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ABSTRACT OF THE DISSERTATION 

HYDROXYAPATITE-NANOTUBE COMPOSITES AND COATINGS  

FOR ORTHOPEDIC APPLICATIONS 

by 

Debrupa Lahiri 

Florida International University, 2011 

Miami, Florida 

Professor Arvind Agarwal, Major Professor 

Hydroxyapatite (HA) has received wide attention in orthopedics, due to its 

biocompatibility and osseointegration ability. Despite these advantages, the brittle nature 

and low fracture toughness of HA often results in rapid wear and premature fracture of 

implant. Hence, there is a need to improve the fracture toughness and wear resistance of 

HA without compromising its biocompatibility.  

The aim of the current research is to explore the potential of nanotubes as 

reinforcement to HA for orthopedic implants. HA- 4 wt.% carbon nanotube (CNT) 

composites and coatings are synthesized by spark plasma sintering and plasma spraying 

respectively, and investigated for their mechanical, tribological and biological behavior. 

CNT reinforcement improves the fracture toughness (>90%) and wear resistance (>66%) 

of HA for coating and free standing composites. CNTs have demonstrated a positive 

influence on the proliferation, differentiation and matrix mineralization activities of 

osteoblasts, during in-vitro biocompatibility studies. In-vivo exposure of HA-CNT coated 

titanium implant in animal model (rat) shows excellent histocompatibility and neobone 

integration on the implant surface. The improved osseointegration due to presence of 
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CNTs in HA is quantified by the adhesion strength measurement of single osteoblast 

using nano-scratch technique.  

Considering the ongoing debate about cytotoxicity of CNTs in the literature, the 

present study also suggests boron nitride nanotube (BNNT) as an alternative 

reinforcement. BNNT with the similar elastic modulus and strength as CNT, were added 

to HA. The resulting composite having 4 wt.% BNNTs improved the  fracture toughness 

(~85%) and wear resistance (~75%) of HA in the similar range as HA-CNT composites. 

BNNTs were found to be non-cytotoxic for osteoblasts and macrophages.  In-vitro 

evaluation shows positive role of BNNT in osteoblast proliferation and viability. Apatite 

formability of BNNT surface in ~4 days establishes its osseointegration ability. 
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1.0 INTRODUCTION 

The aim of this study is to develop a composite material by reinforcing 

hydroxyapatite (HA) with nanotubes for orthopedic application. The idea is to develop a 

material that overcomes the existing limitations and disadvantages of hydroxyapatite in 

terms of poor fracture toughness and wear resistance. An in-depth analysis of mechanical 

and tribological properties of the newly developed material is conducted to establish its 

benefits over HA. Considering the application of HA-nanotube composite in orthopedics, 

different aspects of biocompatibility of the composite is evaluated using in-vitro and in-

vivo studies. 

1.1 Hydroxyapatite for Orthopedic Applications – Advantages, Limitations and 
Solution 

The field of biomaterials is a rapidly emerging one, due to its direct relation with 

the healthcare and impact on human health related issues. The biomaterials device market 

was $115.4 billion in the year 2008 and is expected to be $ 252.7 billion in 2014 [1]. The 

largest market size amongst all biomaterial products belongs to orthopedic biomaterials. 

As a result, development and improvement of orthopedic related biomaterials is a very 

active and growing research field. 

Orthopedic biomaterials are mainly of two types. The first ones are implants and 

fixing accessories, which are generally made of metals, ceramics, hard polymers or their 

composites. Second category consists of scaffolds for tissue regeneration, which are 

based on polymers - preferably the biodegradable ones and their composites. 

Hydroxyapatite (HA) is very attractive for orthopedic implants as its chemical 
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composition is similar to the mineral crystallites present in human bone. Hydroxyapatite 

is basically a calcium phosphate based bioceramic with the chemical formula as: 

Ca10(PO4)6(OH)2.  The bioactivity and osteoconductivity of HA offers a suitable surface 

for new bone growth and integration [2-6]. Thus, HA is being vastly researched and 

clinically used as free-standing implant, coating on metallic implants and also as 

reinforcement to polymer scaffold material for tissue regeneration [2, 5, 7-13]. Figure 1.1 

presents a schematic of a hip implant in human body and a picture of a metallic hip 

implant with different parts [14-15]. As shown in the schematic, the stem part of the 

implant goes inside the cavity of femoral bone. HA coating is applied on the stem part, in 

order to have good bonding between the femoral bone and implant surface. The upper 

surface of the shell is also coated with HA in some cases to have good bonding with the 

pelvis. 

 

Figure 1.1: Schematic of an orthopedic hip implant in human body and picture of a 

metallic hip implant [14-15]. 
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But the main shortcomings of freestanding HA implant or HA coatings are their 

poor fracture toughness and wear resistance [3-5, 16-17]. Fracture toughness of dense HA 

(1 MPa.m0.5) is significantly lower than the minimum reported value for the cortical bone 

(2 MPa.m0.5) [3]. Bones are the load bearing parts of a living body. They need to possess 

good fracture toughness (KIC) to prevent cracking and fracture on the application of high 

and cyclic loading during limb movement and actions.  Thus, to replace bone as an 

implant or coating, fracture toughness of HA needs to be improved. Poor fracture 

toughness also results in low wear resistance of HA as wear volume loss in ceramics is 

directly related to its fracture toughness [18]. Poor wear resistance causes greater volume 

loss for HA due to continuous shearing force applied on implant surface during 

movement of limbs. Apart from abrasion of the coating, generation of more wear debris 

is also a problem inside the living body. 

One of the possible solutions is reinforcement of HA by a second phase material 

that can help in improving the fracture toughness and wear resistance of the HA matrix. 

Researchers have also explored the possibility of using other hard ceramics [19-24], 

polymers [25-26] and bio glasses [27]. Keeping in concern the biocompatibility of the 

composite structure, the ideal reinforcement material is the one that can increase the 

fracture toughness and wear resistance significantly with a low content of reinforced 

phase. The lower content of reinforcement phase ensures introduction of minimum 

foreign element inside living body. HA gets integrated with bone as it has similar 

chemical composition to the mineral part of bone. Thus, it is important that the 

reinforcement phase possesses excellent elastic modulus and strength, so that its 
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minimum content can increase the fracture toughness and wear resistance of HA 

significantly. 

1.2 Carbon Nanotubes: Potential Reinforcement to Hydroxyapatite 

1.2.1 Scope of Improvement in Mechanical and Tribological Properties 

 
Carbon nanotube (CNT), with its excellent stiffness and strength, has excellent 

potential as reinforcement to HA for overcoming its limitation related to fracture 

toughness and wear resistance. CNT possesses Young’s modulus in the range of 200-

1000 GPa [28] and tensile strength of 11-63 GPa [29]. Several studies on CNT reinforced 

metal/ceramic/polymer matrix composites have successfully demonstrated its capability 

of improving the structural properties, e.g., the strength, elastic modulus, fracture 

toughness, wear resistance etc. [30-32]. Apart from improvement in elastic modulus, 

CNT can improve the fracture toughness of any ceramic based composite system by 

absorbing energy through crack deflection and crack bridging. The possible roles played 

by CNT in improving the wear resistance are (i) increasing fracture toughness and (ii) 

providing lubrication on wear track through peeling of graphene layers from CNT 

surface.  

 

1.2.2 Issues  Related to Biocompatibility 

 
The intended orthopedic application of HA-CNT composite demands a thorough 

understanding of its biocompatibility. HA is already a clinically proven biomaterial and 

in use as coating for metallic implants [33]. But, the biocompatibility of CNT is still 
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under debate [34].  Though, comprehensive reviews on this issue have agreed that the 

reported cytotoxic response of CNT is mostly not due to CNT itself, but is associated 

with the impurities and catalyst particles, degree of agglomeration, surface defects and 

also on the effect of cell culture medium, secondary chemicals, and pH values [34-37]. 

Further, the biocompatibility of CNTs in orthopedic application is also established by 

studies showing accelerated bone growth (in-vivo) [38] and increased proliferation and 

differentiation of osteoblast (in-vitro) [39-41] in the presence of CNTs. The recent report 

on biodegradation of CNT by human neutrophil and macrophage [42] strengthens the 

drive for bio-related applications of CNTs. All these findings fortify the candidature of 

HA-CNT composite in orthopedic application.   

 

1.3 Boron Nitride Nanotubes: Alternative Reinforcement to Hydroxyapatite 

The ongoing debate on the biocompatibility of CNTs also demands search for an 

alternative reinforcement to HA. The alternative reinforcement phase should have the 

strength and modulus similar or better than CNTs in addition to being biocompatibile. 

Boron nitride nanotube (BNNT) has the capability to serve as an alternative.  BNNT is a 

structural analogue of CNT – formed with tubular shaped hexagonal boron nitride (hBN) 

sheet. BNNT possesses elastic modulus (750-1200 GPa [43-44] and tensile strength (>24 

GPa [45]) similar to CNT, which makes it a potential reinforcement for HA. BNNTs are 

more flexible and elastic and can withstand heavy deformation without having damage in 

the structure [46]. BNNT withstands higher fracture strain than CNT, which can lead to 

higher fracture toughness for HA-BNNT as compared to HA-CNT [47]. These properties 
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are attractive when BNNTs are used as reinforcement for strengthening of 

ceramic/polymer matrix. Moreover BNNTs show higher chemical stability than CNTs in 

oxidative atmosphere with the oxidation starting temperature of 1223 K, as compared to 

773 K for CNT [46]. This chemical inertness of BNNT remains an added advantage for 

high temperature processing of BNNT reinforced ceramic composite at oxidative 

atmosphere.  

Another important consideration for using BNNT for orthopedic applications is its 

biocompatibility. As BNNT is very new to the field of biomedical, only few studies are 

available on the cytotoxicity of BNNTs but none has reported negative effect on different 

cell types [49-50]. BNNTs are found to be non-cytotoxic to human embryonic kidney 

cells (HEK-293) [50] and human neuroblastoma cell line (SH-SY5Y) [48].  

Thus, theoretically, boron nitride nanotube has the capabilities to serve as an 

alternative to CNT as reinforcement to HA in orthopedic application. 

 

1.4 Objectives of the Current Research 

The overall objective of this research is to reveal and establish the potential of 

nanotubes (CNT or BNNT) reinforced HA based composite in orthopedic application – in 

terms of mechanical properties; tribological behavior and biocompatibility (in-vivo and 

in-vitro). This overall objective can be achieved through the following specific objectives: 

• Analyzing the role of CNT reinforcement in fracture toughness and tribological 

behavior of HA based composites and coatings. 
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• Understanding the role of CNT dispersion and HA-CNT interfacial bonding on the 

performance of the composite. 

• Exploring the potential of BNNT as an alternative reinforcement to HA in terms of 

fracture toughness and tribological property improvement. 

• In-vitro evaluation of biocompatibility of HA-nanotube composites by 

proliferation, viability, differentiation and cytotoxicity assays using bone cell. 

• In-vivo evaluation of biocompatibility of HA-nanotube composites through animal 

study. 

• Analyzing osseointegration ability and mechanical compatibility of HA-nanotube 

composite surfaces through evaluation of  

- apatite formability of the surface 

- adhesion of bone cells on the surface 

- mechanical property gradient through implant-bone interface 

Figure 1.2 presents a summary of the research carried out during this study. 

The dissertation has been arranged in different chapters, sections and subsections 

to present a clear picture about the background and the state of the art; the methods 

adopted in this study; the analysis of the outcomes with scientific interpretation and the 

future scope of research and improvement. Chapter 2 provides a comprehensive literature 

review on this topic. This chapter also highlights those research areas that have not been 

paid much attention yet.  Third chapter presents a detailed account of the methodology 

adopted in this research. Explanation of the results and scientific analysis of the outcomes 

in context with the objective of this research is discussed in chapter 4. The key points of 
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the research with an overview of the main outcomes are described as conclusion in 

chapter 5. Chapter 6 presents further scope of research and recommendations for research 

on HA-nanotube composite that would take this orthopedic implant material to clinical 

application stage. 
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Figure 1.2: Flow chart of the research plan.  
* Animal study on HA-nanotube composite is carried out at University of Strasbourg, France by collaborating research group 
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2.0 LITERATURE REVIEW 

This chapter presents a comprehensive summary of investigations by other 

researchers on mechanical properties and biocompatibility of HA-nanotube composites. 

A review and analysis of the past and on-going research in the field helped in finding the 

areas that need attention and led to the planning of this study.  

2.1 Hydroxyapatite-Carbon Nanotube Composite Systems for Orthopedic 
Application 

CNT is emerging as a suitable reinforcement of HA to solve its fracture toughness 

and wear resistance related problems. Research on HA-CNT composites has started very 

recently in 2004 [1-2]. The chronological trend of publications on HA-CNT system, as 

shown in figure 2.1, presents a clear picture of the growing interest in this field.  A 

significant increase in the number of publication in 2010 indicates the importance of this 

topic in the contemporary research. 

The research on HA-CNT composite is mainly around its synthesis, evaluation of 

mechanical and tribological properties and assessment of its biocompatibility. The 

success of CNT reinforcement is governed significantly by composite synthesis 

techniques. The mechanical and tribological performance of HA-CNT is dependent on 

the dispersion of CNT, its interfacial bonding with HA, densification of composite and 

phase stability of HA in the composite, which are manipulated greatly through synthesis 

techniques. Biocompatibility of HA-CNT composite is of immense importance 

considering the final application in orthopedics.   This chapter provides a comprehensive 
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literature review on synthesis, mechanical properties and biocompatibility of HA-CNT 

composites.  

 

 

 

 

 

Figure 2.1: Year-wise publication chart for HA-CNT system (source: scopus.com). 

2.1.1 Synthesis of Composite 

The synthesis of HA-CNT CNT is divided into four major subsections. The first 

two are related to the processing of the composite, viz. (i) composite powder preparation 

and (ii) composite synthesis/consolidation of the composite powder. These two sections 

would discuss about different processing techniques and their advantages/disadvantages 

for HA-CNT composite preparation. The last two subsections are (i) dispersion of CNT 

in HA, which is a result of powder preparation techniques and (ii) phase stability and 
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crystallinity of HA in composite, which is controlled by the consolidation method 

involved. 

2.1.1.1 Composite Powder Preparation 

Homogeneous distribution of the second phase reinforcement plays a key role on 

the performance of HA-CNT, like all other composite systems. The issue of dispersion 

becomes even more critical owing to the natural tendency of CNTs to form agglomerates 

due to its high aspect ratio and higher surface energy. Several modifications in the 

composite processing techniques have been adopted by researchers to ensure 

homogeneous dispersion of CNT in HA at powder/precursor stage itself.  

 

 

 

 

 

 

 

 

Figure 2.2: Classification of techniques adopted for better dispersion of CNT in 

composite powder/precursor (for Coatings). 
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Figure 2.2 presents the classification of different powder/precursor processing 

techniques reported for HA-CNT system. The main aims of these methods are (i) to 

ensure better dispersion and avoid agglomeration of CNT in HA matrix; (ii) better 

interaction of CNT with HA at the interface to ensure good bonding in the composite. 

The following sub-sections briefly discuss each of the techniques with a summary of their 

outcomes. 

Chemical Mixing Methods 

Chemical methods include chemical synthesis of HA on CNT surface and vice 

versa or chemical modification of CNT surfaces for homogeneous distribution of the two 

phases in powder/precursor stage. 

Chemical Precipitation of HA on CNT 

Chemical precipitation of HA on CNT surface is generally performed by 

dispersing CNTs in the chemical bath from which HA is precipitated.  CNT, thus coated 

with HA, ensures uniform distribution of HA and CNT, as well as, has a potential to 

improve the adhesion between nanotube and matrix. Most of the studies have suspended 

CNT in calcium nitrate bath followed by stirring.  Afterwards, diamonium hydrogen 

phosphate is added to the bath with vigorous agitation to form HA precipitate on the 

surface of suspended CNT [1, 3-10].  Some of the studies have replaced calcium nitrate 

with calcium chloride [11-12]. Optimization of the precipitation parameters and specially 

pH (>10) ensures precipitation of HA phase and avoids formation of CaHPO4.2H2O or 

Ca3(PO4)2 phases [4, 9-10]. Further study by Lu et al. shows the precipitated HA crystal 
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size is a function of the temperature [9]. It is also mentioned that HA crystals prefer 

growing along c-axis and bigger crystals are not good for the coating due to their small 

contact area [9]. 

Most of the studies report uniform distribution of CNTs in the HA precipitate in 

the powder form using chemical precipitation method. The only exception is reported by 

Keally et al. on formation of CNT agglomeration in the resulting precipitate, though, no 

major change in the precipitation parameters are noted [8]. The HA precipitate formed on 

the CNT surface by chemical precipitation route is reported to have an amorphous 

structure that requires hydrothermal treatment to transform into crystalline structure [1, 

12]. Figure 2.3 shows uniformly coated CNT with amorphous and crystalline HA 

precipitates, before and after hydrothermal treatment respectively, as observed by Zhao 

and Gao [1]. 

 

 

Figure 2.3: TEM images of CNTs–HA (a) before and (b) after hydrothermal treatment. 

Inset shows the EDS spectrum for HA layer in (a) [1].  
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Functionalization of CNT 

Functionalization of CNT involves acid etching of surface and attaching 

functional groups like –COOH, -OH and –C=O, resulting in a negatively charged 

nanotube surface. These anionic groups attract positively charged ions and particles to get 

attached on the CNT surface. The purpose of functionalization is twofold: (i) forming 

good bonding between HA-and CNT at powder/precursor stage and (ii) obtaining 

homogeneous dispersion of CNT by forming coating of HA on its surface. 

Functionalization of CNT is carried out by refluxing with HNO3-H2SO4 mixture [7, 13-

18] or HNO3 only [9, 11-12, 19]. 

Functionalization of CNTs is found as an essential step before chemical 

precipitation of HA on CNT by several research groups [7, 9, 11-12]. The negatively 

charged functional groups on CNT surface first gets attached with the Ca2+ ions through 

electrostatic attraction. After that, when PO4
3- ions are introduced in the bath, they react 

with attached Ca2+and forms HA precipitates. Functionalization of CNT is also found 

effective in preparing the precursor for deposition of coatings using electrophoretic [13-

14, 17] and aerosol deposition [16]. The aqueous suspension of HA is adjusted (pH ~ 4) 

to get the HA particles positively charged for the uniform dispersion in the precursor. 

Functionalized CNTs, being introduced in the suspension, attract positively charged HA 

particles through electrostatic force to form coating on them [17]. TEM and SEM 

observations of the composite powder from such precursor have found CNTs mostly 

covered by fine HA particles, revealing effectiveness of functionalization [14, 16-17]. 
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Chemical Vapor Deposition of CNT on HA 

Chemical vapor deposition (CVD) process is used to grow CNT on HA powder to 

ensure better dispersion and bonding of CNT with HA. Another advantage of using CVD 

grown CNT in composite is claimed to be retaining the undamaged pristine CNT 

structure while powder processing [20-22]. Researchers have used CVD technique 

successfully for different metal and ceramic matrix composites to get homogeneous 

dispersion of CNT in the matrix material [23-24]. CVD route for preparing composite 

HA-CNT powders is proposed by two different groups [20-22, 25]. Li et al. used Fe as 

catalyst  (0.4 – 10 wt.%) on HA powder to grow CNT and reported increasing CNT 

content in composite powder with increasing Fe catalyst content [20]. But, Lu et al. have 

directly used HA powders as catalyst to grow CNT, thus avoiding addition of metallic 

catalyst particles [21]. Though, they have observed decomposition of HA to some extent 

in process of in-situ CNT growth. Catalyst particles (Fe and HA) were found 

encapsulated in the as-grown CNT in both the studies. Figure 2.4 shows Fe catalyst 

particles encapsulated in CVD grown multiwall CNT on HA, as observed by Li et al. 

[20]. In another study, Li et al. have performed a comparative evaluation of the effect of 

Fe, Ni and Co catalyst particles on the quality of CVD grown CNTs on HA powder [22]. 

Their study revealed that highest growth rate and crystallinity of CNTs occurred using 

Fe, whereas lowest growth rate and crystallinity were observed for Co. HA-CNT 

composite powder, prepared though CVD route are claimed to possess homogeneous 

dispersion of CNT and attribute towards strong bonding at reinforcement-matrix interface 

in the final composite structure [20]. 



22 
 

 

 

 

 

 

 

 

Figure 2.4: TEM image of Fe-catalyst particles encapsulated in CVD grown CNT on HA 

powder [20]. 

Mechanical Mixing Methods 

Mechanical methods of composite powder processing involve physical mixing of 

HA and CNT using some mechanical forces. These are sometimes associated with 

chemical mixing routes also to enhance the CNT dispersion. 

Ball Milling 

Ball milling is used to disperse CNT in HA to prepare composite powders for 

fabricating both coatings and sintered parts. Chen et al. have used ball-milling to mix up 

to 20 wt.% CNTs in HA for laser surface alloyed coatings [26-28]. Other research groups 

have used ball-milled HA-CNT composite powders for preparing composites using 

sintering [29], hot pressing [18, 30] and spark plasma sintering routes [31]. Sarkar et al. 
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have reported considerable dispersion of CNTs in HA powder with presence of some 

agglomerates in the ball-milled composite powder [31]. But, these studies have not 

specifically mentioned about the effectiveness of ball-milling for dispersing CNT in HA 

[18, 26-31].  

Ultrasonication 

Ultrasonication has been used both independently and in conjunction with 

chemical mixing methods to prepare HA-CNT composite powder/precursor. The very 

first study on HA-CNT mixing by ultrasonication has reported this method to be more 

effective in dispersion than ball milling [29]. Ultrasonication is mostly used in preparing 

HA-CNT composite precursor for ambient temperature coatings techniques, e.g. 

electrophoretic [12-14, 17, 32-35] and aero-sol depositions [16]. These studies have used 

ultrasonication bath to mix functionalized [12-14, 16-17] or pristine (non-functionalized) 

CNTs [33-35] with HA. The studies have reported uniform dispersion of CNTs in the 

precursor and coating stages.  Kaya et al. have observed coating of HA particles on CNT 

surface after ultrasonication of functionalized CNTs with HA [17]. Figure 2.5 presents 

uniformly distributed non-functionalized CNTs in HA powder mixed using 

ultrasonication [34]. Some of the studies have used surfactant in the ultrasonication bath 

to improve the dispersion of CNTs in HA [32, 36]. Composite powder processed by 

ultrasonication has been used in fabricating free standing composite parts through 

sintering route [29, 36]. Wei et al. have used ultrasonication as an aid for the improved 

dispersion of CNTs in chemically precipitated composite powder [3]. 
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Figure 2.5: SEM images of ultrasonically mixed HA-CNTs powder at (a) low and (b) 

high magnifications [34]. 
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Mechanical Agitation/Stirring 

Different research groups have used various mechanical agitation methods other 

than ball-milling and ultrasonication to prepare HA-CNT composite powder. HA-CNT 

composite powder, prepared by blending HA powders with CNT in jar mill has been used 

for plasma sprayed coatings [37-40] and spark plasma sintered composite parts [41]. 

CNT gets well dispersed in HA powder through this process. Mechanical stirring in 

ethanol up to 5 days have been also used for preparing composite HA-CNT powder as 

feedstock for spark plasma sintering [42-44].  Functionalization of CNTs and dispersion 

using surfactant in conjunction with mechanical mixing is also used for preparing 

composite powder [7, 15, 45]. A comparative study by White et al. have shown that 

functionalization of CNTs prior to mechanical mixing with HA improves the degree of 

dispersion [7]. The above mentioned mechanical mixing methods have reported good 

dispersion of CNTs in the HA matrix. But, use of agate mortar to make a slurry and then 

defoaming mixing by Tanaka et al. have resulted in inefficient dispersion and formation 

of CNT agglomerate in the composite structure [46]. Similar observation is made by 

Keally et al. also, while using gyroscopic tumbler of HA-CNT mixing [8]. 

 

Other Mixing Methods 

Some of the methods used for aiding the dispersion of CNT in HA at powder 

stage cannot be classified under purely chemical or mechanical mixing methods. Methods 

that use surfactant for dispersion of CNT and spray drying for preparing HA-CNT 

composite are described briefly in the following subsections. 
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Using Surfactant for Dispersion of CNT 

Surfactants are mostly used in conjugation with other powder preparation 

techniques to prepare the composite powder. A thorough study by Meng et al. [45] on 

different surfactants for dispersing CNT shows anionic surfactants, e.g., sodium dodecyl 

sulphate (SDS) or sodium dodecyl benzene sulphonate (SDBS) makes better dispersion 

of CNTs in de-ionized water. Because the hydrophilic end of anionic surfactants are 

anionic and thus the cationic ends attach with negatively charged surface of the 

functionalized CNTs. Meng et al. have also observed that HA powders dispersed using 

cationic surfactants, e.g., cetyl trimethyl ammonium bromide (CTAB), gets mixed more 

uniformly when dispersed in CNT bath with anionic surfactant. HA powder without any 

surfactant does not show as good dispersion with CNT. The reason is natural attraction 

between the hydrophilic ends of cationic and anionic surfactants, helping in attachment of 

HA and CNT in the dispersion [45]. Few other studies have also used surfactant to 

disperse CNT and then mechanically mixing HA to prepare powder for composite parts 

[18, 31, 36] or precursor for coating [32]. 

Spray Drying 

Spray drying is a process of preparing micron sized agglomerates of nano-sized 

powder by atomization. Balani et al. have used spray dried HA powder for plasma 

sprayed coating, but CNTs were separately blended to spray dried HA in those studies 

[37-38]. Few studies have used spray dried HA powder and spray dried composite 

alumina-CNT powder to mix together mechanically [39-41]. The homogeneous 

dispersion of CNT in alumina is reported to result in good dispersion of CNT in the final 



27 
 

HA-alumina-CNT composite powder. Thus, spray drying could be a promising technique 

for HA-CNT composite powder preparation, which was to be explored before this 

research. 

A review of HA-CNT composite powder/precursor processing techniques 

suggests two methods to be most suitable for uniform dispersion and bonding of CNT 

with HA. These methods are: (i) chemical precipitation of HA on functionalized CNT 

and (ii) CVD assisted growth of CNT on HA powder. Apart from the uniform HA 

precipitation on CNT, chemical precipitation method also ensures good bonding of HA 

on functionalized CNT surface. Electrostatic attraction of ‘+ve’ charged Ca of HA and ‘-

ve’ charged –COOH functionalized group on CNT surface is responsible for this good 

bonding. In CVD process, the CNTs are individually grown on HA surface, forming a 

good attachment and dispersion. But, the major problem inherited with both these 

processes is related to the large scale synthesis of composite powder. Mechanical mixing 

methods are suitable for bulk production, but are not as good in dispersion as chemical 

precipitation or CVD. Functionalization of CNTs and use of surfactant helps in 

improving the quality of dispersion in mechanical mixing methods.  Spray drying method 

appears to be a good compromise between large scale synthesis and CNT dispersion but 

suffers with loss of powder during synthesis. The suitability of all these methods in terms 

of degree of CNT dispersion is critically discussed in section 2.1.1.3. 

2.1.1.2 Consolidation of Composite Structure 

Several consolidation methods have been explored for fabricating HA-CNT 

composite using powders mixed through various routes as discussed in the previous 
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section. Most of the techniques uses high temperature for consolidation, owing to high 

melting point (1614 °C) of HA[47]. The consolidated HA-CNT composites can be 

classified into two groups based on the targeted application. They are: (i) free standing 

composite bodies used as prosthesis or its part and (ii) composite coatings on metallic 

implants.  

 

 

Figure 2.6: Classification of consolidation methods for HA-CNT composites. 

Researchers have studied different techniques in each of the groups to 

successfully fabricate HA-CNT composite. Figure 2.6 presents a classification of 

fabrication techniques used to synthesize different HA-CNT composites. The main 

considerations during consolidation are to control the porosity, maintain good dispersion 

of CNT and at the same time, minimize the chemical dissociation of HA, when exposed 

to high temperature. Controlling the dissociation of HA to other phases such as tri 

calcium phosphate (TCP), is required to maintain the mechanical strength of the 

composite. Controlling the porosity and distribution of CNT is mainly to achieve the 

good mechanical properties of the composite structure. Though, lowest porosity gives the 

best mechanical property, but it is not desired for orthopedic application. Porosity assists 
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in tissue in-growth and bone integration on implant/prosthesis surface. Hence, the 

intention of adding CNTs to HA is to improve the mechanical property of the composite, 

while maintaining some degree of porosity. Following sub-sections deal with the 

effectiveness of each technique in consolidation of HA-CNT composite. 

Free Standing HA-CNT Composite Parts/Structures 

Conventional powder metallurgy routes of powder processing and high 

temperature consolidation has mainly been applied for fabricating free standing HA-CNT 

composite structures, with certain modifications to minimize high temperature exposure 

for long time.  

Sintering 

 Consolidation of HA-CNT composite by sintering is always performed after 

green compaction of the powder [7, 20, 25, 29, 36, 48].  Both uniaxial [7, 48] and 

isostatic pressing [36] have been tried for the green compaction. Few studies performed 

an additional post sintering pressing for better compaction[20, 25]. The major concern 

with conventional sintering of HA is associated with the exposure to high temperature for 

long time, which causes dissociation of HA to TCP or CaO.  A wide range of sintering 

temperatures starting from 650°C up to 1200°C with a dwell time of 2-5 hrs has been 

adopted for HA-CNT consolidation. But, temperatures below 1000°C were not found 

suitable for achieving sufficient densification. White et al. have reported a density of 63 

% TD (theoretical density) for HA and 51 % TD for HA-CNT when sintered at 800°C for 
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2 hrs [7]. Higher temperature and longer time of heat treatment increases the density and 

crystallinity of HA [7]. But, sintering at higher temperature increases the chance of 

dissociation of HA [36, 49]. White et al. have also found the density of HA-CNT 

composite structure is lower than HA, when sintered at same conditions [7]. They have 

inferred that CNTs hold the grains of the matrix apart and thus prevent closure of the 

porosity. These findings suggest conventional sintering as an unsuitable process for HA-

CNT consolidation. Sintering of HA-CNT composites are mostly carried out in vacuum 

20, 25, 29, 36] or inert atmosphere, e.g., nitrogen [36] and argon [7, 29, 36]. An 

interesting study about the effect of sintering atmosphere on the degree of consolidation 

for HA-CNT composite has been carried out by Li et al. [36]. Their findings suggest 

vacuum to be the best sintering atmosphere. Both HA and CNT can absorb gas 

intensively, which makes the HA-CNT interface bonding weak and increases the porosity 

content of the sintered structure, when sintered in presence of any gas. Figures 2.7(a) and 

2.7(b) shows the porous HA-CNT structure sintered in argon compared to its 

consolidated counterpart sintered in vacuum, respectively. As a result, the composite with 

same CNT content (3 wt.%) sintered in vacuum offers ~200% more fracture toughness 

than the one sintered in argon atmosphere [36]. But, a recent study by White et al. have 

shown a sintering atmosphere, consisted of CO and H2, to be the best considering the 

retention of HA and CNT in the final sintered structure [48]. Sintering atmosphere with a 

positive pressure of CO and H2 can effectively suppress the dissociation of water 

molecule from HA and its subsequent reaction with CNT. 
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Figure 2.7: SEM micrographs of HA-CNT composites sintered in (a) argon and (b) 

vacuum [36]. 

Pressure Assisted Sintering 

 In order to overcome the problem of HA dissociation and obtain better 

densification, researchers have attempted application of pressure during sintering to 

synthesize HA-CNT composites [1, 4-6, 8, 15, 18, 30, 45]. With application of pressure, 

densification as high as 96 %TD is achieved at temperature as low as 900°C [8]. Lower 

sintering temperature reduces the chance of dissociation of HA. Researchers have also 

reported sintering at high temperature (1200°C) with application of pressure, without 

resulting in dissociation of HA [15, 18]. Meng et al. have suggested that application of 

pressure could inhibit the dehydration of HA even at higher temperature, thus 

suppressing its dissociation [15, 18]. Both uniaxial [6, 18] and isostatic hot pressing [4-5, 

8] with a widely varying pressure range of 28 – 100 MPa and argon [4-6, 8, 30] or 

nitrogen [15, 18, 45] atmosphere is used to consolidate HA-CNT. Unlike conventional 
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sintering, sintering under high pressure in presence of inert gas does not create a problem 

in consolidation and interfacial bonding between HA and CNT. Thus, the mechanical 

property of the composite is reported to improve over their HA counterpart, whether it is 

fracture toughness [8, 15, 45], flexural strength [15, 45], hardness [8] or compressive 

strength [1]. The application of pressure might help in driving out the entrapped or 

absorbed gas on HA and CNT surface and results in lesser porosity in the consolidated 

product, in contrast to conventional sintering. The sintering pressure influences the 

density of HA-CNT composite, but shows no effect on HA without CNTs. Kobayashi et 

al. have reported a 10% increase in the relative density of HA-CNT composite when the 

pressure increases from 7.81 MPa to 15.6 MPa at 1200°C [30]. They have concluded 

lower sinterability of the composite in the presence of a second phase. 

 

Spark Plasma Sintering 

Few research groups have used spark plasma sintering (SPS) technique to 

consolidate the HA-CNT composites [2, 19, 31, 41-44, 46]. The advantages of using SPS 

for HA-based composite are two-fold :(i) retention of fine grain structure and (ii) 

reduction in HA dissociation. SPS is a very promising technique for processing 

nanostructured materials, as it retains the fine grain size after sintering [50-54]. It is more 

attractive for ceramics, as grain size refinement could simultaneously increase hardness 

and fracture toughness of ceramic structure due to the deflection of propagating crack and 

the change of cracking mode from transgranular to intergranular [55]. Requirement of 

high temperature and longer hold time in conventional sintering causes severe grain 
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growth. Whereas, due to simultaneous application of pressure, electrical current and rapid 

heating rate, SPS results into better densification of nanoceramic particles in much lower 

temperature [50-52]. Sintering time for SPS is generally few minutes, compared to few 

hours in conventional sintering. Due to shorter time of sintering, SPS retains the 

nanostructure and improves the mechanical property of the sintered body [19, 50-54]. In 

addition, minimal dwell at high temperature causes lesser dissociation of HA into TCP 

[56-61].SPS of HA-CNT has employed temperatures in the range of 900 – 1250 °C [42, 

46] , pressure of 7.5- 120 MPa [42, 46] in vacuum [41] or argon [31]. The systematic 

studies on the determination of ideal SPS temperature for HA-CNT system found 1100°C 

as the optimum sintering temperature [31, 42]. Lower temperature causes poor 

consolidation with lots of residual pores, whereas higher temperature results in an 

excessive grain growth [31, 42]. Figures 2.8 (a-d) presents HA-CNT SPS structures 

sintered at different temperatures, showing porosities at  900°C and 1000°C and 

excessive grain growth at 1200°C , whereas densified fine grained structure at 1100°C 

[42]. However, a thorough understanding about role of CNT in microstructural evolution 

of SPS processed HA-CNT is not available in the published literature. 

 HA-CNT composites processed through SPS route shows increase in mechanical 

properties, e.g. fracture toughness [31, 41, 46], elastic modulus [42], hardness[41-42] and 

bending strength [46]. Thus, SPS is found to be a suitable consolidation process for 

synthesizing free standing HA-CNT composite parts. The only drawback of SPS with 

respect to HA-CNT processing is its application of high pressure, which can cause 

damage to CNT structure and thus have negative effect on the strengthening of the 
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composite. CNTs are reported to collapse or forming, kinks, caps, onion structure and 

corrugated walls due to application of pressure during SPS processing [62-63].  

Figure 2.8: SEM micrographs of fracture surface for SPS processed HA-CNT composites 

sintered at (a) 900°C; (b) 1000°C; (c) 1100°C; (d) 1200°C [42]. 

CNT Reinforced HA Coatings 

Since late 1990s, HA is in clinical use as a coating on metallic orthopedic 

implants [64]. Development of CNT reinforced HA based composite coatings on the 

metallic substrate are of utmost importance for its projected scope of real life application. 

The research on synthesis of HA-CNT coatings was started with laser surface alloying 
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and followed up with other techniques, e.g., plasma spraying, electrophoretic deposition 

and aerosol deposition. Following subsections summarize the significant outcomes of the 

studies on HA-CNT coating synthesis techniques. 

 

Laser Surface Alloying 

 The first HA-CNT composite coating on metallic surface was synthesized by 

Chen et al. using laser surface alloying (LSA) technique [26].  The high power density 

applied in LSA acts as a heat sink, causing localized melting of the substrate and forming 

good adhesion with coating [65]. Thus, it is effective in forming good bonding of ceramic 

coating on metallic surface. Chen et al. have used Ti-6Al-4V alloy as the substrate for 

HA-CNT coating [26-28]. Ti-6Al-4V is a well-established alloy for orthopedic 

application and also in use with HA coating. The substrates were preheated to reduce the 

residual thermal stress that can cause cracking at interface and delamination of coating.  

The coating was synthesized using a Nd:YAG laser operating at 400 W power. High 

temperature exposure in LSA causes dissociation of HA to TCP and CaO, which is not 

favorable for its intended orthopedic application [26, 28, 45]. Moreover, CNTs reacted 

with Ti to form TiC. In the LSA process, the Ti alloy substrate gets melted and becomes 

more prone to react with CNT to form TiC. This phenomenon has two major 

shortcomings for HA-CNT coating synthesis. Firstly, presence of TiC in the coating 

might affect the biocompatibility of the coating, especially when exposed to body fluid 

and blood stream during wear or dissolution of the HA coating from the implant surface. 

Secondly, reaction of CNT with Ti will destroy the CNTs and will require increased CNT 
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content to offer required strengthening to HA. But, increase in CNT content results in 

increased in TiC content also [27]. Though, a portion of CNT reacts with Ti-alloy 

substrate, remaining CNTs were found in the HA coating, maintaining their cylindrical 

structure [26]. LSA synthesized HA-CNT coating displayed improvement in the elastic 

modulus, hardness [26-27] and wear resistance [28]. 

Plasma Spraying 

 In plasma spraying, the micron sized powders are fed through plasma gun and 

sprayed on preheated substrate to deposit a coating. While passing through the plasma 

plume, powder particles gets exposed to very high temperature (>10,000 °C) for 

milliseconds, which causes melting. These molten particles are propelled on the substrate 

with high velocity to get deformed/flattened through impact and rapidly solidify.  Layer 

by layer deposition of these molten powder particles causes the typical lamellar structure 

of the plasma sprayed coatings. High temperature exposure in plasma spraying is suitable 

for preparing ceramic coatings on substrates with good adhesion strength. It is a suitable 

technique for synthesizing uniform and controlled thickness coating on substrates with 

complex geometry. Plasma spraying is US Food and Drug Administration (FDA) 

approved technique for coating implants with biomaterials [66] and is routinely used for 

depositing HA coating on implants [67-68]. Thus, plasma spraying is a viable option to 

synthesize HA-CNT composite coating.  In plasma spraying, only powders are exposed 

to very high temperature and not the substrate. Hence, the chance of TiC formation due to 

melting of substrate (as in laser surface alloying) does not exist.  All available studies on 

plasma spray formed HA-CNT coatings till date have been carried out by our research 
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group [37-40]. Figure 2.9 shows HA and HA-CNT coatings on Ti-6Al-4V substrate 

deposited using plasma spraying [37]. The cross sectional microstructures of the coatings 

reveal typical lamellar structure of plasma sprayed coating with uniform thickness. No 

sign of delamination and cracking at the interface denotes good bonding between Ti-alloy 

substrate and HA/HA-CNT coating.   

Figure 2.9: SEM micrographs of coating cross sections synthesized by plasma spraying 

of (a) HA and (b) HA-CNT [37]. 

Both SEM micrographs of fracture surface and Raman spectrum proves the 

survival of CNT in the composite coating after being exposed to plasma [37]. CNTs 

survive the high temperature due to the shorter exposure time in plasma (in milliseconds) 

which is not sufficient for their oxidation and destruction. Moreover, ceramic melts 

during plasma spraying form a protective layer on CNTs [69-70]. Powder carrier gas 

(argon) also creates inert shroud over the particles that shields against oxidation of CNTs. 

X-ray diffraction study on the HA-CNT composite coatings reveals much lower intensity 

β-TCP peaks compared to peaks from HA phase [37, 40]. A negative effect of very fast 

cooling rate in plasma spraying is decreased crystallinity of HA in the coating. But, 
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presence of CNT increases the crystallinity of the composite coating, due to its higher 

heat capacity. A more detailed discussion on this has been presented in section2.1.1.4, 

while discussing phase stability and Crystallinity of HA in composite.  Similar relative 

density of both HA and HA-CNT coatings indicate that CNT does not create any problem 

in densification. Plasma sprayed HA-CNT composite coatings show improvement in 

fracture toughness [37, 39-40], hardness [39] and wear resistance [38-39] compared to 

the HA coatings. Thus, plasma spraying is an effective technique for synthesizing HA 

coatings reinforced with CNT. 

Electrophoretic Deposition 

Electrophoretic deposition (EPD) is a colloidal process in ceramic production that 

is used for preparing cost-effective coatings on substrates with complex geometry. In 

EPD, charged powder particles, suspended in a liquid medium, are attracted and 

deposited onto a conductive substrate of opposite charge when DC electric field is 

applied. It is a widely used coating technique for ceramics [71-72] and is being vastly 

researched for biomaterials [73-74] and CNT reinforced composite ceramic coatings [75]. 

