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ABSTRACT OF THE THESIS

AN ANALYSIS OF EVACUATION BEHAVIOR DURING

HURRICANE IKE

by

Yuan Yuan Lu

Florida International University, 2015

Miami, Florida

Professor B M Golam Kibria, Co-Major Professor

Professor Pallab Mozumder, Co-Major Professor

Hurricanes have been considered one of the most costly disasters in United

State, which lead to both economic loss and human fatalities. Therefore, understand-

ing the characteristics of those who evacuated and of those who did not evacuate

have been principal focus of some previous researches related to hurricane evacuation

behavior. This research presents two sets of decision-making models for analyzing

hurricane evacuation behavior, using two statistical methods: standard logistic model

and mixed logistic model. The receipt of evacuation order, elevation, expenditure, the

presence of children and elderly people, ownership of a house, and receipt of hurricane

warning are found to be extremely important in evacuation decision making. When

the mixed logistic model is applied, the rate of concern about hurricane threat is as-

sumed to be random according to normal distribution. Mixed logistic models which

account for the heterogeneity of household responses are found to perform better than

standard logistic model.
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1. Introduction

One of the most destructive natural disasters, the hurricane, has caused con-

siderable damage to coastal communities, as it came along with strong winds, storm

surges and flooding. The decade from 1996 to 2005 was the one of the most destruc-

tive in the last century. Damages from those storms were estimated to be $198 billion

(Hasan et al. 2010). Rita in 2005 alone led to approximately $10 billion (Pielke et

al. 2008) damage to property.

The protection technologies against hurricanes have improved significantly over

the past decade, driven by an intensely destructive period of hurricane activity. The

2000 International Residential and Commercial Building Codes required the use of

impact-resistant windows, doors and other components for houses built in hurricane-

prone areas for the first time (Cox et al. 2006). The prevailing Building Codes mainly

focused on building exteriors. New houses built in Florida within the area where 120

mph winds or greater are expected must have exterior impact protection (Dehring et

al. 2013). Examples of hurricane impact protection include impact resistant windows,

hurricane shutters and reinforced doors.

Despite the development of hurricane protection technologies, the effect of

Hurricane Ike in Texas was still crippling and long-lasting. Hurricane Ike was the

most harmful Atlantic storm in 2008 (Pan et al. 2012). It made landfall in Texas at

the north end of Galveston Island on September 13, 2008. It sent a 10- to 15-foot

storm surge into Galveston and parts of the western end of Galveston bay, and up

to a 20-foot surge over the Bolivar Peninsula and parts of Chambers Country, Texas.
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Ike smashed residential houses, flooded commercial buildings, damaged transport

facilities and utility services. Ike not only caused economic loss which will last for a

long time after hurricane, but also caused many fatalities. More than 100 residents

died in United States as a result of Ike. Considering the damage caused by hurricanes,

understanding the characteristics of those who evacuated and of those who did not

evacuate have been principal focus of many previous researches. (Baker 1979; Cross

1979; Baker 1991; Fischer et al. 1995; Dow and Cutter 1998; Drabek 1999). A recent

review by Dash and Gladwin (2007) concluded that several important factors are

found to influence a household’s decision to evacuate or stay at home. These factors

include presence of children and elderly persons in a household, age of the decision

maker, disability, gender, race, income, previous experience, and location.

Whitehead et al. (2000) consider environmental factors, storm intensity (by

presenting hypothetical storm scenarios to respondents), besides social and demo-

graphic factors, in developing an evacuation model. They found that the important

predictor of evacuation is storm intensity. Households are more likely to evacuate

when given evacuation orders, and when they live in mobile home. Compared with

perceived risk from wind, perceived risk from flooding is more important in evacua-

tion decision. One the other hand, non-white households, pet owners and those with

more education prefer to stay at home with family or friends, instead of evacuating.

My research objectives are to develop household’s evacuation decision models

based on both standard logistic method and mixed logistic method, and then compare

the results between two methods. In addition, my research find the important factors

2



in decision making and reveals the influence of those factors to evacuation decision.

