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ABSTRACT OF THE DISSERTATION
HYDROXYAPATITE-NANOTUBE COMPOSITES AND COATINGS
FOR ORTHOPEDIC APPLICATIONS
by
Debrupa Lahiri
Florida International University, 2011
Miami, Florida
Professor Arvind Agarwal, Major Professor

Hydroxyapatite (HA) has received wide attention in orthopedics, due to its
biocompatibility and osseointegration ability. Despite these advantages, the brittle nature
and low fracture toughness of HA often results in rapid wear and premature fracture of
implant. Hence, there is a need to improve the fracture toughness and wear resistance of
HA without compromising its biocompatibility.

The aim of the current research is to explore the potential of nanotubes as
reinforcement to HA for orthopedic implants. HA- 4 wt.% carbon nanotube (CNT)
composites and coatings are synthesized by spark plasma sintering and plasma spraying
respectively, and investigated for their mechanical, tribological and biological behavior.
CNT reinforcement improves the fracture toughness (>90%) and wear resistance (>66%)
of HA for coating and free standing composites. CNTs have demonstrated a positive
influence on the proliferation, differentiation and matrix mineralization activities of
osteoblasts, during in-vitro biocompatibility studies. In-vivo exposure of HA-CNT coated
titanium implant in animal model (rat) shows excellent histocompatibility and neobone

integration on the implant surface. The improved osseointegration due to presence of
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CNTs in HA is quantified by the adhesion strength measurement of single osteoblast
using nano-scratch technique.

Considering the ongoing debate about cytotoxicity of CNTs in the literature, the
present study also suggests boron nitride nanotube (BNNT) as an alternative
reinforcement. BNNT with the similar elastic modulus and strength as CNT, were added
to HA. The resulting composite having 4 wt.% BNNTs improved the fracture toughness
(~85%) and wear resistance (~75%) of HA in the similar range as HA-CNT composites.
BNNTs were found to be non-cytotoxic for osteoblasts and macrophages. In-vitro
evaluation shows positive role of BNNT in osteoblast proliferation and viability. Apatite

formability of BNNT surface in ~4 days establishes its osseointegration ability.
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1.0 INTRODUCTION

The aim of this study is to develop a composite material by reinforcing
hydroxyapatite (HA) with nanotubes for orthopedic application. The idea is to develop a
material that overcomes the existing limitations and disadvantages of hydroxyapatite in
terms of poor fracture toughness and wear resistance. An in-depth analysis of mechanical
and tribological properties of the newly developed material is conducted to establish its
benefits over HA. Considering the application of HA-nanotube composite in orthopedics,
different aspects of biocompatibility of the composite is evaluated using in-vitro and in-

vivo studies.

1.1 Hydroxyapatite for Orthopedic Applications — Advantages, Limitations and
Solution

The field of biomaterials is a rapidly emerging one, due to its direct relation with
the healthcare and impact on human health related issues. The biomaterials device market
was $115.4 billion in the year 2008 and is expected to be $ 252.7 billion in 2014 [1]. The
largest market size amongst all biomaterial products belongs to orthopedic biomaterials.
As a result, development and improvement of orthopedic related biomaterials is a very

active and growing research field.

Orthopedic biomaterials are mainly of two types. The first ones are implants and
fixing accessories, which are generally made of metals, ceramics, hard polymers or their
composites. Second category consists of scaffolds for tissue regeneration, which are
based on polymers - preferably the biodegradable ones and their composites.

Hydroxyapatite (HA) is very attractive for orthopedic implants as its chemical



composition is similar to the mineral crystallites present in human bone. Hydroxyapatite
is basically a calcium phosphate based bioceramic with the chemical formula as:
Ca;o(PO4)s(OH),. The bioactivity and osteoconductivity of HA offers a suitable surface
for new bone growth and integration [2-6]. Thus, HA is being vastly researched and
clinically used as free-standing implant, coating on metallic implants and also as
reinforcement to polymer scaffold material for tissue regeneration [2, 5, 7-13]. Figure 1.1
presents a schematic of a hip implant in human body and a picture of a metallic hip
implant with different parts [14-15]. As shown in the schematic, the stem part of the
implant goes inside the cavity of femoral bone. HA coating is applied on the stem part, in
order to have good bonding between the femoral bone and implant surface. The upper
surface of the shell is also coated with HA in some cases to have good bonding with the

pelvis.

