
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-30-1993

An interface between the GRASS geographic
information system and ORACLE relational
detabase management system
David Gordon Buker
Florida International University

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Databases and Information Systems Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Buker, David Gordon, "An interface between the GRASS geographic information system and ORACLE relational detabase
management system" (1993). FIU Electronic Theses and Dissertations. Paper 1819.
http://digitalcommons.fiu.edu/etd/1819

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F1819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.fiu.edu%2Fetd%2F1819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/1819?utm_source=digitalcommons.fiu.edu%2Fetd%2F1819&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY
Miami, Florida

An Interface Between the GRASS Geographic Information

System and ORACLE Relational Database Management System

A thesis submitted in partial satisfaction of the

requirements for the degree of Master of Science in

Computer Science

by

David Gordon Buker

1993

To Professors Nagarajan Prabu, Wei Sun, and Naphtali Rishe:

This thesis, having been approved in respect to form and
mechanical execution, is referred to you for judgement upon
its substantial merit.

Dean Arthur W. Herriott
College of Arts and Sciences

The thesis of David Gordon Buker is approved.

Nagarajan Prabu

Wei Sun

Naphtali Rishe, Major Professor

Date of Examination: November 30, 1993

Dean Richard Campbell
Division of Graduate Studies

Florida International University, 1993

ii

Copyright by

David Gordon Buker

1993

iii

DEDICATION PAGE

This thesis is dedicated to my wife Regina, whose love and

support made this possible, and to the memory of my parents

Norman and Carolyn, who always encouraged me to pursue my

goals with dedication and perseverance.

iv

ACKNOWLEDGEMENTS

The author would like to acknowledge Mr. Kurt Buehler of the

United States Army Construction Engineering Research

Laboratories (USA-CERL) for developing an enhanced version of

Xgen and for providing an early release of the software for

use in developing this GRASS to ORACLE interface. The

graphical user interface versions of this interface would

have taken many months to develop, rather than weeks, without

Xgen. The author would also like to acknowledge the many

programmers involved in developing the GRASS programming

libraries. This project would have been much more difficult

without these libraries.

ORACLE, Pro*C, SQL*Plus, and SQL*Forms are registered

trademarks of Oracle Corporation.

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA

94065.

v

ABSTRACT OF THE THESIS

An Interface Between the GRASS Geographic Information

System and ORACLE Relational Database Management System

by

David Gordon Buker

Florida International University, 1993

Miami, Florida

Professor Naphtali Rishe, Major Professor

A query and display interface has been developed between the

GRASS geographic information system and the SQL-based ORACLE

relational database management system (DBMS) . This interface

enables multiple non-spatial attributes of GRASS map features

to be maintained with the DBMS. GRASS alone is capable of

storing only one attribute per feature. The interface allows

the user to provide both spatial (GRASS) and non-spatial

(SQL) selection criteria for any query. Spatial selection

methods include picking items from the GRASS map with a

mouse, and specifying areas of interest with user-drawn (via

a mouse) polygons and transects. The results of the combined

query are displayed both graphically (the selected GRASS map

features are highlighted in a graphics window) and textually

vi

(the DBMS attribute data are shown in a text display window).

Options include creating reclassified maps based on the DBMS

output, and updating the attributes retrieved by a query.

vii

TABLE OF CONTENTS

LIST OF FIGURES . ix

INTRODUCTION 1
Project Background 1
GIS Basics 4

Spatial Data Representation 4
GIS Data Structures 13
Data Access Requirements of a GIS 20

Why develop this interface? 21
Project Objectives 25

Functional Objectives 25
Design and Implementation Objectives 28

INTERFACE DESCRIPTION 32
System Overview 32
The GRASS to DBMS link 39
General interface operation 46
Query Formation 50
Interface Software Structure 54

PROGRAM DESCRIPTIONS 63
Interface programs 64
Link support programs 69
Map reclass programs 72
Xgen graphical user interface programs 73

FUTURE WORK . 75

SUMMARY . 76

REFERENCES . 78

viii

LIST OF FIGURES

Figure 1. Vector representations of map information. . 6

Figure 2. Raster representation of map information. . 7

Figure 3. Digitizing of vector map information. . . 11

Figure 4. Combined spatial and non-spatial query. 35

Figure 5. Combined GRASS and DBMS information domains. 39

Figure 6. A GRASS map and DBMS table showing Florida
panther observations in southern Florida. 40

Figure 7. GRASS category values are used to link GRASS
maps with DBMS tables. 41

Figure 8. The spatial selection method is used to create
a tentative set of category values. 47

Figure 9. Non-spatial selection processing, part 1. 48

Figure 10. Non-spatial selection processing, part 2. 49

Figure 11. An example of the GRASS and DBMS data
display. 49

Figure 12. A high-level structure chart illustrating the
interface system structure. 55

ix

INTRODUCTION

This thesis presents a software system that integrates GRASS

geographic information system spatial data with ORACLE

relational database management system (DBMS) attribute data

for the GRASS maps. It is not a single program, but rather

an integrated system that consists of several separate

programs. These programs work either together or alone to

perform a number of different functions. Although the system

has been implemented using ORACLE, it is capable of

supporting other structured query language (SQL) based DBMS

products with the development of additional DBMS drivers. No

program customization is needed to use the interface with

different GRASS maps or DBMS tables.

Project Background

Geographic Information Systems (GIS) have become an important

tool for many businesses and governments at all levels.

Although GISs have been in use since the 1960s, the

combination of readily available spatial data and improved

software and hardware, along with a drastic reduction in the

costs of the systems, has resulted in a great increase in use

over the last few years [Smith et al-87].

1

Although there is much disagreement over exactly what

constitutes a GIS ([Clarke-86], [Cowen-88]), we will define

a GIS as a computer automated system for the input, editing,

management, display, and analysis of geographically

referenced spatial data, along with associated non-spatial

attribute data. It is the geographically oriented analytical

ability, in particular, which differentiates a GIS from

computer aided design (CAD) and automated cartography

systems. GISs are used for a variety of purposes by

different organizations. Nagy and Wagle [Nagy/Wagle-79]

survey ten specific systems which represent examples of a

variety of applications and systems that existed at that

time. Dangermond and Freedman [Dangermond/Freedman-86] list

a number of examples of GIS applications for municipal

governments, such as performing vehicle routing, traffic

analysis, facility siting, land use planning, and facilities

management. The U. S. Federal government agencies use GISs

for a variety of reasons including tracking the geographical

distribution of census information and disease statistics

([GISWorld-89A], [GISWorld-89B]). Locally, Everglades

National Park has used a GIS for analyzing the potential

impact of water management alterations on the plants and

animals of Everglades National Park [SFRC-90].

GRASS (Geographic Resources Analysis Support System) is a

public domain GIS that was originally developed by the United

2

States Army Corps of Engineers at the Construction

Engineering Research Laboratory (CERL) in the mid 1980s.

Since then, the use of GRASS has expanded to include equal

representation in government, education, and private sectors

[Goran-92] . The expanded use of GRASS has necessitated the

formation of two organizations to coordinate the development,

distribution, and use of GRASS. The Office of GRASS

Integration (OGI), located at CERL, manages the U. S. federal

government's involvement with GRASS, while The Open GRASS

Foundation (OGF) coordinates the GRASS activities of

academia, the private sector, and state and local government

organizations ([Goran-92], [Schell-92]). Although the OGI at

CERL continues to be the primary development site for GRASS,

enhancements and additions to the GRASS software are now

being developed by all segments of the user community, both

public and private.

GRASS is used by a wide variety of federal government

agencies, and is the official standard GIS for the National

Park Service and the Soil Conservation Service ([NPS-93],

[SCS-90]). As an employee of Everglades National Park, the

author uses and manages the park's GRASS GIS. One of the

important features lacking from GRASS has been the ability to

associate multiple attributes with the features of maps, only

a single attribute could be used. For example, a road could

be identified with its name, but not also with its road-type,

3

date of construction, and width. This need to associate

multiple attributes with the GRASS map features led to the

development of the software described here. The software

will be used not only in Everglades National Park, but will

be made available to the entire GRASS user community. The

software will be submitted to the OGI for evaluation and

incorporation in the official GRASS software release.

GIS Basics

The general characteristics and capabilities of relational

database management systems, such as ORACLE, are well known

to most readers. Geographic information systems, however,

have not been common until relatively recently. For this

reason, the general features of GIS are discussed below.

This information is necessary to fully understand the

interface which has been developed.

Spatial Data Representation

Geographic data can be represented by three basic primitives:

points, lines and polygons (areas). Associated with each of

these objects are one or more attributes which describe

something about the object. For example, on a small scale

4

map a point object may represent the location of a building.

The attributes for this building may include the address, the

owner's name, and the number of rooms. A river would be

represented by a line feature. Attributes for the river

might be the name, width and depth. A farmer's field would

be represented by a polygon. The farmer's name, the type of

crop grown, and the yield per acre are examples of attributes

which might be stored.

The geographic data can be represented in the computer in two

different ways: vector or raster (cell-based). The decision

as to which representation is used is frequently a function

of how the data were captured for use in the GIS. A vector

representation stores the information in an explicit point,

line, area format, with each object "tagged" with it's

attributes (Figure 1). This format is used in GIS

applications which require visually appealing output and/or

precise location information. Data in this format are

usually captured by manual digitizing or scanning of existing

map data. The raster format divides an area into a set of

grid cells (Figure 2). These grid cells are generally of

uniform size and shape, with the most common shape being a

square. The attributes are associated with the individual

grid cells. In general, the individual objects no longer

have a distinct identity, rather an object is implicitly

defined in that all the cells of the object have the same

5

3
::5 o

- AA N

4-a M S-1 (d 4
O -H +-) -- 14 N

_ 4-1 4.1 U td
-- _-- - to fd (d Q-t 4--1 cd

4J a) 0 (L)

U -- 4-4 Q O fd
- v cn rocn 4

b Q) Q) LIA (0 U04 3 A ronI;;
m

(L) cn O a) 41 > I .4 CO x ro
O O I S4

U a-1 -d O
Q) (d U 44 (0 4-

U -r-(O (1)
O 4 4 U)

FCr+ 3 Q M
a) o

44 ;3 r 4

0 1015 m U)

X 41 4 Q) 1 -a a E . 41 (0

S4 A cn A -W
O 4J 4-J 4J "r-I (n 4J

'Ci co -H -H

U) 41

v I 4-A r I r I 3
E a

a O b 4-) (0

v c N co 4 4J
a) U: -) -r I Q) 0

av O m 3 ad
H W M4-J cd

41 co w r, r-i

4 +J (d S4 r"-1 r -H
H 04 ro -

Q) " -- W cn
cn cn 4

4 " 4X!
04 -H CO Q 4j

4 4-4

4J
4 0)

c . U -H 41 r I co Q) a)
o
a s ro ' d a b > cd co

a
N a
c N R N
o
0 o

rlw
GN

6

N
co
T 0 0 T- T- M CO CO CO CO co M M M -I- 7- 0 0 0 r M M M M M M M qt t

O O O O r r r M M M M M t Ct b -
N N 4j -4

co O O
$4 O 00 r TT CO M M M co co It Iq Iq m (

T co N O N N N co m N M co M M CM d' It S4 -r $-4

CM N N N N N M N N N M M It It it 4-J a-1 .(

O N N N N N N N N N N N d't to 't tt U + + (O

> j 4-4

O N N N N N N N N N N qCT to to ICT N -rl

4 U)
00 N N N N N N N N N It It qt LO LO It qt (0 (010 Q1

cn N 5

I N N N N r N N N ql N d- 't 't 3 cn 4 r1

O 4 O

CO T N N N r r N N N N N N qt qt d It J>

LO T r r N N r r N N N N N N d' d' Iq U)

tt r T T r N r T N N N N N N N qt 4-j

M r r T r N N N N N N N N N N N t

N r T T T T r N N r r N N N N N N F O

O N
r r T T r r 'T 1r r VrT r r N N N NI N _ CrrrVJ{{{.

