
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-6-2014

First Time Measurements of Polarization
Observables for the Charged Cascade Hyperon in
Photoproduction
Jason S. Bono
jason.s.bono@gmail.com

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Bono, Jason S., "First Time Measurements of Polarization Observables for the Charged Cascade Hyperon in Photoproduction"
(2014). FIU Electronic Theses and Dissertations. Paper 1520.
http://digitalcommons.fiu.edu/etd/1520

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F1520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/1520?utm_source=digitalcommons.fiu.edu%2Fetd%2F1520&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

FIRST TIME MEASUREMENTS OF POLARIZATION OBSERVABLES FOR

THE CHARGED CASCADE HYPERON IN PHOTOPRODUCTION

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

PHYSICS

by

Jason Bono

2014



To: Interim Dean Michael R. Heithaus
College of Arts and Sciences

This dissertation, written by Jason Bono, and entitled First Time Measurements of
Polarization Observables for the Charged Cascade Hyperon in Photoproduction, hav-
ing been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this dissertation and recommend that it be approved.

Brian A. Raue

Misak M. Sargsian

Cem Karayalcin

Lei Guo, Major Professor

Date of Defense: June 6, 2014

The dissertation of Jason Bono is approved.

Interim Dean Michael R. Heithaus
College of Arts and Sciences

Dean Lakshmi N. Reddi
University Graduate School

Florida International University, 2014

ii



c© Copyright 2014 by Jason Bono

All rights reserved.

iii



DEDICATION

This dissertation is dedicated to my entire family, but most significantly to my mother

Sharon. Without her faith and devotion, my early educational struggles might never

have been overcome.

iv



ACKNOWLEDGMENTS

My time spent in fundamental research has been pleasurable and deeply gratifying,

although the trajectory of events preceding this completed work has been somewhat

circuitous. I suppose it’s all part of the fun, though. Unpredictability in research,

numerous successes, failures, dead ends, new ideas, and excitement have been recur-

rent themes against a background of some of the less energizing aspects of life in

graduate school. Amidst the mixture of light and dark, in the journey which this

work represents, I am grateful for every inch in its broad path. Melodrama aside,

this accomplishment is contingent upon the hard work and devotion of many people

to whom I wish to express my sincere gratitude.

First, my deepest gratitude goes to Lei Guo for his excellent guidance over the past

three years. With a contagious passion for physics, keen intuition and an openness

to new ideas, he has been a great source of inspiration. His attentiveness and clarity

across scales from the big picture to the most subtle aspects of analysis have provided

a rich and open dialog which has been instrumental in my development. Although,

Lei’s uncanny memory for the details of such discussions has worked to my detriment

on an occasion or two. I additionally thank Lei for the answers he did not provide

and for his encouragement to think for myself. His genuine interest in the wellbeing

of his students has provided me solace during important moments. In the midst of

more difficult times, knowing that someone possessed a selfless imperative to help,

was often help enough.

I am extremely gracious for the additional and voluntary guidance which Brian Raue

bestowed. Many key aspects of the analysis directly descended from his expert advise

as a physicist and statistician. His consistent participation through week after week,

of long, and sometimes overly expressive research meetings was paramount to our

results. I have learned so much and consider Brian as my adoptive advisor. Together

v



Brian and Lei have been, in a strict sense, brilliant, but I am especially grateful for the

tremendous amount trust that the two invested in me. Perhaps most importantly, our

research has been a lot of fun. I implore both of them to continue training graduate

students together.

I would like to thank the world class scientists at Jefferson Lab who maintained

smooth operation of the CLAS detector during data collection. Extra thanks goes

to the hardworking members of the g12 collaboration; especially to those who slaved

in data reconstruction and calibrations as graduate students and post-docs, Johann

Goetz, Diane Schott, Mukesh Saini, Craig Bookwalter, Mike Kunkel and Mike Palone.

I thank Kanzo Nakayama, Misak Sargsian and Oren Maxwell as theoreticians with

whom consulting brought fruitful insight. Special thanks goes to Kanzo for this con-

tinued correspondence and collaboration. I kindly thank Joerg Reinhold for patiently

teaching me principals of nuclear physics experimentation. I also thank my under-

graduate professor James Cresser for encouraging me to further pursue physics. I still

mull over our discussions on quantum decoherence.

Colleagues, horses, from the FIU nuclear physics lab, thank you. Eric Pooser, Hari

Khanal, Dipak Rimal, Rafael Badui, William Phelps, Adam Freese and Marianna

Gabrielyan, you guys were all amazing to work with. Besides being the most creative

and smartest group of people I know, you are also among the most light-hearted and

hilarious, that’s what u r doing. I hope you have benefited from my presence as much

as I have from yours. Special thanks goes to former post-doc Puneet Khetarpal for

sharing his expertise in programing.

Thanks to my siblings Andrew Bono and Kathleen Schecher with whom I delight

in sharing fun challenges and amusing times. From our distinct breed of humor

containing themes and debates such as the spelling of a certain dog’s name, to our

constant search for adventure via land, snow, sea and the otherwise more absurd, the

vi



elements of our friendship are unique and I value them dearly. You both, presumably

without realizing, have kept me on track time and time again.

To my father Jay Bono, thank you for our friendship and for cultivating my curiosity

about the world. I consider myself fortunate having grown up with access to great

ideas and for them having been communicated so engagingly and often. I carry several

details of our early conversations, although the most memorable aspects pertain to

the open-endedness of inquiry and its implied imaginative freedom. I am delighted

that our conversations, which have always been refreshingly fluid, have paradoxically

grown in both sophistication and immaturity.

To my mother and stepfather Sharon and Chuck Carlino, thank you for everything

you have given us, including putting up with the aforementioned adventures. I owe

more to my mother than I may express in this scope. She has held us all together with

her perseverance and seeming omniscient judgment. For her efforts and struggles that

I know, and for those which I remain ignorant, I wish her happiness and awareness

of how great a mother she has been. To Chuck, thanks for taking in our family as

your own, you have been a blessing.

Thanks to my friends who moved half a world away to be in Miami. For those who

expressed that their relocation was friendship driven, I feel special gratitude and

humility.

Finally to Jen McAnney, thank you for being my friend in the relatively frantic time

of writing and for patiently proofreading my work. I’m energized by your spirit and

humbled by your kindness. I hope your attributes are contagious because I would like

to be more like you.

vii



ABSTRACT OF THE DISSERTATION

FIRST TIME MEASUREMENTS OF POLARIZATION OBSERVABLES FOR

THE CHARGED CASCADE HYPERON IN PHOTOPRODUCTION

by

Jason Bono

Florida International University, 2014

Miami, Florida

Professor Lei Guo, Major Professor

The parity violating weak decay of hyperons offers a valuable means of measuring

their polarization, providing insight into the production of strange quarks and the

matter they compose. Jefferson Lab’s CLAS collaboration has utilized this property

of hyperons, publishing the most precise polarization measurements for the Λ and Σ

in both photoproduction and electroproduction to date. In contrast, cascades, which

contain two strange quarks, can only be produced through indirect processes and as

a result, exhibit low cross sections thus remaining experimentally elusive.

At present, there are two aspects in cascade physics where progress has been minimal:

characterizing their production mechanism, which lacks theoretical and experimental

developments, and observation of the numerous excited cascade resonances that are

required to exist by flavor SU(3)F symmetry. However, CLAS data were collected in

2008 with a luminosity of 68 pb−1 using a circularly polarized photon beam with ener-

gies up to 5.45 GeV, incident on a liquid hydrogen target. This dataset is, at present,

the world’s largest for meson photoproduction in its energy range and provides a

unique opportunity to study cascade physics with polarization measurements.

The current analysis explores hyperon production through the γp→ K+K+Ξ− reac-

tion by providing the first ever determination of spin observables P , Cx and Cz for

the cascade. Three of our primary goals are to test the only cascade photoproduc-

viii



tion model in existence, examine the underlying processes that give rise to hyperon

polarization, and to stimulate future theoretical developments while providing con-

straints for their parameters. Our research is part of a broader program to understand

the production of strange quarks and hadrons with strangeness. The remainder of

this document discusses the motivation behind such research, the method of data

collection, details of their analysis, and the significance of our results.

ix



TABLE OF CONTENTS

CHAPTER PAGE

1 Introduction and Motivation 1
1.1 Overview of the Standard Model of Particle Physics . . . . . . . . . . 1
1.2 Our Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 The Motivation Behind Our Research . . . . . . . . . . . . . . . . . . 10

1.3.1 Motivation: Current Status of Cascade Physics . . . . . . . . 11
1.3.2 Motivation: Testing Predictions from Theory . . . . . . . . . . 13
1.3.3 Motivation: Recent Analogous Lambda Results . . . . . . . . 15
1.3.4 Motivation: Vector Meson Dominance . . . . . . . . . . . . . 17
1.3.5 Motivation: Universal Hyperon Polarization at High Energies 20
1.3.6 Motivation: Connection Between Polarization Observables and

Production Amplitudes . . . . . . . . . . . . . . . . . . . . . . 21
1.3.7 Proton Spin Crisis and Baryon Polarization . . . . . . . . . . 22

2 The g12 Experiment 26
2.1 CEBAF Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Hall B Photon Tagger . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Hydrogen Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 The CLAS spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Start Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Drift Chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Superconducting Toroidal Magnet . . . . . . . . . . . . . . . . . . . . 36
2.8 Time-of-Flight Detectors . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.9 Cherenkov Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.10 Electromagnetic Calorimeters . . . . . . . . . . . . . . . . . . . . . . 38
2.11 Trigger and Data Acquisition System . . . . . . . . . . . . . . . . . . 39
2.12 Event Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.13 Cascade Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.13.1 Reconstructed Cascade and Lambda Tracks . . . . . . . . . . 43

3 Formalism and Methodological Framework 45
3.1 Spin Observables and the Coordinate System . . . . . . . . . . . . . . 45
3.2 Connection Between Spin Observables and Polarization . . . . . . . 49
3.3 Self Analyzing Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Calculation of P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Calculation of Double Polarization Observables Cx and Cz . . . . . . 55
3.6 Acceptance Independence of Cx and Cz . . . . . . . . . . . . . . . . . 57
3.7 Frame Transformation Effect on Hyperon Polarization . . . . . . . . . 59

4 Data Processing and Event Selection 60

x



4.1 Physics Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.1 Topology Requirement . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Missing Mass Selection in the Hypersphere . . . . . . . . . . . 61
4.1.3 Vertex Position Selection . . . . . . . . . . . . . . . . . . . . . 65
4.1.4 Vertex Timing Selection . . . . . . . . . . . . . . . . . . . . . 65
4.1.5 Eliminating Particle Misidentification . . . . . . . . . . . . . . 68
4.1.6 The Fiducial Region . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.7 Photon-Beam Energy . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Kinematic Binning of Data . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 Corrections and Calibration . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Photon-Beam Polarization Determination . . . . . . . . . . . 76
4.3.2 Multiple Photon Events . . . . . . . . . . . . . . . . . . . . . 81
4.3.3 CLAS Energy-Loss Corrections . . . . . . . . . . . . . . . . . 81
4.3.4 Photon Beam Energy Corrections for g12 . . . . . . . . . . . . 82
4.3.5 Final-State Momentum Corrections for g12 . . . . . . . . . . . 82
4.3.6 Combined Effects of Corrections . . . . . . . . . . . . . . . . . 82

5 Simulation 84
5.1 Simulation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Generated and Reconstructed Events . . . . . . . . . . . . . . 86
5.1.2 Detached Vertices . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.3 GSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.1.4 GPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Tuning Simulation to Data . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.1 Simulated Beam Energy Spectrum . . . . . . . . . . . . . . . 91
5.2.2 Exponential t-slope . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.3 Resonance Mass and Width . . . . . . . . . . . . . . . . . . . 97
5.2.4 Further Comparison of Simulated and Experimental Data . . . 98

5.3 Acceptance Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.1 Calculation of Acceptance and Uncertainty . . . . . . . . . . . 100

6 Results 103
6.1 Induced Polarization P . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Comments on Induced Polarization Results . . . . . . . . . . . 108
6.1.2 Alternate Methods for Induced Polarization . . . . . . . . . . 109
6.1.3 Further Cross Checks for Induced Polarization . . . . . . . . . 109

6.2 Transfered Polarization Cx and Cz . . . . . . . . . . . . . . . . . . . . 113
6.2.1 Comments on Transfered Polarization Results . . . . . . . . . 116
6.2.2 Cross Check for Transfered Polarization Results . . . . . . . . 118

6.3 Comparison with Theory . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.1 Comments On our Comparison with Theory . . . . . . . . . . 123

7 Systematic Uncertainties 125
7.1 Uncertainty in Analyzing Power and Beam Polarization . . . . . . . . 126

xi



7.1.1 Analyzing Power . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.1.2 Beam Polarization . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 Binning of Pion Angle in Beam-Helicity Asymmetry . . . . . . . . . . 127
7.3 Varying the Mass-Hypersphere Radius . . . . . . . . . . . . . . . . . 128
7.4 Effect of Fiducial Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.5 Non-Cancellation of Acceptance for P . . . . . . . . . . . . . . . . . . 132
7.6 Study of Non-Cancellation of Acceptance for Cx and Cz . . . . . . . 132
7.7 Effect of Method for P : A Cross Check . . . . . . . . . . . . . . . . . 134

7.7.1 Fitting vs Raw Yield: A Cross Check on Cx and Cz . . . . . . 136
7.8 Studies on Background: Further Cross Checks . . . . . . . . . . . . . 138

7.8.1 Effective Polarization of Background From Lambda Decay . . 138
7.8.2 Effective Polarization of Unknown Background . . . . . . . . . 140

8 Conclusions and Outlook 143

Bibliography 147

VITA 151

xii



LIST OF TABLES

TABLE PAGE

1.1 A table of the elementary particles. . . . . . . . . . . . . . . . . . . . 2
1.2 Three-star and above Lambda and Sigma hyperon resonances listed by

the PDG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 The degree of longitudinal electron polarization (Pe) for each Møller
run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 A table showing the degree of circular photon polarization (P�) in the
relevant kinematic bins (Eγ). . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 A table summarizing the results for P , with and without acceptance
corrections. There is good agreement between both methods for all six
bins, well within statistical uncertainty. . . . . . . . . . . . . . . . . . 107

6.2 A table summary of induced polarization values binned in center-of-
mass Ξ− angle and beam energy. . . . . . . . . . . . . . . . . . . . . 109

6.3 A table summary of Ξ− polarization values for the nominal binning
scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 Systematic uncertainty for Cx,Cz and P arising from various sources.
All sources are detailed in the present chapter. A summary: Binning
refers to width of the binning used, Mass refers to the width of the mass
cuts, Fiducial refers to fiducial cuts, Acceptance refers to acceptance
effects. Total systemic refers to each source, added in quadrature and
Statistical refers to the known statistical uncertainty associated with
the nominal measurement. Finally, Total uncertainty refers to the total
systematic and statistical uncertainties added in quadrature. . . . . . 126

xiii



LIST OF FIGURES

FIGURE PAGE

1.1 The Baryon Octet as organized in the Eightfold Way according to
charge and strangeness. The octet contains spin-1/2 nucleons, sig-
mas, the lambda, and cascades. The quark composition is additionally
shown. The particle being studied in our analysis, the charged cascade,
is highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 The Baryon Decuplet as organized in the Eightfold Way according to
charge and strangeness. The decuplet contains spin-3/2 deltas, ex-
cited sigmas, excited cascades, and the omega. Quark compositions
are additionally shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The γp → K+K+Ξ− reaction through an arbitrary mechanism. At
present, the production mechanism which we seek to understand in
our work, is unknown. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Cartoon depiction of the cascade’s half-spin arising from its internal
constituents and their dynamics. In general, the overall spin comes
from quantum mechanical addition rules, summing contributions from
valence quarks (ssd for the cascade), virtual quark-pairs (sea quarks)
and gluons; all three types of constituents contain intrinsic spin, and or-
bital angular momentum. The relative contributions from each source
of spin are unknown, which is in part what the present work examines. 11

1.5 An illustration of cascade photoproduction in the t-channel, arising
through the decay of an intermediate hyperon. . . . . . . . . . . . . . 13

1.6 Possible diagrams contributing to cascade production. . . . . . . . . . 14
1.7 An illustration of Schumacher’s hypothesis. . . . . . . . . . . . . . . . 17
1.8 Cartoon depiction of lambda photoproduction through vector meson

dominance. In this picture, the polarization of the lambda comes from
the strange quark, which is produced through quantum fluctuations of
the photon. Most of the photon polarization transfers to the lambda
in this picture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.9 Cartoon depiction of cascade photoproduction through vector meson
dominance. In this picture, the polarization of the cascade comes from
the strange quark, which is produced through quantum fluctuations of
the photon. While the strange quark from the photon may be fully
polarized within the cascade, its effects are diminished since it may
only contribute a fraction to the total cascade spin. Thus, only some
of the photon polarization transfers to the cascade. . . . . . . . . . . 19

2.1 A photograph of an SRF cavity made from superconducting niobium. 27
2.2 The large-scale design of CEBAF and it’s components. . . . . . . . . 28
2.3 An aerial photograph of CEBAF. . . . . . . . . . . . . . . . . . . . . 28

xiv



2.4 A profile of the photon tagger. . . . . . . . . . . . . . . . . . . . . . . 30
2.5 A drawing of the target. . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Drawing of CLAS nested within Hall B. . . . . . . . . . . . . . . . . 31
2.7 Schematic of the CLAS. . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 A drawing of the CLAS start counter. . . . . . . . . . . . . . . . . . . 33
2.9 A profile drawing of CLAS detecting a two-track event coming from

the target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 Drawing of a cross-sectional view of the DC regions and the toroidal

magnetic field at half current (1930 A). . . . . . . . . . . . . . . . . . 34
2.11 Diagram of the sectors, regions and super layers of the DC. . . . . . . 35
2.12 Drawing of a track going through the five layers of the DC. . . . . . . 35
2.13 Photo of the torus magnet during construction. . . . . . . . . . . . . 36
2.14 A diagram showing the CC response to a single lepton track entering

One of the six segments. . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.15 A diagram of one dissected sector of the EC with the three u-v-w

layering convention illustrated. . . . . . . . . . . . . . . . . . . . . . . 39
2.16 Coincidence trigger criteria. . . . . . . . . . . . . . . . . . . . . . . . 40
2.17 The path of a charged particle going through a magnetic field. . . . . 41

3.1 The γp → K+K+Ξ− reaction through an arbitrary mechanism with
the subsequent Ξ− → Λπ− weak decay. . . . . . . . . . . . . . . . . 45

3.2 The production plane (left plane) is shown; defined in the center-of-
momentum, it contains the incoming photon and recoiling cascade.
The two kaons in general lie above and below the production plane.
The so called decay plane (right plane), is defined in the rest-frame of
the cascade and contains its decay products (pion and lambda). . . . 47

4.1 Cartoon representing Ξ− photoproduction via virtual-meson exchange
in the t-channel and its weak decay. . . . . . . . . . . . . . . . . . . . 60

4.2 Top left: the missing mass spectrum of the K+K+ system, showing
the Ξ− peak at 1.32 GeV. Top right: the missing mass spectrum of
the K+K+π− system, showing the Λ peak at 1.11 GeV. Bottom left:
invariant mass spectrum of the Λπ− system, showing the Ξ− peak
at 1.32 GeV. Bottom right: invariant mass spectrum of the Ξ− − π−
system, showing the Λ peak at 1.11 GeV. In all plots a Gaussian is fit to
the signal over a polynomial background. The vertical lines represents
the known lambda or charged cascade masses. The parameter σ of
the Gaussian fit gives CLAS’s “natural” resolution for its associated
quantity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 The nominal mass cut r < 1 represents a three sigma cut as shown
in blue. The first sideband (in red) are the events lying in the hyper-
shell 1 < r < 4

√
2 while the second sideband (black) lie in the region

4
√

2 < r < 4
√

3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xv



4.4 The cut region of spacial vertex distribution. All events lying outside
the plot were excluded. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Difference between event-vertex time as calculated by the RF-corrected
tagger and start counter, for events passing all cuts. A one nanosecond
cut was imposed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Difference between vertex-time and particle-vertex time as calculated
by the RF-corrected tagger and TOF, for events passing all cuts. A
one nanosecond cut was imposed. Left: fast kaon. Right: slow kaon. . 67

4.7 β vs momentum for the fast kaon overlaid with it’s theoretical curve.
Left: before hypersphere cuts, an extra band is visible comprising
misidentified pions. Right: after hypersphere cuts, the contamination
is eliminated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 β vs momentum for the pion (left) and slow kaon (right) overlaid with
their respective theoretical curves. Both plots show the data after hy-
persphere cuts and indicate no contamination due to misidentification
or timing inaccuracies . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 Left: shows the π+ φ distribution for sector-three in one p and θ bin
along with the upper and lower limits of the fiducial region represented
by the green vertical line. Right: a second-generation plot, fit to a
hyperbola. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 Third-generation plots of the fitting parameters from second-generation
fits for sector three. The data are fit to power functions. . . . . . . . 70

4.11 The angular distribution of the proton from exclusive pπ+π− events is
shown. In the top, φ vs θ is plotted, the bottom plots conveys similar
information mapped to mimic the geometry of CLAS. Left: No fiducial
cuts. Right: nominal fiducial cuts on the proton. . . . . . . . . . . . . 71

4.12 The angular distribution of the positive pion from exclusive pπ+π−

events is shown. In the top, φ vs θ is plotted, the bottom plots conveys
similar information mapped to reflect the geometry of CLAS. Left: no
fiducial cuts. Right: nominal fiducial cuts on the positive pion. . . . . 71

