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ABSTRACT OF THE DISSERTATION 

PHYLOGENETIC ANALYSIS OF WITHIN-HOST SERIALLY-SAMPLED

VIRAL DATA 

by

Patricia Buendia 

Florida International University, 2006 

Miami, Florida 

Professor Giri Narasimhan, Major Professor 

The primary goal of this dissertation is the study of patterns of viral evolution 

inferred from serially-sampled sequence data, i.e., sequence data obtained from strains 

isolated at consecutive time points from a single patient or host. RNA viral populations 

have an extremely high genetic variability, largely due to their astronomical population 

sizes within host systems, high replication rate, and short generation time. It is this aspect 

of their evolution that demands special attention and a different approach when studying 

the evolutionary relationships of serially-sampled sequence data. New methods that 

analyze serially-sampled data were developed shortly after a groundbreaking HIV-1 

study of several patients from which viruses were isolated at recurring intervals over a 

period of 10 or more years. These methods assume a tree-like evolutionary model, while 

many RNA viruses have the capacity to exchange genetic material with one another using 

a process called recombination.

A genealogy involving recombination is best described by a network structure. A 

more general approach was implemented in a new computational tool, Sliding MinPD, 

one that is mindful of the sampling times of the input sequences and that reconstructs the



viral evolutionary relationships in the form of a network structure with implicit 

representations of recombination events. The underlying network organization reveals 

unique patterns of viral evolution and could help explain the emergence of disease- 

associated mutants and drug-resistant strains, with implications for patient prognosis and 

treatment strategies. In order to comprehensively test the developed methods and to carry 

out comparison studies with other methods, synthetic data sets are critical. Therefore, 

appropriate sequence generators were also developed to simulate the evolution of 

serially-sampled recombinant viruses, new and more through evaluation criteria for 

recombination detection methods were established, and three major comparison studies 

were performed. The newly developed tools were also applied to “real” HIV-1 sequence 

data and it was shown that the results represented within an evolutionary network 

structure can be interpreted in biologically meaningful ways.
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1 Introduction

RNA viral populations have an extremely high genetic variability, largely due to 

their astronomical population sizes within host systems, high replication rate, and short 

generation time. Thus the rapidly evolving RNA viruses are an ideal system for testing 

phylogenetic methods with the goal of studying the viral evolutionary process, 

evolutionary pressures in its environment, speciations, gene transfers, host infection and 

survival, and general host-virus interactions. In 1999 a groundbreaking study on HIV 

evolution was published by Shankarappa et al. (Shankarappa et al. 1999). It is, to date, 

the most comprehensive study of HIV-1 evolution in vivo. This study performed 

phylogenetic and statistical analysis on sequence data (viral DNA and plasma RNA) from 

viral samples that were collected at recurring time intervals from nine patients over a 

span of 8 to 12 years. The study provided insight into within-host viral evolution and 

helped find patterns that may explain the emergence of harmful mutants associated with 

disease progression. The data was made available at GenBank and was used in numerous 

studies each of which sought to examine a different aspect of viral sequence evolution 

(Guindon et al. 2004; Meintjes and Rodrigo 2005; Rodrigo et al. 2003; Shriner et al. 

2004; Williamson 2003).

Shortly thereafter, two phylogenetic computational methods were developed 

specifically to analyze serially-sampled data. These include TipDate (Rambaut 2000), a 

Maximum Likelihood method, and sUPGMA, a distance-based method inspired by 

UPGMA and adapted to handle serial samples (Drummond and Rodrigo 2000). 

Additional new methods that analyze serially-sampled data were developed in the
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following years, several of which were included in a comprehensive comparison study 

that evaluated phylogenetic tree inference and estimation of evolutionary relationships 

(Buendia et al. 2006a). Among the methods to analyze serially-sampled data, MinPD and 

Sliding MinPD, both of which are described in this dissertation, are the only methods that 

take genetic recombination into account (Buendia and Narasimhan 2004). Many RNA 

viruses have the capacity to exchange genetic material with one another in a process 

called recombination. Recombination is known to be an integral part of the HIV life 

cycle, with the recombination rate in HIV-1 being one of the highest among all known 

organisms (Rambaut et al. 2004). However, traditional phylogenetic tools perform poorly 

on data sets containing recombination (Posada and Crandall 2002).

The primary goal of this dissertation is the study o f patterns o f viral evolution 

inferred from serially-sampled sequence data, i.e., sequence data obtained from strains 

isolated at consecutive time points from a single patient or host. Investigating within-host 

viral evolution over an extended period of time provides a comprehensive and direct 

approach to the understanding of evolutionary mechanisms (such as mutational changes 

that occur during the replication of a genome over many generations), evolutionary 

pressures due to interactions with the host environment, and corresponding viral 

adaptations. From the viewpoint of clinical and biomedical research, investigating the 

intra-host viral evolution through serial sampling of the viral strains over a period of time 

may lead to a better understanding of the progression of a disease in that patient, or assist 

in the evaluation of drug therapies or vaccines for the disease.
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The primary goal of this dissertation is described in terms of several subgoals and 

is summarized as follows:

Goal 1: Existing tools to study the phylogeny of serially-sampled data are often 

adaptations of traditional phylogenetic tools. However, these tools are limited in their 

abilities and are often either inefficient and/or inaccurate. Thus the first goal of this 

dissertation is to develop efficient computational tools to find  ancestor-descendant 

relationships between serially-sampled sequence data and to construct an evolutionary 

network for them.

Goal 2: Existing phylogenetic tools perform poorly when recombination is involved 

(Posada and Crandall 2002). The second goal of this dissertation is to develop efficient 

computational tools to automatically detect recombination in serially-sampled sequence 

data and display the recombination events within an evolutionary network structure. It is 

important to ensure that the designed algorithms also estimate the statistical significance 

of the predicted relationships.

Goal 3: There are only a limited number of serially-sampled viral data sets available 

from public databases. In order to comprehensively test all the developed methods and to 

carry out the comparison studies, synthetic data sets are critical. Therefore, the next goal 

of this dissertation is to build tools to generate realistic synthetic data sets, i.e., 

appropriate sequence generators to simulate the evolution of serially-sampled 

recombinant viruses.

Goal 4: All the methods developed here needed to be evaluated and compared to existing 

and competing tools. Due to the complexity of recombination detection approaches,

3



special evaluation procedures were needed. Previous studies did not compute specificity 

and sensitivity values, and more importantly, did not assess the number of breakpoints 

and donors that were correctly identified (Posada and Crandall 2001a; Wiuf et al. 2001). 

Thus, the next goal of this dissertation is to establish the criteria and mechanisms to 

perform comparison studies on recombination detection tools and phylogenetic tools fo r  

serially-sampled recombinant data.

Goal 5: In the last six years, several methods have been devised to study serially-sampled 

data, many of which are variants of phylogenetic methods for contemporaneous taxa 

(Drummond and Rambaut 2003; Drummond and Rodrigo 2000; Ogishima et al. 2001; 

Rambaut 2000; Ren et al. 2001). The performance o f these methods needs to be 

compared with the performance o f our newly implemented tools.

Goal 6: The sixth goal is to evaluate methods to study serially-sampled recombinant 

sequence data through extensive computer simulation studies. Note that this evaluation 

procedure is different to the one in goal 5 as it evaluates recombination detection 

methods. The evaluation procedure will be performed using the evaluation mechanisms 

and criteria devised as part of Goal 4 of this dissertation.

Goal 7: An important goal of this dissertation is to apply the newly developed tools and 

techniques to “real” data sets and to interpret the results in biologically meaningful ways. 

This step is critical in order to investigate the biological and evolutionary aspects of real 

viral sequences sampled serially from the same patient. The tools developed in this 

dissertation were intended to help study the evolution of viral species and to respond to a 

myriad of questions that may shed light on its effect on the host. For example, it is
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important to understand HIV infection vis-a-vis the progression of the AIDS disease in a 

patient. This raises questions such as: (1) Which initial viral strains did the harmful 

mutants (such as the mutants with the X4 phenotype) originate from? (2) Which of the 

initial strains became extinct and when did this happen? (3) Which strains showed 

positive selection, proliferating with descendants surviving over extended periods of 

time? (4) When did most recombinant strains appear and how do these times correlate to 

any treatments that may have been administered? Demonstrating the viability of our tools 

when applied to real viral data sets will help translate our results to the clinical arena.

In the course of this dissertation we will discuss the biological, theoretical and 

computational factors that influenced or contributed to the development of this project.

As a start, in C hapter 2, the biological background of our project, RNA viral 

evolution, will be explained in detail. This chapter also includes a survey of the different 

phylogenetic methods that study serially-sampled data and the different tools that can be 

used to detect recombination.

Next, in C hapter 3, we will present a new simulation program, Serial NetEvolve, 

devised to simulate the sampling of serially-sampled nucleotide sequences. Serial 

NetEvolve is a sequence generator for serial samples that was developed to better 

emulate recombining RNA virus sequence evolution. In C hapter 4, we will present 

MinPD, the first version of our method to study serially-sampled viral sequence data. 

Results of a comprehensive comparison study of MinPD with competing methods will be 

presented in C hapter 5. The evaluation techniques implemented in the comparison 

studies are also detailed in that same chapter. We make a digression in C hapter 6 and
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discuss a tool called Recldenitfy, which will prove valuable in evaluating recombination 

detection tools for synthetically generated data sets. In C hapter 7, Sliding MinPD, our 

final and complete version of the method to address the main goal of this dissertation, 

will be presented. The motivation for the algorithm and the computational details behind 

the design will also be discussed. Sliding MinPD carries out an automated recombination 

detection process and replaces the visual output of standard recombination detection 

methods with an output of the list of the inferred recombinant and non-recombinant 

sequences along with statistical significance values associated with the inference. Sliding 

MinPD uses this output to construct a network that describes the evolutionary 

relationship of the data. The evaluation tool described in chapter 6 will be used to 

evaluate the results of Sliding MinPD and the results will be discussed in detail. Chapter

8 presents the results of applying Sliding MinPD to a data set of HIV sequences sampled 

from several patients over a period of 10 years. We conclude with a summary of newly 

gained biological or computational insights in C hapter 9.
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2 Background and Related Research

This chapter introduces the relevant background and presents previous work on 

areas related to this dissertation.

2.1 Evolution and Phytogeny

A DNA sequence provides the instructions for how each process is carried out 

within a cell of an organism. In evolutionary studies, DNA sequences or gene sequences 

are also recognized as an invaluable document of the past history of the organism. The 

goal of phylogenetic analysis is to recover and display the evolutionary information that 

is written into the DNA sequence. The use of phylogenetic tools is standard practice in 

the analysis of many aspects of viral pathogenesis and viral evolution. The evolutionary 

history of the primate lentiviruses SIV, HIV-1 and HIV-2 has been reconstructed in great 

detail by inferring phylogenetic trees (Rambaut et al. 2004). Viral evolutionary 

parameters, such as mutation rate are often estimated from previously inferred 

phylogenetic trees. The analysis of timing of events, demographic processes, or natural 

selection, is now possible through the analysis of phylogenetic relationships.

2.1.1 Phylogenetic Trees

Traditional phylogenetic methods were conceived for the purpose of inferring the 

history of a set of contemporaneous taxa through the reconstruction of a phylogenetic 

tree. In such trees the taxa being analyzed appear at the leaves of the tree. The ancestral 

sequences are usually unknown and are represented by the internal nodes of the tree. The 

branch lengths in a phylogenetic tree represent the number of substitutions per site. When
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the molecular clock model of evolution is assumed, branch lengths do also represent 

“time elapsed” since the “most common recent ancestor,” i.e., the internal node at which 

the branches originate. Figure 1 shows two phylogenetic trees, one in which the branch 

lengths represent genetic distances but not time (Fig la), and the other in which the 

molecular clock model is assumed (Fig lb).

a) b)

Figure 1 (a) Phylogenetic tree with different branch lengths (b) Phylogenetic tree assuming a clock 

model of evolution

The closer (in terms of substitutions per site and in terms of time, if the clock 

model is enforced) a sequence is to the direct ancestor, the shorter is the branch. A 

phylogenetic tree does not offer a direct way to represent ancestral sequences (sequences 

at the internal nodes) as such trees were designed to represent the genealogy of sequences 

sampled contemporaneously. However, a sequence that represents (and is therefore 

identical to) the direct ancestor at the internal node, might be represented by a leaf with a 

branch of length zero. While the branch lengths of a tree are often used in the estimation 

of evolutionary parameters, such as the time to the most recent ancestor (TMRA) or the 

mutation rate, the tree topology is the focal point in the study of cladistics. Each subtree
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originating from a particular node that contains one or more taxa is called a clade. 

Questions related to determining which taxa cluster together in a subtree and the 

evolutionary meaning of a given clade is the topic of lengthy discussions and analyses 

among cladists and taxonomists.

An important focus of this dissertation is a variant of the phylogenetic 

reconstruction problems, which arises when some of the sequences at the internal nodes 

are available, such as with serially-sampled viral sequences. For this variant, traditional 

phylogenetic methods interpret all the inputs as contemporaneous taxa. We will discuss 

this issue later.

2.1.2 Models of Sequence Evolution

Many phylogenetic tree reconstruction methods assume a model of sequence 

evolution, i.e., a DNA substitution model, which makes certain assumptions about the 

nature of the molecular evolution process. For example, some models allow for variation 

in nucleotide frequencies; more complex models may allow different kinds of 

substitutions to occur with different probabilities, while others may take into account 

variations in the rate of substitution between sites (Page and Holmes 1998b). Figure 2 

shows the possible nucleotide substitutions where transitions involve changes between A 

and G, or between C and T, while transversions involve changes between A and C, or 

between G and T.

9



> G

> T
Transitions

Figure 2. The possible substitutions among the four nucleotides.

The first model proposed was the Jukes Cantor model (JC69), which is perhaps 

the simplest model of sequence evolution. It assumes that all 4 bases have the same 

frequencies and that all substitutions are equally likely (Jukes and Cantor 1969). The 

Kimura 2 parameterized model (K2P) incorporates the observation that the rate of 

transitions (a) may differ from the rate of transversions (P) (Kimura 1980). Typically, 

transitions are more frequent than transversions, especially in mitochondrial DNA. The 

Hasegawa, Kishino, and Yano (HKY85) model allows transitions (a) and transversions 

((3) to occur at different rates and allows base frequencies (tca, ^c, tiq, ^ t) to vary as well 

(Hasegawa et al. 1985). The K2P and HKY85 transition probability matrices are given in 

Figure 3.

K2P

• P a p 
P-  p ■ p a

HKY85

a p ■ p

P a p •

■ * c P  3tGa  7TT p

p = ' " g[3

nAa * c p • nTp

^AP irca  jtGp

Figure 3. K2P and HKY85 transition probability matrices
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2.1.3 The Molecular Clock

One of the simplifying assumptions made in some of the early models of 

molecular evolution was that mutations occur at a uniform rate over time, giving rise to 

the “molecular clock hypothesis” (Page and Holmes 1998c). While this hypothesis has 

since been highly debated and widely disputed, it is an important assumption that enables 

the evolutionary history to be placed within a timeframe. Phylogenetic methods that 

assume a molecular clock infer trees in which the branch distances correlate to the 

evolutionary time elapsed (Figure lb). Methods of phylogenetic reconstruction are more 

likely to be accurate if genes evolve at a constant rate. However, it has been shown in 

numerous studies that is not the case. A recent study showed that many viral data sets 

were better explained by different models of evolution and that the molecular clock 

hypothesis was rejected in most of the data sets analyzed (Posada and Crandall 2001b).

2.1.4 Phylogenetic Methods

The main phylogenetic methods that infer trees from aligned sequences can be divided 

into one of four categories: Parsimony, Maximum Likelihood, Bayesian, and distance- 

based methods.

Maximum Parsimony

Maximum parsimony is based on the principle of Occam’s Razor, according to 

which the best tree is the one that describes the data set with the fewest changes in states 

of characters. The advantages of parsimony heuristic searches include computational 

simplicity and high efficiency, especially with large data sets. On the negative side, with 

small and highly divergent data sets, parsimony will greatly underestimate the

11



substitutions, especially for long branches in a tree (Hillis 1999). DNAPARS (Felsenstein 

2004) carries out the traditional and popular maximum parsimony method using stepwise 

addition and local and global branch rearrangements. It is part of the PHYLIP software 

package (Version 3.6) and was included in a comparison study that we performed to 

assess how traditional methods compare to methods designed specifically to analyze 

serially-sampled data.

Consider the following 4 sequences (1) ATATT (2) ATCGT (3) GCAGT (4) 

GCCGT, and consider the first nucleotide of each sequence (i.e., first site). Figure 4 

shows two rows of trees corresponding to two of the trees considered by the parsimony 

method for the first site. For each tree, the topology is shown on the leftmost column 

along with two possible reconstructions showing two (of the 16) possible labels on the 

two internal nodes. Every adjacent pair of nodes with distinct nucleotide labels 

corresponds to a mutational change. Thus, tree 1 has 2 reconstructions for site 1, of which 

the one with total change of 1 is the most parsimonious. Tree 2 has 2 reconstructions, 

both requiring 2 changes. Therefore for site 1, Tree 1 would be chosen as the most 

parsimonious.

The total number of evolutionary changes on a tree (the length of the tree) is the sum of 

the number of changes at each site (Page and Holmes 1998a):

k

L= 2  Cj 
i=1

Tree 1 in Figure 4 has a total length of 1+1+2+1+0=5 changes. The other two 

trees have total lengths of 6 and 7 changes. Therefore, tree 1 is the most parsimonious.
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1 change 5 changes

Figure 4. Two unrooted trees for four sequences 1-4 for the first site (column) of the sequences 

Distance-based Methods

In distance-based analyses, a measure of dissimilarity between every pair of 

sequences is calculated and stored in a distance matrix. The distances can be a simple 

ratio of the number of site differences (i.e., p-distance or Hamming distance) to the length 

of the sequence, or a “corrected” estimate that uses a model of evolution to calculate the 

total number of sites that have changed between the two sequences (because some sites 

may have changed more than once). A corrected distance uses a model of sequence 

evolution such as the K2P or HKY85 models described above. Consequently a tree with 

respective branch lengths can be estimated from the distance matrix. In the K2P model 

for example, the corrected distance is given by

d = - U n { \ - 2 P - Q ) - - M \ - 2 Q ) ,
2 4
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where P and Q are the observed proportional differences between the two sequences due 

to transitions and transversions, whose numbers are P and Q, respectively (Page and 

Holmes 1998b).

Examples of methods that construct a tree from distance data are the Neighbor 

Joining (NJ) and the UPGMA methods. These methods are computationally fast but rely 

on a single point estimate of the tree rather than searching for an optimal solution (Hillis 

1999). The Neighbor-Joining method of (Saitou and Nei 1987) is one of the most 

popular. It constructs a tree by successive clustering of lineages, setting branch lengths as 

the lineages join. The tree is not rearranged thereafter. The program is very fast which 

makes it particularly effective for large studies or for bootstrap or jackknife resampling 

studies, which require runs on multiple data sets.

Maximum Likelihood

For a given (explicit) model of evolution, a likelihood score is calculated for each 

possible tree as the probability of observing the data if that tree is the correct 

phylogenetic tree. The model describes the probability of mutational changes. Mutations 

at distinct sites are assumed to be independent events and the likelihood of a given tree is 

the product of the likelihoods for all the characters (sites), as shown below:

i = f i l ,
!=1

Since the likelihood values are very small numbers, the logarithm of the likelihood is 

normally used (with the log likelihood of the tree being the sum of the log likelihoods for 

the characters) (Page and Holmes 1998a), as shown here:
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l n i  = 2 > , .
i=1

The maximum likelihood solution is the tree with the highest log-likelihood score. 

The likelihood method outperforms parsimony and distance methods when it comes 

down to accurately inferring a phylogeny. One disadvantage is that the outcome hinges 

on the choice of a model of evolution, which has to be proposed a priori. The biggest 

disadvantage is its computational complexity, which until recently has impeded its use 

with complex models or large data sets (Hillis 1999). Recent efficient implementations 

have improved its ability to handle larger data sets. FastDNAml is an efficient 

implementation of the maximum likelihood (ML) method and was chosen as part of a 

comparison study that included methods for serial samples to examine how traditional 

phylogenetic methods perform with non-contemporaneous data (Felsenstein 1981; Olsen 

et al. 1994).