O r T T T

I LIB co A 00 + r T

4 rP

O O a)
4a cd 4

+- ro
-rl 1~

O cn

04 O N

O U) U) ror
44 O 3 >

LO O 0O
T

F=iJ
j -mil V I i--'

r
O s4

M -H N , Q

r 4-) Q4 Q
N cd
T 41 J)

T 4-)
T-

M

C) cn a) co

T nW W (' W

H

Mm
t , 00el- a) co m

v
w 1

4
r.

4 c 0 0 E Q) C! (0 CO
V! -rl 4 I4 rj

LO WON% (0 ,cl, OOv
LY 3 4-4 4-a U

M
N

N r4- - N
N

T

'^ 1 N1 T- N M It 0 w
r N M L 1 / W 1 M M T r T T T T T " 1--

w

attribute value. Satellite imagery is the most common type

of data which is in a raster format. At times, data which

were originally captured in a vector form are converted to

raster form. This is done because many of the algorithms for

raster map analysis operations are more efficient than the

corresponding vector operations ([Burrough-86], [Maffini-87],

[Monmonier-82]). The relative advantages and disadvantages

of the two formats are discussed by a number of authors

([Peuquet-86], [Maffini-87], [Smith et al-87]).

Because of the distinct differences between vector and raster

data, most operational GISs have been built around one or the

other of the two types, but not both ([Abel/Smith-86],

[Keating et al-87], [Lorie/Meier-84]) . In some cases, a

system may handle both types, but data have to be explicitly

transferred or converted from one type to the other ([Clarke-

86], [Jackson et al-88]). Maffini [Maffini-87] points out,

however, that the conversion process may result in data

quality problems due to the fact that the raster to vector

conversion is an ambiguous process. There are a number of

efforts underway to combine both raster and vector data into

a single unified system, with the form of the data being

transparent to the user ([Anthony/Corr-88], [Haralick-80],

[Jackson/Mason-86], [Jackson et al-88], [Peuquet-84]

[Shapiro-80], [Waugh/Healey-871).

8

GRASS supports both raster and vector maps but it is

primarily a raster-based system ([Shapiro et al-89], [USArmy-

91]) . Although GRASS also has "site lists" maps, these can

be considered a special case of vector data. Most of the

GRASS GIS analysis functions only support raster data. The

type of map data is not transparent to the user. Most

commands explicitly include the map type as part of the

command name. For example, the three basic commands to

display maps are d.rast, d.vect, and d.sites for raster,

vector, and site maps, respectively.

Another basic feature of geographic information handling

concerns the concept of topology. Topological considerations

have an impact not only on how data are entered into the

system but also on how the data are stored and analyzed.

Topology refers to the scale-independent spatial

relationships between different map objects, or as Burrough

[Burrough-86] defines it, the way in which geographical

elements are linked together. Issues relating to topology

are discussed in [Keating et al-87], [Muller/O'Connor-82],

and [Peuquet-86] . Relationships such as "connected", "next

to", and "enclosed by" are examples of topological

properties. These types of relationships are some of the

most common that users are interested in determining from a

GIS database, yet they are computationally difficult to

9

determine unless this information is explicitly recorded in

the database [Smith et al-87].

To achieve this topological structure, vector data must be

captured, usually by manual digitizing, in a particular way.

Data are frequently digitized off of map sheets which have

been specially prepared for this purpose. These map sheets

usually are just line drawings of the features of interest

(Figure 3 (a)). The features are digitized one at a time,

with each distinct line segment being digitized as a separate

item (Figure 3 (b)) . Line segments are also commonly

referred to as "arcs." Wherever two (or more) lines cross,

a "node" item is created. Associated with a node is its

geographical location. A line segment starts at a node and

ends at a node. A line segment may be either part of a

linear feature (e.g., a power line) or may be the edge

(boundary) of an area feature (e.g., a lake). The

representation of linear features in this manner is

frequently called "arc-node" format. Associated with each

line segment is a list of geographical coordinates which

describe the segment. Area edge segments also start and end

at nodes but, in addition, have an area to the right and an

area to the left (edges by definition separate two areas).

Another important topological property is that of

containment. Areas which are completely contained within

another area are called "islands" (Figure 1 (e)) . Islands

10

r '0
O N N N

N mvlw Ln in W r- r- OoOO
z cn z cn z cn z cn z cn z LH 4J N (0

m m z0 4-1 (0
cn N qw cn cn 4) 0 r-{ U)

CY) N

z U va N b
O /.-wt -r-i O +-)

N

to y N c"1 cn Q) U) cd

r-I) N N N N
r-I -I

z z

O>1 N O -' C14 j 04 C14 C14 v1 cn z (d N
N N O Oo N U) O 4-4 l Nr-I C14 c,4 lw

to cn cn cn W cn cn O U) -r-I >1
H ri OD cn N cn 0 N O

4J U)

z z c) z C14 C14
cn z cn N fn z r A -rI -r

C4 z U) 0) 4

-H -r-I -H -r I

r4 N cy) N -r-I LH

a a 04 ci O 'fl,
N .J

ao N M H N -r-{ U) -r-I

ccn cn OD z +-) U) b' 3

d' -r-I -r I a--) -r (O
n r -I iT

ri N -H Z3

cn
Q) U) U r-{

r a) (1) W
04 4 U)

1n

to lw a a a cnr-i -' 04
4 cti

to cn z cn z cn z ro H ,-. 70
C7 .Q -H

cn ' N >

O N 'd

Ici O " r-I

U) 4-) N N -r (-r

rl U) O

-H (1) rf. N 0
M U

.d a-) 0 4-J'd

O O C; r-I 4-) U) c0

N " ro
rd b O " 1 4-'

. U 44
. -- r

...
i N 4-3

-H /M U

41 Q N

-yH CO -r-i CO 4J

lT }y -ry

. '0U)r3=

-4aaa-4S ui
41 V) 4 O u)

U A b A
tyl N

Q

>
44

m

' ti A N

4J $4
O

w Qo' o
44 "

w

11

are themselves "normal" areas, and therefore have all the

properties and relations of other areas. Hardware and

software systems which scan vector maps and automatically

develop a fully topological data set are making vector map

input a much easier process than the hand digitizing method

traditionally used.

The topological relationships for raster data are not

explicit as they are for vector data. As noted above, vector

data items are typically thought of as distinct objects; each

point, line, or area being an individual, identifiable,

object. Each object can be assigned one or more attributes

at the users convenience. Raster data, on the other hand,

traditionally has been viewed very differently. The entire

raster matrix is seen as a single "layer", "coverage" or

"theme." Within the layer, each cell of the matrix has,

usually, only a single value (Figure 2 (b)). Multiple

attributes are not supported. Discrete areas of contiguous,

same-value cells do not have a distinct identity in the way

that vector areas have an identity. A raster area is

implicit (a group of contiguous, same-value cells) whereas a

vector area is explicit. This imposes on the user, and the

software, very different ways of working with the data.

12

GIS Data Structures

A variety of different data structures have been used for

GISs, most based upon hierarchical, network, or relational

models ([Armstrong/Densham-90], [Abel/Smith-86], [Clarke-86],

[Burrough-86], [Haralick-80], [Jackson/Mason-86],

[Lorie/Meier-84], [Monmonier-82], [Peuquet-84], [Shapiro-80],

[VanRoessel-87], [Waugh/Healey-87]). Most of these systems

have stored the spatial data separately from the attribute

data ([Clarke-86], [Waugh/Healey-87]). Many of the existing

systems have also been designed as stand-alone, special

purpose systems with little attention paid to traditional

database management concerns such as data protection,

security and integrity [Frank-88]. Several recent GISs have

been proposed which address this concern by building the

spatial database around existing commercially available

database management systems ([Abel-89], [Abel/Smith-86],

[Lorie/Meier-84], [Waugh/Healey-87]).

Existing commercial DBMSs, however, are not well suited to

the requirements of GIS processing ([Abel/Smith-86], [Frank-

88], [Keating et al-87], [Lorie/Meier-84]) . One of the major

problems is the performance of these systems in retrieving

spatial data. Frank points out the necessity for GISs to

have very fast response times for drawing maps on screen, and

estimates that an average map contains between 2000 and 5000

13

different items. If each of these items must be retrieved

separately from disk, as is the case with most DBMSs, he

estimates that it will take one to three minutes to draw the

map on screen. He states that this time is unacceptable.

The problem is that items which are located close together

geographically, are not physically clustered on the disk. In

order to achieve adequate performance, this physical

clustering is necessary. This performance problem is being

addressed by some of the recent work involving commercial

database systems [Abel-89].

Another drawback of commercial DBMSs is that they contain no

spatial data query or manipulation language capabilities. A

number of authors have discussed the types of capabilities

which are required ([Nagy/Wagle-79], [Peuquet-86], [Shapiro-

80]) and some have developed, or proposed, extensions to

existing DBMS query languages which include spatial

operations ([Abel/Smith-86], [Frank-88], [Goh-89],

[Roussopoulos et al-88]), others are researching more

"natural" language interfaces to GISs ([Robinson et al-86],

[Samet et al-84]), knowledge-based languages [Wu et al-89],

and tabular based Query By Example (QBE) approaches

[Joseph/Cardenas-88].

The GRASS database structure is described in [Shapiro et al-

89], with some changes noted in [Gerdes-91] and

14

[Shapiro/Westervelt-91]. The basic characteristics are noted

here in relation to the discussion above. Some of the

information discussed below is not documented, but was

determined by direct examination of the source code.

GRASS databases are structured hierarchically using the UNIX

directory structure. An individual map layer consists of a

number of separate files, located in different directories,

which contain various types of information concerning the

map. Examples of these files include the spatial data

itself, a header file describing the map, a feature attribute

(category value) list, category labels, and color tables.

The files for the different map types (i.e., raster, vector,

sites) are stored in separate, type-specific, directories.

Some of the files apply only to certain map types. For

example, the color tables only apply to raster data. In

other cases, the information contained in two or more files

for one map type may be combined into one file for another

map type. For example, a single site list file contains the

header information, spatial data, and category or label

information. The structure of the spatial-data files is

different for all three map types.

