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ABSTRACT OF THE DISSERTATION 

INTRAOPERATIVE GUIDANCE FOR PEDIATRIC BRAIN SURGERY BASED ON 

OPTICAL TECHNIQUES 

by 

Yinchen Song 

Florida International University, 2015 

Miami, Florida 

Professor Wei-Chiang Lin, Co-Major Professor 

Professor Jorge J. Riera, Co-Major Professor 

For most of the patients with brain tumors and/or epilepsy, surgical resection of brain 

lesions, when applicable, remains one of the optimal treatment options. The success of 

the surgery hinges on accurate demarcation of neoplastic and epileptogenic brain tissue. 

The primary goal of this PhD dissertation is to demonstrate the feasibility of using 

various optical techniques in conjunction with sophisticated signal processing algorithms 

to differentiate brain tumor and epileptogenic cortex from normal brain tissue 

intraoperatively.  

In this dissertation, a new tissue differentiation algorithm was developed to detect 

brain tumors in vivo using a probe-based diffuse reflectance spectroscopy system. The 

system as well as the algorithm were validated experimentally on 20 pediatric patients 

undergoing brain tumor surgery at Nicklaus Children’s Hospital. Based on the three 

indicative parameters, which reflect hemodynamic and structural characteristics, the new 

algorithm was able to differentiate brain tumors from the normal brain with a very high 

accuracy. 
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The main drawbacks of the probe-based system were its high susceptibility to 

artifacts induced by hand motion and its interference to the surgical procedure. Therefore, 

a new optical measurement scheme and its companion spectral interpretation algorithm 

were devised. The new measurement scheme was evaluated both theoretically with 

Monte Carlo simulation and experimentally using optical phantoms, which confirms the 

system is capable of consistently acquiring total diffuse reflectance spectra and accurately 

converting them to the ratio of reduced scattering coefficient to absorption coefficient 

(µs’(λ)/µa(λ)). The spectral interpretation algorithm for µs’(λ)/µa(λ) was also validated 

based on Monte Carlo simulation. In addition, it has been demonstrated that the new 

measurement scheme and the spectral interpretation algorithm together are capable of 

detecting significant hemodynamic and scattering variations from the Wistar rats’ 

somatosensory cortex under forepaw stimulation. 

Finally, the feasibility of using dynamic intrinsic optical imaging to distinguish 

epileptogenic and normal cortex was validated in an in vivo study involving 11 pediatric 

patients with intractable epilepsy. Novel data analysis methods were devised and applied 

to the data from the study; identification of the epileptogenic cortex was achieved with a 

high accuracy. 
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1 Background 

Pediatric brain surgery is a major branch of the pediatric neurosurgery. It accounts for 

the diagnosis, evaluation, and treatment of neurological diseases and/or disorders. Two of 

the most common neurological diseases/disorders diagnosed in children are brain tumors 

and epilepsy.  For those patients, surgical resection of brain lesions remains one of the 

optimal treatment options when applicable. 

1.1 Pediatric brain tumors 

A tumor is a mass of tissue formed by accumulated abnormal cells. In the brain, the 

tumor emerges from various cell types that make up the brain and central nervous system 

(CNS), such as astrocytes. Common pathophysiological traits of brain tumors include 

hypoxia and elevated hemoglobin concentration [1, 2]. Brain tumors could be either 

benign (non-cancer) or malignant (cancer). When a brain tumor becomes sufficiently 

large, it may press the surrounding normal brain tissues and hence interrupt or stop their 

associated functions, and even cause seizures. Brain tumors are the most common solid 

tumor among children and are the leading cause of death in children [3, 4]. 

Unfortunately, the cause of most pediatric brain tumors is mostly unknown. The 

symptoms and signs of the pediatric brain tumors vary significantly from patient to 

patient, in terms of the location, size, growth speed, and the age of incidence. 

The Central Brain Tumor Registry of the United States (CBTRUS) recently released 

their seventeenth statistical report [5] regarding the most up-to-date population-based 

summary of the current descriptive epidemiology of primary brain and central nervous 

system (CNS) tumors in the United States. The CBTRUS report was created based on the 
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data collected from 51 population-based cancer registries, including 50 state registries 

and the District of Columbia, from 2007 to 2011.  

According to this report, brain and CNS tumors are the most common neoplasm for 

children and adolescents between 0 and 19 years old, with an average annual age-

adjusted incidence rate of 5.42 per 100,000 for a total count of 22,535 incident tumors. It 

was estimated that 4,620 new cases of primary malignant and benign brain and CNS 

tumors would be diagnosed among children and adolescents in the United States in 2015. 

Among 343,175 incident brain tumors reported during 2007-2011, 66% of them 

(227,376) were benign. Children and adolescents (0-19 years old) have the highest five-

year relative survival rates (73.3%) among all age groups diagnosed with primary 

malignant brain and CNS tumors. Five-year relative survival rate after diagnosis with a 

benign brain/CNS tumor is 91.9% in the United States. The three most common pediatric 

brain tumors are pilocytic astrocytomas, embryonal tumors, and glioma malignant, not 

otherwise specified (NOS) which account for 15.4%, 12.0%, and 11.7%, respectively. 

Gliomas account for approximately 47.9% of tumors in children and adolescents ages 0-

19 years. 

Surgery is the initial treatment for most benign and many malignant tumors following 

the diagnosis. It is often the most preferred treatment when a tumor can be removed 

without any unnecessary risk of neurological deficits. The surgery has two main goals. 

The first one, which is also the most important one, is to obtain a tissue biopsy to guide 

further management, such as the need of chemotherapy. The second goal is to remove all 

tumorous tissue if possible, while preserving the eloquent cortex as much as possible to 
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reduce the post-surgical morbidity. There is a strong correlation between the extent of 

tumor removal and clinical outcomes (i.e., 10-year progression-free survival rate) [4, 6-

10]. To achieve these two goals, accurate intraoperative delineation of brain tumors is 

desired. 

1.2 Pediatric epilepsy 

Epilepsy is a common and a complex neurological disorder that can affect health and 

quality of life in many ways. In epilepsy, groups of neurons in the brain sometimes signal 

abnormally and therefore, cause recurrent seizures. Epileptic seizures are especially 

detrimental to children because they may severely interrupt the development of normal 

brain functions. According to the Epilepsy Foundation, there are approximately 326,000 

American children under the age of 15 who have epilepsy. And nearly 150,000 new cases 

of epilepsy are diagnosed each year [11]. The incidence of epilepsy among children is 

much higher than that in other age groups. 

There are many different ways to successfully control epileptic seizures [11]. The 

most common one is to treat the epilepsy with anti-seizure drugs. However, it could cause 

side effects to the patients and its effectiveness could diminish over time. Dietary 

approaches, such as high-fat, very low carbohydrate ketogenic diet, have often been used 

as the alternatives to treat medication-resistant epilepsy, but they are not easy to maintain 

as a result of their strict adherence to a limited range of foods. For patients with 

refractory epilepsy that cannot be controlled by either medication or dietary approaches, 

surgical removal of the seizure onset zone, if possible, is the optimal solution to control 
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the recurrent seizures. In this case, a clear demarcation of the brain region responsible for 

seizure generation is crucial to the success of the epilepsy surgery. 

1.3 Intraoperative guidance for pediatric brain surgery 

Several techniques have been developed over the years to demarcate neoplastic and 

epileptogenic lesions intraoperatively. These technologies utilize either the structural or 

the functional characteristics to differentiate the brain lesions from the normal brain. 

Here, a brief review of the current intraoperative technologies for pediatric brain surgery 

guidance is presented as follows. 

1.3.1 Frameless stereotaxic neuronavigation 

Frameless stereotaxic neuronavigation is widely available as the intraoperative 

guidance tool for neurosurgeries [12]. It utilizes fiducial markers or optical sensors to 

determine the position of the surgical instruments with regard to the area of interest 

defined by the pre-operative anatomical and functional imaging study. However, as a 

result of the loss of cerebrospinal fluid and its mechanical integrity, the brain shifts and 

deforms significantly during the course of the craniotomy [12-14], which could 

compromise the accuracy of the neuronavigation solely based on pre-operative imaging 

data. Therefore, additional intraoperative imaging techniques would have to be employed 

for the purpose of correcting target localization errors induced by brain shift/deformation. 

1.3.2 Intraoperative magnetic resonance imaging 

Magnetic resonance imaging (MRI) has very high spatial resolution and offers 

excellent soft tissue contrast. Intraoperative MRI (iMRI) and intraoperative functional 

MRI (ifMRI) became a desirable technique to provide anatomical and functional 
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mapping ever since its first implementation in a surgical imaging suite [15]. It has been 

reported that with iMRI/ifMRI, a maximum extent of resection, despite the lesion’s 

proximity to eloquent brain cortex and fiber tracts, can be achieved, which leads to a 

favorable surgical outcome and acceptable neurological deficit rates [16].  

However, iMRI and ifMRI require extremely high infrastructure standards and 

maintenance; only a handful of hospitals/research institutes in the world have the 

financial and technical means to provide these techniques in routine patient care. In 

addition, ifMRI requires a sophisticated control on the anesthetic level of the patient and 

an external stimulation to trigger the response in the brain. In addition, the functional 

mapping of fMRI relies on the selections of hemodynamic response function (HRF). 

With different HRFs, the locations of corresponding event-related functional areas may 

vary. Cannestra et al. found a spatiotemporal difference in localizations of sensorimotor 

cortex in human between using fMRI with different HRFs and using evoked potential 

mapping [17].  

1.3.3 Ultrasound 

Ultrasound imaging is a cost-effective intraoperative imaging modality that often is 

used as an alternative to iMRI in neuronavigation [18]. It is capable of detecting 

neoplastic tumors because of their hyperechoic characteristic, which is associated with 

the structural abnormalities of brain tumors [19, 20]. While it is very accurate in detecting 

confined, deeply located remnants of low- or high-grade tumors, the accuracy of 

ultrasound imaging is limited when detecting superficial remnants [20]. In addition, 
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ultrasound is less likely to differentiate tumor from peritumoral edema that is also 

hyperechoic [21, 22]. 

1.3.4 Electrocorticography 

Electrocorticography (ECoG) could be used both intraoperatively and chronically. It 

has been demonstrated as a valuable tool to identify eloquent cortical areas in awake 

patients [12, 23-25]. It could also be used to localize epileptic lesions: seizure foci may 

be identified during seizure activity, between seizures, or both [26]. In a clinical setting, 

ECoG is considered gold standard in demarcating the seizure onset zone. 

However, the ECoG study is usually time-consuming. It also requires a complex 

anesthesiological regimen when used intraoperatively [12]. When ECoG is used in a 

chronic recording, an additional operative session will be required for electrode 

implementation, which is associated with an elevated risk of having hemorrhage, 

infection, or cerebral edema [26]. Additionally, its validity is mainly limited to the 

superficial cortical areas [12]. 

1.3.5 Diffuse reflectance spectroscopy 

Optical spectroscopy uses light absorption and scattering to quantify tissue 

biochemical composition and morphological characteristics.  It has the advantage of 

providing non-intrusive, automated tissue characterization in real-time, without removing 

tissue. To date, optical spectroscopy has been widely used to study pathological and 

physiological features at the tissue and cell levels in vivo and in vitro [27-32].  Diffuse 

reflectance spectroscopy (DRS) is one of the optical spectroscopy techniques commonly 

used in optical tissue characterization. It allows detection of tissue structure and 
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biochemical composition through assessing the optical properties (i.e., absorption and 

reduced scattering coefficients) of tissue [33].  One common utility of DRS is the 

detection of tissue hemodynamics, based on the fact that oxy- and deoxy-hemoglobin 

(Hb) possess unique absorption features [34]. Understanding and assessing Hb 

oxygenation and concentration provides valuable insights into the condition of tissues. It 

is not surprising, then, that regional Hb oxygenation and Hb concentration are highly 

sought information in tissue injury and disease diagnosis [35-40]. Optical diagnostic 

technologies provide a potential complimentary solution for intraoperative brain tumor 

demarcation, as demonstrated by several research groups [41-45]. However, its 

penetration depth is limited to superficial layer. The accuracy of the measurement could 

also be affected by excessive pressure applied on the brain tissue due to the hand 

movements [46-50].  

1.3.6 Dynamic intrinsic optical imaging 

Dynamic intrinsic optical imaging (DIOI) has been considered to hold extensive 

scientific potential that could provide more detailed understandings of the cortical micro-

environment [13]. It usually involves imaging the in vivo brain at multiple wavelengths 

simultaneously, from which the blood volume and oxygenation information of the 

cortical surface can be retrieved [51]. DIOI has been evaluated for functional mapping in 

humans with electrocortical simulation [52] or peripheral stimulation [53, 54].  

It has been more than two decades since Haglund et al. [55] observed significant 

changes in optical signals from the human cortical surface during seizure and cognitive 

tasks. However, DIOI was only used for research purposes, extensively on preclinical 
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models of acute seizure [56-58] and chronic epilepsy [59] with regard to the neuro-

vascular coupling, and has not yet been approved for application in clinical decision-

making.  

Current studies involved with animal models of seizure solely investigated how DIOI 

would reflect the seizure onset and propagation under very fine control of the location 

and timing of seizure induction [56-58]. As for the mapping of epileptogenic cortex in 

humans, the only available method relies on the onset of ictal episodes [55], which is 

hardly to achieve in an intraoperative setting. Nevertheless, little work has been attributed 

to investigate the feasibility of delineating the epileptogenic cortex during interictal 

periods. 
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2 Significance and goals 

An objective, real-time system that is capable of intraoperatively detecting the 

margins of pediatric brain tumors and epileptic cortex with high sensitivity would greatly 

aid neurosurgeons in their objective to safely and completely resect abnormal brain tissue 

without removing normal one. Intraoperative optical diagnostic techniques, such as 

diffuse reflectance spectroscopy (DRS) and dynamic intrinsic optical imaging (DIOI), are 

able to provide anatomical and functional mapping at relatively lower cost, without the 

concerns about the brain shifting and deformation after surgical procedures.  

The primary goal of this PhD research is to demonstrate the feasibility of using 

various optical techniques in conjunction with sophisticated signal processing algorithms 

to differentiate brain tumors and epileptogenic cortex from normal brain tissue 

intraoperatively. Considering that neoplastic and epileptogenic brain lesions have their 

own unique pathophysiologic characteristics, optical techniques derived to differentiate 

them from the normal brain should be efficient in capturing the unique attributes. For 

example, brain tumors are usually characterized by high cell density, enlarged nuclei, and 

unique vessel network, hence, its static hemodynamic and structural properties should be 

the targeted biomarkers, based on which the optical tumor detection system should be 

developed. On the other hand, interictal epileptiform discharges could be frequently 

detected from the epileptic brain, which have been used to localize irritative zones 

clinically. Therefore, DIOI might be able to capture those hemodynamic variations 

caused by interictal activities from the seizure onset zone within the exposed cortical 

surface during the surgery.  



10 

These surgical guidance tools will ultimately differentiate brain tumors and 

epileptogenic cortex from normal brain based upon distinct intrinsic morphological, 

biochemical, and physiological attributes. The success of this PhD research should 

positively impact the management of pediatric brain tumors and epilepsy, because it will 

produce a new means by which neurosurgeons can objectively optimize the outcomes of 

brain tumor and epilepsy surgeries, thereby improving the prognoses of patients, and 

reducing the emotional and financial burdens endured by patients and their families. 

Moreover, the same system can be used for other applications, such as intraoperative 

monitoring of oxygen saturation level during bypass surgery. 

Three major aims listed below describe the procedures of accomplishing the goal of 

this PhD research. 

Aim 1: To develop a novel tissue differentiation algorithm for in vivo brain tumor 

detection using a probe-based diffuse reflectance spectroscopy system, and to compare its 

accuracy with histological results. 

Aim 2: To devise a novel non-contact point spectroscopic detection system for in vivo 

brain tumor detection, and to derive a novel spectral interpretation algorithm to estimate 

useful hemodynamic and structural characteristics for in vivo tissue differentiation 

purposes. 