Bayesian Methods

Bayesian inference of phylogeny is based upon a quantity called the posterior 

probability distribution of trees, which is the probability of a tree conditioned on the 

observations. The conditioning is accomplished using Bayes Theorem. The posterior 

probability distribution of trees is impossible to calculate analytically; instead, a 

simulation technique called Markov Chain Monte Carlo (or MCMC) is used to 

approximate the posterior probabilities of trees. In each new step a new tree is either 

accepted or rejected based on a value that is calculated from the likelihood, the prior 

used, and the proposal ratio. A model of evolution may be incorporated into a Bayesian
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method with a prior distribution on the model parameters. The proportion of the time any 

single tree is visited during the course of the chain is a valid approximation of the 

posterior probability (Huelsenbeck and Ronquist 2001).

2.1.5 Statistical Tests

Non-Param etric B ootstrapping of Phylogeny is a statistical method that is applied 

when distributions (such as that of phylogenetic trees) are difficult to calculate exactly. 

The distributions can be estimated by the repeated creation and analysis of artificial 

datasets. In the non-parametric bootstrap method, these datasets are generated by 

resampling the original data, whereas in the parametric bootstrap, the data are simulated 

according to the hypothesis being tested (Page and Holmes 1998a). Resampling methods 

are popular in the study of phylogenetics and are used to empirically determine the 

variability of the estimation. Non-parametric bootstrapping is a popular way of assessing 

the robustness of a tree. The bootstrap method involves resampling of sites/columns (with 

replacement) from a set of columns in a multiple sequence alignment. Each resampling is 

called a pseudoreplicate. Example: A run of a bootstrap procedure on two sequences

(1) AGCTG

(2) AGTAC

could randomly pick site 1, then 1 again, then 4, then 2, and 4 again. The resampled 

sequences would have sites 11244 of the original sequences. When maintaining the order 

of columns the pseudoreplicates would be composed of the following nucleotides:

(1) AAGTT

(2) AAGAA
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The pseudoreplicates are used to reconstruct new phylogenies. The inferred bootstrap 

replicate trees are then analyzed by computing the proportion of the replicates in which 

each branch from the inferred tree occurs, thus providing a robustness measure for every 

edge of the inferred tree.

Likelihood Ratio Tests Comparisons of two competing models are also possible, using 

Likelihood Ratio Tests (LRT), a powerful statistical test in which competing hypotheses 

(HO and H I) are compared using a statistic based on the ratio of the maximum 

likelihoods under each hypothesis;

A = log Lx -  log L0.

Results can be expressed in terms of P-values, the probability of the statistic being at least 

as extreme as observed when H is true: low P-values (e.g., <0.05) suggest rejection of HO 

in favor of HI (Page and Holmes 1998a).

2.2 RNA Viruses

A virus cannot grow or reproduce on its own and in order to replicate it must 

infect the cells of a living organism, the host. RNA viruses are notorious for their 

tremendous evolutionary potential. Compared to human genes, RNA viral genes acquire 

multiple mutations in a relatively short time. Their great adaptability is thought to be a 

consequence of a high per generation genomic mutation rate caused by the error-prone 

RNA polymerases and by the very large population sizes often reached during infections 

(Drake and Holland 1999). Notable human pathogenic RNA viruses include SARS, 

Influenza, HIV-1 and Hepatitis C viruses.
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RNA viruses living within a host have genetically diverse populations and are 

referred to as quasispecies. Fast evolving RNA viruses provide a quick and efficient way 

to explore the applicability of the classical theories of population genetics and evolution 

and the development of new theoretical frameworks. The evolution of human viruses, 

such as HIV-1 and Hepatitis C virus, are also influenced by host conditions, such as a 

weak immune system or the intake of antiretroviral therapy. Understanding these 

interactions may facilitate the prediction and prevention of emerging new viral pathogens 

and resistance-breaking variants.

2.2.1 Differences between RNA and DNA viruses

The structure of the RNA viruses is basically the same as that of DNA viruses - a 

core of genetic material, usually contained within a protective capsid of protein, and in 

many cases, a lipid envelope as well. The life cycle of all viruses follow the same general 

strategy to ensure their survival: An infectious cycle involves attachment to the host cell, 

penetration, genome translation, genome replication, creation and assembly of particles 

containing the genome, emergence from the cell (Flint et al. 2000a).

The major differences between DNA and RNA viruses arise from the fact that the 

RNA viruses genetic information is stored, as their name suggests, in RNA, not DNA. 

This has important consequences in the life cycle of the virus - and gives it the potential 

to outwit the immune system. There are two other major differences between DNA and 

RNA viruses that explain the high diversity of RNA viral populations and the properties 

that allow RNA viruses to escape the immune system (Flint et al. 2000b):
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1. Error-prone replication process: In contrast to DNA-directed DNA 

polymerases, RNA-dependant RNA polymerases, which are responsible for 

RNA genome replication, do not possess proof-reading capabilities to correct 

replication mistakes. The result is that the error frequencies in RNA 

replication can be as high as one error per 103 to 104 nucleotides polymerized, 

whereas the errors in DNA replication are about a 1000-fold lower. These 

mutations make it more difficult for any organism to develop any kind of 

lasting immunity to the virus.

2. RNA Recombination: In this process nucleotide sequences are exchanged 

among different genomic RNA molecules. Recombination is also prevalent in 

DNA viruses, RNA viruses, however, accomplish it in at least two different 

ways. First, there is segment reassortment, which is the exchange of the entire 

RNA molecules between genetically related viruses with segmented genomes. 

Influenza virus is an example of a virus with eight genome segments that are 

packaged into each virus particle. Second, in copy-choice replication, the viral 

polymerase switches between different RNA templates during transcription 

giving rise to mosaic genomes. Recombination is a feature of many RNA 

viruses, it is an important mechanism for producing new genomes with 

selective growth advantages. Some viruses with very high recombination rates 

include the polio virus, influenza virus and the HIV virus.
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2.2.2 Examples of RNA Viruses

Hepatitis C Virus

Hepatitis C virus (HCV), the unique Hepacivirus of the Flaviviridae family, is an 

enveloped, positive single-stranded RNA virus. HCV infects humans, but the virus has 

been transmitted to chimpanzees in controlled experiments (World Health Organization 

2002). Acute infection with HCV very often progresses to chronic infection, which may 

eventually lead to cirrhosis and hepatocellular carcinoma (HCC).

One of the most important features of HCV is that its genome exhibits significant 

genetic variability associated primarily with the error-prone nature of its RNA-dependent 

RNA polymerase. HCV probably follows the replication strategy of other positive-strand 

RNA viruses. The virus enters the cell and is uncoated in the cytoplasm. The viral RNA 

exerts two kinds of functions in the cytoplasm: initially it operates as a messenger and 

initiates translation at a ribosome, then, after viral RNA polymerase has been produced, it 

becames a template for replication (World Health Organization 2002).

Figure 5. Structure of the Hepatitis Virus C. (http://www.edc.gsph.pitt.edu/virahepc)

20

http://www.edc.gsph.pitt.edu/virahepc


A study was recently conducted to determine if immunologically-driven sequence 

variation occurs with persistence of Hepatitis C virus (HCV) infection. The study used 

serially-sampled data and consisted in analyzing HCV sequence evolution and the CD8+ 

T-cell responses in subjects who were followed prospectively from before infection, at 

initial viremia to beyond the first year at multiple time points in acute HCV infection 

(Cox et al. 2005). The findings of the study reveal two distinct mechanisms of sequence 

evolution involved in HCV persistence: viral escape from CD8 T-cell responses and 

optimization of replicative capacity. Recombination was not recognized as a likely 

mechanism for creating diversity of HCV until a recent finding of a spontaneous HCV 

recombinant (RFl_2k/lb) in St Petersburg, which was further analyzed to reveal the 

possible mechanism of recombination in the virus (Kalinina et al. 2004). The study 

suggests that R Fl_2k/lb  has emerged by homologous recombination during minus-strand 

synthesis via template switching because of constraints imposed by the HS1 hairpin of the 

3’-parental genome. However, the consensus at the moment is that homologous 

recombination does not play an extensive role in HCV evolution. HCV and HIV have

similar and high rates of mutation (-2x10" errors per site per year) (Allain et al. 2000;

i j
Rambaut et al. 2004), but HCV has a production rate of 10 new virions a day, which 

exceeds comparable estimates of the production of HIV by more than an order of 

magnitude (Cox et al. 2005).
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HIV-1 Virus

HIV belongs to a special class of viruses called retroviruses. Within this class, 

HIV is placed in the subgroup of lentiviruses. HIV-1 was the first strain of HIV that was 

discovered by Luc Montagnier at the Pasteur Institute in Paris in 1983. HIV-2 was 

discovered in 1986 as a distinct strain prevalent in certain regions of West Africa. The 

two major groups of HIV-1 isolates are classified as: group M, which includes most HIV- 

1 isolates and group O, which represents rare “outliers” (Flint et al. 2000c). Figure 6 

shows the structure of an HIV-1 virus.

gp120
gp41

viral
envelope

p17(matrix)

protease
reverse
transcriptase

RNA

integrase

Figure 6. Structure of the HIV-1 virus (http://www.aids-india.org/hivbasics2.htm)

HIV has two RNA genomes in its capsid. The first step in the life cycle of HIV 

consists of the virus attaching itself to a cell by binding of the surface protein gpl20 and 

the transmembrane protein gp41 to a specific receptor on the surface of the host’s cell. 

The viral contents of the capsid are deposited into the cytoplasm. The viral RNA genome 

is reverse-transcribed into double stranded DNA by the reverse transcriptase. In the next 

step the DNA and integrase enter the nucleus of the infected cell and the DNA is
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integrated into the host genome. This step is characteristic to all (and only) the 

retroviruses, other viruses do not integrate into the host genome. Integrated viral DNA is 

called a provirus. Transcription of the provirus produces mRNA some of which are later 

translated into viral proteins (p24, protease, integrase, gpl20, gp41, and other virion 

components) in the cytoplasm and others which became viral progeny genomes. Virion 

components assemble at budding sites on the plasma membrane. Finally, the nascent 

virions bud from the surface of the cell (Flint et al. 2000d).

Acquired immunodeficiency syndrom (AIDS) is the name given to the disease 

caused by the HIV virus. AIDS has become one of the' major causes of death and the 

number of new infections is rising rapidly in parts of sub-Saharan Africa. HIV has 

become the most intensely studied infectious agent (Flint et al. 2000c).

2.2.3 HIV Within-Host Evolution

One of the earliest and most striking observations made about HIV is the 

extensive genetic variation that the virus has within individual hosts, particularly in the 

hypervariable regions of the envelope (env) gene that code for the gpl20 and gp41 

proteins. This variation makes HIV one of the fastest evolving of all organisms. HIV has 

a high mutation rate of 0.2 errors per genome per cycle and a viral generation time of 2.5 

days (Rambaut et al. 2004). When considering within-host genetic variation, one may 

want to ask how much of this diversity is shaped by immune selection, and what is the 

relationship between genetic diversity and clinical outcomes? One answer is that HIV 

successively fixes mutations that allow it to evade immune responses, especially in the 

env gene. The remarkable strength of immune selection was revealed in a recent analysis
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of evolutionary dynamics in 50 HIV-1 patients (Williamson 2003). Most fixed env 

amino-acid changes in these patients confer a selective advantage, with an average of one 

adaptive fixation event every -2.5 months. Under these criteria, HIV shows stronger 

positive selection than any other organism studied so far.

The analysis of phylogenetic trees from serially-sampled data has revealed that 

within-host evolution and inter-host evolution are radically different processes, with 

positive selection dominating in the former, but not in the latter. Intra-host HIV 

phylogenies have a strong temporal structure, reflecting the successive fixation of 

advantageous mutations and the extinction of unfavorable lineages. In contrast, trees that 

track viral evolution among hosts show little evidence of continual positive selection 

(Rambaut et al. 2004).

2.2.4 Emergence of HIV X4 Mutations and Drug Resistant Mutations

The emergence of X4 viruses has been associated with disease progression to 

AIDS(Shankarappa et al. 1999). X4 strains have a syncytium-inducing (SI) phenotype. 

Syncytium is a large cell-like structure formed by the joining together of two or more 

cells forming a single cell with many nuclei. The majority of these SI viruses are capable 

of using both CCR5 and CXCR4 as co-receptors for viral entry. A recent study showed 

that X4 variants emerged around the time of the early to intermediate phase transition 

during infection and then achieved peak representation and began a decline around the 

time of failure of T-Cell homeostasis and decline of CD4+ T-cells (Shankarappa et al. 

1999). The results of a study of subtype C virus isolates from 28 patients from Harare, 

Zimbabwe, 20 of whom were receiving antiretroviral treatment, suggest that CXCR4-
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tropic viruses are present within the quasispecies of patients infected with subtype C 

virus and that antiretroviral treatment may create an environment for the emergence of 

CXCR4 tropism (Johnston et al. 2004). Indeed, one of the major factors limiting the 

efficacy of virus-specific therapies against many retroviruses and RNA viruses is the 

development of resistance to antiviral drugs. Drug resistant mutations have been observed 

in Hepatitis B and C virus and are the primary cause of treatment failure of the first 

approved hepatitis B virus-specific drug (Lin et al. 2004). The emergence of drug- 

resistant HIV strains constitutes the largest setback in the treatment of AIDS. Highly 

active antiretroviral therapy (HAART), involving combinations of drugs that act against 

different aspects of the viral life cycle, was believed to rid the body of virus altogether. 

But two key aspects of HIV biology allowed the virus to persist long after the initiation of 

therapy: viral reservoirs and evolution. These reservoirs can serve to replenish the main 

pool of replicating virus and are now known from a variety of cell types housed in 

various tissues throughout the body (Rambaut et al. 2004). Using phylogenetic analysis 

and a criteria that categorizes reservoir virus and contemporary virus as serially-sampled 

data, a study concluded that viral divergence from a calculated most recent common 

ancestor is a strong predictor of viral reservoirs (Nickle et al. 2003).

2.2.5 Recombination in Viruses

Genetic recombination is an integral part of an RNA virus lifecycle, in which 

nucleotide sequences are exchanged among different RNA molecules. In HIV, 

recombination occurs between two co-encapsidated RNA genomes during reverse 

transcription. During DNA synthesis, the reverse transcriptase, which is prone to errors,
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may switch from one strand to the other, either during the first (-) strand DNA synthesis, 

or during the second (+) strand DNA synthesis, as part of the mechanism of strand 

displacement assimilation (Flint et al. 2000e). The recombination rate of HIV is one of 

the highest of all organisms, with an estimated three recombination events occurring per 

genome per replication cycle (Rambaut et al. 2004). Within individual hosts, 

recombination is more difficult to detect, but it interacts with selection and drift to 

produce complex population dynamics, and perhaps provides an efficient mechanism for 

the virus to escape from the accumulation of deleterious mutations or to jump between 

adaptive peaks. A recent study of serial HIV samples illustrates the unusual and important 

patterns of viral adaptation through recombination that can accelerate the progression to 

AIDS. Although only a single patient was included in the study, it was shown that the 

mechanism of recombination between divergent viruses, with its ability to create 

chimeras with increased fitness, correlated well with the disease progression of the patient 

(Liu et al. 2002). Recombination allows the virus to accumulate and exchange drug- 

resistant mutations in a nonlinear fashion, leading also to rapid evolution of drug-resistant 

mutants, even between different viral reservoirs. Recombination also complicates the 

analysis of within-host sequence variation and virus-host interaction in HIV confounding 

the distinction between total genetic variation and selectively advantageous changes. In 

particular, many evolutionary inferences about HIV are made after the reconstruction of 

phylogenies, which can be greatly affected by recombination. Because recombination is 

so frequent, it cannot be factored out by simply identifying recombinants and excluding 

those from the analysis (as was often the practice in early analysis (Korber et a l 2000)). 

HIV should, therefore, be studied with methods that are robust to the occurrence of
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recombination events, or that explicitly take recombination into account (Rambaut et al. 

2004).

2.3 Recombination Detection

Phylogenetic methods that do not account for recombination can make incorrect 

inferences in the presence of recombination (Posada and Crandall 2002; Schierup and 

Hein 2000a; Schierup and Hein 2000b). It is therefore critical to detect recombination as 

the assumption of a single underlying phylogeny can be severely biased by the presence 

of recombination. In recent years the development of new tools to model and test for 

recombination have led to several studies that compare the different methods and assess 

their accuracy (Posada and Crandall 2001a; Wiuf et al. 2001). Some methods only 

determine the presence or absence of recombination, without trying to infer 

recombination breakpoints (Worobey 2001). Other more sophisticated methods attempt 

to detect recombinant signals and parental/donor sequences for one or more “query” 

sequences (Lole et al. 1999; Martin et al. 2005b; Strimmer et al. 2003). Here, we will 

present and discuss some of the methods that detect breakpoints and parental/donor 

sequences.

2.3.1 Effect of Recombination on Traditional Phylogenetic Analyses

Conventional phylogenetic programs are constrained to produce simple branching 

trees and can lead to gross misinterpretations if the data set contained recombinants. One 

main assumption of most phylogenetic methods is that there is only one phylogeny 

underlying the evolution of the taxa under study. Recombination violates this assumption
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by generating mosaic genes, where different regions have different phylogenetic histories. 

By ignoring the presence of recombination, phylogenetic analyses may be severely 

compromised. Ignoring recombination can have dramatic effects on the topology of the 

resulting phylogenetic tree and on phylogeny-based analyses (such as the estimation of 

the time to the most recent common ancestor). Ignoring recombination leads to larger 

genetic distances and an overestimation of the inferred time to the most recent common 

ancestor (MRCA), whereas variation in rates among nucleotide sites (rate heterogeneity) 

may be inferred (by maximum-likelihood methods) to be much higher than it actually is, 

The molecular clock hypothesis may also be falsely rejected when recombination signals 

in the data are not taken into account (Posada and Crandall 2002; Schierup and Hein 

2000a; Schierup and Hein 2000b).

When trying to understand the interaction between host and virus, one has to 

search for evidence that rates of non-synonymous (dN) substitution vary according to 

disease status. Here again, recombination complicates the analysis, as it might produce 

false-positive evidence for natural selection in measures of dN/dS (Rambaut et al. 2004).

The development of new methods that take into account recombination is 

necessary to make reliable inferences on many aspects of evolution. A simple way to start 

might be through the use of network approaches for phylogenetic inference, in which 

individual sequences are allowed to have many ancestors, and which provide a good 

alternative to traditional trees (Rambaut et al. 2004).
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2.3.2 Recombination Detection Methods

Modeling and detection of recombination is receiving increased attention with an 

ever-growing number of recombination detection tools being published in recent years 

(Fan and Robertson 2006). A great majority of these tools use pairwise sequence 

comparisons, such as the online tool RIP (Siepel and Korber 1995). Another large group 

of methods uses phylogenetic trees, like the popular bootscanning method (Lole et al. 

1999; Salminen et al. 1995). The goal of these methods is to identify the putative 

recombinant ancestor sequences for a query sequence from a set of aligned sequences. 

Two examples of recombination detection methods will be presented next.

Recombination Identification Program (RIP)

A sliding window is moved along the aligned input sequences, and at every 

position the query sequence is compared to each of the background representatives, 

similarity being quantified as the percentage of identical base pairs. After the window has 

traversed the alignment from left to right, the program displays the output revealing 

which background representative the query sequence most resembles at each position 

(Siepel and Korber 1995). Figure 7 shows the output of the detection process with the 

online tool RIP. The query sequence is 006.R and is compared to 8 background/reference 

sequences. By looking at the highest matching percentage to the left and right of a 

putative breakpoint, one may surmise that of the 8 sequences, 004.15 is the left 

recombinant donor and 005.93 the right recombinant donor. An alternative output that 

displays an alignment of the query sequence to the background sequences (data not 

shown here) indicates that the breakpoint site is around position 268. Since the analysis

29



was performed on a simulated data set, the correct answer is known. The donors and 

breakpoint (269 is the true breakpoint site) would be correctly identified with the above 

analysis.

In a second step RIP identifies the so-called “best matches,” if they are significant 

according to a statistical test that it applies.

Q u ery : 0 0 6 .R

Us_
LL.

0 .3 5
1 0 0  3 0 0  5 0 0  7 0 0

Position
<— » 0 0 5 .9 3  ..........—  0 0 5 .7 4  — —  0 0 5 .5 9      0 0 4 .1 7  « 0 0 5 .7 3  0 0 5 .6 5  —

Figure 7: RIP Graph

The standard Bootscanning method (SB)

Bootscanning relies on the alignment of a suspected recombinant sequence (the 

query sequence) with a set of potential donor reference sequences. Bootstrapped 

phylogenetic trees are built for each segment and finally the bootstrap value for placing 

the unknown with each of the reference sequences or sequence groups is tabulated and
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plotted along the genome (Lole et al. 1999; Martin et al. 2005b; Salminen et al. 1995). 

