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ABSTRACT OF THE THESIS

DETERMINING THE PHYSIOLOGICAL RESPONSE OF A SUBTROPICAL

SEAGRASS, THALASSIA TESTUDINUM, TO SALINITY STRESS USING PULSE

AMPLITUDE MODULATED (PAM) FLUOROMETRY

by

Dorothy A. Byron

Florida International University, 2006

Miami, Florida

Professor James W. Fourqurean, Major Professor

I investigated how photosynthetic performance of Thalassia testudinum changed

along a naturally occurring salinity gradient in Florida Bay, and to laboratory controlled

hyper and hypo-osmotic stress. I found significant differences between sites in Florida

Bay for yield ratios (Y and F,/Fm); however, this difference does not seem to be based on

the salinity regime, since sites with the greatest salinity range were not significantly

different from the site with the lowest salinity range. Laboratory results showed declines

in the minimum and maximum fluorescence values after a gradual ramping-up of salinity

and after long-term exposure to a sustained drop in salinity, but these declines were not

seen with the Y and Fv/Fm ratios.

Caution should be used when drawing conclusions about physiological stress

from results obtained by PAM fluorometry, as acclimation may play a large role in the

fluorescence response, limiting the use of this technique.
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CHAPTER I: Chlorophyll a fluorescence as an indicator of the stress response of

Thalassia testudinum in Florida Bay across a salinity gradient using

A: Introduction

Seagrasses world-wide are in decline, mainly from anthropogenic influences, as

coastal development increases. Increased turbidity from poor land use techniques,

eutrophication, dredging and increased recreational use have reduced the quantity of light

available to seagrasses, and poor watershed management has led to increased pollutants,

and altered freshwater inputs to estuaries. Global environmental changes may also add to

changes in seagrass distribution (see review by Short, et al., 1999; Orth et al., 2006).

When changes in the nearshore environment become extreme from anthropogenic or

natural sources, they can have negative consequences for seagrasses as the plants are

stressed beyond the limits of their tolerance. The use of physiological parameters to

detect environmental stress in seagrasses would be a valuable tool for management of

coastal areas, as physiological changes occur before morphological changes are apparent,

and observing negative effects early on could allow coastal managers to initiate action

plans before large-scale seagrass die-offs occurred.

Various stressors (light, temperature and salinity) may affect seagrass in multiple

physiological ways with the same end result: reduced net carbon fixation and eventually

reduced growth. Light is required for photosynthesis; however, excessive irradiance can

result in a breakdown of the photosystems from oxidative damage if photoprotective

pathways, such as the xanthophyll cycle and D1 protein turnover seen with

photoinhibition, are exceeded and overwhelmed (Demmig-Adams, et al., 1992; Thiele, et

al., 1996). Low light levels can be stressful to seagrass depending on the duration of

reduced light availability, as respiration becomes greater than photosynthesis and the net
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carbon balance of the plant becomes negative (Fourqurean, et al., 1991; Longstaff, et al.,

1999b). Large deviations from optimal temperatures can cause reductions in

photosynthesis as many of the biochemical reactions that occur during photosynthesis

and respiration are temperature dependent (Bulthuis, 1987). Temperature deviations can

also influence light requirements needed to maintain a positive carbon balance, and affect

nutrient availability and uptake, and protein synthesis (Bulthuis, 1987). Salinities outside

of tolerance ranges can cause a variety of effects on seagrasses, including amino acid

content changes (Pulich, 1986), changes in cell and chloroplast morphology (Iyer, et al.,

1993), decreases in photosynthetic rate (Biebl, et al., 1971; Hellblom, et al., 1999), and

decreases in above and below-ground biomass (Zieman, 1975; Kamermans, et al., 1999).

In addition to light, temperature and salinity stress, many seagrasses grow in

severely nutrient limited environments (Fourqurean, et al., 1992a; Short, 1987; see

review by Duarte, 1995). Lack of sufficient supplies of nitrogen or phosphorus to allow

for optimal performance of cells lead to deviations of elemental ratios away from

stoichiometric balance. Such deviations are associated with reduced plant size,

abundance and vigor (Fourqurean, et al., 1992a; Fourqurean, et al., 1992b; Short, 1987),

and it is likely that severe shortages of essential elements are stressful to the

photosynthetic performance of seagrasses like that seen with terrestrial plants (Conroy, et

al., 1986; Demmig-Adams, et al., 1992; Huang, et al., 2004; Lima, et al., 1999).

Chlorophyll content and chlorophyll a to b ratios have previously been measured

in relation to light and temperature gradients with various species having similar

responses. As with terrestrial plants, several species of submerged marine and freshwater

macrophytes increase their total chlorophyll content in response to reduced light levels

(Barko, et al., 1983; Longstaff, et al., 1999a; Longstaff, et al., 1999b; McMillan, et al.,
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1979; Wiginton, et al., 1979), yet the relationship between light and chlorophyll a:b is

variable and inconsistent between species or even within species growing in different

locations (Barko, et al., 1983; Wiginton, et al., 1979). Both Winginton and McMillan

(1979) and Macauley et al. (1988) found no relationship between chlorophyll a.b ratios

and light availability for the seagrass Thalassia testudinum but, Macauley et al. (1988)

did find a significant negative correlation between chlorophyll a.b ratios and temperature.

Few studies have investigated the relationship between salinity and chlorophyll

content and chlorophyll a:b ratios. McMillian and Moseley (1967) found that the

chlorophyll content of T. testudinum kept at higher salinities had a lower chlorophyll

content than those kept at constant salinity (28-31 ppt). Ralph (1998) found that

chlorophyll a content decreased at both low and high salinity extremes for Halophila

ovalis, and this reduction caused the decline in the chlorophyll a:b ratio as the

chlorophyll b content remain relatively unchanged across treatments (Ralph, 1998a). No

significant correlations were found between chlorophyll and salinity for T. testudinum by

Macauley (1988), however, the range of salinities studied (24 -35 ppt) were within the

range of tolerance for T. testudinum. It has been shown, however, that photosynthetic

activity of Zostera marina (Biebl, et al., 1971; Hellblom, et al., 1999) and T. testudinum

(Hammer, 1968 as cited in Zieman, 1975) were inhibited by decreases in salinity to near

freshwater conditions, and that growth of T. testudinum was reduced when salinity was

low (between 13-15ppt, Zieman, 1975) or high (greater than 60 ppt, McMillan, et al.,

1967).

Recent laboratory and field research has turned to pulse amplitude modulated

(PAM) fluorometry to detect deleterious conditions on seagrass physiology that would

occur before morphological changes could be detected. The amount and timing of
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fluorescence can be used as an indicator of the function of Photosystem II because as

light energy is harvested by chlorophyll it can follow five possible pathways to return to

the stable ground state: 1) it can be used to drive photochemical work; 2) it can be given

off as heat (thermal deactivation); 3) it can be emitted as a photon of light (fluorescence);

4) it can be transfer between chlorophyll molecules (resonance); and 5) it can fall from

the second excited singlet state to a excited triplet state via thermal deactivation which

can then fall to the ground state resulting in phosphorescence (Luttge, 1997; Nobel,

1999). Each pathway has a characteristic time in which it will occur. Within 10-1 to 10-9

seconds after a photon of light is absorbed, its energy is passed to a reaction center, with

resonance transfers taking about 1 or 2 x 10-12 seconds. From the reaction center, it takes

10- to 10-4 seconds for photochemical pathways to be started (Nobel, 1999). In

comparison, fluorescence of chlorophyll a takes approximately 10~9 to 10-6 seconds

(Nobel, 1999). Therefore, for photochemical work to be done, it has to occur before the

energy can be dissipated by fluorescence. If the photochemical pathways are obstructed

or damaged due to stress causing a delay in the processing of the energy, any further

energy harvested by the excitation of chlorophyll molecules will be dissipated through

one of the other pathways, mainly heat or fluorescence. Larger measures of fluorescence

would indicate that the photosynthetic apparatus was experiencing stress.

