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ABSTRACT OF THE THESIS 
 

THE DEVELOPMENT OF HARDWARE MULTI-CORE TEST-BED ON FIELD 

PROGRAMMABLE GATE ARRAY 

 
by 
 

Mohan Shivashanker 
 

Florida International University, 2011 
 

Miami, Florida 
 

Professor Gang Quan, Major Professor 
 
        The goal of this project is to develop a flexible multi-core hardware test-bed on field 

programmable gate array (FPGA) that can be used to effectively validate the theoretical 

research on multi-core computing, especially for the power/thermal aware computing. 

Based on a commercial FPGA test platform, i.e. Xilinx Virtex5 XUPV5 LX110T, we 

develop a homogeneous multi-core test-bed with four software cores, each of which can 

dynamically adjust its performance using software. We also enhance the operating system 

support for this test platform with the development of hardware and software primitives 

that are useful in dealing with inter-process communication, synchronization, and 

scheduling for processes on multiple cores. An application based on matrix addition and 

multiplication on multi-core is implemented to validate the applicability of the test bed. 
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CHAPTER 1 
 

INTRODUCTION 
 

         The computer industry is switching from the single core based platform to the 

multi-core. Die yield, limits in instruction level parallelism (ILP) and memory/processor 

performance gap, coupled with the exponentially increased power consumption and heat 

dissipation have forced this switching. Increasing the working frequency and building a 

more complicated single processor is no longer an effective way to improve the 

computing performance. Multi-core platforms, which facilitate the process or thread level 

parallelism and can thus work at lower clock rates, can potentially deliver high 

computing performance without consuming excessive power and producing prohibit heat. 

As a result, multi-core processor systems have been one of the most popular methods to 

overcome the complexities for many applications within the corporate, medical, military 

and other commercial markets requiring high performance and real-time processing 

power. For example, Cisco today embeds in its routers a network processor with 188 

cores implemented in 130 nm technology, which dissipates 35W at a 250MHz clock rate, 

and produces an aggregate 50 billion instructions per second [1].  

 

Power consumption and thermal management have been two of the most critical issues in 

developing all but the most trivial computing systems. With the demand for increased 

performance and decrease in size from mobile electronics to high performing game 

consoles, there has been an exponential increase in power density and chip temperature, 

according to SOC consumer stationary power consumption trends shown in Figure1. 
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Figure 1: Exponential Increase in Power Consumption 

 

The power consumption has been one of the most critical constraints for multi-core 

computing. The power consumption in modern processors consists of (i) the dynamic 

power and (ii) the leakage power. The dynamic power is due to the transistor switching 

activities during runtime, and used to be the dominant between the two. The dynamic 

power is given by, 

 

where, Pdyn is the dynamic power consumed, α is the activity factor, C is the load 

capacitance, V is the supply voltage and f is the working frequency. 

 Leakage power is due to the leakage current flowing through the transistor and is given 

by, 
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where, Pleak is the leakage power, V is the supply voltage and Ileak is the leakage current 

through the transistor. As shown above, the dynamic power consumption is quadratically 

dependent on supply voltage. Thus, reducing the supply voltage can dramatically reduce 

the power consumption for the processor. As a result, many processors are designed to 

have the Dynamic Voltage and Frequency Scaling (DVFS) capability, i.e. being able to 

dynamically vary the supply voltage and/or frequency of a microprocessor. DVFS has 

proven to be one of the most effective ways to reduce the power consumption and also to 

manage the thermal condition of the processor while meeting the required performance 

[3, 10].   

 

Besides power consumption, the rapidly elevated temperature in the computing system 

also raises serious concerns for computing system designers.  The rise in chip 

temperature has significant impact on power consumption, reliability, cooling and 

packaging costs.  In fact, the rapid increase in cooling and packaging costs has the 

potential to greatly affect the computer industry capability to deploy new systems. There 

have been extensive theoretical researches conducted on power and thermal aware 

computing for a multi-core platform [26, 27]. Dynamic power management techniques 

have already been developed to cover a wide spectrum of system characteristics [8]. It 

has been shown that, proactive use of software on top of the hardware can balance the 

overall thermal profile with minimal overhead using the operating system support. There 

also exists a hardware DVFS technique [7, 9] where they have proposed a novel method 

of producing high speed variable fractional clock rates. Y Liu et. al. [27], have presented 

a design time optimization technique for real-time embedded systems that make use of 
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DVFS to minimize peak temperature. In [26], DVFS technique is used to reduce the 

overall energy consumption by exploiting both static and dynamic slack times where, 

voltage and frequency is decreased below the operating level.  

 

While a variety of power/thermal aware techniques have been proposed for a hardware 

multi-core platform, most of the existing works are validated through software 

simulations with simplified and idealized theoretical models. The change in computer 

architecture to multi-core has complicated the use of software simulators as they are 

difficult to parallelize well with greater number of processors [13]. Even though the 

SPEC2k benchmark suite and Virtutech’s Simics [15] are more robust, they provide 

limited application programming interface (APIs) and become extremely time consuming 

as greater number of cores are added to the system.  Furthermore, while the software 

simulators help to simplify the problem, results may also lead to conclusions deviated 

from what they really are in the practical scenarios, since the practical computing systems 

need to deal with more complicated scenarios that cannot be accurately modeled in the 

software simulation. Thus, it becomes necessary to test or verify the theoretical results in 

a more practical environment. 

 

While a number of commercial platforms based on multi-core architecture are reported in 

the literature, such as IBM’s Cell processor [1], they are not readily available at a 

reasonable price. Researchers also use current multi-core desktops for the validation 

purpose [9]. However, such a “test-bed” can only be used to test theoretical research 
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based on a fixed architecture. In addition, these test beds are also limited by their 

software supports and cannot be easily updated.  

 

To design a versatile, flexible, and reusable multi-core test bed, we seek to develop such 

a test bed using the FPGA technology [4]. FPGA is an integrated circuit that can be 

reconfigured according to the required application by the designer. The configurable 

logic cell blocks are the basic logic unit in an FPGA even though the features and number 

of logic cells used vary from device to device. Today’s FPGAs are highly scalable, field 

debuggable, re-configurable, have a lower cost and readily available in the market. They 

can be re-programmed using the powerful and versatile developing tools commercially 

available today. It has a much shorter design cycle and requires much less engineering 

equipment costs compared with those for the design of Application Specific Integrated 

Circuits (ASIC).  The FPGA has thus been widely used in both academy and industry to 

build test platforms to test design alternatives and validate theoretical research results. 

