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ABSTRACT OF THE DISSERTATION 

BLACK CARBON: SOURCES, MOBILITY AND FATE IN  

FRESHWATER SYSTEMS 

by 

Sasha Wagner 

Florida International University, 2015 

Miami, Florida 

Professor Rudolf Jaffé, Major Professor 

Black carbon (BC) is a complex mixture of polycondensed aromatic compounds 

produced by the incomplete combustion of biomass during events such as wildfires and 

the burning of fossil fuels.  Black carbon was initially considered to be a refractory form 

of organic matter.  However, recent studies have shown that BC can be quite mobile and 

reactive in the terrestrial environment.  Black carbon can be translocated from soils and 

sediments in the form of dissolved BC (DBC).  A global correlation between DBC and 

bulk dissolved organic carbon (DOC) has been established for fluvial systems where 

DBC comprises approximately 10% of the total DOC pool, which suggests that DBC 

may be a significant contributor to the global carbon cycle. 

The primary objective of this thesis was to further characterize DBC and elucidate 

some of the specific physical and chemical processes that promote its transfer to the 

aqueous phase and drive the DBC-DOC relationship.  The molecular composition and 

qualitative distribution of DBC was assessed using Fourier transform ion cyclotron 

resonance mass spectrometry.  Black carbon in both dissolved and particulate (PBC) 

phases was quantified by the benzenepolycarboxylic acid method.  Dissolved BC was 
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found to contain considerable amounts of nitrogen and the export of this dissolved black 

nitrogen was linked to watershed land use in global rivers.  The riverine flux of PBC, a 

previously unstudied BC removal mechanism, was significantly increased by local 

wildfire activity.  However in-stream DBC did not appear to be affected by short-term 

fire events.  Once translocated to surface waters, DBC is susceptible to photodegradative 

processes.  Dissolved BC in high molecular weight DOC fractions was more 

photoreactive than DBC associated with lower molecular weight fractions. 

In the coming decades, wildfire frequency is expected to increase with climate 

change and natural lands will continue to be altered for anthropogenic use.  These 

processes have already been shown to significantly impact the composition of DOC and 

associated DBC exported to inland waters.  The quality of DBC influences its stability in 

soil and resistance to degradation.  Therefore, it is essential that we aim to fully 

understand DBC dynamics in natural systems in order to assess its contribution to global 

carbon cycling. 
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1.1  Introduction 

Black carbon (BC) is generated from the incomplete combustion of biomass 

during events such as wildfires and the burning of fossil fuels (Goldberg, 1985).  Black 

carbon is a complex mixture of pyrogenic biomacromolecules whose heterogeneity is 

best described using the combustion continuum model (Figure 1.1; Masiello, 2004).  The 

BC pool ranges from slightly charred biomass to soot particles with highly 

polycondensed molecular structures.  Black carbon is generally characterized as has 

having high C content with increased degrees of aromaticity.  The composition of BC is 

indicative of its original source biomass and the combustion conditions under which it 

was formed (Masiello, 2004).  Black carbon formed under mild thermal conditions can 

still retain some of the original macromolecular functionalities of the plant source 

material (Baldock and Smernik, 2002).  However, increased charring temperature 

generates more refractory forms of BC with large fused ring structures (Schneider et al., 

2010). 

Black carbon can be stabilized in the soil matrix (Glaser et al., 1998; Schmidt et 

al., 1999; Skjemstad et al., 1999), where it was thought to persist for thousands of years.  

Therefore, BC was largely considered to be a global carbon sink as a result of its 

seemingly long residence time in soils.  However, an apparent imbalance exists between 

production and loss processes of for BC in terrestrial systems.  If it is assumed that the 

rate of BC production via biomass burning has remained constant for the last tens of 

thousands of years, then BC should comprise 25 – 125% of the total soil organic carbon 

(OC) pool (Masiello and Druffel, 2003; Masiello, 2004).  Such high percentages of BC 

seem to be unreasonably high and it is obvious that soil OC cannot consist entirely of BC.   
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Figure 1.1  The BC combustion continuum (from Masiello, 2004) 
 
 

 
Figure 1.2  Correlation between DBC and DOC concentrations in global river systems 
(from Jaffé et al., 2013) 
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Major et al. (2009) found that 20 – 53% of applied BC was somehow removed from 

surface soils but could not be explained by mineralization processes or transfer to deeper 

soil horizons.  These findings indicated that other significant BC removal mechanisms 

indeed exist, but were unable to be identified at the time. 

Recent studies have shown that BC turnover rates in soils can occur on much 

shorter timescales than previously thought (Singh et al., 2012).  Black carbon can 

undergo both biotic and abiotic oxidation processes (Cheng et al., 2006) where the 

addition of polar functional groups to its fused ring structure seems to enhance its 

solubility (Abiven et al., 2011).  As such, a significant portion of soil BC can be 

mobilized and transported as dissolved BC (DBC).  Approximately 26.5 million tons of 

DBC are exported annually via rivers (Jaffé et al., 2013).  It is believed that the transport 

of soluble charcoal may be a significant loss process for BC in terrestrial systems, 

thereby adding a missing piece to the global pyrogenic carbon cycle.  In fluvial systems, 

DBC has been shown to strongly correlate with bulk dissolved OC (DOC) on a global 

scale (Figure 2; Jaffé et al., 2013), which suggests that the degradation and release 

processes for DBC and DOC are somehow inter-related.  However, little is known about 

the exact physico-chemical mechanisms that control DBC export from soils and facilitate 

its interaction with bulk dissolved organic matter (DOM). 

Inland waters cover a relatively small proportion of the Earth’s surface, however 

they are key contributors to the transformation and cycling of DOM, and associated 

DBC, on a global scale (Cole et al., 2007; Battin et al., 2008; Jaffé et al., 2013).  

Extensive connectivity exists between rivers and the landscapes they drain.  Therefore, 

DBC and other DOM components can be used to assess how basin characteristics, such 
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as land use and wildfire activity, can impact fluvial health (Degens et al., 1991; Richey et 

al., 2004).  While it has been well-established that anthropogenic activities increase 

nutrient export to inland surface waters (Scott et al., 2007; Wilson and Xenopoulos, 2009; 

Mattson et al., 2009), it is not yet known how humans may impact the composition of the 

DBC pool via processes such as urbanization and agricultural development.  Wildfires 

are ubiquitous across landscapes (Korontzi et al., 2006) and can significantly alter the 

geomorphology and hydrology of watersheds in which they occur (Shakesby and Doerr, 

2006 and references therein).  Surprisingly, recent fire activity does not seem to impact 

the export of DBC (Ding et al., 2013; Myers-Pigg et al., 2015), however DBC can 

continue to be measured in rivers decades after large burn events (Dittmar et al., 2012).  

The continued export of DBC over time suggests that in-soil aging and oxidation of BC 

may be a prerequisite to its export in the dissolved phase (Abiven et al., 2011). 

 
 
 

 
Figure 1.3  Mobilization and reactivity of DBC during transport from terrestrial to marine 
systems (from Masiello and Louchouarn, 2013) 
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Once DBC enters aquatic systems, it is subject to a variety of degradative and 

removal processes that can alter the residence time of this refractory DOM component in 

terrestrial systems (Figure 3; Masiello and Louchouarn, 2013).  Dissolved BC likely 

interacts with other DOM structures via participation in supramolecular assemblies 

(Simpson et al., 2002; Piccolo, 2001) and can be preferentially removed or chemically 

altered through photodegradative processes (Stubbins et al., 2010; 2012).  Condensed 

aromatic DOM components have also been shown to co-vary with humic-type substances 

(Stubbins et al., 2014).  Therefore, DBC may be susceptible to environmental processes, 

such as flocculation or adsorption, which influence the mobility of other portions of the 

hydrophobic, aromatic DOM pool (Uher et al., 2001; Kothawala et al., 2012). 

The primary objective of the present work was to elucidate some of the specific 

physical and chemical processes that promote the translocation of DBC to the aqueous 

phase and drive the DBC-DOC relationship.   Ultrahigh-resolution mass spectrometry 

was carried out to obtain molecular-level information for DBC (Dittmar and Koch, 2006) 

and the broader DOM pool (Kujawinski, 2002; Sleighter and Hatcher, 2007).  The 

assignment of specific molecular formulae to mass spectral peaks allowed for the 

assessment of heteroatomic contributions, such as nitrogen, to the DBC pool.  “Black 

nitrogen” (BN) is formed during the burning of nitrogen-rich biomass (Knicker, 2007; 

2010) and may influence the lability of BC (de la Rosa and Knicker, 2011).  Tandem 

mass spectrometry was carried out to obtain structural details for dissolved BN (DBN) 

leached from soils and char (Chapter II).  Little is known about the origins and 

biogeochemical processing of DBN in terrestrial aquatic systems.  Therefore, the 

contribution of DBN and other heteroatomic components to the DOM signature was 
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assessed to link the impacts of land use to DBC quality in global rivers (Chapter III).  

Dissolved BC was quantified by measuring benzenepolycarboxylic acids (BPCAs), 

molecular markers generated during the chemo-thermal oxidation of polycondensed ring 

structures (Dittmar, 2008; Ding et al., 2013).  The BPCAs are benzene rings 

polysubstituted with three (B3CA), four (B4CA), five (B5CA) or six (B6CA) carboxylic 

acid groups.  Large BC molecules typically generate greater proportions of B5CA and 

B6CA (Dittmar, 2008).  The export of DBC via inland waters is a significant removal 

process of BC from fire-affected systems (Jaffé et al., 2013).  However, it is not known 

how burn events impact the transfer of BC in the particulate phase (PBC) to fluvial 

systems.  The flux of both PBC and DBC was compared for a wildfire-impacted 

watershed to assess the nature of the relationship of BC mobilization in the particulate 

and dissolve phases (Chapter IV).  Once DBC enters the dissolved phase, it is strongly 

related to DOC (Jaffé et al., 2013).  The observed DBC-DOC correlation may be 

controlled by DOM supramolecular assemblies (Simpson et al., 2002; Piccolo, 2001) 

which possibly influence the lability and mobilization of DOM-associated DBC 

throughout the water column.  Dissolved BC is preferentially removed from the bulk 

DOC pool when exposed to sunlight (Stubbins et al., 2012), however it is unknown how 

such photodegradative processes impact supramolecular interactions between DBC and 

DOM.  Therefore, the photoreactivity of DBC along the DOM molecular weight 

continuum was assessed (Chapter V).  It is essential that we aim to constrain DBC 

dynamics in order to accurately assess its reactivity in natural systems and overall 

contribution to global carbon cycling. 
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2.1  Abstract 

Combustion produces a complex mixture of polycondensed aromatic compounds 

known as black carbon (BC). Such products can become remobilized from char and soil 

in the form of dissolved BC (DBC). Ultrahigh-resolution Fourier transform ion cyclotron 

resonance mass spectrometry (ESI–FT-ICRMS) analysis of a variety of soil and char 

leachates showed that a significant proportion of DBC compounds contained one or more 

nitrogen atoms. While the presence of black nitrogen (DBN) in dissolved organic matter 

(DOM) has been reported, its molecular features were uncharacterized. Results of the FT-

ICRMS characterization of DBN is presented, where assigned formulae were validated 

on the basis on their 13C isotope signatures and fragmentation patterns obtained via 

collision induced dissociation. Possible chemical structures were assigned for several 

DBN formulae and suggest that nitrogen was incorporated into the core ring system as a 

pyrrole-type moiety. Most DBN compounds existed as part of homologous series where 

homologs differed by a mass corresponding to CO2, suggesting that they were 

polysubstituted with carboxylic acid groups. The environmental contribution of such 

novel, aromatic, combustion-derived nitrogen compounds with respect to global nitrogen 

cycling remains elusive. The biogeochemical implications of the input of such fire-

derived products to aquatic ecosystems as part of climate change therefore need to be 

assessed. 

 

2.2  Introduction 

Black carbon (BC) results from partial combustion of organic matter (OM) during 

events such as wildfires and fossil fuel burning (Goldberg, 1985). A significant portion is 
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incorporated into soil, potentially affecting long term carbon cycling in the environment. 

It has been estimated that BC comprises between 2% and 45% of soil organic carbon 

(OC; Glaser et al., 1998, Schmidt et al., 1999 and Skjemstad et al., 1999) and it was 

initially thought to be refractory, persisting in soils for thousands of years. Recent studies 

have shown, however, that turnover rates can occur on much shorter timescales (Singh et 

al., 2012 and references therein) and a significant portion of BC (char) is solubilized and 

exported as dissolved BC (DBC; Jaffé et al., 2013). To obtain a better understanding of 

the driving force behind BC stability and mobility, a deeper knowledge of its chemical 

characteristics is necessary. 

Many studies have focused on characterizing and quantifying the polycyclic 

aromatic portion of DBC (Kim et al., 2004, Dittmar and Paeng, 2009, Dittmar et al., 2012 

and Ding et al., 2013). Pyrogenic OM is considered a heterogeneous mixture of 

thermally-altered biomacromolecules with considerable N, O and S content (Knicker, 

2007). During biomass burning, most organic N is believed to become incorporated into 

the BC pool in the form of heterocyclic aromatic N (Knicker et al., 1996). Black nitrogen 

(BN) is generated through the charring of N-rich biomass sources such as plants and leaf 

litter and is likely to be more refractory than its proteinaceous precursor material 

(Knicker, 2007 and Knicker, 2010). However, BN may be more susceptible to chemical 

and biological transformation in the environment than bulk BC due to its heteroatomic 

nature. Then again, N-rich char is less resistant to oxidation than cellulose char and can 

easily become bioavailable for plant uptake in soil (Knicker, 2010 and de la Rosa and 

Knicker, 2011). There is also evidence that BN is mobilized from soil and solubilized as 

dissolved BN (DBN; Maie et al., 2006 and Ding et al., 2014). This suggests that charcoal 
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containing a large portion of BN may be more dynamic than previously thought and 

could contribute significantly to the global cycling of N. 

Little is known about the structure of DBN compounds. Aromatic N in soil humic 

acids has been detected with X-ray photoelectron spectroscopy (XPS; Abe and Watanabe, 

2004) and attributed to the presence of DBN (Maie et al., 2006, Jaffé et al., 2012 and 

Ding et al., 2014). In another study, however, similar signals were interpreted solely as 

ammonium and amide functionalities (Monteil-Rivera et al., 2000). While the application 

of XPS for determining DBN provides the relative contribution of heterocyclic N to the 

dissolved organic N (DON) pool, it is limited with regard to structural assignment. 

Evidence of increased heterocyclic N with progressive burning of plant biomass was 

observed by Knicker et al. (1996), using solid state 15N nuclear magnetic resonance 

(NMR) spectroscopy. More recent studies have also suggested that pyrogenic N is 

incorporated into charcoal-derived compounds in the form of pyrrole-type functionalities 

and, to a lesser extent, pyridine-type moieties (Knicker et al., 2008 and Knicker, 2007). 

Although NMR consistently allows detection of heterocyclic N, its sensitivity is 

relatively low (Smernik and Baldock, 2005) and it is unable to provide detailed 

information about the structural characteristics of individual compounds in a mixture. 

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) offers 

detailed compositional and structural information about complex dissolved OM (DOM) 

mixtures (Kujawinski, 2002, Dittmar and Koch, 2006, Sleighter and Hatcher, 2007 and 

Dittmar and Paeng, 2009). Ultra-high resolution and mass accuracy with an error < 1 ppm 

allow calculation and assignment of molecular formulae to resolved peaks in DOM 

(Stenson et al., 2003 and Koch et al., 2005). Using ultra-high resolution mass spectra and 



16 
 

assigned formulae, FT-ICRMS data can be interpreted to allow classification of groups of 

compounds based on their elemental composition and to obtain molecular “fingerprints” 

of each sample. Van Krevelen diagrams organize elemental formulae from H/C and O/C 

ratios, allowing their categorization into various molecular classes (Kim et al., 2003). 

Data can also be sorted into homologous series via Kendrick nominal mass, where 

formulae differing by the gain or loss of a specific functional group are assigned (Hughey 

et al., 2001). The aromaticity index, developed by Koch and Dittmar (2006), can be 

applied for the unambiguous assignment of aromatic and polycondensed aromatic 

structures in DOM. More recently, FT-ICRMS fragmentation studies have been carried 

out for elucidation of specific structural characteristics of selected fulvic acid compounds 

(Witt et al., 2009). 

Thus, FT-ICRMS provides a wealth of detailed molecular-level information. 

However, it has not been specifically applied for the analysis of heteroatoms in DBC. 

Fire-affected soil and char generated from N-rich biomass sources are known to contain 

significant amounts of BN (Knicker, 2007 and Knicker, 2010) and DBN has been 

suggested to be ubiquitous in DOM (Ding et al., 2014). In the present study, the presence 

of DBN was verified in water leachates from a variety of soil and char samples using FT-

ICRMS. Selected compounds were assigned molecular formulae and possible DBN 

molecular structures proposed from the fragmentation patterns. A deeper understanding 

of DBN structure and its chemistry is necessary in order to quantify pyrogenic N and to 

model its mobility and fate in environmental systems. 
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2.3  Methods 

2.3.1  Sample collection 

Four soil samples were obtained from locations with a known history of wildfires 

or biomass burning. Surface peat soil (SRS2S) was collected from the Shark River 

Slough area of the Florida Coastal Everglades Long Term Ecological Research site 

(Florida, USA). The Shark River Slough receives pyrogenic input from burned sugar 

cane fields upstream and from transient prescribed fires that occur within the Everglades 

ecosystem. Surface soil was also collected at the location of a historic charcoal blast 

furnace site in Pennsylvania, USA (PA2S). Such furnace soil was collected from charcoal 

storage areas and is known to contain a high level of BC (Cheng et al., 2008). Surface 

soil directly impacted by the High Park wildfire (Colorado, USA) in June 2012 was 

collected 1 yr after the burn (PNAS). It represented a soil sample impacted by more 

recent biomass burning events. Topsoil from the Hubbard Brook Experimental Forest 

(New Hampshire, USA), which experienced a large wildfire during the 1920s, was also 

collected (HBRS). 

Four char samples were selected on the basis of their diverse biomass sources and 

charring conditions. Charcoal standards generated from rice straw (RICEC) and chestnut 

wood (WOODC) were obtained from the University of Zurich (Switzerland). Both chars 

were produced at < 500 °C in an O2-free atmosphere (Hammes et al., 2006). Char was 

also collected directly from a severely burned pine tree 1 yr after the High Park wildfire 

(PNAC). Though some PNAC was exposed to weathering and sunlight before collection, 

it had experienced no direct soil interaction. Char pieces were collected from the ground 

at the site of the 1920s wildfire in the Hubbard Brook Experimental Forest (HBRC). The 
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Hubbard Brook forest has experienced no additional wildfire activity since the 1920s, so 

HBRC represented an aged char sample. 

For comparison, three DOM reference samples were also analyzed for DBN. 

Marine DOM was sampled from the deep ocean in the central North Pacific (Hawaii; 

Green et al., 2014). Pony Lake fulvic acid (PLFA) and Suwannee River humic acid 

(SRHA) DOM standards were obtained from the International Humic Substances Society 

and represented microbial and terrestrial types of DOM, respectively. 

Field-collected soil and char samples were stored at −20 °C until further 

processing. Dissolved OM and char standards were stored in the dark at room 

temperature upon receipt. Frozen samples were thawed and air dried. Visible litter and 

other coarse OM was removed and samples were ground and passed through a 30 mesh 

sieve. Homogenized samples were dried overnight at 60 °C and stored in a desiccator. 

