
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-6-2014

A Multi-core Testbed on Desktop Computer for
Research on Power/Thermal Aware Resource
Management
Ashley Dierivot
adier001@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Dierivot, Ashley, "A Multi-core Testbed on Desktop Computer for Research on Power/Thermal Aware Resource Management"
(2014). FIU Electronic Theses and Dissertations. Paper 1523.
http://digitalcommons.fiu.edu/etd/1523

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Florida International University

https://core.ac.uk/display/46951309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F1523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1523&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/1523?utm_source=digitalcommons.fiu.edu%2Fetd%2F1523&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

A MULTI-CORE TESTBED ON DESKTOP COMPUTER FOR RESEARCH ON

POWER/THERMAL AWARE RESOURCE MANAGEMENT

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Ashley Dierivot

2014



To: Dean Amir Mirmiran
College of Engineering and Computing

This thesis, written by Ashley Dierivot, and entitled A Multi-Core Testbed on Desk-
top Computer for Research on Power/Thermal Aware Resource Management, having
been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this thesis and recommend that it be approved.

Ismail Guvenc

Ming Zhao

Gang Quan, Major Professor

Date of Defense: June 6, 2014

The thesis of Ashley Dierivot is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2014

ii



c© Copyright 2014 by Ashley Dierivot

All rights reserved.

iii



DEDICATION

I would like to dedicate this Masters thesis to my parents, my brothers and my

sister. They have been with me and have supported me since day one. Without

them none of this would have been possible.

iv



ACKNOWLEDGMENTS

First, I would like express my deepest and greatest thanks to my major professor

Dr. Gang Quan for his motivation, guidance, encouragement, and patience. His

dedication and sincere interests in scientific research as not only fueled my interests

for research but also my interests in self improvement on my technical skills. He has

been a great inspiration to me. I would also like to thank Dr. Ismail Guvenc and

Dr. Ming Zhao for their patience and guidance. Their helpful tips, comments and

questions, helped me address many issues that I myself would have missed. Finally I

would like to thank the guys at the ARCS lab, Gustavo Chaparro, Ming Fan, Tianyi

Wang, Shi Sha, Shuo Liu, Qiushi Han, and Soamar Homsi. For the short time that I

was in the lab they treated me as one of their own constantly providing an endless

stream of helpful tips, information and, most of all, motivation. I’ll never forget the

times spent in the ARCS lab.

I would also like to thank the National Science Foundation (NSF) for supporting the

research described in this dissertation through grants

CNS-0917021 and CNS-1018108.

v



ABSTRACT OF THE DISSERTATION

A MULTI-CORE TESTBED ON DESKTOP COMPUTER FOR RESEARCH ON

POWER/THERMAL AWARE RESOURCE MANAGEMENT

by

Ashley Dierivot

Florida International University, 2014

Miami, Florida

Professor Gang Quan, Major Professor

Our goal is to develop a flexible, customizable, and practical multi-core testbed based

on an Intel desktop computer that can be utilized to assist the theoretical research on

power/thermal aware resource management in design of computer systems. By inte-

grating different modules, i.e. thread mapping/scheduling, processor/core frequency

and voltage variation, temperature/power measurement, and run-time performance

collection, into a systematic and unified framework, our testbed can bridge the gap

between the theoretical study and practical implementation. The effectiveness for our

system was validated using appropriately selected benchmarks. The importance of

this research is that it complements the current theoretical research by validating the

theoretical results in practical scenarios, which are closer to that in the real world.

In addition, by studying the discrepancies of results of theoretical study and their

applications in real world, the research also aids in identifying new research problems

and directions.
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CHAPTER 1

INTRODUCTION

The area of embedded systems continues to advance at an accelerating pace. Un-

til recently, these embedded systems were developed using complex uniprocessors.

However, the use of uniprocessors have diminished due to reasons including but not

limited to: increase in heat power consumption/generation, diminishing instruction-

Level parallelism (ILP) gains, memory bottlenecking, and the inherent complexity of

designing a single core with a large number of transistors. Increasing the operating

frequency and developing more complex uniprocessors is no longer an effective way

to improve performance. To this end, industry usage of multicore processors or chip

multiprocessors (CMP) has become much more widespread [20,44,67,71].

The rapid increase in the raw performance offered by contemporary multicore

architectures comes with conditions in the form of higher power dissipations and

thermal implications [4, 65]. As an example, Figure 1.1 illustrates the power con-

sumption trend of system on chip (SoC) computing systems between the years 2009

and 2024. As indicated in Figure 1.1 the primary challenge of power consumption is

the exponential rise of power consumption.

Figure 1.1: Power Consumption Trend [2]
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1.1 Power/Thermal Multi-Core Design Challenges

Prior to the discussion of the power/thermal multi-core design challenges it is im-

portant to understand what Chip Multiprocessors, or CMPs, are. CMPs consist of

several processor cores on a single die, each equipped with their own cache. Multiple

applications can be independently run on each core of a CMP, or a single application

can be split into several parallel threads and can be executed on the cores simultane-

ously to increase the throughput without increasing the clock rate [39]. These CMPs

with their heightened number of transistors and more complex computer architectures

are being designed to deliver exponentially higher peak computing performance. Fig-

ure 1.2 illustrates how more and more transistors and computing cores are integrated

onto a single chip for higher performance.

Figure 1.2: Moore’s Law [55]

1.1.1 Power Challenges

Multiple platforms including portable devices and the power-rich platforms face is-

sues due to higher power consumption. On portable or mobile devices, battery life-

time remains a primary design constraint for mobile embedded systems as developers
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must carefully balance higher computing performance with efficient use of the bat-

tery source. Research [13,54] indicates that this increased level complexity of mobile

devices has caused the power consumption of batteries to rise exponentially. For the

power-rich platform such as servers, super computers, etc, high power consumption is

also a problem due to high cost and environmental concerns. Over the past ten years,

server rated power consumptions have increased by nearly 10x. A 30,000 square feet

10MW data center can require up to 5 million dollars of cooling infrastructure [59].

From an environmental point of view the 2007 estimate of 59 billion KWhrs spent in

U.S. servers and data centers translates to several million tons of coal consumption

and greenhouse gas emission per year.

1.1.2 Thermal Challenges

Another adverse effect that higher power consumption causes is the increase in tem-

perature which, in turn, causes high cooling costs, poor reliability, and performance

degradation [14]. This increase in cooling costs then adversely affects the development

of computing systems. In fact, it is estimated that the thermal packaging increases

the total packaging cost at 1-3 dollar(s) per watt [66]. Moreover, due to this decrease

in reliability and performance, it has been reported that more than 50 percent of all

IC failures are related to thermal issues which are a result of power issues [56]. These

reports are further illustrated by the finding that every 10 ◦C increase in operating

temperature can cut the device by half.