Few studies have been conducted on synthesizing HA-CNT coating for bioimplant 

surfaces using EPD [12-14, 17, 33-35]. For the effective deposition, the pH of the 

suspension medium is maintained in the range of 3.5 – 5 [13-14, 17, 33-34].  Applied DC 

voltage has significant effect on the final coating morphology. A systematic study by Bai 

et al. shows 20V to be the optimum voltage to form uniform and continuous coating with 

no cracks [12]. Increase in the voltage to 40V causes lot of cracks and porosity in the 
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coating due to significant hydrogen evolution at cathode. Figure 2.10 shows the effect of 

applied DC voltage on EPD coating morphology [12].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: SEM micrographs of the HA-CNT coatings electrophoretically deposited 

for 8 minutes with DC voltages: (a) 10 V; (b) 20 V; and (c) 40 V [12]. 
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HA particles and CNTs are separately added to the suspension with opposite 

surface charges on them. Thus, they attach to each other to form composite particle, 

which ensures uniform dispersion of CNT in the composite coating [75]. A low 

temperature (600 – 700 °C) post-coating sintering cycle in inert atmosphere is always 

assisted with EPD to have better densification of the coatings [13-14, 17, 33]. But, 

differential shrinkage of coating and substrate during sintering also causes formation of 

cracks in the coating [17]. EPD synthesized HA-CNT coatings shows absence of 

delamination and good adhesion with the Ti-alloy substrates [13, 17, 33]. Increasing CNT 

content increases the adhesion strength of coating with substrate [13, 33]. Incorporation 

of CNT in HA by EPD is found effective in enhancing the elastic modulus [14], hardness 

[14] and inter-laminar shear strength [14] of the coating. The main advantage of EPD for 

synthesizing HA based coating is its room temperature operation followed by a low 

temperature sintering cycle, which helps in maintaining the crystallinity of HA in coating 

[13, 33]. Moreover, absence of high temperature exposure does not create any problem 

regarding dissociation of HA, which is a problem for most of the other processing 

techniques [13, 33]. But, the major problem with EPD technique is severe cracking of the 

coating [76], especially with increasing coating thickness. None of the studies on HA-

CNT till date have reported synthesizing a coating with > 25 µm thickness with 

insignificant amount of cracks [12, 14, 17, 34]. Presence of cracks deteriorates the 

mechanical property and strength of the coating and makes it incompatible for the 

intended orthopedic applications. Figure 2.11 presents electrophoretically deposited HA-

CNT coatings on Ti alloy, revealing the intensity of cracking with increasing time of 

deposition [34]. The thickness of the coating in figure 2.11a with 1 min deposition time is 
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reported to be 12 µm. Considerable amount of effort is needed to overcome the problem 

of cracking in order to have EPD as an efficient technique for synthesizing HA-CNT 

composite coatings. 

 

 

 

 

 

 

 

 

 
 
 
Figure 2.11: SEM micrographs of electrophoretically deposited HA-CNTs coating on Ti 

alloy wire as a function of deposition time, (a) 1 min, (b) 2 min and (c) 3 min [34]. 
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Aerosol Deposition 

Aerosol deposition (AD) uses shock-consolidation principle to form dense and 

hard coating of fine ceramic powders on metallic, ceramic and plastic surfaces. In AD 

process, submicron size ceramic particles are accelerated through air/gas flow with a 

velocity of several hundreds of m/s to collide on the substrate and form a coating. This 

technique is successfully employed to form ceramic coatings for different applications 

[77-79]. The only study on synthesizing HA and HA-CNT coating using AD process is 

conducted by Hahn et al. [16]. A pore and micro-crack free HA-CNT composite coating 

with an uniform thickness of 5 µm is deposited on Ti plate using AD process. CNT 

addition does not influence the deposition behavior of the coating. HA crystallite size in 

the coating (5-20 nm) reduces to one tenth of the size in powder stage. Finer crystallite 

size in coating is due to the fracture of particles during high energy collision with surface, 

which bonds together in the coating. Low processing temperature of AD process has 

specific advantage for HA based coating, in maintaining the crystallinity and preventing 

the HA phase dissociation. Broadening of X-ray diffraction peaks of HA in the coating 

from the powder stage is due to the fragmentation of crystals in nano-size. But, very low 

intensity of HA peaks, with respect to that of Ti peaks is not justified, considering the 

coating thickness of 5 µm. CNT reinforcement in coating is successful in increasing the 

hardness, but elastic modulus is not improved significantly. The adhesion strength of HA 

and HA-CNT coatings with Ti substrate remains similar and is claimed to be in the same 

range of plasma sprayed coatings [16]. Adhesion of ceramic coating with substrate in AD 

is only due to physical bonding. Considering this fact, an in-depth explanation on the 

bonding mechanism is needed to justify the reported high adhesion strength, which is 
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absent in the publication [16]. At present, with only one study being done, AD technique 

is in its infancy to be suggested for HA-CNT coating application. Further studies, 

addressing the issues and concerns raised, could project aerosol deposition to be a viable 

and effective option to synthesize HA-CNT coatings on metallic implant surfaces. 

Amongst different consolidation techniques used for HA-CNT composite, 

conventional sintering is not a suitable one due to its high temperature exposure for long 

time, which poses the risk of aggravated grain growth of ceramic and dissociation of HA 

into unwanted phases. Sintering in vacuum, in the presence of pressure or in specialized 

atmosphere of CO and H2 are better options for overcoming these risks. SPS is the most 

suitable method for synthesizing free standing HA-CNT composite body, due to its short 

exposure at high temperature, which restricts HA-dissociation and grain growth. 

Moreover, presence of CNT is an added advantage for better consolidating through SPS. 

Higher thermal and electrical conductivity of CNT helps uniform distribution of thermal 

energy significantly in very short sintering time of SPS. LSA is an effective method for 

synthesizing a strongly adherent and well densified HA-CNT composite coating, though 

results into dissociation of HA and formation of reaction products like TiC, which are not 

suitable for orthopedic application. Plasma spraying is a clinically proven method for HA 

coating and found suitable for HA-CNT. Plasma spraying of HA might cause dissociation 

of HA and loss of crystallinity. But addition of CNT in HA does not aggravate its 

limitations, rather causes improvement in crystallinity. This issue has been addressed in 

details in section 5. Application of low temperature in electrophoretic deposition and 

aerosol depositions makes them very potential option for HA-CNT coating synthesis. But 

the major limitation of these processes is the thickness of coating along with the severe 
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cracking. Electrophoretic deposition methods have not been extensively studied for HA 

or HA-CNT coating synthesis. Effect of composite consolidation techniques on phase 

transformation and crystallinity of HA-CNT system is addressed in details in section 

2.1.1.4. 

2.1.1.3 Dispersion of Carbon Nanotubes in Composite 

Uniform distribution of CNTs in the HA matrix is very critical to ensure uniform 

improvement in mechanical and tribological performance of the composite structure. 

Agglomeration of CNTs will cause heterogeneous structure leading to poor densification, 

weak interfacial bonding and stress concentration points in the structure that will 

aggravate its failure. The natural tendency of agglomeration in CNTs, due to their high 

aspect-ratio, nano-sized diameter and high surface energy, makes the job of effective 

dispersion even more challenging. A closer look on the HA-CNT literature reveals that 

the distribution of CNT in the HA matrix at the powder stage is carried forward in the 

consolidated structures for both free standing parts and coatings. Singh et al. have also 

found the good distribution of CNTs in HA powder, achieved by ultrasonication (figure – 

2.5) results into uniform dispersion of CNT in electrophoretically deposited composite 

coating (figure 2.12) [34]. Chemical precipitation of HA on functionalized CNT helps in 

uniform mixing of HA and CNT. Bai et al. have reported achieving uniform CNT 

distribution on electrophoretic coating synthesized using chemically precipitated 

composite powder in precursor (figure 2.13)[12]. Figure 2.14 is the evidence of uniform 

distribution of CVD grown CNTs on HA in powder and the sintered structure [20]. 

Kobayashi et al. have reported effective dispersion of carbon nano-fiber in HA by ball 
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milling, which is maintained in the hot pressed composite structure (figure 2.15) [30]. 

Hence, dispersion of CNTs at powder stage is more critical to attain its final 

homogeneous distribution in the composite. 

 

 

 

 

 

 

Figure 2.12: SEM micrograph of electrophoretically deposited HA-CNT coating 

suggesting good dispersion of CNT in HA [34].  

 

 

 

 

 

 

 

Figure 2.13: SEM micrograph of electrophoretically deposited HA-CNT coating from 

chemically precipitated composite powder [12]. 
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Figure 2.14: SEM micrographs of uniformly distributed CNT in (a) CVD processed 

composite powder and (b) sintered composite fracture surface [20]. 

 

 

 

 

 

 

 

 

Figure 2.15: Fracture surface of sintered HA-Carbon nano-fiber composite showing the 

uniform distribution of reinforcement phase [30].  

Pull out



47 
 

Dispersion of CNTs in HA at the powder stage has been tried using several 

techniques, as discussed in section 2. Most of the studies have used more than one 

technique simultaneously to achieve the best dispersion. Comparative studies have shown 

that the degree of CNT dispersion in HA remains similar for both chemical precipitation 

and mechanical mixing methods [5, 7]. Functionalization of CNTs is effective in 

enhancing the dispersion of CNT in HA followed by both chemical precipitation and 

mechanical mixing routes [7]. Forming HA-CNT nano-composite particles in 

electrophoretic deposition bath using opposite surface charge between HA and CNT is 

also effective in homogeneous distribution of CNTs in composite coating [75]. But, 

functionalization using acid treatment poses high chance of damage to CNT’s outer 

wall(s) which could lead to lowering in the elastic modulus and strength of the composite 

[1, 80], thus defeating the aim of adding CNTs to HA. Similarly, ball milling also 

generates defects in CNTs and shortens them by breakage, lowering the effectiveness of 

the reinforcement [80]. Ultrasonication and other mechanical mixing methods could also 

pose problem if used excessively [80]. Thus, it is very important to assess the damage on 

CNTs as an effect of powder mixing procedure. CVD is a very useful method for uniform 

dispersion of CNTs by growing them directly on the surface of ceramic particles such as 

HA.  But, using metallic catalyst particles for CVD growth may create problem at a later 

stage, due to cytotoxicity related issues. The process proposed by Lu et al. for CVD 

growth of CNT directly on HA is a suitable solution, though the decomposition of HA in 

this process needs to be taken care of [21]. Hence, an optimum powder processing 

method is required for the effective CNT dispersion at powder-mixing and consolidation 

stages.  
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2.1.1.4 Phase Stability and Crystallinity of HA in Composite 

One of the main concerns regarding high temperature processing of HA is the loss 

of hydroxyl group to form oxyapatite and oxyhydroxyapatite, which starts at 900°C in air 

and 850°C in water free atmosphere [81-83]. Further dissociation of HA at higher 

temperatures (1200-1450 °C) are very much sensitive to the Ca/P ratio, which is 1.67. In 

case of Ca/P <1.67, HA dissociate into β-TCP (α-TCP at higher temperature) and tetra 

calcium phosphate (TCP). HA dissociate to CaO when Ca/P > 1.67 [83-84]. The 

dissociation of HA into TCP or other phases has two major effects on the consolidated 

structure. Firstly, the dissociated phases causes problem in densification significantly 

lower the strength of the structure [83, 85]. Secondly, the phases formed by dissociation 

of HA leads to considerable increase of the dissolution rate in physiological pH, as 

confirmed by the in-vitro tests [86]. Dissociation of HA inside living body is unsuitable 

for orthopedic applications.  

Similar problems also exist for HA-CNT composite system.  Moreover, H2O 

formed due to dehydroxylation of HA at higher temperature can also react with CNT to 

cause damage to nanotubes. The problem of HA dissociation does not exist for synthesis 

routes that employ lower temperature, e.g.  electrophoretic and aerosol deposition of 

coatings [13, 16, 33]. Electrophoretic deposition generally requires a post-sintering 

treatment. But, the sintering temperature (600-700 °C) is lower than the HA dissociation 

start temperature (850-900 °C). The problem regarding phase transformation of HA is 

largely associated with the high temperature synthesis routes. Conventional sintering of 

HA-CNT composite leads to significant HA dissociation [6, 36]. Phase dissociation is 
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mainly detected by analysis of x-ray diffraction (XRD) pattern of the composite structure. 

JCPDS PDF No. 9-432 is used for the detection of characteristics diffraction peaks from 

HA. Presence of dissociated phases is also detected by referring to JCPDS data-base, e.g., 

PDF No. 9-169 for β-TCP, PDF no. 29-359 for α-TCP etc. The reference XRD data for 

CNT is available in JCPDS PDF No. 23-0064 for graphite. CVD growth of CNTs on HA 

powder also introduces transformation phases in the composite powder [21]. The study 

by Li et al. reveals the effect of CNT in increasing dissociation of HA during sintering at 

1200 °C [36]. Sintering of pure HA at 1200°C produces β-TCP.  But, the presence of 

CNT causes further decomposition of HA into α-TCP and  γ-Ca2P2O7, which requires 

higher heat input. High specific heat of CNTs [87] can enable them to work as heat sink 

and assist in further dissociation of HA in the neighboring region. A recent study by 

White et al. suggests that combination of CO and H2 is ideal sintering atmosphere for 

HA-CNT (48). Presence of carbon monoxide and hydrogen in atmosphere shifts the 

equilibrium of reaction between H2O and C, and thus retains CNT and prevents 

dehydroxylation of HA. Application of pressure during sintering is found effective in 

partially suppressing dissociation of HA in most HA-CNT systems [4, 15, 18]. Meng et 

al. have suggested that application of pressure could reduce the dehydration and 

decomposition of HA [18].  

In this regard, rapid processing routes such as SPS or plasma spraying become 

attractive. The faster synthesis time can reduce the dissociation of HA to some extent by 

defeating the kinetics of the phase transformation reactions. SPS processed HA-CNT 

systems shows partial decomposition of HA into a very small amount of β-TCP in the 
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sintered structure [31, 42]. Kalmodia et al. have reported presence of β-TCP in their SPS 

sintered HA- 18.4 wt.% Al2O3- 1.6 wt.% CNT composite structure even at a  higher 

heating rate [41]. But, closer observation of the XRD pattern (figure 2.16) presented in 

the same study reveals that 100% intensity peak of β-TCP (2θ = 30.9°) is not present in 

the pure HA sample, whereas it is present in other two samples containing Al2O3 

andAl2O3 + CNT respectively. As all three samples were sintered using same SPS 

parameters, the dissociation of HA in the composite cannot be attributed solely to 

sintering. Though not reported by the authors of the same study [41], but the dissociation 

of HA could be due to Al2O3.  Previous studies have shown effect of Al2O3 on increasing 

dissociation of HA at high temperature exposure [88-89].  

Figure 2.16: X-ray diffraction pattern of SPS sintered HA, HA-Al2O3 (HA-A) and HA-

Al2O3-CNT (HA-A16C) composites [41]. 
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Plasma spray forming of HA- 4 wt% CNT composite coating also reveals 

minimal dissociation of HA to form a small amount of β-TCP, which is evident from the 

very low intensity of the TCP peaks compared to much higher HA peaks [37]. However, 

laser surface alloyed HA- (5/10/20 wt.%) CNT composite coatings show very significant 

amount of HA dissociation [26]. Melting of the substrate along with the coating material 

during laser surface alloying exposes HA to high temperature for longer duration as 

compared to plasma spraying, and hence results in its dissociation. None of these rapid 

processing routes report increase in HA dissociation in the presence of CNT. Higher 

specific heat of CNTs might not induce significant effect due to faster consolidation time 

for SPS and plasma spraying, as it does in case of conventional sintering. One important 

issue, while discussing the phase dissociation of HA in HA-CNT system, is the solubility 

or diffusion of carbon atoms in HA lattice. But, no report is available on the diffusion of 

C in HA lattice and corresponding change in HA cell volume. On the contrary, Rietveld 

analysis of the neutron diffraction data by Keally et al. indicates no change in the 

structural parameter (cell constant) of HA in HA-2 wt.% CNT system sintered up to 

1000°C [4].  

Crystallinity of HA is another important variable as it influences the mechanical 

properties. The presence of amorphous phases increases the dissolution/resorption rate of 

HA, which is not suitable for its intended orthopedic applications [90-91]. Amorphization 

of HA is not a concern for most of the synthesis processes used in consolidation of HA-

CNT composites, except plasma spraying, which involves extremely high cooling rates, 

in the range of 105 - 108 Ks-1. A study by Keally et al. on hot pressing of HA- 2 wt.% 

CNT composite has shown fully crystalline HA consolidated structure with no significant 
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effect of CNT addition on the unit cell parameters [4]. Another study by the same group 

have reported an increase in the crystallite size of HA with 5 wt.% CNT addition [6]. But 

the crystallite size was found to be decreasing for higher CNT content (12 and 25 wt. %). 

The initial increase in HA crystallite size could be due to higher specific heat and thermal 

conductivity of CNT, which provides more heat to neighboring regions aiding in grain 

growth. But, with increasing CNT content, pinning action offered by CNTs at grain 

boundaries becomes dominating to reduce the crystallite size. Inhomogeneous 

distribution of CNTs in the reported structure is also responsible for such behavior [8]. 

White et al. have also reported increasing crystallinity in HA- 5 wt.% CNT composite 

system with increasing sintering temperature [7].  

As mentioned earlier, formation of amorphous phases is a concern in HA coatings 

synthesized using plasma spraying. But, addition of CNTs is found to act as a solution of 

this problem. Balani et al. reported that plasma sprayed HA-CNT coating shows 

significantly increased crystallinity (80.4 %) compared to HA coating (53.7%) 

synthesized using the same parameters (figure 2.17) [37]. Increased crystallinity in HA- 4 

wt.% CNT system is attributed to higher thermal conductivity of CNTs compared to HA, 

which helps in nucleation and precipitation of HA. Higher heat capacity of CNT can 

absorb more heat when exposed to the plasma and then higher thermal conductivity of 

CNT can create a thermal pool around while cooling. Both of these phenomenon provides 

an enhanced cooling time to the HA matrix in the neighboring region of CNTs, which 

helps in its recrystallization. Another study by Tercero et al. on plasma sprayed HA-18.4 

wt.% Al2O3- 1.6 wt.% CNT coating, provides further evidence on effect of CNT in 

increased crystallinity of HA based composite coating [40]. Both the HA and HA-Al2O3-
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coatings show same type of amorphous hump in the XRD pattern, whereas, sharp 

crystalline HA peaks with reduced amorphous hump is observed with the CNT addition.  

It can be inferred from these observations that Al2O3 does not contribute towards the 

crystallinity of HA composite coating due to its poor thermal conductivity. Thus, 

presence of CNTs tends to improve the crystallinity of HA in composite systems. 

 

 

Figure 2.17: X-ray diffraction pattern of plasma sprayed HA coatings showing increased 

crystallinity in presence of CNT [37].  

2.1.2 Mechanical Properties of HA-CNT Composites 

The main aim of CNT addition to HA is to improve the overall mechanical 

properties of the composite.  CNT is found effective in increasing the fracture toughness, 

elastic modulus, hardness and bending strength of HA-CNT free standing parts and 

coatings. Another important consideration for composite coating is its adhesion strength 

with the substrate. Researchers have studied the effect of CNT addition on adhesion 
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strength of HA based coating with underlying titanium substrate [13-14, 16, 33]. The 

following subsections present a comprehensive summary of the effect of CNT addition 

on the fracture toughness, elastic modulus, hardness, and strength of the composite.  

2.1.2.1 Fracture Toughness 

Bones are the load bearing parts of a living body. Thus, they need to possess 

good fracture toughness (KIC) to prevent cracking and fracture on the application of high 

and cyclic loading during limb movement and actions. Fracture toughness of dense HA (1 

MPa.m0.5) is significantly lower than the minimum reported value for cortical bone (2 

MPa.m0.5) [84]. Thus, to replace bone as an implant or coating, fracture toughness of HA 

needs to be improved. CNTs have been explored as a second phase reinforcement for 

improving the fracture toughness of HA based composite parts and coatings.  The role of 

CNT in improving the fracture toughness of the composite system can be explained using 

three main toughening mechanisms – (i) crack deflection; (2) CNT pull-out and (3) crack 

bridging.   

(1) Crack Deflection: When a crack propagates through the matrix and reaches a 

CNT across its path, the crack gets deflected and absorbs some energy resulting in 

toughening of the matrix. Chen et al. have developed an analytical model to 

predict the deflection of crack and energy release rate due to the deflection for 

ceramic-CNT composite system [92]. Studies on HA-CNT system mentions about 

crack deflection as one of the toughening mechanism contributing towards higher 

KIC of composite than only HA [15, 18, 45]. 
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(2) CNT Pull-out: Pulling out of CNTs from the ceramic matrix can dissipate energy 

due to binding and friction and subsequently, leads to toughening.  Figures 2.14b 

and 2.18 show SEM images of CNT pull-out from the fracture surfaces of HA-

CNT composite, reported in different studies 15-16, 20, 30-31, 39, 40, 79].  

(3) Crack Bridging: CNTs can act as bridges and restrict the widening of the cracks. 

CNT bridges require more energy for opening up of the cracks and cause 

toughening. Different studies have also shown evidence of CNT bridging as an 

effective mechanism for the toughening of HA-CNT composite [15, 18, 37, 41]. 

 

 

 

 

 

Figure 2.18: Protruded CNT on fracture surface of HA-CNT composite synthesized by 

(a) hot pressing [15]; (b) aerosol deposition [16]. 

Most of the studies have used indentation based technique for the measurement of 

fracture toughness. Figure 2.19 shows a comparison of the published data on percentage 

improvement in the fracture toughness as a function of CNT content in the composite 

structure. The value of KIC in each study depends on several factors including processing 

route, powder morphology, structure type – i.e. free standing or coating. Thus, the 

(a) (b) 
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percentage improvement of KIC in HA-CNT system is calculated with reference to KIC of 

the HA structure (without CNT) reported in the same study. A few studies have adopted 

Al2O3 or ZrO2 in addition to CNT, which also contribute towards toughening of the HA 

matrix [18, 39-41]. In those cases, the comparison has been made between the two 

compositions having HA- Al2O3/ZrO2 and HA- Al2O3/ZrO2-CNT.  The CNT content in 

figure 2.19 is presented in weight percentage. In cases where CNT content is reported as 

volume percentage, it is converted to weight percentage using the density of HA and 

CNT as 3.2 g/cc and 2.1 g/cc respectively.  

Figure 2.19: Percentage improvement in KIC as a function of CNT content in HA-CNT 

systems synthesized through different process routes. 

The highest improvement in KIC of ~ 650% is obtained by Li et al. with 3 wt.%  

CNT addition [36]. HA was sintered in air, whereas, the HA- 3 wt.% CNT system that 

shows maximum improvement in KIC was sintered in vacuum. This study has also 
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mentioned that sintering in presence of any gas is detrimental for HA based system. HA 

surface can absorb gas that deteriorates its densification and sintering in vacuum 

produces best densification. Thus, 650% improvement in KIC in this study is a cumulative 

effect of CNT reinforcement and better densification in absence of gas. On closer 

observation of other studies that has shown more than 100% improvement in KIC, the 

effect of uniform dispersion of CNT becomes more evident. CVD grown CNTs on HA 

powder by Li et al. ensures good dispersion at powder and consolidated stage.  A225% 

improvement in fracture toughness was observed with only 2 wt.% CNTs grown via 

CVD [20, 25]. The surface adsorption force at CVD grown CNT and HA particles 

interface plays an important role in the high performance of the composite.  

 

 

 

 

 

 

 

 

 

Figure 2.20: Change in the fracture toughness as a function of CNT content in a hot 

pressed HA-CNT system [15]. 
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Lower increase in KIC can be associated with the existence of agglomerated CNTs 

in the sintered structures, due to poor CNT dispersion at the powder stage [8, 15, 31]. 

Meng et al. have provided a direct evidence of effect of CNT dispersion on KIC of hot 

pressed HA-CNT composite [45]. Better dispersion of CNT with similar content (3 wt.%) 

is reported to increase KIC by 5%. Another study by Meng et al. on optimization of CNT 

content in hot pressed composite has shown 7 vol.% (~4.7 wt.%) CNT addition causes 

the maximum improvement in KIC, as presented in figure 2.20[15]. Further increase in 

CNT content causes agglomeration and deterioration of fracture toughness. The studies, 

which have used an additional reinforcement phase (Al2O3 or ZrO2) than CNT, show 

relatively lower degree of KIC improvement due to CNTs [18, 40-41]. KIC of HA in those 

cases is already improved significantly with the Al2O3 or ZrO2, leaving less room for 

improvement by CNT addition. The only study that shows agglomeration of CNT and 

still higher improvement in KIC (~130%) is by Tanaka et al. on SPS processed HA- 6 

wt.% CNT system [46]. But, the study does not provide a suitable justification for such 

behavior, contradictory to all other studies on HA-CNT systems. Tanaka et al. have very 

briefly mentioned about anisotropic nature of CNT clumps that can prevent grain 

boundary cracking from extension. But, CNT clumps are supposed to create a very weak 

interface with HA matrix, which could have severe detrimental effect on the toughening 

of the composite. Sintering temperature in SPS processing is also found to have direct 

effect on the fracture toughness of the HA-CNT composite. Sarkar et al. have reported 

fracture toughness of HA-2.5 vol.% (1.65 wt. %) CNT synthesized by spark plasma 

sintering at 1000, 1100 and 1200 °C [31]. Lower temperature (1000 °C) leaves significant 

porosity, whereas higher temperature (1200 °C) results in excessive grain growth. As a 
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result, transgranular type of fracture with easily propagating cracks dominates in both the 

cases; having deteriorating effect on the fracture toughness. HA-CNT composite sintered 

at 1100°C shows fine grained consolidated structure. Intergranular fracture with CNT 

pull-outs is prevalent in this structure, which absorb energy while cracks propagate and 

increase the fracture toughness [31, 42]. Moreover, the fine grained structure, generated 

due to grain boundary pinning action of CNT, is also effective in increasing the fracture 

toughness of the composite structure [55]. 

The dispersion of CNT in HA matrix and densification are two most critical 

factors for improvement of fracture toughness in HA-CNT system. A comprehensive 

outcome of all the studies indicate ≤ 5 wt.% CNT is effective for improvement in fracture 

toughness, irrespective of the processing technique. Agglomeration of CNTs at higher 

content is responsible for deterioration in KIC. CNT improves the KIC of composite by 

absorbing the dissociation energy, crack deflection, and crack bridging in HA matrix. 

CNT induced toughening is highly effective even in porous and heterogeneous structures 

such as plasma sprayed HA coatings, indicating dominance of toughening effect over 

porosity. 

 

2.1.2.2 Elastic Modulus 

Elastic modulus (E) of human cortical bone is reported to be in the range of 15-25 

GPa[93-94], whereas it is much higher (~ 100 GPa) for consolidated monolithic HA [95]. 

Mismatch of E at bone-implant interface might pose a risk of fracture or delamination of 

implant. But, osseointegration ability of HA creates a strong bonding at HA- bone 



60 
 

interface, which reduces the chance of delamination and fracture. Thus, unlike fracture 

toughness, elastic modulus of HA need not be improved to match with bone.  But, 

increase in E directly influences improvement in the fracture toughness in ceramic based 

composite systems. Fracture toughness of brittle ceramic system is mainly estimated from 

indentation cracking using Anstis’ equation [97], median crack equation by Lawn [98] or 

Evans’ relationship [99] as following: 

Anstis’ Equation:    ܭூ஼ ൌ 	0.016 ቀாுቁ଴.ହ ௉஼భ.ఱ………(1) 

         Median Crack Equation:    ܭூ஼ ൌ 0.018 ቀாுቁ଴.ହ ቀ ௔஼భ.ఱቁ………(2) 

       Evans and Charles Equation: ܭூ஼ ൌ ଴.ହܽܪ0.16 ቀ஼௔ቁିଵ.ହ, Where c/a ≥ 3   ………(3) 

Expression (3) was later modified with a non-dimensional factor (E/H)n[100], where, KIC 

– is the fracture toughness, E – is the elastic modulus, H- is the hardness, a – is the half 

diagonal length of indent and c- is the radial crack length. 

The studies on HA-CNT systems have used above-listed three equations for 

determining the fracture toughness [15, 20, 30-31, 37, 39-40]. It is clear that an increase 

in E is beneficial for the increased fracture toughness, which is essential for application 

of HA-CNT for orthopedic applications.  

Improvement of elastic modulus in HA-CNT system is due to the high elastic 

modulus of CNT (200-1000 GPa [101] and good bonding at HA-CNT interface. Upon 

application of a stress on HA-CNT, the matrix starts deforming first due to its lower 

elastic modulus. If the HA matrix has a strong interfacial bonding with much stiffer 
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CNTs, then effective transfer of stress can take place from matrix to the reinforcement.  

CNTs can absorb much more stress than HA to produce similar amount of the elastic 

strain. Thus, the resultant elastic strain generated in the composite structure is reduced 

compared to HA for the same applied stress, resulting in increased effective elastic 

modulus for HA-CNT. A cross-linking model for estimating the Young’s modulus of 

HA-functionalized CNT composite proposed by Saffar et al., shows that the  

improvement in modulus of the  composite depends on the CNT content, its aspect ratio, 

number of cross links and characteristics of interfacial reaction [102]. Cross links are the 

points where HA attaches to functionalized sites on CNT surfaces, and are considered as 

active load transfer points through HA-CNT interface during modeling. 

Figure 2.21 presents percentage improvement of E in HA-CNT system as a 

function of CNT content summarized from all the publications. Comparative analysis of 

the HA-CNT literature data in figure 26 reveals no improvement in E for CNT content 

beyond 4-5 wt.%.  All the studies referred in Figure 26 have used nanoindentation 

technique to measure the elastic modulus for HA-CNT, from the slope of the unloading 

curve using Oliver-Pharr method [103]. Most of the studies have reported the increase in 

E up to 70% with CNT content varying in a range of 1.3-12.5 wt.%. Homogeneous 

dispersion of CNTs and good HA-CNT interfacial bonding plays key role in increasing E 

of the composite [14, 26, 42]. On the contrary, agglomerated CNTs with weak interfacial 

bonding reduce the elastic modulus of the composite as compared with pure HA [8, 41]. 

Keally et al. has reported 2% decrease in E with increasing CNT content, which is 

attributed towards agglomeration of CNT in the structure [8]. Whereas, Kalmodia et al. 



62 
 

have found weak interface, yielding easier sliding in nano-scale length, to be responsible 

for a 22% decrease of E after 1.6 wt.% CNT reinforcement [41].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21: Percentage improvement in elastic modulus (E) as a function of CNT 

content in HA-CNT systems synthesized through different process routes. 

Similar to KIC, optimum sintering temperature is found to have a direct 

relationship with E of the SPS processed HA- 2 vol.% (1.3 wt. %) CNT structure [42]. 
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The E of composite sintered at 1100°C shows the best improvement. Both lower and 

higher temperature of sintering causes reduction in E due to poor consolidation and 

excessive grain growth respectively. Lower E at higher consolidation temperature could 

also be due to possible damage in CNT structure [42]. 

The only study that has reported a very impressive increase in E with CNT 

addition is by Kaya for electrophoretically deposited HA coatings [14]. Addition of 1 and 

2 wt.% CNT increases E of the composite coating by 827%  and 1087 % respectively, 

when compared with HA coating. No detailed explanation has been provided for such a 

huge increase in E. But, the E value reported for the HA coating is significantly low (15 

GPa), as compared to other studies, which report E of pure HA in 50-150 GPa [27] range. 

The study on electrophoretically deposited HA-CNT coatings did not provide details of 

the indentation experiments or load vs. displacement curves to better understand such an 

impressive improvement.  

CNTs are found having significant effect on the improvement of elastic modulus 

(E) for HA-CNT composite, which has a direct positive influence on KIC of the structure. 

The degree of dispersion of CNTs and bonding at HA-CNT interface are two most 

critical factors that govern E of the composite system. Similar to fracture toughness, the 

elastic modulus improvement of HA-CNT system is most effective at ≤ 5 wt.% CNT 

content (Figure 2.21). 

2.1.2.3 Hardness 

Addition of CNT also influences the hardness for HA based composite. The 

higher stiffness of CNT provides a strengthening effect in HA matrix, which causes 
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hindrance to plastic deformation. Instrumented indentation has always recorded lower 

penetration depth with similar load application in HA-CNT compared to HA [26-27, 39]. 

Significant decrease in pile up at the edge of nano-indents with increasing CNT content is 

a direct evidence of higher resistance to plastic deformation [27]. Grain boundary pinning 

and refinement of structure by CNT also helps in simultaneous increase in hardness and 

fracture toughness [31, 42, 55]. 

Researchers have used Vicker’s hardness measurement [31, 41] and instrumented 

nanoindentation technique [8, 14, 16, 19, 26-27, 39, 42] to quantify hardness of HA-CNT 

composite. Figure 2.22 presents percentage improvement of H in HA-CNT system as a 

function of CNT content.  

 

 

Figure 2.22: Percentage improvement in hardness (H) as a function of CNT content in 

HA-CNT systems synthesized through different process routes. 
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Based on this comparative data, addition of CNT beyond 4-5 wt.% is found 

ineffective in terms of hardness improvement of the composite structure. Comparatively 

higher increase in hardness is noted for composite coatings processed by laser surface 

alloying [26-27]and electrophoretic deposition [14]. In case of laser surface alloyed HA-

CNT coatings on Ti-6Al-4V substrate, formation of TiC ceramic adds to the overall 

hardness [27]. Electrophoretically deposited HA-CNT coating shows very high 

improvement in hardness of 287% and 647% with 1 and 2 wt.% CNT addition 

respectively [14]. An H value of 36.44 GPa with 2 wt.% CNT addition has been reported, 

which is very high. The same study has also reported high E value (178 GPa) measured 

through nanoindentation study. No adequate explanation has been provided for such 

extraordinary improvement in the mechanical properties. Similar to elastic modulus, 

agglomeration and weak interface causes lower increase and/or decrease in hardness with 

CNT addition.  Researchers have observed decrease (18-8 %) in H with 10-12.5 wt.% 

CNT addition, which is due to the agglomeration of CNT into SPS and hot pressed 

composites [8, 19]. A 28% decrease in H with 1.6 wt.% CNT addition to HA-Al2O3(18.4 

wt.%) system is recorded by Kalmodia et.al, which has been attributed to the incomplete 

densification of the structure in presence of CNT [41]. Higher consolidation temperature 

(1200°C) can also have adverse effect on hardness, due to possible damage and 

destruction of CNT structure, as reported by Xu et al. [42]. But the study by Sarkar et al. 

[31] has contradicted the findings by Xu et al.[42] in terms of hardness of SPS processed 

HA-CNT composite. The former one reports gradual increase in hardness with sintering 

temperature up to 1200°C, in spite of grain coarsening at that temperature [31]. Though, 

no further explanation has been provided.  
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Addition of CNT improves the hardness of HA impressively due to (i) 

strengthening of matrix and (ii) grain size refinement – both of which hinders plastic 

deformation. Agglomeration of CNT in HA matrix is detrimental to hardness 

improvement. 

2.1.2.4 Strength 

Strength of HA-CNT system is measured mostly in tensile mode using flexural or 

bending strength [15, 18, 20, 25, 30, 36, 45-46] with only one study on compressive 

strength [1]. Bending strength has been measured for sintered [20, 25, 36], hot pressed [1, 

15, 18, 30, 45] and SPS processed [46] free standing composite using three point [18, 46] 

or four point [30] bending tests. Strengthening of HA-CNT composite structure is 

governed by two major factors; (1) dispersion of CNTs; (2) bonding at HA-CNT 

interface. Homogeneous dispersion of CNTs helps in the uniform distribution of stress in 

the structure and hence, uniform strengthening. The agglomeration of CNTs causes stress 

concentration points and non-uniform distribution of stress.  Moreover, interface of HA 

and agglomerated CNTs being weak act as source of failure under stress. Li and co-

workers have shown broken and pulled out CNTs on the fracture surface of sintered 

composite, indicating that CNTs can share significant portion of load transmitted from 

the HA matrix [20, 25]. They have reported 49% increase in bending strength with 2 

wt.% CNT addition and attributed to uniform dispersion of CVD grown CNTs on HA 

and good interfacial bonding. Other studies have also shown similar improvement in 

bending strength with 3-4 wt.% CNT addition in HA [30, 45]. Meng et al. have presented 

the bending strength of hot pressed HA-CNT composite as a function of CNT content 
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(Figure 2.23) [15]. This systematic study on optimization of CNT content shows a 

maximum bending strength achieved with 7 vol.% (5 wt.%) CNT. The bending strength 

of the composite decreases with larger CNT content, as CNT tends to agglomerate. The 

highest improvement in bending strength of HA-CNT (164%) is reported by Li et al. with 

3 wt. % CNT addition [36]. But, the sintering condition for HA and HA-CNT being 

different, the properties cannot be compared directly.  

 

 

 

 

 

 

 

Figure 2.23: Change in the bending strength as a function of CNT content in a hot 

pressed HA-CNT system [15]. 

The only study that reports compressive strength of HA-CNT composite is by 

Zhao and Gao on hot pressed structure [1]. HA-2 wt.% CNT  possesses a compressive 

strength of 102 MPa, which is 61%  improvement over HA. It was also concluded that 

chemically modified CNTs result in more effective bonding with HA and results in 23% 

more compressive strength as compared to unmodified CNTs in HA-CNT composite. 
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Reinforcement of CNTs in HA improves the strength of matrix, whether it is tensile 

(flexural) or compressive. Similar to other mechanical properties, the improvement in 

strength is also dependant on dispersion of CNT and bonding at HA-CNT interface.  

2.1.3 Tribological Properties of HA-CNT Composites 

Poor wear resistance of HA is one of the shortcomings for its application as 

orthopedic implant [28, 38, 59, 61, 84]. Poor fracture toughness causes low wear 

resistance of HA. Wear volume loss is a combined function of the elastic modulus, 

hardness and fracture toughness of ceramics. A well established model by Evans and 

Marshall for estimation of the wear volume in brittle ceramic shows dependence of the 

wear resistance on the mechanical properties as following [104]: 

ܸ ൌ 	ܲଵ.ଵଶହܭூ஼ି଴.ହିܪ଴.଺ଶହ ቀாுቁ଴.଼ ܵ………(4) 

where, V is the wear volume, P –is the normal load, and S is the  total travelling distance 

on wear track.  

One of the main objectives for adding CNT in HA is to improve its wear 

resistance. Only three studies have reported the effect on CNT addition on the wear 

resistance of HA-CNT composite and coatings [28, 38-39]. These studies have 

investigated wear at macro-scale in physiological solution using pin-on-disk method [38] 

and at nano-scale length, in dry condition, by nano-scratches using nanoindenter [28, 39].  

The outcomes of all the studies have merged in to a common agreement that CNT 

reinforcement improves the wear resistance of HA- in any environment (wet or dry) at 

macro through nano-scale lengths.  
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Balani et al. have performed nano-scale wear study on plasma sprayed HA based 

coating reinforced with both 18.4 wt.% aluminum oxide  and 1.6 wt.% CNTs [39]. The 

comparison of properties have been carried out for the two compositions having HA+Al-

2O3 and HA+Al2O3+CNT, in order to separate out the reinforcing effect from CNT only. 

CNT reinforcement has not posed any significant effect on CoF of the coatings, as 

observed in figure 2.24. 

 

 

 

 

 

 

 

 

Figure 2.24: Variation in coefficient of friction for plasma sprayed HA, HA-Al2O3 and 

HA-Al2O3-CNT coatings (the undulation in the profile is due to surface roughness and 

structural heterogeneity) [39]. 

Balani et al. have also studied the wear resistance of HA- 4 wt.% CNT coating 

immersed in simulated body fluid (SBF) and concluded that CNT reinforcement 

improves the wear resistance [38]. Nano-scale wear study on laser surface alloyed HA- 

(5-20 wt.%) CNT coatings by Chen et al. reports lower depth of scratch, indicating 
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increased wear resistance [28]. The increasing wear resistance in this case is attributed to 

the enhanced KIC as well as the increasing TiC phase content with CNT addition. The 

density and length of cracks on wear track decreases with increasing CNT content. The 

CoF also decreases with CNT content, probably due to graphene peeling and thus 

increased lubrication in HA-CNT wear track [28]. 

One important issue related to the wear of HA-CNT is the generation of CNT 

containing debris, which may have significance on its biocompatibility. The role of CNT 

containing wear debris on the biocompatibility is not yet addressed in the open literature. 

2.1.4 Biocompatibility of HA-CNT Composites 

HA-CNT composite systems are intended for orthopedic application in a living 

body. Hence, it is extremely important to assess their biocompatibility, by means of in-

vitro and in-vivo studies, before suggesting their clinical use. HA is already a clinically 

proven biomaterial and in use as coating for metallic implants. But, the biocompatibility 

of CNT is still under debate [105].  Several studies have been carried out to study the 

cytotoxicity of carbon nanotubes since 2001 [105-114]. , The topic remains controversial 

till date with contradictory reports by different research groups [106, 108-110, 113]. For 

example, Cherukuri et al. have reported CNTs can be ingested by macrophages without 

producing any toxic effect [106]. But, Cheng et al. have reported frustrated/incomplete 

phagocytosis of CNT in macrophages, causing oxidative stress and cell death [109]. A 

recent study by Kagan et al. reveals ingestion and biodegradation of carbon nanotube by 

human macrophages and neutrophils without any inflammatory or toxic response [110]. 

Comprehensive reviews on this issue have agreed that the reported cytotoxic response of 
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CNT is mostly not due to CNT itself, but is associated with the impurities and catalyst 

particles, degree of agglomeration, surface defects and also on the effect of cell culture 

medium, secondary chemicals, and pH values [105, 107, 113, 115]. Thus, Ren et al. have 

suggested standardization of the assessment method to comment on the cytotoxic effect 

of carbon nanotube on the cells, organ, or whole organism [113]. While considering the 

application of HA-CNT composite in orthopedic implants, there is at least three major 

points in favor. Firstly, CNTs have cytotoxic effect mainly when they are suspended in 

fluid medium, while they appear nontoxic if immobilized to a matrix or to a culture dish 

[115]. Secondly, there are several reports of CNTs having positive response to bones and 

bone cells. Usui et al. have found that CNTs show good bone-tissue compatibility 

without any toxic effect [111]. CNTs, when implanted with collagen in a mouse skull, 

aids in accelerated bone growth [111]. Bone forming cells (osteoblasts and fibroblasts) 

show normal growth and proliferation on CNTs [116-119]. Figure 2.25 shows fibroblast 

cells grown on vertically aligned carbon nanotubes [116]. Recent studies have reported 

increased proliferation and adhesion of osteoblast cells on CNT surface, due to the 

selective absorption of proteins on the CNT surface from cell culture medium [120-121]. 

Osteoblast cells are reported to attach better on CNT surface than collagen, which is the 

main component of natural bone and widely used in orthopedic scaffolds [122]. Thirdly, 

if the CNTs are released in the blood stream along with the wear debris generated from 

the composite surface, they are either biodegraded completely by neutrophils and 

macrophages [110] or safely cleared out from the body by renal excretion route very 

quickly, without causing toxic effect in any organ [108,123]. Hence the use of CNT in 

HA based composite should not have negative impact on the biocompatibility.  



72 
 

 

 

 

 

 

Figure 2.25: SEM images showing the adhesion of fibroblast on vertically-aligned 

MWCNT after 7 days [116]. 