Aim 3: To develop novel methodologies for intraoperative mapping of epileptogenic and 

eloquent cortex using a dynamic intrinsic optical imaging system. 
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3 Intraoperative pediatric brain tumor detection using diffuse reflectance 
spectroscopy 

3.1 Introduction 

According to the statistical report based upon data collected from 2007 to 2011 across 

50 states and the District of Columbia issued by the United States Central Brain Tumor 

Registry, brain tumors are the leading cause of death among all forms of pediatric cancer 

[5]. The five-year survival rates of some tumors, such as glioblastoma, are lower than 

20% [5]. Among all the available treatment options, surgical removal is largely 

considered the primary and most desired course of action in most cases [60]. To achieve 

accurate demarcation of the brain tumor intraoperatively, various imaging modalities - 

like magnetic resonance imaging (MRI), ultrasound, and optical techniques - have been 

utilized by different research groups to provide delineation of the margins of a brain 

tumor, and sometimes to assess the volume of residual tumor. Among these techniques, 

intraoperative MRI (iMRI) is considered to be the most advanced modality, because of its 

superior imaging resolution [61]. However, iMRI requires very high standard 

infrastructure, which is expensive both in installment and maintenance, and its image 

acquisition time is relatively long. A popular alternative is ultrasound, which is also 

capable of real-time imaging of brain tumors [19, 20]. However, its reliability in 

detecting tumor is less than that of iMRI; Gerganov et al. compared the ultrasound 

technique with iMRI and pointed out that ultrasound could be used to detect more 

confined deeply located remnants of low- or high-grade tumors with high accuracy, 

though its accuracy is limited when detecting superficial remnants [20]. 
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Optical diagnostic technologies provide another complimentary solution for 

intraoperative brain tumor demarcation, as they feature real-time feedback with 

functional information and high spatial resolution. Several studies have demonstrated the 

feasibility of using these technologies for differentiating brain tumors from normal brain, 

in vitro as well as in vivo [62-66]. Among the available optical diagnostic technologies, 

diffuse reflectance spectroscopy is the simplest and most affordable, in terms of 

implementation. It uses the principle of photon-tissue interaction to gauge the optical 

properties of biological tissue and, hence, indirectly assess its structural and physiological 

characteristics. Since hemoglobin is the dominant absorber of many in vivo tissues in the 

visible wavelength region, diffuse reflectance spectroscopy is often used to estimate the 

hemodynamic information of biological tissue [67, 68]. We have previously 

demonstrated its potential to differentiate pediatric brain tumors from normal brain tissue, 

by simply analyzing the intensities of diffuse reflectance spectra in the near infrared 

region [64]. This chapter describes and examines a further improved tumor classification 

system with enhanced accuracy, which is achieved by the addition of functional 

parameters (i.e., hemoglobin concentration ([Hb]) and hemoglobin oxygen saturation 

level (SatO2)) and structural information (intensity of diffuse reflectance signal at 700 

nm, denoted as Rd700) estimated using diffuse reflectance signals in the visible 

wavelength region.   

3.2 Methods 

3.2.1 Optical Instrumentation  

A tungsten halogen light source (LS-1, Ocean Optics, Florida), with an average 

output power of 6.5 W, was used to illuminate the tissue. The intensity of diffused 
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reflected photons was recorded by a spectrometer (USB 2000, Ocean Optics, Florida) 

with a spectral range of 240 nm to 932 nm. Light delivery and collection were 

accomplished with a custom-made fiber-optic probe. The probe consisted of seven 

identical optical fibers with a 300-μm core diameter and a 0.22 numerical aperture. One 

fiber was used to deliver illumination from the light source to the tissue surface; one was 

unused; and the other five were used to collect photons reflected from the tissue surface 

to the spectrometer. The average separation distance between the illumination fiber and 

collection fibers was roughly 300 μm. Further details on the fiber-optic system could be 

found in previous publications [63-65]. 

3.2.2 Clinical data acquisition 

Twenty pediatric patients, between one and 18 years old, participated in this clinical 

study at Nicklaus Children’s Hospital since 2007. The protocol of the clinical study was 

approved by the Western Institutional Review Board and the Institutional Review Board 

at Florida International University. Diffuse reflectance spectra were obtained from the in 

vivo brains of participants during craniotomy procedures for tumor resection. During 

spectral data acquisition, the optical probe was held by the neurosurgeons and was in 

direct contact with the brain tissue. Optical measurements were taken both from areas 

away from the resection zone (i.e., normal sites) and from areas within the resection zone 

(tumor sites). A set of diffuse reflectance spectra (n=5) was acquired from each 

investigation site with an integration time of 30-100 milliseconds. Following each 

spectral acquisition sequence, a baseline measurement was obtained by turning off the 

illumination light source. At least two normal sites were investigated during each study 
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for the first ten patients enrolled in a pilot study dated back to 2007-2008. For the other 

ten patients enrolled most recently since 2013, the control diffuse reflectance spectra 

were acquired from at least five normal sites. The number of investigated tumor sites was 

determined by the neurosurgeons based on the size and location of the brain tumor within 

the exposed cortical surface. 

3.2.3 Histology 

A specimen was collected by the neurosurgeons from each investigated site within the 

resection zone for histopathological evaluation to identify the type of brain tumor. The 

neurosurgeons were not aware of the analytical results of diffuse reflectance spectroscopy 

during the resection procedure. Biopsy samples were immediately fixed in a 5% formalin 

solution after resection. The specimens then were prepared for sectioning and 

hematoxylin and eosin staining. Processed slides were reviewed by a neuropathologist 

(Dr. Mahlon Johnson at University of Rochester) who was blinded to the study results 

and other clinical information. If any specimen had been identified as normal, the 

corresponding measured diffuse reflectance spectra were included in the normal groups 

in the following analyses. A summary of the numbers of investigated normal sites and 

tumor sites were provided in Table 3.1. 

3.2.4 Spectral data processing 

The baseline measurement Rdbase(λ) from each investigated site was first subtracted 

from the corresponding diffuse reflectance spectral set Rd(λ) to remove unwanted 

ambient light influences. Then, instrumentally-induced spectral alterations were 

eliminated by dividing the spectra by a calibration spectrum Rdcal(λ). Note that the 



15 

calibration spectrum was measured from a diffuse reflectance standard (FGS-20-02c, 

Avian Technologies, NH) using the same spectroscopic system. Mathematically 

speaking, the entire spectral calibration process can be described using the following 

equation: [Rd(λ)-Rdbase(λ)]/Rdcal(λ). 

Three indicative parameters, extracted from each calibrated diffuse reflectance 

spectra, were used to characterize the site of investigation. These indicative parameters 

were [Hb], SatO2, and Rd700. The methods for estimating [Hb] and SatO2 using diffuse 

reflectance spectra can be found in our previously published papers [67, 68]. In order to 

reduce inevitable biological variations among all studied subjects, the indicative 

parameters of all measurements (both normal sites and tumor sites) from each patient 

were centered to the mean value and scaled based on the standard deviation of the 

indicative parameters from the normal sites of the same patient, which yielded 

normalized n[Hb], nRd700, and nSatO2. In addition, the distributions of n[Hb], nRd700, 

and nSatO2 from all normal sites and tumor sites of the studied patients were 

investigated. 

3.2.5 Tissue differentiation algorithm 

The normalized indicative parameters described in the previous section were used to 

establish a classification system to differentiate brain tumors from normal brain cortex. 

Support vector machine (SVM), a machine learning method, was employed in this study. 

Each indicative parameter was used as a stand-alone feature in the SVM to differentiate 

brain tumors from normal brain tissue. In addition, combinations of any two indicative 

parameters or all three of them were also used as classification features in SVM. The 
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performance of SVM with different classification features (individual or combinations) 

was evaluated in terms of estimation accuracy, sensitivity and specificity, 

Accuracy = TP +TN

P + N

Sensitivity = TP

TP + FN

Specificity = TN

TN + FP















                                                  (3.1)

 

where TP is true positive, TN is true negative, FN is false negative, FP is false positive, P 

is positive (tumor), and N is negative (normal brain tissue). 

3.3 Results 

Demographic data on the patients and the tumor types identified by histology are 

listed in Table 3.1. The average age was 7.3 ± 5.0 years. A total of 82 control 

measurements were taken from the normal cerebral cortex and 53 from brain tumors.  

Table 3. 1 Demographic data on the twenty patients who participated in the clinical study 

Case 
# 

Gender Age Tumor type Number of 
normal sites 

Number of 
tumor sites 

1 M 1 Primitive neuroectodermal tumor 2 2 

2 F 9 Primitive neuroectodermal tumor 2 1 

3 M 10 Pilocytic astrocytoma 2 2 

4 F 5 Angioglioma 2 3 

5 F 6 Astrocytoma 2 2 

6 F 9 Astrocytoma 2 1 

7 F 8 Medulloblastoma 2 3 

8 F 6 Pilocytic astrocytoma 2 2 

9 F 3 Ganglioglioma  2 5 

10 F 14 Astrocytoma 2 1 
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11 M 2 Glioma 6 8 

12 M 5 Medulloblastoma  6 4 

13 F 16 Glioblastoma 5 3 

14 M 7 Ganglioglioma  5 1 

15 F 3 Dysembryoplastic neuroepithelial 
tumor 

6 3 

16 M 8 Atypical teratoid rhabdoid tumor 9 1 

17 F 13 Craniopharyngioma 8 1 

18 M 1 Anaplastic Astrocytoma 5 6 

19 M 2 Embryonal tumor with abundant 
neuropil and true rosettes 

5 2 

20 M 18 Brainstem Glioma 7 2 

 

 

Figure 3. 1 Histograms of (a) n[Hb], (b) nRd700and (c) nSatO2 from normal and neoplastic brain tissue. 

We noticed that raw [Hb], Rd700 and SatO2 from normal cortex are patient-

dependent. Using the patient-dependent normalization approach, we found that the 

distribution of normalized indicative parameters (i.e., n[Hb], nRd700 and nSatO2) from 

normal cortex became more concentrated, exhibiting standard normal distribution 

characteristics (Fig. 3.1 in red).  In contrast, the distribution of normalized indicative 

parameters from tumor tissue was not following a standard normal distribution (Fig. 3.1 
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in blue), where both n[Hb] and nRd700 tend to distribute much more widely than those 

from normal cortex (Fig. 3.1a and 3.1b). The distribution of nSatO2 in tumor tissue was 

slightly left-skewed (Fig. 3.1c in blue). All these results indicate that tumors generally 

contained a higher [Hb] and more irregular structure than normal cortex. In general, the 

average of nRd700 from tumor measurements was lower than that from normal brain, 

although some tumor sites may show much higher nRd700 as a result of the proximity of 

white matter. The nSatO2 of the tissue under investigation might not be sufficient in itself 

to discriminate the tumor from the normal tissue, since it yielded the worst performance 

when applied in SVM to differentiate the tumor from normal tissue as shown in Table 

3.2. 

 

Figure 3. 2 Scatter plot of (a) n[Hb] and nRd700, (b) n[Hb] and nSatO2, and (c) nRd700 and nSatO2 from normal 
cortex and brain tumor. 

Fig. 3.2 depicts the distribution of measurements from normal and tumor sites in 

terms of pairs of normalized indicative parameters. It became more obvious that the 

normalized indicative parameters from tumor sites are more scattered comparing to those 

obtained from normal sites. The performance of the tissue differentiation algorithm with 
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SVM (Table 3.2) was also improved when pairing up these normalized indicative 

parameters. 

When all three normalized indicative parameters from normal and tumor sites were 

plotted in a three-dimensional Cartesian coordinate system (Fig. 3.3), the indicative 

parameters from normal cortex were clearly confined within a cluster centered at zero, 

which could be wrapped around within a hyperplane defined by SVM; in contrast, 

parameters from tumors tended to scatter outside the normal hyperplane. The 

performance of the tissue differentiation with SVM when using all three normalized 

indicative parameters simultaneously was the best one among all, in terms of accuracy 

(92%), sensitivity (91%) and specificity (93%) shown in Table 3.2. 

 

Figure 3. 3 The distribution of tumor and normal tissue sites, in accordance with their corresponding n[Hb], nRd700, 
andnSatO2. The black hyperplane that differentiate brain tumors from normal cortex was obtained from support vector 
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machine based on all three normalized indicative parameters. The performance of the differentiation is shown in Table 
3.2. 

 
Table 3. 2 Tissue differentiation accuracy, sensitivity, and specificity for three individual classification criteria and 
four combined classification criterion with support vector machine. 

Parameter Accuracy Sensitivity Specificity 

n[Hb] 0.78 0.50 0.94 

 nRd700 0.84 0.70 0.93 

nSatO2 0.72 0.61 0.79 

n[Hb] and nRd700 0.88 0.77 0.94 

n[Hb] and nSatO2 0.84 0.75 0.89 

nRd700 and nSatO2 0.88 0.84 0.91 

n[Hb], nRd700 and nSatO2 0.92 0.91 0.93 

 
3.4 Discussion 

In this study, we tested the feasibility of using diffuse reflectance spectroscopy to 

differentiate pediatric brain tumor from normal brain tissue intraoperatively. Our results 

suggest that three indicative parameters derived from in vivo diffuse reflectance spectra - 

[Hb], Rd700 and SatO2 - clearly differentiate brain tumor tissue from normal cortex. 

Although these indicative parameters each individually differentiated the tumor 

specimens from normal cortex with moderate accuracy, the highest discrimination 

accuracy (92%) was generated using an algorithm based on support vector machine 

incorporating all three parameters. This observation again confirms the feasibility of 

developing an intelligent guidance system for pediatric brain tumor surgery using diffuse 

reflectance spectroscopy.     

As in a previous study [64], we found that diffuse reflectance signals in the longer 

wavelength region (i.e., above 650 nm), where blood absorption is minimal, are very 
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effective at differentiating brain tumors from normal cortex. Diffuse reflectance signals in 

this wavelength region usually are strongly influenced by the scattering properties of the 

biological tissue, which are linked to the tissue’s structural characteristics [69]. While 

alterations in the morphological characteristics of brain tumors are readily confirmed by 

histological studies of pediatric brain tumors, their associations with low diffuse 

reflectance signals (i.e., low scattering properties) are not yet clearly understood.  We 

note that the low scattering characteristic of pediatric brain tumors is unique, given that 

adult brain tumors usually exhibit a greater degree of scattering than normal cortex [70, 

71].  This discrepancy, in our opinion, should be attributed to structural/compositional 

differences between adult and pediatric brain tumors [64].  In this study, too few 

measurements from normal white matter were collected to include them in analysis. 

Nevertheless, we are confident that diffuse reflectance signals in longer wavelength 

regions will be highly efficient at differentiating white matter from pediatric brain 

tumors. This conjecture is supported by several previously-published studies that have 

demonstrated that diffuse reflectance signals from white matter are notably stronger than 

those from cerebral cortex, due to the former’s high scattering characteristics [70-72].   

Direct use of diffuse reflectance signals between 400 and 600 nm could not produce 

effective algorithms differentiating brain tumor from normal cortex.  Using the spectral 

interpretation algorithms developed by our group, we converted the signal in this region 

to the absolute quantities of [Hb] and SatO2.  As shown in this study, the addition of this 

hemodynamic information enhances the efficiency of the discrimination algorithm for 

pediatric brain tumors.  This success may be explained by the unique hemodynamic 

characteristics of brain tumors: they tend to be hypoxic and possess high hemoglobin 
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concentrations [1, 2].  From the data reported here, we also note great variations in tumor 

SatO2 and [Hb].  We attribute these data characteristics to the fact that brain tumor 

morphology is highly inhomogeneous, mostly consisting of a necrotic core and 

angiogenic rim [73, 74].  Therefore, the location of measurements could dictate the 

signals obtained. In addition to enhancing tumor demarcation, understanding the in vivo 

physiological characteristics of brain tumors may help to predict the effectiveness of 

adjuvant chemotherapy and radiation therapy [75-77].  This, in turn, may influence the 

aggressiveness of surgical resection. It should be noted that this functional information is 

not available in today’s intraoperative environment.     

