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ABSTRACT OF THE DISSERTATION 

COMPUTATIONAL EVALUATION OF WIND LOADS ON LOW- AND HIGH-RISE 

BUILDINGS 

by 

Agerneh Kenubih Dagnew 

Florida International University, 2012 

Miami, Florida 

Professor Girma Bitsuamlak, Major Professor 

Buildings and other infrastructures located in the coastal regions of the US have a 

higher level of wind vulnerability. Reducing the increasing property losses and causalities 

associated with severe windstorms has been the central research focus of the wind 

engineering community. The present wind engineering toolbox consists of building codes 

and standards, laboratory experiments, and field measurements. The American Society of 

Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common 

shapes. For complex cases it refers to physical modeling. Although this option can be 

economically viable for large projects, it is not cost-effective for low-rise residential 

houses.  

To circumvent these limitations, a numerical approach based on the techniques of 

Computational Fluid Dynamics (CFD) has been developed. The recent advance in 

computing technology and significant developments in turbulence modeling is making 

numerical evaluation of wind effects a more appealing method. The present study 

targeted those cases that are not addressed by the standards. These include wind loads on 

complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of 
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complex surrounding buildings. Among all the turbulence models investigated, the large 

eddy simulation (LES) model performed the best in predicting wind loads. Systematic 

grid sensitivity analysis was conducted and computational grids that resolve the inner 

boundary layer adequately were used to estimate wind flow parameters. The application 

of a spatially evolving time-dependent wind velocity field with the relevant turbulence 

structures at the inlet boundaries was found to be essential. All the results were compared 

and validated with experimental data. The study also revealed CFD’s unique flow 

visualization and aerodynamic data generation capabilities along with understanding of 

the complex three-dimensional aerodynamics of wind-structure interactions.  

With the proper modeling that realistically represents the actual turbulent 

atmospheric boundary layer flow, CFD can offer an economical alternative to the existing 

wind engineering tools.  CFD’s easy accessibility is expected to transform the practice of 

structural design for wind, resulting in more wind-resilient and sustainable systems by 

encouraging optimal aerodynamic and sustainable structural/building design. Thus, this 

method will help ensure public safety and reduce economic losses due to wind damage. 

 



viii 
 

TABLE OF CONTENTS 

CHAPTER                       PAGE 

1 INTRODUCTION ............................................................................................................1 
1.1 Problem statement ......................................................................................................1 
1.2 Commonplace wind engineering tools ......................................................................3 
1.3 Objectives of research ................................................................................................6 
1.4 Current state of CWE .................................................................................................6 
1.5 Research methodology ...............................................................................................7 

1.5.1 Explanatory investigation on turbulence modeling ............................................7 
1.5.2 Wind tunnel ABL simulation ..............................................................................8 
1.5.3 Numerical generation of inflow turbulence ........................................................8 
1.5.4 Geometrical modeling .........................................................................................9 
1.5.5 Grid sensitivity analysis ......................................................................................9 
1.5.6 Computational evaluation of wind loads and validation with experimental 

data .....................................................................................................................9 
1.6 Scope of research .....................................................................................................10 
References ......................................................................................................................12 

2 COMPUTATIONAL EVALUATION OF WIND LOADS ON BUILDINGS: A 
REVIEW ........................................................................................................................14 
2.1 Introduction ..............................................................................................................15 
2.2 Turbulence models ...................................................................................................20 

2.2.1 The RANS models ............................................................................................21 
2.2.2 Large eddy simulation .......................................................................................22 
2.2.3 Hybrid RANS/LES ...........................................................................................24 

2.3 Computational domain and boundary conditions ....................................................28 
2.4 Sources of wind inflow data for inlet boundary conditions .....................................30 

2.4.1 Target mean wind speed and turbulence intensity ............................................30 
2.4.2 Numerical generation of transient inlet boundary for LES ...............................31 

2.5 The need for CWE validation with experimental data ............................................39 
2.6 Computational evaluation of wind load on buildings ..............................................40 

2.6.1 Illustration of wind pressure loads on surface mounted cube ...........................40 
2.6.2 Illustration of wind pressure loads on low-rise buildings .................................41 
2.6.3 Wind load estimation on high-rise buildings ....................................................44 

2.7 High performance computing for wind engineering applications ...........................47 
2.8 Conclusions and future avenues ..............................................................................49 
References ......................................................................................................................51 

3 COMPUTATIONAL ASSESSMENT OF BLOCKAGE AND WIND SIMULATOR 
PROXIMITY EFFECTS FOR A NEW FULL-SCALE TESTING FACILITY ...........77 
3.1 Introduction ..............................................................................................................79 
3.2 Numerical modeling ................................................................................................83 
3.3 Results and discussion .............................................................................................86 



ix 
 

3.4 Conclusions ..............................................................................................................89 
Acknowledgments .........................................................................................................90 
References ......................................................................................................................91 

4 NUMERICAL SIMULATION OF HURRICANE WIND LOADS ON LOW-RISE 
BUILDINGS WITH COMPLEX ROOFS ..................................................................102 
4.1 Introduction ............................................................................................................103 
4.2 The current state of computational wind engineering ...........................................104 
4.3 Experimental test setup ..........................................................................................106 

4.3.1 Low-rise building with regular roof shape (gable and hip) ............................106 
4.3.2 Low-rise buildings with complex roof shapes ................................................107 

4.4 Numerical modeling ..............................................................................................108 
4.4.1 Geometrical model preparation of test buildings for CFD .............................108 
4.4.2 The LES model and inflow turbulence ...........................................................109 
4.4.3 Computational domain and boundary conditions ...........................................111 
4.4.4 Computational grid, spatial, and temporal discretization schemes .................112 

4.5 Results and discussion ...........................................................................................114 
4.5.1 Wind-pressure coefficients for regularly shape low-rise residential roofs .....114 
4.5.2 Wind-pressure coefficients on complex roofs of low-rise houses ..................116 
4.5.3 Peak load estimation .......................................................................................117 
4.5.4 Velocity flow field visualization .....................................................................118 

4.6 Conclusions ............................................................................................................118 
Acknowledgments .......................................................................................................119 
References ....................................................................................................................121 

5 COMPUTATIONAL EVALUATION OF WIND LOADS ON A STANDARD TALL 
BUILDING USING LARGE EDDY SIMULATION .................................................140 
5.1 Introduction ............................................................................................................141 
5.2 Inflow turbulence generation .................................................................................143 

5.2.1 Experimental ABL wind flow simulation .......................................................144 
5.2.2 Numerical generation of inflow turbulence for LES simulation.....................145 

5.3 Outline of BLWT experiment and LES simulation for wind load evaluation .......150 
5.3.1 High frequency pressure integration (HFPI) technique ..................................150 
5.3.2 Study cases for the LES simulation ................................................................151 
5.3.3 Computational domain and boundary conditions ...........................................151 
5.3.4 Computational grid .........................................................................................152 
5.3.5 Turbulence modeling and numerical schemes ................................................154 

5.4 Results and discussion ...........................................................................................156 
5.4.1 Assessment of numerically generated inflow turbulence ...............................156 
5.4.2 Mean wind pressure coefficient for isolated CAARC model .........................159 
5.4.3 Steady and fluctuating wind force coefficients for single building ................161 
5.4.4 Power spectra of the along- and across-wind loads for single building .........163 
5.4.5 Flow field visualization ...................................................................................165 
5.4.6 CAARC with adjacent building ......................................................................166 

5.5 Conclusions ............................................................................................................168 



x 
 

References ....................................................................................................................170 

6 LARGE EDDY SIMULATION FOR WIND-INDUCED RESPONSES OF TALL 
BUILDINGS LOCATED IN A CITY CENTER ........................................................193 
6.1 Introduction ............................................................................................................194 
6.2 Outline of wind tunnel tests ...................................................................................195 

6.2.1 Experimental ABL simulation ........................................................................195 
6.3 Experimental wind load testing for validation of LES data...................................196 
6.4 Transient inflow turbulence generation for LES ...................................................197 

6.4.1 Spatial and temporal correlation .....................................................................199 
6.5 Setup of the LES simulation for wind load evaluation ..........................................200 
6.6 Results and discussion ...........................................................................................202 
6.7 Conclusions ............................................................................................................203 
Acknowledgments .......................................................................................................204 
References ....................................................................................................................205 

7 CONCLUSIONS, RECOMMENDATIONS AND GUIDELINES FOR FUTURE 
RESEARCH .................................................................................................................214 
7.1 Comprehensive and critical review of the current state of CFD ............................215 
7.2 Comparative numerical modeling application for the design and fabrication of 

novel wind engineering facilities .........................................................................216 
7.3 Numerical evaluation of wind loads on low-rise building roofs ...........................217 
7.4 Aerodynamics of tall buildings ..............................................................................218 

7.4.1 Extended application of the complex surrounding case simulation ................222 
7.5 Recommendations for future research ...................................................................223 
7.6 Guidelines for numerical wind load evaluation using CWE .................................223 

VITA.. ..............................................................................................................................225 
 

 

 



xi 
 

LIST OF TABLES 

TABLE                      PAGE 

Table 2.1 Comparison of the rms values of simulated velocity fluctuations  .................... 63

Table 2.2 Levels of validation of simulation techniques (Sagant & Deck, 2009)   ............ 63

Table 4.1 Dimension of the mode buildings and blockage ratio of the computational 
domains   ............................................................................................................... 125

Table 4.2 Cases considered for LES and BLWT studies: Gable roof   ............................ 125

Table 4.3 Cases considered for LES and BLWT studies: Gable and hip roof buildings   125

Table 4.4 Cases considered for LES and BLWT studies: Complex roof shap buildings   125

Table 5.1 Measured inflow wind characteristics of rural terrain.   ................................... 174

Table 5.2 LES cases.   ....................................................................................................... 174

Table 5.3 Comparative study of inflow turbulences.   ...................................................... 174

Table 5.4 Comparison of total steady and rms force coefficients.   ................................. 175

Table 5.5 Force coefficients: CAARC with adjacent building.   ...................................... 175

Table 6.1 Measured inflow wind characteristics of rural terrain.   ................................... 207

Table 6.2 Wind-induced responses of CAARC by LES and BLWT.   ............................. 207

 

 
 
 
 
 
 
 
 
 
 



xii 
 

LIST OF FIGURES 

FIGURE                                   PAGE 

Figure 1.1 Photograph of a typical wind tunnel setup of high-rise building (courtesy 
of RWDI Inc., Canada).   .......................................................................................... 4

Figure 1.2 Full-scale facilities   ............................................................................................. 5

Figure 2.1 Classification of unsteady approaches according to level of modeling and 
readiness (after Sagaut et al., 2009).   ..................................................................... 64

Figure 2.2 Sketch of the energy cascade. In physical space, the large eddies are 
broken into smaller and smaller eddies (after Sagaut et al., 2006).   ...................... 64

Figure 2.3 Modeled eddy viscosity in hybrid RANS/LES method. (a): zonal method, 
(b): seamless approach (after Hanjalić & Kenjereš, 2008).   .................................. 65

Figure 2.4 Computational domain with building models for CFD simulation of ABL 
flow modeling (adopted and modified from Blocken et al., 2007).   ...................... 65

Figure 2.5 (a) Trapezoidal planks & triangular floor roughness elements used for 
open exposure ABL simulation; (b) velocity profile (power law with 14.0=α
) & turbulence intensity; (c) time history of streamwise velocity fluctuation; 
(d) Comparison of BLWT generated turbulence spectrum with von Karman 
spectrum model ( s/m12U H = ).   .......................................................................... 66

Figure 2.6 Implementation of recycling method (Lund et al., 1998): (a) in which an 
auxiliary pre-computation is mined to produce the inlet velocity data and (b) 
Combined computation domain where data is passed on-the-fly to the main 
computation.  .......................................................................................................... 66

Figure 2.7 (a) Surface roughness from LIDAR data and (b) the effect of surface 
roughness on the oncoming wind speed profiles (after Bitsuamlak et al., 
2010).   .................................................................................................................... 67

Figure 2.8 Turbulence ranges at high Re numbers flow: Comparison of actual wind 
spectra with the von Karman and the Gaussian spectral model (after Hunag et 
al., 2010).   .............................................................................................................. 67

Figure 2.9 Validation of CFD with model-scale, full-scale experiments, and field 
measurement. Note: Tornado simulator is from Iowa State University; TTU: 
Texas Tech University; FIU: Florida International University; UWO: 
University of Western Ontario.   ............................................................................. 68



xiii 
 

Figure 2.10 Surface mounted cube: Comparison of mean wind pressure coefficients 
between wind tunnel experiments and numerical simulation by using several 
turbulence models (Bitusamlak et al., 2010).   ....................................................... 68

Figure 2.11 Cubical building in ABL flow. Comparison of pressure coefficient 
profiles on the vertical section using several turbulence models (after Köse & 
Dick, 2010).   .......................................................................................................... 69

Figure 2.12 Silsoe 6m cube: Comparison of mean pressure coefficient between full 
scale measurements, wind tunnel and numerical simulations- cube skewed at 
450.   ........................................................................................................................ 69

Figure 2.13 Low-rise building: Comparison of mean wind pressure coefficients 
experiment and numerical (after Nozawa & Tamura, 2002).   ............................... 70

Figure 2.14 The TTU building: Comparison between mean pressure coefficients for 
straight wind computational and WT and field measurements (after 
Senthooran et al., 2004).   ....................................................................................... 70

Figure 2.15 The TTU building in ABL flow condition: Comparison of pressure 
coefficient profiles on the vertical section between wind tunnel experiments 
and numerical simulations (after Köse & Dick, 2011).   ........................................ 71

Figure 2.16 Distribution of averaged pressure coefficient along the surface of the 
square cylinder  Where Case A1 and Case A2 have the same number of grids 
(204×122) in the vertical and stream-wise direction but the same spans-wise 
grids as C (after Song & Park, 2009).   ................................................................... 71

Figure 2.17 Comparison between the mean pressure coefficients of CAARC in a 
simulated ABL flow using LES with various inflow turbulence models and 
BLWT experiment.   ............................................................................................... 72

Figure 2.18 Distribution of fluctuating pressure coefficient (rms) over the frontal and 
lee-ward faces of CAARC in a simulated ABL flow filed: Comparison 
between LES with various inflow turbulence models and BLWT experiment.   ... 73

Figure 2.19 Along- and across-wind force spectra of a standard tall building using 
various inflow turbulences.   ................................................................................... 74

Figure 2.20 Mean wind pressure coefficient on CAARC building model. Where the 
numbers 0 to 4 represent the length of different faces of the CAARC model: 
from 0 to 1.5: wind-ward, 1.5 to 2.5: side and 2.5 to 4: lee-ward faces.   .............. 74

Figure 2.21 LES of high-rise building: (a) mean pressure coefficient at a vertical 
section; and (b) rms of pressure coefficient (after Nozawa & Tamura, 2002).   .... 75



xiv 
 

Figure 2.22 Comparison of wind loads on low-rise building: (a) structural frame wind 
load, (b) wind load on cladding (after Tamura et al., 2008).   ................................ 75

Figure 2.23 Wind loads on cladding of high-rise building (AIJ, 2005). (a) wind-ward 
wall, (b) lee-ward wall, and (c) side wall (after Tamura et al., 2008).   ................. 76

Figure 2.24 Wind loads on structural frame of high-rise building: (a) wind-ward, (b) 
lee-ward, and (c) side (after Tamura et al., 2008).   ................................................ 76

Figure 3.1 Evolution of the Wall of Wind full-scale testing facility at Florida 
International University.   ....................................................................................... 95

Figure 3.2 Six-fan WoW Small-scale (1:8) model.   .......................................................... 96

Figure 3.3 Computational Domain (CD) and Boundary Conditions as defined by 
FLUENT.   .............................................................................................................. 96

Figure 3.4 Sizes of test parallelepipeds and wind-fields at the inlet used for blockage 
assessment studies. Note that only the grey building has been used for wind 
simulation proximity assessment.   ......................................................................... 97

Figure 3.5 Test cube windward face distances from the wind simulator (fans) for 
different simulation cases (Hb, 2Hb, 3Hb, 4Hb, and 5Hb for Cases 4, 5, 6, 7 
and 8 respectively).   ............................................................................................... 97

Figure 3.6 Comparison of mean wind pressure coefficients: Experimental 
measurements and numerical simulations by using several turbulence models. 
(after Bitsuamlak et al., 2002)   ............................................................................... 98

Figure 3.7 Wind velocity contour plots for ABL and WoW simulation.   ......................... 99

Figure 3.8 Wind velocity path-lines and recirculation zones.   .......................................... 99

Figure 3.9 ABL and WoW mean pressure coefficient comparisons for Case 1 (3x3x3 
m cube)  ................................................................................................................ 100

Figure 3.10 ABL and WoW mean Cp comparisons for Case 2 (4x4x3 m 
parallelepiped)  ..................................................................................................... 100

Figure 3.11 ABL and WoW mean Cp comparisons for Case 3 (5x5x3 m 
parallelepiped)  ..................................................................................................... 101

Figure 3.12 ABL and WoW mean Cp comparisons for Cases 4, 5, 6, 7 and 8 with 
wind tunnel data from literature.   ......................................................................... 101

Figure 4.1 Typical types of roofs addressed in wind codes and standards.   .................... 126



xv 
 

Figure 4.2 Wind tunnel testing set up for low-rise building with (a) Gable and (b) Hip 
roof.   ..................................................................................................................... 126

Figure 4.3 Photographs of the actual FL-27 house showing anemometer location and 
pressure sensor (after Liu et al., 2009).   ............................................................... 126

Figure 4.4 Google image of surrounding exposures of study buildings FL27 (top) and 
FL30 (bottom) (after Kopp and Gavanski -- part of NSF Grant CMMI-
0928563-- 2010; Liu et al., 2009).   ...................................................................... 127

Figure 4.5 Wind tunnel models of houses with complex roof shapes: (a) house model 
FL27 and (b) house model FL30 (after Kopp and Gavanski, 2010 -- part of 
NSF Grant CMMI-0928563).   ............................................................................. 127

Figure 4.6 Wind tunnel setup of study houses with neighboring buildings: FL27 with 
neighboring house (left) and FL30 with neighboring houses (right) (after 
Kopp and Gavanski, 2010 -- part of NSF Grant CMMI-0928563).   ................... 127

Figure 4.7 Three-dimensional perspective drawings of residential buildings: (a) Gable 
and (b) Hip.   ......................................................................................................... 128

Figure 4.8 CAD models of single house models with complex roof shapes.   ................. 128

Figure 4.9 Geometrical models of the FCMP residential houses with neighboring 
buildings.   ............................................................................................................. 128

Figure 4.10 Mean wind speed referenced at mean roof height, h, and turbulence 
intensity profile in the suburban exposure (zo = 0.23 m) in full-scale 
dimensions (NSF Grant CMMI-0928563).   ......................................................... 129

Figure 4.11 Computational domain and boundary conditions: Gable roof model.   ........ 129

Figure 4.12 Computational domain and boundary conditions for FL27 model 
building.   .............................................................................................................. 130

Figure 4.13 Computational domain and boundary conditions of FL27 and FL30 with 
neighboring houses.   ............................................................................................ 130

Figure 4.14 Computational mesh for FL27 and FL30 model buildings.   ........................ 131

Figure 4.15 Computational mesh for FL27 with neighbouring buildings.   ..................... 131

Figure 4.16 Comparison of mean pressure coefficient of LES and BLWT data: (a) 00, 
(b) 450, and (c) 900 wind AoA.   ........................................................................... 132

Figure 4.17 Wind tunnel and CFD contour map of mean pressure coefficients on the 
gable roof building: (a) 00, (b) 450, and (c) 900 wind angle of attack.   ................ 133



xvi 
 

Figure 4.18 Comparison of mean pressure coefficient of LES and BLWT data: (a) 00, 
(b) 450, and (c) 900 wind AoA on the roof of a hip roof building.   ..................... 134

Figure 4.19 Wind tunnel and CFD contour map of mean pressure coefficients for hip 
roof building: (a) 00, (b) 450, and (c) 900 wind angle of attack.  .......................... 135

Figure 4.20 Distribution of pressure taps for LES simulation: (a) FL27 and (b) FL30.   . 136

Figure 4.21 Mean pressure coefficient of FL27 from CFD and BLWT: (a) plot along 
the east of the roof and (b) plot along west side of the roof.   .............................. 137

Figure 4.22 Mean pressure coefficients of FL30 from CFD and BLWT: (a) plot along 
the east of the roof and (b) plot along west side of the roof.   .............................. 138

Figure 4.23 CFD contour maps of mean pressure coefficients.   ...................................... 139

Figure 4.25 Surface velocity streamlines of FL27 with neighboring houses: (a) 00 and 
(b) 1200.  ............................................................................................................... 139

Figure 4.26 Surface velocity streamlines of FL30 with neighboring houses: (a) 00 and 
(b) 1200.  ............................................................................................................... 139

Figure 5.1 (a) An empty wind tunnel set up for ABL testing at RWDI Miramar, FL; 
and (b) Measured mean wind velocity and turbulence intensity (TI).   ................ 176

Figure 5.2 Implementation of Lund's recycling method: Where (a) auxiliary pre-
computation is mined to produce velocity inlet data and (b) computational 
domain is subdivided into driver and main computation domain.   ...................... 176

Figure 5.3 CAARC building model: Dimension and pressure tap locations (a) and (b) 
BLWT, (c) CFD.   ................................................................................................. 177

Figure 5.4 Experimental load evaluation test configurations: Isolated CAARC model 
(a) and with adjacent (b) full-height, and (c) half-height building.   .................... 177

Figure 5.5 Computational domain and boundary conditions for Case 1.   ....................... 178

Figure 5.6 Grid sensitivity analysis on an empty channel flow using RANS turbulence 
modeling.   ............................................................................................................ 178

Figure 5.7 Velocity and turbulence profiles measured from the LES simulation of an 
empty domain with high resolution mesh. Inlet plane; Approach flow is 
measure at 4DZ and the incident flow is measured at 8DZ.   ................................ 179

Figure 5.8 Arrangement of computational grids.   ............................................................ 179

Figure 5.9 Measured inlet velocity profile in semi-log scale.   ......................................... 180



xvii 
 

Figure 5.10 Comparison of numerically generated stream-wise wind velocity 
fluctuation samples at the target building height.   ............................................... 180

Figure 5.11 Comparison of numerically simulated spectra with von Karman spectrum 
model at the model building height (LU=0.55m, and UH=12.12 m/s).   ............... 181

Figure 5.12 Normalized two-point correlation of vertical velocity fluctuation.   ............. 181

Figure 5.13 Spatial representation of the stream-wise instantaneous velocity 
fluctuation at the inlet boundary: (a) Random flow generation method (Inflow-
1) and (b) Synthetic inlet boundary (Inflow-3).   .................................................. 182

Figure 5.14 Comparison of mean pressure coefficient at 2/3 H of CAARC model 
building.   .............................................................................................................. 182

Figure 5.15 Pressure coefficient distribution over frontal and back faces of CAARC 
in a simulated ABL flow: Comparison between LES with various oncoming 
turbulence models and BLWT experiment.   ........................................................ 183

Figure 5.16 Distribution of fluctuating pressure coefficient over the frontal and lee-
ward faces of CAARC in a simulated ABL flow filed: Comparison between 
LES with various oncoming turbulence models and BLWT experiment.   .......... 184

Figure 5.17 Vertical distribution of mean (a) drag, (b) lift, and (c) torsional moment 
coefficients.   ......................................................................................................... 185

Figure 5.18 Vertical distribution of fluctuating (a) drag, (b) lift, and (c) torsional 
moment coefficients.   ........................................................................................... 185

Figure 5.19 LES and BLWT time histories of CL and CD   .............................................. 186

Figure 5.20 Comparison of along-wind force spectrum spectra predicted by LES and 
BLWT: (a) total force and (b) at the building model height (H=0.46).   .............. 186

Figure 5.21 Comparison of across-wind force spectrum spectra predicted by LES and 
BLWT: (a) total force and (b) at the model building height (H=0.46).   .............. 187

Figure 5.22 Torsional moment spectrum (Synthetic turbulence).   .................................. 187

Figure 5.23 Mean wind velocity contour and velocity streamlines: horizontal plane 
(Left) and a vertical section at centerline (Right).   .............................................. 188

Figure 5.24 Instantaneous wind velocity contour and velocity streamlines: horizontal 
plane (Left) and a vertical section on centerline (Right).   ................................... 189



xviii 
 

Figure 5.25 Flow field of CAARC with an adjacent building: Mean velocity 
magnitude (top) and (bottom) instantaneous velocity on a horizontal plane at 
H/3.  ...................................................................................................................... 190

Figure 5.26 Flow field of CAARC with an adjacent building: Mean velocity (top) and 
instantaneous velocity (bottom) at the vertical center plane.   .............................. 191

Figure 5.27 Along-wind force spectra for: (a) Case 2 and (b) Case 3   ............................ 191

Figure 5.28 Across-wind force spectra for: (a) Case 2 and (b) Case 3   ........................... 192

Figure 6.1 Wind tunnel test configurations.  .................................................................... 208

Figure 6.2 CAARC standard tall building model with full-scale dimensions and 
pressure tap locations for: BLWT (a &b) and LES (c).   ...................................... 208

Figure 6.3 Comparison of simulated spectrum with the BLWT data; inflow boundary 
turbulence.   ........................................................................................................... 209

Figure 6.4 Normalized spatial correlation of fluctuating velocity components u, v, and 
w.   ......................................................................................................................... 209

Figure 6.5 Normalized time correlation of fluctuating velocity components u, v, and 
w.   ......................................................................................................................... 210

Figure 6.6 Geometrical models of CAARC building with and without surrounding 
buildings.   ............................................................................................................. 210

Figure 6.7 CAARC with surrounding context: (a) computational domain and (b) mesh 
of CAARC with complex surroundings.   ............................................................. 211

Figure 6.8 Streamwise velocity fluctuation at a vertical plane.   ...................................... 212

Figure 6.9 Instantaneous 3D velocity streamlines of Case 2 (top) and Case 3 (bottom): 
(a) at z=0.1H and (b) at z=0.5H.   ......................................................................... 213

 



1 
 

1 INTRODUCTION  

1.1 Problem statement  
The elevated ocean surface temperatures resulting from the complex interactions 

between the ocean, the atmosphere, and the land surface have led to the intensification 

and frequent incidence of meteorological phenomena such as severe thunderstorms 

(tornados) and cyclones (hurricanes) on regions where this kind of occurrence was rarely 

verified before (Dailey et al., 2009). Buildings and other infrastructures located in the 

coastal regions of the United States of America have a higher level of wind vulnerability. 

The increase in population density and built properties in hurricane prone regions worsen 

the societal vulnerability to such catastrophic events (Pielke et al., 2008). As a result the 

reported property losses associated with hurricane winds have grown from $1.3B/yr pre-

1990 to $36B/yr post-2000 (Lott and Ross, 2006). For example, the 2004/05 post damage 

assessments alone have reported that hurricane induced losses surpassed $100billion and 

caused over 1,400 fatalities (Government Accountability Report, 2006).  

Limiting future damages for new constructions and retrofitting the existing 

structures require a better understanding and accurate estimation of the intensity, 

magnitude, and probability of occurrence of these events and their complex interaction 

with the built environment. In principle, components of the built environment such as 

buildings, bridges, large span roofs, and other civil engineering structures must be able to 

withstand the loads imposed by winds, at least to the extent that the disastrous damage of 

natural force is reduced to the acceptable limit (Irwin, 2008). The effect of wind on a 

structure is three-fold. The structure must have sufficient strength to resist the mean 

wind-induced forces, the structure must have adequate stiffness to satisfy occupant 
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comfort and serviceability requirements, and the wind may produce a dynamic response 

of the structure (typical of flexible structures) and may amplify the first two effects. The 

wind engineering community has long sought building reliable and hurricane-resilient 

structures, developing aerodynamic mitigation devices for retrofitting existing structures, 

and economical design of structures.   

Structures subjected to high winds require realistic estimates of wind effects on 

components and wind-load resisting systems. Low- and high-rise buildings show 

different responses for wind. For low-rise buildings, the roof systems are exposed to 

higher loading than any other building structural element and are subjected to wind forces 

from many directions (Smith et. al, 1991). Worst suction pressures are known to occur in 

the corner on the roof, caused by the development of conical vortices during oblique 

winds (Bank et al., 2000). The alternating vortices triggered at the leading corner of the 

building have resulted in worst suction pressure coefficients of over 20 (Kopp et al., 

2005). This amplified pressure load could result roof lift, both in roof cladding and 

sheathing, leading to water intrusion and cause further content damages.  

High-rise buildings, in addition to the mean and the background loads, are 

subjected to resonant wind loads. The primary source of the along-wind motion is the 

pressure fluctuations in the windward and leeward faces, which are affected by the 

turbulent nature of the approach flow and its interaction with the building itself. The 

cross-wind motion is mainly caused by fluctuations in the separating shear layers. 

Torsional motion can be caused by imbalance of instantaneous pressure distribution on 

faces of the building. This could be either due to oblique wind directions, unsteadiness in 

the approaching flow, partial sheltering and interference effect from neighboring 
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buildings or due to its own shape and dynamic structural properties, including 

eccentricity of the center of mass with respect to the elastic center. Studies have shown 

that for many high-rise buildings, the across-wind and torsional response may exceed the 

along wind response in terms of both limit state and serviceability requirements (Kareem, 

1985).   