PAM fluorometry measures the fluorescence of the sample immediately before

and after a saturating pulse of light is delivered to the sample giving minimum and

maximum fluorescence values, respectively (Ralph, et al., 2005; Schreiber, et al., 1993).

Minimum and maximum values may vary depending on preliminary treatment of the

sample. If the measurements are taken after a period of dark-adjustment, which allows

the reaction center chlorophyll molecules to be oxidized (i.e. the chlorophyll a reaction
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centers are open and available to harvest light energy), the minimum fluorescence values

are termed F0 and the maximum fluorescence vales are termed Fm. These values are then

used to calculate photosystem II (PSII) photochemical efficiency (F,/Fm), where F,/Fm =

(Fm-Fo)/ Fm, which provides insight to the potential photosynthetic capacity of the leaf

sample. If the sample has been previously illuminated for a period of time and non-

radiative dissipation processes (e.g. thermal deactivation) may be occurring, the

maximum fluorescence values, now termed Fm', may be lower than from the dark-

adjusted samples, since another energy dissipation process is active. With previously

illuminated samples, the minimum fluorescence value, now termed F, may be higher than

the dark-adjusted sample as some chlorophyll reaction centers are reduced and some are

oxidized. These values are used to calculate quantum yield (Y), where Y = (Fm'-F)/Fm'.

Quantum yield measurements can be equated to the percentage of light that is being used

to do photochemical work given the previous light history (in units of minutes to hours)

of the leaf. Thus, it is expected that Y will be less than F,/Fm in normal conditions, but

that both measurements will be lower for stressed versus unstressed plants, with the Y

values of stressed plants being very low as the plant attempts to dissipated as much

excessive energy as possible before severe damage occurs to the photosynthetic

apparatus.

Peter Ralph's extensive work on the seagrass Halophila ovalis has shown negative

quantum yield and PSII photochemical efficiency responses to high light (Ralph, 1999b;

Ralph, et al., 1995) but no significant response to low light (Ralph, 1999b). Thermal

stress (heating and chilling) (Ralph, 1998b) and hyper-osmotic and hypo-osmotic

conditions (Ralph, 1998a) have also showed negative Y and Fv/Fm responses. The

interaction between the degree of intensity and the length of exposure was significant in
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all of the aforementioned experiments, except the low light experiment (Ralph, 1999b),

and greater decreases were seen in the fluorescence response with longer exposure times.

The combination of light, temperature and salinity stresses resulted in declines in Y and

Fv/Fm for all stress combinations, with thermal stress appearing to cause the most damage,

followed by hyper-osmotic and then hypo-osmotic, and finally light stress; however, the

combination of the stresses was additive in that they caused greater decline than each

individual stress alone (Ralph, 1999a). It is important to note that the exposures times

used in the aforementioned experiments lasted at most 96 hrs, and this can be considered

a short time span as many stresses can last days to weeks to months.

While laboratory work has focused on the response of fluorescence to stressful

conditions, most field work on the influence of stress on fluorescence in seagrasses has

focused on methodological considerations such as within shoot and within leaf variability

(Durako, et al., 2002; Enriquez, et al., 2002). In shallow marine environments,

temperature, salinity, and water clarity leading to reduced light level may all interact in

additive ways to intensify a stressful condition (Ralph, 1999a). Embayments that have

salinity or water quality gradients can provide natural treatments, but there have been

only a limited number of field studies looking at changes in chlorophyll fluorescence

across environmental gradients (e.g. Campbell, et al., 2003). This may be due to the

difficulties in teasing apart environmental variables that may be dependent on one

another, making results difficult to interpret.

Florida Bay is a shallow estuarine system located at the southern tip of Florida,

bounded to the east and south by the Florida Keys and to the west by the Gulf of Mexico.

Divided into numerous basins due to the criss-cross carbonate mud bank system which

restricts circulation, Florida Bay has numerous water quality gradients (salinity, nutrients,
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light availability/chlorophyll, etc) which provide natural treatments for study on different

response parameters (Fourqurean, et al., 1993). On average, the waters of Florida Bay

are about 1 m in depth. This results in the water temperatures being more susceptible to

atmospheric temperature changes than deeper offshore waters. During winter months as

cold fronts become more frequent and severe, water temperature may drop rapidly in

these shallow waters compared to the deeper coastal waters along the Florida Keys Reef

tract. These larger temperature fluctuations may be stressful for the marine plants that

reside there. The heterogeneity of the water quality parameters, the shallow nature of

Florida Bay and the large variation seen in salinity both across time and space (Nuttle, et

al., 2000), may result in many areas being stressful for submerged marine macrophytes

(i.e. seagrass).

Florida Bay can be divided into three to four zones based on similar water quality

parameters: the eastern region with mean salinity values lower than oceanic values, but

large salinity variations (both hyper and hypo) on a temporal scale; the central zone

which experiences periodic and persistent hypersaline conditions and also sees large

temporal variation; and the south and west zones which have salinities similar to that

found along the coastal waters and experience less extreme salinity variation due to direct

contact with the Gulf of Mexico (McIvor, et al., 1994; Fourqurean, et al., 1999; Nuttle, et

al., 2000). The east and central zones with their lower and higher mean salinity values as

well as their large salinity variations may, at times, be stressful to the benthic plant

communities that occur there. In addition to this northeast to southwest salinity gradient

there is also a nutrient gradient, with phosphorus availability decreasing towards the

north and east (Fourqurean, et al., 1992a). The focus of this study is to observe how

seagrass fluorescence responses may change across a natural gradient of salinity stress.
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Consequently, due to the length of the study, the seasonal temperature responses of

fluorescence measurements were also explored.

To determine the feasibility of using PAM fluorometry to detect stressful

conditions in Florida Bay, I measured the chlorophyll a fluorescence of Thalassia

testudinum at fixed sites located across a salinity gradient (mean and standard deviation)

and a temperature gradient, with the following expectations: higher fluorescence values

(thus lower Y and F~/Fm values) should be measured at sites with lower mean salinities

and at times with the greatest fluctuations in salinity; all sites would show a seasonal shift

in fluorescence during the colder months; although there is also a phosphorus gradient

across Florida Bay, four of the five sites have similar nitrogen to phosphorus ratios

(Fourqurean, et al., 1992a), thus, the P deficiency should be an additive but equivalent

stress on those sites and would not interfere with the salinity gradient response.

B: Materials and Methods:

Site characteristics:

Five sites throughout Florida Bay were chosen using the established Florida

Coastal Everglades Long Term Ecological Research (FCE- LTER) sites. The five sites,

Little Madiera Bay (near TS/Ph-7), Trout Cove (near TS/PH-8), Duck Key(TS/PH-9),

Bob Allen Keys (TS/PH-10) and Sprigger Bank (TS/PH-11) were chosen based on their

salinity history and distance from Taylor slough (Figure 1), the only freshwater input into

Northeastern Florida Bay other than rainfall. Extreme salinity variations have been

measured across the interior of Florida Bay, with fluctuations of salinity above 50 ppt

occurring across much of the bay about every 10 years from the 1950s to the present

(Fourqurean, et al., 1999). During the five year period immediately preceding our study,

salinity was variable across Florida Bay, but the bay as a whole did not experience
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historically high salinities. Salinity records obtained from Everglades National Park,

dating back to 1998, indicate that Little Madiera Bay and Trout Cove are similar with

regards to salinity with the range varying between 0 and 35 ppt. Duck Key and Bob

Allen Keys had salinity values ranging between 15 and 36 ppt and 25 and 44 ppt,

respectively. Sprigger Bank was chosen due to its relative stability, with salinity values

only ranging between 30 and 40 ppt.

On each sampling date, 10 T. testudinum shoots were randomly chosen for

chlorophyll fluorescence measurements, so that in theory, no shoot was measured twice.

