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ABSTRACT OF THE DISSERTATION

ON THE DESIGN OF REAL-TIME SYSTEMS ON MULTI-CORE

PLATFORMS UNDER UNCERTAINTY

by

Tianyi Wang

Florida International University, 2015

Miami, Florida

Professor Gang Quan, Major Professor

Real-time systems are computing systems that demand the assurance of not only

the logical correctness of computational results but also the timing of these results.

To ensure timing constraints, traditional real-time system designs usually adopt a

worst-case based deterministic approach. However, such an approach is becoming

out of sync with the continuous evolution of IC technology and increased complexity

of real-time applications. As IC technology continues to evolve into the deep sub-

micron domain, process variation causes processor performance to vary from die to

die, chip to chip, and even core to core. The extensive resource sharing on multi-

core platforms also significantly increases the uncertainty when executing real-time

tasks. The traditional approach can only lead to extremely pessimistic, and thus,

unpractical design of real-time systems.

Our research seeks to address the uncertainty problem when designing real-time

systems on multi-core platforms. We first attacked the uncertainty problem caused

by process variation. We proposed a virtualization framework and developed tech-

niques to optimize the system’s performance under process variation. We further

studied the problem on peak temperature minimization for real-time applications

on multi-core platforms. Three heuristics were developed to reduce the peak tem-

perature for real-time systems. Next, we sought to address the uncertainty problem

vi



in real-time task execution times by developing statistical real-time scheduling tech-

niques. We studied the problem of fixed-priority real-time scheduling of implicit

periodic tasks with probabilistic execution times on multi-core platforms. We fur-

ther extended our research for tasks with explicit deadlines. We introduced the

concept of harmonic to a more general task set, i.e. tasks with explicit deadlines,

and developed new task partitioning techniques. Throughout our research, we have

conducted extensive simulations to study the effectiveness and efficiency of our de-

veloped techniques.

The increasing process variation and the ever-increasing scale and complexity of

real-time systems both demand a paradigm shift in the design of real-time applica-

tions. Effectively dealing with the uncertainty in design of real-time applications is a

challenging but also critical problem. Our research is such an effort in this endeavor,

and we conclude this dissertation with discussions of potential future work.
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CHAPTER 1

INTRODUCTION

Real-time systems are the computing systems that not only need to deliver log-

ically correct results but also deliver these results in a timely manner. A late result

can be as bad as a wrong result. To function correctly, such a system needs high

assurance to meet the required timing constraints under different conditions and ap-

plication scenarios. Therefore, the worst-case based deterministic approach has been

the common approach in the design of real-time applications. However, as real-time

systems grow rapidly in both scale and complexity, and as IC technology marches

into the deep sub-micron domain, the uncertainty has increased significantly to the

degree that the traditional worst-case based design methodology becomes impossible

or extremely pessimistic and impractical.

We seek to develop design techniques and methods that can efficiently and effec-

tively deal with the uncertainty in the design of real-time systems. In this chapter,

we first introduce the fundamentals of real-time systems. Then we discuss the ex-

isting uncertainty problems and opportunities when designing real-time systems on

multi-core platforms. Next, we define our problems and our contributions. Finally,

we present the structure of the dissertation.

1.1 Real-Time Systems

Real-time systems are defined as the systems in which the correctness of the system

depends not only on the logical result of the computation, but also on the time

when the result is produced [152]. A reaction that occurs too late to meet the

timing constraint will be useless or even result in severe consequences. Today, real-

time computing plays a vital role in our society as an increasing number of complex

systems rely, partially or completely, on computer control. Examples of such ap-
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plications that require real-time computing include: automotive applications, flight

control systems, robotics, space missions, etc. In many cases, real-time computers

are embedded into systems to be controlled spanning from portable devices (e.g.,

cell phones, watches, cameras) to larger systems (e.g., missiles, satellite, airplanes).

The embedded system market was valued at 121 billion dollars in 2011, and

is expected to reach 194 billion dollars by 2018 with a CAGR (compound annual

growth rate) of 6.8% from 2012 to 2018. According to Embedded Market Study

2014 [156], real-time capability is integrated in 61% of embedded projects as shown

in Figure 1.1.

 

Figure 1.1: Embedded system market [156]

Compared to traditional computing systems, real-time systems must process

information and produce a response within a specified time, (i.e., deadline), or

else risk severe consequences. In general, real-time systems can be classified into

two categories based on degree of timing correctness requirements: hard real-time

systems and soft real-time systems. For hard real-time systems, it is required that

2



all the deadlines must be met for each instance, otherwise catastrophic consequences

can occur if a deadline constraint is violated. For example, a real-time system that

controls a nuclear power plant or aviation system cannot afford to miss deadlines

of critical tasks since such a mishap could be catastrophic. More examples are

mobile ABS systems, undersea exploration and space stations. On the other hand,

soft real-time systems can tolerate a few or some deadline misses. Failure to meet

deadlines can bring in degradation of certain degree of quality of service (QoS) but

not catastrophic. Online streaming serves as an example. If some of video frames

fail to decode or encode before deadlines, it will affect the video quality but will

have no severe consequences. More examples are sound systems, MPEG players

and internet telephones.

Unlike other traditional systems that have a separation between timing correct-

ness and performance, real-time systems try to make a compromise between the two

where timing correctness and performance are tightly coupled. One common mis-

conception for real-time systems is that real-time computing must be “fast”. The

goal of fast computing is to minimize the average response time or maximize the

throughput of computing workloads. However, the goal of real-time scheduling is to

meet the individual deadline of each task.

Just as ensuring deadline requirements is critical in real-time system design, an-

other key concern of real-time system design is its predictability, i.e., how predictable

the timing behavior of real-time tasks exhibit and to what degree they can satisfy

deadline requirements of the system [152]. Fast or high performance computing

helps to accelerate the computation of real-time tasks, but does not guarantee that

all tasks can meet their deadlines.

As real-time systems become more and more complicated, real-time scheduling

plays a key role to ensure deadline requirements in design of real-time systems, espe-

3



cially the systems with stringent deadlines. Real-time scheduling determines when

and how to execute real-time tasks and utilize available resources most effectively

such that tasks can be completed within specified deadlines. In addition, real-time

scheduling is also a critical technology to make design trade offs between timing

constraints and other system constraints, such as power/energy, thermal, reliabil-

ity, etc. As a result, efficient and effective scheduling techniques are vital to solve

problems targeting real-time systems.

Real-time scheduling can be categorized along different dimensions [130, 38],

such as static/dynamic scheduling, priority/non-priority based scheduling, single

processor/multi-processor scheduling. While significant amount of research efforts

hav been conducted based on single processor platforms for the past few decades,

many more researches recently are focused on multi-core platforms instead of the

single-core platforms, echoing the recent paradigm shift in the computing industry.

1.2 The Shift From Single Core To Multi-Core Design

As Gordon Moore predicted in 1965, the number of transistors on a chip doubled

every 18 to 24 months, have been the driving force behind the integrated circuit

industry [142]. Starting with 0.8 um technology scaling in the early 90’s, the tran-

sistor’s feature size is reduced by a factor of 0.7 approximately every 24 months (2

years). For example, from Intel Pentium processor to Intel Pentium IV processor

through mid 2003, the clock frequency was doubled every 18 to 24 months. How-

ever, this exponential trend of performance improvement for single core has come

to an end due to its excessive dynamic power dissipation and design complexity

(the maximum frequency for single core design is around 4Ghz). Static power is

also increased along with dynamic power due to transistors’ source to drain leakage

4



along with gate leakage. This leakage has exponentially increased with technology

scaling but it was not until recently it became a significant portion of the overall

power budget.

When considering the limitations associated with single core design where in-

creasing clock frequency is prohibitive, companies and researchers were trying to

find an alternative to the single core paradigm. Multi-core was, therefore, the nat-

ural evolutionary step to keep up with the ever-increasing performance. Figure 1.2

shows the development of processors. The ever-increasing frequency with single core

design has levelled off since 2005. From then, the trend was shifted from increasing

clock-rate to adding more number of cores on a single chip to compensate power

budget and thermal issue accompanied with single core design.

 

Figure 1.2: Time line of multi-core history [19].
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With the continuous scaling down of the transistor’s feature size, billions of

transistors are integrated on a single chip [79]. Multi-core architecture is becoming

mainstream. Most desktop computers and server computers consist of multi-core

or many-core high performance processors. For example, Intel has announced more

advanced multi-core platforms that have 48 and 80 general purpose processors [76,

161]. Moreover, according to a research survey by IHS Inc. [1], it is forecasted in

the research that starting from 2012, the expected shipment of multi-core processors

will increase by 40% annually as shown in Figure 1.3. As a result, the design trend

from single-core real-time systems to multi-core real-time systems is inevitable.

 

Figure 1.3: Demand for multi-core based devices

Multi-core design offers a number of unique advantages over the traditional

single-core design. One of the advantages is that multi-core can exploit parallelism,

which is one of the most effective ways to address the power issue, while maintaining

high performance with lower voltage and frequency. Figure 1.4 shows the speedup

of multi-core processors compared to a single-core processor. For example, a dual-

core chip running multiple applications is about 1.5 times faster than a comparable

single-core chip. Moreover, since the cores in a typical multi-core chip are on the
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same die, they can share architectural components, such as memory elements. They

thus have smaller chip area and lower costs than systems running multiple single

core chips [60]. Also by integrating multiple cores on a single chip, communication

latency can be reduced on the interconnects among cores and can achieve higher

bandwidth than single core design. Another advantage with multi-core design is

that multi-core design can provide redundancy compared to single core design, thus

enhancing the resilience of the underlying architecture. Finally, time to market is

a crucial factor in this industry. Multi-core design can facilitate IP re-use of cores

from an SoC perspective and reduce the overall design effort [131].

 

Figure 1.4: Performance comparison between multi-core processors and single-core
processor[60].

With the shift from single core to multi-core design come along new challenges.

One such challenge is directly dependent on how to efficiently utilize the hardware

resource on multi-core platforms. Therefore, software plays a more important role

in the multi-core era. Johnson et al. has stated that in the multi-core paradigm,
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the complexity of scheduling on multi-core increases exponentially with the number

of cores on a chip [83]. However, if software applications cannot fully utilize the

hardware resources, the advantage with multi-core design will be diminished. It

is well known that scheduling on multi-core platforms is an NP-hard problem [75].

Developing efficient and effective scheduling heuristics has been a common approach

to the design of real-time systems. In the meantime, the uncertainty of real-time

multi-core systems further complicates the problem.

1.3 Real-Time Multi-Core Systems Under Uncertainty

The uncertainty of real-time multi-core systems is two-fold. On one hand, as technol-

ogy advances, it becomes much more difficult to precisely control the manufacturing

process. As a result, the deviation between identical devices cannot be ignored for

the underlying computing infrastructure [94] (for example, up to 30% frequency

variation in 180nm technology [24]). On the other hand, real-time designs on multi-

core systems are hardly deterministic, even under perfect technology scaling. One

reason is that the smaller size the transistors are, the more vulnerable they are to

environment changes (for example, 10% variation in dynamic power and 14x varia-

tion in leakage power for a 40◦C change in temperature [168]), and this contributes

to completion variation. Moreover, extensive resource sharing on multi-core plat-

forms makes real-time system designs more complicated and indeterministic. In

what follows, we discuss the aforementioned uncertainties in detail.

1.3.1 Uncertainty In Computing Infrastructures

The first uncertainty of real-time multi-core systems is from manufacturing process

and it is mainly caused by process variation. Process variation is the naturally occur-
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ring variation in the attributes of transistors (length, width, oxide thickness) when

integrated circuits are fabricated [94]. With the fast pace of technology scaling,

the performance of IC chips becomes less and less deterministic. Process varia-

tions change the performance of IC chips (e.g., maximum clock frequency, power

consumption, and etc). Frequency variation can be as much as 30% and up to

20x variation in chip leakage power consumption for a processor designed in 180nm

technology [24]. Such indeterminism can significantly degrade the predictability of

computing systems, which is critical for real-time systems. As a result, the un-

certainty caused by process variation, not only impacts performance but also other

design objective optimizations as well, such as power/energy consumption, and ther-

mal issues. Figure 1.5 shows the circuit delay and leakage current histograms of the

combinational logic circuit in a 0.1-µm CMOS techology due to transistor’s gate

length and threshold voltage variations. In Figure 1.5(a), the standard deviation of

the path delay is more than 3.3% of the mean path delay, and in Figure 1.5(b), the

standard deviation of the total leakage current is more than 9% of its mean, causing

significant deviation of circuit performance and leakage power consumption [33].

One major problem caused by process variation is the fabrication yield. Re-

duced feature size and increased chip area have increased the number and density

of transistors on a single die, leading to a significantly decreased fabrication yield.

According to [151], without considering defect tolerance during the architecture de-

sign phase, even under the best case, the yield of cell processors can be as low as

only 10% to 20%. By adding spare cores on a chip, the yield rate can be improved

to over 90%, according to [148]. Micro-architecture level and core level redundan-

cies are the most popular strategies used in the industry where micro-architecture

level redundancy refers to intra-processor redundancy and core-level redundancy

refers to inter-processor redundancy. As shown in Figure 1.6(a), there is a crossover
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point, such that the micro-architecture level has the same yield rate as core-level

redundancy and from that point on, core-level redundancy constantly outperforms

micro-architecture level redundancy. Similarly, in Figure 1.6(b), as technology keeps

advancing, the yield rate becomes smaller and smaller if no redundancy mechanism

is applied. At the same time, micro-architecture level redundancy brings better

performance over core-level redundancy at more advanced technology generation

because the chip has fewer cores and each faulty core can disable a large portion of

the chip for core-level redundancy.

Another serious problem caused by process variation is performance variation,

such as maximum clock frequency, leakage power dissipation, etc. It has been shown

that the frequency variation can be as much as 30% and up to 20x variation in chip

leakage power for a processor designed in 180nm technology [24]. Based on a test

structure fabricated in IBM’s 65 nm Silicon-On-Insulator (SOI) technology, Aarestad

et al. [3] showed that worst case delay variations caused by chip-to-chip process vari-

ation can be as large as 21%. There are a few strategies that are commonly adopted

to combat the process variation problems. For example, performance (or speed) bin-

ning approach, which intends to pack processors into different classes based on their

maximum operating frequencies, is a common method for profit maximization in the

presence of frequency variation [37, 140]. Performance binning is good for single core

chips, however, it cannot capture the characteristic of a multi-core system. Since

process variation may affect different cores differently, performance binning is much

less effective to identify the performance for a multi-core system. Moreover, different

applications may perform differently on the same multi-core system. For example, a

multi-programmed application can achieve its maximum performance when the total

performance of a multi-core system is maximized and a multi-threaded application

can achieve its maximum performance when the performance of the lowest core of a
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(a) Delay histogram of the combinational logic circuit.

 

(b) Histogram of the total leakage current of the combinational logic.

Figure 1.5: Circuit delay and leakage current affected by process variation [33].

11



 

Figure 1.6: Comparison between micro-architecture- and core-level redundancy [148,
177]

multi-core system is maximized. Meanwhile, adaptive body biasing is another pop-

ularly adopted approach that can help to mitigate the increasing impact of process

variation on leakage power dissipation which intends to apply a body-bias voltage

to each die to reduce the leakage current and therefore, reduce the leakage power

consumption. The disadvantage is that it can only deal with die-to-die variation,

not with-die variation because all cores on the same die receive the same amount

of body-bias voltage. To overcome this limitation, “body-bias islands” is proposed

to solve with-die variations. The idea is to divide the entire die to different body-

bias islands and each with its individual body-bias voltage to compensate leakage

variation on each island. The effectiveness is depending on partitioning the die area

into a number of “body-bias islands”. The more islands that are partitioned, the

better improvement that can be achieved. However, the computational complexity

also increases exponentially [56, 99, 57]. In the extreme case, one core forms one

island, and this may lead to unacceptable circuitry cost.
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The process variation problem exacerbates the uncertainty problem in real-time

system design. As design parameters of processing cores deviate from their nominal

values, the system design objectives can be severely compromised, or even worse, a

computing system can malfunction or even fail catastrophically.

1.3.2 Uncertainty In Real-Time System Designs

The second uncertainty comes from the designs of real-time multi-core systems. As

mentioned before, it is highly desirable that a real-time system has a high pre-

dictability to ensure a variety of timing requirements for different applications. Un-

fortunately, the current technology trends, from the perspective of either IC tech-

nology scaling or the paradigm shift to multi-core platform, are at odds with this

design objective.

First, the continued IC technology scaling has greatly increased the variation in

the performance of real-time system designs, e.g, power/energy consumption. The

growing process variation causes computing performance and attributes to change

from chip to chip and core to core, and has significantly widened the response time

variance for real-time programs. The smaller transistor feature size also makes

the processor sensitive to the changes in the operational environment. For example,

when temperature changes from 20◦C to 60◦C, as much as 10% variation in dynamic

power and 14x variation in leakage power are measured for an ARM Cortex M3

processor [168].

Second, the resource sharing on multi-core platforms further exacerbates the

problem, most notably, the execution time variation. In many computer systems,

tasks share a processor and other resources such as data structures, sensors, etc.

and they must operate on such resources in a mutually exclusive manner. Even on
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a single processor, resource sharing can heavily impact timing behavior. For exam-

ple, the NASA mission, Mars Pathfinder, nearly failed because of a resource-sharing

protocol problem in the operating system [85]. Resource sharing on a multi-core

platform is more complex because processors typically share low-level hardware re-

sources such as caches, memory, and interconnects which make task execution times

interdependent and therefore unpredictable [136]. A 30% slowdown for two tasks

that shared the memory bandwidth was observed on a Pentium D processor [134].

Dasari et al. [36] proposed a method to bound the response time of tasks in a

multi-core platform considering contention on the shared bus. Andersson et al. [8]

presented a competitive algorithm for scheduling sporadic tasks on a multi-core

platform with the assumption that a task may request one of the shared resources.

They further extended their work to heterogeneous multi-core model, to schedule

sporadic tasks on a t-type heterogeneous multi-core platform where tasks may share

multiple resources [11].

To bound the execution requirement of real-time tasks has long been a challeng-

ing problem, since real-time programs can have very complicated structure and their

execution times can vary significantly with different inputs. Traditionally, response

analysis based on the worst case scenarios has been extensively explored, yielding to

a certain degree of pessimism. Unfortunately, not all real-time systems can afford

such pessimism and resource over-provisioning today. This is particularly true today

as real-time applications expands in both scale and complexity, coupled with factors

of continuous IC technology scaling and the design paradigm shift from single core

to multi-core platforms.

The ineffectiveness of traditional deterministic approaches that are based on

worst-case execution time calls for new real-time analysis and scheduling approaches

to account for the uncertainty of response time analysis on multi-core platforms. The
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statistical approach is just a promising approach. Instead of relying on worst-case

execution time, statistical approach can construct the computation time of each task

based on a probability density function, a mathematical expression approximating

the real behaviour of the computation time [42]. In addition, the hard deadline guar-

antee may not be necessary for many soft real-time systems that allow a portion

of the jobs miss their deadlines. For example, for aerospace industry, a probability

of failure of 10−15 per hour is considered to be feasible compared to the maximum

allowed probability of failure of 10−9 per hour that is required by the certification

authorities [2]. Therefore, the statistical approach, takes system probabilistic char-

acteristics, such as the execution times, into account to prevent over-provisioning

and, at the same time, meet real-time constraints [43] which is a more favorable

approach for real-time multi-core system analysis and design.

1.4 The Research Problem And Our Contributions

Our research in this dissertation focuses on addressing the uncertainty problems

in the design of real-time systems on multi-core platforms. Specifically, we are

interested in developing real-time scheduling techniques and analysis methods to

ensure real-time constraints and at the same time, to optimize design criteria, such as

performance maximization, peak temperature reduction, and energy minimization.

Toward this problem, we have made the following contributions:

1. First, we studied the problem on how to reduce the total schedule length of

a task graph when realizing its nominal design on a Network-on-Chip(NoC)

based many-core platform with faulty cores. We propose a framework called

topology virtualization to deal with the faulty cores and process variation prob-

lem. Different from traditional approaches to re-define the mapping/scheduling
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decisions in the nominal design, our methods judiciously mirror the physical

architecture of each individual platform to the logical platform, based on which

nominal design was conducted. To facilitate the phyical/logic architecture vir-

tualization, we developed a performance metric based on the opportunity cost,

a concept borrowed from the economics field. Three virtualization heuristics

were developed. Our experimental results show that the proposed approach

could achieve up to 30% with an average 15% performance improvement by

taking advantage of the heterogeneity of each individual platform.

2. Then, we targeted the problem on how to reduce the peak temperature of a

real-time application by exploring our topology virtualization framework.. We

developed three computationally efficient algorithms for deploying applications

to individual devices. Our simulation study has clearly shown that, by taking

advantage of the uniqueness of each individual physical chip, the proposed

approaches can achieve 14.09◦C temperature reduction in average and less

than 5◦C difference compared with exhaustive search. The experiments also

show that these approaches are efficient and have low operational cost, 104

times faster than exhaustive search.

3. Next, we adopted a statistical approach to deal with the uncertainty for fixed-

priority preemptive scheduling of real-time tasks on multi-core platforms with

statistical performance guarantee. Rather than using a single-valued worst-

case execution time (WCET), we formulated the task execution time as a

probabilistic distribution. We developed a novel algorithm to partition real-

time tasks on multiple homogenous cores, which takes not only task execution

time distributions but also their period relationships into consideration. Our

extensive experimental results show that our proposed methods can greatly

improve the schedulability of real-time tasks when compared with traditional
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bin packing approaches, 0.5 core savings for 8 tasks and 1.4 cores savings for

24 tasks.

4. Finally, we proposed a partitioned approach for fixed-priority preemptive schedul-

ing of real-time tasks with explicit deadlines on multi-core platforms with tim-

ing constraint guarantees. We developed two partitioning heuristics based on

a novel metric that can quantify the degree of harmonicity between two tasks.

Our extensive experimental results show that our approaches can greatly im-

prove the schedulability of real-time tasks when compared with existing works.

Specifically, for 4-processor case, HCM in average can achieve around 12% and

8% improvement over DCT and FF, respectively. For 8-processor case, HCM

in average can achieve around 15% and 12% improvement over DCT and FF,

respectively. For 12-processor case, HCM has around 19% and 16% improve-

ment over DCT and FF, respectively.

1.5 Structure Of The Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we introduce

background to this dissertation and discuss related works that are close to our

research problems. In Chapter 3, we study the problem on task scheduling on multi-

core platforms with consideration of process variation. In Chapter 4, we target the

problem on how to reduce the peak temperature of a real-time application on multi-

core platforms with consideration of process variation. In Chapter 5, we propose a

probabilistic approach for fixed-priority preemptive scheduling of real-time tasks on

multi-core platforms with statistical deadline miss ratio guarantee. In Chapter 6,

we present a partitioned approach for fixed-priority preemptive scheduling of real-

time tasks with explicit deadlines on multi-core platforms with timing constraint
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guarantees. Finally, in Chapter 7, we conclude this dissertation and discuss possible

future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we introduce the fundamentals on real-time systems and real-

time scheduling technology. We then discuss the related research that deals with

process variations and execution uncertainty.

2.1 Modeling Of Real-Time Systems

A real-time system is the one that processes information within a given specific

timing constraint (i.e., deadline) to generate a corresponding response. If some

tasks fail to finish before deadlines, the results that are produced maybe useless or

they may lead to consequences that are catastrophic. In general, a real-time system

consists of three components: the behavior model, the architecture model and the

scheduling policy. In what follows, we introduce each part in details.

