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ABSTRACT OF THE DISSERTATION 

AN ENERGY BASED NANOMECHANICAL PROPERTIES EVALUATION METHOD 

FOR CEMENTITIOUS MATERIALS 

by 

Kaushal Kumar Jha 

Florida International University, 2012 

Miami, Florida 

Professor Nakin Suksawang, Major Professor 

Advances in multiscale material modeling of structural concrete have created an 

upsurge of interest in the accurate evaluation of mechanical properties and volume fractions 

of its nano constituents. The task is accomplished by analyzing the response of a material to 

indentation, obtained as an outcome of a nanoindentation experiment, using a procedure 

called the Oliver and Pharr (OP) method. Despite its widespread use, the accuracy of this 

method is often questioned when it is applied to the data from heterogeneous materials or 

from the materials that show pile-up and sink-in during indentation, which necessitates the 

development of an alternative method. 

In this study, a model is developed within the framework defined by contact 

mechanics to compute the nanomechanical properties of a material from its indentation 

response. Unlike the OP method, indentation energies are employed in the form of 

dimensionless constants to evaluate model parameters. Analysis of the load-displacement 

data pertaining to a wide range of materials revealed that the energy constants may be used to 

determine the indenter tip bluntness, hardness and initial unloading stiffness of the material. 

The proposed model has two main advantages: (1) it does not require the computation of the 
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contact area, a source of error in the existing method; and (2) it incorporates the effect of 

peak indentation load, dwelling period and indenter tip bluntness on the measured 

mechanical properties explicitly. 

Indentation tests are also carried out on samples from cement paste to validate the 

energy based model developed herein by determining the elastic modulus and hardness of 

different phases of the paste. As a consequence, it has been found that the model computes 

the mechanical properties in close agreement with that obtained by the OP method; a 

discrepancy, though insignificant, is observed more in the case of C-S-H than in the 

anhydrous phase. Nevertheless, the proposed method is computationally efficient, and thus it 

is highly suitable when the grid indentation technique is required to be performed. In 

addition, several empirical relations are developed that are found to be crucial in 

understanding the nanomechanical behavior of cementitious materials. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

 Concrete, the most widely used construction material in the world, is composed of 

constituents of different sizes that vary over a wide range of scales, from the nanoscale of the 

elementary chemical components to the macroscale of fine and coarse aggregates [1]. It is 

now widely accepted that the fundamental properties of concrete such as strength, durability, 

early age rheology, creep and shrinkage, fracture behavior, etc. are affected by the 

performance of its constituents to a great extent [2-3]. Many of these properties, by 

convention, are determined from experiments conducted at the macroscopic scale, where the 

contributions from the chemical components of concrete to its specific properties are difficult 

to quantify. This necessitated the development of multiscale material model in which the 

properties of individual phase are considered [1, 4-7]. 

 The complex microstructure of concrete is divided into four elementary levels, as 

depicted schematically in figure 1.1. These four levels respect the condition of the scale 

separability, i.e., the difference in the length scale between two adjacent levels differs at least 

by an order of magnitude [1]. The first level corresponds to a length scale where the 

mechanical properties of cementitious materials are linked to the physical chemistry involved 

in their formation. The characteristic length scale of this level is supposed to be 10-8 and 10-6 

m, the smallest material length scale accessible by mechanical testing so far. This level is 

chiefly comprised of low and high density Calcium-Silicate-Hydrate (C-S-H) formed by the 

hydration of cement clinkers (C3S and C2S) after mixing them with water. Their morphology 
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and volume fractions may be affected by the water-to-cement ratio. The model by Jennings 

[8-9] suggests that C-S-H are organized in ‘globules’ comprising of solid (basic building 

blocks) of size 2.2 nm and 18 % nanoporosity with a characteristic size of 5.6 nm, as shown 

in figure 1.2. Many such globules form C-S-H solids with gel porosity whose percentage 

depends on its type. In level II, homogeneous C-S-H with large CH crystals, aluminates, 

cement clinker inclusions, water, etc. are included. Likewise, sand particles and the 

Figure 1.1: The concept of multiscale material modeling. 
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homogenous cement paste matrix are considered as the constituents of level III. Finally, in 

level IV, concrete is described as composite material with aggregates, the interfacial 

transition zone (ITZ) and homogeneous mortar matrix as its components. Multiscale 

modeling allows us to upscale the information from level I to level IV successively. For 

instance, the elastic moduli of C-S-H can be upscaled to evaluate the elastic modulus of 

cementitious materials at level II. The task is accomplished by employing methods such as 

self-consistent and/or Mori-Tanaka schemes [10-12] used in the analysis of a composite 

material. While applying these schemes, each level is treated as a composite material in 

which one or more phases are considered embedded in another. The representative value of 

one level acts as the input parameter for the next higher level. To begin such analysis, the 

mechanical properties and volume fractions of the phases present in level I are required to be 

Figure 1.2: Colloidal model of C-S-H by Jennings: Gel porosity vs. Nanoporosity [6]. 
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known. The volume fractions of the phases may be determined using hydration kinetic 

models [9]. 

Nanoscaled materials are often added to concrete to improve its strength and durability. 

For instance, addition of nanosilica (with an average size of 10 nm) in concrete results in the 

reduction of porosity by filling the voids created by the arrangement of larger particles and in 

quicker gain in strength [13-25]. It also reduces the cement requirement for the concrete, 

which not only addresses the environmental concern, but also helps alleviate the problem of 

heat generation and shrinkage associated with high cement content. Fly ash and microsilica 

(silica fume), byproducts from power plants, steel mills, and other manufacturing facilities, 

are added in concrete to improve its properties. Because of their pozzolanic properties, these 

materials react with calcium hydroxide to yield additional C-S-H which is important from the 

viewpoint of the strength and durability of concrete. Similarly, carbon nanotubes are being 

added to cementitious materials to increase its strength and fracture toughness [22-25]. 

Figure 1.3: Probability plots of Young’s modulus of pure cement paste and cement

paste reinforced with 0.08 wt% short MWCNTs [22]. 
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Figure 1.3 depicts how the elasticity of the cementitious materials is affected by the small 

addition of carbon nanotube.  

As explained above, concrete exhibits heterogeneity at all level of length scales and 

its macroscopic material properties (strength and stiffness) are governed by the 

corresponding properties and volume fractions of its basic building blocks (C-S-H). A 

question, at this stage, arises as to how the material properties as well as the volume fractions 

of its nano constituents can be measured or computed with a great level of certainty. 

Advances in instrumentation have provided us convenient and promising tools that can be 

used for this purpose [26]. During the last one decade, atomic force microscope and 

nanoindentation equipment have been applied extensively in the determination of mechanical 

properties such as indentation modulus and hardness of cementitious materials [27-37]. 

Besides the measurement of mechanical properties, considerable knowledge on small scale 

behavior of cementitious materials has been gained through the outcome of the indentation. 

For instance, Constantinides and Ulm found, by nanoindentation, that the C-S-H exists in two 

different forms [28] and exhibits unique nanogranular behavior, which is driven by particle-

to-particle contact forces [38]. Using a similar analysis, Vandamme and Ulm later revealed 

that a third form of C-S-H with significantly high packing density also exists [36]. 

Furthermore, the fact that C-S-H creeps logarithmically has been established with the help of 

nanoindentation [37]. However, there are certain important issues that remain unresolved. 

Mondal et al. [2, 39] found that the elastic modulus of the interfacial transition zone does not 

increase with the distance from the interface, which is diametrical to the conventional belief. 

Again, the validity statistical indentation technique applied in the determination of 

mechanical properties and volume fractions of different phases of cementitious materials has 
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been questioned [40-43]. One important area, which has not received the attention of experts, 

is the assessment of the method used in the analysis of nanoindentation data from the 

cementitious materials. Note that the method used for such assessment is believed to be 

applicable to a material that is linear, isotropic and homogeneous. It is normally speculated 

that erroneous mechanical properties may be obtained if the existing method is applied to the 

heterogeneous materials. The extent to which the accuracy of the method is affected by 

material’s heterogeneity is, however, not known. Therefore, the development of an 

alternative method is envisioned in this research. 

1.2 Problem statement 

Nanoindentation load-displacement data are analyzed on the basis of Sneddon’s solution 

for indentation of elastic half-space with rigid axisymmetric indenters. This solution provides 

a theoretical framework to compute mechanical properties such as indentation (or reduced) 

modulus and hardness of a material, which requires prior knowledge of two nanomechanical 

quantities: initial unloading stiffness and area of contact between the indenter and the 

specimen. In the standard Oliver and Pharr (OP) method, these quantities are evaluated from 

the unloading curve represented by a power law. 

Although the method is widely used in the evaluation of mechanical properties for many 

materials, there are certain issues that demand further study. First, large variability in the 

power law parameters, even for a given material, indicates that neither indenter geometry nor 

materials response to indentation could be characterized on the basis of their magnitude, and 

thus lack in physical meaning. Second, the area of contact between the indenter and specimen 

is computed from the area function, which is established with respect to a test material with 
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known elastic modulus. In the calibration process, corrections, due to the lack of axial 

symmetry of the indenter and due to the improper boundary condition in the Sneddon’s 

solution, are often omitted. This might have severe consequences on the measured 

mechanical properties. The accuracy of the methods used to predict the correction factors is 

still debated in the material science community. Moreover, the OP method yields an 

erroneous contact area if a material has a tendency to pile-up around the indenter while 

testing. Third, a large numbers of indentations are needed if the mechanical properties and 

volume fractions of the different phases present in a heterogeneous material are to be 

accurately calculated. In this situation, the OP method may prove to be computationally 

expensive. Therefore, the development of a computationally efficient model capable of 

predicting the mechanical properties of a material accurately, which does not require the 

measurement or evaluation of the area of contact at all, is warranted. 

1.3 Research goals and objectives 

This dissertation deals with the evaluation of nanomechanical properties such as 

indentation modulus and hardness of a material using the nanoindentation load-displacement 

record. Overall, the research goal is to develop a sound mathematical model to extract the 

indentation modulus and the hardness using parameters that can be determined very 

accurately even for highly heterogeneous samples such as from cementitious materials. The 

approach is based on experimental observations and numerical simulations of the responses 

to indentation pertaining to a wide range of materials. Specific objectives that will be met to 

achieve this research goal are to: 
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 Identify parameters that can adequately describe the indenter geometry and material 

response to indentation.  

 Modify and extend the existing work-of-indentation approach to determine 

conventional hardness of a wide range of materials. 

 Develop a semi-analytical approach to evaluate the initial unloading stiffness using 

the elastic work-of-indentation. 

 Gain further insight on the nanomechanical response of cementitious materials 

through empirical observations. 

 Develop a nanomechanical properties evaluation method for cementitious materials 

using the Sneddon’s solution incorporating the conventional hardness determined by 

the modified work-of-indentation approach and initial unloading stiffness evaluated 

from elastic work. 

1.4 Structure of this dissertation 

This thesis is structured and organized as follows. Chapter 2 aims at presenting reviews 

on the different nanomechanical properties’ evaluation procedures that are currently adopted 

in the material science community. Starting with the fundamentals of contact mechanics and 

followed by the nanoindentation technique, the strengths and weaknesses of each of these 

methods are examined and areas of potential improvements are identified. Additional 

requirements for nanoindentation and subsequent data analysis in view of the microstructure 

of the heterogeneous cementitious materials are also briefly discussed. 

Chapter 3 deals with the characterization of nanoindentation load-displacement curves 

using dimensionless energy based parameters. Elastic and elasto-plastic finite element 
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simulations are carried out to show that total and elastic energy constants may be used to 

characterize indenter geometry and material response to indentation, respectively. The effect 

of tip rounding on the performance of a pyramidal indenter of Berkovich type is explained on 

the basis of simulation results. Finally, their effectiveness in the determination of 

nanomechanical quantities such as indenter tip radius, nominal hardness and contact depth 

are described. 

A novel procedure to determine the initial unloading stiffness or contact stiffness from 

the elastic energy constant is outlined in chapter 4. Analytical differentiation of the power 

function, capable of representing the unloading response of a material (at least in the initial 

stage), usually overestimates the contact stiffness. Analysis of the nanoindentation data from 

materials that have a wide range of recovering capabilities upon the withdrawal of load is 

presented to find the factors responsible for the overestimation of the contact stiffness. 

Chapter 5 focuses on the determination of conventional hardness of a material from the 

nanoindentation loading curve. A theoretical basis is presented to show that the hardness 

values determined from the work-of-indentation approach and by the standard Oliver and 

Pharr method are fundamentally different. A procedure to evaluate conventional hardness 

from the nominal hardness determined using the work-of-indentation approach incorporating 

the effect of indenter tip rounding explicitly is outlined in this chapter. 

Chapter 6 is devoted to the analysis of the nanoindentation load-displacement data from 

the cementitious materials. In view of the creeping behavior of the cementitious materials, a 

dwelling portion is always desirable in the load-displacement curves. With the modification 

of the total and elastic energy constants, a procedure to evaluate the indentation modulus and 

hardness for different phases of cementitious materials is developed that essentially 
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incorporates the modified work-of-indentation approach and contact stiffness determined 

from the elastic energy constant into the fundamental relation. In addition, this chapter 

provides further insight on the nanomechanical behavior of the cementitious material through 

empirical observations. 

The last chapter summarizes the conclusions drawn from this study and highlights the 

key areas where further improvements could be made to expand the capabilities of the model 

presented herein. 
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CHAPTER 2 

PRINCIPLE AND METHODS OF NANOINDENTATION 

2.1 Introduction 

Nanoindentation is an important and reliable experimental technique that can be used in 

the mechanical characterization of a small volume of materials. In this method, a smooth 

surface of a material is indented with a probe to acquire the load vs. penetration depth history 

(a cycle of loading and unloading curves). The load-penetration curves so obtained contain 

useful information that need to be transformed into meaningful mechanical properties such as 

elastic modulus, hardness, yield strength, strain hardening exponent, fracture toughness, 

contact creep modulus, etc. However, to carry out such analysis, a proper understanding and 

interpretation of the indentation data is essential. Several methods with varying domain of 

application are available in the literature. These methods may be broadly classified either as a 

reverse or as a forward analysis tools. In the reverse analysis, the material properties of 

interest are extracted from the nanoindentation data. The material response to indentation is 

modeled by assuming the suitable values of material properties in a typical forward analysis. 

While the reverse analysis is largely empirical, the forward analysis is usually performed 

using the finite element method. These methods can also be grouped depending on the 

portion of the load-displacement curves used in the analysis. For instance, the method 

proposed by Oliver and Pharr may be categorized as an unloading curve method as it uses the 

information contained in the unloading response only. Majority of the nanoindentation data 

analysis procedures employ the Sneddon’s solution for indentation of elastic half-space by a 

rigid indenter to evaluate the elastic modulus and hardness of a material.  
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Until recently, this experimental technique has been considered highly suitable for a 

material that is linear, isotropic and homogeneous. Now, it is extensively being used in the 

characterization of natural composites such as biological and cementitious materials. The 

analysis of indentation data from such materials involves the use of some elementary 

statistics relations. In this chapter, several nanoindentation data analysis procedures, along 

with their underlying principles, are reviewed to identify the potential areas of improvement 

in view of the response of heterogeneous materials to indentation. 

2.2 Sneddon’s solution 

Suppose that a punch can be described as a solid of revolution by rotating an arbitrary 

function given by  z f  about the z-axis, as shown in figure 2.1. When a load, P , is 

applied to the punch, it is displaced into the elastic half-space through a distance, h  forming 

a circle of contact with radius a  at the surface. Sneddon [1] derived, using Hankel 

transforms, the following expressions for h  and P , respectively. 
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where  f x  is the indenter shape function expressed in terms of a non-dimensional variable 

x  defined by /x a  such that 0 1x   in the region of contact. Oliver and Pharr [2] 

showed that the initial unloading stiffness or contact stiffness is independent of the indenter 

geometry. To prove this, Eq. (2.2) may be written in the following form: 
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If differentiated with respect to x , Eq. (2.4) will boils down to 
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Note that second and third terms in the above expression are equal and cancel out (detailed 

proof is given in Oliver and Pharr [2]) giving a simplified expression for the contact stiffness, 

which may be expressed as: 

  
/ 4

/ 1

dP dP da a

dh dh da v

 


 (2.5) 

By using relations 2A a  and  / [2 1 ]E   , a fundamental relation among the contact 

stiffness, the elastic modulus and the area of contact may be obtained as: 

Figure 2.1: The geometry used by Sneddon’s in the derivation of the load-

displacement relations for a rigid punch of arbitrary profiles [2]. 
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where S  is the initial unloading stiffness or contact stiffness, E  is the elastic modulus and   

is the Poisson’s ratio of the elastic half-space. Note that the above equation is independent of 

the indenter geometry and is applicable to any profile describable as a solid of revolution. 

The contact stiffness may be determined as a slope of the unloading curve at the point of the 

maximum depth of penetration. Application of Eq. (2.5) in the determination of elastic 

modulus requires an independent measurement of the area of contact and reasonable 

estimates of the Poisson’s ratio of a material. 

2.3 Nanoindentation 

As explained above, one needs experimental load-displacement curves in order to 

determine the contact stiffness, which can be reliably and conveniently obtained from a 

depth-sensing instrumented indentation. Nanoindentation is a type of depth sensing 

Figure 2.2: Typical indentation load-displacement data. 
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instrument, which measures the load and corresponding displacement with a resolution better 

than 1nN and 0.02nm, respectively. In this technique, a material with smooth surface 

indented to record the load-displacement response during both penetration as well as 

withdrawal of the punch. The equipment can be operated either in the load or in the 

displacement-controlled mode. It is preferable to introduce peak load hold period in the 

loading sequence to minimize the effect of non-elastic deformation on the unloading 

response.  Sometimes several cycles of loading/unloading are carried out to minimize the 

effect of reverse plasticity. Recent nanoindentation equipment is fitted with Scanning Probe 

Microscope (SPM) which can capture images with a nanoscale resolution. Nanoindentation 

usually leaves only a small imprint, and thus it is regarded as a nondestructive test method.  

Indenters of different geometry such as conical, pyramidal and spherical of various sizes 

are employed in the nanoindentation experiments. Some of these are depicted in figure 2.3. 

Pyramidal or conical indenters are geometrically self-similar implying that the ratio of the 

length of the diagonal or radius of circle of contact to the depth of indentation remains 

always constant for increasing indenter load [3]. Spherical indenter, unlike conical or 

pyramidal indenters, is not self-similar. With the increase in load on the indenter, the radius 

Figure 2.3: Indentation parameters for (a)spherical, (b) conical, (c) Vickers, and (d)

Berkovich indenters [3]. 
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of circle of contact increases faster than the penetration depth. The self-similarity is a 

desirable indenter property that has important implications in the indentation measurements 

and analyses [4]. 

 A three-sided Berkovich pyramid is the most commonly used indenter in small scale 

indentation. This type of indenter is relatively easier to construct as compared to the four-

sided Vickers indenter. A Berkovich indenter with a face angle of 65.270 has the same 

projected area-to-depth ratio as the Vickers indenters. The tip radius of a new Berkovich 

indenter varies in the range 50-100nm. A cube-corner is another type of pyramidal indenter 

that is also frequently used in the indentation measurement. Berkovich and cube-corner 

indenters are equivalent to a conical indenter with a half-included angle equal to 42.280 and 

70.320, respectively. 

The choice of an indenter with a particular geometry also depends on the type of 

material properties intended to be measured from the indentation test. For instance, a cube-

corner is a preferred choice in the determination of the fracture toughness of a brittle material 

[3]. Owing to the sharpness of the cube corners, much higher stresses and strains are 

produced in the region of contact. As a result, well-defined cracks are formed around the 

hardness impression, which facilitates the measurement of this kind of property of a material. 

The stress-strain curve of a material can be obtained from the indentation measurement as 

well, but only with a spherical indenter. Cheng and Cheng [5] concluded that the load-

displacement curves obtained using conical or pyramidal indenters can produce a multiple 

stress-strain curves. Therefore, a unique stress-strain relationship is not possible using these 

indenters. A spherical indenter provides smooth transition from elastic to elastic-plastic 

contact. This makes a spherical indenter highly suitable for measuring the mechanical 



20 
 

properties of soft material. Contact damage in service conditions could be replicated with the 

help of a spherical indenter.  