Recombination breakpoints can be found as the coordinate of the intersection of the 

plotted bootscan plots. The process requires a minimum of 4 sequences. Figure 8 shows 

the output of the RDP2 Bootscanning method for the same data set used with the RIP 

method and discussed above. The recombination signal is clear for this artificially 

generated data set. This sort of clear signal is, however, typically observed when the 

evolutionary history of the data set contains only one recombination event and the 

reference sequences are not too closely related to each other.
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Figure 8: Bootscan Graph

2.4 Analysis o f Serially-Sampled Data

2.4.1 Methods that Analyze Serially-Sampled Data

A viral sequence data set that has been sampled from the same host at successive 

time points is said to be serially-sampled. In the last few years, several methods have 

been devised to study serially-sampled data, many of which are variants of phylogenetic
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methods for contemporaneous taxa. Drummond and Rodrigo developed sUPGMA by 

modifying the conventional UPGMA method (Drummond and Rodrigo 2000; Posada and 

Crandall 2002). Ren and Ogishima published a sequential linking algorithm (its 

implementation will be referred to as SeqLink) based on the Holmes evolutionary 

framework (Ren et al. 2001). MinPD, a distance based method (Buendia and Narasimhan 

2004), is a program that was also inspired by the evolutionary framework, and is 

described in Chapter 4. Rambaut’s Update program is a variant of the traditional 

Maximum Likelihood (ML) method (Rambaut 2000). Finally, Drummond and Rambaut 

designed BEAST, which uses Bayesian MCMC (Drummond et al. 2002; Drummond and 

Rambaut 2003). Three of the above methods -  sUPGMA, TipDate, and BEAST -  assume 

a molecular clock, i.e., assume a stochastically constant or ultrametric rate of evolution. 

They are further constrained by the traditional tree style of handling contemporaneous 

data where the leaves (tips) correspond to the input taxa. The methods mentioned above 

cover most of the major approaches used for traditional phylogenetic analysis.

Table 1 gives a summary description of the relevant methods, while the next 

section provides a more detailed description of each. The method MinPD will be 

discussed in full detail in Chapter 4 of this dissertation, and the method Sliding MinPD 

will be discussed in Chapter 7. All of the above programs and two traditional 

phylogenetic methods mentioned in the previous section were included in a comparison 

study (discussed in Chapter 5) that sought to assess the performance of the different 

methods when provided with serially-sampled DNA data as input.
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Method ,$ Version f Description Imp "G B ek i| Ref
SeqLink A distance-based method inspired by the Holmes’)2 

Framework. Links all sequences from one time 
period with one sequence from immediate previous 
period with the minimum overall distance.

C No (Ogishima el al. 
2001: Ren et al. 
2001. Ren e t al
2003)

M inPD 1.0 MinPD  includes a recombination detection feature. 
Uses minimum distances to link portions Of a 
sequence to portions of any other sequence from  any 
previous time period.

C No (Buendia and 
Narasimhan 2004)

Sliding MinPD 1.0 Additional Features: 3 automated sliding window  
recombination detection options. Outputs the 
bootstrap support fo r  inferred relationships.

e No

Tip Date 1.2 Obtains Maximum Likelihood estimates o f the 
mutation rate from an input o f non- 
contemporaneous sequences and a known tree 
topology.
http://evolve.zoo.ox.ac.uk/software.html

C "■ ; Yes (Rambaut 2000)

BEAST 1.1.2 A Bayesian MCMC program. Unlike TipDate, tree 
topology is not required. 
httn://evolve.zoo.ox.ac.uk/software.html

Java Yes (Drummond and 
Rambaut 2003)

sUPGMA Pal 1.4 A d^t.HK'c-based program modified from llie
UPGMA method. A command line version o f the 
JAVA PAL 1.4 package was used for the 
experiments. httD://bioweb.oasteur.fr/docs/PA17. 
http://www.cebl.auckland.ac.nz/pa^es/CeblRun.html

Java Yes (Drummond and 
Rodrigo 2000)

Table 1: Description of algorithms developed to study serially-sampled data.

Sequential-linking algorithm (SeqLink)

Two versions of a sequential-linking algorithm have been designed, one based on 

the traditional neighbor-joining (NJ) method and one based on the ML method (Ogishima 

et al. 2001; Ren et al. 2001; Ren et al. 2003). We implemented the NJ version of the 

algorithm (as described in (Ogishima et al. 2001; Ren et al. 2003)). We refer to our 

implementation (written in the C programming language) by the name SeqLink. The 

algorithm is based on an evolutionary framework (Holmes et al. 1992). SeqLink is based 

on two assumptions:

■ The sequence from time point n with the minimum distance to some sequence in 

sampling period n+1 is the ancestor of all the sequences from sampling period 

n+1.

■ The ancestor of a sequence was sampled at the previous time period.
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Ties are broken by using additional criteria involving NJ branch lengths. 

Distances were measured using the JC69 distance, as other distance measures decreased 

the accuracy of the algorithm. A fatal flaw of this algorithm is that assumption (2) above 

need not be true, since there is no guarantee that the ancestral sequence was sampled in 

the previous time period.

TipDate

TipDate (Version 1.2) was designed to compute maximum likelihood (ML) 

estimates of the mutation rate from a set of non-contemporaneous input sequences (dated 

tips) assuming a molecular clock and a known tree topology (Rambaut 2000). The input 

sequences are called dated tips, as they are placed at the tips and not at the internal nodes 

of both the input (known topology) and output trees. According to the authors, TipDate 

was not intended as a method for constructing phylogenies, but rather to test evolutionary 

hypotheses and for estimating rates of molecular evolution.

Incorporating the sequence dates into the ML tree reconstruction method allows 

the sequences to be fitted to a constant rate model, enabling the inference of relative 

times of lineage splitting, and a rate of evolution that calibrates the tree into absolute 

time. The Tipdate tree has two scales: the time scale measured in time units and the 

branch-lengths scale measured in expected number of substitutions per site. A single rate 

of evolution is assumed for the entire tree (clock model), which gives a linear relationship 

between the two scales. TipDate recomputes the tree branch lengths to fit the molecular 

clock assumption by obtaining the maximum likelihood of the tree for different estimates 

of branch lengths.
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BEAST

BEAST (Bayesian evolutionary analysis sampling trees), version 1.1.2, is a 

software package for evolutionary inference from molecular sequences (Drummond and 

Rambaut 2003). BEAST infers information about the unknown true ancestral coalescent 

tree, population size, and the overall mutation rate from temporally spaced data, that is, 

from nucleotide sequences gathered at different times, from different individuals, in an 

evolving haploid population. BEAST is a Bayesian MCMC program that uses a complex 

and powerful input format (specified in XML) to describe the evolutionary model. The 

program assumes a molecular clock by default and accepts either contemporaneous data 

or non-contemporaneous data as input. The approach for non-contemporaneous data (also 

called dated tips here) is equivalent to the TipDate approach; BEAST differs from 

TipDate however in that it does not require a user-specified input tree topology. Instead 

the tree topology and the branch lengths are estimated jointly at each step during the 

MCMC run. The prior in BEAST is a coalescent prior on the tree shape with one of two 

population models: constant size model or exponential growth model. These models 

basically act as priors on the ages of nodes in the tree but the parameters (population size 

and growth rate) can be sampled and estimated.

sUPGMA

This is another distance-based program modified from the UPGMA method, 

which by definition assumes a uniform rate of evolution (Drummond and Rodrigo 2000). 

The program was implemented as a command line script using the JAVA PAL 1.4 

package available from the URL: http://bioweb.pasteur.fr/docs/PAL/. While the online
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version only requires a distance matrix and the sampling time information, the PAL' 

version also requires a mutation rate as additional input. Our experiments (data not 

shown) showed that the rate greatly affects the accuracy of the program. The online 

version does not require a rate input and is available from the URL: 

http://www.cebl.auckland.ac.nz/pages/CeblRun.html. The tree output is similar to the 

other two methods in that the branch lengths stop at vertical points that correspond to the 

sampling time.

With UPGMA, all tips on the tree terminate at the same time (i.e., the tree is 

ultrametric). sUPGMA allows the tips to terminate at different times but constrains tips 

sampled at the same time to terminate at identical distances from the root. The method 

consists of four sequential steps:

1. Step one involves estimating the expected number of substitutions per site 

accumulated between two sampling periods 8 eariy->iate- The expected distance 

between a pair of sequences, one from a later time point and the other from an 

earlier time point, is

E [ d i s t ( S eariy, S ja te )]— E [ d i s t ( S ( l ) eariy, S ( 2 ) eariy)] +  §early—>late-

The first term on the right-hand side is simply the expected average distance 

between any two sequences from the earlier time point. To obtain an estimate 

of 8, we substitute the average pairwise distance between early and late 

sequences calculated from our sample for the term on the left and the average 

pairwise distance between pairs of early sequences for the first term on the 

right and solve. The transitive condition §ac=8ab+§bo may not be valid for
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three (or more) consecutive time points A, B, and C, in which case a general 

regression approach is adopted.

2. Pairwise distances are transformed to corrected distances.

3. UPGMA is applied to the corrected distances.

4. Tree branches are trimmed back with tips terminating in the appropriate order 

of sampling (Clock model).

2.4.2 Holmes Evolutionary Framework

Phylogenetic methods are typically applied to contemporaneous taxa, and result in the 

taxa being placed at the tips or leaves of the tree. In a serial sampling scenario an 

evolutionary framework may offer a more meaningful representation of the evolutionary 

relationships, in which the rise, persistence, branching, and extinction of different viral 

lineages is readily observable. Holmes et al. investigated the evolution of the V3 region 

of the HIV envelope gene (Holmes et al. 1992). They analyzed sequences of plasma viral 

RNA donated over a seven-year period by a single patient. Holmes et al. created an 

evolutionary framework (Figure 9a) to express the inferred ancestor-descendent 

relationships by placing ancestral sequences at the internal nodes of the framework. 

Holmes et al. stated that “unlike most molecular phylogenies, real ancestors may be 

present in the data and the framework expresses the postulated ancestor-descendent 

relationships. ” This statement provides the basis of some of the work presented in this 

dissertation. Figure 9b shows the phylogenetic tree inferred from the Holmes data set 

with the prefix of each sequence ID indicating the sampling time point.
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2.5 Simulating DNA sequence evolution

A common approach to evaluating the performance of phylogenetic methods is to 

first simulate the evolution of nucleotide sequences along a phylogenetic tree with a pre

specified topology, and to subsequently use the output of the simulation program as input 

to the phylogeny programs. The results of the phylogenetic programs are then compared 

with the “true” phylogeny. This involves either comparing the tree topologies or 

comparing inferred population or evolutionary parameters with the parameter settings 

used in generating the simulated tree.

2.5.1 Seq-Gen

Seq-Gen is an application for the Monte Carlo simulation of DNA sequence 

evolution along phylogenetic trees using standard models of substitution. A range of 

models of molecular evolution are available in Seq-Gen. Nucleotide frequencies and 

other parameters of the model may be given and site-specific rate heterogeneity may also 

be incorporated in a number of ways. The program requires a phylogenetic tree topology 

(a template genealogy) as input. The DNA sequences are then evolved along this tree. 

Any number of trees may be read in and the program will produce any number of data 

sets for each tree. Thus large sets of replicate simulations can be easily created. It has 

been designed to be a general purpose simulator that incorporates most of the commonly 

used (and computationally tractable) models of DNA sequence evolution (Rambaut and 

Grassly 1997).
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Seq-Gen reads in a tree that must include branch lengths. Each branch length is 

assumed to denote the mean number of nucleotide substitution per site that will be 

simulated along that branch. The program evolves a root sequence along each branch of 

the input tree using a transition probability matrix (see section on models of evolution) 

until it reaches the tips of the tree. The tip sequences are finally output to a file. The 

process is repeated for each replicate requested by the user.

2.5.2 Treevolve and Other Coalescent Simulators

Coalescent theory is a model of population genetics applied to the study of gene 

sequences and is used to describe the characteristics of the joining of lineages back in 

time to a common ancestor. This lineage joining is referred to as coalescence. The 

coalescent process operates backwards in time and is terminated when the number of 

lineages in the sample equals one. The coalescent model of evolution provides a way to 

computationally model the genealogy of a sample drawn from a larger population under a 

variety of different dynamic parameters (Kingman 1982).

The coalescent method was also formulated for samples of gene sequences 

collected at different times. The ability to fit serial samples into the coalescent framework 

also translates into an ability to simulate the evolutionary genetics of the population over 

time. The coalescent model for serial samples was implemented in the Serial Coalescent 

Simulator (Drummond and Strimmer 2001) and the recently published Serial SLMCOAL 

(Anderson et al. 2005). The option to generate a recombinant network is not featured in 

either of the two programs.
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Like its predecessors, SIMCOAL and Serial Coalescent Simulator, Treevolve is a 

program that simulates the evolution of DNA sequences under a coalescent model. A 

special feature of Treevolve, that is not present in its predecessors, is that it generates 

recombinant sequences evolved along a phylogenetic network (Grassly et al. 1999). 

Treevolve offers an extensive set of population parameters to adjust the evolutionary 

model. These include the exponential growth rate, the migration rate, the population size, 

and a rate of recombination. The coalescent model implemented in Treevolve extends 

the work of (Hudson 1983). Gene genealogies are generated under the chosen population 

dynamic model(s) with the specified recombination rate r. When r=() the genealogy is a 

simple bifurcating tree, whereas with recombination a network is produced.

Treevolve does not require a tree or network topology as input but generates the 

topology using the coalescent process. A recombination event resulting in the production 

of two parents can occur anywhere along the sequence, and in the model implemented in 

Treevolve according to a uniform distribution. Coalescent events result in a reduction of 

the number of lineages by one, recombination events in the duplication of lineages. Once 

a tree or network has been generated the process of evolving the sequences along the 

structure is carried out using a process similar to that described in Seq-Gen. However, 

Treevolve has a few shortcomings. It does not simulate the evolution of serially-sampled 

data, and it does not output the tree or network structure it generates. It assumes a 

molecular clock of evolution and it does not output the sequences at the internal nodes. In 

the next chapter we will discuss a new sequence simulator program that was developed 

based on the coalescent theory and the Treevolve method discussed here.
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3 Simulation of Serially Sampled Data

Whether it is for understanding the limitations of existing methods or to compare 

different methods, it is imperative that appropriate data sets be used. From the point of 

view of this dissertation, there are only a limited number of serially-sampled viral data 

sets available from public databases. It is therefore clear that good quality synthetic data 

sets with a number of adjustable parameters be used in order to comprehensively test all 

the developed methods and to carry out the comparison studies. This chapter presents the 

software package, Serial NetEvolve, which is a modification of the program Treevolve, 

and which addresses the goal of generating realistic simulations of serially-sampled 

sequence data (Goal 3). Other modified methods were also used in some of the earlier 

experiments. These include a modified version of the Treevolve program that 

incorporates different “sampling strategies” into the generation of simulated sequences. 

We also describe a modified version of the Seq-Gen method to simulate serially-sampled 

data without recombination. A version of the work related to Serial NetEvolve has been 

published (Buendia and Narasimhan 2006).

3.1 Introduction

Simulated sequence data may be used to compare the performance of different 

phylogenetic tree reconstruction methods and recombination detection methods. The 

simulation program that fits our needs must be able to mimic the serial sampling of 

recombinant viral nucleotide sequences from an infected host. As no such program has 

been developed, the program Treevolve (Grassly et al. 1999), which uses the coalescent

42



method to generate sequences along a recombinant network, was modified to simulate the 

evolution of recombinant serially-sampled data.

3.2 Modification o f  existing methods

The option to generate a recombinant network is not featured in the recently 

published Serial SIMCOAL (Anderson et al. 2005) or in the earlier Serial Coalescent 

Simulator (Drummond and Strimmer 2001), both of which simulate the evolution of 

serially-sampled data. In our experiments we used modified versions of Treevolve 

(Grassly et al. 1999), and Seq-Gen (Rambaut and Grassly 1997), both of which simulate 

recombination, but not serially-sampled DNA sequences.

3.2.1 Seq-Gen with internal nodes output

In most simulation studies the application of choice is Seq-Gen, a Monte Carlo 

DNA sequence generator that simulates the evolution of DNA sequences along a 

phylogenetic tree. Seq-Gen is the most often-cited synthetic data “sequence generator.” 

The program was not conceived to simulate serially-sampled data, although it has an 

option to output the sequences for each of the internal nodes in the tree, which we 

observed to be equivalent to sampling the sequences at different times. This option was 

employed in the early simulation studies that were used to evaluate the performance of 

MinPD without recombination (see Chapter 4). Seq-Gen 1.2.5 was used in the study and 

enhanced by the twister randomization function of Seq-Gen 1.2.7. The input to Seq-Gen 

is a tree along which the evolution of sequences will be simulated. Optionally, an 

ancestral sequence can be added as input parameter. The output of the program is a
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sequence alignment. An interesting effect occurs when more than one tree is provided as 

input for different partitions in the datasets; it simulates recombination of the sequences. 

However, this technique only simulates simple recombination histories. Another critical 

point to note is that when the recombination option mentioned above is selected the 

ancestral sequences are not output.

3.2.2 Treevolve with modified sampling strategies

For a specified set of parameters, Treevolve (Grassly et al. 1999) generates a 

coalescent tree (Kingman 1982) or recombinant network (Hudson 1983) and evolves a set 

of sequences along that structure. Treevolve does not require a user specified topology; 

however, it does not output the topology it generates.

Determining ancestor-descendant relationships from empirical data is difficult 

since only a small fraction of the total number of sequences representing a lineage are 

sampled in practice. This also complicates evaluating the success of the various 

algorithms. We used Treevolve to develop a simulation strategy that incorporates a 

random sampling step to reflect this incomplete sampling. A large tree is randomly 

generated and a small (randomly chosen) fraction of the sequences from the leaves and 

nodes of this tree is identified as constituting a sample. The program Treevolve vl.3.2  

was modified to return the sampled sequences from the internal nodes and the genealogy 

of only the sampled sequences (Grassly et al. 1999). The twister randomization function 

of SeqGen 1.2.7 was also added. The randomization function was used to randomly 

sample a small number of sequences from the leaves and nodes of the full tree. Treevolve 

was used to generate sequences of lengths similar to those found in the serially-sampled
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data sets in GenBank. The simulated data sets were generated through the following four 

steps:

1. Generate the random tree with the specified tree generation parameters.

2. Assign all sequences (at nodes and leaves) to sampling periods.

3. Randomly sample sequences from sampling periods using the specified 

sampling parameters.

4. Build and output a smaller tree containing only the sampled sequences and the 

linking nodes.

Data sets with both constant and variable rate of evolution were simulated. To simulate 

data sets with a constant rate of evolution, sequences roughly equidistant from the root 

were assigned to the same sampling period. The data sets with variable rates of evolution 

were designed to obtain more realistic simulated data sets and to better mimic the 

sampling of viral DNA or RNA sequences from an infected patient over an extended 

period of time; the variable rate was achieved by controlling how sequences were 

assigned to sampling periods.

The two modified tools described above were not adequate for experiments that 

required comparisons of tree topologies, or assessing the impact of sampling from the 

internal nodes. We therefore implemented a method we called Serial NetEvolve, which is 

also a modification of the Treevolve program, although its features are quite different to 

the “sampling strategies” approach that we discussed above. The results of applying 

different sampling strategies were of experimental interest to us and we carried out 

comparisons studies using that option (see chapter 5), but it is also necessary to remark 

that the coalescent model already provides a way to model the genealogy of a sample
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drawn from a larger population (Rodrigo and Felsenstein 1999), which is another reason 

why we left that option out in the method Serial NetEvolve that we will discuss in the 

next section.

3.2.3 Serial NetEvolve

Serial NetEvolve is a flexible simulation program that generates DNA sequences 

evolved along a tree or recombinant network. It offers a user-friendly Windows graphical 

interface and a simulator with a diverse selection of parameters to control the 

evolutionary model. Serial NetEvolve is a modification of the Treevolve program with the 

following additional features: simulation of serially-sampled data, the choice of either a 

clock-like or a variable-rate model of sequence evolution, sampling from the internal 

nodes and the output of the randomly generated tree or network in our newly proposed 

NeTwick format.

