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Genetic Evidence for Multiple Sources of the Non-Native
Fish Cichlasoma urophthalmus (Günther; Mayan Cichlids)
in Southern Florida
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Mendivil3, Wilfredo A. Matamoros4, Christian Barrientos5

1 Department of Biological Sciences, Florida International University, Miami, Florida, United States of America, 2 Departamento de Ecologı́a de la Biodiversidad,

Universidad Nacional Autónoma de México, México DF, México, 3 Intituto de Ecologia A. C., Red de Biologı́a Evolutiva, Veracruz, Mexico, 4 Department of Biological

Sciences, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America, 5 Department of Fisheries and Aquatic Science, University of Florida,

Gainesville, Florida, United States of America

Abstract

The number and diversity of source populations may influence the genetic diversity of newly introduced populations and
affect the likelihood of their establishment and spread. We used the cytochrome b mitochondrial gene and nuclear
microsatellite loci to identify the sources of a successful invader in southern Florida, USA, Cichlasoma urophthalmus (Mayan
cichlid). Our cytochrome b data supported an introduction from Guatemala, while our microsatellite data suggested
movement of Mayan Cichlids from the upper Yucatán Peninsula to Guatemala and introductions from Guatemala and Belize
to Florida. The mismatch between mitochondrial and nuclear genomes suggests admixture of a female lineage from
Guatemala, where all individuals were fixed for the mitochondrial haplotype found in the introduced population, and a
more diverse but also relatively small number of individuals from Belize. The Florida cytochrome b haplotype appears to be
absent from Belize (0 out of 136 fish screened from Belize had this haplotype). Genetic structure within the Florida
population was minimal, indicating a panmictic population, while Mexican and Central American samples displayed more
genetic subdivision. Individuals from the Upper Yucatán Peninsula and the Petén region of Guatemala were more
genetically similar to each other than to fish from nearby sites and movement of Mayan Cichlids between these regions
occurred thousands of generations ago, suggestive of pre-Columbian human transportation of Mayan Cichlids through this
region. Mayan Cichlids present a rare example of cytonuclear disequilibrium and reduced genetic diversity in the introduced
population that persists more than 30 years (at least 7–8 generations) after introduction. We suggest that hybridization
occurred in ornamental fish farms in Florida and may contribute their establishment in the novel habitat. Hybridization prior
to release may contribute to other successful invasions.
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Introduction

Biological invasions have resulted in species declines, extinction

of native biota, and extensive financial costs [1,2]. Some of the

largest impacts of nonnative species have been recorded in aquatic

habitats [3,4]. Since European colonization, southern Florida has

experienced major habitat transformation and invasion by

approximately 1200 nonnative species [Floridainvasives.org].

Florida’s highly disturbed landscape and mild subtropical climate

foster the establishment of tropical species [2,5–7], including fish

[7,8]. Approximately 196 fish species have become established in

Florida [9],mostly through the aquarium trade [8,10–12] which

also enhances the probability that introductions from multiple

sources occur, especially in a major shipping and transportation

hub such as southern Florida [13,14]). Identifying the route of

invasion and the source populations of invaded areas can improve

the quality of management strategies for the invader either within

the source range, the pathway of invasion or the method and point

of entry into the invaded regions [15].

Identification of sources and pathways of invasions has

traditionally been accomplished by examining historical data such

as dates of first discovery in introduced areas and importation

records, or by molecular analyses of native and introduced

populations [16]. Historical data alone are not usually enough to

infer introduction pathways as they may be incomplete or

insufficient to distinguish successful and unsuccessful establishment
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and spread. Molecular methods facilitate the comparison of

genetic diversity of native and introduced populations to narrow

the viable hypotheses of origin and spread. However, these

methods are limited to post hoc assumptions about the genetic

effects of introductions and demographic stochasticity; the

challenge that unsampled populations might be the true source

should also be considered [17]. Approximate Bayesian Compu-

tation (ABC) and coalescent theory allows for the statistical

comparison of complex introduction pathways that incorporate

changes in population size, admixture before or during introduc-

tion, and historical and biogeographical data [18], thus alleviating

some of the limitations of molecular analysis.

Non-native species are typically assumed to be under strong

selective pressure to adapt to their new environment, become

established, and spread [13,19,20], but introduced populations

often have low genetic diversity from founder effects and

population bottlenecks that may limit their ability to respond to

environmental challenges (the ‘invasive species paradox’ [21]).

One resolution of this paradox is that multiple introductions of an

invasive species are correlated with successful establishment,

especially if the introductions arose from two or more genetically

distinct sources [22–24]. Introductions from multiple sources may

produce novel genetic combinations that increase fitness and

facilitate invasion success [24–30]. On the other hand, limited

introductions and subsequent genetic bottlenecks do not neces-

sarily decrease genetic diversity [31] and establishment can still

occur after genetic bottlenecks [32–34]. Studies have documented

establishment of nonnative species resulting from multiple

introductions, or introduction from multiple sources [23,35,36],

as well as from single introductions or extreme bottlenecks [37,38].