1.2 Commonplace wind engineering tools 
In current practice, buildings and other wind-sensitive structures are designed 

following building standard and code procedures. The American Society of Civil 

Engineers Standard (ASCE7-05/-10) specifies provisions for the design of Main Wind 

Force Resisting Systems (MWFRS) and Cladding and Components (C&C) of buildings 

with common regular shapes in open and suburban exposure. However, many real world 

structures such as low rise buildings with complex roofs and tall buildings, in particular, 

fall outside this category. For example, the Standards do not provide provisions for the 

across-wind load evaluation of tall building which could governs the design load.  

Exceptionally, the Australian/New Zealand Standard (AS-NZ, 2002) code attempted to 

provide provisions for the across-wind direction but for very limited cases of tall 

buildings. For complex cases, the Standards refer to physical model testing in boundary 

layer wind tunnel (BLWT) facilities.  

Model scale testing in a boundary layer wind tunnel is the most commonly used 

and industry wide accepted wind engineering tool. A BLWT is mainly employed for 

evaluating wind loads on structures ranging from low-rise to high-rise buildings with 

complex configurations, and from bridge aerodynamics to topographic study. Figure 1.1 

shows a typical BLWT setup for wind load evaluation of a high-rise building. Wind 
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tunnel tests can predict wind-induced effects on structures, addressing some of the 

difficulty encountered by codes, by accounting for project-specific factors such as the 

aerodynamic effect of the actual shape of the structure, the influence of adjacent 

buildings and upstream topography, detailed wind directionality effects, and aero-elastic 

interaction between the structural motion and wind flow. Although aerodynamic studies 

using the wind tunnel technique is economically feasible for large and complex cases, it 

is not cost-effective for low-rise buildings. In addition, there are some concerns regarding 

scale modeling of low-rise buildings.  

 

 
Figure 1.1 Photograph of a typical wind tunnel setup of high-rise building (courtesy of 
RWDI Inc., Canada). 

 
Low-rise residential buildings, that constitute a large proportion of the building 

stocks in the world, are suffering from the most damages. The high vulnerability is the 

result of inadequacy of the load estimation method, the enforcement of the codes and 

quality of construction practice, and the region where the building is located. To deal 

with this, novel large-scale and full-scale research facilities are being built around the 

world. The Wall of Wind (WoW) facility at Florida International University is one of the 

first major initiatives to operate a large-scale facility dedicated to hurricane damage 



5 
 

mitigation (Leatherman et al., 2007). The insights from WoW full-scale experiment 

results are very significant for the wind engineering community in terms of understanding 

the performance of buildings under hurricane winds or wind-driven rain and devising 

mitigation plans to increase the resilience of low-rise buildings under such loads 

(Chowdhury et al., 2009; Bitsuamlak et al. 2009). The multi-peril applied research 

facility build by the Institute for Business and Home Safety (IBHS) and the WindEEE 

dome by the UWO are another notable move towards understanding wind hazards in its 

entirety (Figure 1.2). One noticeable advantage of this type of facility is that their ability 

for testing a full-sized residential building, single story dwelling. Residential construction 

is typically built using prescriptive building codes, and is characterized by the use of 

materials with large variability and structures with significant static indeterminacy 

making load paths and over-all performance difficult to ascertain. These new facilities are 

able to deal with these issues by bringing realistic wind loads to full-scale structures, 

enabling the development of improved building code requirements, product safety 

standards and loss models.  

 
Figure 1.2 Full-scale facilities 

 
Nevertheless, the concerns pertaining to the limited coverage/ or provisions given 

by the standards and codes, the cost of experimental testing and their scarce availability 

in one hand, and the encouraging progress in hardware and software technology on the 
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other hand have been the motivation to investigate the potential of numerical modeling, 

such as CFD applications, as an alternative to the exiting commonplace wind evaluation 

tools. CFD’s easy accessibility is expected to transform the practice of structural design 

for wind, resulting in a more wind-resilient and sustainable systems by encouraging 

optimal aerodynamic and sustainable structural/building design.  

1.3 Objectives of research  
The main objective of this research is to develop strategies for computational 

evaluation and assessment of wind loads on buildings under turbulent wind flow. 

Building on achievements to date, the current study evaluates wind loads on low-rise 

buildings with complex roof shapes, investigates numerical the aerodynamics of a 

standard tall building, and assesses the effects of surrounding conditions on the study 

building for multiple wind directions. The sub-objectives include:   

o Comparative study on various turbulence modeling  

o Numerical generation of spatially evolving transient wind velocity field   

o Pressure time-history measurements from high resolution CFD simulations 

o Examining responses of buildings from multiple wind directions  

o Wind-structure interactions studies of low- and high-rise buildings 

o Validation and comparison using experimental and field data 

1.4 Current state of CWE 
Following the successful application of computational fluid dynamics (CFD) in 

aeronautical engineering, several attempts have been made to incorporate computational 

wind engineering (CWE) technique in the evaluation of wind-induced effects. This is 

particularly so considering the recent advances in hardware and software technology, the 
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development of reliable sub-grid turbulence models and numerical reproduction of inflow 

turbulences (Tamura et al., 2008). Significant progress has been made in the application 

of CWE to evaluate wind loads on buildings (e.g. Murakami et al., 1998; Tamura, 2008). 

Some countries have already established working groups to investigate the practical 

applicability of CWE and develop recommendations for their proper use. Guidelines for 

wind resistant design of buildings and the practical application of CFD to pedestrian level 

wind within the framework of the Architectural Institute of Japan (AIJ) (Tamura et al., 

2008; Tominaga et al., 2008a) and CFD simulation of flows in the urban environment by 

the European cooperation in the field of scientific and technical research (COST, 2007; 

Franke et al., 2006) are some of the most recent accomplishments. Thus far, the majority 

of the numerical studies of wind loads on buildings have been devoted to basic cubes 

immersed in turbulent boundary layer flow. These have been done only for few wind 

directions using simple turbulence modeling techniques. Surface mounted cubes are 

chosen for their geometrical simplicity yet represent the basic complex features of 

building aerodynamics, often the advantage of availability full-scale data for validation 

purpose, and acceptable costs (Stathopoulos & Wu, 2004).  

1.5 Research methodology 
The following procedures have been adopted in for implementation of Reynolds 

averaged Navier-Stokes (RANS) and large-eddy simulation (LES) CFD techniques in the 

numerical investigation of wind effects on low and high-rise buildings.  

1.5.1 Explanatory investigation on turbulence modeling  

After a thorough review of the literature, the investigation of various turbulence 

models for their relative suitability was necessary. To achieve this, preliminary 



8 
 

exploratory studies have been done on buildings employing both RANS and LES for the 

following cases: (1) External aerodynamic simulation on surface mounted cube (Wright 

and Easom, 2003), representative of low-rise residential houses, and (2) simplified model 

of CAARC standard tall building model with and without a neighboring building 

(Dagnew et al 2009, 2010). The LES, a multi-scale computational modeling approach 

capable of capturing fluctuating turbulent flow, reproduced the flow features that have 

pivotal importance for turbulent wind flow. 

1.5.2 Wind tunnel ABL simulation  

One of the critical parts for the success of numerical based simulations is the 

proper prescription of upwind flow parameters. CFD being at its validation phase, 

comparing CFD simulation with wind tunnel data is a practical way of assessing its 

prediction accuracy. For this purpose, flow statistics from wind tunnel data are 

indispensable for defining inlet boundaries of LES simulations. ABL simulations on an 

empty BLWT were carried out for open and suburban terrain at RWDI Inc. Miramar, 

Miami, FL facility. Time histories of turbulent velocity fluctuation components were 

measured. The mean velocity and turbulence intensity profiles and the integral length 

scales that were obtained from the BLWT were used for the numerical inflow turbulence 

data generation.   

1.5.3 Numerical generation of inflow turbulence 

Spatially evolving transient inflow turbulence fluctuations were numerically 

generated by incorporating the in-house C/C++ developed codes with the finite volume 

CFD software known Ansys Fluent. The random fluctuations that possess the inherent 

characteristics of natural wind were generated using various methods such as, for 
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example, velocity recycling and synthetic methods. Homogenous and inhomogeneous 

anisotropy turbulent flow fields were applied at the inlet boundaries and their effects on 

the wind pressure loads prediction accuracy of LES were investigated.    

1.5.4 Geometrical modeling  

CAD models that realistically represent the actual building configurations and the 

surface roughness of the complex upwind terrain of an urban setup were produced. 

Proper modeling of these factors will significantly improve the outcome of the 

computational simulation. This was done by using commercial CAD software like 

Google SketchUp, SolidWorks and Design modeler. The created models include 

structures within 1km radius of the target building. Once the water tight topologies were 

ready, the models were used by the grid generator tool. 

1.5.5 Grid sensitivity analysis  

High quality computational grids with efficient strategies for solution-dependent 

grid adaptation and optimization dedicated for building aerodynamics were implemented. 

For corner wind, high fractions of hexahedral grid cells were generated using Gambit, 

ICEM CFD and the CutCell methods of Ansys Meshing softwares.  Economical meshes 

were produced by dividing the flow domain into multi-body parts. Very fine grids cell 

were clustered in the near wall to resolve the inner boundary layer and the high gradient 

flow regions.  

1.5.6 Computational evaluation of wind loads and validation with experimental data 

The envelope of the target buildings were systematically instrumented with 

pressure taps, created in the flow domain. Pressure time histories were measure from the 
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high frequency pressure integration (HFPI) type LES simulation. The wind pressure 

coefficients (mean, root-mean-square), the load coefficients (drag and along-wind force 

coefficients), the moment coefficients (bending and over turning), and the peak values 

were calculated and validated with wind tunnel, full-scale, and field measurements.  

1.6  Scope of research  
This dissertation document provides the background of the multi-scale 

computational and experimental wind engineering research effort carried out at FIU and 

other commercial and academic institute organizations generously provided the wind 

tunnel data used for validation purposes (see acknowledgment). Each section, excluding 

the introduction, represents a published paper, in press, or under review. Chapter 2 

presents the state-of-the-art of CFD applications for real world industrial problems, 

special efforts has been made to understand the underlying modeling principles and 

practices of numerical wind load evaluation. Recent advancements in the field of CWE, 

various aspects of turbulence modeling, boundary conditions, spatial and temporal 

discretization techniques, computational cost of preforming of high Reynolds number 

flow simulation, illustration on numerical wind pressure loads estimation for low-and 

high-rise buildings, and the need for validation are discussed in Chapter 2. Chapter 3 

documents the application of Reynolds-Averaged Navier-Stokes (RANS) simulations for 

assessing the proximity effects of test specimen for the development of the Wall-of-Wind 

testing facility. Blockage issues related to the relative model and WoW wind field sizes 

are investigated. Chapter 4 focuses on the computational evaluation of wind pressure 

loads on actual Florida residential houses with complex roof shapes. A boundary layer 

wind tunnel data for isolated and with surrounding building cases used to validate the 
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LES models are also described.  The test cases are similar to the buildings studied as part 

of the Florida Coastal Monitoring Program (FCMP) project. The mean and peak values 

obtained from LES simulations for oblique wind angle are computed and elaborated. 

Chapter 5 covers aspects of atmospheric turbulence that are of interest to structural and 

wind engineers and explains the principles and methods of HFPI-type LES simulations 

for a standard tall building with and without adjacent buildings. In addition, simulation 

algorithms of various random turbulence for generation techniques are examined. 

Chapter 6 presents LES simulation of tall buildings under complex urban settings. The 

sheltering and interference effects of neighboring buildings were investigated.  The wind 

loads obtained for the various configurations are discussed in great depth. Finally, 

Chapter 7 summarizes conclusions about CFD applications for wind engineering and 

recommend for future research avenues.   
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Abstract  

This paper reviews the current state-of-the-art in the numerical evaluation of wind 

loads on buildings. Important aspects of numerical modeling including (i) turbulence 

modeling, (ii) inflow boundary conditions, (iii) ground surface roughness, (iv) near wall 

treatments, and (vi) quantification of wind loads using the techniques of computational 

fluid dynamics (CFD) are summarized. Relative advantages of Large Eddy Simulation 

(LES) over Reynolds Averaged Navier-Stokes (RANS) and hybrid RANS-LES over LES 

are discussed based on physical realism and ease of application for wind load evaluation. 

Overall LES based simulations seem suitable for wind load evaluation. A need for 

computational wind load validations in comparison with experimental or field data is 

emphasized.  A comparative study among numerical and experimental wind load 

evaluation on buildings demonstrated generally good agreements on the mean values, but 

more work is imperative for accurate peak design wind load evaluations. Particularly 

more research is needed on transient inlet boundaries and near wall modeling related 

issues.  
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2.1 Introduction 
Buildings, bridges, and all other civil engineering structures must be able to 

withstand external loads imposed by nature, such as wind, at least to the extent that the 

disastrous damage of natural force is reduced to the designed acceptable limit (Irwin, 

2008, 2009). Traditionally wind loads on buildings are obtained from building standards 

and codes. The majority of building codes and standards usually provide loads for along-

wind direction of regular shape buildings under open and suburban exposure. Most often, 

building standards and codes utilize the quasi-steady and strip theories approach where 

the gustiness of wind is customarily factored in by a random-vibration using the “gust 

factor approach” to predict the along-wind response (Davenport, 1967; Simiu, 1976). For 

example, the American Society of Civil Engineers (ASCE) 7-05 Standard contains 

provisions on wind loads for the design of Main Wind Force Resisting Systems 

(MWFRS), as well as Cladding and Components (C&C) of buildings with common 

shapes in open and suburban terrain. Additionally, the National Building Code of Canada 

2005 (NBCC 2005) provides acceleration calculations for the along-wind and across-

wind directions. The Australian/New Zealand Standards (AS-NZ) (2002) code and the 

Architectural Institute of Japan (AIJ) recommendations (2400a)  have made an 

exceptional attempt to provide the across-wind response using a cross-wind spectrum and 

expressions for both the across-wind and torsional root-mean-square acceleration. For 
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cases not addressed by the building codes and standards, a physical testing in a boundary 

layer wind tunnel (BLWT) is referred. Although this option is economically viable for 

large projects such as the aerodynamics of tall buildings and long span bridges, 

performing building specific BLWT testing might not be cost-effective for most 

buildings such as low-rise residential buildings. Moreover, the variations in the wind flow 

and surrounding conditions that result from one project may not be extendable to a new 

project making generalizations more difficult.  

To address this gap at least for a preliminary wind load evaluation case, a 

computational model that can simulate the atmospheric boundary layer (ABL) flow and 

predict the parameters of interest can be an alternative approach. It is to be noted, 

however, computational approaches also have their own share of challenges and 

shortcomings yet to be resolved before their use for a final wind resistant design of 

buildings immersed in a turbulent ABL flows. At present, the cost of performing CFD is 

not lower than BLWT testing either. However, the computational cost is in a decreasing 

trend due to encouraging advances both in the hardware and software technology. This 

paper attempts to present a comprehensive review of the state-of-the-art of 

Computational Wind Engineering (CWE) as it relates to wind load evaluation on 

buildings. Recognizing significant progress made in the last decades, the paper will also 

pinpoint the area where the current practice of CFD needs further improvement, and 

attempts to discuss the direction of future CWE avenues based on the literature and 

authors’ perspective, and draw some observatory conclusions relevant for practical 

applications of CWE.  
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Significant progress in CWE has been reported in literature. Ranging from: 2D to 

3D flow field analysis; building to human scale; isolated buildings situated in open 

terrain to high-rise buildings located in urban city centers to complex environmental 

problems (Murakami 1998; Tamura et al., 2008; and Jiang et al., 2006). Several 

published CWE findings dedicated to wind load evaluations supported with experimental 

validation have demonstrated encouraging results.  Murakami (1997, 1998) have 

presented a historical review of turbulence modeling up to the late 1990s and pointed out 

the challenges that limited the practical applicability of CWE during that period. Some of 

the difficulties were: (a) high Reynolds number (Re); under this type of flow condition 

the accuracy of CWE is dependent on the grid resolution near the solid wall of the bluff 

body, (b) wind is complex, unsteady, and the 3D turbulent flow field is mainly 

characterized by impinging, separation, and vortex shedding. This requires 3D 

computation with an advanced turbulence model such as LES. However, the limitation in 

computing resources has hindered LES adoption in various CWE applications. Hence, it 

was common to carry out 2D RANS simulations during this period, (c) the presence of 

sharp edges at building corners make it very difficult to analyze the wind flow field by 

CFD, and (d) bluff body wake causes problems to inflow and outflow boundaries of LES 

and direct numerical simulation (DNS).   

To overcome the aforementioned problems, several revisions have been made on 

RANS turbulence model closures mostly in an ad hoc manner. The revisions on RANS 

models, especially the modifications made on standard ε−k  models, succeeded in 

correcting the overestimation of kinetic energy production in the impinging region and 

reproduction of flow separation and reattachment around building roofs (Murakami, 



18 
 

1997, Murakami and Mochida, 1999). The LK  model by Launder and Kato (1993) 

reduced the production of the kinetic energy at the windward corner but had some 

mathematical inconsistency (Tsuchiya et al., 1997). Later Murakami et al. (1998) 

proposed the MMK  model which provided significant improvements by removing the 

inconsistency of the LK  model. A discussion on progress of CWE until the late 1990 

was also provided by Stathopoulos (1999).  

Some notable studies in the early 2000 include: non-linear RANS modeling for a 

full-scale low-rise building such as the Silsoe Cube (Wright and Easom, 2003) where 

comparison of several εκ −  family of turbulence models were provided in comparison 

with the field measurement data; computational prediction of flow-induced pressure 

fluctuations on Texas Tech University building (TTU) ( Selvam, 1999; Senthooran et al., 

2004 ).  Gomes et al. (2005) simulated flow around L- and U- shape buildings by using 

the RNG εκ − turbulence model. Although good agreement between Gomez et al. 

(2005) and experimental results for upwind PC  values were observed, large 

discrepancies were found for PC  values of the wake regions mostly attributed to the use 

of isotropic turbulence model. More recently several CFD works have been reported on a 

bench mark tall building called the Commonwealth Advisory Aeronautical Research 

Council (CAARC) model building, which also commonly used as a benchmark for 

calibration/validation new BLWT facilities (Huang et al., 2007; Braun and Awruch, 

2009; Dagnew et al., 2009, 2010). Other works on tall buildings include: LES of a full-

scale supper-tall building with Re greater than 810  (Huang and Li, 2010); LES of flow 

and building wall pressure in a city center (Nuzu et al., 2008; Tamura, 2010a); flow 
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around a high-rise building using various turbulence models (Tominaga et al., 2008a); 

aerodynamic characteristics of a tall building inside a dense city district using LES 

(Tamura, 2010b). The use of advanced turbulence modeling such as LES, and 

development of reliable and robust subgrid models and numerical algorithms which 

perform well in a wide range of flow parameters (Tamura et al., 2008) and prescriptions 

of transient inflow boundary (Sagaut et al., 2004; Tutar and Celik, 2007; Xie and Castro, 

2008) reportedly have increased computational prediction  accuracy.  

Some countries have already established working groups to investigate the 

practical applicability of CWE (and for its potential inclusion in building codes and 

standards) and have developed recommendations and guidelines for efficient 

implementation and use for wind resistant design of actual buildings and for assessing 

pedestrian level winds. Within the framework of the Architectural Institute of Japan (AIJ) 

(Tominaga et al., 2008b) and the European cooperation in the field of scientific and 

technical research (COST, 2007; Franke, 2006). The AIJ provides methods for predicting 

wind loading on buildings by RANS and LES while COST Action 732 (COST, 2007) 

outlined best practice guidelines for successful CFD simulations of wind flows in an 

urban environment using steady RANS equations. To this effect ASCE has also a task 

force which examines the potential use of CWE.  

Wind loads and wind induced responses are affected in a complex way by several 

factors, such as oncoming wind characteristics (wind speed, turbulence intensity, integral 

length scales, etc.), topography and ground roughness, immediate surroundings, building 

shape, orientation, and dynamic structural properties (for flexible buildings). Hence, 

before getting to the wind load evaluation phase any CWE modeling should make an 
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effort to incorporate these factors in the modeling process as realistically as possible to 

produce a usable outcome, just as is typically done in wind tunnel experiments. It is 

important to adopt/develop numerical models that realistically represent the complexity 

of the flow encountered while evaluating wind loads on buildings characterized as “bluff 

bodies” and submerged in a turbulent ABL flow. Because of this, challenges remain in 

numerically analyzing transient flow fields around bluff bodies. With this in mind, major 

aspects of numerical wind evaluation focusing on turbulence modeling, computational 

domain (CD) and boundary conditions (BCs) will be discussed in the following sections. 

Existing numerical work on low- and high-rise buildings from literature and authors’ own 

work will be compared among each other and with the experimental data. It is to be noted 

that the scope of this paper does not include non-conventional winds such as tornado and 

downburst.  

2.2 Turbulence models  
Choosing the right type of turbulence model is essential for accurate wind load 

evaluation. The selection of turbulence models is carried out by considering 

computational cost, level of modeling and resolution, and flow unsteadiness. The RANS 

and Reynolds Stress Model (RSM) have been widely used to simulate wind flow around 

bluff-bodies in the early stage of CWE. Encouraged by the increased computing power, 

the present trend in the modeling of complex wind/structure interactions are characterized 

by the desire to capture the unsteady turbulent motion, primarily to resolve the large-scale 

motions in time and space. Thus, Direct Numerical Simulation (DNS) and LES are better 

suited for such type of simulations. The multi-scale aspect and the concept of the kinetic 

energy cascade often describe the nature and complexity of turbulent flow. All the 
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relevant active turbulence scales can be accurately represented by the DNS method 

without involving any modeling assumptions. In this method the total number of 

computational nodes may be scaled as ( 3
LRe ), where LRe  denotes the Re number based 

on the spatial integral length. The presence of solid walls in the flow and the high 

magnitude of the relevant Re number ( 85 1010 − , typical of tall buildings) substantially 

increase the computational cost and making DNS unpractical for wind load evaluations. 

Hereafter only LES and RANS or a combination of them will be discussed.  Recently, the 

Hybrid method which includes a combination of RANS with LES (RANS-LES), very 

large-eddy simulation (VLES), and Partially Averaged Navier Stokes (PANS) equations 

is emerging as an alternative. Figure 2.1 shows the classification of unsteady turbulence 

modeling approaches according to the level of modeling and readiness. The hybrid 

RANS-LES falls in the middle of the modeling and readiness level.  

2.2.1 The RANS models 

Averaging of N-S equations in time and space can reduce the physical complexity 

of turbulent flow. Time averaging (steady RANS) or ensemble averaging (URANS) of N-

S equations eliminate or partially eliminate the time dimension and produce mean flow 

characteristics. RANS based on linear eddy-viscosity models have been widely used in 

CWE applications. Various modifications and new modeling concepts have been 

developed, ranging from ad hoc remedies (empirical tuning of a set of constants), 

complex non-linear-eddy-viscosity approaches (NLEVM) to multi-equation and multi-

scale second-moment closures, particularly for flows characterized by strong three-

dimensional turbulence in which mean flow information is not sufficient enough to 
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accurately predict unsteady flow behaviors (Hanjalić and Kenjereš, 2008). However, 

oversimplified assumptions and the failure of the RANS modeling to capture some of the 

key phenomena (for example flow separations and reattachment for flow past a building) 

have limited its application for wind load evaluations. For wind–resistant design of an 

actual building, the use of RANS is limited to estimating time-averaged forces on the 

building, i.e. along-wind load (Tamura et al., 2008; AIJ, 2004a; AIJ, 2005). In the work 

of Hanjalić and Kenjereš (2008) some of the new advancements of RANS models aimed 

at robust application of realistic flows, in line with treatment of wall functions, have been 

discussed. Some of these new developments are identified as unsteady RANS, Multi-

scale RANS, transient RANS, VLES and hybrid RANS/LES (Hanjalić, 2005). Even 

though, RANS is assumed to be the main strategy to drastically reduce computational 

cost, researchers are migrating from the traditional RANS modeling approach to advance 

turbulence modeling such as LES and Hybrid methods (Spalart, 2009).  

2.2.2 Large eddy simulation  

As pointed out in the introduction, wind flows around buildings are complex, 

three dimensional, highly unsteady, and primarily characterized by high Re numbers and 

flow separations and reattachments “bluff bodies”. This result is significant in scale 

separation between the large-scale energy carrying structures and the small-scale 

dissipative eddies. Experience based knowledge showed that the calibration techniques in 

RANS, time and ensemble averaging, are very questionable for such flows. 

Decomposition of the resolved velocity field, prior to scale separation into “large-scale” 

and “small-scale” partitions, and the construction of a sub-grid stress tensor based on this 

decomposition is the foundation of the multi-scale approach of LES.  LES offers a more 
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comprehensive way of capturing unsteady flows. The dynamics of the large-scale 

structures are resolved, while the effect of small-scale turbulence is modeled using a sub-

grid-scale (SGS) model. These basic strategies resolve most of the turbulent kinetic 

energy ( κ) of the flow and model the dissipation (ε) which are assumed to have a weak 

effect (see Fig. 2.2) (Walters and Bushan, 2005; Tucker and Lardeau, 2009; Frölich et al., 

2008).  

LES modeling works well for high-Re number flow away from wall boundaries. 

However for an attached wall boundary where detailed near-wall treatment is required to 

capture the scale of motion responsible for turbulence production, a very large number of 

grid points and very small time steps are needed (Spalart, 2009). For example, in the 

classical LES approach the wall units 50≈∆ +x , 1≈∆ +y , 15z ≈∆ +  are used to capture 

the excited length and time-scales of turbulence near-wall regions (Sagaut and Deck, 

2009). However, for an attached wall boundary where detailed near-wall treatment is 

required to capture the scale of motions responsible for turbulence production, high 

resolution both in space and time is needed (Spalart, 2009) suggested that the level of 

resolution is attainable approximately in the year 2045. To alleviate the high 

computational cost of LES simulations, researchers suggested the hybridization of LES 

and RANS methods. While the free shear flow region with massive separation is treated 

by LES, the boundary layer is treated with RANS (Terracol et al., 2001). Recent studies 

by Grinstein and Drikakis (2007) showed that there is a growing interest in the implicit 

LES (ILES) method, particularly for external flows around buildings (Patnaik et al., 

2007). In this method no subgrid scale (SGS) model is required for unresolved scales. In 
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the standard SGS model this is done by setting the Smagorinsky constant ( sC ) to zero. 

The influence of the unresolved scales on the resolved scales is accounted for by the 

numerical dissipation of the discretization scheme of the convective terms in the 

momentum equations. The essential feature is that the numerical dissipation mimics 

sufficiently well the physical process of dissipation of the turbulent eddies.  

2.2.2.1 SGS model in LES  

In LES simulation, subgrid-scale stresses resulting from filtering operation of the 

N-S equations are unknown and requires modeling.  Murakami (1997) reported the new 

trends in LES subgrid-scale modeling commonly applied for CWE applications. Since the 

introduction of the standard Smagorinsky SGS model (Deardorff, 1970), the dynamic 

Smagornisky-Lilly SGS model based on Germano et al. (1996) and Lily (1992) have 

become the standard of LES computation. The Smagornisky constant ( sC ) is computed 

dynamically based on the resolved scales of motion. Later Kim and Menon (1997) 

proposed the dynamic SGS kinetic energy model arguing that the subgrid-scale 

turbulence can be better modeled by accounting for the transport of the SGS turbulence 

kinetic energy. This approach was reported to perform better than an algebraic expression 

based on the local equilibrium assumption given by the standard and dynamic 

Smagorinsky models (Huang et al., 2007).  

2.2.3 Hybrid RANS/LES 

Maintaining the balance between computational accuracy and computational cost 

is essential for turbulence modeling. The objection, i.e., because of high computational 

cost, of applying LES for the entire flow domain  and the inadequacy of RANS modeling 
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to capture the fluctuating components of lead to an alternative method, the Hybrid LES-

RANS. This hybridization is assumed to efficiently blend the best features of RANS and 

LES and has recently become an attractive proposition for boundary layer flow 

simulations (Fröhlich and Dominic, 2008). For pure LES simulation, the grid density 

increases with Re1.8 in near-wall regions while in RANS grid clustering in the wall-

normal direction is proportional to ln(Re) (Hanjalić et al., 2008). Hence, for flows where 

the attached boundary layer plays a dominant role in the flows, coupling of the models 

(LES and RANS) is arguably a better strategy to drastically reduce the computational 

cost of a stand-alone LES (Leschiziner, 2009; Tucker and Lardeau, 2009; Sagaut and 

Deck, 2009; Hanjalić et al., 2008).  Hybrid LES-RANS has been applied in various field 

of applications ranging from aeronautical (Forsythe et al., 2006), ground vehicles (Spalart 

& Squires 2004), scalar transport in urban environment (Lien et al., 2008) (Sreenivas et 

al., 2006) to buildings (Camarri et al., 2005; Wilson et al., 2006; Song and Park, 2009).  

The most common approaches in hybrid method are classified into two major 

classes, namely zonal (two-layer) and global (seamless) models. The zonal approaches 

are based on explicit splitting of computational domain into two distinct sub-domains and 

discontinuous treatment of RANS-LES interface. Coarse–grid LES is applied in the outer 

turbulent region, away from a solid wall, while a one-point RANS model is applied in the 

near-wall region. This is then coupled via appropriate boundary conditions at the RANS-

LES interface (Sagaut et al., 2005; Hanjalić and Kenjereš, 2008).  In the seamless 

approach instead of switching models at the RANS-LES interface, a continuous treatment 

of flow variables are applied throughout the solution domain. The respective turbulence 

models will be activated by changing length scales. RANS, in the near wall flow regime, 
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will be initiated using wall distance and LES in the outer turbulent region will be turned 

on using a representative grid size.  