 

2.3.2  Soil and char leachates and DOM extraction 

Each dry sample (0.4 g OC) was weighed directly into pre-combusted glass 

Erlenmeyer flasks and deionized water added (150 ml). The mixture was agitated on a 

shaker table (160 rpm) in the dark at 25 °C for 72 h. Each DOM sample was dissolved in 

deionized water to a concentration of ca. 5 ppm dissolved OC (DOC) and agitated as 

described above. All mixtures were filtered through pre-combusted 0.7 μm GF/F filters, 

rinsed with 110 ml deionized water each and refrigerated until DOM extraction. 

The filtrate was acidified to pH 2 using HCl (32%) and DOM extracted using the 

method outlined by Dittmar et al. (2008). Solid phase extraction (SPE) is the most 

efficient method for complete desalting and isolation of DOM from aquatic samples. 
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Extraction efficiency is typically 60% or better on a per carbon basis (Green et al., 2014). 

Briefly, DOM was isolated from solution using SPE with a Varian Bond Elut PPL 

cartridge (5 g). The cartridge was first conditioned with high performance liquid 

chromatography (HPLC)-grade MeOH and equilibrated with MilliQ water acidified to 

pH 2 with HCl. The filtrate was allowed to pass through the cartridge via gravity and the 

sorbent was subsequently rinsed with pH 2 MilliQ water for excess salt removal before 

being dried under N2. Dissolved OM was then eluted with MeOH and stored in the dark 

at −20 °C until FT-ICRMS analysis. 

 

2.3.3  FT-ICRMS analysis: Broadband spectra 

The DOM MeOH extract was diluted to a DOC concentration of ca. 20 ppm in 

MeOH and MilliQ water (1:1 v/v) and passed through a Teflon filter (0.2 μm) for 

electrospray ionization (ESI). Analysis was carried out at the University of Oldenburg 

(Germany) with a Bruker Solarix 15 Tesla FT-ICRMS instrument in negative ion mode, 

with 500 scans collected per sample and a reference mass list used to calibrate each 

spectrum. Data were filtered to remove peaks that only appeared in one sample and those 

with low signal/noise ratio (< 3). Formulae were assigned using a software program that 

considered combinations of C, H, O, N, S and P and filtered to remove unlikely DOM 

molecular combinations as described by Koch et al. (2007). The modified aromaticity 

index (AI ⩾ 0.67) outlined by Koch and Dittmar (2006) was used to unambiguously 

categorize formulae with condensed aromatic structures, here referred to as DBC. 

Dissolved BN peaks were assigned as having formulae that contained one or more N 
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atoms and AI ⩾ 0.67. Isotopic simulation for select DBN peaks was carried out using the 

Bruker Daltonics Data Analysis software (Bremen, Germany). 

 

2.3.4  FT-ICRMS analysis: Collision-induced fragmentation spectra 

Nominal masses of targeted DBN peaks were isolated with a focusing quadrupole 

and accumulated in a hexapole collision cell. Parent ions were fragmented via collision 

induced dissociation (CID) with Ar, where the resulting neutral mass losses gave insight 

into the initial molecular structure. Fragmentation energy was optimized to yield the best 

ratio between parent and fragment ions. Spectra were calibrated using a reference mass 

list containing calculated exact masses of the parent ion and measured fragments after 

neutral losses. Molecular formulae were assigned and filtered as described previously. 

Structural information was obtained by identifying fragment peaks and calculating exact 

masses of neutral losses. 

 

2.4  Results and Discussion 

2.4.1  Overview of broadband mass spectra 

The samples covered a wide range of DOM types derived from the deep ocean, 

microbial sources, terrestrial sources, soils and char. Electrospray ionization is the 

method of choice for analysis of polar compounds (Gross, 2011), including those within 

the DOM pool. As with any method employed for DOM characterization, ESI–FT-

ICRMS has an analytical window, and not all compounds in the DOM pool may be 

represented in the MS trace. Ionization efficiency varies between different dissolved 

compounds, so peak detection and height may not directly reflect the relative 
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concentration of DOM components. However, this study focused on the qualitative 

characterization of DBN, so differences in molecular ionization efficiency did not affect 

the interpretation of mass spectral data. The spectrum of each sample in negative ion 

mode resolved thousands of singly charged peaks between m/z 150 and m/z 800. All 

samples contained a highly complex mixture of dissolved components with multiple 

peaks at each nominal mass. The peak distribution maximum of the eight soil and char 

leachates was shifted to smaller m/z values than deep ocean DOM, which may possibly 

be explained by the prominence of relatively large refractory thermogenic DOM found in 

marine water ( Dittmar and Paeng, 2009). 

The AI was utilized to identify potential DBC molecular formulae. Introduced by 

Koch and Dittmar (2006), it is calculated solely using assigned formulae and provides 

evidence for the existence of condensed aromatic structures (AI ⩾ 0.67). It is understood 

that it gives an insight into OM structural characteristics, but does not provide 

information about the source of these condensed aromatics. All formulae with AI ⩾ 0.67 

containing one or more N atoms were tentatively referred to as DBN, although it is 

possible that lower molecular weight compounds falling within these parameters could 

have come from biogenic sources. However, DBN formulae containing five or more 

condensed aromatic rings (20 or more carbons) were strongly indicative of pyrogenic 

sources. 

Molecular assignments and formula classifications for each sample are outlined in 

Table 2.1. Deep ocean DOM (NELHA) contained very little DBC or DBN. It initially 

appeared that PLFA contained a considerable amount of DBC and DBN but, after 

categorizing the formulae on the basis of carbon number, it was evident that the majority 
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of the polyaromatic formulae in PLFA were quite small (< 20 carbons) and therefore 

possibly of biogenic origin. The molecular signature of terrestrially-derived SRHA most 

closely resembled that of leachate DOM generated from fresh wood char. The Suwannee 

River is a black water river fed by peat swamps where refractory OM, such as BC, may 

be retained and slowly released into the main stream over time. As such, the presence of 

DBC in SRHA has been reported and quantified using the benzene polycarboxylic acid 

method (Dittmar, 2008 and Ding et al., 2013). The mass spectral variation among all 

leachates was expected since the original soil and char samples were obtained from 

differing ecosystems and OM sources. On average, soil leachates yielded spectra with 

more resolved peaks and a larger proportion of formulae with heteroatomic substitutions 

than char leachates. Soil OM (SOM) is typically more complex and yields a larger 

portion of water-soluble components than charcoal due to multiple OM inputs from both 

vegetation and soil microbial communities (Kögel-Knabner, 2002). 

 

2.4.2  Distribution and environmental significance of leachate DBN 

On average, char leachates contained fewer DBN formulae than soil leachates 

(Table 2.1). However, there was considerable variation in the spectral characteristics 

within both the soil and char leachate sampling pools. It has been reported that aged char 

in the soil environment undergoes oxidation over time, thereby increasing the polarity of 

pyrogenic OM and mobilizing it as DBC (Abiven et al., 2011). The abundance of both 

DBC and DBN formulae in the HBRC leachate (Table 2.1) likely reflected the increased 

solubility of pyrogenic OM as a result of these aging processes. The enhanced leaching of  
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Table 2.1  Molecular formula classification for DOM reference samples, soil leachates and char leachates.  Relative abundance of 
peaks assigned with DBN formulae was derived from the proportion of the sum height of DBN peak intensities to the sum height of 
all peaks within each sample. 

Sample NELHA PLFA SRHA SRS2S PA2S PNAS HBRS RICEC WOODC PNAC HBRC 

# m/z Values 5181 5582 4402 7907 8517 8292 6180 6069 5883 5272 7872 

# Assigned Formulae 4031 4474 3017 6021 5938 6034 4166 4123 3755 3673 5258 

CHO (%) 45.9 40.3 84.6 48.6 61 54.7 79.4 62.6 83.2 80.9 71.4 

CHON (%) 42.3 47.5 12.6 43.7 36.6 43 19 36.2 14.1 15.2 26.2 

CHOS (%) 8.2 9.5 1.9 6.8 1.8 2.1 0.9 1 2.1 3.2 1.4 

CHONS (%) 1.7 1.7 0.6 0.5 0.3 0.1 0.4 0 0.3 0 0.4 

# DBC Formulae 164 517 624 1318 1708 1566 842 1206 620 478 1246 

[DB]CHO (%) 37.2 22.1 70.4 35.4 46.1 38.8 66.9 47.7 81.3 70.9 58.4 

[DB]CHON (%) 62.8 76.8 25.8 63.5 52.3 60.3 30.2 51.7 16.1 29.1 39.5 

DBC ≥ 20Cs (%) 28.7 8.1 42.6 29.8 46 38.1 44.7 16.8 46.1 25.7 21.9 

DBC < 20Cs (%) 71.3 91.9 57.4 70.2 54 61.9 55.3 83.2 53.9 74.3 78.1 

# DBN Formulae 103 401 182 843 915 950 276 626 111 139 516 

DBN[1] (%) 33 28.7 87.9 48.2 54.3 51.1 74.6 63.4 82.9 87.8 67.2 

DBN[2] (%) 47.6 40.6 11.5 35.3 33.4 33.5 25 33.5 11.7 10.1 27.7 

DBN[3] (%) 17.5 28.4 0.5 15.7 11.9 14.3 0.4 2.9 0.9 0 4.5 

DBN[4] (%) 1.9 2.2 0 0.8 0.3 1.2 0 0.2 4.5 2.2 0.6 

DBN ≥ 20Cs (%) 1.9 1.7 24.2 20.9 29 26.3 19.2 27.5 15.3 1.4 31.6 

DBN < 20Cs (%) 98.1 98.3 75.8 79.1 71 73.7 80.8 72.5 84.7 98.6 68.4 

DBN Abundance (%) 0.03 2.06 0.05 6.74 6.55 24.22 0.17 4.5 0.03 0.25 0.95 
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older char could also be explained by the release of SOM previously sorbed to its surface 

during long term soil interaction (Liang et al., 2008 and Cheng et al., 2014).  Contrary to 

HBRC, RICEC was recently generated in a lab setting and was not subjected to soil 

interaction. Thus, natural aging and SOM sorption are not likely explanations for the 

equally large abundance of fire-derived formulae in the RICEC leachate sample. As 

suggested by Knicker (2007), the characteristics of BC generated by wildfires depend 

largely on the source OM. As shown in Table 2.1, ca. 40% of the DBC formulae in the 

RICEC leachate contained N. This further indicates that proteinaceous precursor OM, 

such as grass or rice straw, may generate N-rich charcoal (Knicker, 2010). Knicker et al. 

(1996) also noted that grass-derived char retained a substantial portion of carboxyl 

functionality after heating, which could explain the enhanced solubility of pyrogenic OM 

from RICEC specifically. In contrast, DOM leached from freshly-produced wood chars 

(WOODC, PNAC) contained ca. 78% fewer DBN peaks than DOM generated from grass 

char and aged wood char (Table 2.1). These results could be due to the lignin-enriched, 

N-depleted woody biomass sources and lack of exposure to soil microbial and abiotic 

oxidation after charring. 

Soil samples not only leached a greater abundance of DBN formulae, but the 

composition of these formulae also differed from those leached by char. HBRS had a 

different molecular signature compared with SRS2S, PA2S and PNAS, all of which had 

very similar spectral characteristics (Table 2.1). It was noted that HBRS contained a 

considerable amount of fine roots and organic material consistent with sampling of the 

upper organic soil horizon. The increased contribution of fresh organic material, such as 

unburned roots and leaf litter, and lack of recent fire activity in the sampling area could 
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have explained the reduced presence of pyrogenic formulae in the HBRS leachate. Not 

only did the SRS2S, PA2S and PNAS leachate DOM contain a greater abundance of 

DBN spectral peaks than the char-derived DOM, but roughly half of their DBN formulae 

contained more than one N atom (Table 2.1). Dissolved BN formulae with two or more N 

atoms may be explained by the presence of heterocyclic functionalities such as pyrazoles 

or imidazoles, which can be generated by the thermal degradation of grass or soil 

microorganisms (Schulten and Schnitzer, 1998). The diversity of BN found in fire-

affected soil originates either from the incorporation of pyrogenic OM or the charring of 

the soil itself (Knicker, 2007). Thus, the overall abundance and diversity of DBN in soil-

derived DOM was likely a result of the combination of heterogenous pyrogenic source 

material and the variety of biogeochemical processes that transformed it. 

Although the suite of soil and char leachates was relatively small, mechanisms 

controlling the transport of BN from terrigenous to aquatic systems could be tentatively 

explored on the basis of broadband mass spectral patterns. Pyrogenic source OM 

appeared to considerably contribute to the molecular composition of soluble portions of 

charcoal. Char generated from N-rich precursor material, such as grass or straw, leached 

more molecular formulae that could be classified as DBN. Freshly-produced wood chars 

rich in lignin-derived BC generated less DBN. However, the increase in leached DBN 

from aged wood chars suggested that biotic and/or abiotic oxidation may have enhanced 

the release of such materials over time. Desorption of previously sorbed DBN-containing 

DOM may have also contributed to this observation. Black N in wildfire-affected soils 

may thus originate from charred material that is subsequently incorporated into SOM or 

from the direct thermal alteration of SOM itself. The heterogeneity of the DBN pool 
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leached from these soils was a result of both the extreme diversity of source OM and the 

large variety of microbial and abiotic oxidative processes pyrogenic material undergoes. 

Broadband spectra (Fig. 2.1) and Van Krevelen diagrams (Fig. 2.2) for PNAS and 

PNAC leachates depicted the distinct differences in molecular signature between 

thermally altered soil and charcoal generated naturally from the same fire event. These 

two samples were collected on the same day from the site of a Colorado wildfire that had 

occurred 1 yr earlier. The peak distribution maximum for PNAS was shifted to smaller 

m/z values than that for PNAC (Fig. 2.1). This shift in overall apparent molecular weight 

for soil-derived DOM likely reflected the enhanced breakdown of pyrogenic and other 

soil OM through biotic and abiotic degradation. Another notable difference between these 

two leachates was that peaks at even nominal masses for PNAC had lower overall 

intensity than those for PNAS (Fig. 2.1). Formulae with odd numbers of N atoms have 

even nominal mass in negative ion mode due to the elemental exchange of CH (13 Da) 

for N (14 Da). This discrepancy at even nominal mass was in part due to the high relative 

abundance of DBN peaks in PNAS (Table 2.1). Similar trends were observed between 

the DOM spectra generated from other wood-derived chars and fire-affected soils within 

the group of samples. However, PNAS was certainly a unique leachate in the data set 

because it was the only sample to have such diverse and abundant N-containing peaks at 

even nominal mass values. Both PNAS and PA2S were selected for isotopic validation 

and fragmentation analysis due to their high relative abundance of DBN peaks (Table 

2.1). Results were reproducible for both samples, but only PNAS data are shown. 
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Figure 2.1  Broadband spectra of (a) PNAS and (b) PNAC.  Detailed views of a 20 Da 
section of (c) PNAS and (d) PNAC reveal differences in spectral peak intensities at even 
nominal masses. 
 
 

 
Figure 2.2  Van Krevelen diagrams depict the distribution of assigned formulae in (a) 
PNAS and (b) PNAC leachate samples. 
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2.4.3  13C isotopic validation 

Isotopic validation of selected peaks can provide strong support that the DBN 

formulae are indeed correctly assigned. Therefore, isotopic peaks, where the assigned 

formula substitutes one 12C for one 13C, were measured to validate several different DBN 

formulae. Six abundant DBN peaks were selected, having m/z values of 228.030229, 

360.051377, 376.046280, 404.041235, 410.051754 and 424.031026 and assigned 

formulae of C12H6NO4
-, C20H10NO6

-, C20H11NO7
-, C21H11NO8

-, C20H13NO9
- and 

C20H11NO10
-, respectively. Isotopic peaks were computer-simulated on the basis of the 

relative natural abundance of 12C and 13C isotopes. The measured 13C/12C isotopic peak 

ratio for each formula was determined and compared with the 13C/12C of simulated peaks. 

Fig. 2.3 shows the side-by-side comparison of simulated and measured isotopic DBN 

peaks for C12H6NO4
-. Simulated intensity and measured peak intensity for each selected 

m/z value and the corresponding 13C/12C ratio values are listed in Table 2.2. Average 

isotopic ratio values between simulated and measured peaks were statistically similar 

according to the Student’s t-Test (p > 0.05). Results here could be extrapolated to other 

DOM spectra where 13C isotopic peaks were not as well resolved and to other 

homologues within the same DBN series for the sample. 

 

2.4.4  Fragmentation patterns 

Masses selected for CID fragmentation were the same as those used for isotopic 

validation and were chosen from their high relative intensity in the PNAS leachate. 

Fragmentation patterns for each parent mass are shown in Fig. 2.4. Within each nominal 

  



29 
 

Table 2.2  Validation of selected DBN peaks from 13C isotopic comparison.  
Calculated Simulated Measured 

Nominal 
mass (Da) 

Neutral 
formula 

m/z (12C) m/z (13C) 12C Peak I 13C Peak I 13C/12C (%) 12C Peak I 13C Peak I 13C/12C (%) 

228  C12H7NO4 228.030229 229.033584 100.0 13.0 13.0 71.9 8.6 12.0 
360  C20H11NO6 360.051377 361.054732 100.0 21.6 21.6 8.6 1.7 19.9 
376  C20H12NO7 376.046280 377.049635 100.0 21.6 21.6 13.4 2.1 15.9 
404  C21H12NO8 404.041235 405.044590 100.0 22.8 22.8 10.1 2.0 19.6 
410  C20H14NO9 410.051754 411.055109 100.0 21.6 21.6 8.4 1.4 16.7 
424  C20H12NO10 424.031026 425.034381 100.0 21.8 21.8 9.4 1.6 17.0 

 
 

   

Figure 2.3  Isotopic validation of DBN 
formulae in PNAS leachate.  Measured 
intensities of (a) 12C and (b) 13C monoisotopic 
peaks are compared to simulated (c) 12C and 
(d) 13C monoisotopic peaks. 
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mass, the selected DBN peak was the most abundant for all masses with one exception. 

The DBN peak at m/z 360.051377 had the second highest intensity at nominal mass 360 

Da. All six parent ions had similar neutral losses and general fragmentation patterns. 

Losses of CO2 and CO were the most common among all isolated peaks. Neutral losses 

of H2O and CH3OH were also observed. Similar neutral loss patterns for O-containing 

functionalities have been observed in other DOM components such as fulvic acids (Witt 

et al., 2009). No losses of N-containing functionalities were observed, strengthening 

support for the stable incorporation of N into the polyaromatic core structure of DBN 

compounds. 

 An example of neutral mass losses for parent ion at m/z 410.051754, with formula 

C20H13NO9
-, is shown in Fig. 2.5. Oxygen was determined to be present predominantly in 

the form of carboxylic acid groups, as evidenced by the stepwise reduction in fragment 

intensity through neutral CO2 losses. In this particular spectrum (Fig. 2.5), methoxy and 

phenolic substitutions to the core structure are also suggested due to detectable losses of 

H2O and CH3OH. The number of double bond equivalents (DBEs) was also calculated 

for each assigned formula using the number of atoms and valence of each element. DBE 

represents the degree of unsaturation and indicates the total number of rings and double 

bonds within a structure (Koch and Dittmar, 2006). Based on its fragmentation pattern, 

formula and DBE, possible parent ion structure and fragmentation pathways for 

C20H13NO9
- were outlined (Fig. 2.6). 
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Figure 2.4  CID fragmentation patterns for 6 selected DBN formulae (parent peak 
denoted with ♦) at nominal masses (a) 228 Da, (b) 360 Da, (c) 376 Da, (d) 404 Da, (e) 
410 Da and (f) 424 Da.  Most abundant peaks represent losses of carboxylic acid groups 
(CO2). 
 