2.4 Indenter geometry and Sneddon’s solution 

Pyramidal indenters are the most common indenters used in the nanoindentation 

experiment which does not confirm to the axisymmetric conditions. Since Eq. (2.5) is strictly 

applicable when the indenter geometry is described as a solid of revolution, a modification to 

this equation is required if the load-displacement curves are to be acquired with a pyramidal 

indenter. King [4], based on numerical studies, found that the shape corrected fundamental 

relation may be written as: 

  2

2

1
c

E
S A





 (2.6) 

Constant   accounts for the lack of axial symmetry for pyramidal indenters and is equal to 

1.034 and 1.012 for indenters with triangular and square cross-sections, respectively. 

Researchers, however, have diverging views regarding the determination of this shape 

correction factor  [7-15]. A review by Oliver and Pharr [7] suggests that for the Berkovich 

indenter it should fall in the range 1.023 to 1.085, the value 1.05 being a good choice. Strader 

et al. [9] showed that it depends on the half included angle of the indenter and found a mean 

value of 1.055 and 1.097 for Berkovich and cube-corner indenter, respectively. They found 

that   decreases at small indenter angle, but increases when the indenter angle is in the 

excess of 550. This trend in its variation is remained unexplained. Most recently, Meza et al. 

[12] showed that this factor depends on the maximum penetration depth and the indenter tip 
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radius. Using finite element method and dimensional analysis, they derived an expression for

  as: 
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where, maxh  is the maximum depth of penetration,   is the apex height, which is a measure of 

the tip bluntness, and   is the geometry factor. It has been shown that Eq. (2.5) 

underestimates the contact stiffness due to the improper boundary condition imposed by 

Sneddon while describing the indentation of an elastic half-space by a right circular cone. He, 

Figure 2.4: (a) Geometry used by Sneddon to describe indentation of an elastic half-

space by a right circular cone. (b) Shematic representation of of the actual shape of

the deformed surface predicted by Sneddon’s analysis whne the radial displacements

are taken into account [13]. 
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by neglecting the radial displacements, assumed that the shape of the deformed surface in the 

region of contact is also conical, as shown in figure 2.4a. Hay et al. [13] suggested that such 

assumption is valid only in the case of an incompressible material. When the radial 

displacements are finite, the actual deformed surface is subtly curved, as shown in figure 

2.4b. They introduced a correction factor   in the fundamental relation to account for the 

actual boundary condition. Therefore, Eq. (2.6) may be rewritten as: 

  2

2

1
c

E
S A





 (2.7) 

According to Hay et al. [13], this correction factor is a function of Poisson’s ratio of a 

material and the half-included angle   of an indenter. For a Berkovich and Cube-corner 

indenters,   is given by Eqs. (2.8) and (2.9), respectively. 
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  is, respectively, equal to 42.280 and 70.320 for cube-corner and Berkovich indenters. 

Xu and Li [14] found that the first-order correction factor given by Eq. (2.8) is applicable 

to conical indentation of elastic deformation-dominated materials and not to Berkovich 

indentation. They developed, on the basis of finite element simulations of indentation on 

elastic as well as elasto-plastic materials. A revised relationship for the estimation of 

correction factor, which has the form given by Eq. (2.10). 
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It is argued that the above relationship gives a better estimation of correction factor for 

Berkovich indentations on both elastic and elasto-plastic materials. One important point, 

which is worth mentioning here, is that there exists ambiguity not only in the values of these 

correction factors, but also in their understanding. Researchers often consider the correction 

factors  and   to be the same [9]. It should be noted that   is related to the shape of the 

indenter and is always equal to 1.0 as far as an indenter is describable as a solid of revolution. 

On the other hand,   is related to the shape of the deformed surface and should be applied to 

the Sneddon’s solution irrespective of the type of indenter. This was well recognized by 

Troyon and Lafaye [15] and applied in their studies. Xi and Lu also suggested that both of 

these correction factors must be considered while analyzing the load-displacement data 

acquired with the help of a pyramidal indenter to obtain accurate values of mechanical 

properties. They suggested that a combined correction factor   obtained by the 

multiplication of  and   may be used to account for both of these shapes. Eq. (2.10), in 

fact, determines  . This new factor can also be determined by indenter tip modeling and 

two-slope method [15]. However, their effectiveness in the determination of mechanical 

properties of a material is yet to be fully realized. Finally, it is important to note that the 

omission of these correction factors has more severe consequences on the measured hardness 

than on the elastic modulus. 
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2.5 Determination of mechanical properties 

As mentioned earlier, mechanical properties of a material may be determined from the 

information contained in the load-displacement curves obtained from a nanoindentation 

experiment. Several methods are available in the literatures which differ mainly in the 

interpretation of nanoindentation data [16-25]. Some of these methods are discussed here. 

2.5.1 Oliver and Pharr method 

One of the most commonly used methods for analyzing nanoindentation load–

displacement data is that proposed by Oliver and Pharr [17]. The method is based on the 

premise that the behavior of the material during unloading is largely elastic, in which the 

elastic punch theory can be applied to extract its hardness and elastic modulus. The use of 

elastic punch theory as given by Eq. (2.5) requires evaluation of the initial unloading stiffness 

and measurement of the area of contact between the indenter and the specimen. Once the 

measurement of contact area is complete, the hardness  H of a material may be determined 

from its fundamental definition as: 

 max

c

P
H

A
  (2.11) 

where  maxP  is the peak indentation load, and cA  is the projected contact area at peak load. 

The initial unloading stiffness may be determined analytically by evaluating the derivative of 

the expression used to represent the unloading curve. Oliver and Pharr [4] suggested that the 

experimental unloading curve may be best described using a power-law relation, which has 

the following form. 

  m

fP A h h   (2.12) 
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where fh  is a residual depth of penetration, A  and m  are the coefficient and exponent of the 

power-law, respectively. These parameters are determined by non-linear least square fitting 

of the experimental unloading data. Derivative of Eq. (2.12) evaluated at the maximum depth 

of penetration gives the initial unloading stiffness as: 

  
max

1
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f
h h

dP
S mA h h

dh





    
 

 (2.13) 

In this way, the first parameter of the Sneddon’s solution is determined in the standard Oliver 

and Pharr method. The projected contact area may be measured from the hardness impression 

left after the withdrawal of the punch. To avoid the difficulty involved in imaging the 

hardness impression, Oliver and Pharr developed a computational method to determine the 

projected contact area, which may be described as follows. Referring to figure 2.5, the 

penetration depth h, at any instant, may be considered as a sum of the contact depth  ch and 

the material surface deflection  sh , and, the following relation holds at the maximum 

Figure 2.5: A scematic representation of a section through an indentation showing

various quantities used in the analysis [17]. 
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penetration depth. 

 max c sh h h   (2.14) 

The surface deflection is proportional to the peak indentation load to initial unloading 

stiffness ratio, and using Eq. (2.14), the depth along which the contact is made may be 

expressed as: 

 max
maxc

P
h h

S
   (2.15) 

where   is a constant which depends on the geometry of the indenter: for a Berkovich 

indenter 0.75  . However, its dependence on the power-law exponent has been described in 

some studies [26-29]. Pharr and Bolshakov [27] showed that it varies according to the 

Figure 2.6: A schematic representation of load versus indenter displacement

showing quantities used in the analysis as well as a graphical interpretation of the

contact depth [17]. 
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relation given by Eq. (2.16). 
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 (2.16) 

Depending upon   value, ch varies in a range as indicated in figure 2.6. When geometric 

factor is 0.72, the contact depth corresponds to the plastic depth as defined by Doerner and 

Nix [16]. With known value of contact depth, the contact area may be determined. For an 

ideally sharp conical indenter, it is given by: 224.56c cA h . As some bluntness at the tip of 

the indenter is inevitable, the determination of contact area is not straight forward. The tip 

bluntness can be properly accounted for by constructing an area function. This is an iterative 

procedure and is determined using a test material whose elastic modulus is precisely known. 

Steps involved in the area function technique are well described in Ref. [17]. The area 

function is expressed as an eight-parameter harmonic average of polynomials as expressed 

by: 

 
7

2 1/2
0

1

i

c c i c
i

A C h C h


   (2.17) 

Constants appearing inside the summation in Eq. (2.17) take blunting at the tip into account 

and are determined by fitting the area vs. contact depth data obtained from a test material. 

Knowing the values of contact stiffness and the area of contact, the hardness and the reduced 

elastic modulus of a material may be determined with the help of Eqs. (2.5) and (2.11). If an 

indenter has finite deformations, the elastic modulus may be determined using the following 

relations. 
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     (2.18) 

where ,sE s  are the elastic modulus and Poisson’s ratio of materials; and iE and i  are that 

of the indenter. For diamond, the elastic constants 1140iE GPa  and 0.07i   are often 

used. In general, the procedure described above yields elastic modulus and hardness values 

with accuracy better than 5% for a wide range of materials [30].  

Although the Oliver and Pharr method is very precise and refined, it has some limitations 

as well. The contact depth determined in this manner becomes erroneous if a material shows 

significant pile-up around the hardness impression. Whether a material has actually piled-up 

may be decided based on the value of max/fh h  ratio; no pile-up if it is less than 0.70. Thus, 

the method fails to estimate the contact depth if this ratio is greater than 0.70. It has also been 

reported that the method yields erroneous value when it is applied to the data from 

heterogeneous materials [24] or from viscoelastic material [31]. However, the extent to 

which the accuracy of this method is affected by the heterogeneity of a material is not 

known. 

Sawa and Tanaka [32] reported that it may not be possible to obtain a unique area 

function according to the Oliver and Pharr method. Its dependence on the initial guess 

precludes it from being unique. Furthermore, area function is generally established to take 

the bluntness of the tip of the indenter. In fact, an indenter tip deteriorates with every indent 

and to maintain the repeatability of the test results one need to establish area function at 

regular intervals, which is very cumbersome. It also depends on the material and the type of 

nanoindentation equipment. The omission of the correction factors, as discussed previously, 

in the calibration process might severely affect the accuracy of the contact area. 
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The interpretation of the unloading response on the basis of the power-law exponent has 

been questioned by several researchers [33-39]. The exponent is supposed to be the indicator 

of the punch geometry. It is equal to 1, 1.5 and 2, respectively, for flat, solid of revolution 

and conical punch. When an experimental unloading curve acquired with a Berkovich 

indenter is fitted by a power-law, the resulting exponent, according to Oliver and Pharr, may 

fall in the range 1.2-1.6, which was later justified on the basis of the “effective indenter 

shape” theory [27].  Gone et al. [33] suggested that the unloading response obtained by a 

Berkovich indenter can be described by a conical punch approximation provided the residual 

stress that arises during indentation is properly accounted for in the fitting function. 

However, the exponent greater than 2 can be observed, even in the case of a material for 

which the mechanical properties are accurately determined using power-law [34-37]. These 

parameters are found to depend on the peak indentation load varies considerably even for a 

Figure 2.7: Influence of the amount of data included in the fitting procedure on the

power-law exponent [39]. 
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material. Result from a critical examination by Marx and Balke [39] suggests that the 

exponent also depends on the fraction of the unloading data used in the fitting process. Figure 

2.7 shows the effect of amount of data on m  for a wide range of materials. VanLandingham 

et al. [39] reported that the power-law is not suitable to describe the unloading response from 

polymers they tested. Instead, they used spline function to get accurate fit. Therefore, an 

alternative way to represent an unloading curve is desirable. 

2.5.2 Hainsworth et al. Method 

Unlike the Oliver and Pharr method, this method utilizes the information contained in a 

loading curve in the determination of elastic modulus or hardness of a material. It has been 

shown that a loading curve obtained with an ideally sharp indenter may be well described by 

a relation in which the load varies linearly with the displacement squared. In notation, 

 2

expP K h  (2.19) 

The proportionality constant expK , which depends on the material properties and on the 

indenter type, is obtained through curve fitting of the experimental data. By considering the 

elasto-plastic deformations that occur during indentation, Hainsworth et al. [18] derived an 

alternative expression for the loading curve as: 
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m m

E H
P E h

H E


 
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 (2.20) 

where E  and H , respectively, describe the modulus of elasticity and hardness of a material 

under consideration. Indenter constants m and m relate the characteristic contact radius of 
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a rigid plastic indenter to plastic and elastic components of the total deformations, 

respectively. According to Hainsworth et al. [18], these constants depend only on the 

indenter type; for a sharp Berkovich indenter, they are found to be 0.194 and 0.930. Elastic 

modulus of a material may be determined by equating the coefficients of 2h in Eqs. (2.19) 

and (2.20) provided the hardness of that material is known. Thus, we may write 
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E H
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 (2.21) 

Jha et al. [19] developed a mathematical basis for the determination of indenter constants, 

which is briefly discussed here. The subscript ‘ m ’ is dropped from m and m in order to 

treat them as variables so that a relationship between the two can be established. Rearranging 

Eq. (2.21) in terms of   and , one may write: 

 
* *

1
H E

    (2.22) 

 

 

 

 

 

 

 

Figure 2.8: (a) Relationship between  and ; and (b) family of lines in the and 

space [19]. 
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where, 

 * *

exp exp

H E
H E

K HK
   (2.23) 

 

Eq. (2.22) represents a straight line with intercepts *H and *E  in   and   space, 

respectively, as shown in figure 2.8a and provides the basis for the determination of indenter 

constants. Terms *H  and *E  are referred to as normalized hardness and elastic modulus, 

respectively. It can be inferred that   and   are linearly dependent, and any pair of values 

lying on the locus defined by Eq. (2.22) will give a best fit to the experimental curve. While 

H  and E  are material specific, expK depends on both material type and the geometry of the 

indenter. Thus, the line represented by Eq. (2.22) is unique for a material indented with a 

Figure 2.9: Determination of indenter constants using the experimental data from

Ref. [17]. 
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punch of specified geometry. If the indenter constants depend only on the indenter geometry, 

lines from different materials should intersect at one point as shown in figure 2.8b. The 

coordinates of the point of intersection gives the values of the indenter constants. To verify 

this, Jha et al. [19] made use of the experimental data mentioned in the paper by Oliver and 

Pharr [17]. As shown in figure 2.9, lines from all the materials, except sapphire, intersect at 

one point giving rise to values of    and   as 0.182 and 0.725, respectively. The deviation 

of a sapphire line from the intersecting point may be attributed to the bluntness at the tip of 

the indenter. Note that the parameter expK  is strongly affected by the indenter tip radius. 

Again, a blunt indenter may behave like an ideally sharp indenter if the maximum depth of 

penetration is sufficiently large as compared to the tip radius. Further study is required to 

show the dependence of the indenter constants on the factors such as tip radius and half-

included angle of the indenter. If the indenter constants and hardness values are precisely 

known, the elastic modulus may be calculated from: 
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
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 (2.24) 

2.5.3 Malzbender et al. Method 

A P-h2 relation similar to Eq. (2.20) is also derived by Malzbender et al. [20]. Their 

derivation, however, is based on the Sneddon’s solution given by Eq. (2.5) and the normal 

definition of the hardness. Using the condition given by Eq. (2.14), they obtained a 

relationship between the load and penetration depth, which may be expressed as: 
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Notice that Eqs. (2.20) and (2.25) differ in at least two aspects; it does not require the 

determination of indenter constants and uses reduced modulus in place of Young’s modulus. 

By comparing these two equations, one would obtain 0.202  and 0.638  for 0.72   ; 

these values are very close to the value determined by Hainsworth et al. and Jha et al. The 

difference, according to Malzbender et al., arises probably due to the assumption of non-

perfect indenter used in Eq. (2.20). No indenter is perfectly sharp in reality; some rounding at 

the tip is inevitably present. Thus, Eq. (2.25) cannot be employed to describe the load-

displacement curve acquired with a blunt indenter. Using the area function suitable for blunt 

indenter [20, 41-42], they propose a revised equation in the following form: 

  
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 
 (2.25) 

where   is the apex height as shown in figure 2.10. 

Figure 2.10: Schematic diagram showing the geometry of a rounded indenter tip [20]. 
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Malzbender et al. found that Eq. (2.25) models the loading curve obtained by the finite 

element simulation more closely as compared to Eq. (2.25), as shown in figure 2.11. Thus, if 

the elastic modulus and hardness of a material along with the apex height of the indenter are 

known, then the material response to indentation may be predicted with the help of Eq. 

Figure 2.11: Comparison the load-displacement curves: (a) FEM vs. Eq. (2.25); and

(b) FEM vs. Eq. (2.20) when 24.51, 6.22 , 8.0 & 150C nm H GPa E GPa    [20]. 
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(2.25). Conversely, if expK ,   and E (or H ) are known, then H (or E ) may be determined. 

Since either the elastic modulus or the hardness of material can be determined from the 

analysis of the loading curve, these methods are more suitable for the forward analysis. 

Loading curve methods do not require calculation of the contact area at all, and thus has clear 

advantage over the conventional Oliver and Pharr method. One of the main disadvantages of 

these methods is that either E  or H  , not both, can be determined. 

A modified expression for the loading curve is derived by Troyon and Martin [21]. They 

expressed the geometric factor as a function of the exponent and incorporated the Hay’s 

correction factor  in Eq. (2.25). The equation for a loading curve in the modified form is:   
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 (2.26) 

Using the nanoindentation data from fused silica, Troyon and Martin concluded that a close 

agreement between the hardness values determined from the analysis of loading curve and 

the Oliver and Pharr method may be obtained if above mentioned corrections are applied. 

2.5.4 Work-of-indentation approach 

The hardness of a material can also be determined from the information contained in the 

loading curve. An area under the loading curve is a measure of the energy dissipated or the 

total work done during indentation. The elastic component of the total work done is given by 

the area under the unloading curve (figure 2.12). Energy absorbed by the plastic deformation 

is given by the difference of the two as: 

 P T EW W W   (2.27) 
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Stillwell and Tabor [43] pioneered the concept of determining the hardness of a material 

from the work of indentation. They expressed the conventional hardness of a material – peak 

load divided by the plastic area – as the ratio of plastic work to volume, i.e., the following 

relation holds. 

 
Load Plastic Work

Plastic area Plastic Volume
  (2.28) 

While the plastic work can be computed from the loading curve, the hardness impression can 

be used to determine the required volume. However, the determining a volume this way is a 

tedious, time consuming and requires great effort. Tuck et al. [44] developed a simplified 

method to determine the hardness of the material which is known as work-of-indentation 

approach in the literature. The approach is briefly described in what follows. The total work

 TW  done or the area under the loading curve may be determined by: 

Figure 2.12: Schematic load-displacement curve showing the indentation works. 
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max

0

h

TW Pdh   (2.29) 

As stated earlier, the loading curve obtained by a sharp indenter can be described using 

Kick’s law: 2P Ch . This law assumes that the hardness is constant with the load applied. 

The following mathematical definition of the hardness was used in their derivation. 

Figure 2.13: Comparison of the hardness values determined by the work-of-

indentation approach and the Oliver and Phar method for signgle crystal (1)Silicon;

and (b) Aluminum [47].  
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2

kP
H

h
  (2.30) 

where k  is a constant which takes into account the indenter geometry and the choice of 

hardness definition; its value is 0.0408 for a Berkovich indenter.  On substitution of Kick’s 

law and Eq. (2.29) into Eq. (2.30), the following equation may be obtained. 

 
3

max
29 T

kP
H

W
  (2.31) 

The hardness of a material sometimes considered as a function of plastic deformation alone. 

Tuck et al. suggested this definition of the hardness can be easily incorporated in the work-

of-indentation approach by replacing the total work in Eq. (2.31) by the plastic work as: 

 
3

max
29 P

kP
H

W
  (2.32) 

Varying conclusions regarding the viability of the work-of- indentation approach exists in the 

Figure 2.14: Hardness calculated using the four different methods for the Al-2024 [46].
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literature. Several researchers have shown that this approach yields reasonable value of 

hardness for many materials [44-46]. Zhou and Yao [47] employed work-of-indentation 

approach to determine the hardness values for silicon and aluminum. Result shows that 

hardness values determined using Eq. (2.30) compare well with that obtained by the Oliver 

and Pharr method in the case of aluminum, but differ greatly for silicon. Khan et al. [46] 

reported that the hardness values determined from the total and plastic works shows good 

agreement with the literature values for the material considered. It generally overestimates 

the hardness values if the plastic work is used. These results are presented in figure 2.13 and 

2.143. On the basis of these results, one may conclude that the work-of-indentation approach 

may provide reasonable estimate of hardness values only for soft materials when their load-

displacement curves are acquired with a sharp indenter. This method fails at very low loads 

and small penetration depths apparently due to the tip bluntness [44].  

