{**}) = 0.100181} = \frac{A}{232.36029} = \frac{232.36029}{C} = \frac{C}{1.390560} = \frac{272E(B3LYP/6-311G^{**}) = 0.100181}{E(CCSD(T)/CC-VTZ) = -232.552416} = \frac{A}{232.36029} = \frac{C}{C} = \frac{-1.390560}{-1.390560} = \frac{-0.69938}{-0.69934} = \frac{-1.4688}{-0.172005} = \frac{-1.475}{-0.973290} = \frac$		E(B3LYP+ZPE) = -232.589686	В	506.09050	Н	1.800904	-0.651518	1.250750	542, 624, 671, 744, 769, 847,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(C_1)	E(CCSD(T)/CC-VTZ) = -232.18484478	С	705.00358	Н	2.384911	-0.895583	-0.388711	895 906 934 938 999 1134
$\frac{H}{C} = -0.103309 = -1.988045 = 0.470854 \\ C = -0.820102 = 0.021623 = -0.084735 \\ C = 1.291044 = 0.977598 = -0.071887 \\ H = 0.675354 = 1.776755 = 0.751384 \\ C = 0.008865 = 1.252600 = -0.232881 \\ C = -2.131509 = -0.030532 = 0.139179 \\ H = -2.726305 = 0.874086 = 0.171049 \\ H = -2.643657 = -0.973290 = 0.300439 \\ H = 0.199626 = -1.527227 = -1.199613 \\ \hline TS 5-8 \\ E(B3LYP+ZPE) = -332.552416 \\ E(CCSD(T)/CC-VTZ) = -232.15015531 \\ C = 625.37810 \\ C = 625.37810 \\ C = -2.33290 = -0.973290 \\ H = -2.320828 = -0.442688 \\ -1.447397 \\ -1.310358 = -1.046030 \\ -1.447397 \\ 545, 598, 694, 776, 828, 871, \\ -0.973290 \\ -0.973290 \\ -0.973290 \\ -0.973290 \\ -0.973290 \\ -0.973290 \\ -0.609328 \\ -0.44268 $					С	0.171187	-1.148882	-0.172005	1172 1210 1264 1202 1431
$\frac{C}{C} = -0.820102 = 0.021623 = -0.084735 = -0.071887 = -0.00181 = -0.00181 = -0.02028 = -0.42688 = -0.071887 = -0.0000000000000000000000000000000000$	U				Н	-0.103309	-1.988045	0.470854	1172, 1217, 1204, 1272, 1451, 1460, 1492, 1660, 1701, 2104
$\frac{C}{(C_1)} = \frac{1.291044}{0.977598} = \frac{-0.071887}{-0.071887} = \frac{3031, 3054, 3084, 3101, 3137}{3224}$	ji i i i i i i i i i i i i i i i i i i				С	-0.820102	0.021623	-0.084735	1408, 1482, 1000, 1701, 2194,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					С	1.291044	0.977598	-0.071887	3031, 3054, 3084, 3101, 3137,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Н	0.675354	1.776755	0.751384	3224
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					С	0.008865	1.252600	-0.232881	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					С	-2.131509	-0.030532	0.139179	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	-2.726305	0.874086	0.171049	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	-2.643657	-0.973290	0.300439	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	0.199626	-1.527227	-1.199613	
$\begin{array}{c} \text{E(B3LYP+ZPE)} = -232.552416 \\ \text{E(CCSD(T)/CC-VTZ)} = -232.15015531 \\ E(CCSD(T)/CC-VTZ$	TS 5-8	ZPE(B3LYP/6-311G**) = 0.100181	Α	232.36029	С	-1.390560	-0.609328	-0.442688	1475i, 173, 279, 348, 399.
$(U_1) \qquad E(CCSD(T)/CC-VTZ) = -232.15015531 \qquad C \qquad 625.37810 \qquad C \qquad -2.335290 \qquad -0.957961 \qquad -0.007177 \qquad -0.957964 \qquad -0.007177 \qquad -0.0071777 \qquad -0.007177777 \qquad -0.0071777777777777777777777777777777777$	(\mathbf{C})	E(B3LYP+ZPE) = -232.552416	В	536.33049	Н	-1.310358	-1.046030	-1.447397	545, 598, 694, 776, 828, 871,
C = 025,57010 + 0.555270 + 0.557501 + 0.0071777 + 0.0071777 + 0.0071777 + 0.00717777 + 0.0071777777 + 0.0071777777777777777777777777777777777	(U ₁)	E(CCSD(T)/CC-VTZ) = -232.15015531	С	625.37810	С	-2.335290	-0.957961	-0.007177	909 934 947 966 981 1034
				С	-0.182999	-0.916378	0.463215	1098, 1162, 1181, 1268, 1276,	
------------------	-----------------------------------	---	-----------	---	-----------	-----------	-----------	--	
				Н	-0.030867	-1.810028	1.062738	1322, 1447, 1457, 1770, 1980,	
				С	0.903060	0.022713	0.126277	2990, 3023, 3132, 3144, 3216,	
				Н	-1.215834	0.876428	-0.306132	3227	
				С	-1.819833	1.685433	-0.688649	0227	
				Н	-0.112393	0.971581	0.675308		
				Н	2.120867	0.009157	-0.382922		
CD-Q				С	2.686515	0.926991	-0.497991		
				Н	2.588840	-0.916044	-0.700109		
				Н	-0.511847	-0.007405	1.480237		
TS 6-7	ZPE(B3LYP/6-311G**) = 0.101545	Α	226.17853	С	1.523434	-0.501522	-0.014130	1168i, 176, 351, 401, 461,	
(\mathbf{C})	E(B3LYP+ZPE) = -232.619875	В	512.52211	Н	1.913539	0.223637	0.960970	537, 645, 696, 794, 818, 836,	
(01)	E(CCSD(1)/CC-V1Z) = -232.21447760	С	719.68788	Н	2.438765	-1.058946	-0.197603	875, 917, 955, 983, 1040,	
				С	0.160734	-1.175913	-0.005298	1144 1174 1229 1285 1291	
				Н	-0.004938	-1.830851	0.855991	1279 1276 1411 1443 1525	
				С	-0.777596	0.019799	-0.016840	1520, 1570, 1411, 1445, 1525, 2006, 2020, 2065, 2120, 2146	
				С	1.453086	0.912731	-0.109380	2096, 3030, 3065, 3138, 3146,	
				С	0.023439	1.184678	-0.002991	3179, 3228	
				С	-2.147836	-0.040364	0.010947		
				Н	-2.741243	0.866340	-0.006661		
				Н	-2.681391	-0.982468	0.055650		
				Н	0.053435	-1.799359	-0.900694		
				Н	-0.389734	2.185194	0.058498		
TS 7-8	ZPE(B3LYP/6-311G**) = 0.102947	Α	218.29342	С	1.477108	-0.647054	-0.030307	1408i, 254, 344, 464, 584,	
(\mathbf{C})	E(B3LYP+ZPE) = -232.683975	В	508.42149	Н	0.886365	-1.089786	1.021645	603, 662, 668, 740, 770, 842,	
(C1)	E(CCSD(1)/CC-V1Z) = -232.27911736	С	718.29308	Н	2.340524	-1.268187	-0.220299	901, 934, 953, 958, 1009,	
				С	0.075277	-1.137729	-0.045264	1073 1090 1232 1246 1282	
				Н	-0.208490	-2.169575	-0.192131	1364 1302 1460 1487 1507	
1				С	-0.781782	0.008252	-0.020965	1304, 1392, 1400, 1407, 1307, 2104, 2149, 2100, 2216, 2226	
				С	1.407589	0.774842	-0.016317	2104, 3148, 3199, 3216, 3226,	
				Н	2.264644	1.431279	0.025690	3234, 3242	
				С	0.080456	1.157281	-0.011625		
				Н	-0.277410	2.176717	0.052365		
				С	-2.179908	-0.001316	0.007067		
a b				Н	-2.741738	0.923679	0.007230		
				H	-2.736332	-0.929783	0.009962		
TS 7-9	ZPE(B3LYP/6-311G**) = 0.102133	A	257.56905	С	0.486954	1.372862	0.120708	681i, 155, 252, 299, 335, 510,	
(\mathbf{C})	E(B3LYP+ZPE) = -232.656717	В	571.90079	С	1.602968	0.489379	-0.113572	511, 555, 699, 740, 768, 819.	
(\mathbf{U}_1)	E(CCSD(T)/CC-VTZ) = -232.24634539	С	800.94473	С	1.349102	-0.838426	-0.035265	881, 930, 948, 1008, 1017	
								,,,,,,,.,,,,	

H 0.093441 1.429401 1.133190 H 2.578689 0.870053 -0.406281 H 2.112253 -1.602903 -0.117587 H -0.344115 -2.211311 0.343191 C -0.997150 -0.258803 -0.004769 C -0.997150 -0.258803 -0.004769	98, 86,
H 2.578689 0.870053 -0.406281 H 2.112253 -1.602903 -0.117587 H -0.344115 -2.211311 0.343191 C -0.997150 -0.258803 -0.004769 C -0.997150 -0.258803 -0.004769	86,
H 2.112253 -1.602903 -0.117587 H -0.344115 -2.211311 0.343191 C -0.997150 -0.258803 -0.004769 C -0.997150 -0.258803 -0.004769	
H -0.344115 -2.211311 0.343191 C -0.997150 -0.258803 -0.004769 C -0.997150 -0.258803 -0.004769	
C = -0.997150 = -0.258803 = -0.004769	
Н -2.812376 0.056888 -1.038771	
Н -2.737344 0.753057 0.674172	
<u>— И 0.363926 2.281680 -0.461076</u>	
TS 8-11 ZPE(B3LYP/6-311G**) = 0.103334 A 309.14269 C 1.455899 -1.043936 0.212020 585i, 178, 309, 359, 429, 53	50,
$\begin{array}{c} \text{E(B3LYP+ZPE)} = -232.645783 \\ \text{B} & 486.66445 \\ \text{H} & 1.735146 \\ -0.518370 \\ 1.116866 \\ 608, 651, 726, 734, 779, 850 \\ \text{C} & 1.116866 \\ 1.11686 \\ 1.11686 \\ 1.116866 \\ 1.11686 \\ 1.$	0,
C = 771.55800 H = 2.210168 - 1.723816 - 0.173264 - 871, -882, -903, -942, -962, -104 - 942, -962, -104 - 942, -962, -104 - 942, -962, -104 - 942, -962, -104 - 942, -962, -104 - 942, -964, -104 - 942, -964, -104 - 942, -964, -104 - 942, -964, -104 - 942, -964, -944, -9	48.
$C \qquad 0.149474 \qquad -1.167656 \qquad -0.176428 \qquad 1211 \qquad 1256 \qquad 1309 \qquad 144$	4 9
H = -0.159040 = -1.986360 = -0.818751 = 1551 = 1609 = 1645 = 3002 = 312	12, 75
C -0.762902 -0.041344 0.010973 1351, 1005, 1045, 3024, 312	23, 25
C 1.289765 1.211242 -0.183670 3139, 3160, 3201, 3218, 322	25
Н 2.070463 1.959690 -0.164705	
С -0.017380 1.235505 0.011689	
Н -0.572938 2.164748 0.144905	
C -2.105880 -0.123921 0.074331	
Н -2.722037 0.764518 0.151106	
Н -2.615616 -1.079750 0.050357	
TS 9-10 ZPE(B3LYP/6-311G**) = 0.102354 A 315.85612 C 1.784322 -1.045317 -0.313552 544i, 152, 200, 260, 337, 47	/4,
E(B3LYP+ZPE) = -232.642737 B 557.12153 H 2.074112 -2.015429 0.072169 516, 590, 705, 790, 795, 866	6.
(C_1) E(CCSD(1)/CC-VTZ) = -232.23465451 C 812.59790 H 2.022590 -0.828886 -1.348877 879, 924, 930, 960, 1074.	-)
C 1.033369 -0.171104 0.446140 1.099 1.100 1.253 1.317 1.40	04
C $-1.002350 -0.086878 0.082329 1075, 1505, 1515, 1525, 1517, 200$	67
C 0.725309 1.238358 0.031558 1425, 1512, 1622, 1725, 310	0/, 00
H = 1.456876 = 2.029207 -0.094592 = 3107, 3134, 3138, 3167, 318	80,
C -2.002944 -0.935493 -0.034682 3226	
Н -2.973339 -0.622971 -0.424563	
С -0.603343 1.278270 -0.141369	
Н -1.244769 2.121870 -0.383794	
Н -1.904307 -1.980378 0.242525	
Н 0.962654 -0.370428 1.514586	
TS 9-12 ZPE(B3LYP/6-311G**) = 0.098434 A 93.67281 C 3.057842 -0.052819 0.106189 1874i, 80, 126, 202, 324, 36	5,
E(B3LYP+ZPE) = -232.593147 B 1245.91427 H 3.548301 -0.333553 1.034745 486, 496, 554, 630, 799, 828	8.
$(C_1) \qquad E(CCSD(1)/CC-VTZ) = -232.17435817 \qquad C \qquad 1307.30206 \qquad H \qquad 3.687920 \qquad 0.362263 \qquad -0.676503 \qquad 879. 903. 990. 1008. 1022.$,

· · ·				С	1.777014	-0.210831	-0.063247	1090, 1148, 1164, 1284, 1395,
0-0-0				С	0.481206	-0.359491	-0.222164	1437, 1475, 1653, 2010, 2082,
				н	0.095491	-1.296710	-0.617539	3057, 3101, 3129, 3143, 3169,
				С	-0.508807	0.684223	0.081531	3178
				Н	-1.255363	1.192054	-0.873364	5176
				Н	-0.140185	1.597186	0.541855	
				С	-1.921903	0.489651	0.054459	
				С	-2.809214	-0.499355	0.091792	
				Н	-2.603542	-1.406329	0.664617	
				Н	-3.789456	-0.423179	-0.365169	
TS 10-11	ZPE(B3LYP/6-311G**) = 0.102780	Α	390.59190	С	1.832721	-0.718380	-0.310625	620i, 157, 259, 277, 384, 486,
(\mathbf{C})	E(B3LYP+ZPE) = -232.637525	В	425.12167	Н	1.641611	-1.076574	-1.315726	575, 673, 705, 749, 802, 816,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.23225933	С	756.45575	Н	2.861006	-0.708813	0.031380	842 903 920 952 966 1067
				С	0.822857	-0.184178	0.455134	1182 1257 1285 1405 1445
				С	-0.642826	-0.299050	0.092666	152, 1257, 1205, 1405, 1445, 1522, 1506, 1700, 2120, 2120
				С	0.194668	1.726615	-0.023901	1522, 1590, 1709, 5120, 5128,
				Н	0.589091	2.730675	-0.111661	3135, 3137, 3211, 3222, 3227
				С	-1.370979	-1.412684	-0.006480	
				Н	-2.419221	-1.377746	-0.282238	
				С	-0.971771	1.101367	-0.146845	
e -				н	-1.951727	1.517822	-0.372627	
				н	-0.937058	-2.386464	0.187592	
				Н	1.028284	0.018950	1.503586	
TS 10-13	ZPE(B3LYP/6-311G**) = 0.098974	Α	339.43575	С	1.729215	-1.061073	-0.117050	1840i, 214, 248, 325, 414,
(\mathbf{C})	E(B3LYP+ZPE) = -232.602947	В	433.93712	Н	1.479857	-2.113809	-0.106654	531, 632, 691, 697, 709, 737,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.19171558	С	759.38605	Н	2.774208	-0.787748	-0.195002	786 858 886 905 919 1030
				С	0.750121	-0.119520	0.091038	1096 1135 1164 1242 1379
				С	-0.778793	-0.148161	-0.000667	1423 1442 1521 1577 1600
				С	0.606863	1.379244	-0.000208	1425, 1442, 1521, 1577, 1090, 2141, 2149, 2200, 2226, 2222
				н	1.354910	2.155190	-0.089073	5141, 5148, 5209, 5226, 5252,
T T				С	-1.664346	-1.149512	0.026940	3240
				н	-2.725702	-0.966480	-0.095668	
				С	-0.790241	1.302604	-0.125537	
U U				Н	-1.576345	2.042310	-0.096429	
				н	-1.345883	-2.177369	0.153775	
				H	0.922041	0.626407	1.181955	
TS 10-16	ZPE(B3LYP/6-311G**) = 0.099627	Α	338.02408	C	1.886174	-0.858192	-0.118012	1913i 203, 228, 264, 350, 407,
(\mathbf{C})	E(B3LYP+ZPE) = -232.606926	В	449.47203	Н	1.733793	-1.918815	-0.254915	607, 653, 685, 730, 737, 756,
(U1)	E(CCSD(T)/CC-VTZ) = -232.19829409	С	774.93506	Н	2.851246	-0.416690	-0.322474	846, 881, 889, 920, 1054,

			С	0.715666	0.009387	0.111899	1088, 1144, 1169, 1253, 1404,
II			С	-0.776386	-0.219836	0.019359	1433, 1448, 1467, 1737, 2163,
			С	0.431874	1.441007	0.003200	3137 3153 3201 3219 3232
			Н	1.070504	2.314355	-0.019653	2072
- W - W			С	-1.570611	-1.286727	-0.005969	5275
			Н	-2.645470	-1.184777	-0.101112	
			С	-0.926145	1.253670	-0.066813	
			Н	-1.780446	1.912950	-0.114555	
			Н	-1.171339	-2.292138	0.064951	
			Н	1.378278	-0.450744	1.085778	
TS 12-13 ZPE(B3LYP/6-311G**) = 0.101922	Α	406.66084	С	1.762159	-1.150116	-0.154072	753i, 180, 233, 251, 351, 516,
E(B3LYP+ZPE) = -232.631725	В	438.10782	Н	1.644430	-2.086938	-0.699453	563, 638, 652, 704, 757, 771,
(C ₁) $E(CCSD(T)/CC-VTZ) = -232.22149321$	С	803.19711	Н	2.770742	-0.873525	0.131907	870 840 976 946 1011
ϕ ϕ			С	0.720396	-0.398260	0.127907	1022, 042, 720, 740, 1011, 1022, 1
			С	-0.688657	-0.213162	-0.006084	1022, 1202, 1201, 1330, 1423, 1422, 1500, 1500, 1744, 2070
			С	0.502900	1.714838	0.220226	1432, 1506, 1520, 1744, 3079,
			Н	1.006434	2.564807	-0.240744	3092, 3149, 3168, 3180, 3183,
T			С	-1.712071	-1.122587	0.144411	3244
			Н	-2.745686	-0.819302	0.034593	
			С	-0.682960	1.189170	-0.307132	
			Н	-1.328217	1.689273	-1.021698	
			Н	-1.508813	-2.159139	0.379484	
			Н	0.750500	1.565524	1.264381	
TS 14-15 ZPE(B3LYP/6-311G**) = 0.099339	Α	341.00041	С	-0.631130	-0.099992	-0.251844	1631i, 156, 178, 190, 261,
E(B3LYP+ZPE) = -232.542675	В	463.12823	С	0.839225	-0.085812	-0.065407	378, 538, 621, 698, 721, 751,
(C ₁) $E(CCSD(T)/CC-VTZ) = -232.13015041$	С	765.19461	С	0.843863	1.376556	0.298795	807 886 971 1008 1052
$\varphi = \varphi$			С	-0.542233	1.447211	-0.061229	1001, 1000, 971, 1000, 1052, 1001, 1120, 1150, 1289, 1232
			С	1.791572	-1.020226	-0.030745	1091, 1139, 1139, 1200, 1332, 1400, 1422, 1472, 1476, 1711
			С	-1.708958	-1.041213	0.155033	1400, 1433, 1472, 1476, 1711,
			Н	-0.635781	1.032583	-1.182309	2254, 2966, 3051, 3087, 3133,
X T			Н	-1.319463	2.180756	0.125464	3173, 3223
			Н	2.801186	-0.750099	0.257968	
			Н	1.593242	-2.059965	-0.270034	
			Н	-2.682015	-0.705717	-0.215312	
			Н	-1.782889	-1.109663	1.251280	
			H	-1.528321	-2.047032	-0.234682	
TS 15-17 ZPE(B3LYP/6-311G**) = 0.099544	Α	341.26020	C	-0.659823	-0.014837	-0.135398	1049i, 92, 126, 200, 236, 396,
E(B3LYP+ZPE) = -232.565930	В	463.85277	С	0.779142	-0.208252	-0.003074	624, 644, 677, 746, 856, 869.