Biweekly measurements were taken to increase the chance of observing a quick salinity

change; however, when biweekly measurements were not possible, each site was visited

at least once a month. Measurements were taken for approximately one year so that any

seasonal effects, if any, on chlorophyll fluorescence could be observed. The leaves used

for the first five PAM measurements were clipped at the base and brought back to the

laboratory for analysis of photosynthetic pigments (chlorophyll a and b). Thalassia

testudinum above-ground tissue samples were also collected for nutrient analysis (carbon,

nitrogen, and phosphorus) as part of regular monitoring for the FCE-LTER monitoring

program and to further distinguish any differences between sites. Measurements of

salinity, temperature, and light (PAR and turbidity) were also taken at each site.

Chlorophyll Fluorescence Measurements:

Chlorophyll fluorescence parameters were measured with a portable underwater

Pulse Amplitude Modulated (PAM) fluorometer (Walz, Germany) using SCUBA. Dark

leaf clips were used to keep the distance between the sample and the fiber optics at a

uniform distance (10mm). All measurements were taken on the adaxial surface of the

second youngest leaf at the middle portion of the leaf. Quantum yield measurements and
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Fv/Fm measurements were taken on the same leaf in the same position, with F,/Fm

measurements occurring after a 10 minute dark adaption period determined adequate for

relaxation of the chlorophyll a reaction center based on preliminary work (Byron,

unpublished data). Minimum and maximum fluorescence values are measured as volts,

however, as Y and F/Fm are ratio values, there are no units associated with these

measures.

Photosynthetic pigment analysis:

At each site, the first five leaves utilized for fluorescence measurements were

removed at the base of the leaf, placed in a dark plastic bag and returned to the laboratory

for chlorophyll analysis. Within 24 hours of collection, leaves were scraped free of

epiphytes, cut with a razor blade to a standard length of 40 mm, and rinsed with

deionized water. Each leaf segment was then wrapped in an aluminum foil packet and

freeze dried for a minimum of 12 hours. The samples were then ground with a mortar

and pestle to increase surface area during chlorophyll extraction, and placed in pre-

weighed 7 mL scintillation vials. The vials and sample were weighed so that the

chlorophyll values could be standardized to weight (g) as well as area (cm2). Following a

modification of the technique utilized by Dennison (1990), chlorophyll a and chlorophyll

b were extracted by adding 5mL of 90% acetone to the samples, and placing the vials in a

-20 C freezer to keep the samples cold and dark during the extraction. After 24 hours,

the extracts were analyzed using a Shimadzu RF-Mini 150 filter fluorometer using a 440

nm excitation filter and 670 nm emission filter for chlorophyll a and 460 nm excitation

filter and 650 nm emission filter for chlorophyll b (see Welschmeyer, 1994). The relative

fluorescence measurements for each pigment were then compared to a standard curve

produced from pure chlorophyll a and chlorophyll b spinach extracts following the
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methodology of Jeffrey and Humphrey (1975) and chlorophyll a and chlorophyll b

concentrations (pM) were calculated.

Nutrient analysis:

Seven Thalassia testudinum shoots were collected at each site during each date for

nutrient analysis. Photosynthetic tissues were scraped free of epiphytes, dried at 70 C,

and ground to a fine powder using a mortar and pestle and placed in a 7mL scintillation

vial for storage. Using 4-7 mg of sample, duplicated C and N content analysis (wt/wt)

was conducted using a Fison NA 1500 elemental analyzer. Phosphorus content (wt/wt)

was determined colorimetrically after acid-hydrolysis following the methods of

Fourqurean et al. (1992) using 17 - 21 mg of dried and ground sample. Nutrient ratios

were also calculated on a mol:mol basis for C, N and P.

Statistics:

To test for intersite differences in temperature, turbidity, amount of PAR reaching

the canopy level, and nutrient concentrations the data were pooled across date and

compared with a one-way ANOVA. Post hoc analyses were conducted using Tukey's

Multiple Comparison test on significant tests to determine which sites differed. The

fluorescence data (Y, F,/Fm, minimum and maximum fluorescence) were also pooled

across date and one-way ANOVAs were used to determine if there were significant

differences along the mean salinity gradient. Significant tests were further analyzed with

Tukey's Multiple Comparison test to determine if the sites grouped in accordance with

the mean salinity gradient. In order to avoid confusion between the reported fluorescence

parameters (Fo, Fm, F, and Fm') and the values of the F statistic associated with ANOVA,

all reported F statistics will be represented by an uppercase italics "F".
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Correlation matrices were analyzed to determine if and how the physical data

(salinity, salinity deviation from the 5 year (1998-2002) site-specific salinity mean,

temperature, turbidity, and PAR) related to the fluorescence data. The same statistical

analysis that was carried out for the fluorescence data was also conducted for the

chlorophyll pigment (chlorophyll a, chlorophyll b, total chlorophyll, and chlorophyll a:b)

data.

All data were tested for normality and homogeneity of variances. If the raw data

failed one or both these tests, transformations were performed. If the transformed data

violated one of the assumptions, parametric statistical analyses were performed on the

raw data, as ANOVA tests on large samples sizes are robust to violations of the

assumptions. However, if the transformation failed both normality and homogeneity of

variance, the equivalent nonparametric statistical analysis was used. All statistical

analysis was done using the SAS 9.1 statistical package.

C: Results:

Site characteristics:

Temperature varied seasonally but was not significantly different among sites,

with the lowest temperatures recorded from December 2002 through February 2003

(Figure 2). Neither turbidity nor the faction of incoming PAR reaching the canopy were

significantly different among the five sites, and no seasonal pattern was detected.

Turbidity ranged from 0.07 to 11.55 NTU, but most of the measured values were between

0 and 4 NTU (Figure 3). PAR measured reaching the canopy ranged from 53 pE m-2 s"

to over 2400 E m 2 s- (Figure 4), with the minimum values of PAR most likely the result

of overcast days rather than high attenuation in the water column; however, turbidity and

12



PAR reaching the bottom were significantly, negatively correlated (Spearman correlation

coefficient = -0.30260, p = 0.0128).

Mean salinity during the study period was significantly different among sites and

varied from 16 ppt to 35 ppt, with the lowest salinity occurring in the northeastern portion

of the bay at Little Madiera and Trout Cove, followed by Duck Key and then Bob Allen

Keys and Sprigger Bank (Figure 5a). These values were similar to the mean salinity

calculated from a five year average from 1998 - 2002 (Table 1). Little Madiera Bay and

Trout Cove saw the greatest range of salinities with deviations from the 5 year mean of

approximately -15 ppt during the end of the wet season from July to November 2002

(Figure 5b). During the dry season, from December to May, these sites showed salinity

deviations of +5 ppt to +10 ppt (Little Madiera Bay and Trout Cove, respectively). Duck

Key, Bob Allen and Sprigger Bank showed smaller deviations, with salinities ranging

approximately 5 ppt from the five year mean.

The carbon content (%C) of Thalassia testudinum had similar values at all five

sites (Table 2), but both %N and %P were significantly different among sites. There was

not an obvious gradient with the nitrogen content (%N), but the phosphorus content (%P)

grouped out along a northeast to southwest gradient. Unexpectedly, Little Madiera and

Trout Cove had higher concentrations of phosphorus than did Duck Key and Bob Allen

Keys (Figure 6). C:P and N:P ratios followed the same grouping trend as the %P, with

Duck Key and Bob Allen Keys having similar ranges, Little Madiera Bay and Trout Cove

having similar ranges and Sprigger Bank separated from both groups (Figure 7). Carbon

content, for all sites, ranged from 32.2% to 42.2%, N content ranged from 1.8% to 2.9%,

and P content ranged from 0.038 to 0.191%, equaling a five fold difference between

minimum and maximum recorded values for %P.
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Neither %C, %N or %P were significantly correlated to the site salinities

measured during this study, and %C and %P were not significantly related to the

deviation of salinity from the site-specific 5 year mean. However, nitrogen content was

significantly, positively correlated with the deviation of salinity from the site-specific 5

year mean (Spearman correlation coefficient = 0.25144, p = 0.0264)(Table 3). Both %N

and %P were significantly, negatively correlated with temperature (p = 0.0031 and p =

0.0208, respectively), while %C was less strongly negatively correlated with temperature

(p = 0.0613).