Features

The new features of Serial NetEvolve, which are additions or modifications of the 

original Treevolve program are described in detail below.

Serially-sampled sequences

A theoretical framework for generating serial samples in the coalescent was 

developed (Rodrigo and Felsenstein 1999) and implemented in Java in Serial Coalescent 

Simulator (Drummond and Strimmer 2001). In Serial NetEvolve, we implemented the 

technique by modifying Treevolve to have sequences assigned to different time points 

instead of assigning them to the zero-time baseline.
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Molecular clock

Distance to the root and time are equivalent when enforcing a molecular clock. To 

simulate data sets with a constant rate of evolution (enforced molecular clock), sequences 

from the same sampling time were assigned to the same distance from the root, as 

implemented in Serial Coalescent Simulator. For the variable rates setting, all sequences 

(independent of the sampling time they belonged to) were assigned to randomly 

generated distances from the root. For consistency, distances of the nodes were 

constrained to decrease as one traverses toward the root.

Internal node sampling

Serial NetEvolve allows the user to set the probability of internal node sampling 

as a parameter. Sampling of internal nodes makes sense only if the effective population is 

small (Drummond and Rodrigo 2000), which in turn is more likely when the length of the 

sequences sampled is small. It is worth noting that fairly short sequences (approximately 

700bp in (Shankarappa et al. 1999)) were used in many large studies of viral populations, 

and that effective population size for serially-sampled HIV-1 was estimated to be only 

4232.2 and negatively correlated to the evolutionary rate (Seo et al. 2002).

Tree or network output

Serial NetEvolve was further enhanced to output the coalescent tree or network. 

When the recombination rate is zero, the tree is output to a file in Newick format, which 

represents trees using nested parentheses (Felsenstein 1999). If internal nodes are 

sampled, they are assigned to zero-length branches. In order to write a recombinant 

network to a file, we devised the “NeTwick” format, a variant of the Newick format,
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incorporating additional information (breakpoint position, right and left parent) to 

represent recombinant nodes. Unlike tree nodes, recombinant nodes have more than one 

parental node. In Serial NetEvolve, we (arbitrarily) chose the left parental node of a 

recombinant sequence to appear twice in the NeTwick format to indicate the linking 

relationship. One of the copies of the left parental node appears followed by the symbol 

“#”, along with the breakpoint position and it represents a link, not a taxon. If the left 

parent was not sampled, it also appears with a prefix. Figure 10 shows a network 

with 9 taxa and its tree equivalent.

(3 )

Figure 10. The (a) tree representation and the (b) equivalent network representation

The network is represented by the NeTwick code: 

((A:4,C: 1):5,((((B:2,~X#234:0):4,((E:3,(~X: 1,D:3): 1): 1,(F:2,G:3):4): 1): 1,C#535:0):2,H: 1 

):4). The left parent X was not sampled (indicated by the ~), but is present in the tree to 

indicate the linking relationship as shown in the network. In the proposed network 

representation a backward (forward, respectively) slash followed by the breakpoint
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number indicates whether the left parent is below (above, respectively) in a horizontally 

drawn network. The advantage of making two copies of the left parental node of every 

recombinant node is that the network can then be represented by an equivalent tree. The 

tree can be viewed using any tree-viewing program; a network viewer is currently being 

developed. NeTwick supports tree and network polytomies, but is restricted to one child 

per recombinant parent.

3.3 Summary

Seq-Gen was used to simulate serially-sampled sequences without recombination. 

However, all ancestral sequences were internal node sequences, which is only realistic 

when carrying out experimental evolution studies in the lab as discussed in section 5.1. 

Seq-Gen can also be used to simulate recombination, however, its recombination feature 

is very limited in that it only offers the user option of providing a few different trees for 

different parts of the alignment. Serial NetEvolve offers a flexible set of population 

parameters (migration rate, population growth rate, among others) present in the original 

Treevolve and additional options for the generation of both trees and recombinant 

networks. The new features are: simulation of serially-sampled data, the choice of either 

a clock-like or a variable rate model of sequence evolution, sampling from the internal 

nodes and the output of the randomly generated tree or network in our newly proposed 

NeTwick format. The power of Serial NetEvolve lies in the ease with which it is possible 

to generate a collection of jdata sets using a wide range of parameters with the goal of 

comparing different programs that analyze any aspect of serially-sampled sequence data. 

Such experiments are fundamental to the evaluation strategies described in several of the
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later chapters of this dissertation. With the help of Serial NetEvolve, it is possible, for 

example, to compare with relative ease the topologies of the output of several programs.
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4 MinPD

One of the main goals of this dissertation is to develop new computational tools to 

find ancestor-descendant relationships between serially-sampled sequence data (see Goal 

1). The MinPD algorithm presented in this chapter is a step in that direction. A 

preliminary version of this chapter appeared in the IEEE-CSB 2004 conference 

proceedings (Buendia and Narasimhan 2004).

In this chapter we will explore a new computational method to study within-host 

viral evolution to better understand the evolution and pathogenesis of viruses. Traditional 

phylogenetic tree methods are better suited to study relationships between 

contemporaneous species, which appear as leaves of a phylogenetic tree. However, viral 

sequences are often sampled serially from a single host. Consequently, data may be 

available at the leaves as well as the internal nodes of a phylogenetic tree. Recombination 

may further complicate the analysis. Such relationships are not easily inferred by 

traditional phylogenetic methods, nor expressed appropriately using phylogenetic trees. 

We have designed a new algorithm called MinPD, which is based on pairwise distances 

between taxa. Our algorithm uses multiple distance matrices and correlation rules to 

output a tree or network (Buendia and Narasimhan 2004).

4.1 Introduction

MinPD is a distance-based algorithm to infer evolutionary relationships 

(including recombination) in serially-sampled sequence data. An important feature of the 

algorithm is that it does not need the assumption of a molecular clock. Unlike methods

51



based on maximum likelihood (ML) or maximum parsimony (MP), the MinPD method is 

computationally efficient and can deal with a much larger number of input sequences. 

The method assigns ancestor relationships using minimum pairwise distances without 

resorting to a multiple alignment of the sequences. Ties are broken by resorting to 

divergence information. Recombinant strains are detected using sequence fragment 

matrices, correlations and distance rules. The MinPD  algorithm was implemented in C. 

The accuracy of the method was assessed using extensive experimentation on both 

simulated data and on real HIV sequence data (obtained from the HIV database). The 

simulated data included sequences associated with randomly chosen leaves as well as 

internal nodes of a phylogenetic tree. A critical feature of the simulations is that it 

attempts to mimic the fact that, in reality, only a small random sample of all the viral 

strains that may be present in a patient is actually sampled. This is achieved by simulating 

a large number of sequences and discarding a large fraction of them.

Another contribution of this work is to show how to incorporate recombination 

into longitudinal phylogenetic trees without losing any of its essential features and 

advantages. The resulting phylogenetic networks make it convenient for a biologist to 

draw useful conclusions. This work is similar to the work of Ren et al., with the 

significant added feature that it accounts for recombination. The MinPD method, unlike 

recombination detection methods, identifies recombinant strains, donors, and 

approximate breakpoint positions, and does not require the intervention of the user.
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4.2 Method

The MinPD algorithm is based on the concept of minimum pairwise distance. It 

assumes that an ancestor of any given taxa must have been sampled at one of the previous 

time points and that the distance to the closest ancestor must be the minimum among all 

distances to taxa sampled during all prior time points. It utilizes the same criteria to find 

minimum distance fragments to all other sequences to identify possible recombinant 

strains. It also assumes that pairwise alignments give less distorted evolutionary distances 

than do multiple alignments.

4.2.1 The Multiple Alignment Problem

Phylogenetic analysis methods ranging from tree-building methods to 

recombination detection techniques such as bootscanning, employ (as an initial step) a 

multiple sequence alignment of all input sequences. Multiple alignments of sequences of 

different lengths must necessarily add gaps, which often lead to loss of information and 

gap scoring artifacts, which in turn distort the distance computations. In existing 

phylogenetic programs, all distances are computed using this multiple alignment, as is 

true, for example of the programs MEGA and PAUP (Kumar et al. 2004; Swofford 

2000).

Figure 11 shows a multiple alignment of four sequences and also two pairwise 

alignments. The gap columns are ignored and do not count as mismatches. However, the 

pairwise distances in the two alignments are different. What is striking in the example is 

that the distances between two pairs of sequences exhibited a different order in the 

multiple alignment as compared to the corresponding distances in the pairwise
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alignments. It is for the above reasons, that we use pairwise alignments that offer a more 

accurate distance measure.

Muliple Alignment

x .  ATTAAAAAAGTGGCAAACAA
a .  A TT------------ GTTGCAA-CCA
b. ATTGAAG------------ CAAACCG
c .  ATTGAAC------------ CAG-CCG

Multiple Alignment Distances
ma_dist( b, a) = 1/20 < 2/20 = ma_dist( b, c)

Pairwise Aligment Distances
pa_dist(b, a) = 3/14 > 2/14 = pa_dist(b, c)

Figure 11. The problem with multiple alignments

Note, however, that multiple alignments can be manually improved by a judicious and 

critical examination by eye. This is a time-consuming process and, if one is confident of 

obtaining a good alignment, there is no need for the pairwise alignment discussed above.

4.2.2 The MinPD Algorithm

The inputs to the algorithm are: s, a set of sequences with associated time periods, k, the 

number of fragments, and t, the threshold for the Pearson Correlation Coefficient. We use 

the Needleman-Wunsch algorithm to compute an alignment between each pair of 

sequences. For computing pairwise distances we use the Tamura-Nei Model (TN93) of 

nucleotide substitution with Gamma-distances (Nei and Kumar 2000). Henceforth, 

whenever we refer to distance in this text, we mean the TN93 distance, and we calculate 

this distance from a pair of aligned sequences that did not undergo a multiple alignment 

operation. Finally, we also assume that if the distances indicate two possible candidates

Pairwise Alignment of a and b.
a .  ATTGTTGCAA-CCA
b. ATTGAAGCAAACCG

Pairwise Alignment of b. and c.
b. ATTGAAGCAAACCG
c .  ATTGAACCAG-CCG
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for the closest ancestor, then ties are broken using divergence values. The divergence 

between two sequences denoted by Div(x,y) is given by:

Div(x,y) = distance(x,y) -  [r(x) + r(y)]/(n-2), 

where r(x) = Ej distance(x,sj) is the net total divergence of x to all other sequences, and n 

is the number of sequences being considered (Saitou and Nei 1987).

For recombination detection we will assume that there is at most one 

recombination or crossover point for any recombination between 2 sequences, limiting 

the number of donor strains to two. The MinPD  algorithm is given below.

Algorithm MinPD

1. For each pair of sequences Si and Sj do

a. Pairwise align them and compute the distance Dist(si,sj) between them.

b. Partition Si and Sj into k fragments and compute the distance vector Distvec(si,sj) 

of the k distances between the k pairs of aligned fragments. Let its £th component 

be denoted by Dist(sj,sj,£), the distance between the 1th fragments of Si and Sj.

2. For each sequence do

a. if (sj passes the test described below for being a recombinant strain) then identify 

two donor strains and choose them as ancestors of sj.

b. else choose as ancestor of Sj the sequence at minimum distance from it among 

sequences sampled at all previous time periods. Break ties using divergence 

values.

3. For each set of sequences with the same chosen ancestor, construct a NJ tree and 

connect the root of the NJ tree to the chosen ancestor.
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Pairwise distances are computed in Step [la]. However, distances are uninformative 

when recombination is involved because distance measures consider the entire sequence. 

In order to deal with the possibility of recombination, MinPD breaks up the sequences 

into fragments and finds distances between fragments. The fragment distances provide 

fine-grained distance information between two sequences. This information is used the 

recombination test descrbed below. In Step [3], to handle the case where many sequences 

may choose the same ancestor, we replace such a “star”-like configuration with a NJ tree. 

This is done mainly to provide detailed insight for such scenarios. Note that in Step [2a] 

above, any method could have been used to test for recombination or to identify the 

donor strains. In this preliminary version, we propose a simple uniform distance-based 

method to achieve the same goal. (In Chapter 7, we present an improved algorithm that 

uses more general recombination detection methods.)

MinPD Recombination Test fo r  sequence s

1. For each of the k fragments of s do

select the sequence Si whose ith fragment has minimum distance to the ith 

fragment of s. Put all selected sequences in a list called Candidates. These 

sequences are candidates for being donors if s is a recombinant strain.

2. From the list Candidates, let minSeq be the sequence with minimum overall distance 

to s.

3. For each pair of sequences Si and Sj from Candidates do

if the Pearson Correlation Coefficient (PCC) between their distance vectors is 

above a distance threshold,

then discard the sequence Sj or Sj with the higher overall distance.
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4. For all sequences in Candidates do

discard those that have a fragment with minimum distance in the middle of the 

sequence, and not at either end.

5. For each sequence Si ̂  minSeq do

calculate Si_dom = E (Dist(minSeq,s,i) - Dist(si,s,i)) in all fragments i where Si has 

the minimum distance to the corresponding fragment in s.

If Sj_dom is below a distance threshold, then discard Sj.

6. If exactly two sequences are left undiscarded, then report s as being recombinant 

with the two sequences as potential donors.

Steps [1] and [2] identify sequences that are at minimum distance in each of the k  

fragments. If two sequences have very similar distance vectors (from s), then it is 

probably because they are very similar. In this case, one of them is discarded in Step [3]. 

Similarity of two distance vectors is computed using the Person Correlation Coefficient, 

which is high if the vectors are highly correlated (i.e., similar). Step [4] is justified 

because of the earlier assumption that there is at most one breakpoint; a sequence with 

minimum distance fragment in the middle of the sequence would suggest two 

breakpoints, a case that is being ignored for this preliminary version of the algorithms. 

(Note that the general algorithm presented in Chapter 7 does consider multiple 

breakpoints.) Step [5] discards cases where the minimum distance sequence is 

sufficiently far away. As per the assumption of at most one recombination event per 

sequence, in Step [6], all instances that do not show exactly two donors are discarded.
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4.3 Results

The MinPD  algorithm was extensively tested with a large number of simulated 

data sets, and was also applied to a set of HIV sequence data isolated from one patient 

over a period of ten years. The proposed visualization of the phylogenetic tree/network 

further enhances the benefits of our methods.

4.3.1 Experiments with Simulated Data

To test the MinPD algorithm, two synthetic data collections were generated, the 

first without recombination, and the second with. The first collection (without 

recombination) was generated using SeqGenl.2.5 (Rambaut and Grassly 1997), which 

was enhanced by the twister randomization function of SeqGen 1.2.7. Each of the 100 

data sets in this collection contained 1023 sequences from the leaves and internal nodes 

of a template tree, out of which an average of 32 were randomly chosen (to simulate 

sampling from a population) and was input to the MinPD algorithm. The results (see 

Table 2) show that more than 90% of the time, MinPD chose the correct closest ancestor 

(referred to in the table as a Match). A subtree relative (a direct descendant of the correct 

closest ancestor) was chosen about 9% of the time. All other outcomes were counted as 

errors. The errors included cases where a grand ancestor (ancestor of actual closest 

ancestor) was picked, although multiple mutations on the same location during evolution 

can lead to “backward” substitutions resulting in a grand ancestor being genetically closer 

to the queried sequence. The overall error rate was less than 0.5%. Note that picking a 

subtree relative is not classified as an outright “error” because we consider it as a minor 

deviation from the correct relationship.
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Runs Sequence
Length Match Subtree

Relative Errors

too 600n 90.9% 8.8% 0.37%
100 lOOOn 90.9% 9.1% 0.06%

Total/Average 200 90.9% 8.95% 0.22%

Table 2. Experiments with non-recombinant data

The second data collection (with recombination) consisted of 100 data sets each 

containing about 500 sequences (or slightly more, depending on how many 

recombination events occur) generated using the software package Treevolve version 1.3. 

Treevolve was modified to include the Twister randomization function of SeqGen 1.2.7., 

and to output sequences at the internal nodes. Treevolve evolves a sequence using 

Hudson’s coalescent method with recombination (Grassly et al. 1999). As before, to 

mimic the actual sampling from large populations, an average of 45 of the roughly 500 

sequences were randomly chosen for input to the MinPD algorithm. The sets of data were 

simulated under the HKY model of evolution with the alpha parameter of the gamma 

distribution set to 0.5. A transition/transversion ratio of 4 was chosen and the base 

frequencies were set to A=0.22, C=0.18, G=0.40, and T=0.2. The results of our 

experiments on the simulated data are shown in the table below. In order to get realistic 

data, a mutation rate of 0.5x10 4 and a population growth rate of 0.75x10 4 were selected. 

The recombination rate of O.lxlO"7 was selected since for the given mutation rate, higher 

recombination rates gave enormously long lineages. This is because although coalescent 

events result in a reduction of the number of lineages by one, recombination events cause 

an increase.
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# Thres 
Frag holds

Runs Len
Total
Count

Non Rec 
Matches

Non Rec
Subtree
Relative

Non
Rec
Errors

Rec
Count

Rec
Dctccted

Rec
Matches

Rec
Subtree
Relative

Rec
Errors

FP

4 0.75 100 600 454
0

74.4% 20.9% 0.7
%

149 67% 49% 37% 14% 0.6
%

8 0.67 100 600
454
0

73.4% 20.6% 0.6
%

149 63.3% 55.8% 26.3% 17.9% 1.9
%

4 0.9 100
100
0

467
1 72.8% 21.1% 0.3

% 212 67.9% 56.9% 27.1% 16.0% 0.8
%

8 0.8 100 100
0

467
4 74.3% 19.9% 0.5

% 199 61.3% 52.5% 35.3% 12.3%
0.8
%

Total 400 73.7% 20.6% 0.5
%

177 64.9% 53.6% 31.4% 15.0% 1.0
%

Table 3: Experiments with recombinant sequences

Table 3 shows the results of these experiments. The labels on the columns are 

explained below. In the presence of recombination events, the ability of the MinPD 

algorithm to correctly establish phylogenetic relationship among the input sequences is 

adversely affected. Even on non-recombinant sequences, the percentage of correct 

predictions dropped from over 90% (Table 2) to under 75% (Non Rec Matches) in Table

3. In each data set, about 3-5% (Rec Count/Total Count) of the strains sampled were 

recombinant strains. Of these, about 65% (Rec Detected) were correctly detected as being 

recombinant. The donors were correctly identified in over 50% (Rec Matches) of those 

cases. In about 15% (Rec Errors) of the cases, the program identified the donors 

incorrectly. In the remaining 31% (Rec Subtree Relative) of the cases, a subtree relative 

was determined to be the donor. Of the over 4500 sequences (Total Count) in the 4- 

fragment (#Frag) run, only 39 non-recombinant sequences were reported as being 

recombinant sequences by the MinPD program, accounting for a 1% false positive rate 

(False Pos).

The results were somewhat weaker when the sequences were divided into 8 

fragments instead of 4, which required additional fine-tuning of the thresholds chosen for
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the program. Note that when the sequences were divided into 8 fragments, there were 

more potential candidates for the choice of donors, which complicates the selection of 

correct donors. The threshold for PCC was set to values between 0.67 to 0.9 and the 

threshold for Si_dom, was set to the average of the distances from Si scaled by the 

quantity n/k, where k  is the number of fragments, and n  the number of fragments where 

Si has a minimum distance. We conjecture that more fine-tuning can further improve the 

program’s sensitivity, and that sliding-window methods could improve the specificity.

It would be reasonable to conjecture that detecting recombination signals is harder 

with shorter sequences, although this was not observed in our experiments with 

sequences of length 600. It is possible that this is balanced out by the fact that there is a 

corresponding lower probability of recombination events in smaller sequences.

4.3.2 Experiments with Empirical Data

The final evaluation of the MinPD algorithm was performed by constructing the 

phylogenetic network for HIV sequence data from patients available from the Los 

Alamos HIV database. The viral strains were sampled and sequenced for a single patient 

(patient S) at month numbers 5, 12, 20, 30, 40, 51, 61, 68, 73, 80, 85, 91, 103, and 126. 

The resulting “longitudinal” phylogenetic network is shown in Figure 13. Each sequence 

is labeled with the month number and an identification number. There is no reasonable 

way to evaluate the correctness of the resulting network. Therefore, we focus our 

discussions on how well it correlates with the emergence of X4 strains (see below), and 

on how the resulting network makes it convenient to draw a variety of conclusions. It is
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worthwhile to compare the difficulty of drawing similar conclusions from the ML tree 

generated for the same data, as shown in Figure 12 below.