A site list file is a flat ASCII file. An individual site

record is one line in the file. Each record consists of the

Universal Transverse Mercator (UTM) coordinates of the site

15

and an integer category value or textual label for the site.

UTM is an equal-area geographic coordinate system, unlike

latitude/longitude where the distance between longitude

lines, and hence area, varies with latitude. There are no

indexes maintained for the data in the file, so processing

this file requires sequential record retrieval.

Vector data records are stored in a binary format using the

arc-node representation described previously. Nodes are not

stored separately from the arcs, they are simply the

beginning and ending points of each arc. The arc-node

records are stored in the same order in which they were

digitized or imported into GRASS. Attributes of the vector

features are stored separately. Unlike site lists files,

however, indexes are created and stored to provide rapid

random access to the vector data (the actual coordinates of

the area edges, lines, or points) and attributes. The

indexes for the vector data are just pointers from a list of

the vectors into the actual vector data, they are not spatial

indexes.

Raster data are stored in one of two different binary

formats, uncompressed and compressed, or a third ASCII format

for reclassified maps. Conceptually, a GRASS raster file can

be thought of as a two dimensional matrix where each cell of

the matrix contains an integer value, as shown in

16

Figure 2 (b) . This integer is the "category value" for the

cell. Note that what is stored are the category values for

cells, not explicit spatial information. The integer values

are stored using from one to four bytes of data. Integer

values greater than 255 are stored using big-endian format

(i.e., a base 256 number with the most significant digit

first). Negative values are stored as signed values (i.e.,

with the highest bit set to 1). This results in all negative

values always requiring the number of bytes used by the

machine to store integers.

The matrix is spatially referenced using information

contained in the raster "header" file. It is the header file

that contains the UTM coordinates and cell size (e.g., 2

miles X 2 miles) for the map, along with other descriptive

information. The spatial location of any given cell within

the matrix is determined based on the row and column numbers

of the cell, the origin of the matrix, and the cell size.

The uncompressed file format is essentially a binary

representation of this matrix format. Within the GRASS

system, the category value for each cell of a matrix is

stored using from one to four bytes, as described above. For

any given map, however, all cell category values occupy the

same amount of computer storage. The number of bytes used

for any particular map is the number of bytes needed to store

17

the maximum category value contained in the map. The

physical storage of records is by row, with all the cells

(columns) of the row stored as part of the record. All rows

have the same number of cells, so the physical sizes of all

records are identical. Rows can be retrieved randomly based

on this known record size. Once a row is retrieved, the

value of any cell is quickly retrieved based on the cell

column number and the known category-value storage size.

The compressed files use a run-length encoding scheme to

reduce the disk storage requirements. As with uncompressed

files, the records are stored by rows of the matrix, but in

this case each row is compressed using the encoding scheme.

The encoding is done by storing a single byte repeat-count

followed by a category value. The repeat-count represents

the number of sequential cells in the row that have the

particular category value. Whenever a category value

sequence ends within a row, and another sequence begins,

another repeat-count/category-value pair is generated. The

number of bytes used to store the category value is

consistent within any given row, but may vary from one row to

another within a single map. This is unlike the uncompressed

files, where the number of bytes used does not vary within a

map. If an encoded row is determined to be longer than the

same un-encoded row, the un-encoded row is used. Due to this

encoding scheme, the physical size of row records varies

18

within a map file. In order to provide rapid row record

retrieval, an index to the start of each record is generated

and stored. Once a row record is retrieved, the record must

be uncompressed in order to find the value of any desired

cell within the row.

The third raster format is used for "reclassed" raster maps.

A reclassed map does not actually store any category data.

Instead, it stores category-reclassification rules which

reference an existing raster map. These rules are contained

in an ASCII flat file. For example, consider that a cell in

the original map contains category five (5). The reclass

map, for whatever reason, may include the rule that category

five should be reclassified to category nine (9). Whenever

the reclassed map is displayed or used for analysis, the

original map is first retrieved and then the reclass rules

are applied. In our example, therefore, the cell value used

for the given cell (or any other original-map cells with a

category value of five), would be nine. Note that this

scheme means that the original map must never be deleted,

since then the reclassed map loses its reference.

19

Data Access Requirements of a GIS

The capabilities required for a GIS database have been

discussed by a number of authors ([Dangermond/Freedman-86],

[Dangermond-86], [Frank-88], [Lorie/Meier-84], [Monmonier-

82], [Peuquet-86], [Smith et al-87], [Webster-88]). The

requirement for access to data based on spatial

characteristics is the primary feature which differentiates

GIS database systems from most other DBMSs. Smith et al.

[Smith et al-87] point out that there are two basic types of

queries needed in accessing a GIS database:

1) find the locations of some specified objects (e.g.,

"display all rivers")

2) find the objects within a given location (e.g.,

"display everything in Miami")

These two queries illustrate the two different access paths

which are needed by a GIS database system. One path must

allow access to the data based on spatial location, the other

path must provide access based on an object's non-spatial

attributes. The objective of this project was to develop an

interface that would provide both of these access paths for

GRASS maps and their associated attributes. The next section

discusses this in relation to GRASS's current limitations.

20

Why develop this interface?

GRASS is very capable of storing, managing, displaying and

analyzing complex spatial data. Any given map contains many

features of interest to users. Every cell of a raster map

and every vector item of a vector file can be given an

integer value (category number) to identify it. In turn,

each unique category number can be given a text label

containing some meaningful non-spatial information

(attribute) about the category. Every site location in a

site list file can be given a comment. This comment can be

just text or, optionally, can consist of a pound sign (#)

followed by a number which can be followed by a space and a

text string (e.g., #7 light pole) . Basically, this means

that all three of these map types are limited to a single

attribute for each feature. However, real map features

frequently have multiple attributes associated with them.

To illustrate the need for multiple attributes, consider a

database of Florida panther observations (this is a real

application which is being implemented at the South Florida

Research Center in Everglades National Park). This example

will be used throughout the paper. Florida panthers are an

endangered sub-species of panthers, also known as mountain

lions and cougars, living in Florida. Only 30 to 50 Florida

21

panthers are believed to exist in the wild. A research

program was begun a number of years ago to monitor the status

of the known panthers in southern Florida. One of the tasks

of this research project was to radio collar the panthers and

determine their locations once a day. The information

collected for each observation includes the geographic

coordinates of the observation, the panther identification

(ID) number, and the date and time of the observation. In

GRASS, however, a panther observation could be labeled only

with the panther's ID number, for example. It is true that

all of the information that we record for each observation

could be "packed" into the single label string (e.g., Feb-3-

1992, 10:25 am, Panther # 14), but GRASS does not allow the

user to selectively pick observations out of the sites file

based on the information packed into the string. A user

could not, for example, select only the observations of

panther number 14. The same situation applies for raster and

vector maps. Using a spatial mask, a user can selectively

display only certain raster categories, but there is no

convenient, batch oriented, way to select the categories for

display or analysis based on the information contained in the

label for the category. This inability to handle multiple

descriptive attributes in a way that makes it easy for a user

to select particular features is a major limitation of GRASS.

GRASS users need to be able to query, display, and analyze

22

the information based on both the spatial and non-spatial

characteristics of the data.

Database management systems, on the other hand, are excellent

systems for storing, managing, displaying and analyzing non-

spatial data. This is what DBMS software was designed to do.

This makes a DBMS an excellent way to handle the multiple

attribute data associated with GRASS maps. Many GRASS users

have in fact been doing this for years. However, performing

selections of the GRASS features based on the DBMS data, or

vice versa, is a complicated, time consuming, multi-step

process involving exporting information from one system and

importing it into the other system.

The ability to easily and quickly relate GRASS map features

to associated attribute data stored in a DBMS would therefore

increase both the power and flexibility of the overall

system. This is exactly what this interface does.

Although it would be possible to build DBMS capabilities

directly into GRASS, as opposed to linking GRASS to an

existing DBMS, there are at least two disadvantages of doing

this. One disadvantage is that in order to have as complete

and flexible functionality as available in existing DBMS

packages, software development time would be much greater

than for an interface to an existing DBMS. To keep

23

development time down, just a subset of capabilities could be

provided, but this would decrease the usefulness of the

system. A second disadvantage is that users are already

using certain DBMS software and wish, or are required, to

continue using it for their non-spatial data. For example,

some agencies or companies mandate the use of particular DBMS

software. In other situations, users just do not want to

have to work with two different DBMS packages, a specialized

one for GRASS related data and another for the rest of their

data. For these reasons, an interface was developed to an

existing DBMS. As mentioned previously, the interface was

developed so that it could be used with other DBMS packages.

This requires the development of a DBMS driver for each DBMS

package, but this is a reasonable task for an experienced

programmer.

This interface is just a short-term solution to the problem

of handling multiple non-spatial attributes related to GRASS

maps. The author believes that, ultimately, GRASS will have

to be modified to more closely integrate with DBMS software.

This is needed so that direct joint GRASS/DBMS analysis and

printing are supported, not just joint query and screen

display. There are efforts already underway by other groups

to do this. The need to link to multiple commercial DBMS

packages will still be critical, however, even if DBMS

capability is built-in to GRASS.

24

Project Objectives

There were a number of major objectives which influenced the

design and implementation of this interface. These

objectives fall into two basic classes, functional objectives

(i.e., what the software should do) and design/implementation

objectives (i.e., how the software should do it). The

objectives of each type are discussed below.

Functional Objectives

Provide direct support for combined GRASS and DBMS

data query and display capabilities.

The software should support concurrent "two-way"

queries that apply both spatial and non-spatial

selection criteria to the same query. The importance

of this capability are discussed further in the System

Overview section.

Provide indirect support for map analysis and

printing.

25

Allow the user to use the results of combined GRASS-

DBMS queries to create new, reclassified, GRASS maps

which can then be used for map analysis and printing.

" Provide the ability to save and print the DBMS results

of the query.

" Provide three different levels of user interfaces.

Command Level

Allow the user to enter most user input arguments

on the command line. User input that is

selection-method specific will not be supported

as command line arguments, but will be entered

interactively using the keyboard or mouse. The

entry of these method-specific arguments is the

same for all three levels.

Command Interactive Level

Allow the program to be executed without any

command line arguments. In this case, all of the

arguments will be entered by the user in response

to prompting by the program. The prompting and

26

corresponding user entry are done in a simplistic

line-based method.

Full Interactive Level

Provide a graphical user interface that allows

the user to enter all command line arguments

using a combination of keyboard and mouse input.

Keyboard entry is done in editable text-entry

fields. Mouse-based entry involves selecting

from displayed lists of valid values for the

arguments.

" Include the ability to save and retrieve interface

sessions.

Allow the user to save the arguments specified for any

query. This option should save all arguments,

including the DBMS table name, GRASS map name, SQL

clauses, spatial selection method, and map colors.

" The interface should be easy to use for beginning

users.

The interface should require only a few arguments.

