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ABSTRACT OF THE DISSERTATION 

AN INTEGRATED NEUROIMAGING APPROACH FOR THE PREDICTION AND 

ANALYSIS OF ALZHEIMER’S DISEASE AND ITS PRODROMAL STAGES 

by 

Qi Zhou 

Florida International University, 2015 

Miami, Florida 

Professor Malek Adjouadi, Major Professor 

This dissertation proposes to combine magnetic resonance imaging (MRI), positron 

emission tomography (PET) and a neuropsychological test, Mini-Mental State 

Examination (MMSE), as input to a multidimensional space for the classification of 

Alzheimer’s disease (AD) and it’s prodromal stages including amnestic MCI (aMCI) and 

non-amnestic MCI (naMCI). An assessment is provided on the effect of different MRI 

normalization techniques on the prediction of AD. Statistically significant variables 

selected for each combination model were used to construct the classification space using 

support vector machines. To combine MRI and PET, orthogonal partial least squares to 

latent structures is used as a multivariate analysis to discriminate between AD, early and 

late MCI (EMCI and LMCI) from cognitively normal (CN)s. In addition, this dissertation 

proposes a new effective mean indicator (EMI) method for distinguishing stages of AD 

from CN. EMI utilizes the mean of specific top-ranked measures, determined by 

incremental error analysis, to achieve optimal separation of AD and CN. 
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For AD vs. CN, the two most discriminative volumetric variables (right hippocampus and 

left inferior lateral ventricle), when combined with MMSE scores, provided an average 

accuracy of 92.4% (sensitivity: 84.0%; specificity: 96.1%). MMSE scores were found to 

improve classification accuracy by 8.2% and 12% for aMCI vs. CN and naMCI vs. CN, 

respectively. Brain atrophy was almost evenly seen on both sides of the brain for AD 

subjects, which was different from right side dominance for aMCI and left side 

dominance for naMCI. Findings suggest that subcortical volume need not be normalized, 

whereas cortical thickness should be normalized either by intracranial volume or the 

mean thickness. Furthermore, MRI and PET had comparable predictive power in 

separating AD from CN. For the EMCI prediction, cortical thickness was found to be the 

best predictor, even better than using all features together. Validation with an external 

test set demonstrated that best of feature-selected models for the LMCI group was able to 

classify 83% of the LMCI subjects. The EMI-based method achieved an accuracy of 92.7% 

using only MRI features. The performance of the EMI-based method along with its 

simplicity suggests great potential for its use in clinical trials. 
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CHAPTER 1 

1. INTRODUCTION 

1.1 Alzheimer’s Disease 

Nowadays more and more old people are suffering from Alzheimer’s disease (AD) as a 

result of prolonged life expectancy (Duchesne, et al., 2008). AD is a progressively 

neurodegenerative disease, and is the most common form of dementia, accounting for 60% 

to 70% of the dementia cases(Organization, 2012). It is a syndrome that affects memory, 

thinking orientation, language, judgment, comprehension and so on.  Estimates from the 

Alzheimer Association (alz.org) as of March 2012 indicate that 5.4 million Americans are 

diagnosed with AD, and over 95% of this population are 65 years of age or older. This 

estimate of AD population is expected to reach 16 million by 2050, a disturbing prospect. 

Also, nearly half of the population over 85 years of age is affected by AD (Organization, 

2012).  

AD patients display disease-related regional cerebral atrophy, which can be distinguished 

from normal aging (Fox and Schott, 2004; Ridha, et al., 2006). In AD, atrophy is often 

observed in regions which are closely related to neurodegeneration. Various studies have 

shown that atrophy in regions like the  hippocampus (Apostolova, et al., 2012; Laakso, et 

al., 1995b; Leclerc and Abulrob, 2013; Scahill, et al., 2002), amygdala (Cuenod, et al., 

1993; Laakso, et al., 1995b) and ventricles (Nestor, et al., 2008c; Thompson, et al., 2004b) 

is correlated to AD. Moreover, determination of the key atrophied regions across the entire 
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brain could be used as parameters for the delineation of AD patients from cognitively 

normal subjects (CN).  

Transitional stage of AD is commonly referred as mild cognitive impairment (MCI), 

which is intermediate between cognitive normal (CN) controls and patients with AD. It is 

subdivided as early and late MCI (EMCI and LMCI) in the late two phases of 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (ADNI GO and ADNI 2). 

EMCI is characterized as very mild memory impairment that is intermediate between CN 

and LMCI (Herholz, et al., 2002; Landau, et al., 2012). Such division of MCI is preferred 

from the traditional classification of MCI as a general group as it makes differential 

diagnosis of AD more specific. It is expected that prediction of EMCI will be more 

challenging than for LMCI, while evidently it will be more beneficial to the patients if a 

correct diagnosis is made at the EMCI stage. 

MCI were also divided into amnestic MCI (aMCI) and non-amnestic MCI (naMCI) and 

were studied separately as early findings suggest that these two different types of MCI 

have their own distinctive features that could delineate them (Ellison, et al., 2008; Nutter-

Upham, et al., 2008). More specifically, this could help in predicting the conversion of 

MCI as has been reported by Ferman et al. that naMCIs were more likely to develop 

dementia with Lewy body (DLB) while patients with aMCI are more likely to convert to 

AD (Ferman, et al., 2013). 
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Mini-Mental State Examination (MMSE) is a neuropsychological test that is most often 

administered to screen patients for cognitive impairment and dementia (Folstein, et al., 

1975). MMSE is used to judge the severity of cognitive impairment by administrating 30 

questions aimed at testing the subject’s orientation to time and place, attention and 

calculation capabilities, as well as response to recall, language and complex commands. 

The frequent use of MMSE in clinical environments makes it interesting to investigate its 

discriminative power in classifying AD subjects as compared to MRI-based measures.  

1.2 Biomarkers of Alzheimer’s Disease 

There are multiple biomarkers that have been shown effective in the diagnosis of AD and 

MCI.  Magnetic resonance imaging (MRI) is commonly used for analyzing regional 

volumetric atrophy (Fennema‐Notestine, et al., 2009; Fox, et al., 1999; Jack, et al., 1997; 

Wang, et al., 2011), cortical thinning (Dickerson, et al., 2009a; Eskildsen, et al., 2013), 

shape of specific regions (Achterberg, et al., 2014; Csernansky, et al., 2005; Wang, et al., 

2007b) and structural/functional connectivity (Gour, et al., 2013; Haase, et al., 2013; 

Wang, et al., 2007a). In addition, extracellular beta-amyloid (A ) deposition (Hardy and 

Allsop, 1991b) and tau protein abnormalities (Mudher and Lovestone, 2002a) were 

reported as being the fundamental causes of the disease, making biomarkers capable of 

characterizing these critical features essential in the diagnosis of AD. Among these, 

Positron emission tomography (PET) imaging modality has been shown to be an efficient 

biomarker for evaluating amyloid plaque level and hypometabolism of the brain, which 

contain  discriminative information for AD staging (Herholz, et al., 2002; Mosconi, et al., 
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2008; Nordberg, et al., 2010a; Nordberg, et al., 2010b). Another biomarker is single-

photon emission computerized tomography (SPECT), which measures regional cerebral 

perfusion (Hirao, et al., 2005; Jagust, et al., 2001; Johnson, et al., 1998).   

Others include Cerebrospinal fluid (CSF) biomarker by analyzing level of β	amyloid  (Aβ42) and total tau protein (T-tau) of CSF (Blennow and Hampel, 2003; Hansson, et 

al., 2006; Mattsson, et al., 2009), EEG biomarker for estimating the power spectrum 

(Besthorn, et al., 1994; Locatelli, et al., 1998) and Apolipoprotein E (APOE) genotype 

indicating higher risk for AD with the presence of the ε4 allele (Bickeböller, et al., 1997; 

Ganzer, et al., 2003).  These biomarkers have been widely used to guide clinicians for 

planning a course of action. 

More recently, some studies have combined two or more of these biomarkers to explore 

their complementary information for improved discriminative power (Fan, et al., 2008b; 

Walhovd, et al., 2010a; Westman, et al., 2012a; Zhang, et al., 2011). For example, Zhang 

et al. combined biomarkers of MRI, PET and CSF using a proposed multimodal data 

fusion technique (Zhang, et al., 2011), and Westman et al. combined MRI and CSF using 

orthogonal partial least squares to latent structures (OPLS) analysis method (Westman, et 

al., 2012a).  Specifically, some studies combined neuropsychological tests with medical 

imaging modalities. The cost-benefit of combining multiple biomarkers is of great 

concern as the use of multiple biomarkers often result in unaffordable costs (Westman, et 

al., 2012a).   
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1.3 Research Purpose and Significance 

This dissertation investigates the classification of AD, aMCI and naMCI by combining 

subcortical volumes of MRI with a neuropsychological test (Mini-Mental State 

Examination (MMSE)), which is most often administered to screen patients for cognitive 

impairment and dementia. This study demonstrates the merits of MMSE and extends its 

use to the discrimination of different stages of AD when used in conjunction with select 

volumetric variables. To the best of our knowledge, this study is the first that investigates 

the impact of combining MRI at baseline with MMSE for the detection of AD, aMCI and 

naMCI using support vector machine (SVM) methodology. However, since MMSE as a 

cognitive score in combination with other biomarkers can introduce an unfair bias in the 

analysis, the work in this dissertation reflects the results under the two conditions which 

are with and without inclusion of MMSE.  Another important contribution of this study is 

the development of a fully automated feature extraction technique, which in its initial step 

associates equal weights to each of the measured volumes, and yet as its outcome is a 

ranking of the volumes that can be used as variables in a multidimensional decisional 

space for optimal classification (Chapter 2). 

In this dissertation, single-measure models and hierarchical models with and without 

normalization are both examined to find the optimal model. Single measure models 

include one of the regional MRI measures (subcortical volume, cortical thickness and 

surface area) or the neuropsychological test, Mini-Mental State Examination (MMSE).  A 

hierarchical model combines two or more of the single-measure models to examine if the 
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interaction augments the classification process. The specific aims of this study are thus to 

determine: (1) the impact of neuropsychological test (MMSE) towards the classification; 

(2) the combination of regional measures and MMSE that yields the best classification 

performance; and (3) which normalization scheme should be employed to achieve a 

better classification performance (Chapter 3). 

To combine MRI and PET, we included all applicable FreeSurfer segmentation and 

parcellation of MRI scans (i.e. subcortical volumes, cortical volumes, cortical thickness, 

surface areas and hippocampus subfields) to explore full patterns of atrophy reflected by 

MRI since, as it has been reported, volumetric measures of a few pre-defined structures 

cannot capture the spatio-temporal pattern of structural abnormalities in their entirety 

(Fan, et al., 2008b). We also included extracted features from AV-45 PET and FDG PET 

to investigate complimentary predictive information of MRI and the two PET imaging 

modalities using OPLS. All features were inputted to OPLS for a multivariate analysis of 

EMCI, LMCI and AD against cognitively normal controls (CN). The aims were: 1) To 

explore the individual and combined discriminative power of MRI and PET features in 

separating EMCI, LMCI and AD from CN and determine the best predictive models of 

EMCI, LMCI and AD; 2) to find out if feature selection techniques enhance prediction; 

and 3) to investigate efficiency of the models by validating with an external dataset and 

explore how best AD models would predict EMCI and LCMI subjects (Chapter 4).  

Also a completely new approach without projection is proposed using effective mean 

indicator (EMI). EMI is a value associated with each subject and generated by averaging 
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a specific number of the top statistically significant MRI measures divided by the 

corresponding mean of each measure among CN subjects. Prediction is just as simple as 

comparing the EMI of the testing subjects with the threshold found by the training 

process (Chapter 5). 

1.4 Literature Survey 

Recently, some studies have combined two or more of these biomarkers to explore their 

complementary information for improved discriminative power (Fan, et al., 2008b; 

Walhovd, et al., 2010a; Westman, et al., 2012a; Zhang, et al., 2011). For example, Zhang 

et al. combined biomarkers of MRI, PET and CSF using a proposed multimodal data 

fusion technique (Zhang, et al., 2011), Westman et al. combined MRI and CSF using 

orthogonal partial least squares to latent structures (OPLS) analysis method (Westman, et 

al., 2012a) and  Walhovd et al. and Daoqiang et al. reported that combination of MRI, 

PET and CSF biomarkers yields the most suitable and complementary indicators for the 

diagnosis of AD (or MCI) (Walhovd, et al., 2010c; Zhang, et al., 2011). The cost-benefit 

of combining multiple biomarkers is of great concern as the use of multiple biomarkers 

often result in unaffordable costs (Westman, et al., 2012a).   

Important tasks to be considered in AD classification studies include the choice of 

parameters, the way these parameters ought to be combined, and in determining the pre-

processing techniques to be employed in order to enhance the prospects of classification. 

Two essential questions that need to be addressed for AD classification studies are: (1) 

which regional MRI measures produced by Freesurfer are statistically significant for 
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classification of AD subjects?; and (2) which normalization approach should be 

employed to minimize bias due to differences in head size and brain structure in order to 

enhance the classification performance?  

Westman and his colleagues have investigated some aspects of the aforementioned issues 

using a supervised multivariate data analysis using the orthogonal projections to latent 

structures (OPLS) model (Westman, et al., 2013). OPLS is similar to principal 

component analysis (PCA) as they both are linear decomposition techniques and project 

the original data to the found latent variables. The approach of this study is an extension 

of a previous study (Qin, et al., 2013), which proposes to construct for each classification 

model an optimal decisional space using the most statistically significant variables. The 

number of dimensions in the classifier is determined by an incremental error analysis, 

which in turn defines and ranks variables on their statistical significance to be used as 

input to an SVM-based classification process.   
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CHAPTER 2 

2. CONSTRUCTING AN OPTIMAL DECISIONAL SPACE 

2.1 Background 

In literature, researchers have combined neuropsychological tests with medical imaging 

modalities. Among them, Ewers et al. combined the primary MRI and CSF biomarkers 

with neuropsychological tests to predict conversion from MCI to AD (Ewers, et al., 

2012). With a population of 81 AD patients and 101 elderly control subjects, they 

determined that single-predictor models yielded comparable accuracies as multi-predictor 

models, with a prediction accuracy ranging from the mid-60s to a high of 68.5% when 

the entorhinal cortex is used as the single predictor. Gomar et al. investigated in a 2-year 

longitudinal study the usefulness of combining different variables drawn from a series of 

biomarkers with the inclusion of cognitive markers and other risk factors to likewise 

predict conversion from MCI to AD (Gomar, et al., 2011). Their study involved the use 

of brain volumes, CFS, along with other cognitive markers. Their findings suggest that 

cognitive markers at baseline are better suited as predictors for the conversion than the 

temporal neurobiological markers. Furthermore, they also suggest that sharp decline in 

functional ability is a better predictor for the conversion than the biomarkers.  These 

findings add credence to the results obtained in this study, in that with the inclusion of 

neuropsychological data, accuracy in delineating AD from controls is shown to increase 

to over 90%. It is noted that in both of these studies, which focus more on the conversion 
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from MCI to AD, the volumetric measures of the different brain regions were selected 

manually, and both studies relied on the ADNI (Alzheimer's Disease Neuroimaging 

Initiative) public database. As such, the proposed study which provides an automated 

approach at ranking the neurobiological variables will augment and complement such 

findings, as reported in both of these studies, to reflect more globally patterns of 

structural and physiological abnormalities in their entirety (Fan, et al., 2008a), and with 

statistical context for a more meaningful choice of the different variables.  

2.2 Methodology 

The general structure of the proposed approach is presented in Figure 1, showing the 

main steps of the whole process from acquisition of the MRI scans, through the sorting 

and selection of variables or features that will constitute the decisional space for the 

classification process using the well-established SVM classifier.  The proposed approach 

is also open to the use of other alternative classification algorithms such as artificial 

neural networks, optimal discriminant analysis, and so on. This study opted for SVM 

only for its implementation simplicity. 

2.2.1 Subjects 

A total of 309 participants were recruited from Wien Center for Alzheimer’s Disease and 

Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL as shown in Table 1 

between 2005 and 2008. All participants have taken the Folstein Mini-Mental State 

Examination (Folstein, 1990) with a minimum score of 15. The study was approved by 
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the Mount Sinai Medical Center Institutional Review Board with informed consent 

provided by the subjects or legal representatives. All subjects had: (1) a neurological and 

medical evaluation by a physician; (2) Mini-Mental State Examination (MMSE) (3) a 

structural volumetrically acquired MRI scan of the brain. MMSE was used as the index 

of cognitive ability and sum of boxes from the Clinical Dementia Rating Scale (CDR-sb) 

was used clinically as the index of functional ability.  

 

Figure 1: General structure of the classification approach 
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Table 1: Participant demographics and characteristics in this study 

Unless otherwise noted, data are presented as mean ± S.D. *P-value based on Student’s t-test 
between CN and AD unless otherwise specified and those less than significance level 0.05 are 
bolded. †A Fisher’s exact test was performed between AD and CN, and p value shows that 
gender effect is not significant at significance level of 0.05. 
 