 

 
Figure 2.5  Observed neutral losses during fragmentation of DBN structure at nominal 
mass 410 Da. 
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Potential neutral structures for all six fragmented DBN masses are proposed in 

Fig. 2.7. Though it should be mentioned that structural isomers can exist for the same 

formula and mass, it is emphasized that each example showed N as being incorporated 

into the condensed aromatic structure of pyrogenic OM. Nitrogen-containing neutral 

losses were not observed in any of the fragmentation patterns for the six selected DBN 

masses, which suggested that N was not present in substituted aromatic functionalities 

(such as nitrate) that are easily lost during CID (LeClair et al., 2012). The suggestion that 

N is present in pyrrolic moieties was most suitable when determining the proposed 

structures of DBN (Fig. 2.7) as compounds containing N in this form fit within the 

restrictions set by formula assignment and fragmentation spectra. It has been shown that 

polyaromatic compounds containing pyrroles can ionize more efficiently during ESI in 

negative ion mode (Purcell et al., 2007). Therefore, this study does not exclude the 

possibility that DBN compounds may also contain N in pyridinic aromatic functionalities. 

However, NMR analysis has indicated that pyrogenic structures incorporate N primarily 

in pyrrolic forms (Knicker et al., 2008). As the proposed structure for formula C20H12NO6 

suggested (Fig. 2.7), the inclusion of phenyl ether linkages is possible. Cleavage of the 

ether group occurs readily during CID fragmentation, resulting in large neutral mass 

losses (Gallart-Ayala et al., 2010). Losses suggesting phenyl ether bridges were not 

observed for any of the other selected DBN formulae. However, it was possible that some 

of these losses indeed occurred but the resulting fragments fell outside the mass spectral 

window (m/z < 180) and therefore were not taken into account during structure 

elucidation. The potential presence of a fused ring lactone was also suggested for this 

particular formula on the basis of its fragmentation spectrum and DBE, as neutral losses 
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of CO2 and CO can also be indicative of lactone functionalities and occur after cleavage 

of the heterocyclic ring structure (Li et al., 2008). 

 
2.4.5  Kendrick mass analysis 

The most abundant neutral mass loss among all six selected parent masses was 

CO2. The extent of DBN carboxylic acid substitution was further investigated using 

 
 
 

 
 
Figure 2.6  Possible fragmentation pathway of parent ion with m/z 410.051754 and 
assigned formula C20H13NO9

-.  
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Figure 2.7  Possible DBN structures based on fragmentation spectra. 
 
 
 
 
Kendrick mass analysis, where DBN homologous series were assigned on the basis of the 

Kendrick mass defect for CO2. The heavy carboxylation of DBN compounds seemed in 

agreement with observations of Kramer et al. (2004) for the analysis of BC in volcanic 

ash soil. Kendrick plots for DBN in PNAS and PNAC leachates can be found in the 

Supplementary data (Appendix 2.1). Dissolved BN formulae that differed by the exact 

mass of CO2 fell on a horizontal line separated by a nominal mass of 44 Da. Related 

formulae containing > 1 N atom (where OH is replaced by N) also fell on the same 

horizontal line, but were separated by a nominal mass of only 3 Da. In PNAS, up to six 
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formulae were assigned in one homologous series, suggesting that some DBN structures 

can be substituted with up to six or more carboxylic acid functionalities. The PNAC 

leachate contained much fewer DBN peaks than PNAS and only up to two homologs 

were observed in each series. The observation of smaller homologous series could 

possibly be attributed to increased microbial and abiotic degradation in soils (Liang et al., 

2008 and Abiven et al., 2011), resulting in the observation of partially oxidized DBN 

compounds. The degree of carboxylic substitution was also a function of molecular size. 

Dissolved BN formulae with smaller nominal mass, such as those in PNAC, likely had a 

core structure that contained up to three condensed aromatic rings. Larger nominal 

masses allowed for DBN structures with > 5 rings, offering space for multiple carboxyl 

group functionality without steric hindrance. Dissolved BN homologous series were 

observed in all eight soil and char leachates. The identification of homologous series 

provides further evidence of DBN structures where heteroatoms are incorporated into the 

aromatic core structure and are primarily substituted with O-containing functionalities. 

 

2.5  Conclusions 

The present study is the first to report the molecular composition of DBN as 

characterized with FT-ICRMS in the complex mixture of organic compounds that 

characterize natural DOM. DBN formulae were validated by comparison of the relative 

intensities of 12C and 13C DBN peaks. Possible DBN chemical structures were deduced 

from mass fragmentation patterns where pyrogenic N appeared to be incorporated into 

the condensed aromatic core structures of BC compounds in the form of pyrrole-type 

moieties. Stepwise neutral losses of CO2 and Kendrick mass analysis suggested DBN 
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molecules to also be polysubstituted with carboxylic acid moieties, and to a lesser extent 

phenolic and methoxy groups. These functionalities potentially provide the needed 

polarity to allow such structures to be present in the dissolved phase. The preliminary 

elucidation of DBN molecular structures gives important insight into its potential 

mobility and reactivity in the environment. 

As evidenced here, DBN is mobilized from soils and char and could play a 

dynamic role in aquatic systems. It was shown that > 50% of DBC formulae leached from 

some soils and char contain N, suggesting that a significant portion of DBC contains 

heteroatoms. Considering that an estimated 26.5 × 106 tons of DBC is exported globally 

by rivers per year (Jaffé et al., 2013), the flux of DBN could also be substantial. The 

proportion of soluble BN in charcoal and in fire-affected soil appears to be controlled by 

both the molecular composition of the precursor organic material and the extent of SOM 

sorption and oxidation that occur after thermal alteration. The quality of DBC, as 

evidenced by its varying N content, could greatly affect its stability in soil and resistance 

to degradation. While FT-ICRMS affords detailed information regarding DBN structure, 

a method for its quantification has yet to be developed. Further research addressing the 

reactivity and biolability of DBN is needed in order to fully realize the potentially critical 

role of its cycling on the global nitrogen budget. 
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CHAPTER III 

 

LINKING THE MOLECULAR SIGNATURE OF HETEROATOMIC DISSOLVED 

ORGANIC MATTER TO WATERSHED CHARACTERISTICS IN WORLD RIVERS 

(In review at Environmental Science and Technology) 
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3.1  Abstract 

Large world rivers are significant sources of dissolved organic matter (DOM) to 

the oceans.  Watershed geomorphology and land use can drive the quality and reactivity 

of DOM.  Determining the molecular composition of riverine DOM is essential for 

understanding its source, mobility and fate across landscapes.  In this study, DOM from 

the main stem of ten global rivers covering a wide climatic range and land use features 

was molecularly characterized via ultrahigh-resolution Fourier-transform ion cyclotron 

resonance mass spectrometry (FT-ICR-MS).  The FT-ICR mass spectral data revealed an 

overall similarity in molecular components among the rivers.  However, when focusing 

specifically on the contribution of non-oxygen heteroatomic molecular formulae (CHON, 

CHOS, CHOP, etc.) to the bulk molecular signature, patterns relating DOM composition 

and watershed land use became apparent.  Greater abundances of N- and S-containing 

molecular formulae were identified in rivers influenced by anthropogenic inputs, whereas 

rivers with primarily forested watersheds had DOM signatures relatively depleted in 

heteroatomic content.  A strong correlation between cropland cover and dissolved black 

nitrogen was established when focusing specifically on the pyrogenic class of 

compounds.  The present study demonstrated how changes in land use directly affect 

downstream DOM quality and could impact C and nutrient cycling on a global scale. 

 

3.2  Introduction 

Inland waters cover a relatively small percentage of Earth’s surface area, however 

they play a very important role in the transformation and global cycling of dissolved 

organic matter (DOM) and associated carbon (DOC).1,2  Large fluvial systems, such as 
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the Amazon, Congo and Yangtze Rivers, are dominant contributors to DOC fluxes to the 

ocean.3  Smaller order streams export DOM that primarily reflects local organic matter 

(OM) inputs and dynamics,4,5 whereas the main stem of major rivers integrate basin-wide 

OM sources and transformations.3  Dissolved OM is continually reworked via processes 

such as photo-6 and bio-degradation7 as it moves from low to high order streams.8  

However, DOM appears to retain some compositional components of its original source 

material despite undergoing these biogeochemical alterations.9 

Because of the extensive connectivity between rivers and the landscapes they 

drain, patterns within the DOM signature can be used to assess how vegetation cover and 

land use impact fluvial health.  Thus, the DOM that flows through downstream reaches of 

large river systems serves as a continuous indicator of the cumulative effects of 

watershed processes on in-stream water quality.10  It has been well established that 

human activities influence the composition of DOM and increase the proportion of 

nutrients exported to inland surface waters.11-13  The enrichment of organic nutrients, 

such as N, S, and P, can alter DOM reactivity and sorption processes14 or trigger 

autochthonous production of relatively labile DOM.15,16  As such, the conversion of 

natural vegetation landscapes to agricultural fields has been strongly linked to increased 

contributions of dissolved organic N (DON) to in-stream DOM.12,13,17  Anthropogenic 

sources of dissolved organic P (DOP) and S (DOS) have been observed for freshwater 

systems receiving inputs from cropland runoff13 and waste water effluent.18,19  Although 

it is apparent that anthropogenic activities and associated land use change can have a 

significant impact on DOM quality and reactivity,20,21 little is currently known about the 

specific molecular characteristics of these heteroatomic DOM contributions. 
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Ultrahigh-resolution Fourier transform ion cyclotron resonance mass 

spectrometry (FT-ICR-MS) is uniquely suited for molecular characterizing complex 

organic mixtures such as DOM.22-24  As a consequence of the ultrahigh mass accuracy, 

FT-ICR-MS resolves these mixtures on a molecular formula level, as thousands of 

individual mass spectral peaks can be detected in DOM, to which molecular formulae are 

subsequently assigned.25,26  A molecular formula cannot inherently be linked to a specific 

molecular structure, as it can represent multiple structural isomers.  However, molecular 

parameters have been established to categorize the formulae into different structural 

classes.  Van Krevelen distribution plots (elemental ratios of H/C vs. O/C) can be used to 

aid in the visual assessment of overall DOM composition27 and the aromaticity index 

(AI) has been established for the unambiguous identification of aromatic DOM 

components.28  These elemental parameters have been used in combination to establish 

cutoffs for different compound classes depending on degrees of saturation, oxidation and 

aromaticity.29,30   

Changes in catchment land use have been shown to significantly impact in-stream 

DOM composition, whereby heteroatomic contributions are notably increased.12,13  

Molecular formulae containing N, S and P, as identified by FT-ICR-MS, have been 

reported previously for fluvial31 and lacustrine systems.32,33  Other studies have employed 

FT-ICR-MS to elucidate the structural details of specific heteratomic DOM components 

such as those sourced from waste water effluent,19 charcoal leachates34 or oceanic 

waters.35  The main objective of the present study was to assess the potential relationship 

between heteroatomic DOM components and watershed land use on a global scale, 

focusing on DOM from major world rivers.  Determining the relationship between 
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environmental drivers and DOM composition is critical in the understanding of the 

potential effects of anthropogenic activities on large fluvial systems, and could have 

significant implications for the bioavailability, reactivity and oceanic fate of these organic 

nutrients. 

 

3.3  Materials and Methods 

3.3.1  Sample collection and preparation 

Surface water samples were obtained from ten major world rivers (Amazon, 

Congo, Danube, Ganges-Brahmaputra, Yangtze, Mekong, Mississippi, Lena, Paraná and 

St. Lawrence Rivers).  Samples were collected during the season of peak flow in the 

downstream reaches of the main stem of each river, with the exception of the Amazon 

River which was sampled in Manaus from the two main stems (Rio Negro and Rio 

Solimões) as explained in detail by Jaffé et al.,36 Xiao et al.,37 Lalonde et al.38 and the 

Supporting Information.  The Amazon River sample was prepared by mixing 25% of the 

Rio Negro sample and 75% of the Rio Solimões sample representing the natural mixing 

of these stems of rivers in downstream Manaus on the basis of their discharge rates.  

Surface waters were collected in polyethylene containers (pre-cleaned with detergent, 

acid and rinsed with ultrapure water) and shipped, unfiltered, to the laboratory at 

environmental temperature and subsequently frozen.  As a result of the sample delivery 

protocol, the DOM analyzed in this study is considered refractory. Samples were thawed 

and filtered through pre-combusted glass fiber filters (Whatman GF/F, 0.7 μm pore size).  

Filtrates were then acidified to pH 2 with HCl (32%, ultrapure) and stored in the dark at 

4°C until further preparation.  Dissolved OM was isolated from each water sample by 
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solid phase extraction (SPE) prior to FT-ICR-MS analysis with commercially available 

modified styrene divinylbenzene polymer adsorbers (1 g, Varian Bond Elut PPL).39  

Extraction efficiencies were 54 ± 13 % on a carbon basis when determined for evaporated 

extracts re-dissolved in ultrapure water. 

 

3.3.2  Ultrahigh-resolution mass spectrometry 

For mass spectral analysis, the SPE samples were diluted with ultrapure water to 

1:1 MeOH/water (v/v) and a DOC concentration of 20 mg L-1 for analysis on the Bruker 

Solarix 15 T FT-ICR-MS instrument at the University of Oldenburg (Germany).  

Samples were continuously infused into the electrospray ionization (ESI) unit at a flow 

rate of 120 μL h−1 in ESI negative ion mode.  The ESI needle voltage was set to −4 kV.  

Ions were accumulated in a hexapole ion trap for 0.2 s before being introduced into the 

ICR cell.  Four megawords of data were recorded per broadband mass scan.  The lower 

and upper mass limit was set to m/z 150 and 2000, respectively.  Five hundred transients 

were summed per sample.  The spectra were mass calibrated (linear) with an internal 

calibration list consisting of 51 compounds covering the entire relevant mass range.  

Maximum mass error was < 0.1ppm. 

Employing ESI-FT-ICR-MS in negative ion mode predominantly ionizes polar 

compounds and allows for the enhanced detection of heteroatomic molecular structures, 

which makes it the technique of choice for determining the detailed composition of 

complex DOM mixtures.23,27  However, it is well understood that ionization efficiencies 

among different compound classes may not be equal, and the relative intensities of FT-

ICR-MS components may not accurately reflect actual concentrations or be 
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representative of the entire DOM pool.  All samples were analyzed within two 

consecutive days.  Instrument reproducibility was assessed twice daily (every morning 

and evening) by analyzing a DOM reference isolated from deep North Pacific waters 

collected off the coast of Hawaii, USA.   

Molecular formulae containing the elements C, H, O, N, S and/or P were assigned 

using a self-written software routine40 using the criteria suggested by Stenson et al.25 and 

Koch et al.41  Mass spectral peaks falling below the method detection limit (MDL)42 were 

excluded from further analysis.  Briefly, blank spectra were collected and the MDL was 

calculated from the number of blank signals available using a Student’s T-test.42  The use 

of the MDL is more statistically robust than the simple application of a 3x the standard 

deviation of noise rule, for example.  Therefore, the MDL was the method of choice for 

differentiating between analyte and noise peaks within the global river DOM data set.  

An example of the assignment of molecular formulae at 417 Da is shown in Figure S1 d-

f.  The modified aromaticity index (AI-mod)28 and double bond equivalent (DBE) were 

calculated for each assigned molecular formula.  These molecular descriptors both reflect 

the degree of aromaticity within a molecule.  Double bond equivalent is commonly used 

in mass spectrometry and describes the number of rings and unsaturations within a 

molecule.  However, the calculation of DBE does not consider double bonds that may 

occur between C and heteroatomic elements (e.g., O, N, S, P).  The AI-mod allows for 

the unambiguous identification of condensed aromatic structures by taking into account 

that 50% of oxygen atoms are typically bound in carbonyl-type functionalities.43,44  

Therefore, the AI-mod is primarily used within the text to describe the degree of 

unsaturation of assigned molecular formulae.  These and other molecular parameters 
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(m/z, H/C, O/C, etc.), derived from peak formula assignments were expressed as intensity 

weighted average (wa) values.  Therefore, these values directly reflect the relative 

contribution of each m/z peak to the entire DOM mass spectrum. 

 

3.3.3  Land cover and statistical methods 

Land cover information for each river was obtained from the Watersheds of the 

World database compiled by IUCN-The World Conservation Union, the International 

Water Management Institute, the Ramsar Convention Bureau and the World Resources 

Institute (http://multimedia.wri.org/watersheds_2003/).  Statistical analyses were carried 

out using IBM SPSS Statistics software (Version 20, IBM Corp.).  The significance of 

linear correlations between two parameters was calculated using the Pearson’s product-

moment correlation coefficient.  Cluster analysis was conducted using Ward’s method by 

applying squared Euclidean distance to measure the degree of similarity between DOM 

spectral peaks common to all rivers included within the scope of this study.  Principle 

component analyses (PCA) were carried out using either weight averaged means of mass 

spectral parameters or log-normalized relative peak intensities common to all river DOM 

spectra. 

 

3.4  Results and Discussion 

3.4.1  Comparison of exemplary DOM broadband mass spectra 

All DOM mass spectra exhibited a generally typical Gaussian distribution with 

clusters of approximately 10 to 25 detected peaks at each nominal mass as exemplified 

for three rivers in Figure 3.1.  Amazon, Ganges-Brahmaputra and St. Lawrence River 
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DOM were sourced from different climatic regions and exhibit varying degrees of 

oxidation and heteroatomic content (Table 3.1; Table 3.2).  Therefore, their spectra 

served as examples for which to compare how relative mass distributions differ across the 

entire mass range and within exemplary nominal mass 417 Da (Figure S1).  Although the 

DOM broadband spectral distributions were similar in overall shape (Figure 3.1a-c), the 

relative intensities of peaks detected at 417 Da differed considerably (Figure 3.1d-f).  

Amazon and St. Lawrence River DOM both exhibited symmetrical relative abundances 

of CHO compounds across each nominal mass (Figure 3.1d and Figure 3.1f, 

respectively).  The CHO compounds detected for Ganges-Brahmaputra River DOM were 

generally shifted to higher mass defects compared to all other global river DOM samples 

(data not shown).  The CHO compounds at higher mass defects reflect a lower number of 

oxygen atoms and/or more H atoms when O is replaced with CH4 for molecular formulae 

sharing the same nominal mass (e.g. C21H22O9 vs. C22H26O8 in Figure 3.1),45 which 

indicated that DOM exported by the Amazon and St. Lawrence Rivers was generally 

more oxidized than Ganges-Brahmaputra River DOM.  Amazon and St. Lawrence River 

DOM exhibited the lowest and highest relative abundance of heteroatomic formulae, 

respectively, at the nominal mass of 417 Da (Figure 3.1d-f).  The CHON and CHOS 

peaks were also detected at 417 Da for each of the three rivers.  St. Lawrence River DOM 

was unique in that it also had detectable peaks assigned with CHOP formulae.  The direct 

comparison of broadband mass spectra at a single nominal mass indicated that variability 

of both CHO and heteroatomic contributions to the molecular signature of these global 

rivers may provide important insight to the source and quality of global river DOM. 
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Figure 3.1  Broadband mass spectral distribution for the (a) Amazon, (b) Ganges-
Brahmaputra and (c) St. Lawrence Rivers.  Relative intensities of detected m/z peaks at 
nominal mass 417 Da for the (d) Amazon, (e) Ganges-Brahmaputra and (f) St. Lawrence 
Rivers.  Symbols denote formula types CHO (●), CHON (∆), CHOS (◊) and CHOP (†).  
For the sake of clarity, the assigned molecular formulae are shown only for the most 
abundant ions. 
 