2.1.1 The Behavior Model

Behavior models are the models used to capture real-time tasks’ characteristics.

They can be denoted as applications, tasks, sub tasks, task nodes and agents to

describe a real world application to be performed in reaching user’s goal. They

have shown to be very efficient and effective in designing, analysing and evaluating

real-time applications.

In most real-time systems, a real-time task can be represented by a tuple: τi =

{ci, ri, di, pi}, where ci is the worst/average/best case execution time, ri is the release

jitter, di is the relative deadline and pi is the period. A task can be periodic (if pi is a

fixed constant) [32], aperiodic (if pi is a random variable that can be any value) [71]

or sporadic (if pi is the minimal inter arrival time between any two consecutive jobs
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of that task) [18]. A real-time system can be soft, hard or firm depending on the

quality of service requirements on tasks’ deadlines. For a soft real-time system, even

if the systems fails to meet the deadline (one or multiple times), the system is not

considered to have failed (e.g., video streaming). For a hard real-time system, if

the system fails to meet the deadline even once the system is considered to have

failed (e.g., space stations). A firm real-time system is in between of soft real-time

system and hard real-time system. Deadline missing is tolerable but not desired and

missing deadline could cause potential loss of revenue (e.g., forecast systems) [93].

Besides the common parameters we have introduced above, inter-task depen-

dency is another parameter that describes the characteristics of different task mod-

els. Therefore, tasks can be classified into independent tasks [165] and tasks with

dependencies [167]. Independent tasks are those in which the execution of a task

does not rely on the information of any other task, while tasks with dependen-

cies can start execution only after all the precedent tasks have completed their

executions. When dealing with task dependencies, researchers usually construct a

directed acyclic graph (DAG) to represent a task model with dependencies [157].

The nodes and edges on a DAG normally have weights associated with them, de-

noting computation time to execute a task and the communication costs required

between two different nodes, respectively. A classic heuristic to schedule a DAG

is called Kernighan-Lin algorithm [89]. The algorithm attempts to partition the

original DAG into two sub-graphs such that the overall weight of the edges between

the two sub-graphs is minimized.

20



2.1.2 The Architecture Model

Architecture models are the models used to capture the physical characteristics

of underlying computing infrastructure for real-time systems. In general, system

architecture models can be classified into two categories: single-core model [113]

and multi-core model [147]. Due to limitations of single-core design, researchers

have moved their focus to multi-core design. Real-time scheduling on multi-core

platforms is much more complicated than on single-core platforms since when we

want to schedule a task, we need to decide not only when to execute the task but

also where to execute it, which is well known as an NP-hard problem [75].

Multi-core platforms can be categorized into: homogeneous platforms and het-

erogeneous platforms. In a homogeneous platform, all the processors are identical.

Thus, we don’t need to store the detailed information for each processor except a

list of tasks that have been already assigned on it. On the other hand, in a hetero-

geneous platform, each processor may be different from the other processors, certain

tasks that have specific resource requirements can only be successfully assigned to

a portion of processors while others are unable to schedule these tasks. Thus, each

processor needs to provide its detailed list of available resources and each task must

specify its resource requirement.

As more and more processors are integrated on a single chip, the arrangement of

various types of processors draws more attention. System on chip (SoC) and Net-

work on chip (NoC) become a favorable way to construct multi-core platforms [81].

SoC is an integrated circuit that integrates all components of a computer or other

electronic system into a single chip. The basic composition of a typical SoC are

micro-controller or digital signal processor (DSP) cores, memory blocks, peripherals,

external interfaces, etc. NoC is a communication subsystem on an integrated circuit

that connects between different intellectual property (IP) cores on a SoC chip. NoC
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technology brings new methods to on-chip communication to improve communica-

tion delays between different processors compared with conventional bus-based and

crossbar-based interconnects. It also improves the scalability and power efficiency of

SoCs and therefore, NoC is the future trend of multi-core or even many-core design.

As we have mentioned above, on-chip communications play a significant role

for multi-core platforms as communication delays consist a larger portion of total

execution time between tasks than on single-core platforms. Moreover, the complex

traffic patterns for on-chip communications also need to draw more attention since

inefficient communication protocols may result in unbalanced traffics on a multi-core

platform (e.g., the communication on one link maybe overloaded to create traffic

jam while other links have few or no communication traffic at all) and may have

deadlocks on communication links. There is extensive research on how to design

an efficient and deadlock-free routing policies [61], such as X-Y routing [77] and

odd-even routing [34].

2.1.3 Real-Time Scheduling Policies

Real-time scheduling policies are the design schemes that dictate when, where and

how to run a real-time task on existing computing infrastructure. The key differ-

ence between a real-time scheduling and a non real-time scheduling (e.g., first in first

out (FIFO) [13]) is that a real-time scheduling needs to guarantee timing. Given

the behavior models and architecture models that are defined previously, a real-

time scheduling policy determines where, when, and how to assign a set of tasks

onto a multi-core platforms with the goal of optimizing design metrics (e.g, per-

formance, temperature, power/energy consumption or reliability) and at the same

time satisfying all real-time constraints, such as deadlines. Real-time scheduling
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is a resource management scheme in nature and can be categorized from differ-

ent perspectives. For the perspective of task behaviors, real-time scheduling can

be classified into hard/soft. From the perspective of scheduling mechanisms, real-

time scheduling can be classified into static/dynamic, priority/non-priority driven,

preemption/non-preemption, etc. From the perspective of computing infrastructure,

real-time scheduling can be classified into single core/multi-core. In what follows,

we present a detailed discussion about real-time scheduling policies according to

different categorizations we have introduced above.

Hard Real-Time vs. Soft Real-Time: Schedulers of real-time systems can be

categorized as either hard real-time or soft real-time depending on task character-

istics. Hard real-time means that all the jobs from each task have to be completed

before their deadlines [30]. if the system fails to meet the deadline even once the

system is considered to have failed. Many of these systems are safety critical and

an overrun in response time leads to potential loss of financial damage, life or even

catastrophe. Some examples are nuclear systems, medical applications such as pace-

makers, a large number of defense applications, aviation, space station, etc. On the

contrary, soft real-time does not necessarily require all the jobs to meet their dead-

lines (i.e., some deadline overruns are tolerable), but not desired [88]. There are no

catastrophic consequences of missing one or more deadlines. However, there is a cost

associated to overrunning which normally correlated with quality of service (QoS). A

good example will be sound system in a computer. If a few bits are missed, nothing

catastrophic will happen. But if more and more bits are missed, the performance of

the sound system will degrade eventually.

Static vs. Dynamic: Depending on the time when the necessary information on

completion of a task is available, real-time scheduling can be classified into static

or dynamic. If real-time applications can be represented by tasks with known in-
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formation such as execution times, relative deadlines and periods, scheduling can

be done statically during compile time [87]. Static scheduling can take advantage

of tasks with design parameters known as a priori to optimize the design goals. It

is important to note that since static schedulers make all the scheduling decisions

off-line, they can afford expensive techniques producing better results at the cost of

high computational complexity. When the knowledge of task completion constraints

is not available to the system, dynamic scheduling can be used. A dynamic sched-

uler uses the run-time information of the system resources to make decisions on the

feasibility of executing real-time tasks [102]. In dynamic scheduling schemes, the

priorities of tasks are assigned at run-time. Information about current and future

availability of system resources are taken into consideration when making scheduling

decisions. Based on such information, a dynamic scheduler can determine whether

a new task can be schedulable, current tasks need to be dropped due to missing

deadlines, or the priorities of tasks need to be re-evaluated. As a result, dynamic

scheduling can provide greater system availability to make scheduling decisions since

the priorities of tasks can be adjusted to the changes in the system environment.

One major limitation of dynamic schedulers is the computational complexity as fast

and efficient scheduling is the main concern because the computational costs of the

schedulers should not conflict with the processing of real-time tasks.

Priority And Preemption: Priority defines the execution order of tasks in priority

driven real-time scheduling. Additionally, priorities can be fixed where priorities are

assigned statically to each task and do not change over time, such as rate monotonic

scheduling (RMS) [113] or dynamic, where priorities may change at run-time, such

as earliest deadline first (EDF) [171]. On the other hand, for non-priority driven

real-time scheduling, decisions are made based on other criteria or policy, such as
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weighted round-robin scheduling, each task τi is assigned a weight wi, and each task

τi will receive wi consecutive time slices each round.

Preemption is a very helpful mechanism to support priority-based scheduling

where preemption refers to allowing a higher priority task to preempt a lower prior-

ity task while it is being executed [68]. Such mechanism improves the flexibility of

the scheduler to produce a viable scheduling solution. It is well known that schedul-

ing policies with preemption can achieve better performance than those without

preemption. For example, on a single core, preemptive EDF can achieve utilization

bound of 1 while non-preemptive EDF cannot guarantee such a utilization bound.

However, they are also more complicated and require more resources than non-

preemptive scheduling policies. Moreover, the overhead of preemption such that to

stall a lower priority task to allow a higher priority task to execute and resume the

lower priority task’s execution later needs to also be taken into careful considera-

tion when designing such scheduling policies. Finally, poor design of preemptive

scheduling policies can result in starvation of low priority tasks.

Single Core vs. Multi-Core: According to different underlying computing infras-

tructures, real-time scheduling can be categorized into single core scheduling [113]

and multi-core scheduling [28]. One major difference between single core scheduling

and multi-core scheduling is that, for multi-core case, a scheduling should decide

not only when but also where a task is assigned and executed. It is well know that

multi-core scheduling is a NP-hard problem, and therefore more complicated to deal

with compared to single core scheduling.
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2.2 Related Work On Real-Time Scheduling

In this section, we would like to discuss previous research and related works that

have been conducted in the area of real-time systems in detail.

2.2.1 Single Core Scheduling

Real-time scheduling on single core has been conducted extensively. Three classic

priority driven real-time scheduling algorithms are of great importance on single

processor: RMS, DMS and EDF. They are fundamentals for single-core scheduling

and also play a key role in implementing multi-core scheduling algorithms.

Rate Monotonic Scheduling (RMS): It is well known that RMS is among the

most effective uni-processor real-time scheduling algorithms. It is one of the best

representatives of fixed-priority preemptive scheduling algorithms on uni-processor.

It is demonstrated by Liu and Layland [113] that RMS is the optimal scheduling

policy among all fixed-priority scheduling algorithms, i.e., if a task set is schedulable,

then RMS can successfully schedule that task set. Specifically, all the tasks are

statically prioritized based on tasks’ periods. The smaller the period is, the higher

priority that task will have. They also formally proved that the utilization bound

is about 0.7 for RMS (a feasible schedule by RMS can be found if the task set’s

utilization is less than or equal to 0.7).

In particular, if task periods are harmonic (i.e., all the tasks’ periods are integer

multiple of each other), the task set can be successfully scheduled according to RMS

algorithm with the task set’s utilization as large as 1 [100]. Harmonic periods are

demanded in a wide spectrum of industrial real-time applications such as avionics,

submarines, and robotics [27, 108, 146, 12] as well as control systems with nested

26



feedback loops [51]. Tasks with a harmonic relationship have a smaller hyperpe-

riod [137, 25], which is a key concern for time-triggered embedded systems [92].

Deadline Monotonic Scheduling (DMS): RMS is optimal for real-time tasks

with deadlines equal to periods (tasks with implicit deadlines). When a task’s

deadline is smaller than its period (tasks with explicit deadlines), RMS is not op-

timal anymore. Audsley et al. [15] proposed DMS policy to address the problem.

Specifically, when a task’s deadline is less than its period, all the tasks are priori-

tized according to their deadlines instead of periods. Then each task is scheduled

statically based on their priorities and do not change over time. It is the optimal

scheduling policy for tasks with explicit deadlines. Note that, RMS algorithm in

fact is a special case of DMS algorithm.

Earliest Deadline First (EDF): EDF scheduling is proposed by Liu and Lay-

land [113]. This real-time scheduling algorithm is based on uni-processor dynamic-

priority preemptive scheme. It is an optimal scheduling policy among all dynamic

priority scheduling algorithms. Specifically, all the tasks are dynamically prioritized

during run-time, and EDF algorithm searches for the task that has the earliest

deadline and executes that task with highest priority. Due to the characteristics of

EDF, the utilization bound can achieve up to 1 which means as long as a task set’s

utilization is no greater than 1, EDF can return a feasible solution on uni-processor.

2.2.2 Multi-Core Scheduling

The development of appropriate scheduling algorithms for multi-core platforms is

not a trivial problem at all. The reason is that not only uni-processor algorithms

cannot be directly applicable but also some of the simple and effective approaches are

counter-intuitive for multi-core scenarios. Mok et al. [125] showed that an algorithm
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that is optimal for single processor is not optimal anymore for multiprocessor system.

It is not surprising since the optimal scheduling for multi-core platforms is NP-

hard [55, 64, 106, 107]. Efforts are needed to address the scheduling problems on

multi-core platforms such that suboptimal results can be found instead of searching

for optimal solutions [52].

2.2.2.1 Global Scheduling vs. Partitioned Scheduling vs. Semi-Partitioned

Scheduling

Multi-core scheduling can be classified into three categories: global scheduling, par-

titioned scheduling, and semi-partitioned scheduling. While the former two ap-

proaches have their unique pros and cons, and none of them dominate the other in

terms of schedulability [28], semi-partitioned scheduling can achieve better schedu-

lability than both global and partitioned scheduling [48].

Global Scheduling: Global real-time scheduling puts all the tasks in a global queue

and tasks are permitted to migrate from one processor to another for execution [5,

50]. Specifically, the majority of the previous work on global scheduling have been

focusing on job-level migration, where jobs of different tasks may preempt on one

processor and later resume on another processor and jobs from the same task may

execute on the same processor or different processors.

Global scheduling normally has fewer context switches/preemptions since the

global scheduler only preempts a task when there are no processors idle [9]. Also

the laxity availability for tasks that execute less than their worst-case execution

times can be used by all other tasks instead of the tasks that are assigned to the

same processor with them. Similarly, if there is a task that overruns its worst-case

execution time, it is less likely that deadline failure of the entire system will be

encountered. Finally, global scheduling is more suitable for open systems, as there
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is no need to run load balancing and/or task allocation algorithms when the set

of tasks changes. Dhall et al. [40] addressed global scheduling of periodic tasks

with implicit deadlines on m processors. They showed that the utilization bound

for global EDF is 1 + ε, where ε is arbitrarily small. Andersson [6] presented a

global static-priority scheduling for tasks with implicit deadlines and proved that

its utilization bound is approximately 0.382.

Partitioned Scheduling: Partitioned real-time scheduling assigns each task to

a dedicated processor and no task migrations are allowed during run-time [7, 46].

Partitioned scheduling has less overall impact on the entire system if a task overruns

its worst-case execution time since the task can only affect other tasks assigned on

the same processor. Also, as all the tasks are allocated to their dedicate processor,

there is no penalty in terms of migration cost compared with global scheduling. For

example, for global scheduling, a job that is preempted on one processor and later

resumed on another can potentially result in additional communication costs and

cache misses which is not the case for partitioned scheduling.

Furthermore, partitioned scheduling applies individual run-queue on each pro-

cessor rather than adopting a single global queue. For large systems, the overheads

of manipulating with only single global queue can be quite costly. Finally, once the

tasks have been allocated to their dedicated processors by partitioned scheduling,

knowledge on real-time scheduling for uni-processor can be readily applied. Ander-

sson et al [10] proved that the utilization bound for multi-core partitioned approach

with fixed-priority scheduling is 50% per core. Fan et al [45] proposed a method

to improve the existing utilization bound and based on the enhanced utilization

bound they developed a new partitioned approach to partition tasks for multi-core

platforms.
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Semi-Partitioned Scheduling: Semi-partitioned scheduling allocates most tasks

to their dedicated processors same as partitioned scheduling while allowing some

of tasks to be split into several segments and allocated to different processors [88,

101, 66, 47]. Normally, no more than M − 1 number of tasks are split, where M

is the total number of processors. It is a combination of global scheduling and

partitioned scheduling and therefore it can outperform the two theoretically [101,

66, 65]. Moreover, Zhang et al. showed that the overhead of the task migrations

by a semi-partitioned scheduling approach can be relatively low and therefore has

insignificant effects on the schedulability. Extensive research on semi-partitioned

scheduling proved that the utilization bound can achieve much higher than either

global or partitioned approaches. Lakshmanan et al. [66] showed a utilization bound

of 65% and Guan et al. [67] pushed the utilization bound to 0.7%.

2.2.2.2 Real-time Scheduling With Timing And Other Design Objec-

tives

With the increasing popularity of multi-core platforms, to optimize different design

objectives at the same time other than to guarantee timing alone has drawn more

and more attention from both academia and industry. Power consumption and

thermal issue are the two top tier concerns due to rising performance demand on

multi-core real-time systems. In what follows, we introduce the related works that

have been conducted from the perspectives of power consumption and thermal issue.

Power/Energy consumption: Power density is the major cause that pushes the

shift from single-core scheme to multi-core scheme and it is still a top tier con-

cern on multi-core platforms as the transistor count continues to grow [17]. Early

work on power-aware scheduling is basically focusing on how to minimize dynamic

power because dynamic power contributes to the major portion of the total power
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consumption. A list of works have been done on the convex relationship between

the dynamic power and clock frequency/supply voltage to minimize the dynamic

power and at the same time, meet the deadlines of all the tasks by reducing the

clock frequency and supply voltage [102, 171]. When technology advances further

into deep sub-micron domain, leakage power becomes a significant portion and can-

not be ignored anymore. Extensive works have been published on the problem of

power-aware multi-core real-time scheduling with consideration of leakage power

consumption[72, 73, 115, 182, 31, 180, 173, 118, 78, 181, 32, 170].

Thermal Issue: With billions of transistors integrated on a single chip to further

drive the pace of multi-core design, high peak temperature has increasingly become

a critical issue in computer system design. High chip temperature not only increases

packaging/cooling cost (estimated at 1-3 dollar per watt [150]) but also significantly

degrades system performance and reliability. A 10◦C to 15◦C increase of operation

temperature can reduce the lifetime of a chip by half [172, 82]. Moreover, high chip

temperature dramatically increases leakage power dissipation. The leakage power

dissipation of a chip can be tripled when temperature increases from 45◦C to 110◦C

according to [29], which in turn will further elevate temperature. Temperature

constraint is becoming the first-class design concern for digital CMOS ICs. Chantem

et al. [30] proposed an MILP-based solution to minimize the peak temperature for

task graphs. Ukhov et al. [160] proposed a peak temperature estimation method

to keep track of temperature dynamics of a multi-core system until steady state.

Kumar et. al. [98] presented a stop-n-go approach to reduce the peak temperature

for tasks with data dependencies by distributing slack time between jobs with the

goal of minimizing peak temperature and no make-span was violated.
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2.3 Related Work On Uncertainty

In this section, we introduce existing research that has been conducted to account

for real-time scheduling under uncertainty in detail. Specifically, we first discuss

about related work proposed to deal with process variation, and then we present

previous study on statistical real-time scheduling.

2.3.1 Related Work On Process Variation

Significant research has been made to address the problems raised by process vari-

ation from layout/device level, micro-architecture level, and system level. In what

follows, we will introduce the related work on process variation in details.

Layout/Device Level Design: Random dopant fluctuation (RDF) is one major

cause for threshold voltage variation, therefore, many approaches have been pro-

posed to improve process techniques to minimize RDF effect, such as decreasing

in channel doping and gate oxide thickness [153]. Historical scaling which reduces

gate oxide thickness also suggests a continued improvement in the random variation

coefficient. Moreover, the introduction of HiK+MG in 45nm technology helps with

historical scaling to mitigate the impact of RDF [94]. They further introduced a

powerful tool for assessing process variation by locating ring oscillators routinely

in all product designs. The detailed ring-oscillator data can later be used to iden-

tify areas of concern for process variations and layout techniques can be applied

to minimize variation effects. For example, lay out matched devices so that they

have the same centroid or center of gravity [96]. Agarwal et al. [4] presented an

overview of test structures for characterizing statistical variation of process param-

eters and discussed the significance of design and measurement results dedicated

towards modeling process variation. Kim et al. [90] proposed a process compensat-
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ing dynamic circuit technique to maintain the performance of dynamic circuits and

reduce the variation in delay and robustness. A leakage current sensor design was

also presented to accurately measure leakage variation. There are also works that

add built-in sensors or redundant devices on a chip to mitigate process variation [97].

However, it becomes increasingly challenging as transistors’ feature size scales close

to or below 10 nm [154].

Micro-Architecture And System Level Design: Besides extensive works on

layout and device level, researchers are more interested to address process varia-

tion from micro-architecture and system levels. For example, performance/speed

binning technique has been widely used to cluster chips with similar performance

(e.g., frequency, leakage power) [141, 122]. However, this approach didn’t consider

within-die variation. A number of approaches adopt statistical task model to deal

with process variation. Wang et al. [164] presented a variation-aware task alloca-

tion and scheduling algorithm for multi-core platforms to mitigate the impact of

process variation. A new design metric, called performance yield, was developed to

guide the task allocation and scheduling procedure. Sarangi et al. [139] proposed a

micro-architecture aware model to account for process variation. A framework was

also developed to model timing errors. Then, with the combination of the variation

model and the error model, detailed statistics of different process parameters and

operating conditions can be produced to estimate timing error rates for pipeline

stages to account for process variation. Micro-architecture redundancy mechanisms

are widely adopted to mitigate process variation by adding spare cores or entire

micro-architectures to compensate faulty units [175, 174, 176, 179]. Specifically,

Zhang et al. [176] proposed a row rippling column stealing mapping scheme to re-

map the underlying architecture to minimize on-chip communication cost. They

further extended their work to incorporate frequency variation as well in [179]. Yue
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et al. presented an application specific task allocation method with the goal of main-

taining the similar performance in the presence of faulty cores. [175, 174]. Adaptive

body biasing (ABB) is also a popular scheme to reduce the impact on process varia-

tion. Tschanz et al. [159] proposed to apply a single body bias value per die to allow

each die to meet the given frequency and power constraints. Garg et al. [59, 56] also

proposed a system-level variability mitigation framework by applying ABB tech-

nique. They partitioned a multi-core platform into body-bias islands and assigned

body-bias voltages for each island post-fabrication. Depending on the granularity

of number of islands, significant run-time improvements over Monte-Carlo based

technique were achieved while providing similar leakage power reductions.

2.3.2 Related Work On Statistical Response Time Analysis

Traditional real-time scheduling approaches that consider the previous mentioned

task model are deterministic in nature. The well-known periodic task model for real-

time systems assumes a worst-case execution time for each task and may be too pes-

simistic in terms of performance [124]. Specifically, Figure 2.1 shows that the simple

addition of the worst-case execution time of two tasks can result in pessimistic es-

timation of the overall worst-case execution time and may end up over-provisioning

resources to guarantee real-time constraints [162]. Tasks may have different ex-

ecution times on multi-core platforms due to resource sharing and therefore it is

reasonable to address real-time scheduling on multi-core platforms with statistical

approaches to accurately evaluate the real-time constraints to achieve various design

goals.