The cognitive diagnosis was made using a combination of the physician’s diagnosis and 

the neuropsychological diagnosis, as described previously (Loewenstein, et al., 2000). 

The etiological diagnosis was made by the examining physician. The diagnosis of 

cognitive normal (CN) required that the physician’s diagnosis was CN and no cognitive 

test scores were ≥1.5 SD below age and education-corrected means. A probable AD 

diagnosis required a dementia syndrome and the National Institute of Neurological and 

Communicative Disorders and Stroke/Alzheimer’s Disease and Related Disorders 

Association criteria for AD (McKhann, et al., 1984). The diagnosis of aMCI was 

rendered by 1) a clinical impression by the examining physician of a history of MCI but 

no significant functional impairment and did not meet Diagnostic and Statistical Manual 

of Mental Disorder-4th edition (DSM-IV) criteria (Association and DSM-IV., 1994) for 

dementia. This diagnosis was confirmed by a neuropsychological evaluation in which one 

or more tests of memory had to fall 1.5 SD or more below expected normative values. 

Characteristic CN (n = 127) naMCI (n = 56) aMCI (n = 67) AD (n = 59) p-value* 

Age 72.6 ± 6.0 74.1 ± 6.5 75.2 ± 6.8 79.8 ± 6.5 < 0.001 

Gender(F/M) 91 / 36 36 / 20 36 / 31 33 / 26 ns† 

Education 

(years) 
14.4 ± 3.6 11.75 ± 3.6 13.3 ± 3.7 13.1 ± 3.9 0.035 

MMSE 28.7 ± 1.4 26.9 ± 2.3 26.6 ± 2.5 22.7 ± 3.3 < 0.001 
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The diagnosis of naMCI was rendered by 1) a clinical impression by the examining 

physician of a history of MCI but no significant functional impairment and did not meet 

DSM-IV criteria for dementia. This diagnosis was confirmed by a neuropsychological 

evaluation in which one or more tests of non-memory function (e.g., Trails B, 

Similarities, and Category Fluency) had to fall 1.5 SD or more below expected normative 

values but all tests of memory scored within normal limits. 

 
2.2.2 MRI Protocol and Analysis 

MRI scans were acquired on a 1.5-T machine (Siemen's Symphony, Iselin, N.J., USA, or 

General Electric, HDX, Milwaukee, Wisc., USA) using a proprietary 3D-magnetization-

prepared rapid-acquisition gradient echo (3D MPRAGE) or 3D spoiled gradient echo 

sequences (FSPGR). Specifications for 3D MPRAGE include coronal sections with a 1.5 

mm gap in thickness; section interval, 0.75 mm; TR, 2190 ms; TE, 4.38 ms; TI, 1100 ms; 

FA, 15°; NEX, 1; matrix, 256 × 256; FOV, 260 mm; bandwidth, 130 Hz/pixel; 

acquisition time, 9 minutes; phase-encoding direction, right to left. Specifications for 3D 

FSPGR were the following: 140 contiguous coronal sections of 1.2 mm thickness; 

contiguous images with no section interval; TR, 7.8 ms; TE, 3.0 ms; inversion recovery 

preparation time, 450 ms; flip angle, 12°; NEX, 1; matrix, 256 × 256; FOV, 240 mm; 

bandwidth, 31.25 Hz/pixel; acquisition time, 6–7 minutes; phase-encoding direction, 

right to left.  

 



 

14 
 

 

FreeSurfer pipeline (version 5.1.0) was applied to the MRI scans to produce 55 

volumetric variables, including 45 subcortical regions (e.g. left lateral ventricle, corpus 

callosum anterior, right hippocampus, etc.) and 10 morphometric statistics (e.g. left 

hemisphere gray matter volume, total cortical volume, etc.). Out of the 45 volumetric 

variables, 4 of them, namely left white-matter-hypointensities (WMH), right WMH, left 

non-WMH, and right non-WMH were excluded since they were all characterized by zero 

values. Therefore, each MRI scan includes 41 regional and 10 morphometric volumes. It 

was determined that MRI scans from the two scanner machines did not change the 

variance of volume difference when comparing subcortical volumes (FreeSurfer 

segmentation) from the test-retest scans acquired in a fixed machine (Han, et al., 2006; 

Jovicich, et al., 2009), thus no correction is needed for scanner difference. 

2.2.3 Feature Extraction and Variable Selection 

AD patients suffer from cerebral atrophy, which can be distinguished from normal aging 

(Fox and Schott, 2004), and specific regions are more atrophied along the progression of 

AD. For example, studies have shown that hippocampal atrophy is more significant as 

disease progresses (Scahill, et al., 2002).  Determination of the key atrophied/enlarged 

regions of interest (ROIs) that define the pattern of atrophy may help delineate AD and 

MCI from normal controls. To this end, a rigorous blind feature selection technique is 

proposed, where no prior assumptions of ROIs are assumed and with equal weights 

assigned to each of the volumetric measures so as to eliminate any bias. The outcome of 

this selection process is the determination of those statistically significant features that 
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form an optimal decisional space bound to yield accurate classification results of AD, 

MCI (aMCI, naMCI) and controls.  

Freesurfer is a popular highly automated MRI image processing software widely used to 

generate regional measures from MRI scans. The advantages of Freesurfer over 

traditional manual segmentations and measures are its high automation and independence 

from operator subjectivity. Freesurfer is also accurate, precise and has been tested on 

large cohorts of studies in AD classification research (Cuingnet, et al., 2011; Ewers, et 

al., 2012; Qin, et al., 2013; Westman, et al., 2013).  

Freesurfer pipeline version 5.1.0, widely used in AD research (Cuingnet, et al., 2011; 

Ewers, et al., 2012; Qin, et al., 2013; Westman, et al., 2013; Zhang, et al., 2011), was 

applied to all the MRI scans to produce 55 volumetric variables, including 45 volumetric 

measures of subcortical parcellation and 10 morphometric statistics. For cortical 

thickness, 34 regional variables were determined for each hemisphere, resulting in 68 

variables for cortical thickness measures. Also, surface area was estimated from 35 

regions of the brain for each hemisphere resulting in 70 measures for the entire brain.  

All volumetric variables, but for intracranial (ICV), were adjusted for ICV, age and 

education as per Equation (2.1), as they were found to be significant factors as 

demonstrated in Table 1. 

V = 	V − G ∙ (V − V ) − G ∙ (E − E ) − G ∙ (A − A )						(2.1) 
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where V  is the adjusted volume, V is the unadjusted volume, V , E 	 and A  are the 

subject ICV, years of education and age (years), respectively; V , E 	and 	A are the 

corresponding means for all the control subjects. The gradients G	 , G	 	  and G	 were derived by a region specific regression against subject ICV, years of education 

and age of all the participants so that the regression is fully blinded to the classifications. 

As per Chiang et al.(Chiang, et al., 2011), the above regression also has the advantage 

that the regressing order of the 3 factors doesn’t affect the results. 

The adjusted volumes and ICV of the 51 volumetric variables are then combined with the 

MMSE score to generate a 52-variable vector discriminator for each subject. A Student’s 

t-test is carried out on each of the 52 variables between AD (or MCI) and CN to 

determine the significance of each variable in the classification outcome and only those 

with a p-value lower than significance level (α) of 0.05 are selected and ranked.  

It should also be noted that, even though atrophy is what is generally sought, statistical 

testing in this study considers both cases of atrophy and enlargement of brain regions, 

since volumetric enlargement (i.e. ventricles filled with cerebrospinal fluid) is also shown 

to be an important predictor of AD (Thompson, et al., 2004b). 

Rank of the statistically significant variables provides an overall view of the 

discriminative power of each variable for each classification type. Selection of these 

optimal variables can be viewed as a dimensionality reduction problem, which is 

performed using an incremental error analysis. The result of this analysis is the 
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determination of how many of these top-ranked variables ought to be included in the 

classifier to yield the best classification performance. The proposed error analysis, which 

begins with the initial phase of using only the first top-ranked variable, is employed 

whereby an additional next-ranked variable is introduced in the SVM classifier at each 

subsequent phase and the corresponding classifier statistics (accuracy, sensitivity, 

specificity) are recorded each time.  

2.2.4 SVM based Classification Experiments 

SVM classifier is shown to be an effective classification tool of AD and MCI (Chaves, et 

al., 2009b; Kloppel, et al., 2008; Lopez, et al., 2009).The SVM as implemented in this 

study uses a sequential minimal optimization (SMO) scheme to implement a L1 soft-

margin SVM classifier. SVM maps the original features via a kernel function to 

constructs a maximum margin classifier in a high dimensional feature space. The kernel 

function used in this study is the Gaussian Radial Basis Function kernel (rbf) with an 

empirical scaling factor of 3. 

In this study, all experiments were based on 2-fold cross validation, meaning half of the 

subjects data are used as training set and the other half as testing set. The training and 

testing sets were randomly assigned while the number of subjects with AD (or MCI) and 

CN in each set remain fixed. To limit the potential data partitioning error introduced by 

random data assignment and cross validation, the same experiment with random data 

assignment was run 50 times and the average performance was recorded. 
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2.3 Results 
 

2.3.1 Rank of Variables 

Based on the methodology described in section II (D), a Student’s t-test was performed 

for AD vs.CN, aMCI vs. CN and naMCI vs. CN using the ICV-, education- and age-

adjusted 52-variable vector discriminator. The variables found at significance level of 

0.05 for MCI vs. CN and AD vs. CN were ranked and are given in Table 2 and Table 3, 

respectively, which show the importance of each variable in potentially discriminating 

different stages of AD. The anatomical distribution of these ROIs is shown in Figure 2.   

Table 2: Significant variables for naMCI vs. CN and aMCI vs. CN 

 Rank Variables p-value 

naMCI 

1 MMSE < 0.001 

2 Right-Accumbens-area 0.013 

3 Right Inferior Lateral Ventricle 0.039 

aMCI 

1 MMSE < 0.001 

2 Right-Hippocampus < 0.001 

3 Left-Hippocampus < 0.001 

4 Left-Amygdala 0.002 

5 Left Inferior Lateral Ventricle 0.023 

 

From Table 2 and Table 3, it can be observed that MMSE as a cognitive measure ranks 

first for all classification types. Moreover, in comparison to MCI, the AD group is shown 

to have many more significant variables than the naMCI and aMCI groups, indicating 

atrophy is more serious and widely spread in the AD group. Table 2 also shows that 

hippocampus atrophy is dominant in aMCI subjects as both left and right hippocampus 
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regions rank as the second and third only after MMSE. This finding is consistent with the 

fact that one main characteristic of aMCI subjects is memory problem, which the 

hippocampus is found to be responsible for (Juottonen, et al., 1999). Whereas 

hippocampus region doesn’t show as significant in naMCI group, Accumbens and 

ventricle regions do instead. The distinctive symptom of aMCI and naMCI (memory) is 

consistent with the regional atrophy in these preliminary results. 

Table 3: Significant variables for AD vs. CN 

Rank Variables p-value Rank Variables p-value 

1 MMSE < 0.001 15 Right Lateral Ventricle 0.002 

2 Right Hippocampus < 0.001 16 Left Lateral Ventricle 0.002 

3 
Left Inferior Lateral 
Ventricle 

< 0.001 17 Right Thalamus Proper 0.004 

4 Left Amygdala < 0.001 18 Right Ventral Diencephalon 0.007 

5 Left Hippocampus < 0.001 19 Left Thalamus Proper 0.007 

6 
Right Inferior Lateral 
Ventricle 

< 0.001 20 Left Putamen 0.007 

7 
Right Hemisphere Cortex 
Volume 

< 0.001 21 Corpus Callosum Central 0.010 

8 Total Gray Volume < 0.001 22 Right Accumbens Area 0.010 

9 Right Amygdala < 0.001 23 Corpus Callosum Posterior 0.011 

10 Cortex Volume < 0.001 24 
Corpus Callosum Middle 
Anterior 

0.020 

11 
Left Hemisphere Cortex 
Volume 

< 0.001 25 Left Pallidum 0.026 

12 Left choroid plexus < 0.001 26 Corpus Callosum Anterior 0.028 

13 Right choroid plexus < 0.001 27 Subcortical Gray Volume 0.032 

14 3rd Ventricle < 0.001 28 
Corpus Callosum Middle 
Posterior 

0.046 
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Anatomical visualization of all the significant ROIs (excluding morphometric variables) 

as shown in Figure 2 provides a general view of how the ROIs are distributed within the 

brain. The figure shows that atrophy for the AD group is widely seen for a number of 

regions on both hemispheres, while for aMCI atrophy is more dominant on the right side 

and for naMCI all significant atrophy is seen on the left side. This finding implies the 

difference of atrophy in terms of its extension and hemisphere dominance at different 

stages of AD.    

 

(a) (b) (c) 

Figure 2: Representation of all significant regions of interest (ROIs) (excluding 
morphometric variables and MMSE) using different colors for (a) AD vs. CN (b) aMCI 
vs. CN (c) naMCI vs. CN  

 

A closer inspection of the results shows that the top-ranked significant volumetric 

variables, e.g. hippocampus (de Leon, et al., 1989b; Du, et al., 2001; Pennanen, et al., 

2004), ventricular (Nestor, et al., 2008b; Thompson, et al., 2004b), cortical (Du, et al., 

2001; Juottonen, et al., 1999; Pennanen, et al., 2004) and amygdala (Cuenod, et al., 1993; 

Nestor, et al., 2008b), are all regions that have been proven to be effective predictors of 
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AD and/or MCI by other research groups. The convergence of these findings comes in 

support of the merits and usability of the ranking system developed in this study. 

2.3.2 Best Variable Set based on Incremental Error Analysis   

The incremental error analysis aims to determine how many top-ranked variables should 

be included in order to produce the best classification results. The classification of AD, 

aMCI and naMCI was performed starting from the first ranked variable, and 

incrementally adding the next best ranked variable until all significant variables were 

considered. The accuracy with error bars depicting the standard deviation of the 50 

repetition runs is plotted in Figure 3, with the horizontal axis indicating at each step the 

number of top-ranked variables that were considered. 

The classification accuracy curve based on the proposed incremental error analysis, 

displays a trend on how accuracy changes as more variables (one at a time) are included. 

For AD vs. CN, as shown in Figure 3a, the increasing trend of the curve stops when the 

first 3 variables (MMSE score, right hippocampus and left inferior lateral ventricle) are 

included, yielding a peak accuracy of 92.4%. As can be seen in Figure 3b, the accuracy 

peaks for the classification of naMCI when the top 2 ranked variables (MMSE and right 

hippocampus) are included with a peak accuracy of 74.9%; as for aMCI, the upward 

trend in accuracy is sustained up to the 3 significant variables (MMSE, right Accumbens 

area and right inferior lateral ventricle) reaching a peak accuracy of 74.1%.   
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The features that make up the optimal decisional space and hence produce the best 

classification results are summarized in Table 4, with and without the inclusion of the 

MMSE score. It can be observed that with MMSE, the performance improved 

significantly for all classification types with an accuracy increment of 14.2% for AD vs. 

CN, 8.2% for aMCI vs. CN and 12.0% for naMCI vs. CN. Such outcomes support the 

fact that the cognitive measure as determined from MMSE test is rather important in this 

type of classification. This difference in the accuracy could not otherwise be overcome 

with the inclusion of additional MRI-based volumetric measures. 

To have an anatomical view of these optimal decisional spaces, the brain regions 

associated with the top-ranked volumetric features for each classification pair are plotted 

in Figure 4, which suggests that different brain regions could be linked to the different 

stages of AD.  
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Figure 3: Incremental error analysis performance of accuracy with standard deviation 
(S.D.) indicated as error bar (a) AD vs. CN (b) naMCI vs. CN and aMCI vs. CN with 
only one side S.D. shown to avoid overlapping. (For naMCI vs. CN, though only 3 
variables were shown as significant, the 4th ranked variable was included to check if the 
accuracy continues to increase.)  
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2.3.3 Reliability of Rank and Sample Size 

To evaluate the rank reliability of the variables which might be dependent on the dataset 

size, a test was performed by randomly reducing the dataset to 80% and to 50% of its 

original size. Then the ranks of each variable in 100 repetitions of the random experiment 

were summed and averaged to get the rank expectation. The final rank was determined by 

sorting the rank expectation of all variables from low to high and top 3 variables were 

recorded as shown in Table 5. 

 

(a) (b) (c) 

 

Figure 4: Representation of the most significant regions that combines with MMSE 
scores constitute the optimal decisional space for a) AD vs. CN b) aMCI vs. CN c) 
naMCI vs. CN 
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Table 5: Summary of top rank variables with varying dataset size 

Dataset size 100% 80% 50% 

 AD vs. CN 

Rank of variables 

MMSE MMSE MMSE 

RH RH RH 

LILV LILV LILV 

 aMCI vs. CN 

Rank of variables 

MMSE MMSE MMSE 

RH RH RH 

LH LH LH 

 naMCI vs. CN 

Rank of variables 

MMSE MMSE MMSE 

RAA RAA RAA 

RILV RILV RILV 

 RH = right hippocampus, LILV = left inferior lateral ventricle, LH = left hippocampus, 
RAA = right Accumbens area, RILV = right inferior lateral ventricle 

 

2.3.4 Comparative Analysis 

A comparison of classification performance with recent studies in literature is provided in 

Table 6, which also shows the detailed parameters of classification experiment for better 

comparison of the performance.  
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2.4 Discussion  

The rank of the variables derived using the proposed feature selection process adds 

credence to the merits of combining structural MRI measures with the cognitive measure 

of MMSE for classifying AD, aMCI and non-aMCI from CN. Moreover, on the basis of 

the incremental error analysis, the top-ranked features as determined define the optimal 

decisional space on which group classifications (AD vs. CN, aMCI vs. CN and naMCI vs. 