For example, recent works on FPGA like Fort et al. [33] employed multi-threading to 

improve utilization of soft-core processors with little dimensional costs. The FPGA based 

complete system called Protoflex [15] was designed to provide similar functionality of 

Simics [14] is the motivation research for us to choose FPGA as our test bed.  

 

Project goals and objectives                                                                                                 

The goal of our project is to develop a multi-core hardware test bed on Field 

Programmable Gate Array (FPGA). Specifically, we want to develop a test platform that 

can be used effectively to validate the theoretical researches on power/thermal aware 
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computing. We envisioned our test platform to have the following capabilities: (1) 

Consisting of 4 or more homogeneous soft-core processors such as Microblaze system 

[12]; (2) The performance enhancement, i.e., working frequency, of each core can be 

dynamically varied and evaluated; (3) The multi-core platform can be supported with a 

real-time operating system for ease of development and testing. 

 

Our Contributions 

From our work, we have successfully developed a hardware multi-core test-bed with a 

real-time operating system booted on each core. The test platform consists of four 

homogeneous soft-core processors (i.e., Microblazes system [12]). By using a customized 

clock control unit in the design, we were able to dynamically vary the working frequency 

i.e., improve performance of each core. As discussed before, it is desirable that both the 

supply voltage and working frequency of a processor core can be dynamically varied. 

However, it would be extremely expensive if not totally impossible to change the supply 

voltage for a soft core on the FPGA chip. Therefore, we change the performance of the 

processor only by changing its working frequency. We also considered inter-processor 

communication between the processors to perform synchronization when accessing the 

shared resource. Finally, an application example of matrix addition is implemented to 

validate the applicability of the test-bed.  

 

Thesis Organization: 

The rest of the thesis is organized as follows. We first present the general framework of 

our design. In Chapter 3, we discuss the hardware aspect in our development and present 
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our work on the design and implementation of a multi-core system with dynamically 

variable frequency based on Virtex5 using FPGA development tools. Chapter 4 presents 

the operating system boot up and software platform settings. The experiments conducted 

and results are discussed in Chapter 5. We conclude the thesis in Chapter 6. 
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CHAPTER 2 

GENERAL FRAMEWORK 

        The goal of this project is to develop a multi-core hardware test-bed on FPGA that 

can be used effectively to validate the theoretical research on power-aware computing 

embedded system design. The system is supposed to be flexible and support different 

applications. The number of processing element can be configured according to our 

computational needs and the chip capacity. The flexibility of FPGA has helped us in 

customizing necessary peripheral components.  

 

2.1 The Hardware Architecture 

Figure 2 shows the overall hardware architecture of our system. The systems consists of 

four homogeneous processing core.  To support different clock speeds on each of the 

processing element units during runtime, a configurable clock control unit is developed 

that can be accessed through software. All four cores are connected using so called the 

Fast Simplex Link (FSL) [16]. Note that since each processing core can potentially work 

at different working frequencies, connecting all processing core using bus is not an option 

in our case. FSL allows asynchronous communication mechanism and is therefore 

selected to connect the multiple processor cores. In addition, multiple port memory 

controller (DDR_SDRAM) and inter-processor communication-XPS Mutex hardware IP 

[17] are also incorporated into our test bed to facilitate the memory sharing and inter 

processor synchronization and communication. Each processing element consists a 

Microblaze soft-core processor, a small scratch-pad memory, Local Memory Bus (LMB), 
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Processor Local Bus (PLB), a customized clock control IP and some specific peripheral 

components.  

 

 

Figure 2: The Hardware Architecture 

 

Microblaze 

In our project, a Microblaze core is used as the processor core. The Microblaze soft-core 

processor is a 32-bit Reduced Instruction Set Computer (RISC) architecture optimized for 

embedded applications. Microblaze can be user configured like pipeline depth, cache 

size, embedded peripherals, and bus-interfaces. The Microblaze core block diagram is 

shown in Figure 3. 
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Figure 3: Microblaze Core Block Diagram [12]. 

 

The fixed feature set of the processor includes: 

• Thirty-two 32-bit general purpose registers 

• 32-bit instruction word with three operands and two addressing modes 

• 32-bit address bus 

• Single issue pipeline 

In addition to these fixed features, the Microblaze processor is parameterized to allow 

selective enabling of additional functionalities like floating point arithmetic, 

multiplication and division.  

 
  
 Customized Clock Control Unit 

To dynamically vary the frequency of the processors, we built a customized IP (as shown 

in Figure 4) that can control the clock for each processor core at run-time. Each 
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customized clock control IP consists of a digital clock management (DCM) unit [18] and 

a configuration logic unit. The Xilinx’s DCM is a multi-function clock management unit 

which supports dynamic configuration of clock frequencies ranging from 33MHz-

210MHz. For the Virtex5, the DCM unit includes a Dynamic Reconfigurable Port (DRP), 

which can be used by FPGA fabric to access the configuration memory within DCM. 

 

Figure 4: Clock Control Unit  
 

The configuration logic translates the control signal from bus into control data for DCM, 

which makes the run-time programmable clock possible. In our design, four different 

clock frequencies, i.e. 40MHz, 50MHz, 66.7MHz and 100MHz, are provided and we use 

the two least significant bits of the bus to select the desired frequency. The customized 

clock control IP is connected with the PLB bus via the standard PLB-IPIF interface.  

 

Bus Interfaces 

There are a number of choices for Microblaze soft-core processor interconnections. It 

follows the Harvard architecture with separate paths for data and instruction accesses. 

Processor Local Bus (PLB) is a fully synchronous bus that provides connection to both 

on-chip and off-chip peripherals and memory. The Local Memory Bus (LMB) provides 

single-cycle access to on-chip dual-port Block RAM. The Xilinx Cache Link (XCL) 
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interface is intended for use with specialized external memory controllers. Memory 

located outside the cache area is accessed through PLB or LMB. The debug interface is 

used with the Microblaze Debug Module (MDM) and is controlled through JTAG port by 

the Xilinx Microprocessor Debugger (XMD). 