This will enable inexperienced users to get useful

27

results immediately without needing to know much about

the software.

The interface should be both powerful and flexible for

advanced users.

The interface should support many optional arguments.

Experienced users should be able to specify a variety

of optional arguments which enable advanced operations

to be performed or which allow the output to be

customized. These optional arguments will be pre-set

with defaults which will be used if the arguments are

not specified.

Design and Implementation Objectives

" The interface should have the same "look and feel" as

other GRASS programs.

This objective involves providing a consistent user

interface and using common naming conventions for

input arguments. This does restrict the design of the

user interfaces for the programs of the system.

28

* The interface must be strictly an add-on capability,

with no changes to basic GRASS data structures or

commands.

This restriction puts significant limitations on the

design and implementation of the system. This

objective is required, however, to limit the scope of

the project to a realistic level. Dozens of other

GRASS programs would be affected by changes to basic

data structures. Modifying all of these other

programs to use any modified data structures is a task

beyond the capabilities of a single individual. Even

if the modification of the existing versions of the

programs could be accomplished, the future maintenance

of all of the programs would be impossible for one

person.

" The interface software development should conform to

GRASS programming standards.

These programming standards include requirements such

as developing within UNIX, using the C programming

language (K&R C) and using standard GRASS program

libraries for device independence. Any software which

is intended for wide distribution must use the native

C compilers on the computer systems. This requirement

29

is specified to both reduce costs and to ensure that

the software can be installed and compiled at any site

without the need to buy additional compilers. This

would be needed if the source code used C language

extensions or library functions which were only

available in a particular proprietary compiler.

0 Develop programs with portability in mind.

GRASS is used on a wide variety of computer systems.

For this reason, non-standard C language or library

extensions should be avoided.

* The interface should be easy to adapt for use with

other SQL-based database management systems.

This objective was originally specified for the basic

interface only (db.interface) due to the more complex

nature of the screen-form version

(db.forms. interface) . A design was developed,

however, which may allow DBMSs other than ORACLE to be

used with the screen-form version of the interface.

1 The interface should be developed so that it is easy

to add or modify GRASS spatial selection methods.

30

* Eliminate the command-level distinction among the map

types (raster, vector, site).

This is an objective that deviates from the objective

of retaining the standard GRASS "look and feel." For

most existing GRASS operations, there are separate

programs for each map type. For example, there are

three different programs for displaying GRASS maps:

d.rast for raster maps, d.vect for vector maps, and

d.sites for site maps.

This interface has been developed with the map type as

an argument to the program; separate versions of the

program have not been created based on map type. This

objective has been specified for two reasons: (1) a

single program results in less duplicate code, which

decreases software maintenance requirements, and (2)

philosophically, the author believes that the

distinction between types should, as much as possible,

be transparent to the user.

" Use a well defined, robust, conservative link between

the GRASS map features and the DBMS table rows.

* The system should support reasonably simple GRASS-

map/DBMS-table development.

31

The developer of a linked map/table must be

experienced with both GRASS and relational DBMS table

design and implementation. Given this level of

ability, development should not be complex and only a

few new concepts should need to be learned.

INTERFACE DESCRIPTION

System Overview

The interface provides integrated GRASS and DBMS query and

display capabilities. The user can specify both spatial

(GRASS) and non-spatial (DBMS) selection criteria for any

query of the joint GRASS/DBMS database. Spatial selection

criteria are specified using one of the six spatial selection

methods provided, such as picking GRASS map features from the

display screen with a mouse and overlaying a vector map

containing areas of interest. Non-spatial criteria are

specified using standard SQL. Both the spatial and

non-spatial criteria are simultaneously applied to the joint

database by the interface. Based on the results of the

query, the selected GRASS features are drawn or highlighted

in the graphics display window while the DBMS attribute data

for those features are displayed on the text display screen

or within a text window.

32

There are actually two versions of the interface, the

difference being in the format of the DBMS output. One

version (db.interface) produces simple output which consists

of one output line per DBMS record (the "line" may actually

consist of one or more screen lines if the data line is

longer than the width of the screen), with many lines

(records) being displayed on the screen at one time. The

other version (db.forms.interface) produces output using

ORACLE SQL*Forms screen forms. The structure of the form

(i.e., the placement and order of fields on the screen) is

defined by the designer when the form is created. In most

cases, only one record is displayed at a time. This forms-

based version of the interface uses these previously created

forms for its DBMS output, and it allows the user to step

through each output record retrieved by the query. The DBMS

records retrieved by a query can also be updated by the user

and saved back to the DBMS database.

To illustrate this query and display capability, consider the

example, introduced earlier, of a database of Florida panther

observations. In this case, however, it is now a joint

database using both GRASS and the ORACLE DBMS. The GRASS

database consists of a site list of the location

observations. The DBMS database consists of two tables. One

table (pantherobs) records information about each

observation (e.g., the panther identification (ID) number,

33

and the date and time of the observation). The second table

(panther) records general information about each panther

being monitored (e.g., panther ID number, gender, name).

Given this Florida panther database, a possible application

of the interface might be as follows. A major cause of death

of panthers is being struck by cars. A road is being planned

for a certain area. Will this have any potential impact on

the panthers? Consider also that the interface user is

particularly interested in the use of this area since January

1991. Using the transect option of the AREA selection

method, the user draws a line along the proposed route of the

road and specifies a 500 meter buffer on each side. The user

also specifies that only observations since January 1991 are

of interest (i.e., the SQL WHERE clause would be: WHERE Date

>= '01-Jan-91'). The joint query would be applied to the

database. In the GRASS display window, all panther sightings

falling within the transect area since January 1991 would be

highlighted. In the text display window the DBMS information

for these selected panther observations would be displayed

(whichever DBMS columns the user specified, or all columns of

the pantherobs table if none were specified). In addition

to displaying the DBMS data, the data could be printed, saved

to a file, or used to produce a new reclassed map.

34

The ability to apply

both spatial and Map features Map features
selected by spatial selected by

n o n - s p a t i a 1 criteria non-spatial criteria

selection criteria (a)

to the same query is db.interface map=pantherobs method=area
where="Date>='01-Jan-91"'

an important feature

All panther All panther
of this interface, observations in observations since

It allows queries

which return the
Figure 4. (a) A combined spatial and

intersection of the non-spatial query returns the
intersection of the sets. (b) An

spatial and non- example using the panther database.
The query returns only those panther

spatial data sets observations within the area since
January 1991.

(Figure 4 (a)).

Figure 4 (b) uses our example to illustrate this capability.

The example query returns the subset of panther observations

within the transect since January 1991. Another recently

developed GRASS to DBMS (Informix) interface will display map

features based on non-spatial queries, but spatial selection

is very limited [Farley-93]. It only supports a single map-

feature PICK operation for vector and raster maps, and a

single RADIUS operation for site data. The RADIUS option

allows the user to specify a radius on the command line and

then a map location with the mouse. All sites falling within

the radius are selected. In this system, using our example,

the user could display all of the panther observations since

January 1991 but could not specify just those panthers within

35

the transect. This system could not return just the subset

of panther observations within the transect since January

1991. The user could use the radius option multiple times to

approximate the results of our TRANSECT option, but this is

impractical in most cases.

Spatial selection criteria are specified by using one of the

six spatial selection methods currently available: PICK,

AREA, OVERLAY, REGION, MAP, and NONE. Methods are

implemented as drivers, so additional methods can be

developed easily without the need to modify the interface

itself. In all cases, the spatial selection method selects

an initial, tentative, set of map features which is then

further refined by the SQL SELECT statement clauses provided

by the user.

Non-spatial criteria for a query are specified using ANSI

standard SQL. Although ORACLE provides a number of

extensions or enhancements to SQL, standard SQL was chosen to

allow use with other database management systems. The method

of specifying the SQL SELECT statement clauses depends on

which version of the interface is being used. For

db.interface, the basic line-based version of the interface,

the clauses are specified on the command line or

interactively via the standard GRASS parser. For db.menu,

the Xgen graphical user interface (GUI) version of

36

db.interface, the clauses are entered in text entry fields of

the GUI. For db. forms. interface and db.forms.menu, the

forms-based version of the interface and the Xgen GUI version

of db.forms.interface, respectively, the non-spatial

selection criteria are entered in the form-based method used

by ORACLE SQL*Forms (a combination of explicitly entering

clauses and entering selection constraints in fields of the

form) . In all cases, the sub-clauses needed by the interface

to actually perform the link between a GRASS map and its

linked DBMS table are automatically and transparently added

by the interface to the SELECT statement. The user does not

have to enter any detailed information about the link. At

most, the user enters the map name and type and/or the table

or form name; the interface determines the rest of the

information needed and adds it to the SELECT statement.

The beginning user does not need to know any SQL to use this

interface. By default, the user can just use the spatial

selection methods and display all corresponding DBMS

information. In order to apply any non-spatial selection

criteria or join tables, however, the user must know SQL.

With the Xgen version of the basic interface (db.menu),

designers can develop and save complex queries which can then

be used by other users who do not know SQL.

37

Although this interface was developed primarily to support

integrated query and display capabilities, it was recognized

that GIS analysis of information resulting from these joint

queries is important. In order to support this capability,

programs were developed to allow the creation of new GRASS

maps based on the results of interface queries. These new

maps can then be used, outside of the interface, to perform

any display or analysis functions provided by GRASS. Since

the actual analysis can not be done from within the

interface, we refer to this as "indirect" support for map

analysis, as opposed to the "direct" query and display

support provided by the interface. The creation of the new

maps can be done directly from within the interface, if the

default choices used by the interface are acceptable for the

user's application. In some cases, the user may need to

create an output file within the interface and then use the

map reclass programs outside of the interface. This allows

different options to be used in creating the new map. In

most cases, the DBMS output results are used to create a new

reclassified map. For our example, a user might choose to

create a new map which contains only the selected panthers

within the transect since January 1991, and automatically

reclassify the observations by panther number (i.e., add the

panther number as the comment in the new sites file). The

new map does not actually have to be a reclassified version

of the original, however, it can simply be a subset of the

38

original features that retains the original classification

scheme. For example, a user might create a new sites file

with just the panthers within the transect since January

1991, but retain the observation-number classification.

All three GRASS map types (raster, vector, and site) are

supported by the interface. At this time, only Universal

Transverse Mercator (UTM) GRASS databases are supported,

although latitude/longitude support is planned for the

future. The DBMS interface itself is independent of the

spatial reference scheme, but many of the spatial selection

methods only work with UTM data.

The GRASS to DBMS link

GRASS DBMS
The information contained in

GRASS and a DBMS can be

described as existing in two

separate data domains. GRASS DBMS

GRASS is the domain of the

spatial data, and the DBMS

is the domain of the non- Figure 5. We want to treat
the separate GRASS and DBMS

spatial data. However, we information domains as if they
were one combined domain.

want to treat all of the

data as if it were in one virtual domain (Figure 5). We do

not want to have to know, or care, where the data are stored.