CN) are carried out. It may be argued that the rank as derived in this study may vary as 

the size of the dataset under consideration is changed. A test trying to rerun the ranking 

of the variables by reducing the dataset size was done and recorded in Table 5, 

demonstrating that the rank doesn’t change even when the dataset size is reduced by 50%. 

This indicates that the combination of variables found in this study is reliable, 

reproducible, and statistically meaningful even under a smaller subset of the data. 

It can also be argued that incremental error analysis doesn’t cover all the possible 

combinations of the significant variables as indicated in Table 2 and Table 3; thus there 

might be a combination that was not considered in the analysis that could have produced 

a better result. For AD vs. CN, there are 28 significant variables. All possible 

combinations are in the form of C  (where n means the 28 significant variables, which 

could be combined 2 at a time, 3 at time etc. for different values of k, yielding different 

multidimensional decisional spaces). Such an exhaustive attempt at assessing all these 

combinations variables is not only unyielding, but rather unnecessary in light of the 

statistical meaningfulness which supports the proposed method of ranking these variables. 
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As can be observed from Figure 3, there were situations where performance increases 

slightly as other lower-ranked variables are considered. For example, when variable 8 is 

considered, the accuracy increases from 90.2% to 90.5% by 0.3% indicating that variable 

8 does increase the classification performance and therefore should be considered as an 

added dimension in the decisional space. However, this could be due to the randomness 

of the subjects during the cross validation process using the SVM classifier. A slightly 

more favorable distribution of subjects can yield a relatively improved result. 

Consequently, the random distribution of the subject data was the primary reason for 

averaging the results of a large number of randomized runs (50) of the program for each 

experiment. On the other hand, the rank of the variable, especially lower-ranked variables, 

may suffer much variation from one dataset to another as they may intrinsically have very 

close mean differences identified by statistical test with close p values between the two 

groups under comparison. However this doesn’t affect the meaningfulness of those very 

top-ranked variables. Furthermore, even though ranking variability may be observed, the 

top 3 ranked variables do not change. It should also be noted that determining the correct 

rank of the lower-ranked variables cloud be difficult and in some cases impractical due to 

the high unpredictability seen in these variables from one dataset to another. 

The projection of subjects in the testing set on a decisional space based on the three 

aforementioned top-ranked variables for AD vs. CN is shown in Figure 5. A total of 5 

misclassifications were observed which included 3 CN and 2 AD subjects. It can be seen 

that AD and CN groups are generally separable as they form two clearly distinct clusters, 
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especially the CN group, which is a denser cluster. This clustering outcome adds further 

credence to the importance of these three dimensions (variables).  

Even though the use of MMSE score as a cognitive measure is limited in the sense that 

individuals may experience decline that is not captured, the preliminary results of this 

study suggests that MMSE improves classification results when combined with MRI 

measures. This implies that other neuropsychological tests such as verbal fluency test and 

delayed paragraph recall test may also contain complimentary information for improving 

classification of AD (or MCI) when used in conjunction with MRI measures. 

 

Figure 5: A specific case displaying the distribution of the half subject population of the 
testing set in the context of the first three principle variables. Out of the 93 subjects shown 
and used for testing the SVM classifier only 5 misclassifications are seen which are shown 
by solid dots. This is a typical case of classification approach for AD vs. CN. 
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From Table 6, a previous study using MMSE showed an accuracy of 92.3% for 

classifying AD from CN (Zhou, et al., 2014a). However, this study lacked the analysis for 

the MCI group. Table 6 indicates that the proposed technique using MMSE and MRI can 

yield competitive classification performance as those using two or more imaging 

modalities or biomarkers.  
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CHAPTER 3 

3. SIGNIFICANCE OF NORMALIZATION ON ANATOMICAL MEASURES 

3.1 Methodology  
 

3.1.1 Subjects 

A total of 189 subjects are included in this study as shown in Table 7. All participants are 

from the Wien Center for Alzheimer’s Disease and Memory Disorders with the Mount 

Sinai Medical Center, Miami Beach, FL, USA. All subjects have taken the Folstein Mini-

Mental State Examination(Folstein, et al., 1975) with a minimum score of 15 out of 30. 

The study was approved by the Mount Sinai Medical Center Institutional Review Board 

with informed consent provided by the subjects or legal representatives. 

Table 7: Demographic and neuropsychological characteristics of subjects 

Data Presented as mean ± S.D. where applicable. Two-way Student t test was used to test for age 
and MMSE and Fisher’s exact test was used to test for gender.  
 

 

All subjects had: (1) a neurological and medical evaluation by a physician; (2) a full 

battery of neuropsychological tests (Duara, et al., 2010), according to the National 

Alzheimer’s Coordinating Center protocol, and the following additional tests: the Three-

 Age Female/Male MMSE  

CN (n = 129)  72.9 ± 6.4 92 / 37 28.7 ± 1.4 

AD (n = 60) 79.5 ± 6.9 34 / 26 22.6 ± 3.4 

p < 0.001 ns < 0.001 
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Trial Fold Object Memory Evaluation (Fuld, 1982) and the Hopkins Verbal Learning 

Test ; as well as (3) a structural volumetrically acquired MRI scan of the brain. The 

Clinical Dementia Rating Scale (CDR-sb) was used as the index of functional ability, and 

the MMSE was used as the index of cognitive ability. The cognitive diagnosis was made 

using a combination of the physician’s diagnosis and neuropsychological diagnosis. The 

etiological diagnosis was made by the examining physician. The diagnosis of CN 

required that the physician’s diagnosis was CN and no cognitive test scores were ≥1.5 SD 

below age- and education-corrected means. A probable AD diagnosis required a dementia 

syndrome and the National Institute of Neurological Disorders and Stroke 

(NINDS)/Alzheimer’s  Association criteria for AD (McKhann, et al., 1984).  

3.1.2 Feature Extraction and Incremental Error Analysis 

All the variables in a given model are first ranked based on statistical significance 

between AD and CN. Following this ranking, an incremental error analysis is used 

whereby the SVM classifier is trained and tested adding a single variable at a time to the 

classifier to determine the combination of top-ranked variables that yield the optimal 

classification outcome. This rigorous blind feature selection technique differs from others 

as it does not rely on prior assumptions of regions of interest (ROI) and thus assigns 

equal weights to all the variables. The above process was performed on all models to 

compare their discriminative power and consequently identify the optimal model for AD 

classification.  It should be noted that although regional atrophy among AD patients is 

what is generally sought, the statistical test considers both cases of atrophy and 
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enlargement of these specific brain regions, since volumetric enlargement can be 

experienced in regions like the ventricles, which has been shown to be important in 

differentiating AD and its prodromal stages (Apostolova, et al., 2012; de Leon, et al., 

1989a; Thompson, et al., 2004b).  

3.1.3 Normalization and Classification Experiment 

To explore the effect of normalization on the classification performance, MRI measures 

are normalized by the widely accepted morphometric measures like intracranial volume 

(ICV) for regional subcortical volumes, ICV and mean cortical thickness of the subject 

for regional cortical thickness, and ICV and the total surface area of the subject for 

regional surface area. A summary of the normalization measures is presented in Table 8. 

ICV is derived from the MRI and is one among the 10 morphometric statistics obtained 

by the Freesurfer pipeline. Mean cortical thickness is estimated by averaging the 

thickness of all the 68 regions of the brain for each subject. Similarly, total surface area is 

the sum of all regional surface area measures for a given subject.  

Table 8: Normalization Measures 

MRI Measure Morphometric Normalization Measure 

Subcortical volumes (SV) Intracranial Volume (ICV)       

Cortical Thickness (CT) 
Intracranial Volume (ICV) 
Mean Cortical Thickness 

Surface Area (SA) 
Intracranial Volume (ICV) 
Total Surface Area 
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Classification was performed using a support vector machine (SVM) classifier, which is 

shown to be effective as a classification tool for AD (Kloppel, et al., 2008; Lopez, et al., 

2009; Magnin, et al., 2009a). The kernel function of the SVM used for this particular 

study is the Gaussian Radial Basis Function kernel (rbf) with a scaling factor (σ) of 3. All 

the classification results reported here are based on a 5-fold cross validation process. 

Each classification experiment was run 50 times, the results of which are averaged to 

evaluate the performance in terms of accuracy, sensitivity, specificity and precision.  

3.2 Results and Discussions 
 

3.2.1 Classification Performance and Model Selection 

Single measure models using only one type of the regional measures or MMSE were 

created for subcortical volume, cortical thickness, surface area and neuropsychological 

data (MMSE) for both raw and normalized data. Hierarchical models were also created 

by combining two or more of the single models for both raw and normalized data. 

Feature selection based on statistical testing was performed for all the models created. 

The results of models with raw data are shown in Table 9 and the results for models with 

normalized data are shown in Table 10. All the results display an average of 50 runs with 

minimum and maximum values shown in parentheses.  

Results of the different models are highly consistent as results of the 50 independent 

repetitions of classification fall within a small range as shown by the minimum and 

maximum values in Table 9 and Table 10. This small range is a clear indication of the 
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replicability of results, both essential attributes in any classification process. These results 

also indicate that MMSE is an important factor that should be included in the 

classification process. Inclusion of MMSE with other measures improves significantly 

the classification results. For example in the case of the optimal model, hierarchical 

model using subcortical volumes (SV) with the inclusion of MMSE resulted in an 

improvement of 9.2% as compared to using SV alone. In retrospect, an average 

improvement of 13.3% is seen on comparing analogous models with and without MMSE 

when using raw data and 12.8% when using normalized data. 

The classification results given in Table 9 and Table 10 show that cortical thickness 

should be normalized by either the mean thickness of all the measured regions or ICV, 

while normalizing subcortical volumes to ICV doesn’t have any significant effect. In a 

recent study, Westman et al. explored the normalization effect of regional MRI measures 

using orthogonal partial least square to latent structures (OPLS) models and concluded 

that both cortical thickness and subcortical volumes should not be normalized (Westman, 

et al., 2013).  Both studies thus suggest that subcortical volumes should not be 

normalized to ICV. The divergence is seen in the normalization of cortical thickness. 

This could be potentially explained by the difference of the technique being used. 

Westman and his colleagues used an all variables inclusive model (OPLS) and the 

proposed method is feature selection based. The cause might be that normalization of 

cortical thickness brings down the variation of all the regions in general which OPLS 

model rely on but enhance variation in some specific regions that feature selection 

method might have selected. Thus, normalization of cortical thickness depends on the 
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processing technique used. Also, the divergence can be due to the subtle differences in 

the data that is used for the study. 

Table 9: Classification performances on raw data 

Model Accuracy Sensitivity Specificity Precision 

MMSE 
88.3 

(87.3-89.4) 
81.0 

(76.7-81.7) 
91.6 

(91.5-94.6) 
82.6 

(81.3-87.6) 

Subcortical 
volume (SV) 

83.1 
(81.5-85.2) 

77.9 
(75.0-80.0) 

85.6 
(83.0-88.4) 

72.6 
(69.2-77.6) 

Cortical thickness 
(CT) 

77.7 
(76.2-78.9) 

74.8 
(73.3-76.7) 

79.0 
(77.4-80.7) 

63.0 
(59.9-68.0) 

Surface area (SA) 
71.4 

(68.3-73.6) 
58.7 

(53.3-65.0) 
77.2 

(73.6-79.8) 
55.0 

(51.9-58.9) 

Average 80.1 73.1 83.4 68.3 

Hierarchical Model 

MMSE + SV 
92.3 

(90.5-93.1) 
88.2 

(85.0-90.7) 
94.2 

(92.3-95.3) 
88.3 

(85.1-90.5) 

MMSE + CT 
91.4 

(90.4-92.6) 
85.3 

(83.3-88.3) 
94.2 

(93.0-95.4) 
87.8 

(85.1-90.3) 

MMSE + SA 
88.6 

(86.3-89.5) 
76.3 

(71.7-78.3) 
94.3 

(91.5-95.4) 
87.1 

(81.4-89.9) 

CT + SV* 
83.1 

(81.5-85.2) 
77.9 

(75.0-80.0) 
85.6 

(83.0-88.4) 
72.6 

(69.2-77.6) 

SA + CT + SV* 
83.1 

(81.5-85.2) 
77.9 

(75.0-80.0) 
85.6 

(83.0-88.4) 
72.6 

(69.2-77.6) 

MMSE + SA + 
CT + SV** 

92.3 
(90.5-93.1) 

88.2 
(85.0-90.7) 

94.2 
(92.3-95.3) 

88.3 
(85.1-90.5) 

Average 88.5 82.3 91.4 82.8 

*The results of these models are the same as model of ‘SV’ since the variables extracted for the 
decisional space are the same as that for ‘SV’ model. ** This model gives identical results as the 
model of ‘MMSE+SV’ since variables extracted for the decisional space are the same as that for 
‘MMSE+SV’ 
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Table 10: Classification performances on normalized data 

* Scaled by the mean thickness of the all the thickness measures 
**Scaled by the total area of the all the measures  

Model Accuracy Sensitivity Specificity Precision 

Subcortical volume 
(SV) 

83.5 
(82.0-84.7) 

74.4 
(71.7-76.7) 

87.7 
(95.3-90.0) 

75.2 
(72.0-79.0) 

Cortical thickness 
(CT) 

79.0 
(77.8-80.4) 

78.8 
(75.0-81.7) 

79.2 
(77.5-80.6) 

64.5 
(61.8-87.4) 

CT (Mean)* 
78.9 

(77.2-80.5) 
78.4 

(75.0-81.7) 
79.2 

(75.7-80.7) 
64.6 

(60.9-68.4) 

Surface area (SA)  
72.3 

(68.8-75.2) 
42.6 

(35.0-48.3) 
86.1 

(82.1-89.2) 
60.4 

(50.8-65.3) 

SA (Area)** 
72.6 

(70.3-75.1) 
61.2 

(58.3-63.3) 
77.9 

(75.1-81.4) 
57.4 

(52.9-61.8) 

Average 77.3 67.1  82.02  64.4 

Hierarchical Model 

MMSE + SV  
91.7 

(90.0-93.1) 
85.8 

(81.7-88.3) 
94.5 

(93.1-95.4) 
88.2 

(85.0-90.7) 

MMSE + CT 
91.5 

(89.4-93.2) 
86.9 

(81.7-90.0) 
93.6 

(90.8-96.1) 
87.2 

(82.7-90.9) 

MMSE + CT 
(Mean)* 

90.3 
(89.2-91.1) 

90.8 
(89.6-91.7) 

90.1 
(88.2-91.7) 

81.4 
(78.5-83.9) 

MMSE + SA  
88.3 

(87.3-88.9) 
80.9 

(76.7-81.7) 
91.7 

(91.4-93.8) 
82.7 

(81.1-86.1) 

MMSE + SA 
(Area)** 

88.6 
(86.8-89.9) 

80.9 
(75.0-78.3) 

94.2 
(92.2-95.4) 

86.9 
(84.6-89.5) 

CT + SV  
83.1 

(80.9-84.2) 
75.8 

(73.3-76.7) 
86.5 

(84.4-88.4) 
73.3 

(70.2-76.8) 

CT + SA + SV  
83.4 

(81.0-85.7) 
78.0 

(75.0-80.0) 
85.9 

(83.0-89.1) 
73.2 

(68.3-69.4) 

MMSE CT + SA + 
SV  

91.7 
(90.4-92.6) 

86.0 
(83.3-90.0) 

94.4 
(93.7-95.4) 

88.4 
(86.5-90.2) 

Average 88.6 83.1 91.3 82.7 
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Since some models have very close performance in terms of the 4 recorded performance 

metrics (accuracy, sensitivity, specificity and precision), models that give more than 90% 

accuracy are considered as good models and are highlighted in gray in Table 9 and Table 

10. Inclusion of additional measures does not guarantee a significant performance 

enhancement. A tradeoff exists between models with some displaying better accuracy at 

the cost of sensitivity and vice versa. In terms of accuracy, the model of ‘MMSE + SV’ is 

the best; whereas in terms of sensitivity, the model of “MMSE + CT (Mean)” is more 

appropriate. 

A comparison of classification performance with recent studies in literature is provided in 

Table 11. The results indicate that the proposed technique using MMSE and MRI can 

yield competitive classification performance as those using two or more imaging 

modalities or biomarkers. As Westman and his team described the concept of cost-

benefits to assess the increased cost of combining biomarkers as the potential limitation 

(Westman, et al., 2012b), the proposed approach has the advantage of low cost yet high 

accuracy. In addition, the results in this study are based on a larger cohort than most other 

studies in Table 11.   