The precipitation of HA on the CNT surface adds to the biocompatibility by 

offering better integration with the newly formed bone [37]. Several reports are available 

on apatite formation ability of CNT-surface, when immersed in simulated body fluid 

[124-129]. Still, a thorough investigation of the biocompatibility of HA-CNT composites, 

prepared by different techniques, is mandatory for the clinical application. Several 

research groups have carried out different types of in-vitro biocompatibility assessments 

for HA-CNT composites, whereas, only one report is available on in-vivo study [36]. 

Table 2.1 summarizes all the biocompatibility studies with the brief description of 

methodology, cells-lines, assessment techniques used and the major outcomes. The 

following subsections briefly presents the important outcomes of the biocompatibility 

studies with possible explanations of results and their significance in orthopedic 

biocompatibility of HA-CNT system.   

(a) (b)
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Table 2.1:  Summary of biocompatibility studies on HA-CNT composite systems 

HA-CNT 
Composition/Processing 

Type of Bio-
study 

Details of the Study Major Findings Reference

3 wt.% CNT – Hot 
Pressing  

Immersion in 
SBF 

• Immersed in SBF for 3, 10 
and 17 Days 

• Apatite growth rate is lower in 
first few days – after wards 
becomes higher – composite is 
claimed to have high bioactivity 

[45] 

4 wt.% CNT – Plasma 
Spraying  

Cultured 
osteoblast cells on 
coatings –SEM 

• Human osteoblasts were 
cultured on coatings for 3 
days 

• Cells were fixed and 
observed under SEM 

• Human osteoblasts grow on HA-
CNT surface – alongside CNTs 

• HA can precipitate on CNT 
surface 

[37] 

3 wt.% CNT – Cold 
Compaction and 
Sintering 

In-vivo – 
embedded in 
striated mouse 
muscle 

• The cylindrical composite 
samples were embedded 
into stripped mouse muscle 

• The mice were sacrificed at 
1, 3, 5, 7 and 14 Days 

• The tissues around were 
observed under microscope 

• Molecular biology 
experiments on the tissues 

• Initially some immune activity is 
observed -  inflammatory cell 
infiltration, blood vessel dilation, 
lymphocyte infiltration and 
monocyte production is observed 

• At 14 days the inflammatory 
reactions are reduced 

• No necrosis of tissue occurs 
• The nearby tissue remains normal
• Composite is found non-toxic 

[36] 

20 wt.% CNT, 
Electrophoretic 
Deposition 

Osteoblast like 
MG63 cell culture 
on coating 

• Cells cultures on composite 
coatings for 3 Days 

• Fixed and observed in SEM 

• Cells grow and attach well on 
HA-CNT surface 

 
[33] 
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2 vol.% CNT – Spark 
Plasma Sintering 

Protein profile of 
osteoblast 
cultured on 
composite surface 
using iTRQ-
coupled 2D LC 
MS/MS Analysis 

• Cells were cultured on till 
they reached 90% 
confluence 

• Cells were lysed and 
extracted protein was 
quantified 

• Antibodies were used to 
detect different proteins 

• Cells were also fixed for 
SEM study 

• Most of the protein shows similar 
expression on substrates. 

• Upregulation of Feutin A is 
observed in case of both HA and 
HA-CNT – which is associated 
with suppressed calcification. 

• Relatively high EF2 level was 
detected in HA-CNT than in HA 
– which participate in the 
elongation phase during protein 
biosynthesis on the ribosome 

• CNT slightly promote the protein 
expression and cytoskeleton 
protein distribution 

[43] 

2 vol.% CNT – Spark 
Plasma Sintering 

Protein profile of 
osteoblast 
cultured on 
composite surface 
using iTRQ-
coupled 2D LC 
MS/MS Analysis 

• Cells were cultured on till 
they reached 90% 
confluence in 4 Days 

• Cells were lysed and 
extracted protein was 
quantified 

• Antibodies were used to 
detect different proteins 

• Cells were also fixed for 
SEM study 

• Major cytoskeletal proteins 
slightly decreased level on HA-
CNT than HA – denotes less 
adhesion on surface 

• For metabolic enzymes – related 
to osteoblast proliferation – some 
shows increased and some of the 
decreased level on HA-CNT 
compared to HA 

• EF2 shows higher level on HA-
CNT – responsible for 
accelerated Ca2+ dissolution from 
composite surface 

[44] 

HA- 1 wt.% and 3 wt.% 
composite coating on Ti 

Cytotoxity, 
Differentiation by 
ALP activity and 

• SEM on cells fixed after 5 
hrs of incubation  

• Cytotoxicity assessed 

• Cells on HA-CNT surface 
spreads better and has longer 
filopods than on HA and bare Ti 

[16] 
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– Aerosol Deposition SEM of pre-
osteoblast cells 
(MC3T3-E1) 

evaluated using LDH Assay 
after 24 hrs of incubation. 

• Cell Differentiation 
evaluated by measuring 
ALP activity on cells 
cultured on coatings for 10 
Days 

surface 
• HA-CNT surface shows lower 

cytotoxicity than HA and Bare Ti 
• HA-CNT surface shows better 

proliferation and significantly 
higher ALP Activity than HA 
and Ti 

HA-Al2O3- 1.6 wt.% 
CNT composite coating 
on Ti-Alloy – Plasma 
Spraying 

Osteoblast 
quantification and 
SEM observation  

•  Cells were fixed and 
observed in SEM after 3 
Days of culture 

• Cells were counted using 
hemocytometer after 1, 3 
and 7 Days of culture 

• Morphology of fixed cells reveal 
normal attachment on all the 
coatings 

• CNT reinforced composite shows 
initially delayed but prolonged 
and accelerated proliferation 
afterwards. 

[40] 

HA-2 vol.% CNT – 
Spark Plasma Sintering 

Osteoblast 
quantification and 
SEM observation  

• Cells were fixed and 
observed in SEM after 1 
Days of culture 

• Cells were counted using 
hemocytometer after 2 and 
4 Days of culture 

• Osteoblast cells flattened and 
attached well on HA-CNT 
Surface 

• Number of cells was higher on 
HA-CNT than on HA. 

[42] 

HA-CNT composite – 
prepared by chemical 
precipitation method –dip 
coated from solution on 
glassy carbon electrode – 
hemoglobin deposited by 
immersing in its 
phosphate buffer solution 

Application as 
biosensor and 
bioelectrocatalyst 

•  Biosensor capability 
studied by amperometric 
response to H2O2 

• Electrocatalytic activity is 
evaluated by 
electrochemical reduction 
of Trichloroacetic Acid 

• HA-CNT –Hb shows fast 
amperometric response 

• Shows a good bioelectrocatalytic 
activity  

[11] 
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HA-ZrO2 – 3 wt.% CNT 
– Hot Pressing 

SBF Immersion • Immersion of composite in 
SBF for 10 Days  

• Apatite formed from SBF 
observed using SEM and 
EDS. 

• Needle like apatite crystal 
precipitates on composite surface 

• Thickness of apatite layer 
increases with time 

• The apatite growing process in 
similar for HA and composite 

[18] 

HA-CNT – 
Electrophoretic 
Deposition 

MTT assay and 
SEM  observation 
on mouse 
Osteoblasts 
(MC3T3-E1) 

• Cells were fixed and 
observed in SEM after 2 
Days of culture 

•  MTT Assay was carried 
out for proliferation 
evaluation after 2 and 4 
Days of culture. 

• Osteoblast cells get flattened and 
attached to substrate. 

• Optical density of cells increases 
with number of Days and is more 
on HA-CNT surface than HA. 

[12] 

HA-Al2O3- 1.6 wt.% 
CNT – Spark Plasma 
Sintering 

MTT assay and 
SEM  observation 
on mouse 
Fibroblasts 
(L929) 

•  Cells were fixed and 
observed in SEM after 3 
Days of culture 

•  MTT Assay was carried 
out for proliferation 
evaluation after 3 and 5 
Days of culture. 

• Fibroblast viability on HA-Al2O3 
–CNT surface remains similar to 
HA in 3 days, but decreases after 
5 days. 

• Fibroblast viability on  HA-Al2O3 
is minimum for both 3 days and 5 
days 
 

[41] 

HA-2 wt.% CNT (CVD 
grown on HA) - Sintering 

Viability Study 
by MTT Assay on 
L929 mouse 
fibroblasts 

• MTT assay was performed 
after culturing the cells on 
HA-CNT for 2, 24, 48, 72, 
96 hrs 

•  The viability is higher the 75% 
at 2 hrs and increases to 100% 
later 

• HA-CNT composite from CVD 
grown CNT powder is non-
cytotoxic 

[25] 
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2.1.4.1 In-vitro Assessment of Biocompatibility 

In-vitro biocompatibility studies are generally carried out by growing bone cells 

(osteoblasts, fibroblasts) on HA-CNT composite surface or by SBF-immersion of the 

composite to study the apatite formation.  

Osteoblast/Fibroblast Proliferation and Viability  

The very first study on growing of osteoblast cells on plasma sprayed HA- 4 wt.% 

CNT coating surface was carried out by Balani et al. [37]. SEM image of fixed osteoblast 

cells reveals good spreading on CNT reinforced HA surface.. Few other studies have also 

reported proliferation and attachment of osteoblast cells on HA- 20 wt.% CNT composite 

surface [33]. Presence of CNTs in HA is reported to improve bone cell proliferation [12, 

16, 42, 44]. Viability assessment also shows increasing percentage of live cells in 

presence of CNT [12, 25, 41]. Liang et al. have reported increasing viability of fibroblasts 

with incubation time on HA-CNT surface up to 100% in 4 days [25]. Osteoblasts attach 

better on HA surface in the presence of CNT, as seen in figure 2.26 [16]. The cell on HA- 

3 wt.% CNT surface has formed several filipods to get attached after 5 hrs of seeding, 

whereas the cell on HA surface still maintains the globular shape and is yet to spread out 

(figure 2.26). Lee et al. have also reported active spreading of osteoblasts on HA-CNT 

surface with several filopodia protrusions [130]. Higher ALP (alkaline phosphatase) 

activity for osteoblasts on HA-CNT surface denotes increasing differentiation [16]. 

Several factors are claimed to cause better proliferation and viability of osteoblast on 

HA-CNT composite surface, viz. (1) attachment of proteins on the CNT surface from the 

cell culture medium [120-121]; (2) the special porous structure and high surface area of 
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CNT [33]; (3) higher porosity content in HA-CNT composite [41] and (4) bioactive 

nature of CNT [41-42]. HA-18.4 wt.% Al2O3-1.6 wt.% CNT composites prepared by 

plasma spraying and SPS also shows similar trend of osteoblast proliferation and viability 

[40-41]. Minimum osteoblast proliferation and viability is noted for HA- 20 wt.% Al2O3 

surface and it increases with CNT addition. But both these composites show lesser 

proliferation and viability than HA. It seems that bio-inertness of Al2O3 poses a negative 

effect on the osteoblast behavior. At the same time, addition of CNTs plays a positive 

role in reviving the proliferation of osteoblast on the composite surface. Increased 

roughness in the composite coating structure is also reported as a cause of delayed 

proliferation of osteoblast [40].  

 

 

 

 

 

 

 

Figure 2.26: SEM micrographs of pre-osteoblast MC3T3-E1 cells attached to (a) HA 

and (b) HA– CNT coatings for 5 hr [16]. 

Protein Profile Study of Osteoblasts 

Ju et al. have studied the profile of cytoskeletal proteins, metabolic enzymes, 

signaling proteins and cell growth proteins that regulate osteoblast cell growth and 

(a) (b)
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proliferation on HA and HA- 2 vol.% (1.3 wt.%) CNT surfaces [43-44]. Cytoskeletal 

proteins show higher expression on HA than HA-CNT surface, which means better 

osteoblast cell adhesion on HA. This observation contradicts the SEM image of fixed 

cells by Hahn et al. (figure 2.26) that shows better osteoblast attachment in HA- 3 wt.% 

CNT surface [16]. Further studies are needed to resolve the contradiction between the 

direct visualization of cell growth and protein profile results. Metabolic enzymes 

involved in the cell proliferation show higher expression on HA-CNT surface, suggesting 

enhanced osteoblast proliferation in the presence of CNTs. This observation is supported 

by an increased cell density count on HA-CNT than HA [44]. Analysis of signaling and 

cell growth proteins show higher expression of EF-2 (elongation factor-2) on HA-CNT 

surface, which indicates accelerated dissolution of Ca2+ from surface.  On the contrary, 

Narita et al. have shown CNTs inhibit osteoclast proliferation and reduce the apatite 

resorption [131]. Thus HA-CNT surface has the potential to make a balance for 

dissolution of calcium ion from the implant surface. 

Immersion in Simulated Body Fluid 

Apatite precipitation ability of any surface during SBF immersion is a preliminary 

indicator of its capability to get integrated with new bone in-vivo. The suitability of SBF 

immersion test as an indicator of biocompatibility could be best justified through a 

statement made by Kokubo (the inventor of SBF) and Takadama, - “examination of 

apatite formation on a material in SBF is useful for predicting the in vivo bone 

bioactivity of a material, and the number of animals used in and the duration of animal 

experiments can be reduced remarkably by using this method” [132]. It is also well 
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understood that the new bone integration on an orthopedic surface is closely related and 

governed by bone cell (osteoblast) attachment, proliferation and differentiation, which 

predicts the mineralization of apatite on it [133]. Thus, the behavior of osteoblast is also 

very important to determine biocompatibility of orthopedic surface along with the apatite 

formability.  

Studies by different research groups have found CNT surfaces suitable for apatite 

precipitation [124-126]. Akasaka et al. have reported a 14 days incubation period for 

apatite precipitation on CNT surface when immersed in standard SBF [126].  Incubation 

time for apatite precipitation on CNT is found accelerated with carboxyl group 

functionalized CNT surfaces [124] and also with increasing ion concentration in a 

supersaturated SBF [126]. These studies indicate that presence of CNT on HA surface 

should not have a negative effect on its apatite formability. Reports are also available on 

apatite precipitation-ability of HA-CNT composite surfaces [18, 45, 129]. Meng et al. 

have shown gradual formation of thick and dense apatite layer on hot pressed HA-3 wt.% 

CNT surfaces immersed in SBF up to 17 days [18, 45]. Their observation reveals a 

slower initial precipitation rate in the presence of CNTs, which increases afterwards. 

Though the authors have not provided any explanation of such behavior, but the delay 

could be due to initial incubation period of 14 days for apatite precipitation on CNT 

surface, as reported by Akasaka et al. [126]. This delay in incubation is justified 

considering the dissimilar chemical and crystalline structure of the two species involved. 

Several in-vitro biocompatibility studies for HA-CNT composite have revealed 

compatible and positive role of CNT towards proliferation, viability, attachment, 

differentiation and apatite formation in most of the cases. In-vitro studies carried out till 
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date on HA-CNT systems can claim the presence of CNT in HA to be biocompatible; in 

fact advantageous in some aspects. Though, the only report on protein profile analysis of 

osteoblasts, cultures on HA-CNT surface, contradicts all other in-vitro studies in issues 

related to osteoblast attachment and calcium dissolution. This demands further follow-

ups on this issue to confirm the results. Moreover, the issue of wear debris related 

cytotoxicity is not addressed so far.  

2.1.4.2 In-vivo Assessment of Biocompatibility 

There is a single in-vivo study on HA- 3 wt.% CNT system. [36]. Sintered HA-

CNT composite was embedded in a striated rat muscle. The big white rats were sacrificed 

in 1, 3, 5, 7 and 14 days to assess the histocompatibility of HA-CNT composite. Figure 

2.27 presents the pathological micrographs of the striated rat muscle after HA-CNT 

composite is embedded for different periods. The striated muscle after 1 day shows little 

inflammatory cells and lymphocyte infiltration. The inflammatory cell infiltration 

increases in day 3 with sign of blood vessel dilation. Both of these phenomena increase 

gradually on 5 and 7 days. But, after 14 days, the inflammatory cell infiltration decreases 

significantly and mild dilation is observed. The muscle tissues after 14 days look similar 

to natural undamaged tissue, which indicates recovery. This study presents the first 

indication of in-vivo non-toxicity for HA-CNT composite. However, this study was done 

on the muscle tissue. Further studies are needed by implanting HA-CNT composites in 

bones to establish their in-vivo biocompatibility.  The analysis of outcomes from such in-

vivo studies would be able to predict the suitability of HA-CNT for clinical use in 

orthopedic implants. 
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Figure 2.27: Pathological micrographs of striated mouse muscle after HA-CNT 

composite was embedded for (a) 1; (b) 3; (c) 5; (d) 7 and (e) 14 Days [36].  

The review of literature indicates an increasing amount of the research interest in 

exploring HA-CNT system for orthopedic application. The effect of CNT reinforcement 
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in strengthening of HA based composite system has been much in focus; though 

biocompatibility still remains a topic of debate. In this scenario, one of the two main 

objectives of this research was to explore the untouched areas related to orthopedic 

application of HA-CNT, both from mechanical and biocompatibility point of view. In 

addition, another objective of this study was to find a suitable alternative of CNT for this 

application, which is presented in details in the following section 2.2. 

2.2 Boron Nitride Nanotube: Alternative to Carbon Nanotube 

In this study, boron nitride nanotubes (BNNT) are chosen as an alternative to 

CNTs as reinforcement in HA for orthopedic applications. The main reasons for which 

BNNT was chosen are: (i) excellent elastic modulus (750-1200 GPa [134-135]), (ii) 

excellent tensile strength (>24 GPa [136]), similar range to CNT, and (iii) positive reports 

on its biocompatibility [137-141]. It is emphasized that no study existed on HA-BNNT 

composite before the work reported in this dissertation. The following subsections would 

elaborate on this novel material BNNT, its role as reinforcement to different composites, 

biocompatibility and the potential as reinforcement to HA in orthopedics as compared to 

CNT. 

2.2.1 What is Boron Nitride Nanotube? 

Boron nitride nanotubes (BNNT) are structural analogue of carbon nanotubes 

(CNT), formed by tubular shaped hexagonal boron nitride (h-BN) sheets (figure 2.30 

[142]). BNNTs generally exist as multiwall structures. Single wall BNNT is rarely 

synthesized. It has been established that B and N atomic planes are slightly shifted in a 
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direction perpendicular to the BNNT tube axis [143]. Owing to this and also due to the 

partially ionic character of B–N bonding in a BN layer, BNNT becomes stabilized in 

double or multi-layered nanotube morphologies owing to strong “lip–lip” interactions 

between adjacent layers [144].BN tubular shells are separated by an average inter-shell 

distance of 0.33–0.34 nm (similar to MWNTs), which is a characteristic of d0002 spacing 

in a hexagonal BN. Individual tubes within the bundles interact through weak van der 

Waals forces and are packed in a honeycomb-like array in cross-section. B and N atomic 

planes in h-BN sheet are slightly shifted in a direction perpendicular to the tube axis.  

Partially ionic character of B–N bonding in a BN layered material may stabilize double- 

or multi-layered morphologies owing to strong “lip–lip” interactions between adjacent 

layers. These interactions favor the placement of B atoms strictly above or below N atom 

[144-145]. Table 2.2 presents some of the unique mechanical, thermal and electrical 

properties of BNNT. 

 

 

 

 

 

 

Figure 2.28: Schematic of rolled h-BN sheet forming single walled boron nitride 

nanotube [142]. 

 

Table 2.2: Mechanical and physical properties of BNNT in comparison to CNT 
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pplications of BNNTs have not been explored as vastly as CNTs. With increasing interest 

in BNNT and its composites, several potential applications are being proposed. The 

insulating nature of BNNT could be taken advantage for electrically insulated nanocables 

with embedded metallic or semiconducting nanowires. Such cables may be utilized in 

downsized electrical devices and complex multi-cable circuits, where each cable should 

perform independently, without current leakage between them [144]. Carbon doped 

BNNTs are suitable for field emitters with better environmental stability [144]. BNNTs 

possess piezoelectric characteristics which could be used in precision piezoelectric 

devices to measure or apply force at high resolution [157]. BNNT also has bright 

prospect for non-linear optical and optoelectronic applications. BNNTs may be ideal 

Property BNNT CNT 

Elastic Modulus (GPa) 750-1200 [146-147] 270-950 GPa [148] 

Tensile Strength (GPa) >24 [149] 11-63 GPa [148] 

Specific Heat Capacity 
(at 300K),         J kg-1K-

1 
~ 1000 [150] ~480 [87] 

Thermal Conductivity 
at RT, W m-1K-1 

200-300 [151-152] 3000 [153] 

Electrical Conductivity, 
S.cm-1

 
3.3 X 10-3[154] 1850 [155] 

Band Gap (eV) 5-6 [144] 0.2 – 2 eV [156] 

Oxidation start 
temperature (K) 

1223 [144] 773 [144] 
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candidates for optical devices working in the UV regime [158]. Gas adsorption ability of 

BNNT may also be used for hydrogen storage and thus offering solution to current 

environmental pollution [159].  Apart from the above listed applications, BNNT is 

gaining popularity as reinforcement in polymer and ceramic matrix composites due to its 

excellent mechanical and thermal properties. 

Figure 2.29: Year-wise publication plot for BNNT reinforced composites (source: 

scopus.com). 

 

Figure 2.29 presents year wise publication plot for BNNT reinforced composites, 

which reveals its early stage of development. But, the plot shows a trend of growing 
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research interest in the field, which would establish BNNT as a potential reinforcement to 

various material systems (polymer/metal/ceramic) in near future. 

2.2.2 Boron Nitride Nanotube Reinforced Composites 

Randomly and aligned BNNTs reinforced in polymer matrix improves the 

thermal, mechanical and optical properties of polymers [151-152, 160-162].  Only one 

study is available on ceramic (Al2O3 and Si3N4) based BNNT composites [163].  BNNT 

introduces high temperature superplasticity in the ceramics by controlled dynamic grain 

growth and energy absorption mechanism. The hardness of the ceramic-BNNT composite 

is reported to increase, but not the elastic modulus [163]. The use of BNNT as 

reinforcement to biodegradable polymer scaffold in orthopedic application has also been 

established by few recent studies [139]. In the case of biodegradable scaffold, BNNT 

reinforcement has improved the mechanical strength (109%) and elastic modulus 

(1370%) of the polymer and simultaneously enhanced the osteoblast proliferation and 

differentiation [139]. Table 2.3 presents a comprehensive summary of the studies on 

BNNT reinforced composites, which shows the role of BNNT in the property 

enhancement. However, the role of BNNT as a mechanical reinforcement in orthopedics 

has not been explored except by our research group [139].  
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Table 2.3:  Summary of BNNT reinforced composite systems 

Matrix 
BNNT 

Content 
Composite Properties 

Other Observation/ Potential 
Application 

References

Al2O3 and Si3N4 0.5 wt.% 

Al2O3– BNNT 
• Hardness increases by 18% 
• Elastic modulus decreases by 5% 

Si3N4 - BNNT 
• Hardness decreases by 12% 
• Elastic modulus decreases by 17% 

 

Composites show high 
temperature superplastic 
deformation capability 

[163] 
 

AlN 
1 – 10 
vol.% 

• Thermal conductivity increases 
with sintering temperature 

Chance of damage to nanotubes at 
sintering temperature as high as 

1700°C 

[164] 
 

Polyaniline 
Not 

mentioned
• Optical properties may be 

interesting 

Strong interaction between 
polymer and BNNT, polymer 

becomes more ordered 
[160] 

Polystyrene 1 wt.% 
• Elastic modulus increases by 21%  
• Increasing resistance to oxidation  
• Lower glass transition temperature 

Composite film shows good 
transparency,  

[161] 
 

Polymethyl 
methacrylate 

1 wt.% 

• Elastic modulus increases by 19% 
• Thermal conductivity increases by 

3 times 
• Composite shows high electrical 

breakover voltage 

Promising nanofiller for 
improvement in mechanical and 
thermal conductivity of polymer, 

while maintaining electrical 
insulation 

[165] 

Co-polymer of 
Vinylidene chloride 

and acrylonitrile 

0.5 – 1.5 
wt.%  

• Shows excellence transparency 
• Better barrier properties 
• Better thermal stability 

Application in packaging of 
organic photovoltaic devices 

[162] 

Polymethyl 
methacrylate, 
polystyrene, 

18 – 37 
wt.% 

• Increase in thermal conductivity 
by 20 times 

Promising nanofiller for 
improvement in thermal 

conductivity of polymer, lowering 
[151] 
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polyvinyl butyral, 
polyethylene vinyl 

alcohol 

• Lowering in Coeff. of thermal 
expansion by 11 times 

• Good hardness 

coeff. of thermal expansion, while 
maintaining electrical insulation 

Polyvinyl formal, 
Polyvinyl alcohol 

3 wt.% • 270% increase in thermal 
conductivity 

Catechin modified BNNT surface 
leads to stronger interfacial 

reaction with polymer 
[166] 

Polyvinyl Alcohol <5 vol. % 

• Up to 137% increase in thermal 
conductivity depending on 
alignment of BNNT in polymer 
matrix 

Alignment of BNNT in matrix has 
significant effect on properties of 

the composite 
[152] 

Low molecular 
weight gelator 

0 – 2.5 
wt.% 

• Bulk modulus, yield stress and 
thermal conductivity of the 
composite increases 

BNNT causes densely packed 
fibrous network of gelator 

molecules, increases sol-gel 
transition temperature 

[167] 

Polylactide-
polycaprolactone  

copolymer 
0-5 wt.% 

• 1370% improvement in elastic 
modulus 

• 109% increase in tensile strength 

Osteoblast proliferation, viability 
and differentiation shows positive 

effect on presence of BNNT – 
suitable composite for orthopedic 

scaffold  

[139] 

Epoxy 5wt.% • 69% improvement in thermal 
conductivity 

Promising nanofiller for 
improvement in thermal 

conductivity of polymer, while 
maintaining electrical insulation   

[168] 

Barium calcium 
aluminosilicate glass 

4 wt.% 
• Strength increases by 90% 
• Fracture Toughness increases by 

35% 

To be used in Solid Oxide Fuel 
Cell (SOFC) sealing  

[169-170] 
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2.2.3 Biocompatibility of Boron Nitride Nanotube  

BNNT is new to the field of biomaterials and biomedicine. It has been studied for 

drug delivery system for last couple of years [140, 171]. The cytotoxicity studies on 

BNNT have not reported any negative effect on different cell types [137-141]. Our 

research group has found encouraging results on osteoblast proliferation, viability and 

differentiation in the presence of BNNTs [139]. Gene expression studies have indicated 

that BNNT influence the accelerated differentiation of osteoblast cells [139].BNNTs are 

also found highly internalized by mouse myoblast (muscle) cells (C2C12), with neither 

adversely affecting its viability nor significantly interfering with myotube formation 

138]. Chen et. al. [141] have shown BNNTs to be non-cytotoxic to human embryonic 

kidney cells [HEK-293] and reported that BNNTs do not inhibit cell proliferation even 

after 4-days. Ciofani et al. [137] demonstrated good cytocompatibility and cellular uptake 

of polyethyleneimine (PEI)-coated BNNTs in a human neuroblastoma cell line (SH-

SY5Y). In addition, BNNTs also favor attachment of protein on their surface and thus, 

are potentially suitable for nanobiological applications [172]. All these studies indicate 

safe and a bright future of BNNTs in bio-application. 

2.2.4 Predicted Advantages of Boron Nitride Nanotube over Carbon Nanotube in 

HA for Orthopedics 

BNNT is chosen as an alternative to CNT considering its mechanical properties, 

viz., excellent elastic modulus (750-1200 GPa [134-135]), strength (>24 GPa [136]), 

which are comparable to CNT. In addition, BNNTs are more flexible and elastic and can 
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withstand heavy deformation without having damage in the structure [144]. A recent 

study has shown BNNT possess higher fracture strain than CNT [173]. These properties 

are attractive when BNNTs are used as reinforcement for strengthening of 

ceramic/polymer matrix. BNNTs also show higher chemical stability than CNTs in 

oxidative atmosphere with the oxidation starting temperature of 1223 K as compared to 

773 K of CNT [144]. This chemical inertness of BNNT remains an added advantage for 

high temperature processing of BNNT reinforced ceramic composites at oxidative 

atmosphere. There has been no adverse report on biocompatibility of BNNT whereas 

biocompatibility of CNT is yet being debated. Thus BNNT offer a potential alternative to 

CNT as reinforcement to HA. 

2.3 Scope of Improvement of Nanotube Reinforced Hydroxyapatite Composites 

for Orthopedics 

The review of literature indicates an increasing amount of the research in 

exploring HA-CNT system for orthopedic application. The effect of CNT reinforcement 

in strengthening of HA based composite system has been much in focus; though 

biocompatibility still remains a topic of debate. Based on the critical analysis of the state 

of the art, following specific research areas  have been selected in the present research to 

push the boundaries of the existing knowledge.  

• Uniform dispersion of CNTs in HA is very important for improved mechanical 

and tribological performances. Spray drying is a promising method for preparing 

composite powders, especially for plasma spraying. This research has adopted 
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spray drying route for the preparation of HA-CNT composite powder for effective 

dispersion of  CNTs in HA at the powder stage. 

• Plasma spraying is the FDA approved process for synthesizing coating on 

orthopedic implants. Current research would explore plasma spraying for 

synthesizing HA-CNT composite coatings on implant alloy (Ti-6Al-4V) surface. 

The aim is to improve the fracture toughness, elastic modulus and tribological 

behavior of the coating. 

• Spark plasma sintering is an excellent method to consolidate free standing HA-

CNT composites.  But, the reports available till date on SPS of HA-CNT do not 

present an in-depth analysis on the microstructural development, which governs 

its performance. Another important aspect is the dissociation of HA during 

sintering, which is detrimental to its orthopedic application. The present study 

utilizes a modified sintering cycle to suppress the dissociation of HA. A detailed 

analysis on the evolution of microstructure in SPS processed HA-CNT is also 

presented. This analysis would help in understanding the role of CNT in the 

microstructural development of the composite during fast heating under pressure. 

• Knowledge about HA-CNT interface is vital in determining the mechanical and 

tribological performance of the composite. No information is available about HA-

CNT interface. An initiative is taken to understand the nature of bonding at HA-

CNT interface with an estimation of the interfacial fracture strength.  
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• Biological fate of the CNT containing HA wear debris is of great concern, 

considering in-vivo implantation of the composite. No report is available which 

addresses this concern. Understanding the wear behavior of HA-CNT composite 

and the fate of wear generated debris under biological conditions is an interesting 

research area which is yet to be explored. The present study evaluates the 

cytotoxicity of CNT containing wear debris with related cell lines (osteoblasts and 

macrophages). 

• In-vitro studies, performed by culturing bone cells on HA-CNT surface are 

required to establish its biocompatibility in orthopedics. In-vitro assessment of 

osteoblast viability, proliferation kinetics, differentiation and mineralization 

(calcification), reveals a comprehensive understanding on suitability of HA-CNT 

surface for orthopedics.  

• The only available in-vivo study of HA-CNT composite is for implantation in 

muscle tissue and for only 2 weeks [36]. Implantation in bone tissue and for 

longer period is required for thorough assessment of in-vivo biocompatibility to 

establish the application of HA-CNT in orthopedic implants. This dissertation 

proposes and includes results from implantation of HA-CNT coated bio-implant 

in rat model (the implantation related surgery and characterization is carried out 

by our collaborator at University of Strasbourg, France). 

• Osseointegration is very crucial for orthopedic surfaces. The adhesion of neo-

bone on HA-CNT surface is an important factor for implantation, which will 
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determine the life-time of the implants. Poor adhesion of neo-bone on implant 

surface can cause delamination. This issue is mainly addressed till date by 

evaluating apatite formability of HA-CNT surfaces when immersed in SBF. But, 

the adhesion of bone cells on implant surface plays an important role in 

osseointegration. Because, the biological cascade of proliferation, differentiation 

and mineralization of anchorage dependent bone cells are governed by initial 

adhesion on implant surface. The smooth operation of this biological cascade 

ultimately leads to neo-bone integration on the implant surface. Thus, quantifying 

adhesion of bone cells on differently processed HA-CNT surfaces is vital to 

understand their in-vivo performance. The current research developed a novel 

technique for the quantification of cellular adhesion on substrate up to a single 

cell level. The role of CNT on the adhesion of bone cells on HA based surface is 

also analyzed. 

• Large difference in the elastic modulus at implant-bone interface can cause 

differential strain during loading, leading to fracture. Thus, evaluation of elastic 

modulus and stress distribution/gradient at bone-implant interface is very 

important to evaluate its in-vivo mechanical health. The presence of CNTs in HA 

coating on implant surface can modify the elastic modulus profile at implant-bone 

interface. Hence, studies are necessary to analyze such role of nanotubes. No such 

information is available in the literature for HA and HA-CNT coated implants. 

The present study determines the gradient of elastic modulus through the bone-

implant interface using the retrieved implants from in-vivo studies. The aim of 
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this study is to understand the difference in elastic modulus gradient across the 

interface for HA-coated, HA-CNT coated and uncoated implants. 

• As mentioned earlier, the cytotoxicity of CNTs is still under debate. Thus, the 

present research intends to evaluate BNNT (reinforcement to HA) as an 

alternative to CNT in orthopedic application. The evaluation should include 

synthesis of HA-BNNT composite, characterization of its mechanical properties 

(fracture toughness, elastic modulus and hardness), tribological behavior and 

biocompatibility. Following research tasks were carried out to investigate HA-

BNNT composite. 

- Wet chemistry method is proposed to synthesize HA-BNNT composite 

powder. 

- Free-standing HA-BNNT composites were processing by SPS technique. 

Synthesis of HA-BNNT coating by plasma spraying was not possible due to 

unavailability of BNNTs in large amount. It must be noted that plasma 

spraying requires a large amount of powder feedstock due to volumetric 

nature of the industrial scale powder feeder.   

- The mechanical properties (fracture toughness, elastic modulus and 

hardness)of HA-BNNT composite are investigated. The nature and strength of 

interfacial bonding between HA and BNNT is also elucidated.  

- Role of BNNT in tribological behavior of HA based composite is studied. 

Since BNNT is being proposed for the first time for orthopedic application, its 
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cytotoxicity needs to be evaluated. . Cytotoxicity of bare BNNTs is evaluated 

for the two main cell lineages related to the bone: (i) the bone forming cells 

(osteoblasts) and (ii) the phagocytic cells (macrophages). 

- Biocompatibility of HA-BNNT composite surface is also studied using in-

vitro methods through osteoblast viability and proliferation.  

- Osseointegration in the presence of BNNTs is evaluated by the apatite 

formability of BNNTs when immersed in simulated body fluid.  

Successful completion of the above listed tasks and understanding of the 

outcomes would ensure a step forward towards clinical application of nanotube 

reinforced HA composites in orthopedics. 
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3.0 MATERIALS AND METHODS 

This chapter provides a detailed account of the synthesis methods of HA-

nanotube composite and its characterization for mechanical properties, tribological 

behavior and biocompatibility. 

3.1 Synthesis of Hydroxyapatite-Carbon Nanotube Composite 

Synthesis comprises of two stages – (i) composite powder preparation and (ii) 

consolidation of the composite powder to obtain free standing composite or coating. 

Spray drying technique has been used for preparing hydroxyapatite-carbon nanotube 

composite powder, to ensure good dispersion and attachment of CNT on HA particles. 

HA-CNT composite powder is consolidated as coating by plasma spraying whereas spark 

plasma sintering is adopted for free standing parts. 

3.1.1 HA-CNT Composite Powder Preparation: Spray Drying 

Spray drying is a technique to process agglomerated powder particles of 

micrometer size starting from nano-sized powders.  The nano-sized powders are first 

dispersed in water soluble organic binder to form slurry. The slurry is then atomized in a 

chamber and dried subsequently to obtain micron size porous spherical agglomerates. 

Our research group has established spray drying as an effective tool for the dispersion of 

CNTs in ceramic (Al2O3) powder [1].   
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Figure 3.1: Schematic of formation of spray dried HA-CNT composite powder from HA-

nanorods and CNTs and SEM micrographs of (a) HA-nanorods, (b) multi-walled CNTs, 

(c) spray dried HA-CNT agglomerate, (d) distribution of CNTs in spray-dried HA-CNT 

and (e) some CNT clusters on HA-CNT agglomerate surface.  

HA nano-rods (length: 100 – 325 nm, diameter: 25-50 nm, density: 3.2 g.cm-3) 

and multi-walled carbon nanotubes (95% purity, 25-50 nm OD, 0.5-2 µm in length: 

density: 2.1 g.cm-3), procured from Inframat Corporation, (Willington, CT, USA), are 

used as precursor powder as shown in figures 3.1a and 3.1b, respectively. Figure 3.1 

shows a schematic of spray dried HA-CNT composite powder preparation with SEM 

images of powder at different stages. HA nano-rods and CNTs are spray-dried together to 

synthesize the composite agglomerates with a size of 15-55 µm (figure 3.1c). Spray dried 
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powder enables a higher degree of homogeneity of CNT distribution in the HA matrix as 

observed in high magnification images of powder agglomerates in figure 1d. HA-CNT 

powder used in this study contains 4 wt.% CNT. HA powder is also spray dried and used 

as the control sample. 

3.1.2 HA-CNT Composite Coating Synthesis: Plasma Spraying 

Spray dried HA and HA- 4 wt.% CNT powders were plasma sprayed using SG 

100 gun (Praxair Surface Technology, Danbury, CT) on 2.5 mm thick Ti-6Al-4V medical 

grade alloy substrate. Plasma spraying process is used to synthesize the coating because it 

is FDA approved process for coating deposition on orthopedic implants [2]. Table 3.1 

presents the plasma spraying parameters used for HA and HA-4 wt.% CNT coating 

deposition. The deposited coating had a uniform thickness of ~ 150 µm. 

Table 3.1: Plasma spraying parameters for HA/HA-CNT coating deposition 

 

 

 

 

3.1.3   Free Standing HA-CNT Composite Synthesis: Spark Plasma Sintering 

Consolidation of spray dried HA and HA-4 wt.% CNT powders is performed 

using the spark plasma sintering facility at Thermal Technology LLC, Sana Rosa, 

Plasma Power 23 kW (575A, 40V) 

Primary Gas (Argon) Flow Rate 30 slpm* 

Auxiliary Gas (Helium) Flow Rate 28 slpm* 

Powder Carrier Gas (Argon) Flow Rate 25.5 slpm* 

Powder Feed Rate 4.5 g.min-1 

Stand-off Distance 0.1 m 

*slpm – standard liter per minute 
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California, USA. The SPS is carried out at 60 MPa pressure and 1373 K in vacuum using 

a graphite die.  The temperature and pressure of sintering is chosen based on the 

outcomes in published literature [3-4]. A rapid heating rate of 360 K/min with a hold time 

of 5 minute at 1373 K is used.  Pellets of 19.5 mm diameter and ~ 5 mm thickness are 

consolidated. HA-4 wt.% compositions (coating and sintered) would be referred to as 

HA-CNT hereafter.  

 

3.2 Synthesis of Hydroxyapatite-Boron Nitride Nanotube Composite 

HA-BNNT composite powder is prepared by wet chemistry method. The 

consolidation of the powder is performed using spark plasma sintering. Plasma spraying 

of HA-BNNT is not carried out due to unavailability of BNNT in large amount. Plasma 

spraying requires a large amount (e.g. 50-100 g) of powder feedstock due to volumetric 

nature of the industrial scale powder feeder. Synthesis of BNNT is still in the 

developmental stage and its bulk production has not yet been commercialized. 

 3.2.1 HA-BNNT Composite Powder Preparation: Wet Chemistry/ 

Ultrasonication 

Boron nitride nanotubes, obtained from Nanoamor, Houston, USA, comprised of 

nodular (bamboo type), cylindrical nanotubes, and few nano-rods. Figure 3.2 presents the 

TEM image of as-received BNNTs showing nodular and cylindrical nanotubes. 

BNNTsused in this study are of length: 0.43 – 5.8 µm; outer diameter: 10 - 145 nm and 
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density 2.25 g.cm-3.  HA nano-rods used in this composite are same as the ones used for 

HA-CNT composite preparation.  

Figure 3.2: (a) SEM and (b) TEM images of the as-received BNNTs showing the 

presence of both tubular and bamboo type structures. 

The powder feedstock for sintering is prepared with two composition, viz. 100% 

HA and HA-4 wt. % BNNT. The composite powder is prepared in batches of 0.5 g using 

ultrasonication for uniform dispersion of BNNTs in HA. In each batch, 0.02 g of BNNT 

is mixed in 20 ml of acetone and ultrasonicated for 3 h.  Subsequently, 0.48 g of HA is 

mixed in the dispersion and ultrasonicated for 1 h. Finally the dispersion is dried in an 

oven at 348 K for 3 h. 

3.2.2 Free Standing HA-BNNT Composite Synthesis: Spark Plasma Sintering 

Spark plasma sintering of HA and HA- 4 wt.% BNNT composite powders is 

carried out in vacuum at 1373 K and 70 MPa pressure using the spark plasma sintering 

facility at Thermal Technology LLC, Sana Rosa, CA, USA. A fast heating rate of 360 

K/min is employed with a soaking time of 5 min at maximum temperature. HA and HA- 
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4 wt.% BNNT pellets of 20 mm diameter and ~5mm thickness are consolidated. HA-

4wt.% BNNT composite would be referred as HA-BNNT hereafter in this document. 

3.3 Microstructural Characterization 

Characterization techniques for evaluating physical properties and microstructure 

of HA-CNT and HA-BNNT composites and coating are described below. 

3.3.1 Scanning Electron Microscopy: Powder Morphology and Microstructure of 

Composites and Coatings 

JEOL JSM-633OF field emission scanning electron microscope (FE-SEM), 

operating at 15kV, was used for the characterization of powders and consolidated 

composites and coatings. Samples were sputter coated with gold before observing in 

SEM. Microscopic characterization of powders was performed by dispersing them on a 

glass slide or silicon wafer. The consolidated samples were sectioned with a diamond 

blade, mounted and metallographically polished for the microstructural observation 

through cross section. Fracture surfaces of the sintered pellets or peeled off coatings were 

also observed under SEM to analyze the quality of nanotube dispersion and its bonding 

with HA matrix.  

3.3.2 High Resolution Transmission Electron Microscopy: Interface of 

Hydroxyapatite and Nanotubes 

Transmission electron microscopy images of as-received nanotubes were captured 

using Philips PW 6061 TEM system (model CM 200, Eindhoven, Netherlands) to 
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analyze the dimension and structure of nanotubes. Philips/FEI Tecnai F30 high resolution 

transmission electron microscope (HRTEM) was used to study HA-nanotube composite 

structure.  Lattice level resolution of HRTEM was used to understand the nature and 

bonding at HA-CNT interface as a result of consolidation. Forward and inverse Fourier 

transform (FFT & Inverse-FFT) analysis, using Gatan, Inc. Digital Micrograph software, 

was utilized for an accurate calculation of the lattice spacing and determination of 

crystallographic relationship at interface. Nucleation and growth of apatite precipitation 

on BNNT surface was also studied using HRTEM images.  