The methodology utilized for in vivo diffuse reflectance spectral acquisition in this 

study may produce some unwanted effects on the in vivo hemodynamic information of 

the investigated site. One concern relates to the employment of a contact probe, since 

probe contact pressure can influence local SatO2 and [Hb] considerably [46]. During a 

single data acquisition procedure, which is approximately 1-2 seconds in duration, the 

probe is held by the neurosurgeon’s hand and thereby subject to movement. This 

phenomenon is evidenced by the large temporal variations in SatO2 and [Hb] we 

observed within some recordings. To avoid this, it will be necessary to reduce the time of 

investigation and to maintain steady probe contact pressure, which will highly rely on the 

neurosurgeons’ experience. Alternatively, our group is developing a new data acquisition 

scheme which does not require a contact probe, a scheme we intend to test in a future 

study.   
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A second issue of concern is that high [Hb] readings from brain tumor may be 

misleading, because, during surgery, bleeding at the resection site is inevitable, and 

surface blood contamination may increase [Hb] readings. Therefore, cautions should be 

made to irrigate the cortical surface and clean the remaining blood contamination prior to 

each measurement.  

3.5 Conclusions 

In this study, diffuse reflectance spectroscopy was applied to determine the structural 

and hemodynamic characteristics of in vivo brain tissue during the pediatric brain tumor 

surgery.  With the help of SVM, these intrinsic properties can be used to efficiently 

differentiate pediatric brain tumor from normal cortex with very high accuracy in an 

intraoperative environment. The encouraging results of this study support the concept of 

using diffuse reflectance spectroscopy to develop an intraoperative surgical guidance 

system for pediatric brain tumor surgery.  



24 

4 Determination of the optical properties of turbid media using total diffuse 
reflectance 

4.1 Introduction 

Optical properties of biological tissues are always of great interest to researchers in 

the field of biomedical optics because of their intimate relationships with the intrinsic 

structural and compositional tissue characteristics. This is especially true for applications 

in investigating tissue pathology, tissue injury, and tissue functionality.  Many techniques 

have been developed to measure optical properties from in vivo biological tissues over 

the past two decades [78-84]. Among them, spatially and temporally resolved diffuse 

reflectance signals are the most commonly used; they can be conveniently acquired using 

a contact fiber optic bundle [78-80, 83]. However, a significant drawback is associated 

with the utility of a contact fiber optic probe: the contact pressure introduced by the probe 

significantly alters the measured optical properties in vivo [46, 49]. One possible 

approach to eliminate this drawback is to acquire desired optical signals in a non-contact 

fashion. Over the past decade, several non-contact techniques for in vivo optical property 

measurements have been proposed and developed: Cuccia et al. introduced a non-contact, 

wide-field measurement technique of optical properties using spatially modulated 

illumination and achieved excellent accuracy [85]; Bish et al. used a lens system to image 

the illumination and collection fibers onto the tissue surface and hence achieve non-

contact measurements of radially dependent diffuse reflectance  [86]; Foschum et al. 

introduced two apparatus to carry out non-contact measurements of spatially resolved 

reflectance and total reflectance from that absorption and reduced scattering coefficients 

individually estimated [87]. However, these techniques require either a sophisticated 
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optical system to, for example, specially modulate the illumination or a carefully 

controlled collection geometry, which make them less suitable for intraoperative 

applications such as tumor resection guidance.  

In this study, a new hybrid spectroscopy imaging system was devised for the purpose 

of acquiring relative total diffuse reflectance spectra from a given point within the field of 

view of the system [88]. In addition, the system is capable of obtaining two-dimensional 

relative total diffuse reflectance signals at a specific wavelength. By incorporating a 

reference measurement and a look-up table established using a Monte Carlo (MC) 

simulation model for photon migration, relative total diffuse reflectance signals were 

converted to absolute total diffuse reflectance signals and subsequently the ratios of the 

reduced scattering coefficient to the absorption coefficient (i.e., μs’/μa). The accuracy of 

the system in terms of measuring μs’/μa was first demonstrated theoretically using total 

diffuse reflectance signals generated by the MC model, and then experimentally using 

optical phantoms.           

4.2 Materials and Methods 

4.2.1 Instrumentation 

Design details for the hybrid spectroscopy imaging system are depicted in Fig. 4.1. 

The system consisted of two signal acquisition modalities—the imaging modality and the 

point spectroscopic detection modality. The targeting sample was imaged through either a 

Nikon dSLR lens (Nikon AF 28-80 mm f/3.5-5.6 D lens with aperture ring) or a zoom 

imaging lens (VZM 450i, Edmund Optics Inc., Barrington, NJ). The image from the 

camera lens was collimated using a Hastings triplet achromatic lens (#30-229, EFL 40.3 

mm, Edmund Optics Inc., Barrington, NJ) and transmitted to a beam splitter (#54-824, 
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50R/50T, Edmund Optics Inc., Barrington, NJ). The collimated image beam transmitting 

through the beam splitter would enter into the imaging modality of the system; it was 

further divided by a dichroic mirror with a transmission band of 400-595 nm and a 

reflection band of 640-750 nm (#49-471, Edmund Optics Inc., Barrington, NJ). Two 

narrow band-pass filters with center passing wavelengths at 500 nm (#65-149, Edmund 

Optics Inc., Barrington, NJ) and 700 nm (#88-012, Edmund Optics Inc., Barrington, NJ) 

were placed at the transmission side and the reflection side of the dichroic mirror, 

respectively. The collimated image beam transmitting through the band-pass filter was re-

focused onto the sensor of a CCD camera (DMK 21AU04, The Imaging Source Europe 

GmbH) using a Hastings lens. The collimated image beam reflected by the beam splitter 

would enter into the point spectroscopic detection modality and be re-focused using a 

Hastings lens. At the image plane of this lens, an optical fiber (core diameter 50 μm, 

NA=0.2, GIF50C, Thorlabs Inc., Newton, NJ) was used to collect light from the center of 

the formed image. The distal end of the optical fiber was connected to either a red laser 

diode module (CPS184, 650 nm, 4.5 mW, Thorlabs Inc., Newton, NJ) assembled in-

house to track the location of investigation on the targeting sample, or a spectrometer 

(USB2000, Ocean Optics, Dunedin, FL) to record light reflected by the sample. The area 

of investigation of the point spectroscopic detection modality was determined by the 

magnification of the lens as well as the diameter of the optical fiber. The hybrid system 

was operated through a couple of LabVIEW programs developed in-house. The 

illumination of the sample investigated was provided by an external light source. 

Assuming the illumination is relatively uniform, the light received by a pixel of the 

camera or the point spectroscopic detection system should be considered as a fraction of 
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the total diffuse reflectance (RTD) generated by a pencil beam illumination, in accordance 

with the principle of convolution [89]. The proof for this concept is provided in the 4.6 

Appendix. 

 

Figure 4. 1 The schematic of the hybrid spectroscopy imaging system. 

4.2.2 Look-up table for μs’/μa estimation based on total diffuse reflectance (RTD) 

According to the theory proposed by Farrell et al., RTD is only a function of μs’/μa [81]. 

To easily convert RTD measured by the hybrid system to μs’/μa, a look-up table was 

constructed using a MC simulation model for photon migration in tissue in a slab 

geometry. The simulation model was developed and verified using MCML provided by 

Wang et al. [90]. The magnitudes of μs’/μa used to create the look-up table are depicted in 

Table 4.1, with a randomly selected fixed value of μa (2 cm-1). In the simulations, the 

tissue slab was illuminated by a pencil beam at a normal angle. The refractive index n, 

the anisotropy factor g, and the thickness of the simulated tissue slab were 1.395, 0.88, 

and 100 cm, respectively. The total number of photons used in each simulation was 10 

million.  The resulting look-up table is shown in Fig. 4.2. 
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Table 4. 1 Ranges of μs’/μa used in look-up table building 

μs’/μa 

 Start Value Increment End Value 

Range 1 0 0.01 0.99 

Range 2 1 1 100 

Range 3 110 10 200 

Range 4 250 50 500 

Range 5 600 100 1000 

Range 6 2000 1000 10000 

 

 

Figure 4. 2 Relationships between total diffuse reflectance RTD and μs’/μa. Black dots are RTD derived from the Monte 
Carlo simulations. The blue line is the fitted curve obtained using the Curve Fitting Toolbox of Matlab. 

4.2.3 Evaluation of the accuracy of the look-up table using Monte Carlo simulation 
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4.2.3.1 Constant n and g 

A Matlab program was developed to generate 50 random μs-μa pairs for each of the 

six μs’/μa ranges depicted in Table 4.1. These coefficients, in conjunction with n = 1.395 

and g = 0.88, were applied to the MC simulation model to generate RTD, assuming the 

simulated tissue phantom is infinitely thick and illuminated by a pencil beam at a normal 

angle. Each simulated RTD was converted to μs’/μa using the look-up table of μs’/μa verse 

RTD shown in Fig. 4.2. Each estimated μs’/μa value was subsequently compared with the 

corresponding input μs’/μa values to determine the absolute percentage error of estimation 

|ΔE|.  That is 

ΔE = v2 − v1

v1

×100% ,                                                   (4.1) 

where v1 and v2 are the input and the estimated μs’/μa values, respectively. 

4.2.3.2 Varying g 

The changes in a look-up table of μs’/μa verse RTD resulting from g variation were 

investigated in a quantitative fashion. The μs’-μa pairs generated in the previous section 

were used in conjunction with n = 1.4 and g = 0.85, 0.90 or 0.95 in the MC simulation 

model to simulate RTD. A reference look-up table of μs’/μa verse RTD was established 

using the simulation results with g = 0.85 and, subsequently, the simulated RTD with g = 

0.90 and g = 0.95 were applied to this look-up table to retrieve the estimated μs’/μa values. 

Finally, the discrepancies between the estimated and the input μs’/μa were quantified 

using Eq. (4.1). Additionally, the input μs’/μa values were applied to the look-up table of 

μs’/μa verse RTD for g = 0.85 to estimate RTD. The discrepancies between the estimated 
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and the simulated RTD were again quantified using Eq. (4.1), with v1 being the simulated 

RTD and v2 the estimated one. 

4.2.3.3 Varying n 

To evaluate the effects of n on a look-up table of μs’/μa verse RTD, the input μs’/μa 

values created in the previous section were used in conjunction with g = 0.9 and n = 1.3, 

1.4 or 1.5 in a MC simulation model to simulate RTD. A reference look-up table of μs’/μa 

verse RTD was established using the simulation results with n = 1.3 and, subsequently, the 

simulated RTD with n = 1.4 and n = 1.5 were applied to this look-up table to retrieve the 

estimated values of μs’/μa. Again, the discrepancies between the estimated and the input 

μs’/μa were quantified using Eq. (4.1). Additionally, the input μs’/μa values were applied 

to the look-up table of μs’/μa verse RTD for n = 1.3 to estimate RTD. The discrepancies 

between the estimated and the simulated RTD were again quantified using Eq. (4.1), with 

v1 being the simulated RTD and v2 the estimated RTD. 

4.2.3.4 Varying g and n 

A similar Matlab program was developed to generate a set of 50 random μs’ and μa 

for each of the following conditions: 1) n = 1.395 and g varying between 0.85 and 0.95; 

2) n varying between 1.3 and 1.5 and g = 0.9; and 3) n varying between 1.3 and 1.5 and g 

varying between 0.85 and 0.95. Applying these optical property sets to the MC 

simulation model, simulated RTD were obtained and converted to μs’/μa using the look-up 

table shown in Fig. 4.2. Each estimated μs’/μa was compared with the corresponding 

input μs’/μa value to determine the absolute percentage error of estimation defined in Eq. 

(4.1). 
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4.2.4 Evaluation of point spectroscopic detection modality of the hybrid system 
using optical phantoms 

The objective of this study was to investigate the feasibility and the accuracy of the 

point spectroscopic detection modality (see Fig. 4.1) of the hybrid system in measuring 

μs’/μa from absorbing/scattering media. Nine cylindrical polyurethane optical phantoms 

with different optical properties were used in this study and were made in accordance 

with the recipe developed by Prahl et al. [91]. The optical properties (i.e., μs’ and μa) of 

these phantoms within the visible wavelength range were determined using the double 

integrating sphere method [92], and their representative values are shown in Table 4.2. 

The refractive index of the cured polyurethane phantom is around 1.468 at 670 nm [93]. 

In order to measure absolute RTD, a priori knowledge of the incident light intensity as 

well as the collection geometry of the hybrid system would be required, as suggested by 

Foschum et al. [87]. Unfortunately, these two pieces of information were difficult to 

obtain accurately. To circumvent this limitation, reference RTD measurements from a 

material with known optical properties was introduced to the process of obtaining 

absolute RTD and hence estimating μs’/μa. Two types of materials were identified and 

employed as the reference materials here. Detailed measurement and data interpretation 

protocols of the evaluation study are provided as follows. 

4.2.4.1 Reference material as an optical phantom 

The setup and the measurement protocol of the sub-study are graphically depicted in 

Fig. 4.3. Each phantom was illuminated directly from above with a broad-band white 

light source (DC-950H, Dolan-Jenner, Edmund Optics Inc., Barrington, NJ); a fraction of 

RTD was measured through the point spectroscopic detection modality of the hybrid 
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system at an arbitrary angle. The acquired signal was denoted as relative total diffuse 

reflectance spectrum Rxxx_measure(λ), where xxx can be either ‘ref’, shortened for 

reference, or ‘eva’, shortened for evaluation. The side of each phantom used in this study 

was covered by a piece of black paper to ensure that only its top surface was illuminated 

during the study. In a single measurement procedure, the reference measurements were 

first carried out: a set of 10 Rref_measure(λ) were acquired from a location close to the center 

of the top surface of the reference phantom. Without changing the illumination and 

collection geometries, the reference phantom was carefully replaced with an evaluation 

phantom. A set of 10 Reva_measure(λ) were acquired from a location close to the center of 

the top surface of the evaluation phantom. The Reva_measure(λ) acquisition procedure was 

repeated at five different locations. Prior to the acquisition of each set of relative total 

diffuse reflectance spectra, a dark spectrum Rdark(λ) was recorded without the 

illumination to access ambient light influence. Since the optical properties of the 

reference phantom were known, its theoretical absolute total diffuse reflectance spectrum 

RTD_ref(λ) could be estimated using a MC simulation. Subsequently, the absolute total 

diffuse reflectance spectrum from an evaluation phantom, RTD_eva(λ), could be calculated 

using: 

RTD _ eva λ( ) =
Reva _ measure λ( ) − Rdark λ( )
Rref _ measure λ( ) − Rdark λ( )

⋅ RTD _ ref λ( ).               (4.2) 

Two comparisons were made to access the accuracy of the spectroscopic point-

detection modality of the hybrid system in measuring μs’/μa from absorbing/scattering 

media. Firstly, RTD_eva(λ) was compared with theoretical total diffuse reflectance 

RTD_theory(λ) derived from the look-up table (Fig. 4.2) using μs’(λ)/μa(λ) of the evaluation 
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phantom, predetermined by the double integrating sphere technique, as the input. 

Secondly, RTD_eva(λ) was converted to μs’(λ)/μa(λ) using the look-up table (Fig. 4.2) and 

then compared with μs’(λ)/μa(λ) of the evaluation phantom predetermined by the double 

integrating sphere technique.  

 

Figure 4. 3 Experimental setup for evaluating the function of the spectroscopic point-detection of the hybrid system. 
The flow chart on the left shows the measurement procedure. 

4.2.4.2 Reference material as a non-transparent, reflective paper 

The challenge of using an optical phantom as a reference lies in in vivo 

implementation: it would be difficult to maintain the same illumination and collection 

geometries between the phantom and the in vivo tissue of investigations. One way to 

address the in vivo applicability of a reference phantom is to create a reflective material 

that is thin and flexible enough to be placed directly on top of the in vivo tissue for 

reference measurements. A double-layer paper-based standard was therefore created and 

evaluated in this study. The top layer of this standard was a piece of reflective white 

paper; and the bottom layer a piece of black paper absorbing all light transmitting through 

the top layer. The experimental setup and the measurement procedure of this sub-study 
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were similar to those depicted in Fig. 4.4. RTD_paper(λ) was first determined using an 

optical phantom with known optical properties and Eq. (4.2). In the subsequent 

measurements, Rref_measure(λ) was obtained from the paper-based standard placed on top of 

the evaluation phantom. Finally, RTD_eva(λ) was calculated using: 

.   (4.3)  

 

Figure 4. 4 Experimental setup for evaluating the function of the spectroscopic point-detection of the hybrid system. 
The flow chart on the top shows the measurement procedure. 