Chlorophyll Fluorescence Measurements:

Across all sites Y varied between a minimum of 0.23 8 and a maximum of 0.817

and Fv/Fm varied between 0.267 and 0.819, with both showing the lowest values at the

end of January 2003. This corresponds with the lowest temperatures recorded during the

study period (Figure 8). Y and F,/Fm, when averaged across date, were both significantly

different among sites (F, 825 = 30.11, p<0.0001; F4,823 = 4.17, p = 0.0024, respectively);

however, the lowest mean fluorescence values did not follow the salinity gradient. Post

Hoc analysis showed that the effective quantum yield at Bob Allen Keys was

significantly lower than at the other sites, with a mean value of 0.548 (Figure 9). There

were less obvious significant differences among sites for the Fv/Fm ratio; however, Bob

Allen Keys again had a slightly lower value. The Fv/Fm ratio at Bob Allen Keys was

0.681, which was significantly lower than the other sites, except at Duck Key and Trout

Cove whose mean F,/Fm ratios were 0.712 and 0.723, respectively (Figure 9). Most

importantly, the sites with the lowest mean salinities and the greatest salinity fluctuations

(Little Madiera Bay and Trout Cove) were not significantly different from the site that
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had near optimum salinity known for T. testudinum, and the least fluctuation from that

mean (Sprigger Bank).

Correlation analysis indicated that temperature, measure site salinity, deviation of

site salinity from the site-specific 5 year mean, and PAR reaching the canopy were all

significantly correlated with both Y and Fv/Fm (Table 4). All salinity variables were

significantly, negatively correlated to the yield ratios, as was the amount of PAR reaching

the canopy. Temperature was significantly, positively correlated to both response

variables.

Further examination of the fluorescence parameters revealed that there were

significant site differences for minimum fluorescence for both the illuminated (F) and

dark-adjusted leaves (F.) when these data were pooled across date; however, again the

sites did not group along the mean salinity gradient (Figure 10). F was significantly

higher at Duck Key (F = 195.66 V) than at the other sites, while F0 was significantly

higher at Bob Allen Keys ( F = 227.31 V). Maximum fluorescence, when pooled across

date, was significantly different for the illuminated samples (F4,575 = 18.52, p < 0.0001),

while the dark adjusted samples were not significantly different (F4,573 = 2.09, p =

0.0809). Bob Allen Keys had the lowest Fm' value of 411.67 V, which explains the lower

Y ratio was due to the lower Fm' value and not a higher F. However, the opposite

occurred for the Fv/Fm ratio, as a higher Fo value was the cause for the lower Fv/Fm ratio as

Fm was not significantly different across sites.

Correlation analysis indicated that temperature was positively correlated with F,

Fm', F0 and Fm (Table 5), with lower fluorescence values observed during times of lower

temperature (December to February), and maximum fluorescence (Fm' and Fm) having a

more obvious response than the respective minimum fluorescence values (Figure 11).
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Turbidity and PAR reaching the canopy were both negatively correlated with the

minimum and maximum fluorescence values. Unlike the Y and Fv/Fm ratios, site salinity

and the deviation of site salinity from the site-specific 5 year mean did not exhibit the

same response across all fluorescence variables. The deviation of site salinity from the

site-specific 5 year mean was not significantly correlated to F., but was significantly,

positively correlated to F. Fm was not significantly correlated to the deviation of site

salinity from the site-specific 5 year mean, while Fm' was significantly, negatively

correlated (p = 0.09). The salinity measured at during the study was significantly,

positively correlated to both F and Fo, but significantly negatively correlated to Fm' (Table

5).

Photosynthetic pigments:

Total chlorophyll content ranged across sites from 0.83 to 1.24 pg/cm2, with

chlorophyll a constituting approximately 70 to 80 % of the total chlorophyll content.

Chlorophyll a:b ratios did not vary as greatly, with the sites ranging from 2.48 to 2.66.

Chlorophyll a, chlorophyll b, and total chlorophyll were significantly different among

sites and were grouped in accordance with the mean salinity gradient, while chlorophyll

a:b was not significantly different between sites (Table 6; Figure 12). Over time,

measurements generally were divided into two groups: December to February/March and

March/April to June (Figure 13). The December to February/March group had higher

chlorophyll a and chlorophyll b, and a lower chlorophyll a:b ratio than the March/April

to June group. Chlorophyll b concentration was always lower than chlorophyll a but the

increase in the chlorophyll a:b ratio that occurred in April 2003 was due to a larger

decline of chlorophyll a than chlorophyll b (Figure 13).
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Correlation analysis confirmed our general grouping as chlorophyll a and

chlorophyll b were both significantly, negatively correlated with temperature, whereas

the chlorophyll a:b ratio was significantly, positively correlated (Table 7). Chlorophyll

content (chlorophyll a, chlorophyll b, and total chlorophyll) was significantly, positively

correlated to the salinity measured during the study, but the chlorophyll a.b ratio

remained unchanged with increasing salinity. Chlorophyll content increased with

increasing turbidity, but chlorophyll b increased at a greater rate due to the weak negative

correlation between chlorophyll a.b ratio and turbidity.

D: Discussion:

Variations in salinity away from marine conditions have often been cited as

stressors for seagrasses (e.g. Biebl, et al., 1971; Hellblom, et al., 1999; Iyer, et al., 1993;

Kamermans, et al., 1999; Ralph, 1998a; Short, et al., 1999; Zieman, 1975). In particular,

Thalassia testudinum is considered a relatively stenohaline plant that displays reductions

in vigor and growth when salinity varies from constant marine conditions (Zieman,

1975). Although PAM fluorometry has been shown to be a sensitive indicator of stress in

vascular plants in general, and seagrasses in particular (Campbell, et al., 2003; Dawson,

et al., 1996; Kamermans, et al., 1999; Longstaff, et al., 1999b; Ralph, 1998a; b; 1999a;

Ralph, 1999b; Ralph, 2000; Ralph, et al., 1995; Ralph, et al., 1998; Schwarz, et al.,

2000), I found only weak relationships between salinity and fluorescence of T.

testudinum across a marked salinity gradient in Florida Bay. Despite very large

differences in mean salinity across sites, and also in the deviation in salinity from the site-

specific mean across sites, especially at the beginning of our observations, I did not see

large differences in the fluorescence measurements. Even if the plants had acclimated to

the salinity regime at each site, I would have expected to see some reduction in
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fluorescence measurements at Little Madiera Bay and Trout Cove locations during times

when the deviation from the mean salinity was negative and large (over 15 ppt

difference); however, a reduction was not evident.

In contrast to the weak effects of salinity on fluorescence, Y and F,/Fm values

declined when the temperature dropped below 20 C, indicating a strong temperature

dependent seasonal response. Light availability may play a role in the decreased values

as all sites were visited during the course of one day, yet the order and thus the time of

visit was not consistent between visits and I did not find significant difference in the

average light received at each site across the whole of the observational period.

There was a correlation between salinity measured during the study and the

deviation of site salinity from the site-specific 5 year mean with the Y and F,/Fm values;

however, caution must be exercised in drawing conclusions about these relationships as

they may be artifacts from the negative correlation of both salinity measures with

temperature. Further analysis of the individual fluorescence parameters response

indicated that the negative response in Y and Fv/Fm to increasing mean salinity were most

likely due to the maximum fluorescence values, as both Fm' and Fm were also negatively

correlated with mean salinity, and F and Fo were not. This agrees with Ralph's (1998)

findings that maximum fluorescence values for Halophila ovalis in both hypo and hyper

osmotic treatments were the cause of the reduction in Y and F,/Fm measurements. The

decrease in Fm' and Fm after the application of a stressful condition may be attributed to

closing of chlorophyll a reaction centers as a photoprotection mechanism, whereas the

increase in minimum fluorescence values may indicate photodamage (Campbell, et al.,

2003; Ralph, et al., 1995). Perhaps the closure of the PSII reaction centers was related to

structural changes of the chloroplast in response to a stressful salinity condition.
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However, further conclusions regarding large salinity fluctuations on the individual

parameters cannot be made because technical problems with the fiber optics of the

fluorometer only allow for comparisons of data after October 2002, after the greatest

salinity fluctuations occurred at Little Madiera Bay and Trout Cove.

