
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

7-24-2003

High performance shift invariant motion
estimation and compensation in wavelet domain
video compression
Weiting Cai
Florida International University

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Electrical and Computer Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Cai, Weiting, "High performance shift invariant motion estimation and compensation in wavelet domain video compression" (2003).
FIU Electronic Theses and Dissertations. Paper 1965.
http://digitalcommons.fiu.edu/etd/1965

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F1965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.fiu.edu%2Fetd%2F1965&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/1965?utm_source=digitalcommons.fiu.edu%2Fetd%2F1965&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

HIGH PERFORMANCE SHIFT INVARIANT MOTION ESTIMATION

AND COMPENSATION IN WAVELET DOMAIN VIDEO COMPRESSION

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Weiting Cai

2003



To: Dean Vish Prasad
College of Engineering

This dissertation, written by Weiting Cai, and entitled High Performance Shift Invariant
Motion Estimation and Compensation in Wavelet Domain Video Compression, having
been approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Dr. Prasanna Jayakar

Dr. Amando Barreto

Dr. Subbarao V. Wunnava

Dr. Malek Adjouadi, Major Professor

Date of Defense: July 24, 2003

The dissertation of Weiting Cai is approved.

Dean Vish Prasad
Colleggf Engni]rAg

Dean 1Luglas W artzok
Jniversity Graduate School

Florida International University, 2003

ii



Copyright 2003 by Weiting Cai

All rights reserved.

iii



DEDICATION

to

My Parents!

iv



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my Major Professor, Dr. Malek

Adjouadi, for his patient guidance and strong support during the course of my doctoral

studies. This research work has been carried out by his constructive advice and detailed

comments. Besides the academic content I learned from him, I'm also very impressed by

his strict research attitude and great working enthusiasm!

I want to thank my committee members, Dr. Subbarao V. Wunnava, Dr. Armando

Barreto and Dr. Prasanna Jayakar, for their helpful suggestions.

I gratefully acknowledge the support from the National Science Foundation under

grant EIA-9906600 and the Office of Naval Research under grant N00014-99-1-0952.

I would thank Dr. Melvin Ayala, Mark Rossman, Nuannuan Zong, Andres

Herrera, Mike Valdes and all the friends in the CATE Lab. I also want to thank the

Electrical and Computer Department, FIU. Special thanks to Pat Brammer.

I would say my deepest appreciation to my father, my mother and my sister who

are the inspirations to me, for their constant encouragement and unreserved love!

v



ABSTRACT OF THE DISSERTATION

HIGH PERFORMANCE SHIFT INVARIANT MOTION ESTIMATION

AND COMPENSATION IN WAVELET DOMAIN VIDEO COMPRESSION

by

Weiting Cai

Florida International University, 2003

Miami, Florida

Professor Malek Adjouadi, Major Professor

The contributions of this dissertation are in the development of two new

interrelated approaches to video data compression:

1) A level-refined motion estimation and subband compensation method for the

effective motion estimation and motion compensation.

2) A shift-invariant sub-decimation decomposition method in order to overcome the

deficiency of the decimation process in estimating motion due to its shift-invariant

property of wavelet transform.

The enormous data generated by digital videos call for an intense need of efficient

video compression techniques to conserve storage space and minimize bandwidth

utilization. The main idea of video compression is to reduce the interpixel redundancies

inside and between the video frames by applying motion estimation and motion

compensation (MEMC) in combination with spatial transform coding. To locate the

global minimum of the matching criterion function reasonably, hierarchical motion

estimation by coarse to fine resolution refinements using discrete wavelet transform is

applied due to its intrinsic multiresolution and scalability natures.

vi



Due to the fact that most of the energies are concentrated in the low resolution

subbands while decreased in the high resolution subbands, a new approach called level-

refined motion estimation and subband compensation (LRSC) method is proposed. It

realizes the possible intrablocks in the subbands for lower entropy coding while keeping

the low computational loads of motion estimation as the level-refined method, thus to

achieve both temporal compression quality and computational simplicity.

Since circular convolution is applied in wavelet transform to obtain the

decomposed subframes without coefficient expansion, symmetric-extended wavelet

transform is designed on the finite length frame signals for more accurate motion

estimation without discontinuous boundary distortions.

Although wavelet transformed coefficients still contain spatial domain

information, motion estimation in wavelet domain is not as straightforward as in spatial

domain due to the shift variance property of the decimation process of the wavelet

transform. A new approach called sub-decimation decomposition method is proposed,

which maintains the motion consistency between the original frame and the decomposed

subframes, improving as a consequence the wavelet domain video compressions by shift

invariant motion estimation and compensation.
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CHAPTER 1

Introduction

1.1 Motivation behind the research

Various types of video applications in this information and telecommunication era are

emerging around us, from the high definition television to low bit rate video telephony

communications over the Internet and the radio systems. The amount of data generated

by the information resources may be so large that it can overwhelm the practical cost and

bandwidth limitations, as well as tax the demand for processing and transmission

operations. The widespread usage of digital videos calls for an intense need of video

compression technology to conserve storage space and minimize bandwidth utilization.

Video compression techniques are mainly characterized by applying motion estimation

and motion compensation (MEMC) in combination with spatial transform coding. The

discrete wavelet transform (DWT) has manifested its intrinsic multiresolution and

scalability advantages on image compressions without the annoying blocking artifacts.

Thus, video compression techniques have been infused with exciting prospects for new

efficient approaches by the beneficial integration of motion estimation and wavelet

transformation.

1.2 Objective of the research

The purpose of this dissertation research is to find a new approach to improve the

existing motion estimation and compensation methods. The proposed algorithm is used to
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compensate for the limitations imposed by the shift variant property of the discrete

wavelet transform in wavelet domain motion estimation and compensation. The goal is,

thus, to improve video compression efficiency and accuracy through the development of

a new algorithm that has the inherent property of shift invariance.

1.3 Methodologies of the research

This dissertation explores a new research avenue that integrates key aspects of motion

vision with the mathematics of wavelet theory and the MPEG basis in estimating and

compensating the matching blocks of data. The major contributions of this dissertation

can be summarized as follows:

(a) Established new mathematical derivation on the basis of the wavelet theory to

improve the search method using motion estimation and motion compensation;

(b) Successfully made use of the symmetric-extended wavelet transform to reduce the

boundary distortion experienced in multiresolution search; and

(c) Modified the decimation process of the Wavelet to make it shift invariant for

motion estimation.

The video compression system is introduced in chapter 2 regarding several aspects

necessary to reduce video redundancies. The mathematical theory of wavelet

multiresolution analysis and its two-dimensional applications on image compression are

presented in chapter 3 in order to provide the theoretical support for the wavelet domain

video compression.
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Since the full motion estimation places excessive computational loads on the video

encoder, fast search methods are required. However, the performance of the fast search

algorithm is degraded if the matching criteria function converges to the local rather than

to the global minimum. The multiresolution nature of wavelet transform can realize

hierarchical motion estimation and compensation by the mechanism of reaching the

desired region and converging to the global minimum, which is the main subject of

chapter 4.

Conventional discrete cosine transform (DCT)-based codec has limitations such as

blocking artifacts at low bit rate applications. Wavelet transform is expected to have good

performance, based on the results of experiments on image compression at high

compression ratios. In addition, the entropy is even lower in the prediction error

subframes, which generates more efficient compressions. The wavelet video codecs are

implemented in chapter 5 including the encoder and the decoder.

Critical subsampling from wavelet filter convolution under perfect reconstruction

constraint requires circular convolution instead of linear convolution to make the

minimum half-sample decomposition possible. However, circular convolution generates

border distortion because of the discontinuous periodic extension on the two ends of the

signal. As more wavelet decomposition levels are involved, border distortions on the low-

resolution subframes after convolution with the wavelet filters become more apparent.

Proper boundary extensions on the finite length signal are necessary for subframe motion

estimation without boundary discontinuities and for perfect reconstruction without

coefficient expansion. Chapter 6 presents the symmetric-extended wavelet transform to

3



improve image compression and MEMC performance by appropriate boundary

handlings.

Wavelet transform is shift variant, translation in the spatial domain does not correspond

to translation of coefficients in the wavelet domain due to the decimation operations. This

deficiency by taking only one another samples breaks the motion consistency between the

decomposition layers, except that the shifts in the spatial domain are multiples of the

sampling period. The important objective in chapter 7 is to compensate for the shift

variant property of DWT in motion estimation and compensation, so that more accurate

and efficient video compression can be achieved, making DWT effectively shift

invariant.

Chapter 8 provides concluding remarks in the context of the new developments in terms

of algorithm design, the results achieved, and the main contributions attained through this

dissertation work.
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CHAPTER 2

Video Compression system and standards

2.1 Video compression standards

Moving picture expert group (MPEG) [1] defined by International Organization of

Standard (ISO) is currently the most popular compression standard family. MPEG-1 was

developed to produce reasonable quality of images and sound at about 1.5Mbps on digital

storage media. MPEG-2 was designed to realize higher bit rate around 10Mbps for high

definition digital market. MPEG-4 [2, 3] is targeted at very low bit rate multimedia

applications between 4.8-64kbps. MPEG-7 is a content representation standard for

information search through a video library [4].

2.2 Compression schemes

The underlying basis of video compression is to uncorrelate the data and reduce the

redundancies inside and between the frames by means of spatial, temporal, psychovisual

and coding compressions, so that less data are used to represent the same amount of

information.

2.2.1 Psychovisual compression

Certain information in an image is psychovisually redundant because the human visual

system does not respond with equal sensitivities to all visual components. Color space

transform is used to decorrelate the color data by transforming the regular RGB color

space into the YCrCb luminance-chrominance color space by:
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Y = 0.257R + 0.504G + 0.098B (2.1)

C, = 0.439R - 0.368G - 0.071B (2.2)

Cb = -0.148R -0.291G+0.439B (2.3)

where Y is the luminance channel, C, and Cb are the chrominance channels. The

significant energy from the luminance channel can be illustrated by the similar results of

the original frame and an MPEG 4:2:0 format frame in which the chrominance channels

are half subsampled in both horizontal and vertical resolutions, which indicates the

importance of the color space transform. An example of such color space transformation

is shown for visual appreciation in Figure 2.1.

Original frame

MPEG 4:2:0 frame

Figure 2.1. Example of the importance of color space transformation
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The inverse color space transform recovers the luminance-chrominance components back

into the RGB color components as:

R =1.1641Y +1.5958Cr -0.001 8 Cb (2.4)

G =1.1641Y -0.8135Cr -0. 3 9 1 4 C (2.5)

B =1.1641Y - 0.0012Cr + 2 .01 7 8Cb (2.6)

In general, the human perception cannot involve quantitative analysis of each pixel of the

image. Thus, quantization is another feasible way to eliminate psychovisual redundancy

by mapping the pixel values into restricted values of data that carry the most information

after dequantization. Combined with color characteristics, the quantization tables for

luminance and chrominances as shown in Table 2.1 and Table 2.2, respectively, are used

to allocate more bits for the coefficients that are visually more important.

Table 2.1. Quantization table for luminance channel

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 120 120 101
72 92 95 98 112 100 103 99

Table 2.2. Quantization table for chrominance channels

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
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2.2.2 Spatial compression

Two-dimensional pixel array can be transformed into a more uncorrelated data format to

reduce the spatial redundancies. Although the domain transformation of image pixels

does not produce any compression, most energy has been packed into minority of the

transformed coefficients that need to be maintained. DCT-based and wavelet-based

transformations are applied in the coders to convert the spatial information into frequency

or scale domain [5].

2.2.2.1 Discrete cosine transform

Joint Photographic Expert Group (JPEG) perhaps is the most common color compression

scheme defined by ISO/ITU-T standard (International Organization for

Standardization/International Telecommunication Union-Telecommunication Standard

Sector) in the late 1980s [6]. The image is divided into 8 x 8 pixel blocks as the

processing unit. Each block is transformed by the DCT and then quantized by a

frequency dependant quantization table for luminance and chrominance components.

After being scanned in zigzag order, the blocks are encoded according to the well-known

Huffman tables [7].

2.2.2.2 Wavelet transform

For the last few years, the JPEG committee has been working towards the establishment

of a new image compression standard, JPEG 2000 [6, 8, 9, 10, 11], which is based on

discrete wavelet transform (DWT).
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Wavelet transform can approximate non-stationary image signals by its flexible support

basis functions. Because of the multiresolution nature, scalability and progressive

transmission are feasible by wavelet transform to support variable bandwidth applications

such as image archive, printer and World Wide Web. Scalability refers to the ability to

transmit only a certain part of the bitstream as necessary. Signal to noise (SNR)

scalability generates video at different qualities. Spatial scalability provides video at

different spatial resolutions by size and format of interest. Unlike the sequentially

processed DCT in a single resolution, progressive transmission allows the bit stream to be

stopped in the middle with acceptable accuracy and resolution in both the encoder and

decoder. This feature is important since intermediate images can be displayed

hierarchically as being transferred under limited channel rate. In addition, global wavelet

transform overcomes the major drawback of the DCT on image compression, called the

blocking artifact [12], which is the visible discontinuity along the transformed block

boundaries after quantization.

A disadvantage of wavelet transform is the shift variance property in that the transformed

coefficients of a shifted signal are not simply shifted. Further investigations are thus still

needed in the case of applying wavelet transform on translational motions for video

compression.

2.2.3 Temporal compression

Digital video processing uses multi-frame compression to deal with the significant

temporal correlations between consecutive frames. The video sequence is processed by
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group of pictures (GOP) as a random access unit containing a predesigned number of

frames. They are basically classified as intraframe (I-frame), predicted frame (P-frame)

and bi-directional interpolation frame (B-frame) [13]. The coding for I-frame is spatial in

nature, and is called intraframe compression. The coding for P-frame and B-frame is on

the other hand called interframe compression, because P-frame employs a reference

frame from the past and B-frame uses a frame from the future to reduce redundancies

between similar frames.

The central processing for interframe compression used in MPEG technique is the motion

estimation and motion compensation (MEMC) [14]. Motion estimation searches for the

best matching block (BMB) for each current processing block from the reference frame,

and motion compensation represents the video frame by the matched blocks from the

corresponding motion vectors.

2.2.4 Coding compression

Entropy coding provides lossless compression on information source by the statistical

frequency of occurrences. Given the occurring probability of the symbols x in a data set

X as P = {P(x): x e X}, the average information called the entropy of the source is:

H(X) = - P(x) log2 P(x) (bits / symbol) (2.7)
XE X

If the source is an image, the average number of bits used per pixel (bpp) is called the bit

rate. Variable-length coding achieves data compression by assigning fewer bits to the

more probable pixels. An ideal coder is capable to encode each symbol using fractional

10



bits, while the codelength for Huffman coding needs to be integer to simplify the lookup

table.

The entropy coding is fully invertible at the decoding end. Fundamental transform coding

principles are explained in [15]. Codings on the transformed domain are modified for

DCT [16, 17], and combined with wavelet structure for very low bit rate video codecs

[18].

2.3 Fidelity criteria

The compression ratio of a true color frame (8 bits for each color) is:

Compression Ratio = 24(2.8)
bit rate

where

bit rate = B(bpp) (2.9)
N, -N2

and B is the number of bits of the size N x N2 frame after compression. The

compression performance can be evaluated by two methods: subjective and objective

fidelity criteria [19]. Peak signal to noise ratio (PSNR) is an objective measurement that

estimates the accuracy of the reconstructed frame in terms of the luminance components:

PSNR = 20* lg 2 -1 (dB) (2.10)

jN1 N Z[f(i, J) -fr (i, )2
NN2 N,,N2

b is the bit resolution of the original frame, usually 8 bits/pixel. f is the original image

frame and f, is the reconstructed frame.
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Other major concerns about compression performance are complexity and functionality.

Computational loads are evaluated mathematically for complexity regardless of

optimization, implementation method and target applications.