 

40 
 

 

T
ab

le
 1

1:
 P

er
fo

rm
an

ce
 c

om
pa

ri
so

n 
of

 d
if

fe
re

nt
 m

et
ho

ds
 

A
ut

ho
rs

 
Im

ag
in

g 
M

od
al

ity
/ 

B
io

m
ar

ke
rs

 
S

ou
rc

e 
of

 D
at

a 
(A

D
/C

N
) 

R
ep

et
iti

on
 (

cr
os

s 
va

lid
at

io
n)

 
A

cc
ur

ac
y 

(%
) 

S
en

si
tiv

ity
 

(%
) 

S
pe

ci
fi

ci
ty

 
(%

) 

(Z
ha

ng
, e

t a
l.,

 2
01

1)
 

M
R

I 
A

D
N

I(
51

/5
2)

 
10

 (
10

 f
ol

ds
) 

86
.2

 
86

 
86

.3
 

(Z
ha

ng
, e

t a
l.,

 2
01

1)
 

C
S

F
 

A
D

N
I(

51
/5

2)
 

10
 (

10
 f

ol
ds

) 
82

.1
 

81
.9

 
82

.3
 

(Z
ha

ng
, e

t a
l.,

 2
01

1)
 

P
E

T
 

A
D

N
I(

51
/5

2)
 

10
 (

10
 f

ol
ds

) 
86

.5
 

86
.3

 
86

.6
 

(Z
ha

ng
, e

t a
l.,

 2
01

1)
 

M
R

I,
 P

E
T

, C
SF

 
A

D
N

I(
51

/5
2)

 
10

 (
10

 f
ol

ds
) 

93
.2

 
93

.0
 

93
.3

 

(H
in

ri
ch

s,
 e

t a
l.,

 2
01

1)
 

M
R

I 
+

P
E

T
 

A
D

N
I(

48
/6

6)
 

30
 (

10
 f

ol
ds

) 
87

.6
 

78
.9

 
93

.8
 

(H
in

ri
ch

s,
 e

t a
l.,

 2
01

1)
 

M
R

I+
P

E
T

+
C

SF
+

A
P

O
E

+
C

og
ni

tiv
e 

S
co

re
s 

A
D

N
I(

48
/6

6)
 

30
 (

10
 f

ol
ds

) 
92

.4
 

86
.7

 
96

.6
 

(M
ag

ni
n,

 e
t a

l.,
 2

00
9a

) 
M

R
I 

P
ri

va
te

(1
6/

22
) 

50
00

 (
75

%
 tr

ai
ni

ng
 / 

25
%

 te
st

in
g)

 
94

.5
 

91
.5

 
96

.6
 

(K
lo

pp
el

, e
t a

l.,
 2

00
8)

 
M

R
I 

G
ro

up
 I

 (
20

/2
0)

 
L

ea
ve

-o
ne

-o
ut

 
95

.0
 

95
.0

 
95

.0
 

(K
lo

pp
el

, e
t a

l.,
 2

00
8)

 
M

R
I 

G
ro

up
 I

I 
(1

4/
14

) 
L

ea
ve

-o
ne

-o
ut

 
92

.9
 

10
0 

85
.7

 

(K
lo

pp
el

, e
t a

l.,
 2

00
8)

 
M

R
I 

G
ro

up
 I

II
 (

33
/5

7)
 

L
ea

ve
-o

ne
-o

ut
 

81
.1

 
60

.6
 

93
.0

 

(W
al

ho
vd

, e
t a

l.,
 2

01
0b

) 
M

R
I 

A
D

N
I(

42
/3

8)
 

N
/A

 
82

.5
 

81
.6

 
83

.3
 

(W
al

ho
vd

, e
t a

l.,
 2

01
0b

) 
M

R
I 

+
 C

S
F 

A
D

N
I(

42
/3

8)
 

N
/A

 
88

.8
 

86
.8

 
90

.5
 

*(
C

ui
ng

ne
t, 

et
 a

l.,
 2

01
1)

 
M

R
I 

A
D

N
I(

16
2/

13
7)

 
- 

(2
 f

ol
ds

) 
N

/A
 

81
.0

 
95

.0
 

P
ro

po
se

d 
S

tu
dy

 
M

R
I 

+
 M

M
S

E
 

P
ri

va
te

(1
29

/6
0)

 
50

 (
5 

fo
ld

s)
 

92
.3

 
88

.2
 

94
.2

 

*T
hi

s 
pa

pe
r 

by
 C

ui
ng

ne
t e

t a
l. 

co
m

pa
re

s 
te

n 
m

et
ho

ds
 a

nd
 th

e 
be

st
 p

er
fo

rm
an

ce
 is

 s
ho

w
n 

he
re

. 



 

41 
 

 

3.2.2 Univariate Analysis of Anatomical Measures 

This section investigates how normalization affects the statistical significance of the 

variables that are used in the classification model. The effect of normalization can be 

determined by observing the change in the significance of the MRI measures when 

normalization is carried out. To illustrate the effect of normalization approaches on the 

statistical significance of region of interests (ROIs), univariate analysis was performed 

for subcortical volumes as shown in Table 12, and on surface area for left and right 

hemisphere respectively as shown in Table 13, and on cortical thickness for left and right 

hemisphere respectively as shown in Table 14. Univariate analysis was created for the 

two hemispheres separately for both cortical thickness and surface area in order to inspect 

the possible pattern differences between left and right hemisphere. In Table 12 – Table 

14, the regions of the brain for which the significance of the variable differ between raw 

and normalized data are bolded. Please note that only those regions which show such a 

behavior for both the normalization techniques are highlighted in Table 13 and Table 14 .  

Table 12 shows that ICV normalization to the subcortical volumes does not change the 

statistical significance of the variables, particularly for the top-ranked variables; 

suggesting that normalizing subcortical volumes with ICV might not be necessary, which 

is consistent with the conclusion made previously that subcortical volumes are not 

recommended to be normalized to ICV as seen from the results provided earlier in Table 

13 and Table 14.  
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More importantly, subcortical volumes and cortical thickness show symmetry between 

the left and right hemispheres for the top-ranked variables as shown in Table 12 – Table 

14. In other words, regions of the brain that are significant towards classification of AD 

subject are symmetrically located on either lobes of the brain. A typical example is seen 

in the top 5 ranked regions according to subcortical volumes which include both the right 

and left hippocampus and the right and left inferior lateral ventricles. 

However, Table 13 shows that for the surface area there is almost no symmetry at all 

between the left and right hemispheres for both the raw and normalized data. This could 

possibly be explained by the fact that all variables found to be significant using surface 

area possess a p-value close to the significance level threshold (0.05). Another point to be 

noted is that for both raw and normalized data, surface area has a smaller number of 

significant variables and relatively high p-values, indicating that surface area may be 

generally regarded as a weaker biomarker of AD atrophy than the other two measures 

which are SV and CT.  
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Table 13: Univariate analysis of surface area for left and right hemisphere* 

Surface area Left Hemisphere Right Hemisphere 

Normalization Raw ICV Total 
area 

Raw ICV Total 
area 

Bankssts < 0.01 < 0.05 < 0.001 ns ns ns 

Frontalpole < 0.01 < 0.05 < 0.05 ns ns ns 

Paracentral < 0.05 < 0.01 < 0.01 ns ns ns 

Transverse-
temporal 

ns < 0.01 < 0.01 ns ns ns 

Lingual ns ns < 0.01 ns ns ns 

Postcentral ns < 0.01 < 0.01 ns ns ns 

Insula ns < 0.05 < 0.01 ns ns ns 

Cuneus ns ns < 0.05 ns ns < 0.05 

Temporalpole ns ns ns < 0.01 < 0.01 < 0.001 

Superior-frontal ns < 0.05 < 0.01 ns < 0.05 < 0.01 

Precentral ns ns < 0.05 ns < 0.05 < 0.01 

Fusiform ns ns < 0.05 ns ns < 0.01 

Inferiortemporal ns ns ns ns ns < 0.01 

Inferiorparietal ns ns ns ns ns < 0.05 

 *Two-way Student t test is used for univariate analysis with a significant level of 0.05 for p-value. 

 

The regions of the brain which are determined to be statistically significant are displayed 

in Figure 6 through Figure 9. Figure 6 represents the top 5 significant subcortical 

volumes based on raw data. Figure 7 and Figure 8 represent the cortical regions of the 

brain which are found to be significant for AD classification using cortical thickness (CT) 

and surface area (SA) respectively on raw data. Figure 9 illustrates the change that is seen 

in the significant regions of the brain when surface area normalized to the total surface 

area is used as a measure, as compared to raw data as shown in Figure 8.  
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One interesting finding about cortical thickness in Figure 7 is that most of the significant 

regions belong to the temporal lobe, suggesting that the temporal lobe undergoes the most 

significant thickness change. This is consistent with the result found by some other 

studies (Dickerson, et al., 2009b; Rombouts, et al., 2000), particularly the finding that 

large degree of thinning of temporal cortical thickness seen in AD while thinning is 

relatively reserved in normal aging(Dickerson, et al., 2009b). The non-symmetric atrophy 

pattern of surface area can be easily observed anatomically in Figure 8 and Figure 9.
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Table 14: Univariate analysis of cortical thickness for left and right hemisphere* 
Cortical thickness Left Hemisphere Right Hemisphere 

Normalization Raw ICV Mean CT Raw ICV Mean CT

Superiortemporal < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001

Entorhinal < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001

Temporalpole < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001 < 0.00001

Inferiortemporal < 0.00001 < 0.00001 < 0.01 < 0.00001 < 0.0001 < 0.01 

Middletemporal < 0.00001 < 0.00001 < 0.05 < 0.00001 < 0.0001 < 0.05 

Parahippocampal < 0.00001 < 0.00001 < 0.01 < 0.00001 < 0.00001 < 0.05 

Fusiform < 0.00001 < 0.0001 < 0.001 < 0.00001 < 0.001 < 0.01 

Supramarginal < 0.00001 < 0.0001 ns < 0.00001 < 0.001 ns 

Lateralorbitofrontal < 0.00001 < 0.001 ns < 0.00001 < 0.01 ns 

Parsorbitalis < 0.00001 < 0.001 ns < 0.00001 < 0.001 ns 

Bankssts < 0.00001 < 0.0001 ns < 0.00001 < 0.001 ns 

Superiorfrontal < 0.00001 < 0.001 < 0.05 < 0.00001 < 0.001 ns 

Parsopercularis < 0.00001 < 0.001 ns < 0.00001 < 0.01 ns 

Insula < 0.00001 < 0.001 < 0.01 < 0.00001 < 0.001 < 0.01 

Rostralanteriorcingulate < 0.00001 < 0.01 < 0.05 < 0.00001 < 0.001 < 0.001 

Isthmuscingulate < 0.00001 < 0.01 ns < 0.00001 < 0.001 ns 

Inferiorparietal < 0.00001 < 0.001 < 0.05 < 0.00001 < 0.001 ns 

Transversetemporal < 0.00001 < 0.001 ns < 0.001 < 0.05 ns 

Caudalanteriorcingulate < 0.00001 < 0.01 ns < 0.00001 < 0.01 ns 

Parstriangularis < 0.00001 < 0.01 < 0.05 < 0.00001 < 0.01 < 0.01 

Rostralmiddlefrontal < 0.00001 < 0.05 < 0.0001 < 0.00001 < 0.05 < 0.01 

Caudalmiddlefrontal < 0.00001 < 0.01 ns < 0.00001 < 0.01 ns 

Posteriorcingulate < 0.00001 < 0.01 ns < 0.00001 < 0.01 ns 

Precuneus < 0.00001 < 0.01 ns < 0.00001 < 0.01 ns 

Medialorbitofrontal < 0.00001 < 0.05 ns < 0.001 ns ns 

Precentral < 0.00001 < 0.05 < 0.05 < 0.0001 < 0.05 ns 

Frontalpole < 0.0001 < 0.05 ns < 0.01 ns ns 

Postcentral < 0.01 ns < 0.00001 < 0.01 ns < 0.00001

Superiorparietal < 0.01 ns < 0.00001 < 0.01 ns < 0.0001

Lateraloccipital < 0.01 ns < 0.00001 < 0.05 ns < 0.00001

Lingual < 0.05 ns < 0.00001 < 0.01 ns < 0.00001

Paracentral < 0.05 ns < 0.01 < 0.01 ns < 0.01 

Pericalcarine ns ns < 0.00001 ns ns < 0.00001

Cuneus ns ns < 0.00001 ns ns < 0.00001

*Two-way Student t test is used for univariate analysis with a significant level of 0.05 for p-value.
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          (A)                 (B) 
         

Figure 6:  Representation of the top 5 significant subcortical volumes based on raw data in 
Table 12. (A) Superior view (B) Lateral view 

 

 

                              (A)       (B)  
          

 

Figure 7:  Representation of the top 5 significant cortical thickness based on raw data in 
Table 14. (A) Left hemisphere (B) Right hemisphere  
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(A)      (B)

 

Figure 8:  Representation of all significant surface area based on raw data in Table 13. (A) 
Left hemisphere (B) Right hemisphere 

          

 
 (A)      (B)  

 

Figure 9:  Representation of all significant surface area based on total-area normalized 
data on Table 13. (A) Left hemisphere (B) Right hemisphere  
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3.2.3 Spatial Distribution of Subjects Under the Best Model 

Model of “MMSE + SV” without normalization gives the highest classification accuracy 

which utilizes the top 3 variables found within the model (i.e. MMSE, right-hippocampus 

volume and left-inferior-lateral-ventricle volume). One typical distribution of the data 

points for this classification model is plotted in Figure 10 to show the clustering 

characteristics of the data when MMSE and subcortical volumes are employed. Using 

this optimal decisional space, it can be observed that all the normal subjects are grouped 

into a very compact cluster, whereas AD subjects are more sparsely distributed in context 

of these dimensional parameters. This indicates the complex pattern of atrophy 

undergoing among the AD patients, which renders the classification task extremely 

difficult. 

 

Figure 10: Representation of the whole dataset for the model of MMSE + subcortical 
volume, for a typical classification run under this model 
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3.2.4 Model Efficiency Estimation and Normalization 

Variation in measures can come from many sources, including variation due to AD 

atrophy (σ ), which is of primary interest for classification purposes, as well as other 

variation noise (σ )	like individual difference in brain size, structure of brain regions, 

MRI measure error, region segmentation error, atrophy due to normal aging and 

resistance to brain atrophy (e.g. cognitive reserve). Generally, the total variance can be 

described as follows: 

σ = σ + σ                   (3.1) 

where σ  is the total variance of dataset,  σ  stands for variance due to AD atrophy 

and σ  is the variance due to what is termed here as an overall source of noise. Also, 

discriminative power of a model depends on the amount of variance due to AD atrophy 

captured by the model used in contrast to the variance due to noise. A relevant term 

called discriminative power (Dp) can be estimated using Equation (3.2). 

Dp = 	        (3.2) 

where  σ  is an estimate of the variance due to AD atrophy captured by the model, and σ  stands for the estimated variance due to noise captured by the model. 
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Our results thus show that normalization in general does not enhance the classification 

performance significantly, which could be explained through Eq. 2 which shows that 

normalization does bring down correlated noise (σ )  experienced through brain size 

difference, but it also lowers down the correlated variance due to AD atrophy (σ ). A 

supporting finding of this assumption is that proportional volumes of the superior 

temporal cortex, expressed as a proportion of total cerebral volume was significantly 

different between females and males (Harasty, et al., 1997), which exemplifies the fact 

that normalization may be intrinsically biased. A similar finding by Barnes et al. is that 

normalization of all volumes by head size is not adequate due to their non-proportional 

relationship (Barnes, et al., 2010). Also Ross et al. found that males generally have a 

larger overall brain size than female, and males have larger cerebral cortical volumes than 

females except for left parietal(Carne, et al., 2006), thus normalization will at least bring 

in  noise to the regions in left parietal as the regions in that area  for males have a smaller 

size but normalized to a larger head size. However, the	Dp value could still serve as a 

measure of a model’s performance if relevant sources of the variance are known and are 

quantifiable, which is not the case in most practical scenarios.  
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CHAPTER 4 

4. CLASSIFICATION AND PREDICTION BY PROPOSED EFFECTIVE MEAN 
INDICATOR 

4.1 Background 

The features extracted from biomarkers are often analyzed most often using various 

multivariate data analysis method such as principal component analysis (PCA) (López, et 

al., 2009; Nobili, et al., 2008), partial least square (PLS) (Higdon, et al., 2004; Ramírez, 

et al., 2010), and orthogonal partial least squares (OPLS) as exemplified in (Westman, et 

al., 2012a; Westman, et al., 2011b). The common objective of these techniques is to 

project the data into a decisional space where the total variance or variance related to 

class separation is maximized. Then linear or nonlinear using specific classifiers are then 

determined to delineate the populations or groups under study (Chaves, et al., 2009a; 

López, et al., 2009; Magnin, et al., 2009b; Zhou, et al., 2014d).   