1.2 Research Problem and Our Contributions

While there has been extensive work on addressing the power/thermal issues [27,39,

65, 68, 69] most of these work has been based on idealized theoretical models and
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assumptions. Theoretical research, however, has its limits. Even though some sys-

tem characteristics can be parameterized into system models, practical computing

system must deal with real-world scenarios and complexities which may be far be-

yond what theoretical models and assumptions can define. It has been a common

practice to validate these theoretical research results using simulation. Simulations

help us in collecting specific statistics and thereby gaining better insight on different

power/thermal aware techniques. However, results obtained from a simulator are also

usually built upon theoretical models and assumption themselves. These results can

have drastic variations from the results obtained from an actual system due to mod-

eling imperfections or inherent randomness associated with ambient conditions or the

workload [26]. This limitation of software simulation motivates the development of a

practical testbed to verify and validate the various theoretical works.

Our goal in this thesis is to develop a flexible, customizable, and practical multi-

core testbed based on an Intel desktop computer that can be used to assist the theo-

retical research on power/thermal aware resource management in design of computer

systems. Compared with the related work, we have made the following contributions

in this thesis:

1. We have developed a customized, flexible, and practical hardware multi-core

testing platform based on an Intel-i7 920 Bloomfield quad-core processor, run-

ning Ubuntu 12.04.1 Linux operating system with kernel version 3.5.0-49-generic

as shown in Figure 1.3. By extensively using the open source software and tools,

this test platform can be easily migrated to different desktop computers with

different processor architectures and hardware characteristics. With the sup-

port of thread level management, researchers can customize this platform, re-

alize a large variety of system level power/thermal aware resource management

schemes (task allocation, mapping, scheduling, etc) for multi-core systems, and
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study their effectiveness and efficiency. By integrating different modules, includ-

ing thread mapping/scheduling, processor/core frequency and voltage variation,

temperature/power measurement, and run time performance collection, into a

systematic and unified framework, we expect our test bed can bridge the gap

between the theoretical study and practical implementation.

2. We evaluated our testbed with real programs and three typical power/thermal

scheduling policies on multi-core platforms. We investigated the power and

thermal characteristics of selected benchmarks as well as how they performed

and affected the system under the different DVFS policies in a practical com-

puting system. Our experimental results verified some results established in

the theoretical study. In the meantime, we also made a number of interesting

findings, which can potentially become our new research problems.

Figure 1.3: Testing Platform System
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1.3 Organization of Thesis

The rest of the thesis is organized as follows: In chapter 2, we introduce the back-

ground of this work and then discuss related works in power and thermal management

as well as the techniques used in their validation and testing. In chapter 3, we discuss

the testing platform. With this platform we validate some existing theoretical work

in chapter 4. Finally we conclude this thesis and discuss future works in chapter 5.
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CHAPTER 2

BACKGROUND AND RELATED WORK

The research background and literature review is presented in this chapter. We

begin by introducing the subject of power consumption. We then discuss the power

and thermal relationship as well as some thermal management techniques. We then

cover the various simulation and testing techniques that are currently utilized.

2.1 Power/Energy Consumption and Temperatures

As a result of continuous transistor scaling, billions of tranastors have been integrated

onto a single chip [2]. While there is an immediate increase in performance, a more

immediate consequence of the increase in transistor density is the increased power

consumption. That has adverse effects on energy and temperature. Power, energy,

and temperature have become ciritcal design objectives for system designers and

engineers.

2.1.1 Power Consumption

The power consumption of an IC chip is comprised of two categories: dynamic power

consumption and the static power consumption [34]. The dynamic power consumption

is caused by charging and discharging the load capacitance. It is associated with the

switching of the logic value of a gate and thus is essential to performing useful logic

operation. The dynamic power is modeled as a function in proportion to working

frequency and square of supply voltage [34]. The dynamic power is given by:

Pdyn = αCV 2f (2.1)

where Pdyn is the dynamic power consumed, α is the activity factor, C is the

capacitance, V is the supply voltage and f is the working frequency.
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The leakage power, or static power, is due to the leakage current flowing through

the transistor. It is represented by the expression:

Pleak = V Ileak (2.2)

where Pleak is the leakage power, V is the supply voltage and Ileak is the leakage

current through the ransistor.

As submicron technology increase, leakage power becomes more significant in the

total amount of power consumption as shown in Figure 1.2. Leakage power can be

approximated as a linear function of temperature and voltage [57]. That is, leakage

current changes linearly with temperature and voltage. This further illustrates the

notion that there is a need for incorporating leakage/temperature depenedency into

design and analysis of power efficiency systems.

2.1.2 Temperature

Power consumption and heat dissipation are closey related in that high power con-

sumption generates alot of heat which consequently raises the on-chip temperature.

Subsequently, the high temperature increases the leakage power which, in turn, in-

creases the leakage power consumption as well [2]. This characteristic degrades the

temperature situtation due to the interdependency between temperature and leakge

power. Moreover, the soaring chip temperature adversely impacts the performance,

packaging/cooling costs, and reliablity [34]. The aforementioned issues give reason

as to why temperature/thermal attributes have become a critical issue for advanced

multi-core system design.
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2.2 Research on Power/Thermal Aware Computing

There has been extensive theoretical research on power awareness, energy minimiza-

tion, and temperature awareness, on multi-core computing systems.

2.2.1 Power/Energy Awareness

With the increased complexity of multi-core systems, comes the exponential increase

in power consumption which would, in turn, increase temperature. In efforts to deal

with such issues there has been extensive research done in regards to power aware

computing techniques [6, 21, 28, 36, 68, 79]. Vega et al [68] proposed a technique of

a SMT-sentric power-aware thread placement in CMPs where they make use of the

optimum combination of core-wise SMT level and number of active cores to achieve

desired power-performance efficiency. Ghasemazar et al [21] develop a robust frame

work for power and thermal management of heterogenous CMPs subject to variability

and uncertainty in system parameters. In detail, they model and formulate the issue

of maximizing the task throughput of a heterogeneous CMP subject to a total power

budget and a per-core temperature limit. Heo et al [28] proposed a method to reduce

power density by moving computation of a task to a different location on the die.

Ansari et al [6] proposes a scheduling algorithm which combines offline and online

scheduling with DVFS to schedule fixed priority tasks on soft real-time multicore

systems.