 

For our design, even though the traditional bus connection is possible, it is less attractive 

due to scalability concern. An alternative is to use the logic source in FPGA to create the 

Network-On-Chip (NOC) infrastructure. For example, Schelle and Grunwald [19] 

implemented a switching network as interconnection for general purpose processor in a 

Virtex II-pro device. One major disadvantage of this solution is the large amount of 

resources it requires. Henceforth, we made use of a convenient point-to-point connection 

mechanism, i.e., the Fast Simplex Link (FSL) bus, provided by Xilinx. FSL is a FIFO-

based connection and can be synchronous or asynchronous. An asynchronized 

communication scheme is particularly useful in our design with different processors 

running at different speeds. Each core from Xilinx supports multiple FSL buses. For 

example, a Microblaze has up to sixteen FSL ports with one master and one slave 

interface to connect up to sixteen different components for duplex communication, which 

makes it reasonably easy and effective to build popular multi-core topologies, such as the 

tree, mesh, or torus structure.  

 

2.2 The System Software Setup 

In our project, we made use of software platform settings under XPS GUI to boot the 

Xilkernel RTOS into the board and configured the operating system and library files 
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according to our requirements. C code was implemented and compiled through RTOS, as 

shown in Figure 5 below. 

 

Figure 5: Software Design Flow 

 

 2.3 The Hardware/Software Test Platform 

    In order to develop the embedded system design on the chip, Xilinx has provided the 

Embedded Development Kit (EDK) suite. We used EDK design suite 10.1.03 version. 

Using this suite of tools we can incorporate a wide range of Hard and soft-IP cores, such 

as microprocessors, interconnects, memories, and an assortment of peripherals. The main 

advantage of EDK suite is that on a single environment we can perform design, 

simulation, synthesis, and compilation.  

 

In EDK embedded system design, we have two separate steps, hardware and the software 

design which interact each other. Firstly, we have to develop and design the hardware 

part where a custom circuitry IP core is developed using a hardware description language 
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(HDL) like verilog or VHDL. Synthesis tool translates this hardware description 

language into the low level gate logic. Then, all available IP cores are combined into a 

single design using the Xilinx platform studio tool. The microprocessor is connected to 

all the IP cores using the bus architecture, thus allowing the entire design to be controlled 

using software programs. Secondly, in order to control the microprocessor and all 

connected peripheral, application software is developed where a system programmer 

should correctly implement the low level details of interacting with any given peripheral. 

We can install the embedded operating system on the chip design, which helps in the 

development of our design. 

 

Xilinx Embedded Development Kit (EDK) is the package for building Microblaze in 

Xilinx FPGAs. It consists of two separate environments: Xilinx Platform Studio (XPS) 

and Software Development Kit (SDK). As said earlier, we have used Xilinx viretx-5 

LX110T FPGA board for our project. Below are the figures (Figure 6 and 7) showing the 

front and back view of virtex-5 LX110T FPGA. 
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Figure 6: Front view of Xilinx virtex-5 LX110T FPGA board 

The main features of this board are: 

• Xilinx XCF32P Platform Flash PROMs (32 MB each) for storing large device 

configurations 

• Xilinx System ACE Compact Flash configuration controller 

• 64-bit wide 256Mbyte DDR2 small outline DIMM (SODIMM) module 

compatible with EDK supported IP and software drivers 

• On-board 32-bit ZBT synchronous SRAM and Intel P30 Strata Flash 

• 10/100/1000 tri-speed Ethernet PHY supporting MII, GMII, RGMII, and SGMII 

interfaces 

• USB host and peripheral controllers 

• Programmable system clock generator 

• Stereo AC97 codec with line in, line out, headphone, microphone, and SPDIF 

digital audio jacks 
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• RS-232 port, 16x2 character LCD, and many other I/O devices and ports. 

 

 

Figure 7: Back view of Xilinx virtex-5 LX110T FPGA board 

 

Once we have completed the embedded design, it is translated into an implementation 

suitable to the board. Here we have two phases for the implementation process: (a) 

Synthesis phase and (b) Compilation phase. Under the synthesis phase, a Xilinx synthesis 

tool will translate the hardware description language into a gate level description. EDK 

provides Xilinx Synthesis Technology (XST) the following, which happens in the 

synthesis phase: (1) System-on-Chip elaboration: It translates the HDL into a computer 

readable format. (2) Soft-IP core synthesis: Converts soft-IP core into a Net list which is 

a logical circuit description. (3) Physical Mapping: Maps the low-level Net list into a 

physical description circuit. (4) Net list placement and routing: Physical Net lists are 

placed into the FPGA and channel is established between the different components for 
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communication. (5) Bit-stream generation: Physical design is converted into a bit-level 

description i.e., bit-stream files which can be downloaded into the board for execution. In 

the compilation phase, the software program design is compiled from the C source and 

converted into the binary format used by the microprocessor. After the software has been 

compiled into a binary executable file, the hardware and software are combined into one 

overall bit-stream. This bit-stream is used to initialize the SRAM with the hardware 

design, and the chip memories with the software program. Thus, when the system-on-

chip is boot-strapped, any microprocessors in the system will execute the software 

associated with them. 
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CHAPTER 3 

HARDWARE ARCHITECTURE DESIGN 

        As explained in the previous chapter, we have used FPGA board from Xilinx. The 

board is Xilinx Virtex5 XUPV5-LX110T evaluation platform [20]. The chip is 

xc5vlx110t, grade ff1136, speed -1. In order to develop the embedded system design on 

the chip, Xilinx has provided the Embedded Development Kit (EDK) [21] and an 

Integrated synthesis environment (ISE) software design suite [23]. Using this suite of 

tools, we can incorporate a wide range of hard and a soft-IP core, such as 

microprocessors, interconnects, memories, and an assortment of peripherals. The main 

advantage of this design suite is that on a single environment, we can perform design, 

simulation, synthesis, place and routing and finally, download and debug the system. 