The lower temperatures observed during this study had a significant negative

impact on all of the fluorescence measurements. Previous research has demonstrated that

T. testudinum experiences lower production in winter months (Fourqurean, et al., 2001;

Zieman, 1975), so some degree of seasonality was expected, as growth is dependent on

carbon fixation which is dependent on ATP and NAPDH formation from the light

reactions of photosynthesis. Since the enzymes and proteins used to transfer energy

along the electron transport chain to make ATP and NADPH during photosynthesis have

optimal temperatures ranges in which they function, large deviations from these ranges

can result in suboptimal function or deactivation due to conformational changes. Ralph

(1998) found similar results with Halophila ovalis in response to heating and chilling

conditions, concluding again that the decline in the fluorescence parameters is related to

the closure of PSII reaction centers.

As PAM fluorometry measures the fluorescence of chlorophyll a, it would be

expected that the values of minimum and maximum fluorescence would be related to the

chlorophyll a content the plant. Previous studies have shown a complementary

relationship between fluorescence responses and chlorophyll responses (Ralph, 1998a;

1999a; Ralph, 1999b; Ralph, 2000), yet such a relationship was not seen in this study.

Significant differences in chlorophyll a content among sites were seen across the salinity

gradient in Florida Bay; however, the fluorescence responses (minimum and maximum

fluorescences values) did not mimic this response. Our findings also suggest that even
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though Little Madiera Bay and Trout Cove had the lowest chlorophyll a concentrations,

the remaining chlorophyll a reaction centers at those sites were still as efficient in

processing light energy as those found in the leaves of T. testudinum at Sprigger Bank,

which had the highest chlorophyll a concentration. Further research is required to

determine if plants with lower, but efficient, chlorophyll a concentrations can maintain

the positive carbon balance that is required for growth.

Caution is required when drawing conclusions from studies that use natural

environmental gradients as treatments, as one or more variables may be necessary to

explain changes in photosynthetic parameters (e.g., light availability affecting chlorophyll

ratios; nutrient availability affecting protein and enzyme synthesis needed for

photosystem repair). In addition, consideration must be given to the time span at which

changes occur (minutes to hours or day to weeks and months), as it has been shown that

the interaction between the intensity of the stress and the duration of the stress is a

significant factor in explaining magnitude of fluorescence changes (Ralph, 1998a; Ralph,

et al., 1995). Fourqurean et al. (2003) provided a statistical model based on water quality

and seagrass monitoring data, which predicts that as the salinity regime changes as more

freshwater enters the system and salinities remain at lower levels for a longer time, the

areas currently dominated by Thalassia testudinum would shift to Ruppia maritima and

Halodule wrightii dominated habitats, since these two species have greater salinity

tolerances (Fourqurean, et al., 2003). The question then becomes "How intense and for

what duration would the salinity change have to be for the species shift to occur?"

Even though PAM fluorometry allows for a quick, nondestructive, in situ way to

measure the photosynthetic efficiency of marine plants, caution should employed when

drawing conclusions from this method when observations are complicated by one or
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more environmental variables that interact. More laboratory investigations are needed to

determine each variable's individual effect on fluorescence responses, as well as

experiments that invsetigate the importance of combined effects before this method

would be appropriate for use as a monitoring tool.
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Figure 5a: Mean salinity at each site averaged across the duration of the observations.
Error bars are 1 SD.
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Figure 7: Mean nutrient ratios (mol:mol) at each site. Error bars are f 1 SE (n=13 for
Little Madiera Bay and Trout Cove; n=18 for Duck Key, Bob Allen Keys and Sprigger
Bank).
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Figure 8: Quantum yield and PSII Photochemical Efficiency at each site at each
sampling date. Error bars are f 1 SE (n=10).Symbols are as follows: Little Madiera (e),
Trout Cove (o), Duck Key (u), Bob Allen Keys (o), and Sprigger Bank (A).
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Figure 9: Quantum yield and PSII Photochemical Efficiency averaged by sampling
location. Error bars are 1 SE (n=166). Letters indicated statistical differences between
sites as determined by Tukey's Multiple Comparison Tests.
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Figure 13: Photosynthetic pigment concentration at each site at each sampling date.
Error bars are f 1 SE (n=10). Symbols are as follows: Little Madiera (0), Trout Cove
(o), Duck Key (m), Bob Allen Keys (i), and Sprigger Bank (A).
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CHAPTER II: Chlorophyll a fluorescence response of Thalassia testudinum to hyper

and hypo-osmotic conditions

A: Introduction:

In shallow estuaries, hyper-saline (i.e. > 35 ppt) and hypo-saline (i.e. < 35 ppt)

conditions may be detrimental to the submerged aquatic vegetation. Hyper-saline

conditions can occur naturally in long water residence time estuaries when evaporation

exceeds freshwater input from either rainfall or river discharge (Nuttle, et al., 2000).

Hyper-saline conditions can be induced by limiting inflow from damed rivers, outflow

from desalinization plants and poor watershed management practices (Adams, et al.,

1994; Kamermans, et al., 1999; Ralph, 1998a; Zieman, et al., 1999). Hypo-saline events

can also occur from excessive rainfall, flood runoff, and watershed management practices

(Nuttle, et al., 2000; Thorhaug, et al., 2006). Both hypersaline and hyposaline conditions

exist at times in Florida Bay, a shallow water estuary on the southern tip of Florida, and

these conditions may be stressful for the dominant benthic macrophyte, the seagrass

Thalassia testudinum.

Hyper-saline and hypo-saline events may be stressful and can cause a variety of

negative effects on seagrasses, including amino acid content changes (Pulich, 1986),

changes in cell and chloroplast morphology (Iyer, et al., 1993), decreases in

photosynthetic rate (Hammer, 1968 as cited in Biebl, et al., 1971; Hellblom, et al., 1999;

Zieman, 1975), and decreases in above and below-ground biomass (McMillan, et al.,

1967; Zieman, 1975; Kamermans, et al., 1999). Studies on chlorophyll content and

salinities outside of tolerance ranges found that chlorophyll content of T. testudinum at

higher salinities had a lower chlorophyll content than those kept at constant seawater

salinity (28-31 ppt, McMillan, et al., 1967), and that chlorophyll a content decreased at
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salinity extremes (hypo and hyper) for Halophila ovalis (Ralph, 1998a). Byron (Chapter

1) found that as mean salinity increased from 16 ppt to 35 ppt the chlorophyll a content

of T. testudinum also increased.

Research on stress responses of marine plants within the past 10 years has begun

to focus on chlorophyll a fluorescence. Enzymes and proteins have optimal conditions in

which they function and large deviations from these conditions can result in suboptimal

function or deactivation due to conformational changes. Since photosynthesis is

dependent on membrane-embedded proteins and enzymes to pass energy along to make

ATP and NADPH, when conditions vary outside of tolerance ranges, normal processes

may be disrupted. Fluorescence is the process by which excessive light energy is

dissipated before cellular damage occurs if the energy is unable to be used for

photochemical work (i.e. photosynthesis). Pulse amplitude modulated (PAM)

fluorometry can be used to detect deleterious conditions on seagrass physiology because

the amount and timing of fluorescence can be used as an indicator of the function of the

photosynthetic processes.