" Detair

HiF (ACETBULAR) LEG (FEMORAL)
COMPOMNENT COMPONENT

Figure 1.1: Schematic of an orthopedic hip implant in human body and picture of a
metallic hip implant [14-15].




But the main shortcomings of freestanding HA implant or HA coatings are their
poor fracture toughness and wear resistance [3-5, 16-17]. Fracture toughness of dense HA
(1 MPa.m’?) is significantly lower than the minimum reported value for the cortical bone
(2 MPa.m®") [3]. Bones are the load bearing parts of a living body. They need to possess
good fracture toughness (Kic) to prevent cracking and fracture on the application of high
and cyclic loading during limb movement and actions. Thus, to replace bone as an
implant or coating, fracture toughness of HA needs to be improved. Poor fracture
toughness also results in low wear resistance of HA as wear volume loss in ceramics is
directly related to its fracture toughness [18]. Poor wear resistance causes greater volume
loss for HA due to continuous shearing force applied on implant surface during
movement of limbs. Apart from abrasion of the coating, generation of more wear debris

is also a problem inside the living body.

One of the possible solutions is reinforcement of HA by a second phase material
that can help in improving the fracture toughness and wear resistance of the HA matrix.
Researchers have also explored the possibility of using other hard ceramics [19-24],
polymers [25-26] and bio glasses [27]. Keeping in concern the biocompatibility of the
composite structure, the ideal reinforcement material is the one that can increase the
fracture toughness and wear resistance significantly with a low content of reinforced
phase. The lower content of reinforcement phase ensures introduction of minimum
foreign element inside living body. HA gets integrated with bone as it has similar
chemical composition to the mineral part of bone. Thus, it is important that the

reinforcement phase possesses excellent elastic modulus and strength, so that its



minimum content can increase the fracture toughness and wear resistance of HA

significantly.

1.2 Carbon Nanotubes: Potential Reinforcement to Hydroxyapatite

1.2.1 Scope of Improvement in Mechanical and Tribological Properties

Carbon nanotube (CNT), with its excellent stiffness and strength, has excellent
potential as reinforcement to HA for overcoming its limitation related to fracture
toughness and wear resistance. CNT possesses Young’s modulus in the range of 200-
1000 GPa [28] and tensile strength of 11-63 GPa [29]. Several studies on CNT reinforced
metal/ceramic/polymer matrix composites have successfully demonstrated its capability
of improving the structural properties, e.g., the strength, elastic modulus, fracture
toughness, wear resistance etc. [30-32]. Apart from improvement in elastic modulus,
CNT can improve the fracture toughness of any ceramic based composite system by
absorbing energy through crack deflection and crack bridging. The possible roles played
by CNT in improving the wear resistance are (i) increasing fracture toughness and (ii)
providing lubrication on wear track through peeling of graphene layers from CNT

surface.

1.2.2 Issues Related to Biocompatibility

The intended orthopedic application of HA-CNT composite demands a thorough
understanding of its biocompatibility. HA is already a clinically proven biomaterial and

in use as coating for metallic implants [33]. But, the biocompatibility of CNT is still



under debate [34]. Though, comprehensive reviews on this issue have agreed that the
reported cytotoxic response of CNT is mostly not due to CNT itself, but is associated
with the impurities and catalyst particles, degree of agglomeration, surface defects and
also on the effect of cell culture medium, secondary chemicals, and pH values [34-37].
Further, the biocompatibility of CNTs in orthopedic application is also established by
studies showing accelerated bone growth (in-vivo) [38] and increased proliferation and
differentiation of osteoblast (in-vitro) [39-41] in the presence of CNTs. The recent report
on biodegradation of CNT by human neutrophil and macrophage [42] strengthens the
drive for bio-related applications of CNTs. All these findings fortify the candidature of

HA-CNT composite in orthopedic application.