To access the accuracy of the spectroscopic point-detection modality of the hybrid 

system in measuring μs’/μa from absorbing/scattering media using a paper-based 

standard, two comparisons were made. Specifically, RTD_eva(λ) was compared with 

theoretical total diffuse reflectance RTD_theory(λ) derived from the look-up table (Fig. 4.2) 

using μs’(λ)/μa(λ) of the evaluation phantom, predetermined by the double integrating 

sphere technique, as the input.  In addition, RTD_eva(λ) was converted to μs’(λ)/μa(λ) using 

the look-up table (Fig. 4.2) and then compared with μs’(λ)/μa(λ) of the evaluation 

phantom predetermined by the double integrating sphere technique.  
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4.2.5 Evaluation of the imaging modality of the hybrid system using optical 
phantoms 

An evaluation experiment was also carried out with the imaging modality of the 

hybrid system to demonstrate its capability to measure RTD and hence estimate μs’/μa. 

The reference and evaluation phantoms were placed side-by-side under broad-area 

illumination. A large piece of thick reflective paper was first placed on top of both 

phantoms to capture the spatial profile of illumination Ipaper(x,y) at 500 nm and 700 nm. 

With the paper removed, the images of the top surfaces of the phantoms, Iphantom(x.y) 

were acquired at 500 nm and 700 nm, at a rate of 7.5 frames per second for 30 seconds. 

To remove the artifacts originated from the spatial non-uniformity of illumination, 

Iphantom(x.y) was normalized to Ipaper(x,y) prior to the data analysis. A region of interest 

was randomly selected from the normalized image of each phantom, from which the 

mean intensity, either Rref_measure or Reva_measure, was extracted. Finally, RTD_eva of each 

evaluation phantom was calculated using Eq. (4.2), and it was convert to μs’/μa for 

accuracy assessment.  Since the true optical properties of the phantoms at 700 nm were 

not available, the calculation results at 700 nm were not reported here. 

4.3 Results 

The effects of varying g on the relationship between μs’/μa and RTD are summarized 

in Fig. 4.5. It is noticed that, within the range of investigation, increase in g variation 

does elevate the magnitude of |ΔE|. While the maximum |ΔE| in RTD estimation using 

μs’/μa could exceeds 10% when μs’/μa smaller than 1 (Fig. 4.5B), |ΔE| in μs’/μa 

estimations based on RTD is reasonable small (< 2%) over the entire range of RTD (Fig. 
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4.5A). This suggests that the look-up table for μs’/μa verse RTD established with g = 0.88 

(Fig. 4.2) is applicable to biological tissues with different g values. 

 

Figure 4. 5 A) Absolute percentage error |ΔE| in μs’/μa estimations as a function of RTD and anisotropy factor (g).  B) 
Absolute percentage error |ΔE| in RTD estimations as a function of μs’/μa and g. The look-up table of μs’/μa verse RTD 
with g = 0.85 was used for the conversion process, and |ΔE| was calculated using Eq. (4.1). 

The effect of varying n on the relationship between μs’/μa and RTD are summarized in 

Fig. 4.6.  Similar to g variation, increase in n variation also raises the magnitude of |ΔE|. 

In addition, |ΔE| in μs’/μa estimations using RTD steadily increases as RTD approaches to 1. 

|ΔE| in RTD estimations using μs’/μa, on the other hand, decreases as μs’/μa increases.  It is 

noticed that |ΔE| induced by n variation is much greater than that induced by g variation; 

the maximum |ΔE| exceeds 60 % in μs’/μa estimations using RTD (Fig. 4.6A) and 30% in 

RTD estimations using μs’/μa (Fig. 4.6B). This clearly indicates the look-up table depicted 

in Fig. 4.2 is not applicable to biological tissues whose n greatly deviates (i.e, more than 

5%) from 1.395.  
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Figure 4. 6 A) Absolute percentage error |ΔE| in μs’/μa estimations as a function of RTD and refractive index (n).  B) 
Absolute percentage error |ΔE| in RTD estimations as a function of μs’/μa and n. The look-up table of μs’/μa verse RTD 
with n = 1.3 was used in al all conversion processes, and |ΔE| was calculated using Eq. (4.1). 

The effects of varying n and g on μs’/μa estimations based on RTD are collectively 

summarized in Fig. 4.7. As expected, the accuracy of the μs’/μa estimation is insensitive 

to g variation when n is a constant; the plot of input and the estimated μs’/μa under such a 

condition shows a highly linear relationship (R2 ≈1) with slope = 1. However, the 

accuracy of the μs’/μa estimation suffers greatly when n varies.      

 

Figure 4. 7 A) Absolute percentage error |ΔE| in μs’/μa estimations and B) correlation coefficients of the linear fitting 
between the input and the estimated μs’/μa values under four different conditions of n and g, over the range of μs’/μa 
depicted in Table 4.1. 

The results of experimental evaluation using optical phantoms demonstrate the high 

accuracy of the point spectroscopic detection modality of the hybrid system in terms of 

measuring RTD and estimating μs’/μa. The averaged |ΔE| in μs’/μa estimation within the 

wavelength range of 500-640 nm is approximately 9.34 ± 6.86 % (mean ± standard 
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deviation), as shown in Fig. 4.8. When RTD_eva(λ) is plotted against RTD_theory(λ), a strong 

linear relationship with slope close to 1 is noticed for the entire wavelength range 

evaluated.  A representative plot of such a relationship is provided in Fig. 4.9A, where R2 

of linear regression is 0.986.  Furthermore, the same linear characteristic is noticed in the 

measured μs’(λ)/μa(λ) verse theoretical μs’(λ)/μa(λ) plots over the entire wavelength range 

evaluated.  A representative plot of such a relationship is provided in Fig. 4.9B, where R2 

of the linear regression is 0.935. One interesting observation from this set of data is that 

the phantom itself is not a perfect homogenous medium. In several optical phantoms, a 

rather large variation is observed among Reva_measure(λ) acquired from five random 

locations on the top surface of a given phantom. Therefore, only the mean of the five 

acquired Reva_measure(λ) from a phantom is used to derive RTD_eva(λ), which is then 

compared with RTD_theory(λ).  

 

Figure 4. 8 Absolute percentage error |ΔE| in μs’(λ)/μa(λ) estimations using RTD_eva(λ) between 500 nm and 640 nm.  
The references used are μs’(λ)/μa(λ) of the optical phantoms determined by the double integrating sphere technique. 
The middle line represents the mean |ΔE| calculated from all 8 phantoms; the error bars the standard deviation. One 
optical phantom was used as the reference standard in this study. 
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Figure 4. 9 Representative results from the experimental evaluation study of the point spectroscopic detection modality 
of the hybrid system.  An optical phantom was used as the reference standard in this study. A) RTD_eva(λ) verse 
RTD_theory(λ) at λ = 633 nm. B) Measured μs’(λ)/μa(λ) verse theoretical μs’(λ)/μa(λ) at λ = 633 nm. The solid lines in the 
figures are the linear regression lines. 

When the reference optical phantom was replaced with a paper-based reference 

standard, the accuracy of the point spectroscopic detection modality of the hybrid system 

in terms of measuring RTD and estimating μs’/μa remained and, in some cases, improved 

(Fig. 4.10). For example, the average |ΔE| of μs’/μa estimation within the wavelength 

range of 500-640 nm is 5.54 ± 4.6 % (mean ± standard deviation). In addition, a strong 

linear relationship is observed between RTD_eva(λ) and RTD_theory(λ) and between measured 

μs’(λ)/μa(λ) and theoretical μs’(λ)/μa(λ), as illustrated in Fig. 4.11. This improvement is 

attributed to the fact that consistent measurements can be obtained easily from the paper-

based reference standard.      
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Figure 4. 10 Absolute percentage error |ΔE| of μs’(λ)/μa(λ) estimations between 500 nm and 640 nm.  The references 
used are μs’/μa of the optical phantoms determined by the double integrating sphere technique. The middle line 
represents the mean |ΔE| calculated from all 8 phantoms; the error bar the standard deviation. A paper-based 
reflectance material was used as the reference standard in this study. 

 

Figure 4. 11 Representative results from the evaluation study of the point spectroscopic detection modality of the 
hybrid system.  A paper-based reflectance material was used as the reference standard in this study. A) RTD_eva(λ) verse 
RTD_theory(λ) at λ = 633 nm. B) Measured μs’(λ)/μa(λ) verse theoretical μs’(λ)/μa(λ) at λ = 633 nm. The solid lines in the 
figures are the linear regression lines. 

The results of experimental evaluation using optical phantoms also demonstrate the 

high accuracy of the imaging modality of the hybrid system in terms of estimating μs’/μa. 

A strong linear relationship with slope 1 is observed between RTD_eva(λ) and RTD_theory(λ) 

and between measured μs’(λ)/μa(λ) and theoretical μs’(λ)/μa(λ) at λ = 500 nm, as 

illustrated in Fig. 4.12.  
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Figure 4. 12 Results from the evaluation study of the imaging modality of the hybrid system.  An optical phantom was 
used as the reference standard in this study.  A) RTD_eva(λ) verse RTD_theory(λ) at λ = 500 nm. B) Measured μs’(λ)/μa(λ) 
verse theoretical μs’(λ)/μa(λ) at λ = 500 nm. The solid lines in the figures are the linear regression lines. 

4.4 Discussion 

The need to accurately obtain optical properties from in vivo biological tissues is 

largely attributed to the fact that these properties are directly linked to tissue 

compositional and structural characteristics, and hence provide a diagnostic potential for 

diseases and injuries. In this article, a unique hybrid spectroscopy imaging system was 

introduced to quantify optical properties of in vivo tissue. The system possesses two 

detection modalities: one for point spectroscopic detection and the other for imaging.  

The former is used when high spectral resolution is needed, while the latter is used when 

investigation of an area is necessary.  Both detection modalities acquire relative total 

diffuse reflectance signals from the target in a non-contact fashion.  With the assistance 

from a reference optical standard and a look-up table generated by the MC simulation 

model for photon migration, relative total diffuse reflectance measurements can be 

converted to absolute total diffuse reflectance and then μs’/μa.  The results of the 

evaluation confirm the operating principle, as well as the high accuracy of the hybrid 

system.  
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To obtain reliable results from the hybrid spectroscopy imaging system, the following 

three conditions should be met: 1) the illumination intensity on the investigated subject 

needs to be uniform; 2) the optical properties of the investigated subject are 

homogeneous; 3) the anisotropy factor g and, more importantly, the refractive index n of 

the investigated subject should be known.  

The first required condition is derived from the theoretical framework of total diffuse 

reflectance RTD obtained from a broad beam illumination (See 4.6 Appendix): the 

illumination intensity at a given point on the surface of the investigated subject should be 

the same as that at the point of detection in order to obtain accurate RTD.   This is 

especially true to the illumination points that make meaningful contribution to diffuse 

reflectance signal measured at (x0,y0). This requirement, in turn, constitutes the minimal 

radius of uniform illumination of the system, which can be quantitative assess using the 

point spread function of photon migration (i.e., radially resolved diffuse reflectance from 

a pencil beam illumination). According to the theory of photon migration, low μs’ and μa 

generally leads to a broader point spread function.  Therefore, the minimal radius of 

uniform illumination increases as μs’ and μa decrease. In order to quantify these effects, 

reported optical properties of pediatric brain cortex [94] were used to simulate point 

spread functions at 500 nm, 600 nm, and 700 nm, and the simulation results are presented 

in Fig. 4.13. It turns out that within the visible range, the radius within which 95% of 

total diffuse reflectance is observed (r95) is 2.6 mm and 5.8 mm for the smallest and the 

largest point spread function at 500 nm, respectively. In other words, the minimal radius 

of uniform illumination at 500 nm has to exceed 5.8 mm in order to reduce the 

measurement error of total diffuse reflectance below 5%. This is rather easy to attain with 
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a commercial-grade surgical light and a surgical microscope light in the operating room. 

As expected, r95 increases significantly as the wavelength increases (i.e., μs’ and μa 

decrease). According to the simulation results, the largest r95 is found at 700 nm and is 

about 2.9 cm. This number may not be reliable as the optical properties used may have 

been strongly underestimated. Nevertheless this indicates the hybrid system works better 

in the shorter wavelength region where μs’ and μa of biological tissues are high and the 

corresponding r95 as well as the minimal radius of uniform illumination are low. 

 

Figure 4. 13 Diffuse reflectance (Rd) as a function of radius (r) at three different wavelengths (A-500 nm, B-600 nm, 
and C-700 nm). The red curve demonstrated the narrowest diffuse reflectance profile, while the blue one is the widest 
one. The dash lines represent the cutoffs within which 95% of total diffuse reflectance is observed. To generate these 
Rd(r), the Monte Carlo simulation was carried out with the optical properties of human brain [94]. Specifically, n is 
1.395, g is 0.88, µa is 1.6-4.5 cm-1 at 500 nm, 0.6-1.7 cm-1 at 600 nm and 0.07-0.19 cm-1 at 700 nm, and µs is 83-250 
cm-1 at 500 nm, 52-228 cm-1 at 600 nm and 35-211 cm-1 at 700 nm. 

The second required operating condition of the hybrid system is based on the fact that 

the look-up table shown in Fig. 4.2 is derived using MC simulations with spatially 

homogenous media (i.e., constant optical properties). This assumption is used widely in 

the techniques measuring tissue optical properties. For the hybrid system, the minimal 

radius of uniform illumination discussed in the previous section defines the minimal 

radius of tissue homogeneity required to ensure the accurate operation of the system. To 

determine the minimal depth of tissue homogeneity, again the MC simulation is used in 

conjunction with the optical properties of pediatric brain cortex [94]. The results of the 

simulation indicate that the minimal depth of tissue homogeneity would be approximately 
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1.475 mm for 500 nm and 7.885 mm for 700 nm. Since the hybrid system reports the 

average μs’/μa within the volume of investigation defined by the minimal radius and 

depth of tissue homogeneity, the inhomogeneity will inevitably deviate the measured 

μs’/μa from its expected value. 

The simulation results presented in this article suggest that anisotropy factor g is not 

as influential as refractive index n to the accuracy of μs’/μa estimation. However, n did 

not introduce a significant error in estimating μs’/μa of the evaluation phantoms (n = 

1.486) based on a look-up table designed for a different n (n = 1.395). This is attributed 

to that the reference phantom has the same refractive index n as the evaluation phantoms, 

and thus, essentially the accuracy of the relative comparison between samples with same 

n would not depend on any particular look-up table. Therefore, n of the investigated 

tissue and the reference material are a required priori knowledge for the accurate 

operation of the hybrid system. Refractive indices of biological tissues have been 

reported widely in the existing literature.  For example, Jacques published a very 

comprehensive review on the optical properties of biological tissues [94], which could be 

a good reference for determining n of a specific tissue type and hence creating a 

corresponding look-up table. If n is not readily available, it may be estimated based on its 

water content using the formula depicted by Jacques [94].  

The hybrid system disclosed in this article is capable of obtaining absolute total 

diffuse reflectance at the macroscopic and the microscopic levels and estimating a wide 

range of μs’/μa (0-10000) efficiently. It is relatively inexpensive to construct and can be 

applied to various biomedical applications such as intraoperative brain tumor detection. 
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The system may be easily used in the surgical operating field, and even could be 

integrated with a surgical microscope, without introducing any safety issues or disturbing 

normal clinical procedures. One significant limitation of the hybrid system is that it does 

not provide μs’ and μa separately. This limitation, however, may be circumvented by 

performing advanced analysis on μs’/μa spectra to extract more function- and structure-

related information from biological tissues, which will be discussed in detailed 

formulations and verifications in the following chapter. 

4.5 Conclusion 

In this study, a hybrid spectroscopy imaging system and a simple data interpretation 

algorithm were introduced to quantify the optical properties (μs’/μa) of a given turbid 

media through the measurement of total diffuse reflectance. The system is capable of 

acquiring total diffuse reflectance spectra over a broad wavelength range from a point on 

the targeted sample, as well as acquiring 2-D images at multiple wavelengths from the 

targeted sample. With the help of a reference material with known optical properties and 

a look-up table constructed using MC simulations, the system is able to convert the 

measured total diffuse reflectance to optical properties (μs’/μa) efficiently and accurately. 