3.3.3 Stereological Analysis using Image Processing Software 

Stereological analysis was carried out by ImageJ software [5]. Quantitative 

analysis of the particle size in HA-CNT wear debris was performed using multiple SEM 

images.  HA precipitate needle length on BNNT was quantified using HRTEM images. 

Osteoblasts viability was quantified using multiple fluorescent micrographs of stained 

cells. The image based quantification of actin expression for osteoblasts was performed 

using color based analysis mode in ImageJ to obtain the fraction of pixels with similar 

color in an image. 

3.3.4 X-Ray Diffraction: Phases and Crystallinity Determination 

X-ray diffraction (XRD) studies were carried out to determine the HA phases 

present in powder and consolidated stages. Dissociation of HA during consolidation is 

very crucial for its orthopedic application. XRD was carried out using Cu Kα (λ = 1.542 

Å) radiation in a Siemens D-500 X-ray diffractometer operating at 40 kV and 40 mA. A 
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scan rate of 0.2°/min and a step size of 0.01° have been used. The phases present in 

powder and sintered structure were determined using the JCPDS standard database. The 

XRD data files that were used are: hydroxyapatite (JCPDS PDF No. 9-432), α-TCP 

(JCPDS PDF No. 29-359),β-TCP phase (JCPDS PDF No. 9-169), graphite for CNT 

(JCPDS PDF No. 23-0064) and hexagonal BN for BNNT (JCPDS PDF No. 34-0421). 

3.3.5 Raman Spectroscopy  

Raman spectroscopy was carried out to confirm the retention of nanotube 

structure in the consolidated structure after exposure to high temperature and pressure. 

Raman spectrum shows characteristics plot for all specific type of bonds present in the 

sample, which could be correlated with the presence of a chemical entity or compound. 

Shift in wave number (peak position) in Raman spectra signifies change in the bond 

length and thus the stress present in material. Also, the relative intensity of the signature 

peaks of CNT (D and G) denotes the defect in CNT structure. All these characteristics are 

taken advantage of for analyzing the composite microstructure in the current research. 

The variation in Raman peak intensity is also used to qualitatively assess the volume of 

apatite precipitate on nanotube surface. Raman spectra of powders, consolidated 

structures and precipitates are obtained by using argon ion (Ar+) laser system (Spectra 

Physics, model 177G02) of wavelength 514.5 nm. Backscattered spectra are collected by 

high throughput holographic imaging spectrograph (Kaiser Optical Systems, model 

HoloSpec ƒ/1.8i) with volume transmission grating, holographic notch filter, and charge 

coupled device detector (Andor Technology). Raman system has a spectral resolution of 

4 cm−1 and the spectra were collected at an exposure of 300 s. 
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3.3.6 Density and Surface Roughness Measurement 

Density of free standing composite structures and peeled off coatings were 

measured through Archimedes principle using water as an immersion medium. Surface 

roughness of the composite surfaces was measured by contact type surface roughness 

tester (TR200 from Micro Photonics Inc, Irvine, USA) using a contact-type stylus with a 

5 µm radius diamond tip (TS-120). 

3.4 Evaluation of Mechanical Properties 

Elastic modulus, hardness and fracture toughness of HA-nanotube composites and 

coatings have been studied. Nanoindentation and microindentation techniques were used 

to measure mechanical properties at multiple length scales.  

3.4.1 Nano-Indentation: Elastic Modulus and Hardness 

Hysitron Triboindenter TI-900 (Hysitron Inc., Minneapolis, MN, USA) with 100 

nm Berkovich pyramidal tip, was used in quasi-static indentation mode to measure the 

elastic modulus and hardness of the sintered pellets and coatings. Tip-area calibration 

was done using a standard fused quartz substrate of known modulus (69.6 GPa). 

Indentation was performed with a constant loading/unloading rate for 10 s and 3 s hold at 

the peak load of 2500 µN. Elastic modulus (E) was calculated from the unloading 

segment of the load-displacement curves using Oliver-Pharr method [6]. Following 

procedure has been adopted for E and H calculation: 
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(i) The selected portion of the unloading curve (upper 95% to lower 20%) is fit to the 

power law relation: ܲ ൌ  ௠……… (3.1)݄ߙ	
 where, P is the applied load, h is the depth of penetration and α and m are 

constants. 

(ii) The derivative of the power law relation with respect to h is evaluated at the 

maximum load to calculate the contact stiffness, S. 

(iii) The contact depth, hc, is calculated using S as: ݄௖ ൌ 	݄௠௔௫ െ 	0.75. ௉೘ೌೣௌ  ……. .(3.2) 

(iv) The hardness is calculated as: ܪ ൌ	 ௉೘ೌೣ஺ሺ௛೎ሻ ……… (3.3) 

 where, A(hc) is the area as a function of contact depth, obtained from the tip area 

calibration function. 

(v)  The reduced modulus is calculated as: ܧ௥ ൌ √గଶඥ஺ሺ௛೎ሻ . ܵ……… (3.4) 

(vi) The elastic modulus of sample E is calculated as: 
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where, υ is Poisson’s ratio. The indenter used is diamond with E = 1140 GPa and υ = 

0.07. 

Nanoindentation provides localized mechanical properties. In order to get an 

impression of the bulk mechanical properties of the composites, more than 100 indents 

were made at randomly chosen regions throughout the polished cross-section of each of 

the composites. In each region, the indents were made at a distance of 9 µm from each 
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other. Total area covered by the indents was > 5000 µm2 in each sample.  The statistical 

distribution of elastic modulus, measured from individual indents, thus provides the 

mechanical properties of the composite at macro-scale length.  

3.4.2 Micro-Indentation: Fracture Toughness and Hardness 

Microhardness was measured using a microhardness tester (Shanghai Taiming 

Optical Instrument Co. Ltd., model HXD-1000 TMC, Shanghai) with Vickers probe and 

application of 1 kg load for 15 seconds of dwell time. Microindents in the consolidated 

composites were performed to determine the fracture toughness by initiating the cracks. 

Fracture toughness was evaluated using Anstis’ equation [7] expressed as: 
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E
KIC =    ………(3.6) 

where, P is the applied load, E is the elastic modulus, H is the Vickers hardness and c is 

the radial crack length (measured from the center of the indent). For an accurate 

measurement of radial crack length, the indents were also observed under SEM. Elastic 

modulus values for the composites were estimated from nanoindentation. The 

microindents on the polished cross-section and the radial cracks generated were observed 

through high resolution SEM imaging to understand the role of nanotubes in toughening 

of the composite. 
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3.5 Evaluation of Tribological Behavior 

Tribological behavior of the composite is analyzed at multiple length scales by 

estimating the wear volume and the coefficient of friction. Wear volume is indicative and 

inversely related to the wear resistance. Wear at macro scale was performed using ball-

on-disk method. Nano-scale tribological studies were performed using nano-scratch. 

3.5.1 Tribology: Macro-scale Wear 

Ball-on disk tribometer (Nanovea, Micro Photonics Inc., CA) was used to 

evaluate the macro-scale wear resistance and coefficient of friction (CoF) of sintered 

pellets and coatings. Samples were polished to a roughness (Ra) of 0.5 µm or less.  

Macro-wear studies are performed at 50 RPM speed with a circular track of 2 mm radius 

and a total travel distance of 100 m. The linear speed of wear probe on wear track was ~ 

10.5 mms-1. An alumina ball of 3 mm diameter is used as the counter surface (probe).  

The lateral force between the alumina ball and the composite surface and depth of wear 

track is measured by the linear variable differential transformer (LVDT) sensor. The 

coefficient of friction data is acquired at a frequency of 16.67 Hz. In case of HA-CNT 

and HA-BNNT sintered pellets, the wear volume is measured by considering the depth of 

wear track from LVDT and the geometry of the wear probe. In case of plasma sprayed 

HA/HA-CNT coatings, the wear track profiles across the tracks are obtained using 

Nanovea ST400 Optical Profiler. Wear volume is computed using the depth profile from 

the wear tracks. The depth from optical profile is in good agreement with the ones 

measured by LVDT in this case, proving the accuracy of the LVDT data used in other 

cases. Macro-wear tracks are observed closely along with the wear debris to understand 
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the wear mechanism in HA-nanotube composite. Elemental analysis of the samples, as 

required is some cases, is performed using energy dispersive spectroscope (EDS) 

attached with a JEOL JSM 5910LV scanning electron microscope. 

Wear study in physiological condition, is performed by immersing the sample in 

simulated body fluid (SBF), while carrying out the ball-on-disk wear using the same 

testing condition and wear probe as dry wear. The SBF is prepared using Kokubo’s 

recipe [8] with the chemical composition as presented in table 3.2. 

Table 3.2: Chemical composition of Simulated Body Fluid (SBF) 

 

 

 

 

 

 

3.5.2 Nano-Scratch: Micro/Nano-scale Wear 

Hysitron Triboindenter TI-900 (Hysitron Inc., Minneapolis, MN, USA) with 100 

nm Berkovich pyramidal tip, is used in 2D scratch mode for nano-wear studies. The 

scratches of 10 µm length are made with constant normal loads of 3500 µN and 4500 µN 

Ingredient Amount (g/l) 

NaCl 7.996 

NaHCO3 0.350 

KCl 0.224 

K2HPO4 . 3H2O 0.228 

MgCl2 . 6H2O 0.305 

CaCl2 0.278 

Na2SO4 0.071 

(CH2OH)3CNH2 6.057 

1 kmol/m3 HCl To adjust the pH – 7.25 

Ultrapure water To make volume upto 1 litre 
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on the metallographically polished SPS HA-CNT composite cross sections. Lateral force 

and scratch depth along the scratch length is recorded by two different piezoelectric 

sensors working in directions perpendicular to each other. Scratch profiles are obtained 

by scanning probe microscopy (SPM) with the same tip at a set point load of 2 µN. The 

topography image processing is performed using Scanning Probe Image Processor (SPIP) 

version 4.5.1 (Image Metrology, Denmark) [9]. Scratch volume calculation has been 

performed from the geometry of the scratches obtained through 2D profiles of scratch 

along the length and width, using the following expression: 

=
l

dlhV
0

2 .tanθ    ………(3.7) 

where, V is the volume of the scratched groove, h is the height of the groove (obtained 

from 2D SPM profile of scratch along the length), θ is the average angle of the groove 

measured at five points along the scratch length using 2D SPM profile and l is the length 

of the scratch. The detailed procedure of this volume calculation is available in our earlier 

publication [10].  

3.6 Evaluation of Biocompatibility 

Biocompatibility of HA-nanotube composites is evaluated for assessing the 

suitability for orthopedic applications based on ISO and ASTM guidelines [11-15]. The 

standard guidelines for biocompatibility tests are available in ‘Appendix-1’. Following 

subsections present a detailed description of in-vivo and in-vitro biocompatibility studies 

carried out in this research. 
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3.6.1 In-Vitro Evaluation 

In-vitro biocompatibility evaluation for HA-nanotube composites is carried out by 

culturing osteoblast and/or macrophage cells on the coatings or sintered pellet surfaces. 

Osteoblasts and macrophage cells are also used for studying cytotoxicity of the bare 

nanotubes and wear debris. 

3.6.1.1 Osteoblast Cell Culture  

The substrates (coatings and free standing pellets) with 5 mm x 5 mm surface area 

were washed with 95% ethyl alcohol, washed 3 times with fresh medium and left for 3 

hours in a hood under UV light for sterilization. They were then placed into 6-well 

polystyrene petri dishes (Corning, New York). Human osteoblasts ATCC CRL-11372 

(ATCC, Manassas, VA) were seeded at a density of 1000 cells per well (with one 

substrate in each well) in 6-well polystyrene petri dishes (Corning, New York) at 310 K 

(37 ˚C),  5% CO2 in a 1:1 mixture of Ham's F12 Medium Dulbecco's Modified Eagle's 

Medium, with 2.5 mM L-glutamine. The phenol red-free base media was supplemented 

with 10% Fetal Bovine Serum (Atlanta Biologicals, Lawrenceville, GA), 100 UI/ml of 

penicillin and 100 µg/ml of streptomycin (MP Biomedicals, Irvine, CA).  

3.6.1.2 Proliferation and Viability 

For cell viability studies, osteoblasts were seeded at a density of 5000 cells per 

well in 2.5 ml of medium and grown in an incubator at 310K (37 °C), 5% CO2following 

the procedure given above. After  fixed culture period, cells grown on the substrate were 

stained for 2 minutes with a Phosphate Buffer Saline 1X solution containing 15 µg/ml of 
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Fluorescein Di-Acetate (FDA) (MP Biomedicals, Irvine, CA) and 4.5 µg/ml of 

Propidium Iodide (PI) (Fisher Scientific, Waltham, MA)23 before visualization on a Leica 

Leitz DM RB fluorescent microscope (Leica, Bannockburn, IL). Digital pictures were 

captured with a Leica DM 500 camera.  Live (green) versus dead (red) cells counting was 

manually performed using ImageJ software. ‘Student t’ test was performed to find the 

95% confidence interval for the viability data. Number of green cells gives the idea about 

proliferation and the ratio of green vs. red cells denotes the viability. 

3.6.1.3 BrDU Expression for Proliferation Kinetics 

Proliferation kinetic assay was done using Bromodeoxyuridine (BrdU) labeling 

and Detection Kit I (Roche Products, Hertforshire, UK) following the manufacturer’s 

recommendations. Osteoblasts were seeded at a density of 100 cells per well in 2.5 ml of 

medium following the same procedure described before. After 1, 3 and 5 days, cells 

grown on the HA and HA-CNT coating surfaces were incubated at 37 °C, 5% CO2for 

1hour with 10 µM BrdU labeling reagent diluted in fresh osteoblast medium. BrdU-

treated cells were rinsed with washing buffer and fixed at -20 °C for 30 min in an ethanol 

fixative solution with pH ~ 2.0. Subsequently, cells were washed with washing buffer and 

incubated with anti-BrdU solution for 30 min at 37 °C in incubator.  After the incubation 

period, cells were washed with washing buffer and then incubated with anti-mouse-Ig-

fluorescein solution for 30 min at 37 °C. Next, the cells were washed with washing buffer 

and incubated with 4.5 µg/ml propidium iodide (PI) (Fisher Scientific, Waltham, MA) for 

2 min. Cells were washed again with washing buffer and mounted using Citifluor 
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Mounting media (Ted Pella). Finally, the stained cells were examined with a Leica Leitz 

DM RB fluorescent microscope (Leica, Bannockburn, IL) and digital images were 

captured with a Leica DM 500 camera. The cells proliferated during BrDU exposure only 

appears green in green-filter, whereas all the cells appear red in red filter. The number of 

proliferated cells over the total number of cells provides the proliferation rate of 

osteoblasts. 

3.6.1.4 Gene Expression Related to Differentiation 

Prior to this experiment, HA and HA-CNT coating surfaces (10 mm x 10 mm 

surface area) were sterilized in the same way described above and then placed into 12-

well polystyrene petri dishes (Corning, New York). For gene expression studies, 

osteoblasts were seeded at a density of 1000 cells per well in 2.5 mL of medium and 

grown in an incubator at 37 °C, 5% CO2. Medium used is the same as described earlier. 

After 5 days, cells grown on the pellets were trypsinized for 3min, neutralized with fresh 

osteoblast medium, centrifuged (1,000 g, 5 min at 4 °C) and lysed with 500 µL of TRIzol 

Reagent (Invitrogen). Samples were centrifuged (12,000g, 10 min at 4°C) again, followed 

by removing the supernatant and incubating at room temperature for 5 min. 

Subsequently, 100 µL of chloroform was mixed to each supernatant and samples were 

incubated for 3 min at room temperature. Samples were centrifuged (12,000 g, 10 min at 

4 °C) again, aqueous clear phase was collected. 250 µL of cold isopropanol was added to 

the samples and incubated at room temperature for 10 min followed by centrifuging 

(12,000 g, 10 min at 4 °C). Following this, 500 µL of 75% cold ethanol was added to 
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each substrate; vortexed and centrifuged (7500 g, 5 min at 4 °C) again. Substrates were 

left to dry and later resuspended in 15 µL of RNase-free water. The total RNA was 

reverse transcribed into cDNA using Maxima First Strand cDNA Synthesis Kit for RT-

qPCR (Fermentas Life Sciences), following the manufacturer’s recommendations.  

Subsequently, cDNA was used for the real time PCR amplification with SYBRGreen in a 

ABI 7300 Cycler (Applied Biosystems, Foster City, CA, USA). Differentiation of 

osteoblasts, cultured for 5 days on HA and HA-CNT pellet substrates was assessed by 

measuring the expression of Runx2, osteopontin and osteocalcin using the following 

primers:  

Runx2 - Fw CCA CCA CTC ACT ACC ACA CCT ACC,  

- Rv CAT GGC GGA AGC ATT CTG GAA GG,  
 

Osteopontin - Fw TGA AAG TGA CTG ATT CTG CGA,  

- Rv GGA CGA TTG GAG TGA AAG TGT,  
 

Osteocalcin - Fw AAT CCC CTT GGC TTC TGA CT,  

- Rv TCT AGC CCT CTG CAG GTC AT.  

Normalization was performed in relation to the transcript levels of GAPDH 

housekeeping gene using the primers: Fw CCA CCC ATG GCA AAT TCC and Rv 

TGGGAT TTC CAT TGA TGA CAA G. Transcript levels of cells grown on HA 

surfaces were used as a reference to calculate expression of cells grown on HA-CNT 

surfaces. The numbers of fold activation were calculated as following: 

nb fold = 2 (copies target - copies reference). 
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3.6.1.5 Alkaline Phosphatase Expression Related to Mineralization 

Osteoblast cells were cultured on HA and HA-CNT surfaces following the same 

procedure as in gene expression study. After 5 days, cells grown on the pellets were 

trypsinized for 3min, neutralized with fresh osteoblast medium and centrifuged (1,000 g, 

5 min at 4 °C). Subsequently, cells were lysed by 0.1% Triton (Sigma-Aldrich) and 

sonicated to destroy cell membranes. Samples were centrifuged (21,000 g, 10 min at 4 

°C) and supernatant was used for DNA quantification and alkaline phosphatase activity. 

DNA quantification was done using the Fluorescent DNA Quantification Kit (Bio-rad 

Laboratories, CA) following the manufacturer’s recommendations. 10 µL of the 

supernatant of each sample was transferred to a 96 well plate. 200 µL of 2 µg/mL 

Hoechst dye was alsoadded to each well. Fluorescent emission from samples was 

quantified with Bio-tek Synergy™ HT Multi-Detection Microplate Reader, excited at 

360  nm and the emission monitored at 460 nm. To determine alkaline phosphatase 

activity, 20 µL of the prepared supernatant was incubated with 100 µL of p-

nitrophenylphosphatase liquid substrate (Sigma-Aldrich) in a well of a 96 well plate. 

Samples were incubated at 37 oC for 3 hours and read in a spectrophotometer. An 

absorbance at 405nm was recorded indicating the alkaline phosphatase activity. Alkaline 

phosphatase activity was normalized by total DNA amount of each sample. 

3.6.1.6  Actin Expression Related to Adhesion 

For actin imaging studies, osteoblasts were grown on HA and HA–CNT coatings 

for 1, 3 and 5 days. After incubation, the coatings were washed with phosphate-buffered 
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saline (PBS), fixed with 3.7% paraformaldehyde for 20 minutes, and permeabilized with 

0.2% Triton X-100 for 5 minutes. Subsequently, cells were washed with PBS and 

incubated with tetramethylrhodamine B isothiocyanate (TRITC)-conjugated phalloidin 

(Sigma-Aldrich) diluted 1:2000 in 1% BSA/PBS for 1hour to visualize F-actin. Cells 

were washed again with PBS and then mounted using Citifluor Mounting media (Ted 

Pella). Finally, the samples were examined using a Leica Leitz DM RB fluorescent 

microscope (Leica, Bannockburn, IL). Digital images were captured with a Leica DM 

500 camera. 

3.6.1.7 Cytotoxicity of Wear Debris and BNNTs with Osteoblasts and Macrophages 

Cytotoxicity of HA/HA-CNT wear debris and BNNTs was evaluated separately 

using the procedure described here. These two separate studies should not be construed as 

one.  Human osteoblasts were seeded at a density of 1000 cells per well in 6-well 

polystyrene petri dishes. Murine macrophages (J774 Eclone, provided by Dr. M.A. 

Barbieri, Biological sciences, Florida International University) were seeded in the same 

manner in Dulbecco's Modified Eagle's Medium, supplemented with 5% Fetal Bovine 

Serum and 1% Sodium Pyruvate (Atlanta Biologicals, Lawrenceville, GA), 100 UI/ml of 

penicillin and 100 µg/ml of streptomycin (MP Biomedicals, Irvine, CA) at 310 K (37 °C). 

Osteoblasts and macrophages were allowed to attach to the plastic surface for 24 hours, 

after which the medium was replaced by a fresh medium with HA and HA-CNT wear 

debris at 1 µg/ml concentration (typically 2 ml of medium were added to the 3 

experimental wells). A similar study with BNNTs added to medium was used for 

checking cytotoxicity of BNNTs. Prior to mixing in the culture medium; the wear 
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particles (or BNNTs) were washed with 95% ethyl alcohol, washed 3 times with fresh 

medium and left for 3 hours in a hood under UV light. Both types of cells were cultured 

for 3 days with the wear debris (or BNNTs) prior to the cytotoxicity test, which was 

performed with the CytoTox 96 Non-Radioactive Cytotoxicity Assay kit (Promega, 

Madison, WI) following the manufacturer’s recommendations. Cytotoxicity test, 

performed in this study, isa colorimetric assay that quantitatively measures lactate 

dehydrogenase (LDH), a stable cytosolic enzyme released into the culture medium upon 

lysis of cell. Released LDH in culture supernatant was measured with a coupled 

enzymatic assay which results in the formation of a red formazan product that can be 

measured at 490 nm with a spectrophotometer and is proportional to the number of cells 

lysed. ‘Student t’ test was performed to find out the 95% confidence interval. The 

absorbance value of the culture medium without any cells or debris (or BNNTs)was  

considered as the background and subtracted from the experimental absorbance values 

obtained for the cells cultured with and without debris (or BNNTs). LDH absorbance was 

obtained for cells that died over the 3 day experimental period. Cells that remained alive 

by the end of the experiment were detached and lyzed for the release of LDH, which was 

then measured.  

3.6.2 In-Vivo Evaluation of Plasma Sprayed HA-CNT Coating 

In-vivo study of biocompatibility for plasma sprayed HA-nanotube composite 

coating was performed by implanting HA-CNT coated titanium alloy (Ti-6Al-4V) rods in 

rat’s femur. The experiments related to implantation in rat, retrieving the implants and 

their characterization for biocompatibility through TEM and histological 
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characterization were carried out by our collaborating researchers at Dr. Nadia 

Jessel’s Laboratory in University of Strasbourg, France. The results are included in 

this dissertation for the sake of completeness in terms of biocompatibility studies 

intended for orthopedic applications.   

3.6.2.1  Implantation using Rat Model 

Three types of implants were used for this research, viz., (i) titanium rods without 

any coating; (ii) with HA coating and (iii) with HA-CNT coating. Titanium rods are 10 

mm long and 2.5 mm in diameter. Titanium rods were plasma sprayed to deposit a 

coating of 100-150 µm thickness.  A total of 6 male Wistar rats from C. River (520-630 

grams, 17 weeks old) were used for this study. Coated/uncoated titanium rods were 

implanted inside distal part of external condyle of the femoral of rats. For all in vivo 

studies, animals were acclimatized for a minimum of two weeks prior to the 

experimentation. All procedures were performed with prior received ethical approval and 

carried out in accordance with the regulations laid down for the animals. Each animal 

received only one type of implant, in order to avoid systemic responses.  

The rats were anesthetized with an intraperitoneal injection of ketamine (75 

mg/Kg) and xylasine (10 mg/kg). The surgical procedure involves removal of the hair 

over the external part of right lower limb via shaving and cleaning. The animals were 

placed on ventral decubitus, with external rotation and abduction of the lower limb. With 

strict aseptic conditions, after skin incision, patella and quadriceps tendon were released. 

A circular bone defect (hole) of 3 mm diameter was made on external femoral condyle 

using an electrical drill with a sterile round bur under irrigation of sterile normal saline. 
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Through the bony defect, implant rods were completely introduced inside the distal 

femoral bone. Patella and quadriceps tendon were replaced without sutures and the skin 

was closed with non-absorbable sutures. 

All animals were examined on a weekly basis after implantation, for any sign of 

infection or discomfort on the lower limb for a period of one month. One month after 

implantation; rats were sacrificed with an overdose of ketamine and xylasine. For 

different ex vivo analysis, all parts of the femoral bone, from femoral head to knee joint, 

were excised and cleaned off from the soft tissue. The bones with the implants were 

sectioned to a thickness of 1-2 mm, with a low speed diamond saw for further 

characterization.  

3.6.2.2  Histology of Retrieved Bone with Implant 

For histological observations, the sections of rat bones were fixed in neutral 

formalin solution of 20%, then decalcified inside acetic acid solution of 10% for 4 days 

and embedded in paraffin. Ultrathin sections of 70 µm thickness were cut using ultra 

microtome. These sections were stained with mallory coloration and histologically 

analyzed by light microscopy at different magnifications (5, 10, 20 and 40X). 

3.6.2.3 TEM Study of Retrieved Bone with Implant 

For TEM study, bone sections were fixed in 4% buffered paraformaldehyde 

solution, decalcified inside acetic acid solution of 10% during 4 days, post fixed with 1% 

osmium tetroxide in 0.1 M cacodylate buffer for 1 hour at 4 °C, dehydrated through 

graded alcohol and embedded in Epon 812. Ultrathin sections (70 µm) were cut with a 
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diamond knife and stained with uranyl acetate and lead nitrate and observed with a 

Morgagni 268 transmission electron microscope. 

3.7 Evaluation of Osseointegration 

Osseointegration is evaluated for the HA-nanotube composites through three 

different methods, viz.(i) quantifying the adhesion strength of osteoblasts on plasma 

sprayed HA and HA-CNT coating surfaces; (ii) measuring the gradient of elastic modulus 

through implant-bone interface for the retrieved femur bones from animal study and (iii) 

determining the apatite formability on BNNTs when immersed in simulated body fluid. 

The detailed account of the experimentations, involved in all three of these studies, is 

described below. 

3.7.1 Quantifying Adhesion of Osteoblasts on Composite Surface: Nano-Scratch 

Technique 

Plasma sprayed HA and HA–CNT coated surfaces (10 mm x 10 mm area) were 

washed with 95% ethanol followed by washing three times with fresh medium and left 

for 3 h in a hood under UV light before cell culture. Permanox plastic chamber slides 

(Fisher Scientific, Pittsburgh, PA) were also used for cell culture for the comparison 

purpose. HA and HA-CNT coatings were polished with alumina powder suspension (up 

to 0.3 µm size) to have similar surface roughness. The surface roughness of HA and HA-

CNT coatings,  measured using TR200 instrument (Micro Photonics Inc., Irvine, CA), is 

80 (±25) and 70 (±15) nm respectively. The surface roughness (Ra) of permanox is 50 

(±10) nm. Human osteoblasts were cultured on HA and HA-CNT coated substrates and 
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permanox plastic chamber slides using the same procedure described in section 3.6. 

Nano-scratch studies for adhesion force measurement of osteoblast were performed using 

2D scratch mode of Hysitron Triboindenter TI 900 with a load resolution of 1 nN and 

lateral displacement resolution of 4 nm. All the tests are performed within 1 hour of 

collecting the substrates with cells from the incubator. Osteoblasts were kept immersed in 

the culture medium during the nano-scratch study. A long, conospherical fluid cell tip of 

1 µm radius was used to minimize the meniscus forces caused by the culture medium. A 

15 µm long scratch is made, with 15 µN normal force and 0.5 µm/s velocity, starting on 

the substrate (~ 5 µm away from cell) and going towards the cell to push and detach it 

from the surface.  Scratch tests were performed for more than 8 osteoblasts on each 

substrate. 

The schematic of the technique is presented in figure 3.3a, which includes a cell 

on the substrate with indenter at different stages of scratching. Corresponding regions are 

also labeled in a schematic load vs. displacement curve presented in figure 3.3b.  The 

adhesion force was measured for osteoblasts cultured for 1, 3 and 5 days on permanox 

plastic slides, HA and HA-CNT coated surfaces.  Scratches were also made on all 

surfaces without any cell to evaluate the effect of the substrate and culture medium in the 

same loading condition.  The value of the lateral force on the bare substrate (without cell) 

was subtracted from the lateral force curve obtained by nano-scratch of the cell (figure 

3.3b) to calculate the adhesion force of a cell. The area under the lateral force vs. 

displacement curve for the cell was calculated to estimate the adhesion energy of a cell 

(figure 3.3b). This technique enables an accurate quantification of the cell adhesion on a 

substrate avoiding errors introduced due to substrate and culture medium.  
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Figure 3.3: (a) Schematic of the nano-scratch technique for measuring adhesion of 

individual osteoblast cell on substrate. (b) Representative lateral (shear) force vs. 

displacement curves for nano-scratches on HA-CNT substrate with osteoblast grown for 

3 days. The curves show the variation in the lateral force required to make a scratch in 

presence of a cell and on bare substrate. Different regions of the curve are correlated 

with the stages of scratch in schematic (a) with roman numbers (I, II and III). The shaded 

area denotes the adhesion energy and the height of the hump shows adhesion force of an 

osteoblast. 

3.7.2 Determining Mechanical Compatibility of Implant-Bone Interface: Modulus 

Mapping Across Interface using Nano-DMA Technique 
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Distribution and gradient of elastic modulus (E) of at bone-implant interface in 

the retrieved implants was evaluated using dynamic nanoindentation in order to check the 

mechanical compatibility of the implant with bone. The cross sections of the retrieved 

implant bones were cleaned by removing the attached tissues. Figure 3.4 (a) shows a cut 

and cleaned cross section of retrieved femur with embedded implant. The elastic modulus 

across the implant/coating/bone interfaces was determined using ‘modulus mapping’ in 

nanodynamic analysis (nano DMA) mode. The tests were carried out on the samples 

hydrated in formalin. Hysitron Triboindenter is utilized to produce 2D maps of elastic 

modulus of the sample surface. Figure 3.4 (b) shows the optical micrograph of cross 

section of femur with HA-CNT coated Ti implant, indicating the regions where modulus 

mapping was carried out.  

In order to prepare the sample surface for nanoindentation experiments, implant 

cross-sections were polished using wet cloth without any abrasive particles. Abrasive 

particles were not used to prevent the impregnation of bone surface with the harder 

particles, which could influence the mechanical properties. A Berkovich indentation 

probe of 100 nm radius was used for the measurements. The static and dynamic loads for 

the measurements were 3 µN and 1.5 µN respectively with an applied frequency of 200 

Hz. Each 2D modulus map presented in this study covers a 5 µm X 5 µm area on the 

sample surface that includes a matrix of equally spaced 256 X 256 points, resulting in 

65536 measurements in each scanning. At least three areas of 5 µm X 5 µm were used for 

2D modulus mapping from each region to get the representative value of the elastic 

modulus. During the measurement of elastic modulus (E), the bone samples were kept 

hydrated by adding formalin using a dropper to carry out the tests in wet condition.  
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Figure 3.4: (a) Semi-thin (1-2 mm) section cut from the rat’s bone with implant 

embedded inside. (b) Optical cross-sectional micrograph of the retrieved implant 

showing Ti substrate, HA/HA-CNT coating and bone with marked regions for modulus 

mapping studies. Position 1 denotes the region in titanium part of the implant near 

coating. Positions 2 – 6 are equally placed locations through the thickness of HA/HA-

CNT coating starting from titanium side and going towards the bone. Position 7 is in the 

newly grown bone along the implant surface and position 8 is in a distant region that 

represents the normal bone. 

3.7.3 Apatite Formability of Boron Nitride Nanotube by Simulated Body Fluid 

Immersion 

Apatite formability of BNNTs was studied by immersing them in simulated body 

fluid (SBF) to determine their osseointegration ability. We did not carry out similar study 

with CNTs as such studies are already available in the literature [16-18]. Simulated body 

fluid was  prepared following Kokubo’s recipe given in table 3.2. BNNTs were immersed 

in SBF in glass vials and kept at physiological temperature of 310 K (37°C) and 5% CO2 

(a

Coating Bone

Ti 

(b
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inside incubator for 7, 14 and 28 days. Soaking periods were selected based on the fact 

that most of the new bone formation starts between 2-3 weeks during post-implantation 

healing. Thus, it is effective to check the apatite precipitation ability of a surface during 

1-4 weeks.  After the soaking period, the precipitates were separated from SBF by 

centrifuging and washed with deionized water for 3 times. The precipitates were dried at 

the ambient temperature. Three different precipitate samples were collected after 7, 14 

and 28 days for further characterization. These samples were analyzed using SEM, EDS, 

Raman Spectroscopy and HRTEM to understand the apatite precipitation mechanism on 

BNNT. The results of the experiments are presented and analyzed in the following 

chapter 4. 
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4.0 RESULTS AND DISCUSSION 

The objective of this research is to explore the overall potential of HA-nanotube 

composites for orthopedic applications. This chapter is the nucleus of the dissertation, 

which presents a detailed description of the results obtained through experimentations 

and scientific analysis of the outcomes. 

4.1 Microstructural Evolution, Mechanical and Tribological Performance of 

Composites 

One of the important issues in this research is to tailor the mechanical and 

tribological properties of HA by reinforcing with nanotubes. Addition of nanotubes in 

HA modifies its microstructure and thus controls its performance. Following subsections 

presents a detailed description on the role of CNT and BNNT in modifying the 

microstructure and performance (mechanical and tribological) of HA based composite 

structures. 

4.1.1 Hydroxyapatite-Carbon Nanotube Composite 

In this study, HA-CNT composites are synthesized as plasma sprayed coating and 

spark plasma sintered structures. Due to the huge difference in the consolidation 

techniques, the two composites show vastly different microstructure. The role played by 

CNT in evolution of the microstructure in these two cases is also very different, resulting 

in different level of contribution towards strengthening and toughening, as discussed 

below. 
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4.1.1.1 Composite Coating by Plasma Spraying 

HA-CNT composite coating is deposited by plasma spraying of spray dried 

powder on Ti alloy substrate. HA coating prepared using same plasma spray parameters 

is used as the control sample for studying the effect of CNT on HA based coating. The 

polished cross-section of HA-CNT coating reveals typical signatures of plasma sprayed 

structure, such as wavy splats, lamellar cracks and porosity (figure 4.1b). Density of HA 

and HA-CNT coatings, measured using Archimedes principle and water as immersion 

medium, is 93.7 and 94.0 % TD respectively. The densities are comparable for HA and 

HA-CNT coatings. This observation indicates no negative role played by CNT in 

consolidation of HA by plasma spraying, which was a concern during conventional 

sintering of HA, as CNTs were reported to hold grains apart and hinder closure of 

porosity [1]. The probable reason could be rapid solidification during plasma spraying as 

well as good wetting of CNT with molten ceramic [2] due to momentary high 

temperature during plasma spraying. 

4.1.1.1.1  Distribution and Structural Integrity of Carbon Nanotube in Plasma Sprayed 

Coating 

Fracture surface of the HA-CNT composite coating (figure 4.1c) shows uniformly 

dispersed and embedded CNTs protruding out of HA matrix. The homogeneous 

dispersion of CNT in HA at powder stage in spray dried agglomerates (figure 4.1a) is 

carried forward to the plasma sprayed coating. Thus, spray drying route for composite 

powder preparation is an effective method for homogeneous dispersion of CNTs, which 

is required to obtain uniform mechanical properties.  High magnification SEM image of 
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the HA-CNT coating reveals attachment of fine HA particles on the individual CNT 

surface (figure 4.d). Higher thermal conductivity of CNT makes the HA nucleation and 

precipitation easier on the CNT surface [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: (a) High magnification SEM image of spray dried HA-CNT agglomerate 

showing homogeneous distribution of CNTs in HA nano-rods, (b) cross-section of plasma 

sprayed HA-CNT coating showing the splat structure, cracks and porosity, (c) fracture 

surface showing homogeneous distribution of CNT in HA matrix and (d) precipitation of 

HA crystals on CNTs. 
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High temperature exposure during plasma spraying makes it necessary to check 

the survival of CNT structure in the final coating. Micro Raman spectrum (figure 4.2) of 

HA-CNT powder and coating shows the presence of D and G peaks coming from the C-C 

bond CNT. The appearance of G peaks at around 1580 cm-1 is the signature of highly 

pure graphitic structure whereas D-peak (at around 1350 cm-1) originates from a disorder-

induced mode in graphite. The signature from the Raman spectrum along with the tubular 

structure visible in the fracture surface (figure 4.1c) ensures the presence of CNT in the 

plasma sprayed composite coating.  Even after being exposed to several thousand 

degrees, the survival of CNTs during plasma spraying could be justified for the following 

reasons. The short exposure (milliseconds) to high temperature is not sufficient for the 

oxidation and destruction of CNTs. In addition, the ceramic melts during plasma spraying 

and forms protective coating on the CNT surface [2, 4]. The inert carrier gas (argon) also 

creates a shroud over the sprayed particles, which acts as a shield against oxidation. A 

reduction in the peak intensity ratio (ID/IG) in plasma sprayed coating (0.39) from powder 

(0.60) is observed, which indicates a decrease of defect density in CNT in the coating. 

Similar observations have been reported by Keshri et al. for plasma sprayed alumina-

CNT coatings [5]. The decrease in defects in CNTs has been attributed to the increasing 

degree of graphitization in CNTs due to high temperature exposure. Decrease in the strain 

energy during annealing decreases the interlayer spacing between CNT walls. 

Consequently, the defect density in CNT also decreases during annealing [6-7]. 
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Figure 4.2: Raman spectra of HA-CNT powder and plasma sprayed HA-CNT coating 

showing D and G peaks of CNT. 

4.1.1.1.2  Phase Stability and Crystallinity of HA in Plasma Sprayed Coating 

The evolution/transformation of phases and crystallinity of HA, as a result of 

rapid consolidation during plasma spraying, can be evaluated comparing the X-ray 

diffraction patterns of HA and HA-CNT powder and coatings, as presented in figure 4.3. 

The patterns show presence of HA phase mainly, with some graphite peaks in HA-CNT 

compositions, which are overlapped with HA peaks. XRD patterns indicate minimal 

dissociation of HA to product phases. During plasma spraying, HA is exposed to much 

higher temperature than its dissociation point (~1200°C). But the exposure is for 

milliseconds, which might have restricted dissociation of HA in the plasma sprayed 

structure. Amorphous humps are present in both HA and HA-CNT coatings, due to some 
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degree of amorphisation introduced during rapid cooling. But, the hump is smaller in case 

of HA-CNT than in HA. Increased crystallinity in HA-CNT system is attributed to higher 

thermal conductivity of CNTs (2980 W/mK [8]) compared to HA(1.25 W/mK [9]), which 

helps in nucleation and precipitation of HA. Higher heat capacity of CNT (480 J/kgK 

[10]) can absorb more heat when exposed to the plasma and then higher thermal 

conductivity of CNT can create a thermal pool around while cooling. Both of these 

phenomenon provides an enhanced cooling time to the HA matrix in the neighboring 

region of CNTs, which helps in its recrystallization. SEM image presented in figure 4.1d 

shows the evidence of nucleation and precipitation of fine HA crystals on CNTs during 

plasma spraying. 

Figure 4.3: X-ray diffraction patterns for HA and HA-CNT powders and plasma sprayed 

coatings. 
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Presence of a very sharp (220) peak at 38.15° for coating, which is absent in 

powder and (a very low intensity peak according to JCPDS data of HA), indicates the 

formation of some kind of texture in the coating, which could be due to exposure at high 

temperature as well as the stress related to thin [11-13]. 

4.1.1.1.3 Elastic Modulus and Fracture Toughness of Plasma Sprayed HA-CNT 

Coating 

One of the main intent for adding CNT to HA is to improve its elastic modulus 

(E) and fracture toughness (KIC). Elastic modulus (E) of the coatings has been evaluated 

using nanoindentation, which is a well-established technique for brittle ceramic coatings 

[14]. Plasma sprayed composite coating is heterogeneous in nature. Single indent 

provides localized mechanical properties. Hence, more than 100 indents were made at 

randomly chosen regions throughout the polished cross-section of the coatings to obtain 

the bulk elastic modulus.  Figure 4.4a shows a typical load-displacement curve obtained 

through nanoindentation of HA and HA-CNT composite coatings. The statistical 

distribution of the elastic modulus (figure 4.4b), measured from the individual indent, 

thus provides the elastic modulus of the composite coating at macro-scale length. The 

elastic modulus for HA and HA-CNT coating is 51 ± 4 GPa and 88 ± 10 GPa 

respectively. A 72.5% improvement in elastic modulus is attributed to the high E value of 

CNT and effective reinforcement of CNT in HA matrix. Effective reinforcement is 

justified in terms of uniform distribution of CNT in HA matrix (figure 4.1c) and good 

interfacial bonding of each CNT with the HA matrix. Figure 4.4c shows a protruded CNT 
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from the HA matrix.  Strong bonding at HA-CNT interface is inferred from the absence 

of any crack or gap at the interface.  

 

 

 

 

 

 

 

 

 

 

Figure 4.4: (a) Load vs. displacement curves for HA and HA-CNT coatings obtained by 

nanoindentation, (b) statistical distribution of E value in HA and HA-CNT, (c) protruding 

CNT from HA-CNT fracture surface showing absence of crack or gap at matrix/CNT 

interface.  

Fracture toughness (KIC) of the coatings is evaluated using the length of the radial 

crack generated in microindentation. The impression of Vickers indent was observed 

under SEM for an accurate measurement of the radial crack lengths. Figure 4.5 shows 

SEM images of indents on HA and HA-CNT coatings. The microhardness of HA and 
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HA-CNT coatings is 1.30 ± 0.01 GPa and 2.43 ± 0.02 GPa respectively. Fracture 

toughness of the composite structures has been evaluated using Anstis’ equation [15] 

expressed as: 

2
3

2
1

)(016.0
c

P

H

E
KIC =  ………(4.1) 

where, P is the applied load, E is the elastic modulus, H is the Vickers hardness and c is 

the radial crack length (measured from the center of the indent).  E values, measured by 

nanoindentation, were used to compute KIC of the composite. The radial crack length in 

HA was more than 125 µm. But, the radial cracks are of much smaller length (~50 µm) in 

HA-CNT coating. The decrease in radial crack length causes a higher fracture toughness 

of 3 MPa.m0.5 for HA-CNT as compared to 0.64 MPa.m0.5 for HA.   