39

We want to be able to query, display, and analyze the

information in one standardized way independent of how or

where it is stored. The question is, since we know that the

data are managed by two different systems, what can we do to

make it appear as though there is only one system? How do we

link the two domains to form one combined virtual domain

(Figure 6) ?

This interface uses GRASS- Link -- DBMS

the GRASS category Panther
Observations Panther# Date Time

value to create the -
14 10-Dec-90 8:25am

link (Figure 7) . 22 11-Dec-90 9:20am

For this interface, * 12 15-Jan-91 2:27pm

22 15-Jan-91 11:42am
the category value 1

14 16-Jan-91 6:11pm
is the one and only 12 18-Jan-91 6:55am

way to distinguish,
Figure 6. A GRASS map and DBMS table

spatially or non- showing Florida panther observations
in southern Florida. What can be used

spatially, the to link the GRASS map with the DBMS
table?

information stored

in the joint data domain. The interface does not use spatial

criteria to differentiate features, other than when

performing the initial spatial selection. For this reason,

it is important that a one-to-one link be created between a

map feature (category value) and its related DBMS attribute

data.

40

The category value

GRASS r- Link -w-DBMS
is actually not an

optimum identifier Category Values obs. # Paner# Date Time

to use as a link. > 41-e~o82a

4 12 15-Jan-91 2:27pm
category values do

5 22 15-Jan-91 11:42am

not usually uniquely
6 14 16-Jan-91 6:11pm

identify different 7 12 18Jan-91 6:55am

raster clumps (areas
Figure 7. The interface uses GRASS

of contiguous cell- category values to link GRASS maps
with DBMS tables. The category values

category values), are called "observation numbers" in
this particular DBMS table.

and site lists do

not really have strictly defined category values (they are

defined for use with this interface). However, there is no

other well defined, conservative identifier available. If

category values were not used, software

implementation-dependent "tricks" would have to be used to

form the link. For example, for vector area features one

could use the area index, which is a unique identifier for

each area stored in the file, but this is an implementation

characteristic that is not strictly defined in terms of how

the index varies as areas are added, deleted, or modified; it

could change in future releases. This would be worse than

making the interface crash, because the interface might still

function, but the results would be incorrect. Category

values are well defined and are under the complete control of

41

the map/table developer; nothing "hidden" can happen to these

values and are, hence, conservative identifiers. Note,

however, that as far as the DBMS is concerned, it does not

care what identifier is used, it is completely independent of

this; it just requires an integer value of some sort.

Therefore, in the future, a different GRASS feature

identifier could be used with no programming changes being

required on the DBMS side of the interface. The actual

identifier values stored in the DBMS tables would, of course,

have to be changed.

The basic concept of how the category values are used to form

the links between a GRASS map and its corresponding DBMS

table and between an SQL*Forms screen form and a GRASS map

are outlined below.

" GRASS maps

Raster: The GRASS category value is used to uniquely

identify each distinct clump of cells. The GRASS

command r.clump can be used to create the unique

category values for a map. In some cases it may be

impractical to conform strictly to this rule. Any

deviation from this rule should be done with caution,

however, and with a clear understanding of the

consequences.

42

Vector: The GRASS category value is used to uniquely

identify each distinct vector feature (point, line, or

area).

Sites: For the purposes of this interface, we

"define" a category value (essentially just a "site

number"). Each site in the file is given a unique

integer value. The integer is stored in the comment

field of the site record, immediately following the

pipe symbol (I)

0 DBMS tables

Every DBMS table that is linked to a GRASS map must

have a column that contains the category values of the

linked GRASS map. This table is referred to as the

base table for the link. For an example, see

Figure 7. Other tables may exist that are related in

some way to this base table, but it is the base table

that contains the links to the GRASS map. The user

can join these other tables to the base table when

using the interface, if desired.

Every row of the base DBMS table corresponds to a

specific GRASS map feature, which is uniquely defined

43

by its category value. This category value is stored

in the column noted above. The relationship of table

rows to GRASS features should be one-to-one (1:1).

The specific information describing each map-to-table link

(i.e., table name, map name and type, etc.) is stored in a

special DBMS table referred to as the map-to-table "link"

table (grasstodbmslink) . This information is specified

by the GRASS-map/DBMS-table developer, and only has to be

done once for each linked map/table. In most instances,

once this is done the user does not need to know any of

this information other than the map name and, in some

cases, the table name. If the user does need to specify

any of this information, utility programs are provided to

display the needed information. In most cases, the

interface programs access and use this "link" information

transparently.

ORACLE SQL*Forms screen forms

These instructions apply only to the SQL*Forms version of

the interface (db.forms.interface) . You must have the

ORACLE SQL*Forms option to use this program.

Every form that is to be linked to a GRASS map must

include a field to contain the category value. The

44

form must also be implemented using four specific

SQL*Forms user exits that have been developed as part

of this interface ("user exit" is a term used by

SQL*Forms). Once a developer is familiar with

SQL*Forms design, adding in these four user exits is

not difficult. These user exits actually link the

form to a DBMS base table, not directly to a GRASS

map. The DBMS table must in turn be linked to a GRASS

map by the methods outlined above. In this way a

single form may be linked to many maps, and vice

versa, while still maintaining a normalized DBMS

database. The implemented form can be used either

alone or as part of the interface. When a linked form

is executed, one of the user exits determines if the

form was started by the interface. If the form was

started by the interface, the appropriate links are

automatically made to GRASS. If the form was not

started by the interface, it can be used to access the

DBMS data, but with no interaction with GRASS. In

this way, only one form is needed, not one for when

using GRASS and a separate one for when not using

GRASS.

The specific information describing each form-to-table link

(i.e., table name, form name, etc.) is stored in a special

DBMS table referred to as the form-to-table "link" table

45

(formtodbmslink) . This information is specified by the

SQL*Forms-form/DBMS-table developer, and only has to be

done once for each linked form/table. As with the map-to-

table link, in most instances the user does not need to

know any of this information other than the map name and,

in some cases, the form name. If the user does need to

specify any of this information, utility programs are

provided to display the needed information. In most cases,

the interface programs access and use this link information

transparently. In order to conveniently view the indirect

form-to-map links, a DBMS user view (grass to form link)

has also been created. The information in this user view

is generated, automatically, from the tables

grassto_ dbmslink and formtodbms link.

General interface operation

This section discusses, in general terms, how the category

values are used by the interface during processing. Most of

this occurs automatically, and is totally transparent to the

user. The sequential steps that occur when the interface is

run are described below.

46

1. The user types in the interface command and includes

any command line options desired. For example:

db.interface map=pantherobs method=area where="Date

>= '01-Jan-91'"

2. The GRASS spatial selection method (just "method" in

the following discussion) is started by the interface.

Once started, the method controls subsequent events.

It tells the interface what to do and when to do it

(e.g., apply the SQL filter, display DBMS data,

display GRASS features).

The method is Spatial Selection Method (AREA-Transect)

applied to Category Values

the GRASS map 2

to create the Categories
3

i n i t i a 15
4

tentative set -
6

of category

values. For
Figure 8. The spatial selection

example, the method is used to create a tentative
set of category values.

AREA method

(transect option) would return the category values of

all features occurring in the specified transect area

(Figure 8). The spatial selection method determines

47

the specific map features that are selected, and then

finds the category values of these features. Once the

category values have been determined, there are no

more spatial distinctions made among features. For

example, if a feature is selected using the AREA

method (and it passes the non-spatial criteria also)

and it has a category value of 22, then any GRASS

feature in the map with a category value of 22 will be

highlighted on the GRASS map, whether it occurs in the

selected area or not. This is why it is important to

assign unique category values to every feature in a

map.

Select the DBMS records which have the
3. The tentative GRASS category values.

s e t o f
Obs. # Panther # Date Time

categories

Categories
f ound above ------ ie 22 1Deo- 9:20am

3

is passed to . - _ _ 4 12 1Jan-91 227pm

4

the DBMS
6 6 14 16-Jan-91 6:11pm

selection

f u n c t i o n
Figure 9. Non-spatial selection

which applies processing, part 1. Only those
records having the selected category

t h e values are retained.

non-spatial SQL query selection criteria to the set of

values. This results in the final set of category

values (Figure 9 and Figure 10).

48

4. Te fial st .. WHERE (Date >= '01-Jan-91')
4. The final set

of category Obs # Panther# Date Time

values is
Categories

sent to the

ap r p i t 12 16-Jan-91 2:27pM - 4appropriate 4a aomr

p r o g r a m 6 14 18-Ja91 611pm 6

functions to

be used to:
Figure 10. Non-spatial selection
processing, part 2. The WHERE clause
is applied to refine the selection.

a. Display/high, This creates the final set of category
values.

ight the

corresponding GRASS map features in the GRASS graphics

display window (Figure 11).

b. Select and GRASS DBMS

display the
*

c rd Obs. # Panther # Date Time
corresponding*

4 12 15-Jan-91 2:27pm

DBMS data in * 6 14 1S-Jan-91 6:11pm

t h e t e x tA Number of rows found: 2

d i s p l a y

w i n d o w,

either in the
Figure 11. An example of the GRASS

simple line- and DBMS data display. The GRASS map
would be displayed in a graphics

based output window, the DBMS data in a separate
text window.

(Figure 11)

49

or the form-based output, depending on which program

was used.

Query Formation

The general operation of the interface when performing a

query was discussed above. This section describes

specifically how the DBMS query is formulated and executed.

The spatial selection methods control what the interface

does, and when. The interface, for this reason, can be

considered a slave to the selection methods. The selection

methods generate the tentative list of category values for a

query. The procedure used to generate this list is, of

course, a function of the particular method used. When a

selection method selects a category value, the value is

passed to the interface where it is initially stored as a

member of a doubly linked list. Before a value is added to

the list, however, the list is scanned to check if the value

is already stored. If it is, the duplicate is not added to

the list. The selection method will continue passing

category values to the interface in this manner until it is

finished its selection process. Note that a doubly linked

list is not an optimal storage structure for this activity.

The speed of "insert" and "member" operations are of 0 (N) ,

50

where N is the number of categories in the list. A tree-

based implementation such as a 2-3 tree would provide

O(log 2N) performance. A switch to a more efficient

implementation can be made relatively easily, since the data

structure is not directly used by client functions. All

needed operations on the list are provided by functions, so

the implementation can be changed without affecting any

functions which use the list. The programs would need to be

re-compiled, however, if the implementation were changed.

At the completion of the spatial selection process,

therefore, the doubly linked list will contain the set of

category values selected by the method. The method then

requests that the interface apply the "SQL filter." The SQL

filter is an SQL SELECT statement that is generated by the

interface based on the categories in the list and the user's

non-spatial selection criteria (i.e., the FROM and WHERE

clauses of the SELECT statement). To perform the filter, the

categories in the list are first inserted into a DBMS table

referred to as a "category table." The actual name of this

table in the database can be set in the "settings" files

described later. For our discussion, it will be called

CAT 1. This table has a single column named "category", and

is created automatically the first time a user uses the

interface. A separate CAT_1 table is created for each user.