2.4 Video compression system

A video codec (coder/decoder or compression/decompression) is a system implemented

in hardware or software to compress and decompress the video sequence.

Video frames captured at the source are compressed into bit stream by the video encoder.

The basic structure of video encoder is shown in Figure 2.2. A frame is buffered as a

reference for the compression of the current processing frame. After applying color space

transformation (CST) and mean removal on the luminance and chrominance components

of both frames, motion estimation is performed block by block. If a best matching block

is found, the current block after motion compensation is represented by a motion vector

and a prediction error block. All the motion vectors and the quantized prediction errors

go for the entropy coding. The compressed data as well as the side information including

the frame size, filters used, transformation information and the Huffman table are sent to

the decoder.
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Reference frame Current frame

RGB
CST CST

" YCCb
Mean shift Mean shift

AYCrCb

Motion estimation

Motion 
vectors 

Motion compensation - -

Prediction error frame

DCT

Quantization

Run-length coding

Entropy coding

Bit stream

Figure 2.2. Video encoding system

The decoder shown in Figure 2.3 recovers the stream data back into video frames. The

prediction error data, motion vectors and Huffman table are extracted by entropy

decoding. The current frame is reconstructed by the motion vectors and the prediction

error blocks obtained after dequantization and inverse DCT (IDCT). Inverse color space

transform (ICST) is performed at last to convert the frame from YCrCb back into the

regular RGB format.
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Bit stream

Entropy decoding

Prediction errors Huffman table Motion vectors

Prediction errors Motion compensated frame

Dequantization

IDCT

Frame construction

Mean shift

ICST

Reconstructed frame

Figure 2.3. Video decoding system
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CHAPTER 3

Wavelet Multiresolution Analysis and Compression

3.1 A retrospective on wavelet transform

The Fourier transform of a finite-energy signal yields the signal spectrum F(w) by the

inner product of the signal f(t) with sinusoidal basis functions over the whole real time

duration:

F(w) = f(t)e-j'dt (3.1)

This definition indicates that any part of the function in time domain will spread out on

the entire frequency domain due to the global support of the basis function. It gives

perfect representation in the frequency domain, but no time or spatial domain information

is provided. When local frequency content of a signal is of interest, frequency analysis

using Fourier transform becomes inadequate. Time-frequency analysis [20, 21] is

therefore a more suitable approach to analyze the local characteristics of non-stationary

signals. By shifting a window function p(t) on f(t) around t = b before taking Fourier

transform, short-time Fourier transform (STFT) can be specified on the two-dimensional

time-frequency plane as in the following relation:

G(b, w) = f f(t)<9(t - b)e-wdt (3.2)

When changing the location parameter b , frequency information at different time

intervals of the signal can be extracted over the nonzero duration of the window function.

Although the frequency of the sinusoidal wave varies inside the envelope of the window

function, the time-frequency resolution of the analysis is fixed at all locations since a
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single window is used for all frequencies [22]. When a predetermined resolution may not

be appropriate for a signal with wide range of dominant frequencies, multiresolution

analysis is needed to improve accuracy and efficiency in processing the signal.

Heisenberg's uncertainty principle [23] states that the time-bandwidth product of the base

function is lower bounded; that is to say, the window width of the base function is

inversely proportional to the spectrum window width. Thus, localization cannot be good

in the time domain and the frequency domain simultaneously. However, a signal under

analysis is generally composed of high frequency components on short duration and low

frequency components on long duration. Therefore, wavelet window function with

support adaptability is used to overcome the resolution problem of STFT [24]. When a

contracted, high frequency version of the wavelet function is applied, temporal analysis is

performed to detect low frequency contents of the signal; on the other hand, when a

dilated, low-frequency version of the same wavelet is applied, frequency analysis is

performed to locate high frequency contents of the signal.

Continuous wavelet transform (CWT) [25, 26, 27] convolves the signal f(t) with

wavelet base function Yb a (t) obtained from the mother wavelet function lt(t) via

translations and dilations in scale a and position b :

W(b, a) = ff(t)y',b(t)dt (3.3)

where

1 t -b
a 

, (t)= 1 ( ) (a >0) (3.4) a a
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W(b, a) is defined as the wavelet coefficient.

Unlike the sinusoidal base function predefined in the Fourier transform, VI(t) is not

specified. Instead of filling the window function with different frequencies of oscillations

in STFT, wavelet transform keeps the number of oscillations constant and modifies the

width of the self-similar function to change the frequency. When the scale factor a

increases, the support of the wavelet function increases, the time resolution decreases,

while the frequency support decreases and shifts to the low frequency band with

increased frequency resolution. On the contrary, when a decreases, the support of the

wavelet function decreases, the frequency support shifts to the high frequency band with

decreased frequency resolution. This is the so-called constant relative bandwidth analysis

since the frequency support width is proportional to its center. In this way, higher

frequencies are better resolved in time, and lower frequencies are better resolved in

frequency.

In continuous wavelet transform, in addition to the time domain function, dilation as well

as translation parameters are changed continuously. These continuously varying

parameters in both time and scale domain produces redundancies in signal analysis and

synthesis. This problem can be resolved by critically subsampling a and b on a dyadic

grid of the time-scale plane as:

a = 2-S
(3.5)

b=k-2-S (s,keZ) (

17



Thus, the wavelet function is redefined as:

S

I',k (t) = 22 y(2t - k) (3.6)

by the discretized parameters of integer scale s and shift k, and the wavelet transform is

turned into wavelet series expression as:

WSk = f f (t~sik (t)dt =< f (t)l/"~k (t) > (3.7)

Although CWT allows us to use very general wavelet functions to satisfy the

admissibility condition for function reconstruction, more restrictive conditions such as

orthogonality are required after the discretization. If { ,k(t)} forms an orthonormal basis

of the finite energy functional space L2 (R) [28], as:

< Ys,k, Y',m >- 
3

s,1k,m (3.8)

then any function f(t) e L2 (R) can be synthesized by the linear combinations of these

wavelet bases in different sizes via dilations and in different positions via translations:

f(t) = IEwskysk(t) (3.9)
s k

Otherwise, we need the dual wavelet function set {sk (t)}

< Ys,kI!I,m > 
3

s,1
3

k,m (3.10)

Ws k =< f (t1),' ,k (t) > (3.11)

Thus, a square integratable signal can be decomposed and reconstructed partially as

approximate representation or fully as perfect reconstruction from these elementary

building blocks of wavelet bases at different scales.
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3.2 Multiresolution analysis

Multiresolution analysis (MRA) [29, 30, 31] is a framework used to approximate a

function f(t) e L2 (R) by a sequence of closed subspaces A, (i e Z) with the following

properties:

1. nesting: Ai, c Ai

2. closure: UAi= L2 (R)
ieZ

3. shrinking: n Al = {0}
ieZ

4. scaling: f(t) e Ai < f(2t) e A,

5. shifting: f(t) e Ai < f(t + 2-'k) e Ai (k e Z) (3.12)

Since the union of subspace set {Ai} completes the function space L2 (R), successive

approximation of function f(t) can be constructed from these nested subspaces until the

infinite resolution L2 (R),

{0}+ --- c A c Ao c A, c -" - {L 2 } (3.13)

The difference between two successive approximation subspaces A, 1 and A, is the

detail subspace W expressed by wavelet functions at scale s, which is complementary

to the approximation subspace AS as:

A, n WS = {0} (3.14)

AS, = A, O+ WS (3.15)

G is the direct-sum decomposition operator. It indicates that the higher resolution

representation can be completely expressed by the lower scale approximation and the
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wavelet difference from the same scale. Assuming the basis set of A, is the scaling

S

function {,k (t) =22 0(2st - k)} , defined by the shift orthogonal property that

translations at this scale are found to be mutually orthogonal, satisfying the condition:

< OS(t),O,,,(t) >= 9,, (3.16)

In this case, the inner product of the base function with itself is unity, while the inner

products with its shifts are zero. And the basis function set of W is the wavelet function

S

{Y,k (t) = 22 y(2s t - k)} by the condition that

< Y,," (t), y,,, (t) >=5 n,,, (3.17)

Therefore, subspace Ao is spanned by scaling function #(t - k) with integer translations;

Wo is spanned by wavelet function y1(t - k); subspace A, is spanned by #(2t - k); W, is

spanned by yt(2t - k) and so on. Since #(t) e Ao c A, , #(t) can be expressed by a

weighted sum of the scaling function #(2t) from A, with shifts,

#(t) = Igo[k](2t -k) (3.18)
k

The same nested relation can be applied to the wavelet function in that VI(t) e W c A,,

then

yI(t) = g, [k]#(2t -k) (3.19)
k

go and g, are the scaling and wavelet function coefficient sequences. Equations (3.18)

and (3.19) are called the two-scale dilation equations. It states that the scaling function

and wavelet function at a certain scale can be expressed in terms of the translated scaling
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functions from the next higher scale. Obviously, the connections between any two

successive scales are fixed for a specific multiresolution system. Using equation (3.18),

and taking the Fourier transform on both sides, yields:

(W) = -gEk]e 2 0( ) (3.20)
2k 2

and based on the approximation property of the scaling function, go sequence shows a

lowpass filter characteristic on the DC frequency:

G.(w) 1o= jgek] = 2 (3.21)
k

The nonzero coefficient of go represents the weight of the corresponding shift. The finite

length of the sequence defines a compact support base function set from an analog point

of view, and a finite impulse response (FIR) filter [32] from a digital point of view.

3.3 Fast wavelet transform

The complementary condition between A, and W in (3.14) can be realized by

orthogonal decomposition A, 1 W in that any function from the approximation subspace

will be orthogonal to those from the wavelet subspace at the same scale. It can be simply

realized by the orthogonality between the base functions:

< 0(t), y(t -l) >= 0 (3.22)

assuming fs+, (t) e A, ,

S+I

fs+1(t) = as+,,1 os+,(t) = 2 2 as+1,i(2S+"t -l) (3.23)

Changing the basis due to the established relations in (3.16), (3.17) and (3.22), and
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applying the two-scale equations of

0(2s t -1) = Igo[k ]0(2s+1 t - 21-k) (3.24)

k

y(2st -1) = 1g[k]#(2s+1t -21-k) (3.25)
k

so that the higher resolution base function is projected into the scaling and wavelet

subspaces in lower resolution, the following equation is attained:

A+1,1(t) = Z < s+ll (t),10,k (t) > #,k (t) + < 0s+1, (01 Y's,k (t) > Vsk (t)
k k

= YZ 1 g [1- 2k]Os~k (t) + gl [1- 2k]ysk (t) (3.26)

k1

Constant could be dropped from the sequences for simplicity,

1g -+ go (3.27)
72

1gl g (3.28)

Equation (3.23) can be written as:

f1+1 (t) = I (Igo[l - 2k]as+IAsk (t) + Igjl - 2k]a+ 1 IYsk (t)} (3.29)
k 1 1

On the other hand, with fs (t) e As and ds (t) e

f,(t)= Zaksk (t) (3.30)
k

d,(t) = Iwsk Ysk(t) (3.31)
k
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and from the subspace decomposition in (3.15), we have

f,+1 (t) = f, (t) + d (t) (3.32)

Substitute in (3.32) equations (3.30) and (3.31), then compare the correspondent

coefficients of Os,k (t) and Y'sk (t) with (3.29), it shows the convolution relationships of

the scaling and wavelet coefficients between two successive scales:

ask = g[ - 2k]a,,, (3.33)

wk = g,1[l- 2k]as+l, (3.34)

Observe that if filter ho and h, have the impulse response as time inverse of go and g,

sequences as:

ho[k] = go[m - k] (3.35)

h1[k] = g[m - k] (3.36)

m is used to make ho and h, causal filters, and their z transformations in the relations of

Ho(z) = z-'"Go (z-) (3.37)

H,(z) = z-'G (z-') (3.38)

(3.33) and (3.34) become

ask = ho[2k -1]a = {ho * as+i }1 (3.39)

wsk = h, [2k -l]as+,, = {h, * as,}2 (3.40)

This is the discrete wavelet transform (DWT) or fast wavelet transform (FWT). The
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computation is performed as a filter convolution followed by half downsampling (4 2)

shown as block 1 and 2 in Figure 3.1.

Applying the same subspace expansion and combination method for reconstruction as

above, the inverse discrete wavelet transform (IDWT) is attained as follows:

s+t

aS 1 # (t) = as, 1 2 2 0(2s+1 t - 1)
I l

= ask ASk (t) + ZWsk Isk (t)
k k

S

= ask22 go[m](2" t - 2k - m)
k

S

+ WSk 2 1g [m]#(2s+ t - 2k - m)
k

S S

= ask2 go[l -2k]#(2t -l)+ w 2 g 1[l-2k]#(2"+'t -1)
k I k I

therefore,

a = {go [l- 2k]ask + g, [l- 2k]wsk }

= go *{a,}T2 + g, *{w,}T 2  (3.41)

The scaling and wavelet coefficients are upsampled by 2 (T 2) before filter convolution

as shown in block 3 of Figure 3.1.
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>Ho ' 2 T 2 Go
T2 GI ;

2

DWT analysis IDWT synthesis

Figure 3.1. DWT and IDWT computational structure

The relations of as,k , wsk with as+,,k can fast calculate the CWT coefficients of each

level once the function is projected into the approximation subspace [33]. It illustrates

that the lower resolution coefficients of the scaling and wavelet function can be obtained

from the higher resolution coefficients.

As far as the computational structure is concerned, it is a two-channel wavelet filter bank

to process digital signals. The decomposition part of the filter bank performs DWT for

signal analysis, and the reconstruction part performs IDWT for signal synthesis. When

the input is received, the full bandwidth of the signal is split into low and high spectrum

subbands by the lowpass filter ho and highpass filter h,. After being downsampled by

keeping only every other sample in each branch, these decimated outputs constitute the

approximation and detail signals in octave subbands. In reconstruction, the approximation

and wavelet output from the two branches are upsampled by inserting zeros between

every other sample, and then passed through the lowpass and highpass synthesis filters

go and g, . The sum is the perfect reconstruction of the original input to the filter bank.
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Hierarchical decomposition can be involved in multi-stage wavelet filter bank in a

pyramid structure as shown in Figure 3.2 for one-dimensional signal decomposition. It

expresses that a discrete signal is separated into multiresolution coarse approximation and

the added details.

Ho . 2 Ho 2 , T2 Go T 2 Go

H1 & 2 T 2 G,

S H, 2 T 2 Gi

Figure 3.2. Multilevel wavelet decomposition and reconstruction
for one-dimensional signal

For two-dimensional image signals, wavelet decomposition performs a multiresolution

representation on an image by a series of subbands with the most important information

in the approximation and better detail information in the high frequency subbands.