(U_1) E(CCSD(T)/CC-VTZ) = -232.15809569	С	783 13873	С	1.058753	1.307478	0.005636	035 032 005 1010 1121

				С	-0.398750	1.443710	-0.081381	1160, 1239, 1290, 1370, 1403,
A L				С	1.647271	-1.228464	-0.004994	1435, 1472, 1477, 1667, 2116,
				С	-1.856786	-0.872441	0.056346	2968 3048 3090 3132 3144
				Н	-1.000676	2.312300	-0.338915	2700, 5040, 5070, 5152, 5144,
YY				Н	0.076182	1.723674	1.011895	5225
				Н	2.707626	-1.031757	0.103811	
				Н	1.333254	-2.258613	-0.139342	
				Н	-2.724277	-0.471262	-0.476202	
•				Н	-2.137220	-0.948402	1.118140	
				н	-1.673724	-1.889112	-0.302197	
TS 1x	ZPE(B3LYP/6-311G**) = 0.098671	Α	455.14828	С	-0.591112	2.049957	-0.223967	522i, 35, 132, 166, 203, 260,
(\mathbf{C})	E(B3LYP+ZPE) = -232.595613	В	629.91984	н	-0.228138	3.048590	-0.296447	270, 453, 509, 531, 590, 640,
(C_1)	E(CCSD(T)/CC-VTZ) = -232.18258138	С	987.98827	С	-0.625662	0.831243	-0.022770	658 672 819 828 901 1021
				С	-1.305528	-0.372172	0.002047	1060 1215 1400 1460 1482
				С	-1.868973	-1.438498	0.031319	1007, 1213, 1400, 1407, 1462, 1490, 1026, 2016, 2060, 2051
				Н	-2.388702	-2.364581	0.050794	1489, 1930, 2210, 2909, 3051,
				С	1.396507	0.059262	0.656441	3093, 3117, 3209, 3431, 3478
				н	1.033182	-0.412264	1.563959	
				Н	1.875686	1.020606	0.807612	
				С	1.914708	-0.817609	-0.436379	
				Н	2.882322	-1.262715	-0.158076	
-				Н	1.231476	-1.644761	-0.645957	
				Н	2.074530	-0.257974	-1.362025	
TS 2x	ZPE(B3LYP/6-311G**) = 0.096236	Α	404.58119	С	1.815695	-0.915354	-0.125892	1000i, 158, 202, 267, 304,
(\mathbf{C})	E(B3LYP+ZPE) = -232.613423	В	534.95667	С	1.255333	0.337224	-0.087002	421, 465, 595, 607, 620, 657,
(\mathbf{C}_1)	E(CCSD(T)/CC-VTZ) = -232.19837457	С	915.92149	С	-0.164125	0.621866	-0.011562	690 693 762 816 897 935
				С	-1.090136	-0.472742	-0.012052	030 082 1066 1273 1314
				С	-0.622686	1.897542	0.055172	1204 1427 1520 1591 2200
~~~~				С	-1.854039	-1.402560	-0.011452	1394, 1437, 1539, 1581, 2209,
				Н	2.137528	-1.417174	1.678159	3148, 3150, 3157, 3241, 3248,
				Н	2.871715	-1.026446	-0.336017	3476
				Н	1.193207	-1.789796	-0.271500	
				Н	1.907467	1.205333	-0.069725	
				Н	-1.680867	2.115967	0.103367	
				Н	0.068167	2.732299	0.060225	
<b>U</b>				Н	-2.537462	-2.216046	-0.007778	
TS 3x	ZPE(B3LYP/6-311G**) = 0.098041	Α	319.64357	С	0.308237	2.015861	0.000009	533i, 75, 85, 112, 148, 153.
	E(B3LYP+ZPE) = -232.604437	В	877.23177	Н	0.863658	2.119699	-0.923217	336, 345, 463, 475, 540, 564.
( <b>U</b> ₁ )	E(CCSD(T)/CC-VTZ) = -232.18924278	С	1173.36634	Н	-0.714349	2.372598	0.000113	638 646 675 874 1023
	E(CC3D(1)/CC-V1Z) = -232.18924278	С	1173.36634	Н	-0.714349	2.372598	0.000113	638, 646, 675, 874, 1023,

~68 2-0-0-0-0-0				Н С С С Н С С Н Н Н Н Н	0.863695 0.077364 1.418559 2.596572 3.629107 -1.120040 -2.571191 -2.947672 -2.975766 -2.975688	2.119113 -0.235768 -0.568294 -0.828758 -1.076731 -0.539396 -0.513430 0.517910 -1.017162 -1.016714	0.923271 -0.000015 -0.000007 0.000009 -0.000011 -0.000047 0.000015 -0.000259 -0.883377 0.883370	1049, 1163, 1408, 1418, 1419, 1466, 1470, 2071, 2229, 2995, 3053, 3074, 3089, 3246, 3254, 3479
TS 4x	ZPE(B3LYP/6-311G**) = 0.095706	Α	395.53436	С	-0.228602	1.930624	-0.100731	715i, 114, 162, 251, 310, 354,
	E(B3LYP+ZPE) = -232.604030	В	536.05847	Н	-1.219775	2.362280	-0.141241	418, 473, 521, 622, 652, 691,
(C ₁ )	E(CCSD(T)/CC-VTZ) = -232.19351107	С	900.57829	С	-0.043771	0.600975	-0.023273	715 749 754 918 931 942
				С	-1.162295	-0.290658	0.016129	1027 1058 1304 1309 1409
<b></b>				С	-2.088751	-1.058364	0.050209	1451 1597 1657 2208 3147
				Н	-2.916132	-1.724035	0.083580	3140 3157 3240 3244 3476
<b>₩-</b> 0				С	1.318611	0.020625	0.007991	5149, 5157, 5240, 5244, 5470
				Н	1.602949	0.195638	1.935282	
C-C-C-Q				Н	2.122961	0.747687	-0.047008	
				С	1.597901	-1.289718	-0.164569	
				Н	2.622198	-1.636027	-0.220927	
é				Н	0.811579	-2.033847	-0.202843	
				H	0.617659	2.607403	-0.121371	
TS 7x	$ZPE(B3LYP/6-311G^{**}) = 0.098270$	A	250.44535	C	-0.127157	1.126352	-0.169997	102i, 147, 151, 215, 345, 492,
(C ₁ )	E(B3LYP+ZPE) = -232.050258 E(CCSD(T)/CC-VTZ) = -232.25216216	B	493.30568	C	-1.406525	0.677827	-0.139692	642, 679, 701, 781, 790, 809,
	E(CCSD(1)/CC-V1E) = -252.225210210	C	705.15156	C	-1.399903	-0.782403	0.026999	910, 928, 944, 963, 967, 1005,
				C	-0.1198/4	-1.215189	0.085704	1101, 1104, 1253, 1335, 1371,
TI I				н	0.211569	2.139867	-0.325706	1450, 1511, 1604, 1701, 3138,
				н	-2.299521	1.282636	-0.221126	3200, 3211, 3224, 3227, 3235
				н	-2.20094/	-1.395002	0.092908	, - , - , - ,
				С	0.2204/0	-2.231503	0.205422	
				C	0.702557	-0.043991	-0.043508	
<b>—</b>				ч	2.103174	-0.041078	-0.032303	
				н	2.671507	0.880149	_0 150851	
				Н	-0.061351	1.954889	2.132436	
TC 9 ₂	$ZPE(B3LYP/6-311G^{**}) = 0.098345$	Δ	240 12066	 	1 388413	-0 643939	_0 152631	305; 164 182 244 345 504
15 ox	E(B3LYP+ZPE) = -232.655601	B	503.94155	й	2.014943	-1.034965	2.000660	635 678 686 778 708 000
(C ₁ )	E(CCSD(T)/CC-VTZ) = -232.25103466	Č	710.80106	н	2.298638	-1.208899	-0.296846	0.00, 0.00, 0.00, 1/0, 1/0, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
		e	. 10.00100	**		1	0.20010	yuy, y2ð, y41, you, yos, yyo,

				С Н С Н С Н С Н Н	0.125536 -0.170762 -0.805364 1.319530 2.181930 0.026155 -0.363843 -2.144646 -2.750187 -2.668466	-1.143343 -2.181023 -0.013028 0.829523 1.482013 1.204018 2.208785 -0.076506 0.819444 -1.025707	-0.126024 -0.178181 -0.008501 -0.073434 -0.078105 0.013385 0.092337 0.060715 0.141116 0.037959	1098, 1105, 1254, 1335, 1366, 1450, 1513, 1601, 1690, 3138, 3203, 3212, 3224, 3227, 3233
TS 10x (C1)	ZPE(B3LYP/6-311G**) = 0.097026 E(B3LYP+ZPE) = -232.605255 E(CCSD(T)/CC-VTZ) = -232.19672282	A B C	338.22436 444.00727 748.68948	С Н С С С Н С Н С Н Н Н Н Н	1.697435 1.455796 2.741738 0.739958 -0.778584 0.651117 1.398056 -1.726834 -2.775510 -0.700736 -1.450700 -1.481255 0.817739	-1.049356 -2.102959 -0.767519 -0.132979 -0.136745 1.351894 2.133728 -1.067361 -0.804650 1.336598 2.108290 -2.119007 -0.260193	-0.179315 -0.249176 -0.242344 0.069455 -0.009156 0.002604 0.012378 -0.003331 -0.081326 -0.097800 -0.209442 0.085852 1.989310	766i, 204, 242, 293, 336, 421, 488, 639, 695, 719, 746, 769, 815, 865, 895, 905, 920, 948, 1070, 1154, 1189, 1290, 1432, 1449, 1547, 1639, 1748, 3141, 3142, 3203, 3224, 3231, 3232
TS 13x (C ₁ )	ZPE(B3LYP/6-311G**) = 0.096349 E(B3LYP+ZPE) = -232.611021 E(CCSD(T)/CC-VTZ) = -232.20264255	A B C	349.67762 447.18851 763.28944	С Н Н С С С Н С Н С Н С Н Н Н Н	1.516500 1.133487 2.592074 0.697328 -0.798726 0.825397 1.666548 -1.872939 -2.874314 -0.527782 -1.165976 -1.779091 1.388600	-1.332039 -2.343125 -1.208963 -0.285879 -0.073974 1.190483 1.852589 -0.855616 -0.440817 1.372465 2.244627 -1.932950 1.736005	-0.031316 0.042996 -0.083601 -0.055173 -0.008314 -0.153221 -0.303740 0.083609 0.090229 -0.124650 -0.170909 0.153029 2.006388	310i, 155, 168, 243, 251, 317, 416, 685, 704, 724, 765, 767, 824, 890, 896, 905, 915, 937, 1067, 1155, 1192, 1292, 1434, 1451, 1503, 1713, 1758, 3140, 3140, 3205, 3223, 3224, 3231
TS 3x2 (C ₁ )	ZPE(B3LYP/6-311G**) = 0.094235 E(B3LYP+ZPE) = -232.591407 E(CCSD(T)/CC-VTZ) = -232.17547018	A B C	355.23344 693.47579 1025.14329	C H H	0.449940 1.042026 -0.463025	1.871091 2.127575 2.466723	0.000100 -0.882623 -0.000178	427i, 118, 157, 196, 198, 209, 287, 347, 489, 546, 606, 638, 688, 704, 707, 901, 991, 1014,

and a				Н	1.041432	2.127500	0.883245	1057, 1174, 1277, 1403, 1458,
a second s				С	0.125260	0.386091	-0.000060	1480, 1496, 2003, 2203, 3031,
1				С	1.224052	-0.529651	-0.000040	3089 3110 3125 3183 3477
				С	2.182305	-1.258633	0.000005	0009,0110,0120,0100,0177
				н	3.016265	-1.916530	0.000046	
				С	-1.110836	-0.060103	-0.000271	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				С	-2.329434	-0.540414	0.000029	
				н	-2.878864	-0.682537	0.926161	
				Н	-2.879471	-0.682419	-0.925758	
-				Н	-2.126088	-2.650600	0.000536	
TSCTS	ZPE(B3LYP/6-311G**) = 0.100916	Α	433.97582	С	-2.208355	-0.592720	0.000023	657i, 115, 131, 149, 166, 216,
	E(B3LYP+ZPE) = -232.617316	В	546.13604	Н	-2.469468	-1.187959	0.880711	387, 465, 468, 516, 547, 695,
(\mathbf{C}_1)	E(CCSD(T)/CC-VTZ) = -232.20565845	С	957.76963	Н	-2.831243	0.311631	-0.000537	800 1024 1033 1047 1067
				Н	-2.469446	-1.189033	-0.879941	1101 1205 1402 1464 1471
				С	-0.775042	-0.267455	-0.000117	1191, 1395, 1402, 1404, 1471,
				С	0.960792	-0.642013	0.000156	14/6, 148/, 1826, 1924, 298/,
				С	1.830164	-1.539223	-0.000151	3029, 3055, 3071, 3086, 3113,
				Н	2.195924	-2.540622	0.000396	3404
				С	0.222386	0.577720	-0.000053	
7				С	0.566625	2.030881	0.000019	
<u> </u>				Н	1.164866	2.278486	-0.881454	
				Н	-0.334950	2.645964	0.000066	
-				Н	1.164897	2.278399	0.881494	

Table A8. Single Collission Rate Constants for $C_2H + 1$ -butyne

Channel	Barrier	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0
$INT 1 \rightarrow INT 2$	TS 1-2	1.37E+07	1.76E+07	2.22E+07	2.79E+07	3.48E+07	4.29E+07	5.26E+07	6.40E+07
$INT 2 \rightarrow INT 1$	TS 1-2	6.75E+03	9.20E+03	1.24E+04	1.66E+04	2.19E+04	2.86E+04	3.72E+04	4.78E+04
INT $1 \rightarrow INT 4$	TS 1-4	5.17E+10	5.59E+10	6.02E+10	4.32E+10	4.63E+10	4.96E+10	5.31E+10	5.67E+10
$INT 4 \rightarrow INT 1$	TS 1-4	3.38E+08	3.76E+08	4.18E+08	4.62E+08	5.10E+08	5.62E+08	6.17E+08	6.76E+08
INT 1 \rightarrow C ₂ H ₅ + diacetylene	TS 1x	1.12E+09	1.40E+09	1.73E+09	4.25E+09	5.18E+09	6.27E+09	7.54E+09	9.01E+09
INT 1 \rightarrow INT C-T	TS 1-A	3.25E+09	3.71E+09	4.22E+09	9.56E+09	1.08E+10	1.21E+10	1.36E+10	1.52E+10
INT C-T \rightarrow INT 1	TS 1-A	1.62E+12	1.71E+12	1.80E+12	3.77E+12	3.95E+12	4.13E+12	4.31E+12	4.50E+12

$INT 2 \rightarrow INT 3$	TS 2-3	2.65E+04	3.50E+04	4.56E+04	1.18E+05	1.52E+05	1.93E+05	2.44E+05	3.07E+05
$INT 3 \rightarrow INT 2$	TS 2-3	1.08E+07	1.36E+07	1.70E+07	1.40E+07	1.73E+07	2.11E+07	2.57E+07	3.10E+07
$INT 2 \rightarrow INT 4$	TS 2-4	4.88E+06	5.89E+06	7.05E+06	5.61E+06	6.66E+06	7.87E+06	9.26E+06	1.08E+07
$INT 4 \rightarrow INT 2$	TS 2-4	6.49E+07	7.56E+07	8.77E+07	1.01E+08	1.17E+08	1.33E+08	1.52E+08	1.73E+08
INT 2 \rightarrow 3-methylene-4-ene-1-pentyne +									
Н	TS 2x	9.17E+06	1.09E+07	1.30E+07	1.02E+07	1.21E+07	1.41E+07	1.65E+07	1.92E+07
INT 2 → 19	TS 2-14	4.39E+05	5.31E+05	6.38E+05	1.52E+06	1.81E+06	2.15E+06	2.53E+06	2.97E+06
19 → INT 2	TS 31	8.08E+09	9.29E+09	1.06E+10	2.42E+10	2.75E+10	3.11E+10	3.51E+10	3.94E+10
INT 3 \rightarrow CH ₃ + pentadiyne	TS 18	2.07E+09	2.52E+09	3.04E+09	7.31E+09	8.73E+09	1.04E+10	1.22E+10	1.44E+10
INT 3 \rightarrow 3-methyl-3,4-diene-1-pentyne +									
Н	TS 32	3.15E+07	4.13E+07	5.35E+07	4.58E+07	5.82E+07	7.35E+07	9.19E+07	1.14E+08
$INT 4 \rightarrow INT 5$	TS 5	2.66E+12	2.68E+12	2.70E+12	5.43E+12	5.46E+12	5.50E+12	5.53E+12	5.56E+12
$INT 5 \rightarrow INT 4$	TS 5	1.00E+13	1.05E+13	1.10E+13	2.30E+13	2.40E+13	2.50E+13	2.61E+13	2.71E+13
INT 4 \rightarrow 3-methylene-4-ene-1-pentyne +									
Н	TS 4x	1.01E+08	1.19E+08	1.40E+08	1.63E+08	1.90E+08	2.20E+08	2.54E+08	2.92E+08
$INT 5 \rightarrow INT 6$	TS 5-6	8.12E+04	1.05E+05	1.36E+05	3.46E+05	4.39E+05	5.53E+05	6.91E+05	8.58E+05
$INT 6 \rightarrow INT 5$	TS 5-6	6.51E+04	8.46E+04	1.09E+05	2.79E+05	3.54E+05	4.47E+05	5.59E+05	6.96E+05
$INT 6 \rightarrow INT 7$	TS 6-7	1.95E+08	2.22E+08	2.51E+08	2.83E+08	3.19E+08	3.58E+08	4.01E+08	4.48E+08
$INT 7 \rightarrow INT 6$	TS 6-7	2.95E+05	3.51E+05	4.17E+05	9.85E+05	1.16E+06	1.36E+06	1.60E+06	1.86E+06
$INT 7 \rightarrow INT 8$	TS 7-8	2.46E+10	2.60E+10	2.74E+10	2.89E+10	3.05E+10	3.21E+10	3.38E+10	3.55E+10
$INT 8 \rightarrow INT 7$	TS 7-8	6.24E+10	6.55E+10	6.86E+10	7.19E+10	7.53E+10	7.88E+10	8.24E+10	8.61E+10
$INT 7 \rightarrow INT 9$	TS 7-9	5.47E+08	6.09E+08	6.76E+08	1.50E+09	1.66E+09	1.83E+09	2.02E+09	2.22E+09
$INT 9 \rightarrow INT 7$	TS 7-9	8.13E+09	8.62E+09	9.14E+09	1.93E+10	2.04E+10	2.16E+10	2.28E+10	2.40E+10
INT 7 \rightarrow fulvene + H	TS 7x	2.67E+09	2.98E+09	3.32E+09	3.70E+09	4.11E+09	4.55E+09	5.04E+09	5.56E+09
$INT 8 \rightarrow INT 11$	TS 8-11	2.13E+08	2.37E+08	2.64E+08	5.86E+08	6.49E+08	7.17E+08	7.91E+08	8.71E+08
INT 11 \rightarrow INT 8	TS 8-11	5.59E+10	5.80E+10	6.01E+10	1.24E+11	1.29E+11	1.33E+11	1.38E+11	1.42E+11
INT 8 \rightarrow fulvene + H	TS 8x	2.70E+10	2.94E+10	3.20E+10	3.48E+10	3.78E+10	4.09E+10	4.43E+10	4.79E+10
$INT 9 \rightarrow INT 10$	TS 9-10	1.04E+09	1.13E+09	1.22E+09	2.65E+09	2.86E+09	3.09E+09	3.33E+09	3.59E+09
INT 10 \rightarrow INT 9	TS 9-10	8.80E+10	9.28E+10	9.77E+10	2.06E+11	2.16E+11	2.27E+11	2.38E+11	2.49E+11
$INT 9 \rightarrow INT 12$	TS 9-12	4.56E+03	6.42E+03	8.92E+03	2.45E+04	3.32E+04	4.46E+04	5.94E+04	7.83E+04
INT 12 \rightarrow INT 9	TS 9-12	1.08E+07	1.40E+07	1.79E+07	2.28E+07	2.86E+07	3.57E+07	4.41E+07	5.40E+07

	TS 10-								
INT $10 \rightarrow INT 11$	11	3.12E+10	3.31E+10	3.50E+10	7.41E+10	7.83E+10	8.27E+10	8.71E+10	9.17E+10
	TS 10-								
INT 11 → INT 10	11	1.64E+10	1.74E+10	1.85E+10	3.91E+10	4.13E+10	4.36E+10	4.60E+10	4.85E+10
	TS 10-								
INT 10 → INT 13	13	3.51E+06	4.27E+06	5.17E+06	1.24E+07	1.49E+07	1.77E+07	2.10E+07	2.47E+07
	TS 10-								
INT 13 → INT 10	13	7.92E+05	9.94E+05	1.24E+06	1.54E+06	1.89E+06	2.32E+06	2.82E+06	3.42E+06
INT 10 \rightarrow DMCB + H	TS 10x	6.39E+07	7.56E+07	8.90E+07	2.09E+08	2.43E+08	2.83E+08	3.27E+08	3.78E+08
INT 13 \rightarrow DMCB + H	TS 13x	2.87E+08	3.42E+08	4.04E+08	4.76E+08	5.59E+08	6.53E+08	7.61E+08	8.83E+08
	TS 14-								