 

Xilinx Intellectual Property (IP) is the building block of several Xilinx design platforms. 

Various IP cores are available to address requirements of FPGA designers in Digital 

Signal Processing (DSP), embedded and other connectivity application designs. The 

entire used IPs version is specified in the following sections. Xilinx keep updating IPs 

regularly and are available on their website but, these new IP versions have no guarantee 

to work in this project. 

 

We started with a single Microblaze processor design. The local BRAM is connected and 

used to instantiate the processor with an instruction and data BRAM controllers. The 

Microblaze is sitting on the PLB. The next processor was added to the system from the IP 
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catalog and provided with connections of different BRAM and BRAM controllers similar 

to the first processor. A block diagram of the dual processor system is shown in Figure 8.  

                                             

Figure 8: Dual Microblaze Processor System 

The PLB BRAM acts as a shared memory for the two processors. Any address on the 

PLB is accessible by both the Microblazes. Since Microblaze uses memory mapped I/O, 

both of them can access any resource on the PLB bus. The XPS Mutex can also be used 

in place of FSL for inter-processor communication between the processors.  

 

After the hardware platform design is complete, FPGA configuration bitstream is 

generated. Xilinx Platform Studio (XPS) is used to build the net list and bitstream file. 

Then, the software component is set with a downloadable Executable Linked Format 

(ELF) file and merged with the hardware bitsream to dynamically download onto the 

board via JTAG cable connected to the FPGA. 

 

3.1 The Design of DFS 

To accommodate more numbers of Microblaze processors and to improve the system 

performance, we made use of PLB bus for each individual processor and connected them 

using PLB-to-PLB Bridge. The Xilinx PLB-to-PLB Bridge design allows the user to 



20 
 

tailor the bridge according to a specific application by setting certain parameters to 

enable/disable features. The PLB-to-PLB Bridge is a slave on the primary and master on 

the secondary PLB. We can isolate some of the slow PLB peripheral from the primary 

PLB and improve the system performance. The bridge allows the Microblazes to access 

the external DDR2SDRAM memory and other peripherals on different buses by mapping 

to their address space. 

  

 

Figure 9: Schematic diagram of PLB-to-PLB Bridge 

Further, a hardware test-bed with four Microblaze homogeneous soft-cores on a same 

chip of FPGA and point-to-point network topology was built (as shown in Figure 10). 

Each core was made to dynamically change its working frequency using the clock control 

unit (CCU) based on Xilinx’s Digital Clock Manager (DCM) [18]. A clock generator 

module is used to initiate the DCM, where the clock control unit translates the control 

into the DCM and generates the desired clock. The configuration and customized units 

for the experiment to test the multi-core test bed is explained below.  
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Figure 10: Homogeneous multi-core architecture with variable working frequency 

 

Configuration and Customized Units 

Xilinx provides two types of processor units, hard-core PowerPC and soft-core 

Microblaze. The so-called hard-core unit is basically a silicon unit integrated into FPGA.  

The advantage of hard-core is the speed, but it lacks the flexibility of a soft-core unit.  

The soft-core is an integrated logic design based on FPGA fabric, which make 

Microblaze much more flexible.  The Virtex5 board supports only microblaze processor 

with speed of 125MHz.  With soft-core, you can add an arbitrary number of processors, 

as long as the FPGA chip has enough capacity.  Besides, each processing unit could be 

tailored according to need.  For Microblaze, you can specify the number of the pipeline 

stages, add or delete the float point unit, change the bus interface, make tradeoff between 

space and throughput, and so on. 

The detailed configuration for Microblaze (7.10.d) is explained as follows: 

Bus Interface: Setting from BUS Interface Tab. It can also be seen and changed from 

MHS file.  Remember to name the 3 FSL master and slave channels. 
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Port Interface: Change the clock to the one you are going to drive the processor. By 

default, it is all sys_clk_s. 

Instruction Tab-Optimization (Select implementation to optimize area): This option could 

make tradeoff between area and processor throughput. Enable this option when you need 

to reduce the logic used by Microblaze. 

Exception: Enable both data and instruction side PLB exceptions, enable illegal 

instruction exception and enable unaligned data exception 

Cache: Due to the current bus connection, you must enable cache to use XCL interface. 

Enable both Instruction and Data caches. Also enable the option “Use cache links for all 

D/I cache memory access”. Because we are going to modify the XCL interface in MPMC 

in order to support different clocks. All the memory access must go through this XCL 

interface, otherwise system fails.  The cache tab configuration is listed as below. 

 

Figure 11:  Microblaze Cache Setup 
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Buses: Choose the appropriate number of FSL for the example project. 

Multiple-port Memory Controller (MPMC) 4.03.a version: DDR2_SDRAM  

Memory control unit manages the DDR2_SDRAM memory and provides multiple ports 

access for processors. The basic configuration of MPMC is as follows: 

Bus interface: Rename the XCL interface so that each one connected to a Microblaze 

XCL bus.  

Port interface: The basic ports configuration is based on the board setting. Their 

corresponding user constraints are defined in the system.ucf file. The memory unit needs 

a 200MHz clock to enable the DDR2. This unit also requires a 100MHz clock with a 90 

degree shift, which can be generated by module Clock Generator. 

Base Configuration: Set the all the ports interface to be XCL. 

 

Figure 12: MPMC base Configuration 
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Memory Interface Tab: Choose the right part number: MT4HTF3264H-53E 

Port Configuration Tab: XCL port is left default. Choose common Port Address for easy 

access. 

  

Figure 13:  Address Port  configure for MPMC 

Advanced Tab: Set BRAM as the FIFO configuration for each Port. 

 

Figure 14: MPMC Port and Pipeline configuration 

 

In vhdl, we need to add source files from FSL. The added source files and structure are 

listed as below: 

  cachelink.vhd     
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              |---------fsl_v20.vhd 

      |---------async_fifo.vhd 

      |--------- async_fifo_bram.vhd 

            |---------gen_srlfifo.vhd 

          |---------gen_sync_bram.vhd 

          |---------gen_sync_dpram.vhd 

           |---------sync_fio.vhd 

As you can see, cachelink.vhd is the top file of the added sources. You can view the 

source by opening file cachelink.vhd. It can be treated as a wrapper. It did not add any 

logic into the system. The only function it performs is creating two instance of FSL unit. 

