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ABSTRACT OF THE DISSERTATION 

4-HYDROXY ESTRADIOL-INDUCED OXIDANT-MEDIATED SIGNALING IS 

INVOLVED IN THE DEVELOPMENT OF BREAST CANCER 

by 
 

Victor Onyishi Okoh 
 

Florida International University, 2011 
 

Miami, Florida 
 

Professor Deodutta Roy, Major Professor 
 

Breast cancer is a disease associated with excess exposures to estrogens. While the mode 

of cancer causation is unknown, others have shown that oxidative stress induced by 

prolonged exposure to estrogens mediates renal, liver, endometrial and mammary 

tumorigenesis though the mechanism(s) underling this process is unknown. In this study, 

we show that 4-hydroxyl 17β-estradiol (4-OHE2), a catechol metabolite of estrogen, 

induces mammary tumorigenesis in a redox dependent manner. We found that the 

mechanism of tumorigenesis involves redox activations of nuclear respiratory factor-1 

(NRF1); a transcriptions factor associated with regulation of mitochondria biogenesis and 

oxidative phosphorylation (OXPHOS), as well as mediation of cell survival and growth 

of cells during periods of oxidative stress. Key findings from our study are as follows: (i) 

Prolonged treatments of normal mammary epithelial cells with 4-OHE2, increased the 

formation of intracellular reactive oxygen species (ROS). (ii) Estrogen-induced ROS 

activates redox sensitive transcription factors NRF1. (iii) 4-OHE2 through activation of 

serine-threonine kinase and histone acetyl transferase, phosphorylates and acetylate 

NRF1 respectively. (iv) Redox mediated epigenetic modifications of NRF1 facilitates 
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mammary tumorigenesis and invasive phenotypes of breast cancer cells via modulations 

of genes involved in proliferation, growth and metastasis of exposed cells. (v) Animal 

engraftment of transformed clones formed invasive tumors. (vi) Treatment of cells or 

tumors with biological or chemical antioxidants, as well as silencing of NRF1 

expressions, prevented 4-OHE2 induced mammary tumorigenesis and invasive 

phenotypes of MCF-10A cells. Based on these observations, we hypothesize that 4-

OHE2 induced ROS epigenetically activate NRF1 through its phosphorylation and 

acylation. This, in turn, through NRF1-mediated transcriptional activation of the cell 

cycle genes, controls 4-OHE2 induced cell transformation and tumorigenesis.  

 

 

 

  



vii 
 

TABLE OF CONTENTS 
CHAPTER 
 

 PAGE 

I. INTRODUCTION 1 
 List of references 5 

II. HYPOTHESIS, SPECIFIC AIMS AND RELEVANCE OF 
FINDINGS 
 

7 
 

III. LITERATURE REVIEW: ESTROGEN-INDUCED REACTIVE 
OXYGEN SPECIES-MEDIATED SIGNALING CONTRIBUTE 
TO BREAST CANCER 

10 

 Abstract 10 
 Introduction 11 
 Generation of genotoxic metabolites of estrogen as a potential 

  mechanism of breast carcinogenicity 15 
 Estrogen receptor mediated carcinogenic actions 18 
 Estrogen, mitochondria, and ROS generation 19 
 Estrogen and mitochondria 20 
 Mitochondria and generation of estrogen induced ROS 21 
 Estrogen-induced ROS-mediated oxidative DNA damages 23 
 Estrogen-induced ROS mediated redox signalings 25 
 Regulation of phosphatases by estrogen-induced ROS 26 
 Activation of kinases by estrogen-induced ROS 

A-Raf 
ERK 
AKT 

30 
31 
32 
33 

 Activation of redox sensitive transcription factors by estrogen-   
  induced oxidants signaling 
ER 
AP-1 and CREB 
NF-kB 
NRF1 

 
35 
35 
37 
41 
42 

 Role of estrogen-induced redox signaling in the development of  
breast cancer 

 
46 

 Estrogen-induced ROS as potential mediator of cell         
  transformation and generators of human breast cancer stem   
  cells 

 
46 

 Estrogen-induced ROS as mediators of cell cycle progression 48 
 Estrogen-induced ROS as mediators of breast cancer progression 54 
 Estrogen induced ROS, NRF1 and therapeutic resistance 57 
 Summary 59 
 Figures and legends 

 
91 

   



viii 
 

IV. REACTIVE OXYGEN SPECIES CAUSES NEOPLASTIC 
TRANSFORMATION AND XENOGRAFT GROWTH OF 4-
HYDROXY ESTRADIOL-TRANSFORMED MAMMARY 
EPITHELIAL CELLS VIA TRANSDUCTION OF REDOX 
SIGNALS TO PI3K/AKT 

 
 
 
 

93 
 Abstract 93 
 Introduction 94 
 Materials and methods 96 
 Results 104 
 Discussions 110 
 List of references 120 
 Figures and legends 128 
   
V. ESTROGEN-INDUCED REDOX SIGNALING OF NRF1 

MEDIATES IN VITRO GROWTH AND METASTASIS OF 
BREAST CANCER CELLS 

 
 

139 
 Abstract 139 
 Introduction 140 
 Materials and methods 142 
 Results 149 
 Discussions 155 
 List of references 161 
 Figures and legends 170 
   
VI. THE ACTIVATION OF NRF1 BY ESTROGEN IS 

NECESSARY FOR BREAST CANCER SUSCEPTIBILITY TO 
DEVELOP A MALIGNANT PHENOTYPE AND FOR 
INVASIVE GROWTH OF BREAST TUMORS                                                                  

 
 
 

179 
 Abstract 179 
 Introduction 180 
 Materials and methods 183 
 Results 189 
 Discussions 191 
 List of references 194 
 Figures and legends 199 
   
VITA  208 
   
  



ix 
 

  
LIST OF FIGURES 

 

FIGURE  PAGE 
 
 
 
1. 

 
LITERATURE REVIEW 
 
Scheme showing metabolism of estrogen and redox cycling of 
its metabolites 

 
 
 
 

91 
   
2. Estrogen induced cellular responses including carcinogenicity and 

growth of cancer cell do not correlate with the binding affinity of 
various estrogens to estrogen receptor (ER) and their potency 
both in vitro and in vivo 

 
 
 

91 
   
3. Dual Roles of ROS: High ROS levels induce oxidative damage 

and produce cell death, where as low physiologic ROS levels 
facilitate cell-to-cell communication and cell proliferation 

 
 

92 
   
4. Mechanism of ROS signaling in coordinated inactivation of 

phosphatases and activation of kinases leading to estrogen-
mediated changes in the expression of genes involved in growth, 
apoptosis, transformation or invasion of cells 

 
 

 
92 

   
 REACTIVE OXYGEN SPECIES CAUSES NEOPLASTIC 

TRANSFORMATION AND GROWTH OF 4-HYDROXY 
ESTRADIOL-TRANSFORMED MAMMARY EPITHELIAL 
CELLS VIA TRANSDUCTION OF REDOX SIGNALA TO 
PI3K/AKT PATHWAY 
 

 

1. 17β-estradiol and its catechol metabolites induce ROS production 
in MCF-10A cells in a dose dependent manner 

 
128 

   
2. 
 

E2 and 4-OHE2, but not 2-OHE2 transforms MCF-10A cells in a 
dose dependent manner 

 
129 

   
3. Clonogenic expansion and invasiveness of 4-OH-E2 transformed 

MCF-10A cells 
 

130 
   
4. Spheriod Formation in Collagen and HuBiogel 131 
   
5. Phenotypic Assessment of Transformed Cells 132 
   
6. ROS Scavengers Attenuates Cell Transformation 132 
  

 
 



x 
 

7.  The growth of E2-induced transformed clone was inhibited by 
both antioxidants, ebselen and N-acetyl cysteine 

 
133 

   
8.  E2-induced 3-D tumor spheroid formation was inhibited by 

ROS modifiers 
 

134 
   
9. Estrogen and its metabolites differentially activates PI3K/Akt 

signaling pathway during mammary transformation 
 

134 
   
10. 4-OHE2 Activation of PI3K/Akt Signaling Pathway is Abrogated 

by  Chemical and Biological ROS Modifiers 
 

135 
   
11. 4-OHE2 induced Activation of Akt1 Mediates MCF-10A 

Neoplastic Transformation 
 

137 
   
12. 4-OHE2 induced up-regulation of cell cycle gene during 

neoplastic transformation of mammary cells is inhibited by ROS 
modulators 

 
 

138 
   
 ESTROGEN-INDUCED REDOX SIGNALING OF NRF1 

MEDIATESIN VITRO GROWTH AND METASTASIS OF 
BREAST CANCER CELLS 
 

 

1. Estrogen induced ROS mediates in vitro proliferation of MCF-7 
breast cancer Cells 

 
170 

   
2. Differential effects of ROS production on in vitro growth of 

MCF-7 
171 

   
3. ROS Scavengers inhibits E2 induced growth of MCF-7 cells 171 
   
4. Estrogen induced activation of Akt is abrogated by ROS 

scavengers 
 

172 
   
5. Estrogen induced NRF1 activation is abrogated by ROS 

scavengers 
 

173 
   
6. Akt phosphorylate and activate NRF1 which mediate in vitro 

growth of  MCF-7 cells 
 

174 
   
7. Silencing of NRF1 attenuates estrogen induced in vitro growth 

of MCF-7 
 

175 
   
8. NRF1 expressions modulates estrogen induced proliferation and 

growth of  MCF-7 cells 
 

176 



xi 
 

   
9. NRF1 over-expression modulates invasion of MCF-7 cells 177 
 

 

  
THE ACTIVATION OF NRF1 BY ESTROGEN IS 
NECESSARY FOR BREAST CANCER CELL 
SUSCEPTIBILITY TO DEVELOP A MALIGNANT 
PHENOTYPE AND FOR INVASIVE GROWTH OF BREAST 
TUMORS 
 

 

1. Redox expression of NRF1 modulates 4OHE2 induced 
mammary transformation 

 
199 

   
2. NRF1 expression mediates 4OHE2 induced mammary  

tumorigenesis 
 

200 
   
3. Activation of Akt phosphorylate NRF1 during mammary 

tumorigenesis 
 

201 
   
4. PCAF expression participates in 4OHE2 induced mammary 

transformation 
 

203 
   
5. Akt Phosphorylation of NRF1 induces its Acetylation during 

mammary transformation 
 

204 
   
6. Transactivation of  NRF1 during mammary tranformation is 

redox dependent 
 

206 
   
7. NRF1 expression is involved in in vitro growth of breast cancer 

cells 
 

208 
   



xii 
 

LIST OF ACRONYMS 
 

2-Hydroxy estradiol 2-OHE2 

2-Methoxy estradiol 2-MeO-E2 

4-Hydroxy estradiol 4-OHE2 

4-Methoxy estradiol 4-MeO-E2 

Activator protein 1  AP-1 

Adenosine-5'-triphosphate ATP 

5-Bromodeoxyuridine  BrdU 

Catalase  Cata 

Cell division cycle CDC 

Complementary deoxyribonucleic acid cDNA 

Chromatin immunoprecipitation ChiP 

Carbon dioxide CO2 

Acetyl group COCH3 

Catechol o methyl transferase  COMT  

Copper Cu 

Copper ion Cu2+ 

Cytochrome p450 1beta1               CYP450 1B1 

Cyclic adenosine monophosphate response element binding 
protein 
 

CREB 

2’, 7’, -dichlorofluorescein DCF 

2’, 7’, -dichloro-dihydrofluorescein DCFH 



xiii 
 

2’, 7’, -dichloro-dihydrofluorescein diacetate DCFH-DA 

Dulbecco's Modified Eagle Medium DMEM 

Dimethyl sulfoxide DMSO 

Deoxyribonucleic acid DNA 

17-β-Estradiol  E2 

E2 Transcription Factor  E2F 

Ebselen Ebs 

Electron Transport Chain ETC 

Eukaryotic initiation factor 2  eIF2 

Estrogen receptor ER 

Estrogen receptor positive ER+ 

Estrogen receptor negative ER- 

Estrogen response element ERE 

External regulated kinase ERK 

Estrogen receptor knock out ERKO 

Fetal bovine serum FBS 

Growth factor receptor positive GFR+ 

Growth factor receptor negative GFR- 

Hydrogen peroxide H2O2 

Hank’s Balanced Salt Solution  HBSS 

Horse serum  HS 



xiv 
 

Iron Fe 

Intergrin associated proteins IAP 

Knock down Kd 

Manganese Mn 

Manganese superoxide dismutase MnSOD 

Messenger ribonucleic acid mtTFA, TFAM 

Mitochondrial DNA mtDNA 

N-Acetyl-Cysteine NAC 

Nuclear respiratory factor 1 NRF1 

Nuclear factor kappa beta NFk B  

Super oxide O2.- 

Super oxide dismutase SOD 

Optical density OD 

Oxidative phosphorylation OXPHOS 

Over expression Ox 

p300/CBP-associated factor   PCAF 

Proliferating Cell Nuclear Antigen PCNA 

Polyacrylamide gel electrophoresis PAGE 

Phosphate buffered saline PBS 

Polymerase chain reaction PCR 

Phosphatase and tensin homolog PTEN 

Quantitative PCR qPCR 



xv 
 

 
  

Reduction oxidation Redox 

Ribonucleic acid RNA 

Ribonucleic acid degrading enzyme RNase 

Reactive oxygen species ROS 

Reverse transcription polymerase chain reaction RT-PCR 

Standard deviation SD 

Sodium dodecyl sulfate SDS 

Short hairpin RNA  shRNA 

Small interfering RNA  siRNA 

Tamoxifen TAM 

tertiarybutyl hydroperoxide t-BOOH 

Tumor necrotic alpha TNF α 

Tris(hydromethyl)methylamine Tris 

Zinc Zn 



1 
 

CHAPTER I 
 

INTRODUCTION 

Estrogens are complete breast carcinogens in experimental models as they are capable of 

initiating and triggering growth and selection, resulting in palpable malignancy (1-3). 

Both epidemiological and animal studies indicate that estrogens are a known risk factor 

for breast cancer (1,3). However, the mechanisms by which estrogen initiate or stimulate 

the progression of cancer remain the subject of a long-standing controversy, because we 

have been not able to resolve whether estrogen or their metabolites are procarcinogenic. 

  

We have previously shown that estrogen-induced tumor formation is decreased in 

animals exposed to inhibitors of estrogen metabolism or to hormonally potent estrogens 

with decreased metabolic conversion to catechol metabolites compared to E2 (2). 

Moreover, we have shown that chronic treatment of the hamsters with vitamin C reduced 

the incidence of E2-induced renal carcinogenesis by ~50% (2). Since vitamin C has no 

antiestrogenic activity, its strong inhibitory effect on estrogen-induced tumorigenesis may 

largely be derived from its protective effect against the oxidative damage caused by the 

estrogens and its metabolites. Most of the recent studies show that hydroxyestrogens and 

methoxy derivatives represent the majority of either urinary or intratumor estrogens in 

human breast cancer patients, whereas they are relatively scarce in urine or mammary 

glands of healthy women (4). These studies showed that 4-OH-E2 is elevated in breast 

tumors as compared to normal mammary tissues which implicates its role in breast cancer 

and strongly suggest the involvement of estrogen metabolites in the initiation and/or 

promotion steps of breast carcinogenesis. 
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Recent studies indicate that mammary tumors can develop despite a lack of a functional 

ER α [2]. Although tamoxifen and other antiestrogens are considered to prevent cancer 

through competition for the ER, other mechanisms cannot be ruled out as these 

compounds also block metabolism and redox cycling of estrogen, and are free radical 

scavengers (5). The 4-OH-E2 induces an estrogenic response in the uterus of ER null 

mice, and this response is not inhibited by ICI182780 (6). These findings suggest that, in 

addition, to nuclear ER-mediated genomic signaling pathways, non-genomic pathway(s) 

are involved in the estrogen-dependent growth of preneoplastic and neoplastic cells. We 

believe that to produce cell transformation both genomic and non-genomic actions of 

estrogen are required and these two complementary mechanisms through which estrogens 

produce transformed phenotype of cells. Formation of estrogen-DNA adducts in 

mammary tissues have been shown by combined LS-MS-MS and LC-nano ES tandem 

mass spectrometry (7). In addition, 4-hydroxycatechol estrogen conjugates with 

glutathione or its hydrolytic products (cysteine and N-acetylcysteine) have been detected 

in mammary tissues from ERKO/Wnt-1 mice (8). Although this type of DNA adduction 

may play a role in the generation of mutations, it appears to be a late event. In our recent 

studies, estrogen-induced a rapid increase of intracellular ROS formation in MCF-7 cells 

(9). Based on our preliminary study showing 4-OH-E2-induced ROS formation in 

MCF10A cells, the accumulation of 4-OH-E2 in estrogen target organ of the cancer will 

result in increased formation of ROS in the target cells. In addition, 4-OH-E2 is also 

strongly active at the estrogen receptor (10,11), which would add to the growth 

stimulation of the ER-positive cells. Our preliminary data revealed that 4-OH-E2 may 

also activate an additional signal transduction pathway that is different from the classical 
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ER•signaling pathway. The contribution of this signal transduction system to breast 

carcinogenesis is the subject of the proposed study. 

 

In pursuing mitochondrial regulators of cell cycle progression, we discovered that 

intracellular ROS levels increase as cells progress through G1 and into S phase upon E2 

exposure (11). High ROS levels induce oxidative damage and arrests cells in G0/G1. 

However, low physiologic ROS levels are utilized by cells for cell-to-cell communication 

and in proliferation. Inhibition of estrogen-induced ROS by antioxidants prevents early 

G1 gene expression. We now know that the delicate intracellular interplay between 

oxidizing and reducing equivalents allows ROS to function as second messengers in the 

control of cell proliferation and cell transformation (11,12). Our preliminary study 

showed that MCF-10A cells treated with 4-OH-E2 rapidly produce ROS, which is 

preceded by an increase in the level of Ca2+. The accumulation of 4-OH-E2 as recently 

reported in the human breast tissue in cancer subjects (9) will allow increased formation 

of ROS and Ca2+ in the target organ of cancer in a sensitive subpopulation. Our 

preliminary study showed that the overexpression of catalase and MnSOD prevented 4-

OH-E2-induced anchorage-independent growth of MCF-10A cells. These studies data 

indicate that 4-OH-E2-induced cell transformation may be mediated, in part, by ROS and 

Ca2+ signal transduction pathways that are different from the classical nuclear ER 

genomic signaling pathway. Therefore, how 4-OH-E2, through ROS signalings, produces 

malignant phenotype is an issue of fundamental importance to this proposal. 
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Recently, an NRF1 and CREB pair has been identified as a key regulator of the 

transcriptional program of the cell cycle in human cells because thes pair of transcription 

factors showed a significant co-occurrence rate on promoters of cell cycle regulated 

genes (13). NRF1 appears to play an important role as a regulator of cell cycle genes 

because NRF1 binding site has been identified by comparing genome-wide locations on 

genes involved in DNA replication, mitosis, and cytokinesis (14,15). Some of the genes 

which contain NRF1 binding sites on their promoters included Cdc2, Cdc25C, PCNA, 

and cyclin B1. In addition to NRF1’s role in controlling mitochondrial biogenesis-related 

genes, these observations are consistent with a role for NRF1 in regulating genes 

involved in growth and development. The expression of early G1 genes, c-myc, c-fos, c-

jun, cyclin D1, and NRF1 are regulated by ROS (2,16). The mRNAs of some of these 

genes are induced by estrogen-induced ROS and hydrogen peroxide as well as other 

inducers of oxidative stress (2,11). Based on these studies, we have proposed that 4-OH-

E2-induced ROS through activating the transcription factor NRF1 leads to the induction 

of cell cycle genes that contain the binding site(s) for this transcription factor in their 

promoters. This, in turn, supports the growth of anchorage-dependent and -independent 

cells. 
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CHAPTER II 

HYPOTHESIS, SPECIFIC AIMS, AND RELEVANCE OF FINDINGS 
 
Hypothesis 
 

We hypothesize that 4-hydroxy estradiol (4-OH-E2), a catechol metabolite of 17β 

estradiol (E2)-induced ROS epigenetically activate NRF1 through its phosphorylation 

and acylation. This, in turn, through NRF1 mediated transcriptional activation of cell 

cycle genes, controls 4-OH-E2-induced cell transformation and tumorigenesis.  

 
 
Specific Aim 1:  To determine whether estrogen-induced RO/NS are involved in 

estrogen-induced in vivo growth of malignant breast epithelial cells. To achieve this aim, 

we would determine whether: a overexpresion of mt superoxide dismutase (SOD) or 

catalase that detoxify ROS; or co-treatment with the chemical antioxidant scavengers, N-

acetylcysteine and ebselen, prevents estrogen-induced cell transformation and in vivo 

growth of malignant breast epithelial cells. b: Whether Knockdown of mitochondrial 

biogenesis through silencing of mtTFA will lead to attenuations of RO/NS production 

and whether reduced ROS production prevents estrogen-induced cell transformation and 

in vivo growth of malignant breast epithelial cells.  

 

Specific Aims 2: To determine that 4-OH-E2-induced ROS through activation of NRF1 

signaling transform normal breast epithelial cells to malignant cells. To accomplish these 

goals, we will determine whether the transformation of normal breast epithelial cells by 

4-OH-E2 is prevented by: a) the overexpression of ROS modifiers catalase and MnSOD, 
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b) silencing of NRF1. Cell transformation will be assessed by determining colony 

efficiency, colony size, ductulogenic capacity, and invasiveness. We will also determine 

whether silencing of NRF1 and overexpression of MnSOD or catalase  prevent  4-OH-

E2-induced  tumor formation in three-dimensional culture mimicking in vivo 

environment. The findings of this aim will reveal a new paradigm by showing that the 

carcinogenic activity of 4-OH-E2 requires NRF1. 

 

Specific Aim 3: To determine whether 4-OH-E2 induced ROS through stimulating redox 

sensitive AKT kinase and histone acetyltransferase of CREB binding protein associated 

factor (P/CAF), respectively, control phosphorylation and acylation of the NRF1. The 4-

OH-E2-induced epigenetic changes in turn activate NRF1. To test the postulate of this 

aim, we will determine that: i) NRF1 stability and transactivation are regulated by 4-OH-

E2-induced ROS. This mechanism involves NRF1 phosphorylation by AKT kinase and 

NRF1 acylation by the histone acetyltransferase CREB binding protein-associated factor 

(P/CAF), respectively; and (ii) the 4-OH-E2-induced epigenetic changes have an additive 

or synergistic effect on NRF1 activation. We will determine whether NRF1 transctivating 

ability is modulated by controlling its phosphorylation and/or acylation; and (iii) 

transcriptional activation of cell cycle genes and cell cycle progression are prevented by 

silencing ofAKT, P/CAF, or NRF1. These observations will reveal the new paradigm of 

4-OH-E2-induced cell cycle regulation of anchorage-independent cells by NRF1 
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Relevance of findings 
 

This study addresses an important public health issue by studying whether 

phosphorylation and acetylation of NRF1 by 4-OH-E2-generated ROS promote 

malignant transformation of normal breast epithelial cells.  The proposed studies are 

highly innovative, since they tested the novel concept that oxidants participate in 4-OH-

E2-induced cellular transformation and tumorigenesis.  Understanding if aberrant 

activation of NRF1 signaling by 4-OH-E2-generated ROS contributes to development of 

E2-dependent breast tumors provides new insights into cancer predisposition.  Moreover, 

it provides a novel paradigm for understanding the molecular mechanisms underlying the 

carcinogenic effects of natural estrogen and other medicinal and environmental 

estrogenic agents.  This is a new line of research that may well set the stage for the design 

and development of new and more effective NRF1 signaling-based drugs or gene 

therapies for the prevention and treatment of breast cancer.   
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CHAPTER III 

LITERATURE REVIEW 
 
 
ESTROGEN-INDUCED REACTIVE OXYGEN SPECIES-MEDIATED SIGNALINGS 

CONTRIBUTE TO BREAST CANCER GROWTH 
Victor Okoh, Alok Deoraj, Deodutta Roy 

Department of Environmental and Occupational Health, Florida International University, 
Miami, FL 33199-0001 

(2010 –  Biophysica Biochmica Acta, Received 22 September 2010;  revised 12 October 
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ABSTRACT 
 
Elevated lifetime estrogen exposure is a major risk factor for breast cancer.  

Recent advances in the understanding of breast carcinogenesis clearly indicate that 

induction of estrogen receptor (ER) mediated signaling is not sufficient for the 

development of breast cancer. The underlying mechanisms of breast susceptibility to 

estrogen’s carcinogenic effect remain elusive. Physiologically achievable concentration 

of estrogen or estrogen metabolites has been shown to generate reactive oxygen species 

(ROS). Recent data indicates that these ROS can induce DNA synthesis, increased 

phosphorylation of kinases, and activation of transcription factors, e.g., AP-1, NRF1, 

E2F, NFkB and CREB of non genomic pathways which are responsive to both oxidants 

and estrogen. Estrogen-induced ROS by increasing genomic instability and by 

transducing signal through influencing redox sensitive transcription factors play 

important role (s) in cell transformation, cell cycle, migration and invasion of the breast 

cancer. The present review discusses emerging data in support of the role of estrogen 

induced ROS-mediated signaling pathways which may contribute in the development of 

http://dx.doi.org/10.1016/j.bbcan.2010.10.005�
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breast cancer. It is envisioned that estrogen induced ROS mediated signaling is a key 

complementary mechanism that drives the carcinogenesis process. ROS mediated 

signaling however occurs in the context of other estrogen induced processes such as ER-

mediated signaling and estrogen reactive metabolite-associated genotoxicity. Importantly, 

estrogen-induced ROS can function as independent irreversible modifiers of 

phosphatases and activate kinases to trigger the transcription factors of downstream target 

genes which participate in cancer progression. 

 

INTRODUCTION 

Estrogen is a class of 18-carbon steroid. There are a total of 9 estrogens in humans of 

which the three major ones are 17β-Estradiol (E2), Estrone (E1), Estriol (E3). These 

estrogens are synthesized primarily in the ovaries of premenopausal women. Other 

organs such as brain and adipose tissues also synthesize estrogens through aromatization 

of testosterone [1].  Estrogens are also synthesized in male species.  A relatively high 

concentration of estrogen is found in rete testis fluid and in testicular vein and lymph of 

rodents [2;3]. The level of estrogens in peripheral blood of men averages 69 pg/ml 

compared to 199 pg/ml in non-ovulating women [4]. E2 is the predominantly circulating 

and the most biologically active ovarian steroid. In addition to endogenous sources, the 

body burden of estrogen may increase from the intake of synthetic medicinal estrogens, 

such as 17α-ethinyl estradiol (used as oral contraceptive), mestranol, premarin (used in 

hormone replacement therapy), and diethylstilbestrol (used in the treatment of highly 

advanced breast and prostate cancers). Physiological estrogens are essential for the 

growth and maintenance of various reproductive and non-reproductive organs in the body 
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where they elicit different growth responses in tissues depending on the cell-type, type of 

estrogen receptor (ER) present, dose and timing of exposure.  

 
Elevated lifetime estrogen exposure has been shown to be a major risk factor for cancer 

in hormone-dependent organs, particularly breast and endometrium [5-9]. This may help 

explain the observation that breast cancer risk increases in the women who experience 

early menarche (onset of menstruation) and late menopause whereas breast cancer risk is 

reduced in the women who experience late menarche and early menopause [10;11]. A 

cohort study by the European Prospective Investigation into Cancer and Nutrition found 

that excess serum estrogens are associated with incidence of breast cancer in 

premenopausal women [12]. Similarly, estrogen replacement therapy in post menopausal 

women has been demonstrated to be associated with breast, cervical, and endometrial 

carcinoma [13]. In experimental models, estrogens are established breast carcinogens, as 

they are capable of initiating and triggering growth and selection to generate palpable 

malignancy [14-18].  These findings led the International Agency for Research on Cancer  

and National Toxicology Program to categorize estrogens as human carcinogens [19;20].  

Post menopausal women exhibit the highest breast cancer incidence when serum 

estrogens are at their lowest level [6]. In contrast, the estrogen levels in mammary tissues 

are similar in pre and post menopausal women [21]. In addition, post-menopausal breast 

cancer patients have significantly higher estrogen levels in breast tissues than non disease 

pre or post menopausal women [22]. This finding indicates that site-specific estrogen 

synthesis or estrogen load may be the major source associated with breast carcinogenesis 
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and growth of breast cancer cells. However, the underlying mechanisms of breast cell 

susceptibility to estrogen’s carcinogenic effect remain elusive. 

 
The signaling pathway plays a critical role in mammary gland development. This 

pathway has also been shown to be essential in promoting growth of estrogen receptor 

positive (ER+) breast cancer cells. Whether this pathway alone is sufficient to induce 

breast carcinogenesis is still unresolved. Mammary tumors can develop in mice lacking 

functional ER alpha (ERα) [15;23]. Likewise, E2 and its catechol metabolite, 4-hydroxy 

estradiol (4-OH-E2) can induce an estrogenic response in the uterus of ERα null mice, 

where an antiestrogen (ICI182780) fails to inhibit such response [24]. Though tamoxifen 

(TAM) and other antiestrogens inhibit breast cancer growth through their actions at the 

ER, these antiestrogens also inhibit growth of cancer cells that are estrogen receptor 

negative [25-27]. In addition, estrogen undergoes oxidative metabolism and generates 

ROS which is implicated in carcinogenic conversion and growth of cancer cells [9;18]. 

TAM on the other hand can block estrogen metabolism and acts as a ROS scavenger [14]. 

These findings therefore suggest that other mechanism(s) independent of ER status exist 

that mediate estrogen induced cellsignaling leading to malignant transformation and 

growth of mammary epithelial cells. One such mechanism being investigated by us is the 

role of estrogen induced mitochondria ROS in mammary carcinogenesis. Using 

physiologically achievable estrogen concentrations corresponding to the estrogenic 

menstrual peak, we showed that estrogen induces rapid formation of mitochondrial ROS 

in MCF-7 cells [28]. Other reports support our observation that estrogen-induced ROS 

production relies on mitochondria, which are the main source of ROS in the epithelial 
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cell [29]. Some of the same mitogenic pathways that are sensitive to ROS levels are 

regulated by carcinogenic levels of estrogen. We have recently shown that inhibitors of 

mitochondrial ROS production prevent E2-induced expression of cell cycle genes 

containing nuclear respiratory factor-1 (NRF1) binding sites (e.g., cyclin B1, PCNA, and 

PRC1), decrease E2-induced NRF1 expression, and delay growth [30].  Together these 

studies indicate that in addition to ER mediated signaling, E2 through ROS signaling can 

support initiation and progression of breast cancer by alternative pathways.  