 

 

 

 

 

Figure 4.5: SEM images of radial cracks emerging from microindents on (a) HA and (b) 

HA-CNT coatings. 

CNT addition improved the fracture toughness of HA coating by ~350% which is 

attributed to (i) higher E value with CNT addition and (ii) crack bridging effect offered 

by CNT. Figure 4.6 shows high magnification SEM image of CNT bridges within a radial 
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crack generated during microindentation on HA-CNT coating. CNTs act as bridges 

restricting the crack propagation. Hence, crack propagating through HA matrix gets 

restricted when comes in the vicinity of a CNT reinforcement. 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 4.6: CNT bridges offering crack propagation resistance in HA-CNT coating. 

4.1.1.1.4 Wear Behavior of Plasma Sprayed HA-CNT Coating  

Improvement in the wear resistance of HA is of concern due to the biological 

response of wear debris in-vivo. Generation of more volume of debris results in higher 

amount of foreign element in contact with the bone cells and in body fluid, which is 

always undesired. The amount of debris and its local concentration is reported to have 

adverse effect on osteoblasts viability at the implant surface [16]. Moreover, the wear 

100 nm 
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debris can stimulate cellular responses, which in turn may cause excess osteoclastic 

differentiation, reduced numbers of bone-forming cells or stimulation of osteoblastic cells 

to release bone resorbing mediators [17-21]. All these phenomena lead to osteolysis and 

as a result loosening and failure of the implant. Hence, controlling the amount of debris 

generated is extremely important. The volume of debris generated is inversely related to 

the wear resistance of the coating. Further, the morphology of the wear debris is directly 

related to the wear mechanism controlling the tribological behavior of the coatings. The 

size and morphology of the wear debris is one of the important factors that regulate the 

cytotoxic response of osteoblast and macrophage cells.  

Choice of Wear parameters 

Parameters for the tribological study were selected considering the wear 

conditions of an orthopedic implant inside the human body. Hip joint is one of the major 

load-bearing parts that face severe frictional forces during movement. HA is usually 

coated on the stem of the femoral part and outer surface of the acetabular cup of the hip 

joint. The frictional forces faced by these parts are much lesser than the mating surface of 

the femoral head and the inside surface of acetabular cup. The wear parameters for the 

present study are selected based on the wear conditions faced by the femoral head inside 

the acetabular cup. The stress in a hip joint during walking is 0.8 – 2.5 MPa [22]. HA 

coating is expected to withstand high frictional forces for a minimum of 20 years [23]. 

Since wear experiments cannot be continued for such a long period, the normal load 

during the test is kept at a high value of 5N, to obtain significant wear loss data. 

Considering the wear probe as a ball of 3 mm diameter, the stress exerted on the wear 
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track (coating) is determined. The calculated stress on the wear track for 5N normal load 

is ~12 GPa, which is 3 orders of magnitude higher than the actual loading condition at the 

hip joint. Wear speed is selected by considering a normal walking speed of a healthy 

adult as 4 km/h. The average step size of a 6 ft tall man is 0.91 m. Assuming the swinging 

action of a 25 mm diameter acetabular cup as the cause for wear during walking, the 

calculated speed for wear is 955 mm/min. Hence, the wear speed of the present study is 

fixed to ~ 950 mm/min (50 RPM).  

Coefficient of Friction 

Coefficient of friction (CoF) is obtained continuously during sliding of the 

alumina ball on the wear track.  Figure 4.7 shows the CoF for plasma sprayed HA and 

HA-CNT coatings with 5 N normal load up to 100 m of distance. CoF decreases from 0.9 

to 0.68 with the CNT addition to HA matrix. The decrease in CoF in presence of CNT is 

due to the lubrication offered by the peeled-off graphite layers from the CNT surface.  

Removal of a single graphite layer from multiwall CNT requires a tensile force ≥ 11 GPa 

along its axial direction [24]. Lateral force applied in the wear causes shearing removal of 

mass on the surface, which causes tensile stress along the surface of wear track. Our 

previous study has showed that computed tensile stress in the wear track was ~12 GPa, 

which is sufficient to remove graphite layer from the CNT within the wear track. Hence, 

it is possible to have peeled-off graphite layers in wear track of HA-CNT coating. 
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Figure 4.7: Coefficient of friction for HA and HA-CNT coatings plotted against sliding 

distance. 

Wear Resistance 

Figure 4.8 shows the 3D profile of the entire wear track and 2D line profile across 

the wear track for HA and HA-CNT coatings. The volume of the wear track, calculated 

from the profiles, is 1.23 mm3 and 0.24 mm3 respectively, for HA and HA-CNT. Wear 

volume calculated for three tracks in each sample shows a standard deviation of less than 

10%. Addition of CNT results in decrease in wear volume of HA coating by 80%. The 

improvement in wear resistance means generation of less volume of debris, resulting in 

reduced probability of disturbance in the biological environment around the implant.  

Two major factors are responsible for the increase in wear resistance of HA-CNT 

coating. The first factor is the decrease in CoF.  With decreasing CoF, the effective lateral 

force on wear track is small, resulting in low wear volume. The second and dominating 

factor is the toughening of the HA coating with CNT reinforcement, which makes the 
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removal of mass difficult. Improvement in fracture toughness (350%) and elastic 

modulus (72%) of HA with CNT addition indicates a very significant toughening. 

 

 

Figure 4.8: Three dimensional optical profiles of the wear tracks and a two dimensional 

profile across the track on (a) HA and (b) HA-CNT - at 5 N load and 100 m of sliding 

distance.  

Wear volume loss is a combined function of mechanical properties of material, 

viz., KIC, E and H. The model proposed by Evans and Marshall estimates the wear 

volume loss for brittle ceramics as a function of their mechanical properties [25]. The 

relationship is as follows: 

  S
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where, V is the wear volume loss, P is normal load, KIC is the  fracture toughness, H is 

the hardness, E is the elastic modulus and  S is the total travelling distance on wear track. 

The computed volume loss for the present study shows a 70% reduction in the wear 

volume with CNT addition. The computed improvement shows a good match with 80% 

wear resistance improvement for HA-CNT, obtained experimentally. The slight 

discrepancy between computed and experimental results can be explained by the 

lubrication available from the peeling of graphite layer, which is not accounted by the 

computation model suggested by Evans and Marshall.  

Wear Debris Size Distribution and Prediction of Wear Mechanisms 

It is possible to predict the wear mechanism from the size and morphology of 

wear debris and the wear track. Figure 4.9 shows a statistical ‘box-plot’ presenting the 

size distribution of wear debris for HA and HA-CNT coatings. The debris from HA 

coating shows a wide range of size distribution (0.3 – 9.5 µm) with an average particle 

size of ~3 µm. The average debris particle size in HA-CNT is much lower (0.6 µm) with 

a smaller size range (0.1 – 3.1 µm). The wide variation in the HA debris size indicates 

that wear in HA coating is governed by abrasion as well as fracture and chipping. Finer 

particles are generated during abrasive wear, whereas the larger particles are the result of 

fracture and chipping.  In case of HA-CNT coating, the majority of the debris particle is 

fine indicating predominantly abrasive wear.   
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Figure 4.9: Wear debris size distribution for HA and HA-CNT coatings.  
 

The images of wear track (figures 4.10a and 4.10b) reveal smaller size of craters 

and large area of abraded surface in HA-CNT wear track as compared to HA. The crater 

is created by fracture and chipping, whereas the rough surface is the result of abrasive 

wear.  The mode of wear and debris size is directly related to the fracture toughness of 

the coating. Relatively higher fracture and chipping takes place in HA wear track, due to 

its lower KIC. On the other hand, smaller size of wear particles in HA-CNT coating is the 

result of the improved fracture strength compared to HA. Figure 4.11 shows the presence 

of CNTs in the wear debris, which might influence their cytotoxic response to osteoblast 

and macrophage cells. 
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Figure 4.10: Wear tracks of (a) HA and (b) HA-CNT coating showing abrasion and 

fracture mode of mass removal. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Presence of CNTs in the wear debris generated from HA-CNT coating.  
 

4.1.1.1.5 Wear in Simulated Body Fluid (SBF) Environment 

The wear studies for HA and HA-CNT plasma sprayed coatings were also carried 

out in simulated body fluid (SBF) to simulate the in-vivo condition. The test parameters 

and other conditions were kept same as dry wear testing. Figure 4.12 shows the CoF for 
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plasma sprayed HA and HA-CNT coatings with 5 N normal load up to 100 m of distance 

carried out under SBF immersed condition. The coefficient of friction is 0.35 for HA and 

reduces to ~0.2 for HA-CNT surface in SBF.  These CoF values are much lower than 0.9 

and 0.68, recorded for HA and HA-CNT respectively in dry condition. The comparative 

CoF for the coatings in dry and wet condition clearly indicates the extra lubrication 

offered in the presence of SBF. Thus, the coatings are expected to behave even better 

inside living body, as the lubrication offered by body fluid on implant surface would 

decreases amount of wear debris generated in-vivo. In addition to the lubrication offered 

by SBF, CNT also plays an active role in decreasing the CoF of HA-CNT coating as 

compared to HA in wet condition. Moreover, the CoF on HA-CNT coating decreases 

with time in SBF, which is not the case for HA. The probable cause is the good spreading 

of the peeled off graphene sheet on wear track due to presence of liquid medium, which 

leads to more effective lubrication with time. 

 

 

 

 

 

 

 

 

Figure 4.12: Coefficient of friction for HA and HA-CNT coatings in SBF immersion 

plotted against sliding distance. 
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Figure 4.13: Three dimensional optical profile of a section of the wear tracks on (a) HA 

and (b) HA-CNT; (c) two dimensional profiles across the tracks for HA and HA-CNT 

coatings - at 5 N load and 100 m of sliding distance while immersed in SBF. 

The 3D images of the part of wear tracks on HA and HA-CNT coatings, captured 

using optical profilometer and processed with SPIP software is presented in figure 4.13 (a 

and b). The images gives a clear visualization of the differential track depths in HA 
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coatings with HA and HA-CNT. Figure 4.13c presents the line profiles of the coating 

surfaces across the wear tracks on HA and HA-CNT. The maximum depth of wear track 

is ~ 7µm for HA-CNT and > 12 µm for HA coating. The 42% lower track depth in HA-

CNT indicates its higher wear resistance in SBF immersed condition.  The wear volume 

for HA and HA-CNT coatings are estimated from the optical profile of two tracks in each 

coating. The wear volume of HA (0.118 ± 0.021 mm3) is 58% higher than HA-CNT 

coating (0.049 ± 0.001 mm3). Similar to dry condition, the higher wear resistance of HA-

CNT is attributed to higher fracture toughness and extra lubrication through peeled off 

graphene sheets.  

The summary of the above finding reveal that addition of 4 wt.% CNTs to plasma 

sprayed HA coating improves the wear resistance by 80% and results in less volume of 

debris generation. The elastic modulus and fracture toughness of the plasma sprayed 

coating increases by 72.5% and 350% respectively with CNT addition. Release of the 

graphite layer from CNT provides lubrication and decreases the CoF on HA-CNT 

surface.  Presence of CNTs decrease the size of wear particles (HA: 0.3 – 9.5 μm, HA-

CNT: 0.1 – 3.1 μm).The focus of the next section is to investigate the similar properties 

of HA-4 wt.% CNT composite processed through spark plasma sintering (SPS). 

4.1.1.2 Free Standing Composite by Spark Plasma Sintering (SPS) 

Free standing HA- 4wt.% CNT composite is studied to understand the role of 

CNT in microstructural evolution of HA-based composite during SPS process. This is 

carried out by studying the grain size, and porosity and correlating with the physical 

properties of CNTs and thermal and electrical conductivity experienced during SPS 
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processing. The effect of CNT modified microstructure and HA/CNT interface on elastic 

modulus and fracture toughness of the composite is also elucidated. Macro and nano-

scale tribological properties of SPS HA-CNT composite is studied in terms of wear 

resistance and coefficient of friction. The differential roles played by CNT in tribological 

properties, over multiple length scale is also addressed. 

HA-CNT composite powder, synthesized through spray drying process, shows 

bimodal distribution of CNT (figure 3.1). CNTs were found nicely dispersed inside the 

porous spray dried agglomerate, whereas, loose clusters of CNTs were also present on the 

surface. Spark plasma sintering leads to the consolidation of both HA and HA-CNT 

powders into the pellets with a measured density of 94.9 and 96.5 % TD, respectively. 

The density values reveals slightly better densification in HA-CNT.   

4.1.1.2.1  Distribution and Structural Integrity of Carbon Nanotube in SPS Structure 

Raman spectrum of HA-CNT powder and sintered pellet shows the presence of G 

and D peaks of CNT (figure 4.14a), which are characteristics of sp2 and sp3 bonds of 

hexagonal carbon structure [26]. The peak at the lower wave number (950-960 cm-1) is 

from the ν1 symmetric stretching vibration of phosphate anions in HA [27]. The 

appearance of G peaks at around 1580 cm-1 is the signature of highly pure graphitic 

structure whereas D-peak (at around 1350 cm-1) originates from a disorder-induced mode 

in graphite. The intensity ratio of D and G peaks (ID/IG) is the index of defect density 

present in CNT. Figure 4.14a shows an increase in ID/IG from the powder stage to the 

SPS HA-CNT composite. This observation indicates increase in the defect density in 

CNT as a result of SPS processing. A shift in the G band towards higher wave number 
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has also been observed after SPS. This observation concurs with Das et al. on shift of the 

G peak to higher wave number with an increase in defect density in graphite [28]. 

Absence of shift in D peak and the phosphate peak (HA) rules out the possibility of 

presence of compressive stress in the composite. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: (a) Raman spectrum for HA-CNT powder, SPS pellet and wear track on 

SPS pellet showing D and G peak of CNT and phosphate peak of HA, (b) HRTEM of as-

received defect-free CNT, (c-d) HRTEM images of CNT in SPS HA-CNT pellet showing 

defects induced in CNT. 
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Figure 4.14b shows HRTEM image of as-received CNT which is largely defect-

free. The defect induced in CNTs during SPS processing are observed in figure 4.14c and 

4.14d. Disturbed arrangement of concentric tubular walls in CNTs with presence of 

different types of defects, e.g. carbon onion, cap formation, kink, partial collapse of 

nanotube walls and corrugated structure of graphene layers are observed in figures 4.14c 

and 4.14d. All these features are results of high temperature, pressure and current density 

applied in SPS processing.  Kink and cap formation and partial or full collapse of CNT 

walls upon application of high pressure has also been observed in cold spraying and SPS 

[29-30].  

Moreover, such broken graphitic layers are also prone to bending and forming a 

close structure in order to reduce the surface energy. Thus, they result into a carbon–

onion structure, as observed in figure 4.14c. Wei et al. have shown that longer and 

thinner CNTs have higher energy per carbon atom than spherical network. At high 

temperature and pressure condition, when enough energy is provided, the spherical 

structures are favored over tubular form, resulting in carbon onion formation [31].  

Presence of high electrical current density during SPS processing also plays an 

important role in defect site increment of CNT. The larger current density (~237A/cm2) 

and pulsed DC nature of current causes the knock-on collision of electrons with carbon 

atoms, resulting into creation of vacancies and interstitials. Kim et al. have observed the 

breaking of sp2 C-C bonds with application of pulsed DC which continues in the direction 

of current, unzipping the CNT layers [32]. This breaking occurs by the energy absorption 

of C-C bonds with higher energy atoms in tubular CNT structure [31]. In the present 
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study, the CNTs are not aligned along the current flow. Hence, localized breaking of sp2 

bonding takes place creating corrugated graphene layers on CNT walls (figure 4.14c). 

4.1.1.2.2  Phase Stability and Crystallinity of HA in SPS Structure 

X-ray diffraction patterns of HA and HA-CNT at both stages, viz. powder and 

after SPS consolidation are presented in figure 4.15. The major peaks in all the four 

patterns are from hydroxyapatite (JCPDS PDF No. 9-432). Low intensity graphite peaks 

are observed in HA-CNT powder and SPS pellet. The graphite peaks look weak because 

of presence of strong HA peaks in the vicinity. The 100% peak of β-TCP (at 2θ = 30.9°) 

and the third highest intensity peak (2θ = 27.67°) are absent in the XRD plots after SPS. 

The second highest intensity peak of TCP (2θ = 34.18°) overlaps with another peak of 

HA (2θ = 34.01°). Similarly, the highest peak of α-TCP (2θ = 30.69°) is also absent and 

the second highest peak (2θ = 22.88°) overlaps with a HA peak (2θ = 22.77°). Hence, the 

presence of α-TCP (JCPDS PDF No. 29-359) or β-TCP phase (JCPDS PDF No. 9-169) 

cannot be concluded. These observations prove that HA does not dissociate into TCP 

during SPS processing for both compositions. Previous studies on SPS HA-CNT 

composites report partial decomposition of HA into TCP [33-34]. But, the heating rate 

used in those studies (100 K/min) is 3.6 times lower than the heating rate in the present 

study (360 K/min). The faster heating rate has reduced the total time of sintering, thus 

preventing the dissociation of HA into TCP.  

The HA peaks were more sharp after SPS processing, which indicates increase in 

the crystallinity of HA through accelerated grain boundary and lattice diffusion. In the 
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HA-CNT composite, the relative height of the first and second highest intensity peaks 

gets reversed after SPS. The intensity of (002) peak in the powder (2θ = 25.87°) reduces 

in the sintered pellet whereas intensity of (210) peak in the powder (2θ = 28.95°) 

increases significantly after sintering.  A plausible explanation for such behavior is the 

evolution of preferred crystallographic orientation in HA and HA-CNT due to high 

temperature exposure [11-13]. 

 

 

 

 

 

 

 

 

 

Figure 4.15: X-ray diffraction patterns of spray dried HA and HA-CNT powders and SPS 
pellets. 

4.1.1.2.3  Role of Carbon Nanotube in Microstructural Evolution through Spark Plasma 

Sintering 

Figure 4.16 presents the fracture surface of sintered HA and HA-CNT pellets at 

different magnifications. The microstructures reveal two prominent regions present in 

both HA and HA-CNT. They are (i) larger, fully densified monolithic regions and (ii) 

small grain regions (figure 4.16a and 4.16b). Apart from these two features, porosity is  
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Figure 4.16: SEM micrographs of fracture surface of SPS pellets showing (a) monolithic 

and fine grain region in HA, (b) monolithic and fine grain region in HA-CNT, (c) 

partially sintered HA structure with fine grain region and porosity, (d) fully densified fine 

grain region of HA-CNT with homogeneously distributed CNTs, (e) monolithic region of 

HA-CNT with CNTs embedded in HA matrix and (f) CNT clusters at fine grain region of 

HA-CNT. 
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also present in HA fracture surface (figures 4.16c and 4.17a). HA-CNT structure does not 

show porosity. The distribution of CNT in the sintered HA-CNT pellet is directly related 

to their distribution in the powder stage. Uniformly distributed CNTs are found in both 

fine grained and monolithic regions (figure 4.16d and 4.16e), whereas CNT clusters are 

largely found in and around fine grained region (figure 4.16f). It is also observed that 

distribution and morphology of monolithic region, fine grain regions and pores vary from 

the periphery to the centre of the pellets for both compositions. Table 4.1 summarizes the 

microstructural variations in quantitative terms. The values presented in Table 4.1 are 

based on the area fraction of microstructural features in the micrographs.  All these 

features are attributed to SPS processing in conjunction with the CNTs presence. A 

detailed explanation of microstructure evolution is discussed below in terms of three 

main microstructural features, viz.(i) monolithic region, (ii) fine grained region and (iii) 

porosity in HA or HA/CNT clusters.    

 

 

 

 

 

 

Figure 4.17: (a) SEM micrograph of fracture surface of SPS-HA pellet showing porosity 

and (b) histogram showing bimodal porosity distribution in SPS-HA pellet. 
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Table 4.1: Comparative quantification of microstructural features in spark plasma 

sintered HA and HA-CNT pellets 

* indicates CNT clusters (no visible pores are observed in HA-CNT) 

# Values presented in the table are based on % area measurement from the micrographs 

Monolithic Region 

The monolithic region forms due to rapid grain growth which is also known as 

dynamic ripening [35]. The heating rate used in this study is 360 K/min. The rapid 

heating rate in achieved through application of high current density that causes localized 

joule heating at particle interfaces. Such localized heating helps in accelerated thermal 

diffusion, melting within inter-particle contact areas and also creates thermal stresses 

which enable dislocation creep. Thus, spark plasma sintering by-passes the initial stage of 

surface diffusion, as in conventional sintering, and achieves accelerated densification by 

early activation of diffusion mechanisms, like grain boundary and lattice diffusion and 

power-law dislocation creep [36-38], leading to formation of consolidated monolithic 

regions.  

Microstructural Features 
HA -Pellet HA-CNT-Pellet 

Periphery Centre Periphery Centre 

Monolithic region size (µm) 207 ± 50 179 ± 41 15 ± 6 14 ± 6 

Small Grain Size (µm) 0.6 ± 0.2 0.5 ± 0.1 0.4 ± 0.1 0.6 ± 0.1 

% Monolithic region 48 ± 3 35 ± 2 21 ± 3 18 ± 3 

% Porosity 5 ± 1 10 ± 1.5 *5 ± 1.8 *5 ± 2.5 

% Small grain region 47 ± 2 55 ± 2 74 ± 2 77 ± 3 
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But, HA is a ceramic with poor thermal conductivity ((1.25 W/mK [9]). As the 

heating source is the graphite die in contact with the periphery of the green pellet, a 

thermal gradient is created along the pellet thickness with the lowest temperature at the 

centre. This non-uniform temperature distribution promotes a densification gradient along 

the pellet thickness (~5 mm) resulting into microstructure variations. Poor electrical 

conductivity of HA (7x10-7 Scm-1) [39], adds to the through thickness density gradient. 

Joule heating and electrical field assisted mass transport decreases towards the center of 

the pellet due to existing electrical field gradient across the thickness. As a result, HA 

pellet goes through more densification at the periphery than in centre. Such differential 

densification through thickness leads to more monolithic regions at the periphery (48%) 

as compared to the centre (35%) in the sintered structure (table 4.1).  

On the contrary, thermal conductivity of CNT (2980 W/mK [8]) is three orders of 

magnitude higher than HA (1.25 W/mK), which results into higher effective thermal 

conductivity of the HA-CNT composite powder. Similarly, higher electrical conductivity 

of CNT (2x104 Scm-1) [40] than HA (7x10-7 Scm-1), increases the effective electrical 

conductivity of HA-CNT composite and reduces the electrical field gradient across the 

green HA-CNT pellet. The reduction in both, thermal and electrical gradient results in 

reducing the densification gradient along the thickness of HA-CNT pellet.  Thus, in case 

of HA-CNT pellet, only 3% difference in monolithic content is observed from the 

periphery (21%) to the center (18%) as presented in table 4.1. The increase in effective 

thermal and electrical conductivity of HA-CNT also helps in overall better densification 

than HA, as evident from the measured density of 96.5 and 94.9 % TD, respectively. 

Application of pressure in SPS also helps in densification by increasing particle surface 
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contact through particle rearrangement, breaking of CNT agglomerates and thus 

promoting easy diffusion at lower temperature, which is absent in conventional sintering. 

Effect of thermal, electrical and pressure gradient on microstructural evolution during 

SPS of HA and HA-CNT has been explained through a schematic diagram in figure 4.18. 

 

Figure 4.18: Schematic showing effect of SPS and CNT on the consolidation mechanism 

and microstructural evolution in HA and HA-CNT pellets.  
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Fine grained region 

Fine grain regions are observed in both HA and HA-CNT pellets. But, the origin 

of fine grain region is different in HA and HA-CNT, which is evident from figures 4.16a-

4.16d. Fine grain regions in SPS HA pellet is generated due to incomplete sintering or 

less densification. SEM micrograph of fine grain region in HA shows presence of 

porosity and partially sintered structure (figure 4.16c). Due to less densification at the 

centre, fraction of fine grain region is also higher at the centre (55%) than in periphery 

(47%) in HA pellet (table-4.1). HA-CNT pellet contains higher fraction (~70%) of fine 

grained region than HA pellet as shown in figure 4.16b.  The fine grain structure in HA-

CNT is the result of grain boundary pinning of HA by CNTs.  The grain growth is 

controlled by the random dispersion of rigid immobile spherical second phase particle 

through grain boundary pinning and the maximum attainable grain size R can be 

expressed as, 

bf

r
aR =     ………(4.3) 

where, r is the radius of the second phase particle, f is the volume fraction of the second 

phase particle and a, b are constants [41]. The Zener pinning factor Z is defined as,  

r

f
Z =     ………(4.4) 

Sun et al. have modified expression of Z to get rid of the assumption on second phase 

particle shape and size [42]. According to their findings,  

4
VS

Z =     ………(4.5) 
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Sv is defined as the surface area of particle per unit volume. Sv is very high for CNTs due 

to their large surface to volume ratio. As the Sv increases, R decreases, which means 

CNTs have great potential of grain size refinement. Pinning at grain boundary also 

retards the dynamic ripening process that results in smaller size of monolithic regions. 

Thus, HA-CNT structure contains higher fraction of fine grained region as well as 

smaller size of monolithic regions (~15 μm) than HA (~200 μm). Presence of CNTs at 

the HA grain boundary in fine grain region of HA-CNT fracture surface (figure 4.16) 

provides the visual evidence of grain boundary pinning by CNT. The fraction of fine 

grain region in HA-CNT remains same in centre (~77%) and periphery region (~74%), as 

presented in table-4.1. This uniformity could be attributed to the uniform distribution of 

CNT in the pellet, which controls the formation of fine grain region in HA-CNT. 

Porosity 

Porosity present in HA shows a bimodal distribution (figure 4.17a &4.17b). The 

big pores are generated from the inter-particle gap, which are more pronounced at the 

center of the doughnut shaped spray dried agglomerates (figure-3.1c). The small pores 

originate from the regions of agglomerates having loosely bound HA particles. Due to 

poor thermal and electrical conductivity of HA, the inter-particle distances could not be 

covered fully during diffusion/densification. Presence of a sharp porosity gradient 

through thickness, with higher porosity in the centre (10%) than periphery (5%)  (table-

4.1) is the result of densification gradient. Increase in the porosity content due to presence 

of thermal gradient in SPS of ceramic has also been observed by other researchers [43].  

HA-CNT composite fracture surface shows presence of some CNT clusters and absence 
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of porosity (figure 4.16b). The absence of porosity is already justified in terms of better 

densification achieved due to better thermal and electrical conductivity of CNT. The 

dense CNT clusters prevent the penetration of HA particles between them due to the short 

sintering period restricting long distance mass transport. The content of CNT cluster is 

the same for periphery (5%) and centre (5%) of the sintered pellet. 

4.1.1.2.4  Hydroxyapatite-Carbon Nanotube Interface in SPS Structure  

The crystallographic arrangement at the interface plays a major role in 

determining its strength. The strength of the interfacial bond is mainly governed by the 

work of adhesion. HA-CNT interface has been investigated using HRTEM images (figure 

4.19). Fourier transform (FFT and inverse-FFT) analysis of the lattice images at interface 

reveals the presence of CNT and HA. No reaction product was observed at the interface. 

It is difficult to predict the nature of bonding at HA-CNT interface, due to complex 

crystal structure of HA. Though the probability of Van der Waal bond is higher between 

two chemically non-reacting solids like HA and CNT.  CNT shows an inter-wall distance 

of 0.348 nm, which is slightly higher than defect free CNT inter-wall distance of 0.34 

nm. This mismatch is due to the SPS induced defect density in CNT structure as 

discussed in section 4.1.1.2.1. HA particles are identified by the lattice spacing of 0.282 

nm for the (211) plane, which produces the 100% intensity peak in XRD pattern of 

hexagonal HA (figure 4.19). 
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Figure 4.19: HRTEM image of CNT and HA interface. FFT analysis reveals the CNT 

wall spacing and HA lattice spacing at the interface. 

Two different types of interfaces are possible in HA-CNT system. They are: (i) 

HA crystals attached to CNT wall and (ii) HA crystals along the CNT end (cross section). 

Good interfacial bonding could be achieved only in case of small lattice mismatch (δ) 

giving rise to minimum lattice strain. Absence of lattice strain improves the ‘work of 

adhesion’ at the interface, which further increases the fracture energy of the interface and 
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thus makes it strong [44]. The interface becomes incoherent when δ> 0.25 [45]. As 

observed in figure 4.19, the (211) planes in HA makes 68° angle with CNT walls. The 

angle between the basal plane (001) and (211) of HA is 65°. Hence, there is a greater 

possibility that basal planes of HA are parallel to the graphene sheet on CNT wall. Both 

of them are symmetric in nature due to the hexagonal arrangement of both C (CNT) and 

Ca (HA) atoms. The distance between C atoms in graphene is 0.142 nm. The basal plane 

of HA has Ca atoms at each corner of the hexagon and the distance between each pair of 

Ca atom is 0.94 nm. Schematic diagram presented in figure 4.20a shows a HA basal 

plane superimposed on a graphene sheet. HA crystals try to align on CNT surface 

resulting in minimum atomic distance mismatch. The distance between carbon atoms (C1 

and C2 in figure 4.20a), nearest to the Ca atoms (Ca-1 & Ca-2) along one side of HA 

basal plane, is 1.026 nm. As the distance between corresponding Ca atoms of HA basal 

plane (Ca-1 and Ca-2) is 0.94 nm, the mismatch (δ) between the inter-atomic distance of 

these two pairs of C and Ca atoms is 0.09, which is much lower than 0.25. Hence, basal 

plane of HA forms a strong and coherent interfacial bond with CNT wall. Thus, basal 

planes of HA crystals prefer to align on CNT surface. The only disturbance to this strong 

interfacial bonding is the defects on CNT walls introduced by SPS processing. These 

defects are probable sites for CNT debonding from the HA matrix causing pull-outs. 

At the open ends of CNT, the graphene walls are exposed with an inter-wall 

spacing of 0.34 nm. The lattice spacing of (211), the highest intensity plane of HA 

(XRD), is 0.282 nm. The lattice mismatch (δ) between (211) plane of HA and CNT walls 

is 0.20, which is also lower than 0.25. Thus open ends of CNT forms a semi-coherent  
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Figure 4.20: (a) Schematic of atomic arrangement at the interface of basal plane of HA 

and graphene sheets on CNT surface and (b) Schematic of CNT open end showing 

alignment of CNT walls with (211) planes of HA. 
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interface with HA crystals with an orientation such that (211) planes are parallel to 

graphene walls, as shown in figure 4.20b. The strong and coherent interface with higher 

work of adhesion between CNT and HA without other reaction product is the key factor 

for the improvement of the mechanical properties. 

4.1.1.2.5  Elastic Modulus and Fracture Toughness of SPS HA-CNT 

Elastic Modulus 

Measurement of the elastic modulus (E) of the SPS HA and HA-CNT composites 

has been performed using nanoindentation technique [14]. More than 100 indents were 

made at randomly chosen regions throughout the cross-section of the pellets.   

Figure 4.21: (a) Load vs. displacement plot for HA and HA-CNT composite obtained by 

nanoindentation, (b) statistical distribution of E value in HA and HA-CNT composites 

measured for more than 100 nano-indents in each sample. 

A representative load vs. displacement curve for both HA and HA-CNT is shown 

in figure 4.21a. Low indentation depth of HA-CNT sample in figure 4.21a indicates 

higher hardness. Elastic modulus, calculated from the unloading part of the load-



178 
 

displacement curves (table-4.2), shows a 25% improvement with CNT reinforcement in 

HA. The measured E value of 130 GPa in the present study agrees well with the reported 

E for HA-CNT composite processed through SPS route [33]. The spread in E, as 

presented in the statistical distribution plot in figure 4.21b, is due to the localized nature 

of the measurement technique. Similar amount of spread in E value for both HA and HA-

CNT indicates homogeneous improvement in effective elastic modulus at macro-scale 

length.   

Fraction of the plastic and elastic work during indentation for the composite 

structure is given by the following expressions [46], 

pet WWW +=      ………(4.6) 
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where, Wt, Wp and We are the total, plastic and elastic (reversible) work done respectively, 

hm is the depth of the indent at the peak load and hf is the final depth of indentation after 

recovery. Table-4.2 shows the ratio of elastic work in HA-CNT (0.64) increases by 20% 

than HA (0.53). This calculation shows that CNT reinforcement makes the HA matrix 

more prone to recovery upon deformation. 

The increase in the elastic modulus of HA-CNT composite is attributed to three 

major factors: (i) higher E value of CNT reinforcement (200-1000 GPa [47]), (ii) 
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homogeneous distribution of CNT in HA matrix and (iii) strong HA/CNT interface. The 

overall effective elastic modulus of the composites has also been computed using Eshelby 

[48] and Mori-Tanaka [49] micromechanics models. A lower value of E of CNT ~ 200 

GPa was used for these computations as defects have been introduced in the CNT 

structure during SPS, which will have negative effect on the elastic modulus and tensile 

strength of a pristine CNT. The computed E values, presented in table 4.2, are in the 

similar range as of experimentally measured E values. The mismatch between the 

computed and measured E values could be due to several reasons. Firstly, the effect of 

porosity present in the composite has not been taken care in the computed model. 

Secondly, presence of few CNT clusters also causes the localized decrease in E values. 

Moreover, both the models consider the ellipsoid reinforcement particles, whereas CNTs 

are tubular in shape. 

Table 4.2: Mechanical properties measured by nanoindentation and Vickers indentation 

methods and calculated through micromechanics models. 

 

Good bonding at the HA/CNT interface also plays a role in improving the E for 

the composite structure. When a stress is applied on a composite material, the matrix 

deforms first due to lower elastic modulus. A strong matrix/reinforcement interface 

Sample 
E (GPa) 

(measured) 

E (GPa)

(Eshelby)

E (GPa) 

(Mori-
Tanaka) 

Welas/Wtot 
H (GPa) 

(Vickers) 

KIC  (MPA m½)

(Anstis’ equation)

HA 104 ± 6 - - 0.53 7 ± 0.2 1.25 ± 0.91 

HA-4CNT 130 ± 8 159 160 0.64 9 ± 0.4 2.4 ± 0.60 



180 
 

would resist the selective elastic deformation of matrix by transferring the stress on the 

reinforcement. Thus, the effective elastic strain generated in the composite matrix 

reduces with application of elastic stress resulting in an increase in E for the composite. 

Figure 4.22a presents the fracture surface with CNTs protruded from the HA matrix. The 

protruded CNTs in figure 4.22a shows much shorter length (100-300 nm) compared to 

the length of CNTs used in this study (1-3 µm), which indicates a strong bonding 

between matrix and reinforcement. Strong interfacial bond hinders the sliding between 

reinforcement and matrix and increases the fiber-pull out stress. As a result, only partial 

debonding of reinforcement from the matrix occurs, resulting into shorter length of pull-

outs. Figure 4.22b shows high magnification SEM image of a CNT pull-out. CNT/HA 

interface shows a very good bonding without any sign of loosening or cracks.   

Figure 4.22: High magnification SEM micrographs of HA-CNT fracture surface showing 

(a) protruded CNTs and (b) strong and defect free interface of CNT with HA matrix. 

Fracture Toughness 

Fracture toughness was evaluated using indentation cracking method. Vickers 

indentation at 1 kg of normal load was employed to initiate cracking in the composite. 

Figures 4.23a and 4.23c show Vickers indents on the cross-sections of HA and HA-CNT 
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pellets, respectively. Indent on HA-CNT shows a smaller impression with shorter radial 

cracks as compared to HA. The indents were observed at high magnification under SEM 

for the accurate measurement of the crack lengths. Fracture toughness of the composite 

structures has been evaluated using Anstis’ equation [equation 4.1] 

KIC shows a 92% improvement with CNT addition in HA, whereas hardness 

increases by 29% (table 4.2). KIC, calculated for HA-CNT composite in the present study 

(2.4 MPa.m0.5) is much higher than the only available literature value of 1.27 MPa.m0.5 

[34].  The improvement of KIC in the same study is 30%, which is much less than 92% 

improvement reported in the present study. One of the probable reasons is the lower 

content of CNT (2.5 vol. %) used in the Ref [34], as compared to the present study (4 

wt.% ≈ 6 vol.% CNT). Further, the use of spray dried HA-CNT composite powder in the 

present study ensures the better distribution and good bonding of CNT with matrix in the 

sintered structure.  The detrimental effect of few CNT clusters was minimal in 

comparison to benefits from uniformly dispersed CNTs. Detailed SEM investigations 

inside the indentation cracks reveal two factors responsible for the improvement in 

fracture toughness of HA-CNT composite.  One of them is the resistance to crack 

propagation at fine grain region of HA-CNT composite. Figure 4.23c shows the 

deflection and arrest of crack at fine grained region in HA-CNT. In contrast, HA fine 

grain region does not arrest the crack as shown in figure 4.23b.  This is attributed to the 

difference in the densification level of the fine grain region in HA and HA-CNT. HA-

CNT composite has high fraction of fine grained region (table-4.1), causing the crack 

propagation more difficult.  The second mechanism that resists the crack propagation is 
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CNT-bridging. High magnification SEM micrographs inside the cracks (figures 4.23e 

&4.23f) show individual CNTs forming bridges on the crack and resisting its 

propagation.  

  

 

 

 

 

 

 

 

 

 

 

Figure 4.23:  SEM micrographs of polished cross sections in HA and HA-CNT showing 

(a) Vickers indents on HA and (b) radial crack from the indent propagating in fine grain 

region of HA, (c) Vickers indent on HA-CNT, (d) deflection and arrest of radial crack at 

fine grain region in HA-CNT, (e) crack bridging by CNTs and (f) a single CNT bonded 

with HA matrix at both ends and forming bridge on crack. 
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Further evaluation of toughening mechanism in HA-CNT composite has been 

studied using a model developed by Chen et al. that computes interfacial shear strength 

and reinforcement pull-out energy for CNT-ceramic composites [50]. The effective area 

of load carrying outer layers (Aeff) of multiwalled CNTs has been calculated using the 

following expression: 

{ }2 2

1

[ ( 1) ( 1) '] [ ( 1) ']eff

N

CNT CNT
m

A R m h m h R mh m hπ
=

= − − − − − − − −  ………(4.8) 

where,  RCNT is the outer radius of CNT (25-50 nm in this study),  h is the effective layer 

(wall) thickness (~ 0.075 nm), d is the spacing between each graphene layer (~ 0.34 nm) 

and h′  = d – h, and N is the number of outer layers carrying load. The CNTs used in this 

study has 28 to 51 graphene layers (measured from HRTEM images). But, the CNTs 

having SPS induced defects, only the outer 5 layers have been considered as active load 

carrying components in this calculation. Cox model has been used to compute the 

interfacial shear strength (τ) between HA and CNT. Cox model assumes the fiber at the 

centre of a coaxial cylinder of the matrix (of radius R) to calculateτ, which is expressed 

as following: 
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ECNT is the elastic modulus of CNT, used as 200 GPa for this study. The applied strain e 

has been taken as 0.04, the fracture strain of HA [51]. L is the length of CNT, which is 1-

3 µm in this study and x is the distance from end of CNT. G′HA~ 45 GPa [52] is the shear 

modulus of HA. The radius of matrix coaxial cylinder, R, has been calculated using the 

following relationship, 

fCNT VR

R

4

2
π=








     ………(4.11) 

Vf ~ 6, is the volume fraction of CNT in HA matrix. The calculated interfacial shear stress 

at HA-CNT interface, τ, is 0.3 – 0.35 GPa. Hence, a shear stress greater than this value 

has to be applied to interface in-order to cause CNT debonding from HA matrix. The 

computed τ has been used in calculation of pull-out energy (Gpullout) for HA-CNT system 

[50], using equation 12. 

CNT

f
pullout R

lV
G

3

2τ
=     ………(4.12) 

where, l is the pullout length of CNTs (100-300 nm) measured from SEM images. The 

computed Gpullout for CNT from HA matrix is 1.5 – 22 J/m2. The fracture energy for 

monolithic HA is 1 J/m2 [53]. The CNT pull-out energy being higher than fracture energy 

of HA, cracks propagate through HA, but gets restricted when comes in the vicinity of 

CNT, as more energy is required for interface debonding.  Hence, CNT bridges shown 

figures 4.23e and 4.23f, absorb more energy and provides resistance to crack growth. 

Chen et al. has also observed crack deflection at the alumina-CNT composite due to 

debonding of CNT from matrix prior to fracture in matrix [50]. 
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4.1.1.2.6   Wear Behavior of SPS HA-CNT Across Multiple Length Scale 

This study reports macro and nano-scale tribological behavior of the SPS 

processed HA-CNT composite. Macro-scale wear was conducted using ball-on-disk 

tribometer whereas nano-scale wear was evaluated using nano-scratch studies by 

nanoindenter. 

Macro-Scale Wear 

The wear resistance has been defined in terms of volume loss of the wear track at 

different traverse distances.  The instantaneous depth of wear track is measured using 

‘linear variable differential transformer’ (LVDT). The cumulative volume loss and 

coefficient of friction (CoF) for HA and HA-CNT composite are shown in figures 4.24a 

and 4.24b, respectively. Each point on figure 4.24b shows an average value of CoF for 25 

m interval. The error bars on figure 4.24 are based on three wear tracks studied for each 

sample. Wear resistance increases by 66%, whereas CoF decreases by 60% with CNT 

addition in HA.  

The decrease in CoF for HA-CNT indicates more lubrication in the wear track, 

which could be due to graphene layer removal from CNT by application of shearing force 

during macro-wear. This assumption is indirectly supported by the change in relative 

intensity of D and G peaks of CNT in Raman spectroscopy plots of wear track (figure 

4.14a). The ID/IG ratio increases from 0.72 in SPS HA-CNT pellet to 1.28 in the wear 

track of the same sample. 
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Figure 4.24:  (a) Wear volume loss and (b) coefficient of friction for HA and HA-CNT 

plotted against sliding distance during ball-on-disk wear, (c-d) High magnification SEM 

micrographs of broken and damaged CNTs observed in the HA-CNT wear track. 