The effects of other optical properties, namely refractive index n and anisotropy factor g, 

on the accuracy of the estimation algorithm were also evaluated. It was found that only 

alterations in refractive index could introduce significant errors to the estimation of μs’/μa 

of the system.  
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4.6 Appendix 

Diffuse reflectance Rd(r) defines the percentage of the incident photon energy that is 

diffusely reflected by a tissue sample as a function of the distance between the 

illumination and the observation points r. Therefore, total diffuse reflectance RTD can be 

express as: 

RTD = Rd r( )
0

∞ dr .                                     (4.4) 

If the surface of a tissue sample is illuminated by a large beam with a uniform 

intensity distribution, as illustrated in Fig. 4.14A, diffuse reflectance observed from an 

arbitrary point (x,y) on the tissue surface will be 
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where r is the distance between an illumination point (x’,y’) and the observation point 

(x,y). Let (x,y) = (0,0), then r = x '2 + y '2  and R(x,y) will be the same as RTD.     
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Figure 4. 14 Graphic illustrations of (A) total diffuse reflectance measured from an arbitrary point on a tissue surface 
illuminated by a broad uniform beam and (B) the fraction f associated with the collection geometry. 

When the collection geometry is taken into consideration, the acquired diffuse 

reflectance signal will be a fraction (f) of RTD, as illustrated in Fig. 4.14B. The exact 

value of f will be determined by (1) the distance between the detector and the observation 

point d, and (2) the lens diameter D.  That is 
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where the angular distribution of the diffuse reflectance signal is assumed to be uniform 

(i.e., the hemi-spherical profile illustrated in Fig. 4.14B). However, Eq. (4.6) is not 

applicable to biological tissues because the angular distribution of diffuse reflectance 
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from biological tissues usually is a Lambertian. As a result, the fraction f for biological 

tissues is calculated by 
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When the observation distance and angle are maintained, f will be a constant. 

Therefore, Rxxx_measure(λ) in Eq. (4.2) is a relative measurement of the absolute total 

diffuse reflectance RTD_xxx(λ).  That is 

( ) ( )λλλ xxxTDdarkmeasurexxx RfRR __ )( ⋅=− .                         (4.8) 

This relationship is applicable to both reference and evaluation measurements. 

Therefore, the effect of f will be cancelled in the ratio operation in Eq (4.2) and hence is 

not noticed.  That is 
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5 A new algorithm for determination of hemodynamic and structural 
characteristics of brain tissue from total diffuse reflectance measurements 

5.1 Introduction 

Diffuse reflectance spectroscopy (DRS) has been demonstrated capable of effectively 

detecting hemodynamic and structural characteristics of biological tissues in vivo; this 

capability has been applied to various intraoperative applications such as detecting brain 

tumor at the resection margin intraoperatively (see Chapter 3). However, artifacts 

originated from the hand motions and contact pressure could compromise the 

interpretation of the hemodynamic properties [46, 49], and hence, the accuracy of the 

tumor detection. In addition, the data acquisition procedure with the DRS system will 

interrupt the routine surgical procedures and require complete darkness in the operating 

room to avoid ambient light influence, which is quite inconvenient for the neurosurgeons 

and nurses. Therefore, a non-contact, motion-artifact-free and user-friendly point 

spectroscopic detection system was devised in-house to avoid these issues (see Chapter 

4). Instead of measuring the spatial-resolved diffuse reflectance, the new measurement 

scheme is able to capture a fraction of the total diffuse reflectance under a wide-field 

uniform illumination. 

Since the nature of the RTD is different from that of radially-dependent diffuse 

reflectance signal Rd(r) [88], the spectral interpretation algorithms [95, 96] previously 

developed to extract the hemodynamic and structural properties from Rd(r) is no longer 

valid. In this study, a new spectral interpretation algorithm was developed for RTD spectra 

to extract the hemodynamic (hemoglobin concentration, [Hb], and oxygen saturation 

level, SatO2) and the structural (scattering) properties of the biological tissue. The 
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accuracy and sensitivity of the spectral interpretation algorithm was evaluated both 

theoretically with Monte Carlo simulation. Subsequently, the system as well as the 

interpretation algorithm were applied to a forepaw stimulation study of Wistar rats to 

demonstrate its clinical utilities. 

5.2 Methods 

5.2.1 Instrumentation 

The system developed to acquire RTD consisted of two signal acquisition modalities—

the imaging modality and the point spectroscopic detection modality (Fig. 5.1). The 

prototype system utilized a white light source (DC-950H, Dolan-Jenner, Edmund Optics 

Inc., Barrington, NJ) for illumination during the animal experiment. The cortical surface 

was imaged through a zoom imaging lens (VZM 450i, EdmundOptics). The Hastings 

triplet achromatic lens (#30-229, EFL 40.3 mm, Edmund Optics Inc., Barrington, NJ) 

collimated the image and then passed it through to a beam splitter (#54-824, 50R/50T, 

Edmund Optics Inc., Barrington, NJ).  The imaging modality was attached to the 

transmission port (T-port) of the bean splitter holder.  The collimated image through the 

T-port were refocused onto the CCD cameras (BFLY-U3-03S2M-CS, Point Grey 

Research, Inc.) by another Hastings lens. The point spectroscopic detection modality was 

attached to the reflection port (R-port) of the beam splitter holder. The collimated image 

through the R-port was projected via another Hastings lens onto the x-y translation stage 

coupled with an optical fiber (core diameter 50 μm, NA=0.2, GIF50C, Thorlabs). The 

distal end of the optical fiber could be connected to either a red laser source (CPS184, 

650 nm, 4.5 mW, Thorlabs) to track the point of detection on the cortical surface, or a 
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spectrometer (USB2000, Ocean Optics, Dunedin, FL) to acquire the relative RTD 

spectrum from a small area on the cortex. All image and spectrum acquisitions were 

conducted using self-developed LabVIEW programs. 

As explained in previous chapter, reflectance signal obtained from any point on the 

image plane under the uniform illumination is equal to a fraction of the RTD generated by 

a pencil beam illumination. With a reference material (optical properties are known) and 

a look-up table (Fig. 5.2a) based on a Monte-Carlo (MC) simulation model for photon 

migration, the acquired relative RTD signal could be accurately converted to the ratio of 

absorption coefficient to reduced scattering coefficient (i.e., μs’/μa) [88]. 

 

Figure 5. 1 Schematics of the non-contact RTD spectroscopy system 

5.2.2 Spectral interpretation algorithm 

With the estimated μs’/μa values, more information could be extrapolated with certain 

formulations with regard to the absorption and scattering properties of brain cortex: Since 

hemoglobin is the major absorber of the brain tissue within the visible wavelength range 

and hence, the absorption coefficient could be expressed as 
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64500/303.2))1()()((][)( 22 ⋅−⋅+⋅⋅= SatOSatOHb deoxyoxya λελελμ ,                   (5.1) 

where [Hb] is the total hemoglobin concentration in the unit of g/liter, εoxy(λ)and εdeoxy(λ) 

are the wavelength-dependent molar extinction coefficients of oxy- and deoxy-

hemoglobin [34], respectively, SatO2 is the oxygen saturation level, 64500 is the gram 

molecular weight of hemoglobin and 2.303 is the conversion factor. Furthermore, the 

reduced scattering coefficient could be determined by a simple power law  

B
s A −⋅= )

500
()('

λλμ ,                                                      (5.2) 

where λ is in nm, A is a scaling factor and B is the scattering power. Factor A is equal to 

the value of μs’(λ=500 nm), which might be time-dependent. B characterizes the 

wavelength dependence of μs’. Eq. (5.2) is good for predicting the scattering properties 

within the visible wavelength range [94]. Based on the above mentioned conditions, 

μs’/μa could be expressed as 
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Since the molar extinction coefficients of oxy- and deoxy-hemoglobin are equal (i.e., 

εoxy(λi)= εdeoxy(λi))at the isosbestic wavelengths (λi=500, 529, 545, 570, and 584 nm, 

approximately), the value of SatO2 will not have any influence on μa at these 

wavelengths. Hence, the following non-linear model could be obtained 
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where the wavelength-dependent constant C(λi)  is  
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A simple logarithm transformation on Eq. (5.4) could yield a linear model: 
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Applying the least-square regression method to Eq. (5.6) (Fig. 5.2b), A/[Hb] and B could 

be estimated, respectively. With an estimation of A/[Hb] and B, the C(λ), which is the 

wavelength-dependent total hemoglobin extinction coefficient, at all other non-isosbestic 

wavelength could be computed by 

B

a

s

Hb

A
C )

500
(

][)(

)('
)(

1
λ

λμ
λμλ ⋅







⋅=
−

.                                       (5.7) 



54 

Eq. (5.7) is an inverse method to determine the total hemoglobin extinction 

coefficient spectrum C(λ). By definition, C(λ) can be determined with the knowledge of 

εoxy(λ), εdeoxy(λ) and SatO2: 

64500/303.2))1()()(()( 22 ⋅−⋅+⋅= SatOSatOC deoxyoxy λελελ .                  (5.8) 

For a given SatO2 level, normalized C(λ) spectrum (i.e., C(λ)/C(530 nm)) has a unique 

spectral profile (i.e., number of peaks and peak locations, as shown in Fig. 5.2c). Using 

the peak locations of the normalized C(λ),  a look-up table to estimate the absolute SatO2 

values was established (see Fig. 5.2c). Note the look-up table was constructed by 

manually varying the value of SatO2 in Eq. (5.8) to generate the corresponding 

normalized C(λ) spectrum. The featuring peak location of a normalized C(λ) spectrum 

could be determined by the “findpeaks” function in Matlab. The absolute value of SatO2 

could be immediately determined with Eq. (5.7) and the look-up table for SatO2 (Fig. 

5.2c), following the estimation of A/[Hb] and B in Eq. (5.6). 
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Figure 5. 2 Algorithm to estimate hemodynamic and structural characteristics 

5.2.3 Validation based on Monte Carlo simulation 

In order to evaluate the efficacy of the algorithm in estimating A/[Hb], B and SatO2 

directly from total diffuse reflectance spectrum, a validation study based on Monte Carlo 

simulation was designed. A Matlab program was developed to generate 50 sets of random 

values for the parameters A, B, [Hb], and SatO2, within the ranges depicted in Table 5.1, 

and then to compute their corresponding optical properties μa(λ)and μs’(λ) using Eq. (5.1) 

and Eq. (5.2). These 50 sets of optical properties, along with refractive index n=1.395 

and anisotropy factor g=0.88, were applied to a Monte Carlo (MC) simulation model for 

photon migration to generate total diffuse reflectance (RTD), assuming the simulated 

tissue phantom was infinitely thick (~100 cm) and illuminated by a pencil beam 

perpendicularly. All optical properties used were selected in accordance to those of 
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human brain tissue summarized by Jacques et al. [94]. The wavelength range covered in 

the MC simulation was also listed in Table 5.1, with an increment of 2 nm. 

Table 5. 1 Ranges of parameters used in the Monte Carlo simulation to generate RTD spectra 

Parameter Minimum Maximum

A (cm-1) 10 30 

B (a.u.) 0.5 2.5 

[Hb] (g/liter) 22.5 60 

SatO2 (%) 0 100 

λ (nm) 450 600 

The simulated RTD spectra between 450 nm and 600 nm were applied in the spectral 

interpretation algorithm written in Matlab to estimate the corresponding values of 

A/[Hb], B and SatO2 using the interpretation methods described above. The estimated 

A/[Hb], B and SatO2 subsequently compared with the original values used in the MC 

simulation in terms of the absolute percentage error |ΔE| 

%100
1

12 ×
−

=Δ
v

vv
E ,                                                (5.9) 

where v1 is the original value and v2 is the estimated one. In addition, for the purpose of 

evaluating the effects of noises on the spectra interpretation algorithm, different levels 
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(0.1%, 0.5%, 1% and 5%) of uniform-distributed random noises were added to the 

simulated RTD spectra by 

( ) ( ) numberrandomRR TDTD ⋅⋅± λλ
2

1
,                               (5.10) 

where the random number is within the range of corresponding noise level. Parameters 

A/[Hb], B and SatO2 were also estimated based on the noisy RTD spectra, and compared 

with pre-set values using Eq. (5.9). 

In practice, the influence of random noise is usually reduced by averaging multiple 

measurements. To demonstrate the importance of averaging repeated measurements for 

parameter estimation, random noise at the same level (0.1%, 0.5%, 1% or 5%) was 

generated and added to the simulated RTD spectra, according to Eq. (5.10).  The noise 

addition process was repeated 10 times, which yielded 10 noisy RTD(λ). The 10 noisy 

RTD(λ) at a given noise level were averaged to yield an averaged spectra for spectral 

interpretation. The resulting parameter estimations were compared with the ones from the 

noisy spectra without averaging in terms of |ΔE|. 

5.2.4 Forepaw stimulation of Wistar rats 

Forepaw stimulation on rodents is often used to induce significant hemodynamic 

responses, including cerebral blood flow, cerebral blood volume and oxygen partial 

pressure, within the somatosensory cortex for forelimb (S1FL) for the purpose of  

investigating the neurovascular coupling mechanism. It offers a great opportunity for this 

study to verify whether the proposed new measurement scheme and the accompanying 
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spectral interpretation algorithm are capable of detecting those stimulation-induced 

hemodynamic variations in the S1FL cortex. 

The animal study protocols were approved by the Institutional Animal Care and Use 

Committee (IACUC) at Florida International University (Approval Number: 13-065) and 

carried out in full compliance with federal, state and local regulations and laws. All 

procedures were performed with anesthetized rats to minimize their suffering. Eight 

normal Wistar rats were used in this study. Four of them were over 1 year old, and the 

other four were around 2-6 months old at the time of experiment. Rat’s body temperature 

(~37°C), heart rate (200-300 beats per minute) and respiration rate (<50 breath per 

minute) were monitored continuously, using PowerLab 8/35 data acquisition device and 

LabChart software (AD Instruments), to assure the level of anesthesia remained stable 

throughout the entire surgical procedure and recordings. 

Rats were fixed on the stereotaxic stage with skull and dura removed on top of the 

somatosensory cortex for forelimb (S1FL) under infusion of 2% isoflurane with 1L/min 

oxygen (14 psi). The location of S1FL was determined based on the rat brain atlas [97]. 

Non-conductive paraffin oil drops (O121-1, Mineral Oil, Light, Fisher Scientific) were 

applied to the craniotomy to prevent the cortical surface from dehydration during the 

recordings. The contralateral forepaw was stimulated using bipolar needle-electrodes 

placed subcutaneously. Prior to the forepaw stimulation, 0.25-mg/kg dexdomitor was 

intraperitoneally injected to sedate the rats. Subsequently, the isoflurane was reduced to 

0.25% (1L/min O2, 14 psi). Stimulation pulses (10-ms pulse width) were delivered by an 

isolated pulse stimulator (Model 2100, 110V, 60 Hz, A-M Systems; ~2-mA amplitude at 
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3 Hz). A repetitive block-design paradigm was employed with each block consisting of 

an ON period of 5, 16, or 30 seconds, during which stimulation pulses were triggered, 

and an OFF period (i.e., resting state) of 30, 44, or 50 seconds, respectively. 

5.2.5 Acquisition of point spectroscopic detection modality 

A paper-based reference was calibrated with an optical phantom prior to the animal 

experiments. The optical properties of the optical phantom are known, and therefore, its 

theoretical RTD_ref could be estimated from the look-up table of RTD versus μs’/μa, as 

described in previous chapter. The theoretical RTD_paper was estimated by 

)(
)()(

)()(
)( _

_

_
_ λ

λλ
λλ

λ refTD
darkmeasureref

darkmeasurepaper
paperTD R

RR

RR
R ⋅

−
−

= ,             (5.11) 

where Rpaper_measure and Rref_measure were the spectra measured from the paper reference and 

optical phantom under the wide-field illumination using the point spectroscopic detection 

modality of the system, Rdark was obtained when the illumination was turned off. 