PAM fluorometry has been used to determine the effects of a variety of stresses

on seagrass. Peter Ralph's extensive work on the seagrass Halophila ovalis has shown

negative quantum yield and PSII photochemical efficiency responses to high light (Ralph,

1999b; Ralph, et al., 1995), but no significant response to low light (Ralph, 1999b).

Thermal stress (heating and chilling, Ralph, 1998b) and hyper-osmotic and hypo-osmotic

conditions (Ralph, 1998a) have also shown negative Y and F,/Fm responses. The

interaction between the degree of intensity and the length of exposure was significant in

all of the aforementioned experiments, except the low light experiment (Ralph, 1999b),

with greater decreases seen in the fluorescence response with longer exposure times. The
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combination of light, temperature and salinity stresses resulted in declines in Y and F,/Fm

for all stress combinations, with thermal stress appearing to cause the most damage,

followed by hyper-osmotic and then hypo-osmotic, and finally light stress; however, the

combination of the stresses was additive in that they caused greater decline than each

individual stress alone (Ralph, 1999a). Dessication stress on Ruppia cirrhosa and

Zostera capensis resulted in lower F~/Fm ratios after exposure, with the decline increasing

with increasing exposure time for R. cirrhosa (Adams, et al., 1994). It is important to

note that the exposures times used in the aforementioned experiments lasted at most 96

hrs, which can be considered a short time span as many stresses can last days to weeks to

months.

In the previous chapter, I investigated the fluorescence response across a natural

salinity gradient and determined that there were only weak correlations between

fluorescence and mean salinity across Florida Bay, and that firm conclusions regarding

salinity and in situ fluorescence measurement were difficult to draw because of other

interacting environmental variables. It was the goal of this study to determine if the

fluorescence measurements of T. testudinum would change as salinity conditions changed

from normal marine salinities in a controlled setting so that one one environmental

variable would be influencing the fluorescence response. I was also interested in how the

fluorescence measurements changed with length of exposure, as longer exposure times

(i.e. > 96 hr) may result in acclimation by T. testudinum to salinities outside of the

optimal range of 24 -34 ppt (Zieman, 1975). To try and understand why the fluorescence

parameters changed, I was also interested in how the photosynthetic pigment

concentrations changed in response to hyper and hypo-osmotic stresses.
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B. Materials and Methods:

Hyper and Hypo-osmotic stress experiments:

In order to study the effects of osmotic stress on Thalassia testudinum, 35- 5 gal.

aquaria were set up at Florida International University's outdoor aquaculture facility.

Intact T. testudinum rhizomes with at least three short shoots were collected from The

Boggies, Key Largo, Florida (250 10.524' N, 80 27.251' W), placed in coolers and

transported to the aquaculture facility on November 8th, 2003. During the collection,

chlorophyll fluorescence measurements were taken to establish a 'baseline' value of

fluorescence for each individual. The intact shoots were transplanted into aquariums

(one per aquarium) on November 11 th, 2003 and allowed to acclimate under laboratory

conditions. Salinity in each aquarium was maintained at 35ppt; however, since the

facility was located outside, light and temperature could not be controlled.

Photosynthetically active radiation measured during mid-day (between 1100 and 1300 h)

averaged 300 pE m-2 s' at the tops of the 5 gal aquaria, with a photoperiod of 11:13 h.

Temperatures varied between 14.5 and 29.20C; however, all fluorescence measurements

were taken when the temperature was between 21 and 260C (Figure 14). Acclimation

time varied depending on treatment due to the techniques used to achieve the desired

salinity within the aquaria. The hyper-osmotic treatments were started 22 days after

transplanting and the hypo-osmotic treatments were started 42 days after transplanting.

Three hyper-osmotic treatments, three hypo-osmotic treatments and one control

treatment were randomized across the 35 aquaria (Figure 15). Each treatment had five

replicates. The hyper-osmotic treatments consisted of 150%, 200% and 250% seawater,

which equal 52.5, 70, and 87.5 ppt, respectively. The hypo-osmotic treatments consisted

of 0%, 25%, 50% seawater, which equal 0, 8.75, and 17.5 ppt, respectively. Hyper-
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osmotic conditions were achieved by periodically adding a brine solution to each

aquarium. Brine additions to the 150% treatment were made every two days; to the

200% treatment they were every other day; and to the 250% treatment, they were made

every day. The desired hyper-osmotic conditions were achieved after 67 days, with rates

of salinity increase of 0.6 ppt d-', 1 ppt d-' and 1.2 ppt d-1 for the 150%, 200% and 250%

treatments respectively (Figure 16). The brine solution was made by natural evaporation

from two large tanks filled with 35 ppt seawater that was also set up at the outdoor

aquaculture facility. Hypo-osmotic conditions were created using a pulse technique

where the salinity was quickly dropped and then kept constant at the lower value. This

was achieved by adding deionized water to each tank until the desired salinity was

attained. The same control tanks (salinity equal to 35ppt) were used for both

experiments. These treatments were used to measure the effects of evaporative ramping

up of salinity and a sudden and sustained drop in salinity, mimicking salinity changes

within Florida Bay, on chlorophyll a fluorescence.

Chlorophyll Fluorescence Measurements:

Chlorophyll fluorescence parameters were measured using a portable underwater

Pulse Amplitude Modulated (PAM) fluorometer (Walz, Germany). Dark clips were used

to keep the distance between the sample and the fiber optics constant at a uniform

distance (10mm), and all measurements were taken on the adaxial surface of the second

youngest leaf at the middle portion of the leaf. Fluorescence measurements were

obtained immediately before and after a saturating pulse of light was provided to the leaf

via a bulbed fiber optic probe. Providing saturating pulses of light to a leaf which was

previously illuminated yields the following parameters: minimum fluorescence (F) and

maximum fluorescence (Fm'). These values were then used to calculate quantum yield
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(Y), where Y = (Fm'- F)/ Fm'. Quantum yield measurements can be equated to the

percentage of absorbed light being used to do photochemical work, given the previous

light history (in units of minutes to hours) of the leaf. The dark clips were then closed for

a 10 minute dark adaption period, allowing for adequate relaxation of the chlorophyll a

reaction centers (Byron unpublished data). Once the dark adaption period was over,

fluorescence measurements were again taken, yielding minimum and maximum

fluorescence values now termed F0 and Fm, respectively. These values were then used to

calculate photosystem II (PSII) photochemical efficiency (Fv/Fm), where Fv/Fm = (Fm-F.)/

Fm, which provides insight to the potential photosynthetic capacity of the leaf sample. It

was expected that Y would be less than Fv/Fm in normal conditions, but that both

measurements would be lower for stressed versus unstressed plants, with the Y values of

stressed plants being very low as the plant attempted to dissipated as much excessive

energy as possible before severe damage occurred to the photosynthetic apparatus.

To study the effect of hyper-osmotic conditions on fluorescence, measurements

were taken prior to additions of brine to the treatment aquariums and then once the

desired salinity was obtained, 67 days after the initial addition of brine. Measurements

were also taken periodically (5, 15, 45, and 62 days) during the ramping-up phase of the

hyper-osmotic experiment to determine whether fluorescence changed as the salinity was

slowly raised.