Increase in ID/IG ratio indicates more defects getting introduced in the CNTs 

during wear, which is resulted from tearing off of graphene layers. Further, a shift of D 

and G peak of CNT towards lower wave number is also observed in the wear track, 

which is attributed to the tensile stress present due to shearing force applied on wear track 

[54-56]. The shift of the D and G peaks to lower wave numbers is best understood on the 

basis of an elongation of the carbon-carbon bonds under tension, which makes the bond 

weaker and therefore lowers the vibrational frequency [54]. Same is true for the 



187 
 

phosphate peak of HA in wear track also. The extent of shift is more in D and phosphate 

peaks than in G peak. This is because G peak undergoes a shift to higher wave number 

due to increase in defect density [28] and simultaneously to lower wave number due to 

tensile stress induced in it. Hence, the observed shift in G peak is the resultant of these 

two opposing effects. Increase in the defect density in CNTs during wear is visually 

observed from the SEM micrographs in figures 4.24c and 4.24d, showing presence of 

damaged and broken CNTs in the wear track. Graphene layer peeling from CNTs by 

application of shear force is in agreement with a study by Li et al. on SPS consolidated 

structure [57]. The peeled off graphene layers cover the wear track during wear, thus 

providing lubrication and decreasing the coefficient of friction. CNT clusters provide 

more lubrication due to increased probability of graphene layer formation. 

Increase in the wear resistance for HA-CNT composite is a combined effect of 

improvement in the mechanical properties (E, H and KIC) caused by CNT reinforcement 

and decrease in the coefficient of friction. Improvement in E, H and KIC increases the 

resistance to removal of mass with the same amount of applied load. At the same time, 

decrease in CoF (ratio of lateral and normal force) decreases the effective lateral force in 

the wear track for same amount of normal force. In the present study, the effective lateral 

force in HA-CNT is as low as 2.5 N, compared to ~7N in HA sample, due to decrease in 

CoF. Decrease in the lateral force due to graphite induced lubrication causes lesser wear 

volume loss in case of HA-CNT. 

Nano-scale Wear 
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Nano-scale tribological properties of HA and HA-CNT composite have been measured 

by making nano-scratches with different normal loads. The volume loss has been 

calculated from the geometry of scratch profile obtained through SPM imaging of the 

scratch after elastic recovery has taken place, using the following expression: 

=
l

dlhV
0

2 .tanθ    ………(4.13) 

where, V is the volume of the scratched groove, h is the height of the groove (obtained 

from 2D SPM profile of scratch along the length), θis the average angle of the groove 

measured at five points along the scratch length using 2D SPM profile and l is the length 

of the scratch. The detailed procedure of the volume measurement in explained in a study 

by Bakshi et al. [58]. 

Figures 4.25a and 4.25b show the wear volume loss and CoF, respectively, for 

HA and HA-CNT at normal loads of 3500 µN and 4500 µN. The error bars in figure 4.25 

are based on three scratches made at each load on each sample. Wear volume loss 

increases with increase in load and is ~ 45% higher for HA for both the loads. CoF 

remains similar at different loads in each of the compositions, but HA-CNT shows 14% 

increase in CoF. Decrease in the wear volume loss for HA-CNT indicates its higher wear 

resistance, which is due to the improvement in E, H and KIC as discussed in case of 

macro-wear. Increase in CoF in HA-CNT indicates the absence of any significant 

lubrication in case of nano-wear.  
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Another important observation from the nano-scratch study is the effect of CNT 

addition on the recovery of HA matrix, which has been calculated using depth of the 

scratched-groove during scratch and after recovery.   HA-CNT shows increase in the 

recovery at both 3500 µN and 4500 µN loads suggesting higher elastic deformation in the 

presence of CNTs (figure 4.25c). This observation directly matches with the higher 

fraction of elastic work in HA-CNT as calculated from the nanoindentation studies (table 

4.2). 

 

 

 

 

 

 

 

 

 

Figure 4.25: Nano-scale (a) wear volume loss, (b) coefficient of friction and (c) 

percentage elastic depth recovery during  nano-scratch of HA and HA-CNT as a function 

of normal load. 
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Differential role of CNT at varying length scales of wear 

Tribological properties of HA and HA-CNT composites show distinct differences 

at macro and nano length scale. With CNT addition, CoF decreases by 60% in case of 

macro-wear, whereas it increases by 14% for nano-wear. Further, macro-wear shows 

66% increase in wear volume resistance with CNT reinforcement, whereas nano-wear 

study reveals increase in wear resistance by 45%.  

Increase in CoF in the case of macro-wear results from the lubrication offered by 

peeled graphene layers from CNT walls. Lower lubrication in nano-wear is attributed to 

the absence of damage and breaking of CNT walls. The effective lateral stress exerted on 

the CNT walls during macro and nano-scale further elucidates this phenomenon.  

Figure 4.26: Schematic diagram showing effective surface area (SAeff) for nano-scratch 

study. 

Effective lateral stress on the sample surface is same as the stress on the wear 

probe in contact with sample during removal of mass.  The contact area of probe with the 

sample surface, is referred as effective surface area (SAeff). Figure 4.26 shows a schematic 

for the calculation of SAeff for Berkovich indenter tip used for the nano- wear study. The 

three sided pyramid shape of Berkovich tip has been approximated to a conical shape, 
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keeping the aspect ratio of height to base (1:8) same. For the scratches made with 4500 

µN normal load, the average depth of scratch is 300 nm which corresponds to SAeff as 

4.66 µm2
.  The CoF for the same case being 0.29, the lateral force for the scratch is ~1300 

µN. These conditions generate a stress of 300 MPa at the Berkovich tip surface in contact 

with the HA-CNT sample. 

In the case of macro-wear, the normal force applied is 10N. The CoF being 0.25, 

the effective lateral force on the wear track is 2.5N. Maximum wear depth achieved in the 

track is 0.097 mm. For a total wear distance of 100 m, it takes 8 X 103 revolutions in a 2 

mm radius wear track. Hence, the average wear depth increase per revolution is 1.25 X 

10-5 mm. A 3 mm diameter alumina ball has been used as wear probe. Schematic in 

figure 15 presents the SAeff for macro-wear. The wear depth per revolution being very 

small with respect to the radius of wear probe, the surface area of sphere has been 

approximated to the circular area of the truncated sphere as shown in figure 4.27. The 

SAeff, thus calculated, is 1.18 X 10-4 mm2. Hence, the lateral stress achieved in case of 

macro-wear is ~ 21 GPa. 

 

 

 

 

 

Figure 4.27: Schematic diagram showing effective surface area (SAeff) for macro-wear 

study. 
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 These calculations show that macro-wear applies 70 times higher lateral stress on 

wear track than nano-wear. Yu et al. have reported that removal of a single graphene 

layer from multi-walled CNT requires a tensile force in range of 11-63 GPa, with varying 

OD and length of nanotubes [24]. Lateral force during wear causes shearing removal of 

mass on the surface, which causes tensile stress on the newly exposed surface after mass 

removal. As the force applied in nano-wear (300 MPa) is much smaller than the 

minimum stress required for graphene layer peeling from CNT (11 GPa), no lubrication 

is available in this case. On the contrary, the available lateral stress in case of macro-wear 

(21 GPa) is enough to remove graphene layer which causes a significant decrease in CoF. 

Increase in lubrication also contributes towards increasing wear resistance for HA-CNT.  

Research on SPS processed HA-CNT composite indicates positive role of CNT 

reinforcement towards mechanical properties and tribological behavior of the composite. 

Rapid heating rate for SPS processing prohibits the dissociation of HA into TCP. Good 

electrical and thermal conductivity of CNT plays important roles in improved 

densification of microstructures of HA-CNT composite. CNT also pins the grain 

boundaries and retain HA nanostructure, which helps in improving elastic modulus and 

fracture toughness.  A 92% increase in the fracture toughness of HA-CNT was obtained 

due to a combined effect of improved modulus, higher fraction of nanocrystalline HA 

region and crack bridging by CNTs. Macro-scale dry sliding wear of HA-CNT composite 

showed a 66% improvement in the wear resistance and 60% reduction in CoF. Increase in 

the wear resistance is due to improvement in mechanical properties (E, H and KIC) as 

well as decrease in CoF for HA-CNT.  The decrease in CoF is due to peeling of graphene 

layer from CNTs that provide lubrication. In case of nano-scale wear, a 45% increase in 
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the wear resistance is observed.  Nano-scale CoF increase by 14% in presence of CNT, 

due to absence of lubrication from graphene layer peeling. The effective shear stress 

during macro-wear causes graphene layers to peel-off from CNTs.  The effective shear 

stress in nano-wear is significantly lower than the minimum stress required for removing 

a graphene layer from CNT surface. 

This study also proposes BNNT to be a suitable alternative to CNT for similar 

application. The following section presents and discusses the microstructural, mechanical 

and tribological behavior of spark plasma sintered HA-BNNT composite. 

4.1.2  Hydroxyapatite-Boron Nitride Nanotube Composite by Spark Plasma 

Sintering 

HA-BNNT composites are synthesized by spark plasma sintering.  The 

microstructural evolution and interfacial orientation relationship between BNNT and HA 

is analyzed. Effect of BNNT addition on the elastic modulus and fracture toughness of 

the composite is investigated. Tribological performance of HA-BNNT composite and the 

wear mechanism in presence of BNNT is also studied.  

4.1.2.1 Role of Boron Nitride Nanotube in Microstructural Evolution of SPS HA-

BNNT Composite 

SEM image from the fracture surface of HA (figure 4.28) reveals partially 

sintered grain structure with porosity. On the contrary, HA-BNNT shows a dense and 

fully sintered fracture surface with negligible porosity (figure-4.28b). The density of HA-
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BNNT (97.0 ± 0.3 % TD) was higher than HA (92.2 ± 1.1 % TD). The densification in 

spark plasma sintering is achieved by extremely high heating rate that activates diffusion 

mechanisms, like grain boundary and lattice diffusion and power-law dislocation creep 

[36-38]. Thus, conduction of heat throughout the pellet during sintering is important for 

achieving better densification. The heating source is the graphite die in contact with 

periphery of the green pellet. A thermal gradient is generated through the thickness of the 

green pellet due to lower thermal conductivity of HA (1.25 W/mK [9]), which leads to 

incomplete sintering and porous structure. But, the thermal conductivity of BNNT is 

much higher than HA, with a reported value of 200-300 W/mK in axial and 20-30 W/mK 

in transverse direction [59-60].  Hence expected increase in thermal conductivity of HA 

with BNNT reinforcement results in accelerated diffusion and better densification of HA-

BNNT. BNNTs have also displayed 160% increase in the thermal conductivity of PVA-5 

vol. % BNNT composite as compared to PVA [60].  

 

 

 

 

 

 

 

 

Figure 4.28: Fracture surface of (a) HA and (b) HA-BNNT sintered pellets revealing the 

porosity content. 

(a) 

1 µm

(b)

1 µm
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BNNTs play an active role in grain refinement of the sintered structure. HA-

BNNT composite has a grain size of 0.17 ± 0.1 µm, which is nearly three times finer than 

HA having a grain size of 0.61 ± 0.16 µm. The presence of BNNTs has also lead to grain 

refinement in Al2O3 and Si3¬N4 based composites [61]. High surface to volume ratio 

makes BNNT more active for grain boundary pinning, as found in the case of CNT, the 

structural analogue of BNNT (section 4.1.1.2.3). 

4.1.2.2 Distribution and Structural Integrity of Boron Nitride Nanotube in SPS 

Structure 

The application of high temperature and pressure during spark plasma sintering 

necessitates investigation on the survival of BNNT structure in the sintered composite. 

Evidence of the existence of BNNTs in the sintered pellet is provided by the HRTEM 

images presented in figures 4.29a and 4.29b.  

The defect free lattice images of BNNT in the sintered pellet rule out damage due 

to application of high pressure and temperature during SPS, as observed in case of CNTs 

[29]. High flexibility of BNNT along-with the ability to withstand high deformation 

without getting damaged [62] is attributed for their defect free structure in SPS pellet.  

Figure 4.29c presents the Raman spectrum for HA and HA-BNNT at powder and 

sintered stages. The peak at ~ 964 cm-1, present in all spectra, is from the ν1 symmetric 

stretching vibration of phosphate anions in HA [27]. The peak at ~1367 cm-1, present in 

HA-BNNT powder and sintered pellet, is an E2g mode peak from h-BN [63-65]. 

Presence of h-BN peak in Raman spectrum of the pellet along with the tubular structures 



196 
 

in HRTEM images (figures 4.29a and 4.29b) further establishes the survival of BNNT 

through spark plasma sintering process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29: (a-b) HRTEM images of BNNT in the sintered HA-BNNT pellet retaining 

their defect free structure; (c) Raman spectrum of HA and HA-BNNT powders and 

sintered pellet. 

4.1.2.3 Phase Stability and Crystallinity of HA in SPS HA-BNNT Structure 

X-ray diffraction (XRD) patterns of the sintered HA and HA-BNNT pellets are 

shown in figure 4.30. The major peaks in both diffraction patterns are from 
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hydroxyapatite (JCPDS PDF No. 9-432). Low intensity boron nitride (BN) peaks in HA-

BNNT are generated from hexagonal (JCPDS PDF No. 34-0421) and tetragonal (JCPDS 

PDF No.-25-0098) crystal structures. XRD patterns reveal presence of some tetragonal-

BN impurity in the as-received BNNTs. Some of the BN peaks overlap with HA peaks in 

the vicinity (figure-4). None of the highest peaks of β-TCP (JCPDS PDF No. 9-169) and 

α-TCP (JCPDS PDF No. 29-359) is present.  These observations prove that HA does not 

significantly dissociate into TCP during SPS processing for both compositions. The SPS 

of HA-CNT composite using same processing parameters also reveals similar observation 

(section 4.1.1.2.2). Faster heating rate in SPS has prevented the long exposure of HA at 

high temperature and thus the dissociation into TCP.  

 

Figure 4.30: X-ray diffraction pattern of HA and HA-BNNT sintered pellet showing HA 

and BN peaks. 
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4.1.2.4 Hydroxyapatite-Boron Nitride Nanotube Interface in SPS Structure  

HA and BNNT are chemically non-reacting species. HRTEM image of HA-

BNNT interface reveals absence of any reaction product (figure 4.31a), ruling out 

presence of ionic or covalent bond. Thus, Van der Waal’s bond is the most probable at 

HA-BNNT interface. Hence the interfacial strength is mainly governed by the work of 

adhesion, which is dependent on the lattice arrangement at interface. Work of adhesion is 

higher when the lattice strain due to mismatch is minimal. A higher lattice mismatch,  δ> 

0.25 leads to incoherent interface and poor bonding [45]. Fourier transform (FFT and 

inverse-FFT) analysis of the lattice images from HRTEM micrograph (figure 4.31a) 

reveals the crystallographic orientation at HA-BNNT interface. BNNT shows h-BN walls 

with inter-wall spacing of 0.33 nm, specific to boron nitride nanotube structure [66]. HA 

crystals are recognized from the lattice images of (211) planes with a lattice spacing of 

0.282 nm. The (211) planes of HA are arranged at an angular range of 65°-68° to the 

outer wall of BNNT. The basal plane in hexagonal HA structure also creates 65° angle 

with (211) planes. Thus, probability of alignment of HA crystals on BNNT surface with 

basal planes being parallel to the outer h-BN wall is very strong. The symmetric 

hexagonal structure for both basal planes of HA and h-BN makes the alignment more 

evitable. Figure 4.31b represents a schematic of the basal plane of HA superimposed on 

the h-BN wall. The basal plane of HA has Ca atoms sitting at each corner of the hexagon 

with a distance of 0.94 nm [67]. The distance between two neighboring atoms in h-BN is 

1.44 Å [68]. As shown in schematic in figure 4.31b, the distance between two B atoms on 

h-BN, coinciding with the Ca atoms of superimposed HA basal plane, is 1.04 nm. So, the  
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Figure 4.31: (a) HRTEM image of BNNT and HA interface. FFT analysis reveals the BNNT wall spacing and HA lattice (211) 

spacing at the interface; (b) schematic of atomic arrangement at the interface with basal plane of HA and coinciding h-BN sheet 

on BNNT outer wall; (c) schematic of BNNT open end showing alignment of h-BN walls with (211) planes of HA. 
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mismatch between two superimposed pair of Ca (in HA) and B (in h-BN) atoms is δ ~ 

0.11, which is much lower than the incoherence limit of 0.25. Thus, the preferential 

alignment of HA crystals on BNNT surface suggest strong coherent interfacial bond with 

minimal lattice strain. Similar observation is made for interface of HA and CNT of SPS 

processed composite structure (section 4.1.1.2.4). HA can also form another interface 

with BNNT at its open end, as shown in figure 4.31c.  BNNT has an interwall spacing of 

0.33 nm. The lattice spacing of (211) set of HA plane is 0.282 nm. The lattice mismatch 

(δ) between (211) plane of HA and BNNT walls is 0.17, which is also lower than 0.25. 

Hence, open ends of BNNT forms a semi-coherent interface with HA crystals having 

(211) planes parallel to h-BN walls of BNNT.   

The strength of the HA-BNNT interface can be estimated based on the model 

proposed by Chen et al. for Al2O3-CNT system [50] as adopted for SPS HA-CNT 

structure. BNNT is structural analogue of CNT with similar elastic modulus and tensile 

strength. The effective area of load carrying outer layers (Aeff) of a multiwall BNNT is 

calculated using the following expression: 

{ }2 2

1

[ ( 1) ( 1) '] [ ( 1) ']eff

N

CNT CNT
m

A R m h m h R mh m hπ
=

= − − − − − − − −  ………(4.8) 

where,  RBNNT is the outer radius of BNNT (5-70 nm in this study),  h is the effective layer 

thickness (~ 0.25 nm [69]), d is the spacing between each h-BN layer (~ 0.33 nm [66]), h′  

= d – h, and N is the number of outer layers carrying load. BNNTs have ~10-50 walls as 

observed from HRTEM images. For a conservative estimate of the strength, it has been 

assumed that load is borne by 5 outer walls of BNNT. Cox model is used to compute the 

interfacial shear strength (τ) between BNNT and HA. According to Cox model, the fiber 
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at the centre of a coaxial cylinder of the matrix (of radius R) is used to calculate τ using 

the following expression: 
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EBNNT is the elastic modulus of BNNT, used as 750 GPa [70], which is the lower end of 

reported range of values. The applied strain  ε has been taken as 0.04 which is the 

fracture strain of HA [51]. L is the average length of BNNT used in this study (2 µm), x is 

the distance from end of BNNT. G′HA~ 45 GPa [71-72] is the shear modulus of HA. The 

radius of matrix coaxial cylinder, R, has been calculated using the following relationship, 

fBNNT VR

R

4

2
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
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
     ………(4.11) 

Vf ~ 0.059, is the volume fraction of BNNT in HA matrix. The calculated interfacial shear 

stress at HA-BNNT interface,τ, is 0.35 – 3 GPa. Thus, BNNT debonding from HA matrix 

requires a minimum shear stress ≥ 0.35 GPa. The computed τ has been used in 

calculation of pull-out energy (Gpullout) for HA-BNNT system, using equation 5. 

BNNT

f
pullout R

lV
G

3

2τ
=     ………(4.12) 
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where, l is the pullout length of BNNTs (100-800 nm) measured from SEM images of 

fracture surface. The computed Gpullout for BNNT from HA matrix is 2 -100 J/m2, which 

is greater compared to the fracture energy of monolithic HA of 1 J/m2 [73]. The higher 

value of BNNT pullout energy from HA matrix highlights its effectiveness as 

reinforcement for toughening. 

4.1.2.5 Elastic Modulus and Fracture Toughness of SPS HA-BNNT 

Measurement of the elastic modulus (E) is performed on the polished cross 

section of the sintered pellets using nanoindentation technique. More than 100 indents 

were made at randomly chosen regions in each sample. The representative load vs. 

displacement curves for HA and HA-BNNT are shown in figure 4.32a.  

 

 

 

 

 

 

Figure 4.32: (a) Load vs. displacement plot for HA and HA-BNNT composite obtained by 

nanoindentation; (b) statistical distribution of E value in HA and HA-BNNT composites 

measured for more than 100 nano-indents in each sample. 
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the unloading part of the load-displacement curves, shows a higher value of 205 ± 15 

GPa for HA-BNNT compared to 93 ± 9 GPa for HA (figure 4.32b). BNNT reinforcement 

increases the E of HA matrix by 120%. Statistical distribution of E values shows similar 

spread for HA and HA-BNNT (figure 4.32b) indicating uniform improvement in elastic 

modulus throughout the HA matrix with BNNT reinforcement. The improvement in 

elastic modulus with BNNT addition is attributed to two major factors: (i) higher elastic 

modulus of BNNT reinforcement and (ii) strong bonding at HA-BNNT interface. An E 

value of BNNT (750-1200 GPa [70, 74]) is much higher than that of HA (100 GPa [75]). 

Further, BNNT retains the defect free structure during SPS, which makes its contribution 

more effective towards improving the elastic modulus.  HA-BNNT exhibits strong 

coherent interface, as discussed in section 4.1.2.4. During application of stress, strong 

bonding at the interface helps in transferring the load effectively from HA matrix to 

BNNT. As a result, with same amount of stress, the resultant strain in the HA-BNNT 

composite is lower than HA. Reduction in the elastic strain causes increase in E for the 

composite. Apart from these two, the increased density in HA-BNNT composite also 

contributes towards the increasing E. Density of the composite structure increased by5% 

with BNNT addition to HA.  However, the effect of density on strengthening of 

composite structure cannot be isolated from the contribution of BNNTs. In fact, higher 

density of the sintered structure is caused by BNNT content, as processing conditions 

were same for HA with and without BNNTs. The role of BNNTs in toughening 

mechanism is discussed below.  

Vickers indentation method has been used to determine the fracture toughness of 

the composite using radial crack measurement method [15]. Figures 4.33a and 4.33b 
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show Vickers indents on the polished cross-sections of HA and HA-BNNT pellets, 

respectively.  

 

 

 

 

Figure 4.33: Vickers indent impressions showing radial crack generation in (a) HA and 

(b) HA-BNNT sintered pellets. 

Indent on HA-BNNT shows significantly smaller impression with shorter radial 

cracks as compared to HA. Smaller indentation with same load indicates higher hardness 

for HA-BNNT (5.5 ± 0.12 GPa) than HA (2.4 ± 0.05 GPa). The absolute values of 

hardness are different in Vickers and nanoindentation experiments. But the direct 

comparison is not justified owing to the difference in tip geometry, measurement length 

scale and the vast difference in applied load. On a relative scale, Vickers’ hardness shows 

a 129% increase with BNNT addition, which is comparable to 100% increase in hardness 

from nanoindentation experiments. Comparable improvement in the mechanical 

properties at multiple length scales can be attributed to homogeneous distribution of 

BNNTs in HA matrix and higher density of the composite structure. Significant 

improvement in the hardness for HA-BNNT could also be due to its finer grain size. 

Increase in the hardness with decreasing grain size in metals and ceramics, including HA, 

could be explained through Hall-Petch mechanism [61, 76]. 
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100 nm

E values measured by nanoindentationare used to compute KIC of the composite. 

KIC for HA-BNNT is 1.6 (±0.3) MPa.m0.5, which is 86% higher than HA with 0.85 (±0.3) 

MPa.m0.5. Due to similar amount of improvement in E and H, the E/H ratio does not have 

significant contribution in improvement of KIC in HA-BNNT. Hence, the radial crack 

length remains the determining factor. Shorter length of radial crack in HA-BNNT is 

attributed to two major factors – (i) grain size refinement and (ii) crack bridging by 

BNNTs. Wang and Shaw have reported simultaneous improvement in hardness and 

toughness in sintered HA pellet due to refinement in grain size [76]. Deflection of crack 

and transition of cracking mode from transgranular to intergranular are the reasons for the 

improvement in fracture toughness of HA with refined grain size. Presence of BNNT 

causes grain size refinement in HA matrix. Further, due to higher pullout energy of 

BNNT from HA matrix (section 4.1.2.4) cracks propagate through HA, but gets restricted 

in the vicinity of BNNT, as more energy is required for interface debonding. Figure 4.34 

shows BNNT bridges in a radial crack generated by the indentation. Deflection in the 

cracking path at each BNNT bridge reveals the absorption of fracture energy at strong 

HA-BNNT interface and thus increases fracture toughness. 

 

 
 
Figure 4.34: BNNTs bridging the radial 
crack generated from microindent. 
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4.1.2.6 Wear Behavior of SPS HA-BNNT 

Tribological behavior of HA and HA-BNNT composite is quantified in terms of 

wear volume loss and coefficient of friction (CoF). Wear volume loss is inversely related 

to the wear resistance. The CoF and cumulative volume loss for HA and HA-BNNT 

sintered pellets are shown in figures 4.35a and 4.35b, respectively. Each point on figure 

4.35a shows an average value of CoF for 25 m interval. The error bars on figure 4.35 are 

based on three wear tracks studied for each composition. 

 

 

 

 

 

 

 

 

 

 

Figure 4.35: (a) Coefficient of friction and (b) wear volume loss for HA and HA-BNNT 

plotted against sliding distance during ball-on-disk wear. 
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The CoF increases by ~25% with BNNT reinforcement in HA (figure 4.35a). 

Higher KIC and E of HA-BNNT composite cause more resistance to mass removal and as 

a result increase in the lateral (transverse) force. Increase in the lateral force with a 

constant normal force causes higher CoF for HA-BNNT. Hexagonal boron nitride sheet 

is known as a good lubricator and its presence is reported to decrease the CoF of the 

system [77-78]. Hence, increase in CoF in HA-BNNT could be due to absence of peeled 

off h-BN sheet on wear track. This observation is in contrary to the presence of graphene 

sheets providing lubrication in wear track of HA-CNT composite. This discrepancy can 

be explained in terms of the capability of BNNT to withstand high amount of 

deformation without getting damaged [62]. Shear force applied by wear probe may not be 

sufficient to peel h-BN layer from the BNNT surface.  

Presence of BNNT decreases the wear volume loss of HA matrix by 75% (figure 

4.35b). Similar amount of wear loss for different tracks (indicated as error bars in plots) 

shows the homogeneous tribological behavior of the composite structure. Higher error 

bars in wear loss for HA could be due its higher porosity and inhomogeneous 

microstructure. The increase in the wear resistance of HA-BNNT is the result of its 

improved mechanical property (E, H and KIC). Toughened matrix of BNNT reinforced 

structure inhibits loss of mass due to fracture and chipping during wear. In order to find 

out the effect of E, H and KIC on the wear volume loss, the model for brittle ceramic 

proposed by Evans and Marshall has been employed [25] using equation 4.2. The 

computed volume loss for the present study shows a 65% reduction in the wear volume 

with BNNT addition. Comparable outcomes of wear loss improvement from experiment 
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(75%) and computation (65%) supports the hypothesis of wear resistance being governed 

by the mechanical property improvement in HA-BNNT composite structure. 

 

 

 

 

 

 

 

 

 

Figure 4.36: Ball-on disc wear tracks on (a, c) HA and (b, d) HA-BNNT revealing 

different morphology. 

Further insight into differential wear behavior of HA and HA-BNNT sintered 

structure is obtained by investigating the morphology of wear track. Figures 4.36a and 

4.36c show flat morphology in the HA wear track which is an indicator of abrasive wear 

mechanism with mass being totally removed. The wear track on HA-BNNT shows 

displacement of mass towards the outer edge of the track, resulting in pile-up (figures 

4.36b and 4.36d). Such behavior is specific to plastic deformation, which is not common 
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in brittle ceramics like HA. Reinforcement of BNNT in HA matrix is responsible for such 

behavior. Huang et al. have also reported superplasticity introduced in Al2O3 and Si3N4 

ceramics as a result of BNNT reinforcement [61]. Though the study by Huang et al. 

reported the high temperature property of the composite, but the superplastic behavior is 

attributed to mainly two factors -  (i) obstacle in dynamic grain growth at higher 

temperature and (ii) the ‘sword in sheathe’ phenomenon of load transfer in BNNT [61]. 

Although wear tests in this study were conducted at room temperature and in dry 

condition, localized high temperature at the point of contact between two surfaces may 

exist due to high friction. Such localized high temperature may aid the plastic 

deformation as seen in figure 4.36d.  

 

 

 

 

 

 

Figure 4.37: ‘Sword in sheathe’ type structure shown by BNNT upon application of 

stress. 
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‘Sword in sheathe’ behavior of BNNT is possible at room temperature and is 

observed in figure 4.37. Sword in sheathe’ indicates effective load transfer from the 

matrix to the outermost wall of BNNT. The transferred load is then carried to inner walls 

in a stepwise manner upon breakdown of the outer walls, leading to the ‘sword in 

sheathe’ structure formation. The gradual sliding of BNNT layers converts the applied 

force to strain energy.  This energy absorption mechanism causes plastic deformation in 

HA-BNNT composite. As a result, the mass is not totally removed from the track, but 

gets dislodged towards the periphery, still being held together with BNNT bridges. Figure 

4.38 shows a BNNT bridge supporting the dislodged mass on wear track.  

 

 

 

 

 

 

 

 

 

Figure 4.38: BNNT bridging of mass on wear track of HA-BNNT. 
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BNNT is found as a potential reinforcement to HA for improving its mechanical 

and tribological properties. Higher thermal conductivity of BNNT reinforcement results 

in dense sintered structure due to accelerated diffusion during SPS.  BNNT structure was 

not damaged by high temperature and pressure applied during SPS. A significant 120% 

increase in the elastic modulus of HA-BNNT composite is obtained. BNNT also acts as 

grain refiner by pinning the grain boundary during sintering, which helps in simultaneous 

increase in hardness (129%) and fracture toughness (86%) of the composite structure. 

High BNNT pullout energy from the matrix helps improving the fracture toughness. A 

75% increase in the wear resistance of HA-BNNT is attributed to the improvement in 

elastic modulus, hardness and fracture toughness. Wear surface morphology reveals the 

transformation of brittle abrasive fracture in HA to plastic deformation and pile-up in 

HA-BNNT. BNNT bridging, effective load transfer at matrix-reinforcement interface and 

sword in sheathe’ phenomenon is responsible for the plastic deformation in HA-BNNT 

composite.  

Microstructural investigations of HA-nanotube composites have proven the 

potential of CNT and BNNT reinforcement in improving mechanical and tribological 

behavior of HA. The next step towards their orthopedic application is to evaluate their 

biocompatibility. Following section presents and analyses the results of biocompatibility 

studies on HA-nanotube composites. 
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4.2 Biocompatibility of HA-Nanotube Composites and Coatings 

This section focuses on biocompatibility of HA-nanotube composites. In-vitro and 

in-vivo studies have been carried out following ISO-10993 and ASTM - F748, F981 and 

F1903test guidelines (Appendix-1). 

4.2.1 Biocompatibility of Hydroxyapatite-Carbon Nanotube Composite 

Biocompatibility studies have been carried out on plasma sprayed HA and HA-

CNT coatings.  The main objective of this research is to evaluate the effect CNT on the 

biocompatibility of HA. Considering similar chemical composition (HA-4 wt.% CNT)for 

plasma sprayed coating and spark plasma sintered composite, the role of CNT on the 

biocompatibility of both surfaces should be similar. It is true that density and surface 

microstructure of coating and sintered composite is different and may lead to differential 

cell growth behavior. Biocompatibility study of spark plasma sintered HA-4wt.% CNT 

composite is suggested as future research. 

4.2.1.1 In-Vitro Assessment of HA-CNT 

In-vitro assessment of biocompatibility of HA and HA-CNT is carried out by 

culturing osteoblast on coatings and assessing their viability and proliferation kinetics. 

The differentiation and mineralization of osteoblast is evaluated by gene expression 

studies and alkaline phosphatase expression. The cytotoxicity of wear debris is also 

examined for osteoblasts and macrophages.  
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4.2.1.1.1  Osteoblast Viability  

Osteoblasts attach first to the orthopedic implant surface. Once the osteoblasts 

cover the implant surface by proliferation and growth, they deposit collagen in the 

intercellular region, known as osteoids. Further, osteoblasts collect salt ions from the 

blood to release them on the osteoid matrix for its mineralization and bone formation [79-

80]. Thus, the growth and proliferation of osteoblast cells on implant surface is extremely 

important for bone generation and integration. The effect of CNT on the growth and 

proliferation of osteoblast cells was assessed qualitatively by observing the population of 

osteoblast cells on the surface after different days of culture. The osteoblast cell viability 

on HA and HA-CNT surface was also conducted. Viability of osteoblast cells is defined 

as the quantitative ratio of live to dead cells. FDA stains live cells in green color, 

whereas, PI stains the nuclei of dead cells in red. The fluorescence images in figure 4.39 

show the live cells in green and dead cells in red on HA and HA-CNT surface after 3, 5, 

and 10 days of growth. The cells in all the images show a typical lens shape characteristic 

of live osteoblasts suggesting the presence of normal cell growth behavior. After 5 days 

of culture (figures 4.39b and 4.39e), cells became more confluent and started forming 

dense islands. After 10 days of growth, the cell population increased significantly 

covering the coating surface (figures 4.39c and 4.39f). Increasing numbers of osteoblast 

cells with time suggests an increase in cell proliferation and/or survival on HA and HA-

CNT surfaces. The osteoblast population was visibly larger on HA-CNT surface than on 

HA.  
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Figure 4.39: Fluorescent images of osteoblast cells grown for 3, 5 and 10 days on (a-c) HA and (d-f) HA-CNT coatings. The live 

cells are stained in green color with FDA and dead cells in red with PI. 

(a) (b) (c) 

(e) (d) (f) 
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The ratio of dead and live cells are found comparable for HA and HA-CNT 

surfaces, indicating their similar behavior towards viability of osteoblast cells. The 

viability plot (figure 4.40) shows that the % of live cells on HA-CNT surface is similar or 

slightly higher than HA surface for a duration of 1 – 10 days of culture. Thus, the 

presence of CNTs does not negatively affect the osteoblast cell viability.  On the 

contrary, the slightly larger osteoblast population and viability on HA-CNT surface with 

increasing number of days indicates the positive effect of CNTs in osteoblast 

proliferation. 

 

 

 

 

 

 

Figure 4.40: Osteoblast cell viability on HA and HA-CNT coatings for 1, 3, 5 and 10 

days of culture (p <0.05). 

 The density of both HA (93.7 %TD) and HA-CNT (94 %TD) coatings being 

similar in this study, does not pose any differential effect on osteoblast viability and 

population. Studies on the biocompatibility of HA-CNT composites by other research 

groups have also suggested that the presence of CNTs in HA promotes osteoblast cell 

proliferation [3, 33, 81-82]. The protein expression profile of osteoblasts grown on HA-
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CNT surface was shown to be distinct from that of cells grown on HA, and resulted in 

differences in proliferation [83-84]. These differences observed in cells grown on HA-

CNTs may be explained by recent studies indicating that CNTs can absorb various 

molecules on their surface [85-86]. Akasaka et al. have shown that both, SWNT and 

multiwall CNTs absorb proteins from the serum (in cell culture medium) on their surface 

and positively influence osteoblast cell proliferation [86]. Matsuoka et al. have further 

observed that the adhesion of osteoblasts on multiwall CNT surface is higher than 

SWNT, due to the rough and curled surface of the former [85]. More interestingly, both 

of these studies [85-86] did not use any surface treatment or functionalization for the 

CNTs.   

4.2.1.1.2 Proliferation Kinetics of Osteoblast 

Proliferation kinetics of osteoblasts on HA and HA-CNT coatings is evaluated 

by determining the numbers of cells proliferating on a substrate in certain period is 

evaluated using Bromodeoxyuridine (BrdU) assay. This assay performs quantification of 

DNA synthesis during cell activation which allows assessment of cell proliferation 

kinetics. 

BrDU is a synthetic nucleoside that is an analogue of the DNA precursor 

thymidine. During proliferation of a cell, DNA has to be replicated before the division 

can take place. The cells, which are exposed to BrdU during division, would have BrDU 

incorporated in their DNA in place of thymidine. The trace of BrdU in the DNA of the 

proliferated cells can be detected by staining the cell with anti-BrdU fluorescent 

antibodies and observing under fluorescent microscope. 
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Figure 4.41: Fluorescent images of osteoblasts on HA and HA-CNT coatings, exposed with BrDU after 1 day of incubation. The 

cells stained in red indicate total number of osteoblasts on substrate, whereas the cells proliferated during 1 hr of BrDU exposure 

are stained in green. 
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Figure 4.42: Fluorescent images of osteoblasts on HA and HA-CNT coatings, exposed with BrDU after 3 days of incubation. 
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Figure 4.43: Fluorescent images of osteoblasts on HA and HA-CNT coatings, exposed with BrDU after 5 days of incubation. 
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In the preset study, the osteoblasts cultured on HA and HA-CNT coatings are 

exposed to BrDU for 1 hr after the predetermined incubation period of 1, 3 and 5 days. 

The DNA of the cells proliferated during 1 hr is stained with anti-BrDU reagent, while 

the nucleus of all the cells on the substrate are stained with propidium iodide. The 

substrates with cells are observed under fluorescence microscope. Figures 4.41. 4.42 and 

4.43 present the fluorescence images of osteoblasts on HA and HA-CNT coatings for 1, 3 

and 5 days, respectively. All the cells appear stained in red in the left hand images. The 

right hand images show only the proliferating cells in green, which have incorporated 

BrDU in their DNA.   

 

 

 

 

 

 

 

 

Figure 4.44: Proliferation rate of osteoblasts on HA and HA-CNT coatings after 1, 3 and 

5 days of exposure. 

A total of 3000 cells were counted in each substrate to calculate the 

proliferation rate.  Figure 4.44 presents a bar chart on the osteoblast proliferation rate for 

different incubation period on both the coatings. Proliferation rate is always higher in 

HA-CNT than on HA. This observation indicates positive influence of CNT towards 
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osteoblast proliferation. Proliferation rate on HA-CNT seems slightly decreasing at 5 

days. But the cell population on HA-CNT after 5 days (figure 4.43) reveals the substrate 

to be already full of cells. At this condition, the cell will grow on each other. We have 

performed normal fluorescence microscopy and not the 3D confocal microscopy. Thus, 

the observation would be limited to the upper surface layer of cells and it would not be 

possible to the ones that are proliferated at the lower (bottom) layer of cells. A very 

closer look at osteoblasts on HA-CNT after 5 days of incubation (figure 4.43) reveals 

faint impressions of BrDU stained cells at lower layers, which are not counted during 

proliferation rate calculation. This leads to an artificial lowering in the proliferation rate 

shown in figure 4.44. Another reason could be the higher density of osteoblasts on HA-

CNT causes lowering of proliferation rate after 5 days. Similar observation on lower 

proliferation rate of osteoblast at higher seeding density is observed by other research 

groups [87]. But, the same is not true for HA as the surface is yet to be filled up by cells 

even after 5 days. The higher population of cells on HA-CNT substrate is also indicative 

of higher cell proliferation rate, as osteoblast needs to proliferate more to achieve higher 

density. Similar to viability and proliferation (as discussed in section 4.2.1.1.1), the 

higher osteoblast proliferation rate on HA-CNT could also be explained by attachment of 

favorable proteins on CNT surface from cell culture medium [85-86]. 

4.2.1.1.3 Evaluation of Osteoblast Differentiation through Gene Expression 

Gene expression for osteopontin, osteocalcin and RunX2 are evaluated for 

osteoblastscultured on HA and HA-CNT coating surfaces for 5 days. Osteopontin is the 

protein, synthesized by osteoblasts and deposited in the bone matrix where it bonds with 
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hydroxyapatite. Osteopontinis involved in cell-to-cell and cell-matrix interactions during 

cell proliferation and cell migration and helps in attachment of osteoclast to the bone 

matrix and bone remodeling [88-89]. Osteocalcin is a bone-specific protein synthesized 

by osteoblasts that represents a good marker for osteogenic maturation. Osteocalcin is 

secreted by osteoblasts and higher osteocalcin levels are correlated with increases in bone 

mineral density (BMD) - which means better calcification/mineralization. Choice of 

osteopontin and osteocalcin as biomarker covers all stages of osteoblast differentiation. 

In general, osteoblasts express alkaline phosphatase (ALP) and osteopontin at early stage 

of maturation whereas osteocalcin is expressed later at the onset of matrix mineralization 

[90]. RunX2 is a master gene that regulates the process of osteoblast differentiation. It 

controls the expression of other genes such as osteopontin and osteocalcin that are 

markers of osteoblast differentiation [91]. Thus, expression of all these three genes 

indicate overall healthy/normal growth, proliferation and differentiation of osteoblast 

towards maturation and bone formation. 

 

 

 

 

 

Figure 4.45: Over expression of osteopontin, osteocalcin and RunX2 for osteoblasts 

cultured on HA-CNT for 5 days as compared to the cells on HA surface.  
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Figure 4.45 presents the results on osteopontin, osteocalcin and Runx2 

expression for osteoblasts on HA and HA-CNT surfaces. All three genes are expressed 

more on HA-CNT surface than on HA. The results are presented as over expression on 

HA-CNT surface as compared to HA surface. The calculation scheme is explained in 

section 3.6.1.4 of this document. The significant over expression of osteopontin, 

osteocalcin and RunX2 on HA-CNT surface indicates a positive role played by CNT in 

faster differentiation and maturation of osteoblast cells leading to accelerated initiation of 

matrix mineralization and bone formation. 

4.2.1.1.4 Assessment of Mineralization through Alkaline Phosphatase Expression 

Alkaline phosphatase expression is evaluated for osteoblasts grown on HA and 

HA-CNT surfaces for 5 days, in order to assess the bone mineralization activity. Alkaline 

phosphatase, a metalloenzyme, is an important component in hard tissue formation and is 

highly expressed in mineralized tissue. It is secreted by osteoblasts at an early stage of 

maturation and is biochemical marker for bone formation and skeletal mineralization [90, 

92]. 

Figure 4.46 presents the alkaline phosphatase expression of osteoblasts incubated 

for 5 days on HA and HA-CNT substrates, determined using colorimetric assay. As the 

proliferation of osteoblast is different on HA and HA-CNT (figure 4.43), the total number 

of cells will also differ after 5 days of incubation. Thus the total DNA is quantified for 

each substrate and alkaline phosphatase activity is normalized by total DNA amount for 

each sample. This is required to segregate the role of CNT on alkaline phosphatase 

expression from that on proliferation. Figure 4.46 reveals higher alkaline phosphatase 
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expression on HA-CNT, which means more mineralization and faster bone formation in 

the presence of CNT. 