As a result of the increasing use of multi-core systems and rising performance de-

mand, energy consumption has escalated continuously and has faced severe challenges,

specifically for an energy efficient design. There has been extensive work focused on

the problem of energy minimization [9, 29, 37, 41, 48, 73, 77]. For Instance, Huang et

al [29] derived a closed-form energy calculation equation from which they proposed an
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energy minimization scheduling method for periodic task sets. Bao et al [9] propose

a temperature aware idle time distribution technique for energy optimization with

dynamic voltage scaling. A temperature analysis approach is also proposed which is

used inside of the optimation loop for idle time distribution and voltage selection.

Yang et al. [73] proposed a procedure to determine the optimal pattern of a schedule

with the minimum energy consumption at the stead state. Yao et al [48] proposed

a strategy that utilized traditional DVFS for each processor after scheduling which

ensured all tasks met timing requirements on synchronization. They also proposed a

strategy which determined the fequency of each task before scheduling according to

the total utilization of task-set and number of cores available.

2.2.2 Thermal Awareness

In regards to temperature reduction methods there has been much theoretical re-

search done over the years [8, 19, 42, 61, 74–76].Yeo et al [75] developed a predictive

dynamic thermal management technique for multicore systems. Their work proposes

to maintain system temperatures below a desired level by moving and running the

application from the possible overheated core to the future coolest core and by re-

ducing the processor resources within multicore systems. Bailis et al [8] proposes

the use of idle cycle injection, by way or race-to-idle schedule to implement a per-

thread technique as a preventitve thermal management mechanism. Kumar et al [42]

proposed a stop-n-go approach to reduce the peak temperature for tasks with data

dependencies. The slack time was distributed between jobs in that the peak temper-

ature could be minimized without make-span violations. Fisher et al [19] proposed a

method to minimize peak temperature in a homogenous multicore system by utilizing

global scheduling algorithms which can exploit the flexibility of multicore platforms

at low temperature. Juan et al [35] proposed a systematic framework that can learn
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different thermal profiles of a CMP by using an autoregressive model which can, in

turn, serve as an alternative for predicting the transient temperature of a CMP.

2.3 Experimentation and Validation

In this section, we contextualize the state of the art in the validation of power/thermal

aware resource management techniques, covering various validation techniques as well

as related works.

2.3.1 Synthetic Simulation

These works use randomly generated test cases and simplified power/thermal models

to perform their validations of their work. Gojiara et al [23] developed a technique

which quickly generates very energy efficient results irrespective of the number of

available voltage models. Dabiri et al [16] consider the effects of voltage on single event

upsets (SEUs) to develop a method for energy optimization under SEU constraints.

They also propose a convex programming formulation that can be solved efficiently

and optimally. These two papers randomly generate test-cases for system functions

through the use of Task Graphs For Free [18]. Lu et al [49] proposed an energy-aware

fixed priority multicore scheduling technique and validated their results by way of

synthetic simulation, with a simulator they developed. Other system characteristics

such as different computer architectures, power/thermal characteristics can also be

randomly generated. The advantage of this approach is that a large number of test

cases can be generated and tested. However, the disadvantages of this approach are

that the models are simplified to the extent of neglecting other factors that may, in

a real situtation, have an effect on the result.
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2.3.2 Architecture Level Simulation Tools

The use of architecture level simulation tools in particular is quite extensive in the

research on power/thermal aware resource management. He et al [27] proposes a

heat spreading model based floorplan scheme for chip multicore processor as well as

a thermal aware thread mapping policy which benefits from the proposed floorplan

method. This work in particular makes use of several models and tools such as sim-

alpha [7], power model HotSpot [31], and a thermal model developed by Michaud et

al [52]. While their work provides insight on the heat spreading behaviours during

processor floorplaning and its effect on final runtime temperature, it makes use of

several simulation tools as well as making some assumptions which include assuming

that the heat generated in a functional unit is to be distributed evenly over the

entire area of the unit. Another work is done by Salamy et al [62]. They proposed

an optimal ILP solution to task scheduling of different applications on a multicore

system with power and energy constraints. However, their solutions were generated

using CPLEX [24] and they used SimpleScalar [7] architectural simulation to profile

the used benchmarks.

This simulation methodology provides flexibility in observing the architecture de-

tails and their impacts on theoretically developed methods or techniques. However,

computational costs are high and computation is time consuming. While architecture

level simulation tools use much more sophisticated models, the results obtained from

architecture level simulation tools do not consider the parameters that are included

when dealing with an actual phyiscal system.

2.3.3 Practical Hardware Testbed

Few works have used a practical hardware bed for simulation. One in particular is by

Liu et al [47]. This work presents a practical thermal aware scheduling algorithm to
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optimize its throughput under a given temperature constraint. This algorithm is then

validated on a practical working environment. This practical working environment is

also used to validate another work by Liu et al [46]. This work uses the neighbor effect

for temperature prediction on CMPs to design and develop an accurate temperature

prediction method which also allows for determining better task migration destina-

tion. While obtaining real data is highly beneficial to the development of new power

and thermal aware resource management techniques, a practical testbed must also

deal with the issues of compatibility with specific hardware as well as the influence

of other paramters such as noise and signal strength.

More closely related to our work, Hanumaiah et al [25] proposed a solution to

the problem of accurately controlling the cores through the use of dynamic frequency

and voltage scaling, thread migration, and active cooling. While they perform tests

using architectural level simulation tools, they also implement their algorithms and

solutions on a Intel quad-core Sandy Bridge processor by designing a closed loop

controller. The closed-loop controller builds a system model from the power and

temperature processr, then predicts the future power and temperatures of cores and

corrects any mispredicitions.

Our work differs in that their approach is more of an ad-hoc model to their specific

problem while our approach allows for the user to design and develop their own testing

platform through the use of our provided libraries.

2.4 Summary

In this chapter we discussed the essential background of our research and introduced

some related work. To start, we presented a general introduction of the basic concepts

of power consumption and heat generation. Next, we discussed the some of the

theoretical research addressing the issues of power consumption and heat generation
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as well as power and thermal aware multicore computing techniques. Then finally we

introduced the techniques used in these works to validate and verify their results.
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CHAPTER 3

POWER/THERMAL AWARE COMPUTING MULTICORE TESTBED

Our testing platform utilizes select tools and APIs to meet our design objectives and

needs. In this chapter we will discuss the system as well as its components. We

begin with discussing the overall system overview. Then we cover each individual

component of the testing platform, discussing its functionality while also covering

our implementation of the component.