4.2 Methodology 

4.2.1 Inclusion and Diagnostic Criteria 

Only subjects from ADNI database with valid baseline MRI measures passing visual 

quality control (QC) evaluation were included in this study (as of February 2014 on 

ADNI website (https://ida.loni.usc.edu/login.jsp)). This has yielded a total of 543 

qualified participants (CN = 139, EMCI = 220, LMCI = 108 and AD = 76). The 
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demographics and clinical characteristics of all the participants are as shown in Table 15. 

Table 15: Demographics and characteristics of all participants 

Data are presented as mean ± standard deviation where applicable. ADAS-11 = 11-item 
Alzheimer’s Disease Assessment Scale-cognitive subscale, ADAS-13 = 13-item Alzheimer’s 
Disease Assessment Scale-cognitive subscale. *Unless otherwise noted, one-way ANOVA was 
performed and p-values smaller than 0.05 are bolded.  † Fisher’s exact test was performed for CN 
vs. EMCI, CN vs. LMCI and CN vs. AD, respectively, and the corresponding p values are listed 
in the same order.  
 

Diagnostic criteria for CN, EMCI, LMCI and AD are as follows: 

CN subjects: MMSE scores between 24 and 30 (inclusive), a clinical dementia rating 

(CDR) score of 0, non-depressed, non-MCI, and non-demented; EMCI subjects: MMSE 

scores between 24 and 30 (inclusive), a subjective memory concern reported by subject, 

informant, or clinician, objective memory loss measured by education adjusted scores on 

delayed recall of one paragraph from Wechsler Memory Scale Logical Memory II 

(WMSLM II) (≥16 years: 9-11; 8-15 years: 5-9; 0-7 years: 3-6), a CDR of 0.5, absence of 

significant levels of impairment in other cognitive domains, essentially preserved 

activities of daily living, and an absence of dementia; LMCI subjects: Same as EMCI 

 CN EMCI LMCI AD p-value* 

Number 139 220 108 76 - 

Gender 
(female/male) 

74/65 101/119 50/58 32/44 †0.194, 0.306, 0.153 

Age 73.6 ± 6.0 69.9 ± 7.0 71.0 ± 7.6 75.1 ± 7.3 < 0.001 

Years of 
education 

16.4 ± 2.5 16.0 ± 2.7 16.4 ± 2.7 16.0 ± 2.6 0.343 

ADAS-11 5.8 ± 3.1 7.8 ± 3.5 11.4 ± 4.9 21.3 ± 7.3 < 0.001 

ADAS-13 9.1 ± 4.5 12.4 ± 5.2 18.3 ± 7.1 31.9 ± 8.5 < 0.001 

MMSE 29.1 ± 1.1 28.5 ± 1.5 27.6 ± 1.8 22.9 ± 2.0 < 0.001 
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with a difference only in objective memory loss measured by education adjusted scores 

on delayed recall of one paragraph from WMSLM II(≥16 years: ≤8; 8-15 years: ≤4; 0-7 

years: ≤2); Mild AD Subjects: MMSE scores between 20-26 (inclusive), a CDR of 0.5 or 

1.0, and meets NINCDS/ADRDA criteria for probable AD. 

4.2.2 MRI Acquisition and Analysis 

Original MRI scans were acquired from a variety of 3T scanners with protocols 

individualized for each scanner, as defined in MRI protocols from ADNI website 

(http://adni.loni.usc.edu/methods/documents/mri-protocols/). Cortical reconstruction and 

volumetric segmentation of MRI scans were performed by applying FreeSurfer 5.1 

(http://surfer.nmr.mgh.harvard.edu/) to T1 weighted MRI image (MPR or IRSPGR) in 

NiFTI format which has been pre-processed by Mayo Clinic (gradient warping, scaling, 

B1 correction and N3 inhomogeneity correction). The detailed technical procedures were 

described in prior publications (Dale, et al., 1999b; Fischl and Dale, 2000; Fischl, et al., 

2002a; Fischl, et al., 2004a). In this study, FreeSurfer generated 271 applicable MRI 

features (including 68 cortical volumes, 68 cortical thickness, 70 surface areas, 49 

cortical volumes and 16 hippocampal subfields), and they were all reviewed by Mayo 

Clinic for quality control.  

4.2.3 Preprocessing of Data 

In order to remove potential biases from further analysis, all MRI measures are 

performed by linear regression tests against the affecting factors, namely age (as 
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demonstrated in Table 15) and ICV. The measures with resulting p values less than 0.05 

are adjusted based on Equation (4.1)  as per Chiang et al.(Chiang, et al., 2011).  

M =	M − G ∙ (V − V ) − G ∙ (A − A )       (4.1) 

Where M  is the adjusted measure, M  is the unadjusted measure, V 	and A  are the 

subject ICV and age (in years), respectively; V 	and 	A  are the means of ICV and 

age for all the CN subjects, respectively. The gradients G	 and G	 are derived by a 

region-specific linear regression against subject ICV and age based on all the 

participants. This regression method also has the advantage that the order of regression 

does not affect the results.  

4.2.4 EMI Calculation  

Theoretically, after correction, values of measures can be compared directly within the 

same measure, meaning that the value difference of the same measure across different 

subjects represents the true difference in that measure not due to head size difference or 

age. In addition, the measure should be the same for the CN group and the actual variance 

is supposedly due to measurement errors.  

In this study, the mean of each measure are estimated by averaging each measure using 

the training controls. And then all measures are normalized to these means, with the 

expectation that values of the measure for controls will approximate 1, and values less 

than 1 will be a measure of the severity of regional atrophy, typical of AD pathology. 
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Student’s t-test with Bonferroni correction for multiple comparisons is performed to rank 

all measures based on the corresponding p values. The mean of the top-ranked measures 

are calculated and defined as EMI, and a threshold is defined so as to optimally separate 

groups. Inclusion of measures such as ventricular volume, which increases in the 

presence of brain atrophy, and is a good indicator of the severity of the disease 

(Luxenberg, et al., 1987; Nestor, et al., 2008a; Zhou, et al., 2014d), requires the following 

correction:  

M = 2 −M               (4.2) 

where the value of  M is the MRI measure before modification and  M  is the same 

measure after modification. (E.g., a value of 1.3 for the ventricles is converted to 0.7).  

4.2.5 Validation and Incremental Error Analysis 

Classifications for AD vs. CN, LMCI vs. CN and EMCI vs. CN are performed using the 

proposed EMI-based method. The experiment is based on 10-fold cross validation, 

meaning the whole dataset is equally divided into 10 subsets, each time one subset is 

selected as testing data and the remaining 9 subsets as training data until all subsets have 

been chosen as testing set once and only once. The two parameters needed for EMI 

calculation are both generated during the training process, namely the mean of each 

measure using the CN subjects and the determined top-ranked measures. In order to blind 

the testing set of this information, these two parameters are based on only the training 

data. The training process also finds an EMI threshold that separates the two compared 
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groups with optimal performance. Then this obtained threshold is applied to the EMIs of 

the testing subjects for prediction, and the performance in terms of accuracy, sensitivity 

and specificity are recorded. The same experiments are repeated 50 times to get the 

estimated average performance.  

In this process, measures are deemed optimal if together they capture a comprehensive 

pattern of atrophy that maximizes classification accuracy and yet they do not introduce 

noise patterns that could negatively impact the classification outcome. Therefore, there 

should be a specific number of top-ranked features selected that will yield the highest 

performance instead of using all of them.  To this end, an incremental error analysis is 

designed to explore the number of top-ranked measures that should be included in the 

EMI calculation so that the desired performance is achieved. The incremental error 

analysis is employed by firstly using only the 1st top-ranked measure, and then each time 

an additional next top-ranked measure is introduced in the EMI calculation until the last 

measure in the rank is included. The general structure of the proposed EMI-based method 

is schematically illustrated in Figure 11.  
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Figure 11: General structure of the proposed EMI-based method 

 

4.3 Results 

4.3.1 Incremental error analysis 

In context to the structure shown in Figure 11, the incremental error analysis is designed 

to facilitate selection of the top-ranked measures that should be included in the 
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calculation of EMI and the corresponding EMI thresholds for prediction. The incremental 

error analysis is employed by starting from the top 1 measure and incrementally 

including the next-ranked measure for EMI calculation. The corresponding optimal 

separation thresholds for each inclusion of next-ranked measure are also recorded. 

Realizing the exhaustive nature of this process, and since many lower-ranked measures 

bear little information if any in the classification process, a Student’s t-test with 

Bonferroni corrections for AD vs. CN, LMCI vs. CN and EMCI vs. CN using all subjects 

was used to select a total of 120 significant measures for AD, 69 for LMCI and 7 for 

EMCI. The accuracy as a function of the number of top-ranked measures included based 

on 50 independent 10-fold cross-validated experiments is plotted in Figure 12. As the 

measures are sorted in the training phase, which change during cross-validation, the rank 

of features may alter slightly from time to time. Therefore the incremental error analysis 

is designed to determine the number of top-ranked variables to be included. Figure 

12shows that for each classification type there is a unique highest point, which decides 

the number of top-ranked measures that should be included. Interestingly, for LMCI 

classification, EMI using 30 top-ranked measures yielded the highest performance in 

contrast with the top 6 for AD and the top 3 for EMCI. In addition, during the 50 

repetitions of experiments for AD, the top 6 measures yielding the highest accuracy were 

observed 44 times, demonstrating extremely robust patterns of this AD model for EMI 

calculation. And 25 out of 50 times were observed for EMI using the 3 top-ranked 

measures.  
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(C) 

Figure 12: Incremental error analysis performance in terms of accuracy as a function of 
the number of top-ranked measures included for (A) AD vs. CN. (B) LMCI vs. CN. (C) 
EMCI vs. CN. The accuracy is the average obtained after 50 independent experiments 
based on 10-fold cross validation with the maximal point highlighted with a big dot. 

 
The performances denoted by the maximal point in Figure 12 are also summarized in 

Table 16 in terms of accuracy, sensitivity and specificity. These results show that the 

EMI method is very efficient in differential diagnosis of AD with an accuracy of 92.7% 

for predicting AD. The numbers in parenthesis indicate the highest and lowest 

performance obtained during the 50 repetitions, which as can be observed are of small 

ranges of performance variation, confirming that the results are consistent. 
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Table 16: Classification performance of the EMI-based method with the determined  top 
6, 31 and 3 features, as denoted by the maximal points  shown in Figure 12 for AD  vs. 
CN, LMCI vs. CN and EMCI vs. CN, respectively 

AD vs. CN  LMCI vs. CN EMCI vs. CN 

ACC 
(%) 

SEN  

(%) 
SPE 
(%) 

 
ACC 
(%) 

SEN  

(%) 
SPE 
(%) 

ACC 
(%) 

SEN  

(%) 

SPE 

 (%) 

92.7  

(91.2-
93.1) 

95.8 

 (93.6-
96.3) 

91.0 

(89.2-
91.4) 

 
76.6 

(74.8-
78.5) 

72.3 

(69.4-
74.3) 

80.0 

(77.6-
83.5) 

61.8 

(58.5-
65.5) 

68.3 

 (62.3-
72.7) 

51.5 

(41.8-
60.3) 

ACC = accuracy, SEN = sensitivity, SPE = specificity. 
 
 

4.3.2 Histogram Plots, Boxplots and Scatter Plots of EMI 

To investigate the separation efficiency of EMI for AD vs. CN, LMCI vs. CN and EMCI 

vs. CN, the EMI were calculated for all subjects based on the number of top-ranked 

measures found by the maximal points as shown in Figure 12. The descriptive statistics 

of the EMI are presented in Table 17. As expected, the mean of EMI for EMCI group is 

the highest and closest to that of CN, and AD is the lowest and furthest. Statistics tests 

also show that the mean difference of EMI between AD and CN is more significant than 

the other two cases as indicated by the p values in Table 16. It should also be noted that 

the standard deviation of CN group for different classification types varies according to 

the top-ranked measures that were used.  

To better assess the separation efficiency of the EMI visually, histogram plots, boxplots 

and scatter plots of the EMI are shown in Figure 13 -Figure 15, respectively. Besides, 

these plots also have two lines depicting the largest and smallest thresholds resulting 

from the 50 independent training experiments. The two extreme thresholds form a range 
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of potential thresholds that may be obtained through the training process. The more 

compact is the range, the more consistent the results would be. In other words, these 

thresholds are like the separation boundaries of regular classifiers obtained repetitively 

using partial subjects. If the boundaries are similar or close, it means the classifier is less 

susceptible to population difference and is an indicator of robustness of the classifier.  

Table 17: Descriptive statistics of the EMI 

S.D. = standard deviation. 

 
 

Figure 13 and Figure 15 jointly demonstrates that EMI-based method is efficient in 

discriminating different stages of the disease with very compact threshold range (for AD 

and LMCI in particular).  In addition, the histogram in Figure 13 displays how the EMI of 

subjects are distributed in terms of sub-ranges.  As expected, the EMI distribution of AD 

is more easily separable from CN distribution with less overlapping areas than LMCI and 

EMCI. Figure 14  graphically depicts the EMI values through their quartiles. It can be 

seen that the maximum of EMI among AD subjects is close to the median of EMI among 

CN subjects and the minimum of EMI in CN group excluding an outlier lies almost in the 

middle between the median and upper quartile of EMI among AD subjects.  In 

  AD vs. CN  LMCI vs. CN  EMCI vs. CN 

  CN AD  CN LMCI  CN EMCI 

Mean of EMI   1.00 0.76  1.00 0.86  1.00 0.94 

S.D.  0.087 0.095  0.059 0.120  0.098 0.120 

Kurtosis  3.24 2.63  2.98 2.75  2.74 4.33 

P value  by 
Student’s t-test  
(Scale)  
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comparison, the EMI difference between LMCI (or EMCI) and CN groups are relatively 

smaller but still notable.  Figure 15 shows the scatter plots of EMI against subjects’ age 

as 2-D representations of the data. Even though class separation is solely based on the 

variation of EMI along the vertical axis, the age is used as the second dimension for 

visual appreciation. As can be observed, EMI separates AD from CN efficiently with any 

threshold in the determined range. Both the min and max thresholds separate LMCI from 

CN decently as well. As expected, prediction of EMCI is more challenging as shown in 

Figure 15C. It is worth noting that in Figure 15A, the EMI of AD subjects are quite stable 

around the threshold, even more so than the EMI of CN subjects near the threshold range. 

This observation is a strong indicator of the efficiency of EMI in identifying the pattern 

of AD and complies with the results in Table 16 that prediction of AD yielded a higher 

sensitivity of 95.8% than the specificity of 91.0%.  
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Figure 13: Histogram plots of the EMI using previously validated number of top-ranked 
measures for (top left) AD and CN. (top right) LMCI and CN. (bottom) EMCI and CN. 
In order to present the separation thresholds obtained from the training process of the 50 
independent experiments, the maximum and minimum thresholds are plotted as blue 
lines. 
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Figure 14: Boxplots of the EMI using previously validated number of top-ranked 
measures for (top left) AD and CN. (top right) LMCI and CN. (bottom) EMCI and CN. 
In order to present the separation thresholds obtained from the training process of the 50 
independent experiments, the maximum and minimum thresholds are plotted as black 
dots. 
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(A) 

(B) 
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Figure 15: Scatter plots of the EMI using previously validated number of measures 
against age for (A) AD vs. CN. (B) LMCI vs. CN. (C) EMCI vs. CN. In order to present 
the separation thresholds obtained from the training process of the 50 independent 
experiments, the maximum and minimum thresholds are plotted as blue lines. 

 

Furthermore, Figure 15 also enables us to examine if there is a potential relationship 

between subjects’ age and EMI, which in this case showed no evidence of such a 

relationship. In addition, linear regression tests were also performed between subjects’ 

age and EMI, showing no significant relationship between them.  

4.4 Discussion 

In this study, we presented a new and robust EMI-based method to predict different 

stages of AD, utilizing regional MRI measures normalized to the mean values based on 

CN subjects.  The cumulative difference of these regional measures from the mean value 

of 1 is indicative of the severity of atrophy representative of Alzheimer pathology. We 

(C) 
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have shown in this study that the proposed EMI-method demonstrates superior and 

consistent performance in predicting different stages of AD.  

This new method has the advantage of simplicity and in converting MRI measures into 

values that can be directly added and subtracted across measures without the assumptions 

required of PCA and PLS methods (López, et al., 2009; Nobili, et al., 2008; Ramírez, et 

al., 2010; Westman, et al., 2011b). These assumptions in PCA and PLS make the data 

interpretation less intuitive, because the position and distance to the boundary of a testing 

subject in the decisional space may be difficult to quantify, especially if the decisional 

space is multi-dimensional. The advantage of EMI is that it provides a value that can be 

intuitively interpreted as a measure of the severity of atrophy typically found in AD, 

without requiring pretreatment of data using unit variance scaling (UVS) or other similar 

methods to balance the variance of measures. In methods, such as PCA and PLS, 

measures with large variance dominate and information-bearing measures with smaller 

variance may be overwhelmed. Also, pretreatment of data like UVS may also hinder the 

interpretation of the data while altering the variance of measures (van den Berg, et al., 

2006) and therefore the information related to class separation may be compromised. The 

EMI-based method does not require such pretreatment of data so that all the raw 

information is maximally retained.  