During the animal experiment, the paper reference was placed on top of the 

craniotomy to obtain the averaged Rpaper_measure spectra based on 10-second continuous 

spectral acquisition with an integration time of 250 ms before and after the forepaw 

stimulation paradigm. Total diffuse reflectance spectra from the S1FL cortex Rcortex_measure 

were continuously acquired with an integration time of 250 ms during the forepaw 

stimulation paradigm. Dark measurement Rdark was also attained. The time-dependent 

absolute total diffuse reflectance spectra of the S1FL cortex RTD_cortex was calculated by 
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The corresponding values of μs’/μa of the S1FL cortex could be derived from RTD_cortex 

spectra instantaneously using the look-up table of RTD versus μs’/μa. The event-related 

parameters A/[Hb], B and SatO2 could be subsequently estimated using the proposed 

spectral interpretation algorithm. 
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5.3 Results 

 

Figure 5. 3 Validation of the proposed RTD spectral interpretation algorithm using Monte Carlo simulation. 

The simulated RTD spectra with or without noises were processed using the RTD 

spectral interpretation algorithm to estimate the indicative parameters A/[Hb], B and 

SatO2.  The discrepancies between estimated and the theoretical values of these indicative 

parameters were displayed using scatter plots, as shown in Fig. 5.3a. The accuracy of the 
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RTD spectral interpretation algorithm was clearly demonstrated by the fact that all data 

points in the scatter plots fit the line with a slope of 1 very well.   

The effect of the averaging process on the performance of the RTD spectral 

interpretation algorithm is shown in Fig. 5.3b. When the averaged noisy RTD spectra were 

used as the input, |ΔE| of each indicative parameter was markedly reduced (Fig. 5.3b in 

red).  This effect is especially prominent when the noise level is high. However, |ΔE| of 

SatO2 estimation at the noise level of 5% was still very high (~23%) even when the 

averaged noisy spectra were used. It should be noted that the noise effect is not a constant 

for the entire range of SatO2; the |ΔE| was within an acceptable range (<5%) when the 

theoretical value of SatO2 was over 30%, as shown in Fig. 5.3c. 

The event-related hemodynamic responses induced by forepaw stimulation in rats 

were measured using the spectroscopy imaging system and then estimated by the spectral 

interpretation algorithm (Fig. 5.4 and Fig. 5.5). Significant variations in all three 

indicative parameters A/[Hb], B and SatO2 under different durations of forepaw 

stimulation were observed both from the rats over 1 year old and those less than 6 months 

old. Interestingly, the amplitude of the variations in three indicative parameters obtained 

from the younger rats (Fig. 5.5) were much higher than those from the older rats (Fig. 

5.4). In addition, the baseline values of SatO2 from the older rats’ S1FL cortex were 

significantly lower than those from the younger rats (Fig. 5.6). 
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Figure 5. 4 Results from the forepaw stimulation in old rats (N = 2). The time histories of the indicative parameters 
were obtained from nine events induced by 5-second stimulation, 18 events by 16-second stimulation, and 8 events by 
30-second stimulation. The solid lines are the averaged time histories. The error bars represent the standard 
deviations. The gray dash-line marked the baseline of each indicative parameter. 

 

Figure 5. 5 Results from the forepaw stimulation in younger rats (N = 2). The time histories of the indicative 
parameters were obtained from 13 events induced by 5-second stimulation, 12 events by 16-second stimulation and 15 
events by 30-second stimulation. The solid lines are the averaged time histories. The error bars represent the standard 
deviations. The gray dash-line marked the baseline of each indicative parameter. 
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Figure 5. 6 Baseline SatO2 from 4 old rats and 4 young rats 

5.4 Discussion 

In this study, a new spectral interpretation algorithm was proposed to retrieve three 

indicative parameters related to the hemodynamic and structural characteristics of 

biological tissue based on total diffuse reflectance spectrum between 500 to 580 nm. 

Currently, the most popular spectral interpretation algorithm applied on multi-wavelength 

optical data to estimate the hemodynamics variations is based on modified Beer-Lambert 

law [98-100]. The scattering properties are usually assumed to be constant in order to 

obtain the desired hemodynamic information. A priori knowledge about the baseline 

hemoglobin concentration and oxygen saturation level are also needed to determine the 

mean optical path length in the modified Beer-Lambert law. These assumptions would 

introduce bias to quantify the real hemodynamic characteristics. Furthermore, these 



65 

algorithms are not capable of producing absolute SatO2. In contrast, the spectral 

interpretation algorithm proposed in this study does not rely on any assumption about the 

baseline values of each indicative parameters. In addition, it does not assume the 

scattering properties are constant. The most important advantage of this algorithm is that 

it could objectively provide the absolute value of SatO2, instead of a relative estimation 

based on pre-set values. 

Another advantage of the proposed measurement scheme and spectral interpretation 

algorithm is that it utilizes optical data within the short wavelength region (i.e., 500-580 

nm), which leads to a small volume of investigation (VOI).   This, in terms, reduced the 

effects of tissue inhomogeneity on the estimation accuracy of the indicative parameters. It 

has been demonstrated in previous chapter that the VOI at 700 nm is markedly  greater 

than the one at 500 nm, due to much lower absorption and scattering coefficients of 

biological tissues in the near infrared wavelength region. 

In general, the proposed spectral interpretation algorithm could handle a moderate 

level (<5%) of noises. By averaging the raw spectra, the estimation error could be 

significantly reduced. However, caution should be taken when estimated SatO2 is below 

30%, since it is more susceptible to the accuracy degradation induced by noises, as 

demonstrated in the validation study based on MC simulation. This susceptibility may be 

originated from the look-up table for SatO2 estimation; the increase in the full width half 

max of the peak at the low SatO2 levels makes the peak location detection highly 

inaccurate, with the presence of the strong noises. 
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To validate the utility and the efficacy of the new measurement scheme and the 

proposed algorithm in practice, an animal study with forepaw stimulation was carried out. 

Significant hemodynamic responses were expected to be observable in S1FL whenever 

the electrical current stimulation was introduced to the forepaw of the rat. The estimated 

indicative parameters depicted significant variations related to the stimulation, which was 

reproducible and clearly demonstrated the capability of the system in differentiating the 

variations in the hemodynamic (SatO2 and A/[Hb]) and structural (A/[Hb] and B)  

characteristics. The variations observed in the scattering power B might be a result of the 

increase of blood flow in the studied tissue, though it requires further investigation to 

gain insight to the underlying mechanism. Meanwhile, this observation contradicts the 

assumption regarding constant scattering properties usually used in applying the modified 

Beer-Lambert law [99, 100]. This might indicate those results obtained based on this 

constant scattering property assumption need to be carefully reinterpreted. 

Although it was not the intended scope of this study, the system was also able to 

detect a significant age-related difference in (1) the baseline levels of SatO2 and (2) the 

magnitudes of the stimulation induced variation in SatO2 among the studied rats.  This 

phenomenon may be attributed to the aging of the brain. It has been demonstrated that 

even in healthy human subjects, the oxygen consumption in the brain will decrease with 

age [101, 102], which could result from a combined effects of neuronal loss, cellular 

biological impairment and functional deafferentation. Such effects were inferred to 

underlie or reflect the age-related cognitive changes [102]. 
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The performance of the new measurement scheme and spectral interpretation 

algorithm in differentiating brain tumor from normal tissue in vivo remains to be 

investigated and compared with the probe-based DRS system in the future, which could 

have tremendous value in clinical applications. In addition, they could be utilized to 

perform the intraoperative monitoring of tissue SatO2 during, for example, a bypass 

surgery as well. It will also be of great interest to include them in the preclinical studies 

of neurovascular coupling, in combination with other neuroimaging modalities, such as 

laser Doppler flowmetry and electrophysiology. The current instrumentation design could 

also facilitate the experimental set-up of these multi-modal imaging studies. 

5.5 Conclusion 

In this study, the feasibility of using a non-contact point spectroscopic detection 

system to estimate the hemodynamic and structural characteristics of biological tissue, 

through the relative total diffuse reflectance measurements, was successfully 

demonstrated. The spectral interpretation algorithm is capable of handling moderate 

levels of random noise imposed on the measured data, as investigated based on MC 

simulation. In a rat forepaw stimulation study, the proposed measurement scheme and 

spectral interpretation algorithm were able to detect significant hemodynamic and 

structural variations in the somatosensory cortex for forelimb caused by the electrical 

current stimulation. Both theoretical and experimental validations indicated that the new 

measurement scheme and the spectral interpretation algorithm could uncover the intrinsic 

hemodynamic and structural characteristics of biological tissue effectively, which could 

have tremendous value in both clinical and preclinical investigations.   
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6 Intraoperative optical mapping of epileptogenic cortices in pediatric patients 

6.1 Introduction 

Complete removal of epileptogenic brain areas that are responsible for seizure onset 

offers patients with refractory epilepsy the chance of being seizure free. This act, 

however, must be balanced with the preservation of the eloquent cortical areas to reduce 

the postoperative morbidity [26]. Many evaluation technologies have been used during 

the preoperative evaluation phase for epilepsy surgeries, including electroencephalogram 

(EEG), (functional) magnetic resonance imaging ((f)MRI), positron emission tomography 

(PET) and single-photon emission computed tomography (SPECT). Together, they 

provide the general location but not the exact boundaries of seizure-inducing brain areas.  

The usefulness of all this information degrades during the course of surgery because of 

brain shift and deformation that is invariably induced by the loss of cerebrospinal fluid 

[12, 13]. Therefore, additional intraoperative evaluations are always needed to finalize 

the surgical plan and guide the surgery.  

Electrocorticography (ECoG) has been demonstrated as a valuable intraoperative tool 

to identify eloquent cortical areas, as well as epileptic brain areas (i.e., responsible for 

either ictal or interictal discharges). It can be used for chronic recordings; however, the 

required additional surgery for electrode implantation elevates the risks of hemorrhage, 

infection and cerebral edema [26]. Intraoperative MRI (iMRI) and fMRI (ifMRI) may 

play crucial roles in future epilepsy surgery, as they enable a maximum extent of 

resection despite the lesion’s proximity to eloquent brain cortex and fiber tracts which, in 

turn, leads to favorable seizure reduction outcomes and acceptable neurological deficit 
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rates [16]. However, the use of iMRI or ifMRI demands an extremely high standard of 

infrastructure and maintenance. As a result, only a limited number of hospitals and 

research institutes have the financial and technical capabilities to offer these technologies 

for routine patient care. In addition, the functional mapping of ifMRI relies on the 

selection of hemodynamic response functions, which could compromise the accuracy of 

localization [17].  

Dynamic intrinsic optical imaging (DIOI) is generally considered a technical 

alternative to ifMRI, and is believed to hold great scientific potential that could not only 

improve the interpretations of fMRI data, but also provide more detailed understanding 

about the cortical micro-environment [13]. It has been suggested that DIOI is capable of 

identifying the epileptogenic cortex during the ictal episodes [55], but it is not practical to 

implement such a localization technique in an intraoperative setting, because seizure 

attacks are required. Additionally, when used for functional mapping, DIOI requires 

external neuronal stimulations, such as electrocortical stimulation [52] and peripheral 

stimulation [53, 54]. The dependence on external stimulations requires delicate control of 

anesthetic administration to maintain the patient’s consciousness, which could introduce 

additional risks to the surgery, especially when patients are children. 

In a recent pilot study, the feasibility of using DIOI to identify the epileptogenic 

cortex and eloquent areas in pediatric epilepsy patients under anesthesia was explored 

[103]. Unique hemodynamic low-frequency oscillations (LFOs, below 0.1 Hz) with 

unknown sources were observed within both epileptogenic and eloquent cortical areas 

during the interictal periods. Unfortunately, it was unclear how to distinguish the 
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epileptogenic cortex from the eloquent areas solely based on the presences of LFOs. 

Therefore, in the current study, two methods were developed to analyze the cortical 

hemodynamic LFOs acquired by DIOI on pediatric epilepsy patients for the purpose of 

delineating the epileptogenic cortex from eloquent areas intraoperatively. The first 

method was derived using seed-based correlation, feature clustering and Granger 

causality analysis. The second method has a physiological basis, and relies on stochastic 

modeling and machine learning method (i.e., support vector machine, SVM). An 

independent ECoG analysis was performed by neurologists at Nicklaus Children’s 

Hospital, and its results were used as the reference to confirm the localizations of 

epileptic and eloquent cortical areas. Finally in this study, vasculature features of ECoG-

determined epileptogenic and normal cortical areas were investigated by a third method 

utilizing a static digital imaging modality. 

6.2 Methods 

6.2.1 Patients Selection 

This in vivo study was approved by the Western Institutional Review Board. Eleven 

patients (< 18 years old) with lesional epilepsy undergoing one/two-stage epilepsy 

surgery were chosen by their neurosurgeons (Dr. Sanjiv Bhatia and Dr. John Ragheb) at 

Nicklaus Children’s Hospital. Informed consent was obtained from each patient and their 

parents prior to the surgery. Patients’ demographic and clinical information was 

summarized in Table 6.1. The neurosurgeons were not aware of the results presented in 

this study at the time of surgery. 
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Table 6. 1 Patients' demographic and clinical information 

Patient Gender Age (yo) Stage Craniotomy Pathology 

1 Male 14 2 L F P Tuberous sclerosis 

2 Female 17 2 R F T Probable FCD 

3 Female 7 2 R Type 2A FCD 

4 Male 12 2 L n/a 

5 Male 16 2 R F T Rasmussen encephalitis 

6 Female 13 2 L F P T Cavernous malformation 

7 Female 15 2 L F T 
Type 2A FCD; mild hippocampal 
gliosis 

8 Male 8 2 L T Cellular glial tumor; favor FCD 

9 Male 9 2 R F T Type 2A FCD 

10 Female 12 2 L T O Gliosis 

11 Male 2 months 1 R F T FCD 

yo: years old; L: Left; R: Right; F: Frontal; T: Temporal; O: Occipital; P: Parietal; FCD: Focal cortical 
dysplasia. 

6.2.2 Optical Data Acquisition 

Images at 500 nm and 700 nm were acquired simultaneously and continuously from 

the exposed cortical surface intraoperatively, using a DOSIS system developed in-house 

(Song et al., 2012). The exposed cortex was illuminated by the surgical light in the 

operating room and imaged through a Nikon dSLR lens (Nikon AF 28-80mm f/3.5-5.6 D 

Lens with Aperture Ring). Images were recollimated and then split into two branches by 

a dichroic mirror (#49-471, Edmund Optics), which has a transmission wavelength range 

of 400-595 nm and a reflection wavelength range of 640-750 nm.  Two CCD cameras 

(DMK 21AU04, The Imaging Source Europe GmbH) were attached to the holder of the 

dichroic mirror; one at the transmission port (CamT) and the other at the reflection port 
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(CamR). CamT recorded image through a 500 nm band-pass filter (#65-149, Edmund 

Optics), CamR through a 700 nm band-pass filter (#88-012, Edmund Optics). Both 

cameras were synchronized using external trigger provided by a function generator. In 

each image acquisition sequence, at least 1000 frames were acquired by each camera at a 

rate of 5 frames per second. The imaging system was controlled by a LabVIEW program 

via an IEEE 1394a interface.  
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Figure 6. 1 Flow chart of the image analysis procedures (Method 1). PCA: principal component analysis. 

During the DIOI study, the patient was kept still and his/her physiological conditions 

kept stable under normal anesthesia. A list of anesthetic agents and other surgery-related 

information were summarized in Supplementary Table 6.1.  
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6.2.3 Optical Data Analysis (Method 1) 

All data analyses were performed with Matlab programs developed in-house 

following the steps shown in Fig. 6.1. Images from both cameras were co-registered and 

cropped to show the same exposed cortex area at two wavelengths and smoothed using a 

mean filter with a 3-by-3 square window. Time series of each pixel R(x,y,t) was analyzed 

both in the time domain and the frequency domain. Since LFOs were of interest in this 

study, time series R(p,t), where p = (x,y), was filtered using a band-pass FIR filter 

(~0.001-0.1 Hz), which yielded Rlow(p,t). The artifacts in Rlow(p,t) were removed using 

the principal component analysis (PCA) method, which produced RPCA(p,t). The power 

spectral density map (SDM, ~0.001-0.1 Hz) was generated using Rpca(p,t) at each 

wavelength. Correlation coefficient map (CCM) was generated by calculating the 

correlation coefficient between Rpca(p,t) at 500 nm and that at 700 nm at each pixel. 