Establishment can thus be influenced by many factors and each

introduction should be examined individually.

Cytonuclear disequilibrium, the nonrandom association of

organellar haplotypes and nuclear alleles, has been documented

for interspecific hybrids [39–43] and in host-parasite interactions

[44,45]. Cytonuclear disequilibrium may result from several

demographic phenomena including nuclear-organellar genotypic

interactions affecting fitness, genetic drift in small populations,

Figure 1. Map of sampling sites for Mayan Cichlids in Mexico and Central America (A) and Florida (B). Numbers on the map correspond
to site numbers in Table S1. Light grey shading in box A indicates the range of Mayan Cichlids (Miller 1966) in the native range. ‘‘Mexico’’ denotes
samples from Mexico that are not within the Yucatán Peninsula (states of Yucatán, Campeche and Quintana Roo). YP = Yucatán Peninsula;
FL = Florida.
doi:10.1371/journal.pone.0104173.g001

Source of Mayan Cichlids in Florida
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founder effects preceding rapid population expansion, and

nonrandom mating from geographically patterned admixture,

migration, and hybridization (summarized and discussed in [46–

48]). A nonrandom relationship between organellar and nuclear

genes is expected as a result of species introductions from multiple

sites, which are accompanied by population bottlenecks and

admixture of distinct genomes [46,49,50].

At least 13 species of cichlids have become established in

Florida, which possesses no native members of the family

Cichlidae [51]. Cichlasoma urophthalmus (Mayan Cichlid) is

found in freshwater and salt water along the Atlantic slope of

Central America including southern Mexico, Belize, Guatemala,

Honduras and Nicaragua [52]. Mayan Cichlids are economically

important to artisanal fisheries and aquaculture in their native

range [53,54]. They were first recorded in southern Florida in the

Everglades National Park in 1983 [55]. Since then, Mayan

Cichlids have spread over approximately 70,000 hectares from

southern to central Florida during the 30 years since they were

introduced (at least 7 generations [56–59]). Mayan Cichlids have

successfully established in the southern Florida environment across

a range of salinities from freshwater marshes to 40 psu in the

mangrove zone, where they can dominate the fish communities

[59,60]. They have been shown to alter the relative abundance of

native fish populations, most likely by predation [60–62].

Successful establishment of a nonnative species depends on

many factors and varies with species. Understanding the origin

and method of introduction of nonnative species is necessary for

developing effective ecosystem management strategies and for

preventing future introductions. A reconstruction of invasion

pathways is needed to understand the effects of diversity of

introductions, the number of founder individuals, and the

combination of historically separate genotypes on introduced

populations. We used mitochondrial and nuclear molecular

markers to identify the source(s) of Mayan Cichlids in Florida to

determine whether this successful invader resulted from single or

multiple introductions.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guidelines for The Use of Fishes in

Research of The American Fisheries Society, the American

Institute of Fisheries Research Biologists, and the American

Society of Ichthyologists and Herpetologists [63]. The protocol

was approved by the Institutional Animal Care and Use

Committee of Florida International University (Protocol approval

number 08-014). Fin clippings were obtained from some fish by

nonlethal means. Some fish were euthanized in a solution of

0.02% MS-222 (Tricaine methanesulfonate) and preserved for

collections at Florida International University. All efforts were

made to minimize suffering. Our study did not involve endangered

or protected species. Samples from Chichén-Itza, Mexico, were

collected under a permit issued by Instituto Nacional de

Antropologı́a e Historia; specific permission was not required for

collection from other regions in Mexico. Samples from Honduras

were collected under a permit issued by Instituto de Conservacion

Forestal (ICF); samples from Nicaragua were collected under a

permit issued by Miniserio del Ambiente y los Recursos Naturales

(MARENA); samples from Guatemala were collected under a

permit issued by National Council for Protected Areas; samples

from Belize were collected under a permit issued by the Belize

Ministry of Agriculture and Fisheries. Samples collected in Florida

were collected under a permit issued by Florida Fish and Wildlife

Conservation Commission.

Sample Collection
We collected tissue samples from 670 individual Mayan Cichlids

from 23 sites in Florida (287 individuals) and 53 sites within

Mexico and Central America (383 individuals), including sites in

Belize, Honduras, Guatemala and Nicaragua (Table S1; Figure 1).

Fish were captured using a combination of methods: hook-and-

line, cast net, throw trap, seine and minnow trap in habitats that

ranged from freshwater ponds to estuarine canals and mangrove

habitats. In some regions of Mexico and Belize, fish were

purchased from local fishermen as they were coming to shore.