Along with its simplicity in implementation, the EMI-based method has also 

demonstrated a high level of predictability achieved using only the MRI biomarker as 

shown in Table 16. Recent studies have combined different biomarkers to explore their 
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complementary information (Davatzikos, et al., 2011; Fan, et al., 2008b; Hinrichs, et al., 

2011; Westman, et al., 2012a; Zhang, et al., 2011) and found that the combined 

biomarkers has higher predictive power than using single biomarkers alone. Some of 

these studies are selected for a performance comparison with the proposed EMI-based 

method as shown in Table 18. The subjects in this study, derived from ADNI GO and 

ADNI 2, has two well-defined MCI stages (EMCI and LMCI) while ADNI 1 has only 

one as MCI stage. 

The proposed EMI-based method is shown to be more effective in the prediction of AD 

than any other methods, even though the other methods used multiple biomarkers. The 

EMI method yielded a higher sensitivity than any other methods, thus improving the 

classification of AD. Despite the difference in grouping of MCI subjects, the performance 

of EMI method on LMCI classification is compared with the performance of MCI 

classification in a recent and frequently cited study by Zhang et al.(Zhang, et al., 

2011).The proposed EMI-based method predicted LMCI using only MRI with an 

accuracy of 76.6% (sensitivity: 72.3% and specificity: 80.0%), which is comparable to 

the prediction of MCI using MRI, PET and CSF by Zhang et al.(Zhang, et al., 2011) with 

an accuracy of 76.4% (sensitivity: 81.8% and specificity: 66.0%). 

In addition, the highest and lowest performances of the 50 independent experiments, as 

indicated in parenthesis in Table 18, show that EMI-based method has a consistent 

performance with an even smaller range of variation than the method by Zhang et al. 

Furthermore, as Westman et al. brought up the concern of cost in combining biomarkers 
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in a prior study (Westman, et al., 2012a), the proposed method is an efficient and cost-

effective alternative for achieving high  prediction performance without the extra cost for 

using other biomarkers other than MRI.  

4.4.1. Flexibility in Balancing Between Performances 

As indicated in Figure 11, there are 3 parameters generated by the training process, 

which are deemed essential for the prediction of the testing data. Among them, the first 

one is the mean of each measure calculated using the CN subjects in the training set, to 

which the testing data is normalized. The other two are generated by the incremental 

error analysis, namely the number of top-ranked measures and the optimal EMI threshold 

found during the training process. If a higher sensitivity for prediction is desired, a 

threshold can be selected such that less AD subjects are misclassified despite the possible 

cost of accuracy and/or specificity. In this study, the threshold in the training process was 

determined such that performance (P) as defined below reaches maximum. 

P = 	Accuracy ∗ 0.8 + Sensitivity ∗ 0.2 + Specificity ∗ 0.2     (4.3) 

Equation (4.3) assigns different weights to the 3 measures of performance depending on 

the 3 factors, which are really flexible depending on the demands on performance. For 

example, the factors as used in this study assign more weight to accuracy than sensitivity 

and specificity. This is another advantage of the EMI method that it allows for balancing 

between accuracy, sensitivity and specificity in a simple and convenient way. For 

example, if a more conservative diagnosis is required, a lower threshold will increase the 
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sensitivity to some extent, and such balancing of performance can hardly be implemented 

using other classifiers. Considering SVM classifiers as an example, which are frequently 

used in studies of AD (Klöppel, et al., 2008; López, et al., 2009; Zhang, et al., 2011; 

Zhou, et al., 2014c), when the decisional space is multidimensional, the decision 

boundary has to move in every single dimension according to the distribution of training 

data and there are many potential boundaries that may achieve the same goal such as a 

higher sensitivity. More importantly, it is hard to justify which new boundary to use to 

achieve the desired effect in prediction. Neither of these problems applies to the proposed 

EMI-based method, as it makes its decision in only one dimension. In other words, it 

integrates all the separation information into one dimension while achieving even higher 

prediction performance in comparison to other methods. 
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4.4.2. Future Potential of EMI Method 

As mentioned before, only the CN subjects in the training process were used to compute 

the mean of each measure, which is then used to normalize all measures for both the 

training and testing data. And in this study, there are 125 CN subjects in the training set 

(10-fold cross validation). Even with the limited samples of CN subjects used in this 

study, the prediction performance is already high and stable. If more CN subjects are 

available, the resulting mean of each measure will be more accurate and it will also 

improve the experiment performance. In addition, another goal of the training process is 

to find the threshold that optimally separates the groups, which has also been shown to be 

highly convergent, especially for AD and LMCI prediction as displayed in Figure 13 

Figure 15 with 2 almost overlapped straight lines) depicting minimum and maximum 

thresholds of the 50 independent experiments. The consistency of thresholds will again 

be expected to improve along with the refinement of the mean of each measure because 

they are found based on the subjects’ EMI, which is closely related to the measurements. 

Overall, more accurate mean of each measure in the future may yield more accurate EMI 

values and hence more consistent prediction results. Another merit of EMI-based method 

is that the value of EMI itself is very intuitive, and a good representative in the level of 

atrophy. This indicates its great potential in clinical trials by giving the physicians an 

estimated level of the disease with those quantifiable values. And such a value may also 

be potentially combined with some other screening test scores to generate an even more 

information-bearing composite for diagnosis.  
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CHAPTER 5 

5. MULTIVARIATE ANALYSIS OF MRI AND PET (FDG AND 18F-AV-45) 

5.1 Background 

Subjects with AD suffer from progressive loss of cognitive functions, which are 

associated with regional brain atrophy (Fox, et al., 1996). As a result, magnetic resonance 

imaging (MRI) capable of capturing brain structure has been wildly used to analyze 

structural change of the disease (Fox and Schott, 2004; Zhou, et al., 2014b). Regional 

atrophy in hippocampus and amygdala (Laakso, et al., 1996; Laakso, et al., 1995a; 

Thompson, et al., 2004a) , cortical thinning (Dickerson, et al., 2009a) and ventricular 

enlargement (Thompson, et al., 2004a) were found significant related to anatomical 

change of AD. It’s also been reported that extracellular beta-amyloid (A ) deposition 

(Hardy and Allsop, 1991a) and tau protein abnormalities (Mudher and Lovestone, 2002b) 

were the fundamental causes of the disease, which have made amyloid positron emission 

tomography (PET) imaging modality popular as it’s able to evaluate amyloid plaque level 

and hypometabolism of the  brain, which contain  discriminative information of AD 

staging (Nordberg, et al., 2010b). There are three common PET imaging agents being 

used, Fluorine-18-fluorodeoxyglucose (FDG), Florbetapir 18F (AV-45) and Pittsburgh 

compound B (PiB).  PiB and AV-45 work similarly as they both bind to	A . While AV-

45 has much longer half-life time than PiB, which allows for more significant 

accumulation of the tracer in the brain of AD subjects (Wong, et al., 2010).  Researches 
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using AV-45-PET have reported high A  deposition among AD subjects in some specific 

areas, such as precuneus, frontal and temporal cortices (Choi, et al., 2009; Wong, et al., 

2010). Recent studies using FDG-PET have reported significant correlation of dementia 

severity  and FDG uptake level in defined areas, such as posterior cingulate, 

temporoparietal, prefrontal association cortex and temporal cortex (Herholz, et al., 2002; 

Piert, et al., 1996). FDG PET and AV-45  PET images are highly correlated while also 

providing complimentary information (Hsiao, et al., 2012).  

Orthogonal partial least square to latent structures (OPLS) is a supervised multivariate 

data analysis method that has shown its efficiency in analyzing complex biological data 

(Bylesjo, et al., 2006; Ray, 2012; Trygg and Wold, 2002; Westman, et al., 2012c; 

Westman, et al., 2011b). For AD study, Westman et al. combined manual hippocampal 

volume measurements with automated regional and global volume measures to 

discriminate AD and MCI from controls. By comparing the discriminative powers of 

these features, they reported that OPLS showed great potential in the prediction AD and 

MCI and in the conversion from MCI to AD (Westman, et al., 2011b). They also 

compared and combined MRI data from the European AddNeuroMed and ADNI using 

OPLS method, and the results indicated that the two cohorts showed similar pattern of 

atrophy and predictive power (between 80 and 90%) (Westman, et al., 2011a).  In 

addition, they combined CSF and MRI measures for classification of AD and MCI 

conversion using OPLS and showed that combinative power of them were better than 

MCI and CSF separately (Westman, et al., 2012c).   
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5.2 Methodology 

5.2.1 Dataset 

The data used in this article were downloaded from ADNI website 

(https://ida.loni.usc.edu/login.jsp). All recruited participants were between 55-90 

(inclusive) years of age, had a reliable study partner, able to provide an independent 

evaluation of functioning, and speak either English or Spanish. They were willing and 

able to undergo all test procedures including neuroimaging and lumbar puncture and 

agreed to longitudinal follow up. Specific psychoactive medications were excluded.  

5.2.2 Inclusion and diagnostic criteria 

As this study aimed to find the discriminative power of features extracted from MRI and 

PET imaging modalities, only subjects with valid FDG and AV-45-PET scans  and MRI 

measures passing visual quality control (QC) evaluation at baseline were included. This 

yielded a total of 524 subjects qualified for this study (CN = 137, EMCI = 214, LMCI = 

103 and AD = 70) as of February 2014 on ADNI website 

(https://ida.loni.usc.edu/login.jsp). The demographics and clinical characteristics of all 

participants are as shown in Table 19. 

Diagnostic criteria for CN, EMCI, LMCI and AD are based on ADNI protocol (online: 

http://www.adni-info.org/pdfs/adni_protocol_9_19_08.pdf). CN subjects: MMSE scores 

between 24 and 30 (inclusive), a CDR of 0, non-depressed, non-MCI, and non-demented; 

EMCI subjects: MMSE scores between 24 and 30 (inclusive), a subjective memory 
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concern reported by subject, informant, or clinician, objective memory loss measured by 

education adjusted scores on delayed recall of one paragraph from Wechsler Memory 

Scale Logical Memory II (WMSLM II) (≥16 years: 9-11; 8-15 years: 5-9; 0-7 years: 3-

6), a CDR of 0.5, absence of significant levels of impairment in other cognitive domains, 

essentially preserved activities of daily living, and an absence of dementia; LMCI 

subjects: Same as EMCI with a difference only in objective memory loss measured by 

education adjusted scores on delayed recall of one paragraph from WMSLM II(≥16 

years: ≤8; 8-15 years: ≤4; 0-7 years: ≤2); Mild AD Subjects: MMSE scores between 

20 and 26 (inclusive), a CDR of 0.5 or 1.0, and meets NINCDS/ADRDA criteria for 

probable AD.  

5.2.3 MRI and PET 

Both MRI and PET scans were at baseline. MRI scans were acquired from a variety of 3T 

scanners with protocols individualized for each scanner, as defined in 

(http://adni.loni.usc.edu/methods/documents/mri-protocols/). Briefly, all PET images 

were acquired 30 to 60 minutes post-injection, co-registered, averaged, reoriented into a 

standard 160×160×96 voxel image grid, and smoothed to a uniform isotropic resolution 

of 8 mm full width of maximum. A detailed description of PET protocols and acquisition 

procedures can be found in: http://adni.loni.usc.edu/methods/pet-analysis/pre-processing..
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5.2.4 Image analysis 

Cortical reconstruction and volumetric segmentation of MRI images were done by 

applying FreeSurfer 5.1 (available online: http://surfer.nmr.mgh.harvard.edu/) to T1 

weighted MRI image (MPR or IRSPGR) in NiFTI format which has been pre-processed 

(gradient warping, scaling, B1 correction and N3 inhomogeneity correction) by Mayo 

Clinic. The detailed technical procedures were described in prior publications (Dale, et al., 

1999a; Fischl and Dale, 2000; Fischl, et al., 2002b; Fischl, et al., 2004b). In this study, 

FreeSurfer generated 271 applicable MRI features which passed QC evaluation by Mayo 

Clinic as shown in Table 20, Table 21, Table 22, Table 23 and Table 24, with Table 24 

showing all the 15 features extracted from PET scans including 8 features from AV-45-

PET and 7 from FDG-PET. These tables also include the p values to indicate those 

features that are significant in separating the AD, EMCI and LMCI groups from CN 

subjects. 

Data presented in Table 20 to Table 24 are p values of Student’s t-test for left and right 

hemispheres separated by ‘|’ where applicable. Regional or composite features shown 

significant between any comparing groups were bolded and with “ns” indicating as not 

significant,   
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Table 20: Statistical significance of cortical volumes by lobes 
 Cortical volumes 

 EMCI LMCI AD 

Frontal Lobe    

Superior Frontal ns | ns <0.001|0.002 <0.001|<0.001 
Rostral Middle Frontal ns | ns ns | ns ns|<0.001 
Caudal Middle Frontal ns | ns ns | ns 0.005|0.002 
Pars Opercularis ns | ns ns | ns ns | ns 
Pars Triangularis ns | ns ns | ns 0.016| ns 
Pars Orbitalis ns | ns ns|<0.001 0.002|<0.001 
Lateral Orbitofrontal ns | ns <0.001|0.005 <0.001|<0.001 
Medial Orbitofrontal ns | ns ns | ns ns|<0.003 
Precentral ns | ns ns | ns ns | ns 
Paracentral ns | ns ns | ns 0.002|ns 
Frontal Pole ns | ns ns | ns ns | ns 

Parietal Lobe    

Superior Parietal ns | ns ns | ns <0.001|<0.001 
Inferior Parietal ns | ns 0.003|0.002 <0.001|<0.001 
Supramarginal ns | ns 0.017| ns <0.001|<0.001 
Postcentral ns | ns ns | ns 0.019| ns 
Precuneus ns | ns ns | ns <0.001|<0.001 

Temporal Lobe    

Superior Temporal ns | ns <0.001|ns <0.001<0.001 
Middle Temporal ns | ns <0.001|<0.001 <0.001|<0.001 
Inferior Temporal 0.005|0.034 <0.001|<0.001 <0.001|<0.001 
Bankssts† ns | ns 0.014|0.012 <0.001|<0.001 
Fusiform ns | ns <0.001|<0.001 <0.001|<0.001 
Transverse Temporal ns | ns ns | ns ns | ns 
Entorhinal ns | ns <0.001|<0.001 <0.001|<0.001 
Temporal Pole 0.009| ns 0.002|<0.001 <0.001|<0.001 
Parahippocampal ns | ns 0.004|0.014 <0.001|<0.001 

Occipital Lobe    

Lateral Occipital ns | ns ns | ns 0.005|0.002 
Lingual ns | ns ns | ns 0.020| ns 
Cuneus ns| 0.010 ns | ns ns | ns 
Pericalcarine ns | ns ns | ns ns | ns 

Miscellaneous    

Insula 0.017| ns 0.002|0.004 <0.001|<0.001 
Caudal Anterior Cingulate ns | ns ns | ns ns | ns 
Isthmus Cingulate 0.047|0.042 ns | ns 0.005| ns 
Posterior Cingulate ns | ns ns|0.045 <0.001|<0.001 
Rostral Anterior Cingulate ns | ns ns|<0.001 <0.001| ns 
Hemisphere WM*  - - - 
ICV* ns | ns ns | ns ns | ns 
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Table 21: Statistical significance of cortical thickness by lobes 
 Cortical thickness 
 EMCI LMCI AD 

Frontal Lobe    
Superior Frontal ns | ns 0.004|0.007 <0.001|<0.001 
Rostral Middle Frontal ns | ns ns | ns <0.001| ns 
Caudal Middle Frontal ns | ns 0.012| ns <0.001|<0.001 
Pars Opercularis ns | ns 0.003| ns 0.002|0.017 
Pars Triangularis ns | ns ns | ns 0.013| ns 
Pars Orbitalis ns | ns ns | ns ns |<0.001 
Lateral Orbitofrontal ns | ns 0.049| ns <0.001|<0.001 
Medial Orbitofrontal 0.024| ns 0.004| ns 0.015|0.012 
Precentral ns | ns ns | ns 0.018|0.045 
Paracentral ns | ns ns | ns 0.003|0.028 
Frontal Pole ns | ns ns | ns ns | ns 
Parietal Lobe    
Superior Parietal ns | ns ns | ns <0.001|<0.001 
Inferior Parietal ns | ns <0.001|0.028 <0.001|<0.001 
Supramarginal ns | ns  0.0059| ns <0.001|0.002 
Postcentral ns | ns ns | ns 0.023|0.009 
Precuneus ns | ns 0.002|<0.001 <0.001|<0.001 
Temporal Lobe    
Superior Temporal ns | ns <0.001|0.002 <0.001|<0.001 
Middle Temporal ns | ns <0.001|0.002 <0.001|<0.001 
Inferior Temporal 0.002| ns <0.001|<0.001 <0.001|<0.001 
Bankssts† ns | ns 0.015| ns <0.001|<0.001 
Fusiform 0.018|0.036 <0.001|0.002 <0.001|<0.001 
Transverse Temporal ns | ns ns | ns ns | ns 
Entorhinal 0.014|0.031 <0.001|<0.001 <0.001|<0.001 
Temporal Pole 0.022|0.022 <0.001|<0.001 <0.001|<0.001 
Parahippocampal ns | ns ns | ns <0.001|<0.001 
Occipital Lobe    
Lateral Occipital ns | ns ns | ns 0.006|0.005 
Lingual ns | ns ns | ns 0.013|0.044 
Cuneus ns | ns ns | ns 0.036| ns 
Pericalcarine ns | ns ns | ns ns | ns 
Miscellaneous    
Insula ns | ns 0.003|0.012 <0.001|<0.001 
Caudal Anterior Cingulate ns | ns ns | ns ns | ns 
Isthmus Cingulate ns | ns 0.011|0.009 <0.001|<0.001 
Posterior Cingulate ns | ns ns | ns <0.001|0.008 
Rostral Anterior Cingulate ns | ns ns | ns 0.005| ns 
Hemisphere WM*  - - - 
ICV* - - - 
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Table 22: Statistical significance of surface area by lobes 
 Surface area 