2.5.5 Cheng and Cheng Method 

Using a scaling approach to indentation, Cheng and Cheng  [31] revealed an approximate 

relationship between the ratio of hardness to elastic modulus and the ratio of irreversible 

work to total work of indentation, which may be written as: 

 5E

T r

W H

W E
  (2.33) 

Above equation is based on the finite element simulations of indentation on Von-Mises 

materials with and without work hardening. By combining Eqs. (2.7) and (2.11) and taking

1    , one may obtain another equation involving the reduced modulus and hardness of 

the material: 
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S E
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Eqs. (2.33) and (2.34) represent two independent relations that can be solved for rE and H , 

as all other quantities are measurable from load-displacement data. Thus, using this method, 

these properties are evaluated in a manner that does not require the estimation of contact area 

at all. Despite this advantage, the method has limited experimental verifications. Kusano and 

Hutchings [48] obtained consistent values of elastic modulus and hardness for carbon nitride 

films by Cheng and Cheng method. Pharr and Bolshakov [27] stated that the ratio of 

irreversible to total work may not be entirely independent of work hardening especially for 

soft materials. The relationship of this kind has been studied by a number of researchers [49-

55]. It may be rewritten in the following generalized form: 

 1E

T r

W H

W E
   (2.35) 

These studies, however, greatly differ in a way the proportionality constant 1   is 

determined. Details on this constant are well summarized in an article by Malzbender [56]. A 

study by Alkorta et al. [58, 59], however, found that 1   is not a constant and explicitly 

depends on the correction factor , power-law exponent m , half-included angle   and 

amount of piling-up c . In terms of these parameters, proportionality factor may be written 

as: 

  
1 tan 3

2 1

m
c

m

 


 


 (2.35) 
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The validity of the Cheng and Cheng method in the determination of hardness and elastic 

modulus using nanoindentation data is questionable, as the relation given by Eq. (2.35) is 

influenced by the amount of pile-up. In other words, Cheng and Cheng method has limitation 

similar to the Oliver and Pharr method when they are applied to soft materials.    

2.5.6 Two-slope method 

The elastic modulus and hardness of a material may be determined from the slopes of 

the loading and unloading curves by a technique called two-slope method [24]. The slopes 

are evaluated at the maximum depth of penetration, as shown in figure 2.15. Main advantage 

of this method is that it does not require the computation of contact area to evaluate the 

mechanical properties. This method uses the definition of hardness, Sneddon’s solution and 

an expression for the loading curve similar to one given by Eq. (2.25) all of which are 

restated here for the sake of convenience. 
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Using Eqs. (2.36) to (2.38), Oliver [24] derived expressions for reduced elastic modulus  rE

, contact area  cA  and hardness  H  of a material, respectively, as: 
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Note that the factor   was used in the original derivation. Oliver, using the above equations, 

determined the elastic modulus and hardness for fused silica and tungsten, which accord well 

with those obtained from the area function technique at all depths considered. Although the 

slope model does not require the measurement of the contact area, it provides the same level 

of accuracy as that given by the Oliver and Pharr method. Troyon and Huang [21] derived 

above equations in a slightly different manner. The approaches differ only in the way the 

Figure 2.15: Load-displacement diagram showing terminology used in the two-slope

method. 
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correction factors are implemented. It is expected that the two-slope method may not be 

applicable when the dwelling portion is also present in the nanoindentation load-

displacement curves.     

2.6 Relation between nanomechanical quantities 

The load-penetration curves obtained by means of nanoindentation contain wealth of 

information that may be used for the characterization of both indenter geometry as well as 

material’s response to indentation and for the determination of various mechanical properties. 

Quantities such as the peak indentation load, maximum depth of penetration and residual 

depth can be readily obtained from these curves. Indentation energies, slopes, plastic and 

contact depths, tip bluntness, percentage elastic recovery, etc. are the quantities that are 

derived from the information contained therein. These nanomechanical quantities bear 

specific relation with each other. For instance, the hysteresis loop energy – defined as the 

Figure 2.16: Graphical representation of indentation energies: (a)  absolute; (b)

total; (c) elastic; and (d) plastic. 
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area enclosed between the indentation loading and unloading curves – is related to the three-

half power of the peak indentation load [60]. This relation may enable one to determine the 

true hardness of a brittle material. Empirical relations are generally developed to simplify the 

methods used in the analysis of nanoindentation data. 

Attaf [61-63] developed various relationships between different nanomechanical 

quantities. It is shown that 15 different indentation energies can be determined from the 

experimental load-displacement curves. Among them, four are relevant in this study and are 

discussed in detail. The total and elastic energies are evaluated from the area under the 

loading and unloading curves, respectively and their difference provides the plastic work. 

The absolute energy is defined as the maximum energy that can be dissipated in an 

indentation experiment and is given by the area of the triangle with vertices    max0,0 , 0,h

and  max max,P h .  These are graphically shown in figure 2.16. Using the indentation data on 

ceramic oxides (SiO2, TiO2, Ta2O5), Attaf [61] showed that these indentation energies are 

proportional to each other. The ratio of two indentation energies is termed as energy constant. 

The ratio of absolute to total, absolute to elastic and absolute to plastic are, respectively, 

termed as total, elastic and plastic energy constants. In mathematical notations: 

 ; ;S S S
T E P

T E P

W W W
v v v

W W W
    (2.42) 

s. t.: 

 
1 1 1

T P Ev v v
   (2.43) 

where, Tv , Ev  and Pv are, respectively, known as the total, elastic, and plastic energy 

constants. Four kinds of penetration depths are considered in the indentation analysis: 
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maximum, residual, contact and plastic depths. The last one is defined as a point on the h-

axis where the tangent to the unloading curve at the initial point meets. If this depth is known 

the initial unloading stiffness or contact stiffness may be calculated. Like indentation 

energies, for a given material, each of these depths is found to be proportional to each other. 

In addition, Attaf [63] derived a relation between the contact depth and the maximum depth 

of penetration, which is given by: 

 
 

  max

2 1

2 1
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h h
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



 (2.44) 

The contact depth predicted by Eq. (2.44) deviates by less than 5% for SiO2, TiO2, and Ta2O5 

as compared to that determined by the Oliver and Pharr method.  

It has also been shown that the indentation energies and the penetration depth described 

above bear one-to-one correspondence with the area of contact and peak indentation load. All 

of these empirical relationships can be expressed in the form of a unified correlations 

diagram developed by Attaf [62], as shown in figure 2.17. This correlation diagram has seven 

loops; each loop describes the relationship either among three or four nanomechanical 

quantities. Coefficients in a loop confirm to particular a condition, which is obtained by 

eliminating the quantities of that loop. All the expressions contained in the unified 

correlations diagram have a common parameter in the exponent, known as the -material, 

which is, according to Attaf, unique for a given material. -material may be used to 

determine the reduced elastic modulus and hardness of a material.  

 2
max

mat
r EE K P   (2.45) 
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Figure 2.17: Unified correlations diagram showing relationships among several

nanomechanical quantities [12]. Examples of loops: Loop 1: max maxi cP h A P   ,

Loop7: max maxi c jP h A W P    , Loop4: c j i cA W h A   . Loops 2 and 3 are

identical to loop 1. Similarly, loop 5 and loop 6 resemble loop 7.  , , , maxih i c p f

respectively denote contact, plastic, residual and maximum depth of penetration.

Likewise,  , , ,jW j S T E P describe absolute, total, elastic and plastic energies

dissipated during indentation respectively. 
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Symbols ,AFK ,PK  and 
max

hFK
 are proportionality constants appearing respectively in 

expressions like: 
2

max ;mat

c AFA K P 
max ;P Ph K h  and

max

max max
mat

hFh K P , where ,cA max ,P

max ,h  and Ph  respectively describe the contact area, peak indentation load, maximum, and 

plastic depths. Note that Eq. (2.45) is obtained when aforementioned correlations are 

substituted in the fundamental equation relating initial unloading stiffness, contact area and 

reduced elastic modulus.  

As mentioned earlier, the parameter -material may be determined by fitting several 

experimental data set in the form specified in the unified correlations diagram. Alternatively, 

it may be approximated using total energy dissipated during loading by: 

 
1

1mat
Tv

 


  (2.48) 

Eq. (2.48) overestimates the value of -material by about 3%, 17% and 5% respectively for 

SiO2, TiO2 and Ta2O5 in comparison to that obtained by the curve fitting method. Jha et al. 

[64] performed a sensitivity analysis to examine the effect of changes in the -material on the 

measured mechanical properties.  For illustration, let 0 and 1, respectively, denotes the 

exact and approximate values of -material. Then, the percentage error in the indentation 

modulus or hardness may be expressed in terms of maxP  and 0 1     as: 

 2

max1rE or H P      (2.49) 

Figure 2.18 shows the plot of the expression given by Eq. (2.48). It is clear from the figure 

that even a small error in the value of -material introduces a significant error in the 
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computed values of elastic modulus and hardness. For TiO2, an error of 17% in  would 

mean nearly 80% errors in both elastic modulus and hardness. This error is found to be 

independent of the peak indentation load [64]. A method, based on the optimization of error 

in the mechanical properties, for the determination of -material in described in Ref. [64].   

 

 

2.7 Representation of nanoindentation load-displacement curves 

Analysis of indentation data requires representations for both loading and unloading 

curves. A material subjected to indentation deforms elasto-plastically and has non-uniform 

stress as well as displacement fields in the vicinity of contact. As a consequence, deriving 

analytical expressions for loading and unloading curves considering the elasto-plastic 

deformations is very difficult. Due to this reason, the experimental curves are often 

Figure 2.18: Error in the mechanical properties due to the change in -material

determined by Eq. (2.48) [64]. 
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represented by empirical equations. For instance, a power-law equation is used to describe an 

unloading curve. Other forms of equation, though less frequently used, are also considered as 

well [65, 66]. Similarly, a loading curve may be represented by the Meyer’s power law given 

by nP Ch . The value of n  depends on the indenter tip bluntness; it is equal to 2 for an 

ideally sharp indenter [40]. Note that when the exponent is 2, it is referred to as Kick’s law. 

In general, this parameter decreases with the increase in the bluntness at the tip. A study by 

Zeng and Chiu [67] shows that the exponent of the loading curve changes from 1.5 to 2.0 

when the peak indentation load reaches 30mN.  A second order polynomial (Bernhardt 

formula) is also suggested for the loading curve [68]. Attaf [69] carried out a comparative 

study to examine the effectiveness of various formula (Kick’s law, Bernhardt formula, 

Buckle’s empirical equation, Meyer’s power law and their modified and corrected forms) 

used to describe a loading curve. As a result, it has been found that all the approaches listed 

above are truncated forms of the Mayer’s power law. In yet another study, Attaf [70] derived 

simple mathematical expressions capable of simulating the load-displacement responses, 

which is described in detail below. 

If all the curves of a family intersect exactly at two points (both ends of the interval), then 

they can be represented by expressions having the following functional form: 

  , , ,
r

x
x p q r p

q
  

  
 

 (2.46) 

where p , q  are the ordinate and abscissa of the point lying on the right of the interval [0, ∞] 

and r  is the exponent of the function. The exponent r  is different for all curves of the 

family. In order to gain further insight, family of curves with 2,p  5q  and several values 



51 
 

of r  are plotted, as shown in figure 2.19. It can be inferred from the figure that a curve 

concaves upward if its exponent is greater than 1. A nanoindentation has two curves and 

intersects at two ends of the interval. Therefore, the functional given by Eq. (2.46) may be 

applied to the nanoindentation responses as well. The functional for loading and unloading 

curves may be written, respectively, as 

 max
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 (2.47) 
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The exponents Lr and can be calculated from the consideration of the indentation energies. 

With the help of Eqs. (2.42) and (2.47), one may find . In a similar manner, the 

Ur

2 1L Tr v 

Figure 2.19: Example of a   family of curves with 2, 5p q  and various values

of r [70]. 
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unloading exponent is given by . Hence, equations for the loading and unloading 

curves may finally be written finally as: 

  (2.49) 

  (2.50) 

Note that above equations are valid only when  and  are equal to or greater than 1 for 

the same reason as mentioned above. The experimental load-displacement curves obtained 

with the help Eqs. (2.47) and (2.48) are shown in figure 2.20, where an excellent agreement 

between the experimental and theoretical curves could be seen. However, the approximating 

power of unloading curves depends on the type of material; for harder material, only initial 

portion can be modeled accurately [70-71]. 
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Figure 2.20: Modelling nanoindentaion load-displacement curvese using Eq. (2.47) and

(2.48) : (a) aluminum; and (b) tungsten [71]. 
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2.8 Indentation analysis of heterogeneous materials 

Analysis procedure presented so far is applicable to linear, isotropic and homogeneous 

materials, as the principle used relies on the self-similarity of the indentation test on an 

infinite half-space. A material at a length scale is considered homogeneous if  is 

approximately equal to four times the maximum depth of penetration. This homogeneous 

space has the representative elementary volume (r.e.v.) whose characteristic length scale 

satisfies . The material properties determined by nanoindentation correspond to the 

r.e.v. averaged over a structural volume [72]. 

Constantinides and Ulm further hypothesized that if a material at length scale  contains 

 number of homogeneous phases of characteristic length scale such that  , and 

if the phases are perfectly distributed, the probability of indenting each phase is equal to the 

volume fraction of the phases present. It means, in addition to the average properties, the 

volume fraction of each phase can be determined by means of nanoindentation as: 

  (2.51) 

where  is the number of indentation on  material phase and  is the volume fraction 

of that phase. However, the application Eq. (2.51) requires a systematic approach particularly 

when the phases of a heterogeneous material are optically indistinguishable. The problem can 

be circumvented with the help of grid indentation [73, 74]. This approach consists of two 

steps: (1) indentation experiments at large number of points located on grid, as shown in 

figure 2.21; and (2) statistical analysis of the resulting data. The second step of this approach 

is carried out using the deconvolution technique, which is described below. 
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Let us assume that the mechanical property of interest, say , for each phase follows 

normal distribution: 

  (2.52) 

where and  denote the arithmetic mean and the standard deviation of , which are 

evaluate from: 

  (2.53) 
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Figure 2.21: Principle of statistical analysis of nanoindentation results. Small indentation

depths allow the determination of phase properties, while larger indentation depths lead

to the response of the homogenized medium [74]. 
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The overall frequency distribution of the properties of interest pertaining to all mechanically 

non-interfering phases, which follow normal distribution individually, obeys the following 

theoretical probability density function: 

  (2.54) 

where is given by Eq. (2.51). The summation of all the volume fraction of the phases 

present in a heterogeneous material should satisfy the following compatibility condition: 

  (2.55) 

The above condition reduces the number of unknowns to , where  is the number of 

unknowns per phase. These unknowns are determined by minimizing the error between 

theoretical and experimental probability density functions  

  (2.56) 

where is the observed probability density and is the number of intervals chosen for the 

construction of the histogram. Eq. (2.56) must satisfy . 

Constantinides and Ulm applied the deconvolution technique to the nanoindentation data 

from heterogeneous cementitious materials to determine the volume fractions and the 

average mechanical properties of different forms of C-S-H [74]. As a large number of 

indentations are required to perform such kind of statistical analysis, the efficiency of a 

method used to extract the mechanical properties becomes automatically a matter of concern. 
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CHAPTER 3 

CHARACTERIZATION OF THE LOAD-DISPLACEMENT CURVES 

3.1 Introduction 

Nanoindentation has been established as a reliable experimental means for small scale 

mechanical characterization of a large array of materials. Its application, initially limited to 

linear, isotropic and homogenous materials such as metals and ceramics, has been extended 

to more complex polymeric, biological and cementitious materials. In this technique, a probe 

of specified geometry and known mechanical properties is indented on to the surface of a 

material to record the response in terms of load-penetration history. The response obtained is 

subsequently analyzed to extract meaningful nanomechanical properties such as Young’s 

modulus, hardness [1], yield strength, the strain hardening exponent [2], fracture toughness 

[3] etc. However, the accuracy with which these properties are evaluated largely depends on 

how well the response to indentation is understood and interpreted. Indentation is a complex 

elasto-plastic phenomena resulting in a non-uniform displacement as well as stress fields in 

the vicinity of contact, which complicates the analytical derivation of a load-displacement 

relationship. As a consequence, much of our understanding concerning the response of a 

material to indentation has been gained empirically [4].  

Although significant advancement and refinement of our knowledge has been made over 

the last two decades, understanding the experimental load-displacement data is still 

enigmatic. We begin our discussion with the representation of the load-displacement curves 

acquired with pyramidal indenters. In general, an experimental loading curve obtained with a 

pyramidal indenter may be described by a power law: . The exponent  primarily nP Ch n
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depends on the type and geometry of the indenter; it is usually equal to 2 for an ideally sharp 

pyramidal indenter [5]. A value of 2 is also obtained when the depth of penetration is very 

large as compared to the indenter tip radius. Zeng and Chiu [7] found that  changes from 2 

to 1.5 when the peak indentation load becomes smaller than 30mN even for an ideally sharp 

indenter. Thus, whether an indenter is actually sharp or blunt cannot be decided based on the 

exponent. Note that the determination of indenter tip radius (or blunt height) is an important 

endeavor in the nanomechanical analysis [8, 9]. However, the power law description of the 

loading curve is still relevant; it may be used to examine whether an indenter is behaving like 

a sharp one, a prerequisite for some mechanical property evaluation procedures [8, 10-11]. 

On the other hand, in addition to the indenter geometry, the coefficient  also depends on the 

material properties. Despite its relevancy in the determination of the elastic modulus and 

yield strength, materials response characterization using  is difficult. Cheng and Cheng 

[12], using dimensional analysis and finite element simulations, showed that a loading curve 

may be better represented by a second order polynomial and its coefficients can be used to 

determine the indenter tip radius. However, the radius determined in this way lacks 

consistency. 

As far as unloading response is concerned, according to Oliver and Pharr [1], it is 

represented by another power law in the form: , where  is the final depth 

of penetration, is the coefficient and is the exponent. These quantities are determined 

by a least squares curve fitting procedure. Punch geometry may be characterized on the basis 

of the exponent: for flat punch, for solid of revolution and for conical 

indenters. According to Oliver and Pharr, the exponent determined by curve fitting of the 

n
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experimental unloading curve obtained using a Berkovich indenter is slightly material 

dependent and fall in the range 1.20-1.60. However, the exponent greater than 2 is frequently 

reported in the literature, and it can neither be justified by the “effective indenter shape” nor 

by “residual stress” theories [1, 13]. In addition, it is possible that the two different materials 

can have the same exponent value [14], or the same material can have two different values of 

this exponent. Discrepancies in the values of fitting parameters are generally ascribed to the 

amount of data used in the process [14, 15]. On the basis of these observations, one may state 

that neither the indenter geometry nor the material response to indentation can be 

characterized using the power law parameters. Therefore, identification of parameters that 

can serve the purpose of analytical representation of the load-displacement curves, 

characterization of both indenter as well as material and the derivation of required 

nanomechanical quantities simultaneously is paramount. 

Indentation energies or their ratios are frequently employed to analyze the material response 

to indentation [16-18].  The relation between the energy dissipated and the ratio of hardness 

to reduced elastic modulus has been a basis for many nanomechanical property evaluation 

procedures [17]. Several quantities such as peak indentation load, area of contact, penetration 

depth and their ratios, etc., may be related to the indentation energies [16, 19]. Moreover, 

Attaf [18] introduced two energy ratios – named total and elastic energy constants – and 

showed that they can even be used to describe the experimental load displacement curves. 

Again, the depth along which the contact is made by the indenter with the specimen can be 

computed from the elastic energy constant [20-22].  Except for these uses, little is known 

about their physical meaning, influencing factors, variation range, realm of applications, etc., 

and such is the subject of this study. The load-displacement curves obtained as a result of 
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elastic and elasto-plastic finite element simulations are analyzed to gain further 

understanding of their characteristics and uses. 