Some fin clippings were also obtained from sample collections at

the Universidad Nacional Autónoma de México (UNAM). We

also acquired two specimens from a pet store in North Miami,

Florida, USA, which had obtained them from a local fish farm,

and included these specimens in mitochondrial analyses. Samples

were either frozen or fixed in 90% ethanol. Total genomic DNA

was isolated from either muscle or fin tissue using the DNeasy

Blood and Tissue Kit (Qiagen) following the manufacturer’s

protocol.

Molecular Analyses
Mitochondrial gene. A portion of the cytochrome b

mitochondrial gene was amplified using CytbFor59-TGAT-

GAAACTTCGGCTCCC-39 and CytbRev59-CTGTTAGTCC-

GGCGATAGG-39. These primers were designed specifically for

this study using primers designed by [64]. The PCR reactions were

carried out in a 50 mL volume using 10 mL of 56 reaction buffer,

3 mL of 25 mM magnesium chloride, 2.5 mL each of 10 mM

forward and reverse primers, 1 mL of 10 mM dNTP’s, 0.5 mL of

Taq DNA Polymerase (5 m/mL), 2 mL of the DNA sample

(approximately 10–200 ng) and 28.5 mL of Sigma sterilized water.

Amplifications were conducted for cytochrome b with a MJ

Research thermal cycler using standard methods. Thermal cycling

conditions for cytochrome b consisted of an initial hot start of

55uC (10 min), then 36 cycles of 95uC (30 seconds), 55uC
(45 seconds, 72uC (45 seconds), followed by 49uC (1 minute). A

final incubation of 72uC for 4 minutes was added to ensure

complete extension of amplified products. Subsequently, PCR

products were subjected to gel electrophoresis in a 1.4% agarose

gel run in Tris-Borate-EDTA (TBE) buffer followed by staining

with ethidium bromide and visualization with UV light. For

sequencing, positively amplified DNA was then purified using

2 mL of ExoSap per 5 mL of PCR product. Samples were then

sequenced using Big Dye Terminator version 3.1 on a 3130XL

Genetic Analyzer (Applied Biosystems). For sequencing, the

internal primers designed were: CytbIntF59-CAC-

CAACCTCCTCTCCGC-39 and CytbIntR59-TGGAAGG-

CAAAGAATCGGG-39.

Initially, 47 fish from four sites in Florida, four sites in Mexico,

two sites in Belize and one site in Honduras were sequenced for a

portion of the cytochrome b gene (851 bp). These sequences

revealed six haplotypes, two of which were found in 43 individuals.

The two haplotypes differentiated between fish from Mexico and

Central America and fish from Florida, hereafter referred to as the

CA haplotype and the Fl haplotype respectively; on the basis of

those results, we screened the remaining samples for those two

haplotypes using restriction endonucleases. Cytochrome b was first

amplified using Polymerase Chain Reaction (PCR). Positively

amplified DNA was then digested with EcoRV at 37uC for one

hour. EcoRV digestion resulted in two fragments if an individual

displayed the Fl haplotype and one fragment if the CA haplotype

Source of Mayan Cichlids in Florida
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was present. DNA fragments were then separated electrophoret-

ically, stained with ethidium bromide and viewed under UV light.

The remaining 623 samples were screened for the CA and Fl

haplotypes.

Nuclear markers. Specimens from 357 individuals from 29

sites in Florida, Mexico, Belize, Guatemala, Honduras and

Nicaragua were analyzed using 17 recently developed microsat-

ellite nuclear markers (see [65] for primer information). We

amplified DNA from fish for sites where we had collected at least

10 specimens. The PCR reactions were carried out in 10 mL using

1 mL of 56 reaction buffer, 1 mL of 25 mM magnesium chloride,

0.5 mL each of 10 mM forward and reverse primers, 0.2 mL of

10 mM dNTP’s, 0.2 mL of Taq DNA Polymerase (5 m/mL), 1 mL

of DNA sample (approximately 10–200 ng) and 5.6 mL of Sigma

sterilized water. Touchdown PCR cycling parameters were run on

an MJ Research thermal cycler; see [55] for complete protocol.

Thermal cycling conditions consisted of: 95uC (5 minutes), then 20

cycles of 95uC (30 seconds), a temperature of 58uC, 60uC, 66uC or

67uC depending on the locus that decreased by 0.5uC per cycle

(30 seconds), and 72uC (30 seconds), followed by 20 cycles of:

95uC (30 seconds) 48uC, 50uC, 56uC or 57uC depending on the

locus (30 seconds), 72uC (30 seconds), then 72uC for 5 minutes.

The PCR products were run on 1.4% agarose gel and prepared

for GeneScan using 9.75 mL of Hi Di formamide solution (Applied

Biosystems), 0.25 mL of GeneScan LIZ-500 size standard (Applied

Biosystems) and 1 mL of PCR product. The PCR products were

run on a 3130XL Genetic Analyzer (Applied Biosystems) to

determine DNA sizes (DNA Core Facility, Florida International

University). Peak Scanner 2 (Applied Biosystems) was used to

determine fragment sizes of alleles.