Pixels showing negative correlation, which often appeared as focal groups, were 

extracted using k-means segmentation; Rpca(p,t) at both wavelengths of these pixels were 

subsequently classified, using the mean shift clustering method, into multiple clusters 

based on their temporal profiles. This classification was performed without any a priori 

knowledge about the number of existing clusters. Rpca(p,t) in each cluster was then 

denoted as Rci(p,t), where subscript i stands for the cluster number.  A Granger causality 

toolbox (Luo et al., 2013) for non-stationary signals was applied to Rci(p,t) at 500 nm to 

determine the directed influences among these clusters. If Rci(p,t) from region A has a 

directed influence on Rci(p,t) of region B, region A would be denoted as Granger-cause 

(G-cause) while region B Granger-effect (G-effect). When the directions of influences 

were identified, averaged time series Rci(p,t) at the G-causes and G-effects were used as 
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reference (i.e., seed), respectively, to calculate the seed-based correlation coefficients 

with Rpca(p,t) from the other pixels within the field of view (FOV) at each wavelength. 

6.2.4 Electrocorticography (ECoG) Acquisition and Analysis 

For patients undergoing two-stage epilepsy surgery, the optical imaging acquisition 

was performed prior to the ECoG study. The placement of the ECoG microelectrode 

arrays was determined by the results of the pre-operative evaluations using scalp EEG, 

MRI/fMRI, PET and/or SPECT, which was not influenced by the results of DIOI data 

analysis. After the first-stage surgery, the electrical activities of the target cortex of these 

patients were monitored for at least one week to identify the brain areas producing the 

ictal/interictal spikes. The final decision on the area of resection was determined by the 

ECoG results in conjunction with those from the neuro-imaging studies. Once the surgery 

plan was finalized, these patients underwent the second stage of the surgery to remove 

the electrode array and the epileptogenic brain areas. For patients undergoing one-stage 

epilepsy surgery, the optical imaging acquisition was also performed prior to the 

confirmatory ECoG study, which was carried out to determine the resection margin.   

Neurologists at Nicklaus Children’s Hospital analyzed all ECoG data and provided 

information with regard to the localizations of eloquent and epileptic cortical areas. The 

eloquent areas are defined as cortical areas consistently related to a given function; e.g., 

sensory or motor. The epileptogenic cortex is regarded as the area of cortex indispensable 

for seizure onset. Areas generating interictal spikes and discharges are also generally 

considered epileptic. DIOI data analyses in the previous section were conducted without 

any knowledge about the results from ECoG study. Later, the ECoG study results and the 
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actual area of surgical resection were used as gold standards to define the epileptogenic 

and eloquent cortical areas. 

6.2.5 Stochastic modeling and machine learning (Method 2) 

Based on the absorption spectra of oxy- and deoxy-hemoglobin, DIOI data at 500 nm 

primarily reflect changes in cerebral blood volume (CBV). DIOI data at 700 nm, on the 

other hand, reflect variations in deoxy-hemoglobin concentration [Deoxy-Hb] relative to 

CBV. Since both parameters are known to be affected by neuronal activities [104], 

investigating the relationship between the DIOI data at 500 nm and 700 nm would 

provide insights into the interplay between CBV and SatO2 under the influence of both 

neuronal activities and metabolisms. This, in terms, could offer a window of opportunity 

to separate epileptogenic from eloquent cortex using parameters that characterize the 

interplay between CBV and SatO2, To verify this hypothesis, Rci(p,t) at both wavelengths 

with negative correlations from epileptogenic and eloquent cortical areas, as defined by 

the outcomes of the ECoG studies, were applied to an autoregressive model with an 

exogenous source (ARX): 
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where u is Rci(p,t) at 500 nm (related to CBV) as the exogenous source, y is Rci(p,t) at 

700 nm (reflecting variations in SatO2) as the output of this stochastic system, ϕ and ψ 

are the coefficients for variable y and u, respectively, p and r are the order of the series of 

y and u, respectively, and ε is a white noise. Although this data-driven model is not 

strictly following any biophysics-based mechanism, the impulse response functions 
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(IRFs) of this model, to a certain extent, could indirectly show the relationship between 

CBV and SatO2, and hence contain useful features to differentiate eloquent from the 

epileptogenic cortex. Therefore, a support vector machine (SVM), a common machine 

learning method used in predictive modeling for clinical decision-making, was employed 

with quadratic programming to train the computer to identify the differences between the 

IRFs obtained from epileptogenic and eloquent cortical areas. SVM has primarily been 

employed in EEG analysis for seizure detection [105-107]. It has also been used as a 

diagnosis tool in anatomical and functional imaging studies [108-110]. Here, Rci(p,t) 

obtained from the epileptogenic and eloquent cortical areas were split into two parts, one 

was used as the training data set and the other as a testing data set. Upon obtaining the 

estimated IRFs from each data set, Haar wavelet decomposition was employed to extract 

unique features from IRFs. The averaged coefficients of approximation at level 3 and the 

averaged coefficients of details at level 2 and 3 in the Haar wavelet decomposition [111] 

were scaled (i.e., standard deviation = 1) and used in SVM as the features for training and 

testing purposes. Finally, the performance of the SVM with different orders of ARX 

model (p and r: 5-40) was quantified in terms of accuracy, sensitivity, specificity, and the 

area under the receiver operating characteristics (ROC) curve, in order to find the optimal 

approach to differentiate the epileptogenic cortical areas from the eloquent ones. 

6.2.6 Static Digital Imaging and Analysis of the Vasculature Abnormalities 
(Method 3) 

In addition to DIOI, digital color images of the exposed cortex were also acquired 

using a commercial-grade digital SLR camera (Sony α100) during the surgery. ImageJ 

(http://imagej.nih.gov/ij/) was used to perform edge detections on these images to 
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determine the vessel network.  Several area of interest (AOI) with the same dimensions 

were selected from the ECoG defined the epileptic area and the normal area within the 

same brain lobe. A histogram was generated for each AOI using its 8-bit post-processed 

image (the edges of the blood vessels highlighted); which indirectly quantified the vessel 

density information.  Finally, the histograms of the AOIs from epileptogenic cortex were 

statistically compared against those from normal cortex.      

6.3 Results 

Eleven patients undergoing epilepsy surgery were enrolled in this study, and their 

demographic and clinical information is provided in Table 6.1. An optical imaging study 

was performed twice in three of these patients; each of these two studies possessed a 

unique view angle to the exposed cortex. Therefore, the analysis results from a total of 

fourteen image sequence sets are presented.  

Fig. 6.2 shows an example image acquired with the DIOI system (Fig. 6.2A, at 700 

nm) versus a second image captured using a commercial-grade digital camera (Fig. 

6.2B). Following the DIOI image acquisitions, another picture of the exposed cortical 

surface was taken with the ECoG microelectrode array placed on top (Fig. 6.2C). 

Neurologists at Nicklaus Children’s Hospital documented the locations of epileptic and 

eloquent cortical areas using the ECoG electrode number. With these three images, the 

results from the DIOI data analyses could be easily compared with those of ECoG data 

analyses. 



79 

 

Figure 6. 2 An example of images acquired by dynamic intrinsic optical imaging (DIOI) system (A) and commercial 
dSLR camera (B). An image was also taken with dSLR camera after the placement of electrocorticography (ECoG) 
electrode array (C), for the purpose of post-analysis comparison between DIOI and ECoG analyses. 

6.3.1 Correlation, clustering and Granger causality (Method 1) 
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Figure 6. 3 Analysis of dynamic intrinsic optical imaging (DIOI) data (Method 1). (A) and (B) were the raw images 
obtained by DIOI at 500 nm and 700 nm, respectively. Spectral density maps (SDMs) at 500 nm (C) and 700 nm (D) 
show the power of hemodynamic low-frequency oscillations (LFOs). Correlation coefficient map (CCM) in (E) was 
obtained by calculating the correlation coefficient between LFOs at both wavelengths. K-means segmentation (F) was 
performed to isolate those regions with negative correlation (G). These regions were later classified into multiple 
clusters (H) by mean shift clustering. Each cluster consists of LFOs with unique temporal profiles (I). Granger 
causality toolbox was used to identify the Granger-cause (J) and Granger-effect (M) in all these clusters. Seed-based 
CCM at both wavelengths were generated with regard to the Granger-cause (K for 500 nm, L for 700 nm) and the 
Granger-effect (N for 500 nm, O for 700 nm). Among all twelve cases with the resection areas inside the optical field of 
view, 83% of them showed the Granger-causes in epileptic cortex (P). 

Strong LFOs (<0.1 Hz) were observed in all fourteen acquired data sets.  A set of 

representative LFO analysis results is presented in Fig. 6.3. In this case, negative 

correlations between Rpca(p,t) at both wavelengths were located in certain focal areas 

(Fig. 6.3E) . Using K-means segmentation, negative-correlation areas greater than 100 

pixels were separated from the remaining cortical areas (Fig. 6.3G). These areas included 

both epileptic cortex and normal eloquent areas. Rpca(p,t) from these isolated areas were 
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separated further into multiple clusters by simultaneously using the temporal features 

identified from both wavelengths (Fig. 6.3H). Each cluster possess a unique oscillation 

pattern (Fig. 6.3I), for which the spatial distribution could be scattered. For example, 

Clusters 1 and 2 in Fig. 6.3H are connected spatially, but the temporal profiles of their 

Rci(p,t) at both wavelengths (Fig. 6.3I) are clearly different. 

To understand effective connections between these epileptic and eloquent areas, the 

G-causes (Fig. 6.3J) and G-effects (Fig. 6.3M) among the classified clusters were 

identified using Granger causality method. In general, the clusters located inside the 

resection area, presumed to be related to seizure onset, were found to be the G-causes. In 

the cases of the resection area being outside the optical FOV (i.e., below the cortical 

surface), the eloquent areas could be highlighted after the classification, and they often 

had a directed influence on other brain areas within the FOV. However, not all the 

identified clusters exhibited causal relationships (e.g., Cluster 1, 2, and 3 in Fig. 6.3H), 

which might indicate that these areas were not effectively connected, regardless of their 

structural or functional connections. Once the G-causes and the G-effects were 

determined, the averaged Rci(p,t) within a G-cause area and a G-effect area were used as 

the seeds to obtain CCM based on seed-based correlations with Rpca(p,t) of all the other 

pixels at the corresponding wavelengths. It was clear that the correlated areas revealed at 

500 nm (Fig. 6.3K and 6.3L) are much more focal than those at 700 nm (Fig. 6.3N and 

6.3O), which could be a result of the longer optical path length for biological tissue at 

700 nm discussed in Chapter 4.4. 
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Table 6. 2 Analysis Summary 

Case 
LF
O 

Negative 
Correlatio
n 

Match with ECoG 
and Surgical 
Resection 

Granger-
Causes 

Comment 

1 x x x x  
2 – 1 x x x x  
2 – 2 x x x x  

3 x x 
Fast activity and 
spike 

Fast 
activity 

Strong LFOs, weakly 
anti-correlated, were 
found inside the 
resection area. They 
were correlated to the 
area showing fast 
activity. 

4 – 1 x x x x  
4 – 2 x x x x  
5 x x x x  

6 x x Functional 
Functiona
l 

Resection area was 
outside the optical 
FOV. 

7 – 1 x x Receptive Receptive Strong LFOs, 
positively correlated, 
were found inside the 
resection area. 

7 – 2 x x Receptive Receptive 

8 x x x x  
9 x x x x  

10 x x Interictal and motor Motor 
Resection area was 
not within the optical 
FOV. 

11 x x x x  
LFO: low-frequency oscillation 
ECoG: electrocorticography 
FOV: field of view 

As summarized in Table 6.2, there were two cases in which only eloquent areas were 

identified within the FOV. For these two cases, the resection areas were either below the 

cortical surface or adjacent to the craniotomy but covered by skull. Nevertheless, strong 

hemodynamic LFOs were found within the resection areas (i.e., epileptogenic areas) in 

all the remaining twelve cases. 75% of the resection areas exhibited negative correlations 
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between their Rpca(p,t) at 500 nm and 700 nm, and they had directed influences on other 

cortical areas. Meanwhile, 83% of the G-causes identified by Granger causality method 

were related to epileptic activities (i.e., both ictal and interictal discharges), as shown in 

Fig. 6.3P.  However, eloquent areas could be the G-cause as well; on some occasions 

they either directly contributed to the activities in a distant cortex or relayed the activities 

from epileptic cortex to the distant cortex. This indicates that eloquent cortical areas, if 

involved, may facilitate the propagation of epileptic activities through their network to 

remote cortical areas. 

6.3.2 Stochastic modeling and machine learning (Method 2) 

The coupling mechanism between the change in CBV and that in SatO2 was 

investigated using an ARX model. The IRFs obtained from the epileptogenic cortex and 

the eloquent cortex appeared to be different in their temporal profiles. The machine 

learning method SVM was applied on the training data sets to identify a hyperplane that 

could identify differences between the IRFs obtained from the epileptogenic areas (n=15) 

and those from eloquent areas (n=10). Subsequently, the accuracy of the differentiation 

was evaluated by applying the same SVM model to the testing data set. The accuracy of 

SVM models with ARX of different orders were compared and illustrated in Fig. 6.4A. 

ARX model at order 11 yielded the highest accuracy (84%) and largest area under the 

ROC curve (0.82 out of 1) in SVM. There was no statistically-significant difference 

between the amplitude of IRFs obtained from the epileptogenic and eloquent cortical 

areas (Fig. 6.4B). Nevertheless, we observed an optimal hyperplane in SVM that was 
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able to separate the IRFs of the epileptogenic cortical areas from those of the eloquent 

areas with a sensitivity of 93% and a specificity of 70% (Fig. 6.4C). 

 

Figure 6. 4 Differentiation between epileptogenic and eloquent cortex (Method 2). (A) Autoregressive model with 
exogenous source (ARX) at Order 11 shows the highest accuracy (0.84) and largest area under receiver operating 
characteristic (ROC) curve (0.82). (B) The corresponding impulse response functions (IRFs) obtained from 
epileptogenic (blue) and eloquent (red) areas. (C) The hyperplane obtained by support vector machine (SVM) could 
separate the epileptogenic cortex from eloquent areas with a sensitivity of 93% and a specificity of 70% (n=25, 15 
epileptogenic and 10 eloquent areas). HWD=Haar wavelet decomposition. 

6.3.3 Vasculature abnormalities in the superficial layer (Method 3) 

Because of the image quality and the location of the resection zone, the high 

resolution cortical surface images from just six patients were used for vasculature 
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network characteristic analysis. Representative processed images, which show the edges 

of blood vessels, are shown in Fig. 6.5A. From the six processed images used, 18 sub-

images and their histograms were obtained from epileptogenic cortical areas and 20 from 

random-selected normal areas. Based on the analysis of the histograms of the processed 

image, it appeared that the density of vessel networks in the superficial layer of normal 

cortex (Fig. 6.5A, histogram in red) was higher than the one in the epileptogenic cortex 

(Fig. 6.5A, histogram in blue). To facilitate statistical comparison, each histogram was 

normalized to its area under the curve. As shown in Fig. 6.5B, a significant difference 

(P<0.05) was detected mostly within the low intensity range (3-26) between the 

normalized histograms obtained from epileptogenic and normal cortical areas, using a 

two-sample t-test. This suggests that the blood vessel densities in epileptogenic cortical 

areas may be less than those found in normal areas within the superficial layer. 
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Figure 6. 5 Vasculature abnormalities in the superficial layer (Method 3). A) Examples of vessel networks in 
epileptogenic and normal cortices and their corresponding histogram (blue: epileptogenic cortex, red: normal cortex). 
Areas showing normal cortex were randomly selected, regardless of their functional roles. B) Normalized histogram of 
the vessel network image obtained from the epileptogenic and normal cortices. Six patients (Patient 1, 2, 5, 7, 8, and 9) 
with high-quality color image of the exposed brain (Number of epileptogenic areas=18, number of normal areas=20). 
For each patient, the window sizes of the epileptogenic area and normal area were the same. The histograms for each 
patient were normalized to the highest value in epileptogenic areas’ histograms. 