 

 

 

 

 

Figure 4.46: Alkaline phosphatase expression for osteoblasts cultured on HA and HA-

CNT surfaces for 5 days. 

The results from gene expression studies indicate that presence of CNT positively 

influence osteopontin, osteocalcin, runx2 and alkaline phosphatase expression for 

osteoblasts. Similar observations were made by Li et al. in a study on culturing 

osteoblasts on CNTs [93]. Osteopontin, osteocalcin and alkaline phosphatase expression 

increased on CNT surface as compared to the culture plate. Selective absorption of bone 

morphogenetic protein-2 on CNT surface was responsible for higher osteogenetic 

expression levels (91). Selective absorption of proteins from cell culture medium could 

be responsible for accelerated osteoblast differentiation and maturation on HA-CNT 

surface in our study. Moreover, carbon nanofiber surfaces show better osteoblast 

adhesion, due to high surface energy, small diameter and aligned structure [94-95]. 

Similar role played by exposed CNTs on HA-CNT surface could be an additional help 

towards better functioning of osteoblast leading to faster bone formation. 
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4.2.1.1.5 Cytotoxicity Evaluation for Wear Debris with Osteoblasts and Macrophages 

Cytotoxicity of CNT containing wear debris is checked for osteoblasts and 

macrophages. Osteoblasts are the bone forming cells and their activity determines the 

progression of neobone formation at the implant surface and its integration with bone. 

Thus, it is very important to study the effect of wear debris on osteoblast, because any 

cytotoxic effect of CNT (in wear debris) can impede the integration of implant with the 

bone. Further, wear debris could also be introduced into the blood stream in the long run. 

Wear debris, when generated, is suspended in the body fluid near bone or synovial fluid 

around the joints. The debris could get introduced in the blood stream from the body fluid 

at the finer capillary portion of the blood vessels through intercellular space between 

endothelial cells [96]. In the blood, the debris is first attacked by the macrophages, the 

security guard of the blood from any foreign element. Macrophages engulf the debris in 

the blood stream through vesicular internalization process known as phagocytosis, in 

order to clear them out from the blood. For effective removal of the debris from the 

blood, the macrophages need to ingest the debris without being harmed. Thus, the 

evaluation of cytotoxicity of wear debris to macrophages is important.  

Wear debris is collected and used for studying in-vitro cytotoxicity to osteoblast 

and macrophage cells. The cytotoxicity assay used in this study allows for the rapid and 

accurate quantification of released lactate dehydrogenase (LDH), a stable cytosolic 

enzyme released from lysed cells. The amount of LDH released is proportional to the 

number of dead cells, which is quantified through a colorimetric assay by measuring the 

absorbance at 490 nm. The percentage absorbance value reported in this study is 

calculated using the LDH released from the live cells in the medium (after they are 
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lysed), with respect to the total LDH released from all the cells (live and dead) in the 

medium after 3 days of culture with debris. 

Cytotoxicity Response of Osteoblasts 

The cytotoxicity of wear debris to osteoblasts is important because these cells stay 

in direct contact with the implants during the bone growth stage.  If osteoblasts die on the 

implant surface due to the presence of debris then new bone will not be generated.  Our 

results showed that the level of cytotoxity to osteoblasts is smaller when osteoblasts are 

cultured in the presence of debris from HA-CNT than with debris from HA alone (table-

4.3). A possible explanation for these results is the fact that presence of CNTs in the 

debris may have the potential for increasing osteoblast viability as discussed in section 

4.2.1.1.1. Another reason could be the size of wear debris. Osteoblasts can phagocytose 

solid particles available in the culture medium [16]. Bigger particles (0.3 – 9.5 µm) 

present in HA wear debris, if internalized, can cause more disturbance and harm to 

osteoblasts. Thus, smaller particle (0.1 – 3.1 µm) size in HA-CNT wear debris will cause 

lesser disturbance if phagocytosed, resulting in higher population of live osteoblasts in 

the medium. 

Cytotoxicity Response of Macrophages 

The results of the macrophage cytotoxicity assay reveal slightly higher level in the 

presence of HA-CNT debris than HA (table-4.3). The difference, however, is not 

statistically significant. This observation indicates that the presence of CNTs in the debris 

does not alter the cytotoxicity response of macrophages. HA-CNT debris are as 
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biocompatible as HA debris to macrophages. In spite of the difference in the debris 

particle size for HA and HA-CNT, they show similar cytotoxic behavior to macrophages. 

Olivier et al. have shown that the death of macrophages occur at the same rate for both 

smaller (0.45 µm) and bigger (3.53 µm) polystyrene particles, although the underlying 

mechanisms were different. The smaller particles caused apoptosis, whereas bigger ones 

induced necrosis of macrophages [97]. Another aspect that needs to be taken into 

consideration is fiber geometry given its effect on the process of macrophage 

phagocytosis. Fibers with length <17 µm were found non-cytotoxic to murine alveolar 

macrophages (~13 µm diameter) [98]. CNTs used in this study are much smaller (1-3 

µm) than the critical fiber length (17 µm) required shown to cause cytotoxicity. Murine 

macrophages (J774 Eclone) used in this study are larger (~ 20 µm diameter) than alveolar 

macrophages, which should decrease the chances of cytotoxic effect of loose CNTs in the 

wear debris. The recent study by Kagan et al. reported that human myeloperoxidase 

enzymes, contained in macrophages, can biodegrade carbon nanotubes (SWNT) [99]. 

Thus, it is unlikely that loose CNTs in debris pose a threat to macrophages. 

Table  4.3: Percentage LDH absorbance values from live cells obtained through 

cytotoxicity tests indicating cytotoxicity level in osteoblasts & macrophages cultured with 

and without wear debris (p value <0.05). 

 

 

 

 

Cell Type 
% LDH Absorbance from  Live Cells 

With HA Debris With HA-CNT Debris 

Osteoblasts 0.19 ±  0.04 0.48 ±  0.03 

Macrophages 0.50 ± 0.06 0.46 ± 0.01 
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Wear particles can induce some behavioral changes in macrophages leading to 

adverse effect on biocompatibility of implant [22]. Metallic wear particles stimulate the 

macrophages to release hormonal factors like Prostaglandin E2 and Interlukin-1 [17, 100-

101]. These factors induce osteoclastic differentiation of precursor cells [102-104]. 

Increase in the osteoclast formation aggravates the bone resorption. The presence of 

CNTs in the composite coating would be beneficial in such situation as it can reduce 

bone resorption by inhibiting osteoclast proliferation and growth [105]. Further studies on 

the effects of wear debris produced in physiological solution, on macrophages and 

osteoblasts can provide more insight on different aspects of cytocompatibility of HA and 

HA-CNT coatings for orthopedic implants. 

Findings from in-vitro study of HA-CNT suggest no negative influence with 

biocompatibility related to its orthopedic application.  CNTs are, actually, found 

positively influencing the osteoblastic proliferation, viability, differentiation and bone 

formation through cytoskeletal mineralization. Non-cytotoxic response of osteoblast and 

macrophages to CNT containing wear debris during in-vitro exposure is a step towards 

predicting its safe clinical application. In-vivo studies, explained in next section, would 

provide further accurate evaluation on this issue.  

4.2.1.2 In-Vivo Evaluation of HA-CNT Coating 

In-vivo assessment of biocompatibility for HA-CNT and HA coatings are 

performed using rat model. All the studies mentioned in this section are carried out by 

our collaborating research group at University of Strasbourg, France. Results from in 
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vivo studies are included in this dissertation for the sake of completeness of 

biocompatibility evaluation of HA-CNT.  

4.2.1.2.1  Implantation using Rat Model 

HA and HA-CNT coated Ti-6Al-4V rods are implanted in the femur of rats. 

Figure 4.47a presents the HA-CNT coated Ti rod used for implantation. A closer 

observation coating surface reveals network of CNTs in the HA matrix (figure 4.47b). 

 

 

 

 

 

 

 

 

Figure 4.47: (a) Ti-6Al-4V Alloy rod - coated with HA-CNT by plasma spraying; (b) top 

surface of plasma sprayed HA-CNT coating  revealing embedded CNTs in HA matrix. 

Clinical results showed that none of the animal died during surgery or after 

surgery during one month of observation. Rats could walk without any disabilities after 

the implantation surgery. No infection, no disunion of the scar and a complete range of 

motions of knee joint are observed. The implanted femur bones are retrieved after one 

month of implantation. Figure 4.48a presents a picture of the retrieved femur with HA-

(a) 

2 mm 500 nm 

(b) 



230 
 

CNT coated implant inside. After dissection and retrieval of all parts of the femoral bone 

with knee joint, no infected tissues were found.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.48: (a) Retrieved femoral bone of rat with HA-CNT coated Ti-alloy rod 

implanted; (b) X-ray images of rat femoral bones after one month implantation. The 

distal part of femur contains (1) uncoated Ti-alloy implant, (2) HA coated Ti-alloy 

implant, (3) HA-CNT composite coated Ti-alloy and (4) no implant (normal). 

 

X-ray images of rat femoral bones after one month of implantation are shown for 

normal, Ti-alloy implanted, HA and HA-CNT coated Ti-alloy implanted bones (figure 

4.48b). The implants from groups are found well positioned inside the external femoral 

condyle. None of the implant is ejected. Cortical bones are restored completely and a 

good healing is achieved for all the three implants after one month of implantation. 



231 
 

Periostal tissue was restored in all the bones, without any inflammatory reactions at the 

perforation location of the cortical bone. Cortical and marrow bones appeared normal 

around each implant without any specific abnormal tissues. No osteolysis was observed 

at the periphery of the rod shaped implants embedded inside the external femoral 

condyle. The implanted bones are compared with normal bone for rat as a control sample 

for analysis of the results. The approach was to compare ex vivo tissues, cells behavior 

and bioactivity around implants using histological and TEM studies. 

4.2.1.2.2 Histology of Retrieved Bone with Implant 

For histological observations, all implants are fully removed from the bone using 

forceps. It was most difficult to detach HA-CNT coated implants as compared to HA 

coated or bare Ti-alloy implants, which is a qualitative indicator of the strong adherence 

of CNT containing HA coating with the bone. Semi-thin (1-2 mm) sections are cut from 

rat’s femoral bone with embedded implant for the microscopic observations (figure 4.49).  

 

 

Figure 4.49: Ex-vivo semi-thin (1-2 mm) 

sections cut from the rat’s bone with 

implant embedded inside (magnification 

5X). 
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Figure 4.50 shows the histological observations Bare, HA coated and HA-CNT 

coated implants embedded rat femoral bones. Bone tissues exhibited new grown bone, 

haematopoietic marrow and trabecular bones which were synthesized with osteocytes 

into their lacuna. The cortical defect for all bones is also restored due to formation of the 

neocortical bone. Figure 4.50 also shows a gray layer attached on the bone closed to the 

cavity (C). The layer is thicker for HA-CNT coated implants as compared to HA coated 

and uncoated implants.  

 

Figure 4.50: Histological results (40X) for rat bones presented through Mallory 

coloration images for uncoated, HA-coated and HA-CNT coated implants. These images 

show normal, thick trabecular and hematopoietic marrow bones, without any 

inflammatory reactions and tissues. A layer is observed attached on the bone closed to 

the cavity (C) caused by retrieved implant. 
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With toluidine blue coloration in figure 4.51, it is clearly observed that HA-CNT 

coating (gray layer) was strongly attached to the newly grown bone tissues. This explains 

the difficulty in detaching the HA-CNT coated implant from the bone using forceps. A 

normal neobone near the HA-CNT coating suggests that bone regeneration is complete. 

 

 

 

 

 

 

 

 

 

Figure 4.51: Histological image (5X) of HA-CNT coated implant in rat, with toluidine 

blue coloration, shows HA-CNT coating strongly attached to newly grown bone tissues.   

4.2.1.2.3 TEM Study of Retrieved Bone with Implant 

Transmission electron microscopy (TEM) was employed to study the bone in 

retrieved implants. Figure 4.52 presents TEM images of bones formed on HA-CNT 

coated implant surface. Normal bone cells and bony trabeculum were observed without 

necrosis or inflammatory reaction. There was no tissue degeneration or neutrophil 

infiltration for HA-CNT coated implants. CNT migration was not observed in either 

newly formed bone adjacent to the coating or distant bone. Other bones also displayed 
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very similar microstructural observations as seen in figure 4.53. In all the bones, cortical 

or marrow bones and osteoblasts or osteocytes morphologies were normal. 

Figure 4.52: TEM images of bone on HA-CNT coated implant at 2200X magnification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.53: TEM images of (a) bone on uncoated Ti implant; (b) bone on HA coated 

implant; (c) normal bone at 2200X magnification. 
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Clinical, histological and TEM observations described above indicate that CNT 

addition promotes the formation of the new bone without any detrimental effect.  Clinical 

and X-ray results suggest no side effects, no osteolysis and a good osseointegration for 

CNT-HA coated implant. Biocompatibility with the bone near implant and in distant 

bone is excellent. Haematopoeitic marrow and trabeculae bones appeared with a good 

integrity; all different types of cells associated with bone suggested a normal neobone 

induction. The presence of osteocytes in the lacuna and the observation of bony 

trabecculum and osteoblatsare are specific for bone formation. Bioactivity and 

morphology of cells around all implants is completely normal. HA-CNT does not induce 

necrosis or inflammatory reactions or formation of tissue granulomas. These promising 

results are largely attributed to the presence of CNTs that accelerate bone growth [106], 

biomineralization and inhibit osteoclastic bone resorption [105]. The accelerated bone 

repair occurs because CNTs stimulate osteoblasts proliferation. CNTs can also form an 

efficient nanomatrix for the growth of HA crystals with a stoichiometric value that 

complies with natural HA [107-109]. Hence, CNTs act as an effective nucleation surface 

to induce the formation of a biomimetic apatite coating. A better adhesion is observed for 

HA-CNT coated implants which could be attributed to the nucleation of apatite on CNT 

surface that promotes anchorage [3]. The higher surface area of CNTs also promote 

bonding as observed in figure 4.51, where HA-CNT coating was bonded with newly 

grown bone. For orthopaedic surgeons, osseointegration of joint replacement continue to 

be a challenge in terms of quality and duration, which could be improved by CNT 

addition to HA.   
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More interestingly, the phenomena of phagocytosis or necrosis or any strong 

inflammation reactions are not observed near the implant/coating/bone interface for HA-

CNT coated implant. The same observations are made for new and distant bone cells. The 

lack of inflammatory response is because enzymatic biodegradation of nanotubes do not 

induce any inflammatory response [99]. Inflammation could also be explained by the 

ineffective internalization of non-functionalized nanotubes by phagocytic cells. 

Nanotubes are actively ingested through phagocytosis in macrophages in significant 

quantities without cytotoxic effects [110]. Wear debris generated from plasma-sprayed 

HA-CNT coating also does not alter the cytotoxicity response of macrophages, as seen 

previously in section 4.2.1.1.5. Some studies even suggested that macrophages induced 

by nanotubes may mediate bone formation because macrophages can produce 

osteoinductive factors (TGF-β, BMP-2) [99]. 

The major findings of this in vivo study suggest that CNTs can be used as 

reinforcement to HA composite for orthopedic applications without any negative effect. 

CNT addition resulted in growth of new bone and improved. Further, the results of this 

study indicate healing time and osseointegration of biomedical materials for joint 

replacements could be improved with HA-CNT composite coating. 

4.2.2 In-vitro Biocompatibility of Hydroxyapatite-Boron Nitride Nanotube 

Composite 

The present research pioneers in proposing the application of BNNT in 

orthopedic. Thus, it is mandatory to check the cytotoxicity of BNNT to osteoblasts and 

macrophages, the two most important cell lineages for orthopedic. In addition, osteoblast 
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proliferation and viability is also checked on HA-BNNT surface, considering the 

dictating role of osteoblasts in neobone formation on implant surface. 

4.2.2.1 Cytotoxicity of BNNTs to Osteoblasts and Macrophages 

Cytotoxicity assay for bare BNNTs is performed with osteoblast and macrophage 

cells to evaluate the suitability of using BNNTs for orthopedic implants. The assay that 

has been used in this study measures the cell death, by rapid and accurate quantification 

of the release of lactate dehydrogenase (LDH), a stable cytosolic enzyme released from 

lysed cells. The amount of LDH released, which is proportional to the number of dead 

cells, is quantified through a colorimetric assay by measuring the absorbance at 490 nm. 

Absorbance value of the culture medium without any cells or BNNT was considered as 

background and subtracted from the experimental absorbance values obtained for the 

cells cultured with and without BNNT. Comparative measurement was performed and 

cytotoxicity values obtained for the cells cultured without BNNT were considered as the 

reference (value set to 1.00).  

 

 

 

 

 

 

Figure 4.54: Cytotoxicity result of bare BNNTs with (a) osteoblasts and (b) macrophages 

obtained through LDH assay. 
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Results, presented in figure 4.54, show a non-significant cytotoxicity induced by 

the BNNT for both osteoblasts and macrophages cell lines. The cytotoxicity assay 

outcomes, in the present study, clearly show that presence of BNNT does not increase the 

number of dead osteoblast or macrophages cells.  Such behavior is attributed to the 

chemical inertness and structural stability of BNNT [62]. These results suggest safe 

application of BNNTs in biodegradable orthopedic scaffold, since they are not harmful 

even if released with wear debris to body fluid or blood stream.   

4.2.2.2 Osteoblast Proliferation and Viability of SPS HA and HA-BNNT 

Proliferation and viability of osteoblast cells are evaluated on HA and HA-BNNT 

surface after in-vitro culturing for 1, 3 and 5 days. Proliferation of the osteoblast cells is 

assessed qualitatively by observing the population of FDA stained live cells on HA and 

HA-BNNT surface by fluorescence microscopy images. Viability of cells on each surface 

is evaluated by manually measuring number of live and dead cells after different days of 

culture. Figure 4.55 shows the fluorescent images of live (green) and dead (red) cells 

after 1 and 3 days of culture on HA and HA-BNNT surfaces. The cells exhibit typical 

lens shape suggesting the normal cell growth behavior. The population of the osteoblast 

also increases visibly from 1 to 3 days on both surfaces. This observation indicates that 

HA and HA-BNNT surfaces are suitable for osteoblast cell proliferation. Population of 

osteoblast cells is slightly denser on HA-BNNT surface than HA after 3 days of culture. 

Figure 4.56 presents the percentage of live osteoblast cells on HA and HA-BNNT 

surface after 1, 3 and 5 days of culture. The viability of osteoblast cells on HA-BNNT 

surface is comparable to HA surface. Similar observation of osteoblast proliferation in 
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presence of BNNT was reported by the present authors on a biodegradable polymer 

surface [111]. Gene expression study revealed that presence of BNNT positively 

influence osteoblast differentiation and proliferation [111]. The reason for such behavior 

could be attachment of proteins (from the culture medium) on BNNT surface that assists 

osteoblast proliferation. BNNT also has a natural affinity for protein attachment on its 

surface [112]. Probability of the protein absorption on the BNNT surface is further 

supported by the similar behavior established for CNT, the structural analogue for BNNT 

[85-86]. 

 

 

 

 

 

 

 

 

 

 

Figure 4.55: Fluorescent images of osteoblasts grown on HA and HA-BNNT surface for 

(a-b) 1 day and (c-d) 3 days. The live cells are stained in green color with FDA and dead 

cells in red with PI. 

Apart from the bone growth and integration on implant surface, another major 

concern regarding the orthopedic material could be the cytotoxicity of wear debris. As 
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discussed above, BNNTs do not exhibit any cytotoxic response to osteoblasts and 

macrophages. Thus, the presence of any loose or embedded BNNT in wear debris 

generated from HA-BNNT implant during service would not impose any negative effect 

on its biocompatibility. 

 

 

 

 

 

 

 

 

 

 

Figure 4.56: Osteoblast viability on HA and HA-BNNT surfaces for 1, 3 and 5 days of 

culture (p <0.05). 

4.3 Osseointegration Ability of Implant 

An important requirement for a successful orthopedic implant is the formation of 

new bone on its surface for effective osseointegration. During the bone formation 

process, osteoblast plays active role in laying collagen fiber matrix and then mediate 

precipitation of hydroxyapatite mineral to form a compact bone. Further, the bone-

implant surface should also maintain a mechanical compatibility to inhibit fracture of 

bone at interface and/or implant failure. Thus, three different processes/phenomena are 
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very important for osseointegration on a bioimplant surface, namely (i) adhesion of 

osteoblast to implant surface; (ii) apatite precipitation ability of implant surface and (iii) 

mechanical compatibility at bone-implant interface. HA-nanotube composites are 

checked for these three phenomena, which are accounted in this section. 

4.3.1 Adhesion of Osteoblasts on Implant 

Osseointegration of implants is greatly dependent on the retention of osteogenic 

cells on the implant surface. Especially, for anchorage-dependent cells, like osteoblasts, 

chondrocytes etc., initial cell-biomaterial interaction and attachment regulates the 

subsequent biological cascade of proliferation, differentiation, extracellular matrix 

production (ECM) and matrix mineralization [113-116]. Unsuccessful attachment of 

osteogenic cells can even cause dedifferentiation and loss of their phenotype [117-118]. 

Further, considering the presence of mechanical forces at the implant-bone interface, 

initial attachment and spread of bone forming cells turns out to be vital for a successful 

implant [114-115, 119-120]. Proposed materials for orthopedic implant, thus demand a 

quantitative understanding of the cell adhesion on the surface. 

4.3.1.1  Adhesion Quantification Techniques for a Single Cell 

Several techniques have been adopted by researchers to evaluate the adhesion of 

cells with the underlying substrate. Appendix-2 presents a comprehensive compilation of 

the major techniques with their advantages and limitations in assessing adhesion of the 

cell. Qualitative techniques are widely used due to their ease in application, though the 

outcome is always comparative in nature. The quantitative techniques can be broadly 
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divided into two categories. The first ones are those in which the adhesion force of a 

single cell is evaluated using indirect relationships. Examples of such techniques are 

centrifuging, spinning disc, shearing by hydrodynamic force [121-124]. The second 

quantitative category consists of the techniques that are capable of measuring the 

adhesion force of a single cell directly. Atomic force microscopy (AFM), micropipette 

suction, cytodetacher and shearing by a cantilever are the major techniques in this 

category. Although AFM is a suitable technique for measuring the adhesion of a single 

cell [125], the attachment of a cell on the AFM probe or cantilever can pose stress 

induced damage to the cell due to the long time required for the procedure. Micropipette 

suction can also measure the force required to detach a cell from the substrate, but 

inherits a risk of rupturing the cell membrane and damaging the cell due to application of 

localized tensile force [126]. A very attractive way of quantifying adhesion of a single 

cell is by the application of shear force to a cell parallel to the substrate and recording the 

deflection of a cantilever to measure the detachment force [127-129]. This method is 

suitable as it does not cause cell damage prior to its detachment. Two different groups of 

researchers have adopted this principle to develop methods for cell adhesion 

quantification, namely, cytodetacher [129] and shear force measurement [127-128]. In 

both these techniques, the adhesion force is calculated from the deflection of the 

cantilever caused by the reaction of the cell. This calculation engages the compliance of 

the cantilever and incorporates a conversion factor for calculating the force from the 

deflection, which is often a source of error [130]. Optical technique was used for 

determination of the cantilever deflection. Highly sensitive piezo-transducer which is 

capable of recording very low shear forces was unavailable at the time of this study 
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[129]. Possible sources of measurement errors in cytodetacher technique include: 

quantification of small deflection using conjugate system of carbon filament (glued at the 

back of cantilever), optical microscope and photodiode.  Moreover, during pushing the 

cell, the cantilever immersed in liquid medium experiences a resistance from the fluid, 

which also adds to the cell adhesion value, leading to an error in estimation.  

The present study proposes nano-scratch technique using a nanoindenter, which 

uses the principle of shear force measurement to quantify the adhesion of a single cell. 

However, this technique measures the force directly and does not rely on computation of 

the force as in the case of cytodetacher. Moreover, scratch made in similar conditions 

without cells but with culture medium helps to subtract the contribution of the medium 

and underlying substrate in the lateral force measured for the cell detachment. Thus, this 

technique overcomes the limitations of existing ones for an accurate measurement of the 

adhesion force for a single cell. We have demonstrated the success of this technique in 

our recently published study, where adhesion strength of 1-D structure such as carbon 

nanotubes (CNTs) and carbon nanocones (CNC) has been quantified for a single 

nanotube/nanocone [131]. 

4.3.1.2  Quantification of Adhesion Force and Energy of Osteoblast on Composite 

Surface by Nano-scratch Technique 

Adhesion of an osteoblast is quantified in terms of lateral force required for its 

detachment from different substrates. The substrates used in this study are (i) HA-CNT 

plasma coated Ti-alloy substrate, (ii) HA-coated substrate and (iii) permanox plastic slide 

as a control substrate. Figure 3.4 in previous chapter presents a schematic of the nano-
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scratch test with detailed explanation on calculation of adhesion force and energy for a 

single osteoblast. Figure 4.57 presents the optical image of cells on permanox surface 

before and after scratch, revealing a distinct movement of the cell by > 9 µm due to 

scratching.  

 

Figure 4.57: Optical Images of osteoblast on permanox surface grown for 3 days (A1) 

before and (B1) after nano-scratch. A2 and B2 show the magnified part of images A1 and 

B1, respectively, to clearly visualize the displacement of the cell by nano-scratching. 

Figure 4.58a presents the lateral force vs. displacement curves for an osteoblast on 

HA and HA-CNT surfaces after 5 days of incubation. The same figure also includes the 

lateral force vs. displacement curves for scratches made on HA and HA-CNT surfaces in 

the same conditions but without cells. The hump in the lateral force curves for surfaces 

with cells is completely absent for the scratches made on the same surfaces without cell. 

The increase in the lateral force denotes the force required to detach the cell from the 

underlying substrate. Once the cell is detached, the lateral force shows a drop from its 
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peak.  A closer observation of this curve reveals that even after detachment of the cell, 

the lateral force does not drop down to the same level as of the bare substrate. This is 

because a smaller amount of lateral force is required to push the detached cell along the 

scratched path/direction. Cell adhesion force is obtained by subtracting the lateral force 

contribution of the bare scratch from the height of the lateral force hump as explained in 

Figure 3.3. 

 

Figure 4.58. Lateral force vs. displacement curves obtained from nano-scratch tests of 

(a) osteoblasts grown on both HA and HA-CNT substrate for 5 days and the bare 

substrates in same condition; (b) osteoblasts grown on HA-CNT surface for 1, 3 and 5 

days and (c) osteoblasts grown on HA surface for 1, 3 and 5 days. 
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Figure 4.58a also provides a comparison of the lateral force required to detach an 

osteoblast from HA and HA-CNT surfaces. Osteoblast is found to have better adhesion to 

HA-CNT surface as compared to HA. Figures 4.58b and 4.58c show adhesion force of 

osteoblasts cultured for 1, 3 and 5 days on HA-CNT and HA surfaces respectively. In 

both substrates, the adhesion strength increases with the incubation period. Table 4.4 lists 

the adhesion force of osteoblast on permanox plastic, HA and HA-CNT surfaces for 1, 3 

and 5 days of growth period. Adhesion energy of osteoblast computed from the area 

under the curve is also presented in table 4.4. The change in adhesion energy from one 

substrate to another and as a function of incubation period can be easily visualized in 

figure 4.59. Adhesion energy also follows a similar trend as adhesion force. Osteoblast 

shows the lowest adhesion energy on permanox surface, followed by HA and highest on 

HA-CNT. The degree of increase in adhesion energy from 1to 5 days is higher for HA 

and HA-CNT coated surfaces as compared to permanox. At least 8 tests are performed in 

each condition and the standard deviation is reported based on these results in table 4.4. 

The consistency of the results makes the difference in adhesion force and energy very 

significant.   

Table 4.4. Adhesion force and energy of osteoblast on permanox plastic, HA and HA-

CNT for 1, 3 and 5 days of incubation periods 

Substrate 
Adhesion Force (µN/Cell) Adhesion Energy (pJ/Cell) 

1 Day 3 Days 5 days 1 Day 3 Days 5 days

Permanox 9±2 12±2 12±2 37±7 65±5 74±11

HA Coating 11±2 29±3 32±2 45±10 99 ± 145±1

HA-CNT 17±2 35±3 41±2 78±14 194±8 237±1
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Figure 4.59: Adhesion energy of osteoblast on permanox plastic, HA and HA-CNT 

substrates for 1, 3 and 5 days of incubation periods. 

Osteoblast shows better adhesion on HA and HA-CNT surfaces than on permanox 

plastic (table-4.4 and figure 4.59). The adhesion increases significantly with the 

incubation period on HA based surfaces than plastic, which proves those surfaces to be 

more suitable for osteoblast adhesion. Better adhesion of osteoblast to HA than plastic is 

also observed by other research groups [132-136], although not quantified. Using gene 

expression profiling Xie et al. [135] reported enhanced differentiation for osteoblasts 

cultured on HA when compared to those cultured on plastic with better spreading, which 

indicates better attachment. The same study also reported better attachment of surface 

proteins from serum (in cell culture medium) to HA surface, which influences integrin 

signaling and causes cell attachment [135]. Ozawa and Kasugai showed that osteoblasts 
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cultured on HA express higher level of osteopontin than those grown on plastic. Higher 

levels of osteopontin may allow for better cell attachment at bone remodeling site [132]. 

Moreover, a single osteoblast was found to synthesize more ECM with type I collagen 

and osteonectin on HA than on plastic [133-134], which may increase the attachment of 

the cell with the HA substrate. All these reports, along with the quantitative evaluation of 

adhesion force and energy presented in the present study, confirms that attachment of a 

single osteoblast is better on HA based surfaces than plastic. It is also observed that 

presence of CNTs increases the adhesion energy of an osteoblast on HA based coatings 

by 73, 95 and 63% for 1, 3 and 5 days of cell growth period, respectively (table-4.4). 

Therefore, to understand the biological changes elicited by CNTs that may promote cell 

adhesion, actin staining is performed for osteoblasts grown on HA and HA-CNT coated 

substrates. 

4.3.1.3 Osteoblast Adhesion Mechanism through Actin Expression 

Actin filaments constitute one of the three major components of the cell’s 

cytoskeleton and are directly involved in defining the cell’s shape and rigidity. When 

osteoblasts adhere to a surface, they form filopodia where parallel actin filaments can be 

seen organized in bundles. The integrin family of heterodimeric transmembrane receptors 

connects the actin filaments to the ECM during the process of cell adhesion.  Staining of 

actin filaments reveals the spreading of the cell and its shape on the substrate. Better 

spreading is an indicator of improved adhesion. Figure 4.60 presents the fluorescence 

images of the stained actin network of osteoblasts on HA and HA-CNT coatings for 1, 3 

and 5 days.  
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Figure 4.60: Fluorescence images of stained cytoskeleton showing actin network of 

osteoblasts grown for 1, 3 and 5 days on HA and HA-CNT surfaces. All the images were 

taken at 40X magnification. 

The images of day 1 clearly show more stretched, well oriented and more 

prominent actin fiber formation in osteoblast cytoskeleton on HA-CNT surface than on 

HA. When cells are subjected to stress, formation of actin stress fibers is regulated by 
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signaling pathways that may involve integrin receptors [137-139]. Bone cells are found to 

form stress fibers when anchored with collagen, but not within a floating gel [140].  

Walcott and Sun have reported faster and greater aggregation of actin filaments with 

external tensile force applied on the cytoskeleton in addition to the orientation of 

filaments along force direction [137]. Thus, oriented and prominent actin fiber formation 

on HA-CNT surface could be due to the better spreading and adhesion of osteoblasts on 

that surface, which causes tensile force in osteoblast cytoskeleton. This observation is in 

direct agreement with the higher adhesion energy of osteoblasts on HA-CNT surface 

measured in the present nano-scratch study. A similar trend continued with the longer 

incubation periods of 3 and 5 days, when osteoblasts on HA-CNT surface showed 

increasingly more intense actin staining with nicely developed and oriented actin fibers as 

compared to that on HA surface (figure 4.60).  

Image based analysis is carried out using ImageJ software [141] to obtain a 

quantitative measurement of osteoblast actin expression in HA and HA-CNT surfaces, by 

determining the number of stained pixels that represent actin filaments. Figure 4.61a 

presents the comparative number of stained pixels within a single osteoblast cultured on 

HA and HA-CNT surfaces for 1 day. Higher numbers of stained pixels found in 

osteoblasts cultured on HA-CNT surface indicates more actin fiber formation. Figure 

4.61b presents the pixel based measurement of the area fraction on HA and HA-CNT 

surfaces covered by cytoskeletal actin network. All through the incubation period, HA-

CNT surface shows more intense and well spread actin fiber network than HA. Hence 

figures 4.60 and 4.61 clearly indicate that CNTs enhances the spreading and adhesion of 

osteoblasts. 
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Figure 4.61:  (a) Image analysis-based actin expression for substrates incubated with 

osteoblast for 1 day – showing number of stained pixels/cell for HA and HA-CNT 

substrates; (b) fraction of area covered by actin network (in % of total area) at different 

substrates for different incubation periods – determined by evaluating fraction of stained 

pixels out of ~ 8 X 106 pixels in each substrates (images of similar magnification were 

used for the measurements).  

4.3.1.4 Role of CNT in Adhesion of Osteoblasts 

It is well established that stable osteoblastic cell adhesion is mediated by integrins 

that play a major role in survival of primary osteoblasts [142-143]. Integrin receptors 

comprise of two transmembrane glycoprotein subunits α and β. The cytosolic domain of 

integrin associates with adaptor proteins, like α-actinin, vinculin, and talin to form a focal 

adhesion assembly with actin filaments inside the cell. ECM ligands bind with the α/β 

subunit interface at the extracellular domain of integrins. In this manner, the intracellular 

cytoskeltal actin filaments are linked to the ECM or substrate [144-145].  Attachment of 
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osteoblasts with different ECM components or different substrates is mediated by 

different combinations of integrin subunits [142, 146-147]. For example, α2, α3, α4, α5, α6, 

β1 and β3 integrin subunits are expressed on polysterene surface, whereas, α5, α6, and β1 

are expressed on metallic surfaces like titanium and cobalt-chrome [142]. α2β1 was found 

to mediate osteoblast response on Ti surface [147] and type I collagen [146]. Lai et al. 

have shown αυβ integrins to mediate osteoblast response with many bone matrix proteins 

[146]. CNTs also have specific affinity to integrins [148-151]. Functionalized CNTs were 

shown to have high affinity to αυβ3 integrin and have been proposed for tumor targeting 

to deliver radioisotope drugs in cancer therapy [148-151]. Affinity of CNTs to integrin 

conjugation could also play an active role in the promotion of osteoblast attachment on 

HA-CNT substrate. CNTs are also reported to attach cell adhesive proteins from serum in 

cell culture medium [86]. These proteins can further enhance integrin mediated 

attachment of osteoblasts on CNT surfaces. Figure 4.62 shows a proposed schematic 

model of the integrin mediated focal adhesion mechanism that may be responsible for 

linking the osteoblast cytoskeletal actin filaments to CNTs. Figure 4.62b reveals the 

network of exposed CNTs on the surface of HA-CNT coating, on which osteoblasts are 

cultured. These exposed CNTs are favorable sites for integrin attachment. The additional 

integrin-CNT attachment over the normal attachment of integrin-ECM has potential to 

aid in increased adhesion strength on HA-CNT surface.  
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Figure 4.62: Schematic for proposed model of focal adhesion mechanism for osteoblast 

showing (a) osteoblast grown on HA-CNT coating; (b) SEM micrograph of HA-CNT 

coating top surface revealing exposed surfaces of embedded CNTs; (c) osteoblast focal 

adhesion assembly showing integrin mediated attachment of actin to CNT surface. 

A closer look at the adhesion force and energy of osteoblasts on the three surfaces 

after 1 day (table 4.4) strengthens the hypothesis that CNTs assist osteoblast adhesion. 

After 1 day of culture, the adhesion force and energy of an osteoblast is almost similar on 

permanox and HA surfaces but it shows an increase of 55% and 73%, respectively, on 

HA-CNT surface. Although ECM production rate per cell is more on HA than on plastic 

[133-134], the amount generated in 1 day of incubation might not be sufficient to exert a 
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significant difference. Thus, the adhesion of an osteoblast on HA shows just a minimal 

increase when compared to that on plastic. However, in the case of HA-CNT, the surface 

is already rich with CNT network, providing readily available locations for integrin 

attachment. Thus, presence of CNTs on surface results in better adhesion of osteoblasts 

even at an initial period of growth, which should be extremely beneficial for quicker 

healing and osseointegration. 

This study (i) reveals the positive effect of CNTs on adhesion of osteoblasts on 

orthopedic implant surface and (ii) proposes and establishes nano-scratch technique for 

an accurate measurement of adhesion force of a single cell with the underlying substrate. 

The simplistic and universal nature of this technique makes it suitable for measuring 

adhesion force for a large variety of cells on any kind of flat surface. Adhesion of 

osteoblasts is quantified on plasma sprayed HA surfaces with and without CNT 

reinforcement. An osteoblast shows 73, 95 and 63% higher adhesion energy on HA-CNT 

surface than HA for 1, 3 and 5 days of incubation, respectively. In agreement with the 

adhesion force and energy, the staining of osteoblast cytoskeleton also reveals more 

intense, prominent and well oriented actin filament network on HA-CNT surface than on 

HA. These results indicate better attachment and spreading of osteoblasts in the presence 

of CNTs. The suggested reason for such behavior is affinity of CNTs towards integrins 

and other cell adhesive proteins that mediate attachment of osteoblasts on the substrate. 

Thus the initial part of osseointergration by attachment of osteoblast on HA-

nanotube surface is established. The next part is to assess the role of nanotube in 
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mechanical compatibility of implant-bone interface, which is dealt with in the next 

section.  

4.3.2 Mechanical Compatibility of Implant-Bone Interface 

Mechanical compatibility in terms of elastic modulus is very important at bone-

implant interface. Because, dissimilar elastic modulus of bone and implant would result 

in different strain at interface due to application of force during limb movement.  

Dissimilar elongation or strain in the adjacent parts at bone/implant interface could cause 

localized stress generation, followed by fracture and delamination of the implant from the 

bone. Elastic modulus evaluation at the implant/coating/bone interface becomes very 

important, considering the huge difference in elastic modulus of bone (~20-30 GPa) to 

that of titanium and HA or HA-CNT (≥ 100 GPa). But, it is more important to evaluate 

the gradient of elastic modulus at bone-implant interface after in-vivo exposure of the 

implant. The elastic modulus of implant surface could get modified during in-vivo 

exposure through osteoblastic activities and bio-chemical cycle of new bone generation 

process. This is more expected/evitable for HA and HA-CNT coatings, due to their 

porous structure what allows tissue and bone in-growth. Considering these possibilities, 

the elastic modulus gradient across bone-implant interface is evaluated using the 

retrieved implanted rat femurs from in-vivo studies.  

4.3.2.1 Gradient of Elastic Modulus Across Bone-Implant Interface 

The section of the bones with the embedded implants (figure 4.49) were obtained 

from the collaborating research group at University of Strasbourg, France and prepared 
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for measuring elastic modulus using nano Dynamic Mechanical Analysis (nanoDMA 

Module, Hysitron Triboindenter) method. A total of four different bones are used for this 

study. They are (i) uncoated Ti-alloy implanted bone; (ii) HA coated Ti implanted bone; 

(iii) HA-CNTcoated Ti implanted bone and (iv) normal bone. The elastic modulus of the 

newly grown bone was measured and compared with the implant to qualitatively compare 

strain at the interfaces.  

 

 

 

 

 

 

 

Figure 4.63: Optical cross-sectional micrograph of the rat femur with HA-CNT coated 

implant, showing the locations of modulus mapping measurements by Arabic numbers. 

Position 1 denotes the region in titanium part of the implant near coating. Positions 2 – 6 

are equally placed locations through the thickness of HA/HA-CNT coating starting from 

titanium side and going towards the bone. Position 7 is in the newly grown bone along 

the implant surface and position 8 is in a distant region that represents the normal bone. 

Figure 4.63 show the locations across the implant/bone interface, where modulus 

mapping experiments are performed on HA and HA-CNT coated implants. The 

Coating Bone

Ti 
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measurements include one region in the Ti rod near the coating, five equally spaced 

regions across the coating, one region in the newly generated bone near the coating and 

one region far from the implant that represents the natural bone. In the case of uncoated 

Ti implant, measurements are made in three regions viz. in Ti substrate, newly generated 

bone near Ti and the natural bone at a distance from the implant. Modulus mapping of 

cross section of the bone, without any implant is also carried out as the control sample. At 

least three areas of 5 µm X 5 µm are used for 2D modulus mapping from each region to 

get the representative value of the elastic modulus.  

Figure 4.64 is a compilation of the modulus maps for all the four samples. The 

color scale for the elastic modulus has been kept constant between 0-250 GPa for all the 

images. It enables a clear visualization of the change in elastic modulus across the 

implant/coating and coating/bone interfaces.  Elastic modulus for titanium is similar 

throughout for all the samples, which indicates no change in Ti properties after in-vivo 

exposure of one month. But, both HA and HA-CNT coatings show changes in the elastic 

modulus in the retrieved implant. Elastic modulus of the both HA and HA-CNT coatings 

is highest near Ti (dark blue in color).  Elastic modulus of the coatings reduces gradually 

through thickness from near Ti to the bone, as observed from the gradual change in the 

color of modulus in figure 4.64. But uncoated Ti-implant shows a sharp change in 

modulus (color) at implant/bone interface. The new bone shows lowest modulus for all 

groups. Similar modulus for normal bones in all four samples indicates no effect of 

implant material on the mechanical performance of the normal bone.  
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Figure 4.64: Modulus map from different regions in implant/coating/bone interfaces
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Figure 4.65: Gradient of elastic modulus across bone/implant interface for (a) uncoated 

Ti implant; (b) HA and HA-CNT coated Ti implants. Elastic modulus values were 

averaged from the modulus maps presented in figure 4.64. 
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Figure 4.65 presents the change in elastic modulus value across the distance over 

the implant-bone interfaces for all the three types of implants. The elastic modulus 

values, presented in the plot, are the average of the 3 X 256 X 256 (= 199608) modulus 

values obtained from the three maps performed in each region. The error bar in the plot 

denotes the standard deviation of elastic modulus measured. Uncoated-Ti implanted bone 

shows a very sharp change in E across the bone-implant interface, which possess the risk 

of, loosening of implant, fracture of bone and delamination from implant surface due to 

highest strain gradient [152]. Presence of HA-CNT and HA coatings create a smooth 

gradient of E across the implant-bone interface, which increases the mechanical 

compatibility of implant with the bone and reduces the chance of fracture or implant 

failure. Thus, in addition to bone integration, HA based coatings also play a vital role in 

maintaining the mechanical health of the implanted bone. 