INT 14 \rightarrow INT 15	15	1.00E-08							
	TS 14-								
INT 15 \rightarrow INT 14	15	1.00E-08							
	TS 15-								
INT 15 → INT 16	16	7.51E+05	1.20E+06	1.86E+06	2.79E+06	4.10E+06	5.89E+06	8.28E+06	1.15E+07
	TS 15-								
INT 16 → INT 15	16	3.17E+00	5.70E+00	9.90E+00	3.33E+01	5.46E+01	8.72E+01	1.36E+02	2.09E+02
$INT A \rightarrow INT B$	TS AB	9.67E+07	1.29E+08	1.71E+08	1.49E+08	1.93E+08	2.46E+08	3.13E+08	3.93E+08
$INT B \rightarrow INT A$	TS AB	1.14E+06	1.56E+06	2.11E+06	5.62E+06	7.41E+06	9.68E+06	1.25E+07	1.60E+07
INT A \rightarrow 1,3-hexadiyne + H	TS A2	2.48E+07	3.29E+07	4.31E+07	1.12E+08	1.44E+08	1.83E+08	2.30E+08	2.88E+08
INT A \rightarrow 3,4-hexadiene-1-yne + H	TS A1	3.66E+07	4.78E+07	6.17E+07	7.90E+07	1.00E+08	1.26E+08	1.57E+08	1.94E+08
INT A \rightarrow ethynylallene + CH ₃	TS A3	8.78E+08	1.08E+09	1.33E+09	3.23E+09	3.91E+09	4.69E+09	5.60E+09	6.65E+09
$INT A \rightarrow C-T$	TS A-1	8.50E+08	9.81E+08	1.13E+09	2.58E+09	2.94E+09	3.34E+09	3.78E+09	4.26E+09
$INT C-T \rightarrow INT A$	TS A-1	1.51E+12	1.60E+12	1.68E+12	3.54E+12	3.72E+12	3.89E+12	4.07E+12	4.26E+12
INT B \rightarrow 1,3-hexadiene-5-yne + H	TS B1	1.85E+08	2.18E+08	2.55E+08	2.96E+08	3.43E+08	3.97E+08	4.56E+08	5.22E+08

Single Collission	n Rate Constants	for C_2 H	H + 2-buty	ne

Channel	Barrier	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0
$INT 1 \rightarrow INT 2$	TS 1-2	3.34E+06	4.56E+06	6.12E+06	8.11E+06	1.06E+07	1.37E+07	1.76E+07	2.22E+07
$INT 2 \rightarrow INT 1$	TS 1-2	1.17E+03	1.71E+03	2.46E+03	3.50E+03	4.89E+03	6.75E+03	9.20E+03	1.24E+04
$INT 1 \rightarrow INT 4$	TS 1-4	3.40E+10	3.71E+10	4.05E+10	4.41E+10	4.78E+10	5.17E+10	5.59E+10	6.02E+10
$INT 4 \rightarrow INT 1$	TS 1-4	1.89E+08	2.13E+08	2.41E+08	2.70E+08	3.03E+08	3.38E+08	3.76E+08	4.18E+08
INT 1 \rightarrow C ₂ H ₅ + diacetylene	TS 1x	3.16E+08	4.16E+08	5.42E+08	6.97E+08	8.88E+08	1.12E+09	1.40E+09	1.73E+09
INT 1 \rightarrow INT C-T	TS 1-A	1.54E+09	1.81E+09	2.11E+09	2.45E+09	2.83E+09	3.25E+09	3.71E+09	4.22E+09
INT C-T \rightarrow INT 1	TS 1-A	1.20E+12	1.29E+12	1.37E+12	1.45E+12	1.53E+12	1.62E+12	1.71E+12	1.80E+12
$INT 2 \rightarrow INT 3$	TS 2-3	5.65E+03	7.89E+03	1.09E+04	1.48E+04	1.99E+04	2.65E+04	3.50E+04	4.56E+04
$INT 3 \rightarrow INT 2$	TS 2-3	2.90E+06	3.86E+06	5.07E+06	6.58E+06	8.45E+06	1.08E+07	1.36E+07	1.70E+07
$INT 2 \rightarrow INT 4$	TS 2-4	1.76E+06	2.19E+06	2.70E+06	3.31E+06	4.03E+06	4.88E+06	5.89E+06	7.05E+06
$INT 4 \rightarrow INT 2$	TS 2-4	2.79E+07	3.34E+07	3.98E+07	4.71E+07	5.54E+07	6.49E+07	7.56E+07	8.77E+07
INT 2 \rightarrow 3-methylene-4-ene-1-pentyne +									
Н	TS 2x	3.49E+06	4.28E+06	5.22E+06	6.33E+06	7.64E+06	9.17E+06	1.09E+07	1.30E+07
INT 2 \rightarrow 19	TS 2-14	1.56E+05	1.94E+05	2.41E+05	2.96E+05	3.62E+05	4.39E+05	5.31E+05	6.38E+05
19 → INT 2	TS 31	3.74E+09	4.41E+09	5.17E+09	6.03E+09	7.00E+09	8.08E+09	9.29E+09	1.06E+10
INT 3 \rightarrow CH ₃ + pentadiyne	TS 18	6.88E+08	8.73E+08	1.10E+09	1.37E+09	1.69E+09	2.07E+09	2.52E+09	3.04E+09
INT 3 \rightarrow 3-methyl-3,4-diene-1-pentyne +									
Н	TS 32	6.81E+06	9.52E+06	1.31E+07	1.78E+07	2.38E+07	3.15E+07	4.13E+07	5.35E+07
$INT 4 \rightarrow INT 5$	TS 5	2.57E+12	2.59E+12	2.61E+12	2.63E+12	2.64E+12	2.66E+12	2.68E+12	2.70E+12
$INT 5 \rightarrow INT 4$	TS 5	7.87E+12	8.28E+12	8.70E+12	9.13E+12	9.58E+12	1.00E+13	1.05E+13	1.10E+13
INT 4 \rightarrow 3-methylene-4-ene-1-pentyne +									
Н	TS 4x	4.02E+07	4.89E+07	5.91E+07	7.10E+07	8.48E+07	1.01E+08	1.19E+08	1.40E+08
$INT 5 \rightarrow INT 6$	TS 5-6	1.90E+04	2.60E+04	3.51E+04	4.69E+04	6.20E+04	8.12E+04	1.05E+05	1.36E+05
$INT 6 \rightarrow INT 5$	TS 5-6	1.51E+04	2.06E+04	2.79E+04	3.74E+04	4.96E+04	6.51E+04	8.46E+04	1.09E+05
INT 6 \rightarrow INT 7	TS 6-7	9.84E+07	1.14E+08	1.31E+08	1.50E+08	1.71E+08	1.95E+08	2.22E+08	2.51E+08
$INT 7 \rightarrow INT 6$	TS 6-7	1.16E+05	1.41E+05	1.70E+05	2.05E+05	2.46E+05	2.95E+05	3.51E+05	4.17E+05
INT 7 \rightarrow INT 8	TS 7-8	1.85E+10	1.96E+10	2.08E+10	2.20E+10	2.33E+10	2.46E+10	2.60E+10	2.74E+10
$INT 8 \rightarrow INT 7$	TS 7-8	4.84E+10	5.10E+10	5.37E+10	5.65E+10	5.94E+10	6.24E+10	6.55E+10	6.86E+10
$INT 7 \rightarrow INT 9$	TS 7-9	3.11E+08	3.50E+08	3.93E+08	4.40E+08	4.91E+08	5.47E+08	6.09E+08	6.76E+08

INT 9 \rightarrow INT 7	TS 7-9	5.94E+09	6.34E+09	6.76E+09	7.20E+09	7.66E+09	8.13E+09	8.62E+09	9.14E+09
INT 7 \rightarrow fulvene + H	TS 7x	1.49E+09	1.68E+09	1.89E+09	2.13E+09	2.39E+09	2.67E+09	2.98E+09	3.32E+09
INT 8 \rightarrow INT 11	TS 8-11	1.20E+08	1.35E+08	1.52E+08	1.71E+08	1.91E+08	2.13E+08	2.37E+08	2.64E+08
INT 11 \rightarrow INT 8	TS 8-11	4.59E+10	4.78E+10	4.98E+10	5.18E+10	5.38E+10	5.59E+10	5.80E+10	6.01E+10
INT 8 \rightarrow fulvene + H	TS 8x	1.72E+10	1.89E+10	2.07E+10	2.27E+10	2.48E+10	2.70E+10	2.94E+10	3.20E+10
$INT 9 \rightarrow INT 10$	TS 9-10	6.63E+08	7.28E+08	7.98E+08	8.72E+08	9.52E+08	1.04E+09	1.13E+09	1.22E+09
INT 10 \rightarrow INT 9	TS 9-10	6.63E+10	7.04E+10	7.46E+10	7.89E+10	8.34E+10	8.80E+10	9.28E+10	9.77E+10
$INT 9 \rightarrow INT 12$	TS 9-12	6.54E+02	1.00E+03	1.50E+03	2.21E+03	3.19E+03	4.56E+03	6.42E+03	8.92E+03
INT 12 \rightarrow INT 9	TS 9-12	2.40E+06	3.35E+06	4.59E+06	6.18E+06	8.22E+06	1.08E+07	1.40E+07	1.79E+07
	TS 10-								
INT 10 → INT 11	11	2.27E+10	2.43E+10	2.59E+10	2.76E+10	2.93E+10	3.12E+10	3.31E+10	3.50E+10
	TS 10-								
$INI 11 \rightarrow INI 10$	11	1.19E+10	1.28E+10	1.36E+10	1.45E+10	1.55E+10	1.64E+10	1.74E+10	1.85E+10
INT 10 INT 13	15 10-	1 195+06	1 405+06	1 975+06	2 325+06	2 865+06	3 51 5+06	4 275+06	5 175+06
$10110 \rightarrow 10113$		1.10	1.492+00	1.07 L+00	2.321+00	2.001+00	3.512+00	4.27 L+00	5.17 - 100
INT 13 \rightarrow INT 10	13	2.27E+05	2.96E+05	3.83E+05	4.92E+05	6.27E+05	7.92E+05	9.94E+05	1.24E+06
INT 10 \rightarrow DMCB + H	TS 10x	2.53E+07	3.08E+07	3.73E+07	4.49E+07	5.37E+07	6.39E+07	7.56E+07	8.90E+07
INT 13 \rightarrow DMCB + H	TS 13x	1.12E+08	1.37E+08	1.66E+08	2.01E+08	2.41E+08	2.87E+08	3.42E+08	4.04E+08
	TS 14-								
INT 14 → INT 15	15	1.00E-08	1.00E-08	1.00E-08	1.00E-08	1.00E-08	1.00E-08	1.00E-08	1.00E-08
	TS 14-								
$111113 \rightarrow 111114$	10 TS 15	1.00E-06	1.00E-06	1.00E-06	1.00E-00	1.00E-00	1.00E-06	1.00E-06	1.00E-00
INT 15 \rightarrow INT 16	16	3.53E+04	7.40E+04	1.44E+05	2.62E+05	4.53E+05	7.51E+05	1.20E+06	1.86E+06
	TS 15-								
INT 16 \rightarrow INT 15	16	7.91E-02	1.90E-01	4.19E-01	8.67E-01	1.70E+00	3.17E+00	5.70E+00	9.90E+00
$INT A \rightarrow INT B$	TS AB	1.80E+07	2.61E+07	3.71E+07	5.18E+07	7.13E+07	9.67E+07	1.29E+08	1.71E+08
$INT B \to INT A$	TS AB	1.89E+05	2.81E+05	4.09E+05	5.85E+05	8.23E+05	1.14E+06	1.56E+06	2.11E+06
INT A \rightarrow 1,3-hexadiyne + H	TS A2	4.87E+06	6.97E+06	9.79E+06	1.35E+07	1.84E+07	2.48E+07	3.29E+07	4.31E+07
INT A \rightarrow 3,4-hexadiene-1-yne + H	TS A1	7.95E+06	1.11E+07	1.53E+07	2.07E+07	2.77E+07	3.66E+07	4.78E+07	6.17E+07
INT A \rightarrow ethynylallene + CH ₃	TS A3	2.67E+08	3.45E+08	4.42E+08	5.61E+08	7.05E+08	8.78E+08	1.08E+09	1.33E+09

$INT A \rightarrow C-T$	TS A-1	3.81E+08	4.53E+08	5.34E+08	6.27E+08	7.32E+08	8.50E+08	9.81E+08	1.13E+09
$INT C-T \rightarrow INT A$	TS A-1	1.11E+12	1.19E+12	1.27E+12	1.35E+12	1.43E+12	1.51E+12	1.60E+12	1.68E+12
INT B \rightarrow 1,3-hexadiene-5-yne + H	TS B1	7.61E+07	9.20E+07	1.11E+08	1.32E+08	1.57E+08	1.85E+08	2.18E+08	2.55E+08

Table A9. Product Branching Ratios of the C_2H + 1- and 2-butyne reaction

Product	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0
CH ₃ + pentadiyne	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.3
C_2H_5 + diacetylene	6.4	7.0	7.7	19.4	20.8	22.2	23.6	25.1
3-methylene-4-e-ene-1-pentyne +								
H	87.3	86.5	85.6	65.0	63.4	61.8	60.3	58.8
fulvene + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DMCB + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,3-hexadiyne + H	0.1	0.2	0.2	0.5	0.5	0.5	0.6	0.6
3,4-hexadiene-1-yne + H	0.2	0.2	0.3	0.3	0.4	0.4	0.4	0.4
1,3-hexadiene-5-yne + H	0.6	0.6	0.7	0.6	0.7	0.7	0.8	0.8
ethynylallene + CH₃	5.3	5.4	5.5	13.9	14.0	14.0	14.1	14.1
3-methyl-3,4-diene-1-pentyne + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Product Branching Ratios Initial Adduct: INT 1

Product Branching Ratios Initial Adduct: INT 22

	-	-	-			-		
Product	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0
CH ₃ + pentadiyne	0.0	0.0	0.0	0.1	0.1	0.1	0.1	0.1
C_2H_5 + diacetylene	1.9	2.0	2.1	5.3	5.4	5.5	5.6	5.7
3-methylene-4-e-ene-1-pentyne +								
, , , , , , , , , , , , , , , , , , ,	26.0	24.4	22.9	17.7	16.4	15.3	14.2	13.3
fulvene + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DMCB + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,3-hexadiyne + H	1.7	1.9	2.0	2.4	2.6	2.8	2.9	3.1
3,4-hexadiene-1-yne + H	2.5	2.7	2.9	1.7	1.8	1.9	2.0	2.1
1,3-hexadiene-5-yne + H	6.7	7.3	7.9	3.2	3.4	3.6	3.9	4.1
ethynylallene + CH ₃	61.1	61.7	62.2	69.7	70.4	70.9	71.3	71.7
3-methyl-3,4-diene-1-pentyne + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Product Branching Ratios Initial Adduct: INT 28

Product	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0
CH ₃ + pentadiyne	0.0	0.1	0.1	0.1	0.1	0.1	0.2	0.2
C_2H_5 + diacetylene	4.2	4.6	5.0	12.5	13.3	14.1	14.9	15.6
3-methylene-4-e-ene-1-pentyne +								
H	57.8	56.5	55.3	42.1	40.6	39.3	37.9	36.6
fulvene + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DMCB + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,3-hexadiyne + H	0.9	1.0	1.1	1.4	1.5	1.6	1.7	1.8
3,4-hexadiene-1-yne + H	1.3	1.4	1.5	1.0	1.1	1.1	1.2	1.2
1,3-hexadiene-5-yne + H	3.5	3.9	4.2	1.9	2.0	2.1	2.3	2.4
ethynylallene + CH₃	32.2	32.6	32.9	40.9	41.4	41.6	41.9	42.1
3-methyl-3,4-diene-1-pentyne + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Product Branching Ratios

Product 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0	Initial Adduct: IN 1-3								
	Product	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0

CH ₃ + pentadiyne	98.6	98.5	98.4	98.3	98.1	98.0	97.9	97.7
C_2H_5 + diacetylene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3-methylene-4-e-ene-1-pentyne +								
L H	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5
fulvene + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DMCB + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,3-hexadiyne + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3,4-hexadiene-1-yne + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1,3-hexadiene-5-yne + H	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ethynylallene + CH ₃	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3-methyl-3,4-diene-1-pentyne + H	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7

Table A10. Ionization Energies of he C_2H + 1- and 2-butyne reaction products

	5 ()	cc-pvdz	cc-pvtz	cc-pvqz	CBS
vertical	1,3-hexadiene-5-yne	8.503295	8.722518	8.795023	8.829624
	3,4-hexadiene-1-yne	9.297934	9.504969	9.570829	9.600801
	1,3-hexadiyne	8.939517	9.159169	9.231264	9.265009
	2-ethynylbutadiene	8.831276	9.05452	9.126615	9.838278
	3-methyl-3,4-diene-1-				
	pentyne	9.246934	9.498239	9.579974	9.618216
	fulvene	8.340183	8.537585	8.60805	8.644585
	DMCB	8.702689	8.90634	8.977961	9.01439
adiabatic	1,3-hexadiene-5-yne	8.28799	8.54737	8.626267	8.660422
	3,4-hexadiene-1-yne	9.093108	9.347942	9.357979	9.450375
	1,3-hexadiyne	8.706645	8.954533	8.983913	9.060705
	2-ethynylbutadiene	8.612086	8.885267	8.951758	9.001927
	3-methyl-3,4-diene-1-				
	pentyne	8.61131	8.862504	8.859475	8.965736
	fulvene	8.035538	8.279901	8.361746	8.395653
	DMCB	8.446448	8.695872	8.751632	8.811446

Ionization Energies (eV)

Species, (point group), electronic state	Energies, a.u.	i	<i>I_i</i> , a.u.	Cart	esian coor	dinates, an	igstroms	<i>v_i</i> , cm ⁻¹
				Atom	Х	Y	Z	
H, ² S	ZPE(B3LYP/6-311G**) = 0.0 2. E(B3LYP/6-311G**) = - 0.502155930011 E(CCSD(T)/CC-VDZ) = -0.499278 E(CCSD(T)/CC-VTZ) = -0.49980982 E(CCSD(T)/CC-VQZ) = -0.499946 E(CCSD(T)/CBS) = -0.49999							
$(C_{\infty V})$	ZPE(B3LYP/6-311G**) = 0.004902 E(B3LYP+ZPE) = -92.731965 E(CCSD(T)/CC-VDZ) = -92.4892179 E(CCSD(T)/CC-VTZ) = -92.5662682 E(CCSD(T)/CC-VQZ) = -92.5905486 E(CCSD(T)/CC-V5Z) = -92.59801244 E(CCSD(T)/CC-CBS) = -92.60152	A B C	0.00000 31.35694 31.35694	N C	0.000000 0.000000	0.000000 0.000000	0.538005 -0.627672	2152
CH ₃ (C ₁)	ZPE(B3LYP/6-311G**) = 0.029569 E(B3LYP+ZPE) = -39.853757 E(CCSD(T)/CC-VDZ) = -39.715785 E(CCSD(T)/CC-VTZ) = -39.760817 E(CCSD(T)/CC-VQZ) = -39.772271 E(CCSD(T)/CC-V5Z) = -39.775614 E(CCSD(T)/CBS) = -39.77618	A B C	6.30449 6.30449 12.60896	С Н Н Н	0.000000 0.000000 -0.935876 0.935876	0.000000 1.080657 -0.540328 -0.540328	0.000273 -0.000545 -0.000545 -0.000545	507, 1404, 1404, 3102, 3281, 3281
C ₂ H ₅ (C ₁)	ZPE(B3LYP/6-311G**) = 0.058983 E(B3LYP+ZPE) = -79.124669 E(CCSD(T)/CC-VDZ) = -78.91573206 E(CCSD(T)/CC-VTZ) = -79.00226044 E(CCSD(T)/CC-VQZ) = -79.02545788 E(CCSD(T)/CBS) = -79.03395	A B C	17.39033 79.41224 85.68530	C H H C H H H	-0.794278 -1.351038 -1.351038 0.693124 1.107217 1.107217 1.094572	0.000000 -0.926566 0.926566 0.000000 -0.886126 0.886127 -0.000001	-0.019123 0.042622 0.042622 -0.001749 -0.492768 -0.492766 1.025521	105, 474, 813, 980, 1063, 1192, 1401, 1465, 1482, 1483, 2941, 3034, 3077, 3140, 3241

Table A11. B3LYP, and CCSD(T) calculated energies at 0 K, zero-point energy corrections (ZPE), B3LYP/6-311G** optimized Cartesian coordinates, unscaled vibrational frequencies (v_i), and moments of inertia (I_i) of all species involved in the studied CN + 1/2-butyne and CN + 1,2-butadiene reactions.