Despite the appealing feature of hybrid LES-RANS in reducing computational 

cost, there still remains some work to be done in both the “zonal” and “seamless” 

methods. For the zonal method, ensuring the proper matching of the conditions at the 

interface, location and definition of interface, and nature of matching condition are keys 

to it success. One way of attaining proper matching is by equaling the total stress or total 

viscosity. Since the RANS model contributes large portions of modeled quantities than 

LES, by either damping the eddy viscosity of RANS (using damping coefficient µC ), 

decreasing RANS kinetic energy (increasing  dissipation) the proper matching at the 

interface can be achieved (Hanjalić et al., 2004; Temmerman et al., 2005). Figure 2.3(a) 

illustrates the zonal method with a different interface location. In addition, the stochastic 

backscatter approach by Piomelli et al (2003); the addition of turbulent fluctuation by 

Davidson and Dahlstom (2004), and the use of instantaneous µC  by Hanjalić et al. 

(2004) are some of the proposed approaches for the reduction of non-physical features at 

the RANS-LES interface. In seamless method the continuity of the model (i.e., gradient 

continuity of eddy viscosity) throughout the whole flow domain eliminates the need of a 

predefined interface. The “grid detecting” function controls the switching of the 

characteristic turbulence length scale RANSL   to LESL  (Fig. 2.3b). One of the most known 

hybrid approach under the seamless category is detached eddy simulation (DES) 

originally proposed by Spalart and Allmaras (1994), also called SA method. It applies a 

one-equation RANS modeling in the entire boundary layer while employing LES to 
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separated regions. Later, Spalart et al. (1997) applied a modification to the original model 

by using a local equilibrium assumption, in which the production term is balanced by the 

destruction term. This approach turns the one equation SA model into an LES subgrid-

scale model in regions where the grid resolution is high, and as RANS in the coarse mesh 

region. The gray area between the boundary layer and massive separation usually causes 

problems. This is usually handled using DES limiter by synthesizing to the grid spacing, 

i.e., replacing the wall distance ( ).C,dmin(d
~

.DES ∆= , where z,y,xmax( ∆∆∆=∆ )) by 

the filter width ∆  will turn on LES (Travin et al., 2000; Breuer et al., 2003; Fröhlich and 

Terzi, 2008). It is to be note that numerous studies have exhibited that the DES fails to 

serve its intended purpose when applied to flows with thick boundary layers and shallow 

separation regions (Breuer et al., 2003; Sagaut and Deck, 2009).  

Another challenge in the DES method is the mismatch of the mean velocity 

between the RANS and the LES region caused by the steep velocity gradient at the 

interface. In order to address this and other issues, recently a modified method called 

shielded and delayed detached eddy simulation (DDES) is proposed (Menter & Kuntz, 

2002; Spalart et al., 2006). In the new approach the DES limiter depends on the solution, 

i.e., the length scale, and preserve RANS mode by delaying the activation of LES, 

irrespective of the grid spacing. As an alternative approach,  Girimaji et al. (2003) 

suggested the Partially Averaged Navier-Stokes (PANS) method based on the ratio of 

unresolved to total kinetic energy ( k ) and dissipation rate (ε ). The ease of its 

implementation into an existing RANS solver makes PANS a more attractive proposition 

for CWE application (Frohlich and Terzi, 2008). Although hybrid RANS/LES is showing 

promising progress in terms of balancing computational cost and prediction accuracy 
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more work needs to be done to address some of the challenges in merging RANS and 

LES.  Based on the literature review and author’s experience, LES is now a mature 

technique and is recommended for wind load evaluation application. In addition, the 

following numerical techniques contribute to the success of numerical wind evaluations: 

numerical generation of transient inflow turbulence (Kraichan, 1970; Lund et al., 1998; 

Nozawa et al., 2002, 2003; Smirnov et al., 2001; Batten et al., 2004; Huang et al., 2010); 

development  of advanced sub-grid scale turbulence modeling techniques capable of 

solving unsteady three-dimensional boundary separated flows; and numerical 

discretization with conservation of physical quantities for modeling complicated 

geometry. Because of these LES holds promise to becoming the future CWE modeling 

option of where turbulent flow is of pivotal importance (Tucker and Lardeau, 2009; 

Sagaut and Deck, 2009). 

2.3 Computational domain and boundary conditions  
The computational domain (CD) defines the region where the flow field is 

computed. The size of the CD should be large enough to accommodate all relevant flow 

features that will have potential impact on the characteristics of the flow field within the 

region of interest. In most cases, the stretch of the CD in the vertical, lateral and flow 

direction depends on the type of boundary conditions used. Franke (2006) and COST 

(2007) suggested that for a single building of height H, vertically the domain should 

extend 3H to 4H above the roof level if smaller blockage and up to 10H if larger 

blockage is anticipated. Based on these recommendations and from author’s previous 

experience, the CD that extends 5H upwind will ensure the ABL to develop fully. If the 

inlet boundary is too far from the study building, the turbulence fluctuation will dissipate, 
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this is true especially for wind load evaluation using LES, before it reaches to the study 

building. For RANS, the distance between the inlet and the incident plane should be long 

enough to preserve the mean velocity (U ), the turbulent kinetic energy ( k ), and the 

turbulence dissipation rate (ε ). The outflow/or outlet boundary should be at far enough 

distance to allow the wake development. Hence 15H downstream of the target building is 

recommended. Laterally it can extend 5H from the sidewall surfaces. For LES additional 

requirements should be also taken into consideration when sizing the CD for example 

whether it is large enough to accommodate the formation of the largest energy containing 

flow structures (COST, 2007).  

Boundary conditions (BC) represent the effect of the surroundings that have been 

cut off by the CD and idealize the influence of the actual flow environment under 

consideration. BCs could dictate the solution inside the CD and have significant effects 

on the accuracy of the solution. At the inlet boundary, the mean wind velocity profile can 

be prescribed using either the power law or log-law profile. As a good practice a 

preliminary CFD simulation of an empty computational domain that accurately represents 

the ABL flow field should be performed by incorporating the measured flow data at the 

inlet boundary through numerical modeling (Blocken et al, 2007) (Fig.2.4) . For 

velocities, no-slip boundary is commonly used at solid walls (COST, 2007). Although 

researchers have commented on the inadequacy of a smooth wall assumption, because of 

its relative ease of implementation, it is common to see simulations using this assumption 

(Tominaga et al., 2008a; Yoshie et al., 2007). For LES simulations, Murakami (1998) 

discussed the ineffectiveness of the no-slip boundary when applied to a bluff body with 

high Re and advised the use of the Werner and Wengle (1991) wall function. One 
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approach to address surface roughness issues is to evaluate the shear stress from the 

logarithmic relationship incorporated in the momentum equation between the wall and 

the first grid point (Mochida et al., 2002; Bitsuamlak et al., 2005).  Blocken et al. (2007) 

who reviewed works of various researchers also emphasized on the effect of surface 

roughness in generating a homogeneous mean velocity profile and turbulent kinetic 

energy for RANS simulation. Symmetry boundary condition is usually employed at the 

top and lateral surfaces. Since details of the flow variables are not known prior to the 

simulation, an outflow boundary is usually applied at the outlet plane.  

2.4 Sources of wind inflow data for inlet boundary conditions 
2.4.1 Target mean wind speed and turbulence intensity   

Mean wind speed and turbulence intensity information at the study building 

location is obtained from meteorological data sources. Other common sources are 

building codes and standards.  For example, ASCE 7-05 provides a 3sec gust basic design 

wind speed map for open terrain conditions at 33ft height, derived largely from 

meteorological stations at local airports. Field measurements and weather research 

forecasting (WRF) models (Skamarock et al., 2005) are also alternative sources. The 

ground surface roughness length is usually estimated by visually examining aerial 

photographs such as Google Earth photographs for each wind direction in comparisons 

with representative pictures given in building standards and codes. For inhomogeneous 

upwind terrain conditions and city centers this task is even more complicated. Some 

BLWT consulting firms, for example, use the Engineering Science Data Unit (ESDU) 

approach (ESDU 1993a and 1993b). The mean wind speed values could be expressed in 

the form of logarithmic (Eq. (1)) or power law (Eq. (2)) equations. Target turbulence 
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statistics such as length-scale and turbulence intensity should be used as input as well.  

The turbulence intensity is defined as the ratio of the root mean square ( uσ ) to the mean 

wind speed ( )( )zU , ( ) ( )zUzI uσ= . Figure 2.5(b) shows a typical streamwise velocity 

and turbulence intensity profiles for an open exposure. Figure 2.5(c) and (d) show the 

typical streamwise velocity time history and power spectrum at the building height. 
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where κ is the von Karman constant ( 0.4≈κ ), *u  is the frictional velocity, z is the 

height above the ground surface, 0z is the roughness length, α is an exponent dependent 

upon roughness of terrain, gz is the gradient height, and )(zU  is the mean velocity at z

distance from ground. 

2.4.2 Numerical generation of transient inlet boundary for LES  

For transient numerical modeling, in addition to the mean wind speed and 

turbulent intensity profiles, the transient wind characteristics are required in order to 

produce the peak or rms  wind load. The success of LES and RANS/LES-based wind 

engineering applications, which require the transient time-history of fluctuating wind 

fields, heavily depends on the generation of accurate inflow turbulence at the inlet 

boundary. Inlet boundary conditions of LES simulation, of high Re  turbulent flow, 

should possess an accurate representation of oncoming inflow turbulence, satisfying 

prescribed spatial and temporal correlations (Kondo et al., 1997, 2002; Tamura, 2008).  
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In high Re  flows, the grid spacing is usually too coarse to resolve any large component 

of the turbulent spectrum due to computational power limitations. This especially occurs 

very near the inlet boundary, where few cells are allocated in order to reduce 

computational cost; the majority of the cells are allocated to resolve boundary layers, 

flow separation and attachment wakes and recirculating regions. The objective of the 

inlet boundary conditions is to supply turbulence integral length and time scales relevant 

to the grid x∆ , y∆ , z∆ , and the computational time step t∆ . Thus for transient 

simulation (such as URANS, LES, hybrid RAN-LES, and DNS), the inflow turbulence 

should be generated in accordance with the spatial and temporal resolution of the inlet 

boundary.  

Most often the inflow turbulence due to the fluctuating velocity components are 

generated artificially using various numerical methods (Smirnov et al., 2001; Tutar and 

Celik, 2007; Davidson, 2007).  The inflow turbulent generator could use flow statistics 

from existing BLWT database as well. There are several techniques to generate 

turbulence fluctuations. Huang et al. (2010) and Tabor and Baba-Ahmadi (2009) 

discussed various methods commonly used for generation of inflow turbulence at the 

inlet boundary of LES and hybrid RANS/LES simulation. These include recycling 

methods; precursor databases; and synthetic turbulence methods also briefly discussed 

here for completeness.  

For unsteady numerical modeling, in addition to the mean wind speed and 

turbulent intensity profiles, the transient wind characteristics are required in order to 

produce the peak or rms  wind load. The success of LES-based wind engineering 

applications, which require the transient time-history of fluctuating wind fields, heavily 
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depends on the generation of accurate inflow turbulence at the inlet boundary. Inlet 

boundary conditions of LES simulations, of high Re  turbulent flow, should possess an 

accurate representation of oncoming flow turbulence, satisfying prescribed spatial and 

temporal correlations (Kondo et al., 1997, 2002; Tamura, 2008).  In high Re  flow 

simulations, computational grids are usually distributed systematically to manage the 

computational cost. As a result, in most cases, the grid spacing becomes too coarse to 

resolve any large component of the turbulent spectrum. This especially occurs very near 

the inlet boundary, where few cells are allocated in the upstream domain; whereas the 

majority of the cells are allocated in near-wall regions to resolve boundary layers, flow 

separation and attachment wakes and recirculating regions. However, the objective of the 

inlet boundary condition is to supply turbulence integral length and time scales relevant 

to the grid ( x∆ , y∆ , z∆ ) and the computational time step ( t∆ ). Thus, for transient 

simulation (such as URANS, LES, hybrid RAN-LES, and DNS) in addition to using high 

quality grid cells, the inflow turbulence should be generated in accordance with the 

spatial and temporal resolution of the inlet boundary. For example the spectrum depends 

on integral length scale ( )zL , which is a function of height. One of the following 

approaches can be adopted to generate transient inflow boundaries. 

2.4.2.1 Precursor simulation 

Here, the simulation generates a library of turbulence databases that possess 

required flow characteristics such as temporal and spatial correlations. Once the desired 

turbulence flow characteristics are reached to a statistically stationary state, a time 

sequence of a 2D velocity field data will be extracted and stored. The inlet boundary of 

the main calculation uses these stored fluctuations by reading a plane of inflow data per 
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time step (see Fig. 2.6(a)). This method is convenient when simulating inlet boundaries of 

small-scale high-resolution simulations from multi-scale CFD simulation that accounts 

the surface roughness of the upstream exposure directly (Bitsuamlak and Simiu, 2010). 

Geographic Information System (GIS) applications such as LIDAR data, height of each 

structure and location-specific geographical information, that reflects realistically, the 

complexity of upwind roughness in urban areas and complex upwind terrain are very 

instrumental (Fig.2.7). Although computationally expensive, the use of numerical 

simulations on roughness geometry defined by LIDAR representing different exposure 

conditions on the upstream flow domain produced realistic inflow conditions at the inlet 

boundary (Abdi and Bitsuamlak, 2010).  

2.4.2.2 Recycling method 

The recycling method is based on the Lund et al. (1998) proposal where the CD is 

divided into two domains. The domain upstream of the calculation domain, also called 

the “driver domain”, is used to generate spatially developing boundary layer flow. This is 

usually done by re-scaling the instantaneous velocity at the recycling plane and 

remapping the flow back to the inlet boundary. Once the simulation is performed for 

enough through-times and flow statistics are stable, a plane of data will be stored for later 

use by the main simulation. For the case where a combined simulation is carried out, the 

“calculation domain” will use the plane of data generated on the fly by the “driver 

domain” (see Fig. 2.6(b)). Nozawa and Tamura (2002) subsequently extend Lund’s 

method and employed it to a rough-wall boundary-layer flow. They applied this 

technique to simulate LES of flow around low-rise buildings immersed in a turbulent 

boundary layer flow and demonstrated that the mean and rms pressure coefficients were 

http://www.refworks.com/refworks2/default.aspx?r=references%7CMainLayout::init�
http://www.refworks.com/refworks2/default.aspx?r=references%7CMainLayout::init�
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http://www.refworks.com/refworks2/default.aspx?r=references%7CMainLayout::init�
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in good agreement with the BLWT data.  Kataoka and Mizuno (2002) further simplified 

Lund’s method by assuming the growth of the inner boundary layer thickness is 

insignificant and assuming it is constant.  Hence, instead of recycling the whole value of 

instantaneous velocity components only the fluctuating components are recycled. The 

velocity components at the inlet boundary are given as follow  

recyinletinlet )}z,y(u)t,z,y(u{)()z(u)t,z,y(u 〉〈−×+〉〈= θφ  
                                   (2.3) 

recyinlet )}z,y(v)t,z,y(v{)()t,z,y(v 〉〈−×= θφ  
                                   (2.4) 

recyinlet )}z,y(w)t,z,y(w{)()t,z,y(w 〉〈−×= θφ  
                                   (2.5) 

         

where the parenthesis 〉〈. denotes a time-averaged value in the span-wise direction and

inletu〉〈  is the prescribed mean velocity profile. The damping function )(θφ  which 

prevents development of the turbulence in the free stream is given by 

[ ]






 +−−−

−=
)0.8tanh(

)7.0)3.0(4.0()1(0.8tanh
1

2
1)(

θθ
θφ

 
                                             (2.6) 

                                               
where Gzz=θ , z  is the height, and Gz  is the gradient height. 

Inhomogeneous anisotropic inflow fluctuation fields can be generated by 

superimposing Lund’s recycling method with an artificially generated random 

perturbation for example by using the weighted amplitude wave superposition method 

(WAWS) (Swaddiwudhipong et al., 2007). The WAWS method is based on Shinozuka, 

(1985) where a fluctuation velocity field is generated from samples of a single random 

Gaussian process with zero mean and prescribed model energy spectral. For CWE 
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application the wind energy spectrum in each direction is assumed to be described by the 

von Karman model spectrum (Simiu and Scanlan, 1996).  
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where )( ku fS  is the one-sided von Karman spectral model of )(' tu , Nkfk ,...,1, = are the 

central frequencies of the interval f∆ , and kϕ  is the random phase angle uniformly 

distributed from 0  to π2 .  

2.4.2.3 Synthesized turbulence 

The synthesized turbulence fluctuation generation method proposed by Kraichnan 

(1970) uses an arbitrary energy spectrum as a function of a wave number to produce an 

isotropic perturbation. Inhomogeneous and anisotropic fluctuations have been 

investigated by various researchers (Smirnov et al., 2001; Batten et al., 2004; Billson et 

al., 2004), where the fluctuations were scaled in such a way that the time-averaged 

synthesized fluctuations match a prescribed Reynolds stress tensor. Smirnov et al. (2001) 

modified Kraichan’s method by incorporating turbulence length- and time -scales and 

succeeded in generating divergence-free fluctuations by synthesizing the velocity vector 

field from summation of the Fourier harmonic. A brief presentation of the random flow 

generation technique is given as follows   
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where jx~ , t
~

 are scaling parameters for the length- and time-scale of turbulence, n
ik  and 

nω  are sample of wave number vectors and frequencies of the modeled turbulence 
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spectrum, respectively. The Gaussian model spectrum employed in this method is 

expressed as 

)2exp()/2(16)( 242/1 kkkE −= π  
                                                           (2.9) 

 

The spectrum model is mainly designed to represent the large energy carrying 

structures and thus undermine the eddies within the inertial subrange (as shown in the 

shaded region of Fig. 2.8). However, turbulent ABL flows have demonstrated a cascade 

of energy between turbulent eddies. In such flow the inertial sub-range plays a vital role 

in transferring energy from large-energy containing range to small-scale eddies of 

dissipation range. The small-scale eddies in the dissipation range are in the same order of 

Kolmogorov scale (η ) and the energy will eventually be converted to internal energy and 

dissipate. Considering the modeling principles of LES, i.e. resolving the flow up to the 

filtering (grid size) and modeling small-scales, the length-scale of inertial sub-range lies 

between the integral length scale and Kolmogorov scale and their contribution is very 

significant. For example the ANSYS Fluent 13 package has implemented this technique 

as a Spectral Synthesizer for generation of inflow turbulence at the inlet boundary of 

unsteady simulations. Hence, for computational wind engineering applications such as 

the wind effect on structures submerged in the ABL region, the inflow fluctuations 

should be representative of a realistic turbulence spectrum such as the von Karman 

spectrum model (Lumley and Panofsky, 1964; Li et al., 2007). 

Later Huang et al. (2010) extended Kraichnan’s (1970) synthesizing technique to 

generate inhomogeneous inflow turbulence. The method, which is called the discretizing 

and synthesizing random flow generation (DSRFG) has the flexibility to prescribing any 

http://www.sciencedirect.com/science/article/pii/S0167610510000644#bib24�
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arbitrary 3D spectrum for the amplitude of the fluctuation, for example the von Karman 

spectral. The synthesized velocity field is presented below for discussion purposes and 

the detailed formulation and derivation can be found in the original paper  
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where n,mp  and n,mq  are the vector form of the fluctuation amplitude. For 

inhomogeneous and anisotropic turbulence the distribution of n,mk is done by remapping 

the surface of the sphere after the components of n,mP  and n,mq  are aligned with the 

energy spectrum.  

In addition to the flexibility of prescribing any arbitrary 3D spectrum, the DSRFG 

method uses the length scale ( 2
w

2
v

2
us LLLL ++=  ) as a scaling factor and this resulted 

in the generation of spatially correlated flow fields with the relevant length scales.  

However, the method is M times expensive compared to the method proposed by 

Simirnov et al. (2001), where M is the number of discretization points. 

Castro et al. (2011) pointed out some of the limitations on the DSRFG technique 

and suggested some modifications for the inhomogeneous and anisotropic field of the 

DSRFG method. In the DSRFG method the representation of the kinetic energy using 

diverging series and the quality of the generated flow field is heavily dependent on the 

number of discretization point M . The other is regarding the temporal correlation of the 

flow field generated by the DSRFG method. To address these issues the study proposed 
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some modifications to the equations based on the shape of the energy spectrum. The 

formulation for the modified DSRFG also called MDSRFG method is presented as follow   
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where 0τ is time scaling parameter and ic is a function that depends on the shape of the 

energy spectrum. The comparative studies on the inhomogeneous velocity fluctuation 

generated by the two methods are shown in Table 2.1. As it can be seen, in Table 2.1, 

although both the proposed methods, resulted rms  value comparable to the target value, 

calculated as avgUTI * , the MDSRFG method showed considerable improvement. Both 

methods with aligning and remapping techniques produced anisotropic flow field with 

strong spatial correlations, while MDSRFG showed better temporal correlation of the 

turbulence field.  

2.5 The need for CWE validation with experimental data 
CWE applications are at a fairly young stage, it would be prudent to evaluate their 

prediction accuracy through comparison with experimental laboratory as well as field 

measurements data. As described in Fig. 2.9, both full-scale and model-scale experiments 

could be used for validating CFD results of low- and high-rise buildings. In general, it is 

worthwhile to stress that comparing numerical simulations with experimental data should 
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be carried out with full knowledge of basic facts such as wind flow field, the surrounding 

conditions, and exposure type. Steady and fluctuating wind forces (along- and across-

wind) computed from a time history of pressures is very sensitive to data averaging 

length (Obsaju, 1992). This is also true when applying LES for such evaluations, hence 

averaging time comparable with experimental data should be taken. Hence, the level of 

validation of these simulations should involve well sampled statistical analysis (Sagaut 

and Deck, 2009). Table 2.2 summarized grades of various levels of validation.  

2.6 Computational evaluation of wind load on buildings 
2.6.1 Illustration of wind pressure loads on surface mounted cube 

For testing and validating the accuracy of computational evaluations of wind 

pressures, the majority of numerical studies refer to the basic cube shape exposed to wind 

perpendicular to its face (Stathopoulos, 2002 and 2003). This is because the cube has a 

simple geometry with important complex features of a real building flow and abundant 

full-scale and experimental results available in literature.  Figure 2.10 shows numerical 

and experimental studies of the surface mounted cube, Silsoe 6m cube, by several 

researchers. Wright and Easom (2003) compared the mean pressure coefficient on the 

surface of the Silsoe cube using standard ε−k , RNG ε−k  models (Yakhot et al., 1992) 

derived from the renormalization group of analysis of Navier-Stokes equations and MMK 

ε−k  (Tsuchiya et al, 1997), which intends to improve the prediction of turbulent kinetic 

energy and eddy viscosity for a bluff body field, and DSM (Differential Stress Model) of 

Launder et al. (1975), which is a more complex anisotropic turbulence model. The 

prediction by RNG ε−k , especially in the windward face where the standard ε−k  

model over-estimates the suction pressure, is in better agreement with the BLWT data. 
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The revised ε−k  models have improved the prediction accuracy on the separation 

region. However such adjustments are of an ad hoc nature and added improvements are 

only for some particular cases. Lim et al. (2009) PC  values obtained through LES 

simulation showed better agreement with the experimental data.  

Köse and Dick (2010) investigated the performance of RANS, hybrid 

RANS/LES, and implicit LES (ILES) turbulence models on coarse meshes. For the cases 

with coarse meshes, the study showed no significant differences between the results of 

the RANS and hybrid (DED SST) simulations, as shown in Fig. 2.11. In the case of the 

hybrid model, the poor prediction of the mean PC  at the front and side faces is attributed 

to the fact that the LES model in the outer region failed to behave as a pure LES. This is 

attributed to the coarseness of the grid used in the simulation. Considering the coarseness 

of the meshes used in the simulations, both the LES and ILES were reported to give 

better results. Figure 2.12 shows CFD and experimentally obtained pressure coefficients 

at 045 wind angle of attack (Wright and Easom, 2003). As expected the standard ε−k  

appears to over predict the mean PC , although the error seems to be reduced as compared 

to the prediction for the cube with the normal wind angle of attack, because of the 

reduced flow impingement. 

2.6.2 Illustration of wind pressure loads on low-rise buildings 

Several numerical studies have been reported for wind load evaluation of low-rise 

buildings. Tsuchiya et al. (1997) and Nozawa and Tamura (2002) predicted the mean 

pressure coefficients of short buildings with a size of H: H: 0.5H. Figure 2.13 shows the 

distribution of time-averaged pressure coefficients on the mid vertical plane of a low-rise 
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building.  Because of the impinging flow, the approaching flow did not separate from the 

leading edge of the roof, the standard ε−k overestimates the pC  value on the frontal 

face. On the other hand, the approaching flows simulated with the modified ε−k models, 

ϕεκ −−  (Kawamoto et al., 1998), and the MMK  model (Tsuchiya et al., 1997) were 

separated from the leading edge of the roof and they resulted an improved prediction of 

the mean pC at the windward face that were in closer agreement with the experiment data 

carried by Kondo (1997). Another noticeable observation is that, in all the ε−k  models the 

absence of velocity fluctuation due to vortex shedding effect, produced in smaller production 

of kinetic energy  behind the building. While the LES simulation by Nozawa and Tamura 

(2002) well predicted the pressure coefficients on the surfaces of the building. However, 

the same study reported that the discrepancy in the inlet velocity profile caused the LES 

to overestimate rms  coefficients on the roof. 

The TTU building is considered to be one of the extensively studied standard 

short buildings for wind loads. Senthooran et al. (2004) evaluates the wind-induced 

pressure fluctuation of TTU using Kato and Launder’s (1993) modified ε−k turbulence 

model. The stochastic technique is used to generate the inflow turbulence fluctuation. The 

revised MMK  model (Launder and Kato, 1993), which eliminates the excessive 

production of kinetic energy around the impinging region performed better and the results 

are in a good agreement with the experimental data and field results (Fig. 2.14). Recently, 

Köse and Dick (2011) performed an implicit LES (ILES) and LES simulations to 

investigate the influence of inflow conditions on the quality of the mean pressure 

distribution on the same building. Figure 2.15 compares the LES and ILES prediction 
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along the centerline of a vertical plane of the TTU. Improvements on the mean PC value 

have been observed after adjusting the inflow turbulence by reducing the kinetic energy. 

In both studies (Selvam, 1997; Köse and Dick, 2011) there was a considerable 

discrepancy between the numerical and the BLWT prediction, particularly the 

overproduction of the mean PC at the windward face and roof surfaces. The 

overproduction is mainly caused by strong deformation of the oncoming flow velocity 

profile in the incident region. This shows how the wind pressure load distribution is 

sensitive to the incoming turbulence. 

There is also an effort towards using the Partially Averaged Navier-Stokes 

(PANS) turbulence modeling for wind effect evaluation which is regarded as an 

alternative to the hybrid RANS/LES. The PANS modeling aims to capture/or resolve the 

energy containing structures at a reasonable computational cost, by using coarse 

computational meshes. The method uses the Boussinesq approximation technique for 

modeling the unresolved-scales (Abdol-Hamid and Girimaji, 2005). Song and Park 

(2009) carried out a two-stage PANS simulation to evaluate the wind- pressure load on a 

square cylinder. Figure 2.16 shows their PANS simulation, for various grid resolution 

cases, fairly predicted the mean PC  of the windward face, while it slightly over-predicted 

the pressure distributions on the sidewalls. The case with fine grids reproduced the 

velocity in the wake and recirculation region very well and resulted in an accurate 

prediction of the mean PC  on the leeward face and the mean drag coefficient by the high 

resolution simulation. The PANS method seems heading in the right direction in 

addressing some of the grid dependence issues related to hybrid RANS/LES turbulence 
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modeling. Although PC comparison with the hybrid RANS/LES and LES would have 

provide more insight on the cost effectiveness and prediction accuracy of PANS. 

Overall the CFD results showed reasonable agreement with the measured BLWT 

and field data for time-averaged wind loads on low-rise buildings. However, more work 

is needed regarding the peak- wind load estimation using the some of the models such as 

LES. Numerical research should also look into how well the peak-loads compare with the 

experimental data in addition to the mean and rms values. As this will give strong ground 

for CWE application for design wind load evaluation.  