4.13 The angular distribution of the negative pion from exclusive pπ+π−

events is shown. In the top, φ vs θ is plotted, the bottom plots conveys
similar information mapped to reflect the geometry of CLAS. Left: no
fiducial cuts. Right: nominal fiducial cuts on the negative pion. . . . 72

4.14 From left to right: φ vs momentum for the proton, negative pion and
positive pion for pπ+π− events. Top: no fiducial cuts. Bottom: nomi-
nal fiducial cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.15 φ vs θ for the fast kaon from K+K+π−(Λ) events are shown. On the
top, simulated Monte Carlo events are plotted, on bottom, the g12
data of our analysis. Left: No fiducial cuts. Right: nominal fiducial
cuts on the fast kaon. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xvi



4.16 φ vs θ for the slow kaon from K+K+π−(Λ) events are shown. On the
top, simulated Monte Carlo events are plotted, on bottom, the g12
data of our analysis. Left: No fiducial cuts. Right: nominal fiducial
cuts on the slow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.17 φ vs θ for the pion from K+K+π−(Λ) events are shown. On the top,
simulated Monte Carlo events are plotted, on bottom, the g12 data of
our analysis. Left: No fiducial cuts. Right: nominal fiducial cuts on
the pion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.18 The red horizontal lines represent the binning in cos θcmΞ while the green
horizontal lines represent the binning in Eγ. Left: the g12 data. Right:
Monte Carlo simulated events. . . . . . . . . . . . . . . . . . . . . . . 76

4.19 An illustration of the angle definitions used in the γp → π+π−p sub-
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.20 I�(φhelπ+) for our data within the energy range of W = 1.9− 2.3 GeV. . 80
4.21 I�(φhelπ+) as measured in the previous analysis. . . . . . . . . . . . . . 80
4.22 On the left, the Ξ− signal in the missing mass spectrum (after all cuts)

of K+K+ before ELOSS, photon energy, and momentum corrections is
shown. On the right, the same signal using the corrected four-vectors.
The mass of the Ξ− is around 1.321 GeV. . . . . . . . . . . . . . . . . 83

5.1 A cartoon representing our simulated cascade production model. K+
fastY

∗

is produced via virtual-meson exchange in the t-channel. The Y ∗ de-
cays to K+

slowΞ−. The cascade undergoes a subsequent decay to π−Λ.
The decay of Λ to pπ− was additionally simulated. . . . . . . . . . . . 85

5.2 The ffread card used with gsim for our analysis. . . . . . . . . . . . . 90
5.3 The beam energy spectrum for the Ξ− data sample and Monte Carlo

simulation. The Monte Carlo events are in red and are normalized to
the data represented as points with statistical error bars. . . . . . . . 92

5.4 The left shows a diagram of a generic interaction with two particles in
the initial (p1 and p1)and two particles in the final state (p3 and p4) as
referred to in Equation. 5.21. On the right is the analogous model of
the γp→ K+K+(Ξ−) reaction. It’s should be clear from this diagram
and Equation. 5.21 that in this model, t is the momentum transfer
from the photon to the fast kaon. The blue ellipses in both figures
represent arbitrary intermediate processes. . . . . . . . . . . . . . . . 93

5.5 First, events are generated. The initial simulation splits into two sets:
reconstructed events (Rec) that pass through gsim, gpp and a1c be-
fore being analyzed, and generated events (Gen) that pass straight to
the analyzer. Acceptance corrections are obtained from the ratio of
reconstructed to generated events. Applying acceptance to data, one
obtains the corrected t-slope spectrum which can in turn be used as
input for the next iteration. . . . . . . . . . . . . . . . . . . . . . . . 94

xvii



5.6 t-slope for the acceptance corrected experimental data (blue), and the
generated Monte Carlo events (red). Agreement within statistical un-
certainty is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7 An example of the plots that were used to calculate tslope. The top two
plots show the t-spectrum for Monte Carlo generated (left) and recon-
structed events (right). The center left shows the calculated acceptance
as a function of t while center right shows the uncorrected t-spectrum of
the data. The bottom right is an overlay fo the uncorrected t-spectrum
of Monte Carlo and Data events. Finally, the bottom left shows the
acceptance corrected t-spectrum of the data with an exponential fit. . 96

5.8 An overlay of the data (green) and simulation (red) for the invariant
mass m(Ξ−K+

slow) in six distinct beam-energy bins. The data were fit to
Gaussian functions which yields the mass and width of the underlying
hyperon used as in input parameter for simulation. . . . . . . . . . . 97

5.9 An overlay of the data (points) and simulation (red solid) for the in-
variant mass m(Ξ−K+

slow) integrated over all bins. . . . . . . . . . . . 98
5.10 Shows the measured cascade angle with respect to the z-axis in the

center of mass frame. This quantity depends on the intermediate Y ∗

mass and width, along with the t-slope. Red is simulated events and
the points are the data. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.11 The invariant mass of the K+
fast + Ξ− system. Red is simulated events

and the points are the data. . . . . . . . . . . . . . . . . . . . . . . . 99
5.12 The magnitude of momentum for all three mesons. Red is simulated

events and the points are the data. . . . . . . . . . . . . . . . . . . . 100
5.13 A few typical acceptance functions (A(θyπ−)) in various bins of beam

energy and cascade angle. The red lines show the fits to the underlying
acceptance-histograms with their widths representing the uncertainty
as calculated by the covariance matrices of fitting parameters. . . . . 102

6.1 The angular distribution of the pion off ŷ in nine bins of energy and
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over all bins. The linear fit is used to measure the forbidden transfered
polarization Cy. The measurement is consistent with zero as required. 118

6.12 A comparison of our results with theory for P (top), Cx (middle) and
Cz (bottom) as a function of beam energy. . . . . . . . . . . . . . . . 120

6.13 A comparison of our results with theory for P (top), Cx (middle) and
Cz (bottom) as a function of cascade angle. . . . . . . . . . . . . . . . 121

6.14 A comparison of our results with theory for P in three energy bins. . 122

7.1 Shows the asymmetry as a function of pion angle off the x-axis and
the corresponding Cx measurement for decreasing pion bin width from
left to right. The nominal binning scheme is shown in the middle plot. 128

7.2 Shows the asymmetry as a function of pion angle off the z-axis and the
corresponding Cz measurement for decreasing pion bin width from left
to right. The nominal binning scheme is shown in the middle plot. . . 128

7.3 The signal shown with 2,3 and 4 σ cuts (or radius cuts in the hyper-
sphere). The nominal 3-sigma cut is shown in black. . . . . . . . . . . 129

7.4 The integrated P results for 2,3 and 4 sigma cuts from left to right
respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5 The integrated Cx results for 2,3 and 4 sigma cuts from left to right
respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.6 The integrated Cz results for 2,3 and 4 sigma cuts from left to right
respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.7 P . Left: results with no fiducial cuts. Right: results with loose fiducial
cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xix



7.8 Cx. Left: results with no fiducial cuts. Right: results with loose fiducial
cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.9 Cz. Left: results with no fiducial cuts. Right: results with loose fiducial
cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.10 The acceptance corrected forward-backward pion asymmetry results
for P in three energy bins and three center-of-mass cascade angle bins. 133

7.11 The reconstructed values of Crec
x (left) and Crec

z (right) with a generated
value Cgen

x = 0.5 and Cgen
z = 0. . . . . . . . . . . . . . . . . . . . . . 135

7.12 The reconstructed values of Crec
x (left) and Crec

z (right) with a generated
value Cgen

x = 0 and Cgen
z = 0.5. . . . . . . . . . . . . . . . . . . . . . 135

7.13 A typical fit which was integrated to give a background subtracted yield.136
7.14 Left: fitting with four pion bins. Right: no fitting with five pion bins.

The binning scheme for the fitting method was defined coarsely to
provide reliable yields. . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.15 Left: fitting with four pion bins. Right: no fitting with five pion bins.
The binning scheme for the fitting method was defined coarsely to
provide reliable yields. . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.16 In the top four plots: events in red are the result of cut on the invariant
mass m(Λ+π−) and m(Ξ−−π−) which identifies the pion coming from
the Λ decay. Its presence is shown over the broader spectrum of events.
In the bottom four plots: Events representing cuts in the hypersphere
radius r = 1, 2, 3, 4, 5, 6 are layered over one another. The vertical
lines provide a means of showing how deep within the hypersphere the
“lambda-pion” cuts are. One should note the Λ-pion cuts lie in the
r = 6 hypersphere, far out in the sideband of the primary signal. . . 139

7.17 Measurements of the effective Cx and Cz for events in the lambda-
pion background. This measurement is not meaningful in terms of
polarization observables, but serves as study of background effects. . 140

7.18 In the top four plots: events in red are the result of cut on the invariant
mass m(Λ + π−) and m(Ξ− − π−) which identifies the “mixed” back-
ground. Its presence is shown over the broader spectrum of events.
In the bottom four plots: Events representing cuts in the hypersphere
radius r = 1, 2, 3, 4, 5, 6 are layered over one another. The vertical
lines provide a means of showing how deep within the hypersphere the
mixed-background cuts are. . . . . . . . . . . . . . . . . . . . . . . . 141

7.19 Measurements of the effective Cx and Cz for events in the “mixed”
background. This measurement is not meaningful in terms of polariza-
tion observables, but serves as study of background effects. . . . . . . 142

xx



Chapter 1

Introduction and Motivation

Experimental nuclear and particle physics provide a glimpse of what is countenanced

by nature. The mantra “All that is permissible is required” hints at the utility

of carefully crafted observation. Specific measurements under controlled conditions

as dictated by theory have provided rich information into the workings of our uni-

verse, revealing remarkable order and beauty, as well as peculiarity. Through modern

physics, a strange inner world to which we are blind in daily experience, has begun

to become illuminated. Although, there is still much work to be done.

The present chapter provides an overview of the prevailing theoretical framework

and a few of its shortcomings, including those that encompass our research. The

motivation behind our research is discussed in detail.

1.1 Overview of the Standard Model of Particle Physics

The tradition of atomism dates back to ancient India and Greece, however for brevity,

we will fast forward through our long history of natural philosophy to the dawn of

modern particle physics: the age of quantum theory. In the early 1940s, only a

handful of what were thought of as elementary particles had been identified. Among

them were the electron, positron, muon, photon, neutron and proton [1]. While the

former three particles are still believed to be void of internal structure, the latter

two have been found to be composites of smaller elements. Our current picture

of particle physics is the result of a renaissance-like explosion of experimental, and

theoretical work in the later half of the twentieth century. Such developments came

predominately from cosmic-ray and collider experiments, revealing new particles that

did not fit the traditional atomic scheme of matter in which neutrons and protons
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were fundamental. Several new classes of subatomic particles including a vast array

of mesons and baryons were identified. Attempts to explain the complexity of the

observed phenomena and growing list of “elementary” particles blossomed into what

is now known as the standard model : an extraordinarily broad and successful theory.

In the current picture, all matter is composed of a few particles categorized as quarks

and leptons, interacting through the exchange of field quanta known as gauge bosons.

All of the aforementioned elementary particles are shown in Table 1.1 along with

the recently observed Higgs boson, the quanta of the Higgs field, responsible for the

breaking of certain symmetries (i.e., electroweak), which endows the leptons and

quarks, along with the Z and W , bosons with mass.

Table 1.1: A table of the elementary particles. The mass, charge, spin and symbol
for each elementary particle is shown. For the quarks and leptons, first, second and
third generations are organized in the first, second and third columns respectively.
Image Source [2]

The exchange of gauge bosons is thought to underpin all dynamical interactions in

the universe [3]. Each fundamental interaction, mediated by different gauge bosons,

is classified into the strong, weak, electromagnetic or gravitational interactions. The
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gauge boson underlying the latter interaction, referred to as the graviton, is yet to be

observed experimentally; gravity is not included in the standard model but because of

its weakness, is negligible in the subatomic regime. The color, or strong interaction

is mediated by the exchange of gluons. Photons are exchanged in electromagnetic

interactions, while the weak interaction is mediated by the exchange of W and Z

bosons. As it turns out, the weak and electromagnetic interactions are actually dif-

fering aspects of the same phenomenon with the unsurprising name of the electroweak

interaction. The phenomenological difference between the electromagnetic and weak

forces at energies below 100 GeV is a result of the non-zero mass of the W± and Z0

bosons, which owe their finite mass to the Higgs mechanism [3].

Leptons, given their name because of their small masses [4], interact electromag-

netically and weakly but not via the strong force. Intricate collective behavior of

interacting leptons diversifies the characteristics of atomic matter and gives rise to all

phenomena in chemistry and biology, from the distinguishing features of the elements,

to the microscopic processes upon which all life is dependent. Additionally, leptons

are observed to participate in nuclear β-decay among other weak interactions, a pro-

cess that has a large effect on the composition of the universe but is only observable

through developments in nuclear experimentation.

Quarks, the building blocks of hadronic matter (hadrons refer to all baryons and

mesons), interacting primarily through the strong interaction, exhibit a strange be-

havior physicists called confinement. Confinement describes the phenomenon that

quarks are never found alone. Although there is no known analytic proof that quan-

tum chromodynamics (QCD), the theory of the strong interaction, should exhibit

confinement, it is generally understood through least-action principals and consider-

ation of the vacuum’s quantum nature. The energy of interaction between quarks
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does not diminish with distance (r) as shown in the form of the potential,

Vc = −4

3

αs
r

+ κr. (1.1)

As bound quarks become spatially separated, a point is reached when it is more

energetically favorable for a quark-antiquark pair to spontaneously appear from the

vacuum, than for Vc to keep increasing according to Equation 1.1. The creation of

pairs reduces the potential energy associated with the binding of the two original

quarks, more than the energy required to produce the masses of the new quarks.

Effectively, an attempt to separate a hadron (a bound state of two or more quarks)

into its constituent quarks by “pulling” it apart results in the production of a “jet”

of hadrons in a process called hadronization.

Besides confinement, quark dynamics have many other peculiarities. To explain how

otherwise identical particles could coexist, bound in the ground state (i.e, the ∆++,

a baryon consisting of three u quarks) without violating the Pauli exclusion princi-

ple, quarks were postulated to be endowed with an extra degree of freedom called

“color”[5]. The possible colors an individual quark can posses are red, green or

blue, named after the additive primary colors to draw an analogy to color theory in

the visual arts. The anti-quarks can take on complementary color denoted as cyan

(antired), magenta (antigreen) and yellow (antiblue) analogous with the subtractive

primary colors. As a consequence of confinement, all free particles have a neutral

color charge.

The concept that all hadronic matter is composed of quarks was introduced in part

to explain the flavor symmetry present in the enumeration of hadron states. In the

quark model, baryons contain three quarks and mesons contain a quark-antiquark

pair. To be color neutral, baryons have one quark of each color, red, green and blue.
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In a meson, it’s quark may take on any color with it’s antiquark taking on the cor-

responding anti-color. The analogy of color charge with actual color only holds to

the extent to which colors add, forming color neutral states (black or white). The

lightest mesons, one example among many being the pion (π), contain various quan-

tum mechanical combinations of first generation (u and d) quarks. Other categories

of mesonic matter contain higher generations quarks such as the kaons (K), which

possess a strange quark, and the heavy mesons comprising charm and bottom quarks.

The lightest baryons contain only first generation quarks. Protons and neutrons, be-

ing the lightest and most common baryons, posses quark configurations of uud and

ddu respectively. The least massive baryon with a single strange quark is known as

the lambda (Λ), uds, whereas the lightest baryonic states of multiple strangeness

are the neutral and charged cascades (Ξ) with quark configurations of uss and dss,

respectively.

The masses of the hadrons are only partially a result of the masses of the quarks

they comprise. For example, the proton mass is around 938 MeV while adding up the

masses of it’s constituent quarks gives a mass around 10 MeV, not much more that 1%

of the total. Most hadronic mass actually comes from gluonic binding energy and the

undulating sea of virtual quark-antiquark pairs that appear and disappear on time

scales according to the Heisenberg Uncertainty Principal, ∆E∆t ≥ h̄
2
. Virtual quarks

within the hadron are also commonly referred to as current or sea quarks. Indeed,

the simple quark picture is too large a simplification to characterize many aspects of

hadronic physics. The proton spin puzzle refers physicists’ discovery that the nucleon’s

spin-half is not solely the result of parallel-parallel-antiparallel configuration of it’s

constituent spin-half quarks. Uncovering the origin of proton spin is connected with

our research on the doubly-strange charged cascade (Ξ−) in the present document

and an elaboration on the connection is provided in Section 1.3.
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The study of baryons containing multiple strange quarks, which is the subject of our

analysis, has played an important role in the development of the quark model. Gell-

Mann’s Eightfold Way [6], intentionally alluding to Buddhism’s Noble Eightfold Path,

organizes the mesons and baryons into ordered multiplets. Fig. 1.1 shows the Baryon

Octet, additionally displaying the now know quark makeup of each particle. The

organizational principles of the Eightfold Way applied to spin-3/2 baryons (shown in

Fig. 1.2) required the existence of the Omega minus (Ω−), which had not yet been

observed. It was predicted that the missing particle would have a strangeness of -3

and electric charge of -1, which was later verified experimentally, winning Gell-Mann

the Nobel Prize in physics. We now know the quark composition the omega to be

sss.

Figure 1.1: The Baryon Octet as organized in the Eightfold Way according to charge
and strangeness. The octet contains spin-1/2 nucleons, sigmas, the lambda, and
cascades. The quark composition is additionally shown. The particle being studied
in our analysis, the charged cascade, is highlighted.
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Figure 1.2: The Baryon Decuplet as organized in the Eightfold Way according to
charge and strangeness. The decuplet contains spin-3/2 deltas, excited sigmas, excited
cascades, and the omega. Quark compositions are additionally shown.

In connection with the Eightfold Way and also ultimately explained by the quark

model, the degree of freedom “strangeness” was introduced by Gell-Mann to explain

why kaons and hyperons exhibited a suppressed decay. These unusual particles were

created copiously in energetic collisions but decayed slowly, which seemed to defy

the reversibility of particle interactions. Particles with strangeness typically decay

on time scales around ≈ 10−10s as opposed to the time scale associated with strong

and electromagnetic decay of ≈ 10−23s. The peculiar signature of such particles was

broadly explained by the postulate that strangeness is a quantity that is conserved by

the underlying processes of hyperon production, but not in the processes behind their

decay. We now know that strong and electromagnetic interactions, those responsible

for the production of strange hadrons, obey the conservation of strangeness while weak

interactions violate the law. Ground state particles that contain a strange quark are

kinematically forbidden to decay through processes in which strangeness is conserved,

and must instead decay weakly.
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All observed hadronic matter has consisted of two or three bound quarks, however

further hypothetical mesons and baryons are permitted by the quark model. Pen-

taquarks, hadrons with an extra quark-antiquark pair (totaling 5 quarks), have been

the subjects of rigorous experimental efforts. Although numerous pentaquark obser-

vations were reported in the early 2000s [7, 8, 9], all claims have since been discounted

upon further statistical analysis [3] and inability to reproduce the results. Still to-

day, new observations of pentaquark states is a subject of controversy but none have

been accepted by the nuclear physics community. Ruling out previous pentaquark

candidates does not by any means rule out their possible existence. Similarly, mesons

with multiple quark-antiquark pairs may exist such as the tetraquark, which has been

recently observed [10].

In addition to the hadrons such as the pentaquark and tetraquark, which fall nicely

into the quark model classification scheme, several further “exotic” mesons that lie

outside the quark model could hypothetically exist. Candidates of exotic mesons in-

clude glueballs, which are excited interacting gluons devoid of quarks; a state only

possible because of the self-coupling nature of the strong interaction. Other possible

states outside of the quark model are the exotic mesons. Exotic or hybrid mesons

are a bound quark-antiquark pair in which the binding gluons are in an excited state,

augmenting the total meson mass and altering its spin and parity quantum num-

bers. A significant amount of experimental effort has been devoted to the search for

exotic mesons at the Thomas Jefferson National Accelerator Facility (Jefferson Lab,

or Jlab). Jefferson Lab’s GLUEX collaboration has the principal aim of producing

exotic mesons by exciting a proton target with a photon-beam.

The Standard Model’s demonstrable success and broad range of application, along

with rigorous endeavors probing its theoretical self-consistency, places it among the

most successful and sweeping theories in the history of ideas. The Standard Model
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does however, fall short of being complete. Among the more prominent problems

with the model, many lie with the fact that it not well incorporated with the general

relativistic formulation of gravity, which itself is a well-established theory. As previ-

ously mentioned, the standard model does not, at present, extend its quantum field

characterization to gravitational interaction via gauge boson exchange successfully.

Furthermore, there is reason to believe other forms of matter outside of the standard

model exist. Observations of the universe on it’s largest scale show an accelerating ex-

pansion indicating the manifestation of dark energy, which may call for the existence

of additional scalar fields. Furthermore, gravitational lensing experiments, galactic

rotational curves and velocity dispersions among other observational evidence calls

for the existence of extra, non-baryonic matter in the universe that interacts gravi-

tationally, dubbed dark matter. Many candidates for dark matter, such as the axion

or dark photon, lie outside of the standard model. Another prominent issue within

the Standard Model is that it does not correctly account for the non-zero mass of

neutrinos or their oscillations.

In addition to a few fundamental problems with the Standard Model, many more of

its unanswered questions reside within the phenomenological aspects of QCD. De-

ciphering the substructure of hadrons remains one of the great unsolved problems

in physics. Experimental nuclear physics may address theoretical issues including

proton decay, the proton charge radius, the phases of strongly interacting matter,

hadronization, and the role of gluon self-interactions in nucleons.