3.4 Orthogonal wavelet filters

By the analysis part of the filter bank, half decimation of the input signal x(n) results in

the output signal

y(n) = x(2n) (3.42)

and the corresponding Z transform [20] is:

11
Y(Z) = -[X(Z 2 + X(-Z 2 )] (3.43)

2

In the synthesis part, the output from double upsampling by interpolating zeros is
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y(n)f ) forn=2k(k E Z) (44)
0 otherwise

with the spectrum given by:

Y(Z) = X(Z 2) (3.45)

Thus, the output transfer function of the filter bank by the above operations becomes

1
Y(Z) = - X(Z)[Ho (Z)Go (Z) + H, (Z)G, (Z)]

2 (3.46)

+1 X(-Z)[Ho (-Z)Go (Z) + H, (-Z)G, (Z)]
2

For perfect reconstruction, with the need to eliminate aliasing effect from X(-Z) caused

by decimation, the following relations are assumed:

Go(Z) = H,(-Z) (3.47)

G,(Z) = -Ho (-Z) (3.48)

with the corresponding impulse responses given by:

h,[k] = (-1)k go[k] (3.49)

ho[k] = -(-1)k g,[k] (3.50)

From equations (3.35), (3.36), (3.49) and (3.50), it requires that m being an odd integer

and

G1(Z) = z-mGo(-Z-') (3.51)

which is equivalent to

g,[k] = -(-1)k go[m - k] (3.52)

Based on the condition of real coefficient filters,
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<0(t),0(t -l) >= S 1 go [k]go[k - 21] = S35
k (3.53)

SGo(Z)Go(Z-i +Go(-Z)Go(-Z-')= 2

The transfer function of the filter bank is Y(Z) = z-'"X(Z) , which is a perfect

reconstruction with only m samples delay. For practical signal processing, compact

support FIR filters are desired for low-complexity implementation. All four filters will

have the same even length by the double-shift orthogonality condition in (3.53) and from

the impulse response results obtained above. Assume the filters' length is L. For a least

delay of the causal FIR filters,

m = L -1 (3.54)

The solution of the filter bank coefficients under perfect reconstruction constraint is thus

determined as follows:

Igo [k]go[k -2l] = S
k

g [k] = -(-1)k go (L -1- k) (3.55)

ho[k] = go[L -1-k]

h,[ k] =g,[ L-1 - k]

Once go is defined, highpass filter g, and other filters in the bank are defined. Indeed,

the operator (-1)" generates the so-called quadrature mirror filter (QMF) in that the

lowpass and highpass filters are symmetrical around the point r in their magnitude

responses. The Daubechies family defines go filter under the regularity constraint that

the iterated filter coefficients will converges to a continuous function by a maximum

number of zeros of the spectrum Go(w) to the r'h derivatives at w = ;r [33, 34, 35, 36],
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Gor (w) = 0 - Ik' (-1)k go[k]= 0 (3.56)
k

The coefficient matrix calculation of these simultaneous equations (3.21), (3.27), (3.28),

(3.53) and (3.56) solves the discrete filters. Daubechies (dB) filters in variable lengths are

shown in Figure 3.3 which are the same as those obtained from spectrum factorization

method [23, 37].

1GO(w)I (solid) |G,(w)I (soft)

2.5

0) o

o 1.5 - - -- --
0.

dB1

0 .5 -- -- ------ --- - --- -

dB10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized frequency w[O,A]

Figure 3.3. Daubechies wavelet filter family

By the fact that the wavelet is a window function in time domain, it's also a window

function in frequency domain as a bandpass filter by the difference between two

1dB1

successive lowbands. From the Fourier transform pair Vf(2t) H-+ -y(-) , when the scale
2 2

goes down, the corresponding spectrum will narrow down by half, when the scale goes
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up, the corresponding spectrum will shift to the double passband. It develops an octave

filter bank with lowpass and highpass filter branches with respect to the signal before

decomposition.

From the magnitude response of the filters, DWT provides perfect signal reconstruction

although the wavelet filters are not ideal halfband filters. When filter length is 2, dB1 is a

Haar filter. There's no closed-form analytic formula for the compactly supported scaling

and wavelet functions except Haar filter, but they can be computed with arbitrary high

precision using cascade algorithm [23, 37, 38]. It's a refinement scheme of iteratively

solving the dilation equations until the convergence is reached.

3.5 Biorthogonal wavelet filters

When the orthogonality constraint is released, more degrees of freedom can be added into

the redundant biorthogonal wavelet system. Compact support biorthogonal perfect

reconstruction FIR filters can have linear phase property while orthogonal systems can't,

except for Haar wavelet filter [39, 40]. A symmetric filter that has linear phase response

is of interest in very low bit rate image coding.

3.5.1 Biorthogonal wavelet system

Biorthogonal relations are required for complementary subspace decomposition from

(3.14) in multiresolution analysis. In a biorthogonal system, there are two sets of basis

functions called dual spaces. Each basis is not orthogonal to its own but to its dual. One

basis set is used for analysis and the other set is used for synthesis. Thus, we need space
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As as dual of As and W as dual of Ws when A, is not orthogonal to W, . The dual

approximation subspace A, generates the multiresolution analysis of the functional space

as well,

{0} <- ---c A c A0 c A, c -- -> {L2} (3.57)

The scaling function set {#,tk (t)} that span approximation subspace A, is the synthesis

scaling functions; and its dual, called the analysis scaling function set

{0s (t) = 22 0 (2s t - k)} span dual approximation subspace As,

< #,,, (t), 0,s(t) >= 5, n (3.58)

Synthesis wavelet functions {ysk (t)} span detail subspace W,; and its dual, the analysis

wavelet functions {sk (t) = 22 W(2' t - k)} span dual detail subspace W, ,

< Y ,, (t),! s,,(t) >= (5,n (3.59)

The two-scale dual dilation equations are described by the dual coefficients,

# = [m]#b(2t - m) (3.60)

I(t)= g1 [m]# (2t - m) (3.61)

where W is the complementary subspace for A, in As+, ; W, is the complementary

subspace for As in As+, ,

AS, = As + Ws (3.62)

although they're not orthogonal complement, their duals are orthogonal,
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A, 1 WS (3.63)

A5 1 W (3.64)

so the base functions belong to these subspaces are mutually orthogonal by their

translations,

< Sm(t), ,(t) >= 0 (3.65)

< sm(t), YS (t) >= 0 (3.66)

From (3.58), (3.59), (3.65) and (3.66), biorthogonal wavelet filters satisfy double-shift

orthogonality constraints:

< sm(t), sn(t) >= (, n go[k]go[k - 21] = io (3.67)
k

< V/fs(t), sn(t) >= (m n I g,[k]kl[k - 2l] = So, (3.68)
k

<Os~m (t) y2sn(t) >= 0 1 go[k]g [k - 2l] = 0 (3.69)
k

< Asm (t), ys, (t) >= 0 t Y go[k]g, [k - 21] = 0 (3.70)
k

That is, the filter impulse response is orthogonal to the even translates of its dual. Refer to

(3.23) for function approximation, based on the two-scale dilation equation on the current

scale,

# (2s t - k) = go[m]# (2 1t - 2k - m) (3.71)

yi(2s t - k)= k, [m]# (2 1't - 2k - m) (3.72)

1
the decomposition is realized by changing the basis from the duals and drop the
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constant, yielding:

s+,,l (t) = < Os+,, (t)1 Vs,k (t) > 0Ak (t) + < 0s+,i (t), sk (t) > V s,k (t)
k k

< O (t), E k [m]b (2s+ t - 2k - m) > Osk (t)
k m

+ <s+,, (t), I k [m]# (2s+' t -2k - m) > /sk (t)
k m

= 1: - 2k]q5 ~ (+ g [l -2k]Vyk (t) (3.73)
k k

By comparing the coefficients from (3.30) and (3.31), it turns out that

ask = go l - 2k]a+,l (3.74)

Wsk = y., [l - 2k]as,+1  (3.75)

If go and g, are time reversed, set

ho[k]= go[m -k] (3.76)

h,[k] = g,[m - k] (3.77)

and the spectrum relationships are

Ho (z) = z -' "(z-') (3.78)

H,(z) = z- m G, (z-') (3.79)

then the biorthogonal wavelet coefficients actually represent a filter convolution followed

by the half downsampling operation.

as,k = ho[2k -l]as+, = {ho *a+}4 2
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wsk = h, [2k -1 ]a {h, * as+' }

For reconstruction,

1
a s+1, = Z {go0 [ - 2 k]aSk + g' [1- 2k]wsk }

= go * {a,}T 2 + g, * {w,} (3.80)

As such, we can make use of the same filter bank structure from orthogonal system in

figure 3.1 for the biorthogonal filter bank although the relationships between synthesis

and analysis filters are different now. From the z transform of the wavelet filter bank

structure, the perfect reconstruction constraint demands that

Go (Z)Go (Z-') + G, (Z)G, (Z-1 ) = 2 (3.81)
Go (Z)G0 (-Z') + G, (Z)G, (-Z-1 ) = 0

Separate the filters from their duals, yields:

~- 2G, (-Z-')

GoZ G,(Z-' )Go(-Z-) - Go (Z-1 )G, (-Z-) (3.82)

G, Z) =2G 0  (3.83)
- G (Z~' )Go(-Z-') - Go(Z-' )G (-Z-( )

and by letting

G(Z) = G, (Z~' )Go(-Z-) - Go(Z-' )G(-Z') (3.84)

1
To make go, g1, ho and h, all FIR filters, both G(Z) and G must have finite terms.

G(Z)

Thus, G(Z) has one single term,

G(Z)= az'"o (a e R) (3.85)
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Since G(Z) = -G(-Z), mo is an odd integer. Let a = -2,

G, (Z) = -z-'" Go (-Z-1) (3.86)

the impulse responses of k, and h, are:

k,[k] = (-1)kgo[mo -k] (3.87)

h,[k] =(-1)m-k gom -mo +k]

by setting mn = mi, then

h,[k] = -(-1)k go[k] (3.88)

From (3.82),

Go (Z) = z~m'G,(-Z-') (3.89)

the impulse responses of ko and ho are thus

go[k]= -(-1)" g[m - k] (3.90)

ho[k] = (-1)k g,[k] (3.91)

The solution to the casual biorthogonal FIR filter bank is

Sgo [k]go [k - 21] -30>
k

g1 [k]= (-1)k go[m -k] (3.92)
ho [k] = go[m -k]

h, [k] = -(-1) go[k]

with m being the smallest odd integer for causal FIR filters

In biorthogonal wavelet filter system, the lowpass filter go and ho are symmetric; The

highpass filter g, and h, are symmetric when they have odd length and antisymmetric
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when they have even length. The reconstruction filters are entirely specified by the

decomposition filters of the wavelet filter bank.

3.5.2 Biorthogonal 9/7 filter

The wavelet filters are selected by their compression performance and computational

complexity [41]. An attactive property for orthogonal filters is the energy conservation

that biorthogonal filters don't have. Biorthogonal 9/7 filter is preferred since its filter

coefficients are close to be orthogonal [42].

The biorthogonal filter coefficients are solved by the constraints of dual double shift

orthogonality and filter frequency response regularity. The double-shift orthogonality can

solve variables, where filter go has length N and its dual filter has length N.
4

Same flatness requirements are assigned to Go and Ho filters by considering regularities

in their frequency responses equally. When N = 7 and N =9 , the conditions for

biorthogonal 9/7 filters are:

Go(w) |== 1

go [k]go[k - 21] = (0, (3.93)
k

Gr(W)W= =,

Hor (W') w=O r=O0,2

where r is the derivative to the filter spectrum function. When r = 0, the equations of

Go (w) and Ho (w) are equivalent to those when r =1, that is to say, the value of r =1

is redundant to solve the simultaneous equations of (3.93). Therefore, r = 0 and r = 2
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are applied. After go and go are available, refer to (3.92), the filter coefficients with

m = 9 can be solved below as well as illustrated in Figure 3.4:

ho =[ 0 0.0378 -0.0238 -0.1106 0.3774 0.8527 0.3774 -0.1106 -0.0238 0.0378];

hl=[0 -0.0645 0.0407 0.4181 -0.7885 0.4181 0.0407 -0.0645 0 0 ];

go=[0 -0.0645 -0.0407 0.4181 0.7885 0.4181 -0.0407 -0.0645 0 0 ];

g= [0 -0.0378 -0.0238 0.1106 0.3774 -0.8527 0.3774 0.1106 -0.0238 -0.0378];

Biorthogonal 9/7 filter
1

0.5-

-1.5 -

0 1 2 3 4 5 6 7 8 9 10

0.5 -

-0.5-

-1 0 1 2 3 4 5 6 7 8 9 10

1-

0.5-

05

0.50 1 2 3 4 5 6 7 8 9 10

0.5

-0.5 -

0 1 2 3 4 5 6 7 8 9 10

n

Figure 3.4. Biorthogonal 9/7 filter coefficients
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The biorthogonal 9/7 lowpass analysis and synthesis filters with their linear phase

frequency responses are shown in Figure 3.5, and the biorthogonal 9/7 highpass analysis

and synthesis filters are shown in Figure 3.6.

Frequency response of bior 9/7 analysis LPF
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0
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Figure 3.5. Biorthogonal 9/7 analysis and synthesis lowpass filters
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Frequency response of bior 9/7 analysis HPF
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Frequency response of bior 9/7 synthesis HPF
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Figure 3.6. Biorthogonal 9/7 analysis and synthesis highpass filters

The scaling function #(t) derived from these discrete filters using cascade algorithm is

shown in Figure 3.7 and the dual function # (t) is shown in Figure 3.8.
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Synthesis scaling function of bior 9/7 filter
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Figure 3.7. The scaling function #(t) of the causal biorthogonal 9/7 filter

with its spectrum
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Analysis scaling function of bior 9/7 filter
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Figure 3.8. The scaling function 0 (t) of the causal biorthogonal 9/7 filter

with the spectrum

3.6 Wavelet image compression

Image compression falls into two broad categories: lossless and lossy. The compression

ratios of lossless algorithms are not high enough for image and video compression. Lossy
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compression is useful for low bit rate applications in which a certain degree of distortion

is acceptable as trade-off for higher compression performance. In fact, satisfactory lossy

encoding techniques can reproduce virtually indistinguishable images compared to their

originals under efficient compressions.

Wavelet transform is competitive with Fourier transform and even takes precedence in

image compression such as in fingerprints [43, 44, 45]. The reason is that image signals

are intrinsically composed of sharp edges, thus Fourier transform using sinusoidal is

inefficient. The wavelet representation provides multiresolution/multifrequency

expression of an image with localization in both spatial and frequency domain. Each

subband contains certain information of the entire image, from coarse approximation to

fine details. Blocking artifact can be avoided from wavelet compression while ringing

artifacts appear, but can be improved by choosing high peak to lobe ratio filters.

After preprocessing operations on the color image such as color space transformation and

mean shifting, two-dimensional wavelet transform is applied by separable extension of

one-dimensional wavelet decompositions [46]. DWT is performed in horizontal direction

for each row of the image and then in vertical direction for each column. The two-

dimensional inverse DWT is operated on each column of the image and then on each

row. Figure 3.9 depicts the filtering and decimation procedures for 2D wavelet transform.

Four frequency subbands are generated, namely Low-Low (LL), High-Low (HL), Low-

High (LH) and High-High (HH).
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Figure 3.9. Two-dimensional DWT and IDWT

LL subband is the coarse representation of the original image. In other detail images, HL

shows the horizontal, LH the vertical and HH the diagonal edges. The size of this wavelet

domain image is equal to the original if coefficient expansion problem has been taken

care of. For multilevel decomposition, N -level DWT will finally have 3N +1 different

frequency subbands, which include one LL frequency subband and 3N high frequency

subbands that vary in scales and orientations. A 2-level wavelet decomposed image is

shown in Figure 3.10.
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Wavelet domain
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Figure 3.10. Multilevel wavelet decomposition on image "azalea"

The corresponding frequency domain spectrum composed of wavelet transformed

subbands is outlined in Figure 3.11, and the center of the frequency domain is the DC

frequency. The approximation and detail subband spectrums of the above wavelet

decomposed image are shown in Figure 3.12 where the subband boundaries are not sharp

since the wavelet filters are not ideal filters.
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Figure 3.11. The corresponding wavelet domain decomposed subbands
in frequency domain
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The coefficients are scanned and quantized in the order of LL, HL, LH, HH and from low

to high frequency subbands. The bit stream is produced after compressing the image data

by entropy coding. The decompression extracts the transformed coefficients, applies

IDWT and converts YCCb format back to RGB, to reconstruct the image.

Image compression techniques are very helpful in video compressions by considering

that the frame under processing is composed of differential signals after motion

estimation and compensation. Because of the multiresolution representation from wavelet

decomposition, video sequence can be handled progressively with scalable resolutions

and accuracies on demand.
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CHAPTER 4

Motion Estimation and Motion Compensation Methods

4.1 Block-based full search method

Reduction of temporal correlation using motion estimation and motion compensation

(MEMC) is usually much more efficient than using spatial compression only. The

commonly used motion estimation technique in most standard video codecs is the block

matching algorithm (BMA), assuming that the objects in some frames are composed of

rigid bodies with negligible deformation in translational movements. In reality, the

mismatches to these conditions can be well satisfied to a certain degree by simulating the

real objects and motions with these piecewise substitutes.