The statistical approach takes system statistical characteristics, such as the exe-

cution times, into account for real-time system analysis and design to prevent over-
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Figure 2.1: Execution times of X and Y have independent Gaussian distributions
N(µ, σ2). The WCET is calculated as µ+3σ. X+Y follows [N(µX +µY , σ

2
X +σ2

Y )].
Therefore, WCETX+Y < WCETX +WCETY . [162]

provisioning and, at the same time, meet real-time constraints [43]. There have

been increasing interests from the real-time community on statistical approaches for

real-time system analysis and design on a single core. For example, Tia et al. [158]

presented a statistical performance guarantee for semi-periodic tasks by transform-

ing semi-periodic tasks into a periodic task followed by a sporadic task. Atlas et

al. [14] introduced a statistical rate monotonic scheduling for periodic tasks with

statistical QoS requirements. Maxim et al. [119] proposed three priority assignment

algorithms for statistical real-time systems. They further improved the previous

work by proposing a framework of re-sampling mechanisms that can simplify the

response time distributions in order to ease timing analysis for real-time systems

in [121]. Yue et al. [117] presented a statistical response time analysis by analyzing

samples in timing traces taken from real systems. In [91], the authors proposed a
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stochastic analysis framework which computed the response time distribution and

deadline miss probability for each individual task. The framework can be applied

to both fixed-priority and dynamic-priority systems. The authors in [120] extended

their work to allow both task’s execution time and period to be random variables

and computed analytically the response time distribution of the tasks under a task-

level fixed-priority preemptive scheduling policy. In [16], the authors proposed a

new convolution-based stochastic analysis in which they modeled faults as addi-

tional execution time to bound the probability to exceed a response-time value in

the worst-case under fixed-priority non-preemptive scheduling policy.

On the other hand, the statistical approach on a single core can be readily applied

to analyze the scheduling of tasks on a multi-core platform. Therefore, heuristics

are needed to partition tasks with random execution times to better utilize the un-

derlying resources. Goel et al. [62] studied the problem of makespan minimization

when tasks are stochastic. They proposed stochastic load balancing methods such

that the expected value of the maximum load on a processor is minimized. Wang et

al. [162] proposed a task mapping method for tasks with probability distributions

in a DAG on a homogeneous system. Specifically, Sum and Max functions were

used to find the distribution of the partially scheduled task graph. Then a new

task allocation algorithm was proposed to partition each task to its best candidate

processor based on a metric called performance yield. Li et al. [110] also presented

a task scheduling method for DAGs, where task processing times and communica-

tion times were random variables on a heterogeneous cluster system. A stochastic

dynamic level scheduling algorithm was proposed, which was based on stochastic

bottom levels and stochastic dynamic levels. Mills et al. [123] discussed the poten-

tial of global earliest deadline first (GEDF) scheduling algorithm for stochastic tasks

on soft real-time multi-core systems. They proved that expected deadline tardiness
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on multi-core platforms can be bounded under GEDF when task execution times

are probabilistic. There are also some works that have been conducted to optimize

power/energy, or temperature considering stochastic task models [169, 86, 109].

2.4 Summary

In this chapter, we introduce the fundamentals of our research and discuss about

the related work from a variety of perspectives. We first give a brief introduction

on real-time systems. Specifically, a real-time system contains three major parts:

behavior model, architecture model and scheduling policy. Next, we discuss about

the related works that have been conducted on real-time systems from single-core

scheme to multi-core scheme. Then we present real-time scheduling from another

perspective: statistical scheduling. Traditional deterministic approaches are not

suitable for the future multi-core scheduling and there is a great need to study

statistical real-time algorithms. Finally, we discuss real-time scheduling from the

perspective of design objectives. Scheduling approaches based on two top-tier design

objectives are presented, power consumption and thermal issue.

In this dissertation, our objective is to develop efficient and effective scheduling

algorithms for real-time systems on multi-core platform, such that the design objec-

tives can be optimized and at the same time, real-time constraints are satisfied. In

the following four chapters, i.e. Chapter 3, 4, 5 and 6, we present our contributions.

In Chapter 7, we conclude this dissertation.
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CHAPTER 3

TOPOLOGY VIRTUALIZATION FOR THROUGHPUT

MAXIMIZATION ON MANY-CORE PLATFORMS

In this chapter, we first present our research on process variation-aware real-time

scheduling on multi-core platforms to address uncertainty problems. Our goal is to

minimize the execution latency of an application by properly mirroring a physi-

cal multi-core architecture, which may have faulty cores and significant core-level

performance variations, to the logical architecture. Three virtualization heuristics

are presented in this work. Specifically, we introduce a novel performance metric

developed based on the opportunity cost [26], i.e. a concept originated from the

economics domain, to guide our virtualization process. We have conducted exten-

sive experimental studies to investigate the benefits of the proposed framework and

heuristics. Our experimental results show that the heuristics can achieve up to 30%

(with 15% in average) performance improvement (i.e. schedule length) over the

existing methods.

3.1 Related Work

With the continuous scaling down of the transistor feature size, billions of transistors

are integrated on a single chip [80]. Multi-core/many-core architecture is becoming

mainstream. Most of desktop computers and server computers nowadays use high

performance processors with multiple processing cores. Intel has announced more

advanced many-core platforms consisting of 48 and 80 general purpose processing

cores [76, 143, 161].

In the meantime, however, as transistor feature size continues to shrink to the

degree below the wavelength of light used to print them, it becomes difficult to

precisely control the manufacturing process. This can lead to significant variations
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Figure 3.1: A framework to take advantage of performance heterogeneity to optimize
system performance. An advanced built-in-self-test module is associated with each
chip to collect the performance characteristics of the chip. The collected information
is then used to map the physical hardware architecture to the logical architecture
based on which the nominal design is conducted, with the goal to maximize the
performance of the nominal design on this particular chip.

in key transistor parameters, such as transistor channel length, channel width, oxide

thickness, and threshold voltage, which can further result in the maximal working

frequency and power consumption of processing core varying from core to core and

chip to chip [128, 94], even if all of them use the same, identical design. The 2008

International Technology Roadmap for Semiconductor (ITRS) [80] predicts that

circuit variability will increase from 48% to 66% in the next ten years.

One major problem caused by manufacturing variations is the fabrication yield.

Reduced feature size and increased chip area have increased the number and density

of transistors on a single die, leading to a significantly decreased fabrication yield.
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According to [151], without considering defect tolerance during the architecture

design phase, even under the best case, the yield of cell processors can be as low as

only 10% to 20%. Therefore, micro-architecture level and core-level redundancies

are employed to improve the fabrication yield. According to [148], incorporating

core-level redundancy, at or below 100 nm technology, will achieve better yield

performance than micro-architecture level redundancy.

Another serious problem caused by manufacturing variations is performance vari-

ations, such as maximum clock frequency, power dissipation, etc. It has been shown

that the frequency variation can be as much as 30% and up to 20x variations in

chip leakage power for a processor designed in 180nm technology [24]. Based on

a test structure fabricated in IBM’s 65 nm Silicon-On-Insulator (SOI) technology,

Aarestad et al. [3] showed that worst case delay variations caused by chip-to-chip

process variations can be as large as 21%. As design parameters of processing cores

deviate from their nominal values, the system design objectives can be severely

compromised, or even worse, a computing system can malfunction or even fail.

Significant achievements have been made in recent research [94, 95] by employing

new materials. However, layout techniques and other device technologies on miti-

gating performance variations, which are induced by manufacturing variations will

become increasingly challenging as transistor size continues to scale towards dimen-

sions close to or below 10 nm [154]. Besides extensive research on device and layout

level techniques (e.g [94, 95]) to address manufacturing-variation problems, there

are increasing interests to address this problem from architecture and system levels.

For example, performance binning techniques are proposed (e.g. [141]) to cluster

chips with similar performance. As a result, even in the presence of large manu-

facturing variations, processors of the same grade have less performance variations.
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One drawback of this approach, though, is that it cannot deal with performance

variations among different cores within the same chip.

In the presence of performance variations, it becomes too pessimistic to design a

system based on worst-case scenarios. Therefore, instead of adopting the traditional

design methodology which is based on deterministic parameters, several researchers

incorporate statistical analysis into system-level design. Wang et al. [164] presented

a task allocation and scheduling algorithm to map a task graph to a multi-core plat-

form with the goal to maximize the performance yield rate, i.e. the probability that

a processor can meet the desired performance of a given application. They further

extended their work to consider not only performance differences of multiple cores,

but also physical link differences in NoC as well. Momtazpour et al. [126] considered

a similar task graph mapping problem on a multi-core NoC architecture, with the

goal to maximize the percentage of manufactured chips that can meet power con-

straints for a given application. These statistical approaches try to optimize results

in a probabilistic manner. However, from the perspective of an individual proces-

sor, the designs can be too optimistic or too pessimistic due to different performance

variations.

We believe that the core heterogeneity due to performance variations, if handled

properly, can in fact improve the performance of a nominal design. As a result, in this

work, we are interested in developing appropriate virtualization techniques that can

judiciously mirror physical architecture to logical architecture and at the same time

improve the throughput of the nominal design on each individual hardware platform.

Figure 3.1 illustrates the virtualization framework of our approach. We assume that

each chip is equipped with an advanced built-in-self-test(BIST) module, that can

detect faulty cores and capture performance variances when a device starts. Note

that simple modules such as those introduced in [129, 94] can be easily incorporated
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into a multi-core platform for detecting purpose. The performance characteristics

captured by the BIST module will be used to mirror the logical architecture to

the underlying physical architecture with the goal of maximizing the application’s

performance.

A few studies [174, 175, 176, 178, 179] have been conducted which are closely

related to our work. Zhang et al. [176, 178] proposed several heuristics to replace

faulty cores with redundant cores to improve the fabrication yield. They further

extended their work to deal with performance variations by constructing sub-meshes

using cores with similar performance [179]. These approaches do not take application

characteristics into consideration. A more recent work proposed by Yue at el. [174,

175] improved upon Zhang’s work [176, 178] by taking application characteristics

into consideration, and intended to maintain the similar real-time performance after

replacing faulty cores with redundant cores. These approaches only deal with faulty

cores and do not take performance variations into consideration.

The rest of the chapter is organized as follows. In Section 3.2, we first use an

example to motivate the research in this work and then formulate the problem.

We discuss the virtualization heuristics we developed in Section 3.3. Experimental

results are discussed in Section 3.4. We draw the conclusions in Section 3.5.

3.2 Preliminary

In this section, we first use a simple example to motivate our research. We then

introduce the system models used in this work and define the research problem

formally.
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3.2.1 Motivating Example

Consider an application where the task graph is as shown in Figure 3.2(a). The

application is designed for a multi-core architecture with standard 3 × 3 mesh.

Assume that the nominal design, i.e. the design based on the nominal performance

of the chip, has been given and shown on the logical mesh in Figure 3.2(a): tasks

with same colors and shades are assigned to the same core. For example, tasks 0,3,7,

and 12 are mapped to core (0,0); tasks 2,6, and 10 to core (0,1); tasks 4,8, and 9 to

core (1,0); and tasks 1,5, and 11 core (1,1).

Now consider when realizing this design on a practical platform. To improve the

yield rate, manufacturers usually add redundant cores on the same chip. In our case,

we assume the physical mesh size of the chip is 3× 4 with 3 redundant cores shown

in Figure 2(b). Assume that core (1,1) happens to be a faulty core. One approach

is to replace the faulty core with a redundant core using the Row Rippling Column

Stealing (RRCS) algorithm presented in [176] or similar approaches detailed in [174,

175]. However, these approaches do not take core-to-core performance variations

into consideration. As shown in Figure 2(c), instead of replacing the faulty core

only, we can re-map the physical architecture to the logical architecture to optimize

the performance of the nominal design.

Since programmers make the nominal design solely based on the logical topology

without being aware of what the physical topology really looks like, opportunities

exist to mirror the logical topology based on the actual performance and other

characteristics of the physical topology to optimize the system performance. For

instance, in Figure 3.2(b), the logical mesh is 3 × 3. When running application

programs according to the nominal design, the operating system (OS) only cares

about a logical mesh of 3× 3, without knowing how this logical mesh is mapped to

the underlying physical mesh. As a result, we can judiciously choose the physical

43



0

8

54
3

21

10

76

9

12

11

P00’ P01’ P02’

P10’ P11’ P12’

P20’ P21’ P22’ R2

R1

R0

G1={0,3,7,12}
G2={1,5,11}
G3={2,6,10}
G4={4,8,9}

Fuctional core

Redundant cores: R0, R1 and R2

G3

G2

G1

G4

Faulty core

P00 P01 P02

P10 P11 P12

P20 P21 P22

P00’ P01’ P02’

P10’ P11’ P12’

P20’ P21’ P22’ R2

R1

R0 P00’ P01’ P02’

P10’ P11’ P12’

P20’ P21’ P22’ R2

R1

R0

(a) Task graph with group partitions

(b) Initial logical topology to physical 
topology mapping

(c) Possible physical mapping solutions

P00' P01' P02'

P10' P11' P12'

P20' P21' P22' R2

R1

R0

Logical mesh Physical mesh

 

Figure 3.2: A motivation example.
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topology to the logical topology mapping (such as Figure 3.2(c)) such that nominal

design performance is maximized for each individual hardware platform.

Since we assume that we know the specifications of real-time applications, and

using BIST module, we are able to know the exact performance for each core.

Theoretically, we can then re-map and re-schedule task nodes accordingly. However,

this essentially implies that we have to re-design the entire application for each

individual platform, which can be expensive if not infeasible at all. Note that, by

virtualizing each individual physical hardware architecture properly to the logical

architecture, we have the potential to take advantage of the uniqueness of each chip

to optimize the system’s performance without the need to change its software.

3.2.2 System Models

In this section, we formally define our system models, including both application

model and architecture model.

The application in this work is modeled as a directed acyclic task graph G =

{V,E}. V = {v1, v2, ..., vk} and each task node vi represents a task in the applica-

tion. We use |vi| to represent the execution time of task node vi under the nominal

frequency. E = {e(i, j) = (vi, vj)| if task node vi communicates with task node vj

}. Each arc, i.e. e(i, j) ∈ E also indicates the dependency between two task nodes

vi and vj with direction from task node vi to task node vj. A weight w(e(i, j)) is

associated with each arch e(i, j) to represent the data volume to be transferred from

task vi to vj.

For the logical architecture (denoted as Alr×c), we assume it consists of r × c

homogeneous cores that form a standard r × c mesh architecture, i.e.

Alr×c = {C l
i,j, i = 0, ..., r − 1; j = 0, ..., c− 1}. (3.1)
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where C l
i,j represents the core located at position (i, j) in the logical mesh archi-

tecture. We assume that each core has the same nominal frequency of 1. We also

assume that the communication at any link has a nominal speed of 1. In our system

model we focus on the process variations on each individual core, and we assume

there is no process variation on the links.

The nominal design of application G based on the logical architecture Alr×c

(denoted as N (G,Al)) is defined by the mapping between the task nodes in G and

processor cores in Alr×c. That is

N (G,Al) = {(vi, C l
x,y)|vi is assigned to core C l

x,y}, (3.2)

i = 1, ..., k; (3.3)

0 ≤ x ≤ r − 1;

0 ≤ y ≤ c− 1.

We assume the traditional NoC mesh network architecture and the deterministic

X-Y routing algorithm [61] is used.

We define the physical architecture (denoted as Apm×n) as a m × n mesh archi-

tecture, i.e.

Apm×n = {Cp
i,j, i = 0, ...,m− 1; j = 0, ..., n− 1}. (3.4)

where Cp
i,j represents the core located at position (i, j) in the physical mesh archi-

tecture. We use fij to represent the maximum clock frequency of core Cp
i,j, which is

normalized to the nominal frequency of the logical core. fij = 0 indicates that core

Cp
i,j is a faulty core.
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3.2.3 Problem Formulation

With the system model defined above, we are now ready to define our research

problem.

Problem 3.2.1. Given

• an application G;

• a logical architecture Alr×c;

• the nominal design of G on Alr×c, i.e. N (G,Al);

• the physical architecture Apm×n and its performance variations, i.e. fij, i =

0, ...m− 1; j = 0, ..., n− 1,

Find the mapping of M = {C l
i,j → Cp

x,y|i = 0, ..., r − 1; j = 0, ..., c − 1; 0 ≤ x ≤

m−1; 0 ≤ y ≤ n−1} such that the maximum latency to execute G based on N (G,Al)

is minimized.

3.3 Our Approach

In this section, we present three approaches to solve Problem 6.2.1 as defined above.

The first approach is a simple heuristic that tries to match the logic node with the

largest workload to the highest performance core in the physical architecture. The

second and third approaches are developed based on the opportunity cost, a concept

originated from the economics discipline. The second approach considers only the

core performance. The third approach considers not only the core performance but

also the communication cost.
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3.3.1 A Simple Workload/Performance Matching Heuristic

Our goal is to map the logical topology to the physical topology such that an existing

nominal design can achieve the best performance in the presence of faulty cores and

performance variations on the physical topology. Since different cores may have

different performances or processing speeds, an intuitive approach is therefore to

match the logical core with the largest workload assignment to the physical core with

the highest processing speed. The rationale behind this approach is that, the larger

the workload is assigned to highest performance core, the more workload can be

benefited from the highest processing speed. The algorithm, which we called simple

workload/performance matching (SWPM) heuristic, is presented in Algorithm 1.

Algorithm 1 A simple heuristic to match high workload logical core to high per-
formance physical core.

1: M = ∅;
2: LC = The sorted list of C l

i,j ∈ Alr×c, i = 0, ..., r − 1; j = 0, ..., c − 1 by their
workload based on nominal design N (G,Al) in decreasing order;

3: LP = The sorted list of Cp
i,j ∈ A

p
m×n by fij, i = 0, ...,m − 1; j = 0, ..., n − 1 in

decreasing order;
4: for i = 0 to sizeof(LC)− 1 // for each logical core in the sorted list do
5: if The total workload assigned to LC(i) > 0 then
6: M =M+ {LC(i)→ LP (i)};
7: end if
8: end for

Algorithm 1 sorts the logic cores based on the assigned workloads and the phys-

ical cores based on their performances. Then, a logic core is mapped one by one to

a physical core accordingly from the two lists. The complexity mainly comes from

the sorting of the two lists. we assume the physical mesh is larger than the logical

mesh. Therefore, the complexity of Algorithm 1 is O((m× n)log(m× n)).

While Algorithm 1 is fast and intuitive, it has several issues. First, even though

those high performance cores are used to speed up executions of larger workloads,
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Figure 3.3: An illustrative example for opportunity cost and performance metric.
The colors and shades of task nodes in (a) imply the corresponding assignment to
the logical topology: v0 → C l

0,0, v1 → C l
1,0, v2 → C l

0,1, v3 → C l
1,1.

these workloads are not necessarily located on the critical path, i.e. the longest exe-

cution path of a task graph. In that case, the latency improvement when executing

the task graph is limited. Second, Algorithm 1 considers only performance differ-

ences of different cores and do not take their locations into consideration. When two

neighboring logical cores are separated far away in the physical mesh, the increased

communication overhead can offset the performance improvement or even degrade

the overall performance, or the latency when executing tasks. In what follows, we

develop two new approaches to address these problems.

3.3.2 Opportunity Cost Based Workload/Performance Map-

ping

It is desirable to optimize the latency of the critical path to improve the performance

when realizing the logical topology to the physical topology. In the meantime, how-
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ever, optimizing the critical path too aggressively may cause other execution paths

to become critical and thus degrade the optimization performance. The problem is

then how to develop effective algorithms for logical/physical topology mapping that

can optimize the maximum latency when executing a task graph. In what follows,

we discuss a heuristic developed for this goal. For the sake of simplicity, we first

assume the communication cost is negligible.

When designing a highly effective logical to physical topology mapping, one

critical problem is how to evaluate the impact or performance of a decision when

mapping a logical node to a physical node. Note that it is not difficult to prove

that Problem 6.2.1 is in fact NP-hard. In our approach, we resort to adopting the

opportunity cost as the metric to make our decisions. The opportunity cost is the

cost of any activity measured in terms of the value of the next best alternative

forgone (that is not chosen). It is the sacrifice related to the second best choice

available to someone, or group, who has picked among several mutually exclusive

choices. For more details about the opportunity cost, readers can refer to [26] or

other related references.

We use a simple illustrative example to explain the concept of the opportunity

cost and its use in designing our performance metric. Figure 3.3(a) shows a task

graph with four nodes. The colors and shades represent their assignments to the

logical topology as shown in Figure 3.3(b). To calculate the latency when executing

a task graph, we assume that, if a logical core has not been mapped, all the task

nodes assigned to this logical core take their nominal execution time; if a logical

core has already been mapped, then new execution times on the practical cores will

be used.

Now consider the decision of mapping logical core C l
0,0 to physical core Cp

0,0. The

task graph latency of this mapping is 51.67. Since the latency in the nominal design
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Algorithm 2 Workload/performance mapping based on opportunity cost.

1: M = ∅;
2: LC = The list of C l

i,j ∈ Alr×c, i = 0, ..., r − 1; j = 0, ..., c − 1 with workload
assignments larger than 0;

3: LP = The list of Cp
i,j ∈ A

p
m×n, excluding faulty cores;

4: while LC 6= ∅ do
5: Find C l

i,j ∈ LC and Cp
x,y ∈ LC such that P(C l

i,j → Cp
x,y) is maximized;

6: M =M+ {C l
i,j → Cp

x,y};
7: Remove C l

i,j and Cp
x,y;

8: end while

is 55, we define that the profit of this decision is 55 - 51.67 = 3.33. For the rest of the

alternatives to map logical core C l
0,0, the best choice is to map it to Cp

0,1 with latency

of 53.18. The corresponding profit is 55 - 53.18 = 1.82, which is the opportunity

cost to map C l
0,0 to Cp

0,0. We thus define the performance of the decision as the

difference of its profit and opportunity cost, or 3.33 - 1.82 = 1.51. In what follows,

we formally define the performance metric used in our approach.

Definition 3.3.1. Given a decision to map logical core C l
i,j to physical core Cp

x,y, i.e.

C l
i,j → Cp

x,y, let its profit be denoted as Prof(C l
i,j → Cp

x,y), and let its opportunity

cost (i.e. the performance associated with the best choice to map C l
i,j other than Cp

x,y)

be denoted as OC(C l
i,j → Cp

x,y). Then the performance of the decision, denoted as

P(C l
i,j → Cp

x,y), is defined as

P(C l
i,j → Cp

x,y) = Prof(C l
i,j → Cp

x,y)−OC(C l
i,j → Cp

x,y). (3.5)

Specifically, for the example in Figure 3.3, we have P(C l
0,0 → Cp

0,0) = 1.51,

P(C l
0,1 → Cp

0,0) = 0, P(C l
1,0 → Cp

0,0) = 1.9, and P(C l
1,1 → Cp

0,0) = 0.76. It is

interesting to note that, according to Definition 3.3.1, mapping the logical core with

the largest workload assignment (i.e. C l
0,1) to the fastest core (i.e.Cp

0,0) does not

reduce the critical path latency and thus has the lowest performance.
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After establishing the metric to evaluate a mapping decision, we are ready to

introduce our heuristic algorithm, which is given in Algorithm 2. The most critical

section of Algorithm 2 is the while loop, which selects the mapping with the largest

performance according to equation (3.5). In the worst case, the complexity of the

while loop is O(kmn) since m × n different mappings need to be checked, and the

complexity to obtain the latency for a task graph is k, where k is the number of task

nodes. In the worst case, the while loop will be executed for r× c times. Therefore,

the overall complexity of Algorithm 2 is O(krcmn).