2.6.3 Wind load estimation on high-rise buildings 

The Commonwealth Advisory Aeronautical Research Council (CAARC) building 

model (Melbourne, 1980) is used by several wind engineering experimental laboratories 

for calibration and validation purposes to study external aerodynamic loads of tall 

buildings. The CWE community is also using the same model to assess the performance 

of numerical wind load evaluation techniques for tall buildings. As part of this review 

study, the authors carried out a limited investigation for various inflow turbulence 

generation techniques for LES. Figure 2.17 presents the LES and wind tunnel data for the 

mean pressure coefficient acting on the wind- and lee-ward faces of the CAARC building 

model, produced by using the various numerical methods in Sec. 2.1.3.1). The BLWT 

test was carried out at RWDI Inc. The pressure coefficient distributions agree well with 

each other even from a quantitative point of view. On the wind-ward face, the LES mean 

pC  contours estimated by the three inlet boundaries (Inflow 1: Smironv et al. (2001); 

Inflow 2: Lund et al. (1998); Inflow 3: following synthesizing method) showed a good 
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agreement with the BLWT data. The LES predictions of the mean pC for the lee-ward 

face showed marginal discrepancy with the BLWT, compared to the better agreement 

observed for wind-ward face. Among, the three inflow conditions, Inflow-3 was 

marginally performing better than the Inflows-1 and -2 predictions. The distributions of 

fluctuating pressure coefficients presented in Fig. 2.18. The rms  produced by the Inflow-

3 on the wind-ward face, a place where the inflow fluctuation effect could be seen more 

apparently (compared to other faces which potentially experience more fluctuation due to 

flow separation) was in better agreement with the BLWT’s rms . On the lee-ward face, 

the numerical result slightly deviated from the BLWT data. Although superimposing 

random fluctuations on a mean velocity profile (for example Inflow-1) is a simple way of 

generating inflow turbulence, the turbulence has weak spatial correlation and tends to 

decay rapidly (Kempf et al., 2005). The authors further investigated the effect of inflow 

turbulences on the dynamic wind load evaluation of a standard tall building using LES. It 

has been found that the fluctuating wind loads are very sensitive to perturbation imposed 

at the inlet boundary. Random inflow turbulence generated using the synthetic inflow 

generation technique showed a good spatial correlation of the fluctuating velocity 

component and the resulted predications were reasonably comparable with the BLWT 

data, especially the across-wind force spectra (Fig. 2.19). The along-wind force spectra 

also showed promising results, however better results could have been obtained if a 

longer averaging time was taken for the pressure time-history analysis of the LES 

simulation. For this study only two seconds (flow time) of data was recorded, because of 

computational resource limitation, and this greatly contributed to the discrepancy of the 

drag force compared to the BLWT data. Moreover, inhomogeneous turbulence with the 
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von Karman spectrum better represents a realistic wind flow field and will significantly 

improve the prediction accuracy of LES. The authors are working at the moment on LES 

of a tall building under urban settings using the synthesized techniques of a random flow 

generator (such as DSRFG) as inlet boundary.  

The comparison between the mean pressure coefficients of several computational 

(LES and RANS) and experimental studies of the CAARC building model extracted at 

32 of H  ( H is the height of CAARC building model) is shown in Fig. 2.20. On the 

wind-ward face the RANS based on the RNG ε−Κ  model over-predicted, as expected, 

the mean pC while the LES showed a better agreement with the BLWT data. 

Considerable discrepancy has been observed at the side face, where the flow separated 

because of the sharp corner.  Similar studies (Huang et al., 2007, Braun and Awruch, 

2009) showed a good PC  prediction at the wind-ward face but a slight deviation in the 

side and lee-ward faces from the BLWT measurements have been observed. This 

discrepancy is due to the random inflow turbulence generated using the Gaussian 

spectrum model which under-estimated the eddies in the inertial subrange (as discussed 

in Sec. 4.4.3) and the assumption of the no-slip wall boundary condition used in the 

simulation. Dagnew et al. (2009) investigated the effect of the grid resolution for LES 

under turbulent flow. The case (LES1) with a high resolution mesh ( 5y1 << + ) in the 

near-wall region resulted in a better prediction, especially in the windward face, with the 

BLWT data than the case (LES2) with Werner and Wengle (1991) wall function applied 

in the near-wall region. Hence it is a good practice to resolve the flow in the region of 

interest, such as the wall boundary and upwind domain.  
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Nozawa and Tamura (2003) predicted the time-averaged pressure coefficients on 

a high-rise building (1:1:4) using an LES simulation (see Fig. 2.21(a)). Inflow turbulence 

was generated at the inlet boundary using a modified recycling method. This improved 

the numerical prediction of the mean pressure coefficient on the frontal surface of the 

high-rise building and the results are in good agreement with the BLWT data done by 

Ohtake (2002) and Kawai (1982). Figure 2.21(b) shows the rms of pressure coefficients 

of the same study. There is a discrepancy in the rms coefficients on the roof of the high-

rise building, this deviation was caused by a variation in the mean velocity profile. 

Tamura et al. (2008) presented the AIJ guidelines to the numerical prediction of wind 

loads on a building. The wind load on low-rise (1:1:0.5) buildings predicted by CFD was 

compared with those obtained from experiments and AIJ recommendations.  

Figure 2.22(a) and (b) show the comparison between numerical and experimental 

design loading on the structural frame and cladding of a typical short building. The LES 

overestimated both the structural frame and cladding loading compared to the 

experimental result. The over-estimation of the wind loads is associated mainly to the 

insufficient reproduction of the inflow turbulence at the inlet boundary (Tamura, 2008). 

For the high-rise building (1:1:4) the LES well predicted the design wind loads and 

coincides well with the experimental results, as shown in Figure 2.23 and 2.24. The 

transient wind pressure analyses coupled with the realistic inflow turbulence modeling 

imposed at the inlet boundary were reasons behind the success of the LES results.  

2.7 High performance computing for wind engineering applications 
One of the main challenges with CFD applications is the amount of computational 

resources needed to perform the simulation. The computational cost increases 



48 
 

exponentially when attempting to perform large-scale simulations, for example a 

turbulent wind simulation in a city center requires a staggering amount of computational 

resources. This is traditionally handled by using parallel computations on a cluster of 

central processing units (CPUs) (more recently in combination with graphics processing 

units (GPUs)). The majority of the available CFD platforms follow this commonly used 

practice of parallelism. However, the cost of building such a facility could be very high. 

Hence, the application of CWE for realistic simulations of bluff-body aerodynamics with 

high Reynolds number (Re) numbers flow using advanced turbulence modeling LES has 

been limited and it still remain more costly than carrying a wind tunnel test. Recently, 

coupling the general purpose graphics processing units (GPGPUs) that are traditionally 

designed for graphic rendering purposes with the CPU have been considered as a 

potential cost-effective alternative of parallel computing for CFD simulations. 

Implementation of the mixed CPU-GPU techniques have resulted in a substantial 

speedup of computations (Thibault and Senocak, 2009; Tolke & Krafczyk, 2008).  

Selvam and Landrus (2010) reported that a decent size parallel computing facility with 40 

processors configured with the traditional parallel platforms could cost up to $50,000 

while using GPU computing technology which costs $300 could achieve same efficiency 

(10 to 20%).  And a speed up factor of 10 to 100 could be acquired with a GPU that costs 

$100 to $10,000.   

Hence, CFD toolboxes that can effectively exploit the hardware of personal 

computers have economical appeal for the CWE community. This is very encouraging 

progress towards addressing the computational cost issues involving bluff-body 

aerodynamics and industrial applications of CWE techniques. Currently there are large 
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number of high performance computing facilities (for example TeraGrid in the US and 

Sharcnet in Canada) where one can get access for research. Some private firms such as 

Amazon are also offering the sale of computing time to perform large-scale simulation  

2.8 Conclusions and future avenues 
The work of several researchers on computational evaluation of wind load both on 

low- and high-rise buildings have been revisited and key findings on selecting turbulence 

modeling techniques, boundary conditions, sizing of the computational flow domain, and 

the dynamics of high Reynolds numbers turbulent flows have been discussed. The 

significant progresses made in turbulence modeling, high performance computing and 

developments in novel parallel algorithms is allowing a high-resolution simulation of 

complex flows useful for wind load evaluation. Comparisons made between 

computationally obtained data with full-scale and model scale wind tunnel experiments 

showed good agreement, especially on the windward face. However, some discrepancies 

have been observed in the sidewalls and leeward face. These are mainly attributed to the 

resolution of the computational meshes and boundary conditions, such as oncoming flow. 

Numerical inflow turbulence generator that take into account the basic ABL flow 

statistics (such as TI, wind speed, integral length scale, and the time scale) performed 

well in reproducing a realistic wind flow field. The along-wind and cross-wind loads on 

the standard tall building model predicted by the LES simulation showed a good 

estimation with the experimental data. However, the torsional wind loads obtained by the 

LES simulation showed some discrepancy with the experiment. Among all the numerical 

methods considered, LES and hybrid RANS/LES showed a good agreement with the 

experimental data in most cases. It has also been observed that for wind load estimation 
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an accurate time-dependent analysis using LES is essential to produce a time-history of 

pressure fluctuation data, similar to what is being done in wind tunnel experiments. The 

pressure time-history data obtained from HFPI type LES simulation are very valuable for 

the estimation of peak-type quantities for the preliminary design of buildings.   

The peak pressure values are essential wind load parameters in the design of roofs 

of residential and C&C of tall buildings. Hence enough length of data should be recorded 

to obtain a good quality of peaks from the LES simulation. However, performing such 

computationally demanding analyses are limited by current computational resource 

capabilities and as a result studies on peak pressures are missing from existing literature.  

It is also to be noted that the cost of performing LES at the moment still appears higher 

than conducting the BLWT test. Nevertheless, recent developments in the hybrid 

RANS/LES turbulence modeling show a promising future for CWE practical applications 

that involve very large projects.  The majority of the studies on low- and high- rise 

buildings have mainly been limited to a single regular shape building for one wind 

direction. Further research by simulating buildings with more complex shapes, with 

interference of neighboring buildings, and for multiple winds including oblique wind 

directions will accelerate its use as a design tool.  
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Table 2.1 Comparison of the rms values of simulated velocity fluctuations  
(After Huang et al., 2010 and Castro et al., 2011) 

 
 
 
 
 
 
 

 
 
 
Table 2.2 Levels of validation of simulation techniques (Sagant & Deck, 2009) 
Grade  Level of validation 
1 Forces (Lift, drag and moment) 
2 Mean aerodynamic field (velocity profiles) 
3 Second order statistics (rms quantities) 
4 One-point spectral analysis (power spectral densities) 
5 Two-point spectral analysis (correlation, coherence and phase spectra) 
6 High-order and time-frequency analysis (time-frequency) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inflow turbulence  
generation method 

Distribution method 
of ,p n,m

i ,q n,m
i  and n,mk  uσ  vσ  wσ  

DSRFG Scaling & transformation 0.9968 2.4400 2.9956 
DSRFG Aligning & remapping 0.9500 1.9987 3.0800 
MDSRFG Aligning & remapping 1.0527 2.1850 3.1123 
Target  1.1200 2.2400 3.3600 
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Figure 2.1 Classification of unsteady approaches according to level of modeling and 
readiness (after Sagaut et al., 2009). 

 
 
 

 
Figure 2.2 Sketch of the energy cascade. In physical space, the large eddies are broken 
into smaller and smaller eddies (after Sagaut et al., 2006). 
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(a)  

(b) 

Figure 2.3 Modeled eddy viscosity in hybrid RANS/LES method. (a): zonal method, (b): 
seamless approach (after Hanjalić & Kenjereš, 2008). 

 
 
 
 
 

 
 
Figure 2.4 Computational domain with building models for CFD simulation of ABL flow 
modeling (adopted and modified from Blocken et al., 2007). 
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Figure 2.5 (a) Trapezoidal planks & triangular floor roughness elements used for open 
exposure ABL simulation; (b) velocity profile (power law with 14.0=α ) & turbulence 
intensity; (c) time history of streamwise velocity fluctuation; (d) Comparison of BLWT 
generated turbulence spectrum with von Karman spectrum model ( s/m12U H = ). 

 
 
 

 

 

 
Figure 2.6 Implementation of recycling method (Lund et al., 1998): (a) in which an 
auxiliary pre-computation is mined to produce the inlet velocity data and (b) Combined 
computation domain where data is passed on-the-fly to the main computation. 

 
 
 
 



67 
 

 
(a)                                                (b) 

Figure 2.7 (a) Surface roughness from LIDAR data and (b) the effect of surface 
roughness on the oncoming wind speed profiles (after Bitsuamlak et al., 2010). 

 
 

 
Figure 2.8 Turbulence ranges at high Re numbers flow: Comparison of actual wind 
spectra with the von Karman and the Gaussian spectral model (after Hunag et al., 2010). 
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Figure 2.9 Validation of CFD with model-scale, full-scale experiments, and field 
measurement. Note: Tornado simulator is from Iowa State University; TTU: Texas Tech 
University; FIU: Florida International University; UWO: University of Western Ontario. 

 
Figure 2.10 Surface mounted cube: Comparison of mean wind pressure coefficients 
between wind tunnel experiments and numerical simulation by using several turbulence 
models (Bitusamlak et al., 2010). 
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Figure 2.11 Cubical building in ABL flow. Comparison of pressure coefficient profiles 
on the vertical section using several turbulence models (after Köse & Dick, 2010). 

 
Figure 2.12 Silsoe 6m cube: Comparison of mean pressure coefficient between full scale 
measurements, wind tunnel and numerical simulations- cube skewed at 450. 
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Figure 2.13 Low-rise building: Comparison of mean wind pressure coefficients 
experiment and numerical (after Nozawa & Tamura, 2002). 

 
Figure 2.14 The TTU building: Comparison between mean pressure coefficients for 
straight wind computational and WT and field measurements (after Senthooran et al., 
2004). 



71 
 

 
Figure 2.15 The TTU building in ABL flow condition: Comparison of pressure 
coefficient profiles on the vertical section between wind tunnel experiments and 
numerical simulations (after Köse & Dick, 2011). 

 
Figure 2.16 Distribution of averaged pressure coefficient along the surface of the square 
cylinder  Where Case A1 and Case A2 have the same number of grids (204×122) in the 
vertical and stream-wise direction but the same spans-wise grids as C (after Song & Park, 
2009). 
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Figure 2.17 Comparison between the mean pressure coefficients of CAARC in a 
simulated ABL flow using LES with various inflow turbulence models and BLWT 
experiment.  
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Figure 2.18 Distribution of fluctuating pressure coefficient (rms) over the frontal and lee-
ward faces of CAARC in a simulated ABL flow filed: Comparison between LES with 
various inflow turbulence models and BLWT experiment.  
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Figure 2.19 Along- and across-wind force spectra of a standard tall building using various 
inflow turbulences. 

 

 
Figure 2.20 Mean wind pressure coefficient on CAARC building model. Where the 
numbers 0 to 4 represent the length of different faces of the CAARC model: from 0 to 
1.5: wind-ward, 1.5 to 2.5: side and 2.5 to 4: lee-ward faces. 
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Figure 2.21 LES of high-rise building: (a) mean pressure coefficient at a vertical section; 
and (b) rms of pressure coefficient (after Nozawa & Tamura, 2002).  

 
 

 
Figure 2.22 Comparison of wind loads on low-rise building: (a) structural frame wind 
load, (b) wind load on cladding (after Tamura et al., 2008). 

 

A B C D A B C D 
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Figure 2.23 Wind loads on cladding of high-rise building (AIJ, 2005). (a) wind-ward 
wall, (b) lee-ward wall, and (c) side wall (after Tamura et al., 2008). 

 
 

 
Figure 2.24 Wind loads on structural frame of high-rise building: (a) wind-ward, (b) lee-
ward, and (c) side (after Tamura et al., 2008). 
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3 COMPUTATIONAL ASSESSMENT OF BLOCKAGE AND WIND SIMULATOR 

PROXIMITY EFFECTS FOR A NEW FULL-SCALE TESTING FACILITY  

 

Girma T. Bitsuamlaka
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, Agerneh Dagnewb, Arindam Gan Chowdhuryc 

Abstract 

A new full scale testing apparatus generically named the Wall of Wind (WoW) 

has been built by the researchers at the International Hurricane Research Center (IHRC) 

at Florida International University (FIU). WoW is capable of testing single story building 

models subjected up to category 3 hurricane wind speeds. Depending on the relative 

model and WoW wind field sizes, testing may entail blockage issues. In addition, the 

proximity of the test building to the wind simulator may also affect the aerodynamic data. 

This study focuses on the Computational Fluid Dynamics (CFD) assessment of the 

effects on the quality of the aerodynamic data of (i) blockage due to model buildings of 

various sizes and (ii) wind simulator proximity for various distances between the wind 

simulator and the test building. The test buildings were assumed to have simple 

parallelepiped shapes. The computer simulations were performed under both finite WoW 

wind-field conditions and in an extended Atmospheric Boundary Layer (ABL) wind 

flow. Mean pressure coefficients for the roof and the windward and leeward walls served 

as measures of the blockage and wind simulator proximity effects. The study uses the 

commercial software FLUENT with Reynolds Averaged Navier Stokes equations and a 
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Renormalization Group (RNG) k-ε turbulence model. The results indicated that for larger 

size test specimens (i.e. for cases where the height of test specimen is larger than one 

third of the wind field height) blockage correction may become necessary. The test 

specimen should also be placed at a distance greater than twice the height of the test 

specimen from the fans to reduce proximity effect. 

 

Keywords: Full scale testing, blockage, wind simulator proximity, CFD, pressure 

coefficient, turbulence.  
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3.1 Introduction  
Central to FIU’s research is the development in stages of full-scale testing 

facilities of the type generically called Wall of Wind (WoW), capable of producing 

hurricane level winds, in conjunction with wind-driven rain and wind-borne debris. The 

WoW, capable as it is of testing to failure entire structures at full scale, is an effective 

way of acquiring the experimental knowledge needed to mitigate hurricane damage in 

real buildings, and of powerfully demonstrating the damage wreaked by hurricanes on 

buildings as well as the dramatic loss reductions inherent in effective mitigation 

measures. As a first phase of this development effort, the International Hurricane 

Research Center (IHRC) team at Florida International University (FIU) has built a full-

scale 2-fan WoW facility (Figs. 1a and 1b) for testing small structures and assemblies, 

including roof fascias, barrel tile roofs, hurricane mitigation products, and Florida Power 

& Light utilities, (Gan Chowdhury et al. 2009a and 2009b). Building on this experience 

FIU has subsequently built a larger, more powerful Renaissance-Re 6-fan WoW 

generating up to category 3 hurricane winds and wind-driven rain (Huang et al. 2009, 

Bitsuamlak 2009) with sufficient wind field size to engulf a small single-story building 

(Figs. 1c and 1d). To house this and future larger WoW systems, a 30.5 x 24.4 x 10.7 m 

building is under construction at FIU. The North and South faces of the building consist 

largely of folding doors that will remain open during operation/testing. The WoW will be 

located on the South end. A dynamically controllable 4.9 m diameter turntable is located 

2.7 m downstream of the WoW. Test buildings will be placed on the turntable to allow 

simulation of the effect of wind directionality. The WoW system forms a large open 

circuit system during operation. Further expansion and improvements on the current 
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design of WoW using more number of fans are underway with financial support from the 

State of Florida Legislature. A 1:8 scale replica of the current 6 fan WoW has been built ( 

Fig. 2) to help design flow management components (contraction, airfoil layouts, etc) 

before testing and implementing them at full-scale on the 6-fan WoW (Huang et al. 2008, 

2009). This approach has been found to be efficient and economical. In this study, it is 

not the intention to use the reduced-scale model of the WoW yet. 

Testing larger test specimens within the finite WoW wind field, either to achieve 

Reynolds number similarity or to assess performance of full-scale building components 

under wind, wind-driven rain, and debris impact resistance, may entail blockage issues. 

The blockage effect discussed in the present study is concerned with the size of the test 

specimen compared to the finite size of the wind field generated at the inlet.  The need to 

keep the test specimen as close as possible to the wind simulator in order to subject the 

test model to strong wind before it diffuses and loses its strength may also affect the 

quality of the aerodynamic data. The objectives of this study are, therefore, to assess 

computationally (i) the blockage effect as a function of the size of the test specimens, and 

develop correction strategies for those cases where those effects are significant, and (ii) 

the wind simulator proximity effect for various distances between the wind simulator and 

the test building, and develop proper test guidelines to ensure that this effect is acceptably 

small. The evolution of computational wind engineering (CWE) based on computational 

fluid dynamics (CFD) principles is making numerical evaluation of wind effects on built 

environment a potentially attractive proposition. This is particularly true in light of the 

positive development trends in hardware and software technology, as well as numerical 

modeling. Significant progress has been made in the application of CWE to evaluate 
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wind loads on buildings (e.g. Murakami and Mochida 1988; Selvam 1997; Stathopoulos 

1997; Wright et al. 2003; Camarri et al. 2005; Tamura 2006; Tutar and Celik 2007; El-

Okda et al. 2008; Tominaga et al. 2008a; Cóstola et al. 2009 and others). Significant 

progress has also been made on the evaluation of wind load modifications due to 

topographic elements (Bitsuamlak et al. 2004, 2006). Some countries have already 

established working groups to investigate the practical applicability of CWE and develop 

recommendations for their use for wind resistant design of actual buildings and for 

assessing pedestrian level winds, within the framework of the Architectural Institute of 

Japan (AIJ) (Tamura et al. 2008, Tominaga et al. 2008b) and the European cooperation in 

the field of scientific and technical (COST) research, Franke et al. (2007). Further, AIJ 

provides methods for predicting wind loading on buildings by the Reynolds Averaged 

Navier Stokes equations (RANS) and LES. Practical applications of CWE are widespread 

in areas such as pedestrian level wind evaluation Chang (2006), Lam and To (2006), and 

Blocken and Carmeliet (2008), where only the mean wind speeds are required for 

evaluating pedestrian comfort Stathopoulos and Hu (2004). CWE applications for wind 

driven rain are reported by researchers such as Choi (2000), and Blocken and Cameliet 

(2004).  Some CFD wind flow studies for urban neighborhood include Zhang et al. 

(2006), Huang et al. (2006), and Jiang et al. (2008). While most of studies mentioned 

above focus on straight winds, studies by Lin and Savory (2006), and Hangan and Kim 

(2008) focused on simulation of downburst. Other common uses of CWE, to which the 

present study belong to, include augmentation of experimental wind engineering 

research: Sengupta and Sarkar (2008) augmented their microburst and tornado wind 

simulator facility with numerical simulation; Moonen et al. (2006, 2007) used CFD to 



82 
 

assess quality of wind tunnel flow conditions and design of wind tunnels. Merrick and 

Bitsuamlak (2008) used numerical simulation to facilitate selection of an artificial surface 

roughness length to be applied on curved surfaced buildings during wind tunnel testing as 

a means to compensate for High Reynolds number effects that is usually missing from 

low wind speed tunnels. Okajima (1997) computationally assessed the effects of blockage 

pertaining to the effect of tunnel walls on various aerodynamic features. 

In the present study, numerical wind flow simulations around parallelepipeds of 

various sizes, and located at various distances from the wind simulator and engulfed 

inside the numerical WoW and Atmospheric Boundary Layer (ABL) model have been 

carried out. In parallel, work is in progress to study the blockage and proximity effects 

experimentally by using the 1:8 scale small WoW replica in conjunction with the full-

scale WoW. When they become available, the test results will be used to validate the 

Computational Fluid Dynamics (CFD) studies, following the approach of Bitsuamlak 

(2006). In the meantime, wind tunnel data from literature has been used to validate the 

present numerical models, resulting in a reasonable agreement with the CFD simulations, 

as will be discussed in section 3. Previous computational blockage assessments for wind 

tunnels include studies by Okajima (1997) pertaining to the effect of tunnel walls on 

various aerodynamic features as mentioned earlier. In the present blockage and wind 

simulator proximity effect study, however, the focus is on the effect of the size of the test 

buildings with respect to the finite size of WoW wind field and test building’s proximity 

to the wind simulator. The WoW wind field can for practical purpose be considered to be 

a wind jet generated by an array of fans with controlled wind-profile characteristics.  
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3.2 Numerical modeling 
The commercial software FLUENT 6.2 was utilized for the present numerical 

simulation, and the governing equations employed were the Reynolds Averaged Navier-

Stokes (RANS) equations, together with the Renormalization Group (RNG) k-ε 

turbulence model. For blockage assessment studies, the upstream (U/S) , top, downstream 

(D/S), and two sides of the computational domain (CD) were set to 3.5H, 7H, 10.5H, and 

5.5H from the center of the base of the parallelepiped, respectively, as shown in Fig. 3, 

where H is the parallelepiped height under investigation, as shown in Fig. 4. For wind 

simulator proximity assessments, cubical buildings with windward faces located at H, 

2H, 3H, 4H and 5H from the wind source (fans) were considered, as shown in Figure 

3.5.For wall bounded flow, Fluent 6.2 provides two different approaches for modeling 

flows in the inner viscous layer, i.e. use of wall functions or near-wall modeling based on 

the non-dimensional wall units.  The first grid point yp is placed at 0.01m from the 

surface of the test specimen and unstructured grids of hexagonal type were used for the 

CFD simulation. Considering the computational cost in resolving the inner layer, 

standard wall functions has been used in all present simulations by maintaining the wall 

unit y+ between 30 and 500. In addition, the inlet power law velocity profile with 

exponent α=0.25, a turbulence intensity TI = 12%, and a 10 m integral length scale were 

assumed. The latter is less than the typical accepted value for suburban terrain, owing to 

the need to limit to a minimum the computational domain (CD) size -- assumed to be 

three times the length scale -- to reduce computational time. These are reasonable 

assumptions considering the comparative nature of this study. When simulating the ABL, 

the velocity inlet profile as described above was applied to the whole upstream face of 
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the computational domain. However, when simulating the WoW flow, the application of 

the velocity inlet was limited to the 12 m x 9 m area of the U/S face of the CD 

representing the WoW type wind-field condition, as shown in Fig. 3; on the remaining 

inlet area the atmospheric pressure condition was applied.  

A segregated pressure-velocity solver has been used to all the discretization 

schemes. Pressure interpolation is standard and second order upwind and third order 

MUSCL schemes were used for convection and momentum terms respectively.  The 

convergence criterion for residuals has been limited to 10-5. 

For blockage assessment studies, computational models mimicking the WoW and 

the ABL test model conditions were developed for the  three cases shown below. It is to 

be noted that the blockage effect discussed in the present study is concerned with the size 

of the test specimen compared to the finite size of the wind field generated at the inlet 

(see Fig. 4).  

Case 1A - Base case for a 3x3x3 m (height x width x depth) cube placed in ABL 

wind-field condition (for this case H=Hb=3m); 

Case 1B - Same as Case 1A but placed inside WoW wind-field condition; \z 

Case 2A - A 4x4x3 m (height x width x depth) parallelepiped placed in ABL 

wind-field condition (H=1.33Hb); 

Case 2B - Same as Case 2A but placed inside WoW wind-field condition;  

Case 3A - A 5x5x3 m (height x width x depth) parallelepiped placed in ABL 

wind-field condition (H=1.66Hb); 

Case 3B - Same as Case 3A but placed inside WoW wind-field condition.  
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For wind proximity effect studies, computational models mimicking the WoW 

and the ABL test model conditions for the 3x3x3 m base cube were developed for the 

following three cases:  

Case 4A – Windward face of base cube located at distance H from the wind 

simulator and placed in ABL wind-field condition; 

Case 4B - Same as Case 4A but placed inside WoW wind-field condition;  

Case 5A - Windward face of base cube located at distance 2H from the wind 

simulator and placed in ABL wind-field condition; 

Case 5B - Same as Case 5A but placed inside WoW wind-field condition;  

Case 6A - Windward face of base cube located at distance 3H from the wind 

simulator and placed in ABL wind-field condition (note this case is the same as Case 

1A); 

Case 6B - Same as Case 6A but placed inside WoW wind-field condition (note 

this case is the same as Case 1B);  

Case 7A - Windward face of base cube located at distance 4H from the wind 

simulator and placed in ABL wind-field condition; 

Case 7B - Same as Case 7A but placed inside WoW wind-field condition;  

Case 8A - Windward face of base cube located at distance 5H from the wind 

simulator and placed in ABL wind-field condition; 

Case 8B - Same as Case 8A but placed inside WoW wind-field condition;  

Figure 3.4 describes the relative size of the parallelepipeds relative to the WoW 

wind-field (5Hbx3Hb) and the ABL wind-field (11Hx7H) for Cases 1 to 8, where Hb 

represents the height of the base cube (Hb= 3m) and H represents the height of the study 
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building for each case. Note that the depth (along the wind flow direction) of all the 

parallelepipeds considered in the present study is 3 m. Figure 3.5 describes the distances 

from the windward face of the study base cube (3x3x3 m) from the wind simulator used 

for cases 4, 5, 6, 7 and 8. In all simulations the wind direction was perpendicular to the 

upwind face of the parallelepiped. Although the parallelepiped has simple geometry, it 

represents the complex bluff-body aerodynamic characteristics of a real building. In 

addition, several experimental studies and results are available for parallelepipeds, which 

allow the validation of results from the present study against values available in the 

literature. 

3.3 Results and discussion  
To validate the present simulation, results for the base case (i.e. Case 1A) have 

been compared with experimental results from the literature, as shown in Fig. 6, which 

also contains numerical results obtained by other researchers. Mean pressure coefficients 

normalized by reference velocity at the building height (UH = 29.43 m/s) measured at the 

inlet boundary location for the center vertical lines at U/S and D/S faces of the 

parallelepiped (i.e. AB and CD) and center horizontal line at the roof (i.e. BC) of the 

parallelepipeds were used for the comparison. As shown in Fig. 6, the results from 

previous studies that utilized LES (Lim et al. 2009) or RNG k-ε (Wright and Easom 

2003) is in better agreement with the boundary layer wind tunnel BLWT data compared 

to standard k-ε model (Wright and Easom 2003). The latter over predicted the pressure 

coefficients on the windward wall and the roof.   In the present study RNG k-ε has been 

opted due to its relatively good agreement with BLWT compared to Standard k-ε and 

relatively lower computational resource demand compared to LES. As can be seen from 
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Fig. 6, the present simulation (Case 1A) is in good agreement with boundary layer wind 

tunnel (BLWT) data from the literature, represented by the grey region. In comparison to 

full-scale testing (Richards et al, 2007), similar to reports in literature (Bitsuamlak 

2006), the numerical result gives less accurate pressure coefficient values for the roof 

(RMSE=0.222) compared to the windward wall (RMSE=0.131) and leeward wall 

(RMSE=0.146).  However it is to be noted that these errors are in similar order of 

magnitude with that of the variations observed in pressure coefficients measured in wind 

tunnels. When examining the CFD results it is necessary to account for the variations 

within the experimental data, described by the grey region of Fig. 6. It is to be noted that 

this comparison is made only to give an indicator on the quality of CFD value compared 

to industry wide accepted wind tunnel measurements from literature no additional effort 

was made in the present study to verify the quality of the wind tunnel measurements.  