3.1 System Overview

We have constructed a flexible, customizable, and practical power/thermal aware

resource management test platform that is capable of testing different resource man-

agement schemes and measure their power/thermal/computing performance. The

flexibility of this testing platform allows it to migrate to different architectures and

computers, as well as testing different benchmarks. Its customizable attribute is

credited due to its several different benchmarks and different program allocation and

scheduling schemes. Its practicality allows it to run real programs that measure true

power consumption, temperature, execution times, and other performance parame-

ters.

The system is shown in Figure 3.1

As shown by Figure 3.1 there are three sections to the testing platform. The inputs

section denotes the information that the user will provide to set up the experiments.

The system configuration uses information from the inputs to configure the testing

platform for the experiments that will run. The run-time information/output section

refers to the output of the experiments which involves the architectural parameters,

power consumption, temperature, and performance.
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Figure 3.1: TestBed: System overview

3.2 Inputs

This section discusses the information input by the users to validate their theoreti-

cal results with the experimentations. This includes the information for the system

workload, task mapping/scheduling methods, and other settings such as the DVFS

schedule.

3.2.1 System Workload

The benchmarks chosen to be used as workloads vary in computation time. These

benchmarks include:

• Classic Matrix Multiplication: Standard 1024 x 1024 matrix multiplication

algorithm
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• Swapped Matrix Multiplication: Same input parameters as the classic ma-

trix multiplication

• Catalan Numbers : In combinatorial mathematics, the Catalan numbers form

a sequence of natural numbers that occur in various counting problems.

• Fibonacci: Fibonacci number detector by way of anonymous recursion

• Ackermann Function : Well-defined total function which is computable but

not primitive recursive.

• Pythagorean Triples: Computes a Pythagorean triple

• Bubble Sort: Bubble Sort algorithm of 1.0e5 elements

• Insertion Sort: Insertion sort algorithm of 1.5e5 elements

3.2.2 Task Mapping and Schdeduling

This section of the inputs denote which of the programs are allocating to which

core. That is, this core handles the allocations of task to cores. Moreover, the

scheduling policy is also denoted here. To map threads to cores we make use of

CPU affinity through the use of the function call pthread setaffinity np. Details of its

implementation are discussed in later sections as well as details regarding our thread

scheduling.

3.2.3 Dynamic Voltage Frequency Scaling

Another facet of the input section is the selection of the Dynamic Voltage Scaling

schedule. The schedule will determine how to vary the processor’s working frequency

throughout the experiment. The process of dynamically altering the supply voltage

and operating frequency is commonly referred to as dynamic voltage frequency scal-

ing(DVFS), and the corresponding schedule is called DVFS schedule [78]. DVFS can
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decrease the supply voltage and the operating frequency of a chip when the detected

temperature is higher than the predefined thermal threshold and after a period of

interval when the temperature returns back to safe region then increases the voltage

and frequency step by step.

DVFS can be divided into two categories. The first is the hardware approach

presented by [38], [51] and [40] which propose monitoring hardware to predict execu-

tion patterns and manipulate the system’s DVFS configuration. Hardware methods

cannot be changed based on design and policy variations, which result in its lack of

use among many chip manufacturers. The second category is the management of

power, controlled by compiler and user space runtime systems discussed in [72], [63],

and [60].

3.3 System Configurations

This section takes the attributes acquired in the user input section to configure the

testbed system. Parameters in this section include: programming and mapping on

different cores, thread level scheduling, priority setting, and DVFS implementation.

Each of the component characteristics as well as implementation are covered in detail.

3.3.1 Test Case Implementation

Techniques to map threads to cores have been presented in numerous research works

[15, 17, 53]. For our research we have modified the method presented by Cruz et

al [53] to use the function call pthread setaffinity np instead of the sched setaffinity

system call which is present in the Linux kernel to dynamically map the threads. This

particular method makes use of a system call named CPU affinity on the computing

system. By way of CPU affinity, tasks can be bound to one or more cores. The initial
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purposes for the use of CPU affinity was for optimizing the cache performance. To

prevent a data synchronization problem which would subsequently lead to an increase

in cache miss rate and reduction in system performance, the operating system tries

to keep task data on only one core’s cache at a time for as long as possible for

the multicore computing system. Moreover, there is an increase in context switching

overhead in the case of continuous migration of tasks from one core to another. Hence,

CPU affinity is only used to bind our tasks to cores. Our method to bind specific

cores to tasks is presented in the code snippet in Figure 3.2 below:

Figure 3.2: Method to bind thread to core

From the code listing above it is apparent that the primary parallel programming

paradigm used is POSIX Threads (Pthreads). Pthreads are an interface with a set

of C language procedures and extensions used for creating and managing threads [5].

Pthreads has a very low-level of abstraction which translates to difficult implementa-

tion from a developer standpoint. With Pthreads the parallel application developer

has more responsibilities like work load partitioning, worker management, commu-

nication and snychronization, and task mapping [3]. Primary alternatives to using

Pthreads include, OpenMP and MPI.
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OpenMP or Open Message passing is an application program interface, which de-

fines a set of program directives, runtime library routines and environment variables

that are used explicitly to express direct multi-threaded, shared memory parallelism.

OpenMP stands at high-level abstraction which makes development of parallel ap-

plication much easier. The developers only need to specify the directives in order to

parallelize the applications. As a result of its ease of use, OpenMP is not as widely

used as Pthreads as the flexibility of OpenMP is less compared to Pthreads [5, 58].

MPI or Message Passing Interface, on the other hand, is a message passing library

standard designed to function on a wide variety of parallel computers [50]. MPI works

on both SMP and distributed memory systems. MPI uses objects called communica-

tors and groups to define which collection of processes may communicate with each

other. While much more difficult in regards to implementation and use, we have

chosen Pthreads due to its extensive flexibility and its granularity.

The usage of Pthreads is not without limitations. Due to the fact that we are

binding threads to cores, the simple act of binding entire programs to threads is not

possible. The method of using the system() command was explored. On Linux, it

spawns /bin/sh (forking and executing a full shell process), which parses the com-

mand, or benchmark in this case, and spawns the second program. Due to the unpre-

dictability of disk access and Linux processes scheduling, timing system() calls has a

very high inherent variability. To this end, we have implemented our benchmarks as

methods and have coded them as such in our library file for the benchmarks. While

this limitation impacts our ability to use more commercial benchmarks, it does give

us more control in regards to the behavior and parameters of the benchmark. This

attribute also allows us to simply code our own computing intensive tasks.
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3.3.2 Thread Scheduling

Linux by default, uses the Native POSIX Thread Library, or nptl, implementation

which considers a thread as a light-weight process, so the scheduler schedules threads

with other processes. Using the Pthreads scheduling feature, you can designate how

threads share available processing power. It can be decided that all threads should

have equal acess to all available CPUs, or some threads can be given some preferential

treatment [11]. There are two thread-specific attributes to consider when creating a

schedule for pthreads: The scheduling priority and scheduling policy. The scheduling

priority determines which thread get preferential treatment and access to available

CPUs at any given time. The scheduling policy is a way of expressing how threads

of the same priority run and how they share available CPUs, [11]. To make use of

more popular scheduling policies such as Liu and Layland Rate Monotonic Schedul-

ing(RMS) [45] or Earliest Deadline First(EDF) [43], we must modify and patch the

kernel. The realtime policies available to us is SCHED FIFO and SCHED RR which

translates to first-in-first-out and round robin, respectively.