 EMCI LMCI AD 

Frontal Lobe    

Superior Frontal ns | ns 0.008| ns 0.015| ns 
Rostral Middle Frontal ns | ns ns |0.009 0.001|<0.001 
Caudal Middle Frontal ns | ns ns | ns ns | ns 
Pars Opercularis ns | ns ns | ns ns | ns 
Pars Triangularis ns | ns ns | ns ns | ns 
Pars Orbitalis ns | ns 0.037|0.027 0.006|0.021 
Lateral Orbitofrontal ns | ns 0.008| ns 0.003| ns 
Medial Orbitofrontal 0.015| ns ns | ns ns | ns 
Precentral ns | ns ns | ns ns | ns 
Paracentral ns | ns ns | ns ns | ns 
Frontal Pole ns | ns ns | ns ns | ns 
Parietal Lobe    

Superior Parietal ns | ns ns | ns ns | ns 
Inferior Parietal ns | ns ns |0.026 <0.001|<0.001
Supramarginal ns | ns ns | ns 0.016|0.034 
Postcentral ns | ns ns | ns ns | ns 
Precuneus 0.021| ns ns | ns ns | ns 
Parietal Lobe    

Superior Temporal ns | ns ns | ns 0.022| ns 
Middle Temporal ns | ns 0.011|<0.001 <0.001|<0.001
Inferior Temporal ns | ns <0.001|0.007 <0.001|<0.001
Bankssts† ns | ns 0.047|0.040 0.002|<0.001
Fusiform ns | ns 0.008| ns 0.004|<0.001
Transverse Temporal ns | ns ns | ns ns|0.044 
Entorhinal ns | ns ns |0.044 ns | ns 
Temporal Pole ns | ns ns|0.013 ns | ns 
Parahippocampal ns | ns 0.018|0.023 <0.001|0.022

Occipital Lobe    

Lateral Occipital ns | ns ns | ns ns | ns 
Lingual ns | ns ns | ns 0.039| ns 
Cuneus ns|0.021 ns | ns ns | ns 
Pericalcarine ns | ns ns | ns ns | ns 
Miscellaneous    

Insula ns | ns ns | ns 0.018| ns 
Caudal Anterior Cingulate ns | ns ns | ns ns | ns 
Isthmus Cingulate 0.022| ns ns |0.036 ns | ns 
Posterior Cingulate ns | ns ns |0.048 ns | ns 
Rostral Anterior Cingulate ns | ns ns | ns ns | ns 
Hemisphere WM*  ns | ns 0.037|0.043 0.001|<0.001 
ICV* - - - 
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Table 23: Statistical significance of subcortical volumes by lobes 
Subcortical volumes EMCI LMCI AD 

Brainstem ns ns ns 

CC Anterior ns ns 0.012 

CC Central ns ns 0.010 

CC Middle Anterior ns ns 0.034 

CC Middle Posterior ns ns ns 

CC Posterior ns ns 0.022 

Cortical GM ns <0.001 <0.001 

Cortical WM ns 0.030 0.008 

CSF ns 0.012 <0.001 

Fourth Ventricle ns ns ns 

Non WM Hypo-Intensities ns ns ns 

Optic Chiasm ns ns ns 

Subcortical GM ns 0.021 <0.001 

Supra Tentorial ns 0.002 <0.001 

Third Ventricle 0.046 0.003 <0.001 

Total GM ns <0.001 <0.001 

WM Hypo-Intensities 0.005 0.008 <0.001 

Accumbens Area 0.037| ns 0.004|<0.001 < 0.001|<0.001 

Amygdala 0.002|0.007 <0.001|<0.001 < 0.001|< 0.001 

Caudate ns | ns ns | ns ns|0.049 

Cerebellum Cortex ns | ns ns | ns ns | ns 

Cerebellum WM ns | ns ns | ns <0.001|ns 

Choroid Plexus ns | ns ns | ns 0.018|0.008 

Cortical GM ns | ns <0.001|<0.001 <0.001|<0.001 

Cortical WM ns | ns 0.027|0.035 0.006|0.013 

Hippocampus 0.005|0.002 <0.001|<0.001 < 0.001|<0.001 

Inferior Lateral Ventricle 0.002|0.021 <0.001|<0.001 <0.001|<0.001 

Lateral Ventricle ns | ns 0.004|0.013 <0.001|<0.001 

Pallidum ns | ns 0.027| ns ns | ns 

Putamen ns | ns ns | ns <0.001|<0.001 

Thalamus 0.034| ns 0.038| ns <0.001|<0.011 

VentralDC ns | ns ns | ns ns | ns 

Vessel ns | ns ns | ns ns | ns 
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Table 24: Statistical significance of hippocampus subfields and PET features 

Hippocampus Subfields EMCI LMCI AD 

CA 1  ns | ns 0.004|<0.001 <0.001|<0.001 

CA 2-3 0.010|0.006 <0.001|<0.001 <0.001|<0.001 

CA 4 (Dentate Gyrus) 0.023|0.006 <0.001|<0.001 <0.001|<0.001 

Fimbria ns | ns <0.001|0.016 <0.001|<0.001 

Hippocampal Fissure ns | ns ns | ns ns | ns 

Presubiculum 0.029| ns <0.001|<0.001 <0.001|<0.001 

Subiculum ns | ns <0.001|<0.001 <0.001|<0.001 

Tail ns | ns <0.001|<0.001 <0.001|<0.001 

AV-45 PET  

Cerebellum GM ns ns ns 

Whole cerebellum ns 0.017 0.002 

Brainstem ns 0.002 <0.001 

Frontal ns <0.001 <0.001 

Cingulate ns 0.002 <0.001 

Parietal ns <0.001 <0.001 

Temporal ns <0.001 <0.001 

Summary of SUVR 0.017 <0.001 <0.001 

FDG PET  

Cingulum Post (Bilateral) ns 0.003 < 0.001 

Temporal 0.011| ns 0.002| ns <0.001|<0.001 

Angular 0.016| ns <0.001|0.009 <0.001|<0.001 

FDG_sum ns <0.001 <0.001 

Weighted average ns <0.001 <0.001 

 

 

Processing of AV-45 PET scans was detailed in a prior article (Landau and Jagust, 

2011a). Briefly, native-space MRI scans of subjects were used to define 4 cortical grey 

matter regions of interest (ROIs), i.e., frontal, anterior/posterior cingulate, lateral parietal 

and lateral temporal and 3 reference regions, i.e., cerebellar grey matter, whole 



 

86 
 

 

cerebellum and brainstem. Each florbetapir scan was co-registered to corresponding MRI 

and then the mean florbetapir uptake within the 7 cortical and reference regions was 

calculated as 7 regional AV-45 PET feature. Also a florbetapir composite feature (i.e. 

summary of standardized uptake value ratio (SUVR)) for each subject was created by 

non-weighted averaging across the 4 cortical regions and dividing this average by one of 

the reference regions (brainstem was used in this study). 

Processing of FDG PET scans was detailed in another article(Landau and Jagust, 2011b) . 

Basically 5 MetaROIs (i.e. left and right Angular Gyrus, bilateral Posterior Cingular, left 

and right Inferior Temporal Gyrus) were identified by Landau et al. through well-defined 

procedures based on coordinates cited frequently in other FDG studies comparing AD, 

MCI, and CN(Landau, et al., 2011). In this article, 7 FDG features were considered, 

including FDG uptakes of the 5 MetaROIS and two other composite features, namely the 

sum and weighted average of FDG uptakes of the aforementioned 5 MetaROIs to 

represent FDG uptake level of the whole brain. 

5.2.5 Preprocessing of data  

All MRI measures were adjusted for age and ICV as per Equation (5.1) if the p value of 

the linear regression between the measure and the testing factor was smaller than 0.05. 

The aim was to remove potential biases from further analysis. 

V = 	V − G ∙ (V − V ) − G ∙ (A − A )       (5.1) 
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where V  is the adjusted measure, V  is the unadjusted measure, V 	and A  are the 

subject ICV and age (years), respectively; V 	and 	A are the corresponding means for 

all the controls. The gradients G	 and G	 were derived by a region-specific linear 

regression against subject ICV and age of all the participants. As per Chiang et al.(Chiang, 

et al., 2011), the above regression also has the advantage that the  the regression order of 

age and ICV does not affect the regression result. Then all data was processed by mean 

centering and unit variance scaling. 

5.2.6 Multivariate data analysis 

The aforementioned 286 features were used as inputs to OPLS (Bylesjo, et al., 2006; 

Trygg and Wold, 2002), a supervised multivariate data analysis method comes with the 

software package SIMCA-P (version 11.5, Umetrics AB, Umea, Sweden). OPLS 

removes variation from descriptor variables that is not related to group separation and the 

information related to class separation is found in the predictive component (Trygg and 

Wold, 2002).  

The predictive power of OPLS model for separating two groups is found in Q (Y)  and is 

defined as follows: 

Q (Y) = 1 − PRESS SSY .⁄       (5.2) 

where PRESS (predictive residual sum of squares)=	∑(y − y ) , is the 

squared differences between observed and predicted Y-values, and SSY .  represents 
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the total variation of the Y variable (diagnosis) after scaling and mean centering 

(Eriksson, et al., 2006). Q (Y) denotes the predictive power resulting from a 7-fold  cross 

validation (by default). This procedure is repeated until every observation has been kept 

out once and only once. In this type of model, a	Q (Y) value larger than 0.5 is regarded 

as good (Eriksson, et al., 2006).  

Variable influence in the projection (VIP) reflects significance of variables both with 

respect to Y (diagnosis) and X (the features included). It summarizes the overall 

contribution of each X-variable, summed over all other components and weighted 

according to the Y variation accounted by each component (Eriksson, et al., 2006; 

Galindo‐Prieto, et al., 2014; Guyon and Elisseeff, 2003). And VIP has been shown to be 

critically important in selecting the significant variables (Ray, 2012; Weljie, et al., 2007). 

Variables with a VIP score larger than 1 are deemed significant as the average of squared 

VIP scores is equal to 1(Eriksson, et al., 1995; Guyon and Elisseeff, 2003; Ray, 2012; 

Weljie, et al., 2007).  

Multivariate analysis was done for the following two groups of models.  

Full models: They included 7 single models and 3 hierarchical models for AD vs. CN, 

LMCI vs. CN and EMCI vs. CN. Single models used one of the 5 sets of MRI measures 

(i.e. subcortical volumes, cortical volumes, cortical thickness average, surface area and 

hippocampus subfields) or features from one of the PET (AV-45 or FDG) scans to 

explore discriminative power of different types of measures within the imaging 
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modalities. Three hierarchical models included one with all 5 sets of MRI measures, 

another one with two PET measures and a third one with all of them combined.  

Feature-selected models: The aim of feature selection was to investigate if proper 

exclusion of less significant features would reduce inconsistent noisy patterns, and 

therefore enhance predictability. To this end, two feature selection methods were applied 

to differentiate EMCI, LMCI and AD from CN. The first scheme was commonly used 

feature selection technique that only those statistically significant features with a p value 

less than 0.05 were selected for each classification type. The other one was implemented 

iteratively based on VIP scores. At first, variables with VIP scores larger than 1 were 

selected from full models to create feature-selected models with one iteration of feature 

selection. Then feature-selected models with 2 iterations of feature selection included 

variables with VIP larger than 1 in the previous feature-selected models with one 

iteration. The same procedure was repeated to create more feature-selected models until 

the model reported a zero predictive power characterized by a Q (Y)  value of 0. The 

advantage of the VIP-based feature selection technique over the p value-based technique 

is that VIP score of the variable varies depending on the other variables included in the 

model, making it possible to iteratively exclude less significant variables from the model 

and explore predictive power of selected features.  

5.2.7 Validation with external test set 

Due to stringent inclusion criteria of subjects (i.e. subjects must have eligible MRI, valid 

FDG and AV-45 PET scans), among the four comparing groups, AD group has the 
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smallest sample size with 70 qualified subjects. In order to maintain high statistical power 

and avoid bias due to sample size discrepancy between groups during the training process, 

70 subjects were randomly selected from the other three groups (CN, EMCI and LMCI) 

to match with the size of AD group, and the remaining subjects were defined as test set as 

shown earlier in Table 19.  

Best full models and feature-selected models of LMCI vs. CN and EMCI vs. CN were 

validated using the combined LMCI-CN and EMCI-CN groups, respectively. To explore 

how best AD models recognize EMCI and LMCI subjects from CN, the best models of 

LMCI and EMCI were also cross validated with AD and CN subjects in the test set.  

5.3 Results 

5.3.1 Significance of features in separating groups 

To interpret how the features may potentially contribute to separation, Student’s t–test 

was performed for each feature between AD (EMCI or LMCI) and CN and the p values 

were as shown in Table 20 to Table 24. As expected, more variables showing significant 

difference were observed for discriminating AD from CN, and more MRI features of 

cortical volumes and cortical thickness were found significant than for surface area. 

In terms of lobes, most significant regions were seen in temporal lobe with the least seen 

in occipital lobe. Almost all hippocampal subfields were shown significant for LMCI and 

AD except for hippocampal fissure. In particular, considering hemispheric symmetry, 
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most hemispheric measures showed similarity between hemispheres and asymmetric 

measures were mostly significant for the left hemisphere. Interestingly, SUVR across the 

whole brain, (defined as “summary of SUVR” in Table 24) was the only AV-45 PET 

measure that was shown to be significant for separating any stages of AD from CN. 

Besides, volumes of inferior temporal, amygdala, hippocampus, inferior lateral ventricle, 

and cortical thickness of fusiform and temporal were also shown significant between any 

of the compared groups.  

5.3.2 Predictive power of OPLS models 

Predictive power of full models: Predicative power (Q (Y)) for the aforementioned full 

models without feature selection is summarized in Table 25, which shows that combining 

MRI and PET features had the highest predictive power for models predicting LMCI and 

AD groups from the CN group, while using cortical thickness alone yielded a higher Q (Y) for EMCI than using any measures, even when all features were combined.  

Separation efficiency of the best full models during the training process could also be 

visualized with scatter plots as illustrated in Figure 16. Perfect separation of AD from CN 

using all features is shown in Figure 16A with a high Q (Y) of 0.721. Moreover, Figure 

16B and Figure 16C show that the models are efficient in separating LMCI and EMCI 

from CN as well. 

Predictive power of feature-selected models: The two feature selection schemes using 

VIP scores and p values were applied to all features for EMCI, LMCI and AD against CN. 
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In addition, they were also applied to cortical thickness for EMCI prediction as cortical 

thickness was shown previously as the best full model in predicting EMCI. Predictive 

power of feature-selected models iteratively created with VIP function of SIMCA 

software are given in Figure 17 with black curves, of which the first point represents the 

predictive power of model with all features and the other points indicate predictive power 

of VIP-based feature-selected models with different numbers of  iterations. Predictive 

power of p value-based feature-selected models was also shown in Figure 17 with 

straight or dotted lines. It could be seen that appropriate feature selection boosted 

predictive power as the linear segments kept rising up to a point, then  began to drop as 

less and less features were selected in this iterative process. The results also showed that 

feature selection based on VIP scores offered more flexibility in selecting the best models 

with a peak predictive power higher than that obtained using statistical feature selection 

method.  

In terms of numbers of iteration, Figure 17 indicates that for LMCI and AD prediction, 2 

to 3 iterations of VIP-based feature selection yielded the maximal predictive power, 

while for EMCI prediction, no matter whether using all features or cortical thickness only, 

1 iteration of VIP-based feature selection could already achieve the highest predictability.  
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Table 25: Summary of predictive power ( ( )) for all full models 

Models EMCI LMCI AD 

MRI 

Subcortical volume N/A 0.188 0.585 

Cortical volume N/A 0.257 0.528 

Cortical thickness 0.108 0.154 0.538 

Surface area N/A 0.040 0.202 

Hippocampus Subfields 0.029 0.277 0.547 

Combined N/A 0.282 0.645 

PET 

18F-AV-45 0.076 0.227 0.518 

FDG 0.038 0.055 0.512 

Combined 0.093 0.229 0.636 

MRI+PET 0.008 0.294 0.721 
N/A = Models had 0 predictive power (Q (Y)), FDG = PET with [18F]-fluorodeoxyglucose, 
AV45 = PET with 18F-AV-45 (florbetapir). The hierarchical models were italicized and highest Q (Y)for three classification types were bolded. 