Figure 12. Maximum Likelihood (ML) tree of serially-sampled HIV sequence data from patient S.

The longitudinal network shown in Figure 13 is drawn from left to right and 

requires that sequences sampled at the same time be vertically aligned. This does not 

mean that all sequences undergo the same amount of evolution from the root sequence. 

On the contrary, every link between a parent and child node consists of straight-line 

segments, but are broken into vertical lines, horizontal thick lines and horizontal dashed 

lines. Horizontal thick lines are a measure of the amount of evolutionary changes that 

take place between the sequences. Horizontal dashed lines are added merely to achieve
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the vertical alignment of the nodes corresponding to contemporaneous sequences. The 

only purpose of vertical lines is to ensure the correct connectivity.

All sequences marked with a red “x” have a lysine (K) or arginine (R) at position 

320, a mutation that is predictive of the X4 phenotype. With the help of immunological 

data, it was shown by Shankarappa et al. that patient S ’s CD4+ and CD3+ T-cell numbers 

fell rapidly during the emergence of X4 genotypic strains (Shankarappa et al. 1999). The 

longitudinal network makes it convenient to understand how widespread the X4 genotype 

is in each sampling period.

Furthermore, it is interesting to note that patient S was prescribed antiretroviral 

drugs called zidovudine (ZDV) and stavudine (d4T) before the 103 months sampling 

period, and a few months later was prescribed lamivudine (3TC). The administering of 

this drug therapy coincides with a decrease in the X4 genotypic strains (Shankarappa et 

al. 1999), as is easily observed in the MinPD network in Figure 13.

The X4 genotypic strains made its first appearance in the samples from the 30 

month period, and had proliferated by the 68 month period. Before its large-scale 

emergence (after 51 months), the MinPD network suggests that three groups of 

genetically similar quasispecies sequences were present in the population. One group 

became extinct at 51 months, while the other two groups each contributed a sequence, 

051.19 and 051.16, that recombined to create strain 061.30, the possible closest ancestor 

of the large X4 quasispecies that dominated the sampled population in the ensuing years.

In the second half of the network corresponding to time periods 61 to 126 months, 

only two groups of quasispecies, linked by recombinant sequence 073.12, were identified 

by MinPD, one of the groups becoming extinct probably at the onset of antiretroviral
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therapy with 091.19 as its last sampled sequence, and the other group formed by 

descendants from the recombinant sequence 061.30, giving rise to a mixed population of 

X4 and non-X4 genotypic strains. It is also interesting to note that the first X4 mutations 

that were sampled at 30 months had a relatively large genetic distance to its ancestor in 

comparison to the contemporaneous strains, suggesting a higher rate of mutations for 

those particular strains or during that time period. It should be noted that the above 

conclusions are made more convenient by the way the MinPD network is presented.

To make the comparisons more clear, the reader is encouraged to compare the 

result of MinPD from Figure 13 to the ML tree generated for the same data and shown in 

Figure 12. We aligned 65 sequences from the first 61 months using ClustalX. 

Subsequently we did a heuristic search for the ML tree using PAUP (version 4bl0) 

(Swofford et al. 1996). If the horizontal axis is to be thought of as time, then the ML tree 

shown in Figure 12 exhibits several anomalies with strain 051.19 (sampled at 51 months) 

appearing after strain 061.31 (sampled at 61 months), and strain 030.01 appearing after 

strain 051.51.

Furthermore recombinant taxa cannot be identified in a traditional phylogenetic 

tree, but for the fact that they often have long branches leading into them. In the MinPD 

network, recombinant sequences are linked to their donor ancestors by blue lines and the 

breakpoint position is added left and next to the recombinant sequence. The 

recombination results output by MinPD were studied in detail using graph analysis, and 

only recombination relationships with the strongest signals were added to the network. 

Sequences with weaker recombinant signals were underlined in blue. A 2002 study of in 

vitro HIV-1 sequences and recombination site analysis suggested that the C2 env domain
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breakpoint position is added left and next to the recombinant sequence. The 

recombination results output by MinPD were studied in detail using graph analysis, and 

only recombination relationships with the strongest signals were added to the network. 

Sequences with weaker recombinant signals were underlined in blue. A 2002 study of in 

vitro HIV-1 sequences and recombination site analysis suggested that the C2 env domain 

was a particularly “hot” region for recombination (Quinones-Mateu et al. 2002). The data 

of patient S does not contain the entire C2 region but includes the regions V3, C3, V4, 

C4, and V5, all of which were also found to have several recombination sites. Upon 

inspection of the MinPD network it can be observed that most recombinant sequences 

and signals were detected at the 61(2) and 68(2) months - these seems to correlate with 

the emergence of the X4 genotype. At 85(3) months there is another surge in 

recombination signals. The recombination signals are markedly stronger for the 

sequences with the X4 genotype than for those without, which corresponds with the 

higher genetic diversity of those time periods (Shankarappa et al. 1999).

1.12 Summary

In this chapter we have addressed Goal 1 by describing a new method called 

MinPD to study the phylogenetic relationship of serially-sampled quasispecies and to 

visualize the relationships between them. We presented results of extensive computer 

simulations in which we mimic random sampling of sequences. We also discussed how to 

interpret the results of our algorithm in the context of viral disease progression and 

showed how to incorporate the information in the visualization of the tree.
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We studied a method to detect recombination in serially-sampled data and 

presented the results of and presented the results of simulation experiments. Our method 

is especially helpful in selecting putative recombinant sequences among a large set of 

sequences. At this point the selected sequences may be analyzed using another tool to 

find exact breakpoints and detect more than one crossover, but in the cases where the 

sequence length is short the presence of more than one crossover is less likely and our 

method will return better results. Applying our method on simulated recombinant data 

returned a 65% success rate with a small number of false positives. In Chapter 7, we 

generalize the MinDP method to allow for (a) improved recombination detection 

methods, (b) for multiple recombination events within the same sequence, and (c) for 

computing statistical significance information for the predictions.
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5 Comparison of Phylogenetic Methods for Analyzing 

Serially-Sampled Sequence Data

In the previous chapter, we described the MinPD algorithm, an algorithm to infer 

ancestor/descendant relationships from serially-sampled sequence data. The algorithm 

was evaluated on the basis of its performance on an empirical data set of HIV sequences 

serially-sampled from a single patient. Furthermore, it was also evaluated on the basis of 

its performance on a large number of synthetically generated data sets. However, in 

chapter 4, MinPD was not compared against other existing methods; this chapter 

addresses this shortcoming. The focus of this chapter is a comparison study of seven 

methods to assess how well they recover tree topology and ancestor/descendant 

relationships in lineages of serially-sampled sequence data, thus addressing Goal 5 of this 

dissertation. The assessment was performed using two experimental phylogenies (known 

molecular phylogenies that were produced in the laboratory) and a large collection of 

simulated data sets (using the coalescent method). Parts of this chapter have appeared in 

one publication (Buendia et al. 2006a) and a second one (Buendia et al. 2006b) is under 

review.

Two different simulation studies were carried out, and each will be discussed in a 

separate section:

1. “Sampling Strategies and evolutionary parameters” study: The objective of this 

study was to simulate the effect of sampling from a large population by focusing on 

sampling strategies (Buendia et al. 2006a). This study used an evaluation criterion
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based on branch lengths and compared 5 different methods on 2 empirical data sets 

and on simulated data.

2. “The Clock model and internal nodes sampling” study: This study made use of 

the program Serial NetEvolve (Buendia et al. 2006b) to assess the effect of the 

molecular clock and sampling of internal nodes in the computation of topologies and 

branch distances. Two criteria were used in the evaluation of the results, one based on 

topology, the other on branch distances. The study compared 7 methods using input 

data from two experimental evolution studies and simulated data.

We extended our comparison study to include two traditional phylogenetic methods, one 

based on Maximum Parsimony (MP) and one on the Maximum Likelihood (ML) 

approach, to assess the effects that non-contemporaneous data has on these methods.

5.1 Introduction

Phylogenetic methods typically analyze contemporaneous taxa, and result in 

phylogenetic trees in which the taxa are placed solely at the tips or leaves of the tree. 

However an increasing amount of serially-sampled data of rapidly evolving organisms 

within a single host is now available in public databases. (For example, see URL: 

http://hiv-web.lanl.gov/content/hiv-db/mainpage.html.) Viral evolutionary history within 

a host can shed light on fundamental evolutionary mechanisms such as selective 

pressures and the evolution of drug-resistant strains, with implications for patient 

prognosis and treatment strategies.

Experimentally generated phylogenies, where the actual ancestors are known 

(Hillis et al. 1992), provide a rare, but valuable, source of DNA sequences for the
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comparison of methods that analyze serially-sampled data. Hillis et al. pioneered the use 

of known molecular phylogenies, producing a known T7 phage phylogeny in the 

laboratory (Hillis et al. 1992). Cunningham et al. extended this work by serially 

propagating six bifurcating lineages of bacteriophage T7 according to the protocol of 

Hillis et al. resulting in a data set with known phylogeny (Cunningham et al. 1997). The 

rate of mutation of T7 phage was accelerated with the mutagen nitrosoguanidine, and 

each lineage was bottlenecked to a single individual from which the descendant lineages 

were further propagated.

In contrast to the T7 phylogeny, the experimental evolution of DNA sequences 

using a bifurcate series of nested polymerase chain reactions (PCR) constitutes a neutral 

evolution system for which the molecular clock hypothesis is justified (Sanson et al. 

2002). Sanson et al. used MP, ML, and distance-based analysis of only the terminal 

sequences to reconstruct the topology and the branch lengths of the real phylogeny. As in 

the 1997 study by Cunningham et al., ancestral sequences were excluded from the tree 

reconstruction by Sanson et al., although they were used to assess ML predictions of 

ancestral states. In our study, the complete data set consisting of both ancestral as well as 

terminal sequences was taken into consideration. Henceforth, we will refer to the T7 

phage sequences as the Cunningham97 data set and the PCR sequences as the Sanson02 

data set.

In a 1992 study, Holmes et al. created an “evolutionary framework” to express the 

inferred ancestor-descendent relationships in HIV sequence data serially-sampled from a 

single patient (see section 2.4.2). Holmes et al. stated that “unlike most molecular 

phylogenies, real ancestors may be present in the data and the framework expresses the
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postulated ancestor-descendent relationships” (Holmes et al. 1992). Figure 14 shows an 

evolutionary framework relating 24 different amino acid sequences found in the V3 loop, 

and redrawn in rectangular format from the paper by Holmes et al. (see Figure 2 (Holmes 

et al. 1992)). Time scale is given along the top. Dashed lines indicate identical sequences.
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Figure 14. Evolutionary Framework of Holmes et al. HIV sequences 

We used the Holmes viral data set in one of the empirical studies and will 

henceforth refer to the HIV data as the Holmes92 data set

It has been conjectured that different approaches and tools would be needed to 

analyze serially-sampled sequence data (Rodrigo and Steel 2004). More recently, several 

researchers have attempted to adapt existing phylogenetic methods to analyze serially- 

sampled data (see Methods section). The goal of our study is to compare different 

phylogenetic methods and assess how well they capture ancestor/descendant relationships 

in lineages of serially-sampled sequence data. The methods were tested on the three 

published phylogenies described above and on a large number of simulated data sets, 

simulated using the coalescent method. Two types of simulated data were generated:
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■ Data generated with different sampling strategies and population parameters: Since in 

practice only a small fraction of the total number of sequences representing a lineage 

is sampled, we incorporated a random sampling step into the simulation strategy.

■ Data generated with Serial NetEvolve for the comparison of topologies and to study 

the effect of internal node sampling.

5.2 Methods and Settings

The goal of the current study was to compare methods that could be used to 

analyze serially-sampled sequence data and to assess their accuracy in recovering 

ancestor-descendant relationships. Towards this end, we compared methods that were 

specifically designed to analyze serially-sampled data, but we also included standard 

phylogenetic methods, such as Maximum Likelihood and Parsimony. Therefore, besides 

the methods reviewed in section 2.4, we also chose two traditional phylogenetic methods

(see section 2.2.2) — fastDNAml, an efficient implementation of the ML method

(Felsenstein 1981; Olsen et al. 1994), and DNAPARS, an MP-based program

(Felsenstein 2004). The methods used in our study and the chosen settings are

summarized below in Table 4.

Method Version Clock Settings

SeqLink - No JC69 distance matrix

MinPD 1 No TN93 distances, no recombination detection.

TipDate 1.2 Yes Dated Tips

sUPGMA P all.4 Yes Tipdate’s rate and 3 fixed mutation rates: 0.0009, 0.004,0.009

BEAST 1.1.2 Yes HKY, constant growth, chain length: 1000000. Empirical base 
frequencies and equal among-site rates

DNAPARS 3.6 No Default: Thorough search, 10000 trees to save

fastDNAml 1.2.2 No HKY, Ts/Tv: 2. Empirical base frequencies and equal among-site rates

Table 4. Description of algorithms compared in this study.
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5.3 Evaluation Techniques

We performed comprehensive experimentation to compare the seven methods 

mentioned above for their ability to correctly infer known or highly corroborated 

ancestor-descendant lineages from simulated serially-sampled or empirical sequence 

data. Given that the outputs of the programs have different formats, our main focus was 

not the comparison of frameworks and tree topologies, but mainly the assessment of how 

well serially-sampled data from later periods were linked to their ancestral lineages by 

the programs. We did carry out comparisons that involved calculating topology scores 

and comparisons that involved calculating a so-called ancestors-descendant score (A-D 

Score).

5.3.1 A-D  Tree Performance Score

A scoring mechanism was devised to evaluate the correctness of the inferred 

relationships between serially-sampled data. Different methods produced different kinds 

of output, and a fair and flexible scoring mechanism was needed. For example, MinPD 

and SeqLink calculate ancestor-descendant relationships to construct the evolutionary 

framework, and was thus relatively straightforward to score. Other methods simply 

output a tree, and for these programs, the correctness of an inferred ancestor-descendant 

relationship was judged on the basis of branch lengths in the tree output. The resulting 

evaluation measure is referred to as the A-D Score and is based on the percentage of 

correctly inferred ancestor-descendant relationships. For a given taxon, the closest 

ancestral relative is defined as the closest sequence (i.e., with minimum path length if 

output is a tree with branch lengths) sampled at some previous sampling period, and
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corresponding to either the sampled most recent common ancestor or to the closest 

sampled descendant of an unsampled most recent common ancestor. Every ancestor- 

descendant pair of sequences (at minimum distance from each other) that is found in the 

output of a program that matches the true relationship is counted positively towards the 

A-D Score of the program.

As some methods output a phylogenetic tree without explicitly inferring ancestral 

relationships, we devised a program, Nwk2Ances, which reads in a phylogenetic tree in 

Newick format as input, and returns for each sequence the “closest” sequence from any 

previous sampling period according to the definition given above. Given a phylogenetic 

tree with inferred lengths, Nwk2Ances uses an additive metric to search for the 

minimum-length path between a sampled sequence and a sampled ancestral sequence, 

where the path length is the sum of branch lengths along that path.

5.3.2 R -F Tree Score

A different scoring mechanism was used to evaluate the topologies predicted by 

the different methods. The topological distance score is based on the widely known 

Symmetric Difference measure devised by Robinson and Foulds and referred to as the RF 

distance (Robinson and Foulds 1981). It was calculated using TreeDist program in the 

PHYLIP software package (Version 3.5) (Felsenstein 2004). Distances were normalized 

by its largest possible value (twice the number of internal branches), which is 2n-6 for 

two binary trees with n leaves. Lower values of the RF distance imply a better 

performance. Although two of the methods, MinPD and SeqLink, do not output a tree but 

a collection of trees rooted at their ancestral node (a framework), we implemented a
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technique to merge these trees into one large binary tree: each tree rooted at an ancestral 

node was joined to the tree that contained the ancestral node leaf. This puts both 

programs at a disadvantage, but is necessary to perform a fair comparison. It should be 

noted however, that although the RF score is the standard method for tree comparisons, it 

has a poor resolution and two trees differing solely in the position of one taxon can be 

maximally different (Penny and Hendy 1985)

5.4 Studies o f Sampling Strategies and Ancestor-Descendant Lineages

We evaluate the performance of 5 different methods in correctly inferring 

ancestor-descendant relationships by using empirical and simulated sequence data. Our 

results suggest that for inferring ancestor-descendant relationships among serially- 

sampled data, the MinPD program is an accurate and efficient method, and that 

traditional ML-based methods, while marginally more accurate, are far less efficient.

5.4.1 Em pirical Data: Results

The 31 T7 page Cunningham97 sequences were 2733 nucleotides long 

(Cunningham et al. 1997), and comprise a much more robust data set than the 89 short 

sequences (each of length 35 aa) used by Holmes et al. (Holmes et al. 1992). Other 

features, such as the presence of parallel evolution and the skewing of the mutational bias 

and the number of invariable sites by the mutagen, nitrosoguanidine, used in the 

propagation of the T7 page, presented additional challenges to phylogenetic 

reconstruction methods, especially those based on an assumption of a clock-like rate of 

evolution. Table 5 shows the A-D Tree performance scores for all five programs on the
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two empirical data sets. SeqLink recovered most of the Holmes92 relationships. It fared 

poorly with the Cunningham97 data set. The poor performance of the algorithm with the 

T7 page phylogeny may be due to the strong assumptions of the algorithm. MinPD 

recovered 100% of the Cunningham97 lineage relationships. As for the Holmes92 

framework, the one notable difference was with sequence E8 sampled in year 6, for 

which MinPD chose sequence B (from year 3) as being a closer representative of its 

ancestral lineage over sequence E l as postulated by Holmes et al. (Holmes et al. 1992). 

FastDNAml and the clock-based methods, TipDate and sUPGMA, performed better on 

the Cunningham97 data set. Nwk2Ances was applied to the output trees of the ML and 

clock-based programs to calculate the A-D Tree performance score.

Programs Performance Scores
i lolmes92 *etmmngftt8®7'‘ Average

MinPD 95.65% 100.00% 97.83%
fastDNAml 65.22% 96.43% 80.82%
TipDate 69.57% 92.86% 81.21%
sUPGMA PAL+TD rate 69.57% 75.00% 72.29%
Seq-Link 78.26% 10.71% 44.49%

Table 5. Performance Scored for Empirical Data

5.4.2 Simulated Data: Results

A large number of DNA sequences were generated using a modified version of 

Treevolve (Grassly et al. 1999) in which special sampling strategies were implemented as 

described in section 3.2.2. Our modified version of Treevolve performed the following 

steps:

1 Generate the random tree with different combinations of tree generation parameters: 

Mutation rate, Recombination Rate, Clock, Number of Leaves (see Table 6).
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2 Assign all nodes to sampling periods and randomly sample sequences from sampling 

periods using specified sampling parameters: Sample Size, Start of Sampling, 

Number of Periods (see Table 6).

3 Output smaller tree containing only sampled sequences and linking nodes.

Twelve sets of 100 replicates each were generated for different parameter 

combinations. Parameters were selected based on information from published studies 

(Shankarappa et al. 1999). These sequences were provided as input for the five programs 

under consideration. As before, evaluation was based on the A-D Tree Performance 

Score measure.

Fixed Parameters 
Name Settir
Model of Evolution HKY
Transition/Transversion ratio
Base Frequenc ie s__ ________________ _____________ ________

Population Dynamic Periods: Period 1
(encountered first when going backwards in time) and Period 2.

A=0.3. ( =0.2. G=0.3. 1-0.2 
Period 1: constant pop. size of 
1000000.

Gamma Shape (Alpha) o f the gamma rate heterogeneity 0.5
SeqLen Sequence Length 1000

Periods
Number o f Sampling Periods: 10 replicate tests were run to 
determine an appropriate default number of periods for the 100 
replicate runs.

6

Coalescent rate 1
S Variable ̂ Parameters (Tree Greneration) isrjCt

Name Description Values d e fau lt

Mutation
Rate

Mutation rate 2*10'<>was chosen because 10' caused a severe
slow-down o f the program fastDNAml. The rate of 10'5 is 10 4, 10'5, 2*10'6 10'5
approximately equivalent to that of the HIV virus.

RecRate Recombination rate. 0. 10s. 10" 0

Clock
Data sets were generated either with or without assuming the 
clock model. For the clock models, time period assignments 
were correlated to the distance from the root.