1-butyne (C ₁)	ZPE(B3LYP/6-311G**) = 0.084380 E(B3LYP+ZPE) = -155.930477 E(CCSD(T)/CC-VDZ) = -155.51300878 E(CCSD(T)/CC-VTZ) = -155.67431685 E(CCSD(T)/CC-VQZ) = -155.71932538 E(CCSD(T)/CBS) = -155.73674	A B C	65.43102 400.10341 443.24411	С Н С Н Н Н Н Н	1.960054 2.955614 0.833687 -0.542362 -0.691652 -0.691652 -1.588182 -2.598554 -1.476467 -1.476467	-0.262471 -0.632552 0.156349 0.647396 1.288389 1.288389 -0.482763 -0.065958 -1.114665 -1.114665	0.000000 0.000000 0.000000 0.876126 -0.876126 0.000000 0.000000 -0.883611 0.883611	201, 224, 360, 519, 665, 673, 789, 846, 1020, 1089, 1109, 1288, 1349, 1411, 1479, 1497, 1507, 2222, 3020, 3035, 3045, 3103, 3110, 3478
2-butyne (C ₁)	ZPE(B3LYP/6-311G**) =0.083756 E(B3LYP+ZPE) = -155.941156 E(CCSD(T)/CC-VDZ) = -155.52061932 E(CCSD(T)/CC-VTZ) = -155.68158969 E(CCSD(T)/CC-VQZ) = -155.72674319 E(CCSD(T)/CBS) = -155.74435	A B C	22.47396 536.41053 536.41124	С Н Н С С С Н Н Н Н	-2.060490 -2.456450 -2.456369 -2.456280 -0.601495 2.0601495 2.060490 2.456434 2.456282 2.456383	-0.000003 0.388735 0.622455 -1.011240 0.000018 -0.000026 0.000007 -0.622458 1.011245 -0.388717	0.000019 -0.943151 0.808283 0.134966 -0.000037 -0.000028 0.000014 -0.808213 -0.134918 0.943219	15, 201, 202, 383, 384, 725, 1054, 1054, 1057, 1057, 1170, 1417, 1420, 1482, 1482, 1482, 1482, 2365, 3018, 3019, 3074, 3074, 3074, 3074
1,2-butadiene	ZPE(B3LYP/c-311G**) = 0.083589 E(B3LYP+ZPE) = -155.937771 E(CCSD(T)/CC-VDZ) = -155.51539788 E(CCSD(T)/CC-VTZ) = -155.67550978 E(CCSD(T)/CC-VQZ) = -155.72038959 E(CCSD(T)/CBS) = -155.73787	A B C	52.08749 431.02690 459.59117	С Н С С Н С Н Н Н	-1.937452 -2.476449 -2.482576 -0.692698 0.553314 0.758980 1.746391 2.373927 2.371588 1.437198	-0.214047 -0.382537 -0.381185 0.173968 0.559152 1.628786 -0.364833 -0.188003 -0.191692 -1.410811	0.000671 0.928581 -0.923877 -0.002479 0.000663 0.002691 -0.000077 -0.879758 0.882119 -0.002424	168, 211, 340, 541, 572, 872, 879, 897, 1022, 1060, 1091, 1150, 1361, 1408, 1472, 1486, 1505, 2057, 3019, 3065, 3104, 3111, 3120, 3181
1-cyano-1,3- butadiene (C ₁)	ZPE(B3LYP/C-311G**) = 0.084197 E(B3LYP+ZPE) = -248.222149 E(CCSD(T)/CC-VDZ) = -247.55440575 E(CCSD(T)/CC-VTZ) = -247.79172558 E(CCSD(T)/CC-VQZ) = -247.86142996 E(CCSD(T)/CBS) = -247.89042	A B C	66.99305 1253.59640 1320.58934	N C H C H C H	-3.096438 -2.022480 -0.712910 -0.650036 0.402399 0.306225 1.743935 1.833117	-0.403589 0.025561 0.576179 1.660002 -0.179476 -1.261790 0.366771 1.450381	-0.000704 0.000622 0.000282 -0.000049 0.000315 0.000890 -0.000225 -0.000666	139, 144, 209, 322, 461, 497, 579, 671, 873, 958, 962, 986, 1027, 1045, 1196, 1288, 1318, 1332, 1454, 1648, 1691, 2327, 3137, 3144, 3156, 3164, 3229

				С	2.848243	-0.389333	-0.000153	
				Н	3.837548	0.051362	-0.000551	
				Н	2.793085	-1.473049	0.000262	
1-cyano-1,2-	$ZPE(B3LYP/6-311G^{**}) = 0.083206$	Α	137.83879	С	2.608238	-0.552194	-0.289338	101, 151, 192, 235, 372, 492, 549,
butadiene	E(B3LYP+ZPE) = -248.201843 E(CCSD(T)/CCYDZ) = -247.52078088	В	1156.60713	Н	2.212089	-0.863167	-1.255950	621, 755, 878, 894, 979, 1060,
	E(CCSD(T)/CC-VDZ) = -247.52978988 E(CCSD(T)/CC-VTZ) = -247.76816050	С	1220.43463	Н	2.919540	-1.443525	0.263332	1090, 1153, 1298, 1409, 1435,
(C ₁)	E(CCSD(T)/CC-VOZ) = -247.83787017			Н	3.501253	0.057609	-0.455898	1485, 1500, 2049, 2339, 3029,
	E(CCSD(T)/CBS) = -247.86667			С	1.586155	0.222144	0.504648	3081, 3111, 3129, 3134
	2(0002(1),020) 21100000			Н	1.886152	0.575995	1.490501	
				С	0.378631	0.494077	0.109836	
				С	-0.838185	0.777939	-0.296646	
•				Н	-1.039838	1.694501	-0.845643	
				С	-1.956278	-0.075205	-0.050572	
				Ν	-2.878652	-0.745998	0.133727	
1-cvano-1-butvne	ZPE(B3LYP/6-311G**) = 0.084281	А	82.06122	С	2.377717	1.299234	0.000000	100, 131, 228, 245, 373, 490, 565,
	E(B3LYP+ZPE) = -248.200855	В	1345.63622	Н	2.629713	0.711407	0.884341	576, 670, 787, 954, 1076, 1104,
(C_1)	E(CCSD(T)/CC-VDZ) = -247.53034501	С	1405.36695	Н	2.990563	2.202978	0.000000	1173, 1285, 1348, 1415, 1470,
	E(CCSD(T)/CC-VTZ) = -247.76985572			Н	2.629713	0.711407	-0.884341	1497, 1506, 2257, 2395, 3023,
P -0	E(CCSD(1)/CC-VQZ) = -247.83930102 E(CCSD(T)/CPS) = -247.96766			С	0.884479	1.679589	0.000000	3043, 3051, 3114, 3119
	E(CCSD(1)/CBS) = -247.80700			Н	0.653705	2.294804	0.876981	
				Н	0.653705	2.294804	-0.876981	
÷				С	0.000000	0.524222	0.000000	
				С	-0.718514	-0.446757	0.000000	
				С	-1.536111	-1.542173	0.000000	
				Ν	-2.228974	-2.471442	0.000000	
2-cvano-1 3-	ZPE(B3LYP/6-311G**) = 0.083994	Α	374.37622	Ν	-1.690595	-1.529757	0.000684	146, 162, 285, 311, 477, 512, 641,
	E(B3LYP+ZPE) = -248.217116	В	498.46031	С	-1.022919	-0.587967	-0.000905	732, 748, 777, 943, 951, 966,
butadiene	E(CCSD(T)/CC-VDZ) = -247.55242773	С	872.83638	С	-0.165908	0.566895	-0.000491	1018, 1061, 1318, 1325, 1420,
(C ₁)	E(CCSD(T)/CC-VTZ) = -247.79006761			С	-0.716406	1.793109	0.000167	1461, 1643, 1693, 2342, 3143,
O	E(CCSD(1)/CC-VQZ) = -247.859/5661 E(CCSD(T)/CPS) = -247.89967			Н	-1.788618	1.936159	-0.000121	3154, 3156, 3233, 3250
	E(CC3D(1)/CD3) = -247.88807			Н	-0.088940	2.676421	0.001303	
Ψ Θ				С	1.285303	0.341398	0.000105	
				Н	1.884450	1.247398	0.000481	
				С	1.879560	-0.853076	0.000043	
I I I				Н	1.310376	-1.776158	-0.000226	
				Н	2.959120	-0.937670	0.000260	
3-cvano-1.2-	ZPE(B3LYP/6-311G**) = 0.082797	А	323.04248	С	2.326780	-0.690411	-0.000046	138, 152, 209, 229, 370, 503, 541,
b = 4 = d = = = =	E(B3LYP+ZPE) = -248.201441	В	666.81430	Н	2.847488	-0.908330	-0.928069	618, 663, 702, 893, 994, 1003,
butadiene	E(CCSD(T)/CC-VDZ) = -247.53042300	С	966.22810	Н	2.847965	-0.908206	0.927715	1061, 1183, 1291, 1409, 1459,
	E(CCSD(T)/CC-VTZ) = -247.76881075							

(\mathbf{C}_1)	E(CCSD(T)/CC-VQZ) = -247.83852772			С	1.125028	-0.198926	0.000100	1481, 1498, 2047, 2332, 3036,
	E(CCSD(T)/CBS) = -247.86734			С	-0.085274	0.313871	0.000050	3094, 3115, 3133, 3189
				С	-0.365476	1.805519	-0.000054	
				н	-0.946573	2.084194	-0.883005	
				н	-0.945118	2.084471	0.883742	
				н	0.569513	2.364909	-0.000899	
				С	-1.216354	-0.567341	0.000145	
6				Ν	-2.154501	-1.241902	-0.000094	
3-cyano-1-butyne	ZPE(B3LYP/6-311G**) = 0.083353	Α	326.57074	С	-0.182292	1.737995	-0.225694	136, 201, 215, 238, 366, 482, 572,
	E(B3LYP+ZPE) = -248.184417	В	642.90892	н	-1.122054	2.208971	0.066498	585, 687, 702, 788, 926, 1028,
(\mathbf{C}_1)	E(CCSD(T)/CC-VDZ) = -247.52044520	С	910.29751	н	0.648781	2.367921	0.093638	1078, 1140, 1301, 1332, 1412,
•	E(CCSD(T)/CC-VTZ) = -247.76000324 E(CCSD(T)/CC-VOZ) = -247.8200(282)			н	-0.155493	1.643708	-1.311516	1494, 1500, 2233, 2361, 3019,
<u> </u>	E(CCSD(1)/CC-VQZ) = -247.82990282			С	-0.054832	0.344781	0.439434	3051, 3129, 3135, 3476
1				н	-0.098103	0.476783	1.527840	
				С	1.215598	-0.310370	0.110418	
				С	2.268932	-0.817334	-0.158301	
				н	3.196926	-1.276445	-0.397906	
•				С	-1.197593	-0.511072	0.077641	
				Ν	-2.109847	-1.154991	-0.205648	
1-cvano-prop-1-vne	ZPE(B3LYP/6-311G**) = 0.055432	Α	11.29792	С	0.000000	0.000000	-2.468335	149, 149, 361, 361, 567, 567, 674,
(C)	E(B3LYP+ZPE) = -208.905399	В	869.21136	н	0.000000	1.022933	-2.855041	1048, 1048, 1182, 1414, 1469,
(C_{3v})	E(CCSD(T)/CC-VDZ) = -208.33226649	С	869.21136	Н	0.885886	-0.511466	-2.855041	1469, 2263, 2400, 3029, 3092,
•	E(CCSD(T)/CC-VTZ) = -208.53035466			н	-0.885886	-0.511466	-2.855041	3092
7	E(CCSD(T)/CC-VQZ) = -208.58852442 E(CCSD(T)/CPS) = -208.61231			С	0.000000	0.000000	-1.017732	
	E(CC3D(1)/CB3) = -208.01231			С	0.000000	0.000000	0.189213	
				С	0.000000	0.000000	1.556422	
•				Ν	0.000000	0.000000	2.715387	
1-cvano-prop-3-vne	ZPE(B3LYP/6-311G**) = 0.055113	Α	89.37575	С	-1.258536	-0.000033	0.000003	141, 309, 355, 369, 578, 685, 706,
(C)	E(B3LYP+ZPE) = -208.887101	В	624.46795	С	-0.063647	0.852080	0.000003	902, 935, 994, 1247, 1343, 1452,
(C_1)	E(CCSD(T)/CC-VDZ) = -208.32003860	С	702.73692	н	-0.107917	1.505760	-0.878348	2242, 2371, 3028, 3057, 3476
	E(CCSD(T)/CC-VTZ) = -208.51823167 E(CCSD(T)/CC-VOZ) = -208.57(70202)			Н	-0.107902	1.505737	0.878373	
	E(CCSD(T)/CC-VQZ) = -208.57670202 E(CCSD(T)/CRS) = -208.60117			С	1.187641	0.094444	-0.000012	
	E(CC3D(1)/CD3) = -200.00117			С	2.222240	-0.510742	-0.000002	
1				н	3.136038	-1.053297	0.000034	
<u> </u>				Ν	-2.206630	-0.653242	-0.000001	
evencellene	ZPE(B3LYP/6-311G**) = 0.054678	Α	67.54524	С	-2.234011	-0.398838	0.000038	145, 316, 379, 383, 615, 654, 875,
cyanoanene	E(B3LYP+ZPE) = -208.900741	B	674.05016	ň	-2.738854	-0.646258	0.928931	892, 951, 997, 1136, 1348, 1459.