3.2 Theoretical background 

In this section, a brief review of the mathematical representation of load-displacement 

data and the definition of the energy constants is presented. When an elastic half-space is 

indented by an ideally sharp conical indenter, the resulting load  vs. the displacement  

relationship is described according to the Sneddon’s solution [23], which is given by: 

  (3.1) 

where,  is  Young’s modulus of the elastic-half space,  is  Poisson’s ratio and  is the 

half-included angle of the indenter. A theoretical solution capable of describing the  

relation is not available for a Berkovich (pyramidal) indenter. Finite element simulations of 

Berkovich indentation showed, however, that a parabolic relation between indentation load 

and penetration depth still holds, albeit in a slightly different form [24]. More recently, Poon 

et al. [25] showed that the indenter tip rounding has a great influence on the load-

displacement curves. Their numerical simulations of indentation on linear elastic solids 

resulted in the following expression. 
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where,  and  are known as multiplicative and additive factors, respectively, and 

 is the indenter tip radius. Note that a Berkovich equivalent conical indenter has a half-

included angle of 70.30. Constants , , ,  and  appearing in Eq. (3.2) are fitting 

parameters and are equal to -0.062, -0.156, 1.12, 1.50x10-5 nm-1 and 0.117, respectively. For 

spherical indentation, the load-displacement relation is expressed as follows [26]: 

  (3.3) 

where is known as the reduced modulus and is related to the elastic modulus and 

Poisson’s ratios of the material  and the indenter  by: 

   (3.4) 

For elasto-plastic indentation, no closed form solution is available as such and therefore, they 

are usually represented by algebraic expressions obtained by fitting the experimental curves. 

A typical load displacement diagram is shown in figure 3.1. The areas under the loading and 

unloading curves signify energy dissipated and recovered upon complete withdrawal of load, 

respectively. In any indentation experiment, the maximum energy dissipation takes place 

when the  relation is linear, which, according to Attaf [18], is termed as absolute work 

of indentation. Several energy-based parameters can be defined using absolute work as 

reference energy. Two of them are given by: 
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where, the ratios  and  are respectively described as the total and elastic energy 

constants. Similarly, terms  and are referred to as the absolute, total and elastic 

works of indentation, respectively. Note that  and  are equal in the case of elastic 

indentation. When evaluated using Eq. (3.1), one may obtain equal to 1.5, for an ideally 

sharp indenter, irrespective of the elastic modulus and half-included angle of the indenter. 

The corresponding value for the spherical indenter is 1.25. When Eq. (3.2) is used to 

determine , the effect of the tip radius becomes apparent; it decreases with the increase in 

the tip radius. At this stage, we may conclude that the total energy constant is a function of 

the indenter type and geometry, not the material properties as has been assumed, as long as 

Tv Ev

,S TW W EW

Tv Ev

Tv

Tv

Figure 3.1: Schematic representation of load-displacement curves showing

terminology used. 
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the indentation is elastic. It should be noted that both and has a minimum value of 1, 

which corresponds to the linear load-displacement relation. 

Total and elastic energy constants may be used to describe the indentation load-

displacement curves. Attaf [27], based on functional analysis, derived the following power 

functions to represent the loading and unloading curves, respectively: 

  (3.6) 

where is the peak indentation load and  is the corresponding maximum depth of 

penetration. In general, an experimental loading curve can be fitted more accurately than an 

unloading curve with the help of Eq. (3.6). Approximation of an unloading response by Eq. 

(3.6) is very much dependent on the elastic recovery ratio, a fraction of the depth recovered 

after the indenter is completely withdrawn, of a material; a better fit is obtained when the 

recovery is very small. It should be noted that only the initial portion of the unloading 

response is of great importance in the analysis of indentation data. The elastic energy 

constant may also be used to determine the depth along which the contact is made between 

the material and the specimen which is given by [28]:  

  (3.7) 

The validity of Eq. (3.7) has been confirmed in several studies. It is reported that the above 

equation reasonably estimates the contact depth for many materials with an accuracy of 
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better than 5%. In order to gain further insight on  and , load-displacement curves from 

a wide range of materials are required, which can be acquired through finite element 

simulations of indentation. Application of the finite element method in the study of 

indentation phenomenon has long been in use as it allows systematic variations of the 

parameters involved [3, 5, 24, 29-34]. 

3.3 Finite element modeling 

In this study, the commercially available finite element based software 

ABAQUS/Standard is used to acquire the nanoindentation load-displacement curves. The 

axisymmetric finite element model with large-strain features is employed. To comply with 

Tv Ev

Figure 3.2: The axisymmetric mesh used in finite element simulations: (a) overall

mesh showing specimen dimensions and boundary conditions and (b) details of mesh

in the region of contact near the indenter tip. 
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the chosen model, a pyramidal Berkovich indenter is modeled as an equivalent conical 

indenter with a half-included angle of 70.30, which has the same area-to-depth ratio as the 

former one. Selection of the specimen size is one of the most important steps in the 

modeling, as it governs the accuracy of the simulations. Poon et al. [17] showed that accurate 

load-displacement curves may be obtained if the specimen size satisfies the following 

convergence condition: 

  (3.8) 

Table 3.1: Summary of the parameters used in the finite element simulations of 

nanoindentation load-displacement curves. 

where  and  are described as the radius and height of the cylindrical specimen, 

respectively, and are taken to be 30000nm; this is large enough to acquire an accurate load-

displacement curve up to the penetration depth of 300nm, as per the condition given by Eq. 

(3.8). To exploit the advantage offered by the axisymmetric conditions, only half of the 

cross-section is considered. The entire domain is discretized using 4-node quadrilateral 
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elements, with the highest mesh density in the vicinity of contact to account for large local 

deformation beneath the indenter similar to one adopted in Ref. [30]. Progressively coarser 

mesh, as shown in figure 3.2, is used as we move away from the contact, resulting in 4000 

elements and 4299 nodes.  

The specimen is modeled as elastic as well as elasto-plastic deformable materials, which 

are assumed to obey the following stress-strain relations: 

  (3.9) 

where,  is the yield strength and  is the work hardening parameter. While Young’s 

modulus of the solid is fixed (70.0 GPa), the yield strength, Poisson’s ratio and the hardening 

parameters are varied in the majority of simulations, as summarized in Table 3.1. This 

combination of mechanical properties covers many metals, ceramics and polymers. In some 

cases, other values of the elastic modulus are also used to ascertain the effect of elastic 

parameters on the total and elastic energy constants. The indenter is modeled as an 

analytically rigid surface with the ratio varied systematically. When the tip radius to 

the maximum penetration depth ratio is very large, a conical indenter behaves like a spherical 

one. As such, simulations involving the analytically rigid spherical indenter have also been 

carried out to illustrate the transition between these two kinds of indenters. Roller boundary 

conditions are considered along the axis of symmetry and the bottom of the specimen as 

shown in figure 3.2. The contact between the indenter and the specimen is assumed to be 

frictional with the coefficient of friction 0.4. Indentations were carried out in the 

displacement-controlled mode, in which the indenter was pushed up to a specified depth. 
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Figure 3.3: Comparison of the load-displacement curves obtained from finite

element simulations with that from Eqs. (3.1) and (3.2). 

Figure 3.4: Plot showing the variation of total energy constant Tv  with max/R h  for

conical and spherical indenters. 



73 
 

3.4 Results and Discussion 

At the outset, indentations on elastic solids with  and   were 

performed using both the blunt and sharp indenter to examine the adequacy of the meshing 

scheme adopted in the finite element (FE) simulations. Figure 3.3 shows that the plots of 

load-displacement curves obtained by FE analysis are in very good agreement with those 

obtained from Eqs. (3.1) and (3.2) for both types of indenters, and thus confirms that the 

meshing used is appropriate.  

Next, we performed several simulations using conical indenters with the ratio of the 

indenter tip radius to the maximum depth of penetration  varying between 0 and 10 

for the same values of the elastic modulus and Poisson’s ratio. These simulations were 

repeated using spherical indenter as well. The total energy constant determined from the 

simulated load-displacement curves are plotted against  , as shown in figure 3.4. It is 

evident from the plot that, for conical,  varies as a function of the  ratio of up to a 

certain value and thereafter remains constant. For the spherical indenter, as expected,  

remains the same irrespective of the  ratio. It is interesting to note here that when 

is approximately 6.4, the total energy constants for both the blunt conical and 

spherical indenter are equal implying that the load-displacement curves corresponding to 

both of these indenters are the same. This is evident from the figure 3.5 that loading curves 

obtained as a result of FEM simulations corresponding to the blunt conical and spherical 

indenters coincide with that obtained by Eq. (3.6) with .  

The variation of with the  ratio can be fitted with a fourth-degree polynomial as:  

70E GPa 0.25 

 max/R h

max/R h

Tv max/R h

Tv

max/R h
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1.25Tv 

Tv max/R h
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  (3.10) 

where are the coefficients of the polynomial equations and are given by:  

 and . By solving 

Eq. (3.10) for a given value of , the indenter tip radius may be calculated. Poon et al. [25] 

determined the indenter radius  using the following relation: 

  (3.11) 

where, and are the coefficients of the second order polynomial in  and  is used to 

represent the experimental load-displacement curves. Similarly, based on dimensional 
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analysis and FE simulations, Cheng and Cheng [12] developed the following expression to 

calculate the tip radius: 

  (3.12) 

Table 3.2 summarizes the tip radius given by Eqs. (10) – (12). Their comparison shows 

that the method presented in this study predicts more precisely and consistently than the 

other two methods described above.  

Table 3.2: Comparison of indenter tip radius obtained from three different methods using 

elastic response; input radius is 200nm. 

The load-displacement response obtained from a material that deforms elasto-plastically 

during indentation depends on several factors, such as Young’s modulus, Poisson’s ratio, 

yield strength, the work hardening parameter, the indenter type and geometry, the coefficient 

of friction, etc. A sensitivity analysis was first performed to examine which of these 

parameters significantly affects the determination of energy constants. Elasto-plastic 

simulations with different values of coefficient of friction revealed that its effect on the load-

displacement curves is insignificant – a fact, which is also corroborated by Wang et al. [32]. 

Due to this reason, a value of 0.4 was used for the coefficient of frictions in all simulations. 
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Similarly, test simulations were carried out to assay which of the mechanical properties has a 

greater influence on the energy constants. For this purpose, three different sets of elastic 

moduli and yield strengths were chosen in such a way that their ratio remained the same; 

Poisson’s ratio and the work hardening parameter were kept equal to 0.25 and 0, 

Figure 3.6: Plots of load-displacement curves showing: (a) & (b) effect of / yE  and

max/R h  ratios on the load-displacement curves and normalized responses,

respectively (c) & (d) effect of elastic modulus on the load-displacement curves and

normalized responses, respectively. 
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respectively. The load-displacement curves so obtained for two values of the  ratio 

are displayed in figure 3.6a, where, as expected, the effects of material properties and the 

radius-to-depth ratio are evident. Although such results are mundane in nanoindentation 

studies, two interesting observations could be made. First, if the elastic modulus-to-yield 

strength ratio is constant, the resulting residual depths of impression are equal, irrespective of 

the  ratio. The second observation is that if the load and displacement are respectively 

normalized with their maximum values, for a given  ratio, the resulting load-

displacement curves exactly coincide, as shown in figure 3.6b. These two observations imply 

that the load-displacement curves corresponding to the identical ratio yield similar 

values for both  and  , provided the  ratios are also equal.  

In yet another experiment, the elastic modulus was varied in the range 70-410 GPa, 

keeping all other parameters constant. The resulting load-displacement curves after 

normalization follow almost the same loading path but have different unloading paths (as 

shown in figures 3.6c and 3.6d) thereby implying that only the unloading curve is susceptible 

to the modulus values. Due to this reason, the elastic modulus was kept constant and all other 

parameters were varied, as mentioned in Table 3.1. The total energy constant evaluated from 

all such simulations is against the  ratio as shown in figure 3.7. It is evident from the 

figure that  is independent of material properties and varies in a way similar to that 

obtained in the elastic case whenever the  ratio is less than 2. Thereafter, its 

dependence on the modulus-to-yield stress ratio is apparent, which may be attributed to the 

effect of sphericity of the indenter tip. It should be noted here that  eventually becomes 

max/R h

max/R h

max/R h

/ yE 

Tv Ev max/R h

max/R h

Tv

max/R h

Tv
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constant when the radius of the Berkovich tip is such that it behaves as a spherical indenter. 

Cheng and Cheng suggested that a blunt conical indenter behaves like a spherical one when 

the  ratio is 13.7 when the half-included angle is 680. However, the distinction 

between them diminishes well below this theoretical value. As far as the variation of elastic 

energy constant is concerned, it is affected by both material properties as well as indenter 

geometry, as shown in figure 3.8a. However, when normalized with respect to the  value 

determined for the ideally sharp indenter the entire curve falls on the same line, as shown in 

figure 3.8b, thereby implying that the rate at which the elastic energy constant decreases is 

independent of the material properties. On the basis of these observations, one may conclude 

that the total and elastic energy constants characterize the indenter geometry and material 

response to the Berkovich indentation, respectively. 

max/R h

Ev

Figure 3.7: Variation of Tv  on / yE   and max/R h  ratios for elasto-plastic

indentation. 
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As discussed,  is independent of material properties, and Eq. (3.10) used in the 

determination of the indenter tip radius can be applied in the case of elasto-plastic indentation 

as well, if  is less than 2.  Reasonable agreement between the input value and the 

calculated indenter tip radius validates the proposed method, as shown in Table 3.3. Note that 

the method by Poon et al. is applicable to the elastic indentation only.  The accuracy of the 

proposed method, however, depends on ; better accuracy in  is obtained when  is 

greater than 1.4. Thus, while calibrating the indenter tip, the test material (say aluminum) 

should be indented to a maximum depth of penetration such that the resulting  is greater 

than or equal to 1.4. The total energy constant may also be used to determine the nominal 

hardness of a material. The nominal hardness of a material is defined as the indentation load 

Tv

max/R h

Tv R
Tv

Tv

Figure 3.8: (a) Plot showing the variation of Ev  with the radius-to-depth ratio and

material properties; (b) Variations in Ev  normalized with its value corresponding to

a sharp conical indenter with the radius-to-depth ratio. 
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divided by the indenter area evaluated at the maximum depth of penetration [35], which may 

be written, for an ideally sharp conical indenter, as:  

  (3.13) 

Table 3.3: Comparison of indenter tip radius obtained in this study with that from Cheng 

and Cheng method using elasto-plastic response; input radius is 200nm. 

For a non-perfect pyramidal indenter, Ma et al. [36] expressed the indenter area in the 

following form: 

  (3.14) 

where terms within the summation account for the bluntness in the tip of the indenter. The 

form of Eq. (3.14) suggests that Ma et al. evaluated the maximum area in a manner similar to 

that used for the determination of contact area in the standard Oliver and Pharr method. 

max max
2

max max24.56n

P P
H

A h
 

7
2 1/2

max
1

24.497
n

i
i

A h C h


 

y 
(GPa) 

hmax  
(nm) 

R/h 
This Study 

p1 p2 
C&C       

R (nm) vT R (nm) 

2 

50 4.00 1.245 543.10 0.002716 7.43E-05 294.0 

100 2.00 1.339 240.50 0.002384 8.17E-05 234.6 

150 1.33 1.391 211.35 0.002288 8.30E-05 221.8 

200 1.00 1.419 197.00 0.002222 8.35E-05 214.0 

8 

50 4.00 1.267 254.95 0.003784 0.000128 238.5 

100 2.00 1.349 218.60 0.003747 0.000128 235.5 

150 1.33 1.393 206.25 0.003588 0.000130 221.8 

200 1.00 1.412 199.00 0.003462 0.000131 212.2 
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Therefore, area functions corresponding to the contact depth and the maximum depth of 

penetration may have common limitations. Employing the indentation work [37], we propose 

the following expression for the determination of nominal hardness:  

Figure 3.9: Comparison of the contact depth determined using Eq. (7) with that

obtained by the Oliver and Pharr method (a) Berkovich; and (b) spherical indenters.

Solid marker: individual value, and hollow marker: average value. 
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  (3.15) 

Values of  calculated from Eq. (3.15) for aluminum, steel and fused silica are in excellent 

agreement with that obtained by Ma et al. as summarized in Table 3.4. The accuracy of the 

proposed method ensures that the effect of tip bluntness can be quantified using the elastic 

energy constant. 

Table 3.4: Calculation for the nominal hardness values for aluminum, steel 

and fused silica: Experimental data from Ma et al. [34]. 

2
max

2
max2.25

T
n

v P
H

h


nH

Material 
hmax Amax Hn

* Pmax vT Hn
** 

(nm) (x 107 nm2) GPa (mN) GPa 

Aluminum single 
crystal 

2000.7 9.97 0.256 25.5 

1.411 

0.226 

2003.6 10.00 0.255 25.5 0.225 

1990.0 9.86 0.259 25.5 0.229 

2023.1 10.19 0.250 25.5 0.221 

1938.1 9.36 0.272 25.5 0.240 

GCr15 bearing 
steel 

1923.7 9.22 7.156 660.0 

1.462 

6.91 

1941.5 9.39 7.026 660.0 6.78 

1938.5 9.36 7.048 660.0 6.80 

1962.3 9.59 6.880 660.0 6.64 

1936.4 9.34 7.063 660.0 6.82 

Fused Silica 

1996.8 9.93 4.632 460.0 

1.484 

4.60 

1998.8 9.95 4.623 460.0 4.59 

1996.7 9.93 4.633 460.0 4.60 

1996.2 9.92 4.635 460.0 4.61 

1996.4 9.93 4.634 460.0 4.60 
*by Ma et al. method; **this study 
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Finally, we would like to comment on the determination of contact depth from the elastic 

energy constant using Eq. (3.7). Attaf [28] calculated the contact depth using the best fit 

value of  obtained from the plot between the absolute and elastic works corresponding to 

different peak indentation loads. This may lead to the erroneous contact depth, especially 

when the material is softer, as shown in figure 9a. Thus, we recommend calculating  using 

the elastic energy constant obtained from the individual unloading response. Errors resulting 

from the use of the average value can be minimized if the correction due to ratio is applied to 

the elastic energy constant according to the variation trend shown in figure 3.8b. When the 

spherical indenter is employed in the indentation, the contact depth is generally obtained as 

an average value of the maximum depth of penetration and the residual depth of penetration 

as:  

  (3.16) 

The calculated contact depths from Eqs. (3.7) and (3.16) are compared, as shown in figure 

3.9b. Excellent agreement between them ensures the effectiveness of the elastic energy 

constant in the determination of contact depth through Eq. (3.7). However, the level of 

accuracy remains the same, even if the average value of elastic energy constants evaluated at 

different peak indentation is used in this case. 
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CHAPTER 4 

DETERMINATION OF CONTACT STIFFNESS 

4.1 Introduction 

The experimental load-displacement curves obtained by probing the surface of a material 

in a nanoindentation experiment are analyzed to evaluate the reduced modulus of a material 

according to the fundamental relation given by [1] 

 
2

u r cS E A 


 (4.1) 

where uS  is initial unloading stiffness or contact stiffness, cA  is the projected area of elastic 

contact, rE  is the reduced modulus of a material and   is the correction factor that takes the 

lack of axial symmetry of the pyramidal indenter into account. The contact stiffness is 

defined as the slope of the unloading curve evaluated at the maximum depth of penetration. 

The area of contact is either measured independently from the hardness impression or 

derived using the contact stiffness according to the procedure developed by Oliver and Pharr 

[2]. To evaluate the slope, one needs the complete description of the unloading response, 

which is difficult to obtain analytically owing to the complexities involved in the indentation 

process. The unloading response is usually described by an algebraic function established by 

curve fitting. 

In the most widely used Oliver and Pharr method (OP method), the unloading curve 

obtained using a Berkovich indenter is represented by a power law whose parameters are 

determined by least square fitting. The exponent of the power law, according to Oliver and 

Pharr, is slightly material dependent and may take a value in the range 1.2-1.6, which led 
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them to conclude that the shape of a Berkovich indenter closely approximates a parabola of 

revolution. This observation was unexpected, as a Berkovich indenter was believed to be 

approximated by a conical indenter for which the exponent is usually 2. Later, Pharr and 

Bolshakov [3] justified the variation in the exponent by introducing the concept of “effective 

indenter shape.” However, uncertainties exist in their determination; power law parameters 

depend on the fraction of the unloading data used in the curve-fitting process [4-5]. It should 

be noted here that power law parameters are usually determined using the initial 30% of the 

unloading response in the OP method. They are also liable to the initial guess and are very 

sensitive to the residual depth of indentation, thereby making the fitting process very 

cumbersome.  