Data Analyses
Mitochondrial data. Sequences were aligned using Se-

quencer v.4.8 and checked manually. Cytochrome b haplotypes

were analyzed using MRMODELTEST 2.3 [66] and MRBAYES

3.2. [67]. We conducted hierarchical hypothesis tests to select the

appropriate evolutionary model for subsequent Bayesian phyloge-

netic analysis. The program MRMODELTEST calculated base

frequencies, which were used to model the prior probability

distribution; likelihood ratio tests selected the TrN model (equal

transversion rates but two different transition rates) for the

Bayesian analysis. Bayesian phylogenetic analysis was run for

1,000,000 generations, sampling every 100 generations. We

discarded the initial 10% of trees during the ‘burn-in period’

and made a 50% majority consensus rule from the remaining

Bayesian trees. The analysis was repeated twice to avoid searching

within local optima. The phylogenetic tree was used to identify

distinct clades where haplotypes were shared among Mayan

Cichlids from southern Florida and from the native range. Unlike

typical phylogenetic trees that include taxa on their branches, we

replaced the taxa with sampling locations to examine the

phylogenetic relationships among sites resulting in a general area

cladogram [68].

To investigate the relationships between clades, haplotype

networks were built using Network v. 4.6.11 and Network

Publisher (http://www.fluxus-engineering.com/). The maximal

pairwise difference between sequences was 6 and the tranversion:

transition ratio was weighted as 2:1; we therefore specified the

weighted genetic distance (epsilon) as 120 and conducted a

median-joining analysis [69] using the greedy distance calculation

method [70].

Nuclear data. The number of different alleles, the number of

effective alleles, observed and expected heterozygosities, inbreed-

ing coefficient (FIS) and percentages of polymorphic loci were

calculated for Florida, Upper Yucatán Peninsula, South of

Yucatán Peninsula, Belize, Guatemala, Honduras, and Nicaragua

using GenAlEx v.6.5 [71,72].

To detect evidence of a recent bottleneck or reduction in

population size of Mayan Cichlids in Florida, we used the software

Bottleneck v.1.2.02 [73]. We performed the Wilcoxon signed rank

test to test for heterozygosity excess. When a bottleneck occurs, it is

expected that both allele frequencies and heterozygosities

decrease, however, allele frequency is expected to decrease faster

than heterozygosity. Thus, the program Bottleneck tests for

heterozygosity excess by comparing expected heterozygosity under

Hardy-Weinberg equilibrium to heterozygosity expected under

mutation-drift equilibrium determined by the number of alleles

[74]. We tested for heterozygosity excess under the Stepwise

Mutation Model.

Genetic relatedness of populations was assessed using Bayesian

clustering in STRUCTURE v.2.3.4 [75]. STRUCTURE was

used to estimate the number of populations (K) most likely present

in the samples. The parameters were set using an admixture model

with independent allele frequencies and sampling locations were

used as priors; values for the level of admixture (alpha) were

inferred from the dataset. STRUCTURE analyses were per-

formed using the freely available Bioportal server (http://www.

bioportal.uio.no) [76]. The burn-in length was set to 50,000 and

the simulation to 500,000 repetitions. Each run was iterated 20

times. We evaluated results for K = 1 to K = 35. To determine the

most probable clustering of the data, K was selected using the DK

approach [77] as implemented by Structure Harvester [78]. The

variable DK is calculated from the rate of change of the log

likelihood of the data between runs with successive values of K

[77]. CLUMPP v.1.1.2 [79] was used to summarize parameters

across 20 iterations and the corresponding graphical output was

visualized using DISTRUCT v. 1. 1 [80].

ABC was used to test different introduction pathways of Mayan

Cichlids into Florida using the microsatellite data and the program

DIYABC [81]. ABC uses summary genetic statistics (such as

Table 1. Prior distribution of parameters used in ABC analyses.

Parameter Interpretation Distribution Minimum Maximum

N Effective population size Uniform 10 100000

Nf Number of founders for each population Uniform 2 10000

t1, t2, t3, t4, t5 Time of events in generations Log-uniform 1 10000

db Duration of bottleneck in generations Log-uniform 1 10000

r Admixture rate Uniform 0.001 0.999

The time of events in generations are labelled backwards in time and the conditions were as follows: t1,t2,t3,t4,t5.
doi:10.1371/journal.pone.0104173.t001

Source of Mayan Cichlids in Florida
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genetic distance and the number of alleles) to compare observed

and simulated datasets given hypothesized scenarios. Posterior

distributions of parameters for the proposed models – possible

introduction pathways in our case – are calculated from the

differences between the observed and simulated datasets [82,83].