 
 
 
3.4.2  General trends in riverine DOM composition 

The variability in DOM composition is generally expected to be highest among 

small headwater streams, where it reflects local DOM sources.4,5  As smaller streams 

coalesce into larger ones, the variability of DOM derived from local sources is dampened 

and downstream DOM signals become more representative of total watershed 
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processes.3,10  Since the samples for the current study were collected from some of the 

largest rivers on earth during the season of highest discharge, these analyses were carried 

out following the assumption that small-scale, localized sources of DOM did not have a 

disproportionate contribution to the molecular signature of main stem DOM.  Despite 

variations in land use, the global rivers shared some similar trends in DOM composition.  

Across all rivers examined, the assigned molecular formulae consisted primarily of C, H 

and O (CHO) followed by formulae with additional N (CHON), S (CHOS) and P 

(CHOP; Table 3.1).  The number of formulae with two different heteroatoms was highest 

with CHONS followed by CHOSP and CHONP (Table 3.1).  When the assigned 

formulae were divided into seven groups of compounds,29,30 highly unsaturated aliphatic 

molecules were most abundant followed by polyphenols, condensed aromatics and 

unsaturated aliphatic molecules (Appendix 3.2).  Saturated fatty acids, sugars and 

peptides made up < 2% of formulae (Appendix 3.2).  It should also be noted that the 

number of assigned formulae was highly variable, ranging from ~3000 (Ganges-

Brahmaputra) to ~6800 (Paraná), which indicated a high degree of molecular diversity 

among the fluvial systems (Table 3.1). 

Among the rivers, the mean weighted average composition of DOM varied most 

in terms of heteroatom content (Table 3.2).  The variation in the molecular mass, C, H 

and O contents as well as indices derived from these was moderate but nevertheless 

showed distinct differences among rivers (see e.g., Ganges-Brahmaputra in Table 3.2).  

When the variation in the mean molecular composition of DOM (Table 3.2) was 

examined with a principal component analysis (PCA), the first principal component 
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Table 3.1  Total number and proportions of each formula type assigned to mass spectral peaks for river DOM. 

River 

No. of 
Assigned 
Formulae CHO CHON CHOS CHOP CHONS CHONP CHOSP 

Amazon 4839 2888 (59.7%) 1579 (32.6%) 333 (6.9%) 9 (0.19%) 28 (0.58%) 2 (0.04%) 0 (0%) 
Congo 4406 2658 (60.3%) 1485 (33.7%) 227 (5.2%) 1 (0.02%) 22 (0.50%) 0 (0%) 13 (0.30%) 
Danube 5847 2593 (44.3%) 2289 (39.1%) 769 (13.2%) 16 (0.27%) 162 (2.77%) 6 (0.10%) 12 (0.21%) 
Ganges-Brahmaputra 3053 1790 (58.6%) 990 (32.4%) 256 (8.4%) 5 (0.16%) 9 (0.29%) 3 (0.10%) 0 (0%) 
Yangtze 5457 2369 (43.4%) 2174 (39.8%) 741 (13.6%) 9 (0.16%) 152 (2.79%) 4 (0.07%) 8 (0.15%) 
Lena 4638 2913 (62.8%) 1297 (28.0%) 374 (8.1%) 10 (0.22%) 24 (0.52%) 2 (0.04%) 18 (0.39%) 
Mekong 5298 2653 (50.1%) 2034 (38.4%) 521 (9.8%) 16 (0.30%) 65 (1.23%) 0 (0%) 9 (0.17%) 
Mississippi 5236 2594 (49.5%) 1922 (36.7%) 621 (11.9%) 3 (0.06%) 88 (1.68%) 1 (0.02%) 7 (0.13%) 
Paraná 6818 3222 (47.3%) 2594 (38.0%) 718 (10.5%) 124 (1.82%) 140 (2.05%) 4 (0.06%) 16 (0.23%) 
St. Lawrence 5865 3089 (52.7%) 1980 (33.8%) 644 (11.0%) 52 (0.89%) 81 (1.38%) 0 (0%) 19 (0.32%) 
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Table 3.2  Molecular parameters of global river DOM derived from assigned molecular formulae.  Intensity weighted average values 
are displayed for molecular weight (m/zwa), number of carbon (Cwa), hydrogen (Hwa), oxygen (Owa), nitrogen (Nwa), sulfur (Swa) and 
phosphorous atoms (Pwa), hydrogen to carbon ratio (H/Cwa), oxygen to carbon ratio (O/C), modified aromaticity index (AI-modwa) and 
double bond equivalent (DBEwa). 
River m/zwa Cwa Hwa Owa Nwa Swa Pwa H/Cwa O/Cwa AI-modwa DBEwa 
Amazon 290.89 14.17 15.22 6.50 0.12 0.02 0.0010 0.80 0.34 0.29 7.37 
Congo 293.03 14.12 14.85 6.69 0.13 0.01 0.0006 0.79 0.36 0.30 7.52 
Danube 292.98 14.06 16.50 6.44 0.21 0.07 0.0012 0.91 0.36 0.24 6.69 
Ganges-Brahmaputra 262.40 13.08 15.95 5.33 0.13 0.09 0.0007 0.91 0.30 0.23 5.91 
Yangtze 286.78 13.89 16.63 6.15 0.22 0.08 0.0006 0.93 0.35 0.24 6.47 
Lena 284.43 13.70 15.68 6.46 0.07 0.02 0.0008 0.87 0.36 0.25 6.66 
Mekong 287.69 13.98 15.89 6.32 0.19 0.03 0.0008 0.89 0.36 0.27 6.91 
Mississippi 290.08 13.97 16.43 6.41 0.19 0.05 0.0004 0.93 0.36 0.25 6.63 
Paraná 292.21 14.09 16.12 6.47 0.20 0.04 0.0042 0.87 0.35 0.26 6.89 
St. Lawrence 291.73 13.93 16.14 6.62 0.13 0.04 0.0019 0.90 0.37 0.25 6.71 
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(PC1) explained 55.4% of the variance and was significantly positively correlated with 

m/zwa (R = 0.81, p < 0.01), O/Cwa (R = 0.65, p < 0.05) and AI-modwa (R = 0.87,  

p < 0.001; Figure 3.2). Molecular formulae enriched in O and depleted in H with 

increased AI-mod reflect terrestrial inputs from plant-derived biomacromolecules such as 

lignins, tannins and carboxyl-rich acyclic molecules.24,28,43,45  Molecular formulae 

depleted in O and enriched in H with lower AI-mod may be derived from autochthonous 

sources25,44 and are generally categorized into biolabile compound classes including 

carbohydrates, proteins and lipids.24,28  However, these types of compounds have also 

been identified in soil solutions where they reflect allochthonous sources and are thought 

to be derived from secondary plant metabolites and/or soil microbes.30,46  Principle 

component 1 was also significantly negatively correlated with H/Cwa (R = -0.76,  

p < 0.05) and Swa (R = -0.89, p < 0.001), suggesting that, as CHOS contributions to the 

DOM signature increased, the H/Cwa also increased.  A relative enrichment in S-

containing formulae with high H/C ratios has been previously linked to DOM sourced 

from waste water effluent.19  Therefore, the relationship between these two molecular 

parameters along PC1 may reflect the relative contribution of effluent OM to the total 

DOM signature.  Principle component 2 explained 25.6% of the variance and was 

significantly positively correlated with Nwa (R = 0.77, p < 0.01).  Increased contributions 

of organic N to riverine DOM have been linked to cropland runoff12,13,17 and increased in-

stream primary productivity triggered by anthropogenic nutrient inputs.20,47  Although it 

would be speculative to assign specific DOM sources or diagenetic trends along PC1 or 

PC2, the wide distribution of global rivers within the PCA graphical space (Figure 3.2) 
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elucidated statistical differences among DOM compositions which may be linked to 

watershed characteristics or land use. 

 
Figure 3.2  Principle component analysis of intensity weighted average values 
(molecular DOM characteristics) listed in Table 3.2 for global river DOM. 
 
 
 
 
3.4.3  Linking DOM molecular signatures to watershed land cover and source material 

A cluster analysis was performed using the log-normalized intensity of detected 

masses common to all large river DOM samples to compare and contrast DOM quality 

more effectively among the fluvial systems (Appendix 3.3).  The degree of similarity 

between riverine DOM was derived from the comparison of relative peak intensities, 

therefore the clustering can be directly related to the distances between rivers in Figure 

3.2 and to the intensity weighted mean molecular parameters described in Table 3.2.  

Amazon, Congo and Lena River DOM exhibited the least degree of similarity with the 

other seven rivers (Appendix 3.3).  These fluvial systems had DOM enriched in CHO 
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compounds (Table 3.1) and had low N, S and P content (Table 3.2).  The Amazon, Congo 

and Lena Rivers each drain heavily forested watersheds with limited regions of 

agricultural development (Appendix 3.1) where the lack of anthropogenic inputs may 

explain the depletion of heteroatoms (Table 3.2).  Although the DOM of these 

terrestrially-dominated rivers share some similarities, a large geochemical distinction was 

observed between DOM from the high latitude Lena River and the equatorially-located 

Amazon and Congo Rivers (Appendix 3.3).   The Lena River basin is positioned within 

the tundra/taiga biomes and is primarily underlain by permafrost.48  The Lena River 

receives little autochthonous DOM input,48 therefore its pronounced terrigenous DOM 

signature likely reflected predominant sources from soil organic matter (SOM) and/or 

soil microbial inputs.  DOM from the Amazon and Congo Rivers exhibited the highest 

m/zwa and AI-modwa (Table 3.2), which was reflected in their close clustering to one 

another and separation from the Lena River (Appendix 3.3).  Large contributions from 

terrestrial DOM components such as lignins, polyphenols and condensed aromatics have 

been observed previously for these tropical rivers,49,50 which likely shifted their overall 

DOM compositions to increased average molecular weights and degrees of aromaticity 

compared to the other global rivers located at higher and lower latitudes (Table 3.2). 

Although Ganges-Brahmaputra River DOM was generally clustered with other 

anthropogenically-influenced rivers identified as having > 30% of basin area 

characterized as urban and cropland (Appendix 3.3), it exhibited a unique molecular 

signature compared to all other samples (Table 3.2).  Ganges-Brahmaputra River DOM 

was strongly depleted in high molecular weight, aromatic, oxidized compounds as 

evidenced by its comparatively low m/zwa, high H/Cwa and low O/Cwa ratios (Table 3.2).  
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The upper reaches of the Ganges-Brahmaputra River basin are characterized by a cold 

and arid climate with minimal vegetation cover.51  Disperse vegetation and the absence of 

accumulated soil organic layers associated with the steepness of Himalayan slopes within 

the upper reaches of the Ganges-Brahmaputra River watershed likely results in minimal 

inputs from terrestrial OM to the mainstem.  The low amount of terrigenous DOM inputs 

may provide one explanation for the lower contribution of large, aromatic, humic-like 

components to the Ganges-Brahmaputra molecular composition (Table 3.2).  Although, 

the Ganges-Brahmaputra River is known to be one of the major contributors of 

suspended sediments to the ocean,52 the construction of dams within the drainage basin 

may result in the settling of these particulates and facilitate in-stream DOM processes, 

such as photodegradation49 and primary production, which could result in the observed 

O-depleted, low molecular weight signature.  Downstream reaches of the Ganges-

Brahmaputra River are highly populated and much of the regional municipal and 

industrial waste waters are discharged directly into the river.53  Thus, it can also be 

suggested that relatively high H/Cwa and Swa and low m/zwa (Table 3.2) may reflect 

increased aliphatic inputs from these anthropogenic waste streams.19 

The Danube and Yangtze Rivers were similar in overall DOM composition 

(Appendix 3.3) and exhibited enrichments in Nwa, Swa and H/Cwa (Table 3.2).  Both the 

Danube and Yangtze Rivers have watersheds with large human populations and some of 

the largest proportions of cropland cover (Appendix 3.1).  While DON concentrations 

have been shown to be positively correlated with percentage of agricultural land cover 

within a catchment area,13,17 enrichments in CHON and CHOS formulae have been 

identified in waste water19 and septic-impacted54 aquatic systems.  Enrichment in the 
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heteroatomic DOM signal suggests that anthropogenic inputs to the Danube and Yangtze 

watersheds have altered in-stream DOM composition, thereby suppressing the terrestrial 

DOM signature observed for less impacted rivers such as the Amazon (Table 3.2).  

Catchments of the Mekong, Mississippi, Paraná and St. Lawrence Rivers are 

characterized by intermediate degrees of forest, urban and cropland cover (Appendix 

3.1).  Therefore, their DOM compositions were generally similar and consequently 

clustered with one another (Appendix 3.3).  However, the Paraná and St. Lawrence 

Rivers were distinguished in their unique expression of increased Pwa (Table 3.2).  High 

concentrations of soluble organic P recorded for urbanized watersheds,13 may explain in 

part, the abundance of CHOP formulae in the St. Lawrence River (Table 3.1) since its 

watershed has the highest proportion of urban land cover (Appendix 3.1).  Lakes 

connected to St. Lawrence River have been characterized as having an increased presence 

of heteroatomic formulae in their DOM signatures32 which may be attributed to 

autochthonous DOM enriched during the long water residence time in the Great Lakes 

systems.55,56  Although the Paraná River watershed is not necessarily characterized by 

extensive lake and/or wetland cover (Appendix 3.1), it drains portions of the Pantanal 

(the largest subtropical wetland in the world) and features a series of large reservoirs 

(including the Itaipu Reservoire, the largest in South America).  The lacustrine zone of 

reservoirs typically has higher water clarity and increased nutrient inputs from inflowing 

tributaries and can therefore support significant inputs from algal biomass.57  Thus, the 

relatively large contribution of CHOP to the molecular composition of DOM from the 

Paraná River may come from similar lake-derived DOM sources as for the St. Lawrence 

River, and/or be generated in adjacent river floodplains and lake habitats which can be 
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flushed into the main stem during periods of high flow.58  Although the exact sources of 

some of these heteroatomic contributions are only speculative, mass spectral patterns 

have emerged which possibly link human activities to increased organic nutrient inputs to 

rivers. 

 

3.4.4  Visualizing characteristic compound classes among world river DOM 

Van Krevelen diagrams have been widely used to visualize complex DOM 

mixtures from H/C and O/C ratios of molecular formulae assigned to individual mass 

spectral peaks.27,49,59  Individual van Krevelen distributions of formulae identified in each 

global river are included in the Supporting Information (Appendix 3.4).  Of all formulae 

assigned to peaks detected by ultrahigh-resolution mass spectral analysis (n = 7838), 

approximately 33% (n = 2559) were shared among all river DOM samples.  The H/C of 

shared formulae was distributed between 0.5 and 1.6 while the O/C of shared formulae 

spanned from 0.15 to 0.8 (Figure 3.3a).  The formulae with heteroatoms occupied a 

relatively limited region in the Van Krevelen diagram with a high H/C ratio for CHOS-

formulae (Figure 3.3a).  The H/C and O/C ratios of these shared formulae suggest that 

global rivers, despite their distribution across a wide range of climatic regions with 

varying land use characteristics, share a common and relatively cohesive pool of DOM 

molecules (Figure 3.3a).  The commonality of DOM formulae has been previously 

observed in lakes,32,60 headwater streams61 and throughout other aquatic systems.62  The 

ubiquity of this pool of riverine DOM compounds can be explained by similar OM 

sources and diagenetic processing that influence in-stream DOM as it is mobilized 

through the fluvial system.9,10  The removal of labile DOM components by microbial 
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processing59 or photodegradation49 has been suggested to result in the accumulation of a 

similar pool of refractory molecules.61   Therefore the ubiquitous DOM signature 

observed here may reflect the preferential accumulation of certain group of recalcitrant 

compounds in the downstream reaches of world river systems. It is important to mention, 

that this study focused on the refractory DOM pool (see Supporting Information). 

 
 
 

 
Figure 3.3  Van Krevelen diagrams of molecular formulae (a) common among all global 
river DOM, (b) identified in one or more of the “natural” rivers, which includes the 
Amazon, Congo and Lena, (c) identified in one or more of the “anthropogenically-
impacted” rivers, which includes the Danube, Ganges-Brahmaputra, Yangtze, Mekong, 
Mississippi, Parana and St. Lawrence and (d) unique to the Paraná and/or St. Lawrence 
Rivers.  Formula include CHO (black), CHON (blue), CHOS (red), CHOP (purple) and 
CHONS (green). 
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 Although there is considerable molecular similarity among this suite of DOM 

samples (Figure 3.3a), approximately 67% (n = 5279) of total assigned molecular 

formulae were not ubiquitous.  Approximately 67% (3535 of 5279) of these “uncommon” 

formulae were determined to be heteroatomic in nature.  The percentage is high in 

contrast to the proportion of heteroatomic formulae in the common DOM pool, which 

was only 35% (895 of 2559).  The heteroatomic contributions to DOM have been 

previously discussed for a variety of systems,19,32-34,60 however the present study focused 

primarily on how N, S and P contributions to DOM were linked to land use and possible 

organic source materials.  The ten rivers were each assigned to one of two groups 

(“anthropogenically-impacted” or “natural”) according to the clustering pattern observed 

in Appendix 3.3.  The Danube, Ganges-Brahmaputra, Yangtze, Mekong, Mississippi, 

Paraná and St. Lawrence Rivers, all of which have > 30%  area of urban and cropland in 

their watersheds (Appendix 3.1), compose a group of “anthropogenically-impacted” 

systems.  Whereas, the Amazon, Congo and Lena Rivers have watersheds with large 

proportions of forest and grassland cover (Appendix 3.1) and therefore compose a group 

of “natural” systems.  The DOM from these rivers, which are less influenced by human 

disturbance, had fewer detected peaks and fewer assigned formulae than nearly all other 

systems (except the Ganges-Brahmaputra; Table 3.1).  The limited molecular diversity of 

the Amazon, Congo and Lena River DOM was reflected in the low number of formulae 

found to be unique to their molecular signatures (Figure 3.3b).  However, hundreds of 

formulae were determined to be unique to one or more rivers in the “anthropogenically-

impacted” fluvial group where their DOM compositions generally exhibited high 

molecular diversity (Figure 3.3c).   These formulae were predominantly heteroatomic in 
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nature and most were classified as highly unsaturated aliphatics.  The majority of these 

compounds fell outside of the protein-like region along the H/C axis (H/C > 1.5; Figure 

3.3c), suggesting that this heteroatomic pool of DOM may not necessarily reflect 

autochthonous inputs from primary production.  Instead, the CHOS and CHON formulae 

identified among these seven “anthropogenically-impacted” rivers were more comparable 

to compounds found in abundance in waste water effluent19 and septic-impacted 

groundwaters.54  The presence of such heteroatomic DOM compoents may therefore 

serve as an indicator for aquatic systems receiving waste water inputs.  The cluster of 

CHO compounds that falls within the O/C < 0.6 and H/C > 1.7 van Krevelen space 

(Figure 3.3c) has been previously described as being aliphatic-type molecules possibly 

sourced from microbial biomass.26,44  The CHON and CHOP compounds observed here 

have similar molecular features to those identified in some lacustrine DOM,32,33 and may 

be indicative of either degraded proteins31,63 or autochthonous DOM inputs from primary 

production that occurs in lake-influenced rivers, such as the Paraná and St. Lawrence 

Rivers.56  The unique contribution of CHOP and other DOM components from these two 

lacustrine-impacted systems to the “anthropogenically-impacted” molecular signature is 

highlighted in Figure 3.3d.   Overall, this comparison suggested that anthropogenically-

sourced inputs to inland waters may increase the overall molecular diversity of DOM and 

that the heteroatomic signature of human-impacted inland waters is persistent in large 

river systems. 
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Figure 3.4  Principle component analysis of log-normalized dissolved black carbon (AI-
mod > 0.66) peak intensities common to all global river DOM which includes the (a) 
loading plot and (b) score plot and correlations between PC2 and proportion of watershed 
(c) forest cover and (d) cropland cover. 
 