Furthermore, the power law parameters are remarkably different if they are determined at 

different peak indentation loads, even for the same material. Gong et al. [6], using 

experimental data on the oxide of ceramics, argued that the unloading response acquired with 

the help of a Berkovich indenter indeed resembles that from the conical indenter, provided 

appropriate correction for residual stress that arises during indentation is applied. They 

suggested a modified form of power law, having exponent 2 with an additional term 

accounting for the residual stress effect. Their assumption appears reasonable from the 

viewpoint that the loading curves obtained by both Berkovich and the conical indenters are 

represented by parabola [7]. Unknown parameters of this modified power law are determined 

by the hit and trial method, which is again equally cumbersome. There are, however, many 

cases where the values of the exponent well above 2 have been observed [8-10], a fact that 

cannot be explained on the basis of the theories mentioned above. Moreover, instances where 

the power law poorly fits have also been reported; VanLandimgham et al. [11] showed that 
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the spline curve fit provides a better approximation of the unloading responses from 

polymers they studied. Thus, uncertainties in their values, lack of clear physical meaning, 

and amount of computational effort needed warrant the development of an alternative method 

for the evaluation of the contact stiffness. 

Energies measured in a nanoindentation experiment, or their ratios, are often employed 

for the nanomechanical analysis of the response of a material [12-17]. Quantities such as the 

peak indentation load, penetration depths, contact area, hardness and reduced modulus can be 

correlated to the indentation energies. One of the important applications of the indentation 

energies is that they can be used to represent the load-displacement curves. Attaf [16] has 

shown that the total and elastic energy constants—defined with respect to reference 

indentation energy—can be used to model the loading and unloading indentation responses. 

However, the analytical differentiation of the unloading power function evaluated at the 

maximum penetration depth is usually overestimated, even in the case where this function 

perfectly models the experimental unloading curve. The intent of this study is to develop an 

efficient contact stiffness evaluation procedure using the derivative of the energy-based 

power function by considering the unloading responses of materials having a wide range of 

elastic recovery capabilities. 

4.2 Background theory 

In the following section, we briefly review the procedure used to determine the contact 

stiffness and depth in the standard OP method for the sake of comparison. Several 

terminologies that are relevant in this study and used in the characterization of the 

indentation response are also explained. 
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4.2.1 Overview of the Oliver and Pharr method 

In the OP method, the initial unloading stiffness (or contact stiffness, OPS ) is usually 

obtained by evaluating the differential of the power law at the maximum depth of penetration 

 maxh  as: 

   1

0 max

m

OP fS mA h h


   (4.2) 

where 0 ,A m  and fh  are the parameters determined by the least square fitting of the initial 

30% of the unloading portion of the load-displacement curves. Initial unloading stiffness so 

obtained is then used to determine the contact depth  ch  as: 

 max
maxc

OP

P
h h

S
   (4.3) 

4.2.2 Elastic recovery and energy constants 

Response of a material to indentation is often characterized by a dimensionless elastic 

recovery ratio [18-19]. This parameter is a measure of a fraction of the deformation, which 

behaves elastically and is generally expressed either in terms of depth  h  or work  h

recovery ratios as: 

 max

max

f
h

h h

h



  (4.4) 

 E
w

T

W

W
   (4.5) 

where TW  is the total work done and EW  is elastic work recovered upon the complete 

withdrawal of the indenter. These quantities are determined from the area of the loading and 
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unloading curves, respectively, as shown in figure 4.1. Depth and work recovery ratio are 

equal in magnitude and may fall in the range 0-1 in which lower and upper limits represent 

the elastic and fully plastic materials, respectively. It has been found that the depth and work 

recovery ratio are approximately equal. 

Attaf [13] introduced several energy-based parameters by assuming the absolute work, 

maximum possible energy that could be dissipated in an indentation experiment, as datum. 

Based on nanoindentation results on ceramics, they found that the absolute work  SW  is 

proportional to both total and elastic work done respectively, such that 

 ;S S
T E

T E

W W
v v

W W
   (4.6) 

Figure 4.1: Schematic illustration of load-displacement curves showing associated

terminology used in this study. Points 1ch  and 2ch  are contact depths corresponding to

1.0   and 0.75  , respectively. 
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The absolute work is given by: max max0.5SW P h . Ratios Tv  and Ev  are known as the total 

and elastic energy constants, respectively. Value for the total energy constant, which 

primarily depends on the indenter geometry, falls in the range 1.0-1.50, the upper limit 

corresponding to perfectly sharp conical indenter. On the other hand, Ev  may vary in the 

range 1 to ∞, depending on the type of material with extremes denoting, like the energy 

recovery ratio, elastic and perfectly plastic materials, respectively. We have shown elsewhere 

[10] that Tv  and Ev  are evaluated in a slightly different way when the experimental load-

displacement curves also feature a dwelling portion. 

The energy constants defined above may be used to represent nanoindentation curves for 

a material. Attaf [16] derived the following expressions, on the basis of functional analysis, 

to represent the loading and unloading curves, respectively. 

 

2 1

max
max

Tv
h

P P
h


 

  
 

 (4.7) 

 

2 1

max
max

Ev
h

P P
h


 

  
 

 (4.8) 

It is generally found that Eq. (4.7) can model the loading curve very accurately for all levels 

of loads. The approximating power of Eq. (4.8), however, depends on the type of material; 

this is more accurate in the case of materials that recover less upon unloading [20]. For 

harder materials, only the initial portion of the unloading curve can be approximated, which 

is good enough to evaluate the slope at the maximum depth of penetration analytically. The 

differentiation of Eq. (4.8) at maxh h leads to the following expressions for the slope  ES .  
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Figure 4.2: Representative load-displacement curves obtained in a nanoindentation experiment with a Berkovich indenter for

materials tested in this study. 
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  
max

max

max

2 1E E
h h

PdP
S v

dh h

    (4.9) 

The ES  determined by Eq. (4.9) should in principle match the OPS  obtained by Eq. (4.1). 

Finally, Attaf [17] derived an expression for the contact depth  E
ch  using Eq. (4.9) in the 

following form: 

 
 

  max

2 1

2 1
EE

c
E

v
h h

v





 (4.10) 

The validity of the above equation has been confirmed in many studies. Eq. (4.10) implies 

that the difference between E
ch  and maxh  becomes smaller as we move from harder to softer 

materials. As will be discussed, the proximity between these two quantities has important 

bearing on the accuracy of initial unloading stiffness determined by Eq. (4.9). 

4.3 Experimental 

Nanoindentation experiments are conducted in the load controlled mode using a Hysitron 

Triboindenter fitted with a Berkovich indenter at room temperature on four metal samples: 

single crystal aluminum, and copper; and polycrystalline nickel and tungsten. A triangular 

loading history with loading and unloading times each equal to 10s is considered with three 

different peak indentation loads of magnitudes approximately equal to 1500 N, 3000 N 

and 4500 N. A total of nine indents are made corresponding to each peak indentation load 

on every polished sample having a surface roughness less than 100 Å.  Representative load-

displacement curves obtained from nanoindentation experiments for copper are shown in 

figure 4.2. The area function was established according to the OP method using a standard 
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Table 4.1: Measured values (mean) of mechanical properties and other nanomechanical quantities, 

for Al and Cu measured in this study. Values in parenthesis are standard deviations. 

Table 4.2: Measured values (mean) of mechanical properties and other nanomechanical quantities, 

for Ni and W measured in this study. Values in parenthesis are standard deviations. 

Materials 
Pmax    
(N) 

Hmax    
(nm) 

Hf       
(nm) vE Er      

(GPa) 
H      

(GPa) 

Al 

1456.3  
(1.4) 

  304.9  
(5.4) 

288.8    
(5.8) 

32.5      
(3.1) 

78 .0     
(1.6) 

0.50    
(0.02) 

2941.4  
(0.4) 

  499.8  
(5.9) 

476.3    
(6.6) 

33.4      
(2.5) 

64.2      
(1.4) 

0.39    
(0.01) 

4447.7  
(0.5) 

  631.3  
(6.5) 

603.1    
(5.9) 

34.4      
(2.3) 

59.3      
(1.9) 

0.38    
(0.01) 

Cu 

1472.1  
(1.1) 

  196.5  
(3.1) 

183.9    
(3.1) 

18.8       
(1.3) 

129.3     
(4.4) 

1.20    
(0.04) 

2964.9  
(0.9) 

  299.9  
(2.7) 

282.5    
(2.7) 

22.5      
(1.9) 

122.6     
(3.4) 

1.08    
(0.02) 

4470.5  
(0.8) 

  367.9  
(2.2) 

346.3    
(2.0) 

22.5      
(0.9) 

122.3    
(4.3) 

1.09    
(0.01) 

Materials 
Pmax    
(N) 

Hmax    
(nm) 

Hf       
(nm) vE Er      

(GPa) 
H      

(GPa) 

Ni 

1483.3  
(1.1) 

  131.6  
(6.3) 

119.9    
(6.4) 

15.0      
(1.6) 

210.8   
(13.2) 

2.81    
(0.28) 

2979.1  
(1.8) 

  192.1  
(7.1) 

175.6    
(7.8) 

15.5      
(1.5) 

216.3    
(7.9) 

2.67    
(0.21) 

4480.5  
(1.1) 

  242.9  
(6.3) 

 223.2   
(7.0) 

15.8      
(0.9) 

205.4    
(5.6) 

2.52    
(0.14) 

W 

1490.9  
(1.1) 

  73.6      
(3.5) 

  58.6    
(4.5) 

 6.6       
(0.6) 

316.9   
(14.9) 

9.20    
(0.89) 

2987.7  
(0.5) 

 110.2   
(0.5) 

  89.2    
(1.0) 

 7.0       
(0.3) 

314.4    
(8.5) 

8.75    
(0.06) 

4489.4  
(0.7) 

140.8    
(5.0) 

116.5    
(6.2) 

7.2        
(0.5) 

306.3    
(6.1) 

8.13    
(0.67) 
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fused quartz sample. Table 4.1 summarizes mean and standard deviation of the reduced 

modulus and hardness for all these metals, which accord well with those reported in the 

literature.21 Previously conducted indentation tests on plasma sprayed Al-12 wt. % Si 

(referred as Al-Si hereafter) coating are also used in this study [22]. An Al-Si sample was 

Figure 4.3: Plots showing the variations of (a) power-law coefficient; (b) power-law

exponent; (c) elastic depth (dashed lines) and work recoveries (solid lines); and (d) total

(dashed lines)  and elastic (solid lines) energy constants with the peak indentation load for

aluminum, copper, nickel and tungsten. 
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subjected to a trapezoidal load history with loading, dwelling and unloading times 

respectively equal to 10s, 2s and 10s. Similarly, experimental data on SiO2, TiO2 and Ta2O5 

are selected from Ref. [15] to constitute a set of materials that has a wide range of percentage 

elastic recovery and an elastic energy constant. The load-displacement curves for coating and 

oxides of ceramics mentioned are acquired by employing four different peak indentation 

loads of a magnitude less than 10mN. Finally, experimental data reported in the literature [2, 

18, 23] are used to validate the proposed method for the evaluation of initial unloading 

stiffness when the peak indentation load is in excess of 100mN. 

4.4 Results and discussions 

4.4.1 Determination of nanomechanical quantities 

Experimental load-displacement curves are analyzed to determine various 

nanomechanical quantities such as depth and work elastic recovery ratios, energy constant, 

contact depth and initial unloading stiffness, as described in section II. Figure 4.3 shows the 

variations in power-law parameters, recovery ratios and energy constants with the peak 

indentation load. It is evident that, unlike power-law parameters, recovery ratios and energy 

constants remain practically the same with respect to the peak indentation load for all these 

metals. Figure 4.4 compares initial unloading stiffness determined by Eq. (4.2) and Eq. (4.9) 

for all the materials considered in this study where significantly large deviations in the 

stiffness values are apparent. As can be seen, the error depends on the type of materials; it is 

greater for the materials which recovers less. The average percentage error for W, Ni, Cu and 

Al falls in the range of 60% -120%, in which cases Eq. (4.8) models unloading curves very 

accurately. Contact depths determined by Eq. (4.10) compare well with those measured  
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Figure 4.4: Comparison of calculated initial unloading stiffness using Eq. (4.9) with

that obtained by the Oliver and Pharr method using Eq. (4.2). 

Figure 4.5: Comparison of calculated contact depths using Eq. (4.10) with that

obtained by the Oliver and Pharr method using Eq. (4.3). 
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with a relative error better than 5%, as depicted in figure 4.5 for all the materials. At this 

point, a question arises as to why Eq. (4.9) yields erroneous stiffness while Eq. (4.10), 

derived using Eq. (4.9), predicts reasonable contact depth. This can be explained with 

reference to figure 4.1. The actual contact depth lies somewhere between 1ch  and 2ch , which 

corresponds to geometric factor, , equal to 1.0 and 0.75, respectively. Point 1ch  is referred to 

as plastic depth and is determined by extending the tangent to the unloading curve with slope 

 OP ES S  to the h -axis [24], which is exactly followed by Attaf to derive Eq. (4.10) from Eq. 

(4.9). This means that E
ch actually is the plastic depth  1ch , not the contact depth  ch . 

However, the fact that E
c ch h and the initial unloading stiffness are always overestimated 

indicates that the energy-based power function given by Eq. (4.8) has larger curvature as 

compared to the power-law at the maximum depth of penetration. The tangent to the 

unloading power function happens to pass through the actual contact depth, not the plastic 

depth ostensibly due to large curvature. This warrants an appropriate correction to Eq. (4.10). 

4.4.2 Proposed method to evaluate the contact stiffness 

In the OP method, as discussed previously, contact depth is evaluated from the initial 

unloading stiffness. Since the contact depth is known as a function of the elastic energy 

constant in advance, it may be used to evaluate the initial unloading stiffness in a reverse 

manner. To do this, Eq. (4.3), by substituting E
c ch h and replacing OPS by ES , may be 

rearranged in the following form: 

 max

max

E E

c

P
S

h h
 


 (4.11) 
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Figure 4.6: Comparison of corrected initial unloading stiffness when correction due

to (a) curvature; and (2) proximity between contact and maximum penetration

depths with that obtained by the Oliver and Pharr method. 
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which may be written in terms of the elastic energy constant as: 

   max

max

2 -1E E

P
S v

h
   (4.12) 

From Eq. (4.9) and (4.12), it is evident that the error in the initial unloading stiffness may be 

reduced by 25% by multiplying it with the geometry factor 0.75  . Comparison between 

ES  calculated by Eq. (4.12) with that obtained by Eq. (4.11), as shown in figure 6a, indicates 

that Eq. (4.12) yields a reasonably accurate value in the case of SiO2 only. Note that SiO2 has 

the maximum elastic recovery among the materials considered in this study. For the rest of 

the materials, the error in the initial unloading stiffness is still very large and increases with 

the decrease in the percentage elastic recovery. For example, the average error in ES  

determined by Eq. (4.14) or Eq. (4.15) is about 58% for aluminum, which has the least 

percentage elastic recovery in the list of materials considered. Note that the corresponding 

error in the contact depth E
ch   is only 0.84%. After careful examination, we found this is a 

computational error which arises due to the proximity of the contact and maximum 

penetration depth. This can be explained with the help of a numerical example in one of the 

indentation tests on aluminum, where we found maxP 1497.0 N,   maxh  311.80 nm,    ch   

304.7 nm,    cEh   307.30 nm.  

Using the values of ch  and cEh  successively in Eq. (4.14), we found uS  and ES  , 

respectively, equal 156.6N/nm and 241.2N/nm. Clearly, the discrepancy between uS  and 

ES  arises due to a large difference in the denominator of Eq. (4.14) when evaluated using ch

and E
ch . For the set of data considered above, the difference between  max ch h and 
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 max
E
ch h  is about 36%. This error is more pronounced when the maxh and  or c cEh h values 

are very close to each other. On the basis of this observation, one may conclude that 

significantly different initial unloading stiffnesses are obtained if the contact and maximum 

depth of penetration are very close to each other, no matter how accurately Eq. (4.10) 

determines the contact depth. For materials whose maximum depth of penetration and 

contact depth are considerably apart, this error becomes insignificant. 

Dependency of this error on the elastic recovery of a material indicates that a correlation 

between the error due to proximity in the contact and maximum penetration depths and 

elastic energy constant may exist. To establish a possible correlation between them, the ratio 

of stiffness calculated by the OP method to that by Eq. (4.12) for each material is plotted as a 

Figure 4.7: Plot showing the variations of stiffness correction factors with the

elastic energy constant. 
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function of their elastic energy constant, as shown in figure 4.7. As can be seen, the ratio 

decreases as the elastic energy constant increases. The correlation may be fitted with the 

piecewise logarithmic equations as: 

 
 
 

1 1

2 2

log 8.50

log 8.50
E E

s

E E

A B v v

A B v v

 
 

   (4.13) 

where /s u ES S   is termed as the stiffness correction factor, and 1 2 1, ,A A B  and 2B are 

constants equal to 1.124, 0.873, 0.404 and 0.132, respectively. Thus, a corrected expression 

for the initial unloading stiffness may be written as: 

   max

max

2 1E s E

P
S v

h
     (4.14) 

The initial unloading stiffness evaluated from Eq. (4.14) is once again compared with that 

obtained by the OP method, as shown in figure 6b, where excellent agreement could be seen 

between them. The proposed method is further validated with the help of nanoindentation 

data available in the literature, which were acquired with a peak indentation load equal to or 

greater than 100 mN. For illustration, we consider the nanomechanical data pertaining to the 

fused silica mentioned in ref. [2] as maxP 118.43 mN, maxh  1045.0 nm, fh  540.40 nm, 

0A  0.050, and m 1.24. The reduced modulus  rE  and hardness  H  of this material are 

reported to be 69.60 and 8.40 GPa, respectively. With these input parameters, unloading 

stiffness is calculated using both the power law and Eq. (4.14), and are found to be equal to 

296.0 N/nm and 300.0 N/nm, respectively, which are very close to each other. This 
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quantity can also be back-calculated from the known peak indentation load, reduced elastic 

modulus and hardness (obtained by substituting max /P H for cA in Eq. (4.1)). 

 max2
u r

P
S E

H
  (4.15) 

Table 4.3: Comparison of the initial unloading stiffness calculated using Eq. (4.14) with that 

obtained by the Oliver and Pharr method for materials subjected to the peak indentation load 

equal to or greater than 100mN. 

Eq. (4.15) yields uS  295.0 N/nm and thus confirms that the error due to digitization of the 

data from the literature is negligibly small. Similar calculations for materials like aluminum, 

quartz, soda lime glass, sapphire, tungsten, copper, 1070 steel and SiN4 were carried out. 

Materials Pmax 

(mN) h (%) vE s SE
cor Su 

%  
Error 

Aluminum 118.32 1.70 79.31 0.622 1.881 1.906 1.3 

Quartz 118.48 51.30 2.33 0.976 0.388 0.412 5.8 

Soda lime  glass 118.37 39.60 3.02 0.930 0.373 0.364 -2.5 

Fused Silica 118.50 48.30 2.31 0.977 0.300 0.296 -1.4 

Sapphire 118.43 40.90 3.09 0.926 0.819 0.795 -3.0 

Tungsten 118.43 7.50 18.55 0.705 2.103 1.998 -5.3 

Copper 100.00 5.90 24.87 0.689 1.181 1.227 3.7 

1070 Steel 100.00 23.60 4.95 0.843 0.837 0.788 -6.2 

Silicon Nitride 100.00 44.30 2.94 0.935 0.632 0.598 -5.7 
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Excellent agreement, with accuracy better than 6% between the values evaluated by the two 

methods, was obtained for each material, as summarized in Table 4.3. 

4.4.3 Further simplification 

The method described in the previous section to determine initial unloading stiffness can 

further be simplified by employing the relationship between the elastic recovery ratios and 

elastic energy constant, and the information contained in the loading curve. For this purpose, 

depth and work recovery ratios are plotted as a function of the elastic energy constant for 

SiO2, TiO2, Ta2O5, Al-Si, W, Ni, Cu and Al, as shown in figure 4.8. It is clear from the figure 

that recovery ratios decrease with the increase in the elastic energy constant. This 

relationship allows us to calculate the elastic energy constant without evaluating the elastic 

Figure 4.8: Plot showing the correlation between elastic depth and work recoveries

with the elastic energy constant. 
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work done. Thus, the determination of initial unloading stiffness requires peak indentation 

load, maximum depth of penetration and residual depth as input parameters; all can be 

readily obtained from the nanoindentation load displacement curves and thus require less 

computational effort, as compared to that applied in the conventional OP method. 