 

In this review, we discuss a novel concept that estrogen-induced ROS can produce 

genotoxic effects as well as support the development of estrogen-dependent breast 

tumors. This envisioned ROS mediated mechanism most likely contributes to the process 

that drives carcinogenesis, while this mechanism seems to occur in the context of other 

ER-mediated signaling and estrogen reactive metabolite-associated genotoxicity. To 

highlight the ROS mediated carcinogenesis mechanism, first, estrogen metabolism and 

redox cycling of hydroxylated estrogens leading to the generation of genotoxic estrogen 

metabolites is briefly discussed. Then, we elaborate on the role of mitochondria in 

estrogen-induced generation of oxidants and emerging data on how estrogen-induced 

ROS modifies redox-sensitive signal transduction pathways that contribute in the cell 

transformation, cell growth and cancer progression. 
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GENERATION OF GENOTOXIC METABOLITES OF ESTROGEN AS A 
POTENTIAL MECHANISM OF BREAST CARCINOGENICITY 
 
Cells are protected from estrogen-mediated mitogenicity and genotoxicity through 

conjugation of parent estrogens to sulfate and glucuronide moieties. Estrogen metabolism 

and generation of genotoxic estrogen metabolites are summarized in Figure 1 and have 

been previously reviewed extensively [9;31-33], therefore we have limited our discussion 

in this area.  Endogenous and synthetic estrogens, i.e. E1, E2, E3, 17 α ethinyl estradiol 

(EE2) and equilenin (Eq) are converted  into catechol estrogens through aromatic 

hydroxylation by specific cytochrome P450 isoforms/peroxidase enzymes [9;34]. The 

catechol estrogens are inactivated by methylation, catalyzed by catechol 

methyltransferases, as well as by glucuronidation and sulfation, catalyzed by 

glucuronosyltransferases and sulfotransferases, respectively [35]. Oxidation of the 

catechol estrogens moieties gives rise to estrogen semi-quinones and quinines, i.e., 

estrogen-2,3-semi-quinone and estrogen-3,4-semi-quinone [36;37]. Catechol estrogens, 

particularly 4-OH-E2, via nonenzymatic autoxidation, may undergo redox cycling to 

produce reactive semiquinone and quinone intermediates with concomitant production of 

ROS. However, this redox reaction of catechol estrogens is enhanced in the presence of 

Cu2+ or Fe 3+ and by enzymatic catalysis by cytochrome P450 oxidases or peroxidases, 

which is accompanied with an increased generation of ROS. Catecholestrogens can 

reduce Cu2+ or Fe 3+ ions to Cu+ or Fe2+. The Cu+ or Fe2+ ions in turn, may reduce organic 

or inorganic peroxides, which are capable of initiating lipid peroxidation in the presence 

of oxygen. Both iron and copper are now recognized as  major transition metals that may 

facilitate the formation of ROS through redox cycling of catechol compounds as well as 
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by the Fenton reaction [38]. Estrogen quinones are conjugated with glutathione both in 

vivo and in vitro [37;39] by glutathione transferases [40]. 4-Hydroxylated estrogen 

metabolites or the diethylstilbestrol metabolite diethylstilbestrol-4, 4-quinone in a 

microsomal cytochrome P450 activation system, induce 8-hydroxylation of guanine bases 

of DNA. In addition to oxidant-induced damage to DNA, estrogens generate lipid 

peroxidation and oxygen radical-mediated oxidation of amino acid residues of proteins to 

carbonyl-containing moieties. The oxidant-induced oxidative DNA damage in estrogen-

target tissue has been taken as evidence for the generation of oxygen radicals by 

metabolic redox cycling of catecholestrogens or diethylstilbestrol (DES) and for their 

participation in the induction of estrogen-induced cancer in animals or humans. Catechol 

estrogen semiquinone/quinone can also directly react with DNA to form adducts [31]. 

These adducts can either be stable DNA adducts that remain in DNA or can form 

depurinating adducts that destabilizes DNA’s glycosyl bond [41]. DNA adduct formation 

and depurination at critical sites such as tumor suppressors or oncogenes can lead to 

mutations which have been postulated to be the initiator of breast cancer [41]. Rodent 

studies demonstrate that E2 induces tumors in those tissues only where E2 is 

predominantly converted to 4-OH-E2 by 4-hydroxylase enzyme [42;43].  We have 

previously shown that E2-induced tumor formation is decreased in animals exposed to 

inhibitors of estrogen metabolism [17;18] or to hormonally potent estrogens undergoing 

reduced metabolic conversion to catechol metabolites [44].  The rate of 4-OH-E2 

formation is also shown to be 4-fold higher than that of 2-OH-E2 in human mammary 

fibroadenomas and adenocarcinomas [45]. The 4-OH-E2  are the most prevalent estrogen 

metabolite in breast tumor tissues and have a significantly higher circulating level in 
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women with breast cancer [46]. Hydroxyestrogen and methoxy estrogen derivatives 

account for the majority of urinary or intra-tumor estrogens in human breast cancer 

patients but they are relatively scarce in the urine or mammary glands of healthy women 

[16].  Oxidative cellular damage such as 8-hydroxylation of guanine bases of DNA and 

lipid peroxidation have also been demonstrated in human breast and indicate the in vivo 

pro-oxidant effects of the estrogen and catecholestrogen metabolites formed in this tissue 

(reviewed in [9;31]). For example, elevated 4-OH-E2 levels in breast tumors and in 

women with breast cancer compared to normal mammary tissues implicate 4-OH-E2 in 

breast cancer and it strongly suggests that 4-OH-E2 metabolite participates in 

development of breast carcinogenesis [47]. Our recent studies showed that E2 or 4-OH-E2 

elicited transformed phenotypes in ERα negative MCF-10A cells through ROS-sensitive 

signal transduction pathways [48-51].  When exposed to E2, 4-OH-E2, 4-

hydroxyequilenin, equilenin or its catechol metabolite, similar transformation in MCF-

10F and MCF-10A were observed by other researchers [52;53]. Although neither 2-OH-

E2 nor 2-OH-E1 is carcinogenic in vitro or in vivo [42;54;55], both 2-OH-E2 and 2-OH-E1 

are capable of producing ROS and undergo metabolic redox cycling like 4-OH-E2. The 

lack of carcinogenicity of 2-hydroxylated estrogen metabolites in vivo may be due to 

their rapid inactivation by catechol-O-methyltransferase (COMT)-mediated O-

methylation [55-57], rapid clearance [58], and weak estrogenic hormonal activity 

(compared with 4-OH-E2) [59].  It may also be due to 2-MeO-E2, the major product of 

COMT-mediated O-methylation of 2-OH-E2 that possesses unique anti-tumorigenic 

activity.  These studies support the concept that E2 and mainly its metabolite 4-OH-E2 are 

carcinogenic in breast epithelial cells. 
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ESTROGEN RECEPTOR MEDIATED CARCINOGENIC ACTIONS 
 
The conventional paradigm of estrogen carcinogenic action is based on binding to ERα/β, 

which has been extensively reviewed; therefore, we limited our discussion in this area. 

Estrogen binding to its receptors, ERα and ERβ, initiates gene transcriptions by binding to 

estrogen response elements (ERE) of genes involved in cell growth. Therefore, increases in 

estrogen activity or exogenous estrogenic exposure may lead to increased cell proliferation 

[60]. It is speculated that rapidly proliferating cells are error prone due to the less time 

accorded for DNA proof reading and repairs. Errors incorporated into critical genes such as 

oncogenes and/or tumor suppressors may likely lead to mutations and neoplastic growth. 

Nevertheless, the classical concept of estrogen receptor mediated actions in cancer does not 

address the fact that the majority of normal mammary epithelial cells that transform into 

cancerous cells are ER negative (ER-) but are growth factor receptor positive (GFR+) [61;62]. 

On the other hand, about 7%-15% of normal mammary epithelial cells are ER positive (ER+) 

but lack growth factor receptors (GFR-) [63]. The predominant ER+ cells in normal mammary 

tissues are the stromal cells. Estrogen induced proliferative responses of normal ER- mammary 

epithelial cells may be mediated by the induction of GFR+ stromal cells [64]. Interestingly, the 

majority of breast cancer cells in vivo are  ER+ but GFR- and do proliferate upon estrogen 

exposure [65]. These observations therefore implie that ER positive phenotypic expressions 

observed in majority of breast cancer cells may be manifestation of malignant transformation. 

 
Furthermore, discrepancies between the binding affinity of various estrogens to ER and 

their potency both in vitro and in vivo have been reported (Figure 2). For example, 17α-

estradiol has a very weak affinity for ER compared to that of  DES and 17 α-
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ethinylestradiol; but its ability to stimulate the growth of Leydig cells and other cells is 

equivalent to that of DES [66]. Similarly, the receptor binding affinity of 4-OH-E2  is 

50% that of DES or E2, but its ability to stimulate cell growth in the mouse uterus is 

greater than either of these compounds [67]. In Noble rats, E1 is more potent than E2 in 

producing growth of mammary tissues [68;69]. In addition, estrogen-induced tumor 

formation is decreased in animals exposed to inhibitors of estrogen metabolism [17;18] or 

to hormonally potent estrogens with decreased metabolic conversion to catechol 

metabolites [44] compared to E2. The ectopic expression of Wnt-1, a proto-oncogene in 

mice induced mammary hyperplasia and tumorigenesis in the absence of ERα in female 

and male mice [15;23]. All these studies indicate that estrogen induced cellular responses 

including carcinogenicity and growth of cancer cell are verycomplex and the 

conventional paradigm as described above cannot explain all observed discrepancies.  

 

ESTROGEN, MITOCHONDRIA, AND ROS GENERATION  
 

Both natural and synthetic estrogenic compounds containing a phenolic structure possess 

pro-oxidant and/or antioxidant activities. A balance of pro- and antioxidant effects of 

estrogens depends on the nature (structure) of the estrogen and on its concentrations. 

Under physiological conditions, the parent estrogen and the metabolic profile of estrogen 

metabolites in a specific tissue or fluid determine its pro- or antioxidant activities. In 

additionto the above-described metabolic redox cycling of hydroxylated estrogens 

producing ROS, we present here the evidence supporting the role of mitochondria in 

estrogen-induced generation of oxidants.  
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Estrogen and mitochondria: Mitochondria are an integral component of steroidogenesis. 

Key enzymes of estrogen biosynthesis (3 β-hydroxysteroid dehydrogenase and 

aromatase) have been identified in the mitochondria of ovarian tumor epithelial cells 

[70].  Exogenously added estrogen is preferentially and rapidly(> 50% within a few 

minutes) transported  to mitochondria [71]. How estrogen functions in the mitochondria 

remains unclear; however, presence of ERα and ERβ in mitochondria indicates a 

potential role of estrogen in the regulation of mitochondrial genome transcription [72-74]. 

In the human mitochondrial genome, partial or ERE ½ sites in the D-loop region, CO II, 

tRNA-met, 12 S rRNA, 7 S rRNA, URF1, and URF5 were identified.  We recently 

reported that mitochondria are a major target of estrogen within the cell [28;75]. Estrogen 

can also affect mitochondria at the protein level.  Estrogen and ER agonists have been 

shown to inhibit mitochondrial respiratory complexes I, II, III, IV, and mitochondrial 

ATP synthase (F0F1-ATPase) [76;77], but most of these studies used cytotoxic dose of 

estrogen and any physiologic responses by mitochondria were probably overlooked. 

Mitochondrial proteins are encoded in the mitochondria and nuclear genomes. 

Mitochondrial transcription factor A (mtTFA), which controls mtDNA copy number, is 

essential for mitochondrial biogenesis [78]. When translocated into the mitochondria, 

mtTFA initiates transcription and replication of the mt genome.  Translation is initiated 

by mitochondrial translation initiation factor 2 (MTIF2), which is encoded by the mt 

genome and contains a consensus binding site for ER. The tissue-specific coactivators of 

steroid receptors (including ER), such as peroxisome proliferator–activated receptor-

coactivator-1 (PGC-1), and the PGC-1-related proteins, PRC and PERC, coactivate the 

expression of mtTFA [79-82]. Both transcriptional activators nuclear respiratory factor 1 
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and 2 (NRF1 and 2) and coactivators (PGC-1, PRC) act as important mediators in the 

maintenance and proliferation of mitochondria [83].  Steroid hormones, androgens and 

thyroxin, can induce changes in mitochndrial genome-derived mRNA and rRNA by 

increasing mtTFA mRNA expression from the nuclear genome [84].  At the post-

translational level, an interaction between mtTFA and P53 has been shown to control 

mitochondrial biogenesis [85], and P53 interacts with ER [86].  Estradiol increased 

phosphorylation of a 76-kDa protein in the mitochondrial fraction of the rat corpus 

luteum [87].  This report, together with the presence of protein kinases within 

mitochondria, further suggests that estrogens regulate mitochondrial physiology at the 

post-translational level [77]. 

 
Mitochondria and generation of estrogen induced ROS: Several enzymatic systems and 

organelles produce ROS, such as NADPH oxidases at the plasma membrane, nitric oxide 

synthases, xanthine oxidase, peroxisomes at endoplasmic reticulum (cytochromes P450) 

and mitochondria. Mitochondria however, are the largest source of ROS in epithelial 

cells. Over 90% of oxygen is consumed by mitochondria, and up to 4% of the oxygen in 

the mitochondria is utilized to produce RO/NS.  The respiratory chain produces 

superoxide radicals (O2
-.). The major source of H2O2 in cells arises from the dismutation 

of O2
.- (2O2

.- + 2H+ =H2O2 + O2). At physiologic pH, non-enzymatic dismutation is rapid 

(~105 mol-1 sec-1), but dismutation is markedly accelerated by the superoxide dismutases 

(SOD; > 109 mol-1 sec-1).  H2O2 freely diffuses through cellular membrane and is a 

precursor of OH-. Mitochondrial nitric oxide synthase (NOS) produces nitric oxide (NO.), 

which combines with O2
-. to generate peroxinitrite (ONOO-). All these RO/NS may cause 
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mitochondrial and cellular damage if present in excess (Figure 3). The physiologic 

production of RO/NS by mitochondria can have profound effects on initiation of 

preneoplastic foci and its promotion as well as tumor cell growth both in vivo and in vitro 

(Figure 3). Multiple non-mitochondrion and mitochondrion-dependent defense system 

regulate intracellular RO/NS formation and maintain an appropriate redox environment 

[88]. Glutathione, a tripeptide thiol (cysteine-glutamine-glycine), and thioredoxin (Trx), a 

small protein that has two cysteines in its active site, are responsible for much of the 

antioxidant defense of cells but are also likely mediators of oxidative signaling. These 

thiols are used as substrates for glutathione peroxidases, Trx peroxidases 

(peroxiredoxins) [75;89], and glutathione-S-transferases, enzymes that regulate the steady 

state concentration of hydroperoxides (ROOH) including H2O2, and also used as 

electrophiles, such as 4-hydroxy-2,3-nonenal (4HNE), which is a lipid peroxidation 

product. 

 

Earlier studies failed to identify that physiologic concentrations of estrogen stimulate 

mitochondrial ROS generation.That is why possibly cytotoxic doses of estrogen and 

isolated mitochondria were used. We and others have shown that mitochondria are 

significant targets of estrogen [28;30]. Recently, we reported that physiological 

concentrations of E2 stimulate a rapid production of intracellular ROS in epithelial cells 

which depends on cell adhesion, the cytoskeleton, and integrins [28]. In our studies of E2-

induced ROS generation in MCF-7 and other cells, hydroxylated estrogen metabolites or 

adducts immediately after addition of E2 were not detected which rules out the possibility 

of ROS generation by redox cycling of hydroxylated estrogens. These events occur 
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earlier than ER-mediated genomic actions. E2-induced ROS production does not depend 

on the presence of ER on breast cancer cells as ER- cell line MDA-MB 468 produced 

ROS equal to or more than that of ER+ MCF7, T47D, and ZR75 cell lines [28].  

   
The ROS molecules, H2O2 and NO, also stimulate mitochondrial biogenesis, a process 

that depends on the flow of molecules into and out of the organelle [90;91]. It has been 

shown recently that oxidative stress causes an increase in mitochondrial mass in human 

lung cells. However, the molecular mechanism underlying the increase in mitochondrial 

mass and mtDNA is still unclear. Furthermore, the mitochondrial mass of mtDNA-less 

cells was also significantly increased by exposure to low concentrations of H2O2, 

suggesting that the increase in mitochondrial mass in replicating cells may result from an 

increase in ROS production. Thus, the delayed production of estrogen-induced ROS may 

occur via this mechanism, whereas the transient estrogen-induced increase in ROS may 

result from estrogen activation of the mtTFA complex leading to increased oxidative 

phosphorylation.  

 
 
ESTROGEN-INDUCED ROS-MEDIATED OXIDATIVE DNA DAMAGES  
 
Estrogen-induced oxidative DNA damage through ROS has been extensively reviewed 

[9;31-33], therefore we have limited our discussion in this area here. 8- Hydroxy-guanine 

(8-OHdG), an indicator of oxidative DNA damage, causes G->T and A->C substitutions 

in DNA templates. It has been shown that breast carcinoma DNA contains dramatically 

higher concentrations of base modifications, such as 8-hydroxy-guanine, 2,6-diamino-4-

hydroxy-5-formamidopyrimidine, and 8-hydroxyadenine [92-94]. An elevated level 
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(3.35-fold higher) of 8-OHdG was observed in ER+ when compared with ER- malignant 

tissues. 8-OHdG level in ER+ MCF-7 cell line was significantly higher (9.3-fold higher) 

than ER- MDA-MB 231 cell line [93]. There was a higher level of 8-OHdG in the DNA 

of early-stage cancer tissue than that of later-stage cancer tissue, which suggests that ROS 

may play an important role in the early phase of carcinogenesis. The urinary 8-OHdG 

level (1,827 +/- 1,500 pmol/kg/day) in 18 women with gynecologic cancer  has been 

shown to be  significantly higher  than in 10 women  (747 +/- 425 pmol/kg/day) without 

carcinoma [94]. Gene mutation induced by ROS has been observed in C-Ha-ras-1 and 

p53 [95;96]. Recently, it has been shown that methylation alone induced C:G-->T:A 

transitions in the p53 gene, whereas nitric oxide treatment produced more C:G-->A:T  

transversions at CpG sites and, thus, increased mutational yields.  Alterations in the 

genome of breast cells is likely produced by oxidative attack of ROS generated by 

estrogen-induced oxidative stress in combination with receptor-mediated proliferation of 

oxidatively damaged cells. This view is supported by the findings of DNA damage 

induced in vitro or in vivo by estrogen-induced ROS, 4-OH-E2 and  both natural and 

synthetic estrogens in the target organs of cancer [31;32]. Catecholestrogen through 

redox cycling produce free radicals that generate various forms of free radical-induced 

DNA damage [31;32]. Cotreatment with an inhibitor of IL-1β and TNF-α, pentoxifylline, 

inhibited stilbene estrogen-induced increase in myeloperoxidase activities, 8-OHdG 

formation, mutations in the genome and prevented the estrogen induced testicular and 

uterine pre-neoplastic lesions [9]. Estrogen by stimulating nitric oxide synthase (NOS) 

and the subsequent generation of NO could affect methylation and expression of genes 

[97-99]. Thus, ROS/NO induced by estrogen may produce both gene mutations and gene 
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silencing, which, in turn, can predispose an individual to the development of cancer. 

Therefore, estrogen-induced ROS may play multiple roles in tumor initiation and 

progression. Compelling evidence for the transforming capacity of ROS is the finding 

that overexpression of Mox1 (the catalytic subunit of NADPH oxidase) induces 

superoxide generation and transforms NIH 3T3 cells. Furthermore, Mox1-transfected 

cells produce aggressive tumors in athymic mice similar in size to those produced by 

Ras-transformed NIH 3T3 cells [100], illustrating the critical role of this ROS regulator 

in vivo. These results are consistent with the concept that generation of genetic alterations 

is required for the initiation and progression of estrogen-induced tumors. 

 

ESTROGEN-INDUCED ROS MEDIATED REDOX SIGNALINGS 
 
ROS fulfill the characteristics of a second messenger since they are short-lived (rapidly 

generated and degraded), produced in response to a stimulus, highly diffusible (e.g., 

H2O2), and they are ubiquitously present in most cell types. In this section, we review the 

ROS-mediated signaling pathways which contribute to initiation, promotion and 

progression of estrogen-dependent breast tumors. Signaling proteins, including protein 

tyrosine phosphatases and several transcription factors, that contain critical cysteines are 

sensitive to redox changes and thus are potential targets of modifications by ROS (Figure 

4). A common feature of redox signaling appears to be the oxidative modification of 

critical cysteines in protein phosphatases that act on protein kinases. Kinases in turn 

activate redox sensitive transcription factors that influence the expression of genes 

involved in cell transformation, cell growth, and cancer progression.  
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Regulation of phosphatases by estrogen-induced ROS: ROS reversibly regulate cysteine-

based phosphatases, which include protein tyrosine phosphatases (PTPs), dual-specificity 

phosphatases (such as, Cdc25s), low-molecular-weight PTPs, and the lipid phosphatase, 

PTEN. Oxidation of PTPs can be reversed by thiol compounds, once the catalytic 

cysteine forms a disulfide bond with an N-terminal cysteine. This disulfide bond can 

originate from same site cysteines, as is the case with low molecular weight PTPS, from 

“distant” cysteines such as with PTEN and Cdc25, or from a bond between the PTP and a 

thiol, such as with PTP1B. The important step of the disulfide bond blocks the oxidation 

of the thiolate to Cys-SOH by the connection to another thiolate. Oxidation and 

phosphorylation have the potential of influencing each other in the signaling of PTPs and 

protein tyrosine kinase (PTKs). We have used Cdc25 as a major focus of this section to 

describe the redox regulation of phosphatase by estrogen-induced ROS. The Cdc25s, 

dual-specificity tyrosine phosphatases, possess the necessary elements to function 

directly in redox control of the cell cycle. Three homologues of Cdc25s exist in humans:  

Cdc25s A, B, and C. All contain a nucleophilic catalytic cysteine within a conserved 

motif that enables these enzymes to dephosphorylate phosphoproteins. The first 

suggestion that Cdc25 phosphatases act as potential redox controllers of the cell cycle 

was made more than 10 years ago by Mori laboratory which showed the direct 

involvement of ROS in the two-cell block of the mouse embryo [101]. Embryo 

development past the two-cell stage occurred when they injected the ROS modifiers SOD 

or Trx in vitro. Trx was shown to act through the phosphorylation state of Cdc2 kinase 

because the injection of Trx led to dephosphorylation and activation of the Cdc2 kinase 

during M-phase of the second cleavage. Other studies suggested that the oxidative stress 
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generated in human cells in response to UV or IR exposure degrades Cdc25s- A through 

its phosphorylation on serine-123 by check point kinase (chk) [102;103]. This leads to its 

ubiquitylation and its proteolytic degradation. In contrast, Finkel’s laboratory has shown 

that  Cdc25C undergoes rapid non proteasomal degradation in response to H2O2 treatment 

in HeLa cells [104]. This response is due to a decreased half-life for Cdc25C as a result 

of disulfide linkage formation between its active-site and backdoor cysteines. Cdc25C’s 

response to H2O2 treatment does not depend on the Chk pathway, suggesting a direct 

interaction between ROS and Cdc25C. The active-site cysteines of the Cdc25's are highly 

susceptible to oxidation [105]. The rate of thiolate conversion to the sulfenic acid by 

H2O2 for Cdc25B is 15-fold and 400-fold faster than that for the protein tyrosine 

phosphatase PTP1B and the cellular reductant glutathione, respectively [105]. Cdc25A 

(69M-1S-1) and Cdc25C (120M-1S-1), with highly homologous catalytic domains to 

Cdc25B (~60% identity), are only slightly less reactive than Cdc25B (164M-1S-1). The 

sulfhydryl group on cysteine residues can be oxidized to form a disulfide bond (Cys-

SSR), sulfenic acid (Cys-SOH), sulfinic acid (Cys-SO2H) or sulfonic acid (Cys-SO3H); 

the two latter being quite stable while disulfide bonds and protein sulfenic are relatively 

reactive and are often considered as the mediators in redox signaling. The active-site 

cysteine is protected by rapid intramolecular disulfide formation with back-door cysteines 

in wild-type enzymes and these intramolecular disulfides can then be rapidly and 

effectively reduced by Trx/TrxR2 but not glutathione [105]. Finkel and his associates fail 

to show oxidation of Cdc25A, because they used very a high concentration of H2O2 

[106]. 
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Rudolph’s laboratory has shown that the oxidation of Cdc25’s catalytic site cysteine 

residues decrease its activity via the formation of an intramolecular disulfide bond. In 

addition, the catalytic cys430 formed a disulfide bond with the invariant cys384 in some 

crystals suggesting that Cdc25 may be self inhibited during oxidative stress. The 

nucleophilic catalytic cysteines of phosphatases are known to be highly susceptible to 

oxidation, a property that permits redox regulation of this enzyme family. Recent studies 

have shown that O2
.- is a more efficient regulator of PTP1B than H2O2, with a calculated 

rate constant in vitro (~3 x 102 M-1sec-1) about eight times faster than for H2O2 [107]. 

Nevertheless, one can argue that the reaction rate would be more than 100 times faster 

with H2O2 than with O2
.- in cells, considering that the steady state concentration of H2O2 

in the cytosol is approximately 103 times more than the concentration of O2
.- [108]. As 

described above, H2O2 exposure oxidized –SH group of Cdc25A faster than that of 

PTP1B [105;109]. Besides the widely believed concept that chk-mediated 

phosphorylation leads to Cdc25 proteosome-dependent degradation; its activity appears 

to be regulated by oxidation in the same way as oxidation regulates PTP1B activity.  

 
A rapid decrease in Cdc25A activity was shown when MCF-7 cells were exposed to 

physiological concentrations of estrogen [51]. A similar decrease in Cdc25A activity was 

observed in H2O2 treated HeLa cells [110]. Further examination revealed a lower level of 

Cdc25A –SH residues in the estrogen treated group compared to the vehicle control [51]. 

In addition, cotreatment with antioxidants prevented the oxidation of –SH residues in 

estrogen treated cells [51] . These findings suggest that estrogen-induced ROS 

oxidatively inactivates Cdc25A. A recent study showed that the oxidation of the Cdc25 
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active cysteine site leads to enzyme inactivation [111;112]. We and others have also 

identified an estrogen mediated protein interaction between Cdc25A and ERK in MCF-7 

and hepatoma cells respectively when treated with Cdc25A inhibitor Cpd [113]. 

Independent of ERα/ß, estrogen activates the MAPK pathway via ROS -dependent 

inactivation of Cdc25A. An increase in Cdc25A mRNA has been reported after 6 hrs of 

E2 treatment and an increased synthesis of Cdc25A protein was detected from 10 to 12 

hrs after E2 treatment [114;115]. The level of Cdc25A protein did not change 

immediately after E2 exposure, however, an increased in the level of its protein as early 

as 3 hrs after E2 exposure was detected. This observation suggests that E2 treatment 

increases Cdc25A stability. We further looked for any post-translational modification 

from E2-exposure because full enzymatic activity of Cdc25A requires phosphorylation at 

multiple Ser and Thr residues in the amino-terminal of the protein. In contrast to UV or 

IR effects on Cdc25A in cells, we observed a rapid decrease in serine phosphorylation of 

Cdc25A in response to physiological concentrations of estrogen which paralleled the 

decrease in phosphatase activity. A similar decrease in the serine phosphorylation of 

Cdc25A and its activity was observed in response to the exposure of cells with H2O2. 

Cdc25A is also phosphorylated at tyrosine residues, and in contrast to serine 

phosphorylation, tyrosine phosphorylation of Cdc25A was enhanced in cells treated with 

estrogen or H2O2. Others have also shown that  lower oxidant concentration increase the 

rate of tyrosine phosphorylation by tyrosine phosphatase [116]. These studies did not 

examine the oxidation of active site cysteines nor did they explain how tyrosine 

phosphorylation occurred and how tyrosine phosphorylation inactivated phosphatase 

activity. ROS activated ERK enhanced tyrosine phosphorylation of Cdc25A in E2-treated 
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MCF-7 cells protects Cdc25A from degradation [117]. Tyrosine phosphorylation of 

increased the half-life and accumulation of Cdc25A which may contribute to Cdc25A -

stimulated Cdk2 activity.  

 
Besides the Cdc25, some of the other phophatases, such as, MKP3, PTEN, PTP1B1, 

PTP2A, and PP5 [118-120] are  responsive to ROS and regulate estrogen-mediated 

signaling. For example, the activity of Ser/Thr protein phosphatase 5 (PP5) is responsive 

to oxidative stress and estrogen. Elevated levels of PP5 protein found in human breast 

cancer have been linked to the progression of human breast cancer [121]. ERK-specific 

phosphatase MKP3 is another ROS responsive phosphatse that may influence 

phosphorylation at Ser118 of ERα by regulation of pERK1/2 MAPK. Antioxidant 

treatment by increasing MKP3 phosphatase activity blocked tamoxifen resistance [122]. 

These phophatases are reversibly regulated by ROS. These oxidatively modified 

phophatases act on their corresponding kinases based on their temporal and spatial 

localization in the cells.  

 
Activation of kinases by estrogen-induced  ROS: 

We describe below some of the kinases which may be influenced by estrogen-induced 

ROS signaling via redox regulation of phosphatases.  

Structural changes to PTPs, as well as 

serine/threonine and phospholipid phosphatases, are induced by ROS, and the altered 

protein conformation leads to signaling cascade upregulation. Included in these cascades 

are src/Abl kinase-dependent, MAPK-dependent, and PI3 kinase-dependent pathways, 

leading to activation of AP-1, NF-kB, NRF1, and other redox-regulated transcription 

factors.  
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A-Raf: The mitochondrial localization of protein kinases A-Raf, PKCδ, and PKCЄ is 

evidence that this subcellular compartment harbors redox sensors [123;124].  The role of 

the protein kinase A-Raf in the mitochondria is not clear, but A-Raf mRNA is highly 

expressed in normal murine tissue [125].  In HeLa cells, epidermal growth factor (EGF) 

rapidly and transiently activates A-Raf, which in turn phosphorylates the MAP kinase 

activator MEK1  [125].  Interestingly, E2 can stimulate the phosphorylation of A-Raf and 

it appears to participate in cell cycle progression in ER+ MCF-7 cells [126].  Thus, it 

appears that mitochondrial oxidants may modulate estrogen-induced cell proliferation via 

A-Raf pathway. In addition to A-Raf, other redox sensitive proteins associated with 

mitochondria, PKCδ and PKCζ, have been demonstrated to activate the Raf/MEK/ERK 

pathway or directly activate MAPKs, respectively [124;127].  As zinc finger domains of 

Raf and PKC are targets of oxidative stimuli and Raf and PKC are localized in 

mitochondria, estrogen-induced ROS may activate A-Raf and/or PKC via the MEK/ERK 

pathway. Signaling pathways involving JNK and p38 MAPK are very responsive to 

redox regulation. JNKs have been studied primarily in the context of stress responses and 

apoptosis; however, accumulating evidence indicates that the JNK pathway also 

contributes to proliferative responses. For example, JNK1-/- mouse embryonic fibroblasts 

(MEFs), as well as JNK1-JNK2-/ MEFs, proliferate more slowly than do wild-type MEFs 

and reach a lower saturation density, establishing that JNK is required for normal MEF 

proliferation [128].  A role for JNK in cancer development is supported by recent studies. 