Following the comparisons of the numerical simulations with results from the 

literature, the blockage assessments were pursued. The velocity contours for Case 1 are 

shown in Fig. 3.7. Figures 3.7(a) and (b) show the contours on a horizontal plane at mid-

height of the cube. Similarly, Figs. 3.7(c) and (d) show the contours on a vertical plane 

passing through the center of the cube. Figure 3.8 shows the path-lines for the 

recirculation zones for Case 1. Qualitatively, there is generally good agreement in terms 

of size of recirculation length behind the parallelepipeds. Quantitatively, Fig. 3.9 shows 

mean pressure coefficient comparisons for Cases 1A (ABL) and 1B (WoW). As can be 

seen from the figure, there is a very good agreement between the two, confirming the 

viability of using a proper wind-jet flows generated by using the WoW system with 

proper turbulence and boundary layer generation schemes representing ABL conditions. 
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Figures 3.10 and 3.11 show similar results for Cases 2 and 3, respectively. Slight 

differences in mean pressure coefficients (Cp values) were observed for Cases 2 and Case 

3 at the roof and leeward wall. These differences could be due to blockage or inadequacy 

of the basic type of turbulence model used in the present study. This remains to be 

verified through use of better numerical models such as Large Eddy Simulation (LES). 

The authors are currently working on an experimental investigation using the 1:8 scale 

WoW replica and the full-scale WoW. Once the sources of these differences are 

identified, proper corrections can be applied when testing larger models.  

Finally, the wind simulator proximity assessments were pursued. Similar to the 

blockage assessments, mean Cp values extracted from the center vertical lines at U/S and 

D/S faces of the parallelepiped (i.e., AB and CD) and the center horizontal line of the 

roof (i.e., BC) were used for comparison purposes. The mean Cp values for Cases 4, 5, 6, 

7 and 8 were compared with the wind tunnel data obtained from the literature as shown in 

Fig. 3.12. There is generally good agreement between the CFD and the wind tunnel data 

for Cases 5, 6, 7 and 8. For Case 4, however, the comparison revealed exaggerated Cp 

values in the windward wall. This means that the pressure coefficients at the windward 

wall were created by higher wind speed than the wind speed used to obtain the pressure 

coefficients. It is to be recalled that wind speed measured at H ft from ground (H= cube 

height) before placing the cube in the testing position has been used to obtain the pressure 

coefficients. This is believed to be due to the close proximity of the test cube to the wind 

simulator blocking the flow before it expands upwards and to the sides thus resulting in a 

higher velocity that created the pressure system compared to the wind speed used for 

obtaining the pressure coefficients. Compared to windward wall, the roof Cp values were 
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less sensitive to test building proximity to the wind simulator as can be seen in Fig. 3.11. 

The insensitivity of the roof pressures to the proximity of the wind simulator is believed 

to be due to localized flow effect such as flow separation at the roof level, which is less 

independent of the proximity parameter. For Cases 5, 6, 7 and 8, where the test cube was 

placed at >2H distance from the wind simulator, the exaggerated positive pressure 

disappeared. Thus, it may be concluded that to obtain a good quality aerodynamic data on 

walls, the models needs to be placed at a distance of more than 2H from the wind 

simulator. However, for roof or roof top equipment tests the aerodynamic data are less 

sensitive to the proximity of the test-specimen to the wind simulator. 

3.4 Conclusions 
The following guidelines and observations based on the present study are 

warranted:  

(i) Pressure coefficients were reasonably well reproduced. 

(ii) For large test models, i.e. for cases where the height of the test model is larger 

than one third of the wind field height, carrying out proper blockage assessments is 

necessary. 

(iii) Test buildings shall be preferably located at least 3H from the wind source 

(fans). If the model is placed closer than 3H, the quality of the aerodynamic data 

particularly in the windward wall can be compromised and appropriate correction needs 

to be applied. The roof aerodynamic data appears less sensitive compared to the 

windward wall.  

These guidelines may be followed when conducting similar studies. The present 

study is limited to mean characteristics. In the future detailed validation focusing on the 
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transient characteristics as well will be carried out by comparing the CFD results with 1:8 

WoW replica and full scale WoW blockage and wind source proximity data. 
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Two-fan Wall of Wind: (a) front isometric view and (b) rear isometric view 

 

 
Six-fan Wall of Wind: (c) front view and (d) side view 

 

 
(f) The new twelve-fan Wall of Wind 

Figure 3.1 Evolution of the Wall of Wind full-scale testing facility at Florida 
International University. 
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Figure 3.2 Six-fan WoW Small-scale (1:8) model. 

 
 

 

 
Figure 3.3 Computational Domain (CD) and Boundary Conditions as defined by 
FLUENT. 
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Figure 3.4 Sizes of test parallelepipeds and wind-fields at the inlet used for blockage 
assessment studies. Note that only the grey building has been used for wind simulation 
proximity assessment. 

 

 
Figure 3.5 Test cube windward face distances from the wind simulator (fans) for different 
simulation cases (Hb, 2Hb, 3Hb, 4Hb, and 5Hb for Cases 4, 5, 6, 7 and 8 respectively). 
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Figure 3.6 Comparison of mean wind pressure coefficients: Experimental measurements 
and numerical simulations by using several turbulence models. (after Bitsuamlak et al., 
2002) 
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(a) Case 1A (ABL): Horizontal plane at mid-
height of the parallelepiped.  

 

 
 

(b) Case 1B (WoW): Horizontal plane at mid-
height of the parallelepiped. 

 
 
(c) Case 1A (ABL): Vertical plane at the center 
of the parallelepiped. 
 

 
 

(d) Case 1B (WoW): Vertical plane at the 
center of the parallelepiped 

Figure 3.7 Wind velocity contour plots for ABL and WoW simulation. 

 
              

 
Case 1A (ABL) 
 

 
Case 1B (WoW) 

Figure 3.8 Wind velocity path-lines and recirculation zones. 
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 Figure 3.9 ABL and WoW mean pressure coefficient comparisons for Case 1 (3x3x3 m 
cube) 

 
Figure 3.10 ABL and WoW mean Cp comparisons for Case 2 (4x4x3 m parallelepiped) 
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Figure 3.11 ABL and WoW mean Cp comparisons for Case 3 (5x5x3 m parallelepiped) 

 
Figure 3.12 ABL and WoW mean Cp comparisons for Cases 4, 5, 6, 7 and 8 with wind 

tunnel data from literature. 



102 
 

4 NUMERICAL SIMULATION OF HURRICANE WIND LOADS ON LOW-RISE 

BUILDINGS WITH COMPLEX ROOFS 

Agerneh K. Dagnewa, Girma T. Bitsuamlak*, b

A Paper Prepared for the ASCE Journal of Structural Engineering and Presented in the 3rd 

AAWE 2012 Conference 

  

Abstract 

The present study attempts to evaluate wind loads on roofs using a numerical 

approach based on the Large Eddy Simulation (LES) method, by focussing on complex 

roofs that are not covered in building codes and standards. Two different types of 

complex roofs with and without neighbouring conditions under sub-urban terrain 

condition were considered. To assess the efficacy of the numerical models a comparison 

with boundary layer wind tunnel data was carried out for all four cases. The numerically 

generated mean and peak pressure coefficients agreed well with experimental data, 

although the agreement for mean values were better compared to peaks, windward better 

than leeward.  It can be safely concluded that LES with proper grid density and inflow 

generation could be used as an additional resource at least for preliminary design wind 

load estimations.  
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4.1 Introduction  
The recent experience with major hurricanes that have made landfall in North 

America is a grim reminder of the catastrophic effects of strong winds. Roof systems are 

exposed to higher loading than any other building element and are subjected to wind 

forces from many directions (Smith et. al, 1991). Suction pressures on the surface of the 

roof and roof corner vortices can lift both roof cladding and sheathing leading to water 

intrusion and cause further structural damage. The wind flow patterns over a roof are 

very complex because of the various possible shapes of a roof along with the turbulent 

ABL flow characteristics. Currently building codes and standard provisions, including 

ASCE 7 2005 and NBCC 1995, that were derived from Boundary Layer Wind Tunnel 

experiments provides design wind loads for common shapes such as mono slope, gable 

and hip (see Fig. 4.1).   

While gable roofs comprise the majority of architectural form on engineered low-

rise buildings, which are generally subject to deemed-to-comply provisions of building 

codes and standard, the overall housing stock exhibit a myriad of roof shapes. Post 

disaster studies have revealed that similar standards of residential low-rise construction of 

different geometric forms have suffered a disparity in wind-induced damage (Meecham, 

1992, FEMA 2005). For complex shapes and surrounding conditions there is a gap in 

design wind load information. Building codes and standards such as ASCE 7-05/10 and 

NBCC 2005 refer to physical model testing for wind load evaluation of buildings with 

complex configurations such as a typical residential construction with complex roof 

shapes and architectural features. Although these tests are viable for high-rise buildings 

and other large complex projects, they may not be cost effective for residential houses. 
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The evolution of Computational Wind Engineering (CWE) based on the techniques of 

Computational Fluid Dynamics (CFD) is making numerical evaluation of wind loads an 

attractive proposition for the design community. This is particularly true in light of the 

positive trends in hardware and software technology development. The main purpose of 

this research project is to evaluate wind-induced loads on low-rise residential buildings 

with complex roof shapes computationally, and validate the results using experimentally 

obtained data.  The present study targeted low-rise buildings with complex roof shapes 

with and without surrounding buildings that are not covered in the current building codes 

and standards. The outcome of the investigations in the long term is expected to support 

the case where building codes and standards in the future may begin to also consider 

CFD as one of the commonplace tools for wind load evaluation, especially for the design 

of low-rise residential houses.  

 

4.2 The current state of computational wind engineering 
Practical applications of CFD are widespread in areas such as pedestrian level 

wind evaluation, where mean wind velocities are required for evaluating comfort issues 

(Hanjalić and Kenjereš, 2008) and for building ventilation design applications (Jiru and 

Bitsuamlak, 2010). Some of the works in CFD applications for wind load evaluation 

includes non-linear Reynolds-averaged Navier-Stokes (RANS) modeling for full-scale 

low-rise buildings such as the Silsoe Cube (Wright and Easom, 2003), the computational 

prediction of flow-induced pressure fluctuations on the Texas Tech University (TTU) test 

building (Senthooran et al., 2004) and the computation of pressure on TTU (Selvam, 

1996). Also, there has been CFD research on tall buildings such as the Aerodynamics of 
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Commonwealth Advisory Aeronautical Research Council (CAARC) model building – a 

benchmark tall building used to calibrate wind tunnels around the world -- (Dagnew et 

al., 2009, 2010; Braun and Awruch, 2009; and Huang et al., 2007); Large Eddy 

Simulation (LES) of flow and building wall pressure in the center of Tokyo (Nozu et al,. 

2008); LES of wind effect on a full-scale supper-tall building (Huang et al., 2010); flow 

around high-rise buildings using various turbulence models by Tominaga et al (2008a); 

topographic studies over complex terrains (Tamura et al 2007, Stathopoulos, 1999, 2002; 

Ishihara et al., 1999, Bitsuamlak et al., 2004, 2005b, and 2007). More recently, 

exponential growth in computing technologies have helped analyze 3D complex wind 

flow fields using LES and Direct Numerical Simulation (DNS) with reasonable 

computational cost and enabled wind load estimation with high accuracy (Tamura et al., 

2008). 

Some countries have already established working groups to investigate the 

practical applicability of CWE and develop recommendations and guidelines for efficient 

implementation and use for wind resistant design of actual buildings and for assessing 

pedestrian level winds, within the framework of the Architectural Institute of Japan (AIJ) 

(Tamura et al. 2008, (Tominaga et al., 2008) and the European cooperation in the field of 

scientific and technical research (COST, 2007; Franke, 2006). AIJ provides methods for 

predicting wind loading on buildings by RANS and LES. While COST Action 732 

(COST732, 2007) outline a best practice guideline for successful CFD simulation of wind 

flows in the urban environment using steady RANS equations. 

Wind loads for residential buildings are affected in a complex way by many 

factors, such as incoming wind characteristics (wind speed, turbulence intensity, integral 
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length scales, etc.), topography and surface roughness, immediate surroundings, 

building/roof shape and orientation. Hence, before getting to the wind load evaluation 

phase any CWE simulation should put an effort to incorporate all of these factors in a 

manner that is as realistic as possible in order to produce a usable outcome.  

4.3 Experimental test setup 
4.3.1 Low-rise building with regular roof shape (gable and hip) 

Wind tunnel tests were conducted on 1:15 scale models of one-story single-family 

residential buildings to study the distribution of roof pressure. For the current 

investigation, two different roof geometries were fabricated, a 3:12 slope gable roof 

model (Fig. 4.2(a)), and a 3:12 slope hip roof model (Fig. 4.2(b)). The scale model has 

dimensions of L=1.2m(4ft), W=0.6 m(2ft) and H=0.3m(1.1ft) where L and W denote the 

longer and shorter widths respectively and H denotes the roof ridge height. At this size, 

the maximum building model blockage ratio in the wind tunnel was approximately 9% 

(only marginally higher than the maximum blockage of 8% recommended in ASCE-7 

(2010). The wind tunnel tests were carried out at RWDI’s boundary layer wind tunnel 

facility in Florida USA. The wind tunnel has a cross-section of 2.13m x 2.44m (7ft x 8ft) 

and the test model was placed on a turntable located 13.3m (43.5ft) downstream of the 

tunnel entrance. An attempt was made to generate only the lower part of the atmospheric 

boundary layer at a relatively large scale. The test was conducted in an open terrain 

exposure. The Reynolds numbers in the present study was calculated to be 05E84.7 . The 

mean wind speed profile fits well with a target profile obtained with a power law 

exponent of 0.15(~1/6.5). Moreover, the turbulence intensity profile also fits well to a 

target profile of ( )zo/zln
1 recommended based on the large-scale depression system 
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measurements (Holmes, 2007). A full-scale value of 0.02m was taken for the roughness 

coefficient zo as per the recommendation of ASCE7 (2010) for exposure category C.  

4.3.2 Low-rise buildings with complex roof shapes  

BLWT tests on two house models with complex roof shapes were used for 

comparison with the CFD data. The two houses were similar to the ones use for field 

measurement as part of the Florida Costal Monitoring Program (FCMP) (Liu et al., 

2009). The two buildings were represented as FL27 and FL30, respectively. These were 

two of the 42 home neighborhoods in FCMP. The wind tunnel tests were collected at 

Western Boundary Layer Wind Tunnel Laboratory (see acknowledgment) as part of as 

part of NSF Grant CMMI-0928563. FL-27 is a one-story single-family residence located 

in Gulf Breeze, Florida (Figure 4.3). The gable roof consists of multiple levels, with the 

main ridge at 6m elevation above grade.  

The BLWT tests used a suburban exposure similar to the ASCE7-10 exposure B 

(suburban exposure). From the Google images provided in Figure 4.4, both FL27 and 

FL30 are surrounded with 1 or 2 story single-family dwellings on one side and wooded 

area on the other side, within a radius of 0.5 miles (800 m). The wind tunnel accounted 

the surrounding terrain within 1 mile radius of the target building. Figure 4.5(a) shows 

the 1: 50 scale model of LF27 which contains 496 taps systematically distributed on the 

roof. Figure 4.5(b) shows the FL30 model building with 474 taps on its roof. The 

boundary layer simulation of the model buildings with neighboring houses were done by 

placing the test house model at the center of the turn table (Fig. 4.6) surrounded by the 

scaled models of the houses located within a radius of 250 ft (full-scale). The radius of 
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the surrounding assumed for the BLWT study took into consideration of the model 

building size. 

4.4 Numerical modeling 
The numerical evaluation of wind effects on buildings involves various modeling 

steps. The pre-processing step consists the conceptual modeling to the CAD preparation 

and to the generation of high quality computational meshes. Due to the complexity of the 

wind/structure interaction, care should be taken during the model preparation phase. This 

includes the selection of appropriate turbulence model, such as RANS, LES, and hybrid 

RANS/LES models, which can realistically capture the important structures of the wind 

flow. To ensure the best use of the turbulence models in getting the accurate numerical 

prediction of wind-induced effects, the sizing of the computational domain and 

prescription of the boundary conditions should also be carefully defined. Parallel 

simulations were carried out using a solver of commercially available software, Fluent14 

(Ansys Inc., 2012). All simulations were carried in the Multidisciplinary Analysis Inverse 

Design Robust Optimization and Control Laboratory (MAIDROC) lab, which has 272 

processors parallel computing nodes, but using only 28 CPUs due to the limitations on 

the number of software licenses. The following sections describe in detail the procedures 

and the modeling principles used in the present study.  

4.4.1 Geometrical model preparation of test buildings for CFD 

The geometrical modeling for the CFD simulation adopted the same wind tunnel 

scale building models. For the two regular shape CFD models, gable and hip roof 

buildings, only an isolated building case was investigated using a 1:15 scale, since the 

wind tunnel data was carried out for an isolated building. Figure 4.7 shows the three-
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dimensional perspective view of the regular roof model buildings. For buildings with 

complex roof shapes the dimensions and the surrounding context for the LES simulation 

were determined from a combination of the actual wind tunnel model at Western and 

information provided by the University of Florida research group. The adopted LES is the 

same as the scale of the BLWT testing, i.e. 1:50. Figure 4.8 provides the overall 

dimensions for FL27 and FL30 LES models. Figure 4.9 show the topology of FL27 and 

FL30 with the surrounding buildings inside the idealized turntable of the computational 

domain. 

4.4.2 The LES model and inflow turbulence 

LES is a multi-scale computational modeling approach that offers a more 

comprehensive way of capturing unsteady flows. The use of LES as a wind load 

evaluation tool has been significantly improved in recent years through the following 

numerical techniques (a) numerical generation of transient inflow turbulence (Kraichan, 

1970; Lund et al., 1998; Nozawa et al., 2002, 2005; Smirnov et al., 2001; Batten et al., 

2004), (b) development of efficient sub-grid scale turbulence modeling techniques 

suitable for unsteady three-dimensional boundary separated flows, and (c) numerical 

discretization with conservation of physical quantities for modeling complicated 

geometry (Tamura et al. 2008). Because of these advancements, LES holds promise to 

become the future computational wind engineering (CWE) modeling for which turbulent 

flow is of pivotal importance (Tamura, 2008; Tucker and Lardeau, 2009; Sagaut and 

Deck, 2009). In the present study, the Dynamic Smagornisky-Lilly subgrid-scale (SGS) 

model based on Germano et al. (1996) and Lily (1992) have been employed. In this 
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method the Smagornisky constant, , is computed dynamically according to the resolved 

scales of motion inside the domain. 

For the present study, in addition to the mean velocity and turbulence intensity 

profiles that were similar to the wind tunnel, transient velocity fluctuations were 

superimposed at the inlet boundary of the LES simulations. A method called the 

discretizing and synthesizing random flow generation (DSRFG) for the transient inflow 

turbulence, which has the flexibility to prescribing any arbitrary 3D spectrum for the 

amplitude of the fluctuation such as the von Karman spectra (Huang et al., 2010) were 

used. The synthesized velocity field is presented below for discussion purposes and the 

detailed formulation and derivation can be found in the original paper (Huang et al., 

2010). 
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where  and  are the vector form of the fluctuation amplitude. For 

inhomogeneous and anisotropic turbulence the distribution of n,mk is done by remapping 

the surface of the sphere after the components of n,mP  and n,mq  are aligned with the 

energy spectrum. In addition to the flexibility of prescribing any arbitrary 3D spectrum, 

the DSRFG method uses the length scale ( ) as a scaling factor and 

this resulted in the generation of spatially correlated flow fields with the relevant length 

scales.   
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4.4.3 Computational domain and boundary conditions 

The computational domain (CD) defines the region where the flow field is 

computed. The size of the CD should be large enough to accommodate all relevant flow 

features that will have potential effects on altering the characteristics of the flow field 

within the region of interest (Franke, 2006, COST 2007, AIJ 2008). In addition, the 

sizing also should take into account the computational overhead that will be incurred by 

using an excessively large domain. For the present study multiple steady state 

preliminary simulations were conducted to size the computational domains and the 

combination of sizes which resulted in a blockage ratio of less than 5% were used for the 

main simulations. The blockage ratio is defined as the ratio of the projected area of the 

surfaces of the model buildings in the flow direction to the area of the inlet boundary.  

Table 4.1 summarizes the dimensions of the models, the computational domain, and the 

resulted blockage ratio of the cases considered in the present study. For FL27 and FL30 

with the neighboring houses, the CD was sized using the maximum building height 

within the vicinity of the target model and the resulting blockage ratio was 7 and 6%, 

respectively.  

Boundary conditions (BC) represent the effect of the surroundings that have been 

cut off by the CD and idealize the influence of the actual flow environment under 

consideration. BCs could dictate the solution inside the CD and have significant effects 

on the accuracy of the solution. At the inlet boundary, the mean wind velocity and 

turbulence intensity profiles similar to the wind tunnel were prescribed. For example the 

wind speed and turbulent intensity profiles of the complex roof shape buildings (FL27 

and FL30) measured at the UWO wind tunnel (Fig. 4.10) were applied for the CFD 
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simulation. The mean velocity profile was prescribed by the power law (with exponent

1658.0=α ), and the turbulence intensity profile was found by curve fitting (Fig. 4.10).  

For velocities, a no-slip boundary is used at the solid walls. A symmetry boundary 

condition was employed at the top and lateral surfaces of the CD. Since details of the 

flow variables were not known prior to the simulation, an outflow boundary was applied 

at the outlet plane. Figure 4.11 shows a typical CD and boundary conditions modeling for 

the benchmark simulations.  

The computational domain and boundary conditions were setup for buildings with 

complex roof shape after careful CAD modeling and topology cleanup, as shown in Fig. 

4.12.  For the case with the neighboring buildings the CD size were increased to 

accommodate the surrounding buildings (Fig. 4.13). 

4.4.4 Computational grid, spatial, and temporal discretization schemes  

The computational grids were generated using Ansys Meshing CutCell Cartesian 

meshing algorithm. This mesh tool has a unique ability to generate a large fraction of 

hexahedral cells in complex configurations. The mesh operation involves a two-stage 

inflation process to resolve the inner boundary layer and generate sufficient quality for 

convergence. Successive adaptations have been done to refine the cells’ sizes and resolve 

the near-wall region of the model buildings. In the inner sub-layer region, the boundary 

layer meshes were inflated from the ground surface and the first cells were placed at a 

distance with a stretching ratio of 1.05. This ensured 

( )unitwall,yuy p* ν+  to be less than 5 units. In addition, the computational domain 

was subdivided into multi-body parts to have better control and distribution of the 

m0005.0y p =
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computational grid points around the model building and wall boundary. The regions 

within the vicinity of the sharp edges were treated by clustering very fine grid cells with a 

stretching ratio of 1.05, to help negotiate the change of the topology (Fig. 4.14 and 4.15).  

For discretization of convection terms central-differencing based schemes give 

the least numerical diffusion and the best accuracy compared to the upwind schemes, as 

demonstrated by Marinuzzi and Tropea (1993). However, for high Re flows in the wake 

region, such as the present cases, this scheme can become unstable, giving unphysical 

oscillations (wiggles). The bounded central differencing (BCD) scheme, essentially based 

on the normalized variable diagram (NVD) approach (Leonard, 1991) together with a 

convection ‘boundedness’ criterion can detect and remove these wiggles in the wake 

region. Because of this the BCD scheme has been used for all the simulations of the 

present study. For temporal discretization, second-order schemes are advised for most 

computational wind engineering applications and have been used in the present study.  A 

second-order scheme for pressure discretization has been applied. For pressure-velocity 

coupling, the Pressure Implicit with Splitting of Operators (PISO) algorithm with 

skewness and neighboring correction is recommended for the transient simulation and 

has been used in all LES simulation. PISO is based on the higher degree of the 

approximate relation between the corrections for pressure and velocity (Ansys Inc., 

2012).  The simulations have been carried out at the supercomputer center at Florida 

International University.  The parallel computations have been carried out using 28 

CPUs. A computational time step of 0.001s with 5 sub-iterations, per time step, was used 

in all the simulations. First the simulation run for enough flow time and once the solution 

reached a stable condition, the fluctuating pressure data were recorded for 2s flow-time. 
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Also, for the residuals a strict convergence criterion of  has been applied to ensure 

full convergence of the simulations. 

4.5 Results and discussion  
4.5.1 Wind-pressure coefficients for regularly shape low-rise residential roofs 

Wind induced forces can be obtained from the time-history of the pressure data. 

In the present work, pressure coefficients obtained from the CFD simulations and the 

wind tunnel tests were converted into non-dimensional mean pressure coefficients ( ), 

normalized with the dynamic pressure head and defined using the following expression: 
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where P is the pressure measured on the building roof surface, 0P  is the reference 

pressure, ρ  is the density of air, and HV  is the reference wind speed at mean roof height 

of the building. 

Gable roof building: For the numerical investigation of wind pressure 

coefficients were evaluated for three wind directions were considered (Table 4.2) 

Figure 4.16 shows the mean pressure coefficients measured at the pressure taps 

located at centerline of the roofs perpendicular to the ridgeline. For the straight wind (00 

AoA) the LES predicted well except at the taps near the edge of the roof where flow 

separates. For the oblique wind directions (Case 1 and 2) the LES resulted in a good 

prediction comparable to the BLWT result.  Figure 4.20 shows the comparisons of the 

mean pressure coefficients contour plot for the BLWT and LES.  From the illustration it 

can be seen that for Case 1 the oncoming flow separated at the leading edge of the roof 

510 −
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and remain separated to the lee-ward region of the roof, as indicated by the negative 

pressure on the surface of the roof (Fig. 4.17(a) and (b)). This introduced very high 

suction pressure at the windward edge of the roof and the suction intensified at the ridge 

edge. For the oblique wind AoA  (Case 2) the distribution of the pressure contours show 

the formation of corner vortices, responsible for uplift wind forces (Fig. 4.17(c) and (d)). 

Large structures (eddies) on the longer side of the roof and on the shorter side of the roof 

small structure with high fluctuation were formed. This type of fluctuating pressure could 

initiate the failure of roof coverings.  For the 900 wind direction (Case 3) the oncoming 

flow reattached back to the roof at lee-ward and as a result part of the roof in the 

reattachment region experienced a low positive pressure (Fig. 4.17(e) and (f)). Overall 

there is a good agreement between the LES simulations of the gable roof models with and 

the experiments.  

Hip roof: LES was used to assess the performance of hip roof building in 

comparison with the gable roof and its response for wind directionality effects three wind 

directions have been considered for the numerical and wind tunnel simulations. Table 4.3 

summarizes the cases studied for the hip roof building.  

Figure 4.18 shows the comparison of the mean pressure coefficients of the hip 

roof. The mean Cp is computed from the time-history of pressure recorded during the 

LES simulation and the BLWT testing. The LES simulations predicted the mean pC  

very well, especially for the 00 wind AoA.  There is slight over-prediction of the time-

averaged pC for the oblique wind. For Case 3 (900) the Cp measured at the centerline of 
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the hip roof showed very small pressure coefficients ( 0C p ≈ ). This is in line with the 

response of the gable roof building for the same wind direction (Fig. 4.18(c)). 

Figure 4.19 shows the contour map of a typical hip roof under turbulent wind 

field. The LES reproduced most of the important flow features such as separation, re-

attachment and corner vortices on the surface of the building. Qualitatively, there is a 

good agreement between the LES and the BLWT results. The use of a time-history 

approach and transient inflow turbulence contributed to the improved prediction of wind 

loads for oblique wind direction, which usually for such type of wind the numerical 

simulations fail to accurately estimate the wind effects. The assumption of constant 

integral length and turbulent intensities in the lateral and vertical directions, due to the 

size of the model scale it was not possible to measure these properties in the lower part of 

the study buildings during the wind tunnel testing, attributed to the slight discrepancies of 

the LES results.   

4.5.2 Wind-pressure coefficients on complex roofs of low-rise houses  

The numerical investigation of wind-induce pressure loads on buildings with 

regular and complex roof shapes were carried out using the technique of LES. Table 4.4 

shows the cases considered for the complex roof buildings study. The time-history of 

pressure data was recorded at the pressure taps that are systematically distributed on the 

critical section of the roofs (Fig. 4.20). The mean pressure coefficients of the LES 

simulations and the BLWT data for the complex roof FL27 were plotted along the 

pressure tap lines and compared, as shown in Fig. 4.21.  The prediction of the time-
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averaged Cp by the LES follows the same pattern as the experimental data. Figure 4.22 

shows the mean pressure coefficient profiles for FL30 measured at the highlighted taps.  