Frequency domain block-based approaches such as phase correlation method [47]

estimates the relative shift between two image blocks using cross-correlation function in

Fourier domain by the fact that translation in spatial domain results in a linear phase term

in frequency domain. Due to the phase wrapping and multiple-object problems,

frequency domain motion estimation is not as efficient as spatial search methods.

In block-matching method, the video frame under processing is called the current frame

and a frame utilized for interframe compression is called a reference frame as shown in

Figure 4.1. The current frame is divided into blocks of size N, x N2 , called a

macroblock. This size is designed not to be too small to balance the bandwidth, and not to

be too large to maintain the motion estimation accuracy, normally N, = N2 =16 as

considered to be an appropriate size. The purpose of the search procedure is to obtain a
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best matching block from the reference frame for each processing macroblock, or simply

called the current block. Motion estimation is functioned on luminance components only,

assuming that the color motions can be adequately represented by the motion information

from the luminance.

Reference frame

Macroblock

NN

Current frame Current block
N N

SI I I

N -- 'J--- I I
Nil 5  FII Reference block

NI I I

Figure 4.1. Block-based motion estimation

The searching reference block is moving inside a region of the reference frame called a

search window around the same location of the current block, defined as a horizontal

displacement M, and a vertical displacement M 2 as in Figure 4.2. The best matching

block is found if it obtains the best result from the matching criteria function. Several

matching functions can be applied such as maximum cross-correlation, minimum mean

square error and minimum mean absolute difference (MAD). For computational

simplicity and efficiency, minimum MAD criterion is used.
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Reference frame
M Pixel

. Search window ( M,) x ( M 2 )

I Current block B

L ...-.-.-.- Reference block

Figure 4.2. Block-matching method

In full search (FS) algorithm, the matching functions for all possible pixel-step displaced

reference blocks over the whole search window are computed in order to achieve the

global optimum matching block.

1
MAD(d,,d2) = 1 II(n,,n2)-I,(n, +d,,n2 +d2)I (4.1)

NN2 (n 1,n 2eB)

-M, -d, -M,,-M 2  <d2  -M 2  (d1 ,d 2 E Z)

and

(WV,,MV,,) = (dl ,d 2) |min(MAD(d 1 ,d)] (4.2)

I(x, y) is the pixel intensity of the current block and I, (x, y) is the pixel intensity in the

reference frame. MVX and MV, are the motion vectors to indicate how far horizontally

and vertically the best matching block has been moved.

Since the current frame can take references from its former or future frames in a specific

interpolation mode in MPEG (Motion Picture Experts Group) standard, the optimization

of motion estimation and compensation can be considered simply as a procedure to

improve reference-current frame pair performance. Two frames from test video sequence

"football" in Figure 4.3 are used as a reference-current frame pair.
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Reference frame

50 100 150 200 250 300 350

Current frame

50

150 -r

200

50 100 150 200 250 300 350

Figure 4.3. Reference-current frame pair from test video sequence "football"

MAD matching function distributions within the search area by maximum displacement

of 7 pixels are illustrated in Figure 4.4 for two example blocks. The blocks are

represented by (r , c ), which is in the r'h row and c'" column for pixels in range of

[16r -15~16r,16c -15~16c]. The first example shows the matching criterion function

of block (8,17), which is in the horizontal pixels of 257~272 and vertical pixels of

113~128. The second example is for block (13,19) in horizontal pixels 289~-3O4 and

vertical pixels 193~208. The matching function is displayed by a gray scale image where

the darker position is desired to be the center of a better matched block.
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Figure 4.4. Matching function distributions over the search area

In general, most motion vectors are center-biased distributed, especially for low bit rate

sequences. Thus, the stationary block for the initial search as a change detector is

included, and the search is processed from near to far. If the matching function is low

enough under a threshold, the heavy computation can be ceased in such a reasonable way.
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To save on the bandwidth, shorter motion vectors are preferred if the matched blocks

have the same minimum criterion. Results of motion estimation using full search method

is shown in Figure 4.5. The motion vectors for intermode compressed blocks are drawn

after the best matching block is found, otherwise a square is marked for intramode

compressed block. The angle of the motion vector shows the moving direction and the

length shows the moving distance from the best matching block to the current block. The

motion vectors for the two blocks in Figure 4.4 can be verified by pointing the darkest

position over the whole search area to the center.

Motion vector fields (FS with dmax = 7)

31 . . ./ . . 2 ..
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3 . . . . ~ . . . .,,
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15. 0 Q Q 2

1 2 3 4 5 6 7 8 9 10111213141516171819 2021 22

Horizontal macroblock

Figure 4.5. Motion vector fields by FS method

The difference between the current block and the predictive best matching block after

motion estimation is called a differential error or residual block. If the energy of the

differential block is higher than the original current block, motion compensation is not

necessary and intramode coding is applied on the original block. But in most cases the
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differential block contains much lower entropy than the original block, and therefore

intermode coding on the differential block is used. The basic procedure of motion

estimation and compensation is shown in Figure 4.6.

Motion estimation

Best matching block

Original block

Predictive error block

+ Energy comparator

>O <0

Intermode Intramode

compression compression

Figure 4.6. Intermode and intramode compression in motion estimation
and motion compensation

Motion compensation is performed on all color components using the same motion

vectors obtained from motion estimation on luminance blocks. The resulting prediction

error frames are obtained separately in Y, Cr and C channels as illustrated in Figures

4.7, 4.8 and 4.9. It can be demonstrated that most of the energies are contained in the

luminance frame which is used for motion estimation, and the energies of the prediction

error frames are, as a consequence, much decreased for entropy coding.
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Prediction error Y frame

1

Figure 4.7. Y component motion compensation after FS motion estimation

edcton error Cr frame

Figure 4.8. C, component motion compensation after FS motion estimation

P-e d ron erro Cb frame

Figure 4.9. Cb component motion compensation after FS motion estimation
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The computational load of MAD matching function is proportional to the block size

N, xN2 ,

LB oc NN2  (4.3)

Because the search area is (2M1 +1) x (2M2 +1), and in most cases, the displacements in

both directions are defined the same,

d = M, = M2  (4.4)

the computational load using full search method for each macroblock is determined as:

LFS =LB (2d1) 2  (4.5)

4.2 Fast search methods

Although motion estimation is an efficient approach to video compression, it comprises

most of the encoder complexity. Full search algorithm is the optimal solution for spatial

motion estimation but is time consuming, thus fast motion estimation techniques are

needed. The basic idea to achieve fast search is to perform a subsampling on the search

area, assuming that the matching function is monotonically converging towards the best

matching point, which is the center of the best matching block. Step search and block-

based gradient descent search are good motion estimation methods for large and small

motion video compressions respectively. A meaningful best matching block can be

obtained inside the search area although it does not always correlate well with the actual

motion. A number of articles have been published to realize fast search in aspects of

adaptive search window [48, 49], motion tracing [50, 51], optimized matching criteria
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[52, 53, 54], differential method [19], and motion estimation and motion compensation

strategies [55, 56, 57, 58].

4.2.1 Step search method

For center-biased step search (SS), the center position is initially defined in the reference

frame at the same position of the current block in the current frame. In the 1t search step,

d
the criteria function is run on the center point as well as other 8 corner points with -

2

distance away, if the search window is bounded at d pixel displacement. The step size

is halved in the following steps around the best matching point from the last search step.

The same refinement procedure is continued until the step size is 1. In reference to Figure

4.10, the maximum search displacement is 7 pixels and the current block shown in darker

background is centered at location 7E. Reference blocks centered at 7E and its 8 side and

corner checking blocks 4 pixels away are given by 3A, 3E, 31, 7A, 71, 11A, 11E and 11I,

with large cross marks being the initial checking blocks for the 1st step search. The block

with minimum MAD is the new best matching block, centered at 31. All blocks centered

by square marks around this new best block with 2 pixels away are the candidates for the

2"d step search. Assuming that the best block is found at 5K, the final search is reached

by only 1 pixel displacement for the blocks marked with small cross centers. The block

centered at 6L is the best in this last step, so it is the resulting best matching block. The

overall motion vector is the addition of all the motion vectors from all steps, as shown by

the arrow in Figure 4.10.
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Figure 4.10. Step search algorithm

If the matching criteria have the same results for some checking points, the search

procedure has to follow for each of them as if they are the new centers until better

checking points are found. For example, if the blocks centered at 3E and 31 obtain the

same matching function minima in the 1St search step, the side and corner checking

positions around both of them are the candidates in the 2 "d search step, which are at

XY(X = {1,5},Y ={C,E,GI,K}and X ={3},Y = {C,G,K}), where 1G, 3G and 5G are

repeated for these two refinements. Thus, the recalculation problem needs to be avoided

by memorizing the computed positions inside the search area. The results of motion

vector field after motion estimation using step search method are demonstrated in Figure

4.11.
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Motion vector fields (3 step search with dmax 7)
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Figure 4.11. Motion estimation and compensation from step search method

For an N -step search, the total displacement is given by

d = 2-'2N -1 (4.6)

The computational load of the criterion function using step search method for each

macroblock is

Lss = (8N +1)LB = LB {8 * log2 (d +1)j+1} (4.7)

assuming that one best matching block is found in each search step. The Lxi operator

rounds x to the largest integer that is less than x. The computational load of step search

method is much less significant as compared to the full search method as contrasted in

Table 4.1.
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Table 4.1. Computational load comparison using full search and step search method

Computational load (in unit of LB)

Displacement d =1 d= 4 d= 7 d =15

LFS 9 81 225 961

LS 9 17 25 33

4.2.2 Block-based gradient descent search method

In block-based gradient descent search (BBGDS) method, the search procedure starts

from the stationary center and its neighboring unchecked points. If the best matching

point is a corner, 4 checking points would be calculated and 5 new ones would be

included in the next round. On the other hand, if the best matching point is in the middle

of the edge, 6 points would be calculated and 3 points would be considered new points

for the next round. Since the step size is already as minimum as 1 pixel, the search

procedure continues until the best matching point is the center or the search window

boundary is reached. Figure 4.12 provides an example of this search method with the

center of the current block shown in darker background is at location 3F. Together with

its neighbor points around as 2E, 2F, 2G, 3E, 3G, 4E, 4F and 4G, 9 checking blocks are

considered in the 1st round search. If the best checking point is at 3G, the checking blocks

using large square marks centered at 2H, 3H and 4H are compared with 3G for the 2nd

round. Assuming that 4H is the new best checking point, the blocks centered with small

cross marks are run for the 3rd round. If 5H is the best and it's also better than its

neighbor unchecked points with small square marks, 5H is then considered as the center

position of the final best matching block.
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Figure 4.12. Block-based gradient descent search algorithm

Since the new checking points could be overlapped between rounds, the computed

checking points need to be saved to avoid recalculation. Figure 4.13 shows the results of

motion estimation using BBGDS method by drawing motion vectors for intermode

blocks and squares for intramode blocks.

Motion vector fields (EEGDS with d 7)
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Figure 4.13. Motion estimation and compensation from BBGDS method
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The computational load of BBGDS method within d -pixel displacement area after N

search rounds is:

N

LBBGDS =LB(9+ IL) (4.8)

with

N

-d< di d (4.9)

di is the displacement and Li is the computational load in the i'h search round. Li = 5 if

the best matching point from the last round is at the corner, and Li = 3 if it is in the

middle, given that only one best matching block is found in each round. Thus, the

computational load depends on the matching function distribution from the center

throughout the searching area. The convergence of the matching function is fast for small

motions and slow for large motions until the local minimum is reached.

4.3 Multiresolution motion estimation

During the motion estimation process, matching criteria function will decrease and will

converge to a local minimum inside the search window. However, the matching function

usually is not monotonically distributed over the whole search region but possible for the

region around the global optimum, so the best matching block can be found by the

refinement procedure.

Step search makes large search steps at the beginning which is not good for small

motions while BBGDS is always taking only 1 pixel step size. The motion vector field

results indicate that the best matching blocks are missed or are incorrect by using SS and
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BBGDS in some locations. A few best matching blocks can't be detected from BBGDS

method around the players in large movements and from SS method in the almost

stationary grass area. From the MAD plot of macroblock (8,17) in Figure 4.4, a small

displaced local minimum stops BBGDS calculation. This error can be verified by the

different motion vectors between FS in Figure 4.5 and BBGDS in Figure 4.13 at this

block. An error of large motion using SS method occurs at block (13,19) from Figure 4.4.

This can also be seen by comparing the motion vectors of FS and SS method, from

Figure 4.5 and 4.11 at this block. Since the motion speed and the frame interpolation

distances may vary, fixed step size search methods are prone to falling into local minima.

To increase the search efficiency and accuracy, the initial search points need to be located

reasonably, not too large for small motions and not to small for large motions, to avoid

being trapped into undesirable convergent region. Motion estimation can be implemented

globally but not fully, using a multiresolution description of the video frames to obtain

initial and refined search. Because motion activities are still highly correlated at different

resolutions, frame pyramid is build up and the search starts from coarse to fine scales.

Due to the fact that the motion speed is doubled by the halved resolution between

successive levels, multiresolution method is hence regarded as a fast search method.

4.4 Video codec simulation and compression results

The basic structure of video encoder is illustrated in Figure 4.14 in which motion

estimation and motion compensation are the main components. The predictive frame is

generated via motion compensation according to the motion vectors obtained from

motion estimation. After subtracting the predictive frame from the input current frame,
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frequency transformation is applied on the residual frame due to the fact that the

correlations between error pixels after MEMC are still very strong [59]. Since the

differential frame contains a lot of high frequency components, a scalar quantization

matrix is utilized, instead of the frequency-dependent quantization matrix used in image

compressions.

Bit-Rate Control

Input frame Run-length Bitstream Bit stream

DCT-1 Quantizer -+ VLC buffer

IDCT Inverse
IDCT quantizer

Motion vectors

Motion Motion
estimation compensation

Reference frame

Figure 4.14. Video encoder kernel

In order to prevent error build-up at the decoder, the prediction at both the encoder and

decoder must be identical [47]. A local decoder is set up after the lossy quantizer to

simulate the reconstructed reference frame. The bit rate of the buffer and the transmission

can be regulated via the adaptive quantization factor on the differential frame with the

trade-off between the video quality. Only the motion vectors and the low entropy

compensated error signals are sent to the other end, therefore, the channel capacity

required for video transmission is reduced.

Without motion estimation, the decoder shown in Figure 4.15 has much less complexity

than the encoder. The predictive frame is produced by the best matching blocks from the
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reference frame and the decoded motion vectors. The addition of the predictive frame and

the differential error frame after dequantization and inverse DCT reconstructs the current

frame.

Bit stream Entropy Inverse Frame Recovered frame
decoder quantizer IDCT +reordering

Motion

compensation

Figure 4.15. Video decoder kernel

The video codecs are implemented by software to compare the compression

performances using FS, SS and BBGDS motion estimation methods. A translational-

motioned sequence such as the "foreman" sequence is shown in Figure 4.16. The current

frame compressions of "football" by 60 times at a bit rate of about 0.4bpp using these

methods are shown in Figure 4.17 and for "foreman" compressed by 120 times at bit rate

of 0.2 bpp is shown in Figure 4.18.