3.3.3 Logical/Physical Topology Mapping With Communi-

cation Awareness

Neither Algorithm 1 nor Algorithm 2 takes the communication cost into consider-

ation. They work fine when the communication cost is really small and negligible.

When the communication cost becomes significant, especially for many-core plat-

forms, the qualities of the mapping results by Algorithm 1 and Algorithm 2 can be

severely compromised. In what follows, we propose an iterative algorithm (shown in

Algorithm 3) to improve the performance of existing mapping results while taking

the communication into consideration.

In principle, Algorithm 3 uses similar performance metric based on opportunity

cost to evaluate a mapping decision. When calculating the latency for the task

graph, the communication cost based on XY-routing can be incorporated into the

calculation of performance of a mapping decision. Another major difference between

Algorithm 3 and Algorithm 2 is that Algorithm 3 can iteratively improve the map-

ping solution, until the improvement threshold defined by the user can be satisfied.

52



Algorithm 3 Logical/Physical mapping with communication cost awareness.

1: Initialize M0; // by Algorithm 1 or 2
2: Lorig = latency of executing G based on M0;
3: Improvement = 0;
4: while Improvement < ε // user defined threshold do
5: LC = The list of C l

i,j ∈ Alr×c, i = 0, ..., r − 1; j = 0, ..., c − 1 with work
assignment larger than 0;

6: LP = The list of Cp
i,j ∈ A

p
m×n, excluding faulty cores;

7: M = ∅;
8: while LC 6= ∅ do
9: Find C l

i,j ∈ LC and Cp
x,y ∈ LC such that P(C l

i,j → Cp
x,y) is maximized;

10: M =M+ {C l
i,j → Cp

x,y};
11: Remove C l

i,j and Cp
x,y;

12: end while
13: Lnew = latency of executing G based on M0;
14: Improvement =

Lorig−Lnew
Lorig

;

15: Lorig = Lnew;
16: end while

The complexity of the while loop from line 8 to 12 is similar to that in Algorithm 2.

The overall complexity of Algorithm 3 depends on the exact value of ε.

3.4 Experimental Results

In this section, we perform three experiments to study the performance of three

approaches we presented in the previous section. For ease of presentation, we use

SWPM to denote Algorithm 1, P Only OC for Algorithm 2, and P&C OC for

Algorithm 3. We also compare our algorithms with two previous works, i.e. the

RRCS algorithm [178] and the Hungarian algorithm [175]. The RRCS algorithm

intends to replace the faulty cores and reshape the mesh to mirror the logical mesh

while the Hungarian algorithm tries to re-map the physical mesh to logical mesh

to minimize the communication changes. We investigated the performance of these
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(a) 5× 6 mesh

(b) 10× 11 mesh

Figure 3.4: Performance vs. different mesh sizes and different group numbers

five different approaches under different mesh sizes, numbers of task nodes, commu-

nication/execution ratios, as well as their computational costs.

3.4.1 Experimental Setup

In our simulation study, we used TGFF [41] to randomly generate task graphs

(60 nodes) and also randomly cluster task nodes into groups and map to different

logical cores, from a 5×6 and a 10×11 mesh. The reason we used n× (n+ 1) mesh
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is because the RRCS and the Hugarian algorithms assume such topology. The

communication of each edge and execution time of each task are randomly generated.

The frequency of each processor is also randomly generated using normal distribution

with mean value µ = 1, i.e. the nominal frequency, and variance value σ = 0.1,

based on [24]. Unless specified otherwise, we assume the P&C OC algorithm stops

after 200 iterations. All experiments were running on a Window XP/SP3 platform

powered by Intel(R) Core(TM)2 Duo CPU @ 2.93GHz with 3.21 GB of RAM.

(a) 5× 6 mesh

(b) 10× 11 mesh

Figure 3.5: Performance vs. different communication/execution ratios
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3.4.2 Performance vs. Mesh Sizes And Group Numbers

In this experiment, we compared the performance of different algorithms under

different size meshes: 5 × 6 and 10 × 11. The execution time of a task node was

randomly generated from interval [10:50]. The communication cost of an edge was

randomly chosen from interval [1:10]. The average results among all test cases were

collected and plotted in Figure 3.4.

From Figure 3.4, we can see that P Only OC consistently outperformed SWPM

under different mesh sizes and different group numbers. For example, for mesh size of

5×6 and task group number of 5, we can see that P Only OC outperformed SWPM

as much as 10% in latency reduction. This is because SWPM optimizes aggressively

on the logical cores with large workload assignments. Unfortunately, as indicated

in our previous illustrative example (Figure 3.3), the overall performance can be

severely limited if the workloads are not located on the critical path. P Only OC,

on the other hand, judiciously chooses logical/physical mapping based on application

characteristics and thus can outperform SWPM .

When comparing P Only OC andRRCS, it is interesting to see that P Only OC

performs better than RRCS for small meshes but becomes worse than RRCS when

the mesh size is large or the task group number is small. For example, for mesh size

of 5 × 6 and group size of 10, P Only OC outperformed RRCS by approximately

4%. For large mesh size of 10× 11, RRCS can outperform P Only OC by as much

as 12.5%. This is because P Only OC can take the application information into

consideration and outperform RRCS. However, our experimental results also in-

dicate that P Only OC works only in small mesh size. For large mesh sizes, the

P Only OC algorithm can potentially distribute tasks far away from each other

and therefore degrade the overall performance. And the Hungarian algorithm is

the worst one as we have discussed previously; it is good for small mesh size, i.e.
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5×5 and small number of faulty cores, i.e. no more than 4 faulty cores. However, in

our setup, we assume 5 and 10 faulty cores for 5×6 mesh and 10×11 mesh, respec-

tively. The Hungarian algorithm always tries to re-map the faulty cores using the

redundant cores which are aligned to the rightmost column of the mesh, therefore,

it results in poor performance.

Finally, we can see that P&C OC consistently outperforms other algorithms

for different mesh sizes and groups, and the results improved with the growth of

mesh size and number of task groups. From Figure 3.4, on average P&C OC can

outperform RRCS by 13% and 16% for mesh size of 5× 6 and 10× 11, respectively.

The experimental results greatly highlight the excellent performance of P&C OC.

3.4.3 Performance vs. Different Communication/Execution

Ratios

Next, we study how communication cost can affect the performance of different

approaches. Let communication cost be generated within interval [a,b] and execution

time of task node be generated within interval [c,d], the C/E ratio can be defined

in Equation 3.6.

ratio =
b+ a

d+ c
, (3.6)

We randomly generated different test cases with different C/E ratio and tested

the four algorithms mentioned above. The C/E ratios were set to be 1:1, 1:2, 1:5,

1:10. The results for different test cases were collected and plotted in Figure 3.5.

From Figure 3.5(b), the improvement of P&C OC over P Only OC increases

as communication cost increases. When communication cost is much less than the

execution cost (C/E ratio = 1:10), P&C OC improves upon P Only OC about
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Figure 3.6: Computational Time comparisons for different algorithms on 10 × 11
mesh

30%. When the communication cost is almost comparable to the execution cost

(C/E ratio = 1:1), the average latency by P Only OC is more than double that by

P&C OC and SWPM , i.e. approaches that do not take the communication into

consideration.

3.4.4 Computational Cost

We next studied the computational cost for each algorithm on mesh size of 10× 11.

Figure 3.6 shows the computation times with different numbers of task groups for the

five algorithms. For the P&C OC algorithm, we set the threshold to 16%. It is not

surprising to see that SWPM and RRCS have computational costs nearly linear to

the task group, while P Only OC , Hungarian and P&C OC are increasing very

fast, as discussed before.
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Figure 3.7: Computational Time and Improvement comparisons for different itera-
tions on 10× 11 mesh

To further understand the computational complexity of P&C OC, we conducted

another set of experiments with 20 task groups and kept track of the solution quality

for each iteration. As shown in Figure 3.7, we can see that from the first iteration

all the way to the 50th iteration, the CPU time increases rapidly. The improvement

also grows rapidly during the first several iterations until it reaches around 22%

in improvement and becomes saturated. How to speedup the P&C OC without

compromising its solution quality is an interesting problem worthy of future study.

3.5 Summary

Performance variations can reduce the fabrication yield and degrade the quality of

the nominal design. Different from previous research at the device level, during

the post-fabrication, or the statistical approach at the system level, we propose to

deal with the process variations when deploying the nominal design to a dedicated

device. We introduce a framework to judiciously reconfigure the underlying physical
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architecture to mirror the logical architecture and maximize the performance of the

nominal design. Heuristics based on the concept of opportunity cost are introduced

in this work. From our experimental studies, the proposed approach can achieve up

to 30% and with an average 15% of performance improvement (i.e. schedule length)

by taking advantage of the heterogeneity of each individual platform.
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CHAPTER 4

HETEROGENEITY EXPLORATION FOR PEAK TEMPERATURE

REDUCTION ON MULTI-CORE PLATFORMS

In the previous chapter, we addressed process variation-aware scheduling to min-

imize the scheduling length of a task graph. In this chapter, we extended our pre-

vious work in Chapter 3 to optimize the peak temperature of a real-time schedule

on multi-core platforms under process variation. We develop three computationally

efficient algorithms for deploying applications to individual devices. Our simula-

tion study has clearly shown that, by taking advantage of the uniqueness of each

individual physical chip, the proposed approaches significantly reduce the peak tem-

perature. The experiments also show that these approaches are efficient and have

low operational cost.

4.1 Related Work

Many approaches have been proposed to deal with process variation problems. Sig-

nificant achievements have been made on layout techniques and other device tech-

nologies by adding built-in sensors or redundant devices [94, 129, 95]. However, it

becomes increasingly challenging as transistor size scales towards dimensions close

to or below 10 nm [154]. Besides extensive work on layout and device level, there

are increasing research efforts to address the process variation problem from archi-

tecture and system level. For example, performance binning technique is proposed

to cluster chips with similar performance [141, 122]. However, this approach cannot

deal with process variation of different cores within the same chip. Another popular

approach is to adopt the statistical approach in the design optimization process. As

an example, Wang et al. [163] proposed a task mapping and scheduling algorithm

to maximize the performance yield rate (i.e., the probability that a processor can
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meet the desired performance of a given application) by statistically taking both

variations of cores and physical links into account. These statistical approaches try

to optimize results in a probabilistic manner. When deploying the design to each in-

dividual processor, the designs can be either too optimistic or too pessimistic due to

different performance variations. One recent work [135] exploited process variations

in Dark-Silicon homogeneous chip multi-processors, however they only considered

the frequency variations and ignored leakage variations between cores.

There is another interesting approach proposed to address the process variation

problem. This approach, so called topology virtualization [167], calls for judiciously

mirroring the physical architecture of an individual device to the logic architecture

of an application when the application is deployed (installed/initiated) to the device.

Figure 4.1 illustrates this approach.

Assume an application is developed based on a 3×3 logical homogeneous multi-

core mesh architecture. The physical chip, on the other hand, is not necessarily the

same 3 × 3 architecture. To fight for the process variation problem, it has been a

common practice in industry to add redundant resources (e.g. processing cores) so

that the entire chip can still work even if some cores are faulty [129, 94]. Assume

the physical architecture of a chip is a mesh of 3× 4 as shown in Figure 4.1. Note

that, due to the process variation problem, the performance of all these cores is not

necessarily homogeneous. Moreover, the design based on the logical architecture

does not necessarily utilize each processor in exactly the same way. Opportunity is

thus presented to optimize the performance of original nominal design by mirroring

the physical architecture of each individual chip to the logical architecture differently

as shown in Figure 4.1. There are a number of distinct advantages to this approach.

First, compared with the statistical approach, this approach can exploit the unique

characteristic of each individual device and better optimize the system performance.
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(a) Logical Topology
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Figure 4.1: The topology virtualization framework. (a) Target application designed
based on the nominal parameters of a 3 × 3 logical topology; (b) Configure the
practical topology of an individual processor differently to mirror the logical topology
and optimize the performance of the target application; (3) The physical topology,
a 3× 4 mesh, for the processor.

Second, the architecture changes can be managed by the operating system or lower

level software such as BIOS, which is totally transparent to the application software.

We believe that heterogeneity due to process variation, if explored properly, can

in fact improve the design objective of a real-time application. In this work, we

study the problem of how to reduce the peak temperature by exploiting the archi-

tecture heterogeneity due to process variation. A few works are closely related to

our approach proposed in this chapter. When a processor has faulty cores and more

redundant cores, Zhang et al. [176, 178] proposed several heuristics to replace faulty

cores with redundant cores to improve the fabrication yield. They further extended
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their work to deal with performance variations by constructing sub-meshes using

cores with similar performance [179]. Yue at el. [174, 175] improved upon Zhang’s

work [176, 178] by taking application characteristics into consideration, and in-

tended to maintain the similar real-time performance after replacing faulty cores

with redundant cores. A more recent work by Wang et al. [167] considered pro-

cess variation on homogeneous multi-core platforms and proposed three re-mapping

heuristics to maximize the throughput of task graph.

It is not difficult to see that the problem to optimize the performance of an

application by mirroring the physical topology to the logical topology is an NP-

hard problem [53]. While it is a common practice to use certain time-consuming

techniques such as Genetic Algorithm (GA) [105, 138] and/or Simulated Annealing

Algorithm (SAA) [176, 178] to solve this problem, this is not viable for the topology

virtualization approach. Since the physical to logical topology mapping is performed

when deploying (installing or initiating) the application software on an individual

device, the key to the success of this approach is to develop computationally effi-

cient mapping methods that can effectively optimize the performance metrics for

application software. To this end, we developed three physical to logical topology

mapping heuristics to reduce the peak temperature of a processor. Our simulation

study shows that the topology virtualization approach is very effective in reducing

the peak temperature for a processor.

In what follows, we introduce the system, power and thermal models the research

is based upon, and formulate the problem we are to address in Section 4.2. In

Section 4.3, We discuss how to rapidly calculate the peak temperature for a periodic

application . We then present three computationally efficient heuristics to minimize

peak temperature in Section 4.4. Experimental results are discussed in Section 4.5,

and we conclude in Section 4.6.
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Nominal Value (V, F) Core 0 Core 1
(0.8, 0.8) (0.8, 0.76) (0.8, 0.82)
(0.9, 0.9) (0.9, 0.87) (0.9, 0.93)
(1.0, 1.0) (1.0, 0.95) (1.0, 1.04)
(1.1, 1.1) (1.1, 1.03) (1.1, 1.13)
(1.2, 1.2) (1.2, 1.18) (1.2, 1.25)

Figure 4.2: Voltage-Frequency variation example between cores.

4.2 Preliminary

In this section, we first introduce the system model, power and thermal models and

then formulate the research problem we are to address in this work.

4.2.1 System Models

The multi-core platform considered in this work consists of identical cores with tra-

ditional 2-D mesh architecture. Each core can run in one of r different operating

modes. Each running mode is characterized by a tuple (vk, fk) (1 ≤ k ≤ r), where vk

is the supply voltage and fk is the working frequency for mode k, respectively. Note

that due to manufacture variations, cores may have different maximum frequencies

deviated from their nominal value. Therefore, the frequency can also behave differ-

ently in cores that are running with the same supply voltage. Figure 4.2 shows an

example of two cores with their voltage-frequency modes compared to the nominal

values (parameters are generated based on [94]).

Specifically, we assume the physical architecture (denoted as Apm×n) is an m× n

mesh, i.e.

Apm×n = {Api,j, i = 0, ...,m− 1; j = 0, ..., n− 1}. (4.1)

where Api,j represents the core located at position (i, j) in the physical topology.

The target application is periodic with period of L. We assume the original nominal
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design of the application is based on a logical architecture (denoted as Alx×y), which

forms a standard x× y homogeneous mesh architecture, i.e.

Alx×y = {Ali,j, i = 0, ..., x− 1; j = 0, ..., y − 1}. (4.2)

where Ali,j represents the core located at position (i, j) in the logical topology. The

nominal design S(t) consists of a set of static, periodic voltage schedules, each of

which, i.e. Si(t), is applied to one logical core and dictates the change of its pro-

cessing speed in each period. We assume that each schedule consists of a set of

non-overlapping intervals with total length of L. Each interval has its own spec-

ified running modes. Let the voltage schedule on core i, denoted as Si(t), con-

sist of a set of intervals [t0, t1], ..., [tq−1, tq] such that
⋃s
q=1[tq−1, tq] = [0, L], and

[tq−1, tq]
⋂

[tp−1, tp] = ∅, if q 6= p. Also, let the running modes of interval i be [vi, fi].

We define the utilization of core i, denoted as Ui as

Ui =

∑
i(ti − ti−1)× vi
vmax × L

. (4.3)

4.2.2 Power And Thermal Models

The total power dissipation of each core contains two parts: dynamic power and

leakage power. We assume that the dynamic power is independent of temperature

but sensitive to variation while the leakage power is sensitive to both. The total

power dissipation of core i, denoted as Pi, is formulated as:

Pi = P dym
i + P leak

i , (4.4)

P dym
i = γki · v2

ki
· fki , (4.5)

P leak
i = (αki + βki · Ti(t)) · (vki + ∆i

leak). (4.6)
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where αki , βki and γki are constants that depend on the mode ki of core i. ∆i
leak

is a given constant that models the leakage power variations due to the impact of

die-to-die (D2D) and within-die (WID) process variation [58].

We use the RC network to model the thermal behavior of a multi-core plat-

form, same to that in [145, 160]. Let Ci and Rij denote the thermal capacitance

(in Watt/◦C) of core i and thermal resistance (in J/◦C) between core i and j,

respectively. The thermal behavior of the ith core can be formulated as

Ci ·
dTi(t)

dt
+
Ti(t)

Rii

+
∑
j 6=i

Ti(t)− Tj(t)
Rij

= Pi(t) (4.7)

Incorporating equation (5.11) in the above equation, we have

Ci ·
dTi(t)

dt
+Gii · Ti(t) +

∑
j 6=i

Gij · Tj(t) = Ψi (4.8)

where

Gij =


∑m

j=1
1
Rij
− βki · vki − βki∆i

leak if i = j

−1
Rij

otherwise

(4.9)

and

Ψi = αki · vki + αki∆
i
leak + γki · v2

ki
· fki (4.10)

Let Tamb denote the ambient temperature. We thus have

C
dT(t)

dt
+ G

(
T(t)−Tamb

)
= Ψ (4.11)

where C and G are m×m matrices while T(t) and Ψ are m× 1 vectors.

C =


C1 · · · 0

...
. . .

...

0 · · · Cm

 G =


G11 · · · G1m

...
. . .

...

Gm1 · · · Gmm

 (4.12)

T(t) =


T1(t)

...

Tm(t)

 Ψ =


Ψ1

...

Ψm

 (4.13)
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4.2.3 Problem Formulation

With all models discussed above, our problem is to minimize peak temperature

while guaranteeing timing constraints. It is worth pointing out that the nominal

design S(t) is based on manufacture-variation-free scenario, hence, when we apply

the nominal design to each individual chip which may be affected by manufacture

variations, we may not be able to guarantee timing constraints if no appropriate

actions are taken. We formally define the research problem below.

Problem 4.2.1. Given

• a physical topology of a multi-core platform Apm×n, r different processor modes

and leakage variation ∆leak for each core;

• a logical topology Alx×y;

• a nominal design S(t),

determine the physical to logical topology mapping such that the chip peak tempera-

ture of the chip is minimized when running S(t) on Apm×n and all timing constraints

are also met.

4.3 Temperature Dynamics Formulation

Our goal is to minimize the peak temperature when running the nominal design on

the practical processor. To this end, it is necessary that we can quickly identify

the exact peak temperature when running a periodic schedule. In what follows, we

introduce a method to quickly calculate the peak temperature for a periodic voltage

schedule on multi-core platforms.

Consider an interval [tq−1, tq] and assume the supply voltages or working frequen-

cies of all cores remain the same within the interval. Let κq represent the specific
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running modes of all cores in interval [tq−1, tq]. Then based on equation (4.11), we

have

dT(t)

dt

∣∣∣∣
t∈[tq−1,tq ]

= Aκq

(
T(t)− Tamb

)
+ Bκq (4.14)

where Aκq = −C−1Gκq and Bκq = C−1Ψκq . Since Aκq and Bκq are constant, equa-

tion (4.14) is simply a first-order constant coefficient ordinary differential equation

(ODE) with the following solution:

T(tq) = eAκq∆tq
(
T(tq−1)− Tamb

)
+ A−1

κq (eAκq∆tq − I)Bκq + Tamb (4.15)

where ∆tq = tq − tq−1. Therefore, given a state interval, its ending temperature can

be determined by the starting temperature T(tq−1) and the corresponding interval

mode κq.

With equation (4.15), given a periodic schedule S(t) and the initial temperature

T(0), we can calculate the temperature at any time instant by tracing temperature

from one interval to another. However, it can be computationally costly to trace

the temperature until it reaches the steady state. It is also desirable to calculate the

stable temperature by setting dT(t)
dt

= 0. This works if all cores run at a constant

speed schedule, but does not work anymore for a periodic schedule with different

running modes. In what follows, we present a fast method to identify the peak

temperature for a periodic schedule S(t).

Let us first consider the temperature variation at the end of each period, i.e. t =

nL. Let the scheduling points of S(t) in the first period be t0, t1, ..., ts−1, respectively.

We assume that the running modes for all cores remain unchanged between two

neighboring scheduling points. Similarly, let the corresponding scheduling points in

the second period be t′0, t
′
1, ..., t

′
s−1, respectively. Note that t0 = 0, t′0 = ts = L and

t′s = 2L. According to equation (4.15), at time t1 and t′1, we have

T(t1) = eAκ1∆t1
(
T(t0)− Tamb

)
+ A−1

κ1
(eAκ1∆t1 − I)Bκ1 + Tamb (4.16)
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T(t′1) = eAκ1∆t′1
(
T(t′0)− Tamb

)
+ A−1

κ1
(eAκ1∆t′1 − I)Bκ1 + Tamb (4.17)

Subtract equation (4.16) from (4.17), and simplify the result by applying ∆t′1 = ∆t1,

t0 = 0 and t′0 = L, we get

T(t′1)−T(t1) = eAκ1∆t1(T(L)−T(0))

Similarly, we can derive that

T(t′2)−T(t2) = eAκ2∆t2eAκ1∆t1(T(L)−T(0))

...

T(t′s)−T(ts) = eAκs∆ts ...eAκ1∆t1(T(L)−T(0)) (4.18)

Since ts = L, t′s = 2L, and let K = eAκs∆ts ...eAκ1∆t1 , equation (4.18) can be

rewritten as

T(2L)−T(L) = K(T(L)−T(0)) (4.19)

Similarly, we have

T(xL)−T((x− 1)L) = Kx−1(T(L)−T(0)) (4.20)

where x = 1, 2, ..., n. Sum up these n equations, we get

T(nL) = T(0) + (
n∑
x=1

Kx−1)(T(L)−T(0)) (4.21)

In the above, {Kx−1|x = 1, 2, ..., n} forms a matrix geometric series. If (I −K) is

invertible, then we have

T(nL) = T(0) + (I−K)−1(I−Kn)(T(L)−T(0)) (4.22)

Similarly, for any time instant t = nL+ tq, we can get that

T(nL+ tq) = T(tq) + Kq(I−K)−1(I−Kn)(T(L)−T(0)) (4.23)
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where Kq = eAκq∆tq · eAκq−1∆tq−1 ...eAκ1∆t1 . Equation (4.23) can be used to quickly

calculate the temperature at t = nL + tq, where n ≥ 1 and tq ∈ [0, L]. Moreover,

let n→∞ in equation (4.23), we can quickly identify the steady-state temperature

corresponding to tq as

Tss(tq) = T(tq) + Kq(I−K)−1(T(L)−T(0)) (4.24)

From equation (4.24), given a periodic schedule S(t), we can formulate the system

steady-state temperature with information of the first period directly, which is much

more efficient than to keep track of temperature variations based on equation (4.15).