While our testing platform does implement some form of thread scheduling, limita-

tions do apply. First of all, our implementation is referred to as userspace scheduling.

The limitation exists in the earlier notion that the Linux considers a thread as a

lightweight process. That is, while we can perform scheduling, in the userspace, there

is no real indication that the threads are actually executing at their scheduled time

since the lightweight processes are then scheduled by the kernel where we have no

control. In order for this to happen, we must change a system file sched.c to perform

kernel level scheduling and fully implement our scheduling policy but that is outside

the scope of this work.
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3.3.3 DVFS Implementation

For our implementation of DVFS we make use of the latter approaches by way of

the CPUfreq module illustrated by Wang et al [69] which will be discussed later. We

develop numerous methods and policies. Among them we can change indivdual core

speeds, oscillate the clock speed between two frequencies, and step up or step down

the clock speed to another frequency step. We also include functions to facilitate the

restoration of chip speed to its lowest level or setting the chip speed to its highest

level which normally find its use for those developing their own testing platform using

our libraries.

CPUFreq

Implementing DVFS we must make use of Intel’s SpeedStep technology to change

the desired DVFS level. Enhanced Intel SpeedStep Technology was introduced in the

Pentium M processor. The technology enables them management of processor power

consumption via performance state transitions. These states are defined as discrete

operating points associated with different voltages and frequencies [32]. In Linux, this

can be acheieved through the installation and utilization of the CPUfreq, also known

as CPU speed scaling, package which allows for the scaling of the processor speed.

CPUfreq comes with various rules which determine how and when the cpu fre-

quency is changed based on system load. These rules are defined by a CPUfreq

governor. These governors are:

• performance forces CPU to use highest possible clock frequency.

• powersave forces CPU to use lowest possible clock frequency.

• ondemand is dynamic governor that allows CPU to achieve maximum fre-

quency when the system load is high and minimum frequency when the system

is idle.
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• conservative is similar to ondemand, this is a dynamic governor that allows

for the adjustment of clock frequency based on CPU usage but does so in a far

less aggressive manner than the ondemand governor

• userspace allows userspace programs(essentially any process running as root)

to set the frequency

For our implementation, we make use of the method presented by Wang et al. [69]

which proposes using the userspace governor which allows us to manually change

the frequency. This is done by modifying and updating the system file located at

/sys/devices/system/cpu/cpu[X]/cpufreq/scaling setspeed where X is the index of

the core in the processor. We have also extended his proposed extension by im-

plementing the CPUfreq frequency modulator as a function within a library called

setCoreSpeed(). The desired core and frequency step were passed as parameters.

The method used C function calls to modify the aforementioned system file. We also

implemented other methods that facilitate in changing the operating frequency for a

number of cores at a time. The Intel i7 processor supports 10 working frequencies

ranging from 1.60 GHz to 2.67 GHz as shown in the following table. The available

frequency levels are shown in Table 3.1

Available Frequencies in GHz
1 1.600
2 1.733
3 1.867
4 2.000
5 2.133
6 2.267
7 2.400
8 2.533
9 2.667
10 2.668

Table 3.1: List of available frequencies
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3.4 Run-Time Information Collection and Output

This section returns values after running the benchmarks. The values return are

in the form of power consumption, temperature, execution times and performance

results .

Hardware Locality

An Open MPI sub-project, Hardware locality or hwloc, provides command line tools

as well as a C API to obtain the hierarchical map of key computing elements, such as:

NUMA memory nodes, shared caches, processor sockets, processor cores, processing

units (hardware threads), and even IO devices. It also obtains various attributes such

as cache and memory information [12]. Hwloc is a result of the evolution and merger

of the libtopology project and the Open MPI project: Portable Linux Processor

Affinity (PLPA) due to their functional and ideological overlap. These attributes

allow us to determine the communication pattern as well as the locality of the CPU

cores that will be used for the experiments. The role that hwloc plays in our testbed

is to provide us with a physical topology of the architecture that is being tested. This

allows us to analyze the effects of a cores temperature on neighboring cores.

3.4.1 Power Consumption

Power and energy reading for SandyBridge architecture Intel processors involve the

use of onboard power counters through the use of Running Average Power Limit or

RAPL. It returns the chip level power consumption without the need for external pe-

ripherals. The aforementioned power counters are not available to all Intel processors

and for the sake of portability for the testbed to read the CPU power consumption,

it was necessary to follow the method illustrated in [33, 69] which used an Agilent

24



34410A digital multimeter (DMM) along with a Fluke i410 current probe to measure

the voltage running through the 12V power lines that powers the processor. The

main power lines for the CPU operate at 12V, and are then fed to a voltage regulator

module, which converts this voltage to the actual processor operating voltage which

provides control on voltage variations [33]. The probe is clamped to the 12V lines and

produce a voltage signal proportional to the current running through the lines with

a coefficient of 1mv/A. The voltage sample obtained is then converted to processor

power dissipation with the power relation :

P = V I = 12 · (V oltageSample[V ]) · 1000 (3.1)

where P is the power, V is the supply voltage and I is the current. The current I is

obtained from the measured voltage signal, V oltageSample[V ] that is proportional

to the current. The resolution of the DMM for the power reads was set at a fast 5

digit read at 200 Hz. This resulted in high speed sampling of the voltage.

Unlike what is presented in the above methods, we made use of an external ma-

chine to collect the readings and a software tool, Agilent BenchVue, to log our results.

Agilent BenchVue, designed by engineers at Agilent Technologies, is a free software

suite that provides a wide array of capabilities that vary based on the functional-

ity of the instrument types and models connected to the PC running the BenchVue

software. Supported functionality for the utilization of digital multimeters include:

• Measurment Configuration: Function and range selection, integration time, in-

put impedance, auto zero, null state

• Visualization and Annotation: Chart, with full annotation, zoom in/out, change

trace color, display sample count and markers, tabulated results.