The contour map of the mean pressure coefficients illustrates how the neighboring 

buildings could affect the wind load distribution of the target or study building, shown in 

Fig. 4.23. The interference and sheltering effects resulting from the surrounding houses 

modifies the contour map. In some cases it increases in the pressure loads and in another 

instance it increases the suction pressure load. These highlight the importance of consider 

these effects when evaluating the design wind loads for roofs of irregular shapes 

buildings. Overall the mean pressure coefficient profile of the LES simulations near the 

ridge showed some discrepancies from the experiment. The pressure load distribution on 

the roofs of these models displayed a variation that is completely different from the one 

by the regular shape models. However, considering the sharp edges of the building and 

the assumptions used in translating the wind tunnel data to the CFD modeling (such as 

the assumption of constant integral length in the lateral and span, turbulent intensity), the 

results are very encouraging. 

4.5.3 Peak load estimation  

Estimation of the largest wind-induce peak load is very crucial in determining the 

internal design forces of structures, structural and non-structural components, and 

assessing their reliability under sever wind storm. In the present study the time histories 

of fluctuating wind pressure recorded from HFPI-type LES simulation were used to 

estimate the non-Gaussian peaks of low-rise buildings with regular. Sadek and Simiu 

(2002) procedure of estimating the peak stochastic response of low-rise buildings to wind 

was used. One advantage of using such a method is that it provides statistically 
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representative peak as the estimation uses the information contained in a whole sample 

record that that at just one instant in time. This is particularly useful for CFD based 

simulation as the length of the sample is usually short, mainly dictated by physical 

constraint such as computational resource. The result showed that CFD can be used to 

estimate the peak pressure loads. However, it’s computationally expensive to measure 

large data record.   

4.5.4 Velocity flow field visualization 

To illustrate the importance of studying wind directionality, velocity streamlines 

of two wind direction were studied.  Figure 4.24 and 4.25 show the surface velocity 

streamlines of FL27 and FL30 with neighboring buildings, respectively. The neighboring 

structures clearly changed the flow dynamics of at the incidence plane of the study 

buildings. Because of these, channeling, sheltering, and wake effects were observed.  

 

4.6 Conclusions 
The numerical investigation of wind-induce pressure loads on buildings with 

regular and complex roof shapes were carried out using the technique of LES. The study 

of the roof pressure distribution revealed that the mean pressure coefficient predicted by 

the LES simulation is in a good agreement with the wind tunnel data. The study also 

showed that oblique angle wind could introduce uplift pressure loads. The models with 

complex roof shapes showed mixed pressure distribution on the roof (positive and 

negative pressure) as opposed the regularly shaped models where separation and 

reattachment location are clearly known. An attempt has been made to estimate peak 

value from the numerical data. However, considerably discrepancy has been occurred.  
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LES captured the common fact that mean pressures on the gable roof are 

generally higher than those on the hip roof which has been confirmed by a number of 

similar previous studies as well. On both roof models, high suction pressures were 

observed on areas close to the windward edge and near the middle ridge. This makes 

sense physically since these are the areas where flow separation is expected to occur. The 

highest magnitude roof suction pressures were observed in the corner areas close to the 

edges for both roof types. On the hip roof model, the highest suction pressure was 

observed when the wind came from the diagonal directions, while the highest suction 

pressures on the gable roof model was observed when the wind came perpendicular to the 

short dimension.  

LES was found very useful for complex roof cases, where building standards and 

codes do not provide design wind loads. The mean pressure coefficients between LES 

and the wind tunnel data revealed that there is a general agreement between the two. The 

flow visualization from LES could be useful to rationally encourage design of low rise 

buildings for wind performance. It is fair to conclude that CFD simulations such as LES 

can be used as an alternative tool for wind pressure load evaluation of low-rise building 

at least for preliminary design 
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Table 4.1 Dimension of the mode buildings and blockage ratio of the computational 
domains 
Case Building dimensions 

(L x W x H) (in) 
Wind direction 

(degree) 
Blockage ratio 

(%) 

Gable 48 x 24 x 12.875 
0 3 
45 4 
90 1.7 

Hip 48 x 24 x 12.875 
0 4.3 
45 4 
90 1.7 

Fl27 16.48 x 15.30 x 4.48 120 4 
FL30 13.2 x 11.52 x 4.08 120 4.4 

 
 
 

Table 4.2 Cases considered for LES and BLWT studies: Gable roof  

 
 
 

Table 4.3 Cases considered for LES and BLWT studies: Gable and hip roof buildings 

 
 
 

Table 4.4 Cases considered for LES and BLWT studies: Complex roof shap buildings 

 

Case Roof type Terrain 
exposure 

Azimuth (degree) 

Case 1 Gable Open 00 
Case 2 Gable Open 450 
Case 3 Gable Open 900 

Case Roof type Terrain 
exposure 

Azimuth (degree) 

Case 1 Hip Open 00 
Case 2 Hip Open 450 
Case 3 Hip Open 900 

Case Roof type Terrain exposure Azimuth (degree) 
FL27 Complex Exposure B 1200 
FL27 with neighboring Complex Exposure B 1200 
FL30 Complex Exposure B 1200 
FL30 with neighboring Complex Exposure B 1200 
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Figure 4.1 Typical types of roofs addressed in wind codes and standards. 

 
 

(a)  (b) 
Figure 4.2 Wind tunnel testing set up for low-rise building with (a) Gable and (b) Hip 
roof. 

 
 

 
Figure 4.3 Photographs of the actual FL-27 house showing anemometer location and 
pressure sensor (after Liu et al., 2009). 
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Figure 4.4 Google image of surrounding exposures of study buildings FL27 (top) and 
FL30 (bottom) (after Kopp and Gavanski -- part of NSF Grant CMMI-0928563-- 2010; 
Liu et al., 2009).  

 

 
(a) 

 
(b) 

Figure 4.5 Wind tunnel models of houses with complex roof shapes: (a) house model 
FL27 and (b) house model FL30 (after Kopp and Gavanski, 2010 -- part of NSF Grant 
CMMI-0928563). 

 
Figure 4.6 Wind tunnel setup of study houses with neighboring buildings: FL27 with 
neighboring house (left) and FL30 with neighboring houses (right) (after Kopp and 
Gavanski, 2010 -- part of NSF Grant CMMI-0928563). 
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(a) 

 
(b) 

Figure 4.7 Three-dimensional perspective drawings of residential buildings: (a) Gable 
and (b) Hip. 

 

 
(a) FL27  

(b) FL30 
Figure 4.8 CAD models of single house models with complex roof shapes. 

 

 
(a) FL27                             (b) FL30 

Figure 4.9 Geometrical models of the FCMP residential houses with neighboring 
buildings. 
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Figure 4.10 Mean wind speed referenced at mean roof height, h, and turbulence intensity 
profile in the suburban exposure (zo = 0.23 m) in full-scale dimensions (NSF Grant 
CMMI-0928563). 

 
 

 
Figure 4.11 Computational domain and boundary conditions: Gable roof model. 
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Figure 4.12 Computational domain and boundary conditions for FL27 model building. 

 

 
Figure 4.13 Computational domain and boundary conditions of FL27 and FL30 with 
neighboring houses. 
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Figure 4.14 Computational mesh for FL27 and FL30 model buildings. 

 
 

 
Figure 4.15 Computational mesh for FL27 with neighbouring buildings. 
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(a) Case 1 

 

(b) Case 2 

 

(c) Case 3 
Figure 4.16 Comparison of mean pressure coefficient of LES and BLWT data: (a) 00, (b) 
450, and (c) 900 wind AoA. 
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(a) BLWT 

 
(b) CFD-LES 

 

 

(c) BLWT 

 
 

(d) CFD-LES 

 
(e) BLWT 

 
 

(f) CFD-LES  
Figure 4.17 Wind tunnel and CFD contour map of mean pressure coefficients on the 
gable roof building: (a) 00, (b) 450, and (c) 900 wind angle of attack. 
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(a) 

 
(b) 

 
(c) 
Figure 4.18 Comparison of mean pressure coefficient of LES and BLWT data: (a) 00, (b) 
450, and (c) 900 wind AoA on the roof of a hip roof building. 

 

 



135 
 

 
(a) BLWT 

 

 
(b) CFD 

 
(c) BLWT 

 
 

(d) CFD 

 
(e) BLWT 

 
 
 

(f) CFD 

Figure 4.19 Wind tunnel and CFD contour map of mean pressure coefficients for hip roof 
building: (a) 00, (b) 450, and (c) 900 wind angle of attack. 
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(a) (b) 

Figure 4.20 Distribution of pressure taps for LES simulation: (a) FL27 and (b) FL30. 

 

 
(a) 
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(b) 
Figure 4.21 Mean pressure coefficient of FL27 from CFD and BLWT: (a) plot along the 
east of the roof and (b) plot along west side of the roof.  

 

 
(a) 
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(b) 
Figure 4.22 Mean pressure coefficients of FL30 from CFD and BLWT: (a) plot along the 
east of the roof and (b) plot along west side of the roof. 

 
 

 
(a) FL 27: Isolated house 

 

 
(b) FL27: With neighboring houses 
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(c) FL30: Isolated house 

 

 
(d) FL30: With neighboring houses 

Figure 4.23 CFD contour maps of mean pressure coefficients.   

 

 
(a) 

 
(b) 

Figure 4.24 Surface velocity streamlines of FL27 with neighboring houses: (a) 00 and (b) 
1200. 

 
(a) (b) 

Figure 4.245 Surface velocity streamlines of FL30 with neighboring houses: (a) 00 and 
(b) 1200. 
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5 COMPUTATIONAL EVALUATION OF WIND LOADS ON A STANDARD TALL 

BUILDING USING LARGE EDDY SIMULATION  
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Abstract 
 

 In this paper wind induced aerodynamic loads have been  evaluated through large 

eddy simulation (LES) for a standard tall building that is commonly used by several 

boundary layer wind tunnel (BLWT) laboratories for calibration purposes. Test 

configurations with and without the presence of an adjacent building have been 

considered. Statistical parameters extracted from an empty BLWT atmospheric boundary 

layer (ABL) flow over an open terrain have been used to prescribe the transient inlet 

boundary for LES simulations. High frequency pressure integration (HFPI) approach has 

been employed. A total of 280 pressure taps have been systematically distributed on the 

surfaces of the LES model building and the corresponding BLWT model building used 

for validation purposes. A detailed inflow boundary condition impact analysis on the 
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accuracy of the LES wind load evaluation using three different methods has been carried 

out. The comparison of the LES results with the experimental data that showed  better 

agreement for the inflow fluctuation generated by using the synthetic method than the 

random flow generated by Simirnov’s  and Lund’s recycling methods. LES predicted 

wind loads comparable with the BLWT data both for an isolated building case and for 

cases where adjacent buildings were placed in the vicinity of the study building, which 

introduced more turbulence and sheltering effects.  

 

Keywords: LES, BLWT, ABL, inflow turbulence, wind force coefficients, power 

spectrum, tall building. 

 

5.1 Introduction 
Several wind load evaluation studies for buildings in boundary layer wind tunnels 

have been reported by various researchers, and more recently through a numerical 

approach. Recent advances in hardware and software technology coupled with 

development of reliable sub-grid turbulence models and numerical generation of inflow 

turbulence, which replicates upstream conditions, is making a computational wind load 

evaluation an attractive proposition (Tamura et al., 2008). Previous numerical studies are 

focused both on short and tall buildings.  Numerically studied full-scale low-rise 

buildings included the Silsoe Cube (Wright and Easom, 2003), Texas Tech Building 

(Senthooran et al., 2004) and the Wall of Wind Test Building (Bitsuamlak et al., 2010). 

High-rise buildings included (Nozawa and Tamura, 2002; Tominaga et al., 2008a), and 

others. Huang et al. (2007) and Braun and Awruch (2009) studied the external 
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aerodynamics of a standard tall building known as the Commonwealth Advisory 

Aeronautical Laboratories model (CAARC, after Melbourne, 1980) and investigated flow 

patterns, mean and root-mean-square ( rms ) pressure coefficients on the building 

perimeter.  

With other buildings present in close proximity, the dynamics of the wind flow 

becomes much more complex and flow interference occurs (Khandure et al., 1998). The 

most commonly reported interference effects are (a) sheltering which leads to reduction 

of drag force on the downstream building and amplification of the fluctuating force due 

to turbulence buffeting (Thepmongkorn et al., 2002; Lam et al., 2008), (b) flow 

channeling due to close spacing of buildings (Princevac et al., 2010), (c) flow asymmetry 

which could possibly introduce wind–induced torsion, and (d) wake buffeting. Most of 

the pre-existing numerical studies for assessment and evaluation of interference effects 

has been limited to the use of Reynolds-averaged Navier-Stokes (RANS) equations 

(Zhang and Gu, 2008, Lam and To, 2006).  

For a numerical model to be successful, similar efforts taken in their BLWT 

counterpart to produce proper inflow characteristic is necessary. In this study numerical 

simulation which systematically investigated the effects of various inflow turbulence 

generations for LES are presented. LES of the CAARC model has been carried out for 

with and without adjacent building test configurations. A detailed validation through 

comparison with wind tunnel data obtained from RWDI USA LLC, Miramar FL 

(Dagnew et al., 2009; Dagnew and Bitsuamlak, 2010).  
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5.2 Inflow turbulence generation  
The application of LES for estimating time-history of dynamic wind load, which 

requires transient inlet boundary conditions, heavily depends on the generation of 

accurate inflow turbulence at the inlet boundary. Inlet boundary conditions of LES 

simulations, of high Reynolds number turbulent flow, should possess accurate 

representation of oncoming inflow turbulence, satisfying prescribed spatial and temporal 

correlations (Tamura, 2008).  In bluff body aerodynamics the grid spacing is mostly too 

coarse to resolve any large component of the turbulent spectrum. This is especially so 

near the inlet boundary, where few grid cells are allocated in order to reduce 

computational cost while the majority of the cells are clustered in the near-wall region to 

resolve boundary layers, flow separation and reattachment, and wake and recirculating 

regions.  However, the purpose of the inlet boundary condition is to supply scales 

relevant to the grid, i.e., ensuring the inlet turbulence have integral length and time scales 

related to the grid size ( x∆ , y∆ , z∆ ), and the computational time step t∆ .  

There are several techniques to generate turbulence fluctuations. A 

comprehensive review by Tabor and Baba-Ahmadi (2009) and Huang et al. (2010) 

discussed various methods commonly used for generation of inflow turbulence at the 

inlet boundary of LES simulations. These include recycling methods, precursor 

databases, and synthetic turbulence methods.  The present study investigated the 

suitability of these methods for LES-based wind load evaluation of tall buildings. To 

perform the suitability study an experimental ABL wind flow simulation has been 

conducted and flow statistics have been measured.   
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5.2.1 Experimental ABL wind flow simulation  

A practical approach for obtaining the inlet boundary flow variables for CFD 

simulations is to generate a time history of wind velocities through empty BLWT 

measurements (Fig. 5.1(a)). Then mean flow variables obtained from statistics of the 

time-history data generated by the wind tunnel for the standard profiles such as open, 

suburban, and urban profiles can be used in the numerical method to accurately prescribe 

the inlet boundary of the LES simulation.  Once the flow statistics are generated, they can 

be used repeatedly by the LES model as required without the need to go back to the wind 

tunnel. In the present study the wind tunnel ABL wind flow simulation have been 

conducted at the RWDI USA LLC testing facility that has a testing section of 2.6 m wide 

by 2.14 m tall. The floor has mechanical actuator to control the degree of surface 

roughness. Approximately 2.54 cm by 2.54 cm flat plate on 30.48 cm in by 30.48 cm in 

diamond pattern roughness cubes are used to replicate rural terrain type surface 

roughness. For the present case a data with record length of 180 sec data with sampling 

frequency of 515 Hz has been collected at RWDI BLWT.  An open type exposure with 

“power low exponent of 0.16” was obtained from the ABL experimental simulation (Fig. 

5.1(b)). Statistics of fluctuating turbulence such as length-scale and turbulence intensities 

are then obtained from the time history of the velocity data measured in the BLWT that 

were subsequently used by the various inflow turbulence generators.  

The integral length scale is estimated from the wind velocity spectrum after 

applying frequency smoothing by dividing the raw data into K sub-blocks of M points 

using Welch’s method in MATLAB software package. Table 5.1 summarizes the 

turbulence characteristics of the simulated ABL wind flow. 
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5.2.2 Numerical generation of inflow turbulence for LES simulation  

5.2.2.1 Recycling method 

The recycling method is based on Lund et al. (1998) proposal where the 

computational domain is subdivided into two domains. This method can be implemented 

in two different ways.  Using an auxiliary simulation where an empty computational 

domain simulation is done and the turbulence data will be stored for subsequent 

simulation (Fig. 5.2(a)). Once the simulation is run enough number of flow-through 

times, i.e., the flow statistics are stable, a plane of data will be extracted and stored for 

later use by the main simulation. The other method is by a combined domain approach, 

where the domain upstream of the calculation domain, also called “driver domain”, is 

used to generate spatially developing boundary layer flow by re-scaling instantaneous 

velocity at a plane, also called the recycling plane, and remapping the flow back to the 

inlet boundary (Fig. 5.2(b)). The “calculation domain” will use the plane of data 

generated on the fly by the “driver domain”.  Kataoka and Minoruu (2002) later 

simplified Lund’s method by assuming that the growth of the inner boundary layer 

thickness is insignificant within the computational domain. Hence, instead of recycling 

the whole value of the instantaneous velocity components only the fluctuating 

components will be recycled. In this method the velocity components at the inlet 

boundary are defined as follow  
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where subscripts  denotes the time-averaged value in the span-wise direction and 

 is the prescribed mean velocity profile.  And the damping function which 

prevents development of the turbulence in the free stream is given by 
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                                              (5.2) 

where ,Gzz=θ  and ,z Gz  are height and gradient height, respectively. 

In this paper one study case was to investigate the modified Lund’s recycling 

method (Kataoka and Minoruu, 2002).  Inhomogeneous perturbations were by the 

Weighted Amplitude Wave Superposition (WAWS) technique and added to the inlet 

boundary (Swaddiwudhipong et al., 2007). The WAWS method is based on Shinozuka 

(1985), where a fluctuating velocity filed is generated from samples of a single random 

Gaussian process with zero mean and prescribed model energy spectral.  
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                                                        (5.3) 

where )( ku fS  is the one-sided von Karma spectral model of ),(' tu ,kf  Nk ,...,1= are 

central frequencies of the interval f∆  and kϕ is the random phase angle uniformly 

distributed from 0  to π2 . For the present study the energy spectrum of fluctuating 

velocities were described by the von Karman model spectrum (Simiu and Scanlan, 1995). 

5.2.2.2 Synthesized turbulence 

A synthesized turbulence fluctuations generation technique is based on the 

method of Kraichnan (1970). In this method an arbitrary energy spectrum is used to 
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prescribe the amplitude of velocity fluctuation as a function of a wavenumber. Using this 

method two type of inflow turbulence were generated  

a) Inhomogeneous random flow generation  

Smirnov et al. (2001) modified Kraichan’s method by incorporating turbulence 

length- and time-scales. These modifications ensured the generation of divergence-free 

isotropic fluctuations. A brief presentation of the random flow generation technique is 

given as follows   
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                          (5.4) 

where jx~ , t
~

 are scaling parameters for the length- and time-scale of turbulence, n
ik  and 

nω  are sample of wave number vectors and frequencies of the modeled turbulence 

spectrum, respectively. The Gaussian model spectrum employed in this method is 

expressed as 

)k2exp(k)/2(16)k(E 242/1 −= π                                                                (5.5) 

 

The spectrum model is mainly designed to represent the large energy carrying 

structures and thus unable to capture eddies within the inertial subranges. However, 

turbulent ABL flows have demonstrated a cascade of energy between turbulent eddies. In 

such flow the inertial sub-range plays a vital role in transferring energy from large-energy 

containing range to small-scale eddies of dissipation range. The small-scale eddies in the 

dissipation range are in the same order of Kolomogrov scale (η ) and the energy will 

eventually be converted to internal energy and dissipate. Considering the modeling 

principles of LES, i.e. resolving the flow up to the filtering (grid size) and modeling 
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small-scales, the length-scale of inertial sub-range lies between the integral length scale 

and Kolomogrov scale and their contribution is very significant. For example the ANSYS 

Fluent 13 package has implemented this technique as a Spectral Synthesizer for 

generation of inflow turbulence at the inlet boundary of unsteady simulations. Hence, for 

computational wind engineering applications such as the wind effect on structures 

submerged in the ABL region, the inflow fluctuations should be representative of a 

realistic turbulence spectrum such as the von Karman spectrum model (Lumley and 

Panofsky, 1964; Li et al., 2007). In the work of Huang et al. (2010) further modification 

of Kraichnan’s method is done to generate a flow field that can satisfy any given arbitrary 

spectrum. The technique (also called DSRFG) uses discretization of arbitrary 3D 

spectrum and synthesized fluctuation and to generate spatially correlated turbulent flow 

field. For illustration purpose we have used the Spectral Synthesizer technique and 

investigate its effects on wind load evaluation.  

b) Homogenous random flow generation  

Davidson (2007) and Senthooran et al. (2004) employed a synthesized turbulent 

inlet boundary for hybrid LES-RANS and RANS simulation, respectively. In the present 

studying addition to the Spectral synthesizer and recycling method, the three-dimensional 

fluctuating velocity components were also generated using the synthesized isotropic 

turbulent fluctuations method. The random velocity field, which is defined as a finite sum 

of discrete Fourier modes, is given here for illustration purpose 
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where , , and  are the amplitude, phase and direction of the Fourier mode , 

respectively. The notation used here follows that in (Billson et al., 2004; Davidson, 2007) 

and more information can be found in these papers. The wavenumber vector n
jk is chosen 

randomly on a sphere of radius . For an incompressible turbulent flow  

where Nn ,...,1= .This ensures isotropy of the generated velocity filed. The wavenumber 

nk  and the spatial direction are thus perpendicular. The wavenumber  is 

characterized by its spherical coordinates ( , , ). The random variables , ,

and were chosen randomly from their probability density functions. The amplitude  

of each mode is computed from the three-dimensional model spectrum ( )nkE in such a 

way that the isotropic fluctuations simulate the shape of the modified von Karman-Pao 

spectrum. 
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The spectrum  is subdivided into N modes (typically 150-600), equally large. 
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where K is the turbulent kinetic energy and 4/33/1 −= νεηk  is the Kolmogorov 

wavenumber, ν  is the molecular viscosity, and ε  is the dissipation rate. Whereas α is a 

numerical constant which determines the kinetic energy of the spectrum and the 

wavenumber ek   corresponds to the most energy containing eddies where )( nkE  reaches 

maximum.  
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The fluctuating velocity fields generated by Eq. (5.6) are statistically independent 

of each other and thus have zero autocorrelation. Time correlation is created by using an 

asymmetric infinite time filter and a new fluctuation velocity field is computed at every 

time step. 

mmm vbvav )()()( '1'' += −
 

            (5.9)  

 

where )/exp( τta ∆−= , 5.02 )1( ab −=  and m , t∆ ,τ denotes the time step number, 

computational time step, and turbulence time scale and it defines the time separation for 

which the autocorrelation function is reduced to )1exp(− respectively. The method offers 

a convenient way to prescribe turbulent length- and time- scales independently (Billson et 

al., 2004).  For the present study the length- and time- scales measured from BLWT were 

used. 

5.3 Outline of BLWT experiment and LES simulation for wind load evaluation 
5.3.1 High frequency pressure integration (HFPI) technique  

The HFPI method is based on the simultaneous measurement of pressures at 

several locations on a building surface. The pressure taps were installed at a fine enough 

resolution over the building surfaces. The study (CAARC) building had a rectangular 

prismatic shape with dimensions 30.48 m (x) by 45.72 m (z) by 182.88 m (y) height. The 

BLWT HFPI model was instrumented with 280 pressure taps.  Time histories of 

pressures were measured and stored for post-test analysis. The design wind loads were 

calculated by integrating the instantaneous pressure over the corresponding contributory 

area.  The geometrical modeling and pressure tap distribution adopted for the LES 

simulation mimics the BLWT-HFPI model. All the experiments have been carried out at 
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1:400 scale. The individual pressure time histories were used to form time series of the 

base loads, from which wind load statistics and spectra were obtained.  Figure 5.3(a) and 

(b) show the pressure tap layout for the BLWT HFPI model and the corresponding CFD 

setup, respectively along with the overall equivalent full-scale dimensions, direction 

notations, and wind flow angle.  The wind flow is described in a Cartesian coordinate 

system (x, y, z), in which the x-axis is aligned with the stream wise flow direction, the z-

axis is in the lateral direction and the y-axis is in the vertical direction. 

5.3.2 Study cases for the LES simulation 

In the present study, three building configurations have been investigated (Fig. 

5.4). Where Case 1 presents the isolated CAARC building model under various inflow 

turbulences, Case 2 and Case 3 simulate a scenario where half and full-height adjacent 

building is situated upwind of the CAARC model, respectively. Table 5.2 summarizes 

LES cases considered, along with the wind angle of attack, and mesh resolution  

5.3.3 Computational domain and boundary conditions  

The computational domain (CD) defines the region where the flow field is 

computed.  It should be large enough to accommodate all relevant flow features that will 

have potential effects in altering the characteristics of the wind flow field (Franke, 2006, 

COST 2007, AIJ 2008). The CD for Case 1 extended zD8  ( zD is width of the CAARC 

building model) upwind of the model building and zD25  downstream of the target 

building. Laterally it spanned zD8  away from the side surfaces of the building model and 

the top boundary has been placed at H5.2  ( H  is the model building height). Figure 5.5 

illustrates the computational domain and boundary conditions used for Case 1. The 

    (a) 
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blockage ratio calculated based on the ratio of the wind-ward face of the CAARC model 

to the inlet plane was about 2%, which is less than 5% ratio as recommended by COST 

(2007). Boundary conditions define the surroundings that have been cut off by the CD 

and idealize the influence of the actual flow environment under consideration. It 

significantly affects the accuracy of the CFD prediction. At the inlet boundary, the mean 

wind velocity profile measured in the wind tunnel testing has been prescribed using the 

law-of-the-wall. For the ground and building surfaces no-slip wall boundary conditions 

have been assumed. A symmetry boundary condition is employed at the top and lateral 

surfaces. Since details of the flow variables were not known for the present cases, an 

outflow boundary has been applied at the outlet plane. For Case 2 and Case 3, the upwind 

CD is increased by zD2  to accommodate but the boundary conditions remained the 

same. 

5.3.4 Computational grid 

5.3.4.1 Grid sensitivity analysis   

Grid sensitivity analyses on an empty computational domain using RANS 

simulation were done and the velocity and turbulence profile were examined, as shown in 

Fig. 5.6. The RANS simulations over predicted the velocity gradient at the lower part of 

the boundary layer but the high resolution mesh showed a slight improvement. We 

further tested the mesh using LES simulation and measured velocity and turbulence 

profiles at various locations on the upstream part of the domain.  As shown in Fig. 5.7 the 

velocity profile from the LES simulation matched the wind tunnel measurement. The 

LES under predicted the turbulence intensity measured at the incident plane.    



153 
 

5.3.4.2 Main simulation 

For the main simulation we have used very fine grid cell in the near-wall regions 

and ensured the non-dimensional wall distances ( 5y1 << + ) well within the inner sub-

layer. The cut-off wave number of energy spectrum between resolved and subgrid scale is 

related to the grid size and use of excessive grid stretching could cause numerical 

divergence. Therefore, a stretching ratio of 1.05 between successive grid points was 

applied for the present simulation. We believe that we took all necessary practical steps 

before the main simulation carried out.   

The Reynolds number based on building height H  and the measured roof top 

velocity HU , measured at 1.22 m upwind of the test building, was 3x105. Hence, the 

boundary layer regions required a high-resolution mesh clustered near the building 

surfaces. O-grid hexahedral meshes were generated by using the technique of blocking in 

Ansys ICEM CFD mesher (Ansys ICEM CFD user manual, 2011). In the inner sub-layer 

region, the boundary layer meshes were inflated from the wall surface and the first cell 

were placed at a distance m0001.0y p =  with a stretching ratio of 1.05. This ensured +y  

to be less than 5 units and minimized the cut-off error of the wavenumber in the LES 

modeling (Murakami, 1998). In addition, the computational domain was subdivided into 

multi-body parts to have better control and distribution of the computational grid points 

around the model building and wall boundary (See Fig. 5.8). For the target building, the 

O-grid meshing which covers a region of zz D5xD5  was generated using 80 grid cells 

using the Geometrical edge meshing law and the grids were clustered near the building 

with a stretching ratio of 1.05 and 52 grid points uniformly distributed in the lateral 



154 
 

direction. In the lateral direction outside of the zz D5xD5  region, 26 grid points with 

initial spacing of 0.057 and a stretching ratio of 1.075 were used.  In the x-direction 

(stream-wise), 40 grid points where the first grid point were placed at 0.01mwith a 

stretching ratio of 1.041 from the building bounding box to the inlet plane, which spans 

zD8 . For the downstream domain starting from the end of the o-grid bounding box (

zz D5xD5 ) to the outflow boundary, 60 grid points at a spacing of 0.01(with stretching 

ratio of 1.041) were used.  Vertically 158 grids points with 0001.0=py were distributed 

while the grid points are clustered near the ground surface and the top surface of the 

building model (with stretching ratio of 1.05). For Case 1 a total of 4,782,784 3D 

computational grid cells were used.  For Case 2 and 3, the same mesh generation 

technique was adopted. A total of 6,913,565 and 6,913,562 hexahedral cells were used 

for Case 2 3, respectively.  