1.2 Our Research

In this work we provide the first ever determination of three independent spin observ-

ables for the charged cascade (Ξ−) in photoproduction. From the γp → K+K+Ξ−

reaction (shown in Fig. 1.3), we measure the recoiling cascade’s induced polarization,
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P , along with the degree of polarization transfered from the photon, Cx and Cz.
1

Put succinctly, polarization is the projection of a particle’s spin (depicted in Fig. 1.4),

averaged over a sample, with respect to a quantization axis. Extracting the three

polarization observables, P,Cx and Cz constitute measurements of cascade spin pro-

jection onto three orthogonal quantization axes. A detailed discussion of the relevant

observables the coordinate system is left to Chapter 3.

Figure 1.3: The γp → K+K+Ξ− reaction through an arbitrary mechanism. At
present, the production mechanism which we seek to understand in our work, is
unknown.

1.3 The Motivation Behind Our Research

The motivation for our research is multifold. One of the most immediate consequences

of measuring cascade polarization will be a better understanding of the underlying

mechanism behind cascade production, and hence the production of strangeness in

general. We intend that the broader influence of our results will help illuminate

questions such as:

• What processes underlie the photoproduction of hyperons, particularly the cas-

cade?

• What are the processes responsible for hyperon polarization?

1We take on the notational convention commonly used for single meson production. For double
meson production, P , Cx and Cz are often written as Py, Bzx and Bzz respectively.
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Figure 1.4: Cartoon depiction of the cascade’s half-spin arising from its internal
constituents and their dynamics. In general, the overall spin comes from quantum
mechanical addition rules, summing contributions from valence quarks (ssd for the
cascade), virtual quark-pairs (sea quarks) and gluons; all three types of constituents
contain intrinsic spin, and orbital angular momentum. The relative contributions
from each source of spin are unknown, which is in part what the present work exam-
ines.

• Which excited baryons contribute most significantly to cascade photoproduc-

tion?

• Is photoproduction a feasible means to study cascade spin?

Elaboration on the motivation behind our research is provided in the following sub-

sections.

1.3.1 Motivation: Current Status of Cascade Physics

Cascade states (Ξ), which contain two strange quarks, are experimentally under ex-

plored as compared with the non-strange baryons (N and ∆) and the S = −1 hyper-

ons (Λ and Σ). In particular, the production mechanism for ground state Ξ baryons

remain unknown, also progress is lacking in the observation of the excited Ξ∗ states

that are predicted to exist by flavor SU(3)F symmetry. Flavor symmetry requires a

corresponding cascade resonance for each N∗ and ∆∗ resonance, the PDG [3] reports
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there are around 26 N and ∆’s with a status of 3-star and above. Only six such

cascade resonances have been reported with an additional five constituting the reso-

nances with 2- or 1-star status. The abysmal state of global cascade data is largely

because of small production cross sections, cascades, having two strange quarks, can

only be produced via indirect processes. The little experimental progress that has

been made has been insufficient to significantly stimulate theoretical developments,

and aside from Ref. [11], most theoretical efforts have been devoted to pentaquark

production [12].

At present, there is only one existing publication [13] in which differential cross

sections for Ξ photoproduction were measured. The recent results for the γp →

K+K+Ξ− reaction showed a high probability of the cascade recoiling in the direction

of the proton momentum (in the center-of-mass frame); this is usually an indication

of t-channel production. It was suggested by K. Nakayama [11] that the leading

contribution of Ξ photoproduction comes through meson exchange and intermediate

S = −1 hyperon resonances, as depicted (for t-channel) in Fig. 1.5. It is natural to

assume singly strange intermediate hyperons for the reaction, because otherwise, the

it would involve a t-channel exchange of S=2 exotic mesons. The model of Ref. [11]

was the only production model available for comparison, which, matched the exper-

imental cross-section results fairly well. The results of Ref. [13] did not include any

polarization measurements, though it was pointed out that contributions from var-

ious hyperons states can be differentiated using the Ξ− spin observables [14]. We

seek to provide the first of much needed Ξ− polarization observables, which will help

determine the mechanisms behind photoproduction of strangeness and the hadronic

processes that give rise to hyperon polarization.
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Figure 1.5: An illustration of cascade photoproduction in the t-channel, arising
through the decay of an intermediate hyperon.

1.3.2 Motivation: Testing Predictions from Theory

Just as the Λ has been useful in exploring the S = 0 baryon resonance structure [15],

so too can the cascade be used as a sensitive probe for hyperon resonance contribu-

tions. The model mentioned in Section 1.3.1 and detailed in Ref. [11] makes specific

predictions for the polarization observables. Such predictions turn out to have a high

sensitivity to the relative contributions from intermediate hyperon resonances. Only

the resonances with sufficient existing information to determine the hadronic and

electromagnetic coupling constants, shown in Table 1.2, were included. The model is

based on a relativistic meson-exchange of hadronic interactions where the production

amplitudes are calculated from the relevant effective Lagrangian in the tree-level ap-

proximation. Although the model does not involve loop integration, it is more robust

than a typical tree-level calculation in that it accounts for the final state interaction

effects through the generalized contact terms which keep gauge invariance of the pho-

toproduction amplitudes. Contributing diagrams to production that are considered

in the model are shown in Fig. 1.6.
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Table 1.2: Three-star and above Lambda and Sigma hyper resonances listed by the
PDG [3]. Source [11]

Figure 1.6: Diagrams contributing to cascade production in the model of [11].
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More recently, the model of Ref. [11] has been appended in Ref. [14] to include the

Σ(2030), a four-star hyperon resonance with spin-7/2. The motivation for inclusion

of higher spin resonances came from a discrepancy with experimental data reported

by Ref. [13]. In this work, a comparison of experimental and theoretical results for

Ξ− polarization observables will be made to constrain the production model. There

are three variants on the cascade photoproduction model available for comparison, a

summary of the variants is given below:

1. Pure pseudoscalar coupling with intermediate hyperons up to the Λ(1890).

2. Pure pseudovector coupling with intermediate hyperons up to the Λ(1890).

3. Pure pseudovector coupling with intermediate hyperons up to the Σ(2030).

Polarization predictions for all three variants were compared with our results.

1.3.3 Motivation: Recent Analogous Lambda Results

Surprising experimental results have been reported by Bradford and Schumacher in

Ref. [15] regarding the measured Λ polarization in the reaction γp→ K+Λ. The spin

observables they measured, Cx and Cz, determined the polarization transfered from

the photon-beam, to the recoiling Λ in the x and z directions, respectively. Together,

Cx and Cz measure the full polarization transfer, and, when taken along with the

induced polarization (P ), they constitute a basis for complete characterization of the

Λ spin orientation. For an elaboration on observables Cx, Cz and P , see Chapter 3.

It was reported that a remarkably large probability of spin transfer was found for all

kaon angles and all beam energies for the experimental energy range 1.7 < W < 2.3

GeV2. The integrated results showed, when combined with previous measurements of

2W denotes the center-of-momentum (frame of reference with zero total momentum) energy in
the initial state, which is the amount of energy available to produce the final state particles.
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induced polarization P , that,

P̄Λ ≡
√
C2
x + P 2 + C2

z = 1.01±+0.01, (1.2)

which is consistent with unity to within high precision. Such findings show that

for production with a fully polarized photon-beam, whichever processes may be con-

tributing to production, the Λ would be produced with 100% polarization. Notably,

not a single preexisting model of the production process was in agreement with such

results. As many as six highly developed theoretical models were compared with the

data, all of them failed to describe the observations [16].

In Ref. [16], Schumacher explains his results with an ad-hoc hypothesis invoking vec-

tor meson dominance, which postulates the photon has a hadronic component, and

diquark considerations, which, roughly speaking, models baryons as being composed

of a quark bound with a spin-zero double quark. In his explanation, the incoming

photon spontaneously produces a φ (ss̄ quark pair), as shown in Fig. 1.7. The pro-

duced ss̄ pair separates and interacts with the proton, undergoing hadronization into

a K+ and Λ. In this picture, the polarization of the s quark is preserved after it is

precessed by a spin-orbit interaction. The ud quark pair within the Λ is the main

diquark component, being the only possible spin and isospin zero quark pair. Such

a scenario leaves the polarization of Λ dominated, presumably, from the polarization

of the s quark. One of the issues with Schumacher’s hypothesis however, is that it

contradicts the well known contribution of N∗ resonances to the production of Λ.

Anisovich pointed out in Ref. [17] that by invoking contributions from the N(1900)

resonance, a quantitative description of Λ data could be obtained through the con-

ventional isobar picture.
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Figure 1.7: An illustration of Schumacher’s hypothesis. Image source [16]

Although there is still some uncertainty regarding the production mechanism for the

Λ, great progress has been made as a result of the aforementioned spin observable

measurements. Collectively, cross section and polarization measurements [18, 15]

were necessary to identify the various mechanisms for Λ production, including the

identification of numerous intermediate excited nucleon (N∗) resonances. We seek to

make analogous measurements for the Ξ− to explore production and the contributing

S = −1 hyperon spectrum. We expect results for the cascade to differ greatly from

that of the Λ due to fundamentally differing production mechanisms and diquark

configurations.

1.3.4 Motivation: Vector Meson Dominance

[h] The total constituent quark wave function for the Ξ− is [19],

ψΞ− =
1√
18

[2(s ↑ d ↓ s ↑) + 2(s ↑ s ↑ d ↓) + 2(d ↓ s ↑ s ↑)− (d ↑ s ↓ s ↑)− (s ↑ d ↑ s ↓)

− (s ↓ d ↑ s ↑)− (s ↑ s ↓ d ↑)− (d ↑ s ↑ s ↓)− (s ↓ s ↑ d ↑)],

(1.3)
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while the wave function for the Λ is,

ψΛ =
1√
12

[(u ↑ d ↓ s ↑)− (u ↓ d ↑ s ↑)− (d ↑ u ↓ s ↑) + (d ↓ u ↑ s ↑) + (s ↑ u ↑ d ↓)

− (s ↑ u ↓ d ↑)− (s ↑ d ↑ u ↓) + (s ↑ d ↓ u ↑)− (d ↓ s ↑ u ↑) + (d ↑ s ↑ u ↓)

− (u ↓ s ↑ d ↑) + (u ↑ s ↑ d ↓)].

(1.4)

We see from Equation 1.4 that the constituent quark model predicts that the majority

of the lambda’s spin comes from the s-quark, since the u- and d-quarks are anti-

aligned with one another. We point out that in the aforementioned vector meson

dominance picture of lambda photoproduction, the diquark considerations need not

be invoked to explain its large total polarization, since either way, the s-quark is the

main contributer to the lambda’s spin.

The wave function for the cascade however, shown in 1.3, yields a more intricate

spin structure. With vector meson dominance, one of the two s-quarks within the

cascade has its origin from the photon, so one might expect the cascade to have

similar polarization features as the lambda, but with a diluted overall magnitude,

as can be inferred by comparing Figs. 1.8 and 1.9. The results of our polarization

measurements will be compared with qualitative expectations from the vector meson

dominance polarization mechanism and compared with previous results of the lambda.

As a side note, if diquark effects are manifest, a measurement of Ξ− polarization may

serve as a sensitive probe of it’s d-quark spin contribution. The cascade’s only possible

isospin-zero quark pair is the ss, where the spin-zero configuration dominates over

the spin-one configuration [20]. In this picture, the majority of cascade polarization

comes from the d-quark, which is likely inherited from the initial state proton target

(see Fig. 1.9). In this case, experiments with target polarization would be interesting.

18



For the present work, where the proton is unpolarized, we might expect a small total

cascade polarization, with little kinematic dependence, associated with strong diquark

correlations.

Figure 1.8: Cartoon depiction of lambda photoproduction through vector meson dom-
inance. In this picture, the polarization of the lambda comes from the strange quark,
which is produced through quantum fluctuations of the photon. Most of the photon
polarization transfers to the lambda in this picture.

Figure 1.9: Cartoon depiction of cascade photoproduction through vector meson
dominance. In this picture, the polarization of the cascade comes from the strange
quark, which is produced through quantum fluctuations of the photon. While the
strange quark from the photon may be fully polarized within the cascade, its effects
are diminished since it may only contribute a fraction to the total cascade spin. Thus,
only some of the photon polarization transfers to the cascade.
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1.3.5 Motivation: Universal Hyperon Polarization at High

Energies

[h] Polarization is a coherent phenomenon that depends on the interference of complex

amplitudes. In reactions with energies well above threshold, there are a large number

of available amplitudes, with different phases. Because of the presumed cacophony

from the addition of the various phases, it was expected that no polarization would

be observed for hyperons from reactions around 10 GeV above their threshold energy.

The 1976 discovery [21] at Fermilab of non-zero induced (or transverse) Λ polarization

in baryon-baryon collision at 300 GeV was highly unexpected. Since the discovery, a

considerable experimental effort has been underway to characterize the polarization of

all the hyperons. As it turns out, Λ,Σ0,Σ−,Σ+,Ξ0 and Ξ− are all produced polarized.

The most basic applications of perturbative Quantum Chromodynamics (pQCD),

which assume massless quarks, predicts no polarization at high energies. On the

other hand, recent developments in pQCD do in fact exhibit non-zero hyperon po-

larization, however the predictive power of such theories are limited. At present,

hyperon polarization is still mysterious and there is no model that can explain the

observations.

Although high energy cascade experiments have been extensively conducted, where

partonic effects dominate, no one has explored cascade polarization near threshold,

in the hadronic regime. The data in the present work provides a unique opportunity

to study cascade polarization in this unexplored region.
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1.3.6 Motivation: Connection Between Polarization Observ-

ables and Production Amplitudes

[H] Single pseudoscalar-meson photoproduction off nucleons is fully described by four

complex amplitudes. The bilinear combinations of these amplitudes enumerate a total

of 16 observables [22, 23]. As it turns out, of these 16 observables, seven are needed

to determine the amplitudes up to discrete ambiguities (and an overall phase), known

as a complete experiment. It is also known that two further measurements (totaling

nine) are sufficient to eliminate all ambiguities (up to an overall phase) [22]. The

set of observables necessary for an amplitude analysis has been shown to include the

differential cross-section, dσ
dt

, and three single-polarization observables; namely the

polarized photon-beam asymmetry, Σ, the target-polarization asymmetry, T , and the

induced baryon recoil polarization P . The twelve remaining unique quantities are

double polarization observables that characterize the reactions under different combi-

nations of beam, target, and baryon recoil polarization. The double polarization ob-

servables can be categorized into three groups of four, beam-recoil (BR), target-recoil

(TR) and beam-target (BT) observables. The remaining three measurements, which

are necessary and sufficient to uniquely determine the underlying complex amplitudes

up to discrete ambiguities, include any three of the double polarization observables,

so long as the measurements belong to more than one group. For the elimination of

discrete ambiguities, the measurement of two more double polarization observables

suffices provided that no four measurements come from the same group [22, 23, 24].

Similar requirements for complete experiments have been formulated in Ref. [25] for

the case of two pseudoscalar photoproduction off a nucleon. It was shown for double

meson production that one needs at least 15 observables to constitute a complete

experiment. Current theoretical efforts are underway with the intention of charac-
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terizing complete experiments with a further reduction of observables. For cascade

photoproduction, no polarization observables have been measured to date. The cur-

rent research, measuring three of the needed polarization observables, P,Cx and Cz, in

the energy range from 2.8 GeV < Eγ < 5.5 GeV. While the realization of a complete

measurement is still infeasible with current nuclear physics instrumentation, there is

much to be learned along the way, and polarization observables provide detailed infor-

mation on the interference of the production amplitudes. Many Λ and Σ resonances

have been observed and studied, but there are still large gaps to close in the world

database regarding the spectrum of possible hyperon states and their properties.

1.3.7 Proton Spin Crisis and Baryon Polarization

In the naive quark model, the nucleon consists of three bound, spin-half valence

quarks which gives rise to a rather simple spin structure: the one-half overall spin

of the nucleon should arise solely from the alignment of two valence quarks with the

remaining quark in an anti-aligned configuration. In this picture, non-contribution

from orbital angular momentum to the nucleon is assumed since its stability suggests

that it occupies the lowest possible energy state, hence having a total orbital angular

momentum of zero.

An experiment carried out in 1987 at the European Muon Collaboration (EMC) [26]

found that, contrary to widespread expectations from the naive quark model, the

valence quark spin contribution to the total spin of proton was 20 ± 20%, which

was not only far smaller than 100%, but consistent with 0% [26]. The mysterious

result coined the proton spin crisis or proton spin puzzle prompted an ongoing and

vigorous attempt within the nuclear and particle physics community to understand

the spin structure of the proton. Today, a quarter-century after the EMC results were

published, the proton spin puzzle is largely resolved, although still not in its entirety.
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Physicists realized that in order to decipher the spin structure of the nucleon, a

more complete quantum chromodynamical model must be considered with non-zero

orbital angular momentum. In this model, the nucleon’s spin comes from it being

made up three constitute quarks along with mediating spin-1 gluons in addition to

virtual quark anti-quark pairs that arise from quantum fluctuations. More exactly,

the postulated spin originating from four basic components is given as,

1

2
=

1

2
Σ +G+ Lq + Lg. (1.5)

Each term from left to right (on the right-hand-side) represents the spin component of

the quarks, gluons, followed by the angular momentum component of the quarks and

gluons. The quark spin component can be further decomposed into separate quark

contributions,

Σ = (∆u+ ∆d) + (∆ū+ ∆d̄) + (∆s+ ∆s̄) + ... (1.6)

where the unincluded remaining terms in the sum consist of spin components from

the heavier quarks, from which contributions should be negligible due to their large

masses and resulting sparsity in the nucleon.

Current world data, accumulated over a period of 27 years, suggests that the quark-

spin contribution term is no longer consistent with zero, having a value of, [3]

1

2
Σ ≈ 0.33± 0.05. (1.7)

The measured value of the quark-spin contribution reduces the nucleon’s proportion

of missing spin to be on the order of 66%. Recent experiments seem to indicate that

most of the quark spin contribution comes from valence quarks, and very little is from
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the quark sea [27]. Additionally, experiments have also shown that the gluon spin

term G, may account for up to 50% of the missing nucleon spin [27]. The remainder of

the nucleon’s missing spin is believed to lie predominantly in the finite orbital angular

momentum of the valence quarks.

Although significant experimental and theoretical progress has been made in under-

standing nucleon’s spin structure, the proton spin puzzle continues to be considered as

one of the most important unsolved problems in the field of physics. Some remaining

unanswered questions include:

• What are the underlying factors that determine the relative contributions to

the total spin of the nucleon?

• Why does the quark spin contribute so little?

• Does the missing proton spin arise due to effects from valence quarks, sea quarks

or gluons?

• Is it possible to separate the quark and gluon orbital angular momentum con-

tributions from experiments in a model-independent way?

Further questions can be asked relating the study of hyperons to the spin puzzle which

include,

• Do the heaver quarks, particularly strange quarks, contribute to the spin struc-

ture of the nucleon?

• Are the strange quarks themselves polarized within the nucleon?

• Are the spin structures of ground-state hyperons similar to what the naive quark

model suggests?

• Is the spin structure of ground-state hyperons different from that of the nucleon?
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• Can the individual valence up and down quark contributions be separated

through the photoproduction of hyperons off polarized a nucleon target?

Results of the present analysis when combined with similar future experiments in

CLAS12, involving large amounts of data and target polarization could shed light

on a number of the above questions. Target polarization measurements in particular

could help decipher the separate contributions of the up and down valence quarks in

the nucleon.
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Chapter 2

The g12 Experiment

The data analyzed in this work, collectively known as g12 (or E04-005), were col-

lected at Thomas Jefferson National Accelerator Facility (Jefferson Lab) using the

CEBAF Large Acceptance Spectrometer (CLAS). The g12 dataset is, at present, the

world’s largest for meson photoproduction in its energy range and provides a unique

opportunity to study the cascade. Physics events were generated in 2008 using a

circularly polarized photon beam incident on a 40-cm unpolarized liquid-hydrogen

target. The photon beam was produced through a bremsstrahlung process using

a 5.71 GeV electron beam provided by Jefferson Lab’s Continuous Electron Beam

Accelerator Facility (CEBAF). The main component of CLAS is a superconduct-

ing toroidal magnet coupled with multi-wire drift-chambers, which track the charged

particles emanating from the nuclear reactions of interest and enable momentum re-

construction. The other components of CLAS are mostly utilized to obtain particle

identification and timing information. Since the time of the g12 data collection, CE-

BAF has undergone an upgrade doubling the electron energy, enhancing or replacing

preexisting spectrometers, and adding a fourth spectrometer (GLUEX). Laboratory

conditions at the time of data collection will be described.

2.1 CEBAF Accelerator

CEBAF was built to provide a platform for scattering experiments to explore the rules

governing the interaction between quarks. The accelerator was engineered to provide

a high quality, continuous-wave electron beam with up to 80% polarization, energies

up to 6 GeV, and currents up to 200 µA. The design makes use of superconducting

niobium radio-frequency (SRF) cavities to provide the acceleration gradient. After
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construction, CEBAF was the world’s only accelerator to implement superconducting

niobium technology. Earlier accelerators used non-superconducting copper cavities,

which due to resistive heating, would have been economically impractical to power

under CEBAF’s quality specifications. A photograph of a cavity used at CEBAF is

shown in Fig. 2.1

Figure 2.1: A photograph of an SRF cavity made from superconducting niobium. As
electron clusters travel through the cavity, they experience a continuous acceleration
due to a standing electromagnetic wave. The energy resonances can be tuned by
mechanically adjusting the cavity lengths. Image source [28].

The large-scale design of CEBAF comprises two linear accelerators (linacs) connected

by arcs at either far end, reminiscent of a racetrack, as shown in Figs. 2.2 and 2.3.