Several factors which are reported in my research are consistent with previous find-

ings.The organization of the thesis is as follows: The data collection technique has

been discussed in Chapter 2. Chapter 3 contains the statistical methodology. Data

are analyzed and discussed the results in Chapter 4. This thesis ends with summary

and future research in Chapter 5.
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2. Data Collection

My research data were collected by a telephone survey. In 2010, the Social

Science Research Lab at the International Hurricane Research Center at Florida Inter-

national University conducted 1,099 telephone interviews from a random probability

sample of households located in Harris and Galveston counties in Texas with a re-

sponse rate of 36 percent. A geocoded zip codes area stratified sampling frame was

used to oversample areas of higher storm surge risk. More interviews were done pro-

portionally in zip code areas that are lower elevation and near to the coast.

The survey questionnaire asked about the behavior adopted by respondents

to minimize the risk of being affected by hurricane, specifically hurricane Ike when it

hit the coast of Texas. One of the survey questions asked the following question:

Did you evacuate for hurricane Ike, or did you stay in your home? STAYED

IN HOME or EVACUATED

The binary response of the question works as the dependent variable Evac-

uation in my analysis (Evacuation =1, if evacuated or Evacuation=0, if stayed at

home). Respondents who evacuated were asked a sequence of questions related to

evacuation, such as evacuation time, transportation, duration, preparation and evac-

uation expenditure. Respondents who did not evacuate were also asked to state the

expenditure that they would spend if they had evacuated before hurricane.

The last part of the survey, designed for all participants, gathered information

of the explanatory variables for predicting evacuation decision. The survey asked re-

spondents whether they prepared window protection or elevated their houses before
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hurricane came. Respondents were also asked to report whether their houses were

damaged because of hurricane and how much damage the hurricane brought to their

house. Furthermore, the questionnaire asked respondents whether their neighborhood

got any evacuation order before hurricane and if they did, what the type of evacu-

ation order they got (Voluntary Order or Mandatory Order). Figure 1 displays the

geocoded locations of survey households which are differentiated by the type of evacu-

ation order and evacuation decision. Visually, the percentage of evacuated households

with mandatory evacuation order is higher than the percentage of evacuation with

voluntary evacuation order.

Figure 1: Evacuation vs Evacuation Order

Respondents were also asked how their pet affected their evacuation decision

and the degree of their concern about the damage of hurricane Ike. Finally, our re-
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search collected information about socioeconomic characteristics of respondents, such

as their income level, education level and type of house occupied. Using the survey

data, two spatial factors are found: household elevation and average distances from

households to hurricane Ike tract. Texas elevation dataset was collected from Texas

Natural Resources Information System (TNRIS). TNRIS was established by the Leg-

islature in 1968 as the Texas Water-Oriented Data Bank. After four years of growth

and diversification, it was renamed the Texas Natural Resources Information System

in 1972. Average distances were calculated using longitude and latitude of households

and Ike tract. The longitude and latitude data for Ike tract were found from National

hurricane center. Figure 2 gives the geocoded locations of households who evacuated

and households who did not evacuate, hurricane Ike tract, and household elevation.

(See Table 1)

6



Figure 2: Evacuation vs Elevation

Clearly, there are more evacuees in the low elevation area. Even thought many evac-

uated households are closed to Ike tract, a small part of evacuated households in

Brazoria county and Orange county actually live far from the tract. This might be

one of the reasons why average spatial distance is not significant in the data.
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3. Statistical Methodology

Considering the binary outcomes for evacuation behavior, two discrete-outcome

models were analyzed in my research: standard logistic model and mix logistic model.

Standard logistic model could offer rigorous analytical framework for modeling such

situations, but it also assumes the coefficients of variables are fixed across all obser-

vation (Hasan et al. 2011). When this assumption does not hold, standard logistic

model will result in inconsistent parameter estimators and outcome probabilities. The

concern has led many researchers to consider more flexible alternatives. Mixed logistic

model, as an alternative, extends the standard conditional logistic model by allowing

one or more of the parameters in the model to be randomly distributed. It allows

researchers to account for both observed and unobserved heterogeneity of households

response caused by a hurricane threat.