5.3.5 Turbulence modeling and numerical schemes 

5.3.5.1 The LES model 

LES is a multi-scale computational modeling approach that offers a more 

comprehensive way of capturing unsteady flows. The use of LES as a wind load 

evaluation tool has been significantly improved in recent years through the following 

numerical techniques (a) numerical generation of transient inflow turbulence (Kraichan, 

1970; Lund et al., 1998; Nozawa et al., 2002, 2005; Smirnov et al., 2001; Batten et al., 

2004 ), (b) development  of efficient sub-grid scale turbulence modeling techniques 

suitable for unsteady three-dimensional boundary separated flows, and (c) numerical 

discretization with conservation of physical quantities for modeling complicated 
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geometry (Tamura et al. 2008). Because of these advancements, LES holds promise to 

become the future computational wind engineering (CWE) modeling for which turbulent 

flow is of pivotal importance (Tamura, 2008; Tucker and Lardeau, 2009; Sagaut and 

Deck, 2009). In the present study, the Dynamic Smagornisky-Lilly subgrid-scale (SGS) 

model based on Germano et al. (1996) and Lily (1992) have been employed. In this 

method the Smagornisky constant, sC , is computed dynamically according to the resolved 

scales of motion.  

5.3.5.2 Adopted numerical schemes for LES  

For discretization of convection terms central-differencing based schemes give 

the least numerical diffusion and the best accuracy compared to the upwind schemes, as 

demonstrated by Marinuzzi and Tropea (1993). However, for high Re flows in the wake 

region, such as the present cases, this scheme can become unstable, giving unphysical 

oscillations (wiggles). The bounded central differencing (BCD) scheme, essentially based 

on the normalized variable diagram (NVD) approach (Leonard 1991) together with a 

convection boundedness criterion can detect and remove these wiggles in the wake 

region. Because of this the BCD scheme has been used for all the simulations of the 

present study. For temporal discretization, second-order schemes are advised for most 

computational wind engineering applications and have been used in the present study.  A 

second-order scheme for pressure discrtization has been applied. For pressure-velocity 

coupling, the Pressure Implicit with Splitting of Operators (PISO) algorithm with 

skewness and neighboring correction is recommended for the transient simulation and 

has been used in all LES simulation. PISO is based on the higher degree of the 

approximate relation between the corrections for pressure and velocity (Ansys Inc. 2011).   
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The simulations have been carried out at the supercomputer center at Florida 

International University.  The parallel computations have been carried out using 28 

CPUs. A computational time step s105t 4−×=∆  with 5 sub-iterations, per time step, 

were used in all the simulations. Once the simulation run for enough flow time and the 

solution statistics reached at stable conditions, the time histories of the pressure and 

fluctuating velocities data were recorded for s2  flow-time. Also, a strict residual 

convergence criterion of 510 −  has been applied to the residual to ensure full convergence 

of the simulation.  

5.4 Results and discussion  
5.4.1 Assessment of numerically generated inflow turbulence  

An auxiliary simulation is a common way of conducting ABL wind flow 

simulations, numerically.  Comparative studies of inflow turbulence generation methods 

have been carried out using auxiliary domain flow simulations. Three different inflow 

turbulence generation techniques have been investigated to assess their suitability for 

LES based wind load evaluations. Table 5.3 summarizes all the three cases considered in 

the parametric study. 

Where Inflow-1 defines the inlet boundary based on Smirnov’s random flow 

generation algorithm, which is implemented in the commercial software Ansys Fluent 13 

solver as Spectral Synthesizer method (Ansys Inc., 2007). It computes fluctuating 

velocity components by synthesizing a divergence-free velocity-vector field from the 

summation of Fourier harmonics. At the inlet in addition to the mean velocity profile 

which was defined using equation (11), for the turbulence generator of Inflow- 1 the of 
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kinetic energy and dissipation rate are prescribed using 2
avg )IU(2/3K = and 

lkC /)(2/3 5.1
µε = , respectively.  For Inflow-2 Lund’s recycling method and randomly 

generated fluctuations using the weighted amplitude wave superposition (WAWS) 

method were superimposed to the instantaneous velocity at the recycling plane of the 

auxiliary domain. Inflow-3 is based on homogeneous synthetic inflow turbulence 

generation techniques, as described in Sec. 2.2. In-house C code was developed based on 

this method and turbulence data was generated and stored for subsequent simulation. 

Then the stored instantaneous velocity components were mapped to the inlet boundary of 

the main simulation, for every time step. For all the cases considered the statistical flow 

parameters (for example integral length, turbulence intensity (TI), and mean wind 

velocity) have been obtained from BLWT data (see Sec. 2.1).  For all cases considered in 

the inflow turbulence investigation, the inlet boundary condition has been prescribed as  
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where ( )yU inlet   is the mean wind velocity profile measured from the wind tunnel 

experiment. The mean velocities in the lateral and vertical directions have been set as 

 and the stream-wise velocity plotted in Fig. 5.9, ( )yU inlet  

measured from wind tunnel has been defined as follow  
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5.4.1.1 Application of the transient inflow turbulence to LES 

Time histories of velocity components were monitored at various points at the 

centerline of the incident plane during the LES of the axillary domain. Figure 5.10 shows 

the samples of generated fluctuation in the stream-wise direction. The fluctuations were 

monitored in the upstream domain at the level of the model building height. As shown in 

the figure the fluctuation generated by Inflow-1 and -2 showed poor spatial correlation 

compared to Inflow-3. The magnitude of the perturbation generated by Inflow-2 is very 

small. In cases where large upwind computational domain is used, the fluctuation could 

dissipate before it reaches to the incident plane and subsequently will affect the resulting 

wind load.   

To further examine the performance of the numerically generated velocity 

fluctuation for the LES, the spectra of sample fluctuations monitored at the model 

building height (H) were compared with the von Karman model spectrum (Fig. 5.11). As 

pointed out in Section 3.3, the spectrum resulted from Inflow-1 decays rapidly and follow 

the Gaussian spectrum model i.e., it only reproduces the large eddies and undermine 

eddies in the inertial sub-range. Compared to Inflow-1, Inflow-2 showed slight 

improvement in terms of reproducing eddies in the inertial sub-range but still not 

sufficient enough to represent a realistic wind field. When generating inflow turbulence 

for the LES simulation the velocity fluctuation should be well reproduced at lease up to 

10U/fH = , since the velocity fluctuation in the inertial sub-range greatly affects the 

transfer of energy between eddies and the development and behavior of separated shear 

layers. The wind flow field generated by using Inlfow-3 satisfied this requirement.  
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Figure 5.12 shows the two-point correlation of the vertical velocity simulated by 

the three turbulence generators. The normalized two-point spatial correlation is computed 

using )x̂x(v)x(v)x̂x(v)x(v)x̂,x(B rmsrms
''norm

ww ++= . Although the same number of 

computational grid and identical resolution were used, the spatial correlation resulted 

from Inflow-1 and Inflow-2 decay rapidly with separation distance x̂ . For Inflow-3, the 

two-point correlation shows gradual decrease as it approaches the wall, which is an 

indication of a strong spatial correlation (Davidson 2009). Figure 5.13 illustrates the 

spatial representation of velocity fluctuations at the inlet boundary of the LES simulation 

from Inflow-1 and inflow-3. As demonstrated by the figure, uncorrelated eddies are 

formed by Inflow-1 while realistic turbulence eddies with proper spatial correlation were 

generated by Inflow-3.   

5.4.2  Mean wind pressure coefficient for isolated CAARC model 

To gauge the prediction accuracy of LES for design wind loads evaluation and 

assess the effects of oncoming inflow turbulence, an explanatory detailed study on the 

isolated CAARC building model (Case 1) has been carried out with various inlet 

boundaries. Figure 5.14 depicts the comparison between numerically obtained mean-

pressure coefficients with the BLWT data on the perimeter of the building measured at

H32 . Where the time-averaged non-dimensional pressure coefficients pC  were 

defined by 
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where HU  is the reference velocity at the building height H , 0PP −  is the dynamic 

pressure head, and ρ  is the density of air. On the wind-ward face, there is a very good 

agreement between the BLWT pC  values with those obtained from the present LES and 

those collected from literature (Huang et al., 2007; Braun and Awruch, 2009). On the 

sidewalls where flow separation occurred due to the sharp corner, the numerical results 

from Inflow-1 deviated from the BLWT measurements, especially at the trailing edge.  

LES with Inflow-1 also over-predicated the mean pC on the lee-ward face. Inflow- 2 and 

-3 showed very close agreement with the BLWT data on the side and lee-ward faces. The 

numerical data from literature under-predicted the pressure on the sidewall and lee-ward 

faces but these noticeable discrepancies could be due to the difference in the boundary 

conditions used compared to the current setup. This comparison demonstrated how the 

oncoming flow affected the predication accuracy, thus attesting to the necessity of 

prescribing appropriate oncoming turbulence for unsteady simulations, such as LES.  

Figure 5.15 presents representative mean-pressure contour plots for wind-ward 

and lee-ward faces of Case 1. On the wind-ward face, the LES mean pC  contours 

estimated by the three inlet boundaries showed good agreement with the BLWT data. The 

mean pC  LES predictions for the lee-ward face showed marginal discrepancy with 

BLWT compared to the better agreement observed for wind-ward pC values. Among, the 

three inflow conditions, Inflow-3 was marginally performing better than Inflows-1 and -2 

predictions.  Figure 5.16 shows the root-mean-square ( rms ) of surface pressure 

coefficients.  The rms  produced by Inflow-3 on the wind-ward face, a place where the 

inflow fluctuation effect could be seen more apparently (compared to other faces which 
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potentially experience more fluctuation due to flow separation) was in better agreement 

with BLWT’s rms . On the lee-ward face, the numerical result slightly deviated from the 

BLWT data.  

5.4.3 Steady and fluctuating wind force coefficients for single building 

Following Obasaju (1992), the drag and lift coefficient, DC and LC , respectively 

are computed from the time history data of the LES simulation by considering the wind 

shear profile as follows  
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where DF  and LF  are the steady part of the along- and across-wind forces and become 

the same as XF and YF when the angle of attack 00=α , respectively.  Using the stream-

wise velocity profile measured in the BLWT, it can be shown that  
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Whereas the root-mean-square values of the fluctuating parts of XF , YF , and 

torsional moment M are computed from the fluctuating components of the force time 

history as )2/1/( 2
LevelZHFF HDUC
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respectively. Here HU  is the mean wind velocity at 

the model building height H  and ZD  is the width in the wind-ward face.   
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Time-history of wind pressure coefficients on the 280 pressure taps strategically 

distributed on the surface of the model building (Fig. 5.3(b)) were recorded at each 

computational time step. At each level 28 pressure taps, and 7 taps per face, were placed. 

The drag and lift coefficients of study Case 1 (for the three different inlet conditions) 

have been computed from the vector sum of tap forces (i.e. pressure measured at each tap 

multiplied by its tributary area) in the along- and across-wind directions, respectively.  

Fig. 5.17 presents the vertical distribution of the steady force coefficients calculated at 

each pressure tap level. There was a good agreement between the LES and BLWT 

predictions of the steady force coefficients, especially LES with Inflow-3.  Fig. 5.18 

compares fluctuating rms  force coefficients at each pressure tap level. The LES 

simulation demonstrated strong fluctuation on the along-wind direction when Inflow-3 

was used.   

Table 5.4 lists the comparison of the total LES and experimental steady ( DC , LC , 

and MC ) and the rms  force and torsional moment coefficients (
XFCσ ,

YFCσ , and MCσ , 

respectively).  In all the three turbulence generation techniques considered, there was 

almost 10% over-prediction of LES DC  compared to the experimental data. While the 

simulation from Inflow-1 and -2 under-predicated the lift force coefficient LC , 

perturbation generated by Inflow-3 resulted in an improved LC  prediction compared to 

Inflow-1 and -2. For the rms  coefficients, Inflow-3 showed much better performance, 

15% over-predication of 
XFCσ , less than 5% over-predication of 

YFCσ  and matching well 

for  torsion  moment compared to BLWT data (although the wind angle of attack 

considered for LES is not the critical one for torsion). The assumption of homogenous 
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flow field, one of the limitations of the present study, as applied in Inflow-3 could also 

attributed to the over-prediction of the load coefficients. Figure 5.19 illustrates the time 

histories of LC  and DC , where the time-history of DC  showed small periodicity 

compared to LC  and strong fluctuation on the along-wind direction when Inflow-3 was 

used as the inlet boundary. Obasaju (1992) pointed out the need for longer averaging time 

in estimating DC  for high Reynolds number flow, as it changes irregularly. However, it 

was not computationally feasible to get statistics from CFD simulations for such long 

averaging times with most computational facilities such as those used in the present 

study. Hence, the over-estimation of the load coefficients by the CFD could be attributed 

to the short statistical averaging time (2 s) compared to the 180 s taken for the wind 

tunnel data. Overall the results from LES, especially from Infow-3, were very 

encouraging.  

5.4.4 Power spectra of the along- and across-wind loads for single building  

The along- and across-wind force spectra obtained from the present LES 

simulation and the BLWT experiment are shown in Fig. 5.20 and 5.21, respectively. 

Where the spectra are presented in the form of 2)n(nS σ versus Hz UnD , where n  is 

the frequency, )(nS  is the spectral density, and 2σ is the variance. The forces at every 

pressure tap level were obtained by integrating the loads across the two opposite faces 

while the torsional moment were calculated by multiplying each tributary load with the 

corresponding lever arm from the geometric center of the model building.  The total 

along-wind force spectrum predicted by Inflow-1 and Inflow-2 started decaying quickly 

within the frequency range of the inertial sub-range, which plays a vital role in 
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transferring energy between large and small eddies for turbulent flow (Fig 5.20(a)). 

Higher frequency fluctuation was predicted by Inflow-3, which agreed well with the 

experimental data. This is an indication that the synthesized turbulence method generated 

eddies within the inertial sub-range. Figure 5.20(b) shows the along-wind spectrum of the 

top tap level which is in the region of flow separation. It gave some insight on how each 

method handled the separated turbulent flow.  The total across-wind force spectra from 

the experiment results showed a sharp peak near the Strouhal number ( Hz UnDS = ), 

defined by using the roof-top velocity HU , corresponding to the reduced frequency of 

1.0UnD Hz = . This clearly suggested that strong and periodic organized Karman 

vortexes were shed throughout the building height.  The spectrum predicted by Inflow-1 

and Inflow-2 showed a peak at a lower reduced frequency of 065.0≈ and spread to other 

frequencies. Whereas for Inflow-3 there was an improved prediction and the spectra 

peaked at the same reduced frequency of 1.0≈  as the wind tunnel prediction (Fig. 21(a)).  

To further validate the prediction accuracy of the numerical models, the wind 

force spectrum at the top pressure tap level , where strong flow separation occurred, are 

presented in Fig. 21(b).  The power spectrum followed the same trend as the total wind 

force spectrum although it showed a broad peak and gradual decaying of eddies. The 

comparison of the total torsional moment spectra showed a typical peak around a 

Strouhal number of , which is corresponding to the peak frequency range 

of the across-wind spectra (Fig. 5.22).  
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5.4.5 Flow field visualization  

The time-averaged and instantaneous velocity flow field of, taken at one instant of 

time, CAARC building model using various transient inlet boundaries are presented in 

Fig. 5.23 and 5.24, respectively.  All the basic flow features of bluff body were captured 

by the LES simulations (Shah and Ferziger, 1997). The oncoming flow separates at the 

leading sharp corners (at the three corners of the wind-facing wall) and initiates a 

recirculation zone on the sidewalls and at the roof of the building, which are foot prints of 

the arch vortex in the downstream face, as illustrated in Fig. 5.23(a) to (f). The location of 

the arch vortex and the recirculation contraction zone in the wake region predicated by 

Inflow-1 and Inflow-2 are further downstream in the wake region than the one predicted 

by Inflow-3. This might have contributed to the over-prediction of DC  as well. The flow 

formed a recirculation zone above the roof and remained separated, as illustrated in 

vertical sections plots of Fig. 5.23(b), (d), and (e). Figure 5.24 illustrates the formation 

and shedding of asymmetric vortex at the trailing edge of the side faces and the wake 

zone. The streamlines of the instantaneous velocity revealed the complex and irregular 

nature of the wind-structure interaction flow field where the symmetric vortices are 

broken and formed by alternating asymmetric vortices. The flow field from Inflow-3 

demonstrated a flow separation zone in the upstream face (Fig. 5.24 (b), (d), and (f)). 

Strong unsteadily moving vortices are formed by the synthetic inflow turbulence (Inflow-

3) and they are responsible for better prediction of the lift-force coefficients, LC  and 

YFCσ .  
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5.4.6 CAARC with adjacent building  

In experimental and computational wind loads on tall buildings, the more realistic 

scenario could be a configuration with adjacent buildings in vicinity of the study 

building. The presence of a neighboring building alters the aerodynamic characteristics of 

tall buildings and adds complexity to the flow for LES. As a part of the ongoing research, 

the present study has attempted to assess these interference effects numerically. The 

configurations with an immediate adjacent building considered in the present study were 

listed in Table 5.2 and Fig. 5.4. Cases 2 and 3 represented the CAARC model with an 

upstream neighboring building with space separation ( S ), based on the wind-ward width 

( B ) of the building, of 67.0/ =BS . The general settings of CAARC with adjacent 

building such as boundary conditions, discretization schemes for both time and 

convection terms were kept similar to Case 1. Table 5.5 lists the comparison between the 

LES and experimental force and torsional moment coefficients of the CAARC model 

building with an adjacent building situated on the upwind direction.  

As expected, the adjacent building introduced sheltering effect on CAARC that 

attributed to the reduction in the total along- and across-wind forces.  For Case 2, the 

half-height adjacent building blocked the direct wind action up to H/2 and interfered with 

the flow around the rest of the building height. It is worth noting how the flow separated 

at the adjacent building and reattaches back to the study building (Fig. 5.25(a) and (c)).  

These combined phenomena and the narrow wake consequently reduced the drag- and 

lift-coefficients of the study building. Case 3 also displayed very interesting phenomena, 

where the flow remained separated from the side walls and sheds alternating Karman 

vortices (Fig. 5.25(b) and (d)).  As a result a wider wake was created and the lift-
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coefficient of the study building has increased significantly (Table 5.5). However, the 

flow reattaches at the roof of the study building and formed reversed flow on the wind-

ward face (Fig. 5.26 (b) and (d)).  This phenomenon had introduced strong suction on the 

wind-ward face of the study building, which resulted in negative drag coefficient (Table 

5.5) 

 Whereas for Case 2 the velocity speed-up from separation of flow at the roof of 

the adjacent building injected flow towards the wind-ward face of the study building and  

along- wind force in the flow direction remained  strong ( Fig. 5.26(a) and (c)). The LES 

also performed well in predicting the torsional moment. Because of the symmetrical 

nature of the flow for the considered wind angle of attack, the torsional moment has been 

very small in all cases. The LES, averaged over two sec flow time, over-predicted the 

steady and fluctuating forces and moment. It also revealed very interesting flow details 

on how the flow field behaves when there is neighboring building. 

5.4.6.1 Spectral density  

The total along-wind spectra of CAARC with an adjacent building are shown in 

Fig. 5.27. The LES spectrum of drag fluctuation of Case 2 agreed well with the 

experimental spectrum. However the spectrum for Case 3 was slightly off.  For the 

across-wind fluctuation spectra (Fig. 5.28), Case 2 shows a similar trend as the single 

building case spectra (Fig. 5.21(a)) except that there was slightly lower peak at the 

Strouhal number 1.0UnD Hz =  (Fig. 28(a)), this could be attributed to the sheltering 

effect of the neighboring. Case 3 demonstrated flat across-wind spectrum without typical 

peak at the vortex shedding frequency. Overall the numerical simulations reproduced the 

fluctuating force and capture eddies within the inertial sub-rang.  
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5.5 Conclusions  

• Computational assessment of aerodynamic characteristics of a standard tall building 

(CAARC) with and without a neighboring building were performed and results were 

compared with BLWT data. The effects of inflow turbulence have been examined 

from the turbulence modeling principle of LES and computational wind load 

evaluation perspective.   

• Three different inflow transient boundary conditions were investigated that utilized 

basic flow statistics (such as TI, wind speed, integral length scale) from the BLWT 

ABL data both using representative data for LES and for consistency reasons during 

the comparison. Inflow-3 that adopted fluctuation generated by using a synthetic 

method showed a better agreement with the BLWT data than the random flow 

generated by Simirnov’s (also called spectral synthesizer) and Lund’s recycling 

methods. The result further attested the need for proper inflow transient boundary 

conditions in agreement with suggestions by other CFD researchers. This in fact is 

analogous to the extreme care and effort that is taken during ABL flow simulation in 

the BLWT thorough use of upwind roughness elements, spires, or other types of 

active and passive flow controls. Similar care is expected from a numerical modeler. 

• Generally, it can be concluded that LES with proper boundary conditions and 

enhanced computational resources could prove useful for wind load applications. In 

the author’s opinion, the computational resource still is the bottle neck for full-

fledged use of LES making it still expensive and more time consuming than standard 

BLWT wind load studies. One such limitation in the present study was perhaps the 

limited period of LES pressure time-history data generated than what might have 
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been necessary to accurately predict the design wind force coefficients very similar to 

experimental method.  

• The sheltering effects introduced by the neighboring building fairly captured by the 

numerical simulation when adjacent buildings are placed upwind of the study 

building. Mean pressure coefficient increased for Case 2 when compared with the 

isolated CAARC model (Case 1). 

• Sheltering effects and other complex interference mechanisms could be effectively 

explained owing to the continuous simulation capability of numerical simulations in 

space and time, thus leading to better understanding of wind/structure interactions and 

development of mitigation solutions that will lead to enhanced wind performance of 

buildings. 

• Wind tunnel experimental data are indispensable for correct boundary prescription 

and validation of LES. 

• The present study was limited to one wind direction, as part of the ongoing project the 

authors are in the process of investigating wind directionality effects under an urban 

setting using a numerical approach. This will be done using inhomogeneous inflow 

turbulence.  
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Table 5.1 Measured inflow wind characteristics of rural terrain.  
 
Level 
 

 
Elevation(m) 

 
( )s/mU  

 
Turbulent intensity 

(%) 

 
Integral length (m) 

 
xI  

 
yI  

 
zI  

 
Lx  

 
Ly  

 
Lz  

1 0.1524 10.381 24.00 7.30 16.30 0.480 0.090 0.160 
2 0.3048 11.458 22.50 8.90 14.80 0.540 0.145 0.175 
3 0.4572 12.061 21.00 10.30 14.50 0.550 0.160 0.192 
4 0.6096 12.810 19.60 11.00 13.90 0.600 0.175 0.200 
5 0.9144 13.647 16.90 10.20 12.40 0.630 0.185 0.205 
6 1.2192 14.438 15.60 9.30 11.30 0.640 0.190 0.210 
7 1.5240 14.995 12.80 6.90 9.30 0.650 0.125 0.191 

 
 
 
Table 5.2 LES cases. 
 
Case 
 

 
Configuration 

 
Wind AoA 
 

 
    y+ 

Case 1 Isolated  00 1 < y+ < 5 
Case 2 Half height adj. bldg. upwind of CAARC 00 1 < y+ < 5 
Case 3 Full height adj. bldg. upwind of CAARC  00 1 < y+ < 5 

 
 

 
Table 5.3 Comparative study of inflow turbulences. 
Inlet boundary Turbulence generation method 
Inflow-1 Spectral synthesizer method (Smirnov et al., 2001) 
Inflow-2 Recycling method (Lund et al., 1998) 
Inflow-3 Synthesized turbulence (using the method in Sec. 2.2) 
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Table 5.4 Comparison of total steady and rms force coefficients. 
 
 
  
 

 
 
 

 
 

 
 
 

Table 5.5 Force coefficients: CAARC with adjacent building. 
Case 

            
DC             XFCσ  LC  

LES Exp. LES Exp. LES Exp. 
Case 1 1.6091 1.533 1.2484 1.0737 0.0100 0.0354 
Case 2 1.0250 0.8302 0.8420 0.5573 0.0120 0.0017 
Case 3 -0.4760 -0.1709 0.6369 0.7687 0.0087 0.1006 

 
 
 
 

Table 5.5 (continued) 
YFCσ  MC  MCσ  

LES Exp. LES Exp. LES Exp. 
1.2259 1.1818 0.0013 0.0007 0.2424 0.2149 
0.5794 0.5434 0.0002 0.0009 0.3402 0.1811 
0.6300 0.8644 0.0009 0.0035 0.2524 0.2458 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Inflow turbulence  
generation method 

 
DC  

 
XFCσ  

 
LC  

 
YFCσ  

 
MC  

 
MCσ  

Inflow-1 1.6957 0.6027 0.0042 0.9245 0.0019 0.1703 
Inflow-2 1.6264 0.5453 0.0043 1.3209 0.0014 0.2456 
Inflow-3 1.6091 1.2484 0.0100 1.2260 0.0013 0.2424 
BLWT exp. 1.533 1.0737 0.0356 1.1818 0.0007 

 
0.2150 
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Figure 5.1 (a) An empty wind tunnel set up for ABL testing at RWDI Miramar, FL; and 
(b) Measured mean wind velocity and turbulence intensity (TI). 

 

 
Figure 5.2 Implementation of Lund's recycling method: Where (a) auxiliary pre-
computation is mined to produce velocity inlet data and (b) computational domain is 
subdivided into driver and main computation domain. 
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Figure 5.3 CAARC building model: Dimension and pressure tap locations (a) and (b) 
BLWT, (c) CFD. 

 
 
 

 
Figure 5.4 Experimental load evaluation test configurations: Isolated CAARC model (a) 
and with adjacent (b) full-height, and (c) half-height building. 
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Figure 5.5 Computational domain and boundary conditions for Case 1. 

 
 
 
 

 
Figure 5.6 Grid sensitivity analysis on an empty channel flow using RANS turbulence 
modeling. 
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(a)  

(b) 
Figure 5.7 Velocity and turbulence profiles measured from the LES simulation of an 
empty domain with high resolution mesh. Inlet plane; Approach flow is measure at 4DZ 
and the incident flow is measured at 8DZ. 

 
 
 

 
 

Figure 5.8 Arrangement of computational grids. 
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Figure 5.9 Measured inlet velocity profile in semi-log scale. 

 
 

 
Figure 5.10 Comparison of numerically generated stream-wise wind velocity fluctuation 
samples at the target building height. 

 
 



181 
 

 
Figure 5.11 Comparison of numerically simulated spectra with von Karman spectrum 
model at the model building height (LU=0.55m, and UH=12.12 m/s). 

 
 

 
Figure 5.12 Normalized two-point correlation of vertical velocity fluctuation. 
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Figure 5.13 Spatial representation of the stream-wise instantaneous velocity fluctuation at 
the inlet boundary: (a) Random flow generation method (Inflow-1) and (b) Synthetic inlet 
boundary (Inflow-3). 

 
 

 
 

Figure 5.14 Comparison of mean pressure coefficient at 2/3 H of CAARC model 
building. 
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Figure 5.15 Pressure coefficient distribution over frontal and back faces of CAARC in a 
simulated ABL flow: Comparison between LES with various oncoming turbulence 
models and BLWT experiment. 
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Figure 5.16 Distribution of fluctuating pressure coefficient over the frontal and lee-ward 
faces of CAARC in a simulated ABL flow filed: Comparison between LES with various 
oncoming turbulence models and BLWT experiment. 
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Figure 5.17 Vertical distribution of mean (a) drag, (b) lift, and (c) torsional moment 
coefficients. 

 
 
 

 
Figure 5.18 Vertical distribution of fluctuating (a) drag, (b) lift, and (c) torsional moment 
coefficients. 
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Figure 5.19 LES and BLWT time histories of CL and CD 

 

 
Figure 5.20 Comparison of along-wind force spectrum spectra predicted by LES and 
BLWT: (a) total force and (b) at the building model height (H=0.46). 
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Figure 5.21 Comparison of across-wind force spectrum spectra predicted by LES and 
BLWT: (a) total force and (b) at the model building height (H=0.46). 

 
 

 
Figure 5.22 Torsional moment spectrum (Synthetic turbulence). 
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Figure 5.23 Mean wind velocity contour and velocity streamlines: horizontal plane (Left) 
and a vertical section at centerline (Right). 
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Figure 5.24 Instantaneous wind velocity contour and velocity streamlines: horizontal 
plane (Left) and a vertical section on centerline (Right). 
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Figure 5.25 Flow field of CAARC with an adjacent building: Mean velocity magnitude 
(top) and (bottom) instantaneous velocity on a horizontal plane at H/3. 
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Figure 5.26 Flow field of CAARC with an adjacent building: Mean velocity (top) and 
instantaneous velocity (bottom) at the vertical center plane. 