51

Once created, CAT_1 is used for all future interface

sessions, as it is not dropped when the interface terminates.

The interface retrieves the link information (e.g., the base

table name and category-column name) from the GRASS-to-DBMS

link table and begins to form the SELECT statement. Any

user-specified joins of the base table with other tables are

built into the statement. The generated SELECT statement

also includes a join with CAT_1 such that the only DBMS

records retrieved are those which have category values that

are also contained in CAT_1. The only column selected by

this SQL filter is the category value column from the base

DBMS table.

The generated SELECT statement is actually a subquery of an

INSERT statement. The category values retrieved by the

SELECT statement are inserted into a second category table

which we will call CAT_2. The CAT_2 table is identical in

structure to CAT_1, and is also automatically created for

each user the first time he/she uses the interface. Upon

completion of the query, therefore, CAT_2 contains only the

category values that were selected by the spatial selection

method and that passed the SQL filter. The category values

in CAT_2 can be used in any way needed by the selection

method. In most cases, at the request of the selection

52

method, the category values in CAT_2 are used to highlight

the GRASS map features on the graphics screen.

At the request of the selection method, the CAT 1 table is

next used in another query of the DBMS database in order to

display the DBMS data. The generated SELECT statement is

very similar to the SELECT statement generated for the SQL

filter. In this case, however, the SELECT statement is not

a subquery of an INSERT statement. The major difference in

the SELECT statement itself is that instead of selecting only

the category values, all of the user-specified table columns

are selected. The only other difference is that this SELECT

statement would include the ORDER-BY clause if one was

specified by the user. The ORDER-BY clause is not allowed in

subqueries of an INSERT statement. The FROM and WHERE

clauses are identical for both queries. The query is formed,

executed, and the results are displayed in the text window.

Note that the method used here to connect the categories of

a GRASS map to the attributes in DBMS tables can be thought

of as a relational join from the DBMS to the GRASS map

itself. Although the mechanics of performing this operation

are complex, the analogy of a join is useful and valid. From

this perspective, the GRASS map is simply another table that

can be queried in the combined GRASS/DBMS domain, and the

spatial selection methods act as spatial "extensions" to SQL.

53

Interface Software Structure

The basic structure of the interface programs is shown in

Figure 12. This figure shows the interface system at a high

level of abstraction which includes the main software modules

and the relationships among them. The ovals represent the

two separate versions of the interface, db.interface and

db.forms.interface. The boxes represent the major functional

units (modules) which form the programs. In each box is a

list of one or more C program files which are the major

components of the module. Each file contains a number of

related functions which perform certain types of tasks.

There are many more C files used to create the programs but

these are not shown. The files that are not shown are

primarily library functions which perform various support

tasks for the modules shown. The solid lines between boxes

indicate that the modules are linked to form a single

executable program. The "pipes" between boxes indicate that

the modules on either side are separate processes that

communicate via UNIX pipes. The arrows indicate that the

module at the base of the arrow executes the process at the

head of the arrow.

Both versions of the interface, db.interface and

db.forms.interface, are shown in Figure 12. These two

54

U U) U W V a

Q. O .d U w o U cad

C 44 Uw w 04 4

a' w -r I O 01 (a O
H U 1:21 4 C/) U -1

4 W ro v 04

cn O U

4 v
cd

O
w

U U
4J

(4-4 A 4 r-{ -rl
U 4 _ O

- U) w 4Ui w N

0 co 44 a) m 0 4J

4 W b)l v H +, +- 4-4

4-4 U 0 c r
cf) r r O

x U) U)

w
N U Q 'd 'd

O O u
v v 4J

ri CO 4-)
u10 U N +) U 1,

U) r-I U Ul
U cn N p

-rA U C!) H b1 U

04 04
V!

U) U
U) V

U)

C7 bi Q

v

O o UQ " 4

4-J 04

-a 4
- (o

v i--I

4J rA c N U
O m

d

a--) ai

0 O (d
v

U 4
U.. t)) d vro0 d N vro N

O O i-J U a) -, N U 'n

E 0-0 A4 4-) r-i

Q. "U C C rn N C vI pq ~

E ro N rl U N U 3 U C]

E U CA [X O S4 .ri
b)

ro 0) rl a) S4 GL O Q. -rl

^ o rf C ' vUX x

E a Elm a) mCgH

+- ro m10 a -0 a) my 0 z

J . -4 4 " O C rA r-i r -A -0 D

04 5 0) 0 a)E j 0 :l :j J 0

a ro w o a) 0 0 0 0 ro-ro r
04 -I

f-, S:,. a, X w0E QE xE x >

4 $4

0 w

55

programs are created separately but, as the diagram

illustrates, they both use the same major modules. The

db.forms.interface program requires some additional modules

for interfacing with the screen forms, and requires slightly

modified versions of the interface-control and user-input

modules. The DBMS driver and all of the spatial selection

method drivers are the same for both versions of the

interface.

The interface has been implemented using ORACLE, but the

system was designed to enable the use of other DBMS software.

For this reason, all DBMS-specific information and functions

were placed into a single DBMS driver module. This

DBMS-specific driver accesses the DBMS in whatever way is

required by the particular DBMS. The ORACLE DBMS driver was

implemented using ORACLE's Pro*C software, which allows a

programmer to embed SQL commands into a C program. The Pro*C

Precompiler converts the SQL commands into C calls to the

ORACLE DBMS. The precompiled version of the driver is then

compiled with a standard C compiler. The file dbmsdrvmain.c

contains driver functions containing only C code. The file

dbmsdrvdbms.pc contains those driver functions which make

DBMS calls, and is the file which must be precompiled.

The DBMS driver is executed by the interface at runtime, and

communicates with the interface via UNIX pipes. All

56

communication between the interface and the DBMS driver is

performed by functions in dbmsint_basic.c and dbmsint_forms.c

via calls to a set of high-level communication functions in

the file hilevelpipe. c (not shown) . Note that the functions

in hilevelpipe.c are used for all interprocess communication

for this system. By implementing the DBMS interaction

functions in this way, any DBMS can be used as long as a

driver is written for it that supports the database query

requests from the interface (i.e., ANSI standard SQL SELECT

statements). The particular DBMS driver to be used when

running the interface is specified in system-wide and/or

user-specific "settings" files.

When either version of the interface is run, the command line

may include a spatial selection method name. If no method is

specified on the command line, a system-specified, or user-

specified default method is used. The appropriate method

driver is executed by a function in the grssint.c file. All

communication between the interface and the method is

performed by other functions in grssint.c via calls to the

set of communication functions in the file hilevelpipe.c.

The SQL*Forms version of the interface, db.forms.interface,

also uses a driver process to execute the DBMS screen forms.

Although this project proposal did not originally include a

generic screen-form capability (only an ORACLE-specific

57

screen-form capability was proposed), a generic

forms-interface structure was implemented. A function in

formsint.c executes a DBMS-specific forms driver process

which executes the form and communicates with the interface

via UNIX pipes using the hilevelpipe.c functions.

In the ORACLE implementation, a two-step process is required.

The forms-driver (oraclefdrv. c) is executed and it, in turn,

executes a modified version of the ORACLE SQL*Forms program.

The SQL*Forms program was modified using standard SQL*Forms

and Pro*C techniques that enable a programmer to link

functions, called "user exits", into SQL*Forms. Four

interface-to-forms communication functions were linked into

the ORACLE SQL*Forms program. These functions are contained

in the file iaxpcc.pc. The user exits implemented for this

project are form-independent. All ORACLE screen forms that

are linked to a GRASS map can use the same SQL*Forms program

without modification. Each linked screen form itself,

however, must be created or modified to make use of the user

exits, as this is not an automatic process. Note that the

same SQL*Forms program can be used by any ORACLE screen form,

whether it is linked to a GRASS map or not. The ability to

link with a GRASS map is strictly an add-on capability that

does not affect the use of the SQL*Forms program in any way

for non-linked forms.

58

The interaction of the interface with a screen form is

complex and is constrained by the limitations and

restrictions of the SQL*Forms program. It was much more

difficult to create the interface to the ORACLE screen-form

than it was to create the basic interface. Other DBMS

programs may be either easier or harder than ORACLE to link

with the screen-form interface. It may be impossible to link

some programs to the forms interface. The structure of the

interaction with different DBMS screen forms has been

implemented, however, and the particular DBMS forms-driver

executed is based on the DBMS specified in the "settings"

files.

The implementation of the DBMS driver, screen-form driver,

and the selection method drivers meets the system design

objectives outlined previously. The implementation allows

other DBMS drivers and selection methods to be developed

without any need to modify the interface programs. Any new

drivers that are developed in the future can make use of

library functions which handle the driver-side communication

and other common tasks. This allows the developer to

concentrate on the driver-specific operations, and not the

"overhead" tasks needed for all drivers.

Most of the graphics tasks, such as displaying the GRASS maps

and highlighting the selected GRASS map features, are handled

59

by functions contained in grassgraphics.c. Many of these

operations are performed at the request of the selection

method drivers. For example, it is the selection method

drivers that request that the selected map features be

highlighted. The system was implemented in this way so that

selection method programmers could implement new methods

easily without having to deal with low-level graphics

processing for common tasks. Method-specific graphics

operations such as used in the AREA selection method (e.g.,

allowing the user to draw a complex polygon on the screen),

however, are performed locally by the selection method, not

by the functions in grassgraphics.c. Some of these

method-specific graphics tasks are available as library

functions which can be used by future programmers.

The command-line input is processed by two different

functions. The basic interface uses the function in

userinput.c, the forms interface uses the function in

formsuserinput. c. Both of these functions use the standard

GRASS command-line parser, a library function which is

included as part of the GRASS distribution. These two files

specify all of the valid command-line arguments for the

programs. If a user chooses not to specify the command-line

arguments, the parser automatically starts a simple

interactive user input process. For each argument, the

parser prompts the user for input. Included with the prompt

60

is a list of any specified options and/or the default for the

argument. After the user enters each response, the parser

displays the response and requests confirmation of the

answer. In this way, all arguments are input to the program.

The parser is very simplistic, but it provides a consistent

"look and feel" to all GRASS programs. This is an important,

but difficult, objective to achieve when programs are

developed by dozens of different programmers across the

country. The standard command-line parser helps to achieve

this objective. Although consistency is a valid goal, the

line-based input of the parser is rather primitive in the

present, graphically oriented, computer environment. For

this reason, a graphical user interface was also developed

for the interface programs.

The graphical user interfaces were developed using Xgen.

Xgen is a public domain Motif-based program used for the

rapid creation of user interfaces. Creating the interface

consist I developing an interface description script. This

script defines the characteristics of the interface to be

implemented. The script is then interpreted by Xgen at

runtime. The scripts which were developed for this project

simply collect the information needed for the command-line

arguments. The information is then used to form a command-

line for the standard interface programs, which are executed

by Xgen. It is important to recognize that the Xgen scripts

61

are merely "on top of" the interface programs, they are not

modified versions of the programs.