When we compare relative performance of a set of statistical models, Akaike

Information Criterion (AIC) can work as a measurement for model selection. The AIC

is derived from information theory and selects a model that minimizes the Kullback-

Leibler distance between the estimated and the true models. Given a set of models,

the preferred model is the one with the minimum AIC value. The AIC value is defined

as following:

AIC = 2 ∗ p− 2 ∗ ln(L), (1)

where L is the maximized value of the likelihood function for the model; p is the

number of estimated parameters. While adding parameters in the model is possible

to increase the likelihood, it may also result in overfitting. AIC solves the situation
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of dilemma by adding penalty, an increasing function of the number of estimated pa-

rameters, to discourage overfitting. Similar with AIC, Bayesian information criterion

(BIC) or Schwarz criterion (BIC Schwarz) is another criterion with penalty term to

avoid overfitting for model selection, yet, the penalty term is larger in BIC than in

AIC. The BIC is formally defined as:

BIC = K ∗ ln(n)− 2 ∗ ln(L̂), (2)

where n is the number of observations or sample size; K is the number of free param-

eters to be estimated; L̂ is the maximized value of likelihood function. The model

with lowest BIC value is preferred.

Except for AIC and BIC, predictive probability is also a very good criteria for

model selection. Predictive probability is the probability that one statistical model

successfully predict the binary outcome. In logit model, the probability of success,

instead of the direct binary result, is predicted. When the predicted probability is

greater than 0.5, the outcome is assumed to be success, while failure is assumed to

happen with predicted probability less than 0.5. Then the predictive probability is

defined as follows:

Predictive Probability =
No. of correctly predicted Y es

Total sample size

+
No. of correctly predicted No

Total sample size
(3)
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3.1. Standard Logistic Model

Many human behavior research problems call for the analysis and prediction

of a dichotomous outcome, such as whether a single is prone to get married, whether

a drive will choose to listen to a phone call when his or her phone is ringing during

driving, whether a custom will purchase a product from the same brand next time, and

so on. Before logistic regression was proposed, most of these research questions are

addressed by least squares regression (OLS), which, however, was subsequently found

not to be an ideal model for dealing with dichotomous outcomes due to dissatisfied

assumption: errors are not normally distributed and no linear relationship exists

between explanatory variables and dependent variable. Logistic regression, as an

alternative to least square regression, has been increasingly used since late 1960s and

early 1970s (Peng et al. 2002).

Logistic regression is well suited to describe the relationship between one

dichotomous outcome and one or more categorical or continuous predict variables.

However, the plot of such data always results in 2 parallel lines, which respectively

corresponds to two different outcomes of dichotomous dependent variable, such as

the plot of Evacuation decision and Age (see Figure 3).

10



Figure 3: Plot of Age vs Evacuation Decision

Because of the binary outcomes, ordinary least square model could not be used to

model the two parallel lines. Thus, researchers alternatively compute the probability

of the dependent variable happening, which is also the mean of dependent variable

for the respective categories. The resultant plot of probability is an S shape, with

curvilinear at both ends and a line in the middle (see Figure 4).
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Figure 4: Plot of Age vs Evacuation Probability

Yet, ordinary least square is still not an appropriate model to describe the S shape,

because that the shape does not follow linear trend at end and the error is neither

normal distributed nor constant (Peng et al. 2001). Logistic regression solves these

problems by predicting the natural logarithm of odds of dependent variable from in-

dependent variables. The odds of dependent variable is the ratio of the probability

that dependent variable happens to the probability that dependent variable does not

happen.

In my research, dichotomous outcome: evacuation decision (Evacuation) works

as dependent variable, with “1” representing “Evacuated” and “0” representing “Did

not evacuate”. Thus, odds of evacuation is the ratio of the probability of evacuation

12



to the probability of not evacuation. The logistic regression model could be described

as follows:

logit(Y ) = natural log(odds) = ln(
pi

1− pi
) = βXi i = 1, 2...n. (4)

When taking antilog on both sides of equation (4), one derives an equation to predict

the probability of the occurrence of evacuation as follows:

P (Y = Evacuation|X = x) =
eβX

1 + eβX
, (5)

where X is a vector of independent variables that influence evacuation; β represents

the conformable vector of coefficients or parameters of the model. As stated earlier,

predictors include demographic factors, income, evacuation order, risk perception,

and own houses or not, and so on.