Because FSL is unidirectional, you need one pair of FSL to communicate in duplex 

mode. 
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Figure 15: CacheLink.vhd instantiate two FSL unit 

 Fsl_v20 and others file are copied from Xilinx’s fsl_v2.11.a. The entire source files can 

be found from Xilinx ISE’s IP library. For the verilog, all you need to take care is the file 

mpmc_xcl_if.v (If you want to create your own mpmc_xcl_if.v, be sure to change the file 
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property to write/read from read only). This file provides the XCL interface to the 

external memory access. The original interface conforms to Xilinx’s FSL bus interface. 

The inserted cachelink.vhd unit also conforms to FSL bus interface. The only difference 

lies in the clock because; each side is synchronized to different clock. In simple way, you 

can deem the cache link as an asynchronous FIFO with XCL interface. 

At first, you need to introduce some intermediate signal between the inserted unit and the 

original FSL interface as shown below. 

 

 

Figure 16: Cache Link signal declaration in mpmc_xcl_if.v 

 

Second, assign intermediate signals and instantiate the cache link unit. 
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Figure 17: Cache link signal assignment and instance in mpmc_xcl_if.v 

 

Third, modify the original read interface. Replace old signals with the new one from 

cache link. In addition, modify the original write interface. Note the clock signal need to 

be replaced carefully. Assigning a wrong clock signals will make the system very 

difficult to debug. 
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Figure 18: Cache link signal and clock replacement of read data interface in 
mpmc_xcl_if.v 
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Figure 19: Cache link signal and clock replacement of write data interface in 
mpmc_xcl_if.v 

 

If all these source files are changed for particular experiment, we need to add these 

source file in the pao files. (The .pao file is introduced in Platform Specification Format 

Reference Manual, which can be found at 

http://www.xilinx.com/support/documentation/sw_manuals/edk63i_psf_rm.pdf. Besides, 

Xilinx’s XAPP 967 gives the detail to create an IP, which is available at 

http://www.xilinx.com/support/documentation/application_notes/xapp967.pdf). The 

declaration in pao file will help the parser recognize these files and compile them before 

use. 
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Fast Simplex Link (FSL) 

As explained in the previous chapter, FSL is a fast connection between 2 processors. It is 

a uni-direction channel, so you should use a pair for duplex communication. It supports 

asynchronous communication between two clock domains. The base version is 2.10.a. 

The lasts version 2.11.a would cause some implementation error, so we stick to the older 

version. Any later version should be tested before you integrated it into the system. 

Base configuration: Set this unit run in asynchronous mode. The depth of FIFO can also 

be configured from 1 to 32. You can tailor the depth according to communication need.  

Port Configuration:  In each FSL channel, you should assign a master clock, 

FSL_M_CLK, to transmitter end and a slave clock, FSL_S_CLK, to the receiver. There 

is another clock FSL_CLK, which only used in synchronous communication.  You can 

ignore it in this project. There are some other handshake signals in the port section. For 

their usage, you can refer to FSL datasheet.  Here is an example: 

                                                     

Figure 20: Sample of FSL signal assignment 

Clock Control Unit 

The clock unit is based on Xilinx’s dynamic programmable Digital Clock Manager 

(DCM).  The detail of the clock generation can be found in the DCM datasheet and 

manual. The data interface is PLB. Clock control unit has a PLB slave interface. The 

processor can program this unit via PLB bus. The function of this unit is to translate the 
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control word, and write the control into DCM unit, and generate the desired clock. There 

is no need to configure this unit. The customization work is given in the following. 

There are two version of clk_control. In /ProjectName/pcore, clk_control_v2_01_a and 

clk_control_v3_01_a.  The former one is obsolete unit. We only used the latter unit.  The 

user ports are declared in mpd file, which can be found in /ProjectName/pcore/ 

clk_control_v3_01_a/data. 

 

Figure 21:  Port signal declaration 

In file user_logic.vhd, the design unit is declared like this. 

                                        

Figure 22: Clock Control Unit declaration in file user_logic.vhd 

For the design source file, you can see files like this. The clk_control.vhd and 

user_logic.vhd are generated by system template. The design top unit, top.vhd is 

instantiated in user_logic.vhd. The top.vhd calls drp_control.vhd for logic control, 

dcm1.vhd for clock generation. The sample.vhd is for debug purpose. 
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Figure 23:  File Structure of Clock Control unit 

The decode logic is included in top.vhd and the following code specify the desired 

clock.  You can change it to other clock frequency or you can modify them to support 

more clock choices. 

 

 

Figure 24: Clock assignment in top.vhd 

Configuration Unit 

This is also a simple customized unit to facilitate the multiple processor programs 

loading. The purpose is to enable the main processor (program loading processor) to reset 

the other processor when the program loading from flash to DDR2 is done. The added 

ports are declared at the beginning of user_logic.vhd. 
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Figure 25:   Port declaration in Configuration Unit 

 

The basic logic is shown in the following figure. The mbctrl_rst is the output reset signal. 

This unit controls the reset signal by the data (Bus2IP_Data) from main processor. In this 

way, the main Microblaze can reset the other processors and release them after program 

loading. 

 

Figure 26:  Logic in Configuration Unit 

3.2 The Design of Sharing Memory 

A. Implicit Multiprocessing 

In this method, a single copy of operating system runs and controls any number of 

processors in the system (as shown in Figure 27). Parallelism between the processers is 
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hidden by an operating system and hardware. The Microblaze processor does not support 

cache coherency and hence the implementation of cache coherency in software 

application has a very large impact.  

 

 

Figure 27: Implicit Multiprocessing 

 

B. Explicit Multiprocessing 

Another method of achieving multi-processor systems is to run every Microblaze with its 

own copy of RTOS. The Microblazes will have their private own address zones within 

the shared memory and the shared memory region with protocols. Since a different RTOS 

sits on each of the processor it leads to lot of memory space. 