It has been shown that skin tumorigenesis is suppressed in JNK2-deficient mice [129], 

and expression of an inactive variant of the JNK substrate c-Jun in immortalized 

fibroblasts expressing v-Src and v-Fos reduces tumorigenicity in nude mice [130]. The 
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oxidative enhancement of Src-family tyrosine kinases and certain PKC isoforms as well 

as the dissociation of the JNK/GSTp and ASK1/Trx complexes may together contribute 

to the redox sensitivity of these pathways. These and other data suggest that signaling 

through the A-Raf/JNK pathway is very responsive to redox regulation and mediates 

oncogenic signals and supports cell proliferation in the absence of stress.  

 

 ERK: In addition to the ability of E2 to promote ER-dependent gene transcription, it 

rapidly activates ERK-1 and ERK-2 [130-134]. The activation mechanism by which this 

rapid signaling event occurs is unclear. The activation is extremely fast and it is believed 

that they are initiated at the plasma membrane and do not involve ER-mediated gene 

transcription. Several investigators have concluded that estrogen-induced MAPK 

activation is promoted by membrane bound ERα or ERß [135-137]. There are no known 

functional motifs within the structure of the ER that can promote second messenger 

signaling [138]. Most of the studies investigating rapid MAPK activation by estrogen 

have employed estrogen responsive cells including MCF-7 breast cancer cells [133;139], 

osteosarcoma cells [140], and neuroblastoma cells [141]; yet these studies have not 

directly addressed the roles of ERα and ERß in promoting estrogen -induced ERK 

activation. There are reports which show no correlation between ERα/ß expression 

patterns and the activation of ERK-1/-2 in estrogen treated breast cancer cell lines. Both 

estrogen and the pure antiestrogen ICI182780 activate ERK-1/-2 in human SKBR3 breast 

carcinoma cells, which lack ERα /ß protein and m RNA [131]. Other researchers have 

suggested that a membrane-associated ER-like G protein is responsible for nongenomic 

estrogen signaling [142-144]. They showed evidence that cellular expression of the 
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orphan receptor, GPR30, is sufficient for estrogen-induced activation of ERK-1/-2. Based 

on these observations, it is not clear which membrane protein or how the membrane 

proteins (ER or GPR30) activate ERK signaling in estrogen exposed normal or cancer 

cells. 

 

In many cells, extracellular H2O2 alone activates ERK-1/-2. As discussed previously, 

studies have shown that estrogen exposure rapidly activates ERK and our work indicates 

that both estrogen and H2O2 rapidly inactivate Cdc25A and activate the ERKs in MCF-7 

cells. Inactivation of Cdc25A by its inhibitor Cpd5 results in the activation of EGFR 

tyrosine kinase and more recently was shown to activate ERK-1/2 in hepatoma cells 

[113]. Both EGFR and ERK have been shown to form protein complexes with  Cdc25A 

in hepatoma cells [145]. Since ERK can interact with and phosphorylate EGFR, Cdc25A-

ERK interaction could be responsible for EGFR activation. Moreover, napthoquinone 

based inhibitors inactivate Cdc25A by covalently binding to cysteine residues at the 

active sites of Cdc25A [146]. Thus, it is possible that ERK may be activated by inhibiting 

its association with Cdc25A or inactivating Cdc25A through its redox regulation by 

estrogen-induced ROS.  

 

 AKT: AKT (also called PKB) is a serine-threonine protein kinase. It is a downstream 

target of PI3-kinase. AKT binds to the products of PI3-kinase. AKT affects numerous 

downstream targets either directly or indirectly, including the pro-apoptotic proteins Bad 

and Caspase 9, the growth-inhibitory proteins glycogen synthase kinase-3β, the forkhead 

transcription factors, the kinase IKKα, and the kinase mTOR [147;148]. AKT has 
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recently been identified to control NRF1 activity [149]. Several investigators have 

concluded that estrogen-induced AKT activation is promoted by membrane bound ERα 

or ERβ [150;151]. There are no known functional motifs within the structure of the ER 

that can promote second messenger signaling. There are reports which show no 

correlation between ERα/β expression patterns and the activation of AKT-1/-2 in 

estrogen treated breast cancer cell lines. 17α-estradiol, through an ER independent 

mechanism, activates PI3K-AKT signaling [152]. Recently Lee et.al., [151] reported that 

up-regulation of PI3K/AKT signaling by E2 is mediated through activation of ERα, but 

not ERβ. In ovarian cancer cells, 4-OH-E2 induces AKT phosphorylation while 2-OH-E2 

did not [153].Our study showed that 4-OH-E2 increased AKT poshphorylation in ERα 

lacking MCF-10 cells. Based on these observations, it is not clear which membrane 

protein and/or how the membrane proteins activate AKT in estrogen exposed normal 

cells. AKT activity depends on its phosphorylation, which is positively regulated by PI3K 

and negatively regulated by a class of protein phosphatases (PPs) [154]. AKT can be 

activated by both E2 and H2O2 [118;149-151]. ROS reversibly regulate cysteine-based 

phosphatases [119]. There are indirect evidences indicating that AKT associates with 

Cdc25. For example, AKT phosphorylates Cdc25s [155]. AKT activation suppresses 

Cdc25 inhibitor napthoquinone- and methylating agent temozolomide –induced G2 arrest 

and cell death [156;157]. A recent study indicate that Cdc25A interacted with AKT 

[158]. The reversible inactivation of Cdc25A or PTEN by estrogen-induced ROS appears 

to be a potential key player in the activation of AKT. 
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Activation of redox sensitive transcription factors by estrogen-induced oxidants 

signaling

 

: A significant number of transcription factors, including estrogen receptor, are 

redox sensitive. Some of these transcription factors contain critical cysteine residues that 

can be affected by ROS. As described above, signaling pathways are targeted by ROS, 

which result in the activation of kinases through inactivation of redox sensitive 

phosphatases. The active kinases, in turn, regulate phosphorylation of transcription 

factors. Regulation of AP-1, NF-kB, and CREB by both estrogen and ROS is widely 

accepted and their redox regulation by ROS has been discussed [9;118]. We have focused 

our discussion mainly on NRF1 in this section. 

ER: A large class of DNA-binding proteins such as the glucocorticoid receptor (GR), ER, 

and early growth response factor-1 (egr-1), contain zinc finger domains [159], which 

consist of at least two zinc-coordinated thiolates.  Oxidation of a zinc finger converts 

cysteine thiol groups to disulfide releasing zinc from the protein and resulting in a change 

in protein conformation that may affect protein function. Interestingly, oxidative stress 

has been reported to modulate ERα and ERβ expression in various cell lines.  In human 

breast cancer cells MCF-7 and T-47D, exposure to 2.5µM of H2O2 increased the protein 

level of ERα while having a minimal effect on ERβ [160].  Endogenous oxidative stress 

induced by PMA (100 ng/ml) in the macrophage cell line, J774A1 also increased the 

expression of ERα [75] and it was found that Ras mitogenic activity is, in part, 

superoxide dependent.  A recent study showed that at least 75 genes out of 891 

estrogen/ER-regulated genes were responsive to oxidants and ERα silencing. The 

oxidant-sensitive subset of estrogen/ER-responsive breast cancer genes are linked to cell 
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growth and invasion pathways. Findings of this study suggest that oxidant sensitive 

signaling pathways contribute to the development of an aggressive subset of ER+ breast 

cancers [161]. Although protein kinases are known to participate in phosphorylation 

signal cascades, they may also participate in redox signaling networks due to these zinc 

finger domains, e.g., ROS can activate PKC that triggers the release of zinc ions 

[162;163].  Another protein kinase, c-Raf, known to participate in the MAPK signal 

cascade was also demonstrated to be redox-activated at the zinc finger domain [162;164].  

As zinc-finger domains within these kinases have been reported to act as oxidant sensors, 

a mode of cross-communication appears to exist between redox and phosphorylation 

networks. Like serine-thereonine phosphatases as discussed above, ROS can inhibit some 

of the protein tyrosine phosphatases by reversible oxidation of their cysteine residues and 

enhance protein kinases, such as Src, c-Jun amino-terminal kinase (JAK), Ras, PKC, and 

MAPK [21]. These kinases are involved in modulating ER signaling [165;166]. Thus, 

ROS-mediated signaling represents another means by which ER function can be 

modulated by oxidants, and may be responsible for the clinical phenotype of ER breast 

cancer. Rapid effects of estrogen have been demonstrated to mediate the DNA binding 

activity and phosphorylation of transcription factors.  For instance, a 10 nM estradiol 

treatment of rat adipocytes doubles AP-1 DNA binding in 15 min [167].  In addition, 

CREB protein is phosphorylated rapidly by estradiol (10nM) treatment within 15 min. 

Given that estradiol can stimulate mitochondrial ROS generation and that the 

transcription factors AP-1, NF-kB, and CREB are targets of oxidative stimuli [167;168], 

it is possible that estrogen-specific effects at the level of the mitochondria can activate 

these transcription factors by above-descibed signal transduction pathways.  
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Mitochondrial generation of ROS leading to the activation of transcription factors AP-1, 

NF-kB, and CREB has downstream consequences for apoptosis, cell cycle progression, 

cell transformation, cell migration and cell invasion.  

 

AP-1 and  CREB: Growth factors and TPAactivate AP-1-dependent transcriptional 

activation and evidence is accumulating that ROS and 4-Hydroxy-2-nonenal (4HNE) 

increase the DNA binding activity of AP-1 [169-174]. The initial increase is not 

dependent upon protein synthesis and probably involves post–translational modifications 

of previously existing AP-1 complexes; however, increased synthesis of Fos and Jun also 

occurs rapidly upon stimulation [175]. Jun transcription is controlled by TRE and MEF2 

sites while Fos transcription requires SRE and CRE sites that are regulated by all three 

MAPK cascades [176]. Binding of AP-1 to DNA can occur without phosphorylation, but 

increased binding and transcriptional activation are both signaled by phosphorylation of 

Fos and Jun [177]. Several transcription factors, including c-Fos and Elk-1 are 

phosphorylated by ERK1/2. The JNK and p38MAPK are more strongly activated by 

stress signals and their activation occurs through similar phosphorylation cascades. The 

c-Jun family of transcription factors are specifically phosphorylated by the JNK at Ser 63 

and Ser 73 in a two-step process that requires binding to the delta subdomain prior to 

efficient phosphorylation at the NH2 -terminal activation domain[178]. JNK also binds 

and phosphorylates the Elk-1 and ATF-2 transcription factors [179;180]. The 

phosphorylation of Jun at the N-terminus by JNK not only is required for transcriptional 

activation [181;182] but also seems to protect Jun against degradation by ubiquitination 
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[183]. This results in an increase in the half-life and accumulation of Jun that may 

contribute to the JNK-stimulated AP-1 transcriptional activity.  

 
In addition to phosphorylation, the AP-1 complex is regulated by redox mechanisms. Fos 

and Jun have a single conserved cysteine residue located in the basic region of DNA–

binding domains that must be reduced for DNA binding activity [184]. The transcription 

factor AP-1 is strongly responsive to redox regulation. The exact nature of the redox 

change is not clearly identified. Recent in vitro data indicate that reversible S-

glutathiolation of the conserved cysteine may be involved [185]. Others suggest that the 

reversible redox regulation of AP-1 is mediated by Trx and the nuclear protein Ref1, 

which both increase AP-1 binding activity [186;187]. Direct association between Trx and 

Ref-1 has been reported [188]. Recently we have demonstrated the evidence for the 

involvement of redox signaling with estrogen-induced cell proliferation [28;75]. 

Physiological concentrations of E2 stimulate a rapid production of intracellular ROS 

which lead to the phosphorylation of c-jun and CREB. Although direct ER transcription 

factor effects are required to promote DNA synthesis, our recent data showed that MCF-7 

cell growth and cyclin D1 expression are suppressed by antioxidants and mitochondrial 

blockers. This observation supports our novel finding that nongenomic estrogen-induced 

mitochondrial ROS modulate the early stage of cell cycle progression [28].  It has 

become evident that regulation of the cellular redox environment is critical for estrogen-

mediated signaling. Thus, ROS may regulate AP-1 activity through several targets. ROS 

can modulate effector molecules such ERK and the c-fos/c-jun heterodimer (AP-1); and 

these effector molecules are known to participate in growth signal transduction [28;30]. It 
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is possible that JNK pathway may be involved in the AP-1 binding and transcriptional 

activation induced by mitochondrial oxidants produced upon exposure to estrogen. 

Although the ERK pathway has been shown to be involved in AP-1 activation by other 

agonists, we think that it may not participate in this case, based on the inability of H2O2 

alone to stimulate the ERK pathway in MCF-7 cells [189]. JNK is activated by stress 

stimuli through an activation module that may include the MAP3K apoptosis-signal 

regulating kinase (ASK-1) [85].Interestingly, recent data suggest that ASK-1 is activated 

by ROS either through Trx oxidation [190] or through dimerization [191]. Thus, ROS can 

either activate the JNK module or induce the formation of 4HNE, which may directly 

activate JNK [173]. 

  
The expression of early G1 genes, c-myc, c-fos, c-jun, cyclin D1, and NRF1 are regulated 

by ROS [192;193]. The mRNAs of some of these genes are induced by estrogen-induced 

ROS and H2O2 as well as other inducers of oxidative stress [114;130;192;194]. As 

described above c-Fos and c-Jun comprise part of the transcription factors AP-1; and AP-

1 binding activates the expression of down-stream target genes. In this regard, the 

induction of c-Fos, c-Jun and cyclin D1 is an ideal paradigm for studying the role of early 

response genes in response to oxidative stress-induced by estrogen. The mRNAs of c-Fos 

and c-Jun are induced by estrogen and also by relatively small amounts of H2O2, 

superoxide, NO, and other inducers of oxidative stress [114;192]. The earliest known 

growth-regulatory gene activated by E2 is c-Myc. Increased transcription of myc, as 

measured by accumulation of mRNA, occurs within 30 min, and peak protein levels are 

observed within 1–3 h of treatment with E2 of MCF-7 cells [114]. Recent studies indicate 
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that Myc protein is stabilized by E2, up to 12 h after its addition, well past the decline in 

mRNA levels. Myc expression elicits active cyclin E-Cdk2 and S-phase entry in growth-

arrested MCF-7 cells. Although Myc is clearly implicated in E2 action, it was not found 

in a genetic screen for E2-responsive genes in MCF-7 cells. Myc is induced by exposure 

to ROS [114]. Cyclin D1 is a well-defined target of E2 action in MCF-7 cells, and in 

rodent breast epithelial tissue, ovary and uterine endometrium. In MCF-7 cells, addition 

of E2 to G0/G1-arrested cells results in a two- to three-fold induction of cyclin D1 mRNA 

within 1-3 h and a three- to five-fold increase in synthesis and steady-state levels of 

cyclin D1 protein within 3-6 h. Given that cyclin D1-knockout mice are fertile, the 

physiologic relevance of ER as a target of cyclin D1 is uncertain. Cyclin D has a half 

ERE. Planas-Silva et. al., demonstrated that E2 transiently upregulates synthesis of c-Fos 

and c-Jun in MCF-7 cells, but not in hER-transfected HaCa T nontransformed human 

keratinocytes [195]. Earlier studies indicated, however, that E2 increases AP-1 activity 

without increased synthesis of c-Jun or c-Fos and without the synthesis of any new 

proteins. Foster and Wimalasena demonstrated that ligand-activated ER is fully active at 

8–10 h after E2 treatment [114]. The products of at least two E2 target genes, c-Myc and 

cyclin D1, can independently promote G1/S transition in MCF-7 cells and activate cyclin 

E–Cdk2 coincident with formation of high molecular mass cyclin E–Cdk2–p130 

complexes depleted in p21CIP1 and p27KIP1. The expression of c-fos and c-myc did not 

depend on the presence of growth factors, suggesting that integrins alone through ROS 

could regulate the Go/G1 transition. Furthermore, integrin clustering in the absence of 

cell spreading was sufficient to induce expression of early genes (jun B and ras) involved 

in the Go/G1 transition and were able to trigger G1/S transition through modulating 
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cyclin D1 expression [196;197]. Integrins, through ROS, control the expression of these 

cell cycle genes, and it is now obvious that cell adhesion and integrin ligation are 

obligatory processes for regulation of cdks and cyclins. JNK and p38 also have been 

shown to cooperate with ERK in pp60(v-src)-induced cyclin D1 expression in breast 

cancer cells [114]. However, an unresolved issue regarding E2-mediated signaling is 

whether E2 receptors themselves actually initiate signal that can intervene in the Go/G1 

and G1/S transitions. The expression of early G1 genes, c-myc, c-fos, c-jun , cyclin D1 

are regulated by ROS [192]. Low and intermediate levels of RO/NS regulate cellular 

signaling and play an important role in normal cell proliferation [9;196]. Constant 

activation of AP-1 transcription factor appears to be one functional role of elevated ROS 

levels during tumor progression [198]. Based on these data, estrogen-induced ROS may 

control the expression of genes involved in cell cycle progression. 

 

NF-kB: Activation of NF-kB is another well-studied model of redox regulation. The 

oxidation of a conserved cysteine residue in the DNA-binding region adjacent to the 

leucine zipper in AP-1 abolishes its binding to DNA [185]. The DNA binding activity of 

AP-1 is restored by Trx and the nuclear signaling protein redox factor-1 (Ref-1) [188] 

and enhanced by transient overexpression of Trx in vivo. Compared with NF-kB, AP-1 is 

less sensitive to oxidative inhibition by glutathione disulfide in vitro but more sensitive to 

oxidized Trx. Thus, in intact cells, the elevation of intracellular oxidized glutathione 

(GSSG) levels by inhibition of glutathione reductase inhibits selectively the DNA-

binding activity of NF-kB and not that of AP-1 [199]. The protein NF-kB is regulated by 

its interactions with the inhibitory co-factor, which sequesters NF-kB to the cytoplasm.  
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AKT is known to phosphorylate an upstream kinase, IKKβ, which stimulates the 

degradation of Ik-B [130].  As AKT can participate in the activation of IKKβ, it may be 

possible for estrogen-induced mitochondrial ROS to stimulate the transcription activity of 

NF-kB via the AKT pathway.   

 

 NRF1

 

: The human alpha-palindromic nuclear respiratory factor -1 binding protein 

(NRF1) is a 503 amino acid (aa) transcription factor [200;201], located on chromosome 

7q32.2 [202] and codes for 68 kDa nuclear proteins [200;203]. Several compounds that 

induce cellular oxidative stress have been shown to increase NRF1 expression and 

increase in mitochondria proliferation. For example, the bacterial lipopolysaccharide and 

tertiary butyl hydroperoxide have both been demonstrated to induce cellular oxidative 

stress which upregulates NRF1 expression and mitochondria biogenesis in rat liver cells 

[149;193]. Likewise, rat liver cells overexpressing NRF1 have been shown to induce 

ROS production and increase in mitochondria proliferation [149]. Similarly, exposures of 

human lung fibroblast cell line, MRC-5, with H2O2 at concentrations of 90-360 µM 

induced increases in mtDNA and mitochondria biogenesis in exposed cells [204]. The 

role of oxidative stress and NRF1 expression were further corroborated by works done by 

Miranda et. al., which revealed that HeLa cells depleted of mtDNA were under oxidative 

stress which induced expression of NRF1 and mitochondrial biogenesis [205]. Lastly, 

estrogen exposure has been reported to increase NRF1 overexpression which increased 

mitochondria biogenesis in MCF-7 malignant mammary epithelial cells, and human 

bronchial epithelial cells from female patients [206;207]. 
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Oxidants modulate NRF1 expression and mitochondria biogenesis; antioxidants 

conversely inhibit intracellular ROS and NRF1 expressions. For example, oral 

administration of vitamin C has been demonstrated to inhibit NRF1 expressions with 

reduction in mitochondria biogenesis and diminished endurance training capacity [208]. 

In addition, catalase overexpressions have been shown to reduce NRF1 expressions and 

mitochondria content in heart muscles of aged mice which attenuated age related diseases 

observed in mice [209]. These studies imply that cellular oxidative status modulates 

NRF1 expression. Activated NRF1 expressions in response to ROS can lead to enhanced 

mitochondria biogenesis and increased bioenergetics, as well as regulation of genes 

involved in apoptosis and cell cycle progression.  

 

NRF1 expression in MCF-7 (or any ER+ cell types) may not be entirely due to cell’s ER 

status. Estrogens concentration of 10 nM has been reported to induce oxidative stress in 

MCF-7 cells [210;211]. In a similar manner, the pro-oxidative compound sodium 

butyrate [212;213] has also been shown to induce NRF1 expression in MCF-7 cells 

[214]. Sodium butyrate lacks estrogenic property. In addition, oxidative stress has been 

reported to induce NRF1 expressions in ER- breast cancer cell line such as MDA-MB-

468 as well as in ER- human bone osteosarcoma (U2OS) cells [215]. Likewise, SERMs 

such as TAM, RAL and Fulvestrant which are also pro-oxidant upon chronic exposures 

[216], also increase NRF1 expressions in SERM resistant MCF-7 cells [217]. These 

studies suggest that estrogen inductions of NRF1 in estrogen responsive breast cancer 

cells are not exclusive to ER status. It implies that perhaps estrogen induced oxidants also 

mediate NRF1 expressions in breast cancer cells irrespective of ER status. This point is 
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important when considering mechanisms by which estrogen induce mammary 

carcinogenesis and growth of breast cancer cells.  

 

This observation is supported by several findings. For example it has been reported that 

exposures of rat cardiomyocytes and liver cells to sublethal levels of pro-oxidative 

compounds such as LPS or t-BOOH induced oxidative stress, NRF1 expressions, 

mitochondria biogenesis, and promoted cell’s survival and growth [193;218]. Conversely, 

silencing of complex II, one of the primary genes regulated by NRF1, inhibited 

OXPHOS, ROS production and augmented cell growth [219]. In similar manner, 

exogenous addition of oxidants to hepatoma cells depleted of mitochondria induced 

NRF1 expressions and cell proliferation [149]. These findings imply that oxidant induced 

NRF1 regulation promotes cell growth by coupling mitochondria bioenergetic with cell 

proliferation. This is further supported by findings in our laboratory that chronic 

exposures of non-tumorigenic, ER- mammary cells (MCF-10A) with 100 ng/ml estradiol 

or its catechol derivatives, 4-OH-E2 but not 2-OH-E2, induced oxidative stress, mammary 

transformations as well as up-regulations of NRF1. However silencing of NRF1 inhibited 

estrogen induced oxidative stress and inhibition of cell’s transformation [49;50]. Similar 

observations were also reported in pre-malignant primary fibroblast cells. In these cell 

lines, it was observed that NRF1 and other mitochondria genes were among the 

transcription factors over-expressed during malignant transformation [220].  However in 

this study, high NRF1 expressions were likewise linked to oxidative stress and energy 

demand by proliferating cells. These studies imply that for cells to survive in elevated 

oxidative environment, they must be able to up-regulate NRF1 expression, which in turn 
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increases mitochondria biosynthesis and OXPHOS. However, it is counterintuitive to up-

regulate pro-oxidative mechanisms during periods of oxidative stress. It is therefore 

speculated that high ROS levels serve other purposes such as clonal selection of 

neoplastic cells, and induction of apoptosis in non-neoplastic cells [221;222]. Similar 

mechanism might be in play during estrogen induced mammary carcinogenesis. In 

population of initiated cells, oxidative stress and NRF1 expression may serve to provide a 

pro-tumorigenic selective environment as well as the energy necessary for these cells to 

proliferate and grow, irrespective of ER status.  

 

Though estrogens have been reported to modulate NRF1 expressions via E2/ER binding 

to ERE on NRF1 promoter regions in a number of cell lines [206;207], we demonstrated 

that prolonged treatment of MCF-7 cells with estrogen also induced NRF1 expression, 

increased cell proliferation and colony formation in soft agar assays (Okoh et al, 

unpublished data). Interestingly, the silencing of NRF1 or pretreatment of cells with NAC 

significantly reduced NRF1 expression and inhibited estrogen induced cell proliferation 

and anchorage independent growth (Okoh et al, unpublished data). Conversely, 

overexpression of NRF1 in the same cell line increased cell proliferation independently 

of estrogen action. These findings from our laboratory therefore imply that NRF1 

expression observed in MCF-7 cells treated with estrogen is redox based as antioxidants 

abolish NRF1 expressions. It also suggests that redox expressions of NRF1 due to 

estrogen exposure may contribute to breast cancer cell growth independent of E2/ER/ERE 

mechanisms. If this is the case, it can be surmised that estrogen induced ROS contributes 

in part to growth of malignant cells in a manner unrelated to ER activations. This 
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assertion may therefore explain why oxidative stress is positively correlated with 

tumorigenesis [223;224], aggressive breast cancer phenotypes [225], and therapeutic 

resistance of breast cancer patients [226]. 

 

ROLE OF ESTROGEN-INDUCED REDOX SIGNALING IN THE DEVELOPMENT 
OF BREAST CANCER  
 
ROS affects generation of new phenotypes of cells during the development of breast 

cancer through its influence on the regulation of protein kinases and signal transduction 

pathways. Here we describe how estrogen-induced ROS may contribute in the generation 

of different cell phenotypes required for the development of breast cancer. 

 

Estrogen-induced ROS as potential mediator of cell transformation and generators of 

human breast cancer stem cells: A delicate intracellular interplay between oxidizing and 

reducing equivalents  allows ROS to function as second messengers in the control of cell 

proliferation and cell transformation [227;228]. Many studies implicate ROS in cell 

transformation and in the uncontrolled growth potential of tumor cells [224;229-233]. We 

also find that estrogen stimulates the growth of TM3 and HEK 293 cells in an ER-

independent manner [9;30]. In another study estradiol-induced kidney tumor incidence in 

Syrian hamsters treated with antioxidants was effectively reduced by ebselen, sodium 2-

mercaptoethanesulfonate (Mesna, a cytoprotective thiol-containing agent), NAC and 

vitamin-C administration [17;18].  Also, cotreatment with pentoxifylline, an inhibitor of 

IL-1β and Tumor necrosis factor (TNFα) synthesis, prevents estrogen-induced testicular 

and uterine cancers [9]. Superoxide dismutases (SODs) are the first and the most 
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important line of antioxidant enzyme defense against ROS and particularly superoxide 

(O2
-) radical. Overexpression of the enzyme responsible for mitochondrial superoxide 

detoxification, manganese superoxide dismutase (MnSOD), inhibits the malignant 

phenotype [234-236]. MnSOD knockout mice exhibit increased oxidative DNA damage 

[237]. Soini et al.,2001 reported that MnSOD expression is less frequent in the tumor 

cells of invasive breast carcinomas than in in situ carcinomas or non-neoplastic breast 

epithelial cells. Several epidemiologic studies have shown an increased risk of breast 

cancer in the MnSOD Ala-Val polymorphic populations [238;239]. In a recent study it 

was shown  that genetic polymorphism in the MnSOD gene may be associated with 

increased risk of breast cancer among Chinese women with high levels of oxidative stress 

or low intake of antioxidants [240]. Studies also show that there is no positive relation 

between genetic variation in MnSOD and breast cancer [241]. Our preliminary study 

showed that MCF-10A cells treated with 4-OH-E2 rapidly produce ROS, which is 

preceded by an increase in the level of Ca2+. The accumulation of 4-OH-E2 as recently 

reported in the human breast tissue in cancer subjects [46;242] will allow increased ROS 

and Ca2+ levels in the target organ of cancer in a sensitive subpopulation. Later, 

overexpression of catalase and MnSOD prevented 4-OH-E2-induced anchorage-

independent growth of MCF-10A cells. These data together indicate that 4-OH-E2-

induced cell transformation may be mediated, in part, by ROS signal transduction 

pathways that are different from the classical nuclear ER genomic signaling pathway 

(Fig. 4).  
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Estrogen-induced ROS as mediators of cell cycle progression: 

 

As shown in Figure 3, high 

ROS levels induce oxidative damage and arrests cells in G0/G1. However, low 

physiologic ROS levels are utilized by cells for cell-to-cell communication and in 

proliferation [28]. The rapid stimulation of intracellular ROS by PDGF, EGF, and NGF 

suggests that this underlying mechanism of cell growth may be shared by other growth 

factors or mitogens, including estrogen  [243]. Exogenous addition of low concentrations 

of H2O2 and/or O2
.- has been demonstrated to stimulate cell growth in a variety of cell 

types including fibroblasts and prostate cancer cells [159]. Although these phenomena 

have been overshadowed by studies concentrating on the role of ROS in the pathology of 

various diseases and apoptosis, they suggest that outcomes other than apoptosis may be 

coupled to the signaling event represented by the estrogen-induced generation of ROS. 

Cell cycle progression is regulated by an intricate web of signaling pathways mostly 

requiring growth factor stimulation and ultimately involving cyclins, cyclin-dependent 

kinases (cdks), and cell cycle inhibitors. Constant activation of redox sensitive 

transcription factors appears to be one functional role of elevated ROS levels during 

tumor progression [198]. The results of our more recent studies show that ebselen (a 

substance with glutathione peroxidase-like activity), and inhibitors of mitochondrial 

replication and protein synthesis prevent estrogen-induced G1 to S transition. Low and 

intermediate levels of ROS regulate cellular signaling and play an important role in 

normal cell proliferation [196]. These data suggest that redox signaling supports cell 

proliferation in the presence of estrogen-induced ROS.  
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Several lines of indirect evidence support a role for mitochondrial oxidants in estrogen-

induced cell proliferation. Isoforms of Trx, Trx-2 and thioredoxin reductase (TrxR2), 

which regenerates the reductant form of Trx, have been detected in mitochondria 

[89;244].  Dominant-negative inhibition of TrxR2 causes an increase in H2O2 

accumulation, which activates cell proliferation [245] and increased expression of  cell 

cycle genes involved in the G1 and S phases of the cell cycle [244-247].  In vitro 

treatments of primary human endometrial stromal cells with estrogen at different 

concentrations (10nM-100nM) result in an increase in Trx protein and mRNA expression 

which implicates Trx in cell growth and differentiation of estrogen responsive tissue 

[247]. Alterations in the cellular redox status due to increased expression of TrxR2 have 

been suggested to play a role in the growth of hepatocellular carcinomas [248]. Whether 

estrogen can specifically increase the expression or activity of Trx2 and/or TrxR2 is not 

known, but these findings suggest that estrogen may modulate signal transduction of 

mitochondrial derived ROS via the thioredoxin system. Indirect evidence is also provided 

by the overexpression of the MnSOD enzyme responsible for mitochondrial ROS 

detoxification, which inhibits breast tumor growth [235].  As H2O2 is a highly diffusible 

signaling molecule and both MnSOD and NOS are modulated by estrogen [249;250], it is 

plausible that estrogen-induced ROS signaling at the level of mitochondria contributes to 

cell proliferation.  