1.3 Boron Nitride Nanotubes: Alternative Reinforcement to Hydroxyapatite

The ongoing debate on the biocompatibility of CNTs also demands search for an
alternative reinforcement to HA. The alternative reinforcement phase should have the
strength and modulus similar or better than CNTs in addition to being biocompatibile.
Boron nitride nanotube (BNNT) has the capability to serve as an alternative. BNNT is a
structural analogue of CNT — formed with tubular shaped hexagonal boron nitride (hBN)
sheet. BNNT possesses elastic modulus (750-1200 GPa [43-44] and tensile strength (>24
GPa [45]) similar to CNT, which makes it a potential reinforcement for HA. BNNTs are
more flexible and elastic and can withstand heavy deformation without having damage in
the structure [46]. BNNT withstands higher fracture strain than CNT, which can lead to

higher fracture toughness for HA-BNNT as compared to HA-CNT [47]. These properties



are attractive when BNNTs are used as reinforcement for strengthening of
ceramic/polymer matrix. Moreover BNNTs show higher chemical stability than CNTs in
oxidative atmosphere with the oxidation starting temperature of 1223 K, as compared to
773 K for CNT [46]. This chemical inertness of BNNT remains an added advantage for
high temperature processing of BNNT reinforced ceramic composite at oxidative

atmosphere.

Another important consideration for using BNNT for orthopedic applications is its
biocompatibility. As BNNT is very new to the field of biomedical, only few studies are
available on the cytotoxicity of BNNTSs but none has reported negative effect on different
cell types [49-50]. BNNTs are found to be non-cytotoxic to human embryonic kidney

cells (HEK-293) [50] and human neuroblastoma cell line (SH-SYS5Y) [48].

Thus, theoretically, boron nitride nanotube has the capabilities to serve as an

alternative to CNT as reinforcement to HA in orthopedic application.

1.4 Objectives of the Current Research

The overall objective of this research is to reveal and establish the potential of
nanotubes (CNT or BNNT) reinforced HA based composite in orthopedic application — in
terms of mechanical properties; tribological behavior and biocompatibility (in-vivo and

in-vitro). This overall objective can be achieved through the following specific objectives:

. Analyzing the role of CNT reinforcement in fracture toughness and tribological

behavior of HA based composites and coatings.



. Understanding the role of CNT dispersion and HA-CNT interfacial bonding on the
performance of the composite.

. Exploring the potential of BNNT as an alternative reinforcement to HA in terms of
fracture toughness and tribological property improvement.

. In-vitro evaluation of biocompatibility of HA-nanotube composites by

proliferation, viability, differentiation and cytotoxicity assays using bone cell.

. In-vivo evaluation of biocompatibility of HA-nanotube composites through animal
study.
. Analyzing osseointegration ability and mechanical compatibility of HA-nanotube

composite surfaces through evaluation of
- apatite formability of the surface
- adhesion of bone cells on the surface

- mechanical property gradient through implant-bone interface

Figure 1.2 presents a summary of the research carried out during this study.

The dissertation has been arranged in different chapters, sections and subsections
to present a clear picture about the background and the state of the art; the methods
adopted in this study; the analysis of the outcomes with scientific interpretation and the
future scope of research and improvement. Chapter 2 provides a comprehensive literature
review on this topic. This chapter also highlights those research areas that have not been
paid much attention yet. Third chapter presents a detailed account of the methodology
adopted in this research. Explanation of the results and scientific analysis of the outcomes

in context with the objective of this research is discussed in chapter 4. The key points of



the research with an overview of the main outcomes are described as conclusion in
chapter 5. Chapter 6 presents further scope of research and recommendations for research
on HA-nanotube composite that would take this orthopedic implant material to clinical

application stage.
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1.5

1.

10.

1.

12.

References

F. Moussy. Biomaterials for the developing world. 2010, J. Biomed. Mater. Res. A,
Vol. 94A, pp. 1001-1003.

Y.W. Gu, N.H. Loha, K.A. Khor, S.B. Tor, P. Cheang. Spark plasma sintering of
hydroxyapatite powders. 2002, Biomaterials, Vol. 23, pp. 37-43.

A.A. White, S.M. best, l.LA. Kinloch. Hydroxyapatite-carbon nanotube composite
for biomedical applications: A review. 2007, Int. J. Appl. Ceram. Technol., Vol. 4,

pp. 1-13.

L.G. Yu, K.A. Khor, H. Li, P. Cheang. Effect of spark plasma sintering on
microstructure and in vitro behavior of plasma sprayed HA coatings. 2003,
Biomaterials, Vol. 24, pp. 2695-2705.