To study the effect of a sudden and sustained drop in salinity, fluorescence

measurements were taken immediately after the stress was applied (0 h), 2 hours after, 6

hours after and then daily for 6 days afterward. Fluorescence measurements were also

taken 19 days and 33 days after the salinity was lowered to observe how prolonged

exposure would affect the measurements.
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Photosynthetic pigment analysis:

At the conclusion of the experiments, leaves used for fluorescence measurements

were taken from each tank to determine how the chlorophyll pigments might have

changed in response to hyper and hypo osmotic stress. Within 24 hours of collection,

leaves were scraped with a razor blade to remove epiphytes, cut to a standard length of 30

mm, and rinsed with deionized water. Each leaf segment was then wrapped in an

aluminum foil packet and freeze dried for a minimum of 12 hours. The samples were

then ground using a mortar and pestle to increase surface area during chlorophyll

extraction and placed in pre-weighed 7 mL scintillation vials. The vials and sample were

weighed so that the chlorophyll values could be standardized to weight (g) as well as area

(cm2 ). Following a modification of the technique utilized by Dennison (1990),

chlorophyll a and chlorophyll b were extracted by adding 5mL of 90% acetone to the

samples, and placing the vials in a -200C freezer to keep the samples cold and dark during

the extraction. After 24 hours, the extracts were analyzed using a Shimadzu RF-Mini 150

filter fluorometer using a 440 nm excitation filter and 670 nm emission filter for

chlorophyll a and 460 nm excitation filter and 650 nm emission filter for chlorophyll b

(see Welschmeyer, 1994). The relative fluorescence measurements for each pigment

were then compared to a standard curve produced from pure chlorophyll a and

chlorophyll b spinach extracts following the methodology of Jeffrey and Humphrey

(1975) and chlorophyll a and chlorophyll b concentrations ( M) were calculated.

Statistics:

Fluorescence measurements made the day prior to the start of either treatment set

(hyper or hypo-osmotic) were analyzed using a One-way Analysis of Variance

(ANOVA) to ensure that no pre-treatment differences existed among groups due to
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random differences in the aquaria at the initial application of any stress. I approached the

analysis of each experiment in two ways. First, to determine if there were overall effects

of the different treatments (hyper- and hypo-osmotic) on the fluorescence measurements,

one-way ANOVAs were conducted on the difference between the initial and final

fluorescence measurements. Significant ANOVA results (p <0.05) were further

analyzed with Tukey's Multiple Comparison tests to determine which treatments were

significantly different. Then, as I was also interested in how the fluorescence

measurements changed over time in the slow ramped-up hyper-osmotic and the quick

pulsed-down hypo-osmotic experiments, repeated measures ANOVAs were conducted to

determine if the fluorescence measurements differed across treatments, across exposure

times and if the pattern of change over time for each treatment was different. Although

many results for the hyper and hypo-osmotic experiments were plotted together to

facilitate synthesis of the results, statistical analyses were conducted on each experiment

separately. In order to avoid confusion between the reported fluorescence parameters (F.,

Fm, F, and Fm') and the values of the F statistic associated with ANOVA, all reported F

statistics will be represented by an uppercase italics "F".

To test for differences in photosynthetic pigment measurements between

treatments, one way ANOVAs were conducted. Significant ANOVA results were

analyzed with Tukey's Multiple Comparison test to determine which treatments were

significantly different.

Transformations were done on any data set that did not pass either normality or

homogeneity of variances tests. Squaring or cubing any non-normal raw data most often

resulted in a normal distribution. All statistical analysis was done using the SAS 9.1

statistical package.
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C. Results:

Chlorophyll Fluorescence Measurements:

Analysis of the treatment tanks 24 hours prior to the application of the stress

showed no significant differences in the fluorescence measurements among the groups of

tanks (Table 8). Initial minimum (Fo) fluorescence values were between 207 and 218 V

and final Fo values declined to between 63 and 153 V, with the higher salinity treatments

having the lower values after 67 days of hypersalinity conditions (Figure 17). Maximum

fluorescence (Fm) measurements also declined from an initial range of 805 to 888V to a

final range of 237 to 671 V (Figure 17). The percent decline in Fo, normalized to the

control treatment, was 15% in the 150% seawater treatment, 39% in the 200% seawater

treatment, and 58% in the 250% seawater treatment. Similar declines were seen for Fm,

with the 250% seawater treatment having the greatest decline between initial and final

measurements (72%). The differences between the initial and final minimum and

maximum fluorescence measurements across treatments were both significantly different

(p < 0.05). Tukey's multiple comparison test revealed that the control treatment

measurements were not significantly different than the 150% seawater or 200% seawater

treatments, but were significantly different than the 250% seawater treatment. The

150%, 200% and 250% seawater treatments were not significantly different from one

another (Figure 18).

As both F0 and Fm declined at similar rates, the decline in Fv/Fm ratios was

minimal, and increases were actually seen, with the final measurements being higher for

the control, the 150% seawater and the 200% seawater treatments (Figure 19). Initial

Fv/Fm ratios ranged from 0.713 to 0.758 and final ratios ranged from 0.707 to 0.765, both

of which are in the range of unstressed plants of 0.7 to 0.8 (see review by Touchette, et
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al., 2000). The differences between the initial and final F,/Fm ratios across treatments

was not significantly different (F3,16 = 1.08, p = 0.3841). Similar results were found for

the minimum and maximum fluorescences values and quantum yield (Y) ratios from

measurements taken without the period of dark-adjustment (data not shown).

Repeated measures analysis conducted on the minimum and maximum

fluorescence measurements from dark-adjusted leaves taken during the 'ramping up'

procedure revealed that the treatments were significantly different (salinity main effect,

F3,15 = 3.77, p = 0.0338; and F3,15 = 4.63, p = 0.0175 for Fo and Fm, respectively), and that

F0 and Fm were significantly different at different times (time main effect, F3,45 = 11.12, p

< 0.0001; and F3,45 = 41.94, p < 0.0001 for F0 and Fm, respectively). Salinity treatment

also significantly influenced the way in which these measurements changed over time for

both F0 and Fm (salinity x time interaction, F9,45 = 3.50, p = 0.0024; F9,45 = 2.44, p =

0.0238 for Fo and Fm, respectively)(Figure 20). Repeated measures analysis on the Fv/Fm

values, revealed that both salinity and time were significant (F3,15 = 8.22, p = 0.0018; F3,45

= 189.33, p < 0.0001, respectively); however there was no significant salinity x time

interaction. There was a decline in Y and Fv/Fm on day 15 (Figure 20); however, this also

corresponded to a significant decrease in average tank temperature to 16.40C (see Figure

14). The decline in the yield measurements (both Y and F,/Fm) was mainly due to a

decline in the maximum fluorescence values, as minimum fluorescence values remained

relatively stable (Figure 20). It is important to note that the same results were seen when

day 15 was removed from the statistical analysis, so that even though temperature is an

important factor, there was a significant effect of salinity change on the fluorescence

measurements.
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Analysis of the hypo-osmotic treatments 24 hours prior to the application of the

stress revealed no pre-treatment differences in fluorescence response variables among

treatment groups (see Table 9). Initial minimum (F.) fluorescence values were between

200 and 240 V and final F0 values declined to between 63 and 182 V after 33 days of

exposure to hypo-osmotic conditions, with the lowest salinity treatment having the lowest

final values (Figure 21). Maximum fluorescence (Fm) measurements also declined from

an initial range of 512 to 730 V to a final range of 158 to 653 V (Figure 21). The

differences between the initial and final minimum and maximum fluorescence

measurements across treatments were both significantly different (Fo: F3,16 = 4.57, p =

0.017; Fm: F3,16 = 6.95, p = 0.0033). Tukey's multiple comparison test revealed that the

differences between minimum fluorescence (Fo) values pre and post application of the

stress of the control treatment were significantly less than the differences seen in the 0%

seawater treatment, but not significantly different than the 50% seawater or 25% seawater

treatments. Maximum fluorescence (Fm) values of the control treatment were not

significantly different from the 50% seawater treatment, but was significantly lower than

both the 25% and 0%. For both F0 and Fm the 0%, 25% and 50% seawater treatments

were not significantly different from one another (Figure 18).

As in the hyper-osmotic experiment, since both F0 and Fm declined at similar

rates, the percent of decline in F,/Fm ratios was minimal (Figure 19). Initial Fv/Fm ratios

ranged from 0.582 to 0.669 and final ratios ranged from 0.550 to 0.716. Although there

were greater differences between pre and post stress across the treatments, these

differences were not significant. As also seen in the hyper-osmotic experiment, similar

results were found for the minimum and maximum fluorescences values and quantum
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yield (Y) ratios from measurements taken without the period of dark-adjustment (data not

shown).