 
Many of the genes associated with high-risk breast tumors appeared to be involved in 

cell-cycle regulation, including Cdc2 and PRC1 [251]. Integrins through ROS control the 

expression of cell cycle genes; and cell adhesion and integrin ligation are obligatory 
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processes for regulation of cdks and cyclins [182-184]. Recently, an NRF1 and CREB 

pair has been identified as a key regulator of the transcriptional program of the cell cycle 

in human cells because this pair of transcription factors show a significant co-occurrence 

rate on promoters of cell cycle regulated genes [252;253]. NRF1 appears to play an 

important role as a regulator of cell cycle genes because NRF1 binding site has been 

identified by comparing genome-wide locations on genes involved in DNA replication, 

mitosis, and cytokinesis. Some of the genes which contain NRF1 binding sites on their 

promoters include Cdc2 [254], guanine-nucleotide exchange factor, RCC1, DNA 

polymerase-α, ornithine decarboxylase, GADD153, growth-arrest and DNA-damage-

inducible protein153 [252]. Mammary carcinogenesis is characterized by an increased 

expression of NRF1, which may be linked, with increased energy demand by rapidly 

proliferating cells [255;256]. However, NRF1’s role in mammary carcinogenesis may be 

more than mere energy modulators. NRF1 has been reported to be over-expressed in a 

number of malignant tissues including breast cancer tissues where its levels are higher in 

disease regions compared to adjacent normal regions suggesting that NRF1 may play a 

role in mammary carcinogenesis [256]. For example microarray study of genes expressed 

during mammary tumorigenesis in MMTV-neu mouse model reveals that NRF1 were 

among the transcription factors over-expressed in tumor tissues compared to adjacent 

normal tissue [257]. Similarly, another microarray analysis of NRF1 expression in human 

tissues reveals that while normal mammary tissue had more NRF1 expression than most 

normal tissues analyzed, (except for lung tissues), the levels of this transcription factor 

were highest in breast cancer tissues compared to other cancer types [256]. Lastly, NRF1 

is amongst a few sets of transcription factors whose overexpression is correlated with 
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progression of mammary carcinogenesis [255]. While these findings were attributable to 

increased energy demand, other evidence exist that suggest that these transcription factors 

may directly or indirectly regulate genes involved in cell proliferation in manners 

unrelated to mitochondria biogenesis. Whether NRF1’s role in these malignant cells is 

indicative of metabolically active cells or whether it also regulates growth related genes 

that promotes malignancy is yet to be investigated. NRF1 may also play major roles in 

modulating cell proliferation in a manner not related to mitochondria biogenesis.  

 

NRF1 regulates many other genes that may be involved in the development of breast 

cancer than that described above. For instance, there is a striking overlap in target genes 

between E2F4 and NRF1 [252;255]. E2Fs are target of both estrogen and oxidative stress 

[258;259]. There is a functional interaction of E2Fs with other transcription factors, such 

as FOXO1, hypoxia-inducible factor 1 (HIF-1), nuclear factor B (NFB), and peroxisome 

proliferator-activated receptor (PPAR), including NRF1, during oxidative responses in 

cells. NRF1 has been reported to transcriptionally regulate the expression of E2F1 [260] 

and E2F6 [215] genes. Both genes belong to E2F family of transcription factors which 

functions in cell cycle controls. While E2F1 is generally considered as a transcription 

factor activator and E2F6 as a transcription factor repressor, the coordinated activities of 

these genes are essential in regulating cell cycle control and to have a major role during 

carcinogenic process [261]. Overexpression of E2F1 in mammalian cells has been 

reported to induce neoplastic transformation of rat embryo fibroblasts, induce colony 

formation in soft agar assay and induce tumor in nude mice [262;263]. Conversely, 

under-expression of these same genes has likewise been shown to induce broad range of 
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mice tumors as well [264;265]. This seemingly contradictory observation of E2F1 

expressions highlights the tight regulations NRF1 must undertake to keep E2F1 gene 

expression at ‘normal’ physiological levels. E2F6 is a member of the E2F family of 

transcription factor involved in regulation of cell proliferation and differentiation via 

target genes involved in DNA replication, DNA repair, cell cycle control and apoptosis 

[261;266;267]. E2F6 expressions in cells induces growth by inhibiting cell’s exit from 

the S phase, and delays re-entry into the cell cycle in quiescent cells [268;269]. Growth 

arrested cells due to delayed cell cycle could accumulate pre-malignant genetic lesions 

and cell transformations potentials as DNA repairs and proof reading also ceases during 

quiescence.  

 

Findings that the proliferative growth of breast cancer cells exposed to estrogens activate 

E2F1 expressions an ER independent manner provide further support to the above 

concept [270]. Of interest in this study is the finding that overexpression of ER in ER - 

breast cancer cells (MDA-MB-231) did not induce cell proliferation upon estrogen 

treatment even though E2F1 was mildly activated [270]. Similarly, it  was shown in ER+ 

ZR-75 cells that ER/Sp1/NFY interactions are  not necessary for estrogen-induced 

transactivation [259]. These findings indicate that ER status is not the sole determinant of 

breast cancer progression and growth due to estrogen exposures. It should be noted also 

that another study with similar conditions had observed that MCF-7 cells exposed to 

estrogen increased NRF1 and mitochondrial expressions via ER activation [206]. Both of 

these in vitro studies with MCF-7 cells may therefore serve to elucidate the mechanism 

by which estrogen induces growth of breast cancer cells, i.e. estrogens induced oxidants 
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mediate NRF1 expression which may regulate E2F1 expression and promote breast 

cancer cell growth.   

 

Other than binding to promoter regions of target genes involved in mitochondria 

biogenesis and OXPHOS, NRF1 also modulates genes involved in mitochondria 

regulations. For example,  Nrf-2 (NFE2L2), a redox sensitive gene known to regulate 

antioxidants responses, has been reported to bind to antioxidant response elements on 

NRF1 promoter region to regulate ROS production as well as induction of antioxidant 

responses in cardiomyocytes overexpressing heme oxygenase (HO)-1 [271]. Likewise, 

cMyc overexpressions and induction of apoptosis in NIH 3T3 cells depleted of serum is 

also reported to be mediated by NRF1 activations [272]. Hormones such as Thyroid 

hormone (T3) and estrogens (E2) have also been reported to upregulate NRF1 expressions 

and mitochondria biogenesis through binding to responsive elements in NRF1 promoter 

regions [273;274]. NRF1 has also been reported to transcriptionally regulate expression 

of myocyte enhancer factor 2A (MEF2A) which is a muscle specific gene [275]. MEF2A 

is a DNA-binding transcription factor that activates muscle-specific, growth factor-

induced, and stress-induced genes such as the cytochrome c oxidase (COX) subunits 6A 

(COX6A). Interestingly, MEF2A also functions in skeletal and cardiac muscle 

development as well as in neuronal cell differentiation and survival. They also play 

diverse roles in the control of cell growth, survival and apoptosis via p38 MAPK 

signaling pathway in muscle cells [276]. Dysregulation of MEF2A is implicated in 

Chinese patients with coronary artery disease [277;278] and in hepatocellular carcinoma 

[279].Our recent study showed that co-exposure of inhibitors of mitochondria shown to 
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control mitochondrial oxidant production prevents E2-induced expression of cell cycle 

genes, cyclin B1, PCNA, and PRC1 containing NRF1 binding sites, and caused loss of 

NRF1 expression and growth delay. The E2-induced stimulation of the expression of 

NRF1 and these cell cycle genes, and growth were restored by removing exogenous 

mitochondrial inhibitors that diminished oxidant exposure indicating that oxidative stress 

stimulates these cell cycle genes in part via NRF1 activation. Cyclin D1 has recently been 

reported to inhibit NRF1 expression which leads to reduced mitochondria biogenesis in 

mouse embryo fibroblasts (MEFs) [280]. Overexpression of cyclin D1 is usually 

associated with cancer cell growth [281]. While it is counter intuitive that rapidly 

proliferating cell such as MEF would inhibit mitochondria biogenesis which is a major 

source of energy production, proliferating cells do generate excess ROS because they are 

metabolically active. Excess cellular ROS are known to have adverse effects of cell’s fate 

ranging from apoptosis to growth retardation [228]. Therefore it is plausible that cyclin 

D1 expression that drives cell cycle progression could also function to reduce 

mitochondria activity during periods of excess ROS.  Hence the inhibition of NRF1 

expression by cyclin D1 may be a negative feedback mechanism that protects the cell 

from harmful effect of mitochondrial derived ROS. This assertion is supported by the fact 

that cyclin D1 expression is likewise upregulated by mitogenic E2 [282;283] as well as by 

ROS [284].  

 

Estrogen-induced ROS as a mediators of breast cancer progression: E2F1 is over-

expressed in breast tumors when compared with normal mammary tissue, and that 

patients with high E2F1-expressing tumors have significantly reduced disease-free status 



55 
 

and overall survival compared with patients with low-expressing E2F1 tumors [285-289]. 

It should be also noted that NRF1 expressions are positively correlated with oxidative 

stress and progressions of mouse or human mammary carcinogenesis [255-257]. E2F6 on 

the other hand are transcription factor repressors and function mainly in growth inhibition 

[261;268]. Interestingly, one of the target gene of E2F6 is the breast cancer gene BRCA1 

[290]. BRCA1 regulates cell cycle progression, apoptosis, and DNA repair, and loss of 

BRCA1 expression is linked to cell proliferation and transformation [291]. While BRCA1 

overexpression has been reported to confer therapeutic resistance,  BRCA1 deficiency 

confers sensitivity to oxidative stress [292]. In addition, BRCA1 mutations are associated 

with breast cancer progression [290]. Therefore, NRF1 dysregulation of E2F6 can lead to 

BRCA1 dysfunctions with adverse consequences ranging from apoptotic cell death to 

malignant transformation of breast epithelial cells.   

 
In addition to regulation of E2F family of transcription factors, NRF1 is also known to 

regulate genes that favor breast growth and metastasis. For example NRF1 tightly 

regulates the expression of calpain proteases in normal cells [293]. Overexpression of this 

protolytic enzyme mediates tumorigenesis, metastasis and angiogenesis in breast cancer 

and other cancer types [294;295]. NRF1 also regulates expression of integrin-associated 

protein [296]. Integrins are essential for a cell’s adhesion during normal development. 

Dysregulation of intergrin has been shown to promote carcinogenesis in mammary cells 

as well as other cells types [297]. Lastly, NRF1 has also been reported to regulate 

proliferation and growth of breast cancer in response to estrogen via activations of p115, 

membrane tethering protein involved in mammary development  [298]. 
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The DNA binding domain of redox sensitive NRF1 protein has been found in the 

regulatory regions of over 600 human genes [254]. Interestingly, while NRF1 expression 

is usually associated with modulating energy demand in proliferating cells, it is equally 

expressed in quiescence cells albeit by different mechanisms [254]. NRF1 is ubiquitously 

expressed in skeletal muscles, heart muscle, brown adipose fat, kidney and liver cells, 

and all cells with high energy demand [82;299;300]. NRF1 has been implicated in 

regulating genes unrelated to mitochondria biogenesis as well. For example, NRF1 

transcriptionally regulates expression of CXCR4, a co-receptor for human 

immunodeficiency virus infection [301], GluR2, a neural subunit that controls Ca2+ 

permeability of AMPA receptors [302], CD155, a human polio virus receptor that 

functions in cell adhesion [201], the X gene of hepatitis B virus (HPV) which functions in 

HBV replication in vivo [303], integrin-associated protein which plays  significant role in 

neurite outgrowth [296], GalNAc-T3 genes that function in glycosylation of mucin 

proteins in epithelial derived tumors [214], fragile X mental retardation 1 (FMR1) genes 

[304], and visinin-like protein-1 (VSNL1), a neuronal Ca2+ sensor protein [305] whose 

dysregulation is implicated in Alzheimer disease and schizophrenia [306], as well as 

cancer promotion and metastasis [307] .   

 

These findings suggest that redox sensitive NRF1 directly or indirectly participates in the 

processes that favor tumorigenic conversion and aberrant cell growth either by 

modulating energy demand and/or modulating expressions of genes involved in cell cycle 

controls. While NRF1’s actions on these genes are associated with normal physiological 

function, their dysregulation may lead to increased apoptosis or cell growth. In situations 
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where NRF1 expressions or functions are dysregulated by estrogen or estrogen induced 

oxidative stress, downstream genes likewise can be modulated and manifest adverse 

effects on cell’s fate. These effects may range from induction of apoptosis, to malignant 

transformation and growth of cancer cells. In mammary cells where aberrant cell growth 

or apoptosis that have been pre-initiated during estrogen metabolism and are under 

oxidative stress, oxidant induced NRF1 expression could further enhance excess growth 

in subsets of initiated cells.  

 

Estrogen induced ROS, NRF1 and therapeutic resistance: Redox sensitive NRF1 may 

play an important role in therapeutic resistance of breast cancer cells. Drug resistance of a 

number of cancer cells are characterized by oxidative stress and metastasis  

[224;308;309]. Tumors contain a subset of cells that both self renew and give rise to 

differentiated progeny. The self renewal properties of these cells are the real driving force 

behind tumor growth, metastasis and recurrence as they are responsible for tumor escape 

from conventional therapies resulting in disease relapse. Oxidative stress induces 

apoptosis in a number of cells but in drug resistant cancer cell, the opposite is true; 

oxidative stress facilitates malignant growth and metastasis of breast cancer cells by 

activating MMPs such as collagenases (MMP-2) and inhibiting antiproteases such as 

tissue inhibitory metalloproteases TIMP [310;311]. Interestingly high mitochondria 

content and oxidative stress are not only associated with breast cancer risk, they are also 

reported to be positively correlated with stages of cancer and therapeutic resistance 

[308;312;313]. Whether excess NRF1 expression mediates chemoresistance and 

malignant growth of cancer cells or whether increased oxidative state observed in cancer 



58 
 

cells are the manifestation of metabolically active cells is unknown. For example, 

treatment of several cancer cells lines with natural or synthetic flavonoids have been 

shown to restore chemo-sensitivity of these cells to cancer drugs [314;315]. Similarly, 

antioxidants have also been demonstrated to improve efficacies of chemo and radio-

therapies in several types of human cancers [316-320]. While some epidemiological 

studies confirm the effectiveness of antioxidant supplementation [321], many studies see 

no effect [322]. Similarly several in vitro and in vivo studies have shown that 

antioxidants can improve drug efficacies [323]. Antioxidants when enhance the anti 

cancer drug effects in vitro and in animal models, implies that lowering cancer redox 

status may be pertinent to its therapeutic response. If that is the case, then NRF1 

modulation of cellular redox status via mitochondria regulation may be central in oxidant 

mediated chemoresistance and malignant growth of cancer cells.  

 

The MDR1 gene (multidrug resistance gene 1) is a membrane glycoprotein that functions 

in effluxing drugs from within cells in a number of malignant cell types [324]. This gene 

is expressed in 42% of breast cancer cases and  patients with tumors expressing MDR1 

gene are three times more likely to experience chemotherapy failures than patients whose 

tumors were MDR1 negative [325]. TAM, one of the most popular drugs used to treat 

breast cancer and which have a high failure rate after prolong usage has been reported to 

up regulate MDR1 gene expression in breast cancer cells [326]. TAM exposures have 

been shown to increase NRF1 expression in MCF-7 breast cancer cells as well [327]. 

Interestingly, NRF1 is a transcriptional regulator of MDR1 gene expression in resistant 

oral cancer cells and in acute lymphoblastic leukemia (ALL) [328;329]. This could be a 
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mechanism that integrates drug induced oxidative stress, NRF1 expression and 

chemotherapeutic resistance in a number of cancers including breast cancer. While 

evidence of such association has not been reported in drug resistant human breast cancer 

cases, the rationales for such investigations are merited. There are indications that NRF1 

expression may correlate with different stages of breast cancer causing possible 

therapeutic failures [255;330].  

 

SUMMARY 

Until recently, it has been argued that hydroxylated metabolites of estrogen (catechol 

estrogens) participate in redox cycling in the endoplasmic reticula of cells and during this 

redox cycling of hyroxylated estrogens, ROS are generated. These redox reactions may 

occur in vivo, if free hydroxylated metabolites are in close proximity of activating 

enzymes within the target cells. Studies recently showed that estrogens or estrogen 

metabolites directly acting on mitochondria of epithelial or immune cells generate ROS. 

Based on the dose and time of induction, the ROS, seem to play dual functions in 

epithelial cells. While higher doses of ROS induce oxidative damage in the genome of 

cells leading to cell apoptosis, exposure of low levels of ROS produce genomic instability 

as well as transduce signals for cell growth, cell transformation and cell invasion. This 

view is consistent with findings that (i) estrogen-induced ROS can lead to increased 

phosphorylation of kinases, such as ERK, AKT, with this effect being attributed to the 

redox regulation of redox-sensitive phosphatses. Some of the nongenomic pathways by 

which estrogen activates MAPK and AKT pathways can be explained based on estrogen-

induced ROS transducing signal to their respective specific phosphatses. (ii) The 
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transcription factors AP-1, NRF1, E2F, NFkB and CREB are responsive to both oxidants 

and estrogen. It is possible that estrogen-induced ROS transduce signals to the nucleus 

for the activation of transcription factors such as AP-1, CREB, E2F, NF-kB, and NRF1 to 

regulate their downstream target genes involved in cell transformation, cell cycle, 

migration and invasion (Figure 4). (iii) There is growing evidence that estrogen-induced 

regulation of breast cancer cell cycle is coupled to rates of cellular metabolism, ROS 

levels and mitochondrial mass. (iv) Inhibition of cell transformation, growth of breast 

cancer cells and tumor formation by overexpression of ROS detoxifying genes and co-

treatment with antioxidants supports the role of ROS in estrogen-dependent breast cancer. 

(v) Estrogen-induced ROS by increasing genomic instability and by transducing signal 

through influencing redox sensitive transcription factors contribute to initiation as well as 

progression of breast cancer. It is envisioned that this is an important mechanism that 

drives the carcinogenesis process, but that it occurs in the context of other processes such 

as ER-mediated signaling and estrogen reactive metabolite-associated genotoxicity under 

investigations that may also contribute to the process. Taken together, estrogen-induced 

ROS mediated redox signaling seems to be complementary to the process of ER mediated 

cell transformation, growth and carcinogenesis. On the other hand, estrogen-induced 

ROS can function as independently reversible modifiers of phosphatases and activate 

kinases to trigger the transcription factors of target genes which participate in cancer 

progression. Further elaboration however, points to a convergence of both ER mediated 

signaling and E2 induced ROS signaling effects on the transcription factors which 

possibly act in synergy and contribute to the growth and cancer progression. 
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FIGURES AND LEGENDS 

 

 

Figure 1. Scheme showing metabolism of estrogen and redox cycling of its metabolites. 
CE = Catechol estrogen, SQ = Semi quinone, Q = Quinone, Q-SG = Quinone-glutathione 
conjugate. 
 

 

 

Figure 2. Estrogen induced cellular responses including carcinogenicity and growth of 
cancer cell  do not   correlate with the binding affinity of various estrogens to estrogen 
receptor (ER) and their potency both in vitro and in vivo  
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Figure 3. Dual Roles of ROS: High ROS levels induce oxidative damage and produce 
cell death, where as  low physiologic ROS levels facilitate cell-to-cell communication 
and cell proliferation 
 

 

Figure 4. Mechanism of ROS signaling in coordinated   inactivation of phosphatases and  
activation of kinases leading to  estrogen-mediated  changes in the expression  of genes 
involved in growth, apoptosis, transformation or invasion of cells 
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CHAPTER IV 
 

REACTIVE OXYGEN SPECIES CAUSES NEOPLASTIC  TRANSFORMATION 
AND XENOGRAFT GROWTH OF 4-HYDROXY ESTRADIOL-TRANSFORMED 
MAMMARY EPITHELIAL CELLS VIA TRANSDUCTION OF REDOX SIGNALS 

TO PI3K/AKT PATHWAY 
        
  Victor O. Okoh, Deodutta Roy 

Department of Environmental and Occupational Health, Florida International University, 
Miami, FL 33199-0001 

 
  
ABSTRACT  

Unopposed free estrogen (estrogen without progesterone) is a major risk factor for breast 

tumors. The mechanism by which estrogen is involved in the development of malignant 

breast lesions is not clear. We found that reactive oxygen species (ROS)- induced by 

repeated exposures to 4-hydroxy-estradiol, a predominant catechol metabolite of 17 β-

estradiol, caused transformation of immortalized human mammary epithelial cells. This 

was evident from inhibition of growth of tumors by overexpression of catalase as well as 

co-treatment with ebselen. Assessment of 4-hydroxy-estradiol transformed clones in 2-D 

and 3-D cell cultures showed that they formed spheroid structures in various matrices as 

well acquired invasive properties.  During 4-OH-E2-mediated malignant transformation 

process increased AKT phosphorylation through PI3K activation was observed. This 

PI3K-mediated phosphorylation of AKT in 4-OH-E2-induced malignant cells was 

inhibited by ROS modifiers as well as by silencing of AKT expression. RNA interference 

of AKT markedly inhibited 4-OH-E2-induced in vitro tumor formation. Among the genes 

being significantly up-regulated during the 4-OH-E2-mediated malignant transformation 

process well known proliferating cell nuclear antigen (PCNA) as well as the cell cycle 

genes cyclinB1 and Cdc25c9 were identified. The expression of these genes was 
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inhibited by ROS modifiers as well as by silencing of AKT expression and NRF1, a 

transcription factor that controls mitochondrial biogenesis (a major source of ROS). 

These studies demonstrate that: (i) 4-hyroxy-estradiol is one of the main estrogen 

metabolites that induce mammary tumorigenesis and (ii) ROS-mediated redox signaling 

leading to the activation of PI3K/AKT signaling plays an important role in 4-hydroxy-

estradiol-induced malignant phenotype of breast epithelial cells. In conclusion, ROS are 

important signaling molecules in the development of estrogen-induced malignant breast 

lesions that may be useful as therapeutic targets for prevention and treatment of breast 

cancer. 

 

INTRODUCTION 

 
Elevated lifetime estrogen exposure is a well-known major risk factor for breast cancer. 

A large body of epidemiological and experimental evidence points to a role for estrogen 

in the etiology of human breast cancer (1-9).  In experimental models, estrogens are 

complete breast carcinogens, as they are capable of initiating and triggering growth and 

selection to generate palpable malignancy (8-14).  However, the signaling mechanisms 

by which estrogen contributes in the initiation of breast cancer remain the subject of a 

long-standing controversy.  This is due, in part, to the inability to resolve whether 

estrogen or estrogen metabolites are procarcinogenic. 17β-estradiol (E2) is metabolized 

to 2- and 4-hydroxy-estradiols by cytochrome p450s.  We have previously shown that 

E2-induced renal tumor formation is decreased in animals exposed to inhibitors of 

estrogen metabolism or to hormonally potent estrogens undergoing reduced metabolic 
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conversion to catechol metabolites compared to E2 (10-12, 15). Russo and others have 

shown that E2 or 4-OH-E2 transform normal ERα negative breast epithelial MCF-10F 

cells (17-20). 17ß-estradiol-induced transformed MCF10F cells formed tumors in SCID 

mice.  4-OH-E2 is twice as capable of producing anchorage-independent growth as E2 in 

MCF10F cells (18,20). In contrast, neither 2-OH-E2 nor 2-OH-E1 are carcinogenic in 

vitro or in vivo (15). Similar results have been reported in MCF-10A cells exposed to 17 

beta-estradiol, equilenin or its catechol metabolite, 4-hydroxyequilenin (21,22). Recently, 

Parks et al (2009) demonstrated that treatment of MCF-10A cells with 4-OHE2 induced 

in vitro transformation of cells (23).  However, these studies in MCF-10A failed to show 

in vivo tumorigenicity, invasiveness or display other salient neoplastic properties.  In the 

present study we have established that repeated exposure of 4-OH-E2 to MCF-10A 

produced tumors both in vitro and in vivo.  

 

Induction of estrogen receptor (ER) upon estrogen exposure is not sufficient for the 

development of breast cancer. Recent studies indicate that mammary tumors can develop 

in the absence of a functional ERα (24).  Although tamoxifen and other antiestrogens are 

thought to prevent cancer through their actions at the ER, other mechanisms cannot be 

ruled out as these compounds also block metabolism and redox cycling of estrogen and 

are free radical scavengers (25).  4-OH-E2 induces an estrogenic response in the uterus of 

ERα null mice, and this response is not inhibited by the antiestrogen ICI182780 (26).  

These findings suggest that estrogen-dependent growth of cells is regulated not only by 

nuclear ER-mediated genomic signaling pathways, but also by non-ER pathway(s).  We 

believe that genomic and non-genomic actions of estrogen produce complementary 
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effects that are required for cellular transformation. Physiologically achievable 

concentrations of estrogen or estrogen metabolites directly acting on mitochondria of 

mammary epithelial or immune cells generate reactive oxygen species (ROS) (27). We 

previously showed that 17-β estradiol (E2)-induced DNA synthesis in breast cancer 

MCF-7 cells depends on mitochondrial oxidant signaling (28). In this study, we have 

extended our efforts on understanding how an E2 metabolite, 4-OH-E2 produces 

malignant phenotype through ROS signaling.  We investigated whether the susceptibility 

of normal breast epithelial MCF-10A cells to neoplastic transformation by estrogens 

depends on ROS-mediated redox signalings. We present here for the first time that 

oxidants induced by E2 and 4-OH-E2 but not 2-OH-E2 exposures mediate in vitro 

transformation of MCF-10A cells. 4-OH-E2 transformed cells are not only tumorigenic in 

mice but also display invasive properties as well as proliferate independent of growth 

factors.  Co-treatments of 4-OH-E2 transformed cells with biological or chemical ROS 

scavengers, or silencing of Akt1 prevented tumorigenic conversion of MCF-10A cells. 

We propose a mechanism of tumorigenic conversion that involves oxidant-mediated 

activation of redox sensitive PI3K/AKT signaling.  

 

MATERIALS AND METHODS 
 

Reagents 

17β-Estradiol (E2), 2-hydroxyestradiol (2-OH-E2), 4-hydroxyestradiol (4-OH-E2), 

Ebselen, N-acetyl-cysteine (NAC), and dimethylsulfoxide (DMSO) were all purchased 

from Sigma (St Louis, MO, USA). All antibodies; PI3K (p110), phospho PI3K (p85), 
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phospho-AKT (ser 473) and total AKT antibodies were purchased from Cell Signaling 

Technology Inc. (Boston, MA). All tissue cultures reagents were purchased from 

Invitrogen Corporation (CA) unless otherwise specified.  

 

Culture of MCF-10A cells and Adenovirus gene transfer 

Human mammary epithelial cells (MCF-10A) were obtained from American Type 

Culture Collection (ATCC) and were routinely cultured in phenol red-free DMEM-F12 

media (1:1) supplemented with 5% horse serum, hydrocortisone (0.5 μg/ml), insulin (10 

μg/ml), epidermal growth factor (20 ng/ml), 100 ng/ml cholera toxin and penicillin-

streptomycin (100 μg/ml each) and incubated at 37°C in a humidified atmosphere 

containing 5% CO2. The cell culture media, serum, antibiotics, and growth supplements 

except cholera toxin (Calbiochem, La Jolla, CA) were purchased from Invitrogen Corp 

CA). For experimental purposes, culture media were changed to starvation media (serum 

free media + antibiotics) and allowed to incubate for 48 hrs prior to commencement of 

most experiments, unless otherwise indicated. Serum deprivation synchronizes cells in 

the G0/G1 phase of the cell cycle.  

 

The Adenovirus-CMV (empty vector), Adenovirus-MnSOD (AdCMVMnSOD), and 

Adenovirus-Catalase (AdCMVCat) constructs were purchased from ViraQuest, Inc. 

(North Liberty, IA, USA).  The adenovirus constructs used were replication-defective, 

E1- and E3-deleted recombinant adenovirus (29). Inserted into the E1 region of the 

adenovirus genome was either the human MnSOD or catalase gene, both of which are 

driven by a cytomegalovirus promoter. Cells were seeded in plates at 15%-70% 
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confluence. The following day, cells were infected with adenoviruses over-expressing 

MnSOD or catalase or vector at 100 MOI in serum free media. Control cells were treated 

with 100 MOI of the adenovirus-CMV construct. This viral load was determined to 

achieve greater than 50% growth arrests of MCF-10A cells without significant cell death 

for the duration of experiment.  Infected cells were cultured for 48 hrs after which cells 

were used for experiments. 

 

Akt1 RNAi transfections  

Pre-designed and verified human shRNA for Akt1 and corresponding null vectors were 

purchased from OriGene (OriGene Technologies, Inc. Rockville, MD). Transfections of 

cells were carried out in a sub-confluent cell population using FuGENE 6 (Roche) 

transfection reagents according to the manufacturer's protocol. Briefly, MCF10A cells 

were seeded in 6 well plates with growth factor supplemented media (SM) overnight. 

Post seeding, cells were transfected with 2 µl of Fugene-6 (Roche) preincubated for 

20 min at room temperature with 0.5 µg plasmid RNAi or its null controls (sham). Forty 

eight hrs post transfection, media were changed to serum-free (starvation media) media 

and incubated for an additional 48 hrs, after which cells were used for various 

experiments. Transfection efficiencies ranged between 60-80% as quantified by 

decreased protein expression levels.  

 

Cell viability assay 

CellTiter-Fluor™ Cell Viability kit was purchased from the Promega Corporation and 

used according to manufacturer’s instructions. Briefly, cells were seeded in 96 well plate 
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at a density of 1.0x104 cells/well, serum starved for 48 hrs and treated with estrogens or 

ROS modifiers. At the end of treatment procedure, substrate reagents (GF-AFC) were 

mixed with substrate buffer and dispensed into wells. This assay measures protease 

activity in live cells as opposed to MTT or MTS assay kits that measure formation of 

formazon crystals by mitochondrial enzymes. Plates were read on a fluorescence plate 

reader at 380–400 nm excitation and 505 nm emission and data is expressed as mean of 

three experiments +/- SD. 

 

Cell transformation 

The cell transformation was carried out by a modified protocol of Russo’s group (18). 

Briefly, MCF-10A cells were seeded at 30% density in a 10 cm dish. After 24 hrs of  

seeding, media were replaced with stavation media and allowed to culture for 48 hrs, and 

then cells were subjected to two treatment cycles with E2 or its catechol metabolites. A 

treatment cycle includes a 48 hr starvation period, 48 hr treatment period (100 ng/ml of 

either E2, 2-OHE2, and 4-OHE2), and 48 hr recovery period in growth media containing 

10% horse serum (HS) and no growth supplements. At the end of two treatment cycles, 

cells that would be used for immunoprecipitation and Western blot analysis were treated 

for an additional 30 mins with estrogens, lysed with RIPA buffer, immunoprecipitated 

and processed for western analysis. For anchorage independent growth assay 5000 

cells/well were used for colony formation assays in soft agar. 
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Anchorage independent growth 

Anchorage independent growth, an indicator of neoplastic transformation of cells, was 

assessed as previously described by Zhou et al (30). Briefly, base support agar were made 

fresh by diluting 1.0% molten agarose mixed with 1:1 2x culture media (2x DMEM/F12 

media, 20% HS, 2x Penicillin-Streptomycin and 200 pg/ml estrogens) to a final 0.5%. 

Molten agar was left at 42 oC in a water bath until dispensed at 200 ul/well in 48 well 

plates, then allowed to solidify for 4 hrs at room temperature. Top agarose overlay was 

made fresh by mixing 0.7% molten agarose with 2x culture media containing appropriate 

5000 cells/well, then gently overlaid over base agar. Cells were incubated for a minimum 

of 21 days in a 37°C incubator with 5% CO2.  Cultures were fed every week with top 

agar layer and colony formation was assumed when cell masses were 100 micron or 

greater as measured on a Nikon TE2000U inverted microscope (Nikon Corp., USA) with 

Metamorph software (Universal Imaging, USA). Images were acquired by using an 

Olympus C-5060 digital camera attached to the Nikon TE2000U inverted microscope 

with a 4x objective. Four wells were enumerated for each group and data expressed as 

mean of five wells +/- SD. 