The logistic regression coefficients (β) are usually estimated by Maximum like-

lihood method:

L(β) = Πn
i=1p(xi)

yi(1− p(xi))1−yi i = 1, 2, 3..n (6)

ln(L(β)) = Σn
i=1yi ∗ ln p(xi) + Σn

i=1(1− yi) ∗ ln (1− p(xi))

= Σn
i=1yi

ln p(xi)

ln(x− p(xi))
+ Σn

i=1ln(1− p(xi)), i = 1, 2..n (7)

Unlike the ordinary linear regression with normal distributed error, it is not

possible to find a closed-form expression for the coefficient values that maximize the

likelihood function, so that an iterative process must be used instead.

13



3.2. Mixed Logistic Model

Mixed logistic model is another method used to analyze the binary dependent

variable, which account for the probability that parameters may vary across observa-

tions. Mixed logistic model has been considered as one of the most promising tool for

modeling discrete choice data by many researchers. The mixed logistic probability

can be derived from utility-maximizing behavior in several ways that are formally

equivalent but provide different interpretations. Following the work presented in

Train (2003), standard random utility theory suggests that the utility of a household

n choosing an alternative i is given as follows:

Uni = βnXni + εni, βn,∼ f(β|θ), i = 1, 2, 3..n (8)

where Xni is a vector of observed variables that related to the alternatives and decision

maker, which is same with previous vector of dependent variable in standard logistic

model in my research; βn is a vector of coefficients of these variables for person n; θ is

the parameter for the density function of random coefficients; εni is error components

which may be due to unaccounted measurement error, correlation in the parameters,

unobserved individual preferences, and other similar unobserved characteristics of

the choice-making. εni is a random term that is iid extreme value. Participants will

choose alternative i, when Uni > Unj, i <> j

When εni is assumed as extreme-value Type 1 distributed, the model can be

treated as a binomial logit model with two alternatives as follows:

Probn(i) =
eβnXni∑j
j=1, e

βnXnj
(9)

14



where Probn(i) is the probability of household n evacuating; Xni is a vector of inde-

pendent variables; J is the total number of alternatives. In our case, J is equal to 2.

As βn is random vector, the choice probability is the integral of equation (9) over the

density of βn

Pni =

∫
Probn(i)f(β|θ)dβ (10)

This model allows the slopes of utility to be random, which is an extension of

the random effects model only with random intercept. Some elements of βn may be

fixed parameters or random parameters. The distribution of βn could be specified as

any probability density function. The most widely used one is normal distribution,

which is assumed in this research.
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4. Data Analysis

The description of all the variables are listed in Table 1. We first report the

correlation matrix (Figure 5) of variables used in our models.

Figure 5: Correlation Matrix

As figure 5 shows that all the correlation values of any two explanatory variables

are bigger than −0.5 and smaller than +0.5, we can assume that there is no multi-

collinearity between any two predictors. The matrix also gives intuitive indications

of relation between possible predictor and evacuation decision. For example, evacu-

ation is negatively related with JobSecurity, Elevation, Expenditure and Education.

On the other hand, evacuation is positively related with the other variables, such as

the number of children and elderly person, the receipt of voluntary and mandatory

evacuation order, and ownership of a house.

16



4.1. Standard Logistic Model Result

In my research, several standard logistic models were fitted with different

predictors. Of all the models, four models (reported in Table 2) were selected based

on the goodness of fit criteria. The significant variables for standard logistic regression

model are summarized in Table 3.