Hypotheses and scenarios were generated on the basis of the

results of phylogenetic analyses of cytochrome b, population

assignment by cluster analysis, as well as on historical biogeogra-

phy and hydrology of the native range (see Table S2 for proposed

scenarios). Cytochrome b phylogeny indicated that samples from

Belize, Honduras and Nicaragua were within the same clade and

cluster analysis also grouped samples from those regions (see

Results), although there appeared to be some overlap among

individuals from Belize and Florida. Cytochrome b data also

showed that samples from both the eastern and western coasts of

Florida were within the same clade and also part of the same

cluster (see Results).

We tested two groups of scenarios using the software DIYABC

v. 2.0 [81] wherein the scenarios increased in complexity by

changing the grouping of samples into populations to improve

model fit (Table S2). The results from the first group of scenarios

informed the second group. The first group contained 15 scenarios

that used five distinct populations from Florida, Mexico,

Guatemala, a possible unsampled source population, and a

grouping of Belize, Honduras and Nicaraguan sites (hereafter

referred to as BHN); Belize, Honduras and Nicaragua were

grouped together because they shared the same cytochrome b

haplotype and were assigned to the same population by Bayesian

cluster analysis (Table S2). Samples from East and West Florida

were combined into one population because both phylogenetic

analysis and cluster analysis grouped them together. In the first

grouping of scenarios, we tested whether Mayan Cichlids were

introduced into Florida from BHN, Mexico, Guatemala, from

both Mexico and Guatemala, or from an unsampled population in

Central America. We also included a possible unsampled, ‘ghost’

population of Mayan Cichlids in Central America which, in some

scenarios, was the source for populations in Mexico and

Guatemala. The second group contained nine scenarios that

merged cytochrome b results and hydrology of the region; we

separated the Mexican samples into two populations, Upper

Yucatán Peninsula (YP) and south of the Yucatán Peninsula, and

categorized Belizean samples as a distinct group because the

Belizean sites are within the Usumacinta Province [84] unlike the

Honduras and Nicaraguan sites, which were grouped together

(Table S2). The cenote-rich Upper Yucatán Peninsula lacks any

major rivers or drainages that connect it to the regions south of the

Peninsula [84,85], so we treated those areas as separate

populations for the second group of scenarios. The second group

of nine scenarios used the population from south of the Yucatán

Peninsula as the most recent common ancestor (MRCA) and

tested whether Mayan Cichlids in Florida were introduced from

Mexico, Guatemala, or Belize, or whether there were multiple

introductions from those regions.

For both sets of scenario analyses in DIYABC, we used broadly

defined priors as no prior values were known for the parameters

(Table 1). We used the Generalized Stepwise Mutation Model

Figure 2. Consensus tree generated by Bayesian phylogenetic
analysis using the sister species, Peténia splendida, as an
outgroup. Clade credibility for branches are shown. Samples that
exhibited the same haplotype from East and West Florida, Honduras
and Nicaragua were each collapsed into a single branch for clarity.
Branches are color-coded by region. * denotes sites where specimens
were also analyzed at microsatellite loci.
doi:10.1371/journal.pone.0104173.g002

Source of Mayan Cichlids in Florida
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[86] with a uniform prior distribution for the mean mutation rate

(1E4 – 1E3). The ‘one sample summary statistics’ used for each

population were the mean number of alleles, the mean genetic

diversity, mean size variance and, mean Garza-Williamson’s M.

The ‘two sample summary statistics’ used were compared between

population pairs, and included Fst, mean index of classification

(the mean individual assignment likelihood of individuals collected

in one population and assigned to another population), and (dm)2

genetic distance [87]. For each scenario, 1,000,000 simulated

datasets were created. Prior-scenario combinations were evaluated

using Principal Components Analysis (PCA) as implemented by

the software. Posterior probabilities of scenarios were compared

with logistic regression using 1% of the closest simulated datasets,

as implemented by DIYABC v. 2.0. Estimations of parameters

were also computed and performance of parameter estimates was

evaluated by assessing confidence and bias as implemented by the

software.

Results

Mitochondrial cytochrome b
Six haplotypes were recovered from sequencing cytochrome b

for 47 individuals; the remaining 623 specimens were screened for

the CA and Fl haplotypes. The CA and Fl haplotypes differed by

six bases within cytochrome b (Genbank accession numbers

KM079191 and KM079192). The phylogenetic tree of cyto-

chrome b haplotypes displayed two distinct clades. One clade

contained only individuals from the native range, while the second

clade contained all the sampled individuals from Florida, some of

the individuals from five Mexican sites (Xtoloc, Ya Bal Ha, Zaci,

Ria Celestun and Ria Lagartos) and all sampled individuals from

two sites in Guatemala (Lago Petén Itza and Laguna Macanche)

(Figure 2). Network analyses indicated that the CA haplotype was

shared among individuals from Mexico, Belize, Honduras, and

Nicaragua while the Fl haplotype was shared among specimens

from the eastern and western coasts of Florida, Guatemala and

some individuals from Mexico (Figure 3). All but one individual in

Figure 3. Haplotype network of cytochrome b in Mexico, Central America and Florida. Circles represent different haplotypes; sizes of
partitions within circles are proportional to the number of specimens per haplotype. Colors correspond to localities as indicated. Line lengths signify
the number of bases separating each haplotype; the short lines symbolize one base and the long line denotes six bases.
doi:10.1371/journal.pone.0104173.g003

Figure 4. Box plots showing STRUCTURE analysis of Mexico, Central America and Florida for K = 2 (A) and K = 3 (B). Box plots of cluster
analysis of sites within Central America for K = 2 (C) and within Florida for K = 2 (D).
doi:10.1371/journal.pone.0104173.g004
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Florida displayed the same haplotype as the Guatemalan fish; the

lone Florida outlier differed from the Fl haplotype by a single base.