 

Invasion and ductulogenic assays 

In order to determine invasiveness of transformed cells, several colonies were aseptically 

picked, dissociated with trypsin and cultured for 20-30 passages in a low growth factor 

media (DMEM F12, 5% FCS, 4 ng/ml EGF, 2.0 ng/ml insulin, 100 ng/ml hydrocortisone, 

1x Penicillin-Streptomycin) and eventually DMEM/F12 with 5% HS media, and 1x 

Penicillin-Streptomycin. Cells (5.0 x 103 cells/ml) for invasion assays were seeded over 
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8 μm pore transwell filter insert (Transwell, Coastar Cambridge, MA) precoated with 

Matrigel (Collaborative Research, Bedford, MA). Chemoattractants used were reduced 

growth factor supplemented media or media with 10% FBS media positive control cells 

MDA MB 231. Matrix invasion was allowed for 16 hrs at 37 °C in a CO2 incubator. The 

non-invaded cells inside chambers were wiped off with a cotton swab, and the filters 

were fixed, stained by Diff Quick (Sigma, St. Louis, MO), cut out and mounted onto 

glass slides. The total number of cells that crossed the membrane were counted under a 

light microscope, enumerated and expressed as fold increase compared to parent cell line. 

The experiments were repeated five times and results are expressed as the mean ±S.D. 

 

For ductulogenesis, 1.0x103 cells/ml of transformed cells (p121 and screened from 3x 

Matrigel), MDA MB 231 and  parental MCF-10A cells were mixed with collagen 

(Collagen Co., Palo Alto, CA, USA) and seeded in chamber slides precoated also with 

collagen. Cells were incubated for three weeks with bi-weekly feeding with 5% HS 

media. To confirm spheroid formation from collagen matrix, we diluted HuBiogel, a 

human matrix mimetic (VIVO Biosciences Inc.), 1:3 with media and coated 0.22 micron 

pore transwell filter inserts for 6 hrs at 37 oC incubator. Cells (1.0 x 103) were seeded into 

each insert and chemoattractant media (DMEM/F12, 5% HS, 1x Penicillin-Streptomycin) 

were added at bottom of insert. Cells were cultured for 14 days with media changed twice 

weekly. Images were acquired with a Olympus C-5060 digital camera under an inverted 

microscope with 4x objective as described above. 
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Chemical antioxidant treatments  

The treatment procedure for Ebselen (a glutathione peroxidase mimetic which also 

removes both H2O2 and peroxynitrite) or NAC (a precursor of glutathione and scavenger 

of ROS) (31, 32) varies according to the experiments design. For all experiments, 40 μM 

Ebselen and 1.0 mM NAC were used for cell treatments. For example, in DCF assays, 

antioxidants were pre-loaded onto cells for 2-4 hrs before ROS measurement commences. 

For BrdU assays, cells were cultured with the chemical antioxidants throughout the 

experimental procedure. For transformation regimen, antioxidants were applied to cells 

each time cells were treated with estrogens. For anchorage independent growth assays, 

antioxidants were added to soft agar matrix media and during weekly feeding of colonies.   

 

Measurement of reactive oxygen species (ROS) 

Cellular ROS were measured on a 96 well plate reader and confocal fluorescence 

microscopy as previously described by Felty et al (27). Briefly MCF-10A cells were 

seeded at a concentration of 1.0 × 104 cells per well in black 96-well flat bottom plates 

(ThermoFisher Scientific Inc. USA) and allowed to adhere overnight. Post seeding, cells 

were serum starved for 48 hrs after which they were pretreated for 4 hrs with chemical 

antioxidants Ebselen or NAC (Sigma USA) diluted in Hank's balanced salt solution 

(HBSS) followed by incubation with 10 µM 2',7'-dichlorofluorescin diacetate (DCFH-

DA) (Invitrogen Corp) for 20 min. Cells were rinsed with HBSS followed by various 

estrogen treatments as described in the figure legends. DCFH-DA is a non-fluorescent 

cell-permeable compound, which is acted upon by endogenous esterase that removes the 

acetate groups generating DCFH. In the presence of intracellular ROS, DCFH is rapidly 
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oxidized to the highly fluorescent 2',7'-dichlorofluorescein (DCF). The oxidative products 

were measured with a Tecan Genios 96 well microplate reader using 485 and 535 nm as 

excitation and emission filters respectively or fluorescence images were acquired on a 

Nikon TE2000U inverted fluorescence microscope equipped with a Nikon D-Eclipse C1 

laser scanning confocal microscope system (Nikon Corp., USA). The built-in Nikon EZ-

C1 software was used for confocal image acquisition and analyses.  DCFH-DA stock 

solutions were diluted at a 1:1 ratio with Pluronic F-127 (20% w/v). Data are expressed 

as mean of three experiments +/- SD. 

 

Immunoprecipitation and Western Blot Analysis 

After the respective treatments, cells were rinsed twice with ice cold phosphate buffered 

saline (PBS), harvested with lysis buffer (150 mM NaCl, 0.5% deoxycholate, 0.1% 

Nonidet P-40, 0.1% SDS, 50 mM Tris) containing protease and phosphatase inhibitors 

(Roche). Samples were diluted to 500 µg of protein in 1 ml of lysis buffer, and pre-

cleared for 1 hr at 4 °C with 10 µl of 1:1 slurry of protein A-agarose beads (Invitrogen 

Corp) in lysis buffer. After a brief centrifugation to remove pre-cleared beads, 2 µg of 

desired capture antibodies were added to each supernatant and incubated on a rocking 

platform at 4 °C overnight and captured proteins were precipitated with 40 µl of protein 

A-agarose beads for 2 hr. The beads were washed five times with lysis buffer and 

resuspended in 40 μL sample loading buffer, subjected to electrophoresis and electro-

blotted onto a PVDF nylon membrane. Primary antibodies used for Western blots were  

diluted 1:1000 in phosphate buffered saline Tween-20, PBST  and horseradish 

peroxidase-conjugated secondary antibodies were diluted 1:50,000 in PBST. Blots were 
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treated with ECL reagents (Amersham Biotech), and proteins were detected by 

autoradiography. Band intensity was quantified with Bio-Rad Gel Doc Imaging System. 

 

Immunofluorescence labeling  

MCF-10A cells were seeded and treated in chamber slides as indicated in legends to the 

figures. Post treatment, cells were fixed with ice cold methanol for 15mins, and 

permeabilized with 0.5% Triton X-100 for 30 mins. Cells were blocked with 1% normal 

goat sera for 1 hr after which they were probed with antibodies diluted 1:500 for Akt and 

1:500 for phospho AKT. Alexa Fluor labeled secondary antibody directed against AKT 

antibody was diluted 1:1000. The confocal fluorescence images were scanned on a Nikon 

TE2000U inverted fluorescence microscope equipped with a Nikon D-Eclipse C1 laser 

scanning confocal microscope system (Nikon Corp., USA). The z-series scanning was 

done at every 1 μm up to a z-depth of 10 μm by using a Nikon 40 x 1.30 NA DIC H/N2 

Plan Fluor oil immersion objective. The built-in Nikon EZ-C1 software was used for 

confocal image acquisition and analyses.  

 

RESULTS 
 
Exposure of MCF-10A cells to 17β-estradiol (E2) and its metabolites produces a rapid 

increase in ROS levels: Before carrying out cell transformation, we characterized normal 

human mammary epithelial cells for their ability to produce ROS in response to 17 beta-

estradiol (E2) exposure. These cells respond to E2 in terms of producing ROS very 

similar to breast cancer cells. ROS production by E2 and its metabolites, 2-OH-E2 and 4-
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OH-E2 in normal human mammary epithelial MCF-10A cells was dose-dependent (Fig. 1 

A,B). 4-OH-E2 induced significantly more ROS in these cells compared to E2 and 2-

OHE2. The abilities of these estrogens to produce ROS were inhibited by overexpression 

of catalase or treatment with Ebselen or NAC (Fig. 1C). When MnSOD were over-

expressed in these cells, ROS levels increased significantly compared to cells treated with 

estrogen alone (Fig. 1C). We also measured the cellular protease activities to rule out the 

possibility that the differential ROS levels were not as a result of differential cell 

densities or viability. Our results indicate that 4-OH-E2 is the most effective in 

generating intracellular ROS in MCF-10A cells. Mitochondria may be the major source 

of estrogen induced intracellular ROS, because overexpression of MnSOD, a 

mitochondria superoxide dismutase that converts super oxides to hydrogen peroxide, 

increased the ROS content maximally. 

 

Exposure of MCF-10A cells to 17β-estradiol (E2) and its catechol metabolites induced 

dose-dependent colony formation: Both MCF-10F and MCF-10A cells are spontaneously 

immortalized, ER negative normal human breast epithelial cell lines that are non 

tumorigenic in vivo. We used the anchorage independent growth (AIG) assay to examine 

cell transforming ability of E2 by detecting AIG positive colony formation. E2 exposure 

to MCF-10A cells produced dose dependent increase in colony formation. We found that 

repeated treatments of MCF-10A cells with various doses of E2 or its catechol 

metabolites induced in vitro transformation of MCF-10A cells in a dose dependent 

manner (Fig 2). 4-OH-E2 is more potent in transforming normal mammary epithelial 
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cells compared to E2, while 2-OHE2 is a weakly transforming metabolite of MCF-10A 

cells (Fig 2).  

 

Clonogenic expansion and invasiveness of 4-OH-E2 transformed MCF-10A cells: Since 

4-OH-E2 induced the highest transforming frequency, we further examined whether 4-

OH-E2 induced colonies are clonogenic. We picked several colonies from each soft agar 

at the end of 21days and cultured them in media with 10% FBS (designated as a regular 

media -RM). Several of these clones did not survive beyond the 10th passage in RM. 

However, of the 5 that survived up to the 21st passage, we determined whether these cells 

have acquired anchorage independent growth properties, a hallmark for transformed cells 

and whether these clones also respond to estrogens. Cells were fed twice per week and 

cultured for 21days. Colonies were counted from quadruplicate wells, (± SD). One of our 

clones was highly clonogenic (P21) and responsive to E2. We labelled this clone as 

MCF-10T15 (Figure 3A).  Analysis of the invasive property of this clone MCF-10T15 by 

invasion assay showed that it is highly invasive (Fig. 3B). 

 

 3-D Spheroid formation of 4-OH-E2 transformed clone: To assess whether 4-OHE2 

transformed MCF-10A cells are neoplastic, we picked few colonies from anchorage 

independent growth assay and cultured them repeatedly in growth factor reduced media, 

then assessed cells periodically for their ability to form spheroid structures in collagen 

coated 0.22 μm transwell inserts, or in a rotary vessel using HuBiogel, a memetic of 

human stromal matrix. We found that over progressive passages, the clones in collagen 
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matrix assumed a more heterogeneous population with small masses (p0) as opposed to 

homogenous population with aggressive phenotype (p200) (Fig. 4).  

 

The tumorigenic conversion ability of 4-OH-E2-transformed MCF-10A cells was further 

investigated by 3-D culture using HuBiogelTM. For 3-D culture, anchorage-independent 

MCF-10A human mammary gland epithelial cells transformed by 4-OH-E2 treatment 

were mixed with 3D HuBiogelTM matrix containing DMEM-F12, seeded into 55 ml 

rotating-wall vessels and incubated at 37°C for 16 days. These conditions allow for the 

spontaneous formation of tissue-like spheroids (Fig 4).   

 

 Loss of ductulogenicity in 4-OH-E2 transformed cells: The ability to form ductile 

structures are characteristic of normal mammary epithelial in collagen matrix. Loss of 

this ability is a hallmark of transformed cells. Assessment of transformed cells in a 

collagen matrix indicates that these cells have indeed lost their ability to form ductile 

structures upon repeated treatment with 4-OHE2 (Fig 5A). This phenotypic change was 

evident right from p0 cell population and continued even at p121.  

 

Aggressive phenotype enrichment: Initial invasion assessment of fifteen colonies from 

soft agar assay indicates that three colonies have acquired the ability to invade Matrigel 

matrix. These clones were subsequently cultured in growth factor reduced media over 

several generations and assessed periodically for invasive phenotype. We observed that 

successive passage of these clones increased their ability to invade Matrigel matrix. One 

of the clones termed clone c (MCF-10Ac) had actually acquired invasion capability that 
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is about 30% that of MDA MB 231 cell line at passage (Fig 5B). The other clones had 

lesser invasive abilities compared to MCF-10Ac (data not shown).  

 

4-OH-E2 treatment causes epithelial to mesenchymal transition (EMT) in MCF10A cells: 

We found that the 4-OH-E2 transformed clones looked very different from WT both in 

morphology, size and time it takes to form a sheet upon seeding. Figs. 5C, 1,2 shows that 

transformed clones were bigger than their WT counterpart in monolayer culture just after 

seeding (3 hrs). In addition, transformed cells displayed an abnormal differentiation 

pattern and loss of cell polarity, all phenotypes of cancer cells (Fig. 5C 3,4). The majority 

of clones exhibited morphological changes that resembled epithelial to mesenchymal 

transition. As shown in Figure 8b, MCF10A cells showed highly organized cell-cell 

adhesion and cell contact, whereas 4-OH-E2 transformed-MCF10A cells had an 

elongated and refractive appearance with cell scattering and loss of cell-cell contacts. The 

cobblestone-like morphology of MCF10A cells at confluency was replaced in 4-OH-E2 

transformed-MCF10A cells by a spindle-like fibroblastic morphology. 

 

Inhibition of 4-OH-E2-induced cell transformation by ROS modifiers: In cells 

overexpressed with adenovirus construct containing  catalase and MnSOD that lowers 

oxidant production as well as in mtTFA silenced cells, E2 produced fewer colonies 

compared to E2 alone  (Fig 6). Treatment of cells with chemical ROS scavenger (Ebselen 

or NAC) significantly inhibited the abilities of E2 or 4-OHE2 to induce neoplastic 

transformation of MCF-10A cells as assessed by inability to form colonies and grow in 

soft agar assays (Fig 6).  This implies that oxidants induced by E2 and 4-OHE2 are 
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necessary for tumorigenic transformation of MCF-10A cells and when oxidant levels 

were scavenged by biological and chemical antioxidants, estrogen induced transformation 

of mammary cells was inhibited.  

The growth of the E2-induced transformed clone was highly responsive to E2 and was 

inhibited by Ebselen and N-acetyl cysteine. Antioxidants reduce E2-induced DNA 

synthesis in MCF-10A transformed cells (Figure 7). As shown in Figure 8, treatment with 

E2 produced spheroids (Left Upper Panel). Overexpression of catalase and Ebselen 

inhibited E2-induced tumor spheroid formation. Cells were labeled with CFSE using the 

Vybrant kit for checking viability. All spheroids showing the green fluorophore (Fig. 8 

Right Upper Panel) indicate that cells in tumor spheroids are alive.  

 

4-OHE2 induced ROS activates PI3K/AKT signaling pathway: Consequences of elevated 

ROS in cells are apoptotic cell death, quiescence or cell transformation and neoplastic 

growth (33,34) The signaling pathway associated with survival of cells under oxidative 

stress is attributed in part to activation of PI3K and AKT signaling pathways (34, 35). 

Therefore, we determined whether estrogen induced oxidants in normal mammary 

epithelial cells activate PI3K and AKT signaling pathways during neoplastic 

transformations of MCF-10A. We found  that repeated treatments of MCF-10A cells with 

E2 and 4-OHE2 increased phosphorylation of both PI3K and AKT in cells treated with 

regimen of estrogen which produced cell transformation (Fig 9). Phosphorylation of both 

PI3K and AKT was attenuated by co-treatment  with either biological or chemical ROS 

modifiers (Fig 5). The activation of PI3K and AKT activation by 4-OHE2 were about 

30% and 120% higher than E2 or 2-OHE2 respectively (Fig 10). Interestingly, we also 
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observed that silencing of Akt1 (Fig 11A), the downstream recipient of PI3K activation 

and Akt1 regulates proliferation and growth of mammalian cells significantly diminished 

4-OHE2 induced neoplastic transformations of MCF-10A cells (Fig 11B). These data 

support that intracellular ROS induced by 4-OHE2 may activate AKT signaling pathway 

which favors survival and proliferation of cells, both required for malignant 

transformation.  

 

4-OH-E2-induced ROS modulates cell cycle genes through a nongenomic, ER 

independent signaling pathway:  We investigated whether 4-OH-E2-induced ROS 

signaling is involved in the modulation of cell cycle genes in the conversion of  normal 

breast epithelial cells to malignant cells. Using a normal cell line (MCF-10A) that 

develop transformed clones in response to 4-OH-E2 or E2, the expression of cell cycle 

genes, cyclin D and pcna were measured by real time RT-PCR (Fig. 12). After exposure 

of 8h following two 48 hr treatments with 4-OH-E2; we observed an approximately 1.34-

, and 1.54- fold increase in the mRNA expression of pcna and cyclin D1. Overexpression 

of MnSOD and catalase as well as co-treatment with Ebselen and NAC markedly 

decreased 4-OH-E2 induced pcna and cyclin D1 expression compared to E2 treated cells.   

 

DISCUSSIONS 

Our results showed that E2 and its metabolite, 4-OH-E2, elicited transformed phenotypes 

in MCF-10A cells, which are estrogen receptor-α (ERα) negative.  Similar results have 

been reported in MCF-10A cells exposed to E2 or its catechol metabolite and 4-

hydroxyequilenin (21-23). Russo and others have shown that E2 or 4-OH-E2 transformed 



111 
 

MCF-10F cells were also ERα negative (17-20).  Our results are in agreement with 

previous studies that 4-OH-E2 is twice as carcinogenic as E2.

 

  In contrast, neither 2-OH-

E2 is carcinogenic in vitro or in vivo (15).  Interestingly, both 2-OH-E2 and 2-OH-E1 are 

capable of producing ROS and undergo metabolic redox cycling like 4-OH-E2.  The lack 

of carcinogenicity of 2-hydroxylated estrogen metabolites in vivo may be due to their 

rapid inactivation by COMT-mediated O-methylation, rapid clearance, and weak 

estrogenic hormonal activity as compared with 4-OH-E2 (10-12, 36,37).  Most 

importantly, it may be due to 2-MeO-E2, the major product of COMT-mediated O-

methylation of 2-OH-E2 that possesses unique anti-tumorigenic activity.  These studies 

support the concept that E2 and its main metabolite 4-OH-E2 are carcinogenic in breast 

epithelial cells.   

Recent studies indicate that mammary tumors can develop in the absence of a functional 

ERα (24).  Although tamoxifen and other antiestrogens are thought to prevent cancer 

through their actions at the ER, other mechanisms cannot be ruled out as these 

compounds also block metabolism and redox cycling of estrogen and are free radical 

scavengers (25).  4-OH-E2 induces an estrogenic response in the uterus of ERα null 

mice, and this response is not inhibited by the antiestrogen ICI182780 (26).  These 

findings suggest that estrogen-dependent growth of cells is regulated not only by nuclear 

ER-mediated genomic signaling pathways, but also by non-genomic pathway(s).  

Genomic and non-genomic actions of estrogen may produce complementary effects that 

are required for cellular transformation.  Estrogen is genotoxic, as seen by the presence of 

DNA adducts in mammary tissues from ERKO/Wnt-1 mice (38,39).  Although the 
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formation of DNA adducts may lead to gene mutation, this type of DNA damage appears 

to be a late event arising from E2 metabolism.  We have recently shown that estrogen 

induces rapid formation of ROS in MCF-7 cells (27,40). 4-OH-E2 has been implicated in 

transforming MCF-10A cells via ROS formation based on inhibition of anchorage 

independent growth of MCF-10A cells (23). This study did not show in vivo tumor 

formation of transformed cells. The main difference between of our work and previous 

reports is that our transformed clones are tumorigenic in mice and ROS modifiers. The 

overexpression of catalase that converts hydrogen peroxide to water and Ebselen, a 

gluthione peroxidase mimic,  inhibited cell transformation and tumor formation.  This is 

important because MCF-10A cells are easily transformed in an in vitro system, even by 

mild stress such as reduced growth factor media or hypoxic conditions (41).  

Both E2 and 4-OH-E2 treatment of MCF-10A cells, increased the formation of ROS as 

compared to untreated cells, whereas 2-OHE2 induced the minimum increase in ROS 

formation in MCF-10A cells. Over-expression of biological ROS modifiers and chemical 

scavengers of ROS prevented 4-OH-E2-induced anchorage independent growth of MCF-

10A cells. We observed similar results with 3-D culture of transformed cells using 

HuBiogel and xenograft tumor growth. These findings suggest that ROS induced by 

repeated exposures to 4-OH-E2, a predominant catechol metabolite of E2, cause 

transformation of immortalized human mammary epithelial cells with malignant growth 

in nude mice. Since 4-OH-E2 induces more ROS formation compared to E2 in MCF10A 

cells, the accumulation of 4-OH-E2 in the breast is expected to augment ROS formation 

here as well.  4-OH-E2 strongly binds to ER (42,43) and it takes longer to dissociate from 

the ER than E2 (44).  The greater ROS production, ER action, and breast tissue 
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accumulation of 4-OH-E2 compared to E2 may account for its greater carcinogenicity in 

MCF-10A cells.   

 

We and others have shown that mitochondria are significant targets of estrogen (27,40). 

Recently, we reported that physiological concentrations of E2 stimulate a rapid 

production of intracellular ROS in epithelial cells which depends on cell adhesion, the 

cytoskeleton, and integrins (27,40). These events occur earlier than ER-mediated 

genomic actions. E2-induced ROS production does not depend on the presence of ER on 

breast cancer cells as ER-cell lines MDA-MB 468 produced ROS equal to or more than 

that of ER+ MCF7, T47D, and ZR75cell lines (27).  

 

It has been wrongly concluded by Parks et al (23) that redox cycling of catechol estrogen 

is the source of ROS. Catechol estrogens, particularly 4-OH-E2, via nonenzymatic 

autoxidation, may undergo redox cycling to produce reactive semiquinone and quinone 

intermediates with concomitant production of ROS (10-12). However, this redox reaction 

of catechol estrogens is enhanced in the presence of Cu2+ or Fe3+ ions and by enzymatic 

catalysis by cytochrome P450 oxidases or peroxidases, which is accompanied with an 

increased generation of ROS. Furthermore, Parks et al (23) implied the contribution of 

redox cycling of catechol estrogen generating ROS based on indirect evidence using a 

non-specific inhibitor of cytochromes P450, SKF525A and dicumarol, an inhibitor of 

quinine reductase. Dicumarol can also inhibit mitochondrial diaphorase, which is 

involved in reduction of Coenzyme Q10 in the mitochondria (45). Similarly, SKF-525A 

inhibits mitochondrial oxidative metabolism in intact cells and isolated mitochondria 
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(46). Lower ROS formation observed in the presence of SKF525A and dicumarol may be 

as a result of inhibition of the mitochondrial electron transport chain. Increased ROS 

formation is observed within 30 seconds of E2 treatment (40). Due to the speed of ROS 

production as observed in our study, it is unlikely that redox cycling of 4-OHE2 is the 

source of these oxidants. Furthermore, in our studies of E2-induced ROS generation in 

MCF-7 and other cells, hydroxylated estrogen metabolites or adducts immediately after 

addition of E2 were not detected which also rules out the possibility of ROS generation 

by redox cycling of hydroxylated estrogens. 

 

Little is known about the potential direct involvement of ROS signaling in breast cancer 

development. However, we and others have recently discovered that estrogen-induced 

oxidative bursts occur exclusively in perinuclear regions. This surge in ROS production 

may target inducible promoters, signaling transcription-initiation complex assembly and 

subsequently, driving estrogen-induced gene expression (28). While studying 

mitochondrial regulators of cell cycle progression, we discovered that E2-induced G1 to 

S phase transition is associated with an increase in intracellular ROS levels (28).  These 

findings strongly support the idea that both E2-induced ROS and ER activity are required 

for breast cancer cell proliferation (28).  When produced at high levels, ROS levels 

induce oxidative damage and G0/G1 arrest.  However, when present at physiologic 

levels, ROS mediate essential cellular functions such as cell-to-cell communication and 

proliferation.  For example, estrogen-generated ROS mediate early G1 gene expression, 

as seen by the ability of antioxidants to block this effect (28).  We now know that the 

delicate intracellular interplay between oxidizing and reducing equivalents allows ROS to 
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function as second messengers in signaling pathways controlling cellular proliferation 

and transformation (47,48).  Recent studies implicate a role for ROS in cell 

transformation and several lines of indirect evidence support a role for ROS in the 

development of breast cancer (49,50),  We recently found that, in Syrian hamsters, 

estradiol-induced kidney tumor formation was reduced by the antioxidants N-

acetylcysteine, vitamin C, sodium 2-mercaptoethanesulfonate (cytoprotective thiol-

containing agent), and Ebselen (51,52).  Consistent with this finding, estrogen-induced 

testicular and uterine cancers are prevented by pentoxifylline, a compound with 

antioxidant effects stemming from its ability to block synthesis of the inflammatory 

mediators, IL-1β and TNFα (49).  Overexpression of manganese superoxide dismutase 

(MnSOD), the mitochondrial enzyme responsible for superoxide detoxification, blocks 

the appearance of malignant phenotypes (53), and the loss of this enzyme partly 

contributes to malignant phenotypes (54,55).  Not surprisingly, MnSOD knockout mice 

exhibit increased oxidative DNA damage (56).  MnSOD expression is less frequently 

found in tumor cells of invasive breast carcinomas than in non-neoplastic breast epithelial 

cells (57).  Several epidemiological studies have shown that MnSOD polymorphic 

populations have an increased risk of breast cancer (59-60).  The recent findings that 4-

OH-E2 accumulates in the breast tissue of cancer subjects (61-63) and predominant 4-

hydroxylation of E2 occurs in the target organs of cancers (64-66) suggest that the target 

organ of cancer would be particularly sensitive to 4-OH-E2-induced ROS formation.  In 

our studies, overexpression of catalase and antioxidants (N-acetyl cysteine and Ebselen) 

prevented 4-OH-E2-induced anchorage independent growth of MCF-10A cells. These 
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results indicate that 4-OH-E2-induced cell transformation may be mediated, in part, by 

redox-sensitive signal transduction pathways.    

 

Both AKT and ERK are redox sensitive kinases.  Thus, 4-OH-E2-generated ROS may 

activate ERK or AKT, which could then directly phosphorylate and activate transcription 

factors controlling cell cycle, cell migration or cell invasion genes. Several investigators 

have concluded that estrogen-induced AKT activation is promoted by membrane bound 

ERα or ERβ (67,68). There are no known functional motifs within the structure of the ER 

that can promote second messenger signaling. There are reports which show no 

correlation between ERα/β expression patterns and the activation of AKT-1/-2 in 

estrogen treated breast cancer cell lines. 17α-estradiol, through an ER independent 

mechanism, activates PI3K-AKT signaling (69). Recently, Lee et.al. (67) reported that 

up-regulation of PI3K/AKT signaling by E2 is mediated through activation of ERα, but 

not ERβ. In ovarian cancer cells, 4-OH-E2 induces AKT phosphorylation while 2-OH-E2 

did not (70). Our study showed that 4-OH-E2 increased AKT poshphorylation in ERα 

lacking MCF-10 cells, while 2-OH-E2 did not increase AKT phosphorylation.  The PI3K 

inhibitor, LY294002, and ROS modifiers blocked 4-OH-E2-induced AKT 

phosphorylation. AKT activity depends on its phosphorylation, which is positively 

regulated by PI3K and negatively regulated by a class of protein phosphatases (PPs) (71). 

AKT can be activated by both E2 and H2O2 (67-73).  ROS reversibly regulate cysteine-

based phosphatases (reviewed in 47). The ability of E2 and H2O2 to activate AKT may be 

attributable to inactivation of cysteine-based phosphatases by ROS (47, 67-73).  The 
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reversible inactivation of phosphatases, such CDC25A and PTEN, by estrogen-induced 

ROS may be a key component of AKT activation (47,72).   

 

The PI3K/Akt signaling pathway seems ubiquitous to carcinogenic conversions (74-76). 

Oxidant mediated hyperactivation of AKT can phosphorylate and inhibit pro-apoptotic 

proteins such as BAD and  caspase 9 while phosphorylating and activating pro-growth 

transcription factors such as ASK1 and GSK3. The outcome of this hyperactivation could 

therefore be cells surviving and proliferating in a high oxidative state. If these cells have 

been initiated by acquisition of pre-tumorigenic lesions by 4-OHE2 metabolism, oxidant 

mediated growth of these cells could be the basis for malignant transformation of 

mammary cells. The loss of PTEN activity, hyperactivation of PI3K/AKT signaling 

pathway, excess estrogen exposure and oxidative stress have been implicated in breast 

carcinogenesis (47).  In this study, we also observed that PI3K/AKT signaling proteins 

were hyperactivated in MCF-10A cells treated repeatedly with estradiol and 4-OHE2 

though the activations of 4-OHE2 were more than those of E2 and 2-OHE2 respectively. 

Importantly, chemical and biological antioxidant mitigated PI3K/AKT activations and 

inhibited estrogen induced mammary tumorigenesis. To rule out the possibility that 

antioxidant regulation of PI3K/AKT activations are not related to estrogen induced 

mammary tumorigenesis, we silenced AKT1 expression, the AKT isoform implicated in 

survival, growth and tumorigenesis of cells including mammary cells (74-76). We found 

that silencing of this gene prevented estrogen’s ability to transform MCF-10A cells. 

These data indicates that estrogen induced redox activation of PI3K/AKT signaling 

pathway is essential for mammary tumorigenesis.  
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A substantial number of experimental and epidemiological studies support an important 

role for AKT in tumorigenesis. PI3-kinase and AKT act as oncogenic determinants in 

several human cancers. AKT genes are amplified or overexpressed in gastric, ovarian, 

breast, pancreatic, and prostate cancers (77,78). AKT1 levels are higher in a panel of 

human breast carcinoma cell lines than in breast epithelial cells, particularly those with 

higher HER2 expression. AKT1 activity is increased by either E2 or IGF-I in estrogen-

dependent MCF-7 cells, and both factors act synergistically to increase AKT1 activity 

and promote cell proliferation (79). Transgenic mice expressing AIB1 (ER co-activator) 

in the mammary gland develop mammary hyperplasia and mammary carcinomas. 