IfWarnH represents whether respondents consider hurricane warning is helpful

or not (IfWarnH=1 means Helpful, while IfWarnH=0 means Unhelpful). IfWarnH has

positive effect on evacuation decision, as all the coefficients for it are positive from

Model 1 to Model 4. In Model 1, βIfWarnH is 0.486, which means the odds ratio

of IfWarnH is 1.597, since e0.468 = 1.597. In other words, the odds of evacuation

for households who consider hurricane warning helpful over the odds of evacuation

for households who perceive hurricane warning is useless is 1.597, which supports

the conclusion that households are more likely to evacuate, when they appreciate

hurricane warning.

While the receipt of evacuation order (both voluntary evacuation order and

mandatory evacuation order) is statistically significant at 0.05 significant level (in

Model 1 to Model 4), households receiving a mandatory evacuation order, compared

with receiving a voluntary evacuation order, are more likely to evacuate, as coeffi-

cients for ManEvaOr are bigger than coefficients for VolEvacOr for all four models.

For example, in Model 1, the coefficient for voluntary evacuation order is 1.631, re-

ferring that the odds ratio of VolEvacOr is equal to 5.109 (e1.631 = 5.109). When

other predictor variables are kept fixed, the odds of evacuation with a voluntary

17



evacuation order is about 410.9% higher than the odds of evacuation without a vol-

untary evacuation order. However, βManEvacOr is 2.903, suggesting that the odds

ratio of ManEvacOr is 18.229. When we hold other predictors fixed, we will see a

1722.9% increase of evacuation odds when mandatory evacuation orders are issued.

The comparision of 410.9% with 1722.9% reinforces the statement that the notice

of mandatory evacuation order has an larger effect on evacuation decision than the

notice of voluntary evacuation order.

Both increasing number of children and elderly person improve the probability

of household evacuation. In Model 1 βChildren=0.379, implying odds ratio for children

is equal to 1.46. One children increase in a family leads to 46.1% increase of evacuation

odds. Based on the result of Model 2, household evacuation odds increases 75.6%

with one more elderly person in household, since the odds ratio of elderly is 1.756. In

addition to above factors, households who own a house, live in a mobile house, have

higher income level, and concern about hurricane risk also prefer to evacuate before

hurricane.

The status of unemployment because of hurricane, elevation, and evacuation

expenditure, however, trend to decrease the probability of evacuation. The fact that

odds ratio of JobSecurity is 0.276 implies that odds of evacuation under unemploy-

ment status is about 72.4% less than the odds under employment status in Model

1. Unlike JobSecurity, both Elevation and Expenditure are continuous. In Model

1, the coefficient for Elevation is -0.913, referring that when holding other predictor

variables fixed, we will see the 59.87% decrease in the odds of evacuation for one-unit
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increase in log-transformed elevation, since e−0.913=0.4013. Similar with elevation,

when assuming other predictor variables fixed in Model 1, we will expect 52.4% de-

crease in the odds of evacuation for one-unit increase in log-transformed expenditure,

since βExpenditure=-0.742. Except for unemployment, elevation, and evacuation ex-

penditure, higher level of education, the presence of pet and hurricane protection

and spatial distance from household to hurricane tract also have negative effects on

evacuation decision.

Surprisingly, spatial distance is not significant in Model 4. As I mentioned

earlier, one of the reasons might be that a small part of survey households who

evacuated before hurricane live far from Ike tract. In order to get more accurate

result about the influence of spatial distance to evacuation decision, more survey

data might need to be collected.

Among all the standard logistic models, Model 3 has smallest AIC (showed in

Figure 7), BIC (showed in Figure 8) and absolute value of log likelihood (showed in

Figure 9), and largest Pseudo R2 value and predictive probability (showed in Figure

10). These figures show that Model 3 performs better than Models 1, 2 and 4.

4.2. Mixed Logistic Model Result

Using the results from standard logistic models in section 4.1, four mixed

logistic regression models, with random variables chosen by their standard errors,

are fitted and their results are presented in Table 4. The significant variables are

summarized in Table 5. Parameters with significant standard errors are considered

random, and the remaining parameters are determined as fixed, as the standard
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deviation of these parameters are not significantly different from zero. Based on my

data set, only the parameter for the rate of concern about the threat of hurricane

(ConcernH) has significant standard deviation and is assume to be random according

to normal distribution for all mixed logistic models. All of Figures 7, 8 and 9 show

that all the bars for mixed logistic models are lower than the relative bars for standard

logistic models, indicating that the whole mixed logistic regression model set has a

smaller AIC, BIC and absolute log likelihood values than relative logistic model set.