• Data Logger: Basic data log with strip chart, start control(IMM/time/trig),

sample interval, stop control (IMM/time/samples)
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• Exported Information: Screen shots by clipboard or file, data by MATLAB,

Microsoft Excel, Microsoft Word, and CSV

Figure 3.3 shows the Agilent Benchvue software interface. This particular interface

is unique to digital multimeters and shows the trace of an experiment that was run.

Figure 3.3: Agilent Benchvue Digital Multimeter Viewer Interface

In addition to the capabilities on the PC, Agilent BenchVue also comes as a mobile

app, which can be installed on an Android or Applie IOS device to control BenchVue

bench applications running on the Windows computer through WiFi, VPN, 3G or

4G.

A communication structure of the Agilent BenchVue software, running computer,

instrument and IO is shown in Figure 3.4

Figure 3.4: Communication Protocol of Agilent BenchVue
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Based on the communication structure above, an outline of the system is presented

in the following Figure 3.5.

Figure 3.5: Overview of power trace collection system

3.4.2 Temperature Reading

On die digital thermal sensor can be read using an MSR (no I/O interface). MSRs

or Model Specific Register are used to provide access to features that are generally

tied to implmentation dependant aspects of a particular processor. In Intel Core

Duo processors, each core has a unique digital sensor whose temperature is accessible

using an MSR. The digital thermal sensor is the preferred method for reading the

die temperature because (a) it is located closer to the hottest portions of the die,

and (b) it enables software to accurately track the die temperature and the potential

activation of thermal throttling [32]. On modern machines temperature is read using
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these sensors by way of third party applications. One popular method in particular is

through the use of the tool, lm-sensors, which is a free open source software tool that

provides monitoring information of temperatures, voltages, humidity and fan speeds.

It can also detect chassis intrusions [1]. While an effective tool, it does not provide

methods to use its functions programmatically.

To read the temperatures, we make use of the method presented in Wang et al [69]

which utilizes the coretemp driver in Linux to read the temperature values reported

by the thermal sensors in each core through the system file:

/sys/devices/platform/coretemp.[X]/temp1 input, where X is the index of the

core used.

The coretemp driver permits reading the digital temperature sensors(DTS) em-

bedded inside Intel CPUs. Each core on these processors has a DTS that reports

temperature data relative to TJMax which is the safe maximum operating core tem-

perature for the CPU. Unlike traditional analog thermal devices, the output of the

DTS is a temperature relative to the maximum supported operating temperature of

the processor [32]. Figure 3.6 presents the register that deals with reading the digital

sensor.

Figure 3.6: IA32 Thermal Status Register
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It can read on a per-core and per-package basis but based on our system configura-

tion we will only utilize the per-core functionality as per-package sensor is new. As of

late, it is present only in the SandyBridge platform and beyond. Our implementation

of the temperature reader is presented in Figure 3.7

Figure 3.7: Method for collecting temperature

The system specific information is based on the filenames provided by the coretemp

driver which corresponds to the core. That is, the file names are in the format

temp[X] label where X is refers to the core. However, in the system this file may have
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the number 2 but actually correspond to core 0. Our implementation provides a way

to pass the desired core as a parameter for collecting temperature while the correct

file is accessed. As the code shows, the number 0 would be passed however the file

temp2 label would be accessed that would thus return the temperature of core 0.

Temperature is measured in Celsius and measurement resolution is 1 ◦C. Valid

temperatures are from 0 to the maximum temperature of the core due to the fact

that the actual value of the temperature register is in fact a delta from the maximum

temperature. The maximum temperature is dependent upon the model of the CPU.

3.5 Performance

There are numerous tools available for obtaining the performance for a section of code

or a program. These include but are not limited to perf profiler, PAPI, perfsuite,

Valgrind, likwid, and more. The performance for the benchmarks were acquired

through the use of the Performance API(PAPI) [70]. This specific tool provides the

tool designer and application engineer with a consistent interface and methodology for

use of the performance counter hardware found in most major microprocessors. PAPI

enables software engineers to see, in near real time, the relation between software

performance and processor events. As opposed to the other listed tools, we have

chosen PAPI due to its extensive API that allows us to gather selected performance

parameters that gives insight as to how a particular piece of code and/or method is

functioning.

In our utilization of the PAPI tool, the API code is added into each of our bench-

mark methods. That is, every benchmark has a copy of the code that does the

measurements. Due to the limitations of our system, we are limited to the use of 4

counters per experiment. For that reason, each benchmark has two versions: one ver-

sion that gets information such as instruction counts and cache misses and another
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version that gets information such as total cycles, branch mispredicts, etc. PAPI

obtains information as follows:

• Start Counters

• Do Work

• Read Counters

• Stop Counters

The workload of the benchmark is utilized in the ”Do Work” section of the list

which begins after the counters have begun. Upon completion of the benchmarks,

the counters are read and reported to the user. The counters then end following

the aforementioned procedures. While limited in information that can be attained

per experiment, slight modification of the performance gathering procedures in the

benchmark libraries gives way for the measurement of other performance parameters

such as loads, stores, floating point operations, etc.
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CHAPTER 4

EXPERIMENTS AND RESULTS

This section is the culmination of the previous sections as it integrates them as well

as performing benchmark testing and power/thermal and performance readings. This

is done to demonstrate the functionality of this testing platform as well as provide an

analysis on the results. Each experiment returns the power consumption, operating

temperature and performance parameters of its respective run.

4.1 Preliminary Work

This section illustrates the work done prior to the experimentation of our testing

platform. That is, in this section we determine our processor architecture, examine

any potential overhead when retrieving the temperatures as well as examining the

idle temperatures of the system.

Architecture Data Collection

Using the hwloc tool, Figure 4.1 illustrates the topology of target machine used in

our system. Based on the figure, it shows that there are 4 physical cores and 4 logical

cores by way of hyper-threading.

Figure 4.1: Topology of System using hwloc tool

32



Temperature Retrieval Overhead

As a result of the fact that the temperature reading function would be running on

the actual machine that is being tested, it necessary to determine the amount of time

it takes to read the temperature system file. Presented in Figure 4.2 are the times

for the retrieval of the temperature values

Figure 4.2: Temperature retrival time from system file

The information provided to us by the above figure indicate that the load on the

processor as a result of returning the temperature. Results indicate that due to the

relatively low times required to capture the temperature on the temperature sensor,

we can utilize our current method of reading temperatures. In the case where the

times are too high we must either utilize another method or make use of an external

peripheral.