 

Figure 28: Explicit Multiprocessing 
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However, for more number of processors using shared BRAM is not supported, so we 

make use external memory controller MPMC. To enable large test programs and data 

sizes, we divide the external memory (DDR2_SDRAM) into several memory sections 

and one shared section. Each private memory section is associated with one processor 

and can only be accessed by that processor. The shared memory section, on the other 

hand, can be accessed by all processor cores. 

3.3 The Design of Inter-processor Communication 

A. XPS Mutex 

In multiple processors XPS Mutex helps in synchronization when accessing shared 

resources. The mutex core has a configurable number of mutexes and writes to lock 

scheme. The mutex provides a mechanism for mutual exclusion to enable one processor 

to gain access to the shared resource. The shared resource in our project is the on board 

RS 232 UART interface where all the processors redirect their STDOUT to this shared 

console. Without synchronization, the console output would become useless. Hence, each 

processor locks XPS Mutex core before doing any output and then unlocks when done. 

The XPS Mutex IP currently available can support up to 8 processors. The connection of 

XPS Mutex to the PLB of individual processors is shown in figure below. The current 

XPS Mutex IP supports up to 8 PLB or FSL interfaces. 
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Figure 29: Schematic Representation of XPS Mutex Connection 

 

B. XPS Mailbox 

In a multi-processors environment, Processors need to communicate the data among 

them. The mailbox IP helps passing these simple messages (< a few 100 bytes) from one 

processor to another in a FIFO fashion. These mailboxes have a bi-directional 

communication channel and can be connected through PLB or FSL interface (similar to 

Figure 29). Apart from sending the data between processors, the mailbox can also be used 

to generate interrupts between the processors. The XPS Mailbox has two interfaces that 

are used to connect to the rest of the system. Both of these interfaces can be 

independently configured to use PLB or FSL bus. 

 

The Matrix Addition Example on the system 

Initially, the dual Microblaze processor system was tested with matrix addition example 

with booted real-time operating system, xilkernel. Using inter-processor communication 

technique, a system with two processes that uses a shared BRAM and an external 

memory DDR2SDRAM to accommodate the OS xilkernel, is built. The master 



38 
 

Microblaze has the data on which matrix addition is to be performed. It writes the data to 

the shared BRAM. The slave Microblaze waits and keeps on checking whether a 

particular bit is set or not flagging that data has been written completely. Then the slave 

Microblaze starts reading the data. Once completed it calculates and writes the result to a 

different location on the shared BRAM memory. The master Microblaze then calculates 

the final result and displays the result on the hyper terminal window (RS232 UART). 

\ 

Figure 30: Schematic Representation of Matrix Addition 

 

Output Display RS232UART 

The serial output is supposed to print out computation result. The baud rate can be 

configured in this IP. Due to the limit of computer serial output, the highest baud rate can 

be set to 112k. In addition, the parity and bit number should be set the same as with the 

computer serial terminal. 
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Boot loader 

The scratch pad memory within a PE unit is limited. The Xilinx’s EDK boots only one 

processor at a time. To boot all four Microblazes, we need to customize the bootloader 

and configure other programs like link script. Also, the flash programmer is supposed to 

program the main program into the flash. Boot loader is the program in charge of 

program loading from flash memory into DDR2_SDRAM.  As we have multiple 

programs to load, we also need to customize the default bootloader, so that they can load 

all the images into DDR_SDRAM. After the program loading, it needs to notify the other 

processor, so that they can jump into the memory. The default boot loader only loads one 

image. The following code reloads multiple copies of program images from flash: 

 

 

Figure31:  Loading more than one image into FLASH PROM 
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The starting address of each image can be found in header file blconfig.h. 

 

Figure 32:   Define starting address of image in FLASH PROM 

Before the program loading, reset all other processor via Configuration control unit. 

 

Figure 33: Reset other processor before image loading 

After the program loading, reset other processors, and jump into starting address of new 

program. The jump start address is predefined. 

 

Figure 34:  How to enter main program after loading 

 

Boot Program 

Here we can boot load the program in the processors other than the main processor 

during the loading period. The main purpose for Boot Program is to enter the main 

program address. Because Configuration unit already resets other processors during load, 

Boot Program only need to jump to the correct main program. For MicroBlaze_0, the 

initialized program is bootlaoder. Because processor ‘0’ is in charge of program loading.  
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For the other processor, you still need to initialize a program, which can wait for the 

ready signal from Microblaze_0. When the boot loader finishes the program loading, it 

will reset other processor, the Boot Program restart and enter the specified address. The 

address is predefined in the boot program. Define the starting address and jump into the 

address after release. 

 

Figure 35:   Boot Program Sample 

 

Linker Script 

 The linker script is the file which allocates memory space for the program. You need to 

assign the sections, manage the heap and stack. What’s more important, you need to 

specify the loading address for the other program. By default, loading address is the 

starting address of the DDR2_SDRAM. For multiple processors program loading, the 

latter will overlap the previous one if they share the same starting address. So the linker 

script file must be modified to avoid this overlap. 
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For other processors, after the basic configuration, you need to modify the orginal 

address and the length of the DDR2_SDRAM should be customized. Correct address and 

length should be calculated as well. 

 

Flash Programmer 

Flash programmer can write the main program into FLASH memory, but each program 

must be written into different address. And there must be enough space between 

programs to avoid overlap.  Please note you need to instantiate debug module and 

download the bit stream before you use flash programmer. The detail can be found in 

Xilinx’s manual. 

      The following is the flash programmer sample setting. As you can see, the offset is 

set to be ‘0x90000000’. For other processor, you need to set an offset, which is used in 

the boot loader.  This offset should be consistent with your offset setting in header file 

blconfig.h of boot loader. 
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Figure 36: Programming FLASH memory 
 

 
Setup HyperTerminal:  
 
The hyper terminal connections are set as shown in the figure below. We have to make 

sure that the RS232 UART and the hyper terminal connections are same.  

 

 
 

Figure 37: Setting RS232 serial port terminal for output 
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The overall hardware architecture of our design through Xilinx EDK platform studio is as 
shown below.  
 