Figure 10 also shows that mixed logistic models have larger predictive probability than

normal logistic models. Therefore, for my research, mixed logistic performs better

than standard logistic, in the aspect of AIC, BIC, absolute value of log likelihood and

predictive probability.

Even though Model 1 and Model 5 have the same set of predictors, the own-

ership of a house updates its significant level in Model 5. HOwnship is significant at

0.10 significant level in Model 1, while it is significant at 0.05 significant level in Model

5. In Model 5 the rate of concern about the hurricane has a random parameter, with

a mean of 0.066 and a standard deviation of 0.098 (assuming a normal distribution

of parameter). Figure 6 shows the density curve of βConcernH .
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Figure 6: Normal Density Curve for βConcernH

The red part represents the probability that βConcernH is less than 0, and the rest

represents the probability that βConcernH is larger than 0. According to the Z score,

P(βConcernH < 0)=P(Z < −0.67)=25.03% and P(βConcernH > 0)=P(Z > −0.67)=74.97%.

Therefore, for 25.03% of households, the increasing concern about hurricane dam-

age actually decrease their probability to evacuate, whereas for the rest 74.97% re-

spondents, higher concern about hurricane actually promotes evacuation. The result

suggests that household’s response is not uniformed, with concern about hurricane

threat.

Similar with the random parameter in Model 5, the parameter for the rate of

concern in Model 6 has a mean 0.076 and standard deviation 0.136, which implies

that the concern of hurricane damage has negative effect on evacuation for 28.81%
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of respondents, while it has a positive effect for the rest 71.19% of households. Al-

though Model 6 has better AIC, BIC, log likelihood value, and predictive probability

than Model 2, Model 6 has two significant independent variables less. The presence

of elderly and the length that respondent lives in Texas are significant in Model 2

but not in Model 6. In Model 7, βConcernH follows normal distribution with mean

-0.007 and standard deviation 0.208. 51.3% of households are more likely to stay at

home, when they get increasingly worried about hurricane, whereas the rest respond

oppositely. Model 7 has one less significant predictor (Length) than Model 3. Model

8 again has less significant predictors than Model 4.
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Table 1: Description and Summary Statistics of the Variables

Variable Description N Mean St.Dev.

IfWarnH 1 if respondent thought the warning before

hurricane helped, 0 if respondent thought the

warning before hurricane did not help

1001 0.635 0.482

VolEvacOr 1 if respondent got voluntary evacuation or-

der, 0 if respondent did not get voluntary

evacuation order

981 0.253 0.435

ManEvacOr 1 if respondent got mandatory evacuation or-

der, 0 if respondent did not get mandatory

evacuation order

981 0.302 0.459

JobSecurity 1 if respondent was laid off because of hurri-

cane, 0 if respondent was not laid off

774 0.098 0.298

Elevation Log-transformed of household elevation 957 3.318 0.027

Expenditure Log-transformed of hurricane expenditure 669 5.757 1.33

Children Number of children under 12 in a household 1094 0.303 0.800

Elderly Number of elderly beyond 65 in a household 1084 0.624 0.822

ConcernH The rate how respondent concerned about the

threat of hurricane Ike. 1 if respondent did

not concern at all, 6 if respondent extremely

concerned

1069 4.173 1.650

HOwnship 1 if respondent owns the house, 0 if respon-

dent does not own the house

1051 0.880 0.325
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Continuation of Table 1

Variable Description N Mean St.Dev.