 

5.3.3 Model validation with external test set 

The best full models of EMCI and LMCI, shown as bolded in Table 25, were validated 

with the combined EMCI-CN and LMCI-CN groups, respectively. The same experiments 

were also done for best feature-selected models as indicated by the peaks of the curves in 

Figure 17. Besides, in order to investigate how models well trained with AD pattern 

would recognize and classify EMCI and LMCI subjects from controls in the test set,  the 

best AD full models and best AD feature-selected models were also cross validated with 

EMCI and LMCI subjects against controls using external test set. 
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Figure 16: Scatter plots of best full models as indicated in Table 25 for separation 
between (A) AD and CN. (B) LMCI and CN (C) EMCI and AD.  
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Figure 17: Predictive power ( ( )) of feature-selected models with p representing 
feature-selected models based on p values, and VIP denoting feature-selected models 
based on VIP scores. All of the feature selection techniques were applied to all features 
except for EMCI_CT, which was applied only to cortical thickness as it was shown 
previously to have the highest predictive power of EMCI: (top) predictive power of p 
value-based and VIP-based feature-selected models of AD and LMCI; (bottom) 
Predictive power of p value-based and VIP-based feature-selected models of EMCI using 
all features or cortical thickness only.   
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Scatter plots of validation for the best full models and best feature-selected models were 

shown in Figure 18 and Figure 19, respectively. Classification performance in terms of 

accuracy, sensitivity and specificity were summarized in Table 26. Comparing Figure 

16C with Figure 18A - Figure 19A, it could be seen that neither best full model nor best 

feature-selected model of EMCI separated the testing EMCI from CN as well as it did 

during the training process, displaying  poor generalization. However, this was not the 

case for best LMCI models. Figure 18C - Figure 19C and Figure 16B illustrate good 

generalization of LMCI models as LMCI subjects in the test set were classified nearly as 

accurately as it did during the training process. Figure 18B - Figure 19B and Figure 18D -

Figure 19D show that AD models are very efficient in identifying controls, with Table 26 

showing high specificity of more than 95%, which are, as expected, higher than the  best 

EMCI or LMCI models, with LMCI specificity value being higher.   
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Table 26: Classification performance (accuracy, sensitivity and specificity) for validation 
of best EMCI and LMCI models using external test set 

 EMCI vs. CN LMCI vs. CN 

 Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

Best full model of EMCI 48.8% 48.6% 49.3% - - - 

Best feature-selected 
model of EMCI 

49.3% 50.0% 47.8%  - - 

Best full model of LMCI - - - 74.0% 69.7% 76.1% 

Best feature-selected 
model of LMCI 

- - - 83.0% 75.8% 86.6% 

Best full AD-model 42.7% 18.1% 95.6% 80.0% 48.5% 95.6% 

Best feature-selected 
model of AD 

41.7% 16.0% 97.0% 82.0% 51.5% 97.0% 

 

5.4 Discussion 

5.4.1 Significance of MRI and PET features 

This study considered MRI measures including hemispheric measures, various sorts of 

cortical and subcortical segmentations and parcellation (regional volumes, cortical 

thickness and surface area etc.), hippocampal subfields and select regional PET features 

(AV-45 PET and FDG PET), making direct comparison of variables in terms of their 

importance within and across imaging modalities. 

The results in Table 20 to Table 24 confirmed with previous study that atrophy in 

temporal lobe was more pronounced than in other lobes and medial temporal atrophy was 

highly symmetric, which differ from other dementia, such as semantic dementia with 

symmetric atrophy (Chan, et al., 2001; Kohler, et al., 1998). In this study, the following 
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hemispheric regional measures were found to be significant for predicting all stages of 

the disease: cortical volumes of inferior temporal, cortical thickness of fusiform, temporal 

pole, subcortical volumes of hippocampus, inferior lateral ventricle and amygdala, 

hippocampal subfields of cornu ammonis 1 (CA 1) and CA 2-3, and PET feature of 

SUVR across the brain. This was consistent with our previous study that combining the 

first two of the aforementioned 3 subcortical volumes with the neuropsychological test 

score yielded an accuracy of 92.4% in predicting AD from CN(Zhou, et al., 2014d). 

Besides, discrepancy of regional significance among hippocampal subfields as 

demonstrated in Table 24 may have improved differential diagnosis of AD according to a 

study by Mueller and Weiner ,  who reported that subfield volumetry of hippocampus 

provides regional selective information for distinguishing different pathologies affecting 

the hippocampus (Mueller and Weiner, 2009). It is therefore helpful to include 

hippocampal subfields in multivariate study of AD.  

Landau et al. found that beta-amyloid deposition has an early and subclinical impact on 

cognition preceding metabolic changes and that hypometabolism becomes more 

pronounced and more closely related to ongoing cognitive decline as disease progresses 

(Landau, et al., 2012). This is consistent with the results in Table 24 that summary of 

SUVR across the whole brain as defined earlier in the method section, was the only PET 

(AV-45 or FDG) feature showing to be significant when comparing any stages of AD 

with CN, and it is the only AV-45 PET feature that is significant in predicting EMCI. 

This may imply that at a very early stage of MCI, beta-amyloid deposition could be more 

pronounced brain-widely instead of regionally and at such a stage hypometabolism was 
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not prominent enough across the brain though showing certain impacts regionally. Wu et 

al. also reported similar results in that significant amyloid accumulation is presented in 

EMCI while brain metabolism remains normal (Wu, et al., 2012).  

5.4.2 Model efficiency with OPLS 

This study aimed to investigate the predictive power of MRI and select regional PET 

features in discriminating AD, LMCI, and EMCI from controls using OPLS as a 

multivariate analysis tool based on  a prior OPLS study(Westman, et al., 2011b) . Full 

models using all or one category of the features were created for EMCI, LMCI and AD 

against CN. Moreover, two feature selection techniques were implemented and feature-

selected models were created. Cross-validated predictive power Q (Y)  was used to 

evaluate these models, which were also validated with external test set.  

Efficiency of full models with OPLS: To the best of our knowledge about the literature, 

this study was the first to analyze EMCI and LMCI separately using OPLS as a 

multivariate tool, though study analyzing AD and MCI based on MRI measures using 

OPLS has been done. Using the European AddNeuroMed project data, Westman et al. 

utilized automated regional volumes and manual outlining of hippocampus as inputs to 

OPLS and found a Q (Y) of 0.64 when discriminating AD from CN(Westman, et al., 

2011b), which was consistent with the Q (Y) of 0.645 achieved using only MRI in this 

study, the difference could be due to differences in MRI features used and population 

differences. In addition, we also showed that PET scans have comparable discriminative 

power (Q (Y) = 0.636) with MRI. Westman et al. also built a MCI model with the same 
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features and obtained a Q (Y)  of 0.22. Compared with LMCI model using all MRI 

features in this study, the predictive power of our model (Q (Y) = 0.282) was higher 

which we suspect to be mostly due to the difference between diagnostic criteria of MCI 

in AddNeuroMed dataset and LMCI in ADNI dataset, and could also be that MRI 

features included in this study contributed more complementary information to the 

model. 

Interestingly, a model with cortical thickness measures was found to have the most 

discriminative power than any other MRI and PET features, even higher than combining 

all of them. The same case was not seen for LCMI and AD models, which showed that 

volumetric measures had more power. This could be due to the higher reliability of 

cortical thickness than of cortical volumes and other MRI measures at the very early 

stage of AD (Querbes, et al., 2009). This result is consistent with other studies that 

recommend using cortical thickness for MCI prediction (Querbes, et al., 2009; Wang, et 

al., 2009). This could also suggest that cortical thinning is the very first anatomical 

change that occurs before any other volumetric change or effective response to PET scan, 

and as disease progresses volumetric change will eventually dominate. 

Since the discriminative power of the best EMCI model is still weak, it can be argued that 

this could be due to partitioning errors embedded in the cross validation process that the 

data distribution may slightly favor cortical thickness features than others as reflected in 

the		Q (Y)measure. However, 	Q (Y) of 0.108 is higher than the threshold (0.05) for 
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significance of an OPLS model(Westman, et al., 2011b), therefore the model is still 

considered significant and the results are still considered reliable.  

Efficiency of feature-selected models with OPLS: Feature selection was also investigated 

since it has been reported that feature selection improves classification performance if the 

right prior knowledge is used (Chu, et al., 2012). In this study, prior knowledge of VIP 

scores in PLS projection was used to iteratively exclude less significant features based on 

VIP scores to investigate the predictability of feature-selected models in comparison to 

full models which include all features. Feature selection based on p values was also of 

interest as it’s a commonly used feature selection technique (Chaves, et al., 2009b; Chu, 

et al., 2012). 

The results as shown in Figure 17 not only confirmed the  results of a  previous study 

(Chu, et al., 2012) in  the use of feature selection based on prior knowledge, it also 

showed that recursive feature selection based on VIP scores was effective in enhancing 

classification performance  better than just using Student’s t test as the only selection 

criteria. The reason that models with select features did a better job than models using all 

features could be that some of the less significant features contribute little or even 

negatively to the separation given their inconsistent variations. It could also mean  that 

large numbers of input variables may actually overfit the data (Chu, et al., 2012; Guyon 

and Elisseeff, 2003).  

 



 

104 
 

 

5.4.3 Model validation with external test set 

In order to avoid potential bias due to sample size differences, the 4 compared groups in 

the training process were assigned the same sample size.  As the AD group has the least 

amount of samples, testing group was not assigned any AD subjects in order to maximize 

statistical power by ensuring that sample size is as large as possible for the 4 groups in 

the training process. Thus the study should not be criticized for that, as such data 

distribution is to fully maximize validity of the results.  In addition, the main focus of this 

study was to analyze the prodromal stages (EMCI and LMCI) of AD separately. To a 

certain extent, the results of this study could also partially imply robustness of AD 

models from the following aspects: firstly best full AD model demonstrated perfect 

separation of AD and CN with no errors in the training process and Table 26 showed that 

best AD models have indeed high specificities of more than 95% during validation using 

external test set. 

Even though not reflected by the results of EMCI model validation in Table 26, the 

EMCI model displayed some generalization as shown in Figure 18A and Figure 19A that 

those residing far from the separation boundary on the EMCI side were mostly EMCI 

subjects, indicating that these EMCI subjects in the test set share similar pattern as EMCI 

subjects in the training set. This could also be an indicator of structural change of brain 

(cortical thickness in particular) already showing up at this stage. Overall, due to more 

consistency of LMCI patterns, LMCI models were more robust and had better 

generalization to external test set than EMCI models.  
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Combining AV-45 and FDG PET scans received a predictive power (Q (Y) = 0.093) 

close to that of the cortical thickness, indicating that amyloid deposition and 

hypometabolism have emerged at the EMCI stage. As a stage close to AD dementia, 

LMCI has its own pattern of atrophy that differentiates it from AD, which could be seen 

from Table 26 that best feature-selected model of LMCI predicted external LMCI 

subjects better than the best AD models. Table 26 also shows that best AD models are not 

as efficient as the best EMCI models in identifying EMCI subjects neither. The cause of 

the outcome is mainly due to the fact that significance of ROIs changes as disease 

progresses.   
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CHAPTER 6 

6. CONCLUSION AND FUTURE WORK 

6.1 Conclusions from Analyzing Methods 

6.1.1 Combining MRI with Neuropsychological Test (MMSE) 

The use of different biomarkers for clinical diagnosis of AD and MCI is of great 

importance. This study has shown that volumetric MRI measures can better predict AD 

(aMCI or naMCI) when combined with MMSE score. The MMSE score is found to be 

the most statistically significant variable and one that improves classification accuracy at 

any stage of the AD spectrum by over 10%. Particularly MRI measures of right 

hippocampus and left inferior lateral ventricle when combined with MMSE score yield a 

classification accuracy of 92.4% (sensitivity: 84.0%; specificity: 96.1%) for delineating 

AD patients from CN, which is very competitive in comparison to results reported in 

other recent studies. The approach considered for selecting and then ranking MMSE and 

other MRI variables could be useful at augmenting other classification methods reported 

in the literature and could have broader impact in reevaluating the different variables as 

predictive measures of AD. In addition, the results show that AD atrophy is widely 

spread and evenly seen on both sides, whereas aMCI and naMCI subjects are left side and 

right side dominant, respectively, which indicates that at different stages of AD, there 

may be hemisphere-dependent atrophy dominance. Also hippocampus atrophy is found in 

this study to be one of the key factors causing memory problems among subjects with 
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aMCI as compared to naMCI, which builds a linkage between the distinctive symptoms 

of the two types of MCI and the brain atrophy, and strongly suggests the use of 

hippocampus atrophy as the means to separate aMCI from naMCI.    

6.1.2 Investigating Normalization Effect 

This dissertation also studied the effect of normalization on the proposed statistical 

feature selection approach using ROIs segmented by Freesurfer and a neuropsychological 

test in terms of classification performance. The results show that subcortical volume 

should not be normalized and surface area does not bear much discriminative information 

as compared to subcortical volumes or cortical thickens. Also, subcortical volumes and 

cortical thickness based brain maps of significant regions show symmetry between the 

two hemispheres which is not seen in the brain maps generated using surface area. 

Moreover, the feature selection method implemented on cortical thickness measures 

show that normalization to either ICV or mean thickness exhibits an enhancement on the 

classification performance, and the most pronounced changes in the cortical thickness 

related to AD is seen in the temporal lobe of the brain, which is shown to be related to 

symptoms in AD patients regarding organization, language, understanding, etc. A 

comparison of results using the optimal model which combines MMSE with subcortical 

volumes shows that the proposed study achieved a competitive accuracy of 92.3% using 

fewer biomarkers, which makes it cost-effective and convenient. 
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6.1.3 Combining MRI with PET 

Based on prior study by Westman (Westman, et al., 2011b), this study utilized 271 MRI 

features and 15 pre-identified PET (AV-45 and FDG) features as inputs to a multivariate 

analysis tool (OPLS) to discriminate EMCI, LMCI and AD from controls based on ADNI 

database. The results showed that MRI and PET had similar predictive power of AD and 

cortical thickness is a significant measure in identifying EMCI subjects. Feature selection 

techniques were implemented to explore models with optimal discriminative power. The 

results demonstrated that OPLS is a powerful tool identifying AD and LMCI with great 

generalization. Due to insufficiency of consistent pattern between EMCI subjects and 

controls, EMCI prediction appeared to suffer from poor generalization. Recursive feature 

selection based on VIP enhanced prediction when features were properly selected. Two 

to three iterations of VIP-based feature selection were suggested for prediction of AD and 

LMCI, and a single iteration was sufficient for prediction of EMCI to achieve optimal 

predictability. In addition, models well trained with AD pattern were neither optimized 

for EMCI nor for LMCI predictions. 

Such study of identifying EMCI and LMCI as independent stages has rarely been done in 

the literature as far as we know. As a result, heterogeneity between them has not yet fully 

been explored. Multivariate analysis of EMCI and LMCI as was done in this study could 

serve as an early step in seeking a solution to this problem, just as pursuing research for 

better biomarkers must go on. Since baseline image scans fail to properly predict subjects 

at EMCI stage using OPLS, future work to augment early findings of this study needs to 
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explore the progressive change of biomarkers (atrophy, amyloid deposition and 

hypometabolism level, among others) based on longitudinal scans using OPLS. 

Future investigation on this research should be extended to utilize more valid biomarkers 

for AD, including PET, CSF, APOE and EEG.. Even though there are not enough 

subjects with all these biomarkers available, it would be essential to explore their 

complementary discriminative information to achieve better results and find connections 

between the different biomarkers. Another direction for future work would be to 

exhaustively explore machine learning algorithms for prediction, including feature 

selection methods (e.g. subset selection and using regularization) and classification 

methods (e.g. random forests and artificial neuron networks). 

6.1.4 EMI Approach 

There already existing a number of techniques that have been applied to MRI scans for 

AD prediction. However, they are mostly based on the techniques such to investigate the 

variance in the testing data explained by the variance found through training data as PCA 

and PLS etc.  The prediction is then obtained using classifiers such as SVM. In this study, 

a novel EMI-based approach is proposed, which makes prediction based on a calculated 

value without data projection and such a value is directly related to the level of atrophy, 

which may potentially serve as an indicator of the severity of the disease. The results of 

this study demonstrated that the EMI-based method is very efficient and robust to 

external data for disease prediction using only MRI, outperforming even other prior 

studies that combined multiple biomarkers. The simplicity in implementation and the 
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high and consistent prediction performance suggest that the EMI-based method could 

potentially serve as cost-effective tool for the diagnosis of AD. 

One important research direction for the future specifically for the EMI method is to 

develop a weighted averaging method for calculating EMI value. Since the higher ranked 

variables may contain more useful information in calculating the EMI and thus should be 

assigned a higher weighting factor. This procedure will be helpful in improving the 

classification performance but is also very challenging as different weighting methods 

may yield highly varying results and it is hard to justify which one performs better.
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