4.4 Physical To Logical Mapping Heuristics

Before we introduce our mapping heuristics, we want to first guarantee that the

timing constraints are met after re-mapping. We make one assumption that the

highest frequency in S(t) can always be no greater than the maximum frequency

supported by the core on which it is mapped. Under this assumption, we adjust

the core’s voltage-frequency mode such that the timing constraint satisfaction can

be guaranteed. Specifically, we have two solutions for each interval if the current

running mode cannot satisfy its nominal design parameter, 1) we change it to the

next neighbor running mode or 2) we use the two neighboring speeds alternatively

until the timing constraints are met.

Now we present three mapping approaches to solve Problem 6.2.1 as defined

above. It is not difficult to prove that Problem 6.2.1 is in fact NP-hard. As men-

tioned before, while common approaches such as GA or SAA are commonly used to

guide mapping decisions during the design phases, they are not applicable in topol-

ogy virtualization approach due to their high timing complexities. Since mapping

decisions must be made when installing or initiating the application, the key to the
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success of this approach is the computation efficiency of the mapping algorithms

and their effectiveness. In what follows, we develop three heuristics and study their

effectiveness.

4.4.1 A Simple Utilization/Leakage Matching Heuristic

Our goal is to map the physical topology to the logical topology such that an existing

nominal design can be improved in terms of peak temperature in the presence of

core heterogeneity. As we discussed in Section 4.2.2, leakage variation is one of the

key factors that affects temperature. An intuitive approach is therefore to match the

logical core with the largest utilization to the least leaky physical core. The rationale

behind this approach is that, when the larger utilization schedule is assigned to less

leaky core, the less heat it generates. For example, consider two cores with identical

voltage schedule (i.e., same utilization). The heat contributed by dynamic power is

the same for both cores, but the one that is more leaky will generate more heat due

to leakage power and therefore higher temperature. The algorithm is presented in

Algorithm 4.

Algorithm 4 A simple heuristic to match high utilization logical core to low leaky
physical core.

1: M = ∅; // M is the mapping solution space
2: LC = The sorted list of Ali,j ∈ Alx×y, i = 0, ..., x − 1; j = 0, ..., y − 1 by their

utilizations based on nominal design in decreasing order;
3: LP = The sorted list of Api,j ∈ A

p
m×n by ∆ij

leak, i = 0, ...,m − 1; j = 0, ..., n − 1
in increasing order;

4: for i = 0 to sizeof(LC)− 1 // for each logical core in the sorted list do
5: if The utilization assigned to LC(i) > 0 then
6: M =M+ {LC(i)→ LP (i)};
7: end if
8: end for
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Algorithm 4 sorts the logical cores based on the assigned utilizations and the

physical cores based on their leakage variations. Then, a physical core is mapped

one by one to a logical core according to these two lists. The complexity of the

algorithm mainly comes from sorting of the two lists. We assume the physical

mesh is larger than the logical mesh. Therefore, the complexity of Algorithm 4 is

O((m× n)log(m× n)).

Algorithm 4 is fast and intuitive, but it has several issues. First, Algorithm 4

does not take the heat transfers from neighboring cores into account. In general,

high utilization schedule can result in lower peak temperature when executed on a

less leaky core. However, if several such cores are very close to each other, allocating

high utilization schedules to these cores can result in high chip temperature. Second,

utilization defined in this work is more related to the average power consumption.

In fact, temperature varies more closely with power density rather than the average

power consumption. In what follows, we develop two approaches to address these

problems.

4.4.2 Hot-Cold Swapping

Given the nominal design, we can calculate the steady-state temperature for

each core by the method we proposed in Section ??, based on which we can easily

calculate the peak temperature when temperature reaches the stable status. By

calculating the peak temperature, this method avoids the pitfall in the previous

method to identify the peak temperature based on the schedule utilization. Then,

Hot-Cold Swapping algorithm swaps the physical to logical topology between the

hottest and coldest cores as shown in Algorithm 5. Similar to the principle for the
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Algorithm 5 Hot-Cold swapping.

1: Initialize M; // by initial mapping algorithm or Algorithm 4
2: while User defined stop criteria not satisfied do
3: Calculate T = {T1, T2, ..., Tm×n}, where Ti is the steady-state temperature of

core i in M;
4: Almax = The logical core with maximum temperature Tmax = max(T);
5: Almin = The logical core with minimum temperature Tmin = min(T);
6: //Swap the mapping between Almax and Almin
7: LC(Almax)→ LP (Almin);
8: LC(Almin)→ LP (Almax);
9: Denote the new mapping as M′;
10: Calculate T’; // steady-state temperature of new mapping M′

11: end while

“heat-and-run” heuristic [63], this method always exchanges the voltage schedules

for the hottest/coldest cores, with the expectation that the heat across the chip can

be spread and balanced in the entire chip until certain criteria (such as a pre-set peak

temperature limit or loop counts) are reached. The complexity of Algorithm 5 is

mainly from calculating the stable status temperature according to equation (4.24).

Note that the dimension of matrix Aκq is (x × y) × (x × y). Since the complexity

for the straightforward implementation of the matrix multiplication and inversion

are both O(n3) for n× n matrices, the complexity for each iteration in Algorithm 5

is O(s× (x× y)3) where s is the number of scheduling points for S(t).

While the Hot-Cold Swapping algorithm is simple, it does not necessarily reduce

the peak temperature when swapping the schedules on a pair of hot/cold cores each

time. The problem with this is that this approach does not take the heat transfers

into consideration. Consider a core with light workload but surrounded with high

workload cores and thus becomes the hottest core. When changing the schedule

of it with other cold cores of lower temperature but higher workload, the peak

temperature can become even higher.
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4.4.3 Enhanced Hot-Cold Swapping

To solve the problem for Hot-Cold Swapping, we develop an Enhanced Hot-Cold

Swapping as shown in Algorithm 6. The major difference between the two algo-

rithms is that, in our enhanced hot-cold swapping algorithm, we tentatively swap

the hottest and coldest cores. The swapping is accepted only when the new peak

temperature is lower than the original one. If the peak temperature of the new map-

ping is higher than the initial mapping, we search for the core with second minimum

temperature and swap it with the hottest core, until we can find such a swapping

that reduces the peak temperature or we have exhausted all the possibilities. In

the worst case, there are (m × n) − 1 pairs of processor to be tested. Therefore,

the complexity to run one iteration of Algorithm 6 is O(s × (m × n) × (x × y)3),

where s is the number of scheduling points for S(t), (m × n) is the matrix size for

the physical topology, and (x× y) is the matrix size for the logical topology. By en-

suring the peak temperature non-increasing, Enhanced Hot-Cold Swapping heuristic

can be more effective in guiding the search process to identify the good physical to

logical topology mapping. In the next section, we use experiments to evaluate the

performance of these algorithms.

4.5 Experimental Results

In this section, we perform three sets of experiments. First, we compare the peak

temperature differences between with and without heterogeneity-aware approaches.

Second, we study the performances of three approaches presented in Section ?? and

compare our algorithms with nominal design and the optimal solution exhaustive

search which enumerates all the possibilities. The last experiment is to compare the

computation costs between different algorithms.
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Algorithm 6 Enhanced Hot-Cold swapping.

1: Initialize M; // by initial mapping algorithm or Algorithm 4
2: Λ = 0;
3: Calculate T = {T1, T2, ..., TP}, where Ti is the steady-state temperature of core
i in M;

4: T ∗ = T ;
5: while Λ < ε // user defined threshold do
6: Almax = The logical core with maximum temperature T ∗max = max{T ∗};
7: Almin = The logical core with minimum temperature T ∗min = min{T ∗};
8: //Swap the mapping between Almax and Almin
9: LC(Almax)→ LP (Almin);
10: LC(Almin)→ LP (Almax);
11: Denote the new mapping as M′;
12: Calculate T ′; // steady-state temperature of new mapping M′

13: if (max{T ′} ≥ max{T ∗}) then
14: T ∗ = T ∗ − {T ∗min};
15: else
16: if (T ∗ == {T ∗max}) then
17: break;
18: else
19: M =M′;
20: Λ = max{T}−max{T ′}

max{T} ;
21: end if
22: end if
23: end while

4.5.1 Experimental Setup

In our simulation study, the multi-core platform consists a 2-D 3 × 3 mesh. We

adopt the processor model from [111], each core supports 15 active modes with

supply voltages ranging from 0.6V to 1.3V with step interval of 0.05V while the

maximum frequency is generated as normal distribution and the frequency of each

running mode is calculated accordingly [95]. For each core, we generate a static,

periodic voltage schedule. Specifically, we divide the first period into 50 state inter-

vals equally, for each state interval we randomly select one voltage mode from 0.6V

to 1.3V . After generating the voltage schedule for each core within the first period,
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we repeat the same schedule pattern for the rest of periods. As we discussed in

Section 4.2.2, the running mode of each core is constant within each state interval.

We calculate the curve fitting parameters similar to the power model discussed

in [133, 132] shown in Table I 4.0(a) and parameters from HotSpot-5.02 [149] shown

in Table I 4.0(b) which we use for temperature calculation. Leakage variations are

randomly generated as normal distribution: ∆leak ∼ N(µ, σ), where µ = 0 and

σ = 0.1 × v̄ (v̄ is the average voltage speed of Vdd(v) in Table I 4.0(a)) based

on [24, 168]. The ambient temperature is Tamb = 30◦C.

All experiments are running on a Window XP/SP3 platform powered by Intel(R)

Core(TM)2 Duo CPU @ 2.93GHz with 3.21 GB of RAM.

(a) Power/thermal parameters

Vdd(v) α β γ 
0.00 0.0 0.0 0.0 
0.60 0.2734 0.1313 16 
0.65 0.5764 0.1383 16 
0.70 0.9606 0.1457 16 
0.75 1.4508 0.1534 16 
0.80 2.0804 0.1615 16 
0.85 2.8944 0.1700 16 
0.90 3.9538 0.1789 16 
0.95 5.3415 0.1882 16 
1.00 7.1701 0.1979 16 
1.05 9.5926 0.2081 16 
1.10 12.8179 0.2188 16 
1.15 17.1306 0.2300 16 
1.20 22.9195 0.2416 16 
1.25 30.7152 0.2538 16 
1.30 41.2430 0.2665 16 

 

(b) HotSpot parameters

Vdd(v) α β γ 
0.00 0.0 0.0 0.0 
0.60 0.2734 0.1313 16 
0.65 0.5764 0.1383 16 
0.70 0.9606 0.1457 16 
0.75 1.4508 0.1534 16 
0.80 2.0804 0.1615 16 
0.85 2.8944 0.1700 16 
0.90 3.9538 0.1789 16 
0.95 5.3415 0.1882 16 
1.00 7.1701 0.1979 16 
1.05 9.5926 0.2081 16 
1.10 12.8179 0.2188 16 
1.15 17.1306 0.2300 16 
1.20 22.9195 0.2416 16 
1.25 30.7152 0.2538 16 
1.30 41.2430 0.2665 16 

 
Parameter Value 
Total Cores 9 (3×3) 

Area per Core 4 mm2 

Die Thickness 0.15 

 Heat Spreader Side 20 mm 
Heat Sink Side 30 mm 

Convection Resistance 0.1 K/W 
Convection Capacitance 140 J/K 
Ambient Temperature 30ºC 

 

Table 4.1: Experiment parameters

4.5.2 Temperature vs. Leakage Variation

In this experiment, we first study the need to take leakage power consumption

variations into consideration for temperature calculations. Utilization of each core
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Figure 4.3: Temperature comparisons between different utilizations

Ui is calculated by equation (4.3). For different utilizations, we compare temperature

differences for each core with and without leakage variations. The leakage variations

are generated according to section 4.5.1 and each test case is running for 20 rounds.

In Figure 4.3, we compare temperature differences on 5 different utilization set-

tings Ui ∈ [0.2, 0.3, 0.4, 0.5, 0.6], i = 1, 2, ...,P . X-axis represents core IDs while

Y-axis represents temperature differences between the cases with and without leak-

age variations. As indicated from the figure, with the increase of utilization, the

temperature variations for each core is also increasing. The larger the utilization is,

the larger the discrepancy in temperature calculation. For example, the tempera-

ture difference is no more than 3◦C when utilization is 0.2 while the temperature

difference can be as large as more than 10◦C when utilization is 0.6. Therefore, for

a more accurate temperature calculation and peak temperature optimization, we

need to take leakage variations into consideration.
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Figure 4.4: Peak temperature reductions normalized to initial mapping

4.5.3 Peak Temperature Minimization

Next, we study different approaches to optimize peak temperature. We randomly

generate voltage schedule for each core with utilization and they are labeled as

nominal design(Ui ∈ {[0.2, 0.3], [0.3, 0.4], [0.4, 0.5], [0.5, 0.6]}, i = 1, 2, ...,P). The

reason we limit core’s utilization to Ui = 0.6 is to satisfy the peak temperature

constraint Tmax = 95◦C in steady state (Tmax = 95◦C is the temperature threshold

we choose). We assume that the logical architecture and physical architecture are

of equal size, i.e., x = m and y = n. When the physical topology size is larger than

the logical topology size, it is not difficult to see that our heuristics can perform

better simply because of the extra resources or optimization opportunities available.

For each utilization setting, we generate 100 test cases and calculate the average

temperature reduction.

We denote our three optimization methods as SULM (the simple utilization/leakage

matching heuristic), HCS-naive (the Hot-Cold Swapping heuristic) and EHCS (the

Enhanced Hot-Cold Swapping heuristic). If no temperature reduction can be made,
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EHCS will stop. EHCS-1 refers to our Enhanced Hot-Cold swapping algorithm

with one iteration.

In Figure 4.4, we compare peak temperature reductions between SULM , HCS-

naive, and EHCS-1 to EHCS-5 with 4 different utilization settings ranging from

[0.2, 0.3] to [0.5, 0.6]. From the figure, the first conclusion we can make is that with

the increase of utilization, all heuristics can get more temperature reductions. It

is because the higher utilization we have, the more potential we may benefit from

heterogeneity-aware algorithms which try to avoid putting higher utilizations on

more leaky cores. Second, SULM performs the worst because it does not take

heat transfers between neighbors into account. HCS-naive is better than SULM

because it does consider heat transfers, but compared to EHCS, HCS-naive would

always swap the physical to logical topology between the hottest and coldest cores

regardless and it is possible that sometimes the peak temperature after swapping

is higher than the nominal design, therefore hampering its performance. From

EHCS-1 to EHCS-5, it indicates that the more iterations we run the better peak

temperature reduction we can get.

One thing we need to note is that with utilization setting of [0.5, 0.6], EHCS

can perform much better than previous settings. Higher utilization indicates that

each core has larger possibility to run at high voltage modes that are more sensitive

to core heterogeneity. Therefore, with heat transfers and leakage variations into

account, EHCS can benefit more than SULM and HCS-naive from increasing

utilization.

Another set of experiments is shown in Figure 4.5. We want to see how good

EHCS algorithm is compared to the optimal solution exhaustive search which enu-

merates all the mapping possibilities. This time we generate each core’s utilization
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Figure 4.5: Temperature reductions between EHCS and Exhaustive search

Ui ∈ [0.2, 0.6], i = 1, 2, ...,P for a more general purpose. We perform 100 test cases

for each algorithm and calculate the average.

From the figure, SULM can get 5.86◦C reduction, HCS-naive can get 8.79◦C

reduction. From EHCS-1 to EHCS-10 can get 10.16◦C all the way to 14.09◦C

reduction, while exhaustive search can get 18.99◦C reduction in average. Note that

after EHCS-5 the reduction potential is not significant. Therefore, we can choose

different iterations based on the timing and improvement we want to achieve. In

general, compared with exhaustive search, EHCS-5 algorithm only performs less

than 5◦C of difference.

4.5.4 Operational Costs

As mentioned earlier, the computation efficiency plays a vital role in topology vir-

tualization. We next study the computational cost for different approaches with

utilization setting Ui ∈ [0.2, 0.6], i = 1, 2, ...,P . For simplicity, we just compare
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Figure 4.6: Computation time differences between different approaches

from EHCS-1 to EHCS-5 to give a trend of what the timing complexity looks like.

Figure 4.6 shows the time that each algorithm takes when running only one test

case, while EHCS-1 to EHCS-5 with different iterations from one to five. From

the figure, it is indicated that the timing complexity is linearized and it is what we

expected since we need such a mapping heuristic that can perform fast and produce

relatively good results. EHCS-5, which is the most time consuming among the

five, takes about 0.64 seconds to finish. However, exhaustive search is very time

consuming, the computation complexity is O(P !) which takes 4 to 5 hours to finish

in our experiment.

4.6 Summary

The temperature minimization problem is becoming more and more critical in com-

puter system design. In the meantime, the increasing process variation for IC chips

also raise the concerns in the design of computing systems. We believe that the het-
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erogeneity caused by process variation, if utilized appropriately, can in fact improve

the design objectives of real-time applications. In this work, we develop three heuris-

tics to judiciously mirror the underlying physical architecture of an individual device

to the logical architecture with the objective of peak temperature minimization. The

proposed heuristics can achieve 14.09◦C temperature reduction in average and less

than 5◦C of difference compared with exhaustive search. Overall, our proposed al-

gorithm can be finished within 1 second (more than 104 times faster compared to

exhaustive search) which is the key to the success of optimization problems through

topology virutalization.
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CHAPTER 5

MULTI-CORE FIXED-PRIORITY SCHEDULING OF REAL-TIME

TASKS WITH STATISTICAL DEADLINE GUARANTEE

In the previous chapter, we presented a leakage-aware task re-mapping algorithm

to optimize the overall peak temperature on a multi-core platform. In this chapter,

we attack real-time scheduling on multi-core platforms under uncertainty of tasks’

execution times. Specifically, we adopt a probabilistic approach for fixed-priority

preemptive scheduling of real-time tasks on multi-core platforms with statistical

deadline miss ratio guarantee. Rather than a single-valued worst-case execution time

(WCET), we formulate the task execution time as a probabilistic distribution. We

develop a novel algorithm to partition real-time tasks on multiple homogenous cores,

which takes not only task execution time distributions but their period relationships

into considerations. Our extensive experimental results show that our proposed

methods can greatly improve the schedulability of real-time tasks when compared

with the traditional bin packing approaches.

5.1 Related Work

The traditional real-time system analysis adopts a deterministic approach, i.e. based

on deterministic real-time parameters such as the worst-case execution times (WCET),

and provides a deterministic guarantee [114, 104, 103] such that all jobs from every

single task can meet their deadlines. As the computing performance becomes less

and less predictable, such a deterministic design can lead to extremely pessimistic

design. In addition, the hard deadline guarantee may not be necessary for many soft

real-time systems that allow a portion of the jobs miss their deadlines. For example,

for aerospace industry, a probability of failure of 10−15 per hour is considered to be
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feasible compared to the maximum allowed probability of failure of 10−9 per hour

that is required by the certification authorities [2].

The probabilistic approach takes system probabilistic characteristics, such as the

execution times, into account for real-time system analysis and design to prevent

over-provisioning and, at the same time, meet real-time constraints [43]. There have

been increasing interests from real-time community on probabilistic approaches for

real-time system analysis and design. For example, Tia et al. [158] presented a

probabilistic performance guarantee for semi-periodic tasks by transforming semi-

periodic tasks into a periodic task followed by a sporadic task. Atlas et al. [14]

introduced statistical rate monotonic scheduling for periodic tasks with statistical

QoS requirements. Maxim et al. [119] proposed three priority assignment algorithms

for probabilistic real-time systems. They further improved the previous work by

proposing a framework of re-sampling mechanism that can simplify the response

time distributions in order to ease timing analysis for real-time systems in [121].

Yue et al. [117] presented a statistical response time analysis by analyzing samples

in timing traces taken from real systems. In [91], the authors proposed a stochastic

analysis framework which computed the response time distribution and deadline

miss probability for each individual task. The framework can be applied to both

fixed-priority and dynamic-priority systems on a single-core platform. The authors

in [120] extended their work to allow both task’s execution time and period to be

random variables and computed analytically the response time distribution of the

tasks on uniprocessor under a task-level fixed-priority preemptive scheduling policy.

In [16], the authors proposed a new convolution-based stochastic analysis in which

they modeled faults as additional execution time to bound the probability to exceed

a response-time value in the worst-case on single processor under fixed-priority non-

preemptive scheduling policy.
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In this work, we are interested in the problem of how to schedule a set of fixed-

priority real-time tasks with probabilistic execution times on multiple homogeneous

processing cores and satisfy the given deadline miss probabilities. We focus on fixed-

priority scheduling schemes since fixed-priority scheduling is one of the most popular

scheduling schemes in real-time system design. It has simpler implementation and

better practicability than other dynamic priority-based schedulings [20]. Given the

NP-hard nature of this problem [54], one intuitive approach is to transform the

problem into a simple bin-packing problem [84], and employ the feasibility test

methods developed in [91] to ensure the deadline miss probability guarantee.

Note that, it is a well known fact that the period relationship among tasks, if

exploited appropriately, can greatly improve the processor utilization [47, 48]. The

challenge however is how to determine if a task is more “harmonic” than another

one to a reference task if their periods are not strictly integer multiples, and their

execution times are probabilistic instead of deterministic. To this end, we develop

four novel metrics, with one improving upon another, to quantify the degree of har-

monicity between two tasks. Based on these metrics, we then develop an algorithm

that takes both the probabilistic execution times and task period relationship into

consideration to guide the partition process for periodic tasks with random execu-

tion times on multi-core platforms. We have conducted extensive simulations to

validate our approach. The experimental results show that the proposed approach

can significantly improve the schedulability of real-time tasks when compared with

traditional bin-packing approaches.

The rest of the chapter is organized as follows. In Section 5.2 we introduce

our system models and formally define our problem. In section 5.3 we present

the harmonic-aware metrics we developed. In Section 5.4 we talk about our task
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partition algorithm in detail. Section 5.5 presents the experimental results and

finally, we conclude in Section 5.6.

5.2 Preliminary

In this section we first introduce our system models such as task models and pro-

cessor models, and then we formulate the problem formally.