Y.W. Gu, K.A. Khor, P. Cheang. Bone-like apatite layer formation on

hydroxyapatite prepared by spark plasma sintering (SPS). 2004, Biomaterials, Vol.
25, pp. 4127-4134.

S. Oh, N. Oh, M. Appleford, J.L. Ong. Bioceramics for Tissue Engineering
Applications — A Review. 2006, Am. J. Biochem. Biotechnol., Vol. 2, pp. 49-56.

H. Li, K.A. Khor, V. Chow, P. Cheang. Nanostructural characteristics, mechanical
properties, and osteoblast response of spark plasma sintered hydroxyapatite. 2007,
J. Biomed Mater. Res. A, Vol. 82, pp. 296-303.

X. Guo, J.E. Gough, P. Xiao, J. Liu, Z. Shen. Fabrication of nanostructured

hydroxyapatite and analysis of human osteoblast cellular response. 2007, J.
Biomed. Mater Res. A, Vol. 82, pp. 1022-1032.

W. Wang, J. Chen, D.K. Agarwal, A.P. Mashle, H. Liu. Improved mechanical
properties of nanocrystalline hydroxyapatite coating for dental and orthopedic
implants. 2009, Mater. Res. Soc. Sump. Proc., Vol. 1140, DOI: 10.1557/PROC-
1140-HHO03-03.

L. Sun, C.C. Berdnt, K.A. Gross, A. Kucuk. Material Fundamentals and Clinical
Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review. 2001, J.
Biomed. Mater. Res. A, Vol. 58, pp. 570-592.

R. Petit. The use of hydroxyapatite in orthopedic surgery: A ten-year review. 1999,
Eur. J. Orthp. Surg. Traumatol., Vol. 9, pp. 71-74.

K.  Pielichowska, S. Blazewicz.  Bioactive  Polymer/Hydroxyapatite

(Nano)composites for Bone Tissue Regeneration. 2010, Adv. Polym. Sci., Vol. 232,
pp- 97-207.

10



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

L.M. Mathieu, P.E. Bourban, J.A.E. Manson. Processing of homogeneous
ceramic/polymer blends for bioresorbable composites. 2006, Compos. Sci. Tech.,
Vol. 66, pp. 1606-1614.

http://www.ocw.cn/OcwWeb/Biological-Engineering/20-441Fall-
2003/CourseHome/index.htm.

evertsmith.com/img/content/480-hip-components.jpg.

K. Balani, Y. Chen, S.P. Harimkar, N.B. Dahotre, A. Agarwal. Tribological
behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in
physiological solution. 2007, Acta Biomater., Vol. 3, pp. 944-951.

Y. Chen, T.H. Zhang, C.H. Gan, G. Yu. Wear studies of hydroxyapatite composite
coating reinforced by carbon nanotubes. 2007, Carbon, Vol. 45, pp. 998-1004.

A.G. Evans, B. Marshall. Wear mechanisms in ceramics. In: Editor - D.A. Rigney.
Fundamentals of Friction and Wear of Materials, 1981, Materials Park, Ohio:
American Society of Metals, pp. 439-452.

J. Li, H. Liao, L. Hermansson. Sintering of partially-stabilized zirconia and
partially-stabilized zirconia—hydroxyapatite composites by hot isostatic pressing
and pressureless sintering. 1996, Biomaterials, Vol. 17, pp. 1787-1790.

J. Li, B. Fartash, L. Hermansson. Hydroxyapatite—alumina composites and bone-
bonding. 1995, Biomaterials, Vol. 16, pp. 417-422.

S. Gautier, E. Champion, D. Bernache-Assollant. Processing, microstructure and
toughness of AI203 platelet-reinforced hydroxyapatite. 1997, J. Eu. Ceram. Soc.,
Vol. 17, pp. 1361-1369.

Z. Avis, R.H. Doremus. Coatings of hydroxyapatite — nanosize alpha alumina
composites on Ti-6A41-4V. 2005, Mater. Lett., Vol. 59, pp. 3824-3827.

K.H. Im, S.B. Lee, KM. Kim, Y.K. Lee. Improvement of bonding strength to
titan