If ES corresponding to one set of 
max

1P and
max

1h is known, then it may be scaled for the other 

set 
max

2P and 
max

2h without analyzing the unloading curve obtained corresponding to the peak 

indentation load
max

2P , provided the indentation response is free from any residual stress 

effect.25 Such a combination of peak indentation load and maximum depth of penetration 

may be obtained from Eq. (4.7) as: 

 

2 1
2

2 1 max
max max 1

max

Tv

h
P P

h


 

  
 

 (4.16) 

This eliminates the need for analyzing the unloading curve corresponding to each 

indentation. The proposed method may be used to quantify the effect of the substrate on the 

mechanical properties of thin coatings. 
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CHAPTER 5 

MODIFIED WORK-OF-INDENTATION APPROACH 

5.1 Introduction 

Small scale mechanical properties of a material such as hardness, elastic modulus, yield 

stress, strain hardening exponent, fracture toughness, etc. may be determined conveniently 

and reliably by an experimental technique called nanoindentation. In this method, a smooth 

surface of a material is indented with a probe of a specified geometry and known mechanical 

properties to record load vs. penetration depth curves. The data so obtained generally 

provides information on curvatures, contact stiffness (initial unloading stiffness), indentation 

energies, maximum depth of penetration, peak indentation load, etc., which may be used in 

conjunction with the theory of contact mechanics to evaluate the mechanical properties [1]. 

For instance, contact stiffness may be used in the Sneddon’s solution for indentation of the 

elastic half-space by a rigid axial indenter to determine the elastic modulus, provided the area 

of contact or hardness of the material is known.  

The mechanical property that we are interested in determining first is the hardness of a 

material – defined as a ratio of the peak indentation load to projected contact area, which is 

computed according to a procedure called the area function technique [2]. This procedure 

essentially consists of establishing an area function, expressed in terms of contact depth, 

using a test material with a known elastic modulus. The area function established in this way 

is used subsequently in the evaluation of mechanical properties of unknown materials. the 

unloading curve obtained as a result of the indentation on a material under consideration is 

analyzed to ascertain the contact depth, which is eventually used to calculate contact area and 
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hardness. Accuracy better than 5% is obtained if the hardness is evaluated by the method just 

explained. However, an erroneous contact area may be obtained if the pile-up around the 

hardness impression is significant [3]. The area function technique is also found to be 

unsuitable for the material that is viscoelastic and/or heterogeneous [4-5]. Although attempts 

have been made to calculate the corrected contact area, no dramatic improvement in the 

accuracy of the computed value is realized. This limitation of the Oliver and Pharr (OP) 

method has led to the development of various nanomechanical property evaluation 

procedures that do not require the calculation of the contact area at all [5-9]. These 

procedures, however, have their own limitations and their accuracy remains a concern in the 

material science community. Furthermore, the area function is calibrated using the same 

fundamental relation described above, which needs to be corrected due to both the lack of 

axial symmetry of the indenter and the improper boundary condition used in its derivation, 

even when the contact depth is precisely known. Correction factors that account for these 

effects depend on the indenter geometry, Poisson’s ratio of the material, maximum 

penetration depth, etc., but their precise measurement is still debated [10-13]. Omission of 

these correction factors has more serious consequences on the accuracy of contact area (or 

hardness) than on the reduced elastic modulus [10]. 

The work-of-indentation approach, as proposed by Tuck et al. [9], offers a convenient 

way to determine the hardness of a material, and is the most promising among the methods 

that do not require the computation of the contact area. This approach employs the total work 

done during indentation, which can be evaluated very precisely as compared to the area 

function, even if the pile-up is significant. Varying conclusions regarding its accuracy could 

be found in the literature. It is reported that this approach works well when it is applied to the 
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indentation data from soft materials [9, 14-15]. On the other hand, studies on harder materials 

indicate that it gives erroneous results [16-17]. Such a comparison, however, is not justified, 

as the hardness values determined by the OP method and the WI approach are fundamentally 

different. While the hardness determined in the OP is based on the contact depth, the 

maximum depth of penetration is used in the WI approach.  

The WI approach, in its existing form, is limited to the case where an indenter is considered 

to be ideally sharp. In recent times, nanoindentation tests are routinely carried out in the load 

range below 10 mN due to the restriction imposed by the sample size and type. The 

effectiveness of the work-of-indentation approach is largely unexplored in this load range. As 

the indenter tip bluntness is more pronounced at a small indentation load [6], it is imperative 

to further investigate the viability of this approach in this load range. Thus, the objectives of 

this study are to: (1) improve the existing WI approach by accounting for the effect of tip 

bluntness ; (2) investigate if and how hardness values of a material evaluated by these two 

methods could be related; and (3) examine how such correlation is affected by the tip 

bluntness. The study presented here is of great significance from the viewpoint of the 

development of a method to determine Young’s modulus from the loading curve, where the 

knowledge of conventional hardness is a priori [6-8]. 

5.2 Theoretical background 

The link between the hardness values determined by the OP method and WI approach can 

be established using parameters that are obtainable from the load-displacement curves. To 

facilitate understanding, the definitions of elastic recovery ratios and energy constants used 
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in this study followed by a short description of the hardness determination by the OP method 

are given below. 

5.2.1 Definition of terms 

Typical load-displacement curves obtained in a nanoindentation experiment are shown 

schematically in figure 5.1.  Certain nanomechanical quantities derived from such curves 

may be utilized to characterize the indenter geometry and material’s response to indentation. 

For instance, whether a material is elastic or perfectly plastic can be ascertained with the help 

of elastic recovery. It is usually expressed either in terms of the depth recovery ratio  h or 

energy  w  recovery ratios, respectively as: 

 

max

max

100%

100%

f
h

E
w

T

h h

h

W

W






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 
 (5.1) 

where maxh  is the maximum depth of penetration, fh  is the residual depth, TW is the total 

energy dissipated and EW  is the elastic energy recovered after the complete withdrawal of the 

load. The total and elastic energies are usually evaluated, respectively from the areas under 

the loading and unloading curves. Values of both depth as well as energy recovery ratios fall 

in the range 0–1; their upper and lower limits correspond to the elastic and perfectly plastic 

materials, respectively. Although elastic recovery ratios also depend on the half-included 

angle and tip radius, the condition of the indenter (whether it is ideally sharp or blunt) cannot 

be decided based on their magnitude. 
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 On the other hand, the characterization of the indenter geometry and material response to 

indentation can be effectively done with the help of energy constants.  Attaf [18] introduced 

several energy constants, which have important implications in the analysis of load-

displacement data. Three of them are relevant to this study and may be expressed 

mathematically as: 

 ; ;S S S
T P E

T P E

W W W
v v v

W W W
    (5.2) 

Ratios ,Tv Ev and Pv are known as total, elastic and plastic energy constants, respectively. The 

absolute work (energy), denoted by SW  in Eq. (5.2), is the maximum possible work done by 

the indenter in any indentation experiment and is evaluated as the area of the triangle maxOAh , 

Figure 5.1: Typical load-displacement curves obtained from nanoindentation and

the terminologies used. 
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as shown in figure 5.1. The energy absorbed as a result of plastic deformation is given by the 

difference between the total and elastic energies: P T EW W W  . These three ratios satisfy the 

following condition for a given indenter geometry: 

 
1 1 1

T E Pv v v
   (5.3) 

Constant Tv  depends primarily on the indenter geometry which may take the value in the 

range of 1.0-1.5, where the maximum value corresponds to an ideally sharp conical indenter; 

it decreases with the increase in the tip bluntness. Likewise, the elastic energy constant 

quantifies the portion of the deformation recovered upon complete unloading. It varies in the 

range of 1.0 - ∞; the end values represent elastic and perfectly plastic materials, respectively. 

We have shown elsewhere that the total energy constant is independent of the material 

properties if the indenter tip to maximum depth of penetration  max/R h  ratio is less than 2 

[19]. The elastic energy constant, on the other hand, depends on both material properties as 

well as the max/R h  ratio. However, the rate at which it decreases with respect to max/R h  is 

independent of the material properties. Due to this reason, these quantities may be used as 

index parameters wherever the material’s response to indentation and the condition of the 

indenter need to be quantified. 

5.2.2 Determination of hardness by the Oliver and Pharr method 

Conventionally, the hardness of a material is defined as the average pressure divided over 

the projected contact area as: 
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 max
OP

c

P
H

A
  (5.4) 

where cA  denotes the contact area at the peak indentation load maxP . In the OP method [2], 

the contact area is expressed as a function of the depth  ch  along which the contact is made, 

which has the following form: 
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A C h C h 


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The above expression is called the area (shape) function and is usually established with the 

help of a test material whose elastic modulus is precisely known. Note that the leading term 

0C describes an ideally sharp Berkovich indenter and the rest of the constants iC  take the 

indenter tip bluntness into account. The contact depth is estimated from the unloading portion 

of the load-displacement curves according to: 

Table 5.1:  Typical values of the mechanical properties and other quantities for 

metals tested in this study. 

Material 
Pmax         

(N) 

hmax         

(nm) 

hc                

(nm) 

HOP       

(GPa) 

Er              

(GPa) 

Al 2941.37 499.77 488.8 0.39 64.2 

Cu 2964.88 299.89 290.05 1.08 121.9 

Ni 2979.05 192.05 183.11 2.67 216.3 

W 2987.72 110.19 99.23 8.92 314.4 
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 max
maxc

u

P
h h

S
   (5.6) 

The symbol uS  is the initial unloading stiffness obtained as the derivative of the power law 

evaluated at the maximum depth of penetration, and   is a constant, which depends on the 

indenter geometry; a value of 0.75 is used for a Berkovich tip. The OP method yields an 

accurate value of hardness for all those materials for which the ratio h  is less than 0.3 [3]. 

5.3 Experimental data 

Nanoindentation tests were carried out on polished samples from polycrystalline tungsten 

and nickel, and single crystals of copper and aluminum using a Triboindenter fitted with a 

Berkovich tip. Three different peak indentation loads of magnitudes approx. 1500, 3000 and 

4500 N were selected. A total of 27 indents were made on each sample; 9 correspond to 

each peak indentation load. Using the OP method, the reduced modulus and hardness values 

for all these metals were evaluated as summarized in Table 5.1. Besides these data, the 

indentation result on ceramics (SiO2, TiO2 and Ta2O5) from the literature [18] is also 

included in this study. Indentations on ceramics were also carried out using a Berkovich 

indenter, but with peak indentation loads of the approximate magnitudes of 2500, 5000, 7500 

and 10000N. These materials constitute a set in which the percentage elastic recovery varies 

from 4% (Aluminum) to 58% (SiO2). 

In order to examine the validity of the proposed model over a wide range of peak 

indentation loads, data available in the literature, other than that which is mentioned above, 

are also used. Nominal hardness determined by the WI approach is verified using the data 

from the microhardness test on aluminum, steel and fused silica as reported in Ma et al. [20]. 
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Similarly, nanoindentation results on aluminum, copper, glass and sapphire acquired at the 

peak indentation load of 30mN, reported by Sawa and Tanaka [20], are also considered for 

verification. Finally, the load-displacement curves pertaining to aluminum, tungsten, quartz, 

fused silica, sapphire, soda lime glass  [1], copper [6], 1070 steel and Si3N4 [21] acquired 

with peak indentation loads greater than 100mN are also used. 

5.4 Modified work-of-indentation approach 

Referring to figure 5.2, the projected area of the conical indenter at a height h from the 

apex is given by 1 2k h . Let us define a fictitious hardness as: 

 max
1 2W

P
H

k h  (5.7) 

where k  is a constant which depends on the indenter geometry and is equal to 0.0408 and 

0.0378 for Berkovich and Vickers indenters, respectively. If h  is replaced by ch  in Eq. (5.7), 

Figure 5.2: Schematic of indentation by a conical indenter and the concept of projected

areas at contact and maximum depth of penetrations. 
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the resulting expression will exactly match the definition of hardness commonly used for an 

ideally sharp indenter (Eq. 5.5) with cA  containing only the first term). Note that 1k   and 0C  

are equal. If h is taken as the maximum depth of penetration, then Eq. (5.7) will have the 

following form: 

 max
2
max24.56W

P
H

h
  (5.8) 

The hardness given by Eq. (5.8) is sometimes referred to as the “nominal” hardness of a 

material obtained by an ideally sharp indenter [19, 22]. The total work done (or energy 

dissipated) while indenting a material to a depth of maxh  is given by: 

  
max

0

h

TW P h dh   (5.9) 

It has been shown that, for an ideally sharp conical indenter, the experimental loading curve 

may be described using a parabolic equation in the form: 2P Ch [6,9]. Thus, the total work 

done by a sharp indenter is always given by 

 max max

1

3TW P h  (5.10) 

Using Eq. (5.8) and (5.10), one can immediately write 

 
3

max
29W

T

kP
H

W
  (5.11) 

The work-of-indentation approach employs Eq. (5.11) to calculate the hardness of a material. 

Beegan et al. [14] stated that the total work done in the above equation should be replaced by 
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the plastic work if the hardness is considered to be a function of plastic deformation alone. It 

is clear from the above derivation that the hardness evaluated from total work done is simply 

nominal hardness and is fundamentally different than that obtained by the OP method. This 

subtlety has been ignored while reporting a comparison between nominal and conventional 

hardness in the previous studies. In view of the definition of the total energy constant, Eq. 

(5.11) may be rewritten as: 

 
2

max
2
max2.25

T
W

kv P
H

h
  (5.12) 

Since Tv  depends on the ratio, it allows us to quantify the effect of tip bluntness on the 

nominal hardness of a material. Therefore, the work-of-indentation approach, which is 

heretofore applicable only to the sharp indenter, can be applied to the blunt indenter as well. 

The expressions for nominal and conventional hardness differ in the choice of penetration 

depth and may be correlated if a relation between the contact depth and maximum depth of 

penetration is known. An expression that relates these two depths is derived by Attaf  [23] as: 

 
 

  max

2 1

2 1
E

c
E

v
h h

v





 (5.13) 

Eq. (5.5), (5.8) and (5.13) allow us to establish a connection between the conventional and 

nominal hardness values in the following form: 

 
 
 

2

2

2 1

4 1
EOP

N
W E

vH
K

H v


 


 (5.14) 
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Figure 5.3 shows the plot of hardness ratio NK  as a function of the elastic energy constant. It 

is evident from the figure that OPH  and WH  are almost equal for a material that has a 

relatively large value of Ev . With the help of Eqs. (5.1) and (5.2), Eq. (5.14) may be written 

in terms of the energy recovery ratio as: 

 
 
 

2

2

2

4
T w

N

T w

v
K

v








 (5.15) 

The effectiveness of the modified work-of-indentation approach in the determination nominal 

as well as conventional hardness of a material will be examined next. 

Figure 5.3: Plot showing the variation in the hardness ratio with the elastic energy

constant. 
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5.5 Results and Discussion 

5.5.1 Nominal hardness by the work-of-indentation approach  

Figure 5.4 shows a comparison between the hardness values determine by the OP method 

and the work-of-indentation approach for copper and TiO2. Both the total and plastic works 

of indentation are used to determine the nominal hardness. As can be seen, all three hardness 

values are comparable for copper but differ significantly for TiO2. For copper, the nominal 

hardness values are smaller by 10% and greater by 15% as compared to OPH , if they are 

evaluated using the total work done and plastic work, respectively. The corresponding 

deviations in the hardness values are found to be 33% and 105% for TiO2. These 

observations suggest that the discrepancies among the hardness values determined by the WI 

approach (using both TW  and PW ) and by the OP method diminish for the material that 

recovers less upon the withdrawal of load. Note that the percentage elastic recoveries for 

copper and TiO2 are 4% and 36%, respectively. The reason for the observed discrepancies 

could be explained as follows. The total work done and plastic work are equal if a material 

has little or no recovery upon unloading, and thus provides nearly the same nominal harness 

values if used in Eq. (5.11). Likewise, for a perfectly plastic material, the difference between 

the contact depth and the maximum depth of penetration is negligibly small. As a result, 

equal values for the nominal and conventional hardness will be obtained for such materials. 

This is certainly not the case with harder materials; ch and maxh  are considerably apart. 

As explained earlier, the maximum projected contact area is needed to evaluate the 

nominal hardness of a material. Ma et al. [19] showed that the required area can be 

determined from an area function, which is similar in form of that used in the OP method.  
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The objective of constructing an area function is to take the effect of tip bluntness into 

account. To examine how practical the total energy constant is in the quantification of the 

effect of tip bluntness, we evaluated the nominal hardness for aluminum, steel and fused 

silica using Eq. (5.12). The total energy constants are found to be 1.43, 1.46, and 1.48 for 

these materials, respectively. Nominal hardness values so obtained are summarized in Table 

1. It is clear from the table that the nominal hardness values determined by Eq. (5.12) differ 

by a maximum of 10% from that obtained by Ma et al. for the materials considered. Based on 

the accuracy obtained, one may conclude that the quantification of the effect of tip bluntness 

can be done conveniently and efficiently using the total energy constant. 

Figure 5.4: Plots showing the difference between nominal and conventional

hardness values, respectively, obtained by the work-of-indentation approach and

the OP method for TiO2 and single crystal copper. 
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5.5.2 Conventional hardness by the modified WI approach: Ideally sharp indenter  

The modified work-of-indentation approach presented in the previous section is applied 

to evaluate the conventional hardness of materials considered in this study. To begin with, 

the nominal hardness values for aluminum, steel and fused silica are determined by the 

modified work-of-indentation approach given by Eq. (5.12). Corresponding conventional 

hardnesses are then obtained by multiplying the nominal one with conversion factor NK . 

Calculations are summarized in Table 5.2. The conventional hardnesses so obtained appear to 

be in excellent agreement with those commonly known for these materials. Zeng and Chiu 

[25] suggested that the experimental loading curve may be described by a parabola if the 

Figure 5.5: Comparison of conventional hardness values determined by the OP

method and modified work-of-indentation approach using correction factors NK

given by Eq. (14) and 1.50Tv  , when the peak indentation load is greater than

25mN. 



124 
 

peak indentation load is greater than 30mN. If this condition prevails, a value of 1.5 may be 

used for Tv .  To validate this assumption, the proposed approach is applied to the load–

displacement data given in the literature mentioned earlier, which has the peak indentation in 

the load reason 30mN-120mN. Figure 5.5 shows a comparison between the conventional 

hardnesses determined by the OP method and modified WI approach. Excellent agreement 

between them confirms the efficacy of the work-of-indentation approach in the computation 

of the conventional hardness of a material when it is probed with an ideally sharp indenter. 

When the penetration depth is very large, a blunt indenter behaves like a sharp indenter, and 

thus Eq. (5.12) is highly suitable for the microhardness test. 

5.5.3 Conventional hardness by the modified WI approach: Blunt indenter 

The nanoindentation load-displacement curve is very much affected by the magnitude of 

bluntness at the tip of the indenter. The total work done by a blunt indenter is always greater 

than that by a sharp one, when the specimen is indented to the same maximum depth of 

penetration. It means that the total energy constant decreases with the increase in the tip 

bluntness. As such the conversion factor NK  used for sharp indenter may not be applicable 

when the tip bluntness is more pronounced. This could be explained on the basis of Eq. 