5.2.1 System Models And Problem Formulation

We consider a real-time system consisting of N independent periodic tasks, denoted

as Γ = {τ1, τ2, . . . , τN}, to be scheduled on a homogeneous multi-core platform,

denoted as P = {p1, p2, ...pK}, according to the Rate Monotonic Scheduling (RMS)

policy. Each task τi ∈ Γ, characterized by a tuple (Ci, Ti), where

Ci =

c1 = cmin ...ck · · · cn = cmax

Pr(cmin) ...Pr(ck) · · · Pr(cmax)

 (5.1)

representing the execution time distribution of τi. That is, the probability that

the execution time of Ci = ck is Pr(ck). For all possible values of Ci, we have

ck ∈ [cmin, cmax], where cmin and cmax are the minimum and maximum values for

Ci, and
∑n

k=1 Pr(ck) = 1. Ti is the period of task τi which is a constant value. We

assume deadline equals to period in this work, Di = Ti. Since a task’s execution time

is not unique, the response time for each job may be different. Therefore sometimes

a job may meet or miss its deadline. We formally define the concept of deadline

miss probability as follows.
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Definition 5.2.1. The deadline miss probability (DMP) of job τi,j (denoted as

DMPi,j) is the probability that job τi,j misses its deadline and can be formulated

as following:

DMPi,j = Pr(Ri,j > Di,j) (5.2)

where Ri,j is the response time distribution of job τi,j and Di,j is the deadline of job

τi,j. Accordingly, the deadline miss probability of task τi (denoted as DMPi) can be

formulated as

DMPi = max{DMPi,j}, τi,j ∈ τi, (5.3)

and the deadline miss probability for a task set Γ (denoted as DMPΓ) can be for-

mulated as

DMPΓ = max{DMPi}, τi ∈ Γ. (5.4)

Our research problem can be formulated as follows:

Problem 5.2.2. Given

• a task set consisting of N tasks, Γ = {τ1, τ2, . . . , τN},

• a multicore platform with K homogeneous processing cores, P = {p1, p2, ...pK},

• and the deadline miss probability, DMPΓ,

partition the task set Γ on the multi-core platform and schedule the tasks on each

core using RMS scheme such that the deadline miss probability constraint of the task

set is satisfied and the number of cores is minimized.

5.2.2 Motivations

One simple approach for this problem is to transform it into the traditional bin-

packing problem. Note that, with the knowledge of tasks assigned to a processing

88



core, Lopez et al. [116] proposed a method to calculate the probabilistic response

time of a job under a preemptive uniprocessor fixed-priority scheduling policy, which

can be further applied to determine if the DMP constraints can be satisfied. There-

fore, traditional bin-packing approaches such as First Fit, Next Fit, Best Fit can be

applied to assign tasks to different cores.

It is a well known fact that, for RMS, the processor utilization can reach as high

as one if the tasks are harmonic, i.e. task periods are integer multiples of each other.

For tasks that are not entirely harmonic, Fan et al. [47] showed that, if the period

relationships among tasks can be appropriately exploited, the processor utilization

can be significantly improved. Specifically, they introduce three interesting concepts,

sub harmonic task set, the primary harmonic task set and harmonic index, which

are defined as follows:

Definition 5.2.3. [47] Given a task set Γ = {τ1, τ2, . . . , τN}, let Γ̂ = {τ̂1, τ̂2, . . . , τ̂N},

where τ̂i = (Ci, T̂i), T̂i ≤ Ti, and T̂i|T̂j if Ti < Tj (a|b means ”a divides b” or ”b is

an integer multiple of a”). Then Γ̂ is a sub harmonic task set of Γ.

Definition 5.2.4. [47] Let Γ′ be a sub harmonic task set of Γ. Then Γ′ is called

a primary harmonic task set of Γ if there exists no other sub harmonic task set Γ′′

such that T ′i ≤ T ′′i for all 1 ≤ i ≤ N .

Definition 5.2.5. [47] Given a task set Γ, let G(Γ) represent all the primary

harmonic task sets of Γ. Then the harmonic index of Γ, denoted as H(Γ), is defined

as

H(Γ) = min
Γ′∈G(Γ)

∆(U ′) (5.5)

where

∆(U ′) =


U(Γ′)− U(Γ) if U(Γ′) ≤ 1,

+∞ otherwise.

(5.6)
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U(Γ) and U(Γ′) represent the utilizations of task set Γ and Γ′, respectively. We

can employ Sr or DCT algorithm [69, 70] to find all the sub-harmonic task sets with

a complexity as low as N · log(N).

When allocating tasks to processors, they either allocate a task to a processor

that can minimize the harmonic index, or pick the sub-task sets with highest degree

of harmonic and assign them to a processor.

We believe that, by exploiting the period relationships among tasks, we can also

greatly improve the processor utilization in Problem 6.2.1. The challenge is how to

quantify the degree of harmonic among different tasks with probabilistic execution

times. For tasks with deterministic execution times, according to Definition 5.2.5,

for a given reference task, a task with its original period closer to the transformed

period in its primary harmonic task set has a higher degree of harmonicity. However,

the degree of harmonicity of a task to its reference task may depend not only on its

period but its execution time distribution as well. Consider a task set with three

tasks τa = {
(

2 3
0.3 0.7

)
, 6}, τb = {

(
4 6

0.5 0.5

)
, 12}, and τc = {

(
3 7

0.5 0.5

)
, 12}. Note that

both τb and τc have the same period. If we combine τa and τb, we have DMPτa,τb

= 0. If we combine τa and τc, we have DMPτa,τc = 24.5%. Therefore, the degree

of harmonicity of a task depends not only on its period, but its execution time

distribution as well.

In what follows, we first introduce four metrics that we have developed, with each

one improving upon the previous, to quantify the degree of harmonicity between two

tasks. We then propose an algorithm that takes both the probabilistic execution

times and task period relationships into consideration to guide the partition process

for periodic tasks with random execution times on multi-core platforms.
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5.3 Harmonic Index For Tasks With Probabilistic Execu-

tion Times

In this section, we formally introduce the metrics which take harmonic relationships

into consideration to guide our allocation of tasks with random execution times.

Since not all tasks in a task set are strictly harmonic, it is desirable that we quantify

the harmonic of tasks and allocate tasks with high degree of harmonicity to the same

processor to achieve high utilization as well as high schedulability. In what follows,

we develop four metrics to measure the task harmonic relationships.

5.3.1 Mean-Based Harmonic Index

Our goal is to quantify the degree of harmonicity between two tasks. Before we

define the harmonic index for this purpose, we first introduce the following concept.

Definition 5.3.1. Given a task set Γ = {τ1, τ2, . . . , τN} and one of its primary

harmonic task set Γ′ = {τ ′1, τ ′2, . . . , τ ′N}, let τr ∈ Γ, τ ′r ∈ Γ′ and τr = τ ′r. Then τr is

called the reference task of the primary harmonic task set Γ′, and Γ′ is called the

primary harmonic task set based on τr and is also denoted as Γ′(τr).

According to Definition 5.3.1, the primary harmonic task set based on τr, i.e. Γ′(τr),

is simply the primary harmonic task set with τr unchanged.

When task execution times are probabilistic, one intuitive approach is to employ

the execution time mean and thus transform the probabilistic execution time distri-

bution into a deterministic value. The harmonic index can be therefore defined in

a similar way as that for tasks with deterministic execution times.

Definition 5.3.2. Given a task τi = {Ci, Ti} ∈ Γ and its reference task τr ∈ Γ,

let τ ′i = {Ci, T ′i} be the corresponding task of τi in Γ′(τr). Then the Mean based

91



harmonic index of task τi w.r.t. the reference task τr, denoted as Hm(τi, τr), is

defined as

Hm(τi, τr) = |Ū(τi)− Ū(τ ′i)|, (5.7)

where

c̄i =
∑

∀(ck,Pr(ck))∈Ci

ck · Pr(ck), (5.8)

Ū(τi) =
c̄i
Ti
. (5.9)

Note that τr in Equation 5.7 indicates Ū(τ ′i) is calculated under its corresponding

task set Γ′(τr).

Table 5.1: Sub harmonic task set transformations of a 4-task set

Transformed based Transformed based
on τ1 on τ2

τi (Ci, P ri) Ti T̂i Hm(τi, τ1) T̂i Hm(τi, τ2)

1
(2, 0.3)

6
6 0 5 0.09

(3, 0.7)

2
(4, 0.5)

10 6 0.3 10 0
(5, 0.5)

3
(4, 0.5)

12 12 0 10 0.083
(6, 0.5)

4
(8, 0.7)

20 18 0.032 20 0
(10, 0.3)

Let us consider the example shown in Table 5.1. A task set contains four inde-

pendent periodic tasks, each with a probabilistic execution time distribution and a

deterministic period. We transform the original task set into two primary harmonic

task sets, based on τ1 and τ2, respectively (for more details, please check [70]).

For the first primary harmonic task set which is transformed based on task τ1,
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we take τ2 as an example to show how we derive its mean-based harmonic index

Hm(τ2, τ1). According to Equation 5.7, Ū(τ2) = 0.45 and Ū(τ ′2) = 0.75. Therefore,

Hm(τ2, τ1) = |Ū(τ2) − Ū(τ ′2)| = 0.3. Then if we sort the tasks based on Hm(τi, τ1),

we have Hm(τ1, τ1) = 0, Hm(τ3, τ1) = 0, Hm(τ4, τ1) = 0.032 and Hm(τ2, τ1) = 0.3.

Then we tentatively combine task τ1 with τ3, task τ1 with τ4 and task τ1 with τ2

into a sub set, to check deadline miss probability of each individual subset. We can

get: DMPτ1,τ3 = 0%, DMPτ1,τ4 = 19.55% and DMPτ1,τ2 = 24.5%. It shows that

smaller Hm does imply better harmonic relationship between two tasks.

From Definition 5.3.2, we can see that the mean based harmonic index (Hm)

quantifies the harmonic relationship of a task to its reference task by measuring the

difference of its expected utilization with that in the primary harmonic task set.

While mean value is a good representative value for a probabilistic distribution, it

cannot capture the entire characteristics of a probabilistic distribution. Let us recall

the example shown in Sub-section 6.2.2; task τb and τc not only have the same period

but also the same mean. According to Hm, the two tasks have the same harmonic

index. However, the scheduling results are different (DMPτa,τb 6= DMPτa,τc). More

effective harmonic index needs to be developed.

5.3.2 Variance-Based Harmonic Index

From the example in the previous sub-section, we can observe that the harmonic

index depends not only on the mean value of the execution times, but also on the

variance of the execution times. It is therefore reasonable to take the variance

into consideration when designing the harmonic metric. To this end, we develop a

variance-based harmonic index as follows.
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Definition 5.3.3. Given τi ∈ Γ and its reference task τr ∈ Γ, let τ ′i = {Ci, T ′i} be

the corresponding task of τi in Γ′(τr). Then the Variance-based harmonic index of

task τi w.r.t. the reference task τr, denoted as Hv(τi, τr), is defined as

Hv(τi, τr) = Hm(τi, τr) + V ar(τi, τr), (5.10)

where

V ar(τi, τr) =

√∑
∀ck∈Ci(ck − c̄i)

2 · Pr(ck)

T ′i
(5.11)

Hv improves upon Hm by taking both the mean value of execution times as well

as their variance into considerations. For the example shown in Sub-section 6.2.2,

we have Hv(τa, τb) < Hv(τa, τc) (since Hm(τa, τb) = Hm(τa, τc) and V ar(τa, τb) <

V ar(τa, τc)) indicating that task τb is more harmonic than τc to reference task τa.

This conforms to the results from the schedulability analysis. However, there are

still problems with the proposed harmonic metric. First, it essentially implies that

both execution time mean values and variances are equally important in evaluating

the degree of harmonic. Second, again, using only mean value and its variance

cannot capture accurately the characteristics of execution time distributions. Many

execution time distributions may have the same mean value and variance but totally

different probabilistic characteristics.

5.3.3 Harmonic Index Based on Cumulative Distribution

Function

We believe that we can achieve a better correlation of harmonic index and task

schedulability if we can capture execution time distributions more accurately and

incorporate them into the harmonic index. To this end, we propose another metric

developed on the cumulative distribution function of task execution times. Before
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we present our new harmonic index, we first introduce the following concepts and

notations.

Definition 5.3.4. Given τi ∈ Γ, the cumulative distribution function of the task’s

utilization, denoted as CDFτi(x) , can be formulated as

CDFτi(x) =
Pr(Ci ≤ x)

Ti
(5.12)

Essentially, the cumulative distribution function is the utilization CDF of task

τi. Note that CDFs for τi ∈ Γ and its corresponding task τ ′i ∈ Γ are different. To

measure the ”distance”, we can use the `2-norm operation.

Definition 5.3.5. Given a vector x = [x1, x2, ..., xn], its `2-norm, denoted as ||x||,

is defined as

||x|| =

√√√√ n∑
k=1

|xk|2 (5.13)

Now we are ready to define the new harmonic index.

Definition 5.3.6. Given τi ∈ Γ and its reference task τr ∈ Γ, let τ ′i = {Ci, T ′i} be

the corresponding task of τi in Γ′(τr). Then the Cumulative distribution function

harmonic index of task τi to τr, denoted as HC(τi, τr), is defined as

HC(τi, τr) = ||CDFτi(x)− CDF ′τi(x)|| (5.14)

where x represents sampling point for the two cumulative distribution functions,

so that we can apply the above equation to measure harmonic index.

One thing to note is that for CDFτi(x) and CDF ′τi(x), they may have different

sampling points. For this case, we enumerate all the sampling points for both CDFs

to calculate HC(τi, τr).

The rationale behind the definition of Cumulative distribution function harmonic

index is that we intend to determine the degree of harmonic by measuring how
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much the task utilization distribution has changed after changing its period to be

an integer multiple of the reference task. The larger the difference, the less harmonic

the two tasks are.

As indicated in the equation, the harmonic index tries to evaluate the closeness

between two distributions by summing up the square difference of each sampling

point of the two distributions (CDFs) and then takes the root value as the final

result. Consider the same example in Table 5.1. After all the tasks have been

transformed based on the reference task τ1’s period, we calculate the harmonic

index between τi and τ1, i.e., HC(τi, τ1). In this way, we can rank the harmonic

relationships of all the tasks compared to the reference task τ1 and find out which

tasks are more harmonic to task τ1.

5.3.4 The Utilization Sum Based Harmonic Index

Note that HC determines if τi is harmonic to τr only by the “distance” of utilization

distributions of task τi in Γ and Γ′(τr). While the utilization of τi can affect the

task schedulability, the combined utilization distribution of τi and τr can be a better

indicator to the schedulability for task sets containing both τi and τr. Therefore,

to design a harmonic index that can be a more effective schedulability indicator, it

is reasonable to use the sum of utilization of both τi and τr rather than that of τi

individually.

For ease of our presentation, we first introduce the following notation. Let τi
⊗

τr

denote the convolution of Cτi and Cτr .

Definition 5.3.7. Given a task τi and a reference task τr, let CDFs for τi
⊗

τr and

τ̂i
⊗

τr be CDFτi,τr and CDFτ̂i,τr . Then the Utilization-sum-based harmonic index

of τi
⊗

τr and τ̂i
⊗

τr, denoted as HS(τi, τr), is formulated in Equation 5.15,

HS(τi, τr) = ||CDFτi,τr(x)− CDFτ̂i,τr(x)|| (5.15)
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HS can take the information of combined utilization distribution CDFτi,τr be-

tween Γ and Γ′(τr) into account. Therefore it can produce better results in terms of

harmonic relationships.

So far we have introduced all four metrics with each improving upon another.

These metrics are critical for our task partition algorithm to make mapping deci-

sions. In what follows, we present our task partition algorithm in details.

5.4 Task Partitioning Algorithm

With the harmonic indexes defined above, we are ready to introduce our task par-

titioning algorithm. Essentially, our algorithm intends to identify the tasks with

highest harmonic index values, and put them into one processor to improve the

processor utilization. To satisfy the DMP requirement, we conduct the schedula-

bility analysis based on the technique proposed in [91]. The detailed algorithm is

illustrated in Algorithm 7.

As shown in Algorithm 7, our algorithm chooses the reference task from the

first task τ1 until the last task τN . For each reference task, the rest of the tasks

are ordered according to the chosen harmonic index values, and selected from high

value to low to form a sub-task set until the DMP test is failed. After we identify

all the subsets from each primary harmonic task set, we choose the best subset and

allocate it to a processor. Then we delete these tasks from task set Γ. We repeat

this process for the rest of the tasks until all tasks are assigned.

We want to explain how we choose the best subset by an example. We are still

going to analyze the example shown in Table 5.1. Let us take task τ1 as the reference

task, then the two corresponding sub-sets: (τ1, τ3) and (τ2, τ4), respectively, are both

perfectly schedulable. Now the question is which one should we pick first in order to
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generate a better subset? The criteria here is that we want to utilize the processors

as much as possible, therefore, we would like to pick the subset with large utilization.

However, since the tasks we are discussing in this work have random execution times,

how should we define which subset has larger utilization than another?

From the task’s execution time distribution, we can easily get each task’s uti-

lization distribution. Let Ui denote the utilization distribution for task τi. For the

tasks in Table 5.1 we have U1 =
( 2

6
3
6

0.3 0.7

)
, U2 =

( 4
10

5
10

0.5 0.5

)
, U3 =

( 4
12

6
12

0.5 0.5

)
, and U4 =( 8

20
10
20

0.7 0.3

)
. The utilization distribution of a subset is the convolution of each task

within the subset. So we have U1,3 = U1

⊗
U3 =

(
0.67 0.83 1.0
0.15 0.5 0.35

)
, similarly we have

U2,4=
(

0.8 0.9 1.0
0.35 0.5 0.135

)
(transferred to decimal for better illustration). If we choose the

utilization threshold as 0.8, we can calculate that the probability that subset (τ1, τ3)

has utilization distribution greater than 0.8 is Pr(U1,3 > 0.8) = 0.85 while that for

subset (τ2, τ4)’s under the same situation is Pr(U2,4 > 0.8) = 1.0. So we will choose

subset (τ2, τ4) first because it has higher probability to have larger utilization than

subset (τ1, τ3). The threshold we choose in this work is 0.7 (higher threshold may

result in a small improvement of partitioning but more computational expense).

5.5 Experimental Results

In this section, we use experiments to investigate the effectiveness of our proposed

algorithm. Three sets of experiments are conducted. First, we compared the perfor-

mance in terms of number of cores necessary with different partitioning algorithms.

Second, we compared the success ratios by different approaches when scheduling

real-time tasks on a multi-core platform with a pre-defined core number. Finally,

we compare the computational costs of approaches with different harmonic indexes

for 8 tasks, 16 tasks, and 24 tasks, respectively.
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5.5.1 Experiment Setup

In our experiments, we randomly generated the stochastic tasks. Specifically, for

each task we generated four different possible execution times and the corresponding

probabilities (the sum of the four probabilities equals to 1). We did not make any

assumption regarding task’s execution time distribution, therefore, any distribution

can be applied. We generated the periods for all the tasks in a way that the expected

utilization of each task is evenly distributed within [0.2, 0.5].

Five different approaches were realized in our experiment, i.e., four task parti-

tioning algorithms with the four proposed harmonic indexes and one traditional bin

packing approach, first fit.

We denote our approach using mean-based harmonic index asHm, using variance-

based harmonic index as Hv, the one using cumulative-distribution-based harmonic

index as Hcdf and the last one using distribution-sum-based harmonic index as Hsum.

Then we compare the four approaches with first fit (FF ) algorithm.

Specifically, for FF approach, we sort the tasks according to their expected

utilizations and pack as many tasks as possible from the top of the task queue

one by one, until we can form a subset while meeting DMPΓ constraint. After we

successfully find a subset, we delete those tasks from the task set and repeat this

process until all the tasks have been partitioned.

5.5.2 Performance w.r.t. Number Of Cores

In this experiment, we study the performance differences in terms of number of

processors used by different approaches when scheduling given task sets. Three

different test cases were generated and tested: 8 tasks, 16 tasks and 24 tasks. For
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each test case, we randomly generated 50 task sets and set DMPΓ = 10%. The

results are shown in Figure 5.1.

From Figure 5.1, we can see that the FF algorithm always utilizes more proces-

sors than all the other approaches. This is because it does not consider the harmonic

relationships between tasks and therefore wastes processor resources. All four other

approaches, by taking the task harmonic relationship into consideration, outperform

FF significantly. It is interesting to see that the performance improvement increases

following the order of Hm, Hv, Hcdf and Hsum.

The first two approaches, Hm and Hv have low computational overhead. How-

ever, they cannot accurately capture the harmonic relationships between tasks since

they focus only on the expected values and variances of the tasks. The other two

approaches, on the other hand, are more elaborative and have higher computational

cost. However, they determine the harmonic relationship based on the entire distri-

bution of a task and therefore can result in better mappings. As a result, we can see

that, when task number is 16, the latter two approaches in average can save one core

in scheduling the same task set. Moreover, with the increase of the task number,

the flexibility to allocate tasks increases. Therefore, the performance improvement

increases. For example, for 8 tasks, the improvement is about 0.5 core savings and

for 24 tasks, the improvement becomes about 1.4 core savings.

5.5.3 Performance w.r.t. Schedulability

Next, we analyze the performance of different approaches in terms of schedulability.

That is, for a given core number and task sets, how many task sets can be successfully

scheduled. We used the same three test cases for the first experiment and set the

core number to 5, 10 and 14 for 8 tasks, 16 tasks and 24 tasks, respectively. We
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Figure 5.1: Processor usage versus task number with DMPΓ = 10%

show the results in Figure 5.2. Similar conclusions can be drawn from Figure 5.2

and Hsum has the highest scheduling rates among all five approaches. For 8 tasks,

Hsum can improve upon FF by 30% and Hm by 16%. Also, with the increase of

core numbers, the flexibility increases and therefore the performance is better. For

example when there are 24 tasks in the task set, Hsum can improve upon FF by

45% and Hm by 28%.

5.5.4 Computational Costs

Finally, we want to compare the computational costs of approaches with different

harmonic indexes. The results are shown in Figure 5.3. From the figure we can

see that the more tasks we have the more time it takes for our harmonic-indexes-

based approaches. For example, for 8 tasks, less than 4 seconds are needed for each

approach to complete its computation while for 24 tasks, the fastest completion

time is around 132 seconds (our approach with mean-based harmonic index, Hm).
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Figure 5.2: Feasible mapping percentages for different approaches

Moreover, Hcdf and Hsum have higher computational costs than Hm and Hv. Because

Hcdf and Hsum need to calculate the difference between two distributions which

takes more time compared with mean and variance calculations. Note that, FF can

finish within 3 seconds for 24 tasks. However, our approach is an off-line scheme,

the purpose is to minimize resource usage while satisfying the DMP constraints.

The computational cost is not a major concern for this study.