Nuclear microsatellite loci
Seventeen loci were analyzed for 356 specimens from 29 sites in

Florida, the upper Yucatán Peninsula and south of the Yucatán

Peninsula in Mexico, Belize, Honduras, Nicaragua and the Petén

region of Guatemala. The Belize population exhibited the highest

number of effective alleles (6.56) while Florida had the lowest

(2.42) (Table 2). Observed and expected heterozygosities were

highest in Belize; expected heterozygosity was lowest in Florida

and observed heterozygosity was lowest in the upper Yucatán

Peninsula (Table 2). Florida specimens exhibited 142 alleles, 42 of

which were found in specimens from both Belize and Guatemala,

45 from Belize alone, 11 from Guatemala alone, 11 from sites in

Mexico, and 33 were private alleles. The Stepwise Mutation

Model did not yield significant levels of heterozygosity excess for

Florida sites (Wilcoxon signed-rank one-tail test: p = 1). Structure

analysis using the Evanno method [77] indicated that the

uppermost levels of differentiation in population structure were

for K = 2 (DK = 1395.23) and K = 3 (DK = 272.83; Figure S1). We

presented results for both K values because they were both

biologically important and reflected regional hydrology (Figure 4).

The uppermost level of differentiation divided all of the samples

into two possible populations, the first contained individuals from

Florida and the second contained individuals from Mexico and

Central America (Figure 4A). When the number of possible

populations was three, individuals from Florida remained within a

single cluster while individuals from Belize, Honduras and

Nicaragua formed a second cluster and individuals from Mexico

and Guatemala formed a third grouping (Figure 4B).

The two clusters from Florida and Mexico and Central America

were analyzed separately by running additional structure analyses.

Within the native range grouping, the data were also divided into

two clusters (DK = 1908.25); the first cluster contained individuals

from Mexico and Guatemala while the second contained

individuals from Belize, Honduras and Guatemala (Figure 4C).

Within Florida, the uppermost level of differentiation divided the

data into two clusters (DK = 22.74), with individuals from Miami

Springs and the L31W canal appearing most similar (Figure 4D).

However, examination of clusters for larger K values did not

reveal any distinct population structure in Florida.

Scenario testing analysis of the first group of scenarios showed

the highest support for scenario 10, in which fish from an

unsampled source were introduced to Mexico, then to both

Guatemala and BHN, and then from Guatemala to Florida

(Figure 5; Table 3); posterior probability = 0.662, 95% confidence

interval (0.617, 0.707). Scenario 10 supported the introduction of

Mayan Cichlids from Mexico to Guatemala and BHN (Belize,

Honduras and Nicaragua), which was incorporated into the

modeled scenarios for the second grouping. Scenario 4 was the

most supported from the second grouping of scenarios. In

Scenario 4, fish were introduced from southern YP (Yucatán

Peninsula) to upper YP, Belize, and the Honduras-Nicaragua

group, followed by introductions from Upper YP to Guatemala

and from Belize to Florida (Figure 5; Table 3); posterior proba-

bility = 0.623, 95% confidence interval (0.514,0.733).

Discussion

We observed that the nuclear genetic markers, microsatellites,

and the mitochondrial gene, cytochrome b, supported different

routes for introduction of Mayan Cichlids into Florida. The

nonrandom association of mitochondrial and nuclear alleles,
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cytonuclear disequilibrium, is strong evidence of introductions of

Mayan Cichlids to South Florida through fish from multiple

origins [46–50]. These data on Mayan Cichlids provides only the

second example of which we are aware where cytonuclear

disequilibrium provided evidence of multiple introductions in

animals [50]. Mayan Cichlids displayed markedly diminished

genetic variation in Florida compared to their native range,

consistent with a small initial introduction followed by a rapid

expansion to their current approximate 70,000 hectare range

invaded over 7 to 8 generations. The proposed pattern of

introduction from multiple sites, establishment, and expansion

can cause cytonuclear disequilibrium [46–50]. We also found

evidence of movements within Mexico and Central America

which is suggestive of human-assisted dispersal.