 

 
 

Figure 38: Overall System View. 
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CHAPTER 4 
 

OPERATING SYSTEM SUPPORT AND SOFTWARE PLATFORM SETTINGS 
 

        As explained earlier, we want to boot up our hardware with real-time operating 

system in order to implement different power/thermal scheduling policies for ease of 

development and testing. Therefore, under XPS GUI we configured operating system and 

library as shown in Figure 39 below. The RTOS used in our project is explained in the 

following section. 

 

 

Figure 39: Software Platform Settings 

 
4.1 Standalone Board Support Package 

The Board Support Package (BSP) is the lowest layer of software modules used to access 

processor specific functions. When there is no operating system in our design, the library 

generator automatically builds the standalone BSP in the project library [22].  The 

standalone BSP is designed for use when an application accesses board/processor 

features directly and is below the operating system layer. Initially, the multi-core 
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Microblaze was tested with the standalone BSP and implemented to perform 

synchronization when accessing a shared resource. 

 
 

4.2 Building of Xilkernel Real-time Operating System 

Xilkernel is a small, robust and modular kernel that provides scheduling multiple 

execution contexts. It is a free software library integrated within the Xilinx embedded 

development kit (EDK) tool [5]. It is a simple embedded processor kernel that can be 

customized to a large degree for a given system. It supports the core features required in a 

lightweight embedded kernel, with a POSIX API [22]. Xilkernel IPC services can be 

used to implement higher level services (such as networking, video, and audio) and 

subsequently run applications using these services. 

The main advantages of using xilkernel are:  

• Breaking down tasks as individual applications and implementing them on an 

operating system  

• It enables us to write the code at an abstract level, instead of at a small, micro-

controller level 

• Highly scalable kernel (inclusion or exclusion of functionality as required) and  

• Complete kernel configuration (deployment within minutes from inside of Xilinx 

platform studio of EDK) [5, 12].  

•  

Xilkernel includes the following key features: 

• A POSIX API targeting embedded kernels 

• Core kernel features such as: 
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 POSIX threads with round-robin or strict priority scheduling 

 POSIX synchronization services - semaphores and mutex locks 

 POSIX IPC services - message queues and shared memory 

 Dynamic buffer pool memory allocation 

 Software timers 

 User level interrupt handling API 

• Highly robust kernel, with all system calls protected by parameter validity checks 

and proper return of POSIX error codes 

• Statically creating threads that startup with the kernel 

• System call interface to the kernel 

• Support for creating processes out of separate executable Executable Link Files 

(ELF) 

 

4.3 Scheduling 

In computer multitasking, multi-processing operating system and real-time operating 

systems, the key concept is scheduling. Scheduling is the process of deciding how to 

commit available resources between varieties of available or possible tasks. In xilkernel 

RTOS, we can make use two types of scheduling techniques: Round robin scheduling and 

Priority based scheduling. However, for our project we made use of only round robin 

scheduling. 

A. Round robin scheduling: 

Round robin is one of the simplest scheduling algorithms available for processes or 

threads in an operating system. They assign time slices to each process or thread in equal 
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proportion and in circular order. They handle the processes or threads without any 

priority. 

B. Priority based scheduling: 

Using priority based scheduling, we can assign higher priority to processes or threads that 

are more important than other processes. The process or thread with the highest priority 

will have the control over the CPU when it is available.  

  

In our project, to gain exclusive access to a resource, when multiple threads are created 

and each of them want to send debug information to the serial I/O interface, we made use 

of mutexes in real-time concepts. Mutexes are a synchronization mechanism between 

threads. 

         

 

Mutexes are a type of synchronization between threads because even though thread 2 has 

a higher priority it has to wait on an event (unlock) of thread 1. It means that while T1 is 

using the UART and hence locks the mutex, T2 has to wait to use the UART. Like this 

we ensure exclusive access to the UART resource. 

 



49 
 

Once we have finished adding all the required IP cores and other peripherals we have to 

set the platform for software application. The xilkernel Real-Time Operating System 

(RTOS) is selected and configured according to the application requirements i.e., mutex 

enabled and then the board support package is generated using library generator. The 

library generator uses the configuration information and the hardware design net list to 

setup complete software application. The xilkernel sources, make files and other scripts 

are built with conditional code to generate the correct software based on the hardware 

described in EDK XPS GUI. The compiler options are set to link against the xilkernel 

RTOS to obtain the ELF file and then, downloaded to the board. 

 

 

Figure 40: Setting Compiler Options 
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CHAPTER 5 
 

EXPERIMENTS AND RESULT 
 

        Once the hardware system and all the software platform settings are configured 

according to the required applications, we can obtain the output on the hyper terminal. In 

our case, as discussed in the previous chapters we considered the Matrix addition 

example and the utilization of XPS Mutex hardware IP for multi-processors to achieve 

synchronization when accessing shared resources.  

 

5.1 Varying the Working Frequency 

Several interesting parameters were investigated with profiling. This includes the 

frequency transition and the timing overhead.  The frequency switching overhead, i.e., 

the time required to change the processor frequency from one to another, was measured 

by inserting Xilinx’s ChipScope Integrated Logic Analyzer (ILA) core into the design 

and sampling the IP internal signals via JTAG connection. The timing diagram is shown 

in Figure 40. The clk_in is the input and clk_out is system clock. The lock signal indicates 

the DCM working status: it goes low when reconfiguration starts, and goes high when 

stable output is available. Therefore, the interval when lock goes low represents the 

frequency switching overhead. The overhead is quite constant and not much dependent to 

the starting and ending frequencies. 
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Case (i) The switching overhead is approximately 9 to 10 cycles. 

 

Case (ii) The switching overhead is approximately 6 to 7 cycles. 

       

Case (iii) The switching overhead is approximately 12 to 14 cycles. 

          Figure 41: The Timing Overhead for Varying the Working Frequencies 
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The overall system resource utilization summary table is shown in Table 1. When 

considering whole design, the utilization rate of slices may exceed 100% because the 

system only provides estimation based on subsystem utilization. 