 
Figure 5.27 Along-wind force spectra for: (a) Case 2 and (b) Case 3 
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Figure 5.28 Across-wind force spectra for: (a) Case 2 and (b) Case 3 
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6 LARGE EDDY SIMULATION FOR WIND-INDUCED RESPONSES OF TALL 

BUILDINGS LOCATED IN A CITY CENTER 

 

Agerneh K. Dagnewa, Girma T. Bitsuamlak*, b

A Paper Prepared for the Journal of Wind Engineering and Industrial Aerodynamics and  

 

Presented in the 2012 EMI/PMC Conference 

Abstract  
 

Wind-induced external aerodynamic loads were computationally evaluated for a 

standard tall building, known as the Commonwealth Advisory Aeronautical Research 

Council (CAARC) model building, located in an urban city center. Geographic 

information system (GIS) data was used to model the complex building forms and 

surfaces. At the inlet boundary the transient inflow turbulence was generated using the 

method called discretization and synthesizing of random flow generation (DSRFG), 

which reproduced non-isotropy and non-stationarity of the actual turbulent atmospheric 

boundary layer (ABL) flow. The study employed high frequency pressure integration 

(HFPI) type large eddy simulation (LES) to evaluate wind pressure loads on the façade of 

the CAARC model. Over 280 pressure taps strategically distributed on the façade of the 

study building to monitor the time history of pressure fluctuations. Three different 
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configurations have been studied to analyze the interference effects of the surrounding 

buildings and explore the potential of LES in predicating the dynamic wind loads of high-

rise building in a complex urban-like setting. The numerical results have been compared 

with the boundary layer wind tunnel (BLWT) data carried out at RWDI USA LLC. The 

result showed good agreement for overturning moments.  

 

Keywords: Inhomogeneous turbulence, LES, wind-induced responses, tall buildings, city 

center. 

6.1 Introduction  
Several experimental, boundary layer wind tunnels, wind load evaluation studies 

for buildings have been reported by various researchers, and recently there is a growing 

number of numerical works using computational fluid dynamics (CFD). The majority of 

the numerical studies have mainly focused on a single low-rise building model and very 

few works have been done on tall buildings. Some of the numerical studies that focuses 

on wind load evaluation of a high-rise buildings, an isolated cases, include (Nozawa and 

Tamura, 2002; Huang and Li, 2010), external aerodynamics of a standard tall building 

known as the Commonwealth Advisory Aeronautical Laboratories model (CAARC, after 

Melbourne, 1980) by (Huang et al., 2007; Braun and Awruch, 2009), and LES of  

CAARC with and without an adjacent building followed by validation through wind 

tunnel data obtained from RWDI USA LLC, Miramar FL (Dagnew and Bitsuamlak, 

2010).  

Evaluation of wind effects on high-rise buildings located in a metropolitan city 

center, where group of tall buildings are constructed in close proximity, have been very 
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challenging due to the complexity of the flow and the computational cost required to 

model the surrounding buildings. Moreover, the dynamics of the wind flow become very 

turbulent and flow interference occurs (Khanduro et al., 1998). Because of this, the 

majority of the numerical prediction of wind-induced effects for a built environment are 

limited to the study of pedestrian level wind comfort using the improved forms of 

Reynolds-Averaged-Navier–Stokes (RANS) turbulence modeling (Hanjalić and 

Kenjereš, 2008) and in some cases LES (Tamura, 2008; Nozu et al., 2008; Nozu and 

Tamura, 'in press' ). Recent advances in hardware and software technology coupled with 

new developments in turbulence modeling make it possible to numerically simulate wind 

flow in an urban-like complex setting for evaluating design wind loads. This is 

particularly so with the use of high resolution geographic information system (GIS) data 

available to realistically reproduce the actual building shape. The present study attempted 

to evaluate the wind-induce response of the CAARC model building located in 

downtown Miami, FL using LES simulations. Three different scenarios have been 

considered.  

6.2 Outline of wind tunnel tests 
6.2.1 Experimental ABL simulation  

An experimental test has been done to simulate an ABL flow profile for rural 

(Open/Sub) upwind terrain condition. The experiment was conducted at the RWDI USA 

LLC testing facility that has a testing section of 2.6 m wide by 2.14 m tall. The floor has 

mechanical actuator to control the degree of surface roughness. Approximately 2.54 cm 

by 2.54 cm flat plate on 30.48 cm in by 30.48 cm in diamond pattern roughness cubes are 

used to replicate rural terrain type surface roughness. Time history of velocity data with 
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record length of 180 sec with sampling frequency of 515 Hz has been measured in the 

BLWT. Statistics of fluctuating turbulence such as length-scale and turbulence intensities 

were then calculated and the data was subsequently used by the numerical inflow 

turbulence generators. Table 6.1 summarizes the turbulence characteristics of the 

simulated ABL wind flow. 

6.3 Experimental wind load testing for validation of LES data 
For validation and comparison of the LES wind load data, wind tunnel studies 

were done for three configurations using the high frequency pressure integration (HFPI) 

method (Fig. 6.1). Where the first configuration (Case 1) simulates the isolated CAARC 

building model, the second configuration (Case 2) represents a scenario where the 

CAARC model building placed in a large city center, and the third case (Case 3) is same 

as Case 2 but with a similar sized tower immediately adjacent to the target building. The 

study (CAARC) building had a rectangular prismatic shape with dimensions 30.48 m (x) 

by 45.72 m (y) by 182.88 m (z) height. The HFPI technique is based on the simultaneous 

measurement of pressures at several locations on a building surface. The pressure taps 

were installed at a fine enough resolution over the building surfaces. The BLWT HFPI 

model was instrumented with 280 pressure taps. Time histories of pressures were 

measured and stored for post-test analysis. The geometrical modeling and pressure tap 

distribution adopted for the LES simulation mimics the BLWT-HFPI model (Fig.6.2). All 

the experiments have been carried out at 1:400 scale. A rural upwind terrain condition 

(corresponding approximately to a power law with 17.0=α ) was simulated for all wind 

directions by means of floor roughness and upwind spires at RWDI wind tunnel test 
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facility (Dragoiescu et al., 2006).  The individual pressure time histories were used to 

form time series of the fluctuating design wind loads.  

6.4 Transient inflow turbulence generation for LES  
At the inlet boundary of the LES simulation inhomogeneous and anisotropic 

fluctuating turbulence was generated by using the discretization and synthesizing of 

random flow generator (DSRFG) method (Huang et al., 2010). This technique proved to 

have an advantage over other synthetic inflow turbulence generation methods (such as 

Smirnov et al., 2001) in terms of generating a realistic wind flow field satisfying ABL 

flow conditions such as generating eddies in the inertial sub-range and improving spatial 

correlation of the generated flow fields. The DSRFG method for the generation of a 

synthesized velocity field of homogenous and inhomogeneous anisotropic turbulence is 

presented as follows  
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where ς and ξ are vector forms of the corresponding n
iς  and n

iξ . The frequency and the 

mean velocity are represented by f and avgU , respectively.  For inhomogeneous and 

anisotropic turbulence, the distribution of the wavenumber n,mk is obtained by remapping 

on the surface of the sphere after the components of n,mP  and n,mq  are aligned with the 

energy spectrum. The aligning and remapping is done according to the following 

equations 
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where n,m
ir is a random number, independently picked from a three dimensional normal 

distribution with 0r =µ and 1r =σ .  In the present study, the spectra of the velocity 

components were described using the von Karman spectra model (Simiu and Scanlan, 

1996) as follow 
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Figure 6.3 illustrates the comparison between the spectra of the simulated, the 

wind tunnel, and the von Karman model turbulence fluctuations at the building model 

height and inflow velocity fluctuation. The inhomogeneous velocity filed generated by 

the DSRFG method using the scaling and orthogonal technique well reproduced the 

spectrum that realistically represent an actual wind fluctuation and captured eddies well 

within the inertial sub-range. 

6.4.1 Spatial and temporal correlation  

One of the improvements incorporated in the DSRFG method compared to its 

predecessor was the use of the integral length scale of turbulence, sL , as a scaling factor 

for spatial correlation. Thus, sL will adjust the spatial correlation between two points and 

ensure the generation of a spatially correlated field. Recently, Castro et al. (2011) 

examined the temporal and spatial correlation of the DSRFG method and pointed out 

some modifications. The formulations of the spatial and temporal correlation of the 

DSRFG method are given below   
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For the spatial correlation coefficients between two points i and j , the correlation 

matrix of the target matrix is computed from the spectra and coherence function (Eq. 

6.16). Comparisons have been made between the normalized spatial correlation 

coefficient of the velocity fluctuations generated by the DSRGF method and the target 

function. The simulated fluctuation computed using the length scale sL shows a similar 

trend with the target function (Fig. 6.4). As Huang et al. (2010) highlighted in his study, 

the choice of different sL will affect the spatial correlation of the flow field. Figure 6.5 

shows the temporal correlation, the velocity components generated by the DSRFG 

method showed good time correlation in comparison with the target function (Eq. 6.17). 
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6.5 Setup of the LES simulation for wind load evaluation 
The geometrical model of the CAARC test site and surrounding context for the 

LES simulation was determined from a combination of the RWDI wind tunnel model 

images and information provided from Google Earth and Google Maps. The CAARC 

building was placed on the southeast end of the Infinity tower at the Brickell building lot 

with approximately a 1km radius of surrounding context. Test area images were then 

compiled from Google Earth and used as a reference underlay to create a full scale plan 

sketch using Google SketchUp Pro. The overall dimensions of the plan sketch were then 
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further refined in AutoCAD and scaled down to 1:400. The majority of the height 

information of the tall buildings in the surrounding context was obtained from the 

Wikipedia page titled “List of tallest buildings in Miami, FL”.  Figure 6.6 show the three 

configurations considered in the LES simulation of the present study. The computational 

domain (CD) for Case 1 extended yD8 ( yD is width of the CAARC building model 

upwind of the model building and yD25 downstream of the target building. Laterally it 

spanned yD8  away from the side surfaces of the building model and the top boundary 

has been placed at H5.2 ( H is the model building height). Figure 6.7(a) shows the CD for 

Case 2 and 3, where the domain was sized according to COST (2007) and AIJ guidelines 

(Tamura et al., 2008). The blockage ratio calculated based on the inlet boundary plane 

and obstruction area of buildings was less that 5% ( %65.4≈ ). For all cases of the LES 

simulations, the measured mean wind velocity profile ( 17.0=α ) and the inflow turbulence 

(generated according to Sec. 3) were imposed at the inlet boundary. For the side and the 

top surfaces of the computational domain a symmetry boundary condition was assumed. 

At the ground and building wall surfaces a no-slip boundary condition was applied. The 

outlet, placed at far enough distance downstream of the study building to allow 

development of wake flow, was prescribed as an outflow boundary condition. 

The computational grids were generated using Ansys Meshing CutCell Cartesian 

meshing algorithm, which is very powerful mesh generation tool. This meshing tool has a 

unique ability of generating a large fraction of hexahedral cells in complex configuration. 

The meshing operation involves a two-stage inflation process to generate sufficient 

quality for convergence using the orthogonal quality measure (Fig. 6.7(b)). Moreover, the 
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CutCell method reduces manual geometry cleanup thereby reducing the turnaround time 

required for meshing complex geometry such as a city center. 

In the present study, the governing equations for the LES simulation was 

formulated based on the incompressible Navier–Stokes filtered forms. For the sub-grid-

scale (SGS) modeling, the Dynamic Smagornisky-Lilly sub-grid-scale model was 

employed. In this method the Smagornisky constant ( sC ) is computed dynamically 

according to the resolved scales of motion. For discretization of the convection terms the 

bounded central differencing (BCD) scheme has been used. For pressure and temporal 

discretization, second-order schemes are advised for most computational wind 

engineering applications and have been applied. The Pressure Implicit with Splitting of 

Operators (PISO) algorithm with skewness and neighboring correction has been used for 

the pressure-velocity coupling in all the LES simulations, which is based on higher a 

degree of the approximate relation between the corrections for pressure and velocity and 

highly recommended for transient simulations such as the present cases.  

6.6 Results and discussion 
The wind-induce response of CAARC building model under the simulated LES 

and wind tunnel experiment is shown in Table 6.2, where the mean base overturning 

moments ( yx M,M ) have been normalized by z
22

H DHU2/1 ρ , following Melbourne (1979). 

For Case 1 where high resolution grids were used, the LES prediction of   the overturning 

moment coefficient agrees well with the wind tunnel data.  While for Case 2 and 3, the 

LES under predicted the over turning moment coefficients.  This could be attributed to 

the use of coarse computational meshes, due to resource limitation, and wall function in 

the setup of the LES simulations.  In general the results are very encouraging and better 
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numerical predictions can be found using high resolution grids, especially at the upwind 

domain and in the near-wall regions. 

The instantaneous velocity flow field of CAARC building model under various 

configurations is illustrated in Fig. 6.8. The streamline of the velocity  is taken at one 

instance of time of the LES simulation.  The oncoming flow separates at the leading 

sharp corners (at the three corners of the wind-facing wall) and initiates a recirculation 

zone on the sidewalls and at the roof of the building. The LES also captured the 

alternating Karman vortices downstream of the target building. Figure 6.9 presents the 

instantaneous velocity field of configuration of Case 2 and 3 at a horizontal plane. The 

complex flow field demonstrated that the neighboring structures changed the dynamic of 

the wind as it approaches the target building. The presence of the complex surrounding 

structures resulted flow interference, channeling, and wake effects on the CAARC model 

building. These were responsible for the increased lift force coefficients of Case 2 and 3 

compared to the single building model (Case 1).  

6.7 Conclusions  
Computational assessment of aerodynamic characteristics of a standard tall 

building (CAARC) under urban surrounding were performed and results were compared 

with BLWT data. The inhomogeneous inflow turbulence implemented at the inlet 

boundary has been examined from the turbulence modeling principle of LES and 

computational wind load evaluation perspective. Sheltering, channeling, wake effects and 

other complex interference mechanisms could be effectively explained owing to the 

continuous simulation capability of numerical simulations in space and time, thus leading 

to a better understanding of wind/structure interactions and development of mitigation 
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solutions that will lead to enhanced wind performance of buildings. The present study 

was limited to one wind direction, as part of the ongoing project the authors are in the 

process of investigating wind directionality effects under an urban setting using high 

resolution LES.  
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Table 6.1 Measured inflow wind characteristics of open terrain.  
Level Elevation 

(m) 
Mean 
velocity 

( )s/mU  

Turbulent intensity 
(%) 

Integral length (m) 

xI  yI  zI  Lx  Ly  Lz  
1 0.1524 10.381 24.00 7.30 16.30 0.480 0.090 0.160 
2 0.3048 11.458 22.50 8.90 14.80 0.540 0.145 0.175 
3 0.4572 12.061 21.00 10.30 14.50 0.550 0.160 0.192 
4 0.6096 12.810 19.60 11.00 13.90 0.600 0.175 0.200 
5 0.9144 13.647 16.90 10.20 12.40 0.630 0.185 0.205 
6 1.2192 14.438 15.60 9.30 11.30 0.640 0.190 0.210 
7 1.5240 14.995 12.80 6.90 9.30 0.650 0.125 0.191 

 
 

Table 6.2 Wind-induced responses of CAARC by LES and BLWT.  

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Configuration 

xMC  yMC  

LES BLWT LES BLWT 
Case 1 -0.0010 -0.0043 0.5834 0.6309 
Case 2 -0.0047 -0.0068 0.3467 0.4590 
Case 3 -0.0197 -0.0088 0.4391 0.4900 
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Figure 6.1 Wind tunnel test configurations. 

 

 

 
Figure 6.2 CAARC standard tall building model with full-scale dimensions and pressure 
tap locations for: BLWT (a &b) and LES (c). 
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Figure 6.3 Comparison of simulated spectrum with the BLWT data; inflow boundary 
turbulence. 

 
 
 
 

   
Figure 6.4 Normalized spatial correlation of fluctuating velocity components u, v, and w. 

 
 



210 
 

   
Figure 6.5 Normalized time correlation of fluctuating velocity components u, v, and w. 

 
 
 
 

 
Figure 6.6 Geometrical models of CAARC building with and without surrounding 
buildings. 
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(a) 

 
(b) 
 

Figure 6.7 CAARC with surrounding context: (a) computational domain and (b) mesh of 
CAARC with complex surroundings. 
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(a) Case 1 

 
(b) Case 2 

 
(c) Case 3 

Figure 6.8 Streamwise velocity fluctuation at a vertical plane.  
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(a) 

 
(b) 

 

 

Figure 6.9 Instantaneous 3D velocity streamlines of Case 2 (top) and Case 3 (bottom): (a) 
at z=0.1H and (b) at z=0.5H. 
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7 CONCLUSIONS, RECOMMENDATIONS AND GUIDELINES FOR FUTURE 

RESEARCH  

 
The evolution of computational wind engineering is making numerical evaluation 

of wind loads a potentially attractive proposition. In the present study a computational 

model was developed following a Large Eddy Simulation approach, opted for its 

accuracy for building aerodynamics “bluff bodies” which are characterized with high 

turbulence and flow separations at building corners. Compared to the experimental wind 

load evaluation which relies on discrete point measurements, the LES model produced 

useful continuous aerodynamic data on the entire surface of the building. It also provided 

detail flow visualizations for the wind field around a study building that provided useful 

information on flow separation and reattachment, recirculation zone, and vortex 

generation.   

This was instrumental in understanding the complex wind/building interactions 

better, accounting both immediate surroundings and upwind exposure effects. In addition, 

at the present early stage of numerical modeling for building aerodynamics, it is 

imperative that the accuracy of the simulation is expected to be validated rigorously to 

identify its strengths and weaknesses. Hence, all numerically generated aerodynamic data 

in the present study was validated in comparison with experimental data obtained from 

boundary layer wind tunnel experiments. It is believed that the computational approach 

will allow circumventing the limitations of wind tunnels as a design tool and encourage 

aerodynamic considerations in the building design process, which is a rarity in current 

practice.  
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Moreover, the more specific conclusions as a result of the present computational 

evaluation of wind loads on buildings have been provided in the following sections. 

These sections are ordered according to the research topic to preserve continuity.   

 

7.1 Comprehensive and critical review of the current state of CFD 
The state-of-the-art of computational wind engineering has been discussed by 

critically reviewing the work of several researchers. Based on the key findings in 

turbulence modeling, boundary conditions, and high Re numbers turbulent flow, and 

computational cost, the following guideline for CFD application to wind load evaluation 

are summarized as follows: 

 
o The recent significant progress made in turbulence modeling, efficiency in 

computing machines and developments in novel parallel algorithms enabling 

industrial applications of CFD techniques. These include wind effect studies on 

actual buildings, both on low-rise and high-rise with in urban setting.  

o Unsteady simulation such as LES has pivotal importance for wind engineering 

applications. 

o Generation of the ABL wind flow field is the critical step in applying CFD for 

the wind load evaluation process. 

o Model- and full-scale data are very valuable for validation of CFD results at the 

present early stage in their application. 

o An accurate time-dependent analysis, such as for example LES and hybrid 

RANS/LES, is essential to produce the time-history of pressure fluctuation, 
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similar to what is being done in wind tunnel experiments. This enables the 

prediction of peak-type quantities for the preliminary design of buildings.  

o In general computationally obtained mean values showed a good agreement with 

full-scale and wind tunnel experiments, especially on the windward face but were 

problematic in leeward faces.  

o Very limited, almost none, work has been done in estimating peak wind loads 

using CFD.  

o For large-scale simulations the computational cost still remains a concern but the 

hybridization of turbulence models (for example hybrid RANS/LES), a robust 

parallelization, and new programing routine which can exploit the graphical 

processing unit of CPUs, and the emergence of cloud computing by private 

vendors are some of the encouraging efforts to make CFD affordable in the 

foreseeable future.  

 

7.2 Comparative numerical modeling application for the design and fabrication of 
novel wind engineering facilities 

A comparative numerical simulation for various size specimen located at various 

distance from the wind source has been found to be very useful in the design and 

construction of new open jet facilities such as the Wall of Wind.  

o The RANS and LES based CFD simulation helped in identifying the placement 

fans into a well-defined single jet flow whose characteristics mimic the mean and 

turbulent hurricane winds.  

o It also helped to develop a guideline on the maximum size of the test specimens 

the hurricane simulator can test and the proximity distance where specimens 
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should be placed with respect to the wind sources (fans) to obtain sound 

aerodynamic data with minimal blockage and proximity effects. These guidelines 

are routinely followed at the Wall of Wind at the moment. The guideline is 

expected to be useful for configuring new design concepts and modifications in 

similar facilities in the future.   

7.3 Numerical evaluation of wind loads on low-rise building roofs 
 LES simulations on low-rise buildings with regular and complex roof shapes 

have been carried out. The study focused on the wind-induced pressure loads of the roof 

systems. Inherent to the responses of low-rise buildings to turbulent wind, the following 

observations are summarized with respect to the estimation accuracy of LES.  

o A meticulous effort was required in the geometrical modeling, especially in the 

ridge, corner and roof-wall connection regions. It helped in distribution and 

generation of high quality grid cells around those regions. Perhaps, this 

constitutes one of the most time-consuming aspects of the numerical modeling 

process in future practical applications.  

o The high-resolution spatial discretization applied at the inner boundary layer, 

around the vicinity of the sharp corners and ridges of the model enabled the 

reproduction of the basic flow features and distribution of mean pressure 

coefficients on the regular and complex shape buildings.  

o The numerical models with complex roof shapes showed mixed pressure 

distribution on the roof (positive and negative pressure) as opposed to the 

regularly shaped models where the separation and reattachment locations were 

clearly identified. 
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o Despite assuming constant integral length and turbulence intensity (lateral and 

vertical directions), the study of the roof pressure distribution revealed that the 

mean pressure coefficient predicted by the LES simulation is in a good agreement 

with the wind tunnel data.  

o For the gable and hip roof models, high suction pressures were observed on areas 

close to the windward edge and near the middle ridge consistent to the 

experimental results. The flow separations in these regions that resulted in these 

peaks were properly captured though the CFD visualizations.   

o LES was found very useful for complex roof cases, where building standards and 

codes do not provide design wind loads.  

o The numerical study also showed that oblique angle wind could introduce uplift 

pressure loads due to the formation of corner vortices, which is consistent with the 

experimental observations. 

o Time histories of pressure data obtained from the LES simulations were very 

useful for the estimation of the time averaged mean, standard deviation (rms), and 

the peak minimum and maximum pressure coefficients. The short record duration 

resulted in an over-estimation of peak values by the LES simulations. This could 

be improved by taking a longer record sample in the future.  

o The flow visualization from the LES is useful to rationally encourage the design 

of low-rise buildings for improved wind performance.  

7.4 Aerodynamics of tall buildings 
The external aerodynamics of a standard tall building, also commonly known as 

the CAARC model, under various surrounding configurations has been examined with 
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the help of high-resolution CFD simulations. To understand the full extent of the wind-

structure interaction and the capability of the LES in handling turbulent flow, successive 

numerical studies were carried out. First the single building case for multiple wind 

directions followed by an immediate adjacent building and complex surrounding (city 

center) simulation cases. The city center case simulations were carried out for down town 

Miami, FL. The geometrical model of the complex city center was created using a 

combination of information obtained from the wind tunnel model and a Google aerial 

map. After rigorous cleanup of the topology, the CAD model was exported for meshing. 

After careful consideration, it was necessary to conduct an experimental testing on an 

empty wind tunnel to obtain basic flow characteristics of open and sub-open terrain 

conditions. The flow statistics such as mean velocity and turbulence intensity profiles and 

integral length scales were calculated from the velocity fluctuation measured at 10 points 

along the height of the wind tunnel. Then this data was used to generate a spatially 

correlated time-dependent random flow that satisfies the ABL flow criterion. The inflow 

turbulences were used to prescribe the inlet boundaries of the LES simulations. For the 

HFPI-type LES simulations, over 280 pressure taps were created inside the computation 

domain and systematically distributed on the surfaces of the model. Then time histories 

of the fluctuating pressures were measured and the design wind load quantities were 

calculated and compared with the wind tunnel data. The wind-induced loads on the 

CAARC model building were obtained numerically. The experimental wind pressure data 

used for the validation of the CFD results were done for an open and sub-open terrain 

exposure. 
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Pertaining to the responses of high-rise buildings to wind and the numerical 

modeling principles of high Re numbers flow, the following remarks were drawn:  

o The grid sensitivity analysis showed how the mean flow quantities are affected by 

the size of the computational cells. Computational grids that resolve the inner 

boundary layer adequately estimated wind flow parameters (such as wind speed 

and TI) at the incident plane.  

o LES with inflow turbulence performed better and captured flow structures with 

relevant length scale.  

o Numerically generated random inflow turbulences considerably affected the 

accuracy of the LES based simulations. Those random flow generators, 

particularly the synthetic turbulence family, which incorporated the turbulence 

integral and temporal-scale, produced a realistic divergent-free wind flow field 

that accurately represented the ABL flow.  

o The spatial and temporal correlation showed that inflow turbulence generated 

using the von Karman spectrum model better matched with the wind tunnel 

simulated spectrum and reproduced the high frequency range of flow structures 

within the inertial subranges, which is in line with the modeling principle of LES 

simulation. 

o The result further attested the need for proper inflow transient boundary 

conditions in agreement with suggestions by other CFD researchers. This in fact 

is analogous to the extreme care and effort that is taken during ABL flow 

simulations in the BLWT, with thorough use of upwind roughness elements, 

spires, or other types of active and passive flow controls.  
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o For the isolated tall building case, the LES with a transient inlet boundary using 

the discretizing and synthesizing random flow generation (DSRFG) method 

showed superior performance in predicting aerodynamics forces such as drag- and 

lift-force, and bending and torsional moment coefficients.   

o The along-wind and cross-wind loads predicted by the LES simulation showed 

close comparison with the experimental data. It is to be recalled that the cross-

wind loads are not provided in building codes and standards. 

o Based on the results of the isolated building model, the city-center simulation was 

necessary to fully explore the potential of LES simulations. 

o The complex geometry of the city center simulation required a greater deal of 

time to economically distribute the computational meshes. Large volume of grid 

cells was allocated in the near wall regions of the model building. However, the 

presence of small structures such as the twin bridges and the residential buildings 

in the vicinity of the CAARC model restricted the control over the size of the 

minimum grid point.  

o The effect of the neighboring buildings within the 1km radius of the study 

building formed channeling, sheltering, and wake interference effects on the 

model building. The LES simulation allowed to thoroughly understanding these 

phenomena.  

o The channeling, sheltering and wake effects introduced by the immediate adjacent 

building and the surrounding structures were very noticeable and changed the 

wind load distribution on the envelope of the model building.  
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o The large-scale simulation mechanisms effectively explained the complex wind-

structure interaction. Owing to the continuous simulation capability of numerical 

simulations in space and time, thus leading to a better understanding of 

wind/structure interactions and development of mitigation solutions that will lead 

to enhanced wind performance of buildings. 

o Wind tunnel experimental data are indispensable for the correct boundary 

prescription and validation of LES. 

7.4.1 Extended application of the complex surrounding case simulation   

o The results from the complex surrounding case simulation can be extended for 

studying pedestrian wind level comfort,  

o Tracing of flying objects/debris from upwind structures in the event of wind 

hazards 

o Gas dispersion in the event of a chemical attack, and  

o Wind driven rain studies 

o Will help in developing evacuation guidelines during catastrophic wind events 

such as hurricanes.  

In general, it is fair to conclude that CFD simulations such as LES can be used as 

an alternative tool for wind pressure load evaluation of low-rise building at least for 

preliminary design. Generally, it can be concluded that LES with proper boundary 

conditions and enhanced computational resources could prove useful for wind load 

applications. In the author’s opinion, computational resource are still the bottle neck for 

full-fledged use of LES making it still expensive and more time consuming than standard 

BLWT wind load studies. One such limitation in the present study was perhaps the 
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limited period of LES pressure time-history data generated than what might have been 

necessary to accurately predict the design wind force coefficients (peak) very similar to 

the experimental method. 

7.5 Recommendations for future research 
o Incorporating roughness effects in the upstream domain of the computational 

domain will help in achieving the ABL flow.  

o Wind load evaluation study by accounting the roughness of the wall surfaces 

instead of using no-slip wall boundary. 

o Performing RANS/LES simulation and compare the computational efficiency and 

accuracy with LES.  

o Finding optima record length of pressure time-history of computational results 

that takes into account the computational cost and accuracy. As length of 

sampling greatly affects the wind design quantities, particularly peak values. 

o Integrating CFD with catastrophe modeling software such as HAZUS-MH and 

estimate wind loads on buildings. 

o Investigating the applicability of CFD for performance based design and 

vulnerability analysis of low-rise buildings.    

o Considering the effect of buoyancy in the numerical modeling of ABL simulation.  

 

7.6 Guidelines for numerical wind load evaluation using CWE 
Below are some helpful guidelines for wind load evaluation of bluff-body using 

the technique of CWE  
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o The LES results are greatly dependent on the input mean wind flow parameters 

such as the mean velocity and turbulence intensity profile in all directions (x, y, 

z). Hence, care should be taken when prescribing the inlet boundary. As this not 

only affects the convergence of the simulation and computational time but also 

will compromise the quality of the aerodynamic data. 

o For low-rise buildings, pertaining to scaling issues, measuring relevant length 

scales using a model-scale test is very difficult particularly in the lower ABL 

region. Therefore, full-scale data is more appropriate for defining these 

parameters at the inlet boundary of the numerical simulation. When the length- 

and time -scale data are scarce, proto type numerical simulations should be done. 

o For a city center simulation, getting accurate building and other neighboring 

structures is very crucial. Hence using tools like ArcGIS and Lidar data will be 

valuable in getting the elevation information. 
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