Yes, No No

Leaves The number o f leaves in the tree. (The number of sequences in 
the tree is leaves*2-l.) 5000, 50000 5000

Variable Parameters (Sampling) 
NaHi! ’ Description Values Default

SSize
Sample Size: the number of sequences per period to be sampled. 
Values were selected according to the number of sequences 
available or expected in the public databases

2, 4, 6, 8 8

Start
The time period when sequences were first sampled. The values 
were selected to observe the effect o f sampling closer or farther 
away from the root of a tree

3, 6 ,9 9

Table 6. Simulation parameters used in Treevolve 1.3.2 (sampling strategies version)
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Results were analyzed with the standard statistical software package, SPSS 13, by 

running 2-way ANOVAs on the program performance scores using one of the simulation 

or sampling parameters as a second variable. As variances were large and mostly 

overlapping, Post Hoc analysis (Bonferroni, p<0.05) was used to determine which 

differences in means were significant.

The data did not meet the assumptions of a normal distribution or homogeneous 

variances, suggesting an arcsine-sqrt transformation of the performance score variable. 

However, it is known that ANOVA is robust to violations of these assumptions as long as 

the data consists of large and roughly equal-sized samples (Glass et al. 1972). 

Furthermore, boxplots (or normality plots) of the arcsine-sqrt score did not show any 

marked skewness, and the interaction and Post Hoc results remained identical with or 

without the transformation; here we report the untransformed performance scores.

We discuss in detail the statistical analysis and the interaction effects that were 

found to be significant. The graphs are shown in Figure 15.

Clock: Among all our experiments, the only case when the clock-based method, TipDate, 

outperformed MinPD and ML, was when the data sets were generated assuming the 

clock-like model of evolution. Even for these data sets, the difference was within a 

margin of 4-6% (see Figure 15) and was significant from MinPD’s performance scores, 

but not from fastDNAML scores. The effect size, measured by the partial eta-squared 

value, of 0.23 was the largest among all the interactions.

Recombination Rate: Picking one recombinant donor (parental sequence) out of two or 

more (a partial match) counted as a correct prediction. This scoring choice explains why 

the performances were not affected by the higher recombination rates, but also suggests
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that the programs placed one of the recombinant donors closer to the reference sequence 

about as frequently as they did with ancestors of non-recombinant sequences. Effect Size 

was only 1%. (MinPD’s recombination detection feature was turned off for these 

experiments).

Mutation Rate: MinPD and fastDNAml displayed improved performance at a mutation 

rate of 1(T5, while the clock-based methods achieved their best performance at a faster 

rate of 10'4, which resulted in highly divergent sequences. At a slower rate of 2x1 (X6 (at 

10"6 fastDNAml resulted in a severe slowdown) all of the methods had difficulty inferring 

ancestor-descendant relationships. The effect size was small at 3%.

Leaves: More leaves imply a larger tree and therefore, a smaller sampling rate. The 

performance scores declined slightly for the larger trees. The effect size was only 1%. 

The performance scores of fastDNAml for the 50K leaves data sets were significantly 

better than that of the other programs, including MinPD.

First Sampling Period (Start): Earlier initiation of sampling resulted in sampling of 

sequences closer to the root. The plots confirmed that inferring relationships is more 

difficult when sampling starts after sequences have diverged and separated into different 

lineages. The interaction effect size was 9%.

Sample Size (SSize): The interaction effect was very low (1%). The only significant 

decline in performance (-5%) for the top three programs occurred when the sample size 

was increased from 2 to 4. The lower error rates for smaller sample sizes are attributed to 

the smaller pool of ancestors that the programs end up choosing from.

79



Variable Parameter: Clock Model Variable Parameter: Mutation Rate Variable Parameter: Rec. Rate

Clock
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Figure 15. Graphs showing dependence of the performance scores of the algorithms on the different 

parameters.

Figure 15 shows the A-D performance score for the different algorithms on 

different selection of parameters. The analyses were based on experiments with 100 

replicates generated with a modified version of Treevolvel.3.2. All parameters were 

fixed except the ones described in the horizontal x-axis. Wherever unspecified, 

parameters were fixed as follows: Mutation rate: 10'5; Start: 9; Periods: 6; Clock: No; 

Sample size: 8; Recombination rate: 0; Leaves: 5000, Sequence Length: 1000, Model 

HKY, Ts/Tv:4, Gamma:0.5.
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5.5 Studies o f the Role o f Internal Node Sequences and the Molecular 

Clock

Since the molecular clock hypothesis is a fundamental assumption for three of 

the methods, we took a closer look at the effects that the molecular clock assumption has 

on the performance of the different programs. We applied 7 methods to the data from 

Sanson’s experimental evolution study as the data was obtained using a neutral system of 

evolution (clock-enforced evolution) (Sanson et al. 2002). In addition to calculating the 

A-D score (the score used in the previous section), we assessed the performance of the 

different programs in recovering the true topology. We therefore again analyzed the 

Cunningham97 data set that featured heterogeneous evolutionary rates (no clock model), 

this time using the topological distance criterion. In the published results of both 

experimental evolution studies, ancestral sequences were excluded from the tree 

reconstruction. In our study, the complete data set consisting of both ancestral as well as 

terminal sequences was taken into consideration. In our simulation study, we focused on 

the effects of the clock parameter settings, and on the effect that the presence of internal 

node sequences has on the performance of the programs. , For the simulated data sets, 

three groups of 1000 data sets were generated, one with a constant rate of evolution, the 

other with a variable rate of evolution, and the third with a variable rate and sampling of 

all internal node sequences.

5.5.1 Em pirical Data: Results

Two known phylogenies were chosen for our comparison study with the seven 

methods mentioned above. The 31 sequences in the Cunningham97 data set were 2733
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nucleotides long, while the Sanson02 data set had 37 sequences (which included 6 

additional clones of the first 70 cycles) of length 2238 bp. See the introduction section 

(5.1) for more details on the two experimental data sets.

P rogram s
Sanson02

Performance Scores Topological Distance Scores
Cunningham97 Average Sanson02 Cunningham97 Average

MinPD 100.00% 100.00% 100.00% 0.088235 0.071429 0.079832

fastDNAml 100.00% 96.43% 98.22% 0.367647 0.107143 0.237395

Dnapars 100.00% 92.86% 96.43% 0.235294 0.178571 0.206933

TipDate 100.00% 92.86% 96.43% Same topology as fastDNAml

BEAST - - - 0.264706 0.214286 0.239496

sUPGMA PAL 96.43% 75.00% 85.72% 0.411765 0.428571 0.420168

Seq-Link 28.75% 10.71% 19.64% 0.647059 0.928571 0.787815

Average 87.50% 77.98% 0.335784 0.321429

Table 7. Performance and Topology scores for empirical data

Table 7 shows the scores for the seven programs on the two empirical data sets. 

SeqLink fared poorly in both cases, which may be a result of its strong assumptions. The 

Cunningham97 data set was especially problematic for SeqLink because for 8 of the 

sequences from time period 50 there were no ancestors sampled in the previous time 

period (period 30).

MinPD recovered 100% of the relationships from both lineages and had the best 

(lowest) topological distance scores. As shown in Figure 16, MinPD displays an 

evolutionary framework with full lines representing genetic distances and with their 

extensions of dashed lines indicating linking relationships. FastDNAml performed well 

with the A-D score for the Sanson data set scoring 100%, but performed poorly based on 

the topological distance measure for the same data set. As expected the clock-based 

methods TipDate and sUPGMA performed better on the Sanson02 data set when looking 

at the A-D score, but the topology distances for sUPGMA were high. The trees output by
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these two programs have branch lengths that correlate to the sampling periods, as shown 

in Figure 16.

DNAPARS ran for an hour on the Cunnnigham97 data set, but for less than 1 

second on the Sanson02 data set. The majority rule consensus tree from the DNAPARS 

list of Cunnnigham output trees was used to compute the topological distance score and 

for the A-D score calculation the first tree of the output list was used. BEAST topological 

score was calculated from the majority rule consensus tree of the last 9000 trees, the A-D 

score could not be calculated as the consensus tree lacks branch length information.
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Figure 16. Comparison of Cunningham97 trees and frameworks

5.5.2 Simulated Data: Results

Three groups of 1000 data sets containing DNA sequences were generated with Serial 

NetEvolve (Buendia and Narasimhan 2006). One group was evolved with a
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homogeneous rate of evolution and one with a heterogeneous rate, while the third 

included all sequences from the internal nodes of the randomly evolved coalescent trees. 

These data sets were then provided as input for the six programs under consideration. As 

before, evaluation was based on the A-D Score and Topological Distance measure. 

Unlike other simulation programs the topology is not provided by the user and Serial 

Treevolve outputs the randomly generated topology. Fixed parameter settings were set to: 

sample size per period = 8, periods = 6, mutation rate = 10"5, population size = 106, 

exponential rate of 0.0001, model = HKY with rate heterogeneity, Ts/Tv = 4, and alpha 

parameter = 0.5. Variable parameters included: clock = no/yes (variable rates/constant 

rates), and internal nodes = none/all (i.e., either none or all of the sequences from internal 

nodes were included), whereas when internal nodes were included, the sample size per 

period was reduced to 4 to keep the total sample size approximately the same. Default 

options were: No Clock and No internal Nodes.

Six programs were run on the three groups of simulated data sets and the A-D and 

topological distance scores were measured. The results were analyzed with the standard 

statistical software package, SPSS 13, by running 2-way ANOVAs on the scores using 

the Clock or Internal Nodes parameter as a second variable. Effect sizes were measured 

through partial eta-squared values. As variances were large and mostly overlapping, Post 

Hoc analysis was used to determine which differences in means were significant. The 

interaction effects between the program scores and the second parameter was significant. 

Post Hoc analysis was done using the Bonferroni procedure using a threshold P-value of 

0.05.
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Figure 17 shows the performance of the different methods for different selection 

of the clock and internal nodes sampling parameters. SeqLink underperformed 

consistently by a large margin with all data sets and with both comparison measures. 

SeqLink’s strong assumptions may be the reason and will therefore not be included in the 

discussions below.

Ancestor-Descendant Score

Clock Parameter: For data sets generated with the non-clock model of evolution, MinPD 

performed better than the other two methods that were specifically designed for serially- 

sampled data. However, fastDNAml outperformed MinPD by 4%. The clock methods 

sUPGMA and TipDate improved dramatically with the clock data sets, with TipDate 

outperforming all programs except FastDNAml by a significant margin of 3-12% 

(excluding SeqLink). The interaction between program and the Clock parameter 

accounted for 20% variability in the A-D scores.

Internal Nodes Parameter. When sequences from all internal nodes were provided as 

input the score improved for all programs except sUPGMA, whose score remained 

approximately the same. The interaction effect size was 15%.

Topological Score

Clock Parameter: DNAPARS and fastDNAml performed well under this measure 

regardless of whether or not the generated sequences satisfied the clock model. MinPD’s 

distance score was mediocre in both cases, but as mentioned previously, the program’s 

function is to present ancestor-descendant relationships in a framework structure, which 

for the purpose of calculating the distance score had to be converted to a tree. The 

Topological distance score produced a very small effect size of 1%.
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Internal Nodes Parameter: As with the empirical study results, MinPD performed well 

when all internal node sequences were provided, while all other programs had difficulty 

recovering the true topology. The effect size of 79.5% was the largest among all the 

interactions.

No Clock Yes None A ll

Internal Nodes

Estimated Marginal Means of Topological Distance

Clock

Figure 17. Graph showing dependence of the A-D Score and topology scores of the algorithms on the 

Clock and Internal Nodes parameters.
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5.6 Discussion

The results show that for inferring ancestor-descendant relationships, the distance 

method MinPD outperforms methods specifically designed to analyze serially-sampled 

sequence data. An important characteristic of MinPD is that it does not require an explicit 

assumption of a molecular clock. The only method that performed consistently better (but 

rarely was the difference statistically significant) than MinPD when the evaluation was 

based on the A-D Score is the ML-based fastDNAml, which was designed for 

contemporaneous data. It is possible however, that our simulation sampling procedure 

may have provided a slight advantage to a traditional method like fastDNAml as most 

sampling started later, i.e., closer to the leaves of the final time line. By starting to sample 

later we tried to emulate the scenario in which sampling from a patient starts in the later 

stages of infection when the virus has had ample time to evolve and diverge into different 

lineages. Due to the similarity in performance of MinPD and fastDNAml, they were often 

grouped together in the same homogeneous subset by the Tukey range test procedure. 

MinPD is, however, several orders of magnitude faster than fastDNAml.

Analysis of serially-sampled sequence data is useful for understanding and 

analyzing the evolution of a virus within a single host. With the increasing ability to 

sample and sequence large numbers of viral particles from infected patients, it is 

imperative to develop fast and accurate methods to analyze the resulting sequence data. 

Table 8 shows the average time taken for 10 runs for each of the seven methods on an 

input data set with 80 sequences each of length 1000 on a Pentium 4, 2.40 GHz CPU with 

512MB of RAM running Windows XP. The variance in the computation time for all the
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programs was small with the exception of TipDate, whose time could range from 17 

minutes to 2 hours for a set with 80 sequences, and of DNAPARS, which had an average 

computation time of 5 minutes with the exception of one data set which took over an hour 

to complete.

Program
A verage l ime 
(80 sequences)

; Standard 
Deviation

sUPGMA <1 second 0

Tipdate 67 minutes 52.44

BEAST (106 chain) 141 minutes 4.38

fastDNAml 38 minutes 4.47

DNAPARS 12.8 minutes 23.27

MinPD <1 second 0

SeqLink <1 second 0

Table 8. Comparison of computation times for all seven methods

The results of our simulation studies showed that certain sampling practices can 

adversely affect the outcome of the programs. Sampling from a larger tree increased the 

A-D Score error rate by about 5%. Sampling early on, before the sequences have 

considerably diverged, produces better-defined phylogenetic relationships. In contrast, 

different sample sizes did not significantly affect program A-D Score. The presence of a 

high rate of recombination did not increase the error rate when partial matches were 

counted towards the score. There is a decrease in performance for faster or slower 

mutation rates. As expected the two clock-based methods performed well with data 

generated by a clock model.

Our studies showed that fastDNAml, DNAPARS and MinPD outperform other 

programs under the A-D Score measure. As expected the clock-based methods, TipDate, 

sUPGMA performed well under this measure when data was evolved under the clock 

model, with TipDate showing the best performance.
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MinPD outperformed all the methods by a significant margin under the 

topological distance measure when internal sequences were also provided as input. 

FastDNAml and DNAPARS outperformed other methods by a large margin when no 

internal sequences were provided as input.

The simulation studies corroborated the results of studies with empirical data, in 

particular the surprising topological score results. As shown by the results with the 

simulated data, when data sets included the most recent common ancestors for each 

sequence, tree-based programs failed to place them at basal positions in the tree, resulting 

in large topological distances from the true tree. In an interesting related study, 

Huelsenbeck used parsimony to analyze a simulated data set with inputs consisting of 

“living” taxa and an equal number of “fossil” taxa (with varying evolutionary distance 

from a randomly chosen direct ancestor of one of the living taxa) (Huelsenbeck 1991). 

Huelsenbeck concluded that, under certain circumstances, the availability of fossil taxa 

improves phylogenetic reconstruction, and that the improvement is greater if fossil taxa 

are closer to the direct ancestors of living taxa. Huelsenbeck’s study however, used only 

small trees with a total of 8 taxa and binary character sequences of length only 100.

In our study MinPD was at an advantage when internal sequences were included 

in the input as it uses the sampling time information to infer ancestors. We hypothesize 

that traditional phylogenetic methods that are not restricted by the molecular clock, such 

as for example parsimony and maximum likelihood, may show an improved performance 

in their ability to recover the correct topology from serially-sampled data, when sampling 

times are taken into account and incorporated into their algorithms.
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5.7 Summary

In this study we investigated and evaluated the performance of seven methods in 

inferring ancestor-descendant phylogenetic relationships from serially-sampled data in 

order to achieve goal number 5. We studied two significantly different empirical data sets 

of experimentally evolved sequence data: The Sanson02 data set consisting of 37 DNA 

sequences and the Cunningham97 data set consisting of 31 T7 phage sequences, both 

obtained from known phylogenies produced in the laboratory. We also experimented with 

simulated data sets to better understand the effect of contrasting evolutionary rate 

hypothesis and the presence of sequences from internal nodes on the performances of 

these seven methods. The comparisons were based on two different kinds of scores, the 

A-D Performance Score, a distance-based measure that evaluates the inference of 

ancestor-descendant relationships, and the standard Robinson Fould’s Topological 

Distance Score.

The simulation studies corroborated the results of studies with empirical data, in 

particular the surprising topological score results. As shown by the results with the 

simulated data, when data sets included the most recent common ancestors for each 

sequence, tree-based programs failed to place them at basal positions in the tree, resulting 

in large topological distances from the true tree.

We did not perform comparisons studies on recombination detection in this 

chapter, as many methods do not support that feature. Due to the lack of standard 

recombination evaluation criteria we will discuss and propose new comprehensive 

evaluation criteria in the next chapter.
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6 Searching for Recombinant Donors in a Network of Serial

Samples

With at least five new recombination detection methods published in the last year, 

the growing list of over 40 methods suggests that the field of recombination detection is 

generating a lot of interest. A majority of the methods identify breakpoint positions and 

putative parental/donor sequences with corresponding probability values. The evaluation 

procedure of three previous comparison studies did not measure how many sequences 

were correctly identified as recombinant, or how many breakpoints and donors were 

correctly identified for the recombination events (Martin et al. 2005a; Posada and 

Crandall 2001a; Wiuf et al. 2001). This chapter addresses goal number 4 and seeks to 

establish the criteria and mechanisms to perform comprehensive comparison studies on 

recombination detection tools and phylogenetic tools for serially-sampled recombinant 

data.

Determining the evolutionary history of a sequence can become quite complex 

when multiple recombination events are part of its past. Detection of recombinant false 

positives is a major problem of most evaluation methods. In this chapter we will present 

an algorithm that identifies breakpoints and donor sequences in a given recombinant 

network of serially-sampled data. The algorithm, Recldentify, scans the nodes of a 

randomly evolved phylogenetic network and uses its edge lengths and topology to 

identify the parental/donor sequences and breakpoint positions for each query sequence. 

Recldentify findings can be used to evaluate the output of recombination detection 

programs. Recldentify may also assist in understanding how network size and complexity
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may shape recombination signals in a set of DNA sequences. The results may prove 

useful in the phylogenetic study of serially-sampled viral data with recombination events.

6.1 Introduction

Modeling and detection of recombination is receiving increased attention, as is 

evidenced by the long list compiled at a popular website (Fan and Robertson 2006). 

Recombination plays an important role in the evolution of genes and genomes; more 

importantly, it has a deleterious effects on the accuracy of phylogenetic reconstruction 

(Posada and Crandall 2002; Schierup and Hein 2000a). Some programs only determine 

the presence or absence of recombination, without trying to infer recombination 

breakpoints (Worobey 2001). Such a yes/no answer might be sufficient to decide which 

sequences to remove from a data set that will be used to infer a phylogenetic tree, thus 

justifying the evaluation process in many comparison studies of recombination detection 

methods (Martin et al. 2005a; Posada and Crandall 2001a; Wiuf et al. 2001). The more 

sophisticated programs, however, attempt to detect recombinant signals and donor 

sequences for the “query” sequences (Lole et al. 1999; Martin et al. 2005b; Strimmer et 

al. 2003).

Recombination has been largely ignored in the study of evolution due to the lack 

of practical methods that infer and reconstruct recombinant networks. Another reason is 

rooted in the belief that recombination may be disregarded when using certain genes such 

as mitochondrial genes or genes from the Y-chromosome, which were thought not to 

recombine. However, a recent study has shaken these assumptions (Tsaousis et al. 2005). 

The study made use of the automated recombination detection methods of the package
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RDP2 (Martin et al. 2005a; Martin et al. 2005b) to find evidence of the presence of 

recombination in mitochondrial DNA data sets used in published papers.

Detecting recombinants in a set of input sequences is a difficult problem, and the 

performance of existing methods with regard to the accuracy of identification of 

recombinants, donors and breakpoint positions is not known. In this chapter, we consider 

the simpler problem of identifying the recombinants when the input is a set of serially- 

sampled sequences and also includes the recombinant network. We show that this 

seemingly simpler problem is non-trivial. We point out that an efficient solution to such a 

problem will result in a tool that would be extremely useful for performing experiments 

with recombination detection.