This interface system is intended for distribution to the

entire GRASS user community. In order to make this

practical, sufficient flexibility must be incorporated into

the system to allow customization to meet the needs or

preferences of different installations and users. Some of

the main features which allow this flexibility, such as using

DBMS and method drivers, have already been discussed. In

addition to this, the system supports the use of four types

of "settings" files which specify values for a wide variety

of variables. The particular DBMS being used for a session

is just one of these values that has been mentioned

previously. Other variables include DBMS schema, table, and

form names, map feature highlight color, and the default

spatial selection method. The four types of settings files,

in increasing priority order, are: (1) system-wide, DBMS-

independent; (2) system-wide, DBMS-specific; (3) user, DBMS-

independent; (4) user, DBMS-specific. Any of the variables

can be set in any of the files, but a variable which is set

in a lower priority file will be overridden by a value for

the variable set in a higher priority file. This capability

allows the system administrator to define global default

settings for the installation and any settings that vary from

one DBMS to another (e.g., ORACLE may have one set of table

62

names, Informix a different set). Users can override these

system-wide settings by creating their own settings files.

This would allow the user to use a private DBMS database

rather than the system-wide database, for example. More

commonly, a user might specify his/her preferred

database-output delimiter and map feature colors.

In addition to the settings files, DBMS-specific terminal

mapping files exist for the interface system. One file is

needed for each DBMS used. Each file contains terminal-

definition to DBMS-definition mappings needed for the forms

version of the interface. Each entry in this file consist of

a terminal definition (as stored in the TERM environment

variable) followed by the corresponding value used by the

DBMS for displaying screen forms. This setup may not be

needed by some DBMS form programs, and it may not be adequate

for others, but the format is general enough that it should

be adequate for most systems. The systems administrator must

modify these files to add the terminal mappings for the

particular terminals used at his/her installation.

PROGRAM DESCRIPTIONS

As noted previously, this interface software system consists

of a variety of programs that work together or alone to

63

provide a number of services to the user. The system

consists not only of the interface programs, but also of

support programs for managing the links between GRASS and the

DBMS, and for creating new reclassified maps. Many programs

have two versions, one that provides line-based DBMS output

and one for SQL*Forms forms-based output. All programs were

developed using the standard GRASS parser in order to retain

the same "look and feel" as other GRASS programs. Therefore,

program options can be entered either as command line

arguments or as responses to prompts from the parser. Xgen

graphical user interface scripts are also provided "on top

of" most of the programs to provide a more convenient way of

using the programs, particularly for novice users.

The programs were developed on a SUN SPARCstation 2 using

SunOS 4.1.2, GRASS version 4.0, ORACLE version 6.0, ORACLE

Pro*C version 1.3, and ORACLE SQL*Forms version 3.0. You

must start GRASS prior to running any of these programs. The

programs that form the software system are listed below.

* Interface programs

These two programs are the core of the system. These are

the programs which users use to query and display data from

the joint GRASS/DBMS database.

64

db.interface:

This version of the interface produces line-based DBMS

output to the screen. This version also allows the

user to print or file the DBMS output data, and use

the DBMS data to create a new reclassified GRASS map.

* db.forms.interface:

This version of the interface produces ORACLE

SQL*Forms-based DBMS output. This version does not

allow the user to print or file the DBMS output data

or use the DBMS data to create a new reclassified

GRASS map. The user can, however, step through the

DBMS output one record at a time and save any changes

to the DBMS data. To use this version of the program

with other DBMS packages, a screen-forms driver would

need to be developed in addition to the new DBMS

driver.

Both of these programs support the same spatial selection

methods. The methods currently available are described

below. Methods are implemented as drivers, so additional

methods can be developed easily without the need to modify

the interface itself. The spatial selection method selects

an initial, tentative, set of map features which is then

65

further refined by the SQL SELECT statement clauses

provided by the user, if any. All of these methods can be

used with any map type (raster, vector, or site).

PICK:

The user uses a mouse to select one or more specific

GRASS map features from the GRASS display screen.

* AREA:

The user uses a combination of mouse and/or keyboard

input to draw areas of interest on the GRASS display

screen. The user has four ways to define the areas.

Any combination of one or more areas is allowed for

any given query (e.g., two circles, three polygons,

and one transect).

* Polygon: Using the mouse, the user can draw a

complex polygon on the screen around an area of

interest.

* Transect: The user has the option of either

square or rounded ends of the transect. Using

the mouse, the user can draw a multi-segment line

along a path of interest. A buffer width for the

66

transect is entered at the keyboard, the transect

path is calculated using the buffer value, and

the transect boundaries are displayed on the

screen. The full transect area is then used by

the interface to select the initial set of

features.

f Subregion: Using the mouse, the user specifies

two diagonal corners of a rectangular area. The

edges of the rectangle are calculated and

displayed on the screen.

* Circle: Using the mouse and/or keyboard, the

user specifies the center point and radius of a

circle. The circle is calculated and displayed

on the screen.

OVERLAY:

The user uses an existing vector map's area features

to select GRASS features from the linked map of

interest (raster, vector, or site map). The vector

map is "overlaid" on the linked map. The user can

specify the areas of interest from the overlaid vector

map in three ways:

67

* Pick: Using the mouse, the user can select one

or more specific areas from the overlay vector

map. These specified areas will be used to

select features from the underlying linked map.

* All: All areas in the vector map are used for

the selection of features from the linked map.

* Category file: Prior to running the interface,

the user can create a file containing a list of

category values. These category values

correspond to the category values of areas in the

vector overlay map. When the user runs the

interface and specifies the category file name,

all areas in the overlay vector map that have a

category value matching a value contained in the

file will be used to select features from the

underlying linked map. The overlay vector map

must be labeled for this option to work.

REGION:

All features of the linked map within the currently

defined GRASS region (called a window prior to GRASS

4.0) are selected. The GRASS region is the "active"

68

geographic area being used by GRASS. Anything outside

of the region is ignored.

MAP:

All features within the linked GRASS map are selected.

In this case, DBMS information may be displayed for

GRASS features which fall outside of the current

region and, therefore, are not highlighted in the

GRASS display window.

NONE:

No spatial selection is made. All features within the

linked DBMS table are used as the initial set of

features prior to applying the SQL SELECT statement.

In this case, DBMS information may be displayed for

GRASS features which do not occur in the current map

or current region and, therefore, are not highlighted

in the GRASS display window.

Link support programs

There a number of support programs needed for this system.

These programs are used for creating, modifying, deleting,

69

and viewing the links between GRASS maps and DBMS tables

and between SQL*Forms screen forms and DBMS tables. This

link information is needed by the interface programs to

perform the joint GRASS/DBMS queries. These programs can

also be used by users to determine what information is

available in the linked GRASS/DBMS database.

Line-based input/output support programs for the basic

interface:

f db.makelink: Allows creating and deleting GRASS-

map to DBMS-table link records.

* db.viewlinks: Allows viewing GRASS-map to DBMS-

table link records.

* ORACLE SQL*Forms related programs for managing links.

You must have the ORACLE SQL*Forms option to use these

programs. Two methods of managing links are provided.

* Forms -- Standard ORACLE forms have been created

for accessing this information. These forms can

be used by running the program db.links. This

program allows the user to use any one of the

three link table/view forms (described below)

that are provided with this system. The

70

particular form is specified by a command-line

argument.

The grass todbmslink form supports creating,

modifying, deleting, and viewing the GRASS-map to

DBMS-table link records. This form provides all

of the capabilities of db.makelink and

db.viewlinks, but uses a screen form instead of

line-based input and output.

The form to dbmslink form supports creating,

modifying, deleting, and viewing the ORACLE

SQL*Form to DBMS-table link records.

The grass to form link form supports viewing

(only) the indirect GRASS-map to ORACLE SQL*Form

link records. These links are actually just a

DBMS "user view" created from the real links in

grass to dbms link and form to dbms link.

* Line-based input/output programs -- This program

provides an alternative method of viewing

GRASS-map to SQL*Form link records.

71

db.view_gflink: Displays GRASS-map to

ORACLE SQL*Form link records from the

grasstoformlink user view.

Map reclass programs

These can be used either as stand-alone programs or from

within db.interface (but NOT from within

db.forms.interface) . These programs were developed

primarily to support direct creation of reclassified maps

from within the GRASS to DBMS interface. The

reclassification is based on the selected features' DBMS

information.

These new maps can then be used with any appropriate GRASS

program for display or analysis. In this way, the

interface provides "indirect" support for GRASS map

analysis.

db.v.reclass:

Reclasses GRASS vector maps based on DBMS output

information.

72

db.s.reclass:

Reclasses GRASS site maps based on DBMS output

information.

* db.reclass:

An interface to db.v.reclass, db.s.reclass, and

r.reclass (the standard GRASS raster map reclass

program). Using this program, reclassifications can

be performed based on integer, floating point, or text

(alphanumeric) fields of the database. For floating

point and text data, the program automatically creates

an integer category value, which is required by GRASS,

for each unique floating point value or text string

(case sensitive or insensitive); the floating point

values or text strings can optionally be retained as

labels for the categories.

Xgen graphical user interface programs

* db.menu:

This is an Xgen interface to the line-based programs.

In addition, db.menu provides the capability of saving

73

db.interface "sessions" for later use. All of the

information used for a query (map and table names,

spatial selection method, SQL clauses, etc.) is saved

in a session file. This session file can be retrieved

and used at a later time. This is particularly useful

for designers, who can create standard sessions for

use by other, inexperienced, users. The line-based

programs accessed by db.menu are db.interface,

db.makelink, and db.viewlinks.

U db. forms.menu:

This is an Xgen interface to the ORACLE SQL*Forms

programs and forms. In addition, db.forms.menu

provides the capability of saving db.forms.interface

"sessions" for later use. All of the information used

for a query (map and form names, spatial selection

method, etc.) is saved in a session file (SQL clauses

ARE NOT saved). This session file can be retrieved

and used at a later time. This is particularly useful

for designers, who can create standard sessions for

use by other, inexperienced, users. The line-based

programs accessed by db.forms.menu are

db.forms.interface, db.links. You must have the

ORACLE SQL*Forms option to use this program.

74

FUTURE WORK

There are a number of possible improvements and enhancements

to this software which may be done in the future, some of

these are listed below.

" Enhance/improve existing spatial selection methods.

Some of the algorithms currently used need to be made

more efficient. For example, plane-sweep methods for

detecting rectangle intersections, as outlined in

[Samet-90], may be used to improve the speed of the

AREA and OVERLAY selection methods.

" Add support for latitude/longitude GRASS databases.

This requires modifications to the spatial selection

methods.

" Add support for site location coordinates (UTM and

latitude/longitude) contained within the DBMS tables

(i.e., no GRASS map will be needed).

" Add automatic vector buffer generation around existing

vector map features (e.g., automatically generate a

500 meter buffer on either side of an interactively

user-specified road).

75

Add support for a file of coordinates to be used to

generate polygons, subregions, transects, and circles

in the AREA spatial selection method.

Add full computer network support (some support is

built-in already).