Reference frame Current frame

0 U

Figure 4.16. Reference-current frame pair from test video sequence "foreman"
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Reconstruction from FS MEMC Reconstruction error
Bitrate = 0398(bpp) PSNR = 29.754(dB)

Reconstruction from SS MEMC Reconstruction error
Bitrate = 0.409(bpp) PSNR = 29.101(dB)

Reconstruction from BBGDS MEMC Reconstruction error
Bitrate = 0 394(bpp) PSNR = 29 666(dB)

Figure 4.17. Video compression and reconstruction for sequence "football"
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Motion vector fields (FS with dmax = 7) Reconstruction from FS MEMC
Bitrate = 0.204(bpp) PSNR = 33.662(dB)

Motion vector fields (3 step search with dmax = 7) Reconstruction from SS MEMC
Bitrate = 0.210(bpp) PSNR = 31.897(dB)

.rf / 7 . . .

SAt

Motion vector fields (BBGDS with dmax = 7) Reconstruction from BBGDS MEMC
Bitrate = 0.203(bpp) PSNR = 33.744(dB)

-i_ , ._ -, :

Figure 4.18. Video compression and reconstruction for sequence "foreman"
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The compression performances at various bit rates vs. PSNR for low bit rate

compressions from 0.2~1.0 bpp are illustrated in Figure 4.19 for the "football" sequence

and in Figure 4.20 for the "foreman" sequence.

Compression performance comparison on sequence "football"
34

33

32

31
m

30 -

29 -FS

.... BBGDS
27-

26
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bit rate (bpp)

Figure 4.19. Bit rate vs. PSNR for sequence "football"

Compression performance comparison on sequence "foreman"
38

37.5-

37-

36.5-

36 -

35.5- -

3z - o_ 35 /FS

34.5 - SS

34 /....... BBGDS

33.5-

33
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Bit rate (bpp)

Figure 4.20. Bit rate vs. PSNR for sequence "foreman"
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The blocking artifacts appear at low bit rate compressions of 0.13bpp in Figure 4.21 due

to DCT still image compression, as well as the degradation of transform coding on the

differential signals after motion compensation.

Reconstruction from FS MEMC
Bitrate = 0 132(bpp) PSNR = 25.892(dB) Reconstructon error

-6- !

Figure 4.21. Low bit rate video compression
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CHAPTER 5

Wavelet-Based Video Compression

5.1 Wavelet-based video codec

The idea of multiresolution motion estimation and compensation lead to the investigation

of wavelet-based video compression methods. By the fact that wavelet transformed

coefficients still contain spatial domain information, motion structure within the

subbands at the same scale and between different scales are highly correlated. The motion

fields are more robust to detect both small and large motion activities from the refinement

mechanism of hierarchical wavelet search. It is expected that the wavelet domain video

compression can achieve good performance, especially at low bit rates [58], by the

experiment results of image compressions using wavelet transform. Furthermore, the

differential error frame after motion estimation and compensation has lower entropy than

the original video frame, which results in more efficient compressions.

Since the high frequencies are contained at the sharp motion compensated block edges

and the small spatial correlations of the differential error blocks decrease the coding

efficiency, global wavelet transform is taken before motion estimation, which is different

from the conventional video codecs. It was demonstrated that DWT applied on the

original video frames outperforms the DWT operating on the differential frame after

motion compensation in terms of PSNR and the subjective evaluations [60, 61]. Further

compression is enabled by applying quantization schemes [62] to the transformed data

and then by allocating bandwidth to the quantized coefficients statistically. Vector
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quantization using a codebook is frequently used in image compression [63, 64].

Although the quantization matrix can be optimized based on psychovisual and frequency

characteristics [65, 66, 67], the improvements by these processes on the decorrelated

differential data inside the wavelet-transformed domain are not obvious [68]. Wavelet-

based video compression has been studied in some papers by means of search strategies

[61, 69, 70, 71, 72, 73, 74], complex-valued wavelet transform [75], overcomplete

discrete wavelet transform [76] and wavelet packets [77].

The basic structure of wavelet-based video encoder is shown in Figure 5.1. Both the

reference frame and the current frame are first color space transformed (CST) from RGB

into YCrCb format and then shifted to their average luminance and chrominances before

wavelet transformation is applied. Multiresolution motion estimation and compensation

are performed on the decomposed subframe pyramids, based on the strong correlation

between LL subbands after wavelet filtering. Due to the similar motion activities in the

approximation and detail subbands, motion fields can also be estimated in a fast and

simplified way by using subband refinement approaches. In addition, appropriate motion

compensation may obtain efficient coding when the entropy is getting lower in the high

frequency subbands. Uniform quantization is performed on the wavelet compensated

frame, which still keeps the energy distribution routine within different frequency

subbands. Each coefficient is divided by a quantization factor and rounded to a nearest

integer, regardless of intermode or intramode compression. The bit stream containing

side information of the Huffman tables, frame format, filter coefficients, transformation

parameters, quantization factor, and the compressed data are sent to the receiver.
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Reference frame Current frame

RGB
CST CST

YCCb
Mean shift Mean shift

AYCrCb

DWT DWT

Motion estimation

Motion vectors

Motion compensation

Prediction error frame

Quantization

Entropy coding

Bit stream

Figure 5.1. Wavelet video encoder

Accordingly, the lossless decoder extracts the Huffman table to decompress the

sequential bit stream, as illustrated in Figure 5.2. Intermode and intramode compressions

are performed from the decoded frame data and the motion vectors for each current block

level by level. The dequantized coefficients with quantization and rounding errors

approximate the wavelet transformed frame. Since no inverse transformation is included

in the encoder, features such as scalability and progressive transmission can be realized.

After all the necessary compensated subframes are reconstructed, inverse wavelet

transform is taken until the full frame resolution is reached. Color space conversion from

YC ,C back into RGB format is performed at last to achieve the reconstructed frame.
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Prediction errors Motion compensated frame

Dequantization

Frame construction

IDWT

Mean shift

ICST

Reconstructed frame

Figure 5.2. Wavelet video decoder

5.2 Wavelet domain multiresolution motion estimation and compensation

Wavelet domain motion estimation is processed by searching the best matching block

between the current subframe and the corresponding reference subframe, from coarse to

fine resolutions hierarchically. At the lowest resolution level, full search algorithm is

applied in the LL subframe as an initial estimate. Due to the correlated motion structures

between adjacent frequency subbands, motion estimation in the detail HL, LH and HH

subbands are refined by the motion vectors obtained from the LL subband at the same

level, and the motion fields in higher resolution LL subframe are refined by those from
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the lower resolution LL subframes. Defining MV, as a motion vector in the LL subframe

at the i'" decomposition level, motion fields in subbands HL1 , LH; and HH are then

refined around the position appointed by MV as:

MV, = MV, + AMV,, (5.1)

where n = {HL, LH, HH} constitutes the detail subbands. When more frequency

components are added, more accurate motion fields can be achieved in the higher

resolution subframe LLi_,, based on the rescaled motion vectors from the last subframe

LL1 . Because of the half-resolution decomposition, the number of the processing blocks

in all subframes is identical accomplishing one-to-one correspondence and the rescaling

of the motion vectors between two levels is performed by doubling as:

MV_, = 2MV (5.2)

where MVJ_, is the motion vector from the higher resolution level. The refinement is

made around the matched block defined by the rescaled motion vector 2MV as:

MV_, = 2MV, + AMV,_ (5.3)

This assumes that a 2-level wavelet decomposition is applied on the reference frame and

the current frame, as shown in Figure 5.3. Motion estimation starts from the lowest

resolution subframe LL2 , and MV2 is the resulting motion vector for a certain block

when its best matching block is found. If MV2 is not available, full search is reinitiated

for the motion estimation in the detail HL2 , LH 2 and HH2 subbands respectively. The

rescaling in the 1st level is:
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MV, = 2MV2 (5.4)

and the motion vector of the LL, subframe is refined as:

MV, = 2MV2 + AM, (5.5)

which is the initial motion vector for all the detail subbands in the first level. By referring

to equation (5.1) for i =1, the motion vectors in the HL,, LH, and HH, subbands are

refined from MV, of the LL, subframe:

MV, = MV, + AMV, (5.6)

as represented by MVHL, VLH and MVHH,

\MV MV

MVHL
2 AVHL

2

LL 2  HL2

MVH2 MH2

2M L2 \KH2

OMHH2

LH2  HH2

2MV MV > MVHL,

AMV

LL, HL,

M MVLH H N

AMV#

LH, HH,

Figure 5.3. Multiresolution wavelet motion estimation
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Thus, an N -level multiresolution motion estimation can be concluded as:

LL; -> LLi_, (i = 2~- N)

LLl -> HL , LH ,,HH; (i =1~- N)

where the right side subband is taking refinement reference from the left side. Table 5.1

summarizes the motion vector refinement relationships between the 2-level decomposed

subbands, assuming that the best matching block is found in the reference subband,

otherwise full search algorithm is used instead.

Table 5.1. Motion vector refinements between the subbands in wavelet domain motion
estimation

Subband LL 2  HL2  LH2  HH2  LL, HL, LH, HH1
Reference subband N/A LL, LL 2  LL 2  LL, LL, LL, LL,

The refinement process is continued successively until motion estimation and

compensation are realized in all the subbands of the current frame. Each subband obtains

a motion vector array to represent the motions of all current blocks. The difference

between the best matching block and the current block is encoded, called intermode

compression, as seen from the output after the subtractor in Figure 5.4. If the energy of

the differential block is larger than the current block, the current block is encoded instead

without motion compensation to achieve lower entropy coding, which is called the

intramode compression. The motion vectors and the compression modes are sent together

for the motion compensation in the decoder.
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Current frame N-level Quantizer Run-length Huffman Bit stream

W coding coding

Subframe Subband

motion motion

estimation compensation

Figure 5.4. Wavelet-based video encoder kernel

Motion compensation is performed on the LL subband in the lowest resolution level and

the detail subbands, while higher level LL subbands as the initial refinement reference

for the whole resolution level are not included. The basic structure of wavelet-based

video decoder is shown in Figure 5.5. Motion compensations are realized by adding the

differential data to the matched blocks defined by the motion fields of each subband. The

motion compensated frame serves as the input to the inverse wavelet transformer to get

the reconstructed frame.

Bit stream Entropy Inverse N-level Recovered frame
decoder quantizer IDWT

Subb and
motion

compensation

Figure 5.5. Wavelet-based video decoder kernel

Although the block size relative to the coverage of the full frame remains the same, the

physical block size to compute the matching criterion function is halved. Assume the

maximum displacement in the lowest resolution level is do -pixel using full search
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method after N -level wavelet decomposition, and the refinements in other subframes

and levels are d,-pixel, the equivalent search displacement dWs in frame resolution is:

dWs = 2N do + 2ld, =2N d0 +(2N+1 -2)d, (5.7)

Because the block size is N1 xN in level i, the computational load of a current block
2' 2'

in all levels for a full frame size of N, x N2 using wavelet search is:

LWS = - [(2do +1)2 + 3(2d, +1)2 ]+ I -N' N- 4(2d, +1) 2

2 2 ;= 2 2'

= LB {()N[(2do +1)2 + 3(2d, +1)2 ]+4[1 1)N-1 ](2dr +1)2} (5.8)
4 3 4

assuming that refinements are performed in each of the subsequent levels and subbands.

Usually, the refinement of motion vector is 1 pixel (d, =1) owing to the full search

method used in the lowest resolution level and the 2:1 decimation process.

5.3 Entropy coding

The progressively transmitted data composed of the frame and motion information are

entropy encoded to reduce coding redundancies. Embedded zerotree wavelet (EZW)

coding, which is peculiarly used for wavelet image compression [51, 78], can also be

applied in video compression [79]. EZW is making use of the correlations between

wavelet coefficients in different frequency subbands, thus the coding on the decorrelated

differential signals is not that efficient. Although arithmetic coding [59] can attain better

entropy by assigning non-integer bits to the coded symbols, Huffman coding is employed

for real implementation from the processing complexity point of view. The data of the bit
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stream follows the order of: from motions to coefficients, from luminance to

chrominances, from approximation to detail subbands, and from low to high resolution

levels.

The fundamental principle of entropy coding is to represent the frequently occurring

symbols by short codewords and infrequent ones by long codewords, which is the so-

called variable-length coding. The lossless strategy is that no codeword is the prefix of

another, as defined by the basecode lookup table. Unlike the static Huffman entropy

coding using a fixed table, dynamic Huffman encoding reads the frame data twice. The

first pass generates the frame dependent basecode table from a binary tree build by the

symbol histograms and the second pass uses this table to encode the data. Although the

entropy table is dynamically assigned in each frame, this extra bandwidth is quite small

comparing to the overall amount of data in a frame, and the coding efficiency is greatly

enhanced to deal with the uncertain distribution of the wavelet differential frame.

Due to mean shifting and quantization, a large portion of the coefficients are zeroed out,

and run lengths of zeros in a subband are counted. Thus, the entropy coding is computed

on the basis of the statistic distributions of the current frame data including run lengths,

motion vectors, and the non-zero coefficients. The encoder treats the categories of all

these values as symbols and assigns unique codewords to classify them. In the first pass

of the encoding, the occurrence of successive zero-valued coefficients is counted as 1 and

its run length is counted as a non-zero coefficient. The symbol histograms are categorized

by powers of 2, starting from 0 to a final category, which contains the maximum value of

all the data, as:
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[0][-1,1][-3,-2,2,3][-7 ~ -4,4 ~ 7]......[-2K +1 -2K-, 2K1 ~2K -1]

The categories are designed in this way so that a value in category i needs i more bits to

be represented after the basecode. Once the last non-zero coefficient is reached in a

subband, an end of block (EOB) symbol is counted into the last histogram category.

Since some intermediate categories may contain no coefficients, category and its

corresponding basecode are transmitted as a pair to the decoder without empty categories

included.

5.3.1 Motion vector coding

If the best matching blocks are found in both the current and its reference subband, the

differential motion vector, which include the horizontal and vertical refinements are

coded; if the best matching block is found in the current level but not in its reference

subband, real motion vectors are coded. In both cases, compression mode bit of 1 is

assigned in front of the motion vector, and the quantized differential data is to represent

intermode compression. Zero-valued motion vectors are expressed by only the basecode

of category zero. Non-zero motion vectors are coded in the same way as a non-zero

coefficient. If the best matching block is not found, compression mode bit of 0 is

assigned followed by the intramode compressed data of this block.

The differential motion vector coding for the 2-level decomposed subframes and

subbands are demonstrated in Table 5.2. The motion vectors of LL subbands are

necessary to act as the refinement references of the LL subbands in higher levels and the

detail subbands at the same level. Except for the LL subband of the lowest level that is
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center-based, the motion vector refinements of other LL subbands are referred to the

doubling of the motion vectors from the lower LL subbands. If the reference motion

vector does not exist, real motion vectors are coded since the center-biased full search is

applied.

Table 5.2. Differential motion vector coding in wavelet domain
motion estimation and compensation

Subband LL2  HL2  LH2  HH2  LL, HL, LH, HH1
Reference motion vector 0 LL2  LL 2  LL 2  2LL2  LL, LL, LL,

5.3.2 Coefficient coding

After the coefficients and motion vectors are all counted, a basecode lookup table is

generated. The runs of zeros are substituted by the basecode of zero, the basecode of the

run length category and the binary value of the run length. A positive coefficient is

coded by its category basecode and the binary representation of its value. A negative

coefficient is expressed by the category basecode and the binary complement of its

absolute value. Each color subband is ended up by an end of block (EOB) symbol to

replace the long runs of zeros after the last non-zero coefficient. If all the coefficients in a

subband are zero, only an EOB is coded.

The wavelet domain video compression is performed basically as follows. Both the

reference and the current frame from sequence "football" are 2-level decomposed as

shown in Figure 5.6. Multiresolution motion estimation is performed on these subframe

pairs using 2-pixel full search in the lowest resolution level and 1-pixel refinements. The

obtained motion vector fields as well as the intramode compressed blocks are illustrated
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in Figure 5.7. The prediction error frame histograms of Y, Cr and Cb components are

shown in Figure 5.8. Most of the coefficients after motion compensation are distributed

around zero. Uniform quantization is applied on all color components, which generates

centralized histograms for entropy coding. The current frame is compressed by about 50

times at bit rate of 0.5bpp with reconstruction quality PSNR of 29.2dB as shown in

Figure 5.9.