6.4 Discussion 

6.4.1 Hemodynamic low-frequency oscillations (LFOs) 

The physiological signal centered in the in vivo study reported here are low-

frequency, spontaneous hemodynamic oscillations (<0.1 Hz).  This is an intrinsic 

property of the live brain because these oscillations do not appear in brains after death 

[112]. Hemodynamic LFOS have been attributed to the resting-state functional activities 
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[103, 112-117].  In the current study, we noticed that LFOs tend to be local and that their 

localizations were very reproducible from different observations, appearing in eloquent 

as well as epileptogenic cortical areas.  This observation is in agreement with the 

suggestion by Fox et al that, in addition to normal resting-state functional activities, 

LFOs may also be the manifestation of the disease-related neural processing [113].  

In this study, sophisticated data analysis schemes were employed to differentiate 

between the LFOs originated from eloquent cortex and those from epileptogenic cortex. 

Method 1 was used to identify the differences in resting-state hemodynamic LFOs 

between the eloquent and epileptogenic cortical areas, in terms of temporal correlation, 

clustering and Granger causality. Instead of relying solely on the magnitudes of LFOs 

[103], the negative correlation between the DIOI data at 500 nm and 700 nm was taken as 

an indication of underlying neuronal activities, which could be explained by the 

generally-accepted balloon model [104, 118]. However, the epileptogenic cortex in two 

studied patients exhibited a positive correlation between the data at both wavelengths, 

suggesting that a different neurovascular coupling mechanism might exist. Little effort 

was devoted to the investigation of the cortical areas with positively-correlated LFOs in 

the current study, due to the limited number of cases, as well as their similarity to the 

artifacts caused by specular reflectance. For each studied case, epileptogenic cortex 

predominantly had directed influences on no less than one area, sometimes in close 

proximity and sometimes remote, probably because of different propagation mechanisms 

for the epileptiform discharges. This phenomenon was discussed previously by Song et 

al. when they studied a preclinical model of focal epilepsy [119]. Such connections were 
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further investigated using the G-cause as the reference in a seed-based spatial correlation 

analysis, which helps us understand the network in a global view and gain knowledge 

about the different underlying phenomena in the DIOI data. However, even though 83% 

of the G-causes were responsible for epileptiform discharges, Method 1 lacks support 

from physiological-based theories and, hence, is not a good choice for demarcating the 

resection zone during epilepsy surgery. In addition, Method 1 is only applicable when 

the epileptogenic area is located within the FOV of DIOI, which, in practice, is not 

always the case. Therefore, Method 2 was devised to address the limitations of Method 

1. 

6.4.2 Stochastic modeling to characterize the underlying pathophysiology 

The ARX modeling employed in Method 2 was adopted to identify those unique 

temporal variations in hemodynamics that occur in epileptogenic cortex during the 

resting state.  SVM based on the outcome of the ARX modeling in Method 2 was very 

accurate at differentiating epileptogenic cortex from eloquent cortical areas. This success 

may be attributed to the alterations in the vasculature network, as well as to 

neurovascular/neurometabolic couplings within the epileptogenic cortex.  DIOI at 500 

nm is predominantly used to measure changes in cerebral blood volume (CBV), 

modulated by activity-evoked dilation of the pial arterioles [51]. On the other hand, DIOI 

at 700 nm is sensitive to the variations in the oxygen content of blood (i.e., SatO2) within 

the venous network [51]. Through the ARX modeling of both DIOI signals, the dynamic 

interplay between the arteriole and venous networks (i.e., vasculature characteristics) was 

examined. The same approach should also reveal regional neuro-activity and neuro-
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metabolism because of the neurovascular and neurometabolic coupling mechanisms that 

exist within the capillary bed that forms the bridge between the arteriole and venous 

networks. From a neurovascular coupling point of view, astrocytes [120], pericytes [121] 

and endothelium [122] play a critical role in the coupling mechanism. Both pericyte 

degeneration and thickening of micro-vessel walls have been found in the abnormally-

spiking brain areas detected in patients with intractable complex partial epilepsy [123]. In 

addition, vascular malformations have been frequently identified in association with focal 

epilepsy [124-126]. Moreover, relative to low-spiking areas, increased vascularity and 

microglial infiltration have been demonstrated in high-spiking human neocortex [127]. 

As for alterations in neurometabolic coupling, regional hypometabolism both in cortical 

and subcortical areas has been demonstrated in preclinical seizure models [128, 129].  

Finally, the outcomes of the vasculature analysis (Method 3) identified in this study also 

reveal significant differences in the vasculature density within the superficial layer 

between epileptogenic and the normal cortical areas. This being said, the imaging 

technique used in this study lacked the resolution, contrast and penetration depth to 

further investigate the exact source of the abnormalities. 

6.4.3 Implications for fMRI techniques 

As discussed above, the relationship between the LFOs obtained by DIOI at 500 nm 

and 700 nm could be used as a biomarker to distinguish the epileptogenic from the 

normal/eloquent cortex. Because of its limitation in the penetration depth, it is not 

feasible to use DIOI to detect deep-seated epileptogenic foci. Since fluctuations in DIOI 

at 500 nm and 700 nm are related to the changes in CBV and SatO2, it is possible to 
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detect these physiological characteristics using non-invasive imaging modalities like 

fMRI. fMRI is capable of measuring blood oxygenation level dependent (BOLD) signals 

that are associated with regional hemodynamic, as well as metabolic parameters like the 

oxygen extraction ratio, CMRO2, CBF and CBV.  In addition, fMRI can measure 

vascular space occupancy (VASO), which provides indirect access to the changes in 

CBV associated with neuronal activity [130]. Recently, simultaneous BOLD-fMRI and 

VASO-fMRI has been performed to study the functionally-induced BOLD and CBV 

responses in the human brain [131]. Consequently, the same technique therefore can be 

used to acquire BOLD and CBV signals from the epileptogenic brain in a non-invasive 

fashion, with data interpreted using the approaches disclosed in Methods 1 and 2, 

thereby allowing for epileptogenic cortex to be identified and separated from 

normal/eloquent cortex. This combination will be remarkably crucial to the precise 

detection of deep epileptogenic brain areas during the pre-operation planning phase.   

6.4.4 Consideration of anesthesia 

In this study, all patients were anesthetized by the combination of propofol and 

fentanyl (Supplementary Table 6.1). Propofol is one of the most popular anesthetic agents 

used in epilepsy surgery. It is highly recommended for potential use in fMRI studies, 

since it has relatively minor effects on hemodynamic responses [132] and does not inhibit 

stimulus-evoked cortical activity in animals or humans [133, 134]. Unfortunately, 

according to the study by Zijlmans et al., the infusion of propofol alone could produce 

antiepileptic effect and lead to reduction in certain epileptic activities [135]. Dose-

dependent propofol alone could also change the cortical and subcortical functional 
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connectivity during the resting state [136-138]. Recently, Rayshubskiy et al. [139] 

reported a DIOI and fMRI study of the brains from two patients. They were able to 

observe ~0.1 Hz hemodynamic oscillations in the cortex of the awake patient undergoing 

brain tumor surgery but not in the patient anesthetized with propofol during epilepsy 

surgery (note that this epileptic patient was a 36-year-old male, and pathology was not 

disclosed). The usage of propofol alone might be the reason that they were not able to see 

hemodynamic LFOs in the epileptogenic cortex. It has also been reported that the 

propofol has a potential pro-convulsant effect. Cheng et al. [140] suggested that the 

reported pro-convulsant effects of propofol could be a result of combing propofol with 

other anesthetic agents such as ketamine and fentanyl. This hypothesis is supported by 

various studies [141-143]. Based on this evidence, those hemodynamic LFOs observed in 

eloquent and epileptogenic cortical areas should definitely have their origins in resting-

state neuronal activity and epileptiform discharge, respectively. 

6.4.5 Significance and Limitation 

The methods proposed here to identify epileptogenic cortex could be conducted on 

epilepsy patients under anesthesia during the surgery. They do not require any external 

stimulation or any reduction in anesthesia to map eloquent areas. DIOI thereby is a 

promising, complementary tool for intraoperative guidance. It could also provide more 

specific directions regarding where to place the subdural electrode array for ECoG 

recordings. 

However, due to the limitation of the penetration depth of visible light on biological 

tissue, DIOI can only investigate the pathophysiological characteristics within the 
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superficial layer of the cortex, a limitation that is similar to that of ECoG using the 

surface electrode arrays [13]. In addition, DIOI is susceptible to artifacts induced by 

specular reflection because human cortical surfaces are not flat. To overcome these 

artifacts of specular reflection, the DIOI acquisition could be focused on one area of the 

exposed cortical surface at a time, from different locations and viewing angles. 

Another issue to consider is that this study was conducted on pediatric patients with 

focal epilepsy, usually accompanied by lesions in the cortex. The feasibility of using the 

same methods on other types of epilepsy or on different populations remains to be 

investigated.  

6.5 Conclusion 

In this study, three new analysis approaches to intraoperative imaging were proposed 

to differentiate epileptogenic from the eloquent cortex in pediatric patients with focal 

epilepsy. These approaches are based on the causal relationships, the underlying 

biophysical mechanisms and the vasculature network characteristics of the cortical 

surface. Together, these methods create a new means of intraoperative epileptogenic 

cortex localization that is economic and effective at the same time. More importantly, this 

analysis based on the biophysical mechanisms can differentiate the eloquent area from 

epileptogenic cortex with high sensitivity and specificity. Neither external stimulation nor 

reduced anesthesia is required, both of which are required for other novel ifMRI 

technologies. More importantly, the analytical methods revealed in this study can be 

applied to data obtained from simultaneous BOLD- and VASO-fMRI, as well as from 

other non-invasive optical imaging modalities capable of acquiring hemodynamic LFOs 
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from the brain. The incorporation of these new methodologies could positively impact the 

outcome of epilepsy surgery in pediatric patients. 
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Supplementary Table 6. 1 Surgery-related Information 

Patient 
Imaging 

time 
Propofol, mg Fentanyl, mg 

Oxyge
n 

(L/min)

SEVO 
flurane 

(%) 
Temperature EKG 

FIO2 
(%) 

SpO2 

(%) 
CO

2 
PIP 

1 10:30 am 100 (7:30 am) 25 (10 am) 2 2 36 SR 50 100 30 18 

2 10:10 am 
110 (8 am), 40 (9 

am) 
25 (9:45 am) 1.5 2 34.7 SR 50 100 27 15 

3 9:10 am na 10 (8:45 am) 2.5 2.5 34.6 SR 95 100 29 13 

4 3:54 pm 
100 (1:15 pm), 
30 (2:30 pm) 

50 (2:45 pm) 1 1.2 35.7 SR 40 100 32 12 

5 9:22 am 130 (7:30 am) 
50 (8:30 am, 

9:30 am) 
1 1.4 36 SR 40 100 33 17 

6 12:32 pm 
inf. 100 mg/kg 

per min 
50 (12 pm) 1 0.5 37 SR 54 100 27 20 

7 1:03 pm 
150 (10 am), 100 

(10:30 am) 
50 (12:15 

pm) 
1 2.5 35.5 SR 40 100 36 18 

8 11:04 am 
inf. 100 mg/kg 

per min 
100 (9:30 am) 2 na 35.7 SR 50 100 28 16 

9 11:02 am 100 (8:15 am) 20 (9:45 am) 0.9 1.3 35 SR 35 100 27 16 

10 10:29 am 
inf. 50 mg/kg per 

min 
50 (10 am) 1 0.7 35.7 SR 40 100 29 17 

11 3:00 pm na 5 (3 PM) 2 0.9 34.5 SR 50 100 32 16 
SEVO flurane: Sevoflurane; 
EKG: Electrocardiogram; 
FIO2: Fraction of inspired oxygen; 
SpO2: Peripheral capillary oxygen saturation; 
PIP: Peak inspiratory pressure; 
inf: infusion; 
SR: sinus rhythm. 
na: not available  
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7 Summary 

In the first part of the dissertation, a new tissue differentiation algorithm was 

developed to enable intraoperative detection of brain tumors at the resection front using a 

probe-based diffuse reflectance spectroscopy system.  The accuracy of the algorithm was 

validated experimentally on 20 pediatric patients undergoing brain tumor surgery at 

Nicklaus Children’s Hospital. Three indicative parameters, hemoglobin concentration 

([Hb]), diffuse reflectance signal at 700 nm (Rd700), and oxygen saturation level (SatO2), 

were extracted from the diffuse reflectance spectra within the visible light region 

acquired from normal and tumorous brain tissues. Support vector machine (SVM), a 

machine learning method, was employed to identify the differences between these 

indicative parameters retrieved from normal brain tissues and from the tumorous tissues, 

and yielded a very high accuracy (92%), sensitivity (91%) and specificity (93%). These 

positive results validate the concept of building an intraoperative guidance system for 

pediatric brain tumor surgery using diffuse reflectance spectroscopy. However, its 

accuracy could be compromised by the hand motion introduced to the probe. 

The second part of the dissertation introduces a novel hybrid spectroscopy imaging 

system.  It was devised to address the two drawbacks of the contact-probe-based diffuse 

reflectance spectroscopy system in the intraoperative applications: high susceptibility to 

artifacts induced by hand motion and interference to the surgical procedure. The system 

was evaluated on its capability to quantify the optical properties of an absorbing-

scattering medium in a non-contact fashion. The system acquired total diffuse reflectance 

signals from a subject illuminated by a broad uniform beam, the signals were then 
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converted to the ratios of the reduced scattering to the absorption coefficients using a 

look-up table established by a Monte Carlo simulation model for photon migration.  The 

accuracy of the system was verified theoretically and experimentally over a wide range of 

optical properties. The system holds tremendous value in in vivo biomedical applications, 

such as intraoperatively detecting brain tumor at the resection front. 

In the third part of the dissertation, a new spectra interpretation algorithm was 

developed to extract useful hemodynamic and structural characteristics from biological 

tissue specifically for the newly devised optical system described in the second portion. 

The algorithm was both validated theoretically with Monte Carlo simulation and tested 

experimentally with Wistar rats undergoing forepaw stimulation. The new system and 

algorithm could detect significant changes in all extracted hemodynamic and structural 

characteristics from the rat somatosensory cortex, which could have tremendous values in 

both clinical and preclinical applications in the future. 

The new system and the spectral interpretation algorithm will be applied in a series of 

validation studies at Nicklaus Children’s Hospital in the near future to ascertain their 

ability in differentiating brain tumors from normal brain tissue at the resection front. 

Their performance in terms of detecting tumorous tissues will be compared with that of 

the contact-probe-based diffuse reflectance spectroscopy system. 

The final part of the dissertation introduces three new analytical methods developed 

to intraoperatively detect and differentiate epileptogenic cortex from eloquent cortex in 

pediatric patients with focal epilepsy, based on dynamic intrinsic optical imaging (DIOI) 

and static digital imaging. For each patient, the negatively-correlated hemodynamic low-

frequency oscillations (LFOs, ~0.001-0.01 Hz) obtained from the DIOI system at 500 nm 
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and 700 nm were classified into multiple groups, in accordance with their unique 

temporal profiles. The causal relationships among these groups were investigated by 

Granger causality method, and 83% of the identified epileptogenic cortical areas were 

found to have a directed influence on one or more cortical areas within the field of view 

of DIOI. In addition, SVM was employed to differentiate the eloquent cortical area from 

epileptogenic ones with a high sensitivity (93%) and adequate specificity (70%) based on 

the features extracted from hemodynamic LFOs using the autoregressive modeling with 

exogenous source and wavelet decomposition methods. This achievement implies unique 

alterations within the vascular network and/or cellular structure in epileptogenic cortex. A 

statistically-significant change in vessel density (P<0.05) indeed was found in the 

epileptogenic cortices relative to normal areas. These positive results suggest that a new 

economic and effective means for intraoperative demarcation of epileptogenic cortex may 

be developed based on DIOI. It has the potential to be used in conjunction with the 

existing technologies for epileptogenic/eloquent cortex localization to facilitate clinical 

decision-making. The clinical studies will be extended to a larger population of the 

pediatric patients with different types of focal epilepsy (i.e., lesional and/or non-lesional), 

as well as the adult patients. 
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