 
 
 
3.4.5  Correlation between land use and dissolved black nitrogen 

The pool of combustion-derived molecules commonly associated with riverine 

DOM, also known as dissolved black carbon (DBC), has been determined to be 

ubiquitous in river systems around the world.36  Initially considered to be a refractory 
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group of molecules, DBC is highly photoreactive49 and can include N-containing 

molecular formulas previously reported as dissolved black nitrogen (DBN).34  In order to 

investigate possible influences of land use on the relative abundance of DBC and DBN in 

rivers, a PCA was carried out using the log-normalized peak intensities with assigned 

polycondensed aromatic formulae (AI-mod ≥ 0.67)28 common to all studied rivers 

(Figure 3.4).  Figure 3.4a depicts the loading plot where PC1 (84.3% of variance) was 

determined to be strongly correlated with mean relative peak intensity (R = 0.99,  

p < 0.001).  All rivers were distributed similarly along PC1 (Figure 3.4a), which 

suggested that the pyrogenic DOM signature was generally similar across all rivers. 

Although PC1 explained 84.3% of the variability in the data, no significant correlations 

were observed (Rs < 0.1) between PC1 and neither any of the molecular parameters nor 

land-use characteristics.  However, PC2 (10.7% of variance) provided an additional 

degree of separation regarding heteroatom contributions.  Within the PCA score plot, it 

was observed that the DBC formulae arranged themselves into three distinct clusters 

(Figure 3.4b).  The cluster that fell lowest along PC2 represented DBC formulae that did 

not contain N (CHO only).  The intermediate cluster included condensed aromatic 

formulae with one N atom (CHON) and the cluster that fell highest along PC2 

represented formulae with two N atoms (CHON2).  As PC2 was significantly positively 

correlated with number of N atoms within each molecular formulae (N = 0 – 2; R = 0.79, 

p < 0.001), rivers with more positive PC2 values had greater relative contributions of 

pyrogenic CHON and CHON2 to their DOM pool (Figure 3.4a).  On the basis of the 

assessment, the Yangtze River received more significant DBN inputs compared to rivers 

such as the Lena, Amazon and Congo, which exhibited pyrogenic OM signatures 
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depleted in DBN (Figure 3.4a).  The PC2 value was also shown to be significantly 

negatively correlated with basin forest cover (Figure 3.4c; R = -0.89, p < 0.001) and 

positively correlated with the proportion of watershed cropland cover (Figure 3.4d;  

R = 0.89, p < 0.001).  Charcoal generated by the incomplete combustion of grassy 

biomass has been shown to be enriched in N64,65 and can leach greater amounts of DBN 

than wood-derived charcoal.34  The suggestion that DBN is enriched in rivers receiving 

pyrogenic inputs from cropland is also supported by the fact that ca. 8-11% of global 

fires are due to agricultural practices.66  Forested landscapes are dominated by trees and 

other woody plants that are rich in biomacromolecules such as lignin and cellulose, which 

generate N-depleted DBC upon burning.34,64  Therefore, although wildfire activity is 

ubiquitous across landscapes,67 it is hypothesized that the leaching of charcoal 

components generated from the burning of agricultural biomass may release greater 

amounts of DBN to inland waters compared to char produced from fires that occur in 

woody, forested landscapes.  Recent studies have shown that wildfires appear to have 

little immediate effect on bulk in-stream DBC concentrations.68,69  However, since it has 

been suggested that the mobilization and release of DBC may occur over longer 

timescales lasting decades to hundreds of years,70,71 the export of DBN from burned 

watersheds may continue to impact downstream DOM quality and nutrient cycling for an 

extended period of time. 

 

3.5  Conclusions 

In summary, ultrahigh-resolution FT-ICR-MS was employed to determine how 

the heteroatomic DOM contributions to large, global rivers varied with land use and 
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watershed geomorphology.  Although a considerable proportion of DOM formulae was 

common to all river systems, this study revealed that the heteroatomic DOM components 

drove much of the differentiation between molecular signatures.  Heteroatomic formulae, 

specifically CHON and CHOS, were more abundant in rivers that receive agricultural, 

waste water and other anthropogenic inputs.  The persistence of such anthropogenically-

derived, heteroatomic compounds in lower reaches of global rivers may have major 

implications for the cycling of nutrients such as N, S and P and their ultimate oceanic 

fate.  Although the DOM samples analyzed here were sourced from a suite of major 

rivers located across the globe, each mass spectrum provides only a snapshot of 

downstream DOM composition at a single point in time for each fluvial system.  

However, trends between land use and in-stream DOM quality were clearly established, 

which suggested that the dependence of DOM composition on watershed characteristics 

is quite robust.  Future studies need to evaluate how DOM signatures are impacted both 

spatially and temporally within a watershed to understand how hydrology, climatic 

disturbance, wildfires and other environmental drivers influence DOM composition 

within large drainage basins.  As the world population continues to rise, urban sprawl 

increases and natural lands are converted to agriculture, the composition and reactivity of 

riverine DOM is expected to continue to change.  Combined with ongoing global 

warming trends and an increasing need of storing water through the construction of 

reservoirs throughout the globe, long term effects of such changes in the quality of a 

major oceanic carbon source might be significant and its potential consequences remain 

largely unknown. 
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DISSOLVED BLACK CARBON FOLLOWING A WILDFIRE 
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4.1  Abstract 

The occurrence of wildfires is expected to increase with the progression of 

climate change. These natural burn events can drastically alter the geomorphology and 

hydrology of affected areas and are one of the primary sources of black carbon (BC) in 

the environment. Black C can be mobilized from soils and charcoal in fire-affected 

watersheds, potentially impacting downstream water quality. In June of 2012, the High 

Park Fire burned a large portion of the Cache La Poudre River watershed located in the 

Colorado Rocky Mountains. Seasonal riverine export of BC in both the dissolved (DBC) 

and particulate (PBC) phase was compared between burned and unburned sections of the 

watershed during the year following the High Park Fire. There was little difference in 

overall DBC concentration between sites, however seasonal changes in DBC quality 

reflected a shift in hydrology and associated DBC source between peak and base flow 

conditions. Particulate BC export was substantially larger in fire-affected areas of the 

watershed during periods of overland flow. These findings suggest that export processes 

of BC in the particulate and dissolved phase are decoupled in burned watersheds and that, 

in addition to DBC, the export of PBC could be a significant contributor to the cycling of 

charcoal in freshwater ecosystems. 

 

4.2  Introduction 

The increased incidence and potential severity of wildfires in recent times has 

been associated with climate change and these natural burn events are expected to 

increase with continued climate change (Flannigan et al. 2009; Krawchuk et al. 2009). 

Mountainous regions of the western United States have been experiencing warmer 
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springs and drier summers in recent years and these conditions prime the area for longer 

and more intense wildfires (Westerling et al. 2006). Wildfires significantly alter 

landscapes by changing the hydrology and geomorphology of the burned area. The most 

notable effects of fire include loss of litter and vegetation cover and destabilization of 

soils, the combination of which results in increased surface erosion during times of 

overland flow on hillslopes (Shakesby and Doerr 2006 and references therein). Rivers 

that drain fire-affected regions are greatly impacted by burn events, as they experience 

increased streamflow (Loáiciga et al. 2001) and receive significantly greater sediment 

yields (Moody and Martin 2001; Reneau et al. 2007) in years following a wildfire. The 

intensity and frequency of post-fire rainfall events trigger erosion and sediment transport 

which can significantly impact the water quality of inland freshwater systems (Lane et al. 

2006; Moody and Martin 2009). 

Wildfires transfer significant amounts of C to the atmosphere in the form of CO2 

through the burning of biomass (Flannigan et al. 2009). Fires also generate large amounts 

of charcoal, or pyrogenic C (PyC), during the incomplete combustion of vegetation and 

soil organic material (Goldberg 1985). Pyrogenic C falls along a combustion continuum 

ranging from slightly charred biomass to soot particles (Hedges et al. 2000; Masiello 

2004) and is a heterogeneous mixture of molecules characterized by their fused aromatic 

ring structures (Preston and Schmidt 2006). The highly condensed aromatic component 

derived from high temperature combustion of biomass is referred to as black carbon (BC) 

and represents the thermally refractory portion of PyC (Preston and Schmidt 2006). Black 

C was thought to be highly resistant to degradation processes and has been considered to 

be a C sink when stably incorporated into the soil matrix (Liang et al. 2008). However, 
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recent research has shown that BC turnover rates in soils are much shorter than 

previously considered, providing evidence that BC is susceptible to degradation and other 

loss processes (Singh et al. 2012). The majority of PyC produced by wildfires is 

deposited close to the burn site and can thus be subsequently incorporated into soils or 

transported via fluvial systems (Forbes et al. 2006; Saiz et al. 2014). It has recently been 

estimated that only about 17 % of the BC produced during Colorado wildfires can be 

transferred from the litter layer to upper soil horizons (Boot et al. 2014). While a 

significant amount to BC may be removed through surface runoff, the stabilization of a 

portion of PyC in soils would provide a steady source of BC to adjacent fluvial systems. 

It has been proposed that such aged, sub-surface PyC stocks may provide the main source 

of BC in rivers (Dittmar et al. 2012, Ding et al. 2013). 

Black C incorporated into soils following a burn event can undergo 

degradative/aging processes (Czimczik and Masiello 2007). Several environmental 

drivers appear to control the rate of BC mineralization and degradation in soils. Oxidation 

of PyC was more favorable with increasing medium annual temperature (Cheng et al. 

2008) and under alternating wet-dry environmental conditions (Nguyen and Lehmann 

2009). In some studies, abiotic processes appear to be the predominant mode of BC 

oxidation during short periods of time (Cheng et al. 2006; Bruun et al. 2008). However, 

biodegradation of BC has also been shown to occur more favorably under environmental 

conditions where nitrogen is present (Hilscher and Knicker 2011; LeCroy et al. 2013). A 

pool of freshly-generated BC can become concentrated in upper organic soil horizons 

post-fire (Preston and Schmidt 2006). Over time, a portion of this BC can be partially-

oxidized and transferred to deeper layers of soil (Knicker et al. 2008; Boot et al. 2014) 
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where it is stabilized by minerals (Glaser et al. 2000; Czimczik and Masiello 2007). 

Although further research is still needed to elucidate the dominant factors controlling BC 

oxidation in soils, it has been commonly observed that these aging processes do happen, 

resulting in BC with increased oxygen content (Lehmann et al. 2005; Knicker et al. 2006; 

Nguyen et al. 2010). 

The export of BC in the dissolved phase (DBC) from fire-affected watersheds has 

been studied on a global scale, where it is found to closely correlate with bulk dissolved 

organic carbon (DOC; Jaffé et al. 2013). In addition to this highly polycondensed, more 

refractory dissolved form of BC, more soluble and labile char-derived pyrogenic products 

have also been reported in aquatic systems as a result of char leaching (Norwood et al. 

2013). Interestingly, recent fire activity does not appear to immediately impact in-stream 

DBC concentrations (Ding et al. 2013; Myers-Pigg et al. 2015), however DBC can 

continue to be measured in rivers decades after major fire activity (Dittmar et al. 2012). 

The delayed release of DBC indicates that BC may first need to undergo biotic and/or 

abiotic oxidation processes in soils in order to increase the number of O-containing 

functionalities and overall polarity for it to become soluble enough to be transferred to 

the dissolved phase (Abiven et al. 2011). Once DBC enters a river, it can be 

photodegraded by exposure to sunlight (Stubbins et al. 2012) and may be susceptible to 

removal processes such as flocculation or adsorption that influence other portions of the 

hydrophobic, aromatic pool of dissolved organic matter (DOM; Uher et al. 2001; 

Kothawala et al. 2012). 

Studies addressing BC mobilization in aquatic systems have focused primarily on 

water soluble forms (e.g. Jaffé et al. 2013; Norwood et al., 2013), however very little is 
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currently known about BC mobilization in the particulate phase (PBC). Particulate BC 

comprises a small portion of suspended solids in lakes (Zigah et al. 2012) and sinking 

particles in the ocean (Coppola et al. 2014; Yang and Guo 2014) where the presence of 

PBC is primarily attributed to adsorption of DBC to particulate matter. It is likely that 

wildfire-derived PBC can also be exported directly to inland waters in the form of 

charcoal particulates. However, studies regarding changes in riverine concentrations of 

PBC in response to recent fire activity have been limited. It has been established that 

changes in land cover following a fire result in increased in-stream suspended sediment 

loads in years immediately following the burn event (Moody and Martin 2001; Reneau et 

al. 2007). A considerable portion of PyC is deposited within the burned area (Forbes et al. 

2006; Alexis et al. 2010; Saiz et al. 2014), and can be quickly redistributed within the 

watershed by wind and surface runoff (Cerdá and Doerr 2008). Boot et al. (2014) have 

suggested that the bulk of BC may be lost from wildfire-impacted watersheds through 

soil erosion and overland runoff. Therefore, it is likely that BC export in fire-affected 

rivers may occur mainly in the particulate phase rather than the dissolved phase. 

The main objectives of this research were (1) to determine if the apparent 

coupling between DOC and DBC that occurs globally (Jaffé et al. 2013) is maintained 

throughout the season in an alpine river receiving inputs from both recently burned and 

unburned regions of the watershed; (2) to measure the seasonal changes in quantity and 

quality of DBC and PBC and link BC in these two phases to pyrogenic source material; 

(3) to assess how wildfire activity impacts the in-stream dynamics of and relationship 

between total suspended solids (TSS) and PBC; (4) to estimate and compare the total 

seasonal fluxes of BC in both the particulate and dissolved phases. The current study is 
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the first time tandem measurements were taken for the export of both DBC and PBC in 

fluvial systems. 

 

4.3  Methods 

4.3.1  Site description 

During June of 2012, the High Park Fire burned 350 km2 of the Cache La Poudre 

River (from here on will be abbreviated as the Poudre River) watershed (total area is 

4900 km2) located in Colorado’s Front Range just west of Fort Collins (Colorado, USA). 

The Poudre River watershed is characterized by vegetation that includes stands of 

ponderosa pine, lodge pole pine and Douglas fir. Despite <10 % of its watershed being 

consumed by the High Park Fire, effects of the burn on Poudre River water quality were 

evident. Water discharge data was continuously collected by the U.S. Geological Survey 

(USGS) in cooperation with the city of Fort Collins. Three locations along the Poudre 

River transect were selected for sample collection (Fig. 4.1) and included an unburned, 

reference site located upstream from the fire-affected area (PBR), a site located just 

within the perimeter of the burned area where the main stem and South Fork of the 

Poudre River merge (PSF) and a site located just upstream from the confluence of the 

North Fork and the Poudre River main stem (PNF). The PNF site receives riverine inputs 

from the majority of the burned area and is therefore described as the most fire-affected 

site. 
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Figure 4.1  Map of the High Park Fire burn site. Sampling locations PBR, PSF and PNF 
represented an unburned reference site, moderately fire-affected site and heavily fire-
affected site, respectively 
 
 
 
 
4.3.2  Measurement of TSS and DOC 

Water samples were collected biweekly from each site (PBR, PSF, PNF) from 

March through August of 2013, approximately 1 year after the High Park Fire. Surface 

water was collected in pre-cleaned HDPE bottles or combusted glass bottles and kept 

chilled in a dark cooler until arriving at the University of Colorado at Boulder (CU 

Boulder) laboratory. Total suspended solids was measured by pre-recording the GFF 

filter mass (0.7 μm pore size) and passing a known volume of sample, previously 

homogenized by agitation, through the pre-weighed filter. Filters were then dried at  
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105 °C for 1–2 h, cooled and weighed. The TSS concentration was determined by 

dividing the mass of particulates on the filter by the total volume of stream water passed 

through the filter. Filtrates were collected in pre-cleaned vessels and stored at 4 °C until 

DOC analysis and solid phase extraction (SPE) of DOM. Dissolved OC values were 

measured using a non-purgeable organic carbon and the high temperature combustion 

method on a Shimadzu TOC-V analyzer (Shimadzu Corp., Japan) at the Kiowa 

Laboratory, CU Boulder. 

 

4.3.3  Determination of DBC and PBC via the BPCA method 

Both DBC and PBC were quantified using the benzenepolycarboxylic acid 

(BPCA) method previously described by Dittmar (2008) and optimized by Ding et al. 

(2013). For the determination of DBC, DOM was first extracted by SPE (Dittmar et al. 

2008) and aliquots of the DOM-containing MeOH elute were added to 2 mL glass 

ampules and dried under N2 for complete evaporation of MeOH. Concentrated HNO3 

(0.5 mL) was added to each ampule, which were then flame-sealed and DOM oxidized 

for 6 h at 160 °C. After oxidation, the concentrated HNO3 was dried under N2 at 50 °C 

and the BPCA-containing residue was re-dissolved in mobile phase for analysis by high 

pressure liquid chromatography (HPLC; Dittmar 2008). 

For the measurement of PBC, procedures carried out for DBC were scaled up to 

accommodate the oxidation of larger amounts of particulate organic matter. Additional 

clean-up steps were also required to remove metals and other compounds present in 

particulates that may interfere with BPCA analysis (Schneider et al. 2010, 2011). Glass 

fiber filters containing a known amount of suspended solids were transferred directly to 
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20 mL glass ampules and 2 mL of concentrated HNO3 was subsequently added. Ampules 

were heat-sealed and particulates were oxidized under conditions described previously. 

Contents of the ampules were then passed through a pre-rinsed 0.7 μm GFF filter and the 

filtrate was then passed over a cation exchange resin. The eluent was collected, freeze-

dried and re-dissolved in HPLC mobile phase. HPLC analysis of BPCAs was carried out 

using a Sunfire C18 reversed phase column (3.5 μm, 2.1 × 150 mm; Waters Corporation). 

Separation and quantification of BPCAs generated from both DBC and PBC was carried 

out by employing a gradient elution method with mobile phase A (4 mM 

tetrabutylammonium bromide, 50 mM sodium acetate, 10 % MeOH) and mobile phase B 

(100 % MeOH) as described in detail by Dittmar (2008). 