* For the SQL*Forms version of the interface, highlight

the individual map features corresponding to each form

record as the user steps through the records (at this

time, all of the selected features are highlighted on

the GRASS display, the user does not know which

specific selected feature(s) correspond to which

specific DBMS record).

" Allow interactive selection of DBMS tables, columns

and SQL operators for query formation and display when

using db.menu.

SUMMARY

This software system provides an easy to use interface

between the GRASS GIS and ORACLE DBMS. Other DBMS software

can be used if appropriate DBMS drivers are written. The

interface allows the user to apply both spatial and non-

76

spatial criteria for any query of the database. Spatial

criteria are specified by using one of the spatial selection

methods. There are currently six spatial selection methods

provided: PICK, AREA, OVERLAY, REGION, MAP, and NONE. The

AREA and OVERLAY methods have a number of sub-methods

available for selecting the features of interest. Non-

spatial criteria are specified using ANSI standard SQL. The

results of the query are displayed both graphically and

textually. Using the basic interface, db.interface, the user

can view, print, or file the DBMS output, or use it to

directly create a new reclassed GRASS map. Using the ORACLE

SQL*Forms interface, db. forms. interface, the user can view

and update the DBMS attribute data for the records retrieved

during a query.

77

REFERENCES

[Abel-89] D.J. Abel. "SIRO-DBMS: A Database Tool-Kit for
Geographical Information Systems". Int. J. Geographical
Information Systems, vol. 3, no. 2, 1989. (pp. 103-116)

[Abel/Smith-86] D.J. Abel and J.L. Smith. "A Relational GIS
Database Accommodating Independent Partitionings of the
Region". Proceedings: Second International Symposium On
Spatial Data Handling, 1986. (pp. 213-224)

[Anthony/Corr-88] S.J. Anthony and D.G. Corr. "Data
Structures in an Integrated Geographical Information
System". ESA Journal, vol. 12, no. 1, 1988. (pp. 69-72)

[Armstrong/Densham-90] M.P. Armstrong and P.J. Densham.
"Database Organization Strategies for Spatial Decision
Support Systems". Int. J. Geographical Information
Systems, vol. 4, no. 1, 1990. (pp. 3-20)

[Burrough-86] P.A. Burrough. Principles of Geographical
Information Systems for Land Resources Assessment.
Monographs on Soil and Resources Survey No. 12. Oxford
University Press, New York, NY, 1986.

[Clarke-86] K.C. Clarke. "Recent Trends in Geographic
Information System Research". Geo-Processing, vol. 3,
1986. (pp. 1-15)

[Cowen-88] D.J. Cowen. "GIS Versus CAD Versus DBMS: What Are
the Differences?". Photogrammetric Engineering and Remote
Sensing, vol. 54, no. 11, 1988. (pp. 1551-1555)

[Dangermond-86] J. Dangermond. "Geographic Database Systems".
Geo-Processing, vol. 3, 1986. (pp. 17-29)

[Dangermond/Freedman-86] J. Dangermond and C. Freedman.
"Findings Regarding a Conceptual Model of a Municipal
Database and Implications for Software Design". Geo-
Processing, vol. 3, 1986. (pp. 31-49)

[Farley-9 3] J. Farley. Workshop V: Data Base Management and

GRASS. Unpublished workbook for a workshop at the 8th

Annual GRASS GIS User' s Conference and Exhibition, Reston,
Virginia, 1993.

[Frank-8 8] A.U. Frank. "Requirements for a Database

Management System for a GIS". Photogrammetric Engineering
and Remote Sensing, vol. 54, no. 11, 1988. (pp. 1557-

1564)

78

[Gerdes-91] D. Gerdes. GRASS Vector Library Changes (Beta
Version). Unpublished report. Construction Engineering
Research Laboratory, Champaign, Illinois, 1991.

[GISWorld-89A] Anonymous. "TIGER Promises Roar". GIS World,
vol. 2, no. 1, 1989.

[GISWorld-89B] Anonymous. "The U.S. Federal Agencies". GIS
World, vol. 2, no. 2, 1989.

[Goh-89] P.C. Goh. "A Graphic Query Language for Cartographic
and Land Information Systems." Int. J. Geographical
Information Systems, vol. 3, no. 3, 1989. (pp. 245-255)

[Goran-92] B. Goran. "New GRASS Seeds". GRASSClippings, J.
Open Geographic Information Systems, vol. 6, no. 3, 1992.
(p. 6)

[Haralick-80] R.M. Haralick. "A Spatial Data Structure for
Geographic Information Systems". In H. Freeman and G.G.
Pieroni (eds.), Map Data Processing, Academic Press, New
York, 1980.

[Jackson/Mason-86] M.J. Jackson and D.C. Mason. "The
Development of Integrated Geo-Information Systems". Int.
J. Remote Sensing, vol. 7, no. 6, 1986. (pp. 723-740)

[Jackson et al-88] M.J. Jackson, W.J. James, and A. Stevens.
"The Design of Environmental Geographic Information
Systems". Philosophical Transactions of the Royal Society
of London, series A, vol. 324, 1988. (pp. 373-380)

[SFRC-90] South Florida Research Center. An Assessment of
Hydrological Improvements and Wildlife Benefits from
Proposed Alternatives for the U.S. Army Corps of
Engineers' General Design Memorandum for Modified Water
Deliveries to Everglades National Park. U. S. National
Park Service, Everglades National Park, Homestead,
Florida, 1990.

[Joseph/Cardenas-88] T. Joseph and A.F. Cardenas. "PICQUERY:
A High Level Query Language for Pictorial Database
Management". IEEE Transactions on Software Engineering,
vol. 14, no. 5, 1988. (pp. 630-638)

[Keating et al-87] T. Keating, W. Phillips, and K. Ingram.
"An Integrated Topologic Database Design for Geographic
Information Systems". Photogrammetric Engineering and
Remote Sensing, vol. 53, no. 10, 1987. (pp. 1399-1402)

79

[Lorie/Meier-84] R.A. Lorie and A. Meier. "Using a Relational
DBMS for Geographical Databases". Geo-Processing, vol. 2,
1984. (pp. 243-257)

[Maffini-87] G. Maffini. "Raster Versus Vector Data Encoding
and Handling: A Commentary". Photogrammetric Engineering
and Remote Sensing, vol. 53, no. 10, 1987. (pp. 1397-
1398)

[Monmonier-82] M.S. Monmonier. Computer-Assisted Cartography:
Principles and Prospects. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1982.

[Muller/O'Connor-82] J.R. Muller and R.P. O'Connor.
"Representing Topological Properties in Raster Data
Structures". In J. Foreman (ed.) , ISPRS IV -
Proceedings, International Society for Photogrammetry and
Remote Sensing and American Congress on Surveying and
Mapping, Falls Church, Virginia, 1982.

[Nagy/Wagle-79] G. Nagy and S. Wagle. "Geographic Data
Processing". Computing Surveys, vol. 11, no. 2, 1979.
(pp. 139-181)

[NPS-93] National Park Service. National Park Service GIS
Sourcebook. NPS Geographic Information Systems Division,
Denver, 1993.

[Peuquet-84] D.J. Peuquet. "Data Structures for a Knowledge-
Based Geographic Information System". Proceedings of the
International Symposium On Spatial Data Handling, Volume
II, 1984. (pp. 372-391)

[Peuquet-86] D.J. Peuquet. "The Use of Spatial Relationships
to Aid Spatial Database Retrieval". Proceedings: Second
International Symposium On Spatial Data Handling, 1986.
(pp. 459-471)

[Robinson et al-86] V.B. Robinson, M. Blaze, and D. Thongs.
"Representation and Acquisition of a Natural Language
Relation for Spatial Information Retrieval". Proceedings:
Second International Symposium On Spatial Data Handling,
1986. (pp. 472-487)

[Roussopoulos et al-88] N. Roussopoulos, C. Faloutsos, and T.

Sellis. "An Efficient Pictorial Database System for PSQL".
IEEE Transactions on Software Engineering, vol. 14, no. 5,
1988. (pp. 639-650)

80

[Samet et al-84] H. Samet, A. Rosenfeld, C.A. Shaffer, and
R.E. Webber. "Use of Hierarchical Data Structures in
Geographical Information Systems". Proceedings of the
International Symposium On Spatial Data Handling, Volume
II, 1984. (pp. 392-411)

[Samet-90] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, 1990.

[Schell-92] D. Schell. "Greetings from The Open GRASS
Foundation". GRASSClippings, J. Open Geographic
Information Systems, vol. 6, no. 3, 1992. (p. 3)

[SCS-90] Soil Conservation Service. GRASS Geographic
Information System. SCS Cartography and GIS Division,
1990.

[Shapiro-80] L.G. Shapiro. "Design of a Spatial Information
System". In H. Freeman and G.G. Pieroni (eds.), Map Data
Processing, Academic Press, New York, 1980.

[Shapiro et al-89] M. Shapiro, J. Westervelt, D. Gerdes, M.
Higgins, and M. Larson. GRASS 3.0 Programmer's Manual.
USACERL ADP Report N-89/14. Construction Engineering
Research Laboratory, Champaign, Illinois, 1989.

[Shapiro/Westervelt-91] M. Shapiro and J. Westervelt. GRASS
Programming Changes. Unpublished report. Construction
Engineering Research Laboratory, Champaign, Illinois,
1991.

[Smith et al-87] T.R. Smith, S. Menon, J.L. Star, and J.E.
Estes. "Requirements and Principles for the
Implementation and Construction of Large-Scale Geographic
Information Systems". Int. J. Geographical Information
Systems, vol. 1, no. 1, 1987. (pp. 13-31)

[USArmy-91] U. S. Army Corps of Engineers. GRASS Version 4.0:
Geographic Resources Analysis Support System User's
Reference Manual. Construction Engineering Research
Laboratory, Champaign, Illinois, 1991.

[VanRoessel- 8 7] J.W. Van Roessel. "Design of a Spatial Data
Structure Using the Relational Normal Forms". Int. J.
Geographical Information Systems, vol. 1, no. 1, 1987.
(pp. 33-50)

[Waugh/Healey-8 7] T.C. Waugh and R.G. Healey. "The GEOVIEW

Design: A Relational Data Base Approach to Geographical

Data Handling". Int. J. Geographical Information Systems,
vol. 1, no. 2, 1987. (pp. 101-118)

81

[Webster-88] C. Webster. "Disaggregated GIS Architecture:
Lessons From Recent Developments in Multi-Site Database
Management Systems". Int. J. Geographical Information
Systems, vol. 2, no. 1, 1988. (pp. 67-79)

[Wu et al-89] J.-K. Wu, T. Chen, and L. Yang. "A Versatile
Query Language for a Knowledged-Based Geographical
Information System." Int. J. Geographical Information
Systems, vol. 3, no. 1, 1989. (pp. 51-57)

82

	Florida International University
	FIU Digital Commons
	11-30-1993

	An interface between the GRASS geographic information system and ORACLE relational detabase management system
	David Gordon Buker
	Recommended Citation

	tmp.1433792955.pdf.Va36_