Wawlet decomposition of reference frame Wavelet decomposition of current frame

Figure 5.6. Wavelet decomposition of reference frame and current frame

Motion vect or fields (PWS)
(2 level decomposition, do=2, dr=l)

d e o 00 - a . o 0

-s A . . S . s . . . .. .e

. . . .

Figure 5.7. Motion vector fields of wavelet domain motion estimation

and compensation for "football"
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Prediction error frame Y coefficient histogram uantized prediction error frame Y coefficient histogram (0 = 58)
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Figure 5.8. Y, C, , Cb prediction error frame histograms before and after quantization
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Reconstruction from 2 level PWS MEMC
Bitrate = 0.516(bpp) PSNR = 29.226(dB)

Reconstruction error

Figure 5.9. Reconstruction frame "football" from wavelet domain
motion estimation and compensation method

The multiresolution motion fields using wavelet domain motion estimation and

compensation for sequence "trover" as well as the reconstructed video frame after 50

times compression are shown in Figure 5.10, and for sequence "carphone" is shown in

Figure 5.11. The compression performance shows that the wavelet domain MEMC

method is close to or better than the spatial domain FS method in a range of compressions

for frame "trover" as shown in Figure 5.12 and for "carphone" as shown in Figure 5.13.
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Reference frame Current frame

Motion vector fields (PWS) Reconstruction from 2 level PWS MEMC

(2 level decomposition, d0=2, dr1) Bitrate = 0.500(bpp) PSNR = 33.285(dB)

S .. . 5.g . * . .4 --5, #-

* -. a- .. .. ...Q v Q Q - - ".-

4a 5 a ' - a m .05 .

Figure 5.10. Wavelet domain compression on frame "trover" using multiresolution
motion estimation and compensation
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Reference frame Current frame

Motion vector fields (PWS)
(2 level decomposition, do2. drl) Reconstruction from 2 level PWS MEMC

Bitrate = 0.510(bpp) PSNR = 35.135(dB)
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Figure 5.11. Wavelet domain compression on frame "carphone" using multiresolution
motion estimation and compensation

86



Compression performance comparison on sequence "tro\er"
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Figure 5.12. Wavelet domain search and spatial domain FS MEMC on frame "trover"

Compression performance comparison on sequence "carphone"
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Wavelet search
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Full search
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Figure 5.13. Wavelet domain search and spatial domain FS MEMC

on frame "carphone"
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5.4 Simplified wavelet domain motion estimation and compensation methods

The refinement mechanism of wavelet domain motion estimation method is based on the

motion similarities between the low frequency and high frequency subbands. As

illustrated in Figure 5.14, the correlations between the LL subframes of different levels

are actually low frequency signals with more details; while the correlations between the

approximation subband and the detail subbands are actually adjacent bandpass signals.

Therefore, the motion estimation procedure can be simplified by these correlations to

save the computational load and motion information bandwidth.

Firstly, the motion vectors are refined in each level by the correlations between the LL

subframes, as in the level-refined motion estimation method. Secondly, the motion

vectors are refined in each subband based on the close motion structures in the passband

neighbors, as in the subband-refined motion estimation method.

L; H, Hi-_ . . .

0 f

Figure 5.14. Frequency coverage of the lowpass and highpass subbands between levels

5.4.1 Level-refined motion estimation

In the level-refined (LR) motion estimation method, the motion vectors of LL subframe

in a higher resolution level are refined by those from the lower resolution LL subframe

after doubling, and represent the motion vectors for the three detail subbands at the same
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level. Thus, one motion vector array is shared by all the subbands in a level without extra

motion estimation computation and associated motion information. For an N -level

decomposed motion estimation, the motion structure between two levels is refined as:

LL; -> LL_1  (i = 2 N) (5.9)

where the right side subband is taking refinement reference from the left side. A 2-level

motion field refinements using level-refined motion estimation method is shown in

Figure 5.15, where the refined motion vector

MV, = 2MV + AMV (5.10)

is also used in HL,, LH and HH, subbands for motion compensation.

\MV2 \MV 2
LL 2  HL2

\MV2 \MV2
LH 2  HH2

MV MV

2MV AMV
LL, HL,

LH, HH,

Figure 5.15. Motion field refinements in level-refined motion estimation method

The detail subbands use the same motion structure as the LL subbands without further

processing and coding. The relationships of the motion field refinements and the

differential motion vector coding with respect to their reference subbands are illustrated

in Table 5.3.
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Table 5.3. Motion vector refinements and coding
in level-refined motion estimation method

Subband LL, HL2  LH2  HH2  LL, HL, LH, HH,

Reference subband N/A LL, LL 2  LL2  LL2  LL, LL, LL,
Reference motion vector 0 N/A N/A N/A 2LL 2  N/A N/A N/A

Since no subband refinement is performed, motion compensation in the detail subbands is

applied by the motion vectors obtained from the LL subframe. The maximum

displacement in the lowest resolution level is assumed do -pixel using full search method

after N -level wavelet decomposition, and the refinements in other levels are d, -pixel,

the equivalent search displacement dWS _ LR in frame resolution is:

N-i

dWS _LR 2Ndo + 2dr =2Ndo +(2N 2)dr (5.11)
i=1

and the computational load of a current block in all levels of the N, x N2 full frame using

level-refined motion estimation method is:

N N N-N, N 2

LWSLR = - (2do+1)2 + - (2d +1)2
2 2 i=,2' 2'

= LB {(N (2d0 +1)2 + [1-( )N-'](2dr +1)2} (5.12)
4 3 4

assuming that the motion vectors are obtained in all the lower resolution levels. An

experiment on sequence "football" using 2-pixel full search in the 2"d level LL subframe

and 1-pixel refinement in the 1St level LL subframe is shown in Figure 5.16. The motion

fields of the subbands at the same level are identical. The resulting signal to noise ratio of

the reconstructed frame is 27.3dB after about 50 times compression.
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Motion vector fields (level-refined)
(2 level decomposition, do=2, dr=l)

If i

Reconstruction from 2 level level-refined MEMC
Bitrate = 0.508(bpp) PSNR = 27.292(dB)

Figure 5.16. Wavelet domain compression using level-refined
motion estimation and compensation method

5.4.2 Subband-refined motion estimation

In subband-refined (SR) motion estimation method, motion estimation is developed by

the correlated motion structures between the successive frequency subbands with

refinement mechanism in both directions. The search starts from the LL subframe of the

lowest resolution level. The obtained motion vector array is used as the initials for HL,

LH and HH subbands at the same level:
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MVnN = MVN +MVnN (5.13)

where n = {HL, LH, HH} subbands and MVN is the motion vector of subband n at the

lowest level; MVN is the motion vector of the initial LL subframe. The motion vectors of

higher levels are refined by those from the same orientational subband in the lower levels

after doubling, as:

MV, = 2MVn + AMV, (5.14)

where i = 2 - N. MVn, is the motion vector of subband n at the i'h decomposition level.

Thus, for an N -level decomposed motion estimation, the motion vector refinements

between the subbands are derived as:

LLN -+ HLN, LHN, HHN

HLi -> HLiz

LHi -+ LHi*

HHi -+ HHi_, (5.15)

where the right side subband is taking refinement reference from the left side. A 2-level

motion estimation by subband-refined method is illustrated in Figure 5.17.
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Figure 5.17. Wavelet domain subband-refined motion estimation

Table 5.4 shows the relationships between the subbands for motion vector refinements

and the differential motion vector coding.

Table 5.4. Motion vector refinements and coding in subband-refined
motion estimation and compensation method

Subband LL 2  HL, LH2  HH2  LL HL, LH, HH,
Reference subband N/A LL 2  LL 2  LL 2  N/A HL2  LH2  HH2

Reference motion vector 0 LL 2  LL 2  LL2  N/A 2HL2  2LH2  2HH2

Assume the maximum displacement in the lowest resolution level is do -pixel using full

search method after N -level wavelet decomposition, and the refinements in other

subbands are d,.-pixel, the equivalent search displacement dws _ sR in frame resolution is:
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dWSSR = 2N do +12'd, = 2N do +(2N -2)d, (5.16)
i=1

and the computational load of a current block in all the levels of a full frame N x N2

using subband-refined motion estimation method is:

N, N N N
LWS _SR =- 1 (2do +1)2 + 3 x -N (2d, +1)2

N 2 t=12 2

=LB{(!)N(2d0 +1)2 +[1-()N ](2d, +1)2} (5.17)
4 4

assuming that the motion vectors are available in each of the reference subbands. Figure

5.18 shows the motion fields using 2-pixel full search in the lowest LL subframe and 1-

pixel refinements in the detail subbands. The reconstructed frame is also shown for about

50 times compression at bit rate about 0.5bpp with PSNR of 29.34dB.
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Motion vector fields (subband-refined)
(2 level decomposition, d 0=2, dr =)

................. .

.j , .'. . .....

Reconstruction from 2 level subband-refined PWS
Bitrate = 0.516(bpp) PSNR = 29.339(dB)

Figure 5.18. Wavelet domain compression using subband-refined
motion estimation and compensation method

5.5 Level-refined motion estimation and subband compensation method

In level-refined wavelet motion estimation method, motion compensation in the detailed

HL, LH and HH subbands are using the same positioned compensation blocks in order to

save the motion information bandwidth and computational load of the motion field

refinements. As illustrated in subband-refined method, the increased intrablocks in high
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resolution levels after motion compensation indicates the energy distributions in the

decomposed subbands. Most of the energy is concentrated in the lower resolution

subbands, while little of it is in the higher resolution subbands, which is possibly even

less than that found in the differential error blocks. If the energy comparison between the

current block and the differential block is computed before motion compensation, lower

entropy coding can be achieved although more motion bandwidth is used to specify the

compression modes. This is the level-refined motion estimation and subband

compensation (LRSC) algorithm. If the energy of the differential block is larger than the

current block, the compression mode bit is set as 1 and intermode compression is coded

with the corresponding motion vectors. Otherwise, the compression mode bit is set as 0 to

represent intramode compression on the current block. If the motion vector in a LL

subframe is not available, the assumption is that all the detail subbands at the same level

are using intramode compression.

Actually, the intramode compression of the current block in the detail subbands does not

change the motion field reference for the next level refinements, but it will in the

subband-refined method and cost the motion estimation computational load by

reinitializing the full search around the stationary center. Therefore, based on the level-

refined method that only one motion vector array is shared by all the subbands in this

level, LRSC method contains an extra compression mode bit array to distinguish

intramode or intermode compression in each detail subband. Indeed, the bandwidth of

compression mode array by only one bit for each current block in each level is quite

small comparing to a block of data. The LRSC method illustrates the efficiency of
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wavelet domain multiresolution motion estimation and compensation instead of the

conventional approaches.

In LRSC method, the motion vector refinements in each level and the differential motion

vector coding remain the same as the level-refined method in Table 5.3. The

computational loads are also identical in terms of motion estimation. The additional

computation from LRSC method is the comparison of the energies contained in the

current block and the differential block before motion compensation. The computational

loads L including the current blocks in all decomposition levels by the introduced

wavelet-domain motion estimation methods with respect to the search displacement d

are listed in Table 5.5 and plotted in Figure 5.19, where a 2-level decomposition with

refinement dr =1 pixel is used.

Table 5.5. Computational load comparison of a current block motion estimation using
wavelet domain methods

Computational load (in unit of LB)

Displacement do =1 do = 2 do = 3 do = 4

dws 10 14 18 22

LWS 11.25 12.25 13.75 15.75

dWS LR (dWS LRSC) 6 10 14 18

LWS LR (LWS LRSC ) 2.81 3.81 5.31 7.31

dWS SR 6 10 14 18

SR 9 10 11.5 13.5
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Motion estimation compuational loads of wavelet domain search methods
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Figure 5.19. Computational loads of motion estimation
in wavelet domain search methods

Figure 5.20 shows the motion fields and compression modes of a 2-level wavelet domain

motion estimation and compensation using LRSC method for frame "football" and the

resulting reconstructed frame with PSNR about 29.3dB at bit rate of 0.5bpp.
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Motion vector fields (LRSC)
(2 level decomposition, do=2, drl)

399...-.r...* . .

.; . ': a , : x . "" 0 3 - - . . . .. . . . . . .

Reconstruction from 2 level LRSC MEMC
Bitrate = 0.510(bpp) PSNR = 29.282(dB)

Figure 5.20. Wavelet domain compression using level-refined motion estimation and

subband compensation method

The compression performances of wavelet search, level-refined, subband-refined and

LRSC methods at low bit rates of about 0.1-2bpp are compared in Figure 5.21 for

sequence "football" and in Figure 5.22 for sequence "carphone". The quality of

compression is inverse to the computational load of motion estimation. The results

demonstrate that the compression performance of LRSC method is close to or better than

other wavelet domain search methods, while the motion estimation process contains only

1
about - of the computational complexity.

3
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Compression performance comparison on sequence "football"
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Figure 5.21. Wavelet domain MEMC comparisons on frame "football"
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Compression performance comparison on sequence "carphone"
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Figure 5.22. Compression comparison of sequence "carphone" by wavelet domain
MEMC methods
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CHAPTER 6

Symmetric-Extended Wavelet Transform

The underlying task in wavelet transform is the convolution between the decimated signal

and the wavelet filters. Since image signals are not continuous at the boundaries,

problems of coefficient expansion and boundary distortion are faced in the

implementation of the filtering on the finite length signal. Circular convolution instead of

linear convolution can eliminate coefficient expansion but introduce boundary artifacts,

especially when more levels of decomposition are involved. Symmetric-extended wavelet

transform (SWT) is thus introduced in this chapter to address the boundary artifacts with

improved performances in wavelet domain image and video compressions.

6.1 Symmetric-extended signal

Assuming that a signal to be processed has finite length L. A whole point symmetry

extension W of the signal means that all samples except for the two end points are

repeated as a period before a signal is said to be circularly extended. Each period thus has

length 2L -2. W extension is also called (1,1) mode extension. Figure 6.1 shows the

original signal samples which are in black dots, and its W, extension by performing the

symmetric extension without the first and last samples as the gray dots and then

periodically extended as the white dots.
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" Original signal 0 Symmetrical extension O Periodic extension

Figure 6.1. W extension of the finite-length signal

A half point symmetry extension H, of the signal is that the whole length of the original

signal are repeated before it is periodically extended. Each period now has length 2L.

H, extension is also called (2,2) mode extension. As shown in Figure 6.2, the original

signal as the black dots are all symmetrically extended into one period as the gray dots

and circularly extended as the white dots.

Figure 6.2. H extension of the finite-length signal

If the signal is symmetrically extended except for the first sample point as a period and

then circularly extended, it's called a (1,2) mode extension of the signal. On the other

hand, if the signal is symmetrically extended except for the last sample point as a period
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before the circular extension, it's called a (2,1) mode extension of the signal. Both (1,2)

and (2,1) mode extensions have 2L -1 samples in one period as shown in Figure 6.3 and

6.4, respectively.

Figure 6.3. (1,2) mode extension of the finite-length signal

Figure 6.4. (2,1) mode extension of the finite-length signal

6.2 Symmetric-extended wavelet transform

Linear convolution of a signal in length L, by a filter in length Lf generates the filtered

signal in length L, + Lf -1, which is expanded with respect to the original signal. To

realize multilevel decomposition by keeping half length in the decomposed signals,

discrete wavelet transform using circular convolution is applied. Although the coefficient
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expansion problem is solved, boundary distortion problem still exists because of the

jumping points on both ends of the signal from the periodic padding in circular

convolution. Thus, the solution to these problems requires that the decomposed signal

remains in half length even after circular convolution with the expanded signal to deal

with the boundary artifacts.