 

4.3.4  Statistical methods 

The significance of the linear relationship between two parameters was 

determined using the Pearson’s product-moment correlation coefficient (IBM SPSS 

Statistics Version 20, IBM Corp.). Principle component analysis (PCA) was carried out 

using the relative abundance (%) of BPCAs (IBM SPSS Statistics Version 20, IBM 

Corp.). 
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Table 4.1  Black carbon, DOC and TSS data for all three Poudre River sites throughout the sampling period 
  DOC DBC TSS PBC B5CA:B4CA B5CA:B4CA PBC:TSS 

(mg-C/L) (mg-C/L) (mg-dry weight/L) (mg-C/L) (DBC) (PBC) (g-C/kg-dry weight) 

Sampling Date PBR PSF PNF PBR PSF PNF PBR PNF PBR PNF PBR PSF PNF PBR PNF PBR PNF 

March 26 2.68 2.35 2.25 0.12 0.13 0.080 5.1 13.3 n.c. n.c. 0.77 0.87 0.75 n.c. n.c. n.c. n.c. 

April 20 1.56 1.76 2.09 0.047 0.066 0.089 n.c. n.c. n.c. n.c. 0.73 0.73 0.75 n.c. n.c. n.c. n.c. 

May 4 4.41 5.49 6.43 0.17 0.27 0.34 1.7 241 n.c. n.c. 0.79 0.83 0.69 n.c. n.c. n.c. n.c. 

May 14 8.41 7.87 8.41 0.30 0.33 0.34 25.3 528 0.019 5.5 0.83 0.86 0.74 0.25 0.89 0.76 10 

June 1 5.86 6.03 6.35 0.34 0.34 0.25 4.9 32.0 0.007 0.17 0.83 0.87 0.85 0.31 0.85 1.4 5.2 

June 14 5.00 5.08 4.90 0.29 0.30 0.24 10.6 27.0 0.008 0.034 0.97 0.93 0.94 0.25 0.74 0.73 1.3 

June 29 2.66 2.81 2.86 0.17 0.17 0.14 3.4 24.6 0.006 0.11 0.97 1.1 0.95 0.38 0.82 1.8 4.5 

July 14 2.51 2.63 2.97 0.12 0.10 0.18 23.6 110 0.012 1.0 1.0 0.9 1.0 0.41 0.90 0.50 9.3 

July 29 2.16 2.27 2.88 0.14 0.15 0.19 15.9 337 0.009 2.3 1.2 1.1 1.0 0.24 0.86 0.56 7.0 

August 24 2.69 2.46 2.52 0.14 0.14 0.16 2.3 62.7 0.005 0.56 1.0 1.0 1.0 0.59 0.86 2.2 9.0 

BPCA ratios (B5:B4) were calculated based on relative BPCA distributions. The abbreviation n.c. denotes where data was not 
collected due to lack of sample 
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4.4  Results 

4.4.1  Bulk DOC and DBC concentrations 

Measurements of DOC and DBC for all locations during the sampling period are 

outlined in Table 4.1. Seasonal DOC concentrations were generally comparable among 

all sites between March and August (Fig. 4.2a). Dissolved OC was lowest on the April 20 

sampling date across all sites (1.80 ± 0.027 ppm) when the river was at base flow 

conditions. The DOC concentrations increased during spring snow melt and peaked on 

May 14 at all sampling sites (8.23 ± 0.31 ppm), approximately 1 month prior to peak 

water discharge. As discharge increased through early summer, DOC concentrations 

decreased and returned to near-base flow concentrations by late June (Fig. 4.2a). 

 
 
 

 
Figure 4.2  Seasonal distribution of water discharge rates and bulk DOC (a) and DBC (b) 
concentrations for burned (PSF grey squares; PNF black triangles) and unburned (PBR 
open circles) sites along the Poudre River transect 
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Although DOC and DBC concentrations were overall strongly correlated 

throughout the sampling period (R2 = 0.83, p < 0.01), variations in the seasonal 

distribution of bulk DBC were detected among the sites (Fig. 4.2b). Dissolved BC 

concentrations were lowest under base flow conditions, averaging 0.067 ± 0.021 ppm 

across each of the three sampling locations on April 20. However, slight differences in 

DBC export between the burned and unburned sites became apparent as discharge rates 

increased with spring melt. PNF exhibited the highest DBC concentration in early May 

(0.34 ppm). Dissolved BC at this fire-affected location subsequently decreased with 

increasing water discharge, but concentrations continued to remain elevated compared to 

PBR and PSF during the summer months (Fig. 4.2b). Despite being moderately 

influenced by the High Park Fire, seasonal DBC concentrations at PSF were generally 

similar to that of PBR throughout the sampling period. DBC at PBR and PSF peaked on 

June 1 (0.34 and 0.34 ppm, respectively), approximately 1 month after DBC 

concentrations peaked at PNF (Fig. 4.2b). 

 

4.4.2  Bulk TSS and PBC concentrations 

The TSS and PBC concentrations determined for PBR and PNF are also described 

in Table 4.1. Analysis of the particulate data focused on the two sites that represented 

burned (PNF) and unburned (PBR) end-members. Particulate samples were not available 

for April 20, therefore TSS and PBC were not determined. The TSS measured at PBR 

was variable (10.3 ± 9.2 ppm), but remained at concentrations significantly lower than 

those determined for PNF throughout the season (Fig. 4.3a, p < 0.05). A bimodal 
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distribution for TSS at PNF was clearly evident and concentrations ranged from 13.3 ppm 

during base flow to 528 ppm during spring melt and 337 ppm in late summer (Fig. 4.3a). 

 
 
 

 
Figure 4.3  Seasonal distribution of water discharge rates and bulk TSS (a) and PBC (b) 
concentrations for fire-affected site PNF (black triangles) and unburned reference site 
PBR (open circles) 
 
 
 
 

The seasonal distribution of TSS positively correlated with PBC at both PBR  

(R2 = 0.79, p < 0.01) and PNF (R2 = 0.96, p < 0.01). PBC was not determined for March 

26 and May 4 collections because not enough particulate material was available to carry 

out BPCA analysis. The seasonal concentrations of PBC at PBR were variable (0.009 ± 

0.005 ppm), but consistently remained lower than PBC concentrations measured for fire-

affected PNF (Fig. 4.3b). The bimodal distribution of PBC at PNF exhibited a similar 

pattern to that of TSS, where concentrations initially peaked at 5.5 ppm during spring 

melt, again at 1.0 ppm during the late summer months and dropped as low as 0.034 ppm 

during peak water discharge (Fig. 4.3b). Particulate organic carbon was not determined 
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for TSS since sample amounts were limited. The seasonally averaged proportion of PBC 

to the dry weight of TSS (PBC:TSS) for PBR (1.1 ± 0.7 g C/kg dry weight) was 

significantly less than PBC:TSS for PNF (6.6 ± 3.2 g C/kg dry weight, p < 0.01, Table 

4.1). 

 

4.4.3  Quality of PBC and DBC based on BPCA composition 

Seasonal averages indicated that BC particulates collected at the fire-affected PNF 

site were significantly more enriched in B5CA and B6CA than those collected from PBR 

(Fig. 4.4a; p < 0.01). Relative BPCA percentages for PBC at PNF had seasonal averages 

of 11.3 ± 1.2, 36.8 ± 1.1, 31.7 ± 1.5 and 20.2 ± 1.8 % for B3CAs, B4CAs, B5CA and 

B6CA, respectively. The B6CA marker was not detected in any of the PBR particulate 

samples. The contribution of B3CAs, B4CAs and B5CA to PBC measured at PBR were 

23.1 ± 2.1, 57.4 ± 53.3 and 19.5 ± 4.4 %, respectively. Ratios of BPCAs were used to 

describe the overall condensed aromaticity of BC. Ratios including proportions of B6CA 

could not be used as this particular BPCA marker was not detected in PBC determined 

for samples from PBR. Therefore, the ratio of B5CA to B4CAs (B5:B4) was chosen to 

compare the quality of BC samples within this data set. The B5:B4 ratio for PBC 

measured at PNF (0.85 ± 0.05) was significantly greater than that of PBR (0.35 ± 0.13,  

p < 0.001). The distribution of B5:B4 did not vary significantly during the sampling 

period at PNF (p = 0.58) or PBR (p = 0.09; Fig. 4.4b). 

Contrary to PBC, the seasonal mean BPCA distributions for DBC among PBR, 

PSF and PNF did not significantly differ from one another (p > 0.05; Fig. 4.5a). The 

average relative BPCA percentages across all sites for the entire sampling period were 
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12.9 ± 1.8, 40.8 ± 3.7, 36.2 ± 2.5 and 10.1 ± 3.1 % for B3CAs, B4CAs, B5CA and 

B6CA, respectively. Despite the overall similarity in BPCA composition when taken as a 

seasonal average, a clear trend in increasing B5:B4 ratio emerged when BPCA 

distribution was plotted over time (Fig. 4.5b). Such a seasonal shift in B5:B4 was 

common among all sites. 

 
 
 

 
Figure 4.4  Seasonally-averaged PBC BPCA distributions for PBR and PNF (a) and the 
seasonal distribution of PBC quality (B5:B4) at PBR (open circles) and PNF (black 
triangles) (b). Error bars represent 1 SD of the mean 
 
 
 
 

In order to elucidate the drivers of this observed seasonal change in DBC quality, 

a principal component analysis (PCA) was carried out. The loading plot indicated a clear 

separation of BPCAs along principal component 1 (PC1) and principal component 2 

(PC2) which explained 66.4 % and 28.3 % of the variance, respectively (Fig. 4.6a). When 

the scores were plotted according to sampling site, no clustering was observed (Fig. 

4.6b). A lack of spatial trend was expected, as the shift in BPCA composition was 
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common and similar among all sampling sites. When plotted according to sampling date, 

the scores followed a clear counterclockwise trend which supported the hypothesis that 

BPCA distribution underwent a seasonal shift (Fig. 4.6c). When the scores were plotted 

according to high and low water discharge, where the rates were categorized as being 

greater than or less than 500 ft3/s, respectively, a distinct separation along PC2 became 

apparent (Fig. 4.6d). Principle component 1 correlated most strongly with DBC quality 

(e.g., BPCA ratio B5:B4; R2 = 0.95, p < 0.01; Fig. 4.6e) and PC2 correlated with water 

discharge (R2 = 0.36, p < 0.01; Fig. 4.6f). 

 
 
 

 
Figure 4.5  Seasonally-averaged DBC BPCA distributions for PBR, PSF and PNF (a) 
and the seasonal distribution of DBC quality (B5:B4) averaged across each of the three 
sampling sites (grey diamonds) (b). Error bars represent 1 SD of the mean 
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Figure 4.6  PCA where loadings included the relative proportion of DBC BPCAs at all 
sampling sites throughout the season (a). Scores were plotted by sampling site (b), 
collection date (c) and water discharge where low and high flow represent rates below 
and above 500 ft3/s (d). Principle component 1 (PC1) explains 66.4 % of the variance and 
correlates with DBC quality (B5:B4) (e) whereas principle component 2 (PC2) explains 
28.3 % of the variance and correlates with water discharge (f) 
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4.4.4  BC fluxes in particulate and dissolved phase 

Flux values could only be calculated for PNF, as this is the sampling site where 

water discharge data was collected. Fluxes of BC in both the particulate and dissolved 

phase do not remain constant throughout the year (Fig. 4.7). Dissolved BC fluxes were 

lowest (0.01 Mg C/day) during early spring base flow conditions and peaked  

(0.61 Mg C/day) in June with increased water discharge. Particulate BC flux values for 

March 26 and May 4, for which actual data were not available, were estimated using the 

strong regression between TSS and PBC (PBC=0.0098×TSS−0.1718, R2 = 0.96,  

p < 0.001). Particulate BC fluxes remained low during base flow and peak discharge (0.3 

± 0.2 Mg C/day) but increased by an order of magnitude during spring melt and late 

summer rain events (2.5 ± 0.4 Mg C/day). 

 

4.5  Discussion 

4.5.1  Controls on bulk DOC and DBC export 

Dissolved BC was shown to be strongly correlated with DOC in the Poudre River 

throughout the sampling period (Fig. 4.2). The DBC-DOC relationship is shared among 

global rivers, and suggests that DBC and DOC mobilization processes are somehow 

linked in fluvial systems (Jaffé et al. 2013). During winter and early spring, the watershed 

was still predominantly snow-covered and the river was fed primarily by groundwater. 

Seasonal DOC and DBC concentrations were lowest under these base flow conditions. 

In-stream DOC and DBC concentrations increased rapidly with the onset of spring snow 

melt. As the water table rises and overland flow increases, DOC from recently-deposited 

organic material is flushed from the upper soil horizons into adjacent river systems 
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(Boyer et al. 1997; Lambert et al. 2011). Although there appeared to be no significant 

difference in DOC between burned and unburned sites throughout the season, samples 

collected on May 4 exhibited a detectable low-to-high concentration gradient from PBR 

to PNF (Fig. 4.2a). This pattern was also observed with regards to DBC (Fig. 4.2b), 

suggesting a “snapshot” of local hydrology may have been captured which seemed to 

occur for only a brief period of time during spring snowmelt. The Poudre River sampling 

sites fell along an elevation gradient, where PBR and PNF are located at the highest and 

lowest elevations, respectively. It has been shown that the onset of snowmelt at lower 

elevations can occur earlier in the season (Clow 2010). Early snowmelt could have 

resulted in the premature flushing of surface soils at lower elevations, which could 

presumably have been linked to increased riverine DOC and associated DBC at PSF and 

PNF during that time period. DOC in alpine streams typically reaches peak 

concentrations prior to peak water discharge and decreases with increasing snowmelt as 

the soluble pool of DOC from soils is exhausted and diluted in-stream (Hornberger et al. 

1994). This trend was also observed for the Poudre River, where DOC concentrations 

peaked approximately 1 month prior to peak water discharge (Fig. 4.2a). 

Despite being positively correlated with one another, DBC concentrations were 

distributed slightly differently than that of DOC throughout the season. Compared to 

DBC concentrations determined for PSF and PBR, DBC measured at PNF peaked 

approximately 1 month earlier and dropped more rapidly with increasing water discharge 

(Fig. 4.2b). According to Stoof et al. (2012), fire has been shown to increase streamflow 

volumes resulting from vegetation removal and increased soil repellency. Poudre River 

discharge rates were only obtained at the downstream burn site, PNF. Therefore, water 
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discharge measured at PNF may have been greater than actual streamflow rates occurring 

simultaneously at PBR or PSF due to the presence of smaller tributaries that likely 

contribute to flow downstream of PSF. If the bulk of DBC inputs occurred upstream of 

the fire affected area, then the perceived drop in DBC concentration between PBR and 

PNF for samples collected on June 1 and June 14 (Table 4.1; Fig. 4.2b) can be attributed 

to downstream dilution of DBC during peak discharge. In late summer, when discharge 

drops to near-base flow rates, DBC concentrations at PNF remain elevated compared to 

PBR and PSF (Fig. 4.2b). Pyrogenic C incorporated into surface soils immediately 

following a wildfire has been characterized as generally being smaller in size and having 

increased functionality (Czimczik et al. 2003), which suggests that a portion of freshly-

generated BC could be soluble (Preston and Schmidt 2006; Abiven et al. 2011). Small, 

but detectable, inputs of DBC derived from the High Park Fire could have contributed to 

the slightly increased DBC concentrations at PNF until fall and winter base flow 

conditions were reached. In agreement with other studies (Smith et al. 2011; Ding et al. 

2013), it appears that recent fire activity does not significantly affect peak concentrations 

or total seasonal export of DOC and DBC in rivers associated with such watersheds. 

While the data presented here suggests that the bulk export of DBC from downstream, 

lower elevation burned areas occurs earlier in the season compared to unburned, upper 

elevation sites, the overall contribution of DBC from the burned watershed seems to be 

minimal. However, it is important to note that this study was performed 1 year after the 

actual fire event. It is thus possible that soluble DBC from freshly generated char could 

have been exported prior to sampling. 
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4.5.2  DBC and PBC source material 

Pyrogenic C represents a large pool of heat-altered molecules where various 

methods can be employed to gain quantitative and qualitative information for charred 

biomass along different regions of the combustion continuum (Masiello 2004). For 

example, extracted anhydrosugars have been used to reveal possible fuel sources of 

biomass burned at low temperatures (Myers-Pigg et al. 2015), whereas thermo-chemical 

oxidation methods quantify more thermally refractory portions of PyC (Roth et al. 2012). 

The BPCA method specifically detects polycondensed aromatic compounds and 

generates molecular information that is related to the source, formation conditions and 

overall quality of BC derived from high temperature combustion (Schneider et al. 2010; 

Abiven et al. 2011). Black C oxidation products that yield greater proportions of B5CA 

and B6CA indicate that the original aromatic structure was larger and more 

polycondensed in nature (Brodowski et al. 2005; Dittmar 2008; Ziolkowski et al. 2011). 

The seasonally averaged BPCA distributions determined for DBC was statistically 

similar between all three sampling sites (Fig. 4.5a). Comparable BPCA compositions 

between burned and unburned locations suggested that the bulk of DBC was mainly 

sourced upstream, above the fire-affected area and/or from charcoal generated during 

previous historical fire events in the area. The data is in agreement with reports that BC 

stocks in the Poudre River watershed are higher in deeper soil horizons compared to 

surface soils, and that this deeper, aged BC from historical fires, had a more condensed 

aromatic structure compared to recently generated BC from the High Park Fire (Boot et 

al. 2014). The absence of increased DOC and DBC at the downstream PNF site compared 

to the control site (Fig. 2) further supported this hypothesis, indicating that there may 
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have been minimal DOM input or removal between the burned and unburned end-

members during the sampling period studied. The water residence time between PBR and 

PNF is also quite short (approximately 6 h during spring snowmelt). Therefore, there is 

also little opportunity for significant in-stream geochemical processing of DOC and DBC 

(e.g., sorption, dissolution, decomposition, etc.) that would considerably alter DBC 

quantity and/or quality. However, the data presented here cover only a portion of the 

annual hydrograph (March–August) and thus do not imply that potential differences 

between the control and fire-impacted sites or between periods before and after the fire 

do not exist. 

The B5CA and B6CA biomarkers contributed approximately 50 % of the BPCAs 

for DBC measured at all sites (Fig. 4.5a), which suggests that large, more polycondensed 

aromatic molecules are exported to the Poudre River in the dissolved phase. As BC ages 

and undergoes oxidation in soils, carboxylic functionalities are introduced, increasing the 

overall polarity and solubility of BC molecules (Knicker 2011). Abiven et al. (2011) 

observed increased contributions of larger, condensed aromatic molecules in DBC 

leached from aged and oxidized charcoal. Thus, the prevalence of B5CA and B6CA 

suggested that DBC in the Poudre River was primarily derived from an older PyC source, 

and received only minimal inputs from freshly-generated charcoal produced by the High 

Park Fire. Although seasonally-averaged BPCA compositions indicated a shared DBC 

source among the sampling sites, it was apparent that this source may have in part shifted 

between peak and base flow conditions. 