(C ₁)	E(CCSD(T)/CC-VDZ) = -208.32756605	č	729.17480	Н	-2.738926	-0.646363	-0.928788	2048, 2342, 3122, 3142, 3197
		-						, . ,. ,. ,

	E(CCSD(T)/CC-VTZ) = -208.52450404 E(CCSD(T)/CC-VQZ) = -208.58257862 E(CCSD(T)/CBS) = -208.60687			C C H C N	-1.066256 0.109015 0.182155 1.336422 2.346372	0.164538 0.749450 1.833829 0.022399 -0.538072	-0.000043 -0.000126 0.000477 -0.000028 0.000047	
cyanoacetylene	$ZPE(B3LYP/6-311G^{**}) = 0.027214$	Α	0.00000	Ν	0.000000	0.000000	1.895560	242.7358, 242.7358, 561.7284,
· (C1)	E(B3LYP+ZPE) = -169.595283 E(CCSD(T)/CC-VDZ) = -169.12226083	B	393.99863	C	0.000000	0.000000	0.737693	561.7284, 706.9050, 706.9050,
	E(CCSD(T)/CC-VTZ) = -169.12220085 E(CCSD(T)/CC-VTZ) = -169.27862615	С	393.99863	C	0.000000	0.000000	-0.631447	904.7721, 2172.1912, 2375.9517,
	E(CCSD(T)/CC-VQZ) = -169.32493353			C	0.000000	0.000000	-1.834684	3469.9009
	E(CCSD(T)/CBS) = -169.34442			Н	0.000000	0.000000	-2.898295	
INT A1	$ZPE(B3LYP/6-311G^{**}) = 0.094101$	Α	198.63435	С	1.838411	-0.072911	-0.086250	49, 116, 208, 231, 348, 412, 523,
(C .)	E(B3LYP+ZPE) = -248.758956 E(CCSD/T)/CCVTZ) = -248.22401841	В	1002.06419	С	0.901076	1.008978	-0.135946	647, 789, 799, 827, 962, 1023,
(CI)	E(CCSD(1)/CC-V1Z) = -248.33401841	С	1112.56991	Н	1.295411	1.978300	-0.431241	1082, 1101, 1271, 1291, 1334,
				С	-0.376351	0.848006	0.159979	1414, 1453, 1499, 1506, 1709,
				С	-1.328094	-0.186801	0.577310	2325, 2963, 3031, 3041, 3111,
				Н	-1.746907	0.093265	1.551319	3113, 3131
				Н	-0.775997	-1.127041	0.735195	
•				C	-2.470181	-0.409166	-0.431906	
				Н	-2.077854	-0.723355	-1.401082	
				Н	-3.145356	-1.186185	-0.067521	
				H	-3.047361	0.506155	-0.577473	
				<u>N</u>	2.586986	-0.952825	-0.044045	
INT A2	$ZPE(B3LYP/6-311G^{**}) = 0.093236$	Α	249.87831	С	-1.339295	-0.215837	0.014499	59, 141, 196, 275, 400, 480, 576,
$(\mathbf{C}_{\mathbf{i}})$	E(B3LYP+ZPE) = -248.719124 E(CCSD(T)/CCVTZ) = -248.20020650	В	726.04415	С	-1.124571	1.195292	-0.298707	624, 765, 801, 838, 914, 1011,
(0)	E(CCSD(1)/CC-V1Z) = -248.29020039	С	904.99139	C	-0.068577	0.526215	0.109424	1032, 1087, 112, 1287, 1339,
				C	1.372172	0.446540	0.442616	1417, 1474, 1500, 1507, 1643,
				C	2.092424	-0.667823	-0.335032	1841, 3024, 3041, 3061, 3110,
				Н	-1.558112	2.127019	-0.631309	3115 3226
				Н	1.838233	1.418900	0.254656	
				Н	1.453827	0.250870	1.517956	
				Н	3.140366	-0.719440	-0.032756	
w				H	1.630234	-1.638009	-0.142549	
L. L.				H	2.056392	-0.482167	-1.410660	
				N	-2.021979	-1.237642	0.121123	
INT A3	$ZPE(B3LYP/6-311G^{**}) = 0.092211$ E(B3LYP+ZPE) = -248.770108	Α	101.08164	С	2.673753	-0.604980	-0.261553	68, 107, 135, 182, 358, 385, 500,

(C ₁)	E(CCSD(T)/CC-VTZ) = -248.34481641	В	1255.43038	н	3.670325	-0.711258	0.146029	524, 582, 781, 849, 982, 995,
		С	1289.06372	Н	2.373404	-1.260021	-1.069892	1034, 1070, 1102, 1210, 1311,
Charles I Conce				С	1.760519	0.486729	0.198438	1326, 1339, 1459, 1460, 1687,
				Н	2.131413	0.902681	1.142768	2335, 2958, 3033, 3143, 3152,
Ψ Ψ				Н	1.756518	1.319216	-0.522784	3159, 3252
é é				С	0.348752	0.007981	0.397805	
				Н	0.201319	-0.774292	1.137340	
				С	-0.706561	0.465501	-0.287149	
				Н	-0.591161	1.241666	-1.038037	
				С	-2.032538	-0.016231	-0.085900	
				Ν	-3.115053	-0.393141	0.062104	
INT B1	ZPE(B3LYP/6-311G**) = 0.093665	Α	210.86924	С	-1.576046	-0.092794	-0.000100	78, 167, 241, 281, 302, 425, 569,
(\mathbf{C})	E(B3LYP+ZPE) = -248.748475	В	806.89759	С	-0.203286	0.336545	-0.000772	569, 710, 747, 796, 817, 1004,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.32717828	С	995.46347	С	0.064892	1.626178	0.000049	1075, 1092, 1137, 1289, 1351,
•				Н	0.929730	2.270138	0.000602	1417, 1474, 1500, 1506, 1654,
				С	0.835234	-0.788669	-0.000277	2334, 3026, 3034, 3054, 3099,
T				Н	0.636021	-1.417089	0.874632	3104, 3262
				Н	0.636755	-1.417087	-0.875348	
				С	2.287648	-0.319510	0.000349	
φ \				Н	2.514249	0.280126	0.885652	
				Н	2.958862	-1.180873	0.000714	
				Н	2.515046	0.279995	-0.884837	
				Ν	-2.663045	-0.483673	0.000441	
INT B2	ZPE(B3LYP/6-311G**) = 0.092266	Α	226.88408	С	-2.323369	-0.368885	-0.095216	80, 133, 173, 293, 301, 444, 529,
	E(B3LYP+ZPE) = -248.767348	В	773.60201	Н	-2.593871	0.278015	-0.920953	545, 592, 755, 772, 859, 934, 968,
(\mathbf{C}_1)	E(CCSD(T)/CC-VTZ) = -248.34425165	С	979.34371	Н	-3.119928	-0.802331	0.494113	1051, 1099, 1213, 1254, 1360,
				С	-0.916467	-0.816666	0.082374	1431, 1457, 1466, 1681, 2332,
				Н	-0.800149	-1.361033	1.026376	2942, 3038, 3145, 3155, 3246,
				Н	-0.650918	-1.547883	-0.699831	3251
9 Q				С	0.134611	0.286663	0.036088	
				С	1.494191	-0.169994	-0.018319	
				С	-0.121691	1.598485	0.057555	
				н	0.676535	2.328942	0.028409	
				Н	-1.140114	1.961977	0.112447	
				Ν	2.574971	-0.576472	-0.059351	
INT B3	ZPE(B3LYP/6-311G**) = 0.092833	Α	221.62664	С	0.065469	1.607618	0.000260	27, 157, 175, 283, 350, 475, 541,
	E(B3LYP+ZPE) = -248.794938	В	789.04728	Н	-0.760699	2.304419	-0.000069	586, 611, 720, 801, 804, 946,
(U ₁)	E(CCSD(T)/CC-VTZ) = -248.36846294	С	999.53194	Н	1.069752	2.008847	0.001758	1016, 1093, 1103, 1258, 1323,
				С	-0.152663	0.237632	-0.000794	1405, 1463, 1481, 1486, 1528,

				С	-1.518333	-0.225584	-0.000222	2342, 3002, 3041, 3115, 3166,
				С	0.849124	-0.739937	-0.001320	3187, 3266
				Н	0.538388	-1.777673	0.004004	,
T				С	2.310503	-0.431604	-0.000387	
				Ĥ	2.610177	0.096151	0.913961	
				н	2.904024	-1.343633	-0.066562	
- U				н	2.589247	0.214143	-0.841498	
—				N	-2.610784	-0.598714	0.000454	
						0000000	01000101	
INT C1	ZPE(B3LYP/6-311G**) = 0.093381	Α	410.75541	С	1.307609	-1.565405	0.000013	125, 128, 160, 219, 241, 318, 425,
	E(B3LYP+ZPE) = -248.764663	В	565.40885	Н	1.949570	-1.505150	0.883063	592, 612, 697, 940, 1029, 1043,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.33916477	С	953.71494	Н	0.797159	-2.528390	0.000002	1061, 1112, 1186, 1395, 1407,
•				Н	1.949624	-1.505161	-0.882999	1451, 1465, 1482, 1489, 1733,
				С	0.292890	-0.439873	-0.000026	2315, 2980, 3033, 3056, 3077,
Ψ				С	0.802102	0.905831	-0.000010	3090, 3128
				С	-1.017858	-0.616224	-0.000018	
				С	-2.269456	0.143295	0.000011	
				Н	-2.871659	-0.092763	-0.882897	
				Н	-2.871500	-0.092579	0.883076	
•				Н	-2.070934	1.224873	-0.000121	
				Ν	1.203716	1.990489	0.000009	
INT C2	ZPE(B3LYP/6-311G**) = 0.092833	Α	221.62664	С	0.065469	1.607618	0.000260	27, 157, 175, 283, 350, 475, 541,
	E(B3LYP+ZPE) = -248.794938	В	789.04728	Н	-0.760699	2.304419	-0.000069	586, 611, 720, 801, 804, 946,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.36846294	С	999.53194	Н	1.069752	2.008847	0.001758	1016, 1093, 1103, 1258, 1323,
•				С	-0.152663	0.237632	-0.000794	1405, 1463, 1481, 1486, 1528,
				С	-1.518333	-0.225584	-0.000222	2342, 3002, 3041, 3115, 3166,
				С	0.849124	-0.739937	-0.001320	3187, 3266
				Н	0.538388	-1.777673	0.004004	
				С	2.310503	-0.431604	-0.000387	
				Н	2.610177	0.096151	0.913961	
				Н	2.904024	-1.343633	-0.066562	
· · · · · ·				Н	2.589247	0.214143	-0.841498	
U U				Ν	-2.610784	-0.598714	0.000454	
INT C3	ZPE(B3LYP/6-311G**) = 0.092839	Α	443.12308	С	1.950127	-0.992783	0.000007	116, 122, 171, 194, 212, 446, 532,
	E(B3LYP+ZPE) = -248.731673	В	490.46528	С	0.658714	-0.271789	-0.000013	555, 652, 685, 875, 1034, 1050,
(\mathbf{C}_1)	E(CCSD(T)/CC-VTZ) = -248.30051131	С	911.29449	С	0.000491	1.039853	-0.000032	1082, 1114, 1174, 1401, 1405,
				С	-0.659024	-0.271470	-0.000006	1473, 1474, 1479, 1480, 1650,
				С	-1.950883	-0.991539	0.000008	1921, 3030, 3030, 3089, 3089,
				н	2.536226	-0.713424	0.880026	3106, 3107
				Н	1.803068	-2.074983	-0.000108	,

				н	2.536349	-0.713244	-0.879871	
T				Н	-2.536841	-0.711772	-0.879978	
				Н	-1.804602	-2.073859	0.000091	
				Н	-2.536906	-0.711646	0.879910	
				Ν	0.000879	2.275041	0.000021	
02 60								
T I								
<u> </u>								
INT D1	$ZPE(B3LYP/6-311G^{**}) = 0.093319$	Α	141.67623	С	2.800705	-0.505724	-0.115122	77, 110, 193, 214, 297, 374, 433,
$(\mathbf{C}_{\mathbf{r}})$	E(B3LYP+ZPE) = -248.753861	В	1213.92106	Н	2.651096	-0.984580	-1.083189	565, 752, 868, 917, 935, 1061,
(C1)	E(CCSD(1)/CC-V1Z) = -248.32952837	С	1299.95622	Н	3.636450	0.196407	-0.197975	1062, 1096, 1211, 1291, 1331,
				Н	3.093577	-1.271529	0.610114	1407, 1437, 1485, 1488, 1768,
				С	1.554132	0.203822	0.341979	2366, 2965, 3006, 3024, 3037,
				Н	1.620522	0.716083	1.310661	3072, 3119
at e				С	0.415635	0.257523	-0.302274	
-0				С	-0.918090	0.876070	-0.117614	
				Н	-0.917886	1.500921	0.789767	
				Н	-1.153948	1.544722	-0.953806	
				С	-2.003755	-0.103213	0.001652	
				Ν	-2.860225	-0.867555	0.096101	
INT D2	ZPE(B3LYP/6-311G**) = 0.092303	А	165.17565	С	-1.418273	-0.153228	0.000017	135, 163, 165, 324, 333, 414, 421,
	E(B3LYP+ZPE) = -248.728693	В	858.01034	С	-0.718887	1.260503	0.000014	540, 803, 810, 913, 922, 1000,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.29700877	С	999.84204	Н	-0.803734	1.830396	-0.921849	1017, 1038, 1060, 1131, 1351,
				Н	-0.803395	1.830377	0.921918	1410, 1433, 1480, 1488, 1724,
				С	0.009905	-0.024223	-0.000158	1841, 3018, 3062, 3085, 3110,
				С	1.173554	-0.660803	-0.000024	3149, 3176
				Н	1.159138	-1.747710	0.000019	
				С	2.510331	0.013693	0.000041	
Car has				Н	3.093427	-0.283896	-0.878335	
				Н	2.413656	1.100526	-0.000056	
				Н	3.093262	-0.283751	0.878577	
				Ν	-2.498876	-0.723085	0.000056	
INT F1	ZPE(B3LYP/6-311G**) = 0.092833	А	221.62664	С	0.065469	1.607618	0.000260	27, 157, 175, 283, 350, 475, 541,
	E(B3LYP+ZPE) = -248.794938	В	789.04728	H	-0.760699	2.304419	-0.000069	586, 611, 720, 801, 804, 946,
(C ₁)	E(CCSD(T)/CC-VTZ) = -248.36846294	С	999.53194	Н	1.069752	2.008847	0.001758	1016, 1093, 1103, 1258, 1323.
		-		C	-0.152663	0.237632	-0.000794	1405, 1463, 1481, 1486, 1528.
				Č	-1.518333	-0.225584	-0.000222	2342, 3002, 3041, 3115, 3166.
				č	0.849124	-0.739937	-0.001320	3187. 3266
				Ĥ	0.538388	-1.777673	0.004004	
				Ċ	2.310503	-0.431604	-0.000387	
				~				

				H H H N	2.610177 2.904024 2.589247 -2.610784	0.096151 -1.343633 0.214143 -0.598714	0.913961 -0.066562 -0.841498 0.000454	
INT E2	$ZPE(B3LYP/6-311G^{**}) = 0.092030$ E(B3LYP+ZPE) = -248.726516	A	431.84707	С	1.852925		-0.136421	146, 186, 199, 225, 288, 369, 422, 559, 727, 796, 826, 940
(C ₁)	E(CCSD(T)/CC-VTZ) = -248.29570245	D	452.4/109	п	2.745912	-0.539536	-0.520025	509, 422, 559, 727, 790, 620, 940, 056, 1020, 1092, 1006, 1142
		C	010.43777	C II	1.000107	-2.08/700	0.041734	330, 1023, 1002, 1030, 1142, 1317, 1410, 1440, 1487, 1405
The second se				Č	0.733367	-0.320231	0.111279	1517, 1410, 1449, 1467, 1493, 1718, 1847, 3024, 3087, 3101
<u> </u>				Č	-0 653834	-0 310938	0.031078	3116 3134 3225
				н	-0.824817	-0.298184	1 622250	5110, 5154, 5225
				Ċ	-1.767845	-0.873274	-0.308802	
				Ĥ	-1.901553	-1.940773	-0.104347	
T T				Н	-2.711885	-0.365469	-0.099460	
© •				Н	-1.541481	-0.757794	-1.370674	
				Ν	0.048902	2.176229	-0.164516	
INT E3	ZPE(B3LYP/6-311G**) = 0.092260	Α	226.89305	С	0.122025	1.598504	0.057269	80, 131, 173, 293, 300, 444, 529,
	E(B3LYP+ZPE) = -248.767354	В	773.65291	Н	-0.675964	2.329208	0.028400	544, 592, 755, 772, 859, 934, 968,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.34425139	С	979.36641	Н	1.140637	1.961586	0.111705	1051, 1099, 1213, 1254, 1360,
Q				С	-0.134579	0.286755	0.035851	1431, 1457, 1466, 1681, 2332,
				С	0.916290	-0.817063	0.081548	2943, 3039, 3145, 3155, 3246,
				Н	0.650971	-1.547002	-0.701841	3251
9 Q				Н	0.799152	-1.362298	1.024872	
				С	2.323364	-0.369212	-0.094641	
				Н	3.118702	-0.797170	0.500306	
				Н	2.595444	0.273647	-0.923017	
				С	-1.494311	-0.169680	-0.018135	
				N	-2.575096	-0.576256	-0.058825	
INT E4	$ZPE(B3LYP/6-311G^{**}) = 0.093665$	Α	210.86924	C	-1.576046	-0.092794	-0.000100	78, 167, 241, 281, 302, 425, 569,
(\mathbf{C}_1)	E(DSL 1 P+LPE) = -248./484/5 E(CCSD(T)/CC-VTZ) = -248.32717828	B	806.89759	C	-0.203286	0.336545	-0.000772	569, 710, 747, 796, 817, 1004,
(0))	E(CC3D(1)/CC-V1Z) = -240.52717020	С	995.46347	C	0.064892	1.626178	0.000049	1075, 1092, 1137, 1289, 1351,
				H	0.929730	2.2/0138	0.000602	1417, 1474, 1500, 1506, 1654,
				C H	0.835234	-0.788669	-0.000277	2554, 5026, 5054, 5054, 5099,
				H	0.636021	-1.417089	0.8/4632	3104, 3262
				н	0.636/55	-1.41/08/	-0.8/5348	

5 200								
INT F1	ZPE(B3LYP/6-311G**) = 0.092998	Α	330.18975	С	2.322735	-0.670148	0.007415	86, 195, 210, 227, 294, 367, 509,
	E(B3LYP+ZPE) = -248.749985	В	686.51561	Н	2.614489	-0.762794	1.057773	555, 611, 780, 905, 910, 959,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.32769894	С	957.80598	Н	3.062939	-0.978646	-0.725307	1043, 1086, 1144, 1273, 1305,
				С	1.145687	-0.220336	-0.338973	1408, 1414, 1494, 1500, 1740,
				С	-0.074443	0.311729	0.320109	2358, 2949, 3040, 3049, 3126,
				Н	0.100673	0.300813	1.408934	3129, 3158
				С	-0.389605	1.764882	-0.109456	
				Н	-0.574208	1.812794	-1.183306	
				Н	-1.272346	2.133217	0.415661	
				Н	0.460796	2.405156	0.129264	
				С	-1.230156	-0.564611	0.073849	
				Ν	-2.148235	-1.234235	-0.117240	
TS A1-A2	ZPE(B3LYP/6-311G**) = 0.091674	Α	237.76558	С	-2.157480	-0.714386	-0.319976	639i, 58, 126, 179, 263, 396, 453,
(\mathbf{C})	E(B3LYP+ZPE) = -248.714613	В	799.37252	Н	-3.209843	-0.754918	-0.031506	529, 757, 799, 809, 922, 999,
(C1)	E(CCSD(T)/CC-VTZ) = -248.28301027	С	968.32334	Н	-1.696268	-1.675634	-0.086795	1083, 1096, 1134, 1276, 1330,
				н	-2.104201	-0.564275	-1.400194	1415, 1463, 1498, 1507, 1784,
				С	-1.449625	0.427197	0.431114	1908, 2990, 3040, 3043, 3111,
				н	-1.929912	1.390214	0.209281	3118, 3155
				Н	-1.543050	0.266317	1.511303	
				С	-0.015676	0.520783	0.111364	
				С	1.053413	1.155469	-0.291591	
				Н	1.436415	2.110061	-0.636659	
				С	1.545790	-0.155507	-0.019915	
				Ν	2.169761	-1.167585	0.138371	
TS A1 A3	ZPE(B3LYP/6-311G**) = 0.088549	Α	146.77738	С	-1.932342	-0.003537	0.025794	1967i, 104, 160, 175, 362, 410.