(5.15). Plots of NK  vs. percentage energy recovery ratio for different values of Tv  are shown 

in figure 5.6. From the figure, it can be immediately inferred that the tip bluntness has no 

effect on NK  if the percentage elastic recovery is less than 10% approximately. The effect 

becomes gradually apparent, as it passes the threshold limit. The conversion factor may be 

affected significantly when w  is in the excess of 60%. Obtaining a closed form solution for 
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NK  for a blunt indenter is a difficult task, as expressions for both, the area function and total 

work, contain additional terms, and thus the relation between the conventional and nominal 

hardness values could only be developed empirically. For this purpose, the hardness ratios 

(conversion factors)  /  and /OP WT OP WPH H H H  are plotted as a function of elastic recovery 

ratios (both depth and energy) and elastic as well as plastic energy constants separately, as 

shown in figure 5.7.  Both the total and plastic conversion factors have been found to follow 

specific variation patterns with respect to each of these parameters. For instance, they vary 

linearly with the percentage recovery (depth and elastic) ratios which may be approximated 

by the following equations: 

 
0.83 0.017

0.92 0.012

h
HT h

h
HP h

K

K




 

 
 (2.16) 

Figure 5.6: Plots showing the variations of the conventional to nominal hardness ratio

with percentage energy elastic recovery for different values of total energy constants. 
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and  

 
0.86 0.014

0.90 0.010

w
HT w

w
HP w

K

K




 

 
 (17) 

Figure 5.7: Variations of HOP/ HWT and HOP/ HWP Ratios with (a) depth recovery

ratio; (b) energy recovery ratio; (c) elastic energy constants; and (d) plastic energy

constant, when the peak indentation load is less than 10mN. Red and blue markers

are used total and plastic hardness ratios respectively. 
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Similarly, the relationship between the hardness ratios and Ev  may be described 

logarithmically. The variation pattern is, however, different for the ceramics oxides and 

metals considered in this study. Accordingly, we employed two logarithmic functions to 

obtain the best fit as: 

 

2.13 1.24log( ) 5.90

1.43 0.35log( )

0.047 0.98log( ) 5.90

0.52 0.261og( )
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
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 (18) 

Finally, the empirical relationship between the hardness ratios /OP WjH H  and plastic energy 

constant may be describes as: 

 
1.37

0.68 1.92log( )
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p
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
 (19) 

In view of the above phenomenological correction factors, an expression to determine 

material’s conventional hardness using the modified work-of-indentation approach may be 

succinctly written as: 

 
2

max
2
max2.25

i
Hj j

Wj

K kv P
H

h
  (20) 

where  /i
Hj OP WjK H H is the hardness ratio with ,j T P and , ,  and E Pi h w v v . Letters T  

and P  stand for the total and plastic works, respectively. Depending on the choice of 

indentation works and parameters, conventional hardness may be evaluated by eight different 

ways using Eq. (5.20). Computed hardness values for metals and ceramic oxides using Eq. 

(5.20) are compared with those obtained by the OP method and is displayed in figure 5.8, 
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where a close agreement between the computed and measured values can be realized. The 

performance of the phenomenological correction factors is also examined by evaluating the 

hardnesses for the other two sets of materials. As a consequence, the hardnesses determined 

using these empirical factors well accord with their respective experimental values, as shown 

in figures 5.9 and 5.10. Thus, the proposed empirical are also applicable when the peak 

indentation load is such that the tip bluntness is less pronounced.  

 

Figure 5.8: Comparison of conventional hardness values determined by the OP

method and modified work-of-indentation approach using correction factors given

by Eqs. (5.16) – (5.19), when the peak indentation load is less than 10mN. 
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Finally, we comment on the choices of indentation works and other parameters. Total works 

should be a preferred choice in the determination of hardness, as the expression containing it 

has some mathematical basis, at least for an ideally sharp indenter. The inclusion of the 

plastic work in this study is just for the purpose of illustration. If a nanoindentation loading 

curve is well describable by a parabolic relation, then NK  should be evaluated either from 

Eq. (5.14) or Eq. (5.15). Off all the empirical correction factors discussed, one which 

involves the use of depth recovery ratio is recommended, as it can be readily obtained from 

the load-displacement curves. Further experimental study is required to validate the proposed 

method when both pile-up and percentage elastic recovery are significant. 

Figure 5.9: Comparison of conventional hardness values determined by the OP

method and modified work-of-indentation approach using correction factors given

by Eqs. (5.16) – (5.19), when the peak indentation load is 30mN. 
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CHAPTER 6 

NANOINDENTATION ON CEMENTITIOUS MATERIALS 

6.1 Introduction 

Recent years have seen an upsurge of interest in studying the mechanical behavior of 

cementitious materials at a very small scale using nanoindentation. A number of articles have 

appeared in the literature, beginning with the work reported by Velez et al. [1] on pure 

cement clinkers. Since then, the outcome of this technique has been used in: the 

characterization and identification of different forms of Calcium Silicates Hydrates (C-S-H) 

[2-5]; the mapping of the mechanical properties [6-8]; the study of time-dependent properties 

of C-S-H [9-12]; and multi-scale modeling as input parameters [13]. All of these studies are 

concerned with the determination of mechanical properties from the nanoindentation load-

displacement data. As cementitious materials exhibit heterogeneity at all levels of length 

scales, the protocols adopted for materials like metals and ceramics in their testing and 

analysis of results may require modifications in order to be applicable for this class of 

materials. For example, the statistical nanoindentation technique, which is found to be useful 

for composites such as cementitious materials, bones, etc., is absolutely redundant for 

materials like metals. Evaluation of mechanical properties such as elastic modulus and 

hardness for cementitious materials by nanoindentation involves four different steps: (1) 

surface preparation; (2) indentation testing; (3) analysis of load-displacement data; and (4) 

statistical indentation analysis. While protocols concerning steps (1), (2) and (4) are well 

established, the methods used in the analysis of the load-displacement data from linear, 

isotropic and homogeneous materials may not be applicable for those from heterogeneous 
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materials. Note that the accuracy of such methods rely on empirical observations, which may 

sometimes be material specific, due to our poor understanding regarding the complex elasto-

plastic deformation processes that occur during indentation [14]. 

 The most widely used method for the load-displacement data analysis to evaluate the 

elastic modulus and hardness is that proposed by Oliver and Pharr [15-17]. The method relies 

on the principle of elastic punch theory, which is applied to the unloading portion of the load-

displacement curves. Besides that, three other quantities, namely the area of contact between 

the indenter and the specimen, the slope of the unloading curve (initial unloading stiffness) 

evaluated at peak indentation load, and reasonable estimate of Poisson’s ratio, are also 

required. The initial unloading stiffness is usually obtained by evaluating the differentiation 

of the power law representing an unloading curve at peak indentation load. The exponent of 

the power law is supposed to have its value in the range 1.2 to 1.6 for most of the materials 

[15]. However, as will be seen, analysis of the load-displacement data from cementitious 

materials revealed that the exponent can take a value that falls well beyond this range. Such a 

variation in the exponent of the power law can be explained neither on the basis of the 

“effective indenter shape” nor on the basis of the “residual stress” theories [14, 17-18]. 

Again, the contact area evaluated according to the Oliver and Pharr method is found to be 

inaccurate for materials that show excessive pile-up during indentation, viscoelastic and 

heterogeneous materials. Furthermore, establishing an area function is an iterative process 

and needs to be carried out at regular intervals to account for the bluntness at the tip of the 

indenter that may deteriorate continuously during the course of indentation. This is 

particularly cumbersome when grid indentation is required to be performed–an essential step 

in nanoindentation testing on cementitious materials. 
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On the other hand, energies dissipated during indentation are found to be useful 

parameters in determining the mechanical properties of a material [19, 20-22]. For example, 

the ratio of elastic work to the total work is equal to the ratio of hardness to the indentation 

modulus for elastic perfectly plastic material. A good account of this kind of relationship is 

given in reference [21]. Similarly, Sakai [22] found that the energy dissipated during the 

indentation cycle bears a specific relationship to quantities such as hardness, peak indentation 

load, and volume of the indentation impression. Recently, Attaf [23-26] has shown that 

various forms of energy (readily obtainable from the load-displacement curves) and their 

ratios have important applications in modeling the load-displacement curves. Total, elastic, 

and plastic energy constants are defined with respect to the absolute energy. This form of 

energy is defined as the maximum energy that may be dissipated during the indentation on 

the surface of a material. The total and elastic energy constants are related to the curvatures 

of the loading and unloading curve, respectively, and are independent of the indentation size 

for a given geometry. Using nanoindentation data on certain kinds of ceramics, Attaf [23, 25] 

found that the work-of-indentation can be correlated with other nanomechanical quantities 

obtained from the indentation experiment. For instance, contact area, peak indentation load, 

and maximum and final depth of penetrations have a one-to-one relationship with all forms 

of work-of-indentation.  A unified correlations diagram capable of depicting all possible 

correlations was developed for all the materials used in his study. Whether these relationships 

are applicable for multiphase cementitious materials is not known. Again, nanoindentation 

load-displacement curves may comprise a dwelling portion at peaks, which is normally 

desired to minimize the effect of non-elastic deformations, such as creep, on the measured 

mechanical properties. Nemecek [9] found that a strong size effect on elastic properties is 
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inevitable for cement paste subject to increasing loading cycles with no dwelling portion at 

peaks. A long dwelling portion is also essential when parameters that lead to the 

determination of viscoelastic properties, e.g. contact creep modulus, are required to be 

measured. Attaf did not consider the dwelling portion while defining the energy constants. 

Since a material deforms continuously during dwelling at constant peak indentation load, it 

increases the total work done. Omission of the total work done during dwelling may lead to 

erroneous energy constants, and thus, a modification in their definitions is warranted. In the 

last two chapters, we have shown that the energy constants may be used to determine the 

initial unloading stiffness and hardness of a material. It would be appropriate to examine how 

effective these procedures are in the determination of nanomechanical properties from the 

load-displacement data pertaining to cementitious materials. Therefore, this chapter focuses 

on three aspects of load-displacement data analysis: (1) definitions of energy constants; (2) 

empirical correlations between nanomechanical quantities; and (3) development of a model 

to measure the elastic modulus and hardness of cementitious materials. 

6.2 Experimental program 

At the nanoscale, the measurement of mechanical properties is conveniently done by 

performing nanoindentation experiments. This sophisticated experimental technique requires 

certain protocol to follow with respect to sample preparation. Sample preparation technique, 

equipment used and loading sequences are described as follows: 

6.2.1 Materials  

Cement paste samples were prepared out of type I Portland cement with water-to-cement 

ratios (w/c) equal to 0.3, 0.4, and 0.5. It should be noted that the w/c affects only the volume 
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fraction not the mechanical properties of the phases present in the cement paste composite.  

The purpose of employing different w/c’s is to capture the mechanical properties of 

unhydrated phases with a very low degree of hydration that may not be present at a higher 

w/c. The ASTM standard C305 was followed during the mixing process of cement and water. 

The cement paste mixture was poured into a cylindrical rubber mould with internal diameter 

and height of 25 mm. Samples were demoulded after 24 hours and cured in water for 28 days 

at room temperature. 

6.2.2 Sample surface preparation  

One of the key requirements of the nanoindentation experiment is to have a smooth 

surface of the sample to be indented. A rough surface may yield spurious values of 

mechanical properties and damage the indenter tip permanently. After 28 days of curing, 

samples were remolded by immersing them in the mixture of epoxy resin and hardener in a 

slightly bigger mould with internal diameter and height of 30.50 mm and kept in the vacuum 

to remove the entrapped air from the mixture. This step in surface preparation is necessary as 

it protects the sample from damage during grinding and polishing. Samples were demoulded 

after 24 hours for the next process of grinding and polishing. Coarse to fine grinding was 

applied to epoxy encased samples using abrasive paper of different grit sizes of 80, 52, 35, 22 

and 15 m. The speed of the revolving disc on which the abrasive paper was attached was 

maintained at 100 revolutions per minute (rpm) for the first three grit sizes and then 

increased to 150 rpm for the rest of the sizes. Each paper was used for approximately 3 to 6 

minutes (longer for smaller grit size paper). A continuous flow of water was allowed during 

the entire grinding process. All samples were examined with the help of an optical 
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microscope at the end of each step of grinding to check its effectiveness. The sample surface 

was gently cleaned in running water after all the grinding steps were completed. Diamond 

suspension in water having a gradation of 7, 3, 1 and 0.1 m on textmat cloth were 

successively used for polishing. Maintaining the speed of the disc at 150 rpm, polishing was 

done for about 5 minutes in each step. Finally, all the samples were again gently cleaned with 

Figure 6.1: SPM images showing residual impression and surface roughness of

polished samples: (a) top; and (b) three-dimensional views. 
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water for about 1 minute to remove the debris deposited during polishing and subsequently 

air dried. The technique described herein produces a very smooth surface, as shown in figure 

6.1. 

6.2.3 Nanoindentation equipment  

The indentation experiment was performed using a Hysitron Triboindenter which is a 

fully automated nanomechanical testing system. The Triboindenter is equipped with the 

Scanning Probe Microscope (SPM) imaging capability which can capture images at a 

nanoscale resolution. A three-sided pyramidal Berkovich tip having a radius of 100 nm was 

used as the probe. The specimens were subjected to a trapezoidal load history with a varying 

magnitude of maximum load applied, but not exceeding 1250mN. The loading, dwelling and 

unloading period were kept equal to 10, 2 and 10 seconds, respectively. 

6.2.4 Indentation modulus and hardness  

Nanoindentation tests were performed on approximately 28-day-old samples of the 

cement paste having a smooth surface at random locations. The grid indentation technique 

over a representative area is preferred for nanoindentation in the case of heterogeneous 

materials like cement paste [27]. Since the objective is to analyze the individual 

nanoindentation curve corresponding to each phase of cement paste and not the 

determination of their volume fraction, performing the grid indentation over a large area is 

not required. As mentioned earlier, the phases of cement paste are not distinguishable 

optically; therefore, we followed the trend of characterizing different phases of cement paste 

based on their mechanical properties. Following Mondal et al. [28], phases were grouped into 

anhydrous particles and three forms of Calcium-Silicate-Hydrate (C-S-H), the main 
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hydration product, namely low stiffness (LS), medium stiffness (MS), and high stiffness (HS) 

C-S-H. These hydration products are sometimes respectively referred to as Low density 

(LD), high density (HD) and ultra high density (UHD) [2, 3, 29-30]. Representative values of 

the indentation modulus and hardness for all of these phases were determined based on the 

statistical analysis of the measured data. The average values of the indentation modulus and 

hardness along with their standard deviations are shown in Table 6.1, which agrees well with 

those reported in the literature [1-3,28]. It should be noted here that average mechanical 

properties, for all the phases, correspond to the peak indentation load of 1000 N.  

Table 6.1: Indentation modulus and Hardness (in GPa) of different phases of cement paste. 

Test were also performed at several locations to capture the load-displacement curves 

corresponding to each of these four phases of the cement paste sample with different peak 

indentation load of 250, 500, 750, 1000, and 1250 N, respectively. Ideally, the combined 

load-displacement diagram with different peak indentation load is such that the loading 

curves have the same curvatures and all the unloading curves are parallel. Load-displacement 

diagrams corresponding to different peak indentation load are shown in figure 6.2 for all four 

phases considered here. As can be seen, the desired combined load-displacement diagrams 

Phase Anhydrous LS C-S-H MS C-S-H HS C-S-H 

Properties E H E H E H E H 

Mean 132.44   8.36     22.03  0.72  30.42  0.85   38.95  1.21  

SD 28.45    2.42     2.32  0.22     1.78  0.27     2.46 0.35     



141 
 

may not be possible due to the residual stress effect [31]. However, the unloading curves are 

almost parallel in all cases, and therefore their modulus values match. Typical outputs of the 

nanoindentation experiment are given in Table 6.2 where unloading curve fitting parameters 

0A and m are also shown. Scrutiny of the output data reveals that the exponent of the power 

law can take any value beyond the range of 1.2 to 1.6, for cementitious materials. As shown 

in Table 6.2, the indentation modulus and hardness values increase with the increase in the 

peak indentation load, a trend normally observed in the reverse order due to 

Figure 6.2: Experimental (nanoindentation) load-displacement curves for: (a)

anhydrous phase; (b) LS C-S-H; (c) MS C-S-H; and (d) HS C-S-H. 
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Table 6.2: Nanoindentation test data pertaining to different phases of cement paste. 

 

 
Phase 

Pmax 
(N) 

hmax 

(nm) 
hc (nm) hf (nm) Ac (nm2)  m 

S 
(N/nm) 

Er (GPa) H (GPa) 

A** 

244.36 29.91 23.65 15.06 30319.93 1.71 1.86 31.58 160.69 8.06 

498.03 42.23 32.72 21.32 50116.07 2.99 1.70 41.28 163.38 9.94 

742.05 50.46 38.03 26.00 63644.61 6.02 1.52 47.43 166.58 11.66 

995.66 58.51 44.31 26.90 81440.92 2.79 1.71 55.05 170.92 12.23 

1244.61 66.72 51.20 35.21 103213.53 6.20 1.54 61.65 170.02 12.06 

LS** 

472.04 185.37 168.43 130.24 824648.34 0.03 2.45 21.04 20.53 0.57 

724.16 157.36 127.68 93.20 498918.39 0.87 1.61 18.12 22.73 1.45 

951.35 253.03 231.05 187.86 1481032.89 0.10 2.20 31.83 23.17 0.64 

MS** 

231.17 127.54 120.87 83.74 452229.79 4.46E-6 4.69 24.52 32.31 0.51 

719.92 226.11 212.66 169.76 1268679.94 3.48E-3 3.03 38.20 30.05 0.57 

950.70 248.39 231.96 210.84 1491996.93 2.15 1.67 41.44 30.06 0.64 

1208.92 250.04 228.34 189.56 1448741.80 0.30 2.01 39.38 28.99 0.83 

HS** 

231.37 106.87 100.60 79.82 326588.33 0.01 3.11 26.32 40.81 0.71 

481.09 105.63 88.95 69.67 263306.06 1.49 1.61 21.48 37.08 1.83 

967.51 191.71 176.08 146.60 894678.14 0.26 2.16 46.32 43.39 1.08 

1207.74 252.28 235.58 180.22 1535901.54 1.46E-3 3.18 53.04 37.92 0.79 
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the so-called indentation size effect. This effect is more pronounced when indentation is 

carried out at the same location for different depths. Here, the load-displacement curves with 

different maximum loads are grouped based on the indentation modulus and hardness values, 

just to check the proportionality between different forms of energies. 

6.3 Indentation energies 

In the case of certain kinds of ceramics, all forms of energy dissipated during indentation 

bear specific relation among themselves and also with other parameter such as peak 

indentation load, penetration depths, and contact area. Since these materials have a single 

composition, all empirical relationships yield a very good value of correlation coefficient. In 

this section, we are going to examine whether those energy relationships are also relevant for 

the multi-phase cementitious materials. The absolute work is evaluated as defined in chapter 

2. Similarly, the total  TW , elastic  EW  and plastic  PW  works of indentation for all the 

phases are computed numerically using the nanoindentation results shown in figure 6.2. It 

should be noted here that the total work of indentation is evaluated during loading only; i.e., 

the work done during dwelling is ignored. The results are then displayed as absolute energy 

vs. total, elastic and plastic energies; total energy vs. elastic and plastic energies; and elastic 

energy vs. plastic energy plots for all four phases of the cement paste, as shown in figures 6.3 

– 6.6.  As can be seen, all forms of energy are proportional to each other in each case, albeit 

with a varying degree of goodness in the linear fit. For the anhydrous phase, the linear 

correlation is perfect because the loading curve follows the same path and all unloading 

curves are parallel. However, such a combination is not always possible owing to the 

heterogeneity present in the cementitious materials especially when the manual indentations  
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Figure 6.3: Correlation between different forms of dissipated energy: (a) WS vs. WT, WE and

WP; (b) ) WT vs. WE and WP; and (c) WE vs. WP for anhydrous phase. 
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Figure 6.4: Correlation between different forms of dissipated energy: (a) WS vs. WT, WE and

WP; (b) WT vs. WE and WP; and (c) WE vs. WP LS C-S-H phase. 
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Figure 6.5: Correlation between different forms of dissipated energy: (a) WS vs. WT, WE and

WP; (b) WT vs. WE and WP; and (c) WE vs. WP MS C-S-H phase. 
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Figure 6.6: Correlation between different forms of dissipated energy: (a) WS vs. WT, WE and

WP; (b)  WT vs. WE and WP; and (c) WE vs. WP HS C-S-H phase. 
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are carried out, as evident in figures 6.2b – 6.2d, which correspond to the C-S-H of different 

stiffnesses. Note that the curvature of the loading curve is affected by the indenter’s tip 

bluntness and the residual stress that arises during indentation and material properties. 

Table 6.3: Typical values for various energies for anhydrous phase. 

Pmax 
(mN) 

hmax 
(nm) 

WS 
(N.nm) 

WT 
(N.nm) 

WE 
(N.nm) 

WP 
(N.nm) 

vT vE 

0.00 0.00 0.00 0.00 0.00 0.00 - - 

244.40 29.911 0.3655 0.3078 0.1329 0.1749 1.187 2.750 

498.00 42.229 1.0515 0.8155 0.3843 0.4312 1.289 2.736 

742.00 50.460 1.8722 1.536 0.7233 0.8127 1.219 2.588 

995.70 58.515 2.913 2.2336 1.1762 1.0574 1.304 2.477 

1244.60 66.720 4.152 3.1209 1.4969 1.6241 1.330 2.774 

 

Anhydrous phases are characterized by the degree of hydration (measured in percent) 

whose upper and lower bounds correspond to pure clinker and hydrated C-S-H, respectively. 