The ratio of B5CA to B4CAs (B5:B4) has been used previously to express the 

overall degree of BC condensation (Stubbins et al. 2012). Dissolved BC experiences a 
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seasonal shift from low to high B5:B4, indicating a change in DBC quality between the 

spring and summer months (Fig. 4.5b). The shift in DBC quality was observed for all 

sampling sites, and therefore cannot necessarily be attributed to the recent fire activity 

that affected PSF and PNF. PCA was implemented to uncover the possible environmental 

controls that influenced BPCA composition during the course of the sampling period 

(Fig. 4.6). Dissolved BC quality correlates strongly with PC1, indicating a shift in DBC 

source strengths between the spring and summer months (Fig. 4.6e). Principle component 

2 was determined to be significantly correlated with water discharge rates measured at 

the downstream sampling site, which suggested that seasonal hydrology played a role in 

the quality of exported DBC (Fig. 4.6f). In Rocky Mountain streams, it has been 

previously established that DOC composition is controlled by different flow paths of 

water entering the river (Sanderman et al. 2009). During base flow, the Poudre River 

received inputs from slow-moving groundwater that percolated through deep soil 

horizons before entering the stream. However, during times of increased runoff, such as 

spring snow melt and summer storm events, faster-moving flow paths through the upper 

soil horizons linked mobile DBC and DOC in organic-rich surface layers to the river 

main stem. It has been observed that aged and partially-oxidized BC can become 

enriched in deeper soil layers (Knicker et al. 2008; Boot et al. 2014) and stabilized in the 

mineral phase (Glaser et al. 2000; Czimczik and Masiello 2007). Although it has been 

shown that, compared to fresh charcoal, aged BC leaches DBC that generates greater 

proportions of B5CA and B6CA (Abiven et al. 2011), Kothawala et al. (2012) showed 

that larger aromatic compounds can be largely retained in mineral-rich soils, which 

suggests that smaller DBC molecules yielding lower B5:B4 ratios could have been 
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preferentially released from deeper soil horizons during base flow. The relatively slow 

rates of groundwater flow may have allowed for the equilibration time needed for 

sorption of larger DBC molecules to deep mineral soils, resulting in the preferential 

export of DBC with comparatively small molecular structures. In contrast, large runoff 

events, such as storm activity or snow melt, likely resulted in quick surface flow that may 

not have allowed for the sorption/desorption mechanisms of DBC that are suggested to 

have occurred during base flow. A large pool of relatively fresh BC can become 

concentrated in the upper organic soil horizon (Preston and Schmidt 2006). The fast 

flushing of DBC in these surface soils does not likely discriminate in the export of large 

and small aromatic molecules. Therefore, it is hypothesized that increased contributions 

of B5CA and B6CA to the BPCA signature later in the season can be attributed to the 

additional mobilization of relatively large DBC molecules from organic surface soils 

(including soil pore water) during times of increased discharge (Fig. 4.5b). The export of 

larger DBC structures will have likely dominated the BPCA signature until the system 

returned to base flow conditions. Dissolved BC quality has been linked to hydrology in 

other climatic regions, such as tropical forests (Dittmar et al. 2012) and Arctic rivers 

(Guggenberger et al. 2008), suggesting that this seasonal shift in DBC source between 

fresh BC incorporated into surface soils and partially aged BC enriched in deeper soil 

horizons may occur on a global scale. 

The presence of PBC, albeit at much lower concentrations than at the downstream 

fire-impacted site, at the unburned reference site was initially thought to have been 

sourced from atmospheric deposition of soot from anthropogenic sources or from 

airborne charcoal generated by the High Park Fire. However, PBC from these particular 
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sources are expected to have increased contributions of B5CA and B6CA (Roth et al. 

2012). Enrichments in B5CA and B6CA were not observed for PBR, which exhibited a 

BPCA signature that was relatively depleted in such oxidation products (Fig. 4.4a). 

Recently, the photoflocculation of terrestrial organic matter has been suggested under 

specific environmental conditions (i.e. high DOC, high iron content and low pH) where 

photochemically-flocculated particulate organic was suggested to become enriched in 

condensed aromatic functionalities (Chen et al. 2014). However, the molecular size and 

degree of conjugation of these photoflocculated aromatics has yet to be characterized as 

BC using the BPCA method. In addition, the lack of a direct link between DBC and PBC 

in the Poudre River may suggest that the potential photo-production of condensed 

aromatic components could be less important in natural fluvial settings than what has 

been observed under laboratory conditions (Chen et al. 2014). Sánchez-García et al. 

(2013) noted a reduced contribution of B6CA for BC measured in near-shore coastal 

shelf sediments when compared to BC in sediments collected from within the central 

river plume. A relative depletion in B6CA suggests that diagenetic degradation processes 

and associated aging may result in a less condensed PBC signature and that this material 

at PBR may be relic PBC from historic events. However, the exact reasons for these 

observations remain to be resolved. 

 

4.5.3  Controls on bulk TSS and PBC export 

The riverine export of TSS and PBC at PNF, both of which exhibited a clear 

bimodal distribution throughout the season, was substantially larger compared to 

measurements at the unburned PBR site (Fig. 4.3). Particulate BC and TSS at PBR was 
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variable, but exhibited no clear seasonal trend (Fig. 4.3). Wildfires reduce vegetation 

cover and destabilize soils, which increases the susceptibility of the burned area to 

surface erosion (Johansen et al. 2001; Smith et al. 2011). The initial peaks in TSS and 

PBC coincided with spring snowmelt, when increasing river discharge mobilized 

sediments deposited within the main stem during the previous season and overland runoff 

flushed large amounts of fire-affected soils and associated charcoal into the river. Total 

suspended solids and PBC concentrations quickly dropped, becoming diluted as 

discharge rates increased, and exhausted the erodible pool of soils and PyC. The second 

peak in TSS and PBC that occurred during mid-summer was attributed to multiple storm 

events that were documented during the first 2 weeks of July (Fig. 4.3). Previous work 

has shown similar trends in increased TSS mobilization during spring melt and summer 

storm events in watersheds affected by recent wildfire activity (Moody and Martin 2001). 

Moody and Martin (2001) suggested that pyrogenic material can be deposited in “alluvial 

fans” in areas where lower-order tributaries connect to higher-order streams. Significant 

deposits of charcoal were visibly evident at the shoreline of the Poudre River in the 

burned section of the watershed, showing a clear size selection, changing from coarse 

char particles to fine, black, particulate matter with increasing distance from the river 

channel. Such a size distribution pattern agrees with the mobilization and transport of fine 

PBC during increased river discharge events as this fire-derived organic matter is then 

flushed into the main river during times of increased runoff, such as summer storm events 

which typically occur later in the season (Moody and Martin 2001). In some studies, it 

has been shown that charcoal may be transferred preferentially down a slope, further 

increasing the connectivity between PBC and riverine export (Florsheim et al. 1991; 
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Rumpel et al. 2006). Contrary to DBC, the export of PBC in the Poudre River was clearly 

influenced by the High Park Fire, where particulate charcoal and thermally-altered soils 

were physically transported along the main stem during increased spring streamflow and 

periods of overland runoff. 

The contribution of PBC to TSS was also significantly increased in areas where 

the Poudre River drained fire-affected regions of the watershed (Table 4.1). The 

proportion of PBC to dry TSS was, on average, up to six times greater in areas where the 

river received pyrogenic inputs from the High Park Fire (Table 4.1), which reflects the 

direct and immediate post-burn contribution of charred particulates to the Poudre River. 

Despite the significantly increased contributions of PBC to TSS in fire-affected waters, 

the proportion of PBC to TSS was expected to be even larger due to large amounts of 

visible suspended char at the PNF site. However, it was hypothesized that perhaps only a 

small percentage of TSS is organic in nature and that a considerable portion of the 

visibly-detected charcoal may be slightly charred biomass, which is mildly thermally-

altered but lacking a polycondensed aromatic structure, thereby falling outside the BPCA 

detection window (Masiello 2004; Alexis et al. 2010; Masiello and Louchouarn 2013). 

The BPCA method detects only the polycondensed aromatic portion of fire-derived 

organic matter and therefore primarily reflects PyC inputs derived from high temperature 

combustion. Pairing this technique with others, such as extracted anhydrosugars for low 

temperature PyC (Myers-Pigg et al. 2015), would allow for a more complete 

understanding of PyC composition and mobility across larger regions of the combustion 

continuum (Masiello 2004). 
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4.5.4  Decoupling of PBC and DBC export in fire-affected rivers 

Flux measurements for the export of PBC and DBC were only calculated for the 

PNF site, as this was the location closest to the gage station. Fluxes of PBC and DBC 

varied throughout the season and appeared to operate on different timescales (Fig. 4.7). 

This variation in BC export further strengthened the hypothesis that both sources and 

mobilization processes for BC in the particulate and dissolved phases were decoupled in 

the Poudre River watershed. Flushing events, such as spring snow melt and summer 

storm activity, triggered overland flow and the physical transport of particulate PyC 

within the river main stem, which significantly increased the flux of PBC to rates 16 

times greater than that of DBC (Table 4.2). However, during times of peak discharge, 

when seasonally high DBC concentrations are compounded by increased streamflow 

rates, the export of riverine BC occurred primarily in the dissolved phase and reached 

fluxes approximately 7 times that of PBC (Table 4.2), which provides additional support 

for the observed link between streamflow and DBC export where the mobilization of 

soluble PyC is influenced by watershed dynamics. The area under each seasonal flux 

curve (Fig. 4.7), was integrated in order to estimate and directly compare the total amount 

of BC exported as both PBC (148 Mg BC) and DBC (38 Mg BC). On the basis of these 

approximations, the total seasonal export of PBC exceeded that of DBC by a factor of 

four during the sampling period. 
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Table 4.2  Water discharge rates and calculated black carbon flux measurements for the 
PNF sampling site 
  Discharge Flux PBC Flux DBC 
Sampling Date (ft3/sec) (Mg-C/day)  (Mg-C/day) 

March 26 34 0.00* 0.01 
May 4 46 0.25* 0.04 
May 14 199 2.7 0.17 
June 1 474 0.19 0.29 
June 14 1054 0.09 0.61 
June 29 1721 0.46 0.60 
July 14 795 2.0 0.34 
July 29 483 2.8 0.22 
August 24 378 0.52 0.15 
* Some values were extrapolated based on the strong regression between PBC and TSS; 
PBC=0.0098×TSS−0.1718, R2 = 0.96, p < 0.001 

 
 

 
Figure 4.7  Seasonal fluxes for DBC (black circles) and PBC (black squares) at the fire-
affected PNF sampling site. PBC flux rates for March 26 and May 4 (open squares) were 
estimated using the strong regression between PBC and TSS 
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The scope of this study was limited considering that data was only available for 

the 2013 sampling season, thereby missing what may have been a key time for BC export 

in 2012, during the immediate post-fire period. It is known that fresh char can leach a 

significant amount of DBC (Abiven et al. 2011; Wagner et al. 2015), which suggests that 

an initial pulse of DBC exported immediately after the High Park Fire may have been 

missed. Since there was not a considerable difference in DBC between burned and 

unburned locations, it was concluded that any immediate influence the fire may have had 

on DBC during the first year is nearly undetectable during the following season. 

However, DBC export in the Poudre River may ultimately increase as the new pool of 

charcoal generated from the High Park Fire becomes incorporated into the soil and is 

slowly oxidized before being released into the river, a process that could last hundreds of 

years (Dittmar et al. 2012; Singh et al. 2012). Contrary to DBC, the riverine export of 

PBC was significantly impacted by recent wildfire activity on what appears to be a much 

shorter timescale. Fires result in increased erosion (Johansen et al. 2001; Smith et al. 

2011) where the preferential translocation of BC downslope is possible (Rumpel et al. 

2006). Previous work by Lane et al. (2006) indicated a tenfold increase and a threefold 

increase in TSS during the first and second years following a wildfire, respectively, 

which suggests that fluxes of TSS and PBC may have been more than three times greater 

in 2012 than those measured during the 2013 sampling period. Despite the initially 

dramatic increase in riverine PBC export following the High Park Fire, it is suggested 

that PBC fluxes will be reduced each subsequent year in response to vegetation recovery 

and soil re-stabilization (Lane et al. 2006) until pre-fire concentrations are reached. The 

apparent decoupling between DBC and PBC in the Poudre River is supported by the 



105 
 

hypothesis that dissolved and particulate organic matter in fluvial systems is likely 

derived from different sources (Raymond and Bauer 2001). Although it has been 

suggested that the bulk of High Park Fire BC is removed from the landscape via surface 

erosion (Boot et al. 2014), the time deferred release of DBC from the deeper, aged BC 

stocks, and from ageing char from this fire event may ultimately become a greater, longer 

term contribution to the riverine BC pool in the Poudre River system. 

 

4.6  Conclusions 

Dissolved BC fluxes in the Poudre River watershed were not substantially 

increased post-fire, which suggests that the oxidation and aging of BC to enhance its 

solubility is a prerequisite to its export in the dissolved phase. However, the High Park 

Fire significantly increased PBC export as freshly-generated charcoal entered the Poudre 

River during spring melt and times of the year when overland flow was prominent. These 

findings suggest that (1) the export processes of PBC and DBC are decoupled in systems 

recently impacted by fires and (2) although it is not known if there was an initial pulse of 

DBC released shortly after the fire event, the release of DBC is likely to occur over 

longer timescales than PBC derived from the same burn event. During the sampling 

period discussed here, the seasonal flux of PBC in the Poudre River exceeded that of 

DBC four-fold. The riverine export of BC in the particulate phase appears to be a 

significant, yet previously unquantified, mechanism for BC removal from watersheds 

directly affected by fires. 

Since the occurrence of wildfires is expected to increase in the coming decades as 

a result of climate change (Krawchuk et al. 2009), fluxes of PBC via inland waters may 
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also increase. However, extrapolating global fluxes of PBC from the data shown here 

would be highly speculative, as PBC export appears to be strongly influenced by 

geomorphology and hydrology of the specific, burnt catchment area. Nevertheless, 

relationships between post-fire DBC and PBC should be further explored in order to 

properly assess short- and long-term effects of wildfires on the dynamics of aquatic BC 

and its contribution to the biogeochemical cycling of charcoal. 
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EFFECT OF PHOTODEGRADATION ON MOLECULAR SIZE DISTRIBUTION 

AND QUALITY OF DISSOLVED BLACK CARBON 

(Modified from Wagner and Jaffé, 2015, Organic Geochemistry) 
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5.1  Abstract 

The effect of photodegradation on the molecular size distribution and composition 

of dissolved black carbon (DBC) were explored using a surface water dissolved organic 

matter (DOM) sample from a terrigenous-influenced, fire-impacted Everglades area 

canal.  The original and photodegraded DOM samples were fractionated by size 

exclusion chromatography and DBC was quantified by benzenepolycarboxylic acid 

analysis.  Size fractionation revealed that DBC was unequally distributed along the DOM 

molecular weight (MW) continuum, and was preferentially associated with high MW 

(HMW) fractions.  The photo-decomposition of HMW DBC generated less condensed 

DBC photo-products that preferentially re-associated with, and became enriched in, low 

MW(LMW) DOM size fractions.  The patterns observed indicated that size of the 

conjugated aromatic ring structure may drive the association of DBC compounds with 

different DOM MW fractions.  The HMW DBC was also more photo-labile than LMW 

DBC, which suggests that that DBC associated with DOM over a range of size fractions 

may not exhibit the same degree of photo-reactivity, thereby resulting in different 

environmental fates for pyrogenic OM. 

 

5.2  Introduction 

Photo-reactivity of dissolved organic matter (DOM) in surface waters has a 

significant impact on the composition and quantity of dissolved organic carbon (DOC) 

transported through aquatic systems (Chen and Jaffé, 2014).  Dissolved black carbon 

(DBC), the soluble portion of pyrogenic OM, is characterized by its polycondensed 

aromatic ring structure and typically generated by high temperature combustion processes 
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(Schneider et al., 2010).  Dissolved BC is ubiquitous in aquatic environments (Dittmar, 

2008; Jaffé et al., 2013) and highly susceptible to photo-transformation (Stubbins et al., 

2010 2012).  While DBC has been shown to correlate with bulk DOC on a global scale 

(Jaffé et al., 2013), the exact physical and chemical drivers controlling DBC-DOC 

interaction remain elusive. 

Size exclusion chromatography (SEC) is a useful tool for gaining compositional 

and structural information across the molecular weight (MW) continuum of DOM.  

Elution conditions have been developed for the distinct separation of different size 

fractions (Peuravuori and Pihlaja, 2004), while maintaining the supramolecular structural 

integrity of DOM (Piccolo, 2001; Simpson et al., 2002; Romera-Castillo et al., 2014).  

Generally, high MW (HMW) fractions are enriched in aromatic, carboxyl-rich, humic 

substances, whereas low MW (LMW) fractions are typically enriched in smaller, more 

labile compounds such as aliphatics, sugars and amino acids (Woods et al., 2010).  

Condensed aromatic DOM components have been shown to co-vary with humic-type 

substances (Stubbins et al., 2014).  It was hypothesized that the fused ring structures 

characteristic of DBC enables its interaction with humic-like DOM in HMW fractions by 

way of weak intermolecular forces (Perminova et al., 1999), supporting the new 

paradigm whereby DOM consists of variable-sized assemblies of smaller heterogeneous 

molecules (Piccolo, 2001; Simpson et al., 2002).  The photo-reactivity of DBC is similar 

to that of the chromophoric DOM pool (CDOM; Stubbins et al., 2012).  Previous work 

has shown that CDOM can be diminished through photo-bleaching, a process that has 

also been linked to reductions in apparent MW (Lou and Xie, 2006; Helms et al., 2008).  



116 
 

Therefore, the light absorbance of DOM size fractions was also measured to provide 

complementary support for observed DBC photodegradation processes. 

 There is no information on the molecular size distribution of DBC.  The goal of 

the present study was to establish with which MW fractions DBC is primarily associated 

and how the distribution may be affected after photo-exposure.  Dissolved BC is highly 

photo-reactive (Stubbins et al., 2010; 2012), so it is of interest to gain insight into how it 

is specifically altered within the MW continuum during this degradation process.  Thus, 

the effect of photo-irradiation on DBC concentration and quality across the MW 

continuum of a terrestrially-derived DOM sample collected in south Florida was 

investigated. 

 

5.3  Material and Methods 

Surface water (20 l) was collected from the Everglades area Hillsboro Canal 

(Florida, USA) during October of 2011 and filtered through pre-combusted 0.7 um GFF 

filters.  Ultrafiltration (UF) does not significantly alter the MW distribution of DOM 

(Peuravuori and Pihlaja, 2004).  Therefore, UF (1 kDa cutoff membrane) was employed 

to pre-concentrate the DOM approximately ten-fold to a final DOC concentration of 160 

ppm in order to obtain mg quantities of size-fractionated DOC.  A 250 ml aliquot of UF-

concentrated DOM was transferred to a pre-combusted 1 l quartz Erlenmeyer flask fitted 

with a quartz cap and placed in a Suntest XLS+ solar simulator fitted with bulbs that 

mimic the irradiance of natural sunlight and set to 765 /m for 72 h (sunlight dose is ca. 12 

summer days in south Florida; Chen and Jaffé, 2014).  Both the original and irradiated 

DOM samples were stored at 4 °C until size fractionation. 
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The DOM MW fractionation was achieved with preparative scale SEC following 

methods described by Peuravuori and Pihlaja (2004). High pressure liquid 

chromatography (HPLC; Thermo Scientific Surveyor Plus system) was used for 

separation.  Approximately 160 SEC separations were carried out for both the original 

and photodegraded DOM concentrate in order to recover mg amounts of DOC per 

fraction for DBC quantification.  Size fractions were collected in pre-combusted glass 

test tubes using an LKB Bromma 2211 Superrac fraction collector, combined into pre-

cleaned Nalgene bottles and stored at 4 °C.  Absorption data were collected (250 to 800 

nm) using a Varian Cary 50 Bio UV-visible spectrophotometer with a 1 cm quartz 

cuvette.  CDOM was calculated by converting absorbance at 254 nm to the Napierian 

absorbance coefficient (a254 /m; Hu et al., 2002).   