Another novel feature of this study is the elastic modulus measurement of the new 

bone and its comparison with Ti implant, HA and HA-CNT coatings and distant bone. 

Such study enables an indirect prediction of the stress and strains at the implant/bone 

interface which is critical for the mechanical integrity of the implant. Elastic modulus of 

Ti, HA-coating and HA-CNT coating before implanting was measured to be 109 ± 3 

GPa, 90 ± 10 GPa and 115 ± 9 GPa, respectively. These coatings were soaked in formalin 

for 18 days and elastic modulus was measured again in the soaked condition to evaluate 

if there is any effect of formalin soaking on the modulus of coatings. However, the elastic 

modulus values of the coatings remain similar before and after formalin soaking, 

indicating the change in retrieved implants is due to the in-vivo exposure only and not 

due to their preservation in formalin.  
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Figures 4.64 and 4.65 show a decreasing gradient in the elastic modulus of both 

HA and HA-CNT coatings, which is attributed to the tissue in-growth at coating/bone 

interface during new bone formation. During the bone formation process, osteoblasts 

initially play an active role in the collagen matrix formation on the implant surface. HA 

based coatings have porosity in its plasma sprayed microstructure and also due to 

possible resorption. Due to the porous nature of the coatings, the collagen fibers get 

impregnated in the coatings [153], making the integration of bone more effective and at 

the same time modifying the modulus of the coating. Presence of HA in the coating, that 

posses similar chemistry of the mineral content of bone, further helps in bone formation 

and integration on coated implant surface. 

4.3.2.2 Analyzing Role of CNT in Mechanical Health of Implanted Bone 

Figure 4.65 reveals the effect of CNT addition on the elastic modulus of HA coating. 

Elastic modulus of the coating remains higher throughout for HA-CNT than HA, which is 

clearly due to the reinforcing effect of CNT even after in vivo exposure. The newly 

grown bone near implant surface shows lowest modulus in the case of uncoated Ti-

implant. Presence of HA on implant surface helps in better mineralization of the bone and 

as a result higher modulus than the bone near bare Ti surface. Further, elastic modulus of 

the bone near HA-CNT surface shows higher value than the bone at HA surface.  This 

observation could be explained by the favorable role of CNT in osteoblast proliferation 

and differentiation reported in this study earlier and also by other publications [3, 108]. 

Osteoblasts are found showing better proliferation and viability in the presence of CNT in 

the culture surface. Preferential absorption of favorable proteins on CNT surface is found 
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responsible for such behavior [85-86]. Implanting raw CNT in mouse skull is also found 

accelerating in-vivo bone growth [106]. In addition, the presence of CNT is reported 

inhibiting the osteoclast proliferation, which destructs the bone structure [105]. Thus, 

presence of CNT also fights out the negative factor of bone growth. As a result, the bone 

growth near HA-CNT interface becomes more active, causing higher elastic modulus 

than the bone near HA interface, which is a very impressive and attractive finding to be 

reported for the first time. Elastic modulus for the normal bone in all the cases, including 

the bone that was not implanted, shows similar value, indicating no adverse effect of 

CNT addition on mechanical health of the bone. 

This study on mechanical compatibility of HA-CNT coating-bone interface along 

with the previous findings on in-vivo and in-vitro studies provides a positive picture of its 

biocompatibility and suitability for orthopedic application. Another important factor of 

osseointegration is the apatite formation on bioimplant surface. HA possess the same 

chemical composition as apatite in bone and thus, do not pose any heterogeneity for 

apatite precipitation and integration. Same is not true for CNT and BNNT, which 

demands an evaluation of apatite formability on CNT and BNNT to ensure better 

osseointegration on HA-nanotube composite surface. Apatite formability of CNT surface 

is well established in the literature [107, 109, 154] and has been discussed in literature 

review (Chapter 2) (section 2.1.4.1). Hence, evaluation of apatite formability on CNT 

surface is not repeated in this dissertation. But, BNNT is proposed for the first time for 

orthopedic application. Since no study exists on apatite formability of BNNT surface, the 

same is presented in the following section. 
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4.3.3 Apatite Formation on Boron Nitride Nanotube in Simulated Body Fluid 

An important requirement for a successful orthopedic implant is the formation of 

new bone on its surface for effective osseointegration. An ideal implant surface should 

induce apatite formation without interfacial discontinuity. These discontinuities often act 

as weak points to cause fracture and delamination of the implant from the bone in-vivo. 

Hence, the apatite formation ability on the BNNT surface is critical for orthopedic 

application of HA-BNNT composite.  The apatite forming ability on BNNT surface is 

evaluated by immersing it in simulated body fluid (SBF). 

4.3.3.1 Morphology of Apatite Precipitate on BNNT 

SEM micrographs in figure 4.66(a-d) present the image of as-received BNNTs 

and apatite precipitated BNNTs after 7, 14 and 28 days of soaking in SBF. Figure 4.66a 

shows a tubular BNNT structure with clean outer surface. Figure 4.66b reveals the onset 

of HA precipitation on BNNT in forms of few flakes. After 14 days of soaking (figure 

4.66c), the precipitates increase in volume and starts becoming thicker, covering the 

BNNTs. After 28 days, apatite crystals are fully grown with their typical needle shapes in 

spherical agglomerate that surrounds the BNNTs (figure 4.66d). These visual 

observations reveal the gradual increase in amount and morphology of apatite precipitate 

on BNNT with an increasing soaking period. EDS analysis has been carried out for the 

determination of elemental composition and quantification of volume of precipitated 

phase. 
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Figure 4.66: SEM images of (a) as-received BNNTs and apatite precipitation on BNNTs 

after (b) 7; (c) 14; (d) 28 days of soaking in SBF. 

4.3.3.2 Compositional Analysis and Comparative Volume Determination of Apatite 

Precipitate 

Figure 4.67(a-c) present representative elemental signature plots for three apatite 

samples collected after 7, 14 and 28 days of soaking. Boron and nitrogen peaks are 

observed from BNNTs, whereas the Ca and P peaks are generated from HA precipitate. 

Source of Si and Au peaks are from the silicon substrate and the gold coating, 

respectively, used for EDS. The presence of Ca and P peaks in EDS spectrum of the SBF 

soaked BNNTs reveals the presence of calcium and phosphate containing compound in 

the precipitate. Absence of any other major elemental peak in the spectrum indicates that 
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mainly calcium and phosphorous containing constituents are mineralized from SBF on 

the BNNT surface. The 28 days precipitate shows a smaller peak of sodium, denoting the 

precipitation of a small amount of Na containing salt (figure 4.67c). The 7 days 

precipitate shows a very strong B and N peak, while Ca and P peaks are of very low 

intensity (figure 4.67a). The intensity of Ca and P peaks increases as compared to B and 

N peaks after 14 days as observed in figure 4.67b. Precipitates collected after 28 days 

produce much sharper Ca and P peaks of higher intensity than B and N peaks (figure 

4.67c). The relative height (intensity) of the peaks reveals increasing Ca and P content in 

the precipitate with number of days, as seen in figure 4.67(a-c). 

Figure 4.67: EDS spectra of SBF soaked BNNTs for (a) 7; (b) 14 and (c) 28 days. (d) 

Increasing Ca wt.%  in precipitate as a function of days of soaking. 
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The quantification of elemental constituents, in terms of percentage weight, has 

been carried out for each sample at five different places with a 1 µm X 1 µm scan area in 

each measurement. Calcium content, in terms of percentage weight, is measured for all 

the three samples to estimate the change in amount of HA precipitate on BNNT as a 

function of soaking period. Figure 4.67d presents the wt.% Ca in precipitate collected 

after 7, 14 and 28 days. The error bar on each data is based on five measurements at 

different areas in each sample. The smaller deviation in the Ca content denotes the 

consistency of the data. The value fit a third degree polynomial with the following 

equation and R2 = 0.99952,  

y = 0.03483x2 - 0.13051x - 0.12082   ………(1) 

where, y is Ca wt.% and x is the number of soaking days. This semi-quantitative 

evaluation reveals an increase in HA formation on BNNT between 7 – 28 days. Being 

extrapolated towards lesser soaking period, the fitted curve indicates no HA formation at 

~ 4.6 days – which might be the incubation period of HA precipitation on BNNT. 

Akasaka et al. have reported an incubation period of 14 days for HA precipitation on 

CNT surface when immersed in standard SBF [109].  Nucleation occurs only after the 

activation energy barrier is exceeded. It takes ~ 4.6 days to overcome the energy barrier 

to nucleate apatite on BNNT surface when immersed in standard SBF. Incubation time 

for apatite precipitation on CNT is found decreasing with increasing ion concentration in 

a supersaturated SBF [109]. Functionalized CNT surfaces with carboxylic groups are also 

reported to accelerate apatite formation [154]. It should be noted that the present study 
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have used BNNTs without functionalization. Functionalization of BNNT may accelerate 

apatite formation due to attraction of favorable ions form SBF. 

Micro Raman Spectroscopy analysis is carried out on the as-received BNNTs and 

BNNTs soaked in SBF for 7, 14 and 28 days. Figure 4.68 presents the Raman spectra for 

as-received BNNT and three precipitates showing peaks representative of the bonds 

present in BNNT and HA.  

Figure 4.68: Raman spectra of as-received BNNTs and BNNTs soaked in SBF showing 

h-BN peaks of BNNT and phosphate peaks of HA. 

The peak at ~1367 cm-1 is an E2g mode peak from h-BN [63-65]. The presence of 

HA in precipitates is noted by the twin peaks at lower wave number. The peaks at ~960 

cm-1 is due to ν1 symmetric stretching vibration of phosphate ion in HA [27]. The 

relatively broader peak at ~1052-1081 cm-1, which is more prominent in 28 days sample, 

is ν3antisymmetric stretching mode of phosphate ion in HA [27]. The peaks 
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corresponding to HA-phosphate bonding are clearly absent in as-received BNNT. 

Elemental analysis by EDS has proven the presence of Ca and P in the precipitates. The 

signature peaks of bond energy in compound, as observed in Raman spectrum, present 

the evidence of Ca and P forming HA in the precipitate. 

Raman spectra from precipitates also show a relative change in the intensity of h-

BN and HA-phosphate peaks in figure 4.68. BNNTs soaked in SBF for 7 days show 

weak and lesser intensity peak of HA-phosphate group compared to the h-BN peak. But, 

the relative intensity of the phosphate peak increases after 14 days of soaking. The 28 

days sample shows sharp phosphate peaks with intensity similar to h-BN peaks. The 

intensity of a Raman peak is proportional to the volume concentration of the respective 

bond, when the spectra are collected at similar spectroscopic conditions [155]. Penel et al. 

have also reported higher intensity of ν1 symmetric phosphate peak with increasing 

apatite content [155]. Raman spectra in the present study are captured under similar 

settings. Hence, the relative increase of HA-phosphate peak intensity with respect to h-

BN peak indicates increasing HA content in the precipitation with number of days. This 

observation supports the trend of increased HA precipitation on BNNT with soaking 

period as observed from SEM images and EDS analysis. 

The BNNT peak shows a shift from 1357 cm-1 to 1363 cm-1 from as-received to 7 

days SBF soaked sample. But, no shift in the same peak is observed for BNNTs soaked 

for 14 and 28 days. The peak remains in almost constant position (1363 – 1364 cm-1). 

The initial shift in BNNT peak could be due to ageing of BNNT in SBF, which do not 

continue for higher soaking time. Detailed investigation is required to confirm about the 

initial ageing reaction of BNNT with apatite or SBF. 
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4.3.3.3 Nucleation and Growth Mechanism of Apatite Precipitate 

HRTEM images of the precipitates provide insight into the nucleation and growth 

mechanism of HA crystals on BNNT surface. Figure 4.69 shows the TEM images of as-

received BNNT and HA precipitate on nanotube surface after 7, 14 and 28 days of 

soaking. All BNNTs are bamboo shaped.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.69: TEM image of BNNTs in (a) as-received condition; soaked in SBF for (b) 7; 

(c) 14 days and (d) 28 days. (e) Selected Area Diffraction (SAD) pattern of 28 days 

sample in figure ‘d’ showing the presence of crystalline HA. 
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As-received BNNT, in figure 4.69a, shows a clean outer surface. After 7 days of 

soaking, amorphous HA flakes precipitate on the BNNT surface along with the 

nucleation and growth of some tiny HA crystals of needle shape (figure 4.69b). After 14 

days of soaking, the HA needles grow significantly in length (figure 4.69c). Amorphous 

HA flakes are still visible, but a prominent increase in the number of crystalline needles 

is observed.  BNNT surface was fully covered with HA needles after 28 days as observed 

in figure 4.69d.  Figure 4.69e presents the selected area diffraction (SAD) pattern of 28 

days precipitate corresponding to figure 4.69d. The bright circular ring in the SAD 

pattern corresponds to the (211) plane of HA, which produces highest intensity 

diffraction [JCPDS PDF No. 9-432].  

 

 

 

 

 

 

 

 

 

 

Figure 4.70:  Distribution of HA needle length in 7 and 14 days samples. 

The bar chart in figure 4.70 represent the needle length distribution in 7 and 14 

days precipitates, as measured from several TEM images. A total of 100 needles were 
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considered for each case. Due to the dense needle structure of HA precipitate after 28 

days, it was not possible to calculate the needle length. Majority of the HA crystalline 

needles have a length of 30-55 nm after 7 days of soaking. But, the HA needles in 14 

days precipitate show a much wider length range of 30-125 nm. This large variation in 

the length is the result of growth of the needles that have nucleated early and the 

continuous nucleation of new needles throughout the soaking period. Figure 4.71(a-c) 

presents higher magnification TEM micrographs of HA precipitates for 7, 14 and 28 days 

respectively, which also indicate the change in population of HA crystalline needles.  

 

 

 

 

 

 

 

 

 

Figure 4.71: TEM images of precipitates showing HA needles and amorphous HA for (a) 

7; (b) 14 and (c) 28 days. 
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Figure 4.71a shows the 7 days precipitate with amorphous, flaky HA and a few 

whisker shaped crystalline needles. The number of needles increases after 14 days, 

though some amount of amorphous phase still exists (figure 4.71b). The precipitates after 

28 days, in figure 4.71c, is full of crystalline HA needles. Apart from the needle structure, 

some equiaxed HA crystal shapes are also observed in 28 days sample. This observation 

is in agreement with Aryal et al. about formation of diffused HA cubes in CNT matrix 

after 14 days of reaction with SBF [107]. 

 

 

 

 

 

 

 

 

 

 

Figure 4.72: HRTEM image of HA precipitate on BNNT surface after 28 days of soaking 

in SBF, revealing both amorphous and crystalline nature of the precipitate. 

Figure 4.72 presents high resolution TEM lattice images of a BNNT surface with 

apatite precipitate on it after 28 days of soaking. Fast Fourier Transformation (FFT) 
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analysis is used to accurately determine the interplanar spacing.  BNNT is identified by 

the inter-wall spacing of 0.335 nm. The spacing of h-BN layers in BNNT is 0.33 nm [66]. 

HA crystallites of different orientation are found on the BNNT surface. HA crystallites 

are identified by their lattice spacing of different set of planes (JCPDS PDF No. 9-432). 

Two such crystallites of HA are marked in figure 4.72, which reveal lattice spacing of 

(220) and (211) sets of planes. Apart from these crystallites, amorphous HA phase also 

exists next to the BNNT surface.   

Figure 4.73 presents TEM images of few HA needles on the BNNT surface. HA 

needles are found growing parallel to BNNT surface as well as at different angles. Based 

on the observations from figures 4.72 and 4.73, it can be concluded that there is no 

preferred crystallographic orientation for HA nucleation on BNNT surface. In our 

investigation on spark plasma sintered HA-BNNT composite, a preferred orientation 

between HA and BNNT is observed, where (211) planes of HA were arranged at an angle 

of 65°–68° to the outer wall of BNNT (section 4.1.2.4). This contradictory behavior 

could be attributed to the mechanism of apatite formation from liquid SBF on BNNT 

surface as compared to the HA-BNNT integration in solid state through SPS. In the case 

of SPS, the HA crystallites orient themselves on BNNT wall to generate minimal lattice 

strain at the interface, thus resulting in a specific orientation relationship. But, in SBF, a 

thin layer of amorphous HA covers the BNNT surface before the nucleation of HA 

crystals (figure 4.72). This amorphous layer obstructs the direct contact between BNNT 

and precipitating HA, and thus disturbs the orientation relationship. The origin of initial 

amorphous apatite layer precipitation could be related to several possibilities. 

Crystallinity difference between HA and BNNT could favor amorphous apatite 
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precipitation on BNNT surface initially. The kinetics of nucleation could also impact the 

precipitation. The initial deposition of HA may occur in the amorphous form due to 

higher concentration of ions in SBF. Once the concentration of ion decreases in SBF, it is 

possible to get more time for nucleation and growth of crystalline needles. The thin 

amorphous reaction product layer at the interface could also be due to some physico-

chemical ageing reaction. A more detailed and thorough investigation focusing on the 

interface is required in future to fully understand the nucleation mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.73: HA needles nucleated and grown on BNNT parallel to surface as well as 

making different angles. 
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Investigation on hydroxyapatite formation ability of BNNT surface, soaked in 

simulated body fluid, reveals that the amount of HA precipitate increases with the 

soaking period following a polynomial relationship between 7-28 days. HA formation on 

BNNT requires ~ 4.6 days of incubation period. EDS analysis of the precipitate confirms 

the elemental composition of the precipitate, whereas Raman spectra and HRTEM 

images proves the presence of HA on the BNNT surface. Amorphous HA flakes with a 

few crystalline needles are formed on the BNNT surface after 7 days of soaking. Further 

soaking results in formation of more crystalline HA needles as well as growth of the 

existing ones. After 28 days of soaking, BNNT surfaces was covered with numerous HA 

crystallites. HA crystals do not show a definite crystallographic orientation relationship 

with boron nitride nanotube. In summary, BNNT surfaces induce apatite formation in the 

physiological solution, which increases their potential towards orthopedic application. 

In this dissertation, we have used two different nanotubes as reinforcement to HA, 

viz. (i) CNT and (ii) BNNT. Thus it becomes important to compare the outcomes to 

understand the suitability of each nanotube for the proposed application. The following 

section presents a comparative analysis on the role played by CNT and BNNT as 

reinforcement to HA for intended orthopedic application. 
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4.4 Comparison of CNT vs. BNNT: As Reinforcement to HA  

This dissertation has proposed CNT as reinforcement to HA for orthopedic 

application. Due to the concerns related to cytotoxicity of CNT, BNNT has been 

proposed as an alternative. The research plan thus includes processing of both HA-CNT 

and HA-BNNT composites, their characterization for mechanical and tribological 

behavior and evaluation of biocompatibility. However, due to unavailability of BNNT in 

large amount, it has not been possible to conduct each type of processing and 

characterization for HA-BNNT as carried out for HA-CNT. Considering this limitation, 

the aim of this dissertation has been to present a complete evaluation of HA-BNNT 

composite in terms of - 

(i) feasibility of composite synthesis;  

(ii) role of BNNT in toughening of HA; 

(iii) tribological behavior of HA-BNNT composite 

(iv) cytotoxicity of BNNT to orthopedic specific cell lineages 

(v) in-vitro biocompatibility of composite surface to bone forming cells 

The outcomes of study on HA-BNNT will become more meaningful when 

compared with the potential shown by HA-CNT composite in similar aspects. Thus, a 

comparison between spark plasma sintered HA-CNT and HA-BNNT composites is 

presented in table 4.5, highlighting the pros and cons of both in light of their intended 

orthopedic application. 
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Table 4.5: Comparison of spark plasma sintered HA-CNT and HA-BNNT composites 

Criterion of Comparison HA- 4 wt.% CNT HA- 4 wt.% BNNT Remark 

Synthesis of Composite 

Retention of nanotube 
Structure in SPS 

CNT structure gets 
disturbed due to high 
pressure application in SPS 

 

 

 

 

BNNT structure remains 
intact during SPS 

 BNNT can withstand high strain 
without getting permanently 
deformed and has higher fracture 
strain than CNT [62, 156] 

Density of composite 96.5% TD 97% TD Both composite show similar 
densification 

Mechanical Property Enhancement 

Elastic Modulus 
25% improvement in 
elastic modulus with 4 
wt.% CNT addition 

120% improvement in 
elastic modulus with 4 
wt.% BNNT addition 

CNT gets damaged during SPS -  
BNNT remains intact – thus 
enhancement in E for HA-BNNT 
becomes more effective 

Fracture Toughness 
92% improvement in 
fracture toughness with 4 
wt.% CNT addition 

86% improvement in 
fracture toughness with 4 
wt.% BNNT addition 

CNT and BNNT show similar role in 
improving fracture toughness – though 
HA-BNNT shows higher E and both 
CNT and BNNT shows similar strong, 
coherent interface and similar density – 
this issue needs further investigation 

20 nm

Partial 
collapse 

Kink
Cap 
formation 

5 nm
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Criterion of Comparison HA-CNT HA-BNNT Remark 

Tribological Behavior of Composite 

Coefficient of Friction 

Presence of CNT increases 
lubrication in wear track due 
to decreases CoF by 60% due 
to peeled off graphene layer 

Presence of BNNT does not 
provide lubrication as no 
peeling of h-BN layer – 
increases in CoF by 25% 

Fracture strain for BNNT is 
higher than CNT [156], 
which restricts peeling of h-
BN walls at similar load at 
which graphene layer from 
CNT gets peeled off – 
lubrication in HA-CNT 
helps in increasing wear 
resistance 

Wear Volume Loss 

66% decrease in wear volume 

CNTs get damaged and 
broken during wear due to 
shear force application – 
cannot support or anchor 
chipped mass 

 

75% decrease in wear volume 

BNNTs remain intact - can 
anchor chipped and sheared off 
mass – decreases wear volume 
loss 

 

BNNTs support and anchor 
loosened mass on wear track 
– increases wear resistance  

At the same time CNT offers 
lubrication and increases 
wear resistance  

Finally, HA-BNNT shows 
slightly higher wear 
resistance improvement 
than HA-CNT 

66%  in HA-CNT 

75% in HA-BNNT 100 nm
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*Osteoblast viability for SPS HA-BNT is compared with that of plasma sprayed HA-CNT coating, as no biocompatibility study on 
SPS HA-CNT is carried out in this dissertation. But, nanotube content is given consideration while evaluating biocompatibility in 
this research. Considering that, SPS HA-BNNT and plasma sprayed HA-CNT is similar as both of them contain 4 wt.% nanotube. 

Criterion of Comparison HA-CNT HA-BNNT Remark 

Biocompatibility 

Osteoblast Viability* 

Slight increase in osteoblast 
viability in HA-CNT as 
compared to HA surface 

 

Slight increase in osteoblast 
viability in HA-BNNT as 
compared to HA surface 

 

 

Both CNT and BNNT does 
not negatively influence the 
viability of osteoblast on HA 
based surface 

Osseointegration 

Apatite formability 

CNT shows apatite formability 
when immersed in SBF – 
incubation period for 
precipitation is 14 days [109] 

 

BNNT also shows apatite 
formability under SBF 
immersion – incubation period 
is 4.6 days 

 

Lesser apatite precipitation 
incubation period on BNNT 
would help in faster neobone 
formation and post operation 
healing period 
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The comparison between HA-CNT and HA-BNNT reveals similar potential of 

CNT and BNNT towards improvement in fracture toughness and tribological behavior. 

But, there are some points in favor to BNNT as reinforcement in HA. They are: 

• Higher fracture strain, deforming ability and oxidation resistance of BNNT 

protects it from getting damaged during high temperature and/or pressure 

exposure required for composite consolidation.  

• Though the biocompatibility related results for CNT is positive in this study, but 

there are some negative reports too in open literature. On the contrary, the present 

study and all the reports available have always found BNNT to be biocompatible 

to different cell lineages. 

It must be noted that there are very few in-vitro biocompatibility studies on 

BNNT and no in-vivo study has been conducted on the same. On the other hand, HA-

CNT composites are investigated thoroughly for in-vitro biocompatibility, though in-vivo 

biocompatibility is evaluated by two research groups, including the study presented in 

this dissertation. Thus, HA-BNNT composite needs to be more thoroughly evaluated for 

in-vitro and in-vivo biocompatibility. HA-BNNT coating also needs to be synthesized and 

characterized for mechanical, tribological and biological behavior to be able to fully 

compare with HA-CNT coatings. Overall, the outcomes suggest that BNNT has a 

greater potential as an alternative to CNT for orthopedic application. 
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5.0 CONCLUSIONS 

This dissertation presents a complete analysis of HA-nanotube composites, in 

terms of mechanical, tribological and biological behavior to judge its potential for 

orthopedic application. Investigations on coating and free standing HA-CNT composite 

reveal significant improvement in the fracture toughness and wear resistance with CNT 

reinforcement. In-vitro and in-vivo biocompatibility studies suggest non-cytotoxic 

response of CNT along with positive influence on the bone cell activity. Presence of CNT 

also helps in osseointegration on HA based surface. Overall, HA-CNT composites and 

coatings are established as a very attractive solution to existing problems of HA. 

Considering the ongoing debate about the cytotoxicity of CNTs in open literature, BNNT 

is proposed and explored as an alternative reinforcement for HA. HA-BNNT composite 

also leads to excellent improvement in the fracture toughness and wear resistance, which 

is comparable to HA-CNT. Biocompatibility study of HA-BNNT shows positive 

influence of BNNT towards bone cell activity and osseointegration. These findings, along 

with no negative report on cytocompatibility till date, project BNNT’s strong candidature 

as reinforcement to HA in orthopedic application. The specific conclusions on 

performance of HA-nanotube composites are listed below: 

 HA-nanotube composites (coating and free standing) could be successfully 

synthesized using plasma spraying and spark plasma sintering methods. Both 

types of nanotube reinforcement (CNT and BNNT) do not show any negative 

effect on densification. High thermal and electrical conductivity of the nanotubes 

help in improved and uniform densification of HA structure during spark plasma 
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sintering. Nanotubes also help in retaining the fine HA structure by grain 

boundary pinning.CNT gets damaged during high pressure application in SPS, 

whereas BNNT withstands the high pressure and remains undamaged. 

 Both CNT and BNNT show favorable orientation relationship with HA interface 

in SPS composite, leading to coherent interface with minimal lattice mismatch. 

As a result of this good interfacial bonding, the nanotube pull-out energy from 

HA matrix becomes higher than fracture energy of monolithic HA. This leads to 

fracture toughening of HA with CNT/BNNT reinforcement. 

 Plasma sprayed HA- 4 wt.% CNT coating shows 350% increase in fracture 

toughness with 4 wt.% CNT addition. Bridging of cracks and absorption of 

fracture energy due to good interfacial bonding of CNT with HA matrix are the 

main toughening mechanisms.  

 HA- 4 wt.% CNT coating shows 25% decrease in coefficient of friction (CoF) and 

80% decrease in the wear volume. Higher wear resistance in HA-CNT is due to 

higher toughness and lubrication offered by peeled off graphene layers. 

 SPS processed HA-4 wt.% CNT and HA-4 wt.% BNNT composites show similar 

improvement in fracture toughness (92% and 86% respectively) with nanotube 

reinforcement. 

 SPS HA-4 wt.% CNT composite shows 60% decrease in CoF, due to peeled off 

graphene layers. SPS HA-4 wt.% BNNT shows 25% increase in CoF, as no h-BN 
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layer peels off from BNNT surface.SPS HA-4 wt.% CNT composite resulted in 

66%  improvement in wear volume less as compared to HA, whereas SPS HA-4 

wt.% BNNT displayed 75% improvement in wear volume loss.  

 In-vitro biocompatibility studies for HA-CNT coating reveal non-cytotoxic and 

encouraging role played by CNT on bone forming cell activity. HA-CNT coating 

shows higher osteoblast proliferation rate and viability than HA surface. The 

cycle of osteoblast differentiation, maturation and matrix mineralization is 

accelerated in presence of CNT.  

 In-vivo exposure of HA-CNT coated implant in animal (rat) indicates active role 

of CNT towards integration of neobone on coated surface. No sign of CNT 

induced toxicity is observed. 

 CNT also plays a very positive role in early stages of osseointegration by offering 

better adhesion of osteoblasts to implant surface. The adhesion energy of 

osteoblasts is upto 95% higher on HA-CNT as compared to HA. Attachment of 

integrin on exposed CNT network is attributes towards increased osteoblast 

adhesion strength on HA-CNT surface. 

 Presence of HA-CNT coating on metallic (Ti) implant provides a smoother elastic 

modulus gradient at bone-implant interface, when exposed in-vivo. This smoother 

elastic modulus gradient reduces the stress generated at the interface and inhibits 

the chance of fracture of bone and failure of implant. Moreover, CNT helps in 
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faster mineralization of neobone and increases its elastic modulus, as compared to 

neobone on HA surface. 

 In-vitro studies show BNNT is safe for orthopedic application. Bare BNNT does 

not produce any cytotoxic effect, while interacting with osteoblast and 

macrophage. 

 HA- 4 wt.% BNNT surface favors osteoblast proliferation and viability more than 

HA. 

 Apatite formability of BNNT surface in physiological solution is the indication of 

its osseointegration ability. Apatite precipitate incubation is faster on BNNT 

surface (4.6 days) than on CNT (14 days) when immersed in standard SBF. 
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6.0 RECOMMENDATIONS FOR FUTURE RESEARCH 

The aim of the current research was to explore the potential of HA-nanotube 

composites and coatings for orthopedic application. The criteria for judgment were the 

effect of nanotube reinforcement on mechanical, tribological and biological behavior of 

the composite. The findings of this study establish HA-nanotube composites to be 

potential alternative for clinically used HA. However, some of the topics need further 

investigations to progress towards the clinical translation of HA-CNT nanotube. 

Following is the list of recommendations for advancing the research towards the final 

accomplishment. 

Plasma Sprayed Coating for HA-BNNT 

HA coated metallic implants are already in clinical use. Plasma sprayed HA-

BNNT coating on metallic implants have the potential to be a substitute for HA with 

improved mechanical and tribological behavior.  HA-BNNT coatings could not be made 

in the current research due to unavailability of BNNT in large amount, which is a key 

requirement for plasma spraying. Synthesis of BNNTs is still carried out in laboratory-

scale. On-going studies by different research groups have the potential to establish a large 

scale production method for BNNT in the near future. Once BNNT is available in a larger 

quantity (e.g. 50-100 grams), HA-BNNT coatings should be synthesized by plasma 

spraying.  
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Optimizing SPS Parameters for HA-BNNT 

The present research is the first report on HA-BNNT composite. A parametric 

study is required to optimize the SPS parameters for consolidation of HA-BNNT 

composite with varying BNNT concentration, to achieve the optimum fracture toughness 

and wear resistance. 

Optimizing Nanotube Content in Composite 

The present study is carried out with a singular composition of 4 wt.% nanotube 

reinforcement in HA. The nanotube content could have a significant effect on 

strengthening of the composite. The composite synthesized with varying nanotube 

content needs to be characterized for mechanical and tribological behavior to decide on 

the reinforcement content. Considering the orthopedic application of the composite, 

biocompatibility can also be a function of nanotube content in composite. Thus the 

nanotube content optimization process should take care of both mechanical and 

biological performance of the composite. 

Biocompatibility Evaluation for HA-BNNT 

HA-CNT is evaluated thoroughly for its biocompatibility in the present study, 

including in-vitro studies for osteoblast proliferation rate, viability, differentiation, 

mineralization and in-vivo study using rat model. HA-BNNT is also characterized for 

osteoblast proliferation and viability, along with cytotoxicity of BNNT to osteoblast and 

macrophage. However, more biocompatibility studies (both in vitro and in vivo) are 

required to establish HA-BNNTcomposites for orthopedic application. With increasing 



 

301 
 

availability of BNNTs, it would be possible to perform extensive biocompatibility 

evaluation for HA-BNNT in near future. 

Effect of Composite Microstructure and Surface on Biocompatibility 

The present research has carried out biocompatibility studies on HA-CNT coating 

surface and not on SPS synthesized composite. The aim of this study was to determine if 

CNT reinforcement alters the biocompatibility of composite. From that point of view, 

both plasma sprayed coating and spark plasma sintered composite was equivalent, owing 

to same CNT content (4 wt.%). But, the microstructure, density and surface properties are 

very different in both the structures, which might have differential effect on 

biocompatibility, especially for osteoblast adhesion and neobone formation. It is 

recommended to perform a comparative evaluation of biocompatibility for plasma 

sprayed and SPS processed HA-nanotube surfaces. 

Longer In-vivo Exposure of Composite 

The present study has carried out one month in-vivo exposure of HA-CNT coated 

implants, which suggest no cytotoxic effect of CNT. But, in real life, the implants stay 

inside living body for >15 years in most of the cases. It is therefore important to assess 

the fate of HA-CNT composites, especially CNTs, for longer in-vivo exposure, to assure 

their safe use. A systematic study of implanting HA-nanotube composite in animal model 

for longer exposure period (3 months, 6 months and 1 year) followed by 

histocompatibility studies is recommended.  
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APPENDICES 

Appendix-1 

The Biocompatibility tests for Hydroxyapatite (HA) -nanotube coatings – 

conducted in this research work are in compliance with ISO and ASTM guidelines 

referred by FDA [1-8]. The brief is as following: 

ISO : 10993 – “ Biological evaluation of Medical Devices”   - is meant for testing any 

medical device thoroughly before marketing. 

ISO 
Standard ID 

Purpose Our Testing Methods 

10993-5  Test for cytotoxicity 
– In Vitro  

Using HA-Nanotube coating/free standing body 
as substrate and human osteoblast cell line–  

• viability (FDA/PI staining),  
• Actin Fiber staining,  
• Genetic expression for osteopontin, 

osteocalcin and RunX2,  
• Alkaline phosphatase activity  
• BrDU Analysis for cell proliferation rate 
• Adhesion strength of osteoblasts on 

substrate 
Wear Debris of HA-CNT in medium and 
osteoblast and macrophage cell lines 

• Cytotoxicity using LDH assay 
10993-6  Test for local effect 

after implantation  
Using HA-CNT coated Ti alloy beads and rods 
in rodents 

• Implanted for one month and then the 
implanted bone is retrieved 

• Histology and calcium staining to check 
bone formation 

• TEM to observe nature of new bone and 
its comparison with previous one 

• Immune response 
• To study the mechanical compliance of 

implant with bone by mapping elastic 
modulus at implant-bone interface 
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According to FDA report on “Guidance Document for Testing Orthopedic implants”  - 

“Material combinations with limited or no history of successful use in orthopedic 
implants must be  determined to exhibit an acceptable biological response equal or better 
than approved or substantially equivalent devices when tested by ASTM F 748, ASTM F 
981, and an animal implant study in which the tissue response to the modified surface 
…” 
 
Following is a summary of the tests that complies with the directives in the relevant 

ASTM Standards 

ASTM 
Standard 

Purpose Our Testing Methods 

F - 748  
 

Standard practice for 
selecting generic biological 
test methods for materials 
and device 
 
 – Biocompatibility testing 
involves tests either the 
material itself or an extract 
from it – depending on the 
nature of end-use application 
 
 – cell culture cytotoxicity 

Using HAQ-Nanotube coating/free 
standing body as substrate and human 
osteoblast cell line–  

• viability (FDA/PI staining),  
• Actin Fiber staining,  
• Genetic expression for osteopontin, 

osteocalcin and RunX2,  
• Alkaline phosphatase activity  
• BrDU Analysis for cell proliferation 

rate 
• Adhesion strength of osteoblasts on 

substrate 
 

F - 1903 
 

Standard practice for testing 
for biological responses to 
particles in vitro 
 
 – to define particles nature, 

source, chemistry, size, 
shape, method of 
sterilization, concentration 
(in medium) 

 
 – To use established cell 

lines, culture conditions, 
cell viability assay 

Wear Debris of HA-CNT in 
recommended medium for osteoblast and 
macrophage cell lines 

• Debris analysis for composition   
- Chemistry known from vendor 
-  Phases by XRD 
- Compound by Raman 

spectroscopy 
• Debris analysis for size distribution 

and shape   
- SEM Image Analysis 

• Cytotoxicity for osteoblasts and 
macrophages using LDH assay 

F - 981 Standard practice for 
assessment of compatibility 
of biomaterials for surgical 
implants with respect to 

Using HA-CNT coated Ti alloy beads 
and rods in rodents 

• Implanted for one month and then 
the implanted bone is retrieved 
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effect of materials on muscle 
and bone 
 
- Histological observation 

to see tissue reaction 
- Observing gross 

appearance of the 
surrounding tissue in 
which the implants were 
implanted 

• Histology and calcium staining to 
check bone formation 

• TEM to observe nature of new bone 
and surrounding tissues and its 
comparison with previous one 

• Histological observation of bone 
tissue around implant 

• To study the mechanical 
compliance of implant with bone by 
mapping elastic modulus at implant-
bone interface 
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Appendix-2 

Major Quantitative Techniques for Cell Adhesion Measurement 

Technique Principle Results (Quantification) Remarks References 
X-ray 
Microcomputed 
Tomography 

Assessment of 3D 
cellular Volume 

Adhesion is defined to be 
more if cellular volume is 
high 

• Does not provide the strength/force 
for detachment. 

•  Good for a comparison between 
different substrates 

 [1] 

Cellular Density Measurement of cellular 
density in terms of  
Number of cells/Area 

Adhesion is defined to be 
more if the cell density is 
high  

• Does not provide the strength/force 
for detachment. 

•  Good for a comparison between 
different substrates 

 [2-4] 

Spinning disk Cell on the top of 
surface is spinned – this 
is done basically to 
measure the adhesion 
with change in shear 
force  

Number of detached cells 
as a function of distance 
from  centre along radius is 
determined -  Calculation of 
Shear force  as a function of 
distance from  centre  gives  
force required to detach a 
cell 

• It is still a comparative one and is not 
measured for a single cell 

 [5-7] 

Centrifugal force-
based adhesion 
assay 

Measure adhesion 
strength by centrifuging 
attached cells and 
finding out the separated 
ones  

Expressed as force unit/cell • It is still a comparative one and is 
generally expressed as % of cells 
detached or Adhesion  Strength / 
Unit area of substrate  

• The force received by a single cell 
across its surface is non-uniform and 
its magnitude is unknown 

 [8-11] 

Optical/laser  
trapping 
 
 

Generally for proteins or 
molecules attached on 
cells. 
Filament-bound bead - 

The bead being displaced 
from tap center – the force 
in the trap changes – which 
is measurable. 

• Very low forces measured and very 
specific to materials that could be 
stained and trapped. 

• Mainly used for proteins and other 

 [12-14] 
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held by the optical trap 
and the substrate is 
moved in the other 
direction. 

biomolecules. 

Micropipette suction Suction of cell by 
reducing the pressure of 
fluid/environment in the 
micropipette. 

The adhesion force is 
measured in terms of drag 
force which is related to the 
drop of pressure required 
inside micropipette – 
measured using pressure 
transducer. 

• This technique can measure adhesion 
strength of a single cell varying in 
pN to nN range. 

• But, posses high chance of rupture or 
damage of cells. 

 [15-20] 

Flow Shearing –
Hydrodynamic force 

Hydrodynamic force is 
used through the flow of 
liquid to detach cells 
from substrate and 
assisted by microscopy 
to observe when the 
cells separate out. 

Measured as % adherent 
cells or shear strength/unit 
area 

• A very popular technique 
• Adhesion strength of a single cell can 

be assessed by finding the total 
adhesion area of a cell from 
microscopy. 

• Not absolutely/accurately quantifies 
the adhesion strength of a single cell. 

 [21-30] 

AFM Cantilever without tip 
sits on the cell for 
attachment and then 
pulls off 

The adhesion is measured 
from cantilever deflection 
(AFM principle) as 
detachment force required 
for a single cell 

• Very suitable technique for 
measurement of adhesion strength 
for single cell. 

• The tip has to sit on cell surface for 
attachment – which might take a very 
long time in some cases. 

• Sitting of cantilever on cell for long 
time causes extra stress on cell which 
can deviate them from normal 
behavior and cause damage also. 

 [31-34] 

Confocal reflectance 
interference contrast 
microscopy  

Uses phase contrast 
microscopy image 
(confocal microscopy) 
and C-RIM Images 
(laser scanning confocal 

Strong adhesion contact of 
an adherent cell appears as 
a dark or light gray region 
in the gray background on 
the C-RICM image. 

• The adhesion strength measurement 
is dependent on the color contrast – 
thus calibration is very crucial and 
can easily pose large error in 
estimation. 

 [35-37] 
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microscopy).  
Color contrast obtained 
with change in adhesion 
energy, strong contact 
zone appears as dark 
region on the image 

 
Expresses the adhesion 
energy in J/m2. 

• For calculation of adhesion energy, 
many factors like elastic property 
and exact thickness of cell membrane 
is required. 

 

Cyto Detacher Applies detaching force 
parallel to the base of 
single cell through a 
cantilever and measures 
the resistive force by cell 
during movement 

The deflection of the 
cantilever due to resistance 
of cells to detach is 
measured by conjugate 
optical technique (carbon 
filament, optical 
microscope and 
photodiode) and converted 
to adhesion strength 

• Suitable technique for measurement 
of adhesion strength for single cell. 

• Accurate measurement of small 
deflection in cantilever, using the 
conjugate system of carbon filament 
(glued at the back of cantilever), 
optical microscope and photodiode, 
is challenging and requires custom 
made set-up.  

• Force is not measured directly – 
calibration of cantilever deflection is 
very crucial and can be possible 
source of error. 

• During pushing the cell -  cantilever 
immersed in liquid medium 
experiences resistance force from 
fluid -  adds an error term in cell 
adhesion force value 

 [38-39] 

Shear Force by 
Cantilever 

Application of shear 
force parallel to 
substrate to detach the 
cell 
 
 

Force is measured by 
monitoring cantilever 
deflection in opposite 
direction of applied force 
due to resistance by cell 
during detachment 

• A suitable technique for 
measurement of adhesion strength 
for single cell. 

• Force is not measured directly – 
calibration of cantilever deflection is 
very crucial and can be possible 
source of error. 

• During pushing the cell -  cantilever 
immersed in liquid medium 

 [40-42] 
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experiences resistance force from 
fluid -  adds an error term in cell 
adhesion force value 
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