IS AI-AS	E(B3LYP+ZPE) = -248.698644	B	1073.27745	č	-0.702822	-0.707067	0.151150	523, 555, 653, 780, 810, 954, 965,
(C ₁)	E(CCSD(T)/CC-VTZ) = -248.26635126	Ē	1179.18318	Č	0.461215	-0.255032	-0.330037	995, 1059, 1093, 1191, 1228.
		č		č	1.891989	-0.582170	-0.070654	1239, 1276, 1425, 1480, 1648,
				Č	2.131078	0.915862	0.158486	1871, 2329, 3054, 3100, 3101.
				Ĥ	-0.751549	-1.677841	0.644384	3108, 3220
								, -

С	2.287648	-0.319510	0.000349
H	2.514249	0.280126	0.885652
Η	2.958862	-1.180873	0.000714
Н	2.515046	0.279995	-0.884837
Ν	-2.663045	-0.483673	0.000441

				H H H H N	2.092688 2.416492 2.105523 2.784284 0.855946 -2.942585	-1.238864 -0.958921 1.277894 1.447315 1.066766 0.553617	0.777990 -0.951453 1.180722 -0.527798 -0.366079 -0.052314	
TS A2-1	ZPE(B3LYP/6-311G**) = 0.087586	Α	394.75279	С	0.608891	2.016410	0.206269	497i, 105, 116, 135, 157, 327,
(\mathbf{C})	E(B3LYP+ZPE) = -248.708389	В	724.48856	Н	-0.199344	2.620070	0.273918	374, 404, 557, 563, 571, 606,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.27130151	С	1023.74757	Н	1.581832	2.134240	-1.252045	826, 897, 932, 952, 979, 1098,
				Н	0.599007	1.817333	0.612710	1333, 1419, 1424, 1444, 1938,
				С	0.031843	-0.016365	1.617998	2345, 3076, 3086, 3138, 3148,
				Н	0.162679	0.374000	0.072612	3245, 3252
				С	1.164429	-0.716252	0.211655	
				С	-1.211272	-0.340048	-0.276479	
				С	-2.407174	-0.453971	-0.037621	
0 0				Н	-3.049483	-1.298559	-0.955694	
				Н	-2.817305	0.293738	-0.349579	
				Ν	2.086045	-1.268496		
TS A2-2	ZPE(B3LYP/6-311G**) = 0.084692	Α	150.51954	С	-2.025207	-0.062223	-0.047855	619i, 94, 141, 184, 221, 281, 391,
(\mathbf{C})	E(B3LYP+ZPE) = -248.699469	В	1190.25378	С	-0.869531	0.737467	-0.300871	432, 496, 540, 621, 781, 874, 918,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.26204271	С	1270.07565	н	-1.026711	1.654199	-0.867359	974, 1056, 1090, 1141, 1293,
				С	0.331268	0.413815	0.115280	1409, 1421, 1488, 1497, 1992,
				С	1.577329	0.203396	0.473102	2340, 3038, 3099, 3113, 3119,
				н	1.867091	0.516261	1.474810	3134
				н	2.372091	1.956187	-0.073940	
				С	2.533668	-0.704903	-0.270242	
				н	2.199732	-0.881291	-1.292605	
				н	3.533963	-0.269508	-0.296543	
•				Н	2.599070	-1.668347	0.244044	
				Ν	-2.975770	-0.690401	0.142158	
TS A2-3	ZPE(B3LYP/6-311G**) = 0.085176	Α	107.12840	С	2.141041	-0.100708	-0.008868	757i, 51, 105, 134, 239, 271, 331,
	E(B3LYP+ZPE) = -248.695775	В	1344.26806	С	0.819918	0.276340	0.075360	458, 502, 557, 565, 698, 785, 954,
(UI)	E(CCSD(T)/CC-VTZ) = -248.26042269	С	1402.93531	Н	1.127055	1.599691	1.451431	1076, 1097, 1164, 1280, 1345,
				С	-0.380224	0.338676	-0.136058	1416, 1463, 1498, 1507, 2193,
				С	-1.814623	0.541366	-0.232683	2365, 3008, 3043, 3045, 3117,
				Н	-2.058421	0.841475	-1.258112	3120
The second se				Н	-2.082862	1.391110	0.408724	
				С	-2.635582	-0.700808	0.164911	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	-2.425728	-0.992318	1.195372	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	-3.701698	-0.482141	0.077994	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					Н	-2.402827	-1.546359	-0.484575	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Ν	3.251614	-0.420094	-0.080972	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TS A2-B1	ZPE(B3LYP/6-311G**) = 0.091477	А	269.24124	С	-2.053451	-0.670134	-0.356081	692i, 60, 155, 199, 276, 381, 458,
$ \begin{array}{c c} (C_1) & \mbox{F}(CCSD(T)/CC-VTZ) = -248.28258762 \\ (C_1) & \mbox{F}(CCSD(T)/CC-VTZ) = -248.28256388 \\ (C_1) & \mbox{F}(CCSD(T)/CC-VTZ) = -248.28265388 \\ (C_1) & \mbox{F}(CCSD(T)/CC-VTZ) = -248.28365388 \\ (C_1) & \mbox{F}(CSD(T)/CC-VTZ) = -248.28365388 \\ (C_1)$	(\mathbf{C})	E(B3LYP+ZPE) = -248.712487	В	702.46352	Н	-3.094152	-0.758850	-0.037333	577, 691, 722, 763, 800, 958,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(C_1)	E(CCSD(T)/CC-VTZ) = -248.28258762	С	895.98474	Н	-1.576418	-1.645207	-0.235217	1040, 1086, 1172, 1292, 1340,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Н	-2.042285	-0.416952	-1.418580	1417, 1476, 1500, 1507, 1739,
$ \begin{array}{c} H & -1.807506 & 1.379408 & 0.350265 & 3111, 3240 \\ H & -1.39131 & 0.145013 & 1.53844 \\ C & 0.109569 & 0.533011 & 0.112173 \\ C & 1.054072 & 1.33144 & -0.306014 \\ H & 1.386843 & 2.309454 & -0.619225 \\ C & 1.248119 & -0.338879 & 0.054549 \\ R & 2.053509 & -1.222584 & 0.077603 \\ \end{array} $					С	-1.333266	0.402092	0.475129	1938, 3031, 3039, 3074, 3108,
$ \begin{array}{c} H \\ H \\ (C_1) \\ (C_2) \\ (C_1) \\ (C_1) \\ (C_2) \\ (C_1) \\ (C_1) \\ (C_2) \\ (C_2) \\ (C_2) \\ (C_2) \\ (C_2) \\ (C_1) \\ (C_1) \\ (C_2) $					н	-1.807506	1.379408	0.350265	3111, 3240
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Н	-1.391301	0.145013	1.538342	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					С	0.109569	0.533011	0.112173	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					С	1.054072	1.331448	-0.306014	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Н	1.386843	2.309454	-0.619225	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					С	1.248119	-0.338879	0.054549	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u> </u>				Ν	2.053509	-1.222584	0.077603	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TS A3-1	ZPE(B3LYP/6-311G**) = 0.085496	А	84.89742	С	2.800344	-0.462072	-0.106733	764i, 135, 143, 169, 319, 365,
$ \begin{array}{c} (C_1) & E(CCSD(T)/CC-VTZ) = -248.28365388 \\ C & 1338.10594 \\ H & 2.723983 \\ C & 1.710318 \\ 0.341724 \\ H & 1.814270 \\ 1.027372 \\ 1.766154 \\ 2329, 3143, 3149, 3159, 3167, \\ H & 1.814270 \\ 1.027372 \\ 1.766154 \\ 2329, 3143, 3149, 3159, 3167, \\ H & 1.8107488 \\ 1.389641 \\ -0.17912 \\ 3238 \\ C & 0.354842 \\ -0.185291 \\ 0.063779 \\ H & 0.254518 \\ -1.242401 \\ 0.292315 \\ C & -0.752694 \\ 0.555216 \\ -0.117294 \\ H & -0.684119 \\ 1.615384 \\ -0.340929 \\ C & -2.065395 \\ 0.017694 \\ -0.029626 \\ N & -3.141346 \\ -0.400778 \\ 0.035545 \\ \hline \\ (C_1) & E(CCSD(T)/CC-VTZ) = -248.703366 \\ E(CCSD(T)/CC-VTZ) = -248.26986802 \\ C & 1106.05580 \\ C & 0.009764 \\ H & -0.665501 \\ -1.452664 \\ -0.992564 \\ -0.0000724 \\ 2988, 3054, 3093, 3123, 3218, \\ H & -0.665501 \\ -1.45264 \\ -0.992566 \\ -0.000744 \\ -0.888756 \\ H \\ -3.160000 \\ -1.115301 \\ -0.000544 \\ H \\ -3.260460 \\ -0.352178 \\ -0.000460 \\ \end{array}$	(\mathbf{C})	E(B3LYP+ZPE) = -248.718000	В	1281.09380	Н	3.788820	-0.058990	-0.286282	416, 470, 504, 578, 646, 868, 917,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(C_1)	E(CCSD(T)/CC-VTZ) = -248.28365388	С	1338.10594	Н	2.723983	-1.529183	0.069978	955, 985, 1024, 1046, 1182, 1286,
$ \begin{array}{c} H & 1.814270 & 1.027372 & 1.766154 & 2329, 3143, 3149, 3159, 3167, \\ H & 1.807458 & 1.389641 & -0.317912 & 3238 \\ C & 0.354842 & -0.185291 & 0.063779 \\ H & 0.254518 & -1.24240 & 0.292315 \\ C & -0.752694 & 0.555216 & -0.117294 \\ H & -0.684119 & 1.615384 & -0.340929 \\ C & -2.065395 & 0.017694 & -0.029626 \\ N & -3.141346 & -0.400778 & 0.035545 \\ \hline TS B1-1 & ZPE(B3LYP/-6-311G^{+*}) = 0.088325 \\ E(B3LYP+ZPE) = -248.703366 \\ E(CCSD(T)/CC-VTZ) = -248.26986802 & A & 307.28129 \\ C & 1106.05580 & C & 0.009764 & 1.841050 & 0.000159 & 893, 1017, 1074, 1214, 1398, \\ H & -0.655653 & 2.672063 & -0.000007 & 1470, 1481, 1490, 1976, 2339, \\ C & -1.023109 & -0.992564 & -0.0000072 & 2988, 3054, 3093, 3123, 3218, \\ H & -0.665501 & -1.452664 & -0.914256 & 3442 \\ H & -0.665501 & -1.452664 & -0.914256 & 3442 \\ H & -0.665653 & -1.451238 & 0.916846 \\ C & -2.368449 & -0.352078 & -0.000054 \\ H & -2.521795 & 0.266667 & -0.888756 \\ H & -3.160000 & -1.115301 & -0.000460 \\ \end{array}$	· · · ·				С	1.710318	0.341724	-0.048815	1296, 1327, 1445, 1593, 1676,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					н	1.814270	1.027372	1.766154	2329, 3143, 3149, 3159, 3167,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	1.807458	1.389641	-0.317912	3238
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T TO				С	0.354842	-0.185291	0.063779	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	• •				Н	0.254518	-1.242401	0.292315	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					С	-0.752694	0.555216	-0.117294	
$ \frac{C}{N} = \frac{-2.065395}{-3.141346} = \frac{-0.029626}{-0.400778} = \frac{-0.029626}{0.035545} \\ \frac{TS}{C} = \frac{2}{100000000000000000000000000000000000$					Н	-0.684119	1.615384	-0.340929	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					С	-2.065395	0.017694	-0.029626	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Ν	-3.141346	-0.400778	0.035545	
$\begin{array}{c} \text{(C_1)} & \text{E(B3LYP+ZPE)} = -248.703366 \\ \text{E(CCSD(T)/CC-VTZ)} = -248.26986802 \\ \end{array} \begin{array}{c} \text{B} & 822.18543 \\ \text{C} & 1106.05580 \\ \end{array} \begin{array}{c} \text{C} & 0.009764 \\ 1.841050 \\ \text{C} & 0.000159 \\ 0.000159 \\ 893, 1017, 1074, 1214, 1398, \\ 1470, 1481, 1490, 1976, 2339, \\ \text{C} & -1.023109 \\ 0.992564 \\ 0.000724 \\ 2988, 3054, 3093, 3123, 3218, \\ 14 & -0.665501 \\ -1.452664 \\ -0.914256 \\ 3442 \\ \end{array}$	TS R1-1	ZPE(B3LYP/6-311G**) = 0.088325	Α	307.28129	С	1.620802	-0.110275	-0.000082	462i, 39, 125, 160, 180, 258, 289,
$ \begin{array}{cccc} (C_1) & E(CCSD(T)/CC-VTZ) = -248.26986802 & C & 1106.05580 & C & 0.009764 & 1.841050 & 0.000159 & 893, 1017, 1074, 1214, 1398, \\ H & -0.655653 & 2.672063 & -0.000007 & 1470, 1481, 1490, 1976, 2339, \\ C & -1.023109 & -0.992564 & 0.000724 & 2988, 3054, 3093, 3123, 3218, \\ H & -0.665501 & -1.452664 & -0.914256 & 3442 \\ H & -0.666583 & -1.451238 & 0.916846 \\ C & -2.368449 & -0.352078 & -0.000544 \\ H & -2.521795 & 0.266667 & -0.888756 \\ H & -3.160000 & -1.115301 & -0.000460 \\ \end{array} $		E(B3LYP+ZPE) = -248.703366	В	822.18543	С	0.511154	0.718182	0.000163	474, 515, 524, 583, 713, 810, 829,
H-0.6556532.672063-0.000071470, 1481, 1490, 1976, 2339,C-1.023109-0.9925640.0007242988, 3054, 3093, 3123, 3218,H-0.665501-1.452664-0.9142563442H-0.666583-1.4512380.916846C-2.368449-0.352078-0.000544H-2.5217950.266667-0.888756H-3.160000-1.115301-0.000460	(C_1)	E(CCSD(T)/CC-VTZ) = -248.26986802	С	1106.05580	С	0.009764	1.841050	0.000159	893, 1017, 1074, 1214, 1398,
C -1.023109 -0.992564 0.000724 2988, 3054, 3093, 3123, 3218, H -0.665501 -1.452664 -0.914256 3442 H -0.666583 -1.451238 0.916846 C -2.368449 -0.352078 -0.000544 H -2.521795 0.266667 -0.888756 H -3.160000 -1.115301 -0.000460					н	-0.655653	2.672063	-0.000007	1470, 1481, 1490, 1976, 2339,
H -0.665501 -1.452664 -0.914256 3442 H -0.666583 -1.451238 0.916846 C -2.368449 -0.352078 -0.000544 H -2.521795 0.266667 -0.888756 H -3.160000 -1.115301 -0.000460					С	-1.023109	-0.992564	0.000724	2988, 3054, 3093, 3123, 3218,
H -0.666583 -1.451238 0.916846 C -2.368449 -0.352078 -0.000544 H -2.521795 0.266667 -0.888756 H -3.160000 -1.115301 -0.000460					Н	-0.665501	-1.452664	-0.914256	3442
C -2.368449 -0.352078 -0.000544 H -2.521795 0.266667 -0.888756 H -3.160000 -1.115301 -0.000460					Н	-0.666583	-1.451238	0.916846	
H -2.521795 0.266667 -0.888756 H -3.160000 -1.115301 -0.000460					С	-2.368449	-0.352078	-0.000544	
Н -3.160000 -1.115301 -0.000460					Н	-2.521795	0.266667	-0.888756	
					Н	-3.160000	-1.115301	-0.000460	

TS B2-1

(C₁)

Н	-2.522862	0.267946	0.886591
Ν	2.527346	-0.830481	-0.000353

1730i, 111, 175, 271, 456, 516, 554, 565, 635, 782, 842, 853, 942, 990, 1083, 1088, 1182, 1227, 1260, 1305, 1455, 1491, 1631, 1695, 2326, 3042, 3073, 3099,

2121i, 125, 177, 224, 236, 370, 543, 566, 615, 741, 767, 830, 946, 1016, 1062, 1085, 1151, 1213, 1330, 1406, 1484, 1487, 1645, 1842, 2327, 3004, 3069, 3090,

739i, 116, 163, 268, 312, 372,

426, 480, 530, 642, 729, 746, 756,

929, 940, 957, 1025, 1059, 1302,

1312, 1411, 1457, 1599, 1666,

2341, 3148, 3154, 3162, 3241,

3179, 3216

3109, 3149

3250

TS B1-B2	ZPE(B3LYP/6-311G**) = 0.088958	Α	185.69365	С	-1.569340	-0.077402	0.000398
(\mathbf{C})	E(B3LYP+ZPE) = -248.725746	В	797.44459	С	-0.169250	0.195177	0.000487
(C1)	E(CCSD(T)/CC-VTZ) = -248.29697415	С	960.22183	С	0.356645	1.418003	-0.000541
•				Н	-0.085211	2.405769	-0.000763
				С	0.868508	-0.925893	-0.000600
				Н	0.740621	-1.566371	0.876808
				Н	0.740607	-1.563528	-0.880078
				С	2.209636	-0.192321	0.000499
				Н	2.804451	-0.268353	0.907865
				Н	2.809077	-0.272851	-0.903405
• • •				Н	1.706609	1.022499	-0.002083
				Ν	-2.699050	-0.323222	0.000028
TS B1-B3	ZPE(B3LYP/6-311G**) = 0.087966	Α	309.79171	С	0.029808	1.745658	-0.219490
(\mathbf{C})	E(B3LYP+ZPE) = -248.695248	В	690.59751	С	-0.238334	0.478736	0.081041
(C1)	E(CCSD(T)/CC-VTZ) = -248.26477467	С	928.49478	С	-1.439053	-0.276932	0.014791
				С	1.135801	0.030760	0.525945
				С	1.911279	-0.953497	-0.309564
- <u> </u>				Н	-0.529515	2.602656	-0.586601
				Н	1.260436	-0.044476	1.607226
				Н	2.952601	-1.010312	0.014500
				Н	1.478061	-1.958264	-0.219852
Ψ				Н	1.888298	-0.680348	-1.367777
k				Н	1.348593	1.378736	0.204888
				N	2 200254	0.010479	0 020010

Α

В

С

ZPE(B3LYP/6-311G**) = 0.085413

E(CCSD(T)/CC-VTZ) = -248.28236518

E(B3LYP+ZPE) = -248.713376