Increased activation of the PI3K/AKT pathway is implicated in the development of 

mammary carcinoma in AIBI mice (80). AKT activation amplifies the proliferation 

induced by cyclin D1 or HPV E7 during morphogenesis and cooperates with these 

oncoproteins to promote proliferation and morphogenesis in the absence of growth factors 

(81). H-ras transformation of MCF-10A cells results in upregulation of MAP kinase and 

PI3-kinase signals (82). Similarly benzo(a)pyrene quinone is reported to induce 

anchorage-independent growth of MCF-10A cells which depends on the activation of 

PI3K/AKT activation (83). Chronic activation of AKT2 leads to an increase of the events 

associated with tumorigenesis (84). Most importantly, AKT activation disrupts mammary 

acinar architecture and enhances proliferation in an mTOR-dependent manner (80). Our 

study showed that the exposure of 4-OH-E2 or E2 to normal human breast epithelial 

MCF-10A cells produced transformed phenotypes. These cells show increased AKT and 

increased cell number in the absence of EGF or insulin. The 4-OH-E2-induced cell 

proliferation was attenuated by the antioxidant N-acetylcysteine. Overexpression of 
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catalase and MnSOD also reduced the extent of 4-OH-E2-dependent increased cell 

growth and AKT activation. Taken together, these data indicate that 4-OH-E2-induced 

ROS activates the AKT pathway in MCF-10A cells to support the growth of cells in 

growth factor deficient conditions. 
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FIGURES AND LEGENDS 
 

 

 
Fig. 1. 17β-estradiol and its catechol metabolites induce ROS production in MCF-10A 
cells in a dose dependent manner. Cells were seeded at 1.0 × 104 cells per well. 24 hrs 
post seeding, cells were serum starved for 48 hrs in DMEM/F12 (1:1) with 1x penstrep. 
For the groups that were treated with NAC or ebselen, these cells were pre-treated with 
1.0 mM NAC, pH 7.0 or 40 µM ebselen for 4 hrs before DCF assay. For the groups that 
were treated with catalase or manganese super dismutase (MnSOD), these cells were 
infected with adenovirus over-expressing these ROS modifiers at moi 100 for 48 hrs prior 
to seeding for DCF assay. At end of starvation and antioxidant treatments, cells were 
preloaded with 10 µM 2',7'-dichlorofluorescin diacetate (DCFH-DA) diluted in Hanks 
Balance Saline Solution (HBSS), and incubated for 20 mins in 37oC incubator. Post DCF 
treatment, cells were washed with HBSS and treated with various concentrations of 
estrogens diluted in HBSS and fluorescence emission read on Tecan Genios microplate 
reader using 485 and 535 nm as excitation and emission filters respectively. Fluorescence 
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images were acquired on confocal microscopy. To determine whether observed ROS 
modification by estrogens or antioxidant were due to differential cell density or viability, 
duplicates plates were seeded and treated with ROS modifiers as described above, then 
challenged with 100 ng/ml 4-OHE2. Instead of loading DCF, cells were treated with 
CellTiter-Fluor™ as described by manufacturer. This reagent measures protease activity 
as an indication of cell viability. Plates were read on fluorescence plate reader at 400nm 
excitation and 505nm emission and data expressed as mean of three-five experiments +/- 
SE. (A) Histogram of fluorescence emitted by the oxidation of DCFH-DA by estrogens 
and read on Tecan plate reader in 5 min. Data is expressed as mean of +/- SE of five 
experiments. (*) Indicates significantly different from control (DMSO) groups while (#) 
indicates significant different from 4-OHE2, (P<0.05). (B) Confocal images of cells 
preloaded with 1.0 μM DCF and treated with 100 pg/ml of various estrogens, and 
fluorescence image acquired 5 min after treatment. (I) DMSO, (II) E2, (III) 4-OHE2, (IV) 
2-OHE2. (C) Histogram of ROS modulation by 4-OHE2 versus viable cells. (**) 
Indicates significantly different from control (DMSO) groups while (#) indicates 
significant different from 4-OHE2, (P<0.05) 
 
 

 

Fig. 2. E2 and 4-OHE2, but not 2-OHE2 transforms MCF-10A cells in a dose dependent 
manner. MCF-10A cells were seeded at sub-confluence and serum deprived for 48 hrs 
after which they were exposed to various doses of E2 or its catechol metabolites for two 
treatment cycles of 48 hrs each, interspersed with 48 hrs recovery period. (I) DMSO, (II-
III) 5.0 and 50.0 μg/ml BaP as positive controls respectively. We used estrogen 
concentrations of 0.1, 10.0 and 100.0 ng/ml respectively for transformation experiments; 
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IV-VI) E2; VII-IX) 4-OHE2 and X-XII) 2-OHE2 treatments.  Fig 2B) Fold differences in 
colony formations were compared to colonies from 0.1ng/ml estrogen treatments. Data 
expressed as mean of four wells +/- SD. (**) Indicates significantly different from control 
0.1 ng/ml groups while (#) indicates significant different from 100.0 ng/ml 4-OHE2 
treated group, (P<0.05) 
 
  

 
 

 

Fig. 3. Clonogenic expansion and invasiveness of 4-OH-E2 transformed MCF-10A cells: 
A. For colonogenic expansion analysis, we picked several colonies from each soft agar at 
the end of 21days and cultured them in media with 10% FBS, designated regular media 
(RM). Several of these clones did not passage beyond 10th passage in RM. However, of 
the 5 that survived up to the 21st passage, we seeded these cells at 50 k cells/well in soft 
agar to determine whether these cells have acquired anchorage independent growth 
properties, a hallmark for transformed cells and whether these clones also respond to 
100pg/ml estrogens. Cells were fed twice per week and cultured for 21days. Colonies 
were counted from quadruplicate wells, (± SD). B. To assess invasive properties of the 
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clones derived from 4-OH-E2 induced MCF-10A transformed cells, we seeded 10K 
MCF-10T15 cells, a clone from MCF-10A transformation in  BD BioCoat™ Matrigel™ 
Invasion Chambers. We also seeded these cells in glass chamber as we previously found 
that MCF-10A cells don’t attach very well to glass in the first 16-24hrs. For the invasion 
assay (a), the chemotractant is either growth supplemented media ( SM) or media with 
only 10% FBS (RM). 
 

 

Fig. 4. Spheriod Formation in Collagen and HuBiogel  
 Single colony from anchorage independent growth were aseptically picked at end of 21st  
day of culture. Clones were grown in growth factor reduced media (DMEM F12, 5% 
FCS, 4 ng/ml EGF, 2.0 ng/ml insulin, 100 ng/ml hydrocortisone, 1x penstrep) for 40-60 
generations, then in growth factor depleted media (DMEM F12, 5% FCS, 1x penstrep) 
onward. Clones were routinely assessed on collagen and HuBiogel for phenotypic 
evolutions. p0 indicates transformed cells prior to colony assay, p44-p200 are phenotypes 
of clone over several passages. Images were acquired with hand held Nikon digital 
camera over an inverted microscope with 20x objective.  
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Fig.5. Phenotypic Assessment of Transformed Cells  
 Clones from p121 cells were assessed for ductulogenesis, seeding phenotype and 
invasiveness. A) Ductulogenic assay on collagen matrix. B) Invasive characteristics of 
clone compared to MDA-MB 231 on matrigel 16 hrs post seeding. Data normalized to 
MDA-MB, +/- SD. Histogram of invaded cells expressed as mean invaded cells per field.  
C 1-II) Phenotypic assessment of clone versus wild type - 3 hrs post seeding and  III-IV) 
24 hrs post seeding. 
 

 

Fig . 6. ROS Scavengers Attenuates Cell Transformation. To determine whether ROS 
scavenger attenuates in vitro transformations of MCF-10A cells, we infected cells with 
adenovirus over-expressing catalase or MnSOD at moi 100. Post infections, cells were 
subjected to transformation regimen. For group that were treated with chemical 
modifiers, this group were treated continuously with 40.0 uM ebselen throughout 
transformation period except during recovery times. At end of transformations 
procedures, cells were seeded for soft agar colony formation at 7.5 x 104 cells/well in 48 
well plate. Assays were fed weekly for 3 weeks. Colonies formed in 4 wells were 
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enumerated and scored as mean +/- SD. Images were captured with Nikon digital camera 
over in inverted microscope with 4x objective. Fig 3A:  (I) DMSO, (II) 4-OHE2, (III) 
catalase infected cells, (IV) Catalase+4-OHE2, (V) MnSOD infected cells,  (VI) MnSOD 
infection+4OHE2, (VII) Ebselen treated cells (VIII) Ebselen treated cells + 4-OHE2. Fig 
3B:  Number of colonies per well. Data are means +/- SD of five plates.  (**) Indicates 
significantly different from control (DMSO) groups while (*) indicates significant 
different from 4-OHE2, (P<0.05) 
 

 
 

Figure 7. The growth of E2-induced transformed clone was inhibited by both 
antioxidants, ebselen and N-acetyl cysteine. Cells were grown in 96-well plates for 2 
days in 10% FBS DMEM/F12 and serum starved 2 days prior to addition of E2 for 18 h-
48 h unless specified otherwise. Bromodeoxy uridine (BrdU) incorporation assay was 
used to measure DNA synthesis as indicator of apoptosis in transformed cells. 
Antioxidants ebselen, NAC, and catalase were pretreated for 2 h prior to the addition of 
E2. Colorimetric BrdUrd incorporation was measured at 450 nm with a plate reader. 
Results are expressed as mean OD ± SD of three separate experiments with control set as 
100% DNA synthesis. (**) Indicates treatment significantly different from control. (*) 
Indicates treatment significantly different from E2. (P<0.05) 
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Figure 8. E2-induced 3-D tumor spheroid formation was inhibited by ROS modifiers. 
Spheroids were grown in a rotary vessel using HuBiogel, a memetic of human stromal 
matrix in catalase over-expressing cells or ebselen treated cells. Cells were labeled with 
CFSE using the Vybrant kit for checking viability. All spheroids showing the green 
fluorophore (Right Upper Panel) indicate that cells in tumor spheroids are alive. 
 
 

 
Fig. 9. Estrogen and its metabolites differentially activates PI3K/Akt signaling pathway 
during mammary transformation. MCF-10A cells were seeded for transformation as 
described in methods. At the end of transformation process, cells were treated for 
additional 30 min with 100.0 ng/ml estrogens or its catechol metabolites. Cells were 
harvested and lysed with RIPA buffer and PI3K and Akt proteins were 
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immunoprecipitated with respective antibodies and fractionated on 12% SDS-PAGE 
electrophoresis gel. Proteins were blotted onto PVDF membrane. Membrane were then 
probed with (A) p85 (p-PI3K) and p110 subunits of PI3K respectively. (B) 
Phosphorylated Akt (pAkt) and total Akt. Band intensity were quantified with Biorad 
GelDoc 2000 and normalized to vehicle. (**) Indicates that E2 and 4-OHE2 treatment 
group is significantly different from control (DMSO) groups while (*) indicates that other 
treatments groups are significantly different from 4-OHE2. (P<0.05). Results are 
expressed as mean fold change of three separate experiments. 
 

 

 

 
Fig. 10.  4-OHE2 Activation of PI3K/Akt Signaling Pathway is Abrogated by Chemical 
and Biological ROS Modifiers. MCF-10A were seeded and treated with Ebselen or NAC 
during transformation regimen, or pre-infected with adenovirus expressing Catalase or 
MnSOD, then subject to transformation regimen as described in methods. At the end of 
transformation process, cells were treated for additional 30 minutes with 100 ng/ml 4-
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OHE2. Cells were lysed with RIPA buffer and immunoprecipitated with PI3K and Akt 
antibodies respectively. IP products were fractionated on 12% SDS-PAGE 
electrophoresis gel. Proteins were blotted onto PVDF membrane. Membranes were then 
probed with phosphorylated PI3K (p-PI3K) and PI3K, or phosphorylated Akt (pAkt) and 
total Akt. Band intensity were quantified with Biorad GelDoc 2000 and normalized to 
vehicle. (A) Immunoblot of activated PI3K and its modulation by biological ROS 
modifiers at the end of transformation regimen. (B) Immunoblot of activated Akt and its 
modulation by biological ROS modifiers at the end of transformation regimen. (C)  
Immunoblot of activated PI3K and its modulation by chemical ROS modifiers at the end 
of transformation regimen. (D) Immunoblot of activated Akt and its modulation by 
chemical ROS modifiers at the end of transformation regimen. (**) Indicates that 4-
OHE2 treatment group is significantly different from control (DMSO) treatments groups 
while (*) indicates treatment is significantly different from 4-OHE2, (P<0.05). Results 
are expressed as mean fold change of three separate experiments. 
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Fig. 11. 4-OHE2 induced Activation of Akt1 Mediates MCF-10A Neoplastic 
Transformation . To ascertain whether Akt activations are involved during estrogen 
induced mammary transformation, cells were transfected with shRNA for Akt1 or it 
corresponding vector, and subsequently subjected to transformation regimen. After 
transformation process, cells were used for soft agar colony assay, or treated for 
additional 30 minutes then used for immunoblot. Cells were also seeded for 
immunofluorescence labeling with anti Akt antibodies for confocal microscopy. Panel A: 
I) DMSO, II) 4-OHE2, III) Sham Akt1 knockdown, IV) Sham Akt1 knockdown + 4-
OHE2, V) Akt1 knockdown, VI) Akt1 knockdown + 4-OHE2. (**) Indicates that 4-
OHE2 treatment group is significantly different from control (DMSO) groups while (*) 
indicates that other treatments groups are significantly different from 4-OHE2, (P<0.05). 
Panel B: Immunoblot of transformed cells expressing total Akt. Data is expressed as fold 
difference of 3 experiments, OD ± SD. (*) indicates treatment is significantly different 
from 4-OHE2, (P<0.05). Panel C: Immunofluorescence label of transformed cells 
expressing total Akt, I) sham kd + DMSO, II) Sham kd + 4-OHE2, III) Akt1 kd + 
DMSO, IV) Akt1 kd + 4-OHE2. 
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Fig. 12. 4-OHE2 induced up-regulation of cell cycle gene during neoplastic 
transformation of mammary cells is inhibited by ROS modulators  
MCF-10A cells were seeded for transformation as described in methods. At end of 
transformation period, cells were treated for additional 18 hours with vehicles or 
estrogens after which they were washed with cold PBS containing protease inhibitors. 
Cells were detached with trypsin and RNA isolated from 2.0 x106 cells, and 10ng RNA 
were used for qRT-PCR analysis of cell cycle genes primers on ABI Real time PCR 
machine. Data represents mean of 3 different experiments +/-SE, (P<0.05). (*) indicates 
treatment significantly different from DMSO while (**) indicates significant difference 
from 4-OHE2.  A) Fold change of PCNA transcript in 4-OHE2 transformed cells treated 
with ROS modulators, or transformed cells transfected with Akt1 RNAi. B) Fold change 
of cell cycle genes in 4-OHE2 transformed cells overexpressing catalase. 
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ABSTRACT 
 

We have shown earlier that chronic exposure to estrogen induces ROS production and 

promote growth and metastasis of breast cancer cells via ER related pathways.  Recently  

nuclear respiratory factor 1 (NRF1), a transcription factor, known to regulate cell’s redox 

status via mitochondria biogenesis has been implicated to play a role in breast 

carcinogenesis. In this study we demonstrate that estrogen induced ROS mediated 

signaling activates AKt activation which phosphorylates NRF1, a transcription factor, 

known to play a critical role in mitochondrial biogenesis.   This is the first report to 

demonstrate that exposure of MCF-7 cells to estradiol induced phosphorylation of AKt to 

activate NRF1. Activated NRF1 then modulates estrogen induced growth and invasion of 

MCF-7 cells in a redox dependent manner. Treatments of cells with ROS modulators or 

knockdown of NRF1 diminished NRF1 expression as well as estrogen induced growth of 

MCF-7 cells. These findings suggest that estrogen-induced redox signaling of NRF1 may 

be required for in vitro growth and metastasis of breast cancer cells. 
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INTRODUCTION 
 
Excess estrogen (also referred to as E2 or estrogen) exposure is associated with breast, 

endometrial and testicularovarian cancer [1-3]. Estrogens promote proliferation and 

growth of cancer cells by activation of estrogen receptors (ER) and non-ER activation 

pathways [1;2] While ER and regulatory gene altered by estrogen exposure may promote 

growth of breast cancer cells, recent evidence suggest that reactive oxygen species (ROS) 

may contribute in regulating survival, proliferation, growth and metastasis of  breast 

cancer [4-8].   

 

The role of ROS in breast cancer is not new. Both in vitro and in vivo studies have  

suggested that malignant breast cells compared to normal cells are under intrinsic 

oxidative pressures [9-12], which may correlate positively with excess estrogen exposure 

[13;14] and inefficient antioxidant systems [15]. These redox imbalances result in 

accumulations of oxidants, such as, hydrogen peroxide (H2O2) and hydroxyl ions (-OH ) 

[16;17]. These oxidants can have significant consequences on the fate of cancer cells 

ranging fromfrom apoptotic cell death, to proliferation, growth, metastasis and 

therapeutic resistance [18-21]. However, the mechanism (s) involved in oxidative stress 

and fate of breast cancer is complex and poorly understood. Several studies however 

suggest that impaired redox mechanism induces dysregulated phosphorylation and 

dephosphorylation of signaling proteins which activate or deactivate redox sensitive 

transcription factors [22]. NRF1 (nuclear respiratory factor-1/alpha-palindrome-binding 

protein) is one of the main transcription factors which are modulated in response to 
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oxidative stress. , NRF1 is a redox sensitive transcription factor known to regulate 

mitochondria biogenesis as well as oxidative phosphorylation (OXPHOS) [23;24]. 

OXPHOS is involved in the production of most of the mitochondria ROS. Dysregulated 

and increased OXPHOS activity may result in excess ROS production which can have 

deleterious effects onmtDNA integrity and ETC. [25].  Simultaneously, estrogens have 

been shown to induce increased NRF1 expressions,OXPHOS activity [26] and ROS 

production in mammary cancer cells [27]. Therefore, breast cancer tissues with 

significant  oxidative damages [5;14], possibly, are the source of  mitochondria derived 

oxidants via estrogen induced NRF1.  This may also explain why ER+ breast cancer have 

high  mitochondria copy numbers [28], exhibit significant mtDNA damages [29-31] and 

positively correlate with NRF1 expressions in higher grades [32;33]. .  

 

In contrast, sublethal levels of ROS induce NRF1 expression which regulates the 

mitochondria/DNA retrograde communication. If dysregulated, NRF1 can turn on genes 

involved in carcinogenesis and metastasis of cancer cells [34]. That is why antiestrogenic 

compounds such as raloxifene and tamoxifen likely fail upon prolong usage because 

these compounds act as pro-oxidant upon chronic exposures [44-47] as well as inducers 

of NRF1 [48].  

 

NRF1 is predominantly associated with mitochondria regulation in response to oxidative 

stress, genome wide in silico analysis however, revealed that this gene also regulates over 

400 genes involved in cell cycle progression, metabolism, DNA replication, and 
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transcriptional regulation [35], as well as genes involved in cell survival and growth [36], 

invasion and metastasis [37;38].  

 

In this study, we investigate whether estrogen-induced oxidants mediate in vitro growth 

and metastasis of malignant breast epithelial cells and the mechanisms involved. Our 

study revealed that estrogen induced NRF1 expression and its phosphorylation and 

dephosphorylation activated by redox dependent cellular signaling mediate proliferation, 

anchorage independent growth and metastasis of MCF-7 cells. Further, over-expression 

of biological ROS scavengers (MnSOD and Catalase) or treatments of cells with 

chemical antioxidant, (N-acetylcysteine (NAC) and ebselen), inhibited estrogen induced 

NRF1 expression and growth of malignant breast epithelial cells.  

 

MATERIALS AND METHODS 
 
Cell Line and Cell Culture 

Human mammary adenocarcinoma cell line (MCF-7) were obtained from American Type 

Culture Collection (ATCC) and were routinely cultured in phenol red-free DMEM/F12 

media with 10% (vol/vol) FBS, 1x penstrep. DMEM/F12 Media.  FBS and antibiotics 

were purchased from Invitrogen corp. For experiments , cells were seeded at 10-75% 

confluency depending on the experimental designs and incubated at 37°C in a humidified 

incubator containing 5% CO2and 85%  humidity. Cells were allowed to adhere for 24 hrs. 

after which culture medium were replaced with serum-free media (SFM) containing 

penicillin-streptomycin (100 μg/ml each) and cells were allowed to grow for 48 hrs. 
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Serum deprivation was used to synchronize cells in the G0/G1 phase of the cell cycle 

followed by treatments with estrogens or antioxidants, as described in the figure legends. 

 

Measurement of Reactive Oxygen Species (ROS) 

Cellular ROS were measured as previously described [27]. Briefly MCF-7 cells were 

seeded at a concentration of 1.0 × 104 cells per well in black 96-wells plate with clear flat 

bottom (ThermoFisher Scientific Inc. USA) and allowed to adhere overnight. Next day, 

cells were cultured in SFM for 48 hrs. They were then pretreated for 4 hrs with chemical 

antioxidants [ebselen and N-acetyl cysteine (NAC)] diluted in Hank's balanced salt 

solution (HBSS), followed by incubation with 10 µM 2',7'-dichlorofluorescin diacetate 

(DCFH-DA) (Invitrogen Corp.) for 20 min. Cells were rinsed with HBSS followed by 

various treatments with 100 pg/ml estrogens as described in the figure legends. DCFH-

DA is a non-fluorescent cell-permeable compound, which is acted upon by endogenous 

esterases that remove the acetate groups generating DCFH. In the presence of 

intracellular ROS, DCFH is rapidly oxidized to the highly fluorescent 2',7'-

dichlorofluorescein (DCF). The oxidative products is then measured with a Tecan Genios 

microplate reader using 485 and 535 nm as excitation and emission filters, respectively. 

DCFH-DA stock solutions were diluted at a 1:1 ratio with Pluronic F-127 (20% w/v).  

 

RNAi transfections  

Pre-designed and tetracycline inducible human shRNA for mitochondria transcription 

factor A (TFAM) and Akt1 shRNA with corresponding vectorcontrol were purchased 

from OriGene (OriGene Technologies, Inc. Rockville, MD). Pre-designed NRF1 siRNA 
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and corresponding scrambled constructs were purchased from Ambion (Applied 

Biosystems/Ambion, Austin, TX). Plasmid over-expressing NRF1 were custom made by 

OriGene (Rockville MD) and FLAG tagged DN-NRF1 is a kind gift from Dr. Liu. All 

purified plasmids were transfected into 35% confluent MCF-7 cells using FuGENE 6 

(Roche) transfection reagents according to the manufacturer's protocol. Transfection 

efficiencies for all plasmid were determined by protein expression levels which ranged 

from 50% to 80% reductions in respective gene expressionsThe concentration of 

plasmids used for transfections in all experiments was as recommended by Roche and 

were based on surface area of dishes used for each experiment. Post transfection, cells 

and their lysates were used for western blot analysis, BrdU, soft agar assays and invasion 

assays as described in subsequent sections.  

 

BrdU cell proliferation assay 

MCF-7 cells were seeded in 96-well plates at a density of 3,500 cells/well and incubated 

overnight. Cells were plated in quadruplicate for each experimental group. After 24 hrs of 

incubation cells were cultured in SFM  for 48 hrs. Cells cells were the treated with E2 

(100 pg/ml) in the presence or absence of antioxidants for 18 hrs. Cell proliferations were 

measured by colorimetric immunoassay of BrdU incorporation into the DNA using 

Roche BrdU cell labeling kits as recommended by manufactures (Roche Molecular 

Biochemical, Indianapolis, IN). Briefly, cells were pulsed with BrdU labeling reagent for 

3 hrs followed by fixation in FixDenat solution for 30 min at room temperature. 

Thereafter, cells were incubated with 1:100 dilution of anti- BrdU-POD for 1 h at room 
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temperature. Finally, the immunoreaction was detected by adding the substrate solution 

and the color developed was read at 370 nm with a Tecan Genios microplate reader. 

 

Adenovirus Transduction 

Adenoviruses over-expressing MnSOD (SOD), Catalase (Cata) or control  vectors were 

purchased from ViraQuest, Inc. (North Liberty, IA, USA).  MCF-7 cells were seeded into 

appropriate dishes at 15-70% confluence depending on the experimental design. Next 

day, cells were infected with Adenovirus over-expressing SOD, Catalase or vector at 

either moi 50 to 400 in SFM. Cells were cultured for 48 hrs after which they were used 

for various experiments.  

 
Chemical antioxidant treatments  

The treatment procedure for Ebselen (a glutathione peroxidase mimetic which also 

removes both H2O2 and peroxynitrite) and NAC (a precursor of glutathione and 

scavenger of ROS [49;50] differs according to the experiments to be performed. For 

example, in DCFH assays used to measure intracellular ROS in live cells, 40 µM  and 1.0 

mM ebselen and NAC respectively were pre-loaded onto cells  2-4 hrs before ROS 

measurement were commenced. For BrdU assays, cells were treated with 40 uM and 1.0 

mM ebselen and NAC respectively throughout the culture periods. For anchorage 

independent growth assays, antioxidants were mixed with cells and agar matrix before 

assay commenced, and added to media during bi-weekly feeding of colonies. For 

immunoprecipitations (IP) and western blot analysis, cells were exposed to a single 

treatment with these antioxidants during 48 hr culture in SFM  before western analysis. . 
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Cell viability assay 

CellTiter-Fluor™ Cell Viability kit were purchased from promega corporation and 

according to manufacturer’s instructions assay was conducted. Briefly, cells were seeded 

in 96 well plate at 1.0x104 cells/well, culyuired in SFM for 48 hrs post seeding, and 

treated accordingly with estrogens and antioxidants. At the end of the treatments , 

substrate reagent (GF-AFC) were mixed with substrate buffer and dispensed into well. 

This assay measures cell’s protease activities as quiescent and growth arrested cells are 

still viable even if mitochondria activities or oxidant levels are diminished. Plates were 

read on fluorescence plate reader at 380–400 nm excitations and 505 nm emissions. 

 
Western Blot Assays 

Cells for western blot analysis were seeded in T-75 flasks and grown to 70% confluence 

and manipulated according to experimental designs. Post treatments, cells were harvested 

in radioimmune precipitation buffer (150 mM NaCl, 0.5% deoxycholate, 0.1% Nonidet P-

40, 0.1% SDS, 50 mM Tris) containing protease and phosphatase inhibitors (Roche). 

Equal amounts of total cellular protein were mixed with loading buffer (25% glycerol, 

0.075% SDS, 1.25% 2-mercaptoethanol, 10% bromphenol blue, 3.13% stacking gel 

buffer) and fractionated by electrophoresis on 12%  polyacrylamide, 0.1% SDS resolving 

gels. Rainbow marker (Biorad USA) was used as the molecular weight standard. Proteins 

were transferred to PVDF Immobolin-P transfer membranes (Millipore) using transfer 

buffer [25 mM glycine, 25 mM ethanolamine, and 20% methanol]. The membranes were 

blocked one hour at RT with blocking buffer [1×phosphate buffered saline, 0.1% Tween-
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20 with 5% (w/v) nonfat dry milk (PBS-T)]. Blots were subsequently incubated for 2 hr 

at room temperature with various antibodies as indicated in legends.  

 

Immunoprecipitation  

For experiments to determine epigenetic modifications of NRF1, cells were seeded in T-

75 and grown to 70% confluence. Post treatments, cells were rinsed twice with PBS, 

harvested with lysis buffer (150 mM NaCl, 0.5% deoxycholate, 0.1% Nonidet P-40, 0.1% 

SDS, 50 mM Tris) containing protease and phosphatase inhibitors (Roche). Whole cell 

lysates (WCL) were diluted to 500 µg of protein in 1 ml of  lysis buffer, and samples 

were pre-cleared for 1 hr at 4 °C with 40 µl of a 1:1 slurry of protein A-agarose beads 

(Invitrogen Corp) in lysis buffer and 1 µg of rabbit IgG. After a brief centrifugation to 

remove pre-cleared beads, 0.5 µg of anti-NRF1 antibody was added to each sample and 

incubated on a rocking platform at 4 °C overnight. Captured proteins were pulled down 

(precipitated??)  by the addition of 10 µl of protein A-agarose beads to each sample and 

the slurries were incubated on the rocking platform at 4 °C for 2hrs. The beads were then 

washed five times with lysis buffer and resuspended in 40 μL of 1×SDS electrophoresis 

sample buffer [50 mM Tris–HCl (pH 6.8), 100 mM dithiothreitol, 2% SDS, 0.1% 

bromophenol blue, and 10% glycerol], resolved on 12% SDS-PAGE electrophoresis and 

transferred onto a PVDF nylon blotting membrane. To determine whether serine residues 

of NRF1 are phosphorylated due to treatment, blot was probed with 1-5000 mouse 

monoclonal antibody against phosphoserine residue (Santa Cruz Biotech). To determine 

whether treatments induced modulations of NRF1 correlates with TFAM, one of its 

effector, WCL from same group were immunoprecipitated with rabbit anti mtTFA and 
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probed with mouse against mtTFA. All primary antibodies were diluted 1:1000 and 

detected after incubation with horseradish peroxidase(HRPO)-conjugated secondary 

antibody diluted 1:50,000 PBS-T. Blots were treated with ECL reagents (Amersham 

Biotech), and all proteins were detected by autoradiography. 

 

Anchorage independent Growth 

Anchorage-independent growth assays were performed as previously described [51]. 

Briefly, base support agar were made fresh by diluting 1.0% molten agarose mix with 1:1 

with 2x culture media (2x DMEM/F12 media, 20% HS, 2x Penstrep antibiotics and 200 

pg/ml estrogens) to a final of 0.5%. molten agar were maintained  at 42 oC water bath 

until dispensed at 200 l/well in 48 well plates, then allowed to solidify for 4 hrs at room 

temperature. Top agarose overlay were made fresh by mixing 0.7% molten low melting 

point (LMP) agarose with 2x culture media containing appropriate 5000 cells/well, then 

gently overlaid over preformed base agar. Cells were incubated for a minimum of 21 

days in 37°C incubator with 5% CO2.  Cultures in 48 well plate were fed once every 

week with 200 l of 0.5% melted agar in growth  media.  Colonies of separate cell 

aggregates at 100 M or greater in size, as measured with metamorph software (Nikon 

Corporation, USA) were counteds. Images were acquired by Olympus C-5060 digital 

camera under an inverted microscope with 4x objective.  

 

Invasion Assay 

The in vitro invasion assay was carried out to examine tumor cell invasiveness as 

described previously [52] with some modifications. Briefly, 24-well Transwell unit with 
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8 μm polycarbonate Nucleopore filters (Corning) were coated with 60 μL of 0.8 Matrigel. 

MCF-7 cells (1 × 105) transfected with plasmid overexpressing NRF1 or null were placed 

in the upper compartment, and the medium containing 10% fetal bovine serum was added 

to the lower compartment. For group treated with NAC, the chemical ROS modifier was 

added to media in the lower chamber to a concentration of 1.0 mM. The Transwell plates 

were incubated at 37°C for 48 and 72 hrs accordingly. Cells invaded to the lower surface 

of the membrane were stained with Giemsa staining and observed using light microscope. 

The invading cells were stained and counted per insert and photographed. Experiment 

were conducted in triplicates and repeated three times.   

 

Statistical analysis 

Results are expressed as mean ± S.D. Differences between means were evaluated by two-

tailed Student's t-test. ANOVA was used to determine differences between groups. 