5.6 Summary

With the increase of performance variations in modern computer systems, it is im-

perative to adopt a probabilistic approach rather than the traditional deterministic

approach in the design and analysis of real-time systems. In this work, we develop

a novel task partitioning algorithm for fixed-priority scheduling of real-time tasks

with probabilistic execution times on a homogeneous multi-core platform with sta-

tistical guarantee. In our approach, we develop four novel metrics: mean-based,
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Figure 5.3: Computational costs of approaches with different harmonic indexes with
DMPΓ = 10%

variance-based, cumulative-distribution-based and distribution-sum-based harmonic

indexes to quantify the harmonicity among tasks, and based on these, better identify

task set allocations and improve processor utilization. We conducted extensive sim-

ulation study and the results show that our algorithms can significantly outperform

the existing approach.
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Algorithm 7 Stochastic task partitioning algorithm.
Input:
1: 1) Task set: Γ = {τ1, τ2, . . . , τN};
2: 2) Task set deadline miss probability: DMPΓ;

Output:
3: Task partitions: = {subset1, subset2, . . . , subsetK}, K is the total number of

processors.
4: while Γ 6= ∅ do
5: SubSet = ∅; //initialize the sub-set to empty
6: Probability = 0; //initialize the probability of utilization distribution of a

sub-set greater than threshold (0.7 in this case) to 0
7: Γ′ = {Γ′(τ1),Γ′(τ2), . . . ,Γ′(τL)}, // identify all the primary harmonic task

sets, where L is the total number of primary harmonic task sets. If no two
tasks such that their periods can satisfy Ti|Tj (i < j), then L = N , otherwise
L < N ;

8: for i = 1 to L // for each primary harmonic task set do
9: Γ′(τi) = {τ ′1, τ

′
2, . . . , τ

′
N} // sort the tasks with increasing order of Hm, Hv,

HC or HS

10: subseti = ∅ // initialize a sub-set for Γ′(τi)
11: for j = 1 to N do
12: subseti = subseti + τ

′
j

13: if DMPsubseti > DMPΓ then
14: subseti = subseti − τ

′
j ;

15: break;
16: end if
17: end for
18: if Pr(Usubseti > 0.7) > Probability then
19: Probability = Pr(Usubseti > 0.7);
20: SubSet = subseti;
21: end if
22: end for
23: Γ = Γ− SubSet;
24: end while
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CHAPTER 6

ON THE HARMONIC FIXED-PRIORITY REAL-TIME TASKS

WITH EXPLICIT DEADLINES

In the previous chapter, we proposed two task allocation approaches for statis-

tical real-time tasks with deadline miss probability guarantee on a multi-core plat-

form. In this chapter, we try to extend the work in Chapter 5 for tasks with explicit

deadlines. Specifically, we adopt a partitioned approach for fixed-priority preemp-

tive scheduling of real-time tasks with explicit deadlines on multi-core platforms

with timing constraint guarantees. We develop two partitioning heuristics based

on a novel metric that can quantify the degree of harmonicity between two tasks.

Our extensive experimental results show that our approach can greatly improve the

schedulability of real-time tasks when compared with existing works.

6.1 Related Work

When partition real-time tasks on multiple cores, one critical problem is how to

partition real-time tasks such that processing cores can be most effectively uti-

lized. High utilization usually implies opportunities for low implementation cost,

low power/energy consumption, and high reliability of real-time systems. However,

task partitioning is a well known NP-hard problem [38] and designers usually have

to resort to different heuristics with low computational cost. One heuristic, for ex-

ample, is simply to transform the problem into a bin-packing problem [35] and apply

different bin-packing heuristics, such as first-fit (FF), worst-fit (WF) or best-fit (BF)

to address this problem. Tasks are packed together without carefully considering

their specifications, as long as they are schedulable on a single core. In the general

case, Andersson et al [10] proved that the utilization bound for multi-core parti-

tioned approach with fixed-priority scheduling is only 50% per core.

105



It is a well-known fact that harmonic tasks [70], i.e., tasks with periods being

integer multiples of each other, can achieve high processor utilization on a single

processor. A perfect harmonic periodic task set with implicit deadlines, i.e., tasks

with deadlines equal to their periods, scheduled according to the rate monotonic

scheduling (RMS) policy is schedulable as long as its total utilization is no more

than 1. Therefore, many researchers have exploited this characteristic in developing

more resource efficient real-time scheduling algorithms. For example, Kuo et al. [100]

proposed a method to adjust loads on a single core processor by allocating harmonic

tasks together. Han et al. [70] proposed a polynomial time method to determine the

feasibility of a task set by verifying the feasibility of the corresponding harmonic

task set transformed from the original task set. They proved that any task set

that can pass the feasibility test by Liu&Layland’s bound can also be validated by

their proposed test. Recently, Bonifaci et al. [23] studied the feasibility for tasks

with explicit deadlines on a uni-processor. They proved that when all the tasks

have harmonic periods (i.e., any two tasks’ periods pairwise divide each other), an

exact polynomial-time algorithm for computing the response time of tasks can be

found for both fixed priority scheduling and dynamic priority scheduling. Nasri et

al. [127] presented a method to determine a set of harmonic periods among the

possible values for tasks to simplify the worst case timing analysis and to improve

the system utilization.

Besides extensive research on single core, there are also works that have been

conducted to explore harmonic relationship on multi-core platforms. Liu et al. [112]

studied the problem of scheduling harmonic tasks with suspensions on both unipro-

cessor and multiple processors. Fan et al. [46] proposed a partitioned scheduling

algorithm to exploit harmonic relationship for fixed priority real-time tasks on mul-

tiprocessor platform. They extended their work to semi-partitioning algorithm that
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can take advantage of harmonic relationships among tasks to improve the system

schedulability [47, 49]. Wang et al. [166] further extended the task model with sta-

tistical execution times and proposed four metrics to quantify the harmonicity of

task sets on multi-core platforms. All these works indicate that the system schedu-

lability could be significantly improved if harmonic relationships among tasks can

be exploited properly both for single core and multi-core platforms.

One great limitation of existing studies on harmonic real-time tasks is that they

target solely on periodic tasks with implicit deadlines, and schedule (largely) accord-

ing to RMS scheme. While previous work has clearly shown that taking harmonic

relationship among tasks into consideration can be extremely beneficial in devel-

oping effective scheduling algorithms, such an approach is not applicable for many

practical real-time applications [23] which can be better modeled as periodic real-

time tasks with explicit deadlines.

To overcome this barrier, we extend the concept of “harmonic” from periodic

tasks with implicit deadlines to the ones with explicit deadlines. We formally define

what it means for tasks to be harmonic from the context of periodic tasks with

explicit deadlines, scheduled according to deadline monotonic scheduling (DMS)

policy. We show that, similar to a traditional harmonic task set, a general har-

monic task set has a better schedulability than non-harmonic ones. Specifically, we

formulate two theorems to demonstrate the high schedulability of a harmonic task

set over a regular task set. To our best knowledge, this is the first research effort

that defines the “harmonic task set” for periodic tasks with explicit deadlines.

We then take task harmonic relationship into consideration to tackle the problem

of partitioned fixed-priority scheduling of real-time tasks on homogenous multi-core

platforms based on DMS scheme. Since not all tasks are perfectly harmonic, we

develop a novel metric to quantify the degree of harmonicity between two tasks.
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Based on this metric, we then develop two partitioning algorithms that can take

the harmonic relationship of tasks into consideration. Extensive simulations are

conducted to validate our research, and results show that the proposed task par-

titioning approaches can significantly improve the schedulability of real-time tasks

when compared with existing work.

The rest of the chapter is organized as follows. In Section 6.2 we introduce our

system models and formally define our problem. We then use a motivation example

to motivate our research problem. In section 6.3 we present an interesting finding for

feasibility of tasks with explicit deadlines, and based on which we introduce our defi-

nition of harmonic tasks with explicit deadlines. We introduce the metric to quantify

harmonic relationships between tasks in section 6.4. In Section 6.5 we present our

task partitioning algorithms in detail. Section 6.6 presents the experimental results

and finally we conclude in Section 6.7.

6.2 Preliminary

In this section we first introduce our system models such as real-time task models

and processor models. Next, we formulate the problem formally. We then present

a motivation example.

6.2.1 System Models And Problem Formulation

We consider a real-time system consisting of N independent periodic tasks, denoted

as Γ = {τ1, τ2, . . . , τN}, ordered by their priorities based on deadline monotonic

scheduling (DMS) policy. Assume Γ is to be scheduled on a homogeneous multi-

core platform, denoted as P = {p1, p2, ...pM}, according to DMS. Each task τi ∈ Γ

is characterized by a tuple (Ci, Di, Ti), representing the worst case execution time,
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the relative deadline and the minimal inter-arrival time (period), respectively. A

task is called an implicit deadline task when its deadline equals to its period, i.e.,

Di = Ti, and called an explicit deadline task when its deadline is smaller than or

equal to its period, Di ≤ Ti. Without loss of generality, we consider tasks with

explicit deadlines in this work.

For each task τi = (Ci, Di, Ti), we define its intensity (denoted as Ii) and utiliza-

tion (denoted as Ui) as follows.

Ii =
Ci
Di

, (6.1)

Ui =
Ci
Ti
. (6.2)

Accordingly, the utilization of a task set Γ, denoted as UΓ, is formulated as below.

UΓ =
N∑
i=1

Ui, (6.3)

When task set Γ is scheduled on a multi-core system with K cores, we define the

system utilization (denoted as Us) as

Us =
UΓ

K
. (6.4)

The problem of fixed-priority scheduling of periodic tasks with explicit deadlines

on multi-core platforms can be formulated as follows:

Problem 6.2.1. Given

• a task set consisting of N tasks, Γ = {τ1, τ2, . . . , τN},

• a multi-core platform with K homogeneous processing cores, P = {p1, p2, ...pK},

partition the task set Γ on the multi-core platform and schedule the tasks on each

core using DMS scheme such that all tasks can meet their deadlines and the number

of cores used is minimized.
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6.2.2 Motivations

A key to solve the problem stated above is to partition real-time tasks in a way

that can best utilize the processors. Consider a task set with six tasks shown in

Table 6.1.

Table 6.1: A task set with six tasks

τi Ci Di Ti Ui

τ1 1 2 4 0.25
τ2 1 3 4 0.25
τ3 1 4 6 0.17
τ4 1 5 6 0.17
τ5 7 12 29 0.24
τ6 7 12 38 0.18

One simple approach to partition the tasks above is to transform it into a tra-

ditional bin packing problem. Then we can apply heuristics such as FF, WF or BF

to partition the tasks to different cores. Let us use FF algorithm as an example.

First, we order these tasks according to the decreasing order of their utilizations,

i.e., {τ1, τ2, τ5, τ6, τ3, τ4}. Then we allocate the tasks one by one to the first core

that can accommodate the task. For the above example, we have τ1, τ2, τ3 and τ4

allocated to core 1, τ5 and τ6 allocated alone to core 2 and core 3, respectively. As

such, to schedule tasks in Table 6.1 based on FF approach, at least three processing

cores are needed.

Since harmonic tasks can better utilize a processor, an intuitive approach is

therefore to allocate tasks with same periods (or tasks with periods being integer

multiples of each other) to the same core. Specifically, for the six tasks above, we

assign task τ1 and τ2 together to one processor and task τ3, τ4 and τ5 to another

processor. Again, since task τ6 cannot be assigned to either of the two processors,
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we still have to utilize one more processor to schedule task τ6. It is not difficult to

verify that, if we assign task τ1,τ3 and τ5 to one core and τ2, τ4 and τ6 to another

core, we can feasibly schedule all six tasks in two cores.

Note that both approaches above have their limitations when considering tasks

with explicit-deadlines. The first approach depends on the order of the tasks to make

partitioning decisions while the latter only takes harmonicity of task periods into

consideration when allocating tasks to different cores. Both approaches ignore the

effects of deadline constraints for task partitioning. Also note that for a harmonic

task set with implicit deadlines, any two tasks τi and τj can be combined into one

single task τZ with TZ = max{Ti, Tj} and UZ = Ui + Uj, and thus the feasibility of

the two tasks is equivalent to that of τZ [100]. With this transformation, the entire

harmonic task set can be transformed into a task set with only one task. As long

as the utilization of this task is no more than 1, the original task set is schedulable.

However, when considering task set with explicit deadlines, such a transformation is

no longer valid. Therefore, partitioning tasks with explicit deadlines based on their

periods becomes ineffective.

We believe that, same as tasks with implicit deadlines, there must exist some

harmonic relationship among tasks with explicit deadlines, and if this relationship is

explored properly, we can greatly improve the processor utilization. The challenge

is how to identify and quantify this relationship for periodic tasks with explicit

deadlines. We discuss our approach for this problem in the sections that follow.

6.3 Harmonic Tasks With Explicit Deadlines

As discussed in Section 6.2.2, when tasks have explicit deadlines, the task set with

harmonic periods does not necessarily have a better utilization of processor. The
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question is then what type of task sets may have a better utilization? The following

example can shed some light on this question.

Table 6.2: A task set with three tasks.

τi Ci Di Ti

τ1 1 2 3
τ2 1 3 4
τ3 C3 D3 24

Consider the task set shown in Table 6.2. We assume that the execution times,

the relative deadlines and the periods for task τ1 and τ2 are given, while for task

τ3 only its period is given. Note that when we change τ3’s deadline D3, its largest

schedulable execution time C3 is also changing. The corresponding task intensity

(see equation (6.2)) also varies. Table 6.3 lists different values of D3 and corre-

sponding C3 and I3. Figure 6.1 also shows this relationship more intuitively. For

example, when we set task τ3’s deadline D3 = 8, the corresponding largest execu-

tion time that can still make task τ3 feasible is C3 = 3. Therefore, the intensity

I3 = C3

D3
= 3

8
= 0.375. As shown in both Table 6.3 and Figure 6.1, the intensity of

task τ3 does not vary with its deadline monotonically. It is interesting to note that

task τ3’s intensity achieves to its maximum when task τ3’s deadline equals to 12 and

24, or the integer multiples of task periods from τ1 and τ2. This seems to imply

that when a lower priority task’s deadline is integer multiples of all higher priority

tasks’ periods, the lower priority task may achieve its maximum intensity. It is not

difficult to see that the higher the maximum intensity a task has, the more workload

can be accommodated without compromising its deadline. The task therefore has a

better schedulability. Based on this observation, we define the concept of harmonic

tasks for periodic tasks with explicit deadlines as follows.
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Table 6.3: Intensity changes for task τ3.

D3 5 6 7 8 9 10 11 12 13 14
C3 1 2 2 3 3 3 4 5 5 5
I3 0.2 0.33 0.29 0.375 0.33 0.3 0.36 0.42 0.38 0.36

D3 15 16 17 18 19 20 21 22 23 24
C3 6 6 6 7 7 8 8 8 9 10
I3 0.4 0.375 0.35 0.39 0.37 0.4 0.38 0.36 0.39 0.42

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

 

 

Figure 6.1: Intensity varies with different deadlines.

Definition 6.3.1. Let τi and τj be two tasks with explicit deadline with Di ≤ Dj.

Then τi and τj are harmonic if

• Ti ≤ Dj and Ti | Dj (i.e., Ti divides Dj);

• Ti > Dj.

In Definition 6.3.1, if the deadline of the low priority task is the integer multiple

of the period of the high priority task, then these two tasks are harmonic. This

comes directly from the observation we introduce above. On the other hand, if the

high priority task’s period is larger than the deadline of the low priority task, we also

define the two tasks being harmonic. This is because once the execution time of the
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high priority task is given, the intensity of the low priority task varies monotonically

with its deadline, exhibiting the same behavior when the period of the high priority

task equals to the deadline of the low priority task. Accordingly, we can define the

harmonic task set for tasks with explicit deadlines as follows.

Definition 6.3.2. A task set is called a general harmonic task set, or simply har-

monic task set if any two tasks in the task set are harmonic.

From Definition 6.3.1 and Definition 6.3.2 we can see that the traditional har-

monic tasks with implicit deadlines are just special cases of general harmonic tasks.

While it is well-known that for harmonic tasks with implicit deadlines, the utiliza-

tion bound is 1, this is not true any more for a general harmonic task set. To study

the schedulability of a general harmonic task set, we have the following theorem.

Theorem 6.3.3. Let task set Γ = {τ1, τ2, . . . τi, . . . , τN} be a harmonic task set with

explicit deadlines. For τi ∈ Γ, τi is schedulable if and only if the work demand of τi

at the scheduling point t = Di, i.e Wi(Di), is no more than Di, where

Wi(t) = Ci +
i−1∑
j=1

⌈
t

Tj

⌉
Cj. (6.5)

Proof. The sufficiency of this statement is readily true. We only need to prove the

necessity of the statement. Assume that there ∃t ∈ [0, Di) such that

Wi(t) = Ci +
∑
∀j<i

⌈
t

Tj

⌉
· Cj ≤ t (6.6)

Since t < Di, t must be a scheduling point that is an integer multiple of a high

priority task’s period, e.g. Tj with j < i. Without loss of generality, let t = kTj. In
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the meantime, since τj and τi are harmonic, we have Di | Tj. Let Di = mTj, and

naturally we have m > k and Di = m
k
t. Note that

Wi(Di) = Ci +
∑
∀j<i

⌈
Di

Tj

⌉
· Cj (6.7)

= Ci +
∑
∀j<i

Di

Tj
· Cj (6.8)

= Ci +
m

k

∑
∀j<i

t

Tj
· Cj (6.9)

Since m
k
> 1, x ≤ dxe, and Wi(t) ≤ t, we have

Wi(Di) ≤
m

k
Ci +

m

k

∑
∀j<i

⌈
t

Tj

⌉
· Cj (6.10)

=
m

k
Wi(t) (6.11)

≤ m

k
t (6.12)

= Di. (6.13)

Therefore τi must be schedulable.

From Theorem 6.3.3, we can see that, similar to traditional harmonic tasks, to

check the schedulability of a task in a harmonic task set takes only linear time.

More importantly, harmonic task sets defined by Definition 6.3.1 and 6.3.2 have

better schedulability than non-harmonic ones. This conclusion is formulated in the

following theorem and proved below.

Theorem 6.3.4. Let Γ = {τ1, τ2, . . . τi, . . . , τN} and Γ′ = {τ ′1, τ ′2, . . . τ ′i , . . . , τ ′N} be

two schedulable task sets with equal utilization, i.e., UΓ = UΓ′. Assume that Γ is a

perfect harmonic task set and Γ′ is a regular task set. Let task τZ = (CZ , DZ , TZ)

be a task with priority lower than any task in Γ and Γ′. Then if {Γ′ + {τZ}} is

schedulable, then {Γ + {τZ}} must be schedulable.
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Proof. Since task τZ is feasible in task set {Γ′ + {τZ}}, there must exist a time

instance t ≤ DZ satisfy

CZ +
∑
i≤N

⌈
t

T ′i

⌉
· C ′i ≤ t. (6.14)

Since x ≤ dxe, we have

CZ +
∑
i≤N

t

T ′i
· C ′i ≤ t. (6.15)

Then divided by t for both sides, we have

CZ/t+
∑
i≤N

C ′i
T ′i
≤ 1. (6.16)

Since t ≤ DZ , we have

CZ/DZ +
∑
i≤N

C ′i
T ′i
≤ 1. (6.17)

Then we have,

CZ +
∑
i≤N

DZ

T ′i
· C ′i ≤ DZ . (6.18)

or

CZ +DZ

∑
i≤N

U ′i = CZ +DZUΓ′ ≤ DZ . (6.19)

On the other hand, in task set {Γ + {τZ}}, for τZ to be schedulable, we need

CZ +
∑
i≤N

⌈
DZ

Ti

⌉
· Ci ≤ DZ . (6.20)

Since Γ is harmonic, we have

CZ +
∑
i≤N

DZ

Ti
· Ci = CZ +DZUΓ ≤ DZ . (6.21)

Since UΓ = UΓ′ , and based on Theorem 6.3.3 and equation (6.19), {Γ′+ {τZ}} must

be schedulable.

Theorem 6.3.4 indicates that for the same task τZ , if it is schedulable with a

non-harmonic task set, it must be schedulable with a harmonic task set of the
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same utilization. Also, for a harmonic task set and non-harmonic task set, if the

corresponding tasks have the same utilizations and intensities, then if the non-

harmonic task set is schedulable, the harmonic task set must be schedulable, as

formally formulated in the following theorem.

Theorem 6.3.5. Let Γ = {τ1, τ2, . . . τi, . . . , τN} and Γ′ = {τ ′1, τ ′2, . . . τ ′i , . . . , τ ′N} be

two task sets, and let Ui = U ′i and Ii = I ′i for any τi ∈ Γ and τi ∈ Γ′. Assume Γ is

perfect harmonic. Then if Γ′ is schedulable, Γ must be schedulable.

The proof for this theorem is very similar to that of Theorem 6.3.4 and thus omit-

ted. It is not difficult to see that Theorem 6.3.5 can be applicable for traditional

harmonic tasks with implicit deadlines. That is, if a task set is schedulable, then a

harmonic task set with the same utilization must be schedulable. If tasks have ex-

plicit deadlines, however, we have to take the deadline constraints into consideration

and require their intensities are equal.

Now let us revisit the motivation example. When we partition tasks based on the

harmonic periods, three processors are needed: {τ1, τ2}, {τ3, τ4, τ5} and {τ6}. The

same task set can be scheduled using two processors: {τ1, τ3, τ5} and {τ2, τ4, τ6}. If

we pay close attention to the first subset {τ1, τ3, τ5}, we can see that τ3’s deadline

is an integer multiple of τ1’s period, and task τ5’s deadline is an integer multiples of

periods for both τ1 and τ3. Therefore this partition helps to reduce the number of

processors. Similar observation can be made from the other subset. Note that τ4’s

deadline is very close to an integer multiple of τ2’s period, and task τ6’s deadline is

integer multiples of periods for both τ2 and τ4.

As the motivation example implies, if we take the harmonic relationship into

consideration, we may significantly improve the processor utilization. At this time,

we have formulated the harmonic relationship between tasks. However, not all tasks

in a task set are perfectly harmonic. How can we quantify which tasks are more
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harmonic than others? In what follows, we first introduce a metric to quantify the

degree of harmonicity between two tasks. Based on this metric, we then propose

two algorithms to guide our partition procedure on multi-core platforms.

6.4 Harmonic Index For Tasks With Explicit Deadlines

As shown in the previous section, a harmonic task set can have better resource usage

than otherwise. However, not all task sets are strictly harmonic. Therefore, it is

desirable to develop a metric to quantify how harmonic a task set is. In this section,

we formally introduce the metric that we have developed to quantify the degree of

harmonicity between two tasks.

We quantify the harmonicity of two tasks by measuring the “distance” of a task

to the harmonic task. Before we introduce the metric in detail, we first introduce

the following definitions.

Definition 6.4.1. Given two tasks τi = (Ci, Di, Ti) and τj = (Cj, Dj, Tj) with

Di ≤ Ti ≤ Dj, the harmonic sub-task of τj with respect to τi is task τ ′j = (Cj, D
′
j, Tj),

such that D′j is the largest value with D′j ≤ Dj and D′j | Ti. On the other hand, the

harmonic sub-task of τi with respect to τj is task τ ′i = (Ci, Di, T
′
i ), such that T ′i is

the largest value with T ′i ≤ Ti and Dj | T ′i .

In other words, for the low priority task, its harmonic sub-task is the task with

exactly the same execution time and period, but the largest possible deadline (not

larger than the original one) that is perfectly harmonic with the high priority task.

On the other hand, for the high priority task, its harmonic sub-task is the task with

exactly the same execution time and deadline, but the largest possible period (not

larger than the original one) that is perfectly harmonic with the low priority task.

It is worthy of mentioning that we require the period of the low priority is no larger
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than the deadline of the high priority task, i.e., Ti ≤ Dj. We discuss the case when

Ti > Dj later. Moreover, the reason why we require the deadline (or period) of

the harmonic sub-task is no larger than the original one is that, when replacing the

original task with its harmonic sub-task and the task set is schedulable, the original

task set must be schedulable. We formulate this conclusion in the following theorem.

Theorem 6.4.2. Let Γ = {τ1, τ2, . . . τi, . . . , τN} and let τ ′i be a harmonic sub set

with respect to any task τj ∈ Γ. Then if task set {τ1, τ2, . . . τ
′
i , . . . , τN} is feasible, Γ

must be feasible.

The proof for Theorem 6.4.2 can be easily obtained by recognizing that, for

fixed-priority preemptive scheduling, increasing task period or deadline cannot com-

promise the schedulability of a task set.

Now we are ready to formally define a harmonic index to evaluate how a task is

harmonic to the other.