Device resource 

Utilization on FPGA Virtex5   Device: 
XC5VLX110T-1FF1136 

Used Available Percentage 

No. of slice registers 32684 69120 47% 

No. of slice LUTs 38543 69120 56% 

DCM 4 4 100% 

Number of fully used LUT pairs 3 13 23% 

No. of BUFG/BUFGCTRLs 3 32 9% 

No. of bonded IOBs 28 640 4% 

Table 1: Resource Utilization Summary 
 

5.2 Debugging 

In order to enable more number of processors to download the ELF file, we have to make 

use Xilinx Microblaze Debug Module (MDM) in our design. MDM enables JTAG-based 

debugging of one or more Microblaze processors. The present Xilinx MDM IP of XPS 

GUI supports up to eight Microblaze processors. They are also helpful in achieving 

synchronized control for multiple Microblazes used. Xilinx MDM supports a JTAG-

based UART with a configurable AXI4-Lite or PLB interface. The main advantage of 

MDM is connecting to the chipscope Integrated CONtroller (ICON) cores through 

BSCAN signals.  
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Figure 42: Block Diagram of Microblaze Debug Module (MDM) 
 
 

From the Xilinx’s Microprocessor Debug (XMD) shell we connect the JTAG based 

UART to MDM, and then download the ELF file to the respective processors to run the 

system and display the output. 

 

5.3 Four Microblazes system using single PLB bus 

For the matrix addition and multiplication example we considered different hardware 

setups. Firstly, a single PLB bus was shared by all the processors with one master 

Microblaze and three slave Microblaze processors (as shown in Figure 45). We made use 

of external memory to write and read data by different processors.  
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Initially, we considered a simple addition example and later a 3X3 matrix multiplication 

example to increase the workload of the processors. All the data required for computation 

of addition or multiplication is entered into master processor then it distributes the data 

evenly between the three slave processors. The slave processors compute the addition or 

multiplication and send the result back to master processor. After retrieving the results 

from the slaves, the master processor computes the total result and displays the output on 

the hyper terminal (as shown in Figure 43).  

--------------------------------------------------------------- 

1   initial = 0; 
2   s = initial << 30; 
3  CLK_CONTROL_mWriteReg (BASEADDR,0,s); 
4   while (1)  
5   { 
6      getfsl(temp, 0); 
7      temp++; 
8      putfsl(temp, 1); 
9    //Matrix calculations during transition 
10   for (i=0; i<3; i++) { 
11       for (j=1; j<3; j++) { 
12          mat[i][j] = 2*i * temp  - j *temp ; 
13       } 
14     } 
15   } 
--------------------------------------------------------------- 
Code line1-3 configures the clock control unit. As the MicroBlaze adopts little-endian 
bus, we should shift the data before write it into registers. Line 3 calls a register write 
function and write configuration into custom IP. 
 
Line 6-8 is passing the FSL data from one processor to another. The getfsl and putfsl are 
blocking FSL read and write. 
 
Line 10 -14 is the for loop calculation.  
 
For the simplicity, we keep the processor in the while loop from line 4 to line 15, which 
is matrix calculation. The code is expected to keep the processor busy. 
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Figure 43: Output for matrix addition and Multiplication example on 4 Microblazes 
system 
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5.4 Four Microblazes system using different PLB buses and a shared console 
 
Secondly, we made use of PLB buses for each of the processor which are internally 

connected by PLB-to-PLB Bridge as explained in the previous chapter. XPS Mutex 

hardware IP was used to attain the synchronization for shared console RS232 UART 

between the 4 Microblaze processors. We also made use of a XPS Mailbox between the 

two processors to enable inter-processor communication. Since the mailbox is suited for 

small sized messages (< a few 100 bytes), we considered FSL bus for a 4 Microblazes 

system considering fast communication ability in them.   

 

As we can see in the block diagram above, the hardware mutex IP is connected to all the 

processors through individual PLB buses. Whenever a processor wants to display the 

output, it locks the mutex thereby no other processor can access the resource for output 

display. All the processors rendezvous between each other to synchronize their output to 

RS232 console as shown in Figure 44. You can see the change of the state in the 

processors when synchronizing or accessing resource one after the other in cyclic 

manner. 
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 Figure 44: For 4 Microblazes system using different PLB buses and a shared console 
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Figure 45: System architecture view for 4 Microblaze system with single PLB bus 
 

 

 

Figure 46: System architecture view for 4 Microblazes system with individual PLB buses 
connected with PLB-to-PLB Bridge and XPS Mutex. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

        The adaptivity is critical for multi-core architecture, which has the great potential to 

meet the increasingly demanding performance requirements but also needs to satisfy the 

stringent resource constraints. Multi-core processors have become the mainstream 

computing research. We have developed a flexible, reusable, and versatile multi-core test 

bed on FPGA that can be used effectively to validate the theoretical research on 

power/thermal aware computing. We expect that this test bed can lead to new findings 

and research directions in our power/thermal computing research.   

 

We need to manually partition the codes and map them into processors. This makes the 

program model very difficult for parallel computing. Further work on parallel 

programming is expected to improve both the productivity and efficacy of this system. 

We are watching closely for the DVS features in the new generations FPGA products. 

While changing the frequencies helps to vary the performance, this has not transformed 

to its real benefit, i.e., more effective power/energy conservation. 

 

Due to inaccuracy in the simulator and not being able to dynamically vary the voltage in 

the present FPGAs, we are not able to develop more complicated power/thermal models 

with scheduling policies. In our design, only a 4-MicroBlaze point-to-point network 

topology is integrated and no float-point unit is added in the system. It would be 

interesting to integrate more processors and float-point units. Besides, some connections 

other than FSL, like network on chip, are also considerations for future work. 
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GLOSSARY 

BRAM         Block Random Access Memory 

BSP              Board Support Package 

CLB             Configurable Logic Blocks 

EDK             Embedded Development Kit 

ELF              Executable Linked Format 

FPGA           Field Programmable Gate Array 

FSL              Fast Simplex Link 

IP                  Intellectual Property 

ISE               Integrated Synthesis Environment 

LMB             Local Memory Bus 

MDM           Microprocessor Debug Module 

MHS            Microprocessor Hardware Specification 

MMU           Memory Management Unit 

MSS             Microprocessor Software Specification 

NOC             Network on Chip 

PLB              Processor Local Bus 

RISC            Reduced Instruction Set Computer 

RTOS          Real-Time Operating System 

XCL             Xilinx Cache Link 

XMD           Xilinx Microprocessor Debug 
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