Thus, these phases can have different characteristic load-displacement diagrams with 

remarkably different values of mechanical properties, which in turn, depending upon the 

degree of hydration results in multiple values for energy ratios. Correlating energy ratios with 

a degree of hydration is a matter of extensive research that requires the combined application 

of cement chemistry and nanoindentation analysis, and thus, is beyond the scope of this 

study.  On the other hand, the mechanical properties shown in Table 6.3 for C-S-H are the 

results of statistical analysis and would not be meaningful if the same process is used for the 

determination of energy ratios for a particular phase as well. In fact, each indentation 
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corresponds to a unique phase of the cement paste. Due to these reasons, it would be 

advantageous to use these energy ratios as the characteristic parameters of the individual 

load-displacement curve, rather than the intrinsic material properties. 

6.4 Definition of energy ratios 

As mentioned earlier, the total and elastic energy ratios defined by Attaf [] is no longer 

applicable when a dwelling portion (phase) is also present in the load-displacement curves. In 

the presence of the dwelling portion, the total and elastic energy ratios may be expressed as: 

 ;SL SE
T E

T E

W W
v v

W W
   (6.1) 

In the above expressions, SLW  and SEW  represent the absolute works of indentation 

corresponding to the loading and unloading curves, respectively, as. Quantities TW and EW , 

as usual, denote the total work done and the energy recovered after the complete withdrawal 

of the indenter, respectively. Indentation works are usually determined by evaluating the area 

under the respective curves, as schematically shown in figures 6.7a and 6.7b. 

The proposed definitions can be validated by modeling the experimental load-

displacement curves obtained from cementitious materials.  In the presence of the dwelling 

phase, the entire load-displacement curves may be modeled using following set of 

expressions: 
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2 1
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h
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 (6.2) 
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Figure 6.7: Schematic load-displacement curves with dwelling Phase and definition

of absolute work. 
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where Lh is the penetration depth at which the loading is supposed to be ceased.  The load-

displacement curves modeled by Eq. (6.2) with total and elastic energy ratios defined by Eq. 

(6.1) are shown in figure 6.8 for the low stiffness C-S-H. As can be seen, there is an excellent 

agreement between the theoretical and experimental curves, and thus it validates the 

proposed definitions concerning energy ratios. The elastic energy ratio defined in this way is 

also used to determine the contact depth from: 

 
 

  max

2 1

2 1
E

c

E

v
h h

v





 (6.3) 

Figure 6.9 shows the comparison between the contact depths obtained by Eq. (6.3) with that 

obtained from experiment, where an excellent agreement between them is evident regardless 

of the phases present in the cementitious materials. Finally, the initial unloading stiffness is  

Figure 6.8: Modeling of load-displacement curves for LS C-S-H obtained with

max 1000P N . 
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Figure 6.9: Plot showing the comparison of measured vs. calculated contact depths

using Eq. (6.3) for all four phases of cement paste. 

Figure 6.10: Comparison of measured and calculated initial unloading

stiffnesses for all four phases of the cement paste. 
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calculated according to the procedure described in Chapter 4 and is compared with that 

obtained experimentally, as shown in figure 6.10.  In all cases, accuracy better than 10% is 

obtained irrespective of the phases present. 

6.5 Empirical relations 

Empirical relations play an important role in the analysis of load-displacement data. As 

discussed in Chapter 2, nanomechanical quantities such as peak indentation load, penetration 

depths, indentation works and area of contact all are related to each other empirically. These 

relations provide insight on the nanomechanical behavior of a material and simplify the data 

analysis procedure significantly. This section focuses on some of these empirical relations 

that are relevant to cementitious materials. 

6.5.1 Contact area and tip bluntness relationship  

Contact area is one of the most important nanomechanical quantities and is determined 

from the known contact depth. For an ideally sharp indenter, it is given by:
2

1c cA C h ; 

where 1C  is 24.56 for a Berkovich indenter. In reality, no indenter is ideally sharp as every 

tip has finite radius. To account for the finite tip radius, Oliver and Pharr developed a method 

that essentially establishes an area function using test materials (fused quartz) prior to 

indentation on actual materials. The area function has the following form: 

    
1

2 1
1

0

i
n

c c i c
i

A h C h 


   (6.4) 

Coefficients iC  appearing in Eq. (6.4), except the leading term, take the indenter tip 

bluntness into account. These are determined iteratively as explained in Chapter 2. There is  
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Figure 6.11: (a) Variation of area ratio with contact depth; and (b) effect of tip

bluntness on the area ratio. 
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an alternative way to evaluate the contact area as well. Knowing the bluntness of the indenter 

tip, the contact area may also be evaluated using the following relation: 

    2

2 1c c cA h C h    (6.5) 

The term  represents the apex height (as shown in figure 2.10), a measure of the tip 

bluntness; it is equal to 6.22 nm for a new Berkovich indenter having the tip radius

100R nm used in this study. However, the contact area determined using these two area 

functions differs greatly, especially when the contact depth is smaller. The discrepancy 

between them can be quantitatively expressed by plotting their ratios  2
1 2/c cA A   with 

respect to the contact depth, as shown in figure 6.11a. It is clear from the figure that the ratio 

decreases, almost exponentially, with the increase in the contact depth and eventually 

becomes equal. To gain further insight qualitatively, the area function, 2cA , is calculated for 

several values of the indenter radius (0, 50, 100, 150, 200, 250 nm) and the ratios 

corresponding to each of these radii are again plotted against the contact depth, as shown in 

figure 6.11b. It is apparent from the figure that the discrepancy between these two area 

functions becomes significant when the contact depth is small. Note that apex height can be 

determined according to the procedure describe in Chapter 3.  

6.5.2 Maximum, plastic, contact and residual depths  

Using the data on ceramics, Attaf [25] has shown that each of these maximum, plastic 

contact and residual depths are linearly related to the other. In indentation measurement, 

plastic depth is defined as a point on the h-axis of the P-h diagram where a tangent to the 

unloading curves at the peak indentation load meets. While maximum, residual and contact 
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depths are obtained as experimental outputs, plastic depth is calculated using the following 

expression: 

 
 

max
1

0 max

P m

f

P
h

mA h h



 (6.6) 

Figures 6.12a-6.12c show the variation of maximum depth of penetration with each of the 

contact, plastic and residual depths, respectively. As can be seen, linear relationships between 

them do exist even for the heterogeneous cementitious materials. However, the correlation is 

somewhat poor in the case of residual vs. maximum penetration depth (figure 6.12c) as 

compared to the other two, which may be attributed to the sensitivity of residual depth due to 

surface roughness. Based on linear fit, the variation of the maximum depth of penetration 

with contact, plastic and residual depths may be expressed respectively as: 

 max c ch K h  (6.7) 

 max P Ph K h  (6.8) 

 max f fh K h  (6.9) 

The values for the proportionality constants appearing in the above equations are summarized 

in Table 6.4. Note that the accuracy of these linear expressions can be significantly improved 

with more experimental data, which would also allow us to develop such equations for 

different phases present in the cementitious composite. The advantage of using Eqs. (6.4) and 

(6.5) is that the contact area and initial unloading stiffness may be calculated in one of the 

simplest ways. We opined that these empirical correlations can be used as tools for sanity 

checks while carrying out more rigorous data analysis. Note that fK  can be expressed as a 

function of the elastic energy constant, as given in Eq. (6.3) 
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Figure 6.12: Relationship between various penetration depths: (a) ch  vs. maxh ; (b) Ph  vs. maxh ;

and (c) sh  vs. maxh . 
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6.5.3 Contact area and penetration depth relationships  

In a similar fashion, a direct relationship between contact area and different penetration 

depths could be established. The general trend is such that the contact area is proportional to 

the square of each of the penetration depths. To develop equations capable of predicting the 

contact area from the known maximum and contact depths, the measured contact area vs. the 

square of each of these depths are plotted, as shown in figures 6.13a and 6.13b. Linear 

regression analysis shows that the proportionality between the contact area and square of the 

maximum depth of penetration is also valid in the case of cementitious materials with a high 

regression coefficient value. However, in the case of contact depth, the relationship is linear 

only when the contact depth is in excess of 125 nm. Below this value, the contact area varies 

with the square of the contact depth according to a form given by a second order polynomial 

apparently due to the bluntness in the tip of the indenter, which is more pronounced at 

shallow depths. With these trends, the expressions for the contact area as a function of the 

maximum depth of penetration and contact depth, for cementitious materials, may 

respectively be expressed as: 

 2

max max

A

cA K h  (6.10) 

and 

 
 22 2

1 2

2

1 2

125

125

AP AP

c c c c c c

AL AL

c c c c c

A K h K h h nm

A K h K h nm

  

  
 (6.11) 

Table 6.4 summarizes the values of constants appearing in the above equations. Again, with 

the large database, regression analysis would yield more accurate and refined equations 

pertaining to each phase of the cementitious materials. Variations of contact area with the 
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square of plastic and residual contact depths are more scattered and may produce erroneous 

results if used in the subsequent data analysis.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.13: Relationship between: (a) contact area vs. maximum penetration depth;

and (b) contact area vs. contact depth. 
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Table 6.4: Values of various constants found in this study for 

cement paste. 

Constant Value Constant Value 

max

AK  0.02316 1

AL

cK  0.025384 

cK  1.1074 2

AL

cK  0.11591 

pK  1.1536 1

AP

cK  0.038377 

fK  1.3567 2

AP

cK  -5.71E-04 

 

6.5.4 Validation and discussion  

The validity of the empirical equations given in the previous subsections may be 

examined by evaluating the elastic modulus and hardness of all the phases of the cement 

paste. By substituting them in the Sneddon’s solution one by one, the modulus and hardness 

may be evaluated, depending on the empirical equations used, by three different ways. Note 

that the initial unloading stiffness is evaluated as described in Jha et al. []. 

Method 1: When the contact area is expressed in terms of maxh  
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 (6.12) 

Method 2: When the contact area is given as a function of ch  
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 (6.13) 
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 Figure 6.14: Comparison of Elastic Modulus and Hardness using the empirical

relationships obtained in this study to those obtained from conventional Oliver and

Pharr method. 
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If the contact depth is greater than 125 nm, then Eq. (6.13) will have the following form. 
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 (6.14) 

Method 3: Similarly, the contact area is a function of  and ch  
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 (6.15) 

The elastic modulus and hardness values determined using above equations are compared 

with those obtained experimentally, as shown in figures 6.14a – 6.14c. The agreement is 

reasonable as the calculated values deviate by a maximum of ±20% for some indentations 

only. A better accuracy is obtained in the case of hardness than indentation modulus as the 

effect of deviation in the initial unloading stiffness does not affect the later. Note that, in Eq. 

(6.15), 2  is determined by fitting 2 vs. maxh  curve shown in figure 6.11a using a higher 

degree polynomial. Hardness values obtained this way may be used to determine the elastic 

modulus of the cementitious material using loading curve. 

6.6 Determination of mechanical properties: Energy based method 

Based on the analysis presented thus far, one may conclude that the indentation energies 

may be employed in the Sneddon’s solution for punch problem to determine the elastic 
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modulus and hardness of a material. The steps involved in the method developed in this study 

are summarized in the following. 

1. Obtain the peak indentation load  maxP  and maximum depth of penetration  maxh  from 

the load-displacement curves.  

2. Compute the total  TW  and elastic  EW  work done from the area under the loading and 

unloading curves, respectively and evaluate the total and elastic energy constants 

according to the relation: 

 0 ;SL SE
T E

TL E

W W
v v

W W
   (6.16) 

where is the total work done during loading only. 

3. Determine the initial unloading stiffness using the elastic energy constant as:  

   max

max

2 1E s E

P
S v

h
    (6.17) 

  A value of 0.75 may be used for the geometric factor . The stiffness correction factor is 

given by: 
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 (6.18) 

The initial unloading stiffness determined in this way for cementitious materials is 

compared with obtained by the OP method, as shown in figure 6.15a, where reasonable 

agreement between then could be observed. 

4. Evaluate the nominal hardness of a material from the total work done during indentation 

from:  
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3
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29n

T

kP
H

W
  (6.19) 

5. Calculate the conventional (normal) hardness of a material from the nominal one using:  

 
0

N
C D n

T

K
H K H

v

 
  
 

 (6.20) 

where NK  is hardness conversion factor for the case involving an ideally sharp indenter. 

It may also be used in the case of a non-perfect indenter provided it is divided by the total 

energy constant. The dwelling portion was not considered while developing a relation 

between the conventional and nominal hardness values in Chapter 4. It is found that the 

work done during dwelling can be incorporated using the following factor: 

 
max

4.89 3.88 L
D

h
K

h
   (6.21) 

where Lh  is the penetration depth at the end of the loading. Note that when Lh  approaches

maxh , DK  becomes equal to 1 thereby corresponding to a case where no dwelling is 

present. 

6. Finally, evaluate the indentation modulus (or reduced modulus) using the Sneddon’s 

solution, which may be written in the following form:  

 max

2r E

c

P
E S

H

  (6.22) 

Figure 6.15b shows the comparison between the hardness values determined by above 

procedure and the OP method. For reduced modulus, similar comparison is shown in figure 

15c. In general, the computed results accord well with those obtained from the experiment in 
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either case. However, better accuracy can be achieved as we move from LS C-S-H to the 

anhydrous phase. The energy based approach developed in this study offers several 

advantages over the conventional method. It is computationally efficient; incorporates factors 

Figure 6.15: Plots showing the comparison of: (a) initial unloading stiffness; (b)

conventional hardness; and (c) reduced modulus determined by the energy-based

approach developed in this study and by the conventional Oliver and Pharr method. 
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such as the peak indentation load, dwelling period, and indenter’s tip bluntness explicitly; 

and most importantly, it does not require the computation of the contact area at all. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary of main findings 

In this thesis, a novel method for the determination of the elastic modulus and hardness of 

a material is developed within the framework defined by contact mechanics. The proposed 

method is based on indentation energies, which can be evaluated from the load-displacement 

data measured in a nanoindentation experiment. The main strengths of the proposed energy-

based approach are: (1) it incorporates the effect of peak indentation load, dwelling period 

and indenter tip bluntness explicitly; (2) it does not require the determination of the contact 

area between the indenter and the specimen; and (3) it computes the elastic modulus and the 

hardness of a material in one of the most efficient ways, as the required parameters can be 

readily obtained from the experimental curves. The main conclusions of this study are 

enumerated as follows: 

1. The total and elastic energy constants are related to the curvature of the loading and 

unloading curves, respectively. While the former quantifies the bluntness in the tip of the 

indenter, the later measures the fraction of the deformations that are plastic. 

2. For the Berkovich indenter, the total energy constant is a function of the indenter tip 

radius to the maximum penetration depth ratio alone if the indentation is elastic.  For 

elasto-plastic indentations, it also depends on the material properties when this ratio 

exceeds a value of 2. It is independent of the radius-to-depth ratio, but is found to be 

unique, corresponding to a given elastic modulus to yield a strength ratio for a spherical 

indenter. On the other hand, the elastic energy depends on both material properties as 
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well as the radius-to-depth ratio. However, the rate at which it decreases with respect to 

the radius-to-depth ratio remains the same irrespective of the material properties.  

3. The total energy constant varies in the range 1.0 - 1.50 and 1.0 – 1.25 for Berkovich and 

spherical indenters, respectively. In the case of the Berkovich indenter, it decreases with 

the increase in the radius-to-depth ratio. It remains constant with respect to the radius-to-

depth ratio for a spherical indenter. However, in either case, it increases as a material 

becomes more elastic. As far as the elastic energy constant is concerned, it may fall in the 

range 1 - ∞ with the upper limit corresponds to a completely plastic material. 

4. By the way of application, we have shown that the indenter tip radius and nominal 

hardness of a material may be evaluated using the total energy constant with great 

accuracy. We have also shown that the expression used for the determination of contact 

depth from the elastic energy constant for the Berkovich indenter is valid for the spherical 

indenter as well. The consequence of using an average value of this constant in the 

determination of contact depth is also discussed. 

5. This study provides a superior alternative to the curve-fitting methods used for evaluating 

the initial unloading stiffness from the nanoindentation response. The energy-based 

power function may be employed to model the unloading response fairly accurately. 

Analytical differentiation of such a function, however, yields erroneous results. A 

comprehensive analysis of the indentation data pertaining to oxide-based ceramics, 

coating and metals revealed that the error associated with this quantity could be 

expressed as a function of the elastic energy constant. By introducing a stiffness 

correction factor, an expression for the determination of initial unloading stiffness is 

derived in this study. The use of the elastic energy constant is more appropriate, in 
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comparison to the conventional power-law parameters, as it characterizes the unloading 

response of a material to indentation. The proposed method is also validated using 

literature data from different materials acquired with a relatively large peak indentation 

load (in excess of 100mN). Excellent agreement between the calculated and measured 

initial unloading stiffness is obtained for all the materials considered herein irrespective 

of the magnitude of the peak indentation load used to acquire their responses. 

6. This study shows that the existing work-of-indentation used in the determination of the 

nominal hardness of a material is modified in view of the bluntness at the tip of the 

indenter, thus allows us to calculate the same, even when the peak indentation load is 

small. A theoretical framework is developed to obtain a conventional hardness from a 

nominal for an ideally sharp conical and Berkovich indenter.  Similar conversion can be 

carried out for the blunt indenter using the phenomenological correction factors 

developed in this study. These correction factors are found to be a function of percentage 

elastic recovery and energy constant. The modified approach is validated using the 

nanoindentation data pertaining to wide range of materials and peak indentation loads. 

7. New definitions for the total and elastic energy constant are given in consideration of the 

dwelling period. When a dwelling portion is also included in the load-displacement 

response, the absolute works for the total and elastic energy constants should be 

evaluated from the initial and final depth of dwelling, respectively. Similarly, the total 

work done during loading should be ignored while determining the total energy constant. 

The energy constants obtained in this way can model the indentation load-displacement 

curves with dwelling period and provides initial unloading stiffness and hardness of 

cementitious materials very accurately. 
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8. Nanoindentation data obtained from hardened cement paste samples are analyzed to 

establish relationships between different nanomechanical quantities. Unlike metals and 

ceramics, limited numbers of equation with high regression coefficient are applicable to 

heterogeneous cementitious material. It has been found that the maximum depth of 

penetration is proportional to each of the plastic, residual and contact depths. Similarly, 

the contact area varies as the square of the maximum depth of penetration. However, in 

the case of contact depth, it varies linearly only when the former is in the excess of 125 

nm. Below this value, contact area can be represented by a second degree polynomial. 

Again, contact area can also be expressed as a function of contact depth and bluntness of 

the tip of indenter.  The discrepancy between the area measured by this relation with that 

obtained by the Oliver and Pharr method is about 15% when the contact depth is 

approximately greater than 125nm. These relationships provide reasonably values for the 

elastic modulus and hardness for cementitious materials when used in the Sneddon’s 

solution. 

9. A semi-analytical energy-based method is developed in this study, which employs the 

indentation energy to evaluate the initial unloading stiffness, hardness and elastic 

modulus. The proposed method is validated using the nanoindentation data from the 

cementitious materials which shows excellent agreement between the measured and 

computed mechanical properties. 

7.2 Limitations and recommendations for future research 

Although the proposed method evaluates the elastic modulus and hardness of a material 

with a reasonable level of accuracy, further studies are needed to enhance its efficiency and 
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accuracy, to extend its capability to evaluate other mechanical properties of interest, and to 

examine its efficacy in the multiscale material modeling and in the development of a more 

robust nanomechanical properties evaluation procedure. The correction factor employed to 

account for the effect of the indenter tip bluntness on the computed hardness values by the 

modified work-of-indentation approach appears to be a function of peak indentation load. 

Experimental studies can be pursued to establish a relation between the tip bluntness 

correction factor and the peak indentation load. Likewise, this study does not consider the 

correction factors due to the lack of axial symmetry of the indenter and due to improper 

boundary condition used in the Sneddon’s solution. Incorporation of these correction factors 

would significantly enhance the accuracy of the proposed method. The energy-based 

approach presented herein is limited to the determination of the elastic modulus and hardness 

only. Its realm of application can be extended if the concept used is applied in the 

determination of yield strength, strain hardening exponent, fracture toughness, other time-

dependent properties etc. A future study may be directed toward examining its effectiveness 

in the evaluation of macroscopic mechanical properties of concrete via the multiscale 

material modeling. Developing a loading curve based nanomechanical properties evaluation 

procedure based on the findings of this study would be an interesting topic for future 

research. 
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