In this chapter, we discuss a new approach, Recldentify, which seeks to determine 

the donor sequences and breakpoint positions of a set of simulated serially-sampled 

sequences that were evolved along a randomly generated network. The algorithm scans 

the nodes of the network and uses its topology and edge length values to identify the 

donor sequences and breakpoint positions for each queried sequence. We discuss the 

conflicts that arise when such networks are large and contain multiple recombination 

events. The networks for our experiments were generated by the software Serial 

NetEvolve 1.0 (Buendia and Narasimhan 2006), which attempts to emulate the evolution 

of recombining viruses such as HIV. The results also shed light on the effects of multiple 

recombination events on recombination detection of sequences from fast evolving 

pathogens. Hence, the temporal nature of the data will have a clear influence on the 

algorithm’s strategy. While the observations made here also apply to contemporaneous
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data, it is the temporal distribution of the data that will best explain the prevalence or 

absence of recombination signals in a given sequence.

The reader is referred to the section titled “Notations and Definitions” for precise 

information on the terminology used in this chapter.

6.2 The Recldentify Algorithm

Algorithm Recldentify reads in a recombinant network of nodes, some of which 

are sampled. For each sampled sequence, referred to as the query sequence, it identifies 

donor nodes from an earlier sampling period.

Input: A recombinant network with edge lengths representing the evolutionary history of 

a set of serially-sampled nucleotide sequences (sequences are not part of input), along 

with information on which sequences were sampled and at what sampling period.

Output: Identification of recombinants, breakpoints, and donor sequences from earlier 

sampling times, for each sampled sequence. A donor sequence is the closest ancestral 

sequence for some part (or the entire length) of a sampled descendant sequence.

The algorithm Recldentify is composed of two phases.

Phase 1: In a preliminary bottom-up traversal of the network, for each node (both 

sampled and unsampled), the closest sampled descendants for each sampling time are 

computed and stored in a list, Descendantslnfo.

Phase 2: Subsequently, the sequence at each sampled node is classified as being 

recombinant or not and its donor sequence and breakpoints are identified. This is 

achieved by traversing the network from each (sampled) query node up to the root and by 

inspecting the Descendantslnfo list of the sibling node for every node on the path to the
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root. The inspected Descendantslnfo lists contain all the candidate donors of the query 

node.

6.2.1 Notations and Definitions

The Network

A recombinant phylogenetic network of serial samples is a directed acyclic 

graph/network, in which nodes are associated with nucleotide sequences and assigned to 

sampling times (numerical values) and edges are associated with length values. The 

direction of every edge is from parent node to child node. As defined below, the nodes in 

the network may be sampled or unsampled, and either tree nodes or recombinant nodes. 

When no recombination events are present, the network contains only tree nodes and is a 

binary tree.

Figure 18 shows an example of a recombinant network with sampled nodes 

shown as filled circles. Sampled nodes are assigned to one of 3 sampling time points: 3, 6 

and 9.

Network properties

■ A network node may be sampled or unsampled, and is associated with a 

nucleotide sequence. All sequences in the network are assumed to have the same 

length.

■ Sampled nodes are assigned to a sampling time and are identified by an ID 

whose prefix indicates the sampling time point.

■ A tree node has only one parent node and at most two children.
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■ A recombinant node is a node at which a recombination event takes place. It has 

a left and a right parent node and a corresponding breakpoint position. A 

recombinant node represents the evolutionary event of recombination, in which 

one part of the sequence (i.e., left of the breakpoint) is inherited from one parent 

(referred to as the left parent), and the other part (i.e., right of the breakpoint) is 

inherited from the other parent (referred to as the right parent).

■ A recombinant sequence is a sequence associated with a node (either tree or 

recombinant node) resulting from one or more recombination events in its history.

■ A leaf node is a node with no children nodes.

■ Edge Distance: The distance value associated with an edge of the network 

represents the amount of evolutionary divergence between the two incident nodes.

A phylogenetic network is completely specified by its topology and the set of all edge 

lengths.

A path in a recombinant network

Assume that node x is one of the parents of recombinant node y in the network. 

Then, depending on the breakpoint, node x is a donor for only part of the sequence at 

node y. Thus every edge in the network from a parent to a child is associated with a 

portion of the sequence for which the parent is a donor. Extending this notion, we define 

a path from node v to w in the network to be a sequence of nodes (or edges) along with a 

specified portion of the sequence (given by a range, i.e., a start point and an end point, in 

the sequence). More precisely,

path(v,w,s) = (P, s)
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is an ordered pair with a sequence of vertices P = <ni,..np> (with the first and last entries 

of the sequence being v and w respectively), and an interval range s = [start,end] 

indicating a start and end point of the sequence linking the nodes v and w.

The nucleotides under consideration are given by the interval range s = [start,end] 

often flanked by breakpoints on one or both sides. If the given recombinant network has 

no recombinant nodes, i.e., the given network is a tree, every path is associated with the 

entire sequence. In a recombinant network, there may be more than one sequence of 

nodes from a node v to node w, and each must be associated with a disjoint interval 

range, i.e., portion of the sequence. For example, in Figure 18, path(a,w,[0,700]) = 

(<a,b,f,3.0,w>, [0,700]) and path(a,w,[701,sLen]) = (<a,p,u,3.V,w>, [701,sLen]) are two 

distinct paths covering disjoint interval ranges of the sequences. Note that the breakpoint 

is between the 700-th nucleotide and the following one, and sLen is the length of all the 

sequences. Also note that paths are not directed and may use edges directed either way. 

In other words, when dealing with paths, we simply ignore the directions of the edges. 

For example, in Figure 18, the path from node 9.Y to its closest sampled donor, 3.V, 

involves an edge in both directions.

In Figure 18, sampled nodes are represented by filled circles, unsampled nodes by 

open circles. Each node is labeled in alphabetical order in the reverse of the order in 

which the node is processed during phase 1. Each sampled node is identified by a 

sequence name that starts with a numerical prefix indicating the sampling time point, 

followed by a dot and an uppercase letter. Recombinant nodes have two parents and are 

shown with two thick edges leading into them. The numbers above them indicate the 

corresponding breakpoint position.
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6.X

Figure 18. Recombinant network of serially-sampled data with 4 recombination events

6.2.2 Donor and Recipient Lists

As mentioned before, a sampled node with recombinant nodes among its 

ancestors may have any number of donors. The DonorList can be used to store the list of 

donors of any given node. It stores information about all the donor sequences and the 

associated breakpoints. The data structure is easily implemented as a linked list of 

network nodes. The list contains only one network node if only one donor has been 

identified for the entire sequence. If different nodes have been identified as donor nodes 

for different parts of the sequence, then the donor list is an ordered list of donors along 

with the corresponding breakpoints. The RecipientList, structured exactly like the 

DonorList, is used to store a recipients list for any given node. For node x, it stores a list
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of all nodes for which x could be a donor (along with the associated breakpoints). Note 

that such a list is used in Phase I of the algorithm below.

In order to write down the donor or recipient list, we introduce the RDL notation 

in this chapter and write it as follows:

[ S 1|B 1|S 2|B 2 | . . .  |B „ _ i |S n] .

If it denotes a donors list of node x, it expresses the recombinant history of node x 

as an ordered list of n sampled donor sequences and n-1 breakpoints. Si and Sn are the 

leftmost and rightmost sampled donor nodes, while S; is the ith sampled donor node. 

Some nodes may have no donors, or it may have parts of its sequence with no donors. For 

this purpose, we introduce the concept of a NULL node, which is represented by a dash 

“— A NULL node is used to indicate that no donor has (yet) been found for some (or 

all) portion of a sequence.

For example, during phase 2 (described later) when searching for the donor list of 

node 9.M, the algorithm traverses upward to the root. When it is at node j, based on the 

information collected from the subnetwork reachable from node i, the donor is: [— 

|700|6.K], implying that no donor has yet been found for the first 700 nucleotides. 

However, when node b is reached, based on the information collected from the 

subnetwork reachable from node b, the donor list of node 9.M contains the complete 

information: [3.E|700|6.K]

In Figure 18, Recldentify identifies sequence 6.X as a recombinant sequence using 

all three of the available distance criteria. Using the RDL notation, the parents of
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sequence 6.X can be written down as [3.0|200|6.S]. The sequence at 9.Y is identified as a 

non-recombinant with [3.V] as the sole donor sequence.

6.2.3 Ancestor Criteria

A key requirement that our method imposes is that for any given sequence, all

potential donor sequences must have been sampled at an earlier sampling time point.

6.2.4 Distance Criteria

A node v is said to be closer to node u than to node w for a segment of the 

sequence s = [start,end], if distance(v,u,s,c) <c distance(v,w,s,c), where distance(v,u,s,c) 

is the length of the shortest path between nodes v and u calculated for sequence segment s 

using distance measure c. In order to compute distances between the sampled data, three 

different distance measures may be used:

■ Path length measure: a distance measure based on path lengths,

■ Topology distance measure: a distance measure based on number of edges on

the path, and

■ Combined distance measure: a measure that combines both path lengths and 

topology.

The three measures were chosen by taking into consideration the different 

approaches used in existing recombination detection methods (Martin et al. 2005b; 

Salminen et al. 1995; Siepel and Korber 1995). A majority of recombination detection 

methods use a sliding window approach and either pairwise sequence comparisons (path 

length) or phylogenetic trees to determine location in a tree (topology approach).

100



A sequence at node v is identified as a donor sequence of the query sequence at 

node q if distance(v,q,s,c) = distance(w,q,s,c), where W is the set of all sampled
w e W  ,v?*vv

nodes from sampling times prior to tq, the sampling time of q.

Edge Length measure

Let Len(e) be the length value associated with edge e. The distance between 

sequences at nodes v and q under the edge length criterion is given by 

distance(v,q,s,lengths) = '^ j Len(ei) . This is thus the path length measure used in
e-,E.pcith(v,q,s)

traditional graph theory literature. As mentioned before, the directions of the edges on the 

path are ignored. Ties are broken by using the topology criterion (described below). If 

ties persist, they are broken arbitrarily.

Topology distance measure

The distance between sequences at nodes v and q under this measure is given by 

distance(v,q,s,nodes) = |P|-1, where path(q,v,s) = (P,s) is the shortest path between nodes 

q and v. In other words, the distance value according to this criterion is equal to the 

number of edges on the shortest path between q and v for the sequence segment s. Ties 

are broken by using the edge distance criterion. As before, if ties persist, they are broken 

arbitrarily.

Combined distance measure

This is simply a weighted combination of the distances according to the edge 

distance measure and the topology distance measure. More formally, the combined
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distance is given by: distance(v,q,s,combined) = distance(v,q,s,nodes)*nodePenalty + 

distance(v,q,s, lengths). Here nodePenalty is a penalty imposed on the number of edges 

on the path.

In each of the above definitions of the distance measures, the donor sequence for 

the query sequence at node q is defined as the sequence associated with the node v that 

has the smallest distance(v,q,s,c) value among all nodes v, where c is one of the three 

distance measure criteria (path lengths, topology, or combined). In each case, if ties 

remain, a candidate donor is selected arbitrarily.

Each of the three distance measures may identify different donor sequences. For 

example, in the network of Figure 18, using the topology distance measure, sequence 6.K 

will be identified as a recombinant with two donors for two different portions of the 

sequence; in RDL notation, it may be written down as [3.E|700|3.0]. Note that the node 

9.M is from a later time period and cannot be considered as a donor node. The edge 

distance measure, however, will only identify one donor sequence, [3.E], as it has a 

smaller edge distance from the right-hand donor (node j) than the sequence at node 3.0. 

Depending on the nodePenalty value, the combined distance measure could identify the 

same donor as that with the edge distance measure or that with the topology distance 

measure. Note that an entirely different donor (i.e., other than the ones identified using 

the path length or the topology measure is possible (depending on the value of 

nodePenalty) when the combined measure is used.
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6.2.5 The Descendantslnfo list

For the following discussion, let c be one of the three distance measures defined 

above. With respect to a specific node x and a sequence segment s, we say that v <c w if x 

is closer to v than to w according to a distance measure c, i.e., distance(x,v,s,c) < 

distance(x,w,s,c). We also define the relation <s as follows. We say that v <s w if v was

sampled no later than w. Finally, we say that node v dominates node w, if v <c w and v <s

w. In other words, v dominates w with respect to node x, if v is closer to x and was

sampled no later than w.

The Descendantslnfo list is an ordered list associated with each node, with one 

entry for each sampling time. It is sorted by sampling times, and for each sampling time, 

it contains, for each segment of the sequence, the closest sampled descendants of the 

node. More precisely, for node x, each element in its associated Descendantslnfo is a 

RecipientList structure and contains the closest sampled descendant node for each 

segment (i.e., between two successive breakpoints) of the sequence of x. Besides the 

identity of the closest node, it also stores the distance to the closest node using the path 

length measure and the topology distance measure. (Note that the combined distance 

measure is not stored since it can be computed from the other two measures.) For 

example, for the network in Figure 18, the Descendantslnfo list for node g is [6.S[200|- 

|700|6.K] for sampling period 6 and [9.M] for sampling period 9.

The elements of the Descendantslnfo lists will be used to compute the donor lists 

containing the recombination history of any query sequence in Phase 2. Thus, if 

unsampled node x has two children v and w, then the Descendantslnfo list associated
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with node v contains potential donors of query nodes in the subnetwork rooted at w, and 

vice versa.

For tree networks, we know that the RecipientsList has only one node. The 

Descendantslnfo structure can be further simplified using a simple rule, i.e., the 

dominance rule for two sampled nodes v and w with respect to an ancestor node x and a 

sequence segment s, which is stated as follows:

i f  (v < c  w) then

i f  (v <s w) then discard w, 

else retain w, but after v.

In other words, the dominance rule discards all dominated nodes from the 

Descendantslnfo list of x and orders the rest by increasing distance from x. Note that if a 

node x is sampled, its Descendantslnfo list contains only one item and that is itself.

As a straightforward consequence of the dominance rule, we observe that the 

Descendantslnfo list of every node in a tree network is sorted in the order of increasing 

distances and decreasing sampling times.

6.2.6. Phase 1: Storing candidate nodes in the Descendantslnfo list

In phase 1, the Descendantslnfo list at each node in the network is computed in a 

bottom-up manner using a simple Depth-First Search (DFS) traversal. Figure 18 shows 

each node labeled by the order in which it is first visited by this DFS traversal. The 

objective of phase 1 is to compute, for each node v, a list of closest sampled descendants 

from each sampling time. This information will be made use of in Phase 2 in the 

following manner. If a node v is a sibling node of some node in the path from a node x to
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the root, then all nodes in v’s Descendantslnfo list that were sampled prior to x, are 

potential donors of x. The Descendantslnfo list of a node v is computed by a process of 

“merging” the Descendantslnfo lists of its children. This merging procedure is described 

below in detail.

Merging Procedure

During the DFS traversal, the Descendantslnfo list of an unsampled leaf node is 

initialized to null and that of a sampled leaf node is initialized to contain only one 

Recipient list, which in turn has only one entry, i.e., itself. For all other nodes, the 

Descendantslnfo list is computed by merging the Descendantslnfo of the left and right 

children of the node. Note that the merging process will merge the RecipientLists from 

the same sampling period from the two Descendantslnfo lists being merged. Before 

discussing the general case, we discuss two special cases of merging.

Case 1 (Merging at a recombinant parent node): Assume that the current node is a 

recombinant parent node with only one child. Furthermore, assume without loss of 

generality, that the parent is a right recombinant donor with breakpoint B. Then the 

merging process will only retain the part of the Descendantslnfo list that is appropriate to 

the portion of the sequence for which the recombinant parent is the donor (i.e., to the 

right of breakpoint B). In other words, a NULL node will be added to the left of B in 

every RecipientList of the Descendantslnfo structure of that node, while the portion of 

the RecipientList to the right of B will be copied over.
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Case 2 (Merging at nodes with nonrecombinant children): If a node has two non

recombinant children, then the Descendantslnfo structure of that node can be 

considerably simplified by applying the dominance rule.

Case 3 (Merging Recombinant RecipientLists): The general case of the merging 

process merges the two Descendantslnfo structures (from the two children), each of 

which is a list of RecipientList structures (one for each sampling time). The merging 

process merges the RecipientList structures for the same sampling period and is fairly 

straightforward. The breakpoint list of the merged list is the union of the breakpoint lists 

of the individual RecipientLists. For each resulting segment (i.e., between successive 

breakpoints) of the sequence, the merge process retains the closer of the two sequences 

one from each list. Note that distances are computed according to one of the three 

predefined distance criteria discussed earlier. In the end, if the closest sequence is the 

same to the left and right of a particular breakpoint, then the breakpoint is removed and 

the list is shortened. One additional point to note is that the Descendantslnfo structure 

also stores the distance information. Before merging the two data structures, the distances 

from the parent to the two children need to be added before the distances are compared 

and stored.

For example, in Figure 18, node j is a recombinant parent with only one child. 

Thus, Case 1 is applied resulting in the RecipientList [-|700|6.K], Case 2 can be applied 

at node 1. Here the edge distance of 9.N is larger, but the topology distance is the same. 

However in this case the edge distance is applied to break the tie, even if the topology 

distance is the chosen criteria. The general case 3 is applied at node g, where the
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RecipientLists denoted by [6.S|200|-] and [-|700|6.K] are merged resulting in a list 

denoted by [6.S|200|-|700|6.K], Note the NULL node in the mid section of the sequence 

Unusual example: It is worth noting that in a recombinant network, not every sampled 

ancestor of a recombinant node is a donor, because it is very much dependent on the 

location of the breakpoints. The proposed algorithm does take care of this unusual 

scenario. For example, for the section of a network shown in both Figures 19 (a) and (b), 

because of the location of the breakpoints, the sequence at node A is not a donor for the 

sequence at node C. In fact, the Descendantslnfo of node A will be empty if node C is a 

leaf node. In Figure 18, the Descendantslnfo list of node 3.V is empty although it appears 

to be an ancestor of a sampled node 6.X

a) b)

Figure 19. Examples of how subsequent recombination events can affect the Descendantslnfo list of

6.2.7. Phase 2: Identification of donor nodes

During this search phase the closest donor sequences have to be determined for 

each sampled query sequence. The resulting DonorList structure is returned as the 

answer. When searching for the donors of a query sequence, the DonorList is initialized 

to the empty list. Then the network is traversed along all paths from the query node to the

C C
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root. At every node, the DonorList is “merged” with all RecipientLists from the 

Descendantslnfo list of their sibling nodes (if any) after adding the distance from the 

node and its sibling to their parent. Only entries that are at a closer distance than the 

current answer stored in DonorList are merged. Care is taken to only use those 

RecipientLists that correspond to sampling times earlier than that of the query sequence. 

The search traverses a simple path if no recombination events are encountered along the 

way; otherwise the search process splits up. Whenever two of these paths meet, the 

DonorLists are merged again. If we assume that the network has a unique root, then all 

the paths will meet. The process is stopped when the root of the network is reached or the 

distance traveled in the network exceeds the distance of the best answer stored in 

DonorList. Note that the merging process described in the previous section is now being 

reused in this phase, albeit with the modification that RecipientLists from all relevant 

sampling periods are merged. Also note that if a node along the path is a sampled node 

itself, then that node is also merged into the DonorList and the search process aborted for 

the path with the sampled node. Details of the code are provided in Figure 20.

Special Cases

During Phase 2 the donor sequences for each “query” sequence is determined. A 

complex network structure may obscure recombination signals and lead to ambiguous 

and incorrect results. Recombinant sequences may be identified as non-recombinants, 

while non-recombinants may get identified as recombinants. Figures 21 (a) and (b) show 

examples of both these cases. In both figures, the sampled query node is marked with the 

label Q. In Figure 21 (a), no recombination event is present in the path from Q to the root.
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GetClosestDonorfcurrenf node, sibling node, answer DonorList)
If current node is NULL

Then return I I  it's beyond the root so stop
If current node is sampled

Then merge current node with answer 
Else If sibling is not NULL

For all RecipientLists in Descendantslnfo of sibling node
If sampling time is earlier than query sampling time

m p rn n  P a n in ia n t l ic t  w ith  a n c w o r  o rn n r r l in n  tn  H ie f  a  n r  o  r r i to r io
If current node not sampled

If current node is recombinant
If c Then GetClosestDonor(leftParent of current node, NULL, left answer)

GetClosestDonor(right Parent of current node, NULL, right answer) 
attach left answer to the left of right answer before current node’s bkp, position

Else
21 GetClosestDonor(left parent of current, sibling of current, answer)

GetClosestDonor(left parent of current, sibling of current, answer)

Figure 20. Algorithm GetClosestDonor

A non-recombinant query sequence Q may nevertheless be identified as a recombinant 

with donor list: [A|200|B|700|C], since the closest sampled sequences from a previous 

sampling period (nodes A and C) are descendants of recombinant parents. In contrast, in 

Figure 21 (b), Q that will be identified as a non-recombinant with B as the only donor and 

will not be identified as a recombinant sequence since the closest sampled node (node B) 

is not a recombinant.