Idle Temperatures

Presented in Figure 4.3 is the running temperature of the core while the system is

idle.
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Figure 4.3: Running temperature of each core

The expression to determine the average temperature is described by:

Tcore =

∑n
0 Ti
n

(4.1)

where Tcore is the average temperature for all the cores, Ti is the temperature at core

i. The n represents the number of cores used in the calculation. It can be seen in

Figure 4.3 that after doing 64 consecutive readings with 2 second sampling time the

average temperature for all the cores was: Tcore = 44.3359 ◦C. The sampling time

can be scaled to meet the needs or requirements of any desired scheduling/mapping

algorithm.

4.2 Benchmark Performance

For this section we will test appropriately selected benchmarks and obtain output

data accordingly. As stated in chapter 3, the benchmarks available for the testing

platform are: Classic Matrix Multiplication, Swapped Matrix Multiplication, Catalan

Numbers, Fibonacci Numbers, Pythagorean Triples, Insertion Sort and Bubble Sort.

Using the perf profiler the average runtimes for the benchmarks are presented in

Table 4.1 below.
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Runtimes
Classic Matrix 9.30
Swapped Matrix 6.34
Catalan 4.18
Fibonacci 13.25
Ackermann 25.31
Pythagorean Triples 48.45
Insertion Sort 46.29
Bubble Sort 79.87

Table 4.1: Average run times of benchmarks

PAPI Hardware info

Model Intel
CPU Revision 5.0000
Max Speed 2.668
Min Speed 1.600
Hardware threads per core 2
Sockets 4
NUMA Nodes 1
CPUs per node 1
Total CPUs 8
Hardware Counters 7
Multiplex Counters 64

Table 4.2: CPU Information acquired by PAPI

Details of our hardware were aquired through the methods of Weaver et al [70].

The Table 4.2 presents detailed CPU information not found with hardware locality.

4.3 DVFS Experimental Results

The experiments were performed on a system consisting of an Intel i7 920 Bloomfield

processor. The physical topology of the processor is illustrated in Figure 4.1. We

implement and experiment on three selected DVFS scheduling policies: a) Constant

speed; b) Two level frequency; and c) Oscillating frequency. While there are multiple

benchmarks available for use in the current version of this testing platform, we utilize

the Ackermann function as our workload. As an external tool, the running voltage
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was collected before and after the benchmarks executed to illustrate the disparity in

the voltage between when it is running and when execution has completed. The data

presented represents an entire run of the testing platform to illustrate the changes

in power consumption. The performance metrics we are obtaining for these experi-

ments is the instruction count as well as the L1/L2/L3 cache misses. For the listed

experiments, we utilize two cores. Due to current system limitations, it is currently

not possible to tell which core corresponds to which performance readings.

4.3.1 Constant Speed Experiments

In these experiments, the operating frequency is kept at a constant level while the

benchmark executes. The following figures illustrate the power and temperature

profiles of the constant speed DVFS tests utilizing 2 cores.

Constant Speed Step 5
Instruction Count 48670802836 48670787535
L1 Cache Miss 1330713267 1330744355
L2 Cache Miss 143611047 143206959
L3 Cache Miss 1368930271 1368918376

Table 4.3: Performance Values for Constant Speed Experiment 1

Figure 4.4: Power Trace for Constant Speed Experiment 1
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Figure 4.5: Temperature Trace for Constant Speed Experiment 1

Table 4.3 refers to the performance parameters of the first experiment where the

benchmark is excuted at a constant speed step 5, or 2.16 GHz. There is a noticeable

difference in cache misses among the cores. Figure 4.4 illustrates the power trace

for the experiment. The time in which the benchmark is executed is shown by the

region of the graph that is slightly more elevated than the rest of the graph. The

temperature trace, illustrated by Figure 4.5 shows the that core 0 still exhibits a

rise in temperature. The active cores show their activity in the temperature trace.

Core 1 has a generally lower temperature than the other cores, which will be a trend

among the experiments that will become much more apparent. Moreover, Core 3

shows a more constant temperature throughout the experiment where it only dips in

temperature at some instances. These temperature drops are, however, not exactly

evident in the power trace.

Constant Speed Step 10
Instruction Count 48670802739 48670787471
L1 Cache Miss 1328556598 1328406671
L2 Cache Miss 142538023 143295344
L3 Cache Miss 1367513547 1367511978

Table 4.4: Performance Values for Constant Speed Experiment 2
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Figure 4.6: Power Trace for Constant Speed Experiment 2

Figure 4.7: Temperature Trace for Constant Speed Experiment 2

In this experiment, shown by Table 4.4, the instruction count is an output param-

eter that stays in a specific range as evident by the previous Table 4.3. This specific

range is one that is seen throughout the experiments considering that we are using

the same benchmark, the Ackermann function, as our workload for the experiments.

As opposed to the previous experiment, this experiment has slightly higher power

consumption than the previous experiment shown by Figure 4.6. The temperature

shown in Table 4.7 however, illustrates a more familiar pattern that is more similar

to the previous speed step 5 experiment.

4.3.2 Two Level Experiments

In these experiments, while the benchmark is executing, the operating frequency

will step up to another frequency, or step, after a given amount of time. For the
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experiments, we have chosen 15 seconds.

Two Level Neighboring Speeds
Instruction Count 48670802836 48670787752
L1 Cache Miss 1331130993 1330949609
L2 Cache Miss 141702154 141801795
L3 Cache Miss 1368544571 1368404495

Table 4.5: Performance Values for Two Level Experiment 1

Figure 4.8: Power Trace for Two Level Speed Experiment 1

Figure 4.9: Temperature Trace for Two Level Speed Experiment 1

In this experiment, the operating frequency is set at step 5, or 2.16 GHz, then

after the aforementioned 15 seconds steps up to step 6, or 2.26 GHz. This is also

known as neighboring speeds. Considering that operating frequency has little effect

on power, there is no real indication as to when the operating frequency changes as

shown in Figure 4.8. While the other cores exhibit expected behaviors, the most

unique characteristic of this experimental run is the temperature of core 1, shown in

39



Figure 4.9 as it displays a unique oscillating characteristic. This could be a result of

switching activities outside the scope of this experiment.

Two Level Min-Max Speeds
Instruction Count 48670802786 48670787483
L1 Cache Miss 1329282011 1329106371
L2 Cache Miss 143515069 143095169
L3 Cache Miss 1368382457 1368148803

Table 4.6: Performance Values for Two Level Experiment 2

Figure 4.10: Power Trace for Two Level Speed Experiment 2

Figure 4.11: Temperature Trace for Two Level Speed Experiment 2

In this experiment, as opposed to the previous who changed levels from neighbor-

ing speeds, this experiment changes levels between the minimum speed and maximum

speed. That is, the operating frequency steps from 1.67 GHz to 2.67 GHz. There is

little disparity between execution and non-execution, illustrated by the power trace in

Figure 4.10. The temperature also displays similar characteristics as the previous one
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where the core one temperature was oscillating. Also while slight, the temperature of

core 2 exceeds 45 degrees on more occasions than the previous, shown in Figure 4.11.