 
RESULTS 
 
Estrogen induced ROS levels mediate proliferation and growth of MCF-7 cells in vitro 
 
Estrogens have been reported to modulate mitochondria ROS production in MCF-7 cells 

and other cell types [27;53]. These ROS are postulated by us and other [20;47;54;55] to 

mediate proliferation and growth of subsets of breast cancer cells. To test this hypothesis, 

biological ROS modulators (MnSOD and catalase) were oveerexpressed in MCF-7 cells , 

or cells were pretreated with chemical ROS modulators, 40 μM ebselen or 1.0 mM 

NAC). These cells were then challenged with 100 pg/ml estrogens. Data reveals that 

treatment of cells with estrogen alone increased ROS production and DNA synthesis 
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whereas treatment with catalase alone (moi 50) diminished ROS production and DNA 

synthesis. However, co-treatment of cells with catalase (moi 50) and estrogen 

significantly increased ROS level and DNA synthesis beyond catalase alone infected 

groups. Interestingly, similar trends were observed in MnSOD infected cells at moi 50 

though the magnitude in ROS production and DNA synthesis is significantly more than 

that observed in estrogen or catalase treated groups (Fig. 1A). Both chemical ROS 

modulators used in this experiment also diminished ROS production and DNA synthesis. 

However, when cells were infected with adenoviruses at moi of 200, catalase diminished 

estrogen induced ROS production and DNA synthesis while  MnSOD significantly 

increased ROS production and dramatically reduced DNA synthesis compared to cells 

treated with moi 50 (Fig 1B). To resolve the inverse correlation of MnSOD over-

expression at moi 200 and DNA synthesis, we infected cells with various viral loads of 

MnSOD expressing viruses; and as control, we also infected cells transfected with control 

adenovirus vectors at moi 50. Infected cells were then used for colony assay and 

monitored for anchorage independent growth for three weeks. We observed that low viral 

MnSOD load (moi 5-50) promoted increased number and size of colonies (Fig. 2B, C) 

whereas viral load higher than moi 50 induced diminished cell growth (Fig 2D-G). 

Adenovirus containing control vectors at moi 50 did not induce growth advantage over 

corresponding MnSOD expressing adenoviruses indicating that it’s the overexpressed 

MnSOD that is modulating cell growth. However, to ascertain whether the observed 

cancer growth retardation of MnSOD infection is higher than moi 50 is due to cell 

lethality, we stained single cell population from all virus infected groups (control, 

catalase and MnSOD) with trypan blue solution and found that over 70% of the cells 
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infected with virus up to moi 200 were viable whereas 90% of moi 400 and above 

infected cells were not viable after 21 days of cultures in soft agar assay (data not 

shown). Since moi 200 infected cells were viable up to 21 days, we chose this viral load 

for subsequent experiments. The effects of ROS modulators on estrogen induced growth 

of breast cancer were further evaluated byco-treatment of MCF-7 cells with estrogen and 

biological or chemical ROS modulator. It wasfound that these antioxidants significantly 

inhibited estrogen induced growth of MCF-7 cells in vitro (Fig 3).  

 

Estrogen induced oxidants activate Akt signaling pathway which contributes to in vitro 
growth of MCF-7 breast cancer cells 
 
The mechanisms by which estrogen induce cell proliferations and growth of estrogen 

responsive breast cancer cells are attributable to ER mediated process. It has been shown 

that  upon estrogen stimulations, cells secrete growth factors which activate receptor 

tyrosine kinases and initiation of complex signaling cascade of phosphorylation-

dephosphorylation reactions that  subsequently leads to cancer cell growth and metastasis 

[56]. One such signaling pathway activated by estrogen exposure that leads to survival 

and growth of MCF-7 cells is the PI3K/Akt signaling pathways [57;58]. Oxidants such as 

superoxides and hydrogen peroxides have likewise been reported to activate this 

signaling pathway which mediates survival and growth of exposed cells [18-20]. To 

determine whether E2 induced oxidants can activate PI3K/Akt signaling pathway and 

whether ROS scavengers or inhibitors of PI3K would mitigateAkt phosphorylation, 

MCF-7 cells were either infected with biological antioxidants, or pretreated with 

chemical ROS scavengers (ebselen, NAC) prior to estrogen treatments as described in 
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methods. Whole cell lysate were resvolved on 12% SDS-PAGE gel, and probed with 

appropriate antibodies. Data reveals that 100 pg/ml estrogen treatment induced Akt 

activation which were inhibited by chemical or biological antioxidants as well as by 

LY294002, an inhibitor of PI3K which regulates Akt activations (Fig 4). These findings 

support the hypothesis that oxidant (ROS) induced by estrogen exposures can activate 

Akt signaling proteins and activated Akt has been demonstrated to favor survival, 

proliferation and growth of cells during periods of oxidative stress [59;60].  

 
 
Estrogen induced Akt activation phosphorylates NRF1 which promotes growth of 
responsive cells 
 

Cellular responses to oxidants are mediated in part, by redox activation of NRF1 which 

regulates mitochondria biogenesis and cellular antioxidant responses [61;62]. NRF1 has 

been reported to be trans-activated by Akt phosphorylation of its serine/threonine residue  

in response to growth factors and oxidative stress  [62-64]. Trans-activated NRF1 are 

believed to mediate cellular responses to oxidative stress such as mitochondria 

biogenesis, restoration of redox homeostasis and induction of survival and proliferation 

mechanisms of cells [42]. 

 
Similarly, treatments of MCF-7 cells with 100 pg/ml estrogen for 45 minutes induced 

rapid serine phosphorylation of NRF1 (Fig 5) which were abrogated by both chemical 

and biological ROS modulators.  In addition, silencing of Akt1, the Akt isoform 

implicated in mediating cell survival and growth [65-67] likewise reduced NRF1 

phosphorylation, and anchorage independent growth of MCF-7 cells (Fig 6). These 



153 
 

findings imply that estrogen induced oxidants modulate NRF1 expressions. It also 

implies that redox activations of Akt signaling in response to estrogen exposures 

phosphorylate and tran-sactivates NRF1. The absence of Akt1 expression leads to 

reduced NRF1 phosphorylation and reduced growth of MCF-7 cells exposed to estrogen. 

 
NRF1 expression promotes in vitro proliferation and growth of estrogen responsive 
breast cancer cells 
 
In order to show that NRF1 are implicated in the mediation of growth of breast cancer 

cells in vitro, NRF1 was silenced in MCF-7 cells.  Cells were then cultured with or 

without estrogens for 21days. Colony formation, growth and viability of cells in soft agar 

assays were measured. Data reveals that estrogen increased colony formation growth in 

control knockdown groups (Null kd) comparable to the  untransfected cells (Fig 7B i-iv). 

However, estrogen fails to induce colony formation or colony growth of NRF1 silenced 

cells implying that NRF1 are essential in the mediation of estrogen induced in vitro 

growth of MCF-7 cells (Fig 7B v,vi). To test whether reduction in growth is due to cell 

death because of NRF1 knockdown, cells from soft agar plates were counted for cell 

viability per 1000 cells using trypan blue exclusion assays. We found that while there 

were differences in cell death due to NRF1 status, differences were not significant to 

account for observed lack of colony formations or growth of cells in NRF1 knockdown 

versus Null kd cells (data not shown). In addition, immunoprecipitation analysis of NRF1 

expression and phosphorylation status revealed that Null kd cells expresses increased 

NRF1 protein and exhibit increased phosphorylation in response to prolonged estrogen 

exposure (Fig 7A,B). Silencing of NRF1 however, inhibits its expression or 

phosphorylation in response to chronic exposures to estrogens (Fig 7C). To confirm that 
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NRF1 is indeed responsible for this  observation, the expression levels of mtTFA, one of 

the genes targeted by  NRF1 expression [68] was assessed. Western blot analysis of cell 

lysates from Null kd vs NRF1 knock down revealed a positive correlation between NRF1 

and mtTFA expressions; i.e. up regulation of NRF1 leads to up regulation of mtTFA and 

vice versa (Fig 7). To confirm NRF1’s role in growth regulation of MCF-7 exposed to 

estrogens, we overexpressed NRF1 (NRF1ox) or its DN-NRF1 and assessed in vitro 

proliferation and growth in response to estrogens. We observed that while over-

expressing NRF1 enhanced estrogen induced proliferation and growth of MCF-7 cells, 

over-expressing DN-NRF1 actually reduced estrogen mediated proliferation and growth 

of MCF-7 cells (Fig. 8). Interestingly however, the effects of NRF1ox alone were 

significantly greater than E2 treated control cells in both soft agar and BrdU assays.  

 
 
NRF1 over-expression modulates invasion of MCF-7 cells 
 
NRF1 has been implicated in the modulation of various protease expressions involved in 

cell migration and spreading.  Proteases include the calpains [37] whose over-expression 

is implicated  in tumorigenesis, metastasis and angiogenesis in breast cancer and other 

cancer types [69;70], GalNAc-T3 genes that function in glycosylation of mucin proteins 

in epithelial derived tumors [71] which is also plyas a central role in invasive mammary 

[72] and colorectal [73] carcinoma. In this study, in vitro invasion assay of MCF-7 cells 

overexpressing NRF1 displayed a threefold increase in invading cells compared to vector 

or non transfected (NT) group (Fig. 9A). NRF1ox cells when transfected with DN-NRF1 

or treated with ebselen showed significantly higher number of cells compared to the 

control MCF-7 cells trasnfected with vector/DN-NRF1 alone and also treated with 
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ebselen. (Fig. 9B). In addition, groups treated with estrogen also had significantly more 

invading cells and mucosal environment compared with groups treated with vehicle (Fig 

9B). These findings indicate that NRF1 participates in cell invasion in a redox dependent 

manner.  

 

DISCUSSIONS 
 
Estrogens are chemicals capable of promoting growth of breast cancer cells via ER and 

non-ER mediated pathways. Estrogens induce ROS via mitochondria biogenesiss. At 

sublethal levels, these ROS induce redox signaling that participate in growth of estrogen 

exposed breast cancer cells [27;74;75]. In this study, we provide evidence that estrogen 

induced ROS are essential for proliferation and malignant growth of estrogen responsive 

breast cancer cells. We also report that the mechanism involves redox activation and 

phosphorylation of NRF1 because over-expression of biological ROS scavengers or 

treatment of cells with chemical antioxidants inhibited NRF1 activation which in turn 

reduced estrogen mediated growth and metastasis of breast cancer cells.  

 

The role of estrogen induced oxidants in breast carcinogenesis has long been established 

[76-79]. However, the role of these oxidants in mediation of growth of cancer cell 

remainscontroversial. In this study, we observed that treatments of MCF-7 cells with a 

dose comparable to physiological level of estrogen induced intracellular ROS which 

promoted in vitro growth of breast cancer cells. Conversely pre-treatment of cells with 

chemical or biological antioxidant prior to estrogen exposure inhibited induced ROS 

formation and in vitro growth of cells. These observations implies that the growth 
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promoting properties of estrogen in breast cancer cells are mediated in part by estrogen 

induced oxidants as ROS scavengers abolished estrogen induced growth of breast cancer 

cells. These findings are in line with other reports which indicate that sublethal levels of 

oxidants induce significant mitogenic effects on a number of gynecological cancers [80-

82] including breast cancer [4;54;83]. It may also explain the aggressive nature of breast 

cancer attained after therapeutic failures because  these therapeutic agents also act as pro-

oxidant upon their prolonged use [44-47]. Nonetheless, the initial antiproliferative 

responses of these chemotherapeutic agents may be due to their antioxidant properties 

[84-87].  

 

Our group and others have reported that mitochondria is a major source of estrogen 

induced ROS [27;75] in breast cancer cells. We investigated whether altering 

mitochondria MnSOD activity would modulate estrogen induction of intracellular ROS 

and growth of breast cancer cells. We found that infection of MCF-7 cells with 

adenovirus overexpressing MnSOD at moi 50 increased intracellular ROS production, as 

well as increased proliferation and growth of MCF-7 cells. However, when cells were 

infected with adenovirus at moi 200, ROS production increased significantly compared to 

ROS from moi 50 infected cells, but cell proliferation and growth decreased significantly. 

ROS production from moi 50 infected cells correlated positively with DNA synthesis and 

growth of MCF-7 cells, however, the effects of estrogen exposure on MnSOD expressing 

cells were statistically insignificant. This implies that the mitogenicity observed in these 

cells are due entirely to mitochondria ROS and not by estrogens exposures. Therefore, 

while we were able to show a direct correlation between intracellular ROS production 
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and cell growth in response to estrogen exposure, we were unable to show any significant 

combinational effects between estrogen exposures, MnSOD overexpression and cell 

growth even though our data does indicates a correlation between MnSOD expression 

and cell proliferation.  

 
It has been reported that ROS mediates mitogenic activation of the PI3K/Akt signaling 

pathway which promotes survival and growth of exposed cells [88;89]. Estrogens has 

likewise been demonstrated to activate PI3K/Akt signaling pathway in endometrial and 

breast cancer cells, in an ER dependent and independent manner [90;91]. However, 

whether oxidants mediate estrogen induced activation of PI3K/Akt signaling in breast 

cells and whether Akt activation is linked with growth of these cells is not clear. In our 

study, we observed that estrogen induced Akt activation in breast cancer cells were 

diminished by catalase over-expression and by chemical ROS scavengers. Whether 

oxidant activation of Akt in estrogen exposed cells is associated with proliferation and 

growth regulation is not known. To investigate this possible link, we silenced Akt1, an 

Akt isoform known to be involved in regulating mammary tumorigenesis and growth of 

cancer cells [65;92]. Wefound that knocking down this gene diminished estrogen induced 

proliferation and growth of MCF-7 cells. While Akt is a global activator of a number of 

transcription factors with diverse physiological functions, our data suggest that estrogen 

activation of Akt in breast cancer cells are also ROS mediated and activation of Akt 

signaling cascades are essential in transducing signaling processes that favors survival 

and growth of breast cancer cells.  
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Activated Akt promotes cell survival and growth via a number of mechanisms. For 

example, Akt phosphorylates and deactivates pro-apoptotic factors such as BAD, 

Caspase-9, and Forkhead transcription factors (FKHR) as well as other pro-survival 

transcription factors [93]. Other targets of activated Akt in response to oxidative stress 

includes NRF1, a redox sensitive gene known to regulate transcription of genes involved 

in antioxidant responses, apoptosis, as well as regulation of mitochondrial biogenesis 

[62;94-96]. Oxidant mediated phosphorylation of NRF1 are thought to induce nuclear 

translocation and transcriptional regulation of various cellular response such as 

restoration of redox homeostasis, enhancement of cell survival and growth, as well as 

regulation of mitochondria biogenesis [97]. Prolong estrogen exposure has likewise been 

reported to up-regulate NRF1 expressions via ER alpha (ERα) mediated mechanisms in 

MCF-7 cells which leads to increased mitochondria biogenesis in these cells [26]. While 

this observation is novel, others have reported that sodium butyrate, a non estrogenic but 

pro-oxidative compound [98] also induces NRF1 expression in MCF-7 cells [71]. 

Furthermore, SERMs such as TAM, RAL and Fulvestrant which are all pro-oxidant upon 

chronic exposures [99], also increases NRF1 expression in SERM resistant MCF-7 cells 

[100]. These studies all suggest that estrogen inductions of NRF1 in estrogen responsive 

or resistant breast cancer cells are not exclusive to ER status. It implies that perhaps 

estrogen induced oxidants may also mediate NRF1 expression in breast cancer cells 

irrespective of ER status.  

 

Here, we report that exposure of MCF-7 cells to estrogen not only up-regulates NRF1 

expressions, but it also induces NRF1 phosphorylation by Akt in a redox dependent 
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manner. Treatment of cells with ROS modulators or silencing of NRF1 fail to mediate 

estrogen induced NRF1 expressions and phosphorylation, and inhibited growth of breast 

cancer cells. While ERα is believed to regulate estrogen induced NRF1 expression in 

MCF-7 cell line [26], our data indicates that estrogen induced oxidants are essential for 

NRF1 expressions and phosphorylation. Upon phosphorylation, this transcription factor 

is believed to translocate into the nucleus where they regulate mitochondria biogenesis, 

oxidative phosphorylation and mediates oxidant induced survival and growth of breast 

cancer cells, by unknown mechanism. These observation are in agreement with reports 

that have shown NRF1 is phosphorylations by oxidants in rat hepatoma cells promoting 

survival and growth of during periods of oxidative stress [62]. Our data may also explain 

the observation that despite the high oxidative environment of breast cancer cells in vivo 

[11], these cells survive, proliferate and grow as opposed to undergoing apoptosis and 

cell death. Activated NRF1 may also cause cancer cell metastasis, therapeutic failures 

and poor prognosis of breast cancer patients as oxidative stress are associated with 

metastasis and drug failures in a number of malignancies including breast cancer 

[101;102]. In addition, it has been reported that estrogen and insulin induce proliferation 

and growth of MCF-7 cells via NRF1 activation [103], but insulin, with estrogens also, 

act as pro-oxidants [104;105] and  activate Akt signaling pathways [106;107] in a variety 

of cells types. It is therefore feasible that the pro-oxidative properties of estrogen alone or 

in combination with insulin promote survival and growth of breast cancer cells through 

persistent expressions and phosphorylation of NRF1.  
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In summary, overexpression of MnSOD and Catalase or treatment with antioxidant 

ebselen selectively inhibited cell proliferation and invasion of MCF-7 cells that were 

transfected with NRF1. Also, knocking down Akt isoform in estrogen treated cells that 

has been shown to phsphorylate NRF1 reduced the rate of cell proliferation. It appears 

therefore, that the level of NRF1 expression indicates a redox state of breast cancer cells 

and activation of NRF1 via Akt pathway is a key modulator of estrogen induced breast 

cancer cell proliferation and metastasis. 
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FIGURES AND LEGENDS 
 
 

 

 
Fig. 1. Estrogen induced ROS mediates in vitro proliferation of MCF-7 breast cancer 
Cells. 3500 cells/well were seeded in 96well plate for BrdU cell proliferation assays and 
1.0x10^4cells/well for ROS production assays. Next day, cells were infected with 
Adenovirus over-expressing MnSOD or Catalase at either moi 50 or 200 in serum free 
media. Other group of cells was treated with 40μm ebselen and 1mM NAC diluted also in 
serum free media. Cells were cultured for 48hrs and assayed for ROS production or BrdU 
assays. For ROS assays, cells were pretreated for 4hrs before assay with ebselen and 
NAC after which 10μM DCF were loaded onto the cells for 20mins, then cells were 
challenged with 100pg/ml estrogen, and ROS readings were taken every 5mins on Tecan 
plate reader. For cell proliferation assays, 48hrs post infections, wells were challenged 
with 100pg/ml estrogen and allowed to incubate for additional 18hrs after which BrdU 
assay were carried out with Roche BrdU assay kit. (A) MCF-7 cells infected with 
catalase or MnSOD at moi 50, or treated chemical antioxidant, then challenged with 
estrogen. (B) MCF-7 cells infected with catalase or MnSOD at moi 200, or treated 
chemical antioxidant, then challenged with estrogen. ROS production upon E2 challenge 
was compared with DNA synthesis.  Data is expressed as standard error of mean of three 
experiments, (+/- SE). (*) indicates significant different from control group. (*#) 
indicates treatment significantly different from E2 treated group. (P<0.05) 
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Fig. 2. Differential effects of ROS production on in vitro growth of MCF-7.  MCF-7 cells 
were infected with various concentrations of MnSOD over-expressing viruses for 24hrs 
after which cells were detached and seeded for soft agar assays such that each well in 48 
well plate had 5000cells/well. Cells were incubated for 5weeks with weekly feeding. 
Colony numbers and sizes were scored using Nikon metamorph software and expressed 
as mean of five wells, +/- SD. (*) indicates significant difference from control group (null 
moi 50), (P<0.05). Representative Images were acquired with hand held Nikon camera 
over an inverted microscope with 4x objective. A) AdEmpty (Null) moi50,  B) 
AdMnSOD Moi 5, C) AdMnSOD moi 10, D) AdMnSOD moi 50, E) AdMnSOD moi 
100, F) AdMnSOD moi 200,  G) AdMnSOD moi 400, H) Mean colony and size numbers 
compared to null vector.   
 

 

Fig 3. ROS Scavengers inhibits E2 induced growth of MCF-7 cells. Cells were infected 
with biological antioxidants for 24hrs in serum free media and allowed to recover 
afterwards. 1.0x10^4 cell pellet was resuspended with 500ul 2x culture media containing 
100 pg/ml E2 or 40 µM ebselen. Cell suspensions were then mixed 1:1 with 0.5% molten 
agarose and over layered on precast bottom agarose in 48 well plate.  Cultures were 
allowed to incubate for 3-5wks with weekly feeding and images were acquired with a 
hand-held Nikon digital camera over 4x inverted microscope. Qudruplicate wells were 
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counted and expressed as mean three experiments +/- SE. (Panel A: Chemical antioxidant 
treatment group) (I) DMSO, (II) 100pg/ml E2, (III) Ebs, (IV) Ebs/E2, (V) NAC, (VI) 
NAC/E2.  (Panel B: Biological antioxidant treatment group) (I) DMSO, (II) 100pg/ml 
E2, (III) Cata, (IV) Cata/E2, (V) MnSOD, (VI) MnSOD/E2. (*) indicates significant 
difference from control group. (**) indicates significant difference from E2 treated 
group, (P<0.05). 
 
 
 

 
 

Fig. 4. Estrogen induced activation of Akt is abrogated by ROS scavengers. MCF-7 cells 
were either pre-infected with MnSOD or catalase at moi 50 and cells seeded for 
experiment, or cells were seeded and treated with 40 µM  ebselen, 10μmol/L LY294002 
(LY) and 1.0μM Rotenone for 48 hrs in starvation media.  At end of starvation periods, 
cells were harvested and lysed with RIPA buffer, and 100 ug total proteins were 
fractionated in SDS PAGE electrophoresis gel. Blots were probed for phosphorylated Akt 
(pAkt) and total Akt and band intensity were quantified with Biorad GelDoc 2000 and 
normalized to vehicle. (A) Representative Immunoblot probed for pAkt and total Akt. (B) 
Densitometry of pAkt normalized with total Akt and expressed as fold change vs. 
DMSO.  (**) indicates significant difference from control group. (*) indicates significant 
difference from E2 treated group, (P<0.05). 
 



173 
 

 

Fig. 5. Estrogen induced NRF1 activation is abrogated by ROS scavengers. To determine 
whether ROS scavengers mitigates estrogen induced activations of NRF1 in breast 
cancer, MCF-7 cells were seeded, infected with catalase or MnSOD, or with 40uM 
ebselen and estrogen as previously described. Lysate were immunoprecipitated with 
NRF1 and immunoblot probed with anti serine antibody (pNRF1) or NRF1 antibody. For 
loading control, 50 ug whole cell lysate (WCL) were fractionated and blot probed with 
beta actin (actin). Band intensity of pNRF1 was compared with NRF1, and then 
normalizes with DMSO from NT group. Representative data of 3 experiments is 
presented above. (Panel A) Non transfected group (NT) treated DMSO or E2, (Panel B, 
C) Catalase or MnSOD infected groups respectively, and then treated with DMSO or E2. 
(Panel D) Ebselen and E2 co-treated group. (E) Densitometry of pNRF1 normalized with 
total NRF1 and expressed as fold change vs. DMSO in NT group. (**) Indicates that E2 
treatment group is significantly different from control (DMSO) groups while (*) indicates 
that other treatments groups are significantly different from E2 treatment groups. Data is 
expressed as mean of 3 experiments, OD ± SE, (P<0.05). 
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Fig. 6. Akt phosphorylate and activate NRF1 which mediate in vitro growth of MCF-7 
cells. To determine role of Akt and NRF1 phosphorylation in estrogen induced growth of 
breast cancer cells,   MCF-7 cells were transfected with pre-designed and verified Akt1 
shRNA plasmid or its vector for 72 hrs with FuGENE 6 transfection reagent without 
change of media. Post transfection, cells were seeded for colony assay, or challenged 
with 100 pg/ml estrogen or DMSO for 30 mins. Cells were then harvested with RIPA 
buffer and 500 ug total protein was IP with NRF1, fractionated on SDS-PAGE and blots 
probed with serine antibody. 50 ug of WCL was also fractionated on SDS-PAGE gel and 
probed for total Akt, and β actin as experimental loading control. Band intensity were 
measured with Biorad versadoc 2000 software and expressed as fold change from 
DMSO. (Panels A and B)  Western blot analysis of vector and Akt1 shRNA plasmid 
transfected into MCF-7 cells then treated with DMSO or E2. (C D) Band intensity of 
NRF1 phosphoserine (pNRF1) normalized to total NRF1, and Akt normalized to actin 
respectively. (E-J) Representative pictures colonies from soft agar assay after 3 weeks 
incubation, and expressed as mean +/- SE of three experiments. (E) DMSO, (F) E2, (G) 
vector- kd/DMSO, (H) vector- kd/E2, (I)  Akt1 kd/DMSO,  (J) Akt1 kd/E2, (K) Fold 
increase of colony formation versus DMSO.  (**) Indicates that E2 treatment group is 
significantly different from control (DMSO) groups while (*) indicates that other 
treatments groups are significantly different from E2 treatment groups. Data is expressed 
as mean of 3 experiments, OD ± SE, (P<0.05). 
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Fig. 7. Silencing of NRF1 attenuates estrogen induced in vitro growth of MCF-7.  
MCF-7 cells were transfected with shRNA vector or NRF1 shRNA plasmid for 96 hrs. 
Post transfection, cells were seeded for colony assays or treated with DMSO or 100 pg 
E2 for 30mins, then harvested and lysed with RIPA buffer. 500 ug total proteins were co-
immunoprecipitated with anti NRF1 antibody, and blots probed with either anti NRF1, 
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anti phosphoserine and anti mtTFA antibodies. (Panel A) Non transfected cells (NT) 
probed with anti serine, anti NRF1, anti mtTFA and anti actin respectively. (Panel B) 
Vector transfected cells probed with anti serine, anti NRF1, anti mtTFA and anti actin 
respectively. (Panel C) NRF1 kd  cells probed with anti serine,  anti NRF1, anti mtTFA 
and anti actin. (D-F) Densitometry of NRF1 knocked on (D) phosphorylated NRF1 
compared to total NRF1, (E) total NRF1 compared to actin.  (F) mtTFA expression 
compared to actin.  (G) Representative pictures of colony assay of MCF-7 cells with 
NRF1 knockdown + estrogens treatment; (i) NT-DMSO, (ii) NT-E2, (iii) vector-DMSO, 
(iv)vector-E2, (v) NRF1-kd-DMSO, (vi) NRF1-kd-E2. (H) Fold change of colonies 
compared to NT-DMSO. (*) Indicates that E2 treatment group is significantly different 
from control (DMSO) groups while (**) indicates that other treatments groups are 
significantly different from E2 treatment groups. Data is expressed as mean of 3 
experiments, OD ± SE, (P<0.05) 
 

 

 

.
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Fig. 8. NRF1 expressions modulates estrogen induced proliferation and growth of MCF-7 
cells. MCF-7 cells were transfected with plasmid either over-expressing or under-
expressing NRF1 (NRF1-ox and NRF1-kd for 48hrs. Transfected cells were subsequently 
used for colony assay, with or without 100 pg/ml E2 treatments for 21 days. (A) Colonies 
formed by MCF-7 cells transfected with NRF1 modulating plasmid with vector control. 
(i) NT-DMSO, (ii) NT-E2, (iii) Vector-DMSO, (iv) vector-E2, (v) NRF1-ox-DMSO, (vi) 
NRF1-ox-E2, (vii) NRF1-kd-DMSO, (viii) NRF1-kd-E2. (B). Enumerated colony count 
were expressed as percentage change from NT treatment group +/- SD of three 
experiments. (*) indicates treatment significantly different from E2. (**) indicates 
treatment significantly different from control. (P<0.05) 
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Fig. 9. NRF1 over-expression modulates invasion of MCF-7 cells. MCF-7 cells were 
transfected with either Null vector (Vector) or NRF1 over-expressing vector (Ox). In a 
separate experiment, cells were also co-transfected with Ox, Ox+ vector, Ox+NRF1 
knockdown plasmids (Ox+Kd). 1.0 x 104 cells were seeded on matrigel invasion chamber 
with 8.0 µM pore size and 10% FBS media with or without 100 pg/ml estrogen were 
added to the bottom of wells as chemoattractant.  Cells were cultured for 72 hrs in CO2 
incubator. Invaded cells at bottom of wells were stained and images were acquires with 
Nikon microscope over 20x objective, and metamorph software. Data represents invaded 
cells over 5 fields, +/- SD.  (A)Invasion of NRF1ox expressing cells; i) DMSO, ii) vector, 
iii) NRF1ox. (B) Invasion of Co-transfected NRF1ox plasmid with or without estrogen as 
chemoattractant; i) Ox+DMSO, ii) Ox+E2, iii) Ox+vector+DMSO,  iv) Ox+vector+E2, 
v) Ox+ NRF1 kd+ DMSO, vi) Ox+NRF1+E2. (*) indicates treatment significantly 
different from Ox/DMSO. (**) indicates treatment significantly different from 
Ox/Null/E2. (*#) indicates treatment significantly different from Ox/Null/DMSO. 
(P<0.05) 
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CHAPTER VI 
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Florida International University. Miami Fl. 33199 
 

 

ABSTRACT 

Understanding the contribution of NRF1 activation to the susceptibility for the 

development of malignant phenotype cells by estrogen is the focus of this study. 

Consistent with the redox-sensitivity of NRF1, 4-OH-E2-induced NRF1 expression and 

its phosphorylation and acetylation were inhibited by the glutathione peroxidase mimic, 

ebselen and by overexpression of ROS modifying genes, catalase and MnSOD. NRF1 

was bound to the promoters of the cell cycle genes pcna, cyclin b1, and cdc25c, and prc1, 

confirming the prediction that these promoters contain NRF1 elements.  The exposure of 

MCF10 A cells to a carcinogenic dose of 4-OHE2 increased the binding of NRF1 to the 

promoters of these genes and that 4-OHE2-induced binding could be inhibited by 

cotreatment with ebselen (antioxidant), or over expression of catalase (H2O2 scavenger).  

These results suggest that 4-OH-E2-generated oxidants, particularly H2O2, may mediate 

NRF1 binding to these gene promoters.  Decreasing NRF1 protein levels via specific 

siRNA Knock down of NRF1, PCAF and AKT inhibited 4-OH-E2 induced generation of 

malignant phenotype. Together, these data suggest that ROS accelerate cell-cycle 

progression and anchorage-independent growth in 4-OH-E2-transformed cells by 



180 
 

controlling the expression of cell cycle genes in an NRF1-dependent manner. In 

summary, estrogen-mediated activation of a redox sensitive signaling pathway regulates 

NRF1 phosphorylation and acetylation events. These two events enhance its activating 

function by increasing its localization close to nuclear targets and its affinity for 

promoters of target genes. This, in turn, contributes to the susceptibility of normal breast 

epithelial cells to develop malignant phenotype. 