Definition 6.4.3. Given two tasks τi and τj with Di ≤ Ti ≤ Dj, let τ ′j (τ ′i , resp)

be the harmonic sub task of τj (τj, resp) with respect of τi (τj, resp). Then the

harmonic index of τj (τi, resp) with respect of τi (τj, resp), denoted as H(τj → τi)

(H(τi → τj), resp), is defined as

H(τj → τi) = I ′j − Ij, (6.22)

H(τi → τj) = U ′i − Ui. (6.23)

where I ′j and Ij are intensities of τ ′j and τj, respectively, and U ′i and Ui are utiliza-

tions of τ ′i and τi, respectively.

The metrics of H(τj → τi) and H(τi → τj) define how close a task is to its

corresponding harmonic sub-task in terms of intensity/utilization change. The larger

the change is, the less harmonic the task is to the reference task. Therefore a high
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harmonic index value indicates a low harmonic relationship. We also define the

harmonic index to compare the harmonicity of different pairs of tasks as follows.

Definition 6.4.4. Given two tasks τi and τj with Di ≤ Ti ≤ Dj, the harmonic

index of these two tasks, denoted as H(τj, τi) is defined as

H(τi, τj) = min{H(τj → τi),H(τi → τj)}. (6.24)

So far we have put our focus on the case when the high priority task’s period is

no larger than low priority task’s deadline, i.e., Di ≤ Ti ≤ Dj. If the high priority

task’s period is greater than low priority task’s deadline, we consider the two tasks

are perfectly harmonic. That is,

H(τj → τi) = H(τi → τj) = H(τi, τj) = 0. (6.25)

The rationale behind this definition is that, when a high priority task has a period

longer than the deadline of the low priority task, the high priority task preempts the

low priority task only one time, which is exactly the same when the high priority

task has the period equal to the deadline of the low priority task.

We can extend the definition of the harmonic index for two tasks to the entire

task set as follows.

Definition 6.4.5. Given a task set Γ = {τ1, τ2, ..., τi, ..., τN}, the harmonic index of

task τi in task set Γ, denoted as HΓ(τi), is defined as:

HΓ(τi) =
∑
τj∈Γ

H(τi, τj) (6.26)

HΓ(τi) describes the harmonic relationship of task τi in task set Γ by accumulat-

ing the harmonic index for all tasks in the task set. The smaller value means better

harmonicity of the task to be allocated along with other tasks. In what follows,

based on the metrics defined above, we proposed two algorithms to find tasks that

are closer to harmonicity to assign to the same core.
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6.5 Task Partitioning Algorithms For Tasks With Explicit

Deadlines

With the harmonic indexes we have defined in the previous section, we are now ready

to introduce our task partitioning algorithms. The goal of our task partitioning

algorithms is to identify tasks that have high harmonicity and group them into one

processor to better utilize resources. To this end, we propose two algorithms. The

first algorithm, called greedy intensity maximization algorithm (GIM), allocates one

task at a time to the core with the existing task set most harmonic to the task. The

second algorithm, called harmonic-aware clique maximization algorithm (HCM),

addresses the task partition problem from a higher perspective. It first identifies

tasks that are harmonic or close to harmonic and then assigns them to a processing

core together.

6.5.1 Greedy Intensity Maximization Algorithm

The greedy intensity maximization algorithm (GIM) is based on the harmonic index

which we have proposed earlier. The details of the algorithm are shown in Algo-

rithm 8. Given a task set and a multi-core platform, the algorithm first sorts the

tasks in Γ in non-increasing order of their utilizations. Then it allocates each task

to its best candidate processor starting from the top of the task queue. Specifically,

for each iteration, GIM calculates the harmonic index of the task to the current task

set at each core (Line 8-14), and then allocates the task to the processor that has

the minimum harmonic index, i.e., HΓpj
(τi). Exact response time analysis is used

to determine the schedulability of the task. If a task is unfeasible for all the avail-
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able processors, the algorithm returns “FAIL” (Line 16-18). Otherwise, a feasible

partition is generated (Line 20-23).

Algorithm 8 is a simple yet effective approach and the timing complexity is only

O(N2M+Nmax(D)), where N is the total number of tasks, M is the max number of

cores, and max(D) is the pseudo polynomial complexity for response time analysis.

Since Algorithm 8 allocates one task at a time, the order of the tasks also plays a key

role in the partitioning process. We sort the tasks in non-increasing order of their

utilization because it is shown that such an order can usually achieve better results.

The disadvantage of this approach is two-fold. First, since Algorithm 8 allocates one

task at a time, it can only find a local optimal with limited choices, i.e., grouping

with only tasks that have been assigned to a core. Second, the algorithm only

minimizes the harmonic index of the task to tasks allocated to a core instead of

maximizing the harmonicity of the whole task set allocated to the core. To this

end, we propose another task partitioning algorithm based on the evaluation of the

harmonicity of a group of tasks.

6.5.2 Harmonic-Aware Clique Maximization Algorithm

The second algorithm, harmonic-aware clique maximization algorithm (HCM), in-

tends to identify tasks that have high harmonicity and allocate them to a core

together. Different from GIM, HCM has more choices of tasks allocated to the same

core and therefore can potentially achieve better performance.

To identify tasks with high harmonicity, one intuitive approach is to rank the

harmonic indexes for all tasks based on each candidate task and then pick the

ones with smaller harmonic indexes. However, different from the harmonic tasks

with implicit deadlines, the general harmonic relationship is not transitive. From
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Algorithm 8 Greedy intensity maximization algorithm.
Input:
1: 1) Task set: Γ = {τ1, τ2, . . . , τN};
2: 2) Multi-core platform: P = {p1, p2, . . . , pM};

Output:
3: Task partitions: = {Γp1 ,Γp2 , . . . ,ΓpM}. // Γpi is the sub-task set on processor
pi

4: sort the tasks in non-increasing order of their utilizations;
5: for i = 1 to |Γ| // for each task in Γ do
6: flag = 0;
7: threshold = ∞;
8: temp = 0;
9: for j = 1 to M // for each processor in P do
10: if τi is feasible on pj and HΓpj

(τi) < threshold then
11: flag = 1;
12: threshold = HΓpj

(τi);
13: temp = j;
14: end if
15: end for
16: if flag == 0 then
17: break;
18: return “FAIL”;
19: else
20: Γptemp = Γptemp + τi;
21: end if
22: end for
23: return “SUCCESS” and task partitions;

Definition 6.3.1, it is not difficult to see that: if task A is perfectly harmonic to task

B, and task B is perfectly harmonic to task C, it is not necessary that task A and

task C be harmonic. Therefore, even though all tasks are selected in a way in which

they are harmonic to the same task, the tasks are not necessarily harmonic to each

other and eventually cause low resource utilization if they are allocated to the same

core.

Our HCM is inspired by the classic maximum clique problem [22], which intends

to find the largest fully connected subgraph in a graph. When different edges have

different weights, the maximum clique problem can be transformed to find the sub-
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graph with maximized/minimized total weights. In HCM, we let each task be a

node in the graph and the harmonic index be the weight for the edge connecting

two nodes. Then, the clique with the minimum total weight corresponds to the task

set with the minimum harmonic index.

The maximum clique problem is a NP-hard problem in nature and many heuris-

tics have been proposed, such as greedy algorithm, simulated annealing, neural

network, etc [22] where the timing complexity is a serious concern. In HCM, we

apply greedy-like heuristics to address this problem with a timing complexity of

O(N4), where N is the total number of tasks. The details of the algorithm is shown

in Algorithm 9.

HCM searches for a feasible clique in each iteration and returns the one with

maximum utilization (Line 6-27). Specifically, for each iteration the algorithm con-

structs cliques with tasks that are harmonic or close to harmonic. Tasks are added

to a clique until no further tasks can be added with all tasks being schedulable

(Line 13-24). Then HCM sorts all candidate cliques in non-increasing order of their

utilizations and picks the clique with the maximum utilization to allocate to a core.

The tasks in the clique are then removed from task set Γ (Line 28-29). This process

is repeated until task set Γ is empty.

6.6 Experimental Results

In this section, we use experiments to investigate the effectiveness of our proposed

algorithms. Three sets of experiments are conducted. First, we compared the perfor-

mance of different partitioning approaches in terms of acceptance ratios with respect

to different system utilizations. Second, we compared acceptance ratios with differ-

ent numbers of tasks on different processors. Third, we extended the execution time
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of each task to a statistical model and evaluated the effectiveness of our proposed

approach compared with existing works.

6.6.1 Experiment Setup

In our experiments, we randomly generated task sets based on UUniFast approach [21].

Specifically, we first fixed the total utilization, i.e., UΓ, for the target task sets. Then

for each task, its utilization Ui was generated to be uniformly distributed in the range

of [Umin, Umax]. We chose Umin to be a very small number that is greater than 0

and Umax to be different values for different experiments. The period of a task was

also randomly generated in the range of [500, 1000]. The deadline was generated

according to the ratio Di
Ti

. Finally, based on parameters defined above, we randomly

generated one task for each run and subtracted its utilization Ui from the total

utilization UΓ. Task generation terminated when UΓ = 0.

Four different approaches were realized in our experiment, i.e., two task par-

titioning algorithms introduced above, one traditional bin packing approach, i.e.,

the first fit decreasing, and the harmonic approach that does not consider deadline

constraints [70]. We denote our greedy intensity maximization algorithm as GIM ,

harmonic-aware clique maximization algorithm as HCM , first fit decreasing as FF

and the one proposed in [70] as DCT . For FF approach, we sort the tasks according

to their utilizations in non-increasing order and allocated a task to the first processor

that can feasibly schedule it. If all tasks can be allocated successfully, the algorithm

returns the schedulable task partition, and fails otherwise. For DCT approach, it

searches for a harmonic task set based on the consideration of period harmonicity.

We use the acceptance ratio to evaluate the performance of each approach, where

acceptance ratio is defined in Equation (6.27).
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acceptance ratio =
schedulable task sets

total number of task sets
(6.27)

6.6.2 Performance vs. System Utilizations

In this experiment, we studied the performance of different approaches (in terms of

acceptance ratio) with respect to different system utilizations. We chose Umax = 0.2

for illustration purposes since in many practical systems, the majority of tasks were

lightweigh. let Di
Ti

= [0.2, 1] to cover a variety of tasks. Three different test cases

with different numbers of processing cores were generated and tested: 4 processors,

8 processors and 12 processors. For each test case, we ran 1000 experiments and

calculated the average acceptance ratio for different approaches. The results are

shown in Figure 6.2.

From Figure 6.2, we can see that the two algorithms i.e., GIM and HCM , can

always achieve higher acceptance ratios than DCT and FF and the performance

improvement increases with the increase of core number. For 4-processor case,

HCM in average can achieve around 12% and 8% improvement over DCT and FF ,

respectively. For 8-processor case, HCM in average can achieve around 15% and

12% improvement over DCT and FF , respectively. For 12-processor case, HCM

has around 19% and 16% improvement over DCT and FF , respectively.

DCT is the worst approach among the four. The reason is that DCT only

considers harmonicity between tasks in terms of periods. When tasks have implicit

deadlines, DCT is an effective heuristic since periods are the sole concern when

partitioning tasks. However, when tasks have explicit deadlines, we have to take

deadlines into consideration. From the experimental results, we also found that FF

tends to perform better than DCT and has a low timing complexity. In comparison,
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GIM also has a relatively low timing complexity as FF , but it can generate more

feasible task partitions than FF does. HCM is better than all the other approaches

for the reason that it searches the harmonic tasks from the entire task set and can

best exploit the harmonic relationship among tasks.

We can also conclude from Figure 6.2 that the harmonic index we defined can

accurately reflect the harmonicity between tasks with explicit deadlines. Finally,

comparing Figure 6.2(a), Figure 6.2(b) and Figure 6.2(c), HCM can achieve better

improvements over DCT and FF as both the utilization of task set and number of

processors increase. This is because the more cores are available, the more oppor-

tunities there are for HCM to improve the performance.

6.6.3 Performance vs. Number Of Tasks

In this experiment, we studied the performance of each approach with respect to

different numbers of tasks. Specifically, we set Umax = 0.2, 0.4, 0.6 and 0.8, respec-

tively, and a task’s deadline was randomly generated between its execution time

and period. To generate a task, we first generated its period and utilization, where

Ti ∈ [500, 1000] and Ui ∈ [0, Umax]. Therefore, given the core number of a multi-core

platform, the larger that Umax is, the smaller number of tasks can be scheduled

on the platform. Next, the task’s execution time can be calculated by its period

and utilization. Finally, its deadline was generated between its execution time and

period. Three test cases were performed on 4 processors, 8 processors and 12 proces-

sors. Each case was run for 1000 times and average acceptance ratio was calculated.

The results are shown in Figure 6.3, 6.4 and 6.5.

From the experimental results shown in Figure 6.3, 6.4 and 6.5, we can make

the following observations. First, we can see that HCM algorithm always produces
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Figure 6.2: Performance vs. system utilizations
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Figure 6.3: Performance vs. number of tasks on 4 processors
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Figure 6.4: Performance vs. number of tasks on 8 processors
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Figure 6.5: Performance vs. number of tasks on 12 processors
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better results than all the others. When task utilization increases, the performance

of each algorithm decreases. Due to the reason that when we increase task utilization

range, for the same system utilization, there are less number of tasks available and

therefore less flexibility for each algorithm to find a feasible solution. Also, as the

task utilization increases, the improvement of HCM algorithm over other algorithms

decreases because of the same reason. Second, when comparing Figure 6.3, 6.4

and 6.5, we can see that the improvement of HCM algorithm on 8 processors is

better than that on 4 processors while the improvement on 12 processors is the best

of all. The reason is that HCM can better utilize the available resources to allocate

tasks than other algorithms. Third, we may notice that when the task utilization

range is [0, 0,2], the performance of all algorithms decreased except HCM algorithm

compared to the experiment in the previous subsection. For example, let us compare

Figure 6.2(c) and Figure 6.5(a). The performance of all other three algorithms has

dropped significantly while the performance of HCM is improved. The reason

is that for the previous experiment, we set deadline to period ratio as [0.2, 1].

However, in this experiment the deadline was randomly generated between execution

time and period which means deadline to period ratio was further extended. DCT

only considers period relationship, and FF makes decisions solely on utilization.

Therefore, the larger the interval between deadline and period is, the less effective

these two algorithms are. For GIM , it considers the harmonicity, but it assigns

one task at a time. As a result, it potentially has a smaller exploration space than

HCM which intends to pack tasks with close harmonic relationship into the same

core.
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6.6.4 Statistical Model Evaluation

In this subsection, we want to extend our task model from deterministic to statistical.

Specifically, we adopt a similar statistical task model as we did in the previous

chapter. Each task has four different execution times along with a probability. A

task’s deadline and period however, remain deterministic. Then, we want to compare

for a more general task model being defined in a statistical manner, the performance

of our proposed approaches and existing works. Two test cases were generated with

deadline miss probability of 5% and 10%. For each test case, a task set containing 8

tasks, 16 tasks and 24 tasks was evaluated. Specifically, a task set was generated in

a way that each task’s average utilization is in the range of [0.2,0.5]. Then the four

approaches, DCT , FF , GIM , and HCM were adopted to generate a feasible task

allocations. Furthermore, we set a core usage constraint to see if the four approaches

can generate a feasible solution using less or equal number of cores compared with

the core usage constraint. We set 4 cores for 8 tasks, 8 cores for 16 tasks, and 11

cores for 24 tasks (The core usage constraints were chosen empirically).

The results are shown in Figure 6.6. From Figure 6.6(a), when deadline miss

probability is set to 5%, we can see that DCT , which allocates tasks only according

to their period relationships, has the worst acceptance ratio among all the four

approaches. The reason is that DCT fails to take statistical information of tasks into

consideration when partitioning tasks. Note that when task models are statistical,

FF performs slightly better than GIM . The reason is that by allocating one task

at a time, GIM heuristic can only exploit a small portion of the solution space.

Moreover, the tasks are sorted according to their average utilizations and may benefit

FF approach more thanGIM approach. HCM has the best acceptance ratio among

the four since it can exploit much more solution space than all the other three and

therefore can make better use of harmonic index to partition tasks. Similarly, in
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Figure 6.6(b) the acceptance ratios are better than the results shown in Figure 6.6(a)

because the deadline miss probability is set to 10% and therefore, more task sets

can be feasible for the same number of cores.

6.7 Summary

The continued evolution of IC technology and increasing complexity of real-time

applications calls for innovative techniques to design real-time systems on multi-core

platforms. One key problem to this end is how to partition tasks in a way that can

most effectively utilize the resources. It is a well-known fact that a harmonic task set,

i.e., task periods are integer multiples of each other, can better utilize a processor

and achieve high system utilization. This feature has been exploited extensively

in developing a variety of different real-time scheduling algorithms. However, a

great limitation of these approaches is that the current definition of harmonic task

set is limited only to real-time tasks with implicit deadlines. In this work, we

extend the concept of “harmonic task set” to tasks with explicit deadlines and

show that a general harmonic task set with explicit deadlines always has a better

schedulability than a non-harmonic one. We employ this characteristic for task

partitioning on multi-core, and extensive simulation results show that our algorithms

can significantly outperform the existing approaches. As far as we know, this is the

first research that defines the “harmonic task set” for periodic tasks with explicit

deadlines. We believe that this research can greatly benefit many existing studies

on harmonic task sets with implicit deadlines.
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Figure 6.6: Deadline miss probability vs. number of tasks.
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Algorithm 9 Harmonic-aware clique maximization algorithm.
Input:
1: 1) Task set: Γ = {τ1, τ2, . . . , τN};
2: 2) Multi-core platform: P = {p1, p2, . . . , pM};

Output:
3: Task partitions: = {γ1, γ2, . . . , γK}. // K ≤ M means a feasible solution is

found
4: while Γ 6= ∅ do
5: Subset = ∅;
6: for i = 1 to |Γ| do
7: subseti = {τi};
8: Γ̂ = Γ− {τi};
9: while 1 do
10: flag = 0;
11: threshold = ∞;
12: temp = 0;
13: for j = 1 to |Γ̂| do
14: if τj is feasible in subseti and Hsubseti(τj) < threshold then
15: threshold = Hsubseti(τj);
16: temp = j;
17: flag = 1;
18: end if
19: end for
20: if flag == 0 then
21: break;
22: else
23: subseti = subseti + {τtemp};
24: Γ̂ = Γ̂− {τtemp};
25: end if
26: end while
27: end for
28: Subset = max{Usubseti}; // Usubseti is the utilization of subseti
29: Γ = Γ− Subset;
30: end while
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize our contributions presented in this dissertation.

We then discuss the possible directions for our future research work.

7.1 Summary

Driven by the need for massive performance power, multi-core platforms become

mainstream as extensive research has been conducted from both academia and in-

dustry to exploit real-time scheduling algorithms on multi-core platforms. In this

dissertation, we present our research work that has been done on real-time multi-core

scheduling at system level.

First, we presented our real-time scheduling to partition DAG on a multi-core

platform with the goal to minimize schedule length of the DAG with consideration of

process variations. We introduced a virtualization framework that we can rely on to

reconfigure the task allocations. Heuristics based on the concept of opportunity cost

were introduced in this work. From our experimental studies, the proposed approach

can achieve up to 30% and with an average of 15% of performance improvement

(i.e. schedule length) by taking advantage of the heterogeneity of each individual

platform.

Next, we extended our previous work in an attempt to address thermal issue as

well. Based on the virtualization framework that we proposed earlier, we developed a

fast temperature calculation equation given a periodic real-time schedule on a multi-

core platform. Then we proposed three heuristics to re-map the speed schedule on

each processor to minimize the overall peak temperature on chip. The proposed

heuristics can achieve 14.09◦C temperature reduction in average and less than 5◦C

of difference compared with exhaustive search. Overall, our proposed algorithm can
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be finished within 1 second (more than 104 times faster compared to exhaustive

search) which is the key to the success of optimization problems through topology

virtualization.

Then we attacked the problem of statistical scheduling from the perspective of

behavior model. We denoted each task’s execution time as a random variable in-

stead of a deterministic value. We developed a novel task partitioning algorithm

for fixed-priority scheduling of real-time tasks with probabilistic execution times on

a homogeneous multi-core platform with statistical guarantee. Four novel metrics

were proposed: mean-based, variance-based, cumulative distribution-based and dis-

tribution sum-based harmonic indexes to quantify the harmonic among tasks. Based

on the four metrics, better task set allocations can be identified and processor uti-

lization can be improved. We conducted an extensive simulation study, and the

results show that our algorithms can significantly outperform the state-of-the-art

approaches.

Finally, we extended our work to consider tasks with explicit deadlines and

develop a novel metric that can explore the harmonicity between two tasks. Then we

proposed two algorithms to partition real-time tasks with explicit deadlines on multi-

core platforms that can better identify sub-task set partitions and save processor

resource. This is the first research that defined the “harmonic task set” for periodic

tasks with explicit deadlines. We believe that this research can greatly benefit

existing research on harmonic task sets with implicit deadlines.

7.2 Future Work

Smaller feature sizes have enabled higher integration, faster switching and lower

power consumption per transistor. According to Dennard scaling [39], as transistors
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Figure 7.1: Dark silicon trends for different technology nodes [144].

get smaller, their power density remains approximately constant from one technology

node to another. However, as we advance into deep sub-macron domain, leakage

power dominates the total power consumption. As a result, threshold voltage cannot

be scaled further without impacting performance, as reducing threshold voltage leads

to exponential increase in leakage power. Therefore, the power density is trending

upwards with technology scaling. It is projected that in the future, it will be only

possible to power on a fraction of processors on a multi-core platform to satisfy the

thermal design power (TDP) constraint which is the maximum amount of power

that can be supplied to the chip to ensure that the chip will be operated within

the safe range, i.e., below the thermal safe temperature, a term referred to as Dark

Silicon Era [44, 155, 74]. Based on the information from ITRS and Intel, at the 8nm

node, more than 50% of the chip area will be dark as shown in Figure 7.1.

Process variation affects conventional multi-core design in terms of operating

frequency and leakage power dissipation. Therefore, the overall performance when

executing multiple threads on a multi-core platform is limited by the thread running

on the slowest core, and the “leaky” core (i.e., has higher leakage power consump-
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tion) is much hotter than expected, leading to a higher peak temperature. Since in

dark silicon era, only a portion of cores can be powered up at the same time, it can

mitigate the problems that are brought by process variation. For example, we can

choose which portion of cores to be powered on to meet all real-time constraints,

and in the meanwhile, optimize design objectives such as power consumption and

peak temperature.

Dark silicon is the next step that multi-core design is going to face in which only

a fraction of cores are allowed to power on in order to maintain TDP constraint.

However, it transforms variability from a concern to an opportunity that can be

exploited. Specifically, in the presence of process variation, even homogeneous cores

are heterogeneous in nature. This heterogeneity has been extensively studied in our

previous research. Along with the redundancy brought by dark silicon, it is possible

that more reliable systems can be guaranteed if we can properly extend our research

in the Dark Silicon Era. However, one major challenge is that, with tens or hundreds

of cores that are integrated on a single chip, it becomes difficult to effectively and

efficiently explore the design space so that an optimal or near-optimal solution that

is variable, reliable and thermally aware can be found.

In the future, we can extend our research on a variety of topics, such as reliability,

temperature, and energy issues that are top concerns for real-time multi-core designs.

As multi-core systems are going into dark silicon era, opportunities exist to explore

more efficient and effective real-time scheduling approaches on multi-core platforms

under uncertainty.
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