Phylogenetic analysis and haplotype distribution of cytochrome

b indicated an introduction of Mayan Cichlids into Florida from

the Petén region of Guatemala or the upper Yucatán Peninsula of

Mexico. All but one fish from Florida carried the same cytochrome

b haplotype suggesting that either a small number of founders, or

low female effective population size carrying the Fl haplotype,

were introduced and quickly spread (e.g. [88]). The lone Florida

outlier differed from the Fl haplotype by a single base and may

represent a post-introduction mutation. Alternatively, the Fl

haplotype was fixed in the population after introduction, perhaps

through selection or genetic drift acting on a small founder

population [89]. The distribution of cytochrome b haplotypes that

we found was consistent with research by Razo-Mendivil et al.

[90], who sequenced cytochrome b for Mayan Cichlids through-

out southern Mexico and Central America and found high genetic

structuring corresponding with two highly divergent groups.

Unlike their study, we used restriction endonuclease enzyme

digestion in lieu of sequencing cytochrome b and thus found fewer

cytochrome b haploytpes within Mexico and Central America

than their study. However, their most common haplotypes, Cu1

and Cu12, reflected the distributions of CA and Fl haplotypes we

observed within Mexico and Central America, confirming the

efficacy of our screening methods for phylogenetically useful

cytochrome b haplotypes.

The first group of scenarios we tested using ABC supported a

pathway whereby Mayan Cichlids were introduced from an

unsampled source to Mexico, then to both Guatemala and the

cluster of Belize-Honduras-Nicaragua, and then from Guatemala

to Florida. Cytochrome b results also supported Guatemala as the

introduction source of Mayan Cichlids in Florida because they

shared the Fl haplotype. We grouped Belize with Honduras and

Nicaragua for the first group of scenarios because of their genetic

similarity indicated by the cluster analysis. However, because

Belize is within the Usumacinta drainage, unlike Honduras and

Nicaragua, and because there was some genetic similarity of

individuals between Florida and Belize, we grouped Belize

separately for the second set of scenario testing. We investigated

whether the ‘unsampled population’ indicated by the most

Figure 5. Most supported models and posterior probabilities from groups 1 and 2. Model (A), scenario (B), and logistic regression of
posterior probabilities for scenario 10 (C) from group 1, and model (D), scenario (E) and logistic regression of posterior probabilities for scenario 4
from group 2. Population numbers are indicated with the population names in the flow chart. YP refers to Yucatán Peninsula.
doi:10.1371/journal.pone.0104173.g005
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supported scenario from group 1 was representative of a

population near the Ria Grijalva basin where the sister species

of Mayan Cichlids (Peténia splendida; [91,92]), and perhaps

Mayan Cichlids themselves, arose [93]. Thus, we used samples

from south of the Yucatán Peninsula as the most recent common

ancestral population for the second group of scenarios to improve

model fit. Both of the most highly supported scenarios corrobo-

rated an introduction from Mexico to Guatemala suggesting that

the Fl haplotype spread from Upper Yucatán Peninsula to

Guatemala, which was a likely introduction source for Florida

(group 1, scenario 10). The most supported scenario from the

second group and shared alleles indicated an introduction to

Florida from Belize; however, a Belizean introduction is not

supported by cytochrome b data because we failed to find the Fl

haplotype at any Belize sites.

Our results showed that the Florida population contained a

mitochondrial allele from Guatemala and a nuclear lineage most

similar to Belize resulting in a form of cytonuclear disequilibrum

that is expected when small founding populations that are

genetically differentiated at nuclear and mitochondrial loci are

admixed [47–50]. There was also some genetic similarity in

microsatellites between fish from Florida and Guatemala, which is

expected if Guatemala was also an introduction source. We were

not able to test for cytonuclear disequilibrium within Florida

populations using standard methods [49,94] because we identified

only one effective haplotype within Florida (the only other

haplotype we found in Florida was in a single individual). We

propose that an introduction from Petén occurred, as a result of

the aquarium trade [95,96], where all the females were fixed for

the Fl cytochrome b haplotype followed by an introduction from

Belize. Cichlid hobbyists and aquarists imported many neotropical

cichlid species into the United States starting in the 1970s [96].

The founding population from Belize likely contained mostly

males, though we cannot rule out mutation and subsequent

selection for the Fl haplotype after introduction resulting in an

introduced population that is genetically similar to two distinct

populations. Another possibility is that the Fl haplotype was

present in the Belize population, but at such low frequencies that

we could not identify it within Belize specimens. The breeding of

Mayan Cichlids by aquarists and cichlid hobbyists prior to its

release in Florida may have facilitated the hybridization of Mayan

Cichlids from Guatemala and Belize or the nonrandom mating of

females from Guatemala with males from Belize, which may have

yielded the cytonuclear disequilibrium we observed.