Figure 21. Examples of ambiguous sequence identification
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6.2.8. Time Complexity 

Phase 1

The merge process at each node merges t pairs of lists, where t is the number of 

sampling times. Each list can, in the worst case have as many breakpoints r as the number 

of recombination events in the network. If n is the number of nodes in the network, then 

DFS-traversal of the network, which performs O(n) merges runs in time O(trn). Note that 

the number of edges in the network is linear in n (since each node has at most two edges 

leaving and at most two edges entering. Also, note that because of recombination events, 

the number of nodes in the network can be arbitrarily larger than the number of leaves or 

number of sampled nodes in the network.

In the best case scenario, n = s , all nodes are sampled nodes. Time complexity is 

O(n) because “every” sampled node contains itself and only itself in its Descendantslnfo 

list, therefore t= l and r= l.

Phase 2

GetClosestDonor procedure is called for each sampled node that is not from the 

first sampling time point. In the worst case, this could take O(tm) for each sampled 

sequence and O(trsn) overall. However, this time can be improved, when the search is 

carried out for all sampling times at once instead of for each queried sequence. During 

the search the result per sampling time is stored at each visited node in the path. The 

search will start at the leaves as before but will stop whenever it encounters a node that 

contains the result for a path that has already been searched previously. Since, with this
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improvement, the processing (i.e., merging) has to be performed at most once at each 

node, the time complexity as in Phase 1, is O(tm). In Figure 18 the answer for 9.M: 

[6.S|200|3.E|700|6.K] will be stored in node 1. Then the answer for node 9.N will be 

found after traversing only one node upward towards the root.

Again in the best case, n=s, and the time complexity is O(n) because the donor 

will be found after 1 step. The donor is the sampled parent node.

6.3 Discussion

Given a set of aligned, serially-sampled sequences and a simulated network that 

describes the phylogenetic relationships between the sequences, the questions we ask in 

this chapter are how to classify the sequences into recombinant or non-recombinant 

sequences and how to identify donors and breakpoint positions, while using an approach 

that is compatible with the methodologies of published recombination detection tools. We 

sought to determine the kind of recombination events that complicated the determination 

of the past history of a sequence and how this complication affects the recombination 

detection process.

A recombinant network of serially-sampled data, explaining the true history of the 

data set, was used as the input structure. The edge lengths in the network used represent 

the number of substitutions per site, but do not represent time (i.e., the molecular clock 

model was not assumed). Recombination events in the network appear as two edges 

merging into one recombinant node, as opposed to tree edges that split from one node 

into two edges. Thus, there are tree and recombinant edges in the network. An example of 

such a network can be seen in Figure 18
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Distance and topology approaches in the determination o f donor sequences and 

breakpoints

For each (query) sequence the algorithm Recldentify determines if the sequence 

has one or more donor sequences among the sampled data. Breakpoint positions are also 

determined for recombinant sequences. The identification process is heavily dependent 

on the chosen distance criteria, which in turn is inspired by the two main classes of 

recombination detection methods. A number of recombination detection methods, 

including RIP (Siepel and Korber 1995), use genetic distance or pairwise sequence 

comparisons to identify recombinant sequences; others, like the popular bootscanning 

method, use phylogenetic trees and rely solely on tree topology to obtain their results 

(Lole et al. 1999; Salminen et al. 1995). To conform to these two approaches, three 

distance criteria are used in this chapter: one based on path length, a second based on 

topological distance (network position), and a third measure based on a combination of 

both path length and topology.

The path length measure and the topology measure tend to agree whenever all the 

edges in the network are of roughly the same length. If this is not the case, the path length 

measure identifies fewer sequences as being recombinant, and finds fewer breakpoints as 

it discards donor sequences positioned at the end of longer edges. Ties resulting from the 

use of one measure may be broken with the help of another measure. This approach 

reduces the number of sequences identified as recombinants, especially when topology 

ties are broken by applying the distance measure.
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The distance and topology measures return results that often differ in the choice 

of donor sequences and breakpoint position. The combined measure is based on the path 

lengths with a penalty for the number of nodes traversed. Like the topology measure it 

tends to identify more sequences as recombinants, since it is less discriminating about 

distances and ends up with more ties.

Based on our experiments, we conclude that the combined measure may be a 

more realistic measure.

Effects o f  complex phylogenetic network structures

A phylogenetic network that describes the evolutionary history of a set of 

recombinant taxa may obscure the actual historical evidence if too many recombination 

events are dispersed throughout the network or if subsequent recombination events are 

located in the same path from the root to a sampled sequence. Some of the more 

remarkable cases are briefly discussed here and presented in more detail in the Methods 

section.

Recombinant sequence may be identified as a non-recombinant when a sequence 

at a recombinant node has unsampled left and right parental nodes and the closest 

sampled donor node is an ancestor of both the unsampled parents (see Figure 21b).

Non-recombinant sequences may be identified as recombinant if a non

recombinant query sequence has different sequences identified as donors for different 

parts of the sequence, but no recombination event took place on the path from the root to 

the node corresponding to the query sequence. This case is less intuitive than the previous 

case, and occurs when the closest donors of the query node are sequences from subtrees
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(with recombination events) of siblings of its unsampled ancestors. Recombinant nodes 

only inherit a segment of the sequence from each parent node (see methods section), 

therefore they can only be identified as donors for the segment corresponding to the path 

that joins one parent node and the query node. (See Figure 21(a) for an example.)

The closest sampled nodes may not always be donor candidates of a query 

sequence. If the path from the closest sampled node to the query sequence contains more 

than one recombination event, the query sequence may not have inherited any part of the 

sequence from the sampled node. For example, in Figures 19 (a) and (b), A is the closest 

sampled ancestral node with respect to C, but it in both cases it is not a donor for any part 

of the sequence associated with C.

The cases discussed above make it clear that the identification of donors in a 

given recombinant network is nontrivial and requires a careful algorithm that recognizes 

the evolutionary implications built into such a structure.

The testing procedure

In a more complex network with a larger number of sampled sequences, the 

identification of recombinant sequences, donor sequences and breakpoints ceases to be 

trivial. We proposed a special algorithm, Recldentify, to carry out these tasks. The 

resulting implementation can be conveniently used to evaluate the performance of 

recombination detection methods.

Most recombination detection methods only offer graphical outputs from which 

the user is left to decide whether or not a given sequence is recombinant. New methods
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are being developed that replace the visual output with a list of the inferred recombinant 

sequences along with statistical significance values associated with the inference.

We also investigated the effect of the application of the three distance measures to 

identify closest sampled donor sequences on the output of recombination detection 

methods. Our findings show that more sequences are identified as recombinant in a 

phylogenetic network, when the topology measure is chosen. This leads us to believe that 

recombination detection methods that are based on tree topology alone may be 

identifying more sequences as recombinants, perhaps leading to false positives.

The algorithm presented assumes that all the sequences associated with the nodes 

in the network are of the same length. While this makes the discussion convenient, it is 

not a necessary assumption. If the sequences are not of the same length, then a global 

multiple alignment could provide the reference positions required in the algorithm

The program Serial NetEvolve 1.0 (Buendia and Narasimhan 2006) creates a 

randomly generated coalescent network of serially sampled sequence data, and outputs its 

structure and the alignment of the sampled sequences. Sequences from both internal and 

terminal nodes may be present. Sequences are assigned to different sampling time points. 

The network output of Serial NetEvolve may be analysed with Recldentify and the results 

compared to the results obtained by recombination detection methods that analysed only 

the set of aligned sequences. A comprehensive comparison study of this kind would 

consist of comparing the donors and breakpoint matches in addition to computing the 

number of true positives and false positives and other performance measures computed
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using these values. While such a testing procedure is outside the scope of this current 

chapter, it lays the groundwork for new comprehensive comparison studies.

6.4. Summary

We presented an algorithm that classifies sequences from a phylogenetic network 

of serial samples into two categories: recombinant or non-recombinant. For a 

recombinant sequence the donor sequences and breakpoint positions arc also identified. 

The objective of the identification procedure is to use the results to achieve an evaluation 

of recombination detection methods that is more comprehensive than in previous studies 

(Martin et al. 2005a; Posada and Crandall 2001a; Wiuf et al. 2001) as described in Goal 4 

of this dissertation.

The different cases that are encountered in a complex recombinant network 

during the identification of donors require an algorithm that recognizes the evolutionary 

implications built into such a structure. We have learned that a complex recombinant 

history may obscure the phylogenetic signals of the data if only a few sequences are 

available/sampled. Navigating the network in search of recombinant donors for a query 

sequence involves setting up criteria for deciding when a taxon is to be called a donor. 

Clearly, the donor must have been sampled at an earlier time period; however, the most 

influential criterion is related to the distances between sequences in the network. The 

distance criteria chosen in the Recldentify algorithm were inspired by the two main 

classes of recombination detection methods, those based on sequence comparison 

(genetic distance) and those based on phylogenetic network topology. It is evident from
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the findings related to the choice of distance criteria that the selection of recombinant 

donors hinges greatly on the underlying distance measure used.

In the next chapter (section 7.3.2) we will present and discuss the results of a 

comprehensive comparison study that uses the evaluation criteria proposed in this chapter 

to compare recombination detection methods.
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7 Sliding MinPD

This chapter addresses the goal of developing computational tools to 

automatically detect recombination in serially-sampled data and displaying the 

recombination events within an evolutionary network structure as specified in Goal 2. It 

also addresses Goal 1 as it presents an improved version of the preliminary MinPD 

version discussed in Chapter 4. Another goal addressed in this chapter is Goal 6, i.e., the 

evaluation o f methods to study serially-sampled recombinant sequence data through 

extensive computer simulation studies.

Traditional phylogenetic methods assume tree-like evolutionary models and are 

known to perform poorly when provided with sequence data from recombining, fast- 

evolving viruses. Furthermore, these methods assume that all the sequence data are from 

contemporaneous taxa, which is not valid for serially-sampled data. A more general 

approach is needed — one that is mindful of the sampling times of the input sequences 

and that reconstructs the viral evolutionary relationships in the form of a network 

structure with implicit representations of recombination events. The underlying network 

organization may reveal unique patterns of viral evolution and could help explain the 

emergence of disease-associated mutants and drug-resistant strains, with implications for 

patient prognosis and treatment strategies. The method we developed, referred to as 

Sliding MinPD, reconstructs evolutionary networks of serially-sampled sequences by 

combining minimum pairwise distance measures with automated recombination detection 

based on a sliding window approach. The method was tested using simulated data and 

was also applied to a set of serially-sampled HIV sequences from a single patient. The
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type of recombinant networks output by the Sliding MinPD method are referred to as 

serial evolutionary networks, and are a generalization of the evolutionary framework 

introduced by Holmes et al. in his 1992 study (Holmes et al. 1992).

7.1 Introduction

As described in section 2.2 of this dissertation, RNA viruses exploit numerous 

genetic and evolutionary mechanisms to ensure their survival; some of these include high 

mutation rates, high yields (increased replication), and short replication cycles that 

produce a diverse array of mutants. For some RNA viruses, enormous numbers of 

progeny are produced after a single cycle of replication and almost every new genome 

differs from every other (Flint et al. 2000f). This implies that because RNA viruses 

evolve fast, when their sequences are sampled at time intervals of a year or less, they 

already exhibit several substitution patterns in contrast to what one would observe in 

slow-evolving genes from higher organisms. It is this aspect of their evolution that 

demands for special attention and a different approach when studying their evolutionary 

relationships. RNA viruses are known for their role in a number of diseases, including 

respiratory infections by the SARS virus, and liver disease caused by Hepatitis C virus. 

Retroviruses are a class of RNA viruses and have received a lot of attention in the last 

twenty years, mainly due to the role of one of its notorious members, HIV-1, in the AIDS 

epidemic.

It is common practice to use traditional phylogenetic methods in the study of viral 

evolution (Franco et al. 2003; Rambaut et al. 2004). Traditional phylogenetic analysis 

has also been applied to HIV-1 sequences sampled serially from the same patient over a
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period of several years (Shankarappa et al. 1999). It is necessary however to point out 

that such methods were conceived for the study of contemporaneous data. Furthermore, 

these standard methods do not consider the effects of genetic recombination in shaping 

the evolutionary relationships. Recombination is a critical mechanism in the evolution of 

HIV-1 and it is thought to help the virus escape from immune pressures and adapt to the 

effects of antiviral therapies.

An ever-growing number of recombination detection tools have been published in 

recent years. A comprehensive, up-to-date list of over 40 programs can be found at 

http://bioinf.man.ac.uk/recombination/programs.shtml. A few of the programs in that list 

were included in two comparison studies carried out in 2001 (Posada and Crandall 2001a; 

Wiuf et al. 2001). The two largest groups of recombination detection methods fall into 

two categories of which we picked one each to implement in Sliding MinPD. One group 

of tools, which includes the online tool RIP (Siepel and Korber 1995), uses pairwise 

sequence comparisons; another large group uses phylogenetic trees and the popular 

bootscanning method, and is implemented in Simplot and RDP2 (Lole et al. 1999; 

Salminen et al. 1995). Two different classes of methods that were included in the study 

by (Posada and Crandall 2001a) were (a) compatibility methods that test for partition 

phylogenetic incongruence on a site-by-site basis, and (b) nucleotide substitution 

distribution methods that examine the sequences for a significant clustering of 

substitutions or fit to an expected statistical distribution. The bootscanning and RIP 

methods were chosen to be incorporated in Sliding MinPD as they represent the earliest 

and most popular approaches on which many of the newer methods have been built upon. 

A modification of the bootscanning method was published more recently (Martin et al.
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2005a), as was a method called RAT (Recombination Analysis Tool), which is 

comparable to the RIP method, but uses genetic distances (Etherington et al. 2005). A 

third method that combines both methods was implemented in RDP2 (Martin et al. 

2005b) and also incorporated in Sliding MinPD. The goal of these methods was to 

identify the putative recombinant ancestor sequences of a query sequence from a set of 

aligned sequences. A total of three existing methods were implemented in Sliding 

MinPD and adapted to the requirements of the input data by automating the 

determination of the ancestral donor sequences from previous sampling times for 

different parts of a sequence and for each query sequence not from the first sampling time 

point.

The Sliding MinPD strategy allowed us to construct an evolutionary network, 

which is a modification of the Holmes et al. evolutionary framework (Holmes et al. 

1992). In a 1992 study, Holmes et al. created an “evolutionary framework” to express the 

inferred ancestor-descendent relationships in HIV sequence data that was serially 

sampled from a single patient. Holmes et al. stated that “unlike most molecular 

phylogenies, real ancestors may be present in the data and the framework expresses the 

postulated ancestor-descendent relationships” (Holmes et al. 1992). Sliding MinPD 

constructs an “evolutionary network” that represents recombination events and ancestor- 

descendant relationships using an approach that emulates and automates the 

recombination detection process. This method may be applied to fast-evolving, 

recombinant pathogens such as HIV-1, to better understand the evolutionary history of 

the virus and how this history correlates with selective pressures, the emergence of drug- 

resistant strains and disease progression.
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Several methods that estimate the phylogenetic relationship of serially-sampled 

data have been published since 2000 (Buendia and Narasimhan 2004; Drummond and 

Rambaut 2003; Drummond and Rodrigo 2000; Ogishima et al. 2001; Rambaut 2000; Ren 

et al. 2001); also see Chapter 4. The performance of the different methods (including a 

preliminary version of MinPD) was compared in the study reported in Chapter 5 

(Buendia et al. 2006a). Of the programs in the comparison study, only MinPD took 

recombination into account although the feature was turned off in the study cited above. 

Sliding MinPD is an improvement of the original MinPD with several significant 

modifications, including the use of a sliding window approach, a choice of three different 

recombination detection approaches (based on distance or topology comparisons), and 

the option of calculating statistical significance of the predictions (in terms of bootstrap 

values).

7.2 Methods

Sliding MinPD combines a minimum pairwise distance approach with automated 

recombination detection to study the ancestor-descendant relationships of serially- 

sampled nucleotide sequences. Our method presents the results in an evolutionary 

network structure that respects the time order of the sampled data, represents genetic 

distances and linking relationships, and indicates recombination events and breakpoint 

positions.
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7.2.1 Recombination Detection in Sliding MinPD

The standard recombination detection methods rely on a visual approach in which 

it is left to the user to decide (by looking at the graphical output) if a sequence is a 

recombinant and to determine the ancestral donor sequences and location of the 

breakpoint positions. In Sliding MinPD the identification of recombinants, ancestors and 

breakpoints is automated with no need for user input. Three existing methods, all of them 

using the sliding window approach, were implemented as user options in Sliding MinPD. 

The basic approach is the same for all three methods: a sliding window is moved along 

the aligned input sequences, and at every position the query sequence is compared to 

each of the background representatives with the goal of finding the “closest” (or most 

similar sequence) using an appropriate scoring measure. After the window has traversed 

the alignment from left to right, for any pair of sequences, a plot of the measure of 

closeness between them can be obtained as a function of the position in the alignment. A 

comparison of the plots involving the query sequence reveals which background 

representative the query sequence most resembles at any given position. Recombination 

breakpoints can be found at the intersection of the appropriate plots. The difference 

between the three methods lies in the scoring mechanism used, as described below.

• Recombination Identification Program (RIP): Similarity between two sequences is 

quantified as the percentage of identical base pairs (Siepel and Korber 1995). 

Sliding MinPD does not use a similarity score, but instead uses a corrected distance 

measure that incorporates rate heterogeneity and substitution patterns to correct for 

the estimation bias of counting only mismatches among sites.
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• The standard Bootscanning method (SB): Bootstrapped phylogenetic trees are built 

for each window segment and finally the bootstrap value for placing the query 

sequence with each of the reference sequences/sequence groups is tabulated and 

plotted along the sequence. It requires a minimum of 4 sequences (Lole et al. 1999; 

Salminen et al. 1995). In Sliding MinPD, Neighbor-Joining trees are constructed 

from the bootstrapped corrected distance matrices calculated during the RIP process 

(see above). The pairwise sequence position within the tree is stored in a topology 

distance matrix. Note that the resulting distances are dependent on which other 

sequences are in the reference set.

•  The distance Bootscanning method (B-RIP): This alternative approach to the 

standard Bootscanning was implemented in RDP2 (Martin et al. 2005b). Here only 

the bootstrapped corrected distances are calculated and plotted in the graph (instead 

of constructing the trees and calculating the position within the trees). Note that the 

resulting distances are dependent on which other sequences are in the reference set.

All three methods have been previously implemented elsewhere. The two 

bootscanning methods were implemented in RDP2 (Martin et al. 2005b). The recently 

developed RAT implements a RIP method using genetic distances (Etherington et al. 

2005). The significant modification introduced in Sliding MinPD is the automation of 

these methods, thus eliminating user interaction to identify recombinant sequences and to 

determine the ancestral donor sequences and breakpoints. The automated identification of 

recombinants is necessary for the reconstruction of the evolutionary network. The 

performance of these automated determination process is tested extensively on simulated 

data and will be discussed in detail in the results section of this chapter.
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Sliding MinPD has three phases. In the first one, every sequence that is not from 

the first sampling time point is deemed a query sequence and the pairwise distances 

(corrected distances or topological distances) are calculated for every pair of sequences 

for the entire length of the sequences (step [1] of algorithm). This step is required for the 

identification of only one ancestral donor for the whole length of a sequence. This donor 

is chosen if in a later step the sequence is identified as being a non-recombinant. The 

process is straightforward for the RIP option as it involves calculating a distance matrix 

for the current input of aligned sequences. For B-RIP and SB, however, the process 

involves creating bootstrap replicates of the entire sequence alignment and calculating a 

distance matrix for each replicate (step [lb] of algorithm). When the SB option was 

selected, NJ trees have to be constructed for each replicate and the positions of the 

sequences have to be stored in a topology distance matrix (step [lc] of algorithm). In the 

second phase, the ancestors and breakpoints for the recombinant sequences are 

automatically determined. It is in this phase that a query sequence is identified as a 

recombinant or not. The same procedures from phase 1 are carried out, but this time for