                                 

INTRODUCTION 

NRF1/α-PAL (nuclear respiratory factor-1/α-palindrome-binding protein) is a 

transcription factor (1-3). Initially, this transcription factor was mostly famous for 

controlling nuclear-mitochondrial interactions that coordinate regulation of nuclear and 

mitochondrial genes during organelle biogensis. A genome-wide analysis has revealed 

that NRF1 binding elements are present in genes involved in DNA replication, mitosis, 

and cytokinesis, suggesting that NRF1 plays an important role in cell cycle regulation 

(4,5). Interestingly, the NRF1 recognition site is one of the seven transcription factor 

binding sites which are most frequently found in the proximal promoters of ubiquitous 

genes, indicating a broader spectrum of target genes for NRF1. NRF1 overexpression has 

been observed in hepatoma, neuroblastoma and thyroid oncocytoma (6-8). In B cell 

chronic lymphocytic leukemia (CLL) patients, the mRNA expression of the 

mitochondrial biogenesis factors NRF1 and TFAM in the majority of leukemic cells is 

higher than normal lymphocytes (9). While there are more than 20 Oncomine studies 

with NRF1 over expression, the (actual) role NRF1 plays in breast cancer remains the 

least studied of all transcription factors. We have recently meta-analyzed 18 published 
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breast cancer microarray data (10). From our study, we found that: 1) NRF1 was 

significantly overexpressed in ER+ tumors compared to ER- tumors; and 2) NRF1 was 

significantly overexpressed as breast tumor’s grade increased. Investigation of the role of 

NRF1 in breast carcinogenesis is the central focus of this study. 

 

Elevated lifetime estrogen exposure is a well-known major risk factor for breast cancer, 

however the underlying mechanisms of breast susceptibility to estrogen’s carcinogenic 

effect remain elusive. In human breast cancer cells, the expression of almost 15% of the 

genes significantly affected by E2 contains the NRF1 binding element, and the NRF1 

binding signature is significantly enriched in the promoters of genes induced by estrogen 

treatment (11). Recently, Klinge’s group reported that the NRF1 promoter contains a half 

imperfect ERE, and E2 stimulates NRF1 expression (12) through the ER pathway. Motifs 

bound by ELK1, E2F, NRF1 and NFY positively correlate with malignant progression of 

breast cancer (13). From these studies, it appears that NRF1 may contribute to estrogen-

induced malignant transformation of breast epithelial cells. Therefore, we first 

investigated in this study whether NRF1 influences the susceptibility of the breast 

epithelial cells to develop tumors in response to exposure to a well known major breast 

cancer risk factor, estrogen.  4-OH-E2 is the most prevalent E2 metabolite in human 

breast tumor tissues, with tumor tissue concentrations exceeding normal tissue 

concentrations by several folds (14-16). Moreover, 4-OH-E2 is strongly carcinogenic, 

while E2 is weakly carcinogenic and the other E2 metabolite, 2-OH-E2, is non-

carcinogenic. Based on these data, 4-OH-E2 was used as the main model compound in 
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this study to produce malignant phenotype in breast epithelial cells differentially 

expressing NRF1.  

 

NRF1 is highly redox sensitive protein (17,18-22). Similar to the other transcription 

factors, the activation of NRF1 is essential for its optimal binding to the promoters of 

target genes. NRF1 can bind to DNA in the absence of its phosphorylation.  However, 

both phosphorylation and acetylation increase NRF1 DNA binding to the promoters and 

transcriptional activation (23,24). We and others have shown that estrogen exposure to 

breast cells produce reactive oxygen species (ROS) (18,25,26,27). We have shown that 

NRF1 binding to its promoter is inhibited by mitochondrial inhibitors as well as by 

antioxidants (18). Thus, estrogen-generated ROS may also regulate NRF1 expression. 

Therefore, we also examined whether a carcinogenic dose of 4-OH-E2 increases NRF1 

phosphorylation and acetylation in MCF-10A cells and that these changes are inhibited 

by antioxidants or overexpression of catalase. Our findings revealed that  activation of 

NRF1 by phosphorylation and acetylation depended on estrogen-induced ROS formation. 

This is essential for NRF1 to contribute to the susceptibility of breast epithelial cells to 

estrogen’s carcinogenic effect. We further determined whether NRF1 over-expression 

converts non-aggressive breast tumors to aggressive and invasive tumors, and a dominant 

negative suppressor of NRF1 is sufficient to prevent aggressive and invasive tumor 

formation in vivo. We confirmed our in vitro findings of the role of NRF1 in breast 

cancer invasion by in vivo.  
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MATERIALS AND METHODS 

Reagents 

17β-Estradiol (E2), 2-hydroxyestradiol (2-OH-E2), 4-hydroxyestradiol (4-OH-E2), 

Ebselen, N-acetyl-cysteine (NAC),  Dimethylsulfoxide (DMSO) were all purchased from 

Sigma (St Louis, MO, USA). All antibodies; PI3K (p110), phospho PI3K (p85), 

phospho-Akt (ser 473) and total Akt antibodies were purchased from Cell Signaling 

Technology Inc. (Boston, MA). All tissue cultures reagents were purchased from 

Invitrogen Corporation (CA) unless otherwise specified.  

 

Culture of cells and MCcells and Adenovirus Gene Transfer 

Human mammary epithelial cells (MCF-10A) and breast cancer MCF-7 and MDA-MB 

231 cells were obtained from American Type Culture Collection (ATCC). MCF-10A 

cells were routinely cultured in phenol red-free DMEM-F12 media (1:1) supplemented 

with 5% horse serum, hydrocortisone (0.5 μg/ml), insulin (10 μg/ml), epidermal growth 

factor (20 ng/ml), 100 ng/ml cholera toxin and penicillin-streptomycin (100 μg/ml each) 

and incubated at 37°C in a humidified atmosphere containing 5% CO2. Breast cancer 

cells were cultured in DMEM-F12 Media with 10% fetal calf serum. The cell culture 

media, serum, antibiotics, and growth supplements except cholera toxin (Calbiochem, La 

Jolla, CA) were purchased from Invitrogen Corp CA). For experimental purposes, culture 

media were changed to starvation media (serum free media + antibiotics) and allowed to 

incubate for 48 hrs prior to commencement of most experiments, unless otherwise 

indicated. Serum deprivation synchronizes cells in the G0/G1 phase of the cell cycle.  
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The Adenovirus-CMV (empty vector), Adenovirus-MnSOD (AdCMVMnSOD), and 

Adenovirus-Catalase (AdCMVCat) constructs were purchased from ViraQuest, Inc. 

(North Liberty, IA, USA).  The adenovirus constructs used were replication-defective, 

E1- and E3-deleted recombinant adenovirus. Inserted into the E1 region of the adenovirus 

genome was either the human MnSOD or catalase gene, both of which are driven by a 

cytomegalovirus promoter. Cells were seeded in plates at 15%-70% confluence. The 

following day, cells were infected with Adenoviruses over-expressing MnSOD or 

catalase or vector at 100 MOI in serum free media. Control cells were treated with 100 

MOI of the adenovirus-CMV construct. This viral load were determined to achieve 

greater than 50% growth arrests of MCF-10A cells without significant cell death for 

duration of experiment.  Infected cells were cultured for 48 hrs after which cells were 

used for experiments. 

 

Akt1 and NRF1 RNAi transfections  

Pre-designed and verified human shRNA for Akt1 or NRF1 and corresponding null 

vector controls were purchased from OriGene (OriGene Technologies, Inc. Rockville, 

MD). Transfections of cells were carried out in sub-confluent cell population using 

FuGENE 6 (Roche) transfection reagents according to the manufacturer's protocol. 

Briefly, MCF10A cells were seeded in 6 well plates with growth factor supplemented 

media (SM) overnight. Post seeding, cells were transfected with 2 µl of Fugene-6 

(Roche) preincubated for 20 min at room temperature with 0.5 µg plasmid RNAi or its 

null controls (sham). Forty eight hrs post transfection, media were changed to serum-free 

(starvation media) media and incubated for additional 48 hrs, after which cells were used 
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for various experiments. Transfection efficiencies ranged between 60-80% as quantified 

by decreased protein expressions levels.  

 

Cell viability assay 

CellTiter-Fluor™ Cell Viability kit was purchased from promega corporation and used 

according to manufacturer’s instructions. Briefly, cells were seeded in 96 well plate at a 

density of 1.0x104 cells/well, serum starved for 48 hrs and treated with estrogens or ROS 

modifiers. At the end of treatments procedure, substrate reagent (GF-AFC) were mixed 

with substrate buffer and dispensed into well. This assay measures protease activities in 

live cells as opposed to MTT or MTS assay kits that measure formations of formazon 

crystals by mitochondrial enzymes. Plates were read on a fluorescence plate reader at 

380–400 nm excitation and 505 nm emission and data is expressed as mean of three 

experiments +/- SD. 

 

Cell transformation 

The cell transformation was carried out by a modified protocol of Russo’s group (18). 

Briefly, MCF-10A cells were seeded at 30% density in a 10 cm dish. After 24 hrs of  

seeding, media were replaced with stavations media and allowed to culture for 48 hrs, 

and then cells were subjected to two treatment cycles with E2 or its catechol metabolites. 

A treatment cycle includes 48 hrs starvation period, 48 hrs treatment period (100 ng/ml of 

either E2, 2-OHE2, and 4-OHE2), and 48 hrs recovery period in growth media containing 

10% horse serum (HS) and no growth suppliments. At the end of two treatments cycles, 

cells that would be used for immunoprecipitation and Western blot analysis were treated 
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for additional 30 mins with estrogens, lysed with RIPA buffer, immunoprecipitated and 

processed for western analysis. For anchorage independent growth assay 5000 cells/well 

were used for colony formation assays in soft agar. 

Anchorage independent Growth 

Anchorage-independent growth, an indicator of neoplastic transformations of cells, was 

assessed soft agar assay. Briefly, base support agar were made fresh by diluting 1.0% 

molten agarose mixed with 1:1 2x culture media (2x DMEM/F12 media, 20% HS, 2x 

penstrep antibiotics and 200 pg/ml estrogens) to a final 0.5%. Molten agar was left at 42 

oC in a water bath until dispensed at 200 ul/well in 48 well plates, then allowed to 

solidify for 4 hrs at room temperature. Top agarose overlay were made fresh by mixing 

0.7% molten agarose with 2x culture media containing appropriate 5000 cells/well, then 

gently overlaid over base agar. Cells were incubated for a minimum of 21 days in 37°C 

incubator with 5% CO2.  Cultures were fed every week with top agar layer and colony 

formation was assumed when cell masses are 100 micron or greater as measured on a 

Nikon TE2000U inverted microscope (Nikon Corp., USA) with Metamorph software 

(Universal Imaging, USA), Images were acquired by using an Olympus C-5060 digital 

camera attached to the Nikon TE2000U inverted microscope with 4x objective. Four 

wells were enumerated for each groups and data expressed as mean of five wells +/- SD. 

 

Invasion Assay 

In order to determine invasiveness of cells NRF1 overexpressing, cells (5.0 x 103 

cells/ml) were seeded over 8 μm pore transwell filter insert (Transwell, Coastar 

Cambridge, MA) precoated with Matrigel (Collaborative Research, Bedford, MA). 
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Chemoattractants used were reduced growth factor supplemented media or media with 

10% FBS media positive control cells MDA MB 231. Matrix invasion were allowed for 

16 hrs at 37 °C in a CO2 incubator. The non-invaded cells inside chambers were wiped 

off with a cotton swab, and the filters were fixed, stained by Diff Quick (Sigma, St. 

Louis, MO), cut out and mounted onto glass slides. The total number of cells that crossed 

the membrane were counted under a light microscope, enumerated and expressed as fold 

increase compared to parent cell line. The experiments were repeated five times and 

results are expressed as the mean±S.E. 

 

Chemical antioxidant treatments  

The treatment procedure for Ebselen (a glutathione peroxidase mimetic which also 

removes both H2O2 and peroxynitrite) or NAC (a precursor of glutathione and scavenger 

of ROS) (31, 32) varies according to the experiments design. For all experiments, 40 μM 

ebselen and 1.0 mM NAC were used for cell treatments. For example, in DCF assays, 

antioxidants were pre-loaded onto cells for 2-4 hrs before ROS measurement commences. 

For BrdU assays, cells were cultured with the chemical antioxidants throughout the 

experimental procedure. For transformation regimen, antioxidants were applied to cells 

each time cells were treated with estrogens. For anchorage independent growth assays, 

antioxidants were added to soft agar matrix media and during weekly feeding of colonies.   

 

Immunoprecipitation and Western Blot Analysis 

After the respective treatments, cells were rinsed twice with ice cold phosphate buffered 

saline (PBS), harvested with lysis buffer (150 mM NaCl, 0.5% deoxycholate, 0.1% 
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Nonidet P-40, 0.1% SDS, 50 mM Tris) containing protease and phosphatase inhibitors 

(Roche). Samples were diluted to 500 µg of protein in 1 ml of lysis buffer, and pre-

cleared for 1 hr at 4 °C with 10 µl of 1:1 slurry of protein A-agarose beads (Invitrogen 

Corp) in lysis buffer. After a brief centrifugation to remove pre-cleared beads, 2 µg of 

desired capture antibodies were added to each supernatant and incubated on a rocking 

platform at 4 °C overnight and captured proteins were precipitated with 40 µl of protein 

A-agarose beads for 2 hr. The beads were washed five times with lysis buffer and 

resuspended in 40 μL sample loading buffer, subjected to electrophoresis and electro-

blotted onto a PVDF nylon membrane. Primary antibodies used for Western blots were  

diluted 1:1000 in phosphate buffered saline Tween-20, PBST  and horseradish 

peroxidase-conjugated secondary antibodies were diluted 1:50,000 in PBST. Blots were 

treated with ECL reagents (Amersham Biotech), and proteins were detected by 

autoradiography. Band intensity was quantified with Bio-Rad Gel Doc Imaging System.  

 

Immunofluorescence Labeling  

MCF-10A cells were seeded and treated in chamber slides as indicated in legends to the 

figures. Post treatments, cells were fixed with ice cold methanol for 15mins, and 

permeabilized with 0.5% Triton X-100 for 30. Cells were blocked with 1% normal goat 

sera for 1 hr after which they were probed with antibodies diluted 1:500 for Akt and 

1:500 for phospho Akt. Alexa Fluor labeled secondary antibody directed against Akt 

antibody was diluted 1:1000. The confocal fluorescence images were scanned on a Nikon 

TE2000U inverted fluorescence microscope equipped with a Nikon D-Eclipse C1 laser 

scanning confocal microscope system (Nikon Corp., USA). The z-series scanning were 
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done at every 1 μm up to a z-depth of 10 μm by using a Nikon 40 x 1.30 NA DIC H/N2 

Plan Fluor oil immersion objective. The built-in Nikon EZ-C1 software was used for 

confocal image acquisition and analyses.  

 

RESULTS 

Estrogen-induced ROS regulate NRF1 expression: Recently, Klinge’s group reported that 

the NRF1 promoter contains a half imperfect ERE, and E2 stimulates NRF1 expression 

(12) through the ER pathway. ROS is an important mediator of mitochondrial biogenesis 

by controlling the expression of the nuclear respiratory factor-1 and mitochondrial 

transcription factor A. NRF1 expression is increased by menadione, lipopolysaccharide 

(LPS), tertiary butyl hydroperoxide (t-BH), and H2O2 (19,20). Using physiologically 

achievable E2 concentration of 1 nM, which corresponds to the estrogenic menstrual 

peak, we have shown that E2 induces rapid formation of ROS in MCF-7 cells (21,22). 

Therefore, we tested the effect of carcinogenic regimen of 4-OH-E2 on the NRF1 

expression in presence of ROS modifiers. The expression of NRF1 was increased by 

several folds by 4-OH-E2 and this increase in the expression of NRF1 was inhibited by 

over-expression of catalse and MnSOD and co-treatment with Ebselen (Figures 1 and 2). 

This indicated that 4-OH-E2-induced NRF1 expression is redox sensitive.  

 

The exposure of MCF-10A cells to carcinogenic dose regimen of 4-OH-E2 increased the 

phosphorylation and acetylation of NRF1 (Figures 3-5). Both phosphorylation and 

acetylation of NRF1 by two independent signaling molecules may control NRF1 

activation. We assessed phosphorylation and acetylation of NRF1 by Western blotting 
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and confocal microscopy after treating MCF-10A cells with 4-OH-E2 in serum-free 

medium in the same condition that produces malignant phenotype. Cell lysates were 

immunoprecipitated with NRF1 antibody, resolved on an gel, transferred to a  membrane, 

and probed individually with anti-serine, anti-lysine, anti-AKT, anti-NRF1 and anti-

PCAF antibodies. In addition to increased phosphorylation and acetylation of NRF1 by 4-

OH-E2 treatment, we also detected AKT and PCAF in the NRF1 immunoprecipitates 

(Fig. 3 and 4). 4-OH-E2 exposure to MCF-10A cells induced serine phosphorylation of 

NRF1 and overexpression of catalase and MnSOD blocked 4-OH-E2-induced 

phosphorylation of serine residues on NRF1. NRF1 phosphorylation preceded P/CAF 

recruitment for acetylation, because silencing of AKT prevented acetylation of NRF1. 

 

The exposure of MCF-10A cells to a carcinogenic dose of 4-OH-E2 increased NRF1 

binding to the gene promoters for the cell cycle regulators cyclin B1, Cdc25c, and Pcna: 

MCF-10 A (5x105 cells /dish) were seeded, grown for 24 hrs, serum starved for another 

24 hrs, and transfected with NRF1, PCAF, and AKT RNAi, as well as with AdMnSOD 

(MnSOD) and Adcatalase (Cat). They were then treated with ebselen using the cell 

transformation condition as described above, and then treated with 4-OH-E2. In a 

preliminary ChIP analysis, we found that NRF1 is bound to the promoters of the cell 

cycle genes Pcna, Cyclin B1, and Cdc25c, confirming the prediction that these promoters 

contain NRF1 elements (Fig. 6). We also found that the exposure of MCF-10A cells to a 

carcinogenic dose of 4-OH-E2 increased the binding of NRF1 to the promoters of these 

genes, and that 4-OH-E2-induced binding could be inhibited by cotreatment with ebselen 

(antioxidant), by an over expression of catalase (H2O2 scavenger) and MnSOD, and by 
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RNAi of NRF1, PCAF and AKT. These results suggest that 4-OH-E2-generated oxidants, 

particularly H2O2, may mediate NRF1 binding to these gene promoters.  

 

Silencing of NRF1 and its interacting partners (PCAF or AKT) prevented 4-OH-E2-

induced anchorage-independent growth of MCF-10A cells: 4-OH-E2 treatment was able 

to induce AIG positive colony formation (Figures 2-4 and 7); and in NRF1, AKT,  or 

PCAF RNAi silenced cells, 4-OH-E2 was not able to produce any colony. The effects of 

4-OH-E2 on colony formation in cells transfected with scrambled RNAi of NRF1, PCAF, 

and AKT were similar to WT cells. This indicates that 4-OH-E2-dependent anchorage-

independent growth of MCF-10A cells is dependent on NRF1 signaling.  

 

DISCUSSIONS 

The novel finding emerged from this study are that the increased expression of NRF1 

renders support to the growth of MCF-7 cells to form tumors in vivo. Alternatively, the 

knockdown of NRF1 blocks the ability of invasive ER-MD-MBA-231 breast cancer cells 

to form aggressive tumors or prevents these cells to metastasize to other organs. 

Phosphorylation and acetylation of NRF1, which are redox sensitive, enhanced its 

binding to promoter consensus sequences of cell cycle genes and subsequently, 

transcriptional activation. Therefore, it is plausible that phosphorylation and acetylation 

of NRF1 could contribute to the growth as well as  invasiveness of the breast tumor. 

 

Recent studies show several genes with the ability to transform normal cells to malignant 

cells that are direct downstream targets of NRF1 (HP1α, SMYD3, CAPNS1) (28,29,30). 
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The overexpression of a NRF1 regulatable gene, heterochromatin protein 1 alpha (HP1α), 

involved in gene silencing produces genomic instability in cells (31-33), which is 

essential for cell transformation. Similarly, overexpression of another NRF1 transcription 

target gene, SMYD3, produces transformed phenotypes (34). Since these genes are 

overexpressed in human breast cancer tissues, we postulate that these NRF1 regulatable 

genes alone or in concert with others may contribute to the estrogen-induced malignant 

phenotype. Recently, Klinge’s group reported that the NRF1 promoter contains a half 

imperfect ERE, and E2 stimulates NRF1 expression (12) through the ER pathway in 

MCF-7 cells. Even if a small amount of ERβ present in ERα negative MCF-10A cells is 

involved in an increased synthesis of NRF1, it would not explain how increased 

localization close to nuclear targets or enhanced ability to bind to the promoters of target 

genes will be achieved upon estrogen exposure. Furthermore, ER signaling may be under 

the influence of NRF1 through its target gene, SMYD3. SMYD3 functions as a co-

activator of ERα and potentiates ERα activity in response to its ligand (35).  

 

We have shown that NRF1 binding to its promoter is inhibited by mitochondrial 

inhibitors as well as by antioxidants (18). We and others have shown that estrogen 

exposure to breast cells produce reactive oxygen species (ROS) (18,25-27).Thus, 

estrogen-generated ROS may also regulate NRF1 expression.  Both phosphorylation and 

acetylation of NRF1 protein control its activation (23,24). NRF1 has been shown to be 

phosphorylated by redox sensitive kinases p38MAPK, ERK, and AKT (19,20) and 

acetylated by P/CAF. The protein tyrosine phosphatases (PTPs) which control ERK and 

AKT phosphorylation and histone deacetylases which control histone acetyl transferase 
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(HAT) activity of P/CAF are highly sensitive to ROS (35-41). The oxidation of PTEN’s 

active site by ROS makes them inactive, which, in turn, stop dephosphorylation of PI3K 

to occur and thus result in an active AKT (PKB) (42-46). In fact, a higher activation of 

stress-activated protein kinases has been reported in E2-treated MCF-7 cells, which is 

considered to contribute to the E2-proliferative effect (47). Thus, estrogen-generated 

ROS may inactivate PTEN leading to an active phosphorylated PI3K. Subsequently, the 

active PI3K may activate AKT which will directly phosphorylate NRF1. By a similar 

mechanism histone decetylases, such as, HDAC3 and hSirT1, are inactivated by ROS 

(42-46), which in turn can allow P/CAF to acetylate NRF1. Our studies showed that a 

carcinogenic dose of 4-OH-E2 increased NRF1 phosphorylation and acetylation in MCF-

10A cells and that these changes were inhibited by antioxidants or overexpression of 

catalase. This suggests that phosphorylation and acetylation of NRF1, which are redox 

sensitive, enhance its binding to promoter consensus sequences and subsequently, 

transcriptional activation. Findings of this study further showed that NRF1 binding to the 

promoters of  cell cycle genes, PCNA, cyclin B1 and Cdc25C was inhibited by 

knockdown of NRF1, PCAF and AKT by their shRNA. Therefore, it is plausible that 

phosphorylation and acetylation of NRF1 could contribute to the aggressiveness and 

invasiveness of the breast tumor. 
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FIGURES AND LEGENDS 
 
 

 
 
 

 
Fig. 1. Redox expression of NRF1 modulates 4OHE2 induced mammary transformation. 
MCF-10A cells were seeded for 24 hrs and infected with Adenovirus overexpressing 
catalase, MnSOD, or null construct at moi 100. 24 hrs post infection, cells were subjected 
to transformation regimen with or without 100 ng/ml estrogens. For groups treated with 
chemical antioxidant, these cells were co-treated with 40 µM ebselen and estrogen for the 
duration of transformation protocol except during recovery period.  Post transformation, 
cells were either lysed with RIPA buffer, fractionated on 12% SDS-PAGE gel, then blot 
probed for NRF1 and beta actin expression, or seeded for anchorage independent growth 
on soft agar. A) Immunoblot of transformed cells normalized to Null/DMSO and band 
intensity quantified with Biorad geldoc 2000. B) Representative picture of colony count 
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per area in 24 well plate, normalized to Null/DMSO. Data expressed as mean of 3 
experiments +/- SE, (P<0.05). (I) AdNull/DMSO, (II) AdNull/4OHE2, (III) 
AdCata/DMSO, (IV) AdCata + 4-OHE2, (V) AdMnSOD/DMSO, (VI) Ad/MnSOD+ 4-
OHE2, (VII) Ebselen, (VIII) Ebselen + 4-OHE2.  
 
 

 

 
Fig. 2 NRF1 expression mediates 4OHE2 induced mammary tumorigenesis. MCF-10A 
cells were seeded at 20-30% confluency overnight and transfected with NRF1 shRNA or 
it corresponding null vector. Post transfection, cells were subjected to transformation 
regimen as previously described.  Post transfection, cells were used for western blot 
analysis probed for NRF1, TFAM and actin expressions, or anchorage independent 
growth assay.  A) Immunoblot of transformed cells normalized to non transfrected cells 
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(NT)/DMSO and band intensity quantified with Biorad geldoc 2000. (I) immunoblot of 
non transfected (NT) cells; (II) immunoblot of null transfected cells (III), immunoblot of 
NRF1 shRNA transfected cells; (IV) Fold change of NRF1 expression normalized to 
NT/DMSO; (V) Fold change of TFAM expression normalized to NT/DMSO. (B,C) 
Colonies formed after 21 days in soft agar assay were enumerated and expressed as 
numbers colonies per area. Five areas from each well was averaged over 3 plates and 
expressed as mean, +/- SE. (P<0.05).  (*) indicate significant difference from non 
transfected (NT/DMSO) group. (**) indicate significant difference from 4OHE2 
treatment group. (D) Trypan blue cell viability assessment of single cell suspension from 
colony assay at the end of 21 days culture per 1000 cells. 
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Fig. 3. Activation of Akt phosphorylate NRF1 during mammary tumorigenesis.  Cells 
were transfected with Akt shRNA or null constructs, and then subjected to transformation 
regimen as previously described. Post transformation, cells were either treated with 
estrogen for additional 30 mins and used for co-immunoprecipitation western blot 
analysis, or for used for colony assay. A) Western blot analysis of NRF1 
immunoprecipitated proteins probed with anti phosphoserine  (pNRF1) or anti NRF1 
antibodies respectively. (I) Immunoblot of null transfected cells (sham); (II) immunoblot 
of Akt1 knockdown cells (Akt1-kd); (III) phosphorylated NRF1 fold change compared to 
sham/DMSO treated group; (IV) NRF1 expression fold change compared to NRF1 
expression from sham/DMSO. Data expressed as mean of three experiments, +/- SE. 
(P<0.05).  (*) indicate significant difference from null (sham/DMSO) group. (**) indicate 
significant difference from 4OHE2 treatment group. B) Immunoflorescence label of sham 
or Akt1-kd transformed cells probed for Akt (green) or NRF1 (red) expression. Yellow is 
co-localization of Akt and NRF1 expression. C) Anchorage independent growth assay of 
transformed cells transfected with sham or Akt shRNA. 
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Fig. 4. PCAF expression participates in 4OHE2 induced mammary transformation.  Cells 
were transfected with PCAF shRNA plasmid and cells were subjected to transformation 
regimen. Post transformation, cells were either treated with estrogen for additional 30 
mins and used for western blot analysis, or seeded for colony assay formation and 
confocal immunoflorescence analysis. A) Immunoblot of sham or PCAF RNAi 
transfected cells and the fold change of PCAF expression compared to sham/DMSO 
treated group. Data expressed as mean of three experiments, +/- SE, (P<0.05).  (*) 
indicate significant difference from null (sham/DMSO) group while (**) indicate 
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significant difference from 4OHE2 treatment group. B) Immunoflorescence label of sham 
or PCAF-kd transformed cells probed for PCAF (green) or NRF1 (red) expression. 
Yellow is co-localization of PCAF and NRF1 expression. C) Anchorage independent 
growth assay of transformed cells transfected with sham or PCAF shRNA.  
 

 
 

Fig. 5. Akt Phosphorylation of NRF1 induces its Acetylation during mammary 
transformation.  MCF-10A cells were transfected with NRF1, Akt1, PCAF or null 
shRNA plasmids and the cells were subjected to transformation regimen as previously 
described. Post transformation, cells were treated with estrogen for additional 30 mins 
and lysed with RIPA buffer. 750 µg of whole cell lysate (WCL) were 
immunoprecipitated with NRF1 antibody and eluent fractionated on 12% SDS-PAGE 
gel. Blots were probed with anti serine (pNRF1), anti acetyl lysine (ANRF1), anti 
NRF1(NRF1) antibodies respectively. A) Immoblot depicting the effects various RNAi 
on NRF1’s  phosphorylation and acetylation during MCF-10A transformation with 
4OHE2. B) Densitometry of phosphorylated and acetylated NRF1 upon Akt1, PCAF and 
NRF1 knockdown. Data expressed as mean of three experiments, +/- SE, (P<0.05). 
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Fig. 6. Transactivation of NRF1 during mammary tranformation is redox dependent.  
MCF-10A cells were co-treated with estrogens and ROS modulators as previously 
described. Post transfection, cells were either seeded on chamber slide for confocal 
microscopy analysis, or treated for additional 30 mims, then harvested with RIPA buffer. 
750 µg of WCL were immunoprecipitated with NRF1 antibody and eluent were 
fractionated on 12% SDS-PAGE gel. Blots were then  probed with anti serine (pNRF1), 
anti acetyl lysine (ANRF1), anti NRF1(NRF1) antibodies respectively. 50 µg of WCL 
was also fractionated on SDS-PAGE gel and blot probed with beta actin anti body.  A) 
Immoblot depicting the effects various RNAi on NRF1’s  phosphorylation and 
acetylation during MCF-10A transformation with 4OHE2. B) Normalized band intensity 
of phosphorylated and acetylated NRF1 upon Akt1, PCAF and NRF1 knockdown 
respectively. Data normalized to vector/DMSO and expressed as mean fold change of 
three experiments, +/- SE, (P<0.05). C) Immunoflorescence label of cells co-treated with 
biological and chemical ROS modifiers, then probed for serine (green) or NRF1 (red) co-
localization (yellow).  
 
 

 

 
B 
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Fig. 7. NRF1 expression is involved in invitro growth of breast cancer cells.  A) Colonies 
formed by MCF-7 cells transfected with NRF1 modulating plasmids, with null vector 
control. (i) NT-DMSO, (ii) NT-E2, (iii) Vector-DMSO, (iv) vector-E2, (v) NRF1-ox-
DMSO, (vi) NRF1-ox-E2, (vii) NRF1-kd-DMSO, (viii) NRF1-kd-E2. (B). Enumerated 
colony count were expressed as percentage change from NT treatment group +/- SD of 
three experiments. (*) indicates treatment significantly different from E2. (**) indicates 
treatment significantly different from control.  
(P<0.05).  B) Immunoflorescence labeling of MCF7 cells treated for 45 mins with 10 nM 
estrogens, then probed for NRF1, serine, acetyl lysine antibodies respectively. NRF1 
(red), serine (blue), acetyl lysine (green), merge of NRF1/serine/acelty lysine (white). C) 
MCF-10A cells were seeded for transformation as described in methods. At end of 
transformation period, cells were treated for additional 18 hours with vehicles or 
estrogens after which they were washed with cold PBS with protease inhibitors. Cells 
were detached with trypsin and 2.0 x106 cells were counted and used for either ChIP 
assay or qRT-PCR analysis. PCR reactions with DNA or cDNA  primers for cell cycle 
regulatory genes were assembled in 25ul final volume and PCR reactions on ABI Real 
time PCR machine. Data represents mean of 3 different experiments +/-SE, (P<0.05). (I) 
CHiP analysis for NRF1 promoter occupancy of selected cell cycle regulatory gene. (II) 
Quantitative RT-PCR (qRT-PCR) for transcriptional expression of selected cell cycle 
regulatory gene.  
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