To smooth the boundary discontinuity, the signal is first symmetrically extended before

the periodic repeating to perform circular convolution. It's known that a symmetric signal

has linear phase, and the resulting signal is also symmetric when convolved with linear

phase filters [23]. Thus, the combination of the symmetric extension of the signal and the

biorthogonal symmetric wavelet filter is an effective approach to reducing the boundary

distortion after half resolution decomposition. The main concern is that the signal from

wavelet transform might not be symmetric after decimation, so the condition of perfect

reconstruction in half resolution cannot be realized. Therefore, the extension and

decimation need to be desired in such a way that the approximation and detail signals

after decimation are still symmetrically extended, so that the first half truncation as the

decomposed signal is possible.

A digital filter is defined as a Wf filter if its impulse response is a finite odd-length

symmetric sequence. Furthermore, a digital filter is defined as an Hf filter if its impulse

response is a finite even-length symmetric sequence. Observe from Figure 6.5 that half

decimation from W, signal is also a symmetric-extended signal in (1,2) extension mode

as the black samples or in (2,1) extension mode as the white samples.
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Figure 6.5. Half decimation on W symmetric-extended signal

But the half downsampling from HS signal does not have symmetric properties as

illustrated in Figure 6.6 for both the white and black decimated samples.

Figure 6.6. Half decimation on H symmetric-extended signal

Since the original signal is almost doubled in length by the symmetric extension before

circular convolution with the wavelet filters, the decimated signals need to be symmetric,

and half length decomposition should be made possible for perfect reconstruction. Thus,

the wavelet filtered signal needs to be a W, signal so that the half decimations are still

symmetric. To obtain a W, signal after circular convolution with the biorthogonal filter,

the symmetry mode of the extended signal should be matched with that of the applied
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filter. That is to say, for wavelet transformation using a Wf filter, the signal is W,

extended and made periodic; and for transformation using an Hf filter, the signal is HS

extended and made periodic. In such a way, the decimation on the convolved W signal

will be in (1,2) or (2,1) extension mode, then only the first half samples need to be saved

in the decomposition for perfect reconstruction.

The symmetric-extended wavelet transform using the casual biorthogonal 9/7 filter is

shown in Figure 6.7. For this odd-length symmetric Wf filter, the finite-length signal is

W, extended into length 2L -2 as the input to the wavelet transform including filtering

and downsampling. The convolution is aligned on the center of the filter to the first

sample point in a period of the signal. The wavelet transform decomposes the W signal

into the approximation signal in (1,2) extension mode from the lowpass branch and the

detail signal in (2,1) extension mode from the highpass branch. Truncating these

symmetric signals by keeping the first half will achieve the half resolution outputs with

removed discontinuity artifacts.
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Figure 6.7. One dimensional SWT and inverse SWT using biorthogonal 9/7 filter

The inverse symmetric-extended wavelet transform is performed by making the

corresponding extension before applying the inverse wavelet transform and truncated by

the original length as the reconstructed signal. It has better performance dealing with the

boundary artifacts than the traditional periodic-extended convolution, trading-off with

more computation since the signal is almost doubled after extension. But this process is

necessary, especially for compression and hierarchical motion estimation when the

subframe size gets smaller and convolving with the wavelet filter.

6.3 Symmetric-extended wavelet transform on image compression

From the computational investigation, the lowpass signal from symmetric-extended

wavelet transform by a Wf filter is (1,2) extended and the highpass signal is (2,1)

extended, and the symmetric properties of the two-dimensional image signal by the

symmetric-extended wavelet transform in horizontal and vertical directions are as
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indicated in Table 6.2. This is required for each half-resolution subband so that the

synthesis part of the filter bank can make the corresponding extensions before inverse

wavelet transform for perfect reconstruction.

Table 6.1. Image symmetric extension modes using biorthogonal 9/7 filter

Symmetric mode LL HL LH HH
Horizontal (1,2) (1,2) (2,1) (2,1)

Vertical (1,2) (2,1) (1,2) (2,1)

Compression performances using JPEG (Joint Photographic Experts Group), the

conventional periodic-extended wavelet transform (PWT) and the symmetric-extended

wavelet transform (SWT) are compared on image "azalea" in Figure 6.8 at bit rate of

0.5bpp after about 50 times compression. JPEG is implemented in Visual C++ using

FDCT algorithm [80, 81] to compress the windows device independent bitmap (DIB)

image. In order to get a better subjective performance of the decompressed image, the

average luminance and chrominances are refined to be the same as in the original. The

blocking artifact appears in JPEG compression but not in wavelet compression as a

global transform, which brings with it better reconstruction quality.

109



Original image

Original JPEG compression

Bit rate 24 bpp Bit rate = 0.5 bpp, PSNR = 30.24 dB

Reconstruction usina 3 level PWT Reconstruction using 3 level SWT

Bitrate = 0 496( 9 4 323 . Bitrate = 0 495(bpp PSNR = 34 988(dB)

Figure 6.8. Image compression comparisons using JPEG, PWT and SWT
at bit rate of 0.5bpp

Low bit rate color image compressions by JPEG, PWT and SWT are compared in Figure

6.9 for image "azalea" and in Figure 6.10 for image "parrots" in terms of the

reconstruction image qualities, in which SWT is demonstrated to have the best result.
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SWT, PWT and JPEG comparison on image "azalea"
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Figure 6.9. JPEG, PWT and SWT performances by bit rate vs. PSNR for "azalea"

SWT, PWT and JPEG comparison on image "parrots"
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Figure 6.10. JPEG, PWT and SWT performances by bit rate vs. PSNR for "parrots"
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6.4 Symmetric-extended wavelet transform on video compression

In multiresolution motion estimation and compensation, when more levels of

decomposition are applied, the circularly extended boundary samples convolved with the

wavelet filters will generate deeper border distortions along the subframes. Symmetric-

extended wavelet transform applied on video compressions are desired to improve

motion estimation and compensation performances on the boundary blocks in the

decomposed subframes. The improvement is more effective for the video frames that

contain miscellaneous background because high frequency artifacts will appear on the

boundary by the conventional wavelet transformation using discontinuous extension

without the smoothing operations. Based on the LRSC motion estimation and

compensation method introduced in Chapter 5, the subframes are decomposed using

symmetric-extended wavelet transform to obtain better matching blocks so that the

compensated frame will have lower entropy to increase the compression efficiency.

An experiment on video sequence "foreman" using symmetric-extended wavelet

transform is shown in Figure 6.10 with the motion fields after multiresolution motion

estimation and compensation as well as the reconstructed frame at compressed bit rate of

0.5bpp. Based on the level-refined motion estimation and subband compensation method,

a 2-level wavelet decomposition is applied on the reference frame and the current frame.

The full search with maximum displacement do = 2 pixel is used in the lowest LL

subframe and the refinements are d, =1 pixel in the higher resolution levels.
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Figure 6.11. Video compression on sequence "foreman" using SWT method

Video compressions using SWT-LRSC motion estimation and compensation method

comparing to the PWT method on "foreman" at low bit rate range about 0.1-2bpp is

illustrated in Figure 6.12, where the improvement of PSNR is above 0.5dB using

symmetric-extended wavelet method.
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Compression performance comparison on sequence "foreman"
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Figure 6.12. Wavelet-based video compression on sequence "foreman"

using PWT and SWT motion estimation and compensation
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CHAPTER 7

Wavelet Domain Sub-decimation Decomposition Method

7.1 Sub-decimation decomposition method

Due to the decimation operation in wavelet filtering, discrete wavelet transform is shift

variant. Assume the input signal to the wavelet transformer is x(n), as shown in Figure

7.1, the output signal y(n) after one-level decomposition is determined as:

y(n) = Zx(k)h(2n - k) (7.1)
k

If the input x(n) is shifted by p samples,

x'(k) = x(k - p) (p e Z) (7.2)

the output can be identically shifted only under the condition that p is an even number,

p = 2m (m e Z) (7.3)

then y(n) is shifted by half of the input,

y'(n) = I x'(k)h(2n -k)
k

= y(n - m) (7.4)

u(n)

x(n) - h(n) 4 2 y(n)

Figure 7.1. A branch of the discrete wavelet transform

Based on the condition of Equation (7.3), shift invariance requires that the shift from the

input to be p = q - 2N (q E Z) after N -level decomposition. Thus, a dyadic wavelet
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transform is shift invariant only if the shift in the time or spatial domain is a multiple of

the sampling period.

Obviously from Equation (7.1), shift variance is produced due to the half decimation on

the filter-convolved signal. By choosing odd or even decimation samples, the output is

not alike by one level decomposition, as illustrated in Figure 7.2, and could be much

more different after several levels of decomposition. Therefore, both odd and even

decimations should be counted in the decomposed signal to preserve the necessary

information instead of using one predefined decimation pattern only.

" 40

x(n) h(n) u(n) " 2 yn

Figure 7.2. Decimation patterns on one-dimensional wavelet decomposition

In a two-channel wavelet filter bank as in Figure 7.3, after convolving with the analysis

filters Ho and H, followed by half downsampling, the lowpass filter branch generates

the half-resolution approximation signal a, and the highpass branch generates the half-

resolution detail signal w. To be further specified by odd and even decimation modes,
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the sub-decimation decomposition keeps 2 approximations and 2 details in each level by

defining a decimation parity P using one bit, as:

0 (odd - decimation)

1 (even - decimation)

In such a way, the decomposed signals can be labeled using a layered binary

representation after multiple levels of decomposition:

DL+1 = DL + 2L PL+1 (0 DL+1 <2 L+1) (7.6)

where DL and DL+1 are the decimation patterns in level L and the lower higher

resolution level L +1. The properties of the decimation pattern are:

1) The odd-decimation keeps the same decimation pattern from the last level;

2) The even-decimation moves the decimation pattern to DL + L

3) Totally 2 L+1 sub-decimation decomposed signals are generated in level L +1;

4) Since one decimation pattern represents one decomposed subband signal, 2 L+1

L+1

approximation and 2 detail subbands are generated after L +1 levels of sub-

decimation decomposition.

Set the initial value Do be 0 before decomposition, the decimation patterns of a 2-level

decomposition is illustrated in Table 7.1, where P and P2 are the decimation parities in

the 1st and 2nd decomposition level. Figure 7.3 shows the flow chart of the decomposed

subband signals aL,D and WLD , defined by decomposition level L and decimation

pattern D.
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Table 7.1. Two-level sub-decimation decomposition

1st level decimation mode Odd Even
p 0 1

D 1

2" level decimation mode Odd Even Odd Even
p 0 1 0 1

D2 0 2 1 3

a2 0

a l Ho--> 2 -____> a2,2

a >2-2W 2 , o

------ > 2,2

a,, a 2,1

) o 2
----... a 2,3

a 21

W 2,I
->H1

---.-- > w'2,3

WI ' odd decimation

F ---> W even decimation

Figure 7.3. Sub-decimation decomposition in wavelet filter bank

Shift invariance is more important for nonstationary image signals due to the fact that

high frequency detail information could be removed after subsampling. For two-

dimensional signals, the general wavelet decomposition produces 1 approximation and 3

orientational detail subbands, while sub-decimation decomposition generates another 3

decimation subbands by applying one-dimensional SDD on both the horizontal and

vertical directions respectively [46]. They are one-pixel horizontal, vertical and diagonal

shift decimated from the predefined decomposed subband, as illustrated in Figure 7.4.
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Therefore, one sub-decimation decomposition produces 4 approximations and 12 detail

subbands, totaling 4N approximation subbands and 3* 4' detail subbands after N -

level decomposition.

Wavelet filter convolved signal

Id SDD

Transpose

Id SDD

Odd-Odd Odd-Even

Even-Odd Even-Even

Figure 7.4. Two-dimensional sub-decimation decomposition method

7.2 Sub-decimation decomposition motion estimation and compensation

Wavelet-domain shift invariant motion estimation has been investigated in some

literatures. One approach is to perform motion estimation on the lowpass-filtered frame

before decimation to make up for the translation inconsistency [71]. Another approach is

developed by the way that the reference frame is shifted by one pixel along the

horizontal, vertical and diagonal directions in spatial domain before decomposition [82,
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83]. In order to realize shift invariance without shifting on the discontinuous image

signals, sub-decimation decomposition (SDD) motion estimation and compensation

method is proposed.

If an object in the current frame is moved from a block in the reference frame by a non-

multiple step of the sampling period, the decomposed coefficients of these two blocks are

elusive for motion estimation in the approximation subframes even though the lowpass

filtering is performed, as well as for motion compensation in the detail subbands by the

rapidly changing signals. Since 2 N approximation subbands are generated after N -level

decomposition, even-shifted blocks in horizontal or vertical direction can only be found

1
by of the decimation patterns after N -level decomposition; and the odd shifts are

2N

undetectable without the matching discrimination. Thus, the shift variance feature is

essential to the performance of wavelet domain motion estimation and compensation.

Instead of identical decompositions applied on the reference-current frame pair, the

reference frame is decomposed by the sub-decimation decomposition method, while the

current frame is decomposed by a predefined decimation mode. The motion vectors are

obtained by motion estimation between the decomposed subframes at the same level, and

motion compensations are performed in the lowest approximation subband as well as the

detail subbands based on these motion vectors. A reasonable search mechanism to find

the best matching subblocks with hierarchical refinements is developed, so that all the

translations in the original frame can be counted from the subframes in the lowest

resolution level. The procedure is mainly described into 3 steps as below.
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1) Generation of the sub-decimation decomposed subframes on the reference frame

All the approximation subframes are decomposed level after level using sub-decimation

decompositions recursively. Figure 7.5 illustrates one level decomposition from a high

level approximation subband into four approximation subbands as well as their

corresponding detail subbands (HL, LH, HH) by odd-odd, odd-even, even-odd and even-

even decimation modes. The decimation mode is defined in vertical-horizontal directions,

for example, odd-even decimation keeps odd-numbered rows and even-numbered

columns after the two-dimensional filter convolution. Therefore, each sub-decimation

decomposed subband can be specified by the parameters of bandwidth, decomposition

level and decimation patterns.

Level L LL

Decimation pattern ( Di, DY)

Le L1 LL HL LL HL LL HL LL HL

LH HH LH HH LH HH LH HH

Decimation Parity odd-odd odd-even even-odd even-even

( P , PLI) (0,0) (0, 1) (1,0) (1, 1)

Decimation pattern (DL+, D+l )= (DL + 2 L PL+, D + 2 L P+I )

Figure 7.5. Sub-decimation decomposition method

2) Development of the shift invariant relationships between the'subbands

The pixel location d' in the full size frame can be represented by the pixel location SL

and the decimation pattern DL for a sub-decimation decomposed subframe at the L'h
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level in both the horizontal (v = x) and vertical (v = y) directions, as:

d v=2L S +D (7.7)

where

dv
SL =[2L (7.8)

and

DL=dv%2L (0SDL< 2L) (79)

% is the modulation operation. Since the parameter pair (Si, Dv) has a one to one

correspondence to d v,

d v + (SL, DL) (7.10)

the location of a block in the original frame is defined by its left-top corner coordinate

(d x, d y) and the location of a subblock in a subframe is defined by its left-top coordinate

(SL , SL) with decimation pattern DL , so that pixel motion in full frame can be

B B
determined. On the other hand, a subblock [ SL S + 2 -, S~ SL + ' -1] in the

L L2 L L L2

approximation subframe at the L'h decomposed level is corresponding to a block with

pixels [ 2L SL 2L +12L S 2L + B, 2LSL 2L +1-2L SL 2L + B, ] in a full-size

frame by a default decimation pattern 0. BX and By are the current block size of the

original frame, and the four values are the corner coordinates in horizontal and vertical

directions.
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3) Shift invariant motion estimation and compensation

Define wx and wy as the maximum search window displacements in horizontal and

vertical directions in the full size frame. Motion estimation is started from the lowest

resolution level N using the spatial domain full search method. Since decimation pattern

0 is used in the current frame decomposition, for a subblock located at (Sk , S ) as

shown in Figure 7.6, the location of the corresponding current block in the full-size

current frame is (2NSN -2N +1,2N S -2N +1). The location (d x, dY) of the candidate

searching blocks in the full size reference frame is in the range of:

2 NSN -2N +1-w <d <2NSN -2N +1+wx (7.11)

2 NN 2 N +1-W < dy <2N 2 N 1+ (7.12)

and the boundary conditions of the search windows are:

1 5 dx Nx-Bx +1 (7.13)
2

B
1 d yS N -' B+1 (7.14)

'2

where N, and N, are the full frame size.
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Q 
EH 2L

dv% 2 L

Current subframe Reference subframe

_ _ _ _t

I t

LSeich~ windo

Current frame Reference frame

LII Current subblock D One candidate reference subblock

Current block One candidate reference block

Figure 7.6. Motion estimation between the reference-current frame and subframe pairs

For each candidate block (d X, d') in the reference frame, the corresponding searching

subblock in a decomposed subframe is specified by the left-top corner coordinate

( L2L ' L ) and decimation pattern (dx%2L, d'%2L) by Equations (7.8) and (7.9).