391.30673

522.21969

883.11666

Ν

С

Н

С

С

С

Н

-2.399354

-0.678955

-1.744195

-0.181946

-1.081019

1.267611

1.517082

-0.919478

1.808546

1.993550

0.564422

-0.554966

0.277730

0.555206

-0.029818

-0.101929

-0.135325

-0.023646

0.022022

0.001326

1.916453

				H C H H N	1.903705 1.801676 2.873851 1.184544 -0.016145 -1.783292	1.153614 -0.952870 -1.086080 -1.843543 2.665137 -1.470723	-0.074688 -0.160097 -0.225658 -0.179601 -0.130848 0.057659	
TS B3-1 (C ₁)	ZPE(B3LYP/6-311G**) = 0.085351 E(B3LYP+ZPE) = -248.708704 E(CCSD(T)/CC-VTZ) = -248.27805418	A B C	391.79640 516.87649 876.44949	C H H C H C H C H C N	1.884687 1.313742 2.962624 1.297839 1.895139 -0.163446 -0.205196 -0.708038 -1.777696 -0.072257 -1.023372 -1.691768	-0.865815 -1.787271 -0.948989 0.324824 1.231048 0.555950 0.517046 1.784859 1.924537 2.658948 -0.602612 -1.539794	-0.086599 -0.116432 -0.146746 0.019035 0.050221 0.078909 1.952132 -0.163065 -0.236633 -0.227682 0.013703 -0.063824	945i, 142, 159, 282, 318, 397, 469, 478, 521, 637, 672, 732, 764, 898, 935, 965, 1017, 1058, 1302, 1322, 1397, 1454, 1557, 1689, 2347, 3144, 3156, 3160, 3233, 3257
TS B2-B3	ZPE(B3LYP/6-311G**) = 0.088820 E(B3LYP+ZPE) = -248.720768 E(CCSD(T)/CC-VTZ) = -248.28896425	A B C	229.88853 770.68918 990.54939	C H H C C H H C H H C N	$\begin{array}{r} -0.048048\\ 0.785331\\ -1.041301\\ 0.150195\\ -0.895007\\ -1.508757\\ -0.619544\\ -2.335754\\ -3.043840\\ -2.690617\\ 1.490808\\ 2.563652 \end{array}$	1.635612 2.320525 2.058010 0.288872 -0.715980 -0.867918 -1.710724 -0.420822 -1.195812 0.569349 -0.223141 -0.651525	$\begin{array}{r} -0.003024\\ -0.023709\\ 0.044172\\ -0.095176\\ -0.038242\\ -0.067959\\ 1.008460\\ -0.397728\\ -0.003229\\ -0.255223\\ 0.238620\\ 0.004914\\ 0.032318 \end{array}$	1782i, 131, 174, 283, 309, 437, 470, 584, 626, 659, 679, 781, 833, 873, 936, 1070, 1152, 1229, 1264, 1406, 1437, 1476, 1569, 2206, 2332, 3164, 3175, 3181, 3258, 3291
TS B3-C1 (C1)	ZPE(B3LYP/6-311G**) = 0.087735 E(B3LYP+ZPE) = -248.702111 E(CCSD(T)/CC-VTZ) = -248.27003994	A B C	368.53942 632.12918 977.26858	C H H C C C C	0.174818 0.440431 -1.202681 0.440432 0.204908 1.320755 -1.103139	1.910161 2.425346 1.564569 2.425343 0.404272 -0.473425 0.146536	0.000001 -0.921464 0.000000 0.921467 -0.000002 -0.000001 -0.000001	2174i, 125, 133, 202, 285, 307, 477, 513, 604, 631, 703, 967, 1016, 1038, 1051, 1072, 1120, 1220, 1392, 1428, 1458, 1470, 1725, 1836, 2324, 3008, 3075, 3077, 3081, 3174

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					H H N	-2.666763 -1.452400 2.233400	-0.999248 -1.955176 -1.184075	-0.881078 -0.000054 0.000001	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TS C1-1	ZPE(B3LYP/6-311G**) = 0.087666	Α	330.63396	С	-0.559649	2.016586	0.000001	488i, 41, 68, 111, 144, 155, 340,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		E(B3LYP+ZPE) = -248.712744	В	864.02248	Н	-1.119620	2.058856	0.925318	359, 491, 507, 527, 573, 671, 874,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(C_1)	E(CCSD(T)/CC-VTZ) = -248.27673779	С	1171.08340	Н	0.431221	2.452159	-0.000845	1025, 1047, 1163, 1409, 1416,
C -0.07034 -0.226032 -0.000013 3005, 3064, 3084, 3091, 3254, 2588 C -1.382681 -0.663355 -0.000003 3258 C -1.382681 -0.663355 -0.0000013 3258 C 2.588084 -0.400672 0.0000013 3258 C 2.588084 -0.400672 0.000003 3258 H 2.9955972 -0.899030 -0.884396 -0.68338 N -2.488406 -1.007783 0.0000132 H 2.9955955 -0.899030 -0.884396 R(C1) E(R3LVP+ZE1)=-348.700683 B 560.40321 H -1.007783 0.001232 E(C2SD(T)/CC-VTZ)=-248.26631244 C 935.62216 H -0.012782 10.02783 10.02131 416, 506.586.56, 571.5, 906, 982 C -0.217644 0.430033 -0.012782 10.025, 1054, 1141, 1192, 1238, 1599, C C -0.012782 10.02431 416, 506.586.63, 715, 906, 982 C 1.18926 0.380817 -0.227644 0.430033 -0.012782 10.02432 4164, 2149, 1459, 1599, C C 1.18926 0.3					Н	-1.121048	2.058504	-0.924466	1416, 1464, 1466, 2112, 2342,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					С	-0.070364	-0.226032	-0.000011	3005, 3064, 3084, 3091, 3254,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•				С	-1.382681	-0.663355	-0.000003	3258
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					С	1.139720	-0.452039	0.000002	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					С	2.588084	-0.400672	0.000003	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	2.945707	0.636318	0.000132	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Н	2.995972	-0.899253	0.884266	
$\frac{N}{C_{1}} = \frac{-2488406}{-1.007783} = \frac{-1007783}{0.000006} = \frac{-1007783}{0.000006} = \frac{-1007783}{0.070238} = \frac{-1007783}{0.00033} = \frac{-1007783}{0.00006} = \frac{-1007783}{0.029431} = \frac{-1007783}{0.008263} = \frac{-1007782}{0.000000} = \frac{-1007783}{0.00005} = \frac{-1007783}{0.00005} = \frac{-1007783}{0.000005} = \frac{-10077}{0.0000001} = \frac{-10077}{0.000001} = \frac{-10077}{0.000001} = \frac{-10077}{0.000001} = \frac{-10000001}{0.00001} = \frac{-1000001}{0.00001} = \frac{-10000001}{0.00001} = \frac{-10000001}{0.00001} = \frac{-10000001}{0.00001} = \frac{-10000001}{0.00001} = \frac{-10000001}{0.00001} = \frac{-10000001}{0.00001} = \frac{-10000001}{0.000001} = -10$					Н	2.995955	-0.899030	-0.884396	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Ν	-2.488406	-1.007783	0.000006	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TS C1-C2	ZPE(B3LYP/6-311G**) = 0.088302	Α	401.71946	С	-1.009808	1.710237	0.070238	1804i, 130, 134, 215, 247, 289,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(\mathbf{C})	E(B3LYP+ZPE) = -248.700683	В	560.40321	Н	-1.534146	1.760528	1.029431	416, 506, 586, 635, 715, 906, 982,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(C_1)	E(CCSD(T)/CC-VTZ) = -248.26631244	С	935.62216	Н	-0.344813	2.570324	-0.012782	1035, 1054, 1141, 1192, 1238,
$\frac{C}{C} = -0.217644 = 0.430033 = -0.045825 = 2164, 2286, 3023, 3054, 3073, C = -0.932399 = -0.804394 = -0.019209 = 3120, 3185 = -0.019209 = -0.01920$	•				Н	-1.766101	1.777946	-0.718147	1408, 1460, 1478, 1489, 1599,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					С	-0.217644	0.430033	-0.045825	2164, 2286, 3023, 3054, 3073,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Y				С	-0.932399	-0.804394	-0.019209	3120, 3185
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 9				С	1.118926	0.380817	-0.254822	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					С	2.186042	-0.471943	0.088263	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Н	3.079661	-0.476324	-0.527659	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Н	2.139453	0.828049	0.406202	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•				Н	2.095612	-1.247935	0.851075	
$ \begin{array}{c} TS \ C1-2 \\ (C_1) \end{array} \begin{array}{c} ZPE(B3LYP/6-311G^{**}) = 0.083991 \\ E(B3LYP+ZPE) = -248.700887 \\ E(CCSD(T)/CC-VTZ) = -248.26432354 \end{array} \begin{array}{c} A & 356.12594 \\ B & 676.10850 \\ C & 1008.62137 \end{array} \begin{array}{c} C & 0.675028 \\ H & 1.289859 \\ H & 1.289859 \\ I.993962 \\ -0.883463 \\ 2.493133 \\ -0.000056 \\ 910, 990, 1008, 1060, 1177, 1275, \\ H & 1.289756 \\ I.993988 \\ 0.883536 \\ I408, 1454, 1481, 1496, 2007, \\ C & 0.182328 \\ 0.367412 \\ -0.000002 \\ 2333, 3037, 3096, 3119, 3133, \\ C & 1.177127 \\ -0.666671 \\ -0.000001 \\ 3195 \end{array} \right. $					Ν	-1.505767	-1.811585	-0.008571	
$ \begin{array}{c} (C_1) & \begin{array}{c} E(B3LVP+ZPE) = -248.700887 \\ E(CCSD(T)/CC-VTZ) = -248.26432354 \end{array} \\ \begin{array}{c} B \\ C \end{array} \\ \begin{array}{c} 676.10850 \\ C \end{array} \\ \begin{array}{c} 1008.62137 \\ H \end{array} \\ \begin{array}{c} 1.289859 \\ -0.168440 \end{array} \\ \begin{array}{c} 2.493133 \\ -0.000056 \end{array} \\ \begin{array}{c} -0.000056 \\ 910, 990, 1008, 1060, 1177, 1275, \\ 1408, 1454, 1481, 1496, 2007, \\ C \end{array} \\ \begin{array}{c} 0.182328 \\ C \end{array} \\ \begin{array}{c} 0.367412 \\ -0.000001 \end{array} \\ \begin{array}{c} -0.000001 \\ 3195 \end{array} \\ \begin{array}{c} 3195 \\ C \end{array} \\ \begin{array}{c} -1.086919 \\ 0.031721 \end{array} \\ \begin{array}{c} -0.000003 \end{array} \\ \begin{array}{c} -0.000003 \end{array} $ \\ \end{array}	TS C1-2	ZPE(B3LYP/6-311G**) = 0.083991	Α	356.12594	С	0.675028	1.803491	0.000004	489i, 121, 156, 204, 209, 218,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(\mathbf{C}_{i})	E(B3LYP+ZPE) = -248.700887	В	676.10850	Н	1.289859	1.993962	-0.883463	296, 377, 508, 567, 615, 700, 718,
H 1.289756 1.993988 0.883536 1408, 1454, 1481, 1496, 2007, C 0.182328 0.367412 -0.000002 2333, 3037, 3096, 3119, 3133, C 1.177127 -0.666671 -0.000001 3195 C -1.086919 0.031721 -0.000003	(C_1)	E(CCSD(T)/CC-VTZ) = -248.26432354	С	1008.62137	Η	-0.168440	2.493133	-0.000056	910, 990, 1008, 1060, 1177, 1275,
C 0.182328 0.367412 -0.000002 2333, 3037, 3096, 3119, 3133, C 1.177127 -0.666671 -0.000001 3195 C -1.086919 0.031721 -0.000003					Η	1.289756	1.993988	0.883536	1408, 1454, 1481, 1496, 2007,
C 1.177127 -0.666671 -0.000001 3195 C -1.086919 0.031721 -0.000003					С	0.182328	0.367412	-0.000002	2333, 3037, 3096, 3119, 3133,
C -1.086919 0.031721 -0.000003					С	1.177127	-0.666671	-0.000001	3195
					С	-1.086919	0.031721	-0.000003	

С

Н

-2.018364

-2.666684

-1.016379

-0.999305

0.000000

0.881138

TS C2-1	ZPE(B3LYP/6-311G**) = 0.084461	Α	264.13148	С	-2.217177	-0.384870	-0.004707	206i, 78, 132, 178, 189, 292, 301,
(C1)	E(B3LYP+ZPE) = -248.713719	В	763.13711	Н	-2.518051	0.477300	0.579670	454, 555, 592, 736, 759, 786, 942,
	E(CCSD(T)/CC-VTZ) = -248.28350499	С	970.25129	н	-2.387562	-1.529168	2.124084	956, 958, 1017, 1092, 1245, 1327,
•				Н	-2.997480	-1.076532	-0.296315	1432, 1455, 1642, 1673, 2338,
				С	-0.951446	-0.575057	-0.392020	3144, 3157, 3160, 3233, 3251
				Н	-0.689104	-1.474159	-0.941312	
				С	0.168644	0.340637	-0.093485	
				С	0.058353	1.672443	0.040531	
				Н	-0.894711	2.166524	-0.100559	
T				Н	0.915889	2.287880	0.278554	
0 200				С	1.463168	-0.273104	0.031958	
•				Ν	2.491680	-0.790305	0.123174	
TS D1-1	ZPE(B3LYP/6-311G**) = 0.087413	А	377.50211	С	-1.598332	0.329196	0.000000	457i, 38, 53, 67, 189, 318,
	E(B3LYP+ZPE) = -248.698933	В	769.08016	С	-1.133113	-1.065836	-0.000002	358, 365, 461, 496, 573, 668, 731,
(C ₁)	E(CCSD(T)/CC-VTZ) = -248.26790034	С	1123.13850	Н	-1.555159	-1.568586	0.877602	844, 897, 938, 974, 1248, 1333,
				Н	-1.555153	-1.568581	-0.877612	1412, 1423, 1451, 2086, 2362,
				С	0.324858	-1.175484	0.000003	3025, 3053, 3089, 3249, 3262,
				С	1.528964	-0.984374	0.000001	3406
				Н	2.555667	-1.271757	0.000001	
				С	2.146385	1.257050	-0.000001	
				Н	2.707091	1.262812	-0.926422	
				Н	1.177078	1.736664	-0.000042	
8				Н	2.707022	1.262830	0.926462	
e				Ν	-1.949874	1.426186	0.000002	
TS D1-D2	ZPE(B3LYP/6-311G**) = 0.091427	А	155.13614	С	1.655216	-0.000842	0.000612	628i, 79, 125, 163, 306, 333, 395,
	E(B3LYP+ZPE) = -248.715074	В	942.36443	С	0.749357	1.162616	-0.000172	558, 766, 797, 873, 932, 1018,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.28410456	С	1074.46211	Н	0.779431	1.769529	0.908055	1052, 1091, 1103, 1166, 1335,
				Н	0.780184	1.769301	-0.908525	1401, 1433, 1481, 1489, 1777,
				С	-0.101570	-0.026302	-0.000313	2021, 3019, 3030, 3070, 3097,

С	-2.339066	-0.348125	-0.000005
Н	-2.896477	-0.439047	0.927182
Н	-2.896472	-0.439059	-0.927193
Н	-2.330797	-2.449088	0.000046
Ν	2.008799	-1.468694	-0.000002

				C H C H H N	-1.254053 -1.255332 -2.605844 -3.181893 -2.518949 -3.183615 2.560220	-0.652130 -1.741268 0.020936 -0.279135 1.108748 -0.281571 -0.767324	-0.000194 -0.000326 0.000156 0.881679 -0.001399 -0.879386 -0.000090	3103, 3119
TS E1-1	ZPE(B3LYP/6-311G**) = 0.084461	Α	264.13148	С	-2.217177	-0.384870	-0.004707	206i, 78, 132, 178, 189, 292, 301,
$(\mathbf{C}_{\mathbf{r}})$	E(B3LYP+ZPE) = -248.713719	В	763.13711	Н	-2.518051	0.477300	0.579670	454, 555, 592, 736, 759, 786, 942,
(C1)	E(CCSD(T)/CC-VTZ) = -248.28350499	С	970.25129	Н	-2.387562	-1.529168	2.124084	956, 958, 1017, 1092, 1245, 1327,
				Н	-2.997480	-1.076532	-0.296315	1432, 1455, 1642, 1673, 2338,
A				С	-0.951446	-0.575057	-0.392020	3144, 3157, 3160, 3233, 3251
T				Н	-0.689104	-1.474159	-0.941312	
				С	0.168644	0.340637	-0.093485	
				C	0.058353	1.672443	0.040531	
				H	-0.894711	2.166524	-0.100559	
				H	0.915889	2.287880	0.278554	
				C	1.463168	-0.273104	0.031958	
	ZDD (D21 VD/C 211 CH4) 0 000000			<u>N</u>	2.491680	-0.790305	0.123174	
TS E1-E3	$ZPE(B3LYP/6-311G^{**}) = 0.088820$ E(B3LYP+7DE) = 248,720768	A	229.88853	C	-0.048048	1.635612	-0.023709	1782i, 131, 174, 283, 309, 437,
(C ₁)	E(CCSD(T)/CC-VTZ) = -248.720708	B	770.68918	H	0.785331	2.320525	0.044172	470, 584, 626, 659, 679, 781, 833,
		C	990.54939	Н	-1.041301	2.058010	-0.095176	8/3, 936, 10/0, 1152, 1229, 1264,
				C	0.150195	0.2888/2	-0.038242	1406, 1457, 1476, 1569, 2206,
•				U U U	-0.895007	-0./15980	-0.06/959	2332, 3164, 3175, 3181, 3258,
				п	-1.508/5/	-0.80/918	1.008400	3291
				н С	-0.019544	-1./10/24	-0.397728	
				с п	-2.335/54	-0.420822	-0.003229	