Education The education level of respondent. 1 grade

school, 2 some high school, 3 high school, 4

some college, 5 college graduate, 6 graduate

degree

1013 4.233 1.333

Length The length that respondent lives in Texas 1043 3.333 0.824

Pet 1 if household owns a pet, 0 if respondent did

not own a pet

738 0.766 0.424

Income The level of income that subject makes. 1

$10,000 or less, 2 $10,001-20,000, 3 $20,001-

30,000, 4 $30,001-40,000 ,5 $40,001-50,000, 6

$50,001-60,000, 7 $60,001-70,000, 8 $70,001-

80,000, 9 $80,001-90,000, 10 $90,001-100,000

616 6.287 3.516

Race The race of subject. 1 Black or African Amer-

ican, 2 Asian, 3 White

992 2.663 0.732

Distance Average spatial distance from household to

hurricane trace

958 8.692 0.004

Mobile 1 if respondent lives in mobile house, 0 if re-

spondent does not live in mobile house

1049 0.019 0.137

Protection 1 if respondent had house protection before

hurricane, 0 if respondent did not have house

protection

-10.3 -19.524 0.858
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Table 2: Standard Logistic Regression Models

Model 1 Model 2 Model 3 Model 4

IfWarnH 0.486(0.351) 1.004(0.455)** 0.900(0.539)* 0.552(0.331)*

VolEvacOr 1.631(0.425)** 1.644(0.480)** 1.446(0.603)** 1.673(0.416)**

ManEvacOr 2.903(0.503)** 3.701(0.613)** 3.397(0.706)** 3.268(0.478)**

JobSecurity -1.286(0.565)** -0.426(0.655) -1.805(1.255) -0.891(0.472)*

Elevation -0.913(0.302)** -0.604(0.380) -0.828(0.444)* -0.660(0.294)**

Expenditure -0.742(0.142)** -0.770 (0.153)** -0.801(0.208)** -0.782(0.130)**

Children 0.379(0.198)* 0.063(0.218)

Elderly 0.563(0.303)* 0.625(0.380) 0.373(0.182)**

ConcernH 0.035(0.102) 0.118(0.128) 0.051(0.150) 0.231(0.101)**

HOwnship 0.803(0.450)* 0.750(0.567) 0.718(0.758) 0.823(0.490)*

Pet -0.119(0.471) -0.126(0.686)

Income 0.030(0.071) 0.032(0.087)

Length -0.535(0.268)* -0.578(0.314)* -0.381(0.194)**

Distance -15.539(43.765)

Education -0.125(0.124) -0.162(0.175) -0.206(0.190) -0.181(0.118)

Protection -0.165(.312)

Mobile 0.736(0.847)

Race -0.466(0.366)

Constant 5.538(1.810)** 5.199(2.626)* 8.175(3.369)** 140.373(380.084)

N 304 247 192 373

Log LL -125.370 -88.276 -68.381 -145.998

Pseudo R2 0.405 0.483 0.485 0.423

AIC 274.741 204.551 166.763 321.996

BIC 319.345 253.683 215.626 380.82

df 12 14 15 15

Predictive 0.816 0.850 0.854 0.828

Note: ** refers significance at 0.05 significant level, * refers significance at 0.01 significant level.
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Table 3: Summary of Standard Logistic Regression Models

Model 1 Model 2 Model 3 Model 4

IfWarnH 1.004(0.455)** 0.900(0.539)* 0.552(0.331)*

VolEvacOr 1.631(0.425)** 1.644(0.480)** 1.446(0.603)** 1.673(0.416)**

ManEvacOr 2.903(0.503)** 3.701(0.613)** 3.397(0.706)** 3.268(0.478)**

JobSecurity -1.286(0.565)** -0.891(0.472)*

Elevation -0.913(0.302)** -0.828(0.444)* -0.660(0.294)**

Expenditure -0.742(0.142)** -0.770 (0.153)** -0.801(0.208)** -0.782(0.130)**

Children 0.379(0.198)*

Elderly 0.563(0.303)* 0.373(0.182)**

ConcernH 0.231(0.101)**

HOwnship 0.803(0.450)* 0.823(0.490)*

Length -0.535(0.268)* -0.578(0.314)* -0.381(0.194)**
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Table 4: Mixed Logistic Regression Models

Mode 5 Model 6 Model 7 Model 8

IfWarnH 0.446(0.368) 0.868(0.465)* 1.024(0.557)* 0.473(0.344)