The best matching subblock is searched within all these reference subblock candidates by

Equations (7.11-7.14). The motion vectors in a higher resolution level are refined in the

approximation subframe by those from the adjacent lower resolution approximation

subframe after doubling, and represent the motion vectors of the three corresponding

detail subbands with the same decimation pattern. Due to the 2:1 decimation, the
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refinements of the motion vectors are performed within 1 pixel around the location of

the best matching block found from the last level in the full frame size. If the best

matching block is not found, full search method is applied again, as in the lowest

resolution level. Motion compensation in the detail subbands are directly using the

motion vectors obtained from the approximation subband at the same level to save the

computational load. The refinement process is continued successively until the required

dimension and scalability of the video frame is reached.

Assume the maximum displacement in the lowest resolution level is do -pixel using full

search method, after N -level wavelet decomposition, and the refinements in other levels

are d, -pixel, the equivalent search displacement d in full frame resolution is:

N-1

dSDD 2Ndo +Z2'd,
i=1

= 2N do +(2N -2)d, (7.15)

The computational load for a current block in all levels of a N1 x N2 frame using sub-

decimation decomposed motion estimation method is:

N1 N2  N-I NN
LSDD = 4N (2do +1)2 --- +Z(2d, +1)2 ._ 2

2 2N 2 2

= LB {(2do + 1)2 + 1[1- (1)N-' ]2,+121(.6
3 4

with that the motion vectors obtained in all of the lower resolution levels. Table 7.2

compares the computational loads of using spatial domain full search method and wavelet

domain sub-decimation decomposition method by 2-level decomposition and 1-pixel

refinement in each level.
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Table 7.2. Computational load comparison between full search method
and sub-decimation decomposition method (d, =1, N = 2)

Computational load (in unit of LB)

Displacement d = 6 d =10 d=14

LFS 169 441 841

LSDD 11.25 27.25 51.25

Differential motion vectors in each level as well as binary decimation patterns are

combined to represent motion information. If a best matching block is found in the k'0

resolution level, k bits are used to represent the decimation pattern for the current

subblock in one direction. For a 16 x 16 macroblock in the original frame,

N

2 i = N(N +1) more bits are used after the N -level decomposed sub-decimation

N(N 1
MEMC, which results in (N +1) bpp of the increased bit rate. When N = 2, 0.02bpp is

256

needed to represent the decimation information. However, the coding efficiency is highly

dependent on the energy distribution of the prediction error subframe, and the energy of

the prediction subframe is strongly related to the precision of the motion vectors obtained

from motion estimation. Better PSNR quality can be achieved by sub-decimation

decomposition because it is applied on the reference frame only, the data transmitted are

still the differential wavelet coefficients for the current frame. Therefore, the bandwidth

is highly decreased by the lower-entropy compensated frame data comparing to the small

amount of motion information, so the overall compression performance from the sub-

decimation decomposition method is improved.
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The motion estimation and compensation using sub-decimation decomposition method

on video frames "football" is shown in Figure 7.7. The motion fields are displayed by the

block shifts as the pixel movements in the subframes. The reconstructed frame is about

30dB at 0.4bpp after 60 times compression. The comparisons between the wavelet

domain search method (PWS) and the sub-decimation decomposition method

(SDD PWS) at low bit rates are illustrated for "football" in Figure 7.8 and for "foreman"

in Figure 7.9.

Motion vector fields (SD LRSC MEMC)
(2 level decomposition with d= 2 ,drl)

,.... ...

-- . . . . .. m. . . ...- -- --.. . . ...... o. ...

......- -... a... . . . ...... . . ..

Reconstruction from 2 level SDD PWT MEMC
Bitrate = 0.406(bpp) PSN R = 29.625(dB)

Figure 7.7. Video compression using sub-decimated decomposition method

127



Compression performance comparison on sequence "football"
40

38-

36-

34

x 32
z
a.

30

SDDPWS

28 -
....... PWS

26

24 ' ' '

0 0.5 1 1.5 2 2.5 3 3.5 4
Bit rate (bpp)

Figure 7.8. Compression comparison between PWS and SDD_PWS methods
for "football"

Compression performance comparison on sequence "foreman"
42

40-

38-

36-

n34-
z
a.

32

3__ SDD_PWS
30-

....... PW S

28

26
0 0.5 1 1.5 2 2.5

Bit rate (bpp)

Figure 7.9. Compression comparison between PWS and SDD_PWS methods

for "foreman"
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7.3 Sub-decimation decomposition motion estimation and compensation by

symmetric-extended wavelet transform

From the results provided in chapter 6, the lowpass decimated output by the symmetric-

extended wavelet transform using a Wf filter is in (1,2) extension mode, and the highpass

output is in (2,1) extension mode. This is the even decimation result, while the odd

decimation has the opposite extension modes in sub-decimation decomposition method.

Table 7.3 shows the extension modes of the one-dimensional symmetric-extended signal

convolved with the biorthogonal 9/7 wavelet filters after half decimation.

Table 7.3. One-dimensional signal extension modes
after SWT by biorthogonal 9/7 filter

Decimation Odd Even

ho (LPF) (2,1) (1,2)

h, (HPF) (1,2) (2,1)

The sub-decimation decomposition using symmetric-extended wavelet transform by the

odd length symmetric wavelet filter is illustrated in Figure 7.10, with the input being a

finite-length signal in length L at scale s +1. The W extension is performed on the input

signal into length 2L - 2 to match the symmetric extension mode of the Wf filter before

wavelet transformation, as shown in Figure 7.11. The first sample point of the signal is

aligned to the symmetric center of the filter to get the center-biased convolved signal.

Although the extension modes of the transformed coefficients in the two filter bank

branches and the two decimations are different, truncations of the first half as the

decomposed signal can keep all the necessary information. The terms aodd and wad are
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the approximation and detail output signals by odd decimation, while aeven and wveen are

the outputs by even decimation.

L 2L-2 DWT -L -1 L
2

asa extension -- " -~ 2 a

------ 2 aseven

Truncation

Hi 2 2Ws,odd

Ws,even

Figure 7.10. One-dimensional sub-decimation decomposition
using symmetric-extended wavelet transform by biorthogonal 9/7 filters

The extension modes of two-dimensional signal in odd and even decimations can be

obtained by applying the one-dimensional operations in both the horizontal and vertical

directions. Table 7.4 illustrates the extension modes of the decomposed signal in each

orientational subband after the two-dimensional sub-decimations. Each decimation

pattern, as the odd-odd, odd-even, even-odd and even-even can perfectly reconstruct the

original signal although the coefficients could be quite different in the same subbands.

These extension modes are necessary for reconstruction by making the corresponding

symmetric extensions before applying the inverse wavelet transformation.
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Table 7.4. Two-dimensional signal extension modes after SWT by biorthogonal 9/7 filter

Decimation Odd-Odd Odd-Even Even-Odd Even-Even
Orientation Horizontal Vertical Horizontal Vertical Horizontal Vertical Horizontal Vertical

LL (2,1) (2,1) (1,2) (2,1) (2,1) (1,2) (1,2) (1,2)
HL (2,1) (1,2) (1,2) (1,2) (2,1) (2,1) 1,2) (2,1)
LH (1,2) (2,1) (2,1) (2,1) (1,2) (1,2) (2,1) (1,2)
HH (1,2) (1,2) (2,1) (1,2) (1,2) (2,1) (2,1) (2,1)

The sub-decimation decomposed video compression by symmetric-extended wavelet

transform is based on the level-refined motion estimation and subband compensation

method from chapter 5. Both the reference frame and the current frame are decomposed

by symmetric-extended wavelet transform, so that the boundary artifacts are not extended

into the subframes for motion estimation. In addition, the reference subframe is

decomposed by the four decimation patterns, while the current frame still keeps the

original decimation. After all the decomposed subframes by symmetric-extended wavelet

transform are generated, the motion estimation and compensation follow the procedure of

the sub-decimation decomposition method as in section 7.2.

The video compression on frame "football" using sub-decimation decomposition method

by symmetric-extended wavelet transform with biorthogonal 9/7 filters is shown in

Figure 7.11.
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Motion vector fields (SDD LRSC SWS)
(2 level decomposition with d= 2 ,dr=l)

......................

s.

Reconstruction from 2 level SDD SWS
Bitrate = 0.515(bpp) PSNR = 30.343(dB)

Figure 7.11. Video compression using sub-decimation decomposition method by
symmetric-extended wavelet transform with biorthogonal 9/7 filters on frame "football"

A range of compression performances using sub-decimation decomposed SWT search

method (SDD SWS) are compared with SDDPWS method as shown in Figures 7.12

and 7.13 for frame "foreman" and for frame "carphone", respectively.
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Compression performance comparison on sequence "foreman"
42

40

38

m 36

z
2 34

32 -_SDD SWS

....... SDD_PWS
30

28
0 0.5 1 1.5 2 2.5

Bit rate (bpp)

Figure 7.12. Compression comparison of SDD_SWS and SDD_PWS method
for frame "foreman"

Compression performance comparison on sequence "carphone"
44

42-

40-

38-

z
L 36-

___ SDD_SWS

....... SDD_PWS

32

30
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Bit rate (bpp)

Figure 7.13. Compression comparison of SDD_SWS and SDD_PWS method
for frame "carphone"
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To illustrate the compression performances of the motion estimation and compensation

methods, the reconstructed frames are put together to compare the performances under

the same bit rates for sequence "football" and "carphone" in Figure 7.14 and 7.15

respectively.

Reconstruction from FS MEMC Reconstruction from 2 level LRSC MEMC
Bitrate =2 875(bpp) PSNR = 38.099(dB) Bitrate = 3.025(bpp) PSNR = 37.682(dB)

Reconstruction from 2 lev SDD PWT MEMC Reconstruction from 2 level SDI SWS
Bitrate = 2.807(bpp) PSNR = 38.580(dB) Bitrate = 2.766(bpp) PSNR = 38.599(dB)

Figure 7.14. Compression comparison for frame "football" at CR =8
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Reconstruction from FS MEMC Reconstruction from 2 level LRSC MEMC
Bitrate = 1.015(bpp) PSNR = 38.570(dB) Bitrate = 1.074(bpp) PSNR = 39.398(dB)

Reconstruction from 2 level SDD PWT MEMC Reconstruction from 2 level SDD SWS

Bitrate = 1.023(bpp) PSNR = 39.524(dB) Bitrate = 1.005(bpp) PSNR = 39.590(dB)

Figure 7.15. Compression comparison for frame "carphone" at CR = 24
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CHAPTER 8

Conclusions

The efficiency gain obtained by interframe compression demonstrates the functionality of

motion estimation and compensation based on the strong temporal correlations between

video frames. Fast search algorithms of step search (SS) and block-based gradient

descent search (BBGDS) contain much less computational loads than the full search in

motion estimation, which are compared by the formulated evaluations. The displayed

criterion function distributions and motion vector fields match the essential principles of

the search strategies. However, the compression qualities of the fast search methods

depend on the motion speed of the video sequence, thus the performances are decreased

as indicated by the increased number of intramode coded blocks.

An entropy coding system to evaluate the compression performance is designed in the

encoder and decoder to realize lossless recovery of the frame data and motion

information. All data including the differential errors, run lengths and motion vectors are

counted into the coefficient histogram distributions with a frame-dependent Huffman

table, so that a small header bandwidth is in exchange of great coding efficiency. The

better the prediction from motion estimation, the lower are the residual signal and the bit

rate, and the higher is the compression efficiency. Since only the motion vectors and the

low entropy differential error frame are transmitted, the data bandwidth is saved by the

compressed bit rate.
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The global wavelet transform overcomes the blocking artifact, which is the major

drawback of DCT, thus it brings much better subjective quality on video compression,

especially at low bit rates. The multiresolution nature of wavelet transform satisfies

hierarchical motion estimation with scalability by motion compensation in each level

using the refined motion vectors. Since the motion speed is doubled by the half image

size between successive levels using wavelet transform, the multiresolution method can

be regarded as a fast search method while the compression performances are close to or

better than the full search algorithm by the illustrated examples.

Based on the similar motion structures between adjacent frequency subbands, the motion

vector fields by level-refined and subband-refined mechanisms simplify the wavelet

domain motion estimation and compensation procedure, as compared by the

computational load formulations. Although the level-refined motion estimation and

compensation method has low computational load, the tradeoff is the compression

performance due to the sharing of the same motion structure for all the subbands at the

same level.

The energy distributions and the increased intramode compressed blocks in the

decomposed subbands indicate that the energy contained in the high frequency subbands

is even lower than the differential error blocks after motion estimation. Thus, an efficient

approach called level-refined motion estimation and subband compensation (LRSC)

method is introduced by applying selective motion compensation in the detail subbands

using the estimated motion vectors from the approximation subband. It realizes the

possible intrablocks in the subbands for lower entropy coding while keeping the
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computational loads of motion estimation as low as the level-refined method, achieving

as a consequence both temporal compression quality and computational simplicity. The

wavelet domain video compressions in this research endeavor are all based on this new

motion estimation and compensation method.

Circular convolution in wavelet transform is used to realize signal filtering without

coefficient expansion but the performance of the filtered signal depends on the padding

of the finite-length signal. The operations of extension and decimation between the

symmetric extension of the finite length signal and the biorthogonal symmetric wavelet

filters realizes the symmetric-extended wavelet transform (SWT). The first half

truncation as the decomposed signal removes the discontinuous boundary artifacts and

achieves half resolution decomposition although the signal is expanded before circular

convolution. Under the considerations of the energy conservation and symmetric

characteristics, biorthogonal 9/7 filter bank is applied in the wavelet transform system. To

match the symmetric feature of the biorthogonal 9/7 filter, the decomposed signals are

extracted by the predefined extension modes as (1,2) in the lowpass filter branch and

(2,1) in the highpass branch in SWT, and extended by the corresponding extension modes

in inverse SWT.

The symmetric-extended wavelet transform applied in video compression dealt with the

boundary artifacts by circular convolutions in the reference and current frame signals, so

that more accurate subframe decompositions are obtained for motion estimation. The

scalable images obtained are in the same size as from the periodic-extended wavelet
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transform without the discontinuous boundary artifacts, as proven by the experiments of

reference-current frame pair compressions.

The sub-decimation decomposition method introduced in this dissertation improves the

wavelet domain motion estimation and compensation, especially for piecewise

translational movements in the original frame. The odd and even decimation patterns

considered in the decomposed signals make the elusive shift invariance property possible,

so that motion consistency between decomposed subframes is attained. The specification

of motion shift and decimation pattern in the subframes defines any shift in the original

frame by one of the sub-decimation decomposed subframes. Therefore, the matching

blocks found are more accurate after motion estimation, and the compensated differential

error frame contains lower entropy with only a small amount of motion information, so as

to gain the compression efficiency.
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