I K				n U	-3.043840	-1.195012	-0.233223	
				пС	-2.090017	0.009349	0.230020	
. .					1.420000	-0.225141	0.004714	
				1	2.303032	-0.031323	0.032310	

TS E3-1	ZPE(B3LYP/6-311G**) = 0.085413	Α	391.30673	С	-0.678955	1.808546	-0.101929	739i, 116, 163, 268, 312, 372,
	E(B3LYP+ZPE) = -248.713376	В	522.21969	Н	-1.744195	1.993550	-0.135325	426, 480, 530, 642, 729, 746, 756,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.28236518	С	883.11666	С	-0.181946	0.564422	-0.023646	929, 940, 957, 1025, 1059, 1302,
				С	-1.081019	-0.554966	0.022022	1312, 1411, 1457, 1599, 1666,
Å				С	1.267611	0.277730	0.001326	2341, 3148, 3154, 3162, 3241,
Ψ 🔍				Н	1.517082	0.555206	1.916453	3250
				Н	1.903705	1.153614	-0.074688	
				С	1.801676	-0.952870	-0.160097	
<u> </u>				Н	2.873851	-1.086080	-0.225658	
				н	1.184544	-1.843543	-0.179601	
				н	-0.016145	2.665137	-0.130848	
				Ν	-1.783292	-1.470723	0.057659	
TS E2-F1	ZPE(B3LYP/6-311G**) = 0.091046	Α	423.77073	С	2.180072	0.013669	-0.136247	633i, 135, 183, 201, 213, 312,
(\mathbf{C})	E(B3LYP+ZPE) = -248.714629	В	486.61889	н	2.718660	0.884893	-0.496798	397, 507, 628, 800, 819, 920,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.28479123	С	837.88943	н	2.760135	-0.901231	-0.001733	1019, 1040, 1073, 1085, 1182,
				С	0.899919	0.057928	0.132708	1306, 1407, 1434, 1492, 1494,
He .				С	-0.644262	0.886018	0.100826	1762, 2004, 3041, 3045, 3064,
				С	-0.391414	-0.513056	0.515530	3113, 3124, 3166
				Н	-0.518278	-0.641376	1.594849	
				С	-1.016876	-1.641268	-0.303875	
				Н	-0.536055	-2.589277	-0.051831	
I J				Н	-2.083860	-1.718882	-0.086420	
				н	-0.888947	-1.458440	-1.371679	
				Ν	-1.088040	1.943509	-0.205720	
TS F1-1	ZPE(B3LYP/6-311G**) = 0.087586	Α	394.75279	С	0.608891	2.016410	-0.188126	497i, 105, 116, 135, 157, 327,
(\mathbf{C})	E(B3LYP+ZPE) = -248.708389	В	724.48856	н	-0.199344	2.620070	0.206269	374, 404, 557, 563, 571, 606,
(C1)	E(CCSD(T)/CC-VTZ) = -248.27130151	С	1023.74757	н	1.581832	2.134240	0.273918	826, 897, 932, 952, 979, 1098,
- Y				н	0.599007	1.817333	-1.252045	1333, 1419, 1424, 1444, 1938,
				С	0.031843	-0.016365	0.612710	2345, 3076, 3086, 3138, 3148,
				Н	0.162679	0.374000	1.617998	3245, 3252
				С	1.164429	-0.716252	0.072612	
				С	-1.211272	-0.340048	0.211655	
<u> </u>				С	-2.407174	-0.453971	-0.276479	
~				Н	-3.049483	-1.298559	-0.037621	
				Н	-2.817305	0.293738	-0.955694	
				N	2.086045	-1.268496	-0.349579	

TS F1-2	ZPE(B3LYP/6-311G**) = 0.084147	Α	325.46342	С	0.124276	1.721868	-0.182212	537i, 43, 129, 186, 213, 232, 325,
(\mathbf{C})	E(B3LYP+ZPE) = -248.683799	В	695.54032	Н	-0.739044	2.281918	0.178319	370, 498, 572, 588, 680, 781, 790,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.25463038	С	953.24801	Н	1.036768	2.259193	0.080294	927, 1022, 1074, 1139, 1297,
•				Н	0.060980	1.637244	-1.267136	1332, 1412, 1493, 1499, 2174,
				С	0.132799	0.314809	0.469069	2362, 3020, 3053, 3131, 3137,
				Н	0.210332	0.437541	1.556673	3457
1				С	1.319762	-0.448712	0.048408	
				С	-1.096271	-0.429461	0.182125	
				С	-2.165429	-0.917462	-0.094724	
				Н	-3.292081	0.617661	-0.855634	
				Н	-3.014640	-1.536189	-0.260040	
				Ν	2.263836	-1.020517	-0.281212	
TS F1-3	ZPE(B3LYP/6-311G**) = 0.084518	А	340.67289	С	2.333387	-0.696831	-0.049716	829i, 135, 172, 193, 224, 332,
	E(B3LYP+ZPE) = -248.694713	В	683.13708	Н	2.856334	-0.883184	0.886865	443, 495, 498, 554, 606, 642, 713,
(C_1)	E(CCSD(T)/CC-VTZ) = -248.25873819	С	968.60677	Н	2.857683	-0.945094	-0.968609	895, 985, 990, 1061, 1167, 1274,
O				С	1.133104	-0.208347	-0.056313	1409, 1444, 1485, 1496, 1986,
1				С	-0.085804	0.311631	0.089953	2341, 3044, 3096, 3113, 3140,
•				Н	-0.189861	0.398074	1.978678	3170
				С	-0.365330	1.797977	-0.115067	
				Н	-0.659248	1.978119	-1.152508	
				Н	-1.175379	2.128472	0.535348	
				Н	0.528670	2.380143	0.105991	
				С	-1.216389	-0.578473	0.002238	
•				Ν	-2.144572	-1.258896	-0.087476	

Channel	Barrier	0.0	1.0	2.0	3.0	4.0	5.0
INT B1 \rightarrow INT B3	TS B1-B3	5.51E+06	1.13E+07	1.02E+07	1.35E+07	1.78E+07	2.30E+07
INT B3 \rightarrow INT B1	TS B1-B3	1.04E+03	2.29E+03	2.21E+03	3.14E+03	4.41E+03	6.11E+03
INT B1 \rightarrow INT B2	TS B1-B2	5.26E+10	5.73E+10	6.23E+10	6.76E+10	7.31E+10	7.89E+10
INT B2 \rightarrow INT B1	TS B1-B2	4.94E+08	8.36E+08	6.28E+08	7.04E+08	7.87E+08	8.77E+08
INT B1 \rightarrow INT A2	TS A2-B1	7.38E+08	2.64E+09	1.04E+09	1.22E+09	1.43E+09	1.66E+09
$INT A2 \rightarrow INT B1$	TS A2-B1	2.74E+12	8.62E+12	3.00E+12	3.13E+12	3.26E+12	3.38E+12
INT B1 \rightarrow cyanoacetylene + C ₂ H ₅	TS B1-1	5.22E+08	2.09E+09	9.14E+08	1.19E+09	1.52E+09	1.93E+09
INT B3 \rightarrow INT C1	TS B3-C1	6.96E+03	2.90E+04	1.32E+04	1.79E+04	2.40E+04	3.17E+04
INT C1 \rightarrow INT B3	TS B3-C1	5.04E+06	6.68E+06	8.75E+06	1.13E+07	1.45E+07	1.84E+07
$INT B2 \rightarrow INT B3$	TS B2-B3	2.72E+06	3.33E+06	4.04E+06	4.89E+06	5.87E+06	7.01E+06
INT B3 \rightarrow INT B2	TS B2-B3	1.36E+08	2.40E+08	1.88E+08	2.19E+08	2.54E+08	2.94E+08
INT B2 \rightarrow 2-cyano-1,3-butadiene + H	TS B1-1	3.20E+07	3.99E+07	4.94E+07	6.08E+07	7.44E+07	9.04E+07
INT C1 \rightarrow INT 6	TS CTS	3.20E+12	9.67E+12	3.25E+12	3.28E+12	3.30E+12	3.33E+12
INT 6 \rightarrow INT C1	TS CTS	8.89E+15	2.42E+16	7.32E+15	6.67E+15	6.10E+15	5.59E+15
INT C1 \rightarrow 3-cyano-1,2-butadiene + H	TS C1-2	1.20E+07	1.68E+07	2.30E+07	3.12E+07	4.16E+07	5.50E+07
INT C1 \rightarrow 1-cyano-prop-1-yne + CH ₃	TS C1-1	1.87E+09	7.16E+09	3.02E+09	3.79E+09	4.71E+09	5.81E+09
INT B2 \rightarrow 2-cyano-1,3-butadiene + H	TS B2-1	1.38E+08	2.50E+08	2.01E+08	2.41E+08	2.86E+08	3.39E+08
$INT A2 \rightarrow INT A1$	TS A1-A2	3.42E+12	1.07E+13	3.72E+12	3.87E+12	4.02E+12	4.16E+12
$INT A1 \rightarrow INT A2$	TS A1-A2	1.45E+08	5.24E+08	2.09E+08	2.49E+08	2.94E+08	3.45E+08
$INT A1 \rightarrow INT A3$	TS A1-A3	1.88E+06	2.57E+06	3.47E+06	4.62E+06	6.08E+06	7.90E+06
$INT A3 \rightarrow INT A1$	TS A1-A3	2.46E+04	1.03E+05	4.74E+04	6.43E+04	8.61E+04	1.14E+05
INT A1 \rightarrow 1-cyano-1,2-butadiene + H	TS A2-2	6.49E+06	1.38E+07	1.29E+07	1.78E+07	2.41E+07	3.22E+07
INT A1 \rightarrow 1-cyano-1-butyne + H	TS A2-3	4.25E+06	1.87E+07	8.99E+06	1.27E+07	1.76E+07	2.41E+07
INT A1 \rightarrow cyanoallene + CH3	TS A2-1	8.00E+07	3.18E+08	1.39E+08	1.79E+08	2.29E+08	2.91E+08
INT A3 \rightarrow 1-cyano-1,3-butadiene + H	TS A3-1	1.18E+08	2.12E+08	1.69E+08	2.01E+08	2.37E+08	2.79E+08

Table A12. RRKM single-collision rate constants for all paths on the CN addition to 1-butyne and 2-butyne.

Channel	Barrier	0.0	1.0	2.0	3.0	4.0	5.0
$INT D1 \rightarrow INT D2$	TS D1-D2	2.59E+08	3.09E+08	3.67E+08	4.33E+08	5.07E+08	5.91E+08
INT D2 \rightarrow INT D1	TS D1-D2	7.04E+11	7.58E+11	8.13E+11	8.70E+11	9.27E+11	9.85E+11
INT D1 \rightarrow 1-cyano-prop-3-yne + CH ₃	TS E1-2	3.33E+08	4.66E+08	6.42E+08	8.69E+08	1.16E+09	1.53E+09
$INT E1 \rightarrow INT D2$	TS D2-E1	1.17E+13	1.17E+13	1.17E+13	1.18E+13	1.18E+13	1.18E+13
INT D2 \rightarrow INT E1	TS D2-E1	2.76E+06	3.29E+06	3.91E+06	4.61E+06	5.42E+06	6.34E+06
INT E1 \rightarrow INT E2	TS E1-E2	1.16E+06	1.40E+06	1.68E+06	2.01E+06	2.39E+06	2.83E+06
$INT E2 \rightarrow INT E1$	TS E1-E2	1.90E+13	1.88E+13	1.85E+13	1.82E+13	1.80E+13	1.78E+13
INT E1 \rightarrow 2-cyano-1,3-butadiene + H	TS E1-1	2.32E+07	2.92E+07	3.65E+07	4.53E+07	5.59E+07	6.85E+07
$INT E2 \rightarrow INT F1$	TS E2-F1	2.47E+12	2.56E+12	2.65E+12	2.74E+12	2.83E+12	2.92E+12
INT F1 \rightarrow INT E2	TS E2-F1	5.01E+08	5.94E+08	6.98E+08	8.16E+08	9.48E+08	1.10E+09
INT F1 \rightarrow cyanoallene + CH ₃	TS F1-1	2.08E+08	2.76E+08	3.62E+08	4.69E+08	6.00E+08	7.59E+08

Table A13. Rate coefficients of all channels on the CN + 1,2-butadiene reaction.
	Initial						
Product	Adduct	0.0	1.0	2.0	3.0	4.0	5.0
1-cyano-1,3-butadiene + H	INT B1	0.0	0.0	0.0	0.0	0.0	0.0
	INT A1	0.0	0.0	0.0	0.0	0.0	0.0
	INT C1	1.2	1.3	1.4	1.4	1.5	1.6
	1:1	0.0	0.0	0.0	0.0	0.0	0.0
1-cyano-1,2-butadiene + H	INT B1	0.1	0.1	0.1	0.1	0.1	0.2
	INT A1	0.0	0.0	0.0	0.0	0.0	0.0
	INT C1	4.2	4.6	5.0	5.5	5.9	6.4
	1:1	0.1	0.1	0.1	0.1	0.1	0.2
2-cyano-1,3-butadiene + H	INT B1	96.0	95.6	94.8	94.1	93.4	92.7
	INT A1	0.3	0.3	0.3	0.3	0.3	0.3
	INT C1	39.4	34.8	34.3	32.2	30.1	28.1
	1:1	96.0	95.6	94.8	94.1	93.4	92.7
3-cyano-1,2-butadiene + H	INT B1	0.0	0.0	0.0	0.0	0.0	0.0
	INT A1	0.6	0.7	0.8	0.8	0.9	0.9
	INT C1	0.0	0.0	0.0	0.0	0.0	0.0
	1:1	0.0	0.0	0.0	0.0	0.0	0.0
cyanoacetylene + C2H5	INT B1	2.7	3.1	3.7	4.3	4.9	5.5
	INT A1	0.0	0.0	0.0	0.0	0.0	0.0
	INT C1	1.1	1.2	1.3	1.5	1.6	1.7
	1:1	2.7	3.1	3.7	4.3	4.9	5.5
1-cyano-1-butyne + H	INT B1	0.1	0.1	0.1	0.1	0.1	0.1
	INT A1	0.0	0.0	0.0	0.0	0.0	0.0
	INT C1	2.7	3.3	3.5	3.9	4.3	4.8
	1:1	0.1	0.1	0.1	0.1	0.1	0.1
1-cyano-prop-1-yne + CH3	INT B1	0.0	0.0	0.0	0.0	0.0	0.0
	INT A1	99.1	99.5	99.0	98.9	98.8	98.8
	INT C1	0.0	0.0	0.0	0.0	0.0	0.0
	1:1	0.0	0.0	0.0	0.0	0.0	0.0
cyanoallene + CH3	INT B1	1.1	1.2	1.3	1.3	1.4	1.5
	INT A1	0.0	0.0	0.0	0.0	0.0	0.0
	INT C1	51.4	52.9	54.4	55.5	56.5	57.5
	1:1	1.1	1.2	1.3	1.3	1.4	1.5

Table A14. Product Branching Ratios for CN addition to centrally and terminally to 1-butyne, addition to 2-butyne, and addition with a 1:1 ratio of INT 1 (central) and INT A (terminal) to determine equal probability.

Product	Initial Adduct	0.0	10	2.0	30	40	5.0
1-cyano-prop-3-ene + CH ₃	INT D1	57.8	61.8	65.3	68.5	71.3	73.9
	INT D2	3.6	4.2	4.7	5.1	5.7	6.2
	INT E1	0.4	0.4	0.5	0.5	0.5	0.5
	INT E2	0.4	0.4	0.4	0.5	0.5	0.5
	INT F1	0.3	0.3	0.3	0.3	0.3	0.3
2-cyano-1,3-butadiene + H	INT D1	42.1	38.1	34.6	31.5	28.6	26.1
	INT D2	96.2	95.6	95.1	94.6	94.1	93.6
	INT E1	99.4	99.4	99.3	99.3	99.3	99.2
	INT E2	95.8	95.3	94.7	94.2	93.6	93.0
	INT F1	67.7	65.0	62.4	60.0	57.3	55.0
cyanoallene + CH ₃	INT D1	0.0	0.0	0.0	0.0	0.0	0.0
	INT D2	0.2	0.2	0.2	0.2	0.2	0.2
	INT E1	0.2	0.2	0.2	0.2	0.2	0.3
	INT E2	3.8	4.3	4.9	5.4	6.0	6.5
	INT F1	32.1	34.7	37.4	40.0	42.4	44.7

Table A15. Product Branching Ratios from the reaction of CN + 1,2-butadiene. The distribution of products varies based on the initial adduct that forms.

VITA

ADEEL JAMAL

1994 - 1998	Bachelor of Science (B.Sc.) – Chemistry Minor: Mathematics Florida International University Miami, FL, USA
1999 - 2012	Doctor of Philosophy (Ph.D.) – Chemistry Florida International University Miami, FL, USA

Publications:

Jamal, A.; Mebel, A. A Theoretical Investigation of the Mechanism and Product Branching Ratios of the Reactions of Cyano Radical with 1- and 2-Butynes and 1,2-Butadiene. In Submission.

Holness, H.; Jamal, A.; Mebel, A.; Almirall, J. Separation Mechanism of Chiral Impurities, Ephedrine and Pseudoephedrine, Found in Amphetamine-Type Substances Using Achiral Modifiers in Gas Phase. Journal of Analytical and Bioanalytical Chemistry. 2012, 404, 2407-2416.

Jamal, A.; Mebel, A. An Ab Initio/RRKM Study of the Reaction Mechanism and Product Branching Ratio of Ethynyl Radical with 1,2-Butadiene. Chemical Physics Letters. 2011, 518, 29-37.

Jamal, A.; Mebel, A. Reactions of C2H with 1- and 2-Butynes: An Ab Initio/RRKM Study of the Reaction Mechanism and Product Branching Ratio . Journal of Physical Chemistry A. 2011, 115, 2196-2207.

Jones, B.; Zhang, F.; Kaiser, R.; Jamal, A.; Mebel, A.; Cordiner, M.; Charnley, S. Formation of Benzene in the Interstellar Medium. Proceedings of the National Academy of Sciences. 2011, 108, 452-457.

Jamal, A.; Mebel, A. An Ab Initio/RRKM Study of the Reaction Mechanism and Product Branching Ratios of the Reactions of Ethynyl Radical with Allene and Methylacetylene. Physical Chemistry Chemical Physics. 2010, 12, 2606.

Zhang, F.; Kim, S.; Kaiser, R. Jamal, A.; Mebel, A. A Crossed Beams and Ab Initio Investigation on the Formation of Cyanodiacetylene in the Reaction of Cyano Radicals with Diacetylene. Journal of Chemical Physics. 2009, 130, 234-308.

Presentations:

8th Workshop on Computational Chemistry and Molecular Spectroscopy *Poster:* Formation of Aromatics in Cold Planetary Atmospheres and the Intersteller Medium: An *Ab Initio* Study October 2012 – Punta de Tralca, Chile

American Chemical Society – Chemistry of Life Oral: Theoretical Study of the Reaction Mechanism and Product Branching Ratios of Ethynyl and Cyano Radical with Unsaturated Hydrocarbons on Titan March 2012 – San Diego, CA

American Chemical Society – Chemistry of Air, Space, and Water *Poster*: A Theoretical Study of Cyano Radical Reactions with C_4H_6 Isomers August 2011 – Denver, CO

Titan Workshop V – Observations, Experiments, Computations, and Modeling *Poster:* An Ab Initio/RRKM Study of Ethynyl Radical and 1-butyne/2-butyne April 2011 – Kauai, Hawai'i

Faraday Discussions 147: Chemistry of the Planets *Poster:* A Theoretical Study of the Reaction of Ethynyl Radical with Unsaturated Hydrocarbons March 2010 – Brittany, France

Titan Workshop IV – Observations, Experiments, Computations, and Modeling *Poster:* A Theoretical Study of Ethynyl Radical with Allene and Methylacetylene March 2010 – Brittany, France

Titan Workshop III – Observations, Experiments, Computations, and Modeling *Poster:* An Ab Initio/RRKM Study of Cyano Radical with Diacetylene February 2009 – San Juan, Puerto Rico