The DOC concentration of whole DOM samples was measured using a Shimadzu 

TOC-V-CSH analyzer.  Size fractionated DOC could not be measured directly because of 

DOC interference from residual SEC NaOAc buffer (Peuravuori and Pihlaja, 2004).  

Concentration of DOC has been shown to correlate strongly with CDOM in freshwater 

systems (Spencer et al., 2012).  The CDOM (absorbance at 254 nm) was continually 

measured during SEC and used to determine DOM size fraction cutoffs (Fig. 4.1).  Thus, 

SEC peak areas corresponded to the relative proportion of CDOM in each size fraction.  

The concentration of DOC per fraction was estimated by multiplying the total mass of 

DOC injected by the ratio of the fraction peak area to the total peak area of all fractions 

with the assumption of a linear correlation between CDOM and DOC.  The estimated 

mass of DOC per fraction was then divided by the total fraction volume to obtain 

approximate DOC concentrations for each fraction.  Dissolved OM was isolated and 
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desalted via solid phase extraction for DBC analysis using the method described by 

Dittmar et al. (2008). 

Dissolved BC was quantified using the benzene polycarboxylic acid (BPCA) 

method, which detects polycondensed aromatic compounds generated primarily during 

high temperature combustion processes (Schneider et al., 2010).  Briefly, concentrated 

HNO3 was added to dry DOM (<1 mg DOC) and oxidized for 6 h at 160 °C (Ding et al., 

2013).  Post-oxidation, HNO3 was dried under N2 and the BPCA-containing residue was 

re-dissolved in mobile phase for direct HPLC separation and quantification.  The HPLC 

elution conditions and calculation of DBC values have been previously described in 

detail by Dittmar (2008).  The BPCAs for each sample were measured in triplicate (CV 

<5%). 

 
 
 

 
Figure 5.1  SEC fractionation (F1 – F8) of Everglades area DOM before (solid line) and 
after (dashed line) photo-exposure.  Vertical grey lines indicate size fraction cut offs. 
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5.4  Results and Discussion 

Eight distinct MW fractions (F1 – F8) were isolated for both the original and 

photo-exposed DOM (Fig. 5.1).  Dissolved OC, DBC and CDOM for whole water and 

size fractionated DOM both before and after photo-exposure are reported in Table 5.1.  

While it is known that SEC separation of DOM is not necessarily solely determined by 

molecular mass (Štulík et al., 2003), previous studies have reported clear trends in MW 

distribution that demonstrate a general decrease in apparent molecular size from early- to 

late-eluting peaks (e.g., Peuravuori and Pihlaja, 2004).  Thus, F2 – F4 and F5 – F7 are 

referred to here as HMW and LMW DOM fractions, respectively.  Dissolved BC was not 

detectable in F1 and F8 using the BPCA method.  Absorbance measurements collected 

for these fractions were also low, which indicated that F1 and F8 contained very little, if 

any, CDOM (Table 5.1; see also Romera-Castillo et al., 2014). 

Photodegradation significantly reduced concentrations of DOC, DBC and CDOM 

in whole DOM after 3 days irradiation (p < 0.05; Table 5.1).  Dissolved BC was removed 

preferentially vs. bulk DOC, as evidenced by the significant decrease in DBC:DOC ratio 

for whole DOM (p < 0.05; Table 5.1).  The proportion of CDOM removed with 

photodegradation was similar to the proportional loss of DBC (Table 5.1).  Therefore, a 

photo-sensitivity gradient of DBC = CDOM > DOC is suggested for this Everglades area 

DOM sample.  A tight coupling between CDOM and DBC during photodegradation has 

been suggested by Stubbins et al. (2012), so it is not surprising that size-fractionated 

DBC concentration also correlated significantly with CDOM here (p < 0.05). 
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Table 5.1  Summary of data for whole and size-fractionated DOM before and after 
photo-exposure.  

Sample Fraction a254 (/m)a DBC (ppm)b DOC (ppm)c 
DBC:DOC 
(mg-C%) 

B5:B4d 

Before Whole 1650 37.53 ± 0.32 164.09 ± 2.00 22.9 ± 0.3 1.6 ± 0.1 
Photo F1 0.9 ND 0.01 - - 

F2 20.6 0.42 4.80 8.8 2.0 
F3 66.1 1.74 9.10 19.1 1.8 
F4 42.3 0.77 6.09 12.6 1.6 
F5 18.1 0.29 2.60 11.2 1.3 
F6 6.6 0.08 0.80 10.2 1.0 
F7 2.2 0.01 0.25 4.9 0.9 
F8 1.1 ND 0.01 - - 

After Whole 1190 27.44 ± 0.14 145.76 ± 2.07 18.8 ± 0.3 1.7 ± 0.1 
Photo F1 0.8 ND 0.00 - - 

F2 12.2 0.13 1.58 8.2 1.7 
F3 53.9 1.42 8.75 16.2 2.0 
F4 43.6 1.04 6.51 16.0 1.8 
F5 23.5 0.41 3.33 12.3 1.4 
F6 10.0 0.11 1.05 10.7 1.0 
F7 3.4 0.01 0.19 6.6 0.8 
F8 0.9 ND 0.01 - - 

aAbsorbance measured at 254 nm is expressed in Napierian absorbance coefficients; 
bDBC was quantified using the BPCA method; cDOC concentrations were derived from 
a254; dB5:B4 is the ratio of B5CA to B4CAs 
 
 

 
Figure 5.2  Relative proportion of DBC in each DOM size fraction before (black bars) 
and after (gray bars) photodegradation. BPCAs were measured in triplicate (CV < 5%) 
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Dissolved BC was preferentially associated with DOM in HMW size fractions as 

evidenced by relatively high DBC:DOC ratios for F2 and F3 (Table 5.1).  The decrease in 

DBC concentration in these HMW fractions after photo-irradiation was coupled with an 

increase in DBC concentration in LMW fractions (Table 5.1).  The apparent photo-

induced shift in DBC relative abundance from HMW to LMW fractions (Fig. 5.2) could 

be the result of a combination of oxidation to CO2 via photo-mineralization (Ward et al., 

2014) of HMW DBC or a structural photo-alteration (Stubbins et al., 2010), resulting in 

DBC to form more thermodynamically stable re-associations with DOM in LMW 

fractions.  Bulk DOC significantly decreased when the DOM was exposed to sunlight 

(Table 5.1), which indicated that a portion of DOC was lost via photo-mineralization to 

CO2.  Although it has been shown that a small portion of DBC can also be photo-

mineralized to CO2, the majority of DBC becomes only partially oxidized, generating 

photo-products (Ward et al., 2014) that may or may not be detectable with the BPCA 

method (Ziolkowski et al., 2011).  However, since an increase in both CDOM 

concentration and DBC concentration was observed for LMW fractions after 

photodegradation (Table 5.1), it is suggested that smaller aromatic photo-products were 

indeed generated from the decomposition of CDOM and DBC in HMW fractions for this 

particular DOM sample.  Although the present study is corroborated by previous 

observations where DBC is preferentially removed through photo-reactive processes vs. 

bulk DOC (Stubbins et al., 2012; Ward et al., 2014), it was also discovered that DBC is 

associated with HMW fractions is more photo-labile than DBC in LMW fractions (Fig. 

5.2).  The DBC molecules with large polycondensed aromatic rings generate more 

BPCAs with 5 and 6 carboxylic groups (B5CA and B6CA) than B3CAs and B4CAs 
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during oxidation (Dittmar, 2008; Ziolkowski et al., 2011). By using relative BPCA 

distributions, such as the ratio of B5CA to B4CAs (B5:B4; Table 5.1), the quality of 

DBC was compared among whole and size fractionated DOM samples. The ratio 

generally decreased with increasing size fraction and the pattern was not found to be 

considerably altered after photo-exposure (Table 5.1).  The trend indicated that not only 

was the DBC abundance unevenly distributed among size fractions, but also that DBC 

molecules with larger ring systems continued to be associated with DOM of larger 

apparent MW regardless of short term photo-reactive processes. 

Despite the significant reduction in bulk DBC and an apparent shift in the 

distribution of DBC from HMW to LMW fractions after 3 days irradiation, the B5:B4 

ratio for whole water DBC was not significantly altered (p > 0.05; Table 5.1).  After 

photodegradation, > 76% of the DBC still remained in F2 to F4 (Fig. 5.2).  The observed 

result suggests that, even after short-term photo-exposure, the quality of whole water 

DBC was still controlled mainly by the DBC associated with HMW fractions, which 

exhibited consistently higher B5:B4 values than DBC in LMW fractions (Table 5.1).  

Therefore, the relative proportion of BPCAs for whole water DBC did not seem to 

change significantly after three days of irradiation (p > 0.05).  The primary objective of 

this study was to assess short-term DBC photo-reactivity along the DOM MW 

continuum.  Assuming DBC would continue to be preferentially removed from HMW 

fractions, the BPCA composition of whole water DBC is expected to more closely 

resemble that of the photo-resistant DBC pool in LMW DOM fractions after long 

exposure times (e.g., weeks to months). 
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 The selective photo-removal of HMW DBC may generate a LMW DBC pool with 

potentially increased bioavailability (Bruun et al., 2008).  The microbial processing of 

LMW DBC could be enhanced by the interactive priming effects of labile compounds 

found in smaller DOM size fractions (Woods et al., 2010).  Considering that 

cometabolism effects have been observed between black carbon and labile C sources in 

soil (Hamer et al., 2004), such priming could also occur for DBC.  Although it has not 

been described before, the mineralization of DBC may be enhanced via synergistic 

photo-oxidation and biodegradation processes, much like those observed for terrigenous 

DOM (Chen and Jaffé, 2014).  These interactive degradation processes may reduce the 

otherwise relatively long turnover rates of pyrogenic DOM. 
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BC was initially considered to be a carbon sink, resistant to degradation and 

mobilization in terrestrial systems.  However, under favorable environmental conditions, 

BC in the solid phase can easily undergo oxidation via biotic and/or abiotic processing.  

The addition of oxygen-containing functionalities, such as phenolic or carboxylic acid 

groups, to the polycondensed aromatic core structure of BC likely encourages the 

dissolution and translocation of DBC to the aqueous phase.  The soluble component of 

BC is variable with regards to its molecular composition.  DBC released from soils and 

char was shown to be generally highly oxidized, containing multiple oxygen-containing 

moieties.  It was also observed that, in some cases, more than 50% of the DBC molecular 

formulae identified in soil and char leachates contained nitrogen.  In general, it was 

observed that greater proportions of dissolved black nitrogen (DBN) were released from 

soils and grass-derived charcoals, which suggested that the proportion of DBN 

solubilized from charcoal and fire-impacted soils appears to be controlled by both the 

organic source material and extent of BC processing in soils after thermal alteration.  The 

presence of DBN likely influences the reactivity and ultimate fate of the bulk DBC pool, 

therefore it is necessary to further understand how this pyrogenic component of DOM is 

released into and exported via aquatic systems.  DBN was identified in global rivers and 

could be linked to watershed land use.  The contribution of DBN to the pyrogenic DOM 

signature was significantly positively correlated with the proportion of agricultural area 

within the catchment.  The burning of protein-enriched, grassy-type biomass in farmland 

areas could have resulted in riverine pyrogenic DOM composition with higher DBN 

content.  Additionally, the long term application of nitrogen-based fertilizers to 

agricultural fields may be incorporated into the BC molecular structure during burn 
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events and subsequently exported as DBN over time.  Further research is needed to fully 

assess how DBN content impacts the lability of the bulk DBC pool, and if this DBN is 

available to heterotrophic organisms.  The persistence of DBN and other 

anthropogenically-derived compounds in downstream areas of large rivers may have 

major implications for the reactivity and global cycling of both DBC and DOM. 

  The riverine export of DBC was not shown to be substantially influenced after a 

recent wildfire burned considerable portions of a Colorado mountain watershed.  Instead, 

the removal and fluvial transport of freshly-generated BC occurred primarily in the 

particulate phase (PBC), which indicates that export mechanisms for PBC and DBC are 

decoupled in watersheds recently affected by wildfire.  The mobilization of PBC appears 

to be a significant, yet previously unstudied, mechanism for BC cycling in aquatic 

systems.  These observations suggest that the gradual oxidation and aging of BC in soils 

may be a prerequisite to its dissolution and translocation to the dissolved phase, whereas 

freshly-generated charcoal can be immediately transferred to rivers as PBC.  Although a 

significant portion of BC formed during a wildfire event is removed from the burned 

landscape as PBC via surface erosion, the time deferred release of aged DBC from deeper 

soils may ultimately become a greater, long-term contributor to in-stream BC.  Future 

studies should focus on PBC dynamics in surface waters in order to assess how 

environmental processes, such as photodissolution or sedimentation, impact the mobility 

and fate of particulate charcoal. 

It is analytically challenging to study DBC because it is a heterogeneous 

molecular mixture which is inherently associated with an even more complex bulk DOC 

pool.  However, DBC-DOC relationships can be investigated using a combination of 
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analytical techniques.  DBC is characterized by its fused aromatic ring structure, which 

makes it highly photoreactive.  Photodegradation preferentially removed DBC from an 

Everglades-area surface water sample compared to bulk DOC.  DBC in higher molecular 

weight DOM fractions was also more photolabile than DBC in lower molecular weight 

fractions.  This suggests that that DBC associated with DOM over a range of size 

fractions may not exhibit the same degree of photoreactivity, thereby resulting in 

different environmental fates for pyrogenic DOM.  For instance, microbial processing of 

DBC in lower molecular weight DOM fractions could be enhanced by interactive priming 

effects of labile compounds commonly associated with smaller DOM size fractions.  The 

mineralization of DBC may also be increased via synergistic photooxidation and 

biodegradation processes, thereby reducing the relatively long turnover rates of pyrogenic 

DOM. 

Fire is a process that occurs across all landscapes and DBC will continue to be 

released from soils and sediments into aquatic systems for years to come.  Although a 

global correlation between DBC and DOC exists, the composition and reactivity of DBC 

is not entirely consistent among all DOM pools.  Research investigating the dynamics of 

DBC in aquatic systems has advanced significantly in recent years, however many 

questions still remain.  PBC may be a significant source of pyrogenic material to inland 

waters, therefore mechanisms that control interactions between BC in both the particulate 

and dissolved phase must be further assessed.  Photodegradation breaks down DBC 

structures into smaller, more aliphatic components that may be more biolabile than their 

pyrogenic precursors.  However, such sequential degradation studies have yet to be 
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carried out for DBC.  The benzenepolycarboxylic acid method is only capable of 

detecting the most recalcitrant forms of DBC.  Therefore, future research should 

incorporate the measurement of more labile components of the pyrogenic carbon pool in 

order to obtain an understanding of BC dynamics across a broader range of the 

combustion continuum.  BC is a major component of the terrestrial organic matter pool 

which can be mobilized via inland waters.  Addressing these research gaps will allow for 

a more accurate assessment of BC residence times in the environment and constrain the 

role BC plays in global carbon cycling. 
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Appendix 2.1 
 
Kendrick plots for DBN formulae detected in PNAS and PNAC.  Points falling on a 
horizontal line separated by a nominal mass of 44 Da indicated homologous molecular 
formulae differing by the gain or loss of a CO2 group. 
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Appendix 3.2 
 
Global river basin characteristics obtained from the Watersheds of the World database compiled by IUCN-The World Conservation 
Union, the International Water Management Institute, the Ramsar Convention Bureau and the World Resources Institute 
(http://multimedia.wri.org/watersheds_2003/). 
River Forest (%) Grassland (%) Wetland (%) Dryland (%) Cropland (%) Urban (%) Basin Area (km2) 
Amazon 73.4 10.2 8.3 6 14.1 0.6 6145186 
Congo 44 45.4 9 0.2 7.2 0.2 3730881 
Danube 18.2 3.2 1.4 13.7 66.9 10.7 795656 
Ganges-Brahmaputra 9.8 25.6 18.9 35.3 55.6 4.8 1667459 
Yangtze 6.3 28.2 3 2 47.6 3 1722193 
Lena 64.7 11.4 0.6 1.5 1.7 0.4 2306743 
Mekong 41.5 17.2 8.7 0.8 37.8 2.1 805604 
Mississippi 22.2 28.5 20 46.7 35.8 12.6 3202185 
Paraná 18.1 33 10.9 0.6 43.3 4.2 2582704 
St. Lawrence 43.5 0.1 47.2 0 16.4 14.5 1049636 
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Appendix 3.3 
 
Total number and proportion of molecular formulae assigned to each compound class for global river DOM. 

River 

No. of 
Assigned 
Formulae 

Condensed    
Aromatics     
(AI > 0.66)

Polyphenols       
(0.5 < AI ≤ 0.66)

Highly 
Unsaturated 
Aliphatics      
(AI < 0.5;       
H/C < 1.5)

Unsaturated 
Aliphatics      

(1.5 ≤ H/C < 2)

Saturated 
Fatty        
Acids      

(H/C > 2)
Sugars 

(O/C ≥ 0.9)
Peptides 

(H/C > 1.5)
Amazon 4839 672 (13.9%) 1101 (22.8%) 2729 (56.4%) 312 (6.4%) 2 (0.04%) 9 (0.19%) 14 (0.29%) 
Congo 4406 654 (14.8%) 1026 (23.3%) 2479 (56.5%) 233 (5.3%) 0 (0%) 4 (0.09%) 10 (0.23%) 
Danube 5847 611 (10.4%) 1134 (19.4%) 3503 (59.9%) 507 (8.7%) 4 (0.07%) 10 (0.17%) 78 (1.33%) 
Ganges-Brahmaputra 3053 321 (10.5%) 628 (20.6%) 1760 (57.6%) 328 (10.7%) 4 (0.13%) 1 (0.03%) 11 (0.36%) 
Yangtze 5457 602 (11.0%) 1062 (19.5%) 3216 (58.9%) 483 (8.9%) 8 (0.15%) 4 (0.07%) 82 (1.50%) 
Lena 4638 554 (11.9%) 938 (20.2%) 2735 (59.0%) 371 (8.0%) 5 (0.11%) 11 (0.24%) 24 (0.52%) 
Mekong 5298 734 (13.9%) 1098 (20.7%) 2968 (56.0%) 431 (8.1%) 3 (0.06%) 11 (0.21%) 53 (1.00%) 
Mississippi 5236 578 (11.0%) 1007 (19.2%) 3016 (57.6%) 568 (10.8%) 3 (0.06%) 8 (0.15%) 56 (1.07%) 
Paraná 6818 861 (12.6%) 1360 (19.9%) 3715 (54.5%) 775 (11.4%) 7 (0.10%) 17 (0.25%) 83 (1.22%) 
St. Lawrence 5865 654 (11.2%) 1117 (19.0%) 3332 (56.8%) 668 (11.4%) 5 (0.09%) 15 (0.26%) 74 (1.26%) 
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Appendix 3.4 
 
Cluster analysis (squared Euclidean) of log-normalized peak intensities found to be 
common among all ten global river DOM. 
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Appendix 3.5 
 
Van Krevelen diagrams of molecular formulae identified for DOM from the (a) Amazon, 
(b) Congo, (c) Danube, (d) Ganges-Brahmaputra, (e) Yangtze, (f) Lena, (g) Mekong, (h) 
Mississippi, (i) Paraná and (j) St. Lawrence Rivers.  Formula types are classified by 
color: CHO (black), CHON (blue), CHOS (red), CHOP (purple) and CHONSP (green).  
The CHONSP formula type represents molecular formulae that contain two different 
heteroatoms (e.g., N and S, S and P or N and P). 
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