VolEvacOr 1.424(0.443)** 1.540(0.528)** 1.286(0.629)** 1.498(0.414)**

ManEvacOr 2.665(0.562)** 3.554(0.686)** 3.308(0.777)** 3.034(0.523)**

Elevation -0.846(0.340)** -0.524(0.397) -0.562(0.453) -0.842(0.302)**

JobSecurity -1.387(0.596)** -0.543(0.681) -2.268(1.142)** -0.992(0.506)**

Expenditure -0.814(0.165)** -0.880(0.204)** -0.842(0.222)** -0.859(0.153)**

Children 0.405(0.219)* 0.049(0.236)

Elderly 0.318(0.367) 0.218(0.428) 0.296(0.227)

HOwnship 1.187(0.522)** 1.153(0.787) 1.287(0.903) 0.734(0.578)

Pet -0.575(0.423) -0.411(0.616)

Income 0.032(0.078) 0.041(0.096)

Length -0.353(0.324) -0.206(0.399) -0.172(0.237)

Distance -69.794(53.661)

Education -0.140(0.130) -0.158(0.192) -0.184(0.215) -0.202(0.130)

Protection -0.007(0.334)

Mobile 0.994(1.459)

Race -0.441(0.370)

Constant 5.487(1.952)** 5.033(2.483)** 6.525(3.255)** 211.819(422.590)

RANDOM

ConcernH 0.066(0.098)a 0.076(0.136)a −0.007(0.208)a 0.218(0.096)a

N 304 247 192 373

Log LL -107.826 -78.185 -59.760 -126.725

AIC 243.651 188.370 153.520 287.450

BIC 293.820 242.813 207.125 351.931

df 14 16 17 17

Predictive 0.827 0.856 0.855 0.841

Note: ** refers significance at 0.05 significant level, * refers significance at 0.01 significant level.
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Table 5: Summary of Mixed Logistic Regression Models

Mode 5 Model 6 Model 7 Model 8

IfWarnH 0.868(0.465)* 1.024(0.557)*

VolEvacOr 1.424(0.443)** 1.540(0.528)** 1.286(0.629)** 1.498(0.414)**

ManEvacOr 2.665(0.562)** 3.554(0.686)** 3.308(0.777)** 3.034(0.523)**

Elevation -0.846(0.340)** -0.842(0.302)**

JobSecurity -1.387(0.596)** -2.268(1.142)** -0.992(0.506)**

Expenditure -0.814(0.165)** -0.880(0.204)** -0.842(0.222)** -0.859(0.153)**

Children 0.405(0.219)*

HOwnship 1.187(0.522)**
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Figure 7: Plot of AIC values

Figure 8: Plot of BIC values
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Figure 9: Plot of Absolute Log Likelihood Values

Figure 10: Plot of Predictive Probability Values
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5. Summary and Future Research

In my research, both standard logistic model and mixed logistic model are

reported. Mixed logistic modeling approach offers a methodological flexibility that

can be used to model household evacuation decisions. Several factors are found to

influence household’s decision to evacuate or stay at home, among which presence of

children in a family, notice of evacuation order, ownership of the house and perception

of the effect of hurricane warning have a positive influence on evacuation decision.

However, households in low elevation area and households in unemployment status

are more likely to stay at home. Expenditure is also found to negatively influence

evacuation decision. Among the standard logistic models, Model 3 performs better in

the sense of goodness of fit criterion. For all mixed logistic models, one risk percep-

tion factor is assumed to be normally distributed random parameter to represent the

associated heterogeneities in household’s evacuation behavior. Adding random fac-

tors greatly reduces the AIC, BIC, and absolute Log Likelihood value,and improves

predictive probability. Of all the four mixed logistic models, Model 7 has smallest

AIC, BIC, and absolute value of Log likelihood and largest predictive probability.

Therefore, considering all the measurements above, Model 7 performs relatively bet-

ter. In the future, one might generate more related predictors, such as distance from

households to coastline, and add them to the analysis. Also, one may try for cross-

validation technique to assess the result of the models which can be generalized to

other independent data set.
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