Electrons are first produced by a laser incident on a photo-cathode and are injected

into the linac. The cavity geometry of each linac results in electron bunches approx-

imately 90 µm in length, separated by 667 picoseconds. After each pass through a

linac, the electrons enter the recirculation arcs made up of bending magnets. The

track that the electron enters within the recirculation arc is determined by it’s mo-

mentum. The electron bunches increase in energy by 1200 MeV after every lap around

the track, completing a full lap up to five times before being delivered to experimental

halls. Having a final energy of up to 6 GeV, the beam bunches are injected sequen-

tially into the halls by the beam switchyard, with a separation between bunches of 2

ns [29, 30, 31].
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Figure 2.2: The large-scale design of CEBAF and it’s components. Image Source [28].

Figure 2.3: An aerial photograph of CEBAF. Image Source [31].
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2.2 Hall B Photon Tagger

Hall B has a Bremsstrahlung radiator and a photon tagging system know as the

“tagger”, which is shown in Fig 2.4. The tagger enables scattering experiments using a

real photon beam in addition to the electron beam provided by CEBAF. The radiator

typically consists of a thin gold target in the path of the electron beam. A dipole

magnet produces a 1.75 T uniform field that bends scattered electrons where they

are detected by a two-layer set of scintillators. [30, 31, 32]. The position of each

scattered electron in is determined by the first layer of scintillators while the timing

is measured by the second layer.

The Bremsstrahlung process takes place due to the incident electrons decelerating in

the coulomb field of radiator’s nuclei, producing a photon in accordance with energy-

momentum conservation. The mass of gold nuclei are much greater than the scattered

electron mass, hence a negligible amount of momentum is transferred. Thus one can

write to high precision,

Eγ = Ei
e − Ef

e , (2.1)

where Eγ is the energy of the bremsstrahlung photon, Ei
e is the energy of the incident

electron and Ef
e is the energy of the scattered electron, which is measured by the tag-

gers’s magnetic spectrometer. The scattered electron position along with knowledge

of the magnetic field gives Ef
e , while the timing is used to identify which electron

bunch created the photon. Tagger timing along with times from particle tracks in

CLAS give the time of creation for the photon responsible for the physics event [32].

2.3 Hydrogen Target

The g12 experiment used an unpolarized cylindrical target that was 40 cm in length

and 4 cm in radius made of liquid hydrogen (H2) and housed in Kapton. The H2

target cell is shown in Figure 2.5
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Figure 2.4: A profile of the photon tagger. Incident electrons are scattered in the
radiator and then steered by a dipole magnet. Energy and timing information of the
scattered electrons are measured by the scintillator array. Image Source [28].

The target was placed 90 cm upstream of CLAS’s geometrical center. The upstream

placement had the advantage that it increased the efficiency of events at small de-

flection angles by reducing the angular size of the forward hole in the detector. The

main drawback to the upstream placement of the target’s center was that it caused

the drift chamber resolution to suffer as a result of the particle tracks passing on more

oblique angles relative to the detector planes [29, 30, 31, 33].

Figure 2.5: A drawing of the target. Image Source [28].
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2.4 The CLAS spectrometer

The CLAS detector, which is shown in Figs. 2.6 and 2.7, (acronym for the CEBAF

Large Acceptance Spectrometer) consists of six sectors segmented in φ (azimuthal

to the beamline). Each sector comprises a four scintillator start counter (ST), three

layers of drift chambers (DC), a gas Cherenkov counter (CC), a series of scintillat-

ing time-of-flight (TOF) paddles and finally an electromagnetic calorimeter (EC). A

magnetic field produced in the φ direction by a toroidal magnet located in the middle

DC layer, bends charged particles toward or away from the beamline (polar angle θ).

The magnetic field being solely in the φ direction forces the trajectory of each charged

particle to lay in a plane, allowing for a simplified reconstruction algorithm. Whether

inward or outward bending of trajectory takes place depends on the polarity of the

toroidal magnet and sign of the particle charge [29, 30, 31, 33].

Figure 2.6: Drawing of CLAS nested within Hall B. The electron beam enters the
tagger on the right and produces a photon beam. The photon beam continues through
the target near the center of CLAS where physics events take place. The photons that
do not interact with the target pass through the detector to the main beam dump on
the left. Image Source [30]
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Figure 2.7: Schematic of the CLAS. CLAS is approximately 4 meters in radius. Image
Source [28].

2.5 Start Counter

The start counter (ST) shown in Fig. 2.8 surrounds the target is the inner-most

detector system in CLAS, and is only used in photon-beam experiments. The purpose

of the ST is to collect timing information for the outgoing particles emanating from

the target. The basic design is a hexagonal array of 24 scintillator paddles. For

coverage at smaller angles in θ. The downstream ends of the scintillators are bent

inwards converging into a six-sided cone [29].

The start counter provides timing measurements close to the event vertex. It was

used in the trigger logic in coincidence with the tagger readout and the time-of-

flight readout. Additionally, the start counter helps select the appropriate RF-beam-

bucket, which leads to precise measurements of the photon-time, and hence vertex-

time. Events with a large number of tracks give better timing estimates since they

provide repeated measurements. The hexagonal segmentation of the ST provides

flexibility for trigger logic as individual segments can be excluded [29].
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Figure 2.8: A drawing of the CLAS start counter. Image source [28]

2.6 Drift Chambers

Each of the six sectors of CLAS contain three large multi-layer drift chambers for

tracking charged particles emanating from the event vertex within the target [34].

The geometry of the detector, as shown in Fig. 2.9, provides good tracking resolution,

efficiency, and large acceptance [34]. The entire detector contains 35,148 individually

instrumented hexagonal drift cells [34]. Fig. 2.10 shows the toroidal magnetic field in

relation to the regions of the DC [29].

All regions of the DC contain two superlayers as shown in Fig. 2.11 which comprise

six layers strung with 20 µm diameter gold-plated tungsten sense wires and 140 µm

diameter gold-plated aluminum field wires [34]. The field wires are arranged to form

a hexagon drift cell with a single sense wire in the middle as shown in Fig. 2.12.

The sense wires receive a current when a charged particle of sufficient energy passes

through the DC, ionizing a non-flammable 90% argon 10% carbon-dioxide gas mix-

ture. The ionized electrons are accelerated towards their nearest sense wires by the

electric gradient, which is produced by the surrounding field wires [29]. Further details

on the CLAS drift chamber can be found in Refs. [29], [34] and [35].
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Figure 2.9: A profile drawing of CLAS detecting a two-track event coming from the
target. Image Source [31].

Figure 2.10: Drawing of a cross-sectional view of the DC regions and the toroidal
magnetic field at half current (1930 A). Image Source [30]
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Figure 2.11: Diagram of the sectors, regions and super layers of the DC. Image Source
[36]

Figure 2.12: Drawing of a track going through the five layers of the DC. Image Source
[28]
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2.7 Superconducting Toroidal Magnet

The toroidal magnetic field in CLAS is produced by six kidney-shaped superconduct-

ing coils [29] in between each of the six sectors of the drift-chamber (DC), which can

be seen in Fig. 2.7. Each coil consists of four layers of 54 windings of superconducting

niobium (NbTi/Cu), stabilized by aluminum [29].

During the g12 production runs, the magnet operated at a current of 1930A (corre-

sponding to half capacity) with a half-maximum field of 1.75 T [18] and a polarity

such that negatively charged particles are bent inward towards the beam line. The

benefit of running at half field-strength was that it increased the efficiency of detect-

ing negatively-charged particles. Higher field strength tends to bend the inward-going

negative-tracks more closely to the “hole” in the forward region where they cannot be

detected. The main drawback of the half field-strength operation is that it decreases

momentum resolution [31, 29].

Figure 2.13: Photo of the torus magnet during construction. Image Source [28]

2.8 Time-of-Flight Detectors

Accurate time-of-flight information is essential to particle identification. Along with

the vertex time, time-of-flight provides a calculation of velocity for each particle.

The velocity, in conjunction with momentum from the drift chambers, yields particle
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mass, which is used to identify the particle. The CLAS time-of-flight (TOF) detector

is a scintillating shell surrounding the Cherenkov counter region about 5 m from the

center of the target. Each of the six identical sectors are made up of 57 scintillator

paddles of 5.08 cm thickness and various lengths. Each paddle has a PMT attached

to both ends. The detector system with nearly 100% efficiency for minimum ionizing

particles provides timing measurements with a resolution between 150-200 ps. Timing

information from the TOF is integrated with the start counter in the trigger logic [29,

37].

The 57 scintillator paddles are bundled into three groups in lab-frame polar angle (θ):

• 8.6◦ < θ < 49.9◦: scintillator 1-23: width = 15 cm

• 49.9◦ < θ < 131.4◦: scintillator 24-53: width = 22 cm

• 134.2◦ < θ < 141.0◦: scintillator 54-57: width = 15 cm

Further information on the time of flight detectors can be found in Ref. [37].

2.9 Cherenkov Counters

The CLAS Cherenkov counter (CC), shown in Fig. 2.14 surrounds the region-three

drift chamber and is used exclusively in particle identification for lepton-pion discrim-

ination. The CC is capable of detecting leptons within 8◦ < θ < 45◦. As with all

CLAS subsystems, the CC is divided into six identical sectors in φ [29].

Each fixture is filled with a perfluorobutane (C4F10) gas medium with an index of

refraction of 1.00153. The velocity of any hadron track with energy less than 2.5 GeV

is less than the speed of light in perfluorobutane and thus will pass through the CC

without emitting Cherenkov radiation. Leptons, being lighter however, will mostly

be traveling above the threshold velocity and thus will emit light and be detected,

which provides a means to distinguish between leptons and pion.
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Figure 2.14: A diagram showing the CC response to a single lepton track entering
One of the six segments. Lepton tracks emit Cerenkov radiation as they pass through
the perfluorobutane (n = 1.00153) gas medium. The Cerenkov light first travels to
and is focused by the elliptical outer-surface mirror onto the hyperbolic inner-surface
mirror where it is finally directed into one of the photomultiplier tubes at either end
of the fixture. Image Source [28]

The Cherenkov detector was not used in the present work. More information on the

design and construction of the CC can be found in Ref. [29] and [38].

2.10 Electromagnetic Calorimeters

In the very outer layer of CLAS lies the electromagnetic calorimeter (EC) as shown

in Fig 2.15. The EC is a 102 ton, six-sector, triangular subsystem composed of 39

alternating layers of lead sheets and 36, 10 mm-wide scintillating bars. Each layer is

sequentially rotated by 120◦ repeating after three layers. The naming scheme for the

layers is u-v-w (see Fig. 2.15). The convention provides the ability to make position

measurements with a resolution on the order of the scintillator thickness. Since the

EC is designed to absorb all of the kinetic energy associated with each particle track,

the readout can be related to the total energy of the track. The utility of the EC

is multifold: In electron beam experiments, the EC is useful to detect scattered

electrons originating from the beam. The EC also provides reliable reconstruction

of high energy neutral particles such as photons and neutrons. Furthermore, due

to the EC’s fast response time, it is useful as input for the trigger logic, which was
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it’s primary use in g12 [30, 33]. More information on the design, construction, and

performance of the EC can be found in Ref. [39].

Figure 2.15: A diagram of one dissected sector of the EC with the three u-v-w layering
convention illustrated. Image Source [28].

2.11 Trigger and Data Acquisition System

The data acquisition (DAQ) used by CLAS is a multi-layer suite of electronics for

recording signals in real time. The experimental trigger is a user-defined logical set of

coupled subsystem signal-criteria, used to distinguish desired events from background.

The primary trigger required a 100 ns coincidence between the tagger, ST and TOF,

and also requiring two-track events have high incident photon energy [30, 31, 33].

Fig. 2.16 shows an example of the basic trigger logic used in data collection for a

single sector. A detailed discussion of the trigger configurations used in g12 is found

in Ref. [30].

The g12 experiment recorded events faster than any previous CLAS experiment, with

a trigger rate of 8 KHz. As a consequence of the high trigger rate, g12 amounted to

the world’s largest dataset for the photoproduction of mesons in this energy range;

26B events were recorded, totaling 121 TB of data and an experimental luminosity

of 68 pb−1 [30, 31, 33].
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Signals that pass the trigger are recorded in an event-based data format where an event

occupies a set time interval. At the end of each event’s time interval, the signals from

every CLAS subsystem are read out and recorded. After going through a type of

high-pass voltage-filter known as a discriminator the subsystem signals are digitized

by two electronic components: Analog-to-digital converters (ADC), which report the

time integral of the signal voltage and time-to-digital converters (TDC), which report

the time at which a signal arrives. The digitized data stream is then integrated and

written to disk in the event-based data format while being monitored by the DAQ

system before being written to a tape-silo for long-term storage [33, 30, 31].

Figure 2.16: Illustrated are three distinct coincidence trigger criteria. ECPinner and
ECPtotal represent a photon signal above threshold for the inner layer of the EC and
entire EC respectively. ECEinner and ECEtotal represent an electron signal above
threshold for the inner layer of the EC and entire EC respectively. ST0,1,2,3 are the
four TDC signals for the start counter. Image Source [30]

2.12 Event Reconstruction

The toroidal magnetic field geometry allows event reconstruction to be performed in

each sector independently since, in general, the particle tracks will not transverse from

one sector to the other. Reconstruction is done via hit-based tracking and time-based

tracking. Hit-based tracking within the DC is done by finding tracks that produce
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aligned clusters of superlayer hits within six layers of the DC in any given region.

The segments that align to a physically permissible curve in all three layers are then

selected to construct a full track [30, 31, 33]. The curvature of this track gives the

magnitude of it’s momentum by,

p =
l2qB

8s
, (2.2)

where p is the track momentum, l is the chord length, q is the charge of the particle, B

is the field strength and s is the sagitta length. The chord and sagitta are diagrammed

in Fig. 2.17. To further eliminate reconstructed tracks that are not associated with

a true particle track, each track is extrapolated back to the TOF detector where

only those that have an aligned hit are selected. The time-based tracking refines the

momentum and track-path resolution; it limits DC hits, according to its drift time,

to those falling within a specified time window [30, 33]. All good tracks are further

Figure 2.17: The path of a charged particle going through a magnetic field. When the
radius of curvature is large when compared with the sagitta, the radius of curvature
can be approximated by r ≈ l2

2s
where l is the chord length and s is the sagitta length.

Image source [30]

extrapolated to the remaining components of CLAS, if hits show up in all components

within the appropriate volume, the track is kept.

In the final reconstruction, a known hadronic state is assigned to the track based
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on its charge and mass calculation. The measurement of the mass is made through

momentum and timing measurements,

m2 =
p2

β2
(1− β2) (2.3)

with,

β =
t′ − t
cl

. (2.4)

Above, p is the measured momentum, t′ is the time of the TOF hit, t is the calculated

vertex time and l is the track length from the vertex to the hit TOF paddle. The

initial particle identification (PID) is assigned according to the following threshold

criteria for the measured mass (m),

PID =



π m < 0.3 GeV

K 0.35 < m < 0.65 GeV

p 0.8 < m < 1.2 GeV

d 1.5 < m < 2.2 GeV

(2.5)

Tracks with calculated masses outside of the above ranges are not identified[30, 31, 33].

2.13 Cascade Data

The g12 data had a total luminosity of 68 pb−1. The g12 dataset, is at present the

world’s largest for photoproduction near its energy range and provides a first time

opportunity to study the polarization of the Ξ− in photoproduction. By detecting

K+K+π−(Λ) in the final state, the full kinematics for the γp → K+K+Ξ− reaction

were reconstructed. After all event selection criteria, we detected a nearly background

free signal of approximately 5000 events in which the cascade undergoes the weak

decay Ξ− → Λπ−, a globally unprecedented yield. A higher yield for cascade events

is possible through the exclusion of pion detection requirements, however the angular
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distribution of one of the cascade decay products is necessary to infer its polarization.

Although the detection of the pion results in a decreased signal yield because of the

decrease in overall efficiency, the pion detection nearly eliminates the background by

providing additional kinematic requirements. Extensive details on the method of data

analysis are provided in the ensuing chapters.

2.13.1 Reconstructed Cascade and Lambda Tracks

The four-vectors of the missing Λ and intermediate Ξ− are reconstructed through

energy and momentum conservation. Momentum of the Ξ− is identified from the

missing momentum of the K+K+ system while the momentum of the Λ is identified

with the missing momentum of the K+K+π− system,

pΞ− = pmissKK, (2.6)

and

pΛ = pmissKKπ. (2.7)

The cascade four momentum is found by,

pΞ− =



√
m2

Ξ− + p2
Ξ−

px

py

pz


, (2.8)
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where mΞ− is the known mass of the Ξ−, pΞ− represents it’s three momentum and

px, py, pz, the Cartesian components thereof. Similarly for the Λ,

pΛ =



√
m2

Λ + p2
Λ

px

py

pz


. (2.9)

Above, mΞ− = 1.32131 ± 0.00013 GeV is the known Ξ− mass, and similarly mΛ =

1.115683 ± 0.000006 GeV [3]. With knowledge of each four-vector for a sample of

γp→ K+K+π−(Λ) events, the polarization of the Ξ− can be determined.
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Chapter 3

Formalism and Methodological Framework

The present work seeks to make a first-time determination of the recoil-polarization

P , along with the double polarization observables Cx and Cz for the Ξ− hyperon in

the γp → K+K+Ξ− reaction 1. Loosely speaking, Cx and Cz measure the degree of

polarization transfer from the circularly polarized photon-beam to the Ξ− while P is

a measure of it’s induced polarization.

The weak decay of the cascade, as depicted in Fig. 3.1, provides the physical basis

for the methods used in extracting our results, which are detailed in the remainder

of the current chapter.

Figure 3.1: The γp → K+K+Ξ− reaction through an arbitrary mechanism with the
subsequent Ξ− → Λπ− weak decay.

3.1 Spin Observables and the Coordinate System

As a consequence of the fact that cascade production occurs via electromagnetic and

strong interactions, parity is conserved in the transition from the initial γp state to the

final K+K+Ξ− state2. The parity conserving nature of cascade photoproduction has

1For double meson production, P , Cx and Cz are often written as Py, Bzx and Bzz respectively.

2Note that final state may refer to either K+K+Ξ− or K+K+π−(Λ) depending on the context.
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an important implication; induced polarization is strictly prohibited along vectorial-

axes while transfered polarization is prohibited along pseudo-vectorial-axes. The last

point follows from the respective odd and even parity of vectors and pseudo-vectors

and the fact that polarization observables take on the parity of their quantization

axes. We will choose our coordinates in a way where it is natural to identify the

induced and transfered polarizations separately.

For the sake of clarity in defining our coordinates, the reaction may be written in

terms of its four-vectors, chosen in the center-of-momentum frame,

γ(q1) + p(q2)→ K+(k1) +K+(k2) + Ξ−(p). (3.1)

Above, q1, q2, k1, k2, p represent the four-momenta of each respective particle while

their associated three-momenta will be denoted by, ~q1, ~q2, ~k1, ~k2, ~p. For convenience,

we will call the four-vector representing our two meson system k ≡ k1 + k2. The

reaction or production plane contains the proton and the recoiling Ξ− as shown in

Fig. 3.2.

The production plane is defined by the unit vector,

ŷ ≡ ~q2 × ~p
| ~q2 × ~p |

, (3.2)

or, the more conventional equivalent,

ŷ ≡ ~q1 × ~k
| ~q1 × ~k |

, (3.3)

which is the cross production of the beam and two-kaon momentum. The ẑ axis is
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Figure 3.2: The production plane (left plane) is shown; defined in the center-of-
momentum, it contains the incoming photon and recoiling cascade. The two kaons in
general lie above and below the production plane. The so called decay plane (right
plane), is defined in the rest-frame of the cascade and contains its decay products
(pion and lambda).

defined to be along the photon momentum,

ẑ ≡ ~q1

| ~q1 |
, (3.4)

while x̂ is defined to give a right-handed coordinate system,

x̂ ≡ ŷ × ẑ. (3.5)

Note that in the above definition of coordinates, x̂ and ẑ are vectors while ŷ is a

pseudo-vector. As mentioned, pseudo-vectors remain invariant under parity transfor-

mations P . The beam and two-meson momenta have negative parity,

Pq1 = −q1

Pk = −k.
(3.6)
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Thus referring to the above equation and the coordinate definitions we find,

Px̂ = x̂

P ŷ = −ŷ

P ẑ = ẑ

(3.7)

The respective parity of each coordinate implies induced cascade polarization is con-

strained along the pseudovector ŷ, normal to the production plane. Similarly, polar-

ization transfer to the hyperon is constrained within the production plane, along the

vectors x̂ and ẑ. Our polarization results will be expressed in terms of the center-of-

momentum coordinate system.

Because of differences in the literature regarding polarization observables, it is im-

portant to be clear regarding one’s definitions so that meaningful comparisons can be

drawn. We follow the convention used by K. Nakayama in [40]. The spin observables,

expressed in terms of the reaction’s differential cross sections (dσu
dΩ

) are

dσu
dΩ

P ≡ dσu
dΩ

Py =
1

6
Tr[MM†~σ · ŷ], (3.8)

dσu
dΩ

Cx ≡
dσu
dΩ

Bzx =
1

6
Tr[M~σ · n̂zM†~σ · x̂], (3.9)

dσu
dΩ

Cz ≡
dσu
dΩ

Bzz =
1

6
Tr[M~σ · n̂zM†~σ · ẑ], (3.10)

where M represents the amplitude for our reaction and σx,y,z are the usual Pauli

spin-matrices, σx =

0 1

1 0

 , σy =

0 −i

i 0

, σz =

1 0

0 −1

. It follows that the
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spin observables are expressed as,

P =
dσ
dΩ

(+)− dσ
dΩ

(−)
dσ
dΩ

(+) + dσ
dΩ

(−)
, (3.11)

where ± indicates parallel or anti-parallel spin of the recoil Ξ− relative to the ŷ-axis.

The beam-recoil asymmetries Ci (i = x, z) are similarly expressed,

Ci =
[ dσ
dΩ

(+,+) + dσ
dΩ

(−,−)]− [ dσ
dΩ

(+,−) + dσ
dΩ

(−,+)]

[ dσ
dΩ

(+,+) + dσ
dΩ

(−,−)] + [ dσ
dΩ

(+,−) + dσ
dΩ

(−,+)]
(3.12)

where (±,±) denotes the (positive/negative) photon helicity and the (positive/negative)

helicity of the recoil Ξ− across the î-axis respectively.

3.2 Connection Between Spin Observables and Polarization

The spin-dependent cross section for the γp→ K+K+Ξ− reaction can be written [15,

16] in terms of the polarization observables as,

ρΞ
dσ

dΩ
=
dσ

dΩ
|unpol{1 + σyP + P�(Cxσx + Czσz)}. (3.13)

P� ∈ [−1, 1] denotes the degree of circular photon-beam polarization, σx,y,z are the

Pauli spin-matrices and ρΞ is two times the density matrix for an ensemble of Ξ

hyperons given explicitly as

ρΞ = (1 + ~σ · ~PΞ). (3.14)

The Ξ− recoil polarization and spin observables can be related by equating the expec-

tation value of the Pauli-spin operators acting on the density matrix, i.e. the trace
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~PΞ = Tr(ρΞ~σ) [15, 16] leading to,

PΞx = P�Cx,

PΞy = P,

PΞz = P�Cz.

(3.15)

Thus, the induced or ŷ-component of hyperon polarization PΞy is equivalent to the

spin observable P . The transfered, or x̂- and ẑ-components of the hyperon polariza-

tion are equal to Cx and Cz multiplied by the photon-beam polarization P�.

3.3 Self Analyzing Decay

The connection between the hyperon recoil polarization and the spin observables in

Equation 3.15 indicates that knowledge of the beam polarization P�, along with a

measurement of ~PΞ, yields Cx, P and Cz.

As previously mentioned, there is some confusion in the literature regarding the sign

convention for the polarization observables. Part of the confusion involves instances

of incorrect quotations for decay angular distributions of hyperons. Consequentially

we found it important to explicitly define what is being measured, thus we provide a

derivation of the decay angular distribution of the Ξ−.

The Ξ− recoil-polarization ( ~PΞ) can be measured by exploiting the self analyzing

nature of it’s decay Ξ− → π−Λ. The relationship between the angular distribution of

the decay products and the polarization can most easily be seen by first considering

a single Ξ− prepared in the spin-up state across an arbitrary î-axis. Consider our

initial spin-half particle (Ξ−) prepared at rest, subsequently decaying to a final state

consisting of a pseudo-scalar (π−) and a spin-half (Λ) particle. By conservation of

total angular momentum, the final state may only have orbital angular momentum

l = 0 or l = 1. For the l = 0 (s-wave) final state, the spin of the Λ must be spin up
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(X+) and the contribution to its full angular wave function can be written as,

Ψs = asX
+Y00 (3.16)

where as is the relative amplitude for the s-wave. For the l = 1 (p-wave) state, the

spin of the Λ may be up (X+) or down (X−). The p-wave contribution to the total

wave function can be written as,

Ψp = ap(X
+Y10C

1
2

1 1
2

1
2

0 1
2

+X−Y11C
1
2

1 1
2

−1
2

1 1
2

), (3.17)

where ap is the relative amplitude for the p-wave, and the C variables are the ap-

propriate Clebsch-Gordan coefficients. The total wave function is then the sum of

contributions from s and p waves.

Ψ↑ = Ψs + Ψp = asX
+Y00 + ap(X

+Y10C
1
2

1 1
2

1
2

0 1
2

+X−Y11C
1
2

1 1
2

−1
2

1 1
2

), (3.18)

or,

Ψ↑ = X+(apY10C
1
2

1 1
2

1
2

0 1
2

+ asY00) +X−apY11C
1
2

1 1
2

−1
2

1 1
2

. (3.19)

The Clebsch-Gordan coefficients and the spherical harmonic functions are given by,

C
1
2

1 1
2

1
2

0 1
2

= −
√

1/3, C
1
2

1 1
2

−1
2

1 1
2

= −
√

2/3, (3.20)

Y00 = 1, Y10 =
√

3 cos θ, Y11 = −
√

3/2eiφ sin θ. (3.21)

We may write,

Ψ↑ = X+(−ap cos θ + as) +X−ape
iφ sin θ. (3.22)
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By orthonormality of the spin wave functions we have,

Ψ2
↑ = |as|2 + |ap|2 + (a∗pas + apa

∗
s) cos θ, (3.23)

or,

Ψ2
↑ = |as|2 + |ap|2 + 2Re(a∗sap) cos θ. (3.24)

By letting,

α =
2Re(a∗sap)

|as|2 + |ap|2
, (3.25)

where α is known as the analyzing power or decay asymmetry with value of −0.458±

0.012 [3], we finally arrive at, after normalization,

|Ψ↑(θ)|2 =
1

2
(1 + α cos θ). (3.26)

One can immediately write the final state wave function corresponding to the case

where the initial Ξ− is prepared in the spin down state by rotating θ by 180◦,

|Ψ↓(θ)|2 =
1

2
(1− α cos θ). (3.27)

For an ensemble of N cascades with n↑ prepared with the spin-up state and n↓ pre-

pared in the spin-down state, the total angular distribution of the decay-lambda is

given by the weighted sum,

n(θ) = n↑|Ψ↑(θ)|2 + n↓|Ψ↓(θ)|2. (3.28)

By identifying the hyperon recoil-polarization (PΞn̂) across the n̂-axis as,

PΞn̂ =
n↑ − n↓
n↑ + n↓

, (3.29)

52



and making explicit that θ = θΛn, we arrive at,

n(θΛn) =
N

2
(1 + PΞn̂α cos θΛn̂). (3.30)

Equation 3.30 describes the polar-angular distribution of the Λ off the n̂-axis in the

Ξ− rest frame and it’s relation to the Ξ− polarization. In order to obtain a similar

distribution for the pion, one should recognize that in the Ξ− rest frame, the pion

and the Λ are produced back-to-back. This equates to a 180◦ rotation giving,

n(θπn) =
N

2
(1− PΞnα cos θπn). (3.31)

The distribution in terms of the negatively charged pion as opposed to the neutral

lambda is more convenient from an experimental stand point since it is generally more

easy to detect charged particles. What has been shown is that from the rest frame of

the cascade, it’s decay angular distribution measured against the previously defined

center-of-momentum coordinate-system yields its polarization.

3.4 Calculation of P

The equivalence of the recoil polarization’s y-component, PΞy, and the spin-observable

P , along with Equation 3.31, allows for a direct measurement of P . This can be done

multiple ways, one by fitting the acceptance corrected number of events as a function

of cos θŷπ to a first-degree polynomial,

y = p0 + p1 cos θŷπ. (3.32)

The fitting parameters (p0, p1) relate to the recoil asymmetry (P ) by,

p1 =
−NPα

2
(3.33)
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or,

P =
−p1

αp0

. (3.34)

The above method requires extensive Monte Carlo simulation, which was carried out

to correct for acceptance effects of the detector (see Chapter 5).

Similar to the first mentioned method of measuring P , a relation between the Ξ− po-

larization and the forward-backward-asymmetry (Ay) of the pion angular distribution

can be derived. The forward-backward asymmetry is defined as,

Ay ≡
Ny+ −Ny−

Ny+ +Ny−
, (3.35)

where Ny+ and Ny− represent the number of events with cos θπ as positive and neg-

ative respectively. The relation between induced polarization P and Ay can be seen

by considering,

Ny− =

0∫
−1

n(θπ) d cos θπ =
N

2
(1 +

αP

2
) (3.36)

and

Ny+ =

1∫
0

n(θπ) d cos θπ =
N

2
(1− αP

2
). (3.37)

Thus the asymmetry can be expressed as,

P =
−2Ay
α

. (3.38)

The advantage of using a forward-backward-asymmetry method for calculating P

is that, as will be demonstrated with a Monte Caro simulation in Chapter 7, the

detector acceptance mostly cancels. The cancellation follows from the polarization

axis ŷ pointing isotropically in the lab-frame-defined azimuthal angle φlab and the

geometry of CLAS.
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The statistical uncertainty in the asymmetry measurement of P is related to the

Poissonian uncertainty in Ny+ and Ny− , where for typographical simplicity we mo-

mentarily denote as N+ and N− respectively. Taking the partial derivative,

∂A

∂N±
=

±2N∓
(N+ +N−)2

, (3.39)

we find total statistical uncertainty, through quadrature, is given as,

δAy =
2

(N+ +N−)2

√
N2
−δ

2
N+

+N2
+δ

2
N−
, (3.40)

or,

δAy =
2

(N+ +N−)2

√
N2
−N+ +N2

+N−. (3.41)

3.5 Calculation of Double Polarization Observables Cx and Cz

The double polarization observables Ci (i = x, y) characterize the transfered pho-

ton helicity to the Ξ− in the x- and z-directions (represented as PΞx and PΞz).

An important experimental aspect is that the photon-beam helicity P� was flipped

(P� → −P�) at a rate of 30 Hz. Assuming equal photon intensities for positive and

negative helicity states, there is a net beam polarization of P̄� = 0.

There are two ways to measure the transfered polarization. One way is to bin in

forward and backward photon helicity bins and fit the acceptance-corrected pion

distributions, similarly to how P was measured. However, the need for helicity binning

in the mentioned method increases the statistical uncertainty, approximately by a

factor of
√

2. Furthermore, the acceptance (ε(θπŷ )) as a function of pion angle with

ŷ is much more well behaved than with x̂ and ẑ: while ε(θπŷ ) is even about θπŷ = 0,

relatively flat and non-zero for all angles, ε(θπx̂) and ε(θπẑ ) are highly asymmetric,

non-zero for only a small subset of angles, and contain regions of high gradients. In
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fact, measurements of Cx and Cz based on fitting acceptance-corrected pion angular

distributions were attempted and proved to be reliable only in the small sub range of

pion angles where the acceptance is “well behaved”.

The most straightforward and reliable way to extract Cx and Cz employs the photon-

helicity asymmetry,

A =
N+ −N−

N+ +N−
, (3.42)

where N+ and N− are the number of events associated with positive and negative

photon-beam helicity states respectively. The form of asymmetry as a function of

pion angle can be seen by associating N± in Equation 3.42 with PΞi = ±|P�|Ci in

Equation 3.31 yielding,

A(cos θîπ) = −|P�|αCi cos(θîπ) (3.43)

Equation 3.43 states that the slope of asymmetry with respect to cos(θîπ) is directly

proportional to the transfer polarization observable Ci. Ci is thus obtained by deter-

mining the slope of a two-parameter linear fit to A(cos θîπ) in each relevant kinematic

bin. The photon-helicity asymmetry method has the benefit that to first approxima-

tion, the detector acceptance and various other systematic effects which do not have

a photon-helicity dependence cancel.

Monte Caro simulations matching the data showed that the non-cancellation of ac-

ceptance had a larger effect for the photon-helicity asymmetry than for the forward-

backward asymmetry used to calculate P . In fact, acceptance effects turn out to be

the largest source of systematic error for the measurement of Cx and Cz. For a more

detailed discussion on the effect of detector acceptance see Section 3.6 or Chapter 7.

Note that if the photon-beam intensity was not equal for positive and negative helicity

phases, there would be a non-zero net beam-polarization. Since this quantity is not
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covariant with the pion angle, it does not effect the slope of asymmetry in Equation

3.42, and therefore does not affect the measured values of Ci. Similarly, the reaction’s

intrinsic beam asymmetry Σ, also being independent of pion angle will not affect the

measured values of Ci.

3.6 Acceptance Independence of Cx and Cz

To examine the extent to which the acceptance cancels in the photon-helicity asym-

metry, consider,

A =
N+ −N−

N+ +N−
=

n+

ε+
− n−

ε−

n+

ε+
+ n−

ε−

(3.44)

If ε+ 6= ε−, acceptance does not cancel in the asymmetry. Let the phase-space distri-

bution of K+
1 , K

+
2 , π

− be represented by the random variables Y1, Y2, X respectively.

We assume the total acceptance for detecting the final state K+K+π− can be written

as the product of the acceptance associated with each final state particle.

ε = Cε(Y1)ε(Y2)ε(X), (3.45)

where C is an overall factor representing all other acceptance effects that are not

helicity dependent. Strictly speaking, the incoming photon’s helicity does not change

the form of each acceptance function, it rather changes the underlying distributions

Y1, Y2 and X. Let the distributions associated with positive and negative helicity be

Y ±1 , Y
±

2 , X
±. The total acceptance for positive and negative photon helicity (ε±) is

given by

ε± = Cε(Y ±1 )ε(Y ±2 )ε(X±) (3.46)

Consider that all dominant underlying mechanisms in the γp → K+K+Ξ− reaction

has the kaons coming from parity-conserving strong or electromagnetic processes. It

follows that all the kinematic distributions for both kaons are independent of the

photon-beam helicity. The only helicity dependent parts of the reaction are those
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following a weak decay, which strictly is limited to the decay of ground-state hyperons.

The two ground state hyperon decays in the reaction are Ξ− → Λπ− and Λ → pπ−.

Only the Ξ− decay contributes to the acceptance, since the signal is mostly free of

background from the Λ decay. Furthermore the acceptance can only be dependent

on the projection of the π− angular distribution on the x̂- and ẑ- axis since the

polarization cannot be transfered to the Ξ− in the y-axis direction. Thus,

ε± = Cε(X±), (3.47)

where the non-helicity-dependent factors of the acceptance have been absorbed in C.

Expanding X±,

X± = {x±, y, z±}, (3.48)

where x, y, z respectively represent the polar angle distribution of the pion off x̂−, ŷ−

and ẑ for positive (negative) photon helicity states. Finally the acceptance takes on

the form,

ε± = Cε(x±)ε(z±). (3.49)

Out of the two terms above, one, which we shall call the finite binning effect, should

be (shown in Chapter 7) considerably smaller than the other. The finite binning term

is ε(x±) when binning the asymmetry in cos θxπ (for the calculation of Cx) and ε(z±)

when binning in cos θzπ (for the calculation of Cz). The insignificance of the finite

binning effect can be understood by considering that the distribution surrounding

a point in cos θxp or cos θzp, is limited by the bin width. The distribution, call it xi,

approaches invariance under helicity flipping x+
i = x−i as the bin width becomes

arbitrarily fine. Of course the bin width must be finite and as a result there will be a

an effect, albeit a small one. The systematic uncertainty from the two leading-order,

effects were estimated by simulating events as discussed in Chapter 7.
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3.7 Frame Transformation Effect on Hyperon Polarization

Because of the precession of spin under Lorentz transformations, baryon spin projec-

tions may possess differing values in different reference frames. The current analysis

measures the cascade spin projections in it’s rest frame, here we will show that such

measurements remain invariant under a Lorentz-boost to the center-of-momentum-

frame. The mentioned effect, commonly referred to as Wigner-Thomas precession,

comes about from the non-commutativity of boosts and rotations.

Here we adopt an argument similar to one presented in Ref. [15]. Consider a particle

p in a frame S with velocity ~β and polar angle θ with respect to a boost to a frame

S̃. The velocity and polar angle of p as viewed from S̃ with respect to the boost

direction is denoted ~̃β and θ̃. Additionally, let the corresponding Lorentz factor for

the particle in S and S̃ be γ and γ̃, respectively, while letting the Lorentz factor for

the boost from S to S̃ be denoted by Γ. The Wigner-Thomas precession angle αW

about the y-axis for an arbitrary boost within the x, z plane has been shown to be,

sinαW =
1 + Γ

γ + γ̃
sin(θ − θ̃) (3.50)

[15, 41, 42]. For this analysis, the boost from the hyperon rest-frame S̃ to the lab-

frame S is by definition, in the direction of the hyperon momentum, meaning zero

polar angle between the frame boost and and the particle momentum (hence θ̃ =

θ = 0 ). It follows that spin precession angle, αW , is zero meaning that the hyperon

polarization is left unchanged when boosting from the hyperon rest-frame to the

center-of-momentum-frame [15, 16].
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Chapter 4

Data Processing and Event Selection

This chapter details the method of extracting the Ξ− → Λπ− events from the 121

Terra bites of raw data. We derived various algorithms intended to maximize our

sample, whilst minimizing background contamination from other reactions. As a

consequence of the low cross sections for cascade production, the vast majority of

physics events composing the g12 dataset are extraneous to our analysis. Out of the

some 26 billion reconstructed events, only 5143 survived the final selection criteria.

Additionally, we derived important corrections and calibrations that were applied to

the data, which are discussed in Section 4.3.

4.1 Physics Event Selection

4.1.1 Topology Requirement

Figure 4.1: Cartoon representing Ξ− photoproduction via virtual-meson exchange in
the t-channel and its weak decay.

Figure 4.1 shows a toy model of our reaction. Events with all three mesons, K+K+π−,

were required in the final state. Specifically, the topology requirements implemented

were,

• Number of K+ = 2,
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• Number of π− = 1,

• Number of p = 0 or 1,

• Number of K− = 0,

• Number of π+ = 0.

The number of protons was permitted to float since a large amount of data were

expected to contain them due to the Λ → π−p decay. Our dominant source of

background comes from pions masquerading as kaons in the particle identification

logic. Meson misidentification is further discussed in latter sections of the chapter.

As will be shown, events with the decay Ξ− → π−Λ can be selected from the data by

imposing kinematic requirements on the detected mesons.

4.1.2 Missing Mass Selection in the Hypersphere

In our topology there are four useful kinematic constraints that comprise two missing

mass1 and two invariant mass requirements. Rather than cutting on all four quanti-

ties individually, they are taken together in a single cut as orthogonal displacements

within a hypersphere. All four kinematic quantities are divided by their associated

detected widths (3σ) and taken as coordinates in the 4d space. The four kinematic

constraints for our reaction are evident in the diagram in Fig. 4.1. The cuts are given

separately as,

1. Require the missing mass of the (γ + p) − (K+ + K+) system be the known

mass of the Ξ−.

1Missing mass is the conventional name attributed to invariant mass of an initial state minus a
final state.
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2. Require the missing mass of the (γ + p) − (K+ + K+ + π−) be equal to the

known mass of the Λ

3. Require the invariant mass of the π− + Λ system be equal to the known mass

of Ξ−

4. Require the effective mass of the π− − Ξ− system be equal to the known mass

of Ξ−

The amount by which the constraints were allowed to float was determined by the

resolution of CLAS. The resolution of all four quantities were measured by fitting

each corresponding distribution to a Gaussian function. Each fit and their associated

widths are displayed in Fig. 4.2.

For typographical ease, a short hand notation for the missing mass, MM(K+ +K+)

and MM(K++K+π−) will be used. Similarly, M(π−+Λ) and M(π−−Ξ−) denote the

relevant invariant and effective mass quantities. The “hypersphere” has coordinates

defined as,

x1 = (MM(K+ +K+)− Ξ−mass)/(3σ1), (4.1)

x2 = (MM(K+ +K+ + π−)− Λmass)/(3σ2), (4.2)

x3 = (M(Λ + π−)− Ξ−mass)/(3σ3), (4.3)

x4 = (M(Ξ− − π−)− Λmass)/(3σ4), (4.4)

r =
√
x2

1 + x2
2 + x2

3 + x2
4, (4.5)
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Figure 4.2: Top left: the missing mass spectrum of the K+K+ system, showing the
Ξ− peak at 1.32 GeV. Top right: the missing mass spectrum of the K+K+π− system,
showing the Λ peak at 1.11 GeV. Bottom left: invariant mass spectrum of the Λπ−

system, showing the Ξ− peak at 1.32 GeV. Bottom right: invariant mass spectrum
of the Ξ− − π− system, showing the Λ peak at 1.11 GeV. In all plots a Gaussian
is fit to the signal over a polynomial background. The vertical lines represents the
known lambda or charged cascade masses. The parameter σ of the Gaussian fit gives
CLAS’s “natural” resolution for its associated quantity.
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where σn denotes the Gaussian width of the associated quantity as measured in

Fig. 4.2. Loosely speaking, a cut on the hypersphere radius r represents a cut on

“sigma”; a “three sigma” cuts equates taking events within the hypervolume defined

by r < 1. Fig. 4.3 shows the mass spectra after various cuts on the hypersphere radius.

The sample used in our analysis is the result of a r < 1 cut (shown in blue). Overlay-

ing the signal in Fig. 4.3, are two sidebands taken from the two equal-hypervolume

outer layers, 1 < r < 4
√

2 and 4
√

2 < r < 4
√

3. A nearly background-free sample of

Ξ→ π−Λ events is evident.

Figure 4.3: The nominal mass cut r < 1 represents a three sigma cut as shown in
blue. The first sideband (in red) are the events lying in the hyper-shell 1 < r < 4

√
2

while the second sideband (black) lie in the region 4
√

2 < r < 4
√

3.
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4.1.3 Vertex Position Selection

[h] The event vertex time is taken as the average over all final state particles, required

to lie within or near the physical region of the hydrogen target. Our vertex selection

occupied a cylindrical volume from -120 to -60 cm along the beam, with a radius of 7

cm centered about zero. It is possible to have event vertices outside the target region

due to the long decay time of the cascade, and the resultant detachment of the pion

vertex. Figure 4.4 shows the vertex distribution for the K+K+π−(Λ) events used in

our analysis.

Figure 4.4: The cut region of spacial vertex distribution. All events lying outside the
plot were excluded.

4.1.4 Vertex Timing Selection

The CEBAF Radio-Frequency signal (RF) responsible for the acceleration of electrons

delivered to Hall B provides a precise (≈ 15 ps) means of correcting the tagger time

once the beam bucket is identified. The vertex time can also be calculated as follows:

take the time readout for a particle hit in a region of the detector and subtract the
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travel time. The calculation requires a knowledge of the particle speed, β. For each

track β is calculated as,

βSTTOF =
lTOF − lST

c(tTOF − tST )
, (4.6)

βvtxTOF =
lTOF

c(tTOF − tvtx(TAGRF )
, (4.7)

where

• lTOF and lST are the path lengths from the vertex ot the time of flight counter

and start counter respectively,

• TTOF and TST are the hit times in the time of flight counter and start counter

respectively,

• tvtx(TAGRF ) is the RF-corrected vertex time.

Agreement of one nanosecond between the event-vertex time as calculated by the

RF-corrected tagger and the start counter was required. The difference between both

methods of calculation are shown in Fig. 4.5. Similarly, the difference between the

RF-corrected tagger event-time and particle-vertex-time as calculated by the TOF

for both kaons is shown in Fig. 4.6.

66



Figure 4.5: Difference between event-vertex time as calculated by the RF-corrected
tagger and start counter, for events passing all cuts. A one nanosecond cut was
imposed.

Figure 4.6: Difference between vertex-time and particle-vertex time as calculated by
the RF-corrected tagger and TOF, for events passing all cuts. A one nanosecond cut
was imposed. Left: fast kaon. Right: slow kaon.
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4.1.5 Eliminating Particle Misidentification

As mentioned in Section 4.1.1, for CLAS, a dominant source of background in kaon

analyses are pions misidentified as kaons. It turns out however, that our kinematic

hypersphere cuts eliminate the pion background, as can be seen in Fig. 4.7 and 4.8.

Figure 4.7: β vs momentum for the fast kaon overlaid with it’s theoretical curve.
Left: before hypersphere cuts, an extra band is visible comprising misidentified pions.
Right: after hypersphere cuts, the contamination is eliminated.

Figure 4.8: β vs momentum for the pion (left) and slow kaon (right) overlaid with
their respective theoretical curves. Both plots show the data after hypersphere cuts
and indicate no contamination due to misidentification or timing inaccuracies
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4.1.6 The Fiducial Region

The fiducial regions of the detector are those found to be trustworthy, as the name

suggests. We derived Geometric fiducial cuts for the g12 data, which are cuts based

on the exclusion of events laying outside regions where acceptance is well behaved

and reliably reproduced in simulation. Such regions for all g12 data are expressed as

an upper and lower limit of the difference in azimuthal angle between the center of a

given sector, and a particle track. Because of the hyperbolic geometry of CLAS and

the presence of the toroidal magnetic field, the fiducial boundaries on the angle φ are

functions of momentum (p), charge, and polar angle (θ) of each track. The boundaries

were evaluated separately in each sector, nominally defined as the φ values in which

occupancy drops below 50% of that in the respective sector’s “flat” region. The flat

regions were defined as−10◦ < φ < 10◦. The nominal upper and lower φ limits depend

strongly on particle charge, p and θ, hence the need for functional characterization

and extrapolation.

In order to determine the fiducial limits for charged hadrons, a sample of exclusive

γp→ pπ+π− events were sliced into 5x15x6 bins in p, θ, and sector respectively. The

φ distributions for π+ and π− were plotted separately in each bin. The upper and

lower φ limits of these first-generation plots were found according to the nominal

fiducial definition of 50% occupancy as illustrated in Fig. 4.9. The results from the

first-generation fits were represented in second-generation plots of φmin and φmax

vs θ as also shown in Fig. 4.9. The data in the second-generation plots were fit

with hyperbolas, chosen since they replicate the projection of the detector. Second-

generation fitting parameters were then plotted vs p in third-generation plots. These

third generation plots were fit to power functions as shown in Fig. 4.10. Results of the

third-generation fits define the sought after functional form φmin(θ, p) and φmax(θ, p)
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for each sector. The sector integrated results for positive and negative hadron tracks

compose the nominal fiducial region. Tight cuts and loose cuts were defined as a

contraction and expansion respectively, by 4◦ from the nominal fiducial cuts. The

cuts are shown on the pπ+π− and K+K−π− data in Figs. 4.11-4.17. The effect of the

fiducial cuts on the measured spin-observables are left for discussion in Chapter 7 of

this dissertation.

Figure 4.9: Left: shows the π+ φ distribution for sector-three in one p and θ bin
along with the upper and lower limits of the fiducial region represented by the green
vertical line. Right: a second-generation plot, fit to a hyperbola.

Figure 4.10: Third-generation plots of the fitting parameters from second-generation
fits for sector three. The data are fit to power functions.
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Figure 4.11: The angular distribution of the proton from exclusive pπ+π− events is
shown. In the top, φ vs θ is plotted, the bottom plots conveys similar information
mapped to mimic the geometry of CLAS. Left: No fiducial cuts. Right: nominal
fiducial cuts on the proton.

Figure 4.12: The angular distribution of the positive pion from exclusive pπ+π− events
is shown. In the top, φ vs θ is plotted, the bottom plots conveys similar information
mapped to reflect the geometry of CLAS. Left: no fiducial cuts. Right: nominal
fiducial cuts on the positive pion.
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Figure 4.13: The angular distribution of the negative pion from exclusive pπ+π−

events is shown. In the top, φ vs θ is plotted, the bottom plots conveys similar
information mapped to reflect the geometry of CLAS. Left: no fiducial cuts. Right:
nominal fiducial cuts on the negative pion.

Figure 4.14: From left to right: φ vs momentum for the proton, negative pion and
positive pion for pπ+π− events. Top: no fiducial cuts. Bottom: nominal fiducial cuts.
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Figure 4.15: φ vs θ for the fast kaon from K+K+π−(Λ) events are shown. On the top,
simulated Monte Carlo events are plotted, on bottom, the g12 data of our analysis.
Left: No fiducial cuts. Right: nominal fiducial cuts on the fast kaon.

Figure 4.16: φ vs θ for the slow kaon from K+K+π−(Λ) events are shown. On the top,
simulated Monte Carlo events are plotted, on bottom, the g12 data of our analysis.
Left: No fiducial cuts. Right: nominal fiducial cuts on the slow.
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Figure 4.17: φ vs θ for the pion from K+K+π−(Λ) events are shown. On the top,
simulated Monte Carlo events are plotted, on bottom, the g12 data of our analysis.
Left: No fiducial cuts. Right: nominal fiducial cuts on the pion.

4.1.7 Photon-Beam Energy

The threshold center-of-momentum energy Wmin for production of the final state

K+K+Ξ− is simply the sum of each particle’s mass-energy. The threshold photon

energy (Emin
γ ) for producing K+K+Ξ− off a fixed proton target can be computed by

considering the conservation of mass-energy.

m2
i = m2

f =⇒ (pγ + pp)
2 = (pK+

1
+ pK+

2
+ pΞ−)2, (4.8)

wheremi andmf represent the invariant mass of the initial and final state respectively,

and px represents the energy-momentum four-vector for particle x in the reaction.

Carrying out the operation on the left hand side gives,

pγp
γ + ppp

p + pγp
p + ppp

γ = (pK+
1

+ pK+
2

+ pΞ−)2. (4.9)
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Considering the proton has zero momentum in the lab-frame and that for the lowest

energy final state, pK+
1
, pK+

2
and pΞ− will have zero momentum, one obtains,

m2
p + 2mpE

min
γ = (mK+

1
+mK+

2
+mΞ+)2. (4.10)

Which, using the known values of the particle masses gives a value of

Emin
γ =

(mK+
1

+mK+
2

+mΞ+)2 −m2
p

2mp

≈ 2.37 GeV (4.11)

Where the known masses used in this calculation are,

• mK+ = 0.49367 GeV

• mp = 0.93827 GeV

• mΞ− = 1.32171 GeV

Although the threshold is around 2.37 GeV, events created near this energy are not

detected since CLAS is inefficient at reconstructing low speed tracks and also be-

cause of low cross sections below 3 GeV [13]. The photon-energy range for cascade

production in the data is 2.8-5.5 GeV.

4.2 Kinematic Binning of Data

For our analysis, the polarization of the cascade was measured in bins of photon-

beam energy, Eγ, and center-of-momentum cascade polar angle (see Fig. 3.2), θcmΞ .

For convenience the cascade angle is expressed in terms of it’s cosine, that is, cos θcmΞ .

Various binning schemes were considered. Most of our results were measured with

data separated in three bins with an equal number of events in each. Figure 4.18

shows the primary binning scheme.
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Figure 4.18: The red horizontal lines represent the binning in cos θcmΞ while the green
horizontal lines represent the binning in Eγ. Left: the g12 data. Right: Monte Carlo
simulated events.

4.3 Corrections and Calibration

4.3.1 Photon-Beam Polarization Determination

The electron beam produced with a polarized laser incident on gallium arsenide

allows for longitudinal polarization of the electrons [43] and in turn, due to the

bremsstrahlung process, circular polarization of the photon beam. The accurate

measurement of the polarization transfered from the photon beam to the produced

hyperons (Cx and Cz) requires knowledge of the beam polarization. Such knowledge

is ascertained by knowing the magnitude of incident electron-beam polarization, and

the helicity orientation of the electron beam bunch responsible for the event (in the

lab-frame). The Maximon-Olsen formula relating incident electron beam polarization,
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with the photon polarization is given by [44],

P�(Eγ) =
x(4− x)

4− 4x+ 3x2
Pelec (4.12)

where x = Eγ/Eelec is the ratio of photon energy, Eγ, to beam energy, Eelec. The

g12 experiment ran with a constant electron energy of Eelec = 5.715 GeV. The polar-

ization of the electron beam was measured regularly using the a Møller polarimeter.

The polarimeter measures electron polarization by making use of the helicity depen-

dent nature of Møller scattering [29, 35]. The Møller measurements, summarized in

Table 4.1, were performed regularly (every few days) during g12. We wrote a simple

calculator for the collaboration that computes the run-integrated flux-weighted av-

erage of the photon-beam circular polarization in a user-specified energy range, the

output of which is given in Table 4.2.

An important experimental aspect of g12 is that the electron-beam helicity was flipped

at a rate around 30 Hz. While the helicity information was recorded and stored in

the HEVT bank for each event, the convention for bit encoding has been known to

change from real-time to delayed-time recording. Further considerations, such as the

half-wave plate orientation also had to be accounted for.

The only sure way to pin down the absolute beam helicity orientation for our data

was to analyze a well known helicity-dependent reaction. Well-established results in

Ref. [45] in the beam-helicity asymmetry, I�(φhelπ ), for the reaction, γp → pπ+π−,

were reproduced. The mentioned reaction was shown to have a specific helicity-frame

defined φhelπ+ -dependent structure. If the helicity convention was reversed then we

would observe I�(φhelπ+)→ −I�(φhelπ+).

The sub-analysis we performed required exclusive pπ+π− events in the final state. To

ensure exclusivity we required zero missing energy and momentum within detector
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Table 4.1: The degree of longitudinal electron polarization (Pe) for each Møller run.

resolution. The helicity frame (shown in Fig. 4.19) was defined to be the rest frame

of the hypothetical parent meson of the two pion system, with ẑ aligned along its

center-of-mass defined momentum. φhelπ+ is the angle between the proton-production

plane, and the plane containing both pions. The beam helicity asymmetry is given

by,

I� =
N+ −N−

N+ +N−
, (4.13)

where N± indicates the number of events with positive (negative) photon helicity.

Figs. 4.20-4.21 show the I�(φhelπ+) for g12 and in the analysis of [45]. The lab-frame

electron helicity readout was taken from the HEVT bank (HEVT→hevt[0].TGRPRS).
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Table 4.2: A table showing the degree of circular photon polarization (P�) in the
relevant kinematic bins (Eγ).

The results of our I�(φhelπ+) analysis and the previously published results showed a

positive (negative) HEVT readout indicates positive (negative) photon helicity. The

reproduction of beam-helicity asymmetry for double charged pion production also

served as a way to test the accuracy of the calculated photon polarization magnitude:

both results’ wave amplitudes were in good agreement.

Figure 4.19: An illustration of the angle definitions used in the γp → π+π−p sub-
analysis. θcm is defined in the center-of-mass frame. θ and φ are defined in the rest
frame of the π+ π− system as the polar and azimuthal angles. The z direction is
along the total momentum of the π+π− system. Image source [45]
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Figure 4.20: I�(φhelπ+) for our data within the energy range of W = 1.9− 2.3 GeV.

Figure 4.21: I�(φhelπ+) as measured in the analysis [45]. The results of are shown in
bins of W from 1.9 to 2.3 GeV.
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4.3.2 Multiple Photon Events

The trigger duration and limited timing resolution of the detectors results in multiple

photons being read out by the tagger for each event. Multiple-photon events compose

around 10% of the data; three photon selection algorithms were considered,

• Choose photon at random,

• Choose the highest energy photon,

• Reject multiplicity events.

The method contributing most constructively to the signal-to-background ratio was

to choose the higher energy photon when multiplicity occurred. Photons with higher

energy have a greater probability of producing cascade events although a background

is introduced. The mass-hypersphere cuts however eliminate most of the background

from photons which were chosen incorrectly.

4.3.3 CLAS Energy-Loss Corrections

The standard CLAS energy loss correction software (ELOSS) developed by Eugene

Pasyuk was implemented to account for the energy dissipation experienced by parti-

cles as they pass through the material between the target and region-one drift cham-

bers. Using the Beth-Bloch equation, the software calculates each track’s energy de-

position based on the measured particle track-momentum, it’s path through CLAS,

and a GEANT model mimicking the materials and design of CLAS. The initial energy

of a non-decaying particle at the event vertex is simply,

Einitial = Emeasured + Eloss. (4.14)
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Above, Einitial is the track energy at the event vertex, Emeasured is the track energy,

and Eloss is the dissipated energy of the track [46].

4.3.4 Photon Beam Energy Corrections for g12

Inaccuracies in the photon energy as measured by the tagger arise due to geometric

distortions in the taggers’s focal plane. These distortions cause a shift in the recoil

electrons’ measured locations, resulting in an incorrect energy readout. The effect

was studied for each event by a comparison of the measured photon energy and the

energy required for the inclusive γp → pπ+π− reaction. A systematic correction

(ECOR) was derived by Mike Kunkel and Johann Gotez for the g12 dataset and was

implemented in the present analysis. The effect that ECOR had on our sample is

discussed later in this chapter [33].

4.3.5 Final-State Momentum Corrections for g12

Distortions in the toroidal magnetic field and small spatial misalignments of the drift

chamber during data collection result in a systematic shift in the measured particle

track momenta. In order to correct for the shift in momentum, we implemented a

set of corrections (PCOR) that were derived by Johann Goetz through analysis of

pπ+π− events. Further details on the momentum corrections can be found in [33].

4.3.6 Combined Effects of Corrections

Fig. 4.22 shows the combined effect of ELOSS, photon energy, and momentum cor-

rections on the cascade signal in our data. An increase signal quality is evident from

the 10% narrowing of the mass peak.
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Figure 4.22: On the left, the Ξ− signal in the missing mass spectrum (after all cuts)
of K+K+ before ELOSS, photon energy, and momentum corrections is shown. On
the right, the same signal using the corrected four-vectors. The mass of the Ξ− is
around 1.321 GeV.
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Chapter 5

Simulation

Generally speaking, the measurement of a physical observable is sensitive to the

apparatus with which the measurement is performed. In the present analysis, the

polarization observables are accessed through an angular distribution. While the

underlying distributions themselves are highly sensitive to the detector’s acceptance,

such effects, to first order, cancel in all but one of our measurement techniques.

Discussions on the cancellation of acceptance can be found in Chapters 3 and 7.

Simulated events were used for the calculation of acceptance corrections, estimation

of certain sources of systematic uncertainty, and for cross checks of our results. The

simulation used in the present analysis is shown to match to the data. Details of the

simulation process, tuning, and characterization of acceptance effects are outlined in

this chapter.

5.1 Simulation Overview

For CLAS, the acceptance is a function that describes the likelihood of detecting

and reconstructing an event. The acceptance for a given particle depends mostly

on its momentum, charge and scattering angle. Characterization of the detector’s

response for an event is a formidable challenge. A class of techniques commonly used

in the physical sciences know as Monte Carlo methods are required. Such methods

are utilized for problems with a high degree of complexity as a means to bypass the

need to obtain closed-form solutions or deterministic algorithms.

The Monte Carlo methods are computational algorithms that obtain numerical results

by employing repeated sampling of a random number generated according to a weight-

ing distribution. In order to characterize the γp → K+K+Ξ− → K+K+π−(Λ) →
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K+K+π−(pπ−) reaction-chain, and associated response of CLAS, pseudo-randomly

generated four-vectors corresponding to the appropriate particle masses were ob-

tained. A t-channel model was implicit in the probabilistic weighting factors of the

four-vector generator. Our generated sample of events were then run through a com-

putational model of CLAS. The ratio of events that survive the simulated reconstruc-

tion process to the number generated, is the acceptance. Finley tuning the underlying

probability distribution for the random four-vector generation to match the physics

data is a challenge in itself. In general, tuning must be performed iteratively.

The CLAS software GENR8 was used to generate the t-channel phase space events.

The production model of simulation is shown in Fig. 5.1. After generation, the events

were run through a program gamp2part, which we modified so that its functionality

included the ability to mimic the detachment of the π− vertex from the event vertex.

After the generated event’s vertex-positions were modified, they were sequentially

run through the standard CLAS processing software, gsim [47], which simulates the

physical effects of the detector, gpp which smears the simulated signals, and a1c for

reconstruction.

Figure 5.1: A cartoon representing our simulated cascade production model. K+
fastY

∗

is produced via virtual-meson exchange in the t-channel. The Y ∗ decays to K+
slowΞ−.

The cascade undergoes a subsequent decay to π−Λ. The decay of Λ to pπ− was
additionally simulated.
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5.1.1 Generated and Reconstructed Events

GENR8 was used to produce a simulation of the γp → K+K+Ξ− → K+K+π−(Λ) →

K+K+π−(pπ−) reaction. The angular distribution of the final state particles were

controlled by mimicking the t-channel mode of production using t-slope as an input

parameter. The simulated events produced by GENR8 before being processed are

referred to as generated events. The generated events are then passed through further

processing and similar event selection criteria as the data. Surviving events constitute

what are referred to as the reconstructed events.

5.1.2 Detached Vertices

The detached vertex of the pion is a consideration that affects acceptance and had to

be accounted for. Since GENR8 is not equipped for this functionality it was achieved

by modifying the preexisting code of gamp2part. The π− in this analysis comes

from the decay of Ξ−, hence, each event’s Ξ− velocity along with mean lifetime

(τΞ− = 0.1639±0.0015 [3]) can be used to calculate the average π− vertex detachment

from the reaction vertex. The Ξ− vertex is only negligibly distant from the event

vertex following from the fact that excited baryons decay strongly.

For the calculation of vertex detachment, random numbers were generated with an

exponential probability distribution representing the Ξ− lifetime in its rest frame,

which is a known parameter:

f(t) = f rest(t) = αe−αt (5.1)
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where the decay constant α is related to the mean lifetime τ by

τ = 1/α. (5.2)

f(t) was calculated starting from a pseudo random number generator with a uniform

probability distribution p(x) ∈ [0, 1] given by,

p(x)dx =

 dx : 0 < x < 1

0 : otherwise
(5.3)

The fundamental transformation law of probabilities can be invoked to determine the

desired form. This law is stated as,

|f(t)dt| = |p(x)dx| (5.4)

or,

f(t) = p(x)|dx
dt
|, (5.5)

which enables one to relate the random variable x with the random variable t. Since

p(x) is a constant we have,

f(t) =
dx

dt
. (5.6)

x can be solved for by taking the definite integral,

x =

∫ t

0

f(z) dz. (5.7)

Above is the relationship between the source random variable and the known tar-

get random variable. In order to evaluate the probability distribution of the source
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random variable, the above relationship must be inverted. Time, t, is of the form,

t = G(x) (5.8)

and using the form of f(t) we get,

x =

∫ t

0

αe−αz dz, (5.9)

or,

x = α(
1

−α
e−αt +

1

α
) = 1− e−αt. (5.10)

Inverting the above equation,

t = G(x) =
ln(1− x)

−α
. (5.11)

Finally yielding,

t = −τ ln(1− x). (5.12)

The random number t represents the Ξ− lifetime at rest. The lab-frame and rest-frame

lifetimes are related by time dilation,

t = trest =
tlab

γ
, (5.13)

where the Lorentz factor (γ) is given by,

γ =
1√

1− v2/c2
=

1√
1− β2

. (5.14)

Above, c is the speed of light. The relative velocity between inertial reference frames

(v) is simply the measured Ξ− velocity, which can be found through its momentum
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by virtue of the final state kaons.

β =
v

c
=

p√
p2 +m2c2

. (5.15)

In natural units the Lorentz factor is

γ =
1√

1− p2

p2+m2

, (5.16)

so,

tlab =
trest√

1− p2

p2+m2

. (5.17)

Hence the Ξ− flies a distance between its creation and decay given by,

d = vtlab = cβtlab =
cγptrest

E
. (5.18)

Note that although natural units are used to relate energy mass and momentum, the

speed of light above is in cm/ns to maintain consistency between the units of velocity

with units of time and length in the analysis software.

5.1.3 GSIM

A GEANT based model of the detector known as GSIM was implemented to estimate

acceptance. GSIM takes the kinematics for each particle track and simulates corre-

sponding detector responses for each subsystem of CLAS. The particle kinematics

are integrated with a model of the toroidal magnetic field and the CLAS detector

to simulate a signal. For the familiar reader, values of parameters used in the GSIM

ffread card are provided in Fig. 5.2. More information on GSIM can be found in

Ref. [47].
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Figure 5.2: The ffread card used with gsim for our analysis.

5.1.4 GPP

GPP uses the output of GSIM and smears the timing signals by randomized displace-

ments, the extent of which is specific to user input and the characteristics of each

subsystem. The necessity of this program comes from the fact that GSIM tends to

output better resolution than real signals from CLAS. Some of GPP’s flags and pa-

rameters are found in Fig. 5.2. The broadened signals include the readout from the

drift chambers and time of flight scintillators. Broadening of scintillator signals are

done according to their dimensions, i.e. a longer scintillator requires a wider smear-

ing function. After the simulated signals have been processed, they go through the

reconstruction software a1c, which is described in Chapter 4, and processed with the

same analysis code as the real data.

5.2 Tuning Simulation to Data

In order to ensure the simulated events are representative of the data, a comparison

was made between the accepted events and the data for a number of quantities. The

Monte Carlo data were generated iteratively with tuning of parameters including:
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• Beam energy spectrum

• Exponential t-slope, which is a quantity related to Mandelstam variable t and

described in Section 5.2.2

• Production-resonance mass and width

• Input Ξ− polarization

This is not an exhaustive list; there are many other kinematic quantities to which the

acceptance may be sensitive. It will be shown in this section however, that the four

quantities listed above provide a sufficient basis for matching Monte Carlo events to

the data and determining the acceptance.

5.2.1 Simulated Beam Energy Spectrum

Tuning the simulated photon-beam energy spectrum to the data’s began with gener-

ating events according to a reasonable but arbitrary spectrum. Matching was done

by breaking our data and the first iteration’s reconstructed events into 27 photon-

beam energy bins from 2.8 Gev to 5.5 GeV (100 MeV wide). For each energy bin, a

weighting factor Wi was calculated by,

Wi = Ndata
i /N rec1

i . (5.19)

Where Ni is the number of reconstructed events in each energy bin for data or sim-

ulation. The next iteration of Monte Carlo events had an energy spectrum obtained

by multiplying the first iteration’s number of generated events with the respective

weighting factor, then multiplied by an overall normalization.

N gen2

i = WiN
gen1

i

∑
N rec1
i∑

Ndata
i

, (5.20)
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where N gen2

i is the number of Monte Carlo events generated in the second iteration.

In the absence of other changes to kinematics of the simulation, the iterative process

would only need to be repeated twice. However since other kinematic quantities were

being tuned simultaneously, beam tuning was repeated multiple times. An overlay of

the final beam energy spectrum for data and simulated events is shown in Fig. 5.3.

Figure 5.3: The beam energy spectrum for the Ξ− data sample and Monte Carlo simu-
lation. The Monte Carlo events are in red and are normalized to the data represented
as points with statistical error bars.

5.2.2 Exponential t-slope

The t-slope is a parameter in the relationship between differential cross section and

the Mandelstam-variable t for a two-body nuclear interaction, t is given by,

t = (p1 − p3)2 = (p2 − p4)2, (5.21)
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where pi represents the ith particle’s four-vector. Refer to Fig. 5.4 for further clar-

ification. t measures momentum transfer from the photon to the Ξ−. The t-slope

Figure 5.4: The left shows a diagram of a generic interaction with two particles in
the initial (p1 and p1)and two particles in the final state (p3 and p4) as referred to
in Equation. 5.21. On the right is the analogous model of the γp → K+K+(Ξ−)
reaction. It’s should be clear from this diagram and Equation. 5.21 that in this
model, t is the momentum transfer from the photon to the fast kaon. The blue
ellipses in both figures represent arbitrary intermediate processes.

is denoted as α and is defined according to an assumption regarding the form of the

cross section,

dσ

dt
= Ae

−t
α . (5.22)

Above, dσ
dt

is the differential cross section with respect to t and A is a constant.

The t-slope of our data was determined by measuring the acceptance corrected yield

in bins of t, then fitting the plot of yield vs t with an exponential function. The fitting

procedure was done in 8 separate photon-energy bins. Tuning the t-slope spectrum

began with a reasonable guess. The first iteration of Monte Carlo events provided

rudimentary acceptance corrections that were applied to the data, in turn providing

a first estimate on its t-slope spectrum. The resultant acceptance corrected t-slope

spectrum was then used as an input for the second iteration of Monte Carlo event

generation. The process was repeated until convergent and stable t-slope spectra were
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obtained. The flow chart displayed in Fig. 5.5 depicts the iterative process. Fig. 5.6

shows the t-slope spectra for simulated and experimental data, and Fig. 5.7 shows a

number of quantities used for matching.

Generate
Events

Analyzer
Simulate
detector

acceptance
Analyzer

Acceptance
corrected
t-slope

Data
Compute

acceptance

Polarization

Rec

Gen

tslope input

Figure 5.5: First, events are generated. The initial simulation splits into two sets:
reconstructed events (Rec) that pass through gsim, gpp and a1c before being analyzed,
and generated events (Gen) that pass straight to the analyzer. Acceptance corrections
are obtained from the ratio of reconstructed to generated events. Applying acceptance
to data, one obtains the corrected t-slope spectrum which can in turn be used as input
for the next iteration.
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Figure 5.6: t-slope for the acceptance corrected experimental data (blue), and the gen-
erated Monte Carlo events (red). Agreement within statistical uncertainty is shown.
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Figure 5.7: An example of the plots that were used to calculate tslope. The top two
plots show the t-spectrum for Monte Carlo generated (left) and reconstructed events
(right). The center left shows the calculated acceptance as a function of t while center
right shows the uncorrected t-spectrum of the data. The bottom right is an overlay
fo the uncorrected t-spectrum of Monte Carlo and Data events. Finally, the bottom
left shows the acceptance corrected t-spectrum of the data with an exponential fit.
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5.2.3 Resonance Mass and Width

Our simulated production model assumes contributions from various intermediate res-

onant hyperon decays. In the case of Ξ− photoproduction the primary resonances are

believed, due to strangeness conservation in the strong and electromagnetic interac-

tions, to be excited states of the Λ and Σ (i.e. Y ∗) having decay modes Y ∗ → K+Ξ−.

The coupling amplitudes across the Y ∗ spectrum for Ξ− production are unknown,1

but the effective resonance mass spectrum for the simulation was matched to the

data in various energy bins. An overlay of Y ∗ mass spectra for data and simulation

is plotted in Fig. 5.8 and 5.9.

Figure 5.8: An overlay of the data (green) and simulation (red) for the invariant
mass m(Ξ−K+

slow) in six distinct beam-energy bins. The data were fit to Gaussian
functions which yields the mass and width of the underlying hyperon used as in input
parameter for simulation.

1Furthering knowledge on cascade production amplitudes is one of the goals of our analysis.
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Figure 5.9: An overlay of the data (points) and simulation (red solid) for the invariant
mass m(Ξ−K+

slow) integrated over all bins.

5.2.4 Further Comparison of Simulated and Experimental

Data

There are many kinematic degrees of freedom in the simulation: vertex position and

momentum for all three final state particles, along with beam energy, to name a few.

Various combinations of the above mentioned variables compose observables that

were tuned to the data. A number of additional quantities that were not directly

tuned may be compared to ensure the simulation is representative of the data. Good

agreement between data and simulation are shown in Figs. 5.10, 5.11 and 5.12.
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Figure 5.10: Shows the measured cascade angle with respect to the z-axis in the
center of mass frame. This quantity depends on the intermediate Y ∗ mass and width,
along with the t-slope. Red is simulated events and the points are the data.

Figure 5.11: The invariant mass of the K+
fast + Ξ− system. Red is simulated events

and the points are the data.
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Figure 5.12: The magnitude of momentum for all three mesons. Red is simulated
events and the points are the data.

5.3 Acceptance Functions

Histograms of acceptance vs. pion angle across x̂, ŷ and ẑ (axes defined in Chapter 3)

were plotted in several hundred bins of beam-energy and center-of-mass cascade angle.

The plots were fit to ten-degree polynomials in pion angle. Our final integrated

acceptance function was defined by fits in all bins and was applied to each event in

the data.

5.3.1 Calculation of Acceptance and Uncertainty

The acceptance (ε) in a given kinematic bin is determined by the ratio of reconstructed

events (r) to generated events (g).

ε =
r

g
. (5.23)
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Since r and g are correlated, the uncertainty of the acceptance can not be calculated

using the method of quadratures. However the expression for the acceptance can be

de-correlated by,

ε =
r

r + n
, (5.24)

where n is the number of events which failed to be reconstructed. The uncertainty

can thus be determined through quadrature,

δ2
ε = (

∂ε

∂r
δr)

2 + (
∂ε

∂n
δn)2. (5.25)

Which leads to the uncertainty in the efficiency,

δε =
1

g

√
r(1− ε). (5.26)

The efficiency was plotted with cos θiπ− where ı = x, y, z (for a discussion on the

coordinate system see Chapter 3). Ten-degree polynomials sufficed as fitting functions

to reflect the structure of acceptance. The three acceptance functions,

A(θx,y,zπ− ) =
10∑
n=0

cx,y,zn xn, (5.27)

represent the acceptance of events in kinematic bins of photon energy (Eγ) and center

of mass Ξ− angle with the z axis 2 (cos θΞ−). Fig. 5.13 shows a number of typical

acceptance functions in various bins. For simpler notation, Aj will be used to represent

a acceptance for an event j.

If N is the detected-number of events, then applying the acceptance on each event

2As a reminder, the z-axis is parallel with the photon momentum in the center of mass frame.
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gives the corrected-number of events N ′ as,

N ′ =
N∑
j=1

1

Aj
. (5.28)

To approximate the uncertainty in N ′, consider that the acceptance Ai varies little

from the average acceptance A within each kinematic bin. One can write,

N ′ ≈ N

A
. (5.29)

The square of the relative uncertainty is then,

(
δN ′

N ′
)2 = (

δN

N
)2 + (

δA

A
)2. (5.30)

So,

δN ′ = N ′
√

(
δN

N
)2 + (

δA

A
)2. (5.31)

Or,

δN ′ = N ′
√

(
1

N
) + (

δA

A
)2. (5.32)

Figure 5.13: A few typical acceptance functions (A(θyπ−)) in various bins of beam
energy and cascade angle. The red lines show the fits to the underlying acceptance-
histograms with their widths representing the uncertainty as calculated by the co-
variance matrices of fitting parameters.
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Chapter 6

Results

This chapter provides the outcome of our cascade polarization measurements in the

reaction γp→ K+K+Ξ−. Summary tables and discussions for the induced and trans-

fered polarization are provided in Sections 6.1.1 and 6.2.1 respectively. A comparison

between results and predictions from the only known theoretical model of cascade

photoproduction is also provided in Section 6.3, with a discussion on the comparison

in Section 6.3.1.

6.1 Induced Polarization P

The observable P was measured in nine kinematic bins as shown in Fig. 6.1. We

found P to be consistent with zero in all but one bin, although the results also match

the predictions of Ref. [11]. The single non-zero bin yielded a value P = 0.233±1.84,

which constitutes a 1.26σ deviation from zero, which is likely to be a statistical

fluctuation. Rebinning of the results according to various schemes consistently yielded

P = 0 within statistical uncertainty. Integrating over all bins, we found P = 0.027±

0.061. Higher precision measurements in three energy bins and three cascade angle

bins are shown in Figs. 6.2 and 6.4. Additionally, we applied acceptance corrections

based on data-tuned Monte Caro events as described in Chapter 5. We found that

acceptance corrections had virtually no effect on P when measured by the forward-

backward asymmetry method, as is demonstrated in Fig. 6.3 and Table 6.1. Thus,

the measurements without acceptance corrections were taken as the nominal results.

The systematic uncertainty introduced to P by acceptance is quantified in Chapter 7.
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Figure 6.1: The angular distribution of the pion off ŷ in nine bins of energy and
center of mass cascade angle. The forward-backward asymmetry is used to calculate
the induced polarization P .
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Figure 6.2: The angular distribution of the pion off ŷ in three bins of energy (top)
and three bins of center of mass cascade angle (bottom). The forward-backward
asymmetry is used to calculate the induced polarization P .
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Figure 6.3: As one cross check for the cancellation of acceptance, the acceptance-
corrected angular distribution of the pion off ŷ is shown.
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Table 6.1: A table summarizing the results for P , with and without acceptance
corrections. There is good agreement between both methods for all six bins, well
within statistical uncertainty.

Figure 6.4: Angular distribution of the pion off ŷ, integrated over all bins. The
forward-backward asymmetry is used to calculate the induced polarization P . The
measured value of P is constant with zero.
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6.1.1 Comments on Induced Polarization Results

Our results for P , summarized in Table 6.2, which hold independent of beam and

target polarization, show small or zero induced-polarization for the cascade within our

experimental kinematic range. The near-zero integrated value of P differs significantly

from what was reported for Λ production under similar conditions in Ref. [48], which

showed prominent structure for γp → K+Λ for P , with values as high as ±0.5 for

many bins. However, finer binning and statistical precision was achievable for the Λ

analysis due to higher production cross sections. Probing for narrow structures in P

for the cascade must wait until enough data are available to bin more finely. Although

not directly reported, the bin-integrated results of [48] “cancel” among bins to some

degree, in particular for integrating forward and backward angles, which makes better

correspondence with our results. In any case, our P results suggest the polarization

mechanism for the cascade and Λ differ to some degree, although both mechanisms

still remain speculative. There is no reason to assume, that induced-polarization

features for doubly and singly strange baryons should resemble one another, especially

when comparing single-meson and double-meson production. On the other hand,

possible explanations for the differing features of induced polarization could pertain

to different diquark configurations of the Λ and Ξ−.

Interestingly, our observation of a small induced polarization for the cascade corre-

sponds well with expectations derived from diquark considerations. In the diquark

picture, the cascade inherits its spin from the down-quark which in turn, is likely

inherited from the unpolarized proton target. Future studies on target polarization

transfer could help further elucidate the role of diquark effects and down-quark con-

tributions to the cascade polarization mechanism.
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Table 6.2: A table summary of induced polarization values binned in center-of-mass
Ξ− angle and beam energy.

Induced polarization, which relates to interference between real and imaginary parts

of its production amplitudes, provides a sensitive test for possible production mech-

anisms. Our results are compared with the theoretical models of Refs. [11, 14] and

are discussed in Section 6.3.

6.1.2 Alternate Methods for Induced Polarization

For an alternative way to measure P , the acceptance corrected angular distribution

of the pion off ŷ was fit to a first degree polynomial, as described in Chapter 3. This

method showed good agreement with the primary algorithm used to extract P in

Figs. 6.1 and 6.2. The acceptance was characterized as a function of beam energy,

cascade angle, and pion angle then applied to the data in Fig. 6.5.

6.1.3 Further Cross Checks for Induced Polarization

[h] Additional cross checks for acceptance cancellation were performed by simulating

events with various effective Ξ− induced polarization values, Pgen. The measured

value for the reconstructed events, Prec, were consistently in agreement with what was
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Figure 6.5: Fitted acceptance corrected pion angular distributions and the resulting
measurement of P . Agreement with the primary measurements shown in Fig. 6.2 is
evident for all bins within statistical uncertainty.
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generated. The agreement Pgen = Prec demonstrates the cancellation of acceptance

for the forward-backward asymmetry method. Fig. 6.6 shows the measured value

Prec = 0 deviating less than 1σ from P = 0 for reconstructed Monte Caro events

corresponding to a generated value of Pgen = 0. We found MC events generated

with higher input polarization Pgen deviated more than those generated with low or

zero polarization. Fig. 6.7 shows consistency with the measured value Prec = −0.5

deviating less than 1σ in all but one bin for a generated value of Pgen = −0.5.

Figure 6.6: Monte Carlo events generated with Pgen = 0. The pion angular distribu-
tions of the reconstructed events in 9 bins kinematic bins are shown along with the
measured value of Prec. Better than 1σ agreement for Prec = Pgen is shown in all but
one bin, which shows a deviation of less than 1.5σ.
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Figure 6.7: Monte Carlo events generated with Pgen = −0.5. The pion angular
distributions of the reconstructed events in nine bins kinematic bins are shown along
with the measured value of Prec. Close to 1σ agreement for Prec = Pgen is shown in
all bins.
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6.2 Transfered Polarization Cx and Cz

Integrated over all kinematic bins, we found Cx = 0.017± 0.177, a results consistent

with zero. A negative value, Cz = 0.301± 0.145 was additionally observed as shown

in Fig. 6.8. The finest possible binning scheme with reasonable precision comprised

three energy bins integrated over all cascade angles, and three cascade angle bins,

integrated over all energy. Our binned results in Fig. 6.9 showed Cx to be consistent

with zero in all but one bin. Fig. 6.10 shows Cz to have statistically significant

departures from zero, with the highest measured value of Cz = −0.589 ± 0.253 and

the lowest Cz = −0.001± 0.217.

Figure 6.8: Beam-helicity asymmetry as a function of pion angle off x̂ (left) and ẑ
(right), integrated over all bins. The linear fit is used to calculate the transfered
polarization Cx and Cz.
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Figure 6.9: Beam-helicity asymmetry as a function of pion angle off x̂, in three bins
of energy (top) and three bins of center of mass cascade angle (bottom). The linear
fit is used to calculate the transfered polarization Cx.
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Figure 6.10: Beam-helicity asymmetry as a function of pion angle off ẑ, in three bins
of energy (top) and three bins of center of mass cascade angle (bottom). The linear
fit is used to calculate the transfered polarization Cz.
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6.2.1 Comments on Transfered Polarization Results

Our results, summarized in Table 6.3, show a small to intermediate degree of po-

larization transfer from the photon-beam to the recoil-hyperon. The bin-integrated

values of Cx = 0.017 ± 0.177 and Cz = 0.301 ± 0.145 depart greatly from the cor-

responding observables reported by Ref. [15] for Λ photoproduction. In Ref. [15],

Cz was large in most kinematic bins often with a value near unity, additionally an

empirical constraint Cz ≈ Cx + 1 was observed, which we do not see for the cascade.

Most significantly for Λ, maximal transfer of polarization in all observed bins occurs;

in the case of total circular beam polarization, the Λ recoils with 100% polarization

ie RΛ ≡
√
P 2 + C2

x + C2
z ≈ 1. In contrast, we have shown that the integrated total

polarization for the cascade is R̄Ξ ≈ 0.3. Aside from the difference in magnitude we

observed, we see a similarity between the cascade and the lambda: the total polar-

ization almost entirely comes from Cz (or R̄ ≈ Cz). We qualitatively understand the

polarization results of the photoproduced cascade and lambda using the vector meson

dominance picture as described in Chapter 1. Our Cx and Cz results suggest that

cascade polarization mechanism is similar to that of the lambda.

We did find, within the limited binning scheme, statistically significant kinematic

dependence in Cz but not in Cx. We measured the highest values of Cx = 0.322±0.304

and Cz ≈ 0.589±0.253 in their respective maximal bins. This is not contrary with the

diquark picture, as a measurement of large induced polarization P would have been.

It is conceivable that the polarized photon could have a preference to produce cascades

from protons who’s down-quarks are aligned (or anti-aligned) with the photon spin.

In this indirect way, the photon spin could be found to be correlated with the recoil

cascade spin, manifestly as Cx and Cz, with the spin transfered from the target. If the

photon directly interacts with a valance quark within the proton, the struck quark
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Table 6.3: A table summary of Ξ− polarization values for the nominal binning scheme.

must have its initial spin anti-aligned with that of the photon in order to have a

spin-half final state. In this scenario, the final s-quark, must have spin parallel with

the initial photon. Subsequent interactions and spin-orbit coupling could precess its

polarization but conserve its magnitude. This would manifest as correlations between

the photon helicity, and the recoil spin, and be seen in transfered polarization. What

we can say regarding the diquark picture at this point is limited however. Experiments

involving target polarization may be of great use to decipher the spin structure of the

cascade.

Besides probing spin structure and polarization mechanisms, transfered polarization

observables tell us about the interference between the complex production amplitudes

and can provide tests for possible cascade production mechanisms. Our results are

compared with three distinct parameterizations of the theoretical model of Ref. [11]

in Section 6.3. Cross checks for our measurement of Cx and Cz are subsequently

discussed in Section 6.2.2.
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6.2.2 Cross Check for Transfered Polarization Results

As shown in Chapter 3, parity conservation of the weak interaction forbids polar-

ization transfer in the ŷ direction, i.e. Cy = 0. As a cross check for our method,

we measured Cy to ensure this physical constraint is observed in the data. Fig. 6.11

shows the measured value of Cy integrated over all energy and cascade angle. As

required, we measured a value consistent with zero.

Figure 6.11: Beam-helicity asymmetry as a function of pion angle off ŷ, integrated
over all bins. The linear fit is used to measure the forbidden transfered polarization
Cy. The measurement is consistent with zero as required.

6.3 Comparison with Theory

Our final results were compared with theory as displayed in Figs. 6.12, 6.13, and 6.14.

The theoretical predictions of Ref. [11] are based off relativistic meson-exchange of

cascade production with intermediate hyperon resonances, as described in Chapter 1.

The model has three variants, the first two (A and B) include all hyperon resonances
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up to Λ(1890); the first uses pure pseudoscalar coupling, while the second uses pure

pseudovector coupling. The third variant of the model (C) is described in Ref. [14],

which appends the hyperon resonance spectrum of Ref. [11] to include higher spin

intermediate states, namely the Σ(2030). Overall, the predicted magnitudes of po-

larization for all three models are in agreement with our results. A more detailed

discussion is left for the following section.
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Figure 6.12: A comparison of our results with theory for P (top), Cx (middle) and Cz
(bottom) as a function of beam energy. The theoretical predictions of Ref. [11] are
based on pseudoscalar (solid red) and pseudovector (striped blue) meson-exchange as
described in Chapter 1. Additional high spin hyperon resonances were introduced in
Ref. [14] (dotted green). Displayed results are integrated over all energy bins.
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Figure 6.13: A comparison of our results with theory for P (top), Cx (middle) and
Cz (bottom) as a function of cascade angle. The theoretical predictions of [11] are
based off pseudoscalar (solid red) and pseudovector (striped blue) meson-exchange
in the t-channel as described in Chapter 1. Additional high spin hyperon resonances
were introduced in Ref. [14] (dotted green). Displayed results are integrated over all
cascade angles.
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Figure 6.14: A comparison of our results with theory for P in three energy bins.
The theoretical predictions of [11] are based off pseudoscalar (red) and pseudovector
(blue) meson-exchange in the t-channel as described in Chapter 1. Additional high
spin hyperon resonances were introduced in Ref. [14] (green).
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6.3.1 Comments On our Comparison with Theory

Overall, our results for all three polarization observables are in agreement with the

predictions from theory. Our measured values of P indicate a preference for pseu-

doscalar coupling (in variant A) over pseudovector coupling (in variant B), although

most of the data lie somewhere between variants A and C. Additionally, Fig. 6.14

indicates the kinematic dependence of P to differ from the predictions, however this

may be attributed to statistical fluctuations.

Similar to P , the results of Cx are in good agreement with the theory, although

no single variant fits the data significantly better than the others. The furtherest

departure from the predictions for Cx is in the energy-integrated results which is

shown in Fig. 6.13, again, differences are within statistical precision.

Finally, the measurement of Cz is also in agreement with the theory and there is no

discernible preference for any given variant. While the magnitudes are in agreement,

the energy-integrated Cz results as a function of cascade angle appear to depart from

theory. We do not show monotonically increasing Cz as cascade angles become more

forward in the center-of-mass frame as predicted, however as previously mentioned,

the data sample suffered from a lack of events in the forward regions. The lack of

forward cascade events is mostly because of differential cross section effects. Unlike

in single meson production, Cz is not necessarily required by conservation of angular

momentum to go to unity at extreme forward or backward cascade angles since the

double meson system can carry orbital angular momentum.

The discrepancies between our results and the theory could suggest additional inter-

mediate hyperon resonances may be present in production mechanism of our reaction.

There are a number of known, high-spin hyperon resonances, the Λ(2100) for example,

that were not included in the model calculations. The overall qualitative agreement
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of our results and the theory does however corroborate the small body of preexist-

ing evidence [11, 13] for cascade production through the excitation of intermediate

hyperons via relativistic meson exchange in the t-channel.

124



Chapter 7

Systematic Uncertainties

The systematic uncertainty of a measurement M can be estimated by,

δsys(M) = |M −Malt|, (7.1)

where Malt is the outcome after an aspect of the measurement has been varied appro-

priately. We would however expect, even in the absence of systematic uncertainty, to

have statistical fluctuations associated with repeated measurements. Care should be

taken to separate the statistical fluctuations from the systematic uncertainty, as to

avoid overestimating the latter.

However, our data do not have the statistical precision needed to accurately estimate

the systematic uncertainty; all observed fluctuations were well within the statistical

uncertainty. We instead chose to “over estimate” the systematic uncertainty by not

performing a separation.

In general, the total systematic uncertainty of a measurement comes from many

sources. Let the uncertainty arising from a single source be denoted by δs(M). If

the true correlation between each source of uncertainty is not known, as it is often

the case, it is safest to over estimate by assuming zero-correlation and adding in

quadrature,

δsys(M) =

√∑
s

(δs(M))2. (7.2)

The sources of systematic uncertainty were individually studied and summarized in

Table. 7.1.

125



δ(P ) δ(Cx) δ(Cz)
α negligible negligible 0.009
P� N/A negligible 0.008
Binning negligible 0.105 0.037
Mass 0.021 0.067 0.019
Fiducial 0.008 0.005 0.048
Acceptance 0.018 0.005 0.020
Total systematic 0.029 0.124 0.067
Statistical 0.061 0.177 0.145
Total uncertainty 0.067 0.216 0.159

Table 7.1: Systematic uncertainty for Cx,Cz and P arising from various sources.
All sources are detailed in the present chapter. A summary: Binning refers to width
of the binning used, Mass refers to the width of the mass cuts, Fiducial refers to
fiducial cuts, Acceptance refers to acceptance effects. Total systemic refers to each
source, added in quadrature and Statistical refers to the known statistical uncertainty
associated with the nominal measurement. Finally, Total uncertainty refers to the
total systematic and statistical uncertainties added in quadrature.

We found that the statistical uncertainty far outweighed the systematic uncertainty,

which, due to our low statistics was anticipated. Note that if separation of statistical

uncertainty was performed, the systematic uncertainties would contribute virtually

nothing and would appear to be inconsequential to our measured spin observables.

The remainder of the present chapter shows and discusses how the individual sources

of uncertainty were computed.

7.1 Uncertainty in Analyzing Power and Beam Polarization

We calculated that the limited precision of the analyzing power contributed an uncer-

tainty of 2.6% for our results, giving δα(P ) = 0.0007 ≈ 0, δα(Cx) = 0.0005 ≈ 0, and

δα(Cz) = 0.0081, for the integrated results. The limited photon-beam polarization

precision gave 3% error, yielding δP�(Cx) = 0.0005 ≈ 0 and δP�(Cz) = 0.009. The

calculations of the relative uncertainties are outlined below.
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7.1.1 Analyzing Power

From Equation 3.43, we find the uncertainty in Cx and Cz due to the uncertainty in

δα = 0.012 [3] to be,

δα(Ci) = |δα ∂

∂α

A(cos θîπ)

|P�|α cos(θîπ)
| = |Ci

δα

α
| = |Ci|0.026, (7.3)

which is 2.6% relative error. Similarly for P , Equation 3.38 gives,

δα(P ) = |P δα
α
| = |P |0.026. (7.4)

7.1.2 Beam Polarization

The uncertainty in the electron beam polarization largely came from the Moller mea-

surements which were recorded with a precision close to 1.5%. To additionally account

for uncertainty in the photon-beam energy spectrum, we take the uncertainty in the

photon-beam polarization to be 3%. This translates into,

δP�(Ci) = |Ci|0.03. (7.5)

7.2 Binning of Pion Angle in Beam-Helicity Asymmetry

The observables were found to vary when the binning scheme of the pion angle was

altered. Figures 7.1 and 7.2 show the measured values of Cx and Cz respectively,

with decreasing bin width from left to right. The average deviation from the nominal

measurements gives δbin(Cx) = 0.105, δbin(Cz) = 0.037.
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Figure 7.1: Shows the asymmetry as a function of pion angle off the x-axis and the
corresponding Cx measurement for decreasing pion bin width from left to right. The
nominal binning scheme is shown in the middle plot.

Figure 7.2: Shows the asymmetry as a function of pion angle off the z-axis and the
corresponding Cz measurement for decreasing pion bin width from left to right. The
nominal binning scheme is shown in the middle plot.

7.3 Varying the Mass-Hypersphere Radius

One way to estimate the systematics introduced by possible background contami-

nation is to vary the radius for the hypersphere cut. By increasing or decreasing

the radius, we let in more or less events from the sideband. Fig. 7.3 shows the cas-

cade signal with multiple layers of radius cuts in the hypersphere, while Figs. 7.4,

7.5 and 7.6 show the effects on observables for differing cuts. The average devia-

tion from the nominal measurements gives δmass(P ) = 0.021 , δmass(Cx) = 0.067 and

δmass(Cz) = 0.019.
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Figure 7.3: The signal shown with 2,3 and 4 σ cuts (or radius cuts in the hypersphere).
The nominal 3-sigma cut is shown in black.

Figure 7.4: The integrated P results for 2,3 and 4 sigma cuts from left to right
respectively
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Figure 7.5: The integrated Cx results for 2,3 and 4 sigma cuts from left to right
respectively

Figure 7.6: The integrated Cz results for 2,3 and 4 sigma cuts from left to right
respectively

7.4 Effect of Fiducial Cuts

The effects of the fiducial cuts which are described in Chapter 4 were observed to

have a small effect on our results. Figures 7.7, 7.8 and 7.9 show a comparison of

results without fiducial cuts and with “loose” fiducial cuts. The deviation from two

measurements gives δfid(P ) = 0.008 δfid(Cx) = 0.005 and δfid(Cz) = 0.048.
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Figure 7.7: P . Left: results with no fiducial cuts. Right: results with loose fiducial
cuts.

Figure 7.8: Cx. Left: results with no fiducial cuts. Right: results with loose fiducial
cuts.
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Figure 7.9: Cz. Left: results with no fiducial cuts. Right: results with loose fiducial
cuts.

7.5 Non-Cancellation of Acceptance for P

The bin averaged deviation of P as calculated from the uncorrected forward-backward

pion asymmetry and the acceptance-corrected forward-backward pion asymmetry

gives, δac(P ) = 0.018. Each deviation was taken as the difference of values between

what is shown in Figs. 6.2 and 6.3 for each respective bin, then averaged. Note that

averaging δac(P ) over multiple bins inflates statistical fluctuation and thus overes-

timates the associated uncertainty. We chose to overestimate, to demonstrate the

slightness of acceptance’s effect on our results.

7.6 Study of Non-Cancellation of Acceptance for Cx and Cz

[H] The calculation of Cx and Cz was based on the fact that, to first order, the ac-

ceptance of the detector cancels in the asymmetry. All second order non-cancellation

comes from helicity dependent kinematic distributions of the detected particles.

In the γp → K+K+Ξ− reaction, both kaons come either from the decay of excited

baryons (Y ∗) or through other parity-conserving strong or electromagnetic interac-

tions. Thus all kinematic distributions for the kaons are independent of the photon-
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Figure 7.10: The acceptance corrected forward-backward pion asymmetry results for
P in three energy bins and three center-of-mass cascade angle bins.

beam helicity. The only helicity dependent parts of the reaction are those following a

weak decay of ground-state hyperons. The pion, in the decay Ξ− → Λπ−, contributes

to non-cancellation of acceptance. However, only the projections of the pion angular

distribution off x̂ and ẑ are photon-helicity-dependent since the photon-helicity can

not be transfered to the Ξ− in the y-direction.

The measurement of the spin observables from Monte Carlo events were found to

deviate linearly according to

δacc(Ci) =
z∑
j=x

CjEij, (7.6)

where Eij is an error matrix that was computed using Monte Carlo events and i takes

on values of x or z. The elements of the 2x2 matrix Eij were estimated by simulating

events with an effective cascade polarization in the x̂ and ẑ directions (corresponding
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to Cgen
x and Cgen

z ) then determining the deviation between generated and measured

(Crec
x ,Crec

z ) values after reconstruction.

As shown in Fig. 7.11, the values Cgen
x = 0.5, Cgen

z = 0 were generated corresponding

to measured values of Crec
x = 0.483, Crec

z = 0.098 yielding Exx = 2(0.017) = 0.34

and Exz = 2(−0.002) = −0.004. Similarly, as shown in Fig. 7.12, the values Cgen
x =

0, Cgen
z = 0.5 were generated corresponding to measured values of Crec

x = 0.116, Crec
z =

0.461 yielding Ezx = 2(−0.116) = −0.232 and Ezz = 2(0.039) = 0.079. The error

matrix is given by,

Eij =

 0.34 −0.004

−0.232 0.079

 (7.7)

Applying the error matrix on our measured spin observables from the data Cx = 0.017

and Cz = 0.301 gives,

δacc(Cx) = 0.017Exx + 0.301Exz = 0.0057− 0.0012 = 0.0045 ≈ 0.005, (7.8)

δacc(Cz) = 0.017Ezx + 0.301Ezz = −0.0039 + 0.0238 = 0.0199 ≈ 0.02. (7.9)

Although we found the second order acceptance effects to be asymmetrical, they were

taken in as typical symmetric systematic uncertainties.

7.7 Effect of Method for P : A Cross Check

The bin averaged deviation of P as calculated from the fitted acceptance-corrected

and uncorrected forward-backward pion asymmetries gives, δmethod(P ) = 0.068. Each

deviation was taken as the difference between values in Figs. 6.2 and 6.5, for each

respective bin. Fitting the acceptance corrected angular distribution is inherently

less reliable than the forward-backward asymmetry method. A reliable measure of

systematic uncertainty introduced by acceptance effects is calculated in Section 7.5.
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Figure 7.11: The reconstructed values of Crec
x (left) and Crec

z (right) with a generated
value Cgen

x = 0.5 and Cgen
z = 0.

Figure 7.12: The reconstructed values of Crec
x (left) and Crec

z (right) with a generated
value Cgen

x = 0 and Cgen
z = 0.5.
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7.7.1 Fitting vs Raw Yield: A Cross Check on Cx and Cz

Another way to quantify the effects of background contamination is to compare re-

sults which required no fitting method due to the absence of background, with results

derived from a background-subtracted fitting algorithm. The background was heavily

reintroduced by relaxing two of our four mass constraints, analogously going from a

cut in the hypersphere to a cut in the circle. Fig. 7.13 is an example of a typical

fit which was integrated to give a background-subtracted yield. The results derived

from the fitting algorithm were compared with “background free” results in Figs. 7.14

and 7.15. The average deviation of the two measurements give δyeild(Cx) = 0.046 and

δyeild(Cz) = 0.009, both within statistical uncertainty. The comparison between fit-

ting and raw yield serves only as a cross check. A more reliable measure of systematic

uncertainty introduced by background is calculated in Section 7.3.

Figure 7.13: A typical fit which was integrated to give a background subtracted yield.
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Figure 7.14: Left: fitting with four pion bins. Right: no fitting with five pion bins.
The binning scheme for the fitting method was defined coarsely to provide reliable
yields.

Figure 7.15: Left: fitting with four pion bins. Right: no fitting with five pion bins.
The binning scheme for the fitting method was defined coarsely to provide reliable
yields.
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7.8 Studies on Background: Further Cross Checks

7.8.1 Effective Polarization of Background From Lambda De-

cay

Although the data were found to be mostly background free, the primary source would

likely come from contamination as a result of the Λ decay Λ→ pπ−. In this scenario,

the pion from the Λ could be misidentified as coming from the cascade decay. This

“Λ background” is shown Fig. 7.16 and was estimated at most to constitute a few

percent of the signal. For the background to contribute significantly to the systematic

uncertainty, it’s measured effective polarization would have to be well over 100%

(possible since the effective values do not correspond to physical observables) due to

its minute presence. The effective polarization of the Λ background was measured

for the sum of all kinematic bins and shown in Fig. 7.17. We found a statistically

significant “effective” polarization of Cz = −0.625, which would contaminate our data

sample by less than 1%, thus, δΛ(Cz) ≈ −0.006. In any case, the varying hypersphere

cut includes this number so δΛ(Cz) was not taken as a separate source of systematic

uncertainty. The analysis on the Λ-pion background serves merely as a cross check of

previous systematics.
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Figure 7.16: In the top four plots: events in red are the result of cut on the invariant
mass m(Λ + π−) and m(Ξ−− π−) which identifies the pion coming from the Λ decay.
Its presence is shown over the broader spectrum of events. In the bottom four plots:
Events representing cuts in the hypersphere radius r = 1, 2, 3, 4, 5, 6 are layered over
one another. The vertical lines provide a means of showing how deep within the
hypersphere the “lambda-pion” cuts are. One should note the Λ-pion cuts lie in the
r = 6 hypersphere, far out in the sideband of the primary signal.
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Figure 7.17: Measurements of the effective Cx and Cz for events in the lambda-pion
background. This measurement is not meaningful in terms of polarization observables,
but serves as study of background effects.

7.8.2 Effective Polarization of Unknown Background

Just as the Λ-pion contamination was examined, a similar study can be done for the

background that comprises a mix of unknown sources. This “unknown” or “mixed”

background is mostly from particle misidentification and is shown Fig. 7.18. The

mixed background was found to have a zero effective polarization. If there was a

large presence of mixed background in our signal, it would dilute the measured po-

larization. The varying of the hypersphere cuts include the small dilution effect so a

separate systematic uncertainty need not be introduced. The systematic uncertainty

associated with the discrepancy of results deriving from background-subtraction and

non-background subtraction yield method also accounts for this the mixed back-

ground.
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Figure 7.18: In the top four plots: events in red are the result of cut on the invariant
mass m(Λ + π−) and m(Ξ− − π−) which identifies the “mixed” background. Its
presence is shown over the broader spectrum of events. In the bottom four plots:
Events representing cuts in the hypersphere radius r = 1, 2, 3, 4, 5, 6 are layered over
one another. The vertical lines provide a means of showing how deep within the
hypersphere the mixed-background cuts are.

141



Figure 7.19: Measurements of the effective Cx and Cz for events in the “mixed”
background. This measurement is not meaningful in terms of polarization observables,
but serves as study of background effects.
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Chapter 8

Conclusions and Outlook

This work presents the first ever determination of polarization observables for the

charged cascade hyperon in the reaction γp → K+K+Ξ−. We utilized the parity-

violating weak decay of the cascade as a means to measure its polarization through

the angular distribution of its decay products. A background-free sample of over

5000 Ξ− → Λπ− events composed the data, a globally unprecedented yield for pho-

toproduction. We measured the induced polarization P , along with the degree of

polarization transfer from a circularly polarized photon beam, Cx and Cz.

Overall the induced polarization P , along with transferred polarization Cx and Cz,

were found to agree with predictions from the only known model of cascade pho-

toproduction. The theory models hadronic interactions based on relativistic meson

exchange, with cascade production arising due to the excitation and decay of resonant,

singly strange hyperons. Among the included diagrams, the ones involving t-channel

kaon exchange dominate the overall contributions to production, which reproduces

the preexisting data on the cascade cross sections. A model including singly strange

intermediate hyperons for the γp → K+K+Ξ− reaction is a natural choice, because

otherwise, it would involve a t-channel exchange of exotic mesons with S=2.

Our results for P , which due to the nature of our measurement technique allowed

for finer binning than for Cx and Cz, showed the closest agreement with the theory.

We found that the best match for P came from the model parameterization that

only took pseudoscalar mesons as candidates for exchange particles. However within

uncertainty, our findings are also consistent with zero, not far from agreement with

the other two variants of the model. More data at lower energies, especially closer to

143



threshold, will help paint a descriptive picture and provide more stringent constraints.

There were no events detected below 2.8 GeV while threshold is around 2.37 GeV.

The lack of data below 3 GeV is mostly due to small cross sections, as was anticipated

from the known form of the differential cross section. The acceptance corrected beam

energy profile in our data also indicates the cross section drops off rapidly below 3

GeV. Additionally, the detector efficiency falls off at energies approaching threshold.

Although our results were broadly in agreement with theory, there were also some

interesting discrepancies. The most prominent disagreement was in Cz as a function

of center-of-mass cascade angle; the general trend of our results appears to diverge

from theory. Before a definitive conclusion can be drawn on this front, more data need

to be obtained in the forward region. The non-rising Cz for forward cascade angles

is a feature of our data that is permissible by angular momentum conservation for

two-meson production, in contrast with the case of single meson production. We are

eager to compare this feature of our results with future high statistics measurements

made by CLAS12.

As expected, we found the total polarization magnitude for the cascade was much

lower than what has been reported for the Λ. The integrated results show R̄Ξ ≈ 30%,

while for the lambda, R̄Λ ≈ 100%. An interesting similarity between the lambda and

cascade is that most of their total polarization comes from Cz, i.e, R ≈ Cz in most

bins. We qualitatively explain both features of our results invoking a vector meson

dominance picture in which one of the strange quarks in the final state cascade comes

from the photon, and the other, from the decay of an intermediate hyperon resonance.

A similar picture has been suggested to explain the previous lambda polarization data

for photoproduction.

If the naive diquark model is an accurate picture for the internal dynamics of the

cascade, then its total spin would largely be due to the down-quark. In this picture,
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photoproduction of the cascade off a proton target should exhibit large polarization

transfer from the target, from which the polarizing down-quark is inherited, but one

would see little transfer from the beam. The non-zero values we observed for Cz are

thus in disagreement with this picture. We point out that it is perhaps unnatural

to suppose that the two s quarks strongly correlate as a diquark since this state is

not overall antisymmetric in spin, flavor, and color. Regardless, future experiments

with target polarization could prove invaluable for probing the spin structure of the

cascade.

In addition to constraining current and future theoretical production models, our

results taken in conjunction with subsequent polarized target experiments will fa-

cilitate progress towards a complete measurement for the γp → K+K+Ξ− reaction.

Complete measurements for cascade photoproduction would allow for unambiguous

calculation of amplitudes i.e. a model independent identification of any missing hy-

peron resonances. While the realization of a complete measurement is still infeasible

with current nuclear physics instrumentation, there is much to be learned along the

way, and polarization observables provide detailed information on the interference

of the production amplitudes. Many Λ and Σ resonances have been observed and

studied, but there are still large gaps to close in the world database regarding the

spectrum of possible hyperon states and their properties.

For the near future, it should be possible to make a first time measurement of the beam

asymmetry Σ using our data, provided the experimental photon helicity asymmetry

can be accurately accounted for. Additionally, there are other cascade polarization

observables, specific to two meson production that we plan on extracting. Within the

next few years, CLAS12 may be able to produce and reconstruct around a million

Ξ− → Λπ− events.
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To conclude, this work has produced the only three standing measurements for the

cascade polarization observables in photoproduction. We have a qualitative under-

standing of our results from the vector meson dominance picture of the photon. Addi-

tionally, our data have corroborated the only theoretical model for cascade photopro-

duction and provided constraints for its parameters, and for the parameters of future

models. We have taken a first step towards a characterization of the cascade’s un-

derlying complex amplitudes of production. Such amplitudes, which can in principal

be extracted from cross section and polarization and observables such as the three

we have provided, will help elucidate the spectrum of excited hyperon resonances.

Finally, our work has established the feasibility of cascade studies near threshold en-

ergies. There is still much to be learned from further studies of this data set and in

cascade data sets to come, in particular with CLAS12. We hope our results will stim-

ulate the otherwise slow progress in experimental and theoretical cascade physics, and

in turn help bring about a phenomenological understanding of the photoproduction

of strangeness.
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