4.3.3 Oscillating Speed Experiments

In these experiments, while the benchmark is executing, the operating frequency will

oscillate between two selected frequencies, or steps. The duration of each step was

predetermined at 5 seconds each step. That is, every 5 seconds the frequency changes.

Oscillating: Neighboring Speeds
Instruction Count 48670802760 48670787502
L1 Cache Miss 1329211980 1328790568
L2 Cache Miss 142646183 142790757
L Cache Miss 1368021261 1367634857

Table 4.7: Performance Values for Oscillating Experiment 1

Figure 4.12: Power Trace for Oscillating Speed Experiment1

Figure 4.13: Temperature Trace for Oscillating Speed Experiment 1
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In the experiment above, the frequency was oscillated between the neighboring

steps 5 and 6, or 2.16 GHz and 2.26 GHz, respectively. The power trace, in Fig-

ure 4.12, is slightly more pronounced as there are periodic drops in the power. The

temperature however remained, similar to the other experiments. However, core 3

exhibited a constant speed for a majority of the experimental run as shown in Fig-

ure 4.13. The performance parameters as shown in Table 4.7 remain in similar ranges.

Though considering that the cache misses are not the same gives rise to the notion

that multicore operations are more unpredictable.

Oscillating Min-Max Speeds
Instruction Count 48670800415 48670785142
L1 Cache Miss 1332962098 1333059656
L2 Cache Miss 142817511 142400212
L3 Cache Miss 1367426904 1367428881

Table 4.8: Performance Values for Oscillating Experiment 2

Figure 4.14: Power Trace for Oscillating Speed Experiment 2

Figure 4.15: Temperature Trace for Oscillating Speed Experiment 2
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Finally, in the last experiment presented, the frequency was oscillated between

the minimum speed of 1.67 GHz and the maximum speed of 2.67 GHz. This ex-

periment produced the highest temperatures as shown in Figure 4.15. The entire

core experienced some form of increased heat as even core one exceed its standard

operating temperatures of 39-40 and into the 42 degree and above range. The power

produced, in Figure 4.14, in this experiment are also at its highest as a bulk of the op-

eration is done between 116 and 118 Watts while also exceeding 120 Watts at certain

instances. There are noticeable spikes in the power, indicating when the operating

frequency changes. Moreover, the disparity between when the worload is undergoing

computation versus when it is not is more pronounced.

4.4 Summary

In this chapter we performed experiments of three different DVFS policies: a) Con-

stant speed; b) Two level frequency; and c) Oscillating frequency. For each DVFS

policy we ran 2 experiments. For the constant speed policy we executed the exper-

iments at speed step 5 and 10, or operating frequencies 2.13 GHz and 2.67 GHz.

In regards to the two level experiments, we examine the behaviors of stepping up

the operating frequency from the slowest speed to fastest speed as well as stepping

up the operating frequency from speed step 5 to speed step 6, or in other words,

neighboring speeds. The oscillating speeds experiments require the same operating

frequencies as the two level experiments. However, they oscillate between said fre-

quency levels rather than stepping up to them just once. General observations show

that despite there being a minimum amount of work done on core 0. There is still a

rise in temperature during the experiments.

Moreover, core 1 exhibits the lowest temperature, several degrees lower than oth-

ers, than the rest of the cores. As evident in equation (2.2), the operating frequency

43



does not have much of an effect on the power compared to the capacitance or supply

voltage. This attribute gives reason as to why many of the power figures look similar.

By way of the performance parameters, it is seen that a multicore platform is more

unpredictable than a single core platform due to the different results of the cache

parameters given by the different runs. Lastly, the experiments also show that modi-

fying the operating frequency has little effect on the instruction count, cache misses,

as well as other performance parameters.
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CHAPTER 5

CONCLUSION

In this chapter, we summarize our research presented in this thesis and discuss possible

future work of this research.

5.1 Concluding Remarks

The rapidly growing power consumption and heat generation not only significantly

increase the packaging and cooling costs, but also severely degrade the performance

and reliability of computing systems. It has been well recognized that power and

thermal issues have posed enormous challenges in computer system design and posed

a serious threat to slow down the continuous evolution of computer technology. For

the past a few decades, there has been extensive theoretical research efforts that deals

with power and thermal issues in computer system design. However, most of them

are based on idealized assumptions and/or simplified theoretical models. While these

assumptions and models help to greatly simplify complex problems and make them

theoretically manageable, engineers and practitioners have to deal with complicated

factors in the real world that may not be captured by these assumptions and models.

In this thesis, we focus on the development of a practical multi-core hardware

testing platform. When compared to other methodologies to validate theoretical

results of power and thermal aware resource management, our system differs in that,

unlike other works, it does not rely on simplified models or idealized assumptions.

This essentially results in a system which can obtain real experimental results directly

from an actual computing system. This attributes to the practicality of our testing

platform. With the aim for flexibility and portability, we developed a hardware testing

platform based on an Intel-17 920 ”Bloomfield” processor, running the Ubuntu Linux

45



operating system with kernel version 3.5.0.43. Due to the libraries we created, we also

allow researchers to develop their own testing tools. Furthermore, we investigated the

various phenomena involving the effect of different DVFS policies on the temperature

and power consumption of the CPU which are illustrated by Haung et al [30].

5.2 Future Work

In this thesis, we have done extensive research work on obtaining accurate thermal

and power characteristics as well as testing various frequency scaling policies. In

the future, we would like to utilize a method that allows us to use commercially

available benchmarks such as SPEC2000, Splash-2, PARSEC, and NAS NPB [10,

22, 64]. This would require utilizing a different control and mapping structure than

pthreads. Moreover, when we aimed for portability and flexibility in this testing

platform, we have not patched the kernel. However, if we wish to implement more

sophisticated scheduling structures as well as real-time scheduling algorithms, then

it will be imperative to patch the kernel. Another avenue in which I would like to

explore is the prospect of allowing the user to throttle onboard fan speeds as the only

method of cooling cores on our system is a combination of the sleep function call and

reducing the CPU operating frequency to its lowest level.

Moreover, Due to the increased usage of graphical processing units(GPUs) it would

be very logical to extend our research to allow for the practical validation of various

theoretical works centered around the power and thermal aware resource management

of both NVidia and AMD GPUs.
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