Repeated measures analysis of the F,/Fm ratios, concluded that both salinity and

time were significant (salinity main effect, F3,15= 5.21, p = 0.011; time main effect, F10,150

= 4.00, p ,0.0001); however their interaction was not (salinity x time interaction, F30,15 0 =

0.95, p = 0.5466). Similar results were seen for the Y ratio; however, the pattern of

change over time for each treatment was more pronounced (Figure 22). Further analysis

of the individual fluorescence measurements showed that both time and the salinity x

time interaction were significantly different for Fo (time main effect, F0,,50 = 14.63, p ,

0.0001; salinity x time interaction, F30,150 = 2.48, p = 0.0002) and Fm (time main effect,

Flo,150 = 33.46, p < 0.0001; salinity x time interaction, F30 ,150 = 3.01, p < 0.0001), but only

in the Fm measurements was the between subject effects of the treatments significant

(salinity main effect, F3,15 = 5.11, p = 0.0124). Again, the same types of results that

existed with the quantum yield ratios were also seen with the individual fluorescence

measurements of non-dark adjusted leaves, but the pattern of change over time was more

pronounced (Figure 23).

Photosynthetic pigments:

Total chlorophyll content across all treatments ranged from 0.17 to 0.55 pg/cm 2,

with chlorophyll a constituting approximately 59 to 77 % of the total chlorophyll content

(Figure 24). One-way ANOVA and post hoc analysis showed that chlorophyll a and total

chlorophyll in the 200% and 250% seawater treatments had significantly lower

concentrations than the control and 150% seawater treatments across the hypersaline

treatments (F3,34 = 10.53 and 11.62, respectively, p < 0.0001), but none of the treatments

were significantly different in the hyposaline treatments (F3,38 = 2.29, p > 0.05). When

60



both treatments were analyzed together, Tukey's multiple comparison test revealed that

the chlorophyll a and total chlorophyll content at extreme salinity values (e.g. the 0%,

25%, 200% and 250% seawater treatments) were not significantly different from each

other. Chlorophyll b concentrations were not significantly different across any treatment

in either experiment (hyper-osmotic: F3,34 = 1.12 p > 0.05; hypo-osmotic: F3,38 = 0.28, p >

0.05), and although chlorophyll a.b ratios appeared to vary (Figure 24), with the sites

ranging from 3.8 to 10.3, there were no significant differences between treatments in

either the hyper or hypo-osmotic experiments (F3,34 = 0.71, p = 0.5505; F3,38 = 0.26, p =

0.8572, respectively).

D. Discussion:

Although seagrasses have evolved in the marine medium, both high and low

salinities can be stressful for these marine vascular macrophytes, and large variations in

salinity has often been cited as a stress for seagrasses (Biebl, et al., 1971; Hellblom, et al.,

1999; Iyer, et al., 1993; Kamermans, et al., 1999; Ralph, 1998a; Short, et al., 1999;

Zieman, 1975). Thalassia testudinum, in particular, is considered a relatively stenohaline

plant that exhibits reductions in vigor and growth when salinity varies from constant

marine conditions (Zieman, 1975). PAM fluorometry has been shown to be a sensitive

indicator of stress in vascular plants in general and seagrasses in particular (Campbell, et

al., 2003; Dawson, et al., 1996; Kamermans, et al., 1999; Longstaff, et al., 1999; Ralph,

1998a; b; 1999a; Ralph, 1999b; Ralph, 2000; Ralph, et al., 1995; Ralph, et al., 1998;

Schwarz, et al., 2000), but only weak relationships between salinity and fluorescence

were seen in T. testudinum across a marked salinity gradient in Florida Bay, as

observations were complicated by the interaction of other environmental variables

(Byron, Chapter 1).
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In this investigation of slow ramping up and quick pulsing down of salinity, when

Y and F,/Fm were studied over time, there were significant differences among the salinity

treatments and over time. In 1973, Selye (1973) introduced the biological stress concept,

which has since been applied to plants (Levitt 1980; Luttge, 1997). This concept states

that as stress is applied and then removed, the first response of the organism is the 'alarm

phase'. This will result in a negative departure from the current or 'normal' state of the

organism. During this phase, biochemical and morphological changes may occur to

protect the organism from the stress. While the stress is still present the 'recovery phase'

begins, followed by a 'hardening' and 'resistance phase'. These later phases represent

acclimation. If during this process, the stress is increased, the stress is too intense upon

application, or the exposure period is too great, the organism may undergo an 'exhaustion

phase' which can lead to chronic or acute damage and death (Selye, 1973; Luttge, 1997).

During the hyper-osmotic experiment, I did not notice these phases; however, this

may be due to the method used to achieve the desired salinity. The gradual change in

salinity may have allowed some degree of acclimation as the fluorescence measurements

remained relatively close together up to 45 days after the start of the salinity increase.

After this time both minimum and maximum fluorescence values showed declines in the

highest salinity (250% seawater) treatment. Again, because both measurements declined

there were relatively small changes in the yield ratios, suggesting that the decreases were

due to a loss of chlorophyll a. During the hypo-osmotic treatment, we saw that the Y

response, and to a lesser degree the Fv/Fm response, followed the pattern described by the

biological stress concept. There was an initial decline in fluorescence values after 24 h,

after which the plants then entered into a recovery phase and fluorescence measurements

were higher than those of the controls; however, as the salinity stress persisted, both
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treatments declined to values below those measured in the controls. The greatest hypo-

osmotic stress (0% seawater treatment) showed a decline in fluorescence immediately

after the salinity was lowered and this decline increased with prolonged exposure. Peter

Ralph's work on Halophila ovalis (Ralph, et.al, 1995; Ralph, et al., 1998, Ralph, 1998a;

Ralph, 1998b; Ralph, 1999a; Ralph, 1999b; Ralph, 2000) may have also seen this pattern

in the fluorescence measurements if the length of stress exposure was extended beyond

96hrs. Because of the reduced exposure times used in those experiments, the measured

fluorescence response many only represent the response seen in during the 'alarm phase'.

If the stress persisted, the plants, in this case H. ovalis, may have been able to recover and

acclimate like what was seen for T. testudinum in this investigation.

Salinity deviations from marine conditions in either a positive or negative

direction produced marked departures in both the final minimum and maximum

fluorescence measurements. However, since both these measurements declined, the final

yield ratios (Y and F,/Fm) did not show great deviations from the control treatment. This

decrease in Fm' and Fm after the application of the stress may be attributed to closing of

chlorophyll a reaction centers as a photoprotection mechanism (Campbell, et al., 2003;

Ralph, et al., 1995). The similar decrease in F and Fo further indicate a complete loss of

chlorophyll a. Measurements of chlorophyll a at the completion of each experiment

support this notion since chlorophyll a values decreased as salinities varied further from

marine conditions. However, the Y and F,/Fm ratios were not different across salinity

treatments, suggesting that those chlorophyll reaction centers still remaining are capable

of transferring light energy just as efficient as the unstressed plants.

This study demonstrates that hyper and hypo-osmotic stress do affect fluorescence

measurements, but that the way in which the stress is applied is important in determining
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how fluorescence measurements respond. Gradual changes in salinity may not produce

fluorescence responses until days to months, after there has already been a reduction in

chlorophyll content, or a morphological change, whereas sudden changes induce

fluorescence changes within hours to days. This study provides only the first steps in

investigating how fluorescence measurements change in response to salinity stress, and

further experimentation is required for a complete understanding of how the fluorescence

measurements of Thalassia testudinum are affected by hyper and hypo-osmotic stress.
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Figure 19: Difference between initial and final F,,/Fm measurements for both the hyper

and hypo-osmotic experiments. Error bars are 1 SE (n=5).
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Figure 20: Fluorescence measurements during the 'ramping-up' phase of the hyper-

osmotic experiment taken on days 5, 15, 45, and 62. Error bars are 1 SE (n=5).
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