Based on microsatellite data, Mayan Cichlids within Florida

formed two clusters that were not very distinct, indicating low

levels of population differentiation among sites in Florida. The

relatively high inbreeding coefficient and the low genetic diversity

within Florida supports the hypothesis of introduction of a small

number of individuals that subsequently spread throughout

southern and central Florida at an approximate rate of

2,300 hectares per year (total range of approximately 70,000 hect-

ares) [9]. The relatively large number of private microsatellite

alleles within Florida is also an expected result of small

introductions and subsequent population expansion if the intro-

duced individuals carried alleles that are currently rare within the

Table 3. Median estimates of parameters from group 1, scenario 10 and from group 2, scenario 4.

Parameter Group 1 Scenario 10 Group 2 Scenario 4

N1 2.02E+03 3.50E+03

N2 8.31E+03 7.70E+04

N3 8.23E+03 5.64E+04

N4 3.09E+03 3.31E+04

N5 2.45E+02 3.54E+04

N6 NA 7.18E+03

Nf2 2.35E+03 2.37E+03

Nf3 4.65E+03 8.90E+03

Nf4 1.64E+03 2.27E+03

Nf5 NA 4.27E+03

Nf6 NA 5.57E+01

t1 2.48E+03 2.69E+03

t2 4.17E+03 6.67E+03

t3 5.30E+03 8.10E+03

t4 5.35E+03 7.55E+03

t5 NA 9.44E+03

db1 4.65E+02 7.37E+03

db2 9.25E+03 6.38E+03

db3 5.35E+03 7.86E+03

db4 7.65E+03 1.17E+03

db5 NA 7.10E+03

For parameters, N = effective population size, Nf = number of founders in each population, t = time of events in generations, and db = duration of bottleneck in
generations.
The parameter values correspond to those in Figure 5B and 5E.
NA denotes parameter that were absent in the model.
doi:10.1371/journal.pone.0104173.t003
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native range – and were therefore unsampled in this study – and

frequency of those alleles increased in the Florida population as a

result of a bottleneck. We used the test for heterozygosity excess to

determine the occurrence of a bottleneck because it was more

robust to assumptions about mutation models than other

bottleneck testing methods [97]. Although our test for a bottleneck

in Florida populations did not yield significant results, this does not

preclude the occurrence of a historic bottleneck. As effective

population size increases after a bottleneck occurs, statistical power

to detect the bottleneck decreases even with large sample sizes

[97–99]. Therefore, if Mayan Cichlids suffered a bottleneck and a

subsequent rapid population expansion, the populations would

rapidly obtain mutation-drift equilibrium making heterozygosity

excess difficult to detect.

Cytochrome b within Central America
The Fl haplotype was found in all fish from Lago Petén, Laguna

Macanche, Cenote Ya-Bal-Ha, and Cenote Xtoloc, and some fish

from Rı́a Lagartos, Cenote Zaci, and Rı́a Celestun. Although

these areas are all part of the Yucatán Division of the Usumacinta

Drainage [84], Cenote Ya-Bal-Ha, Cenote Xtoloc, Cenote Zaci,

and Rı́a Celestun are all located in the upper Yucatán Peninsula,

which has no major drainages that connect them to the rest of the

Usumacinta basin [82,88] where Mayan Cichlids are believed to

have arisen [84,85,100,101]. Dispersal between the Petén region

of Guatemala and Upper Yucatán through freshwater channels is

possible; a similar pattern was also found for Gambusia yucatana
where individuals from northern Yucatán Peninsula and Petén

were morphometrically more similar than with nearby sites [102].

However, we did not observe the Fl haplotype at any sampling

location between Petén and the Upper Yucatán as expected with

dispersal. Mayan Cichlids are tolerant of salt water

[53,59,103,104] and could have arrived via marine corridors

along the coast or during sea level changes during the Pleistocene

and early Holocene [90,101] although the hypothesis of strict

marine dispersal by Cichlids is disputed [105–108]. It is also

possible that Mayan Cichlids were transported between the Upper

Yuctán and Guatemala by humans since they have been purposely

introduced to many water bodies in Mexico for mosquito control

and as a food source [53,54,93,109–111]. The sites where the Fl

cytochrome b haplotype were found are also near to Maya sites

[112–114]. Pre-Columbian peoples cultivated freshwater snails as

a food source [115], developed artificial fisheries [116], and

stocked their reservoirs with fish [117]. As they do today, the Maya

would have used this species for food and may have introduced

them along their trade routes to water bodies from which they

were absent.

Conclusion
Mayan Cichlids have become established in southern Florida;

they have spread and impacted their introduced environment,

representing a case of a successful invader that resulted from

multiple introductions. Unlike other studies, the introductions

from distinct sources did not increase overall genetic diversity

compared to the native range. Instead, it resulted in a genetic

bottleneck which decreased overall genetic diversity and produced

novel combinations of mitochondrial haplotypes and nuclear

alleles. Introduction was followed by rapid population growth and

dispersal throughout south Florida. This admixture between

distinct Belize and Guatemala lineages, probably accomplished

while in cultivation in ornamental fish farms, could have improved

fitness and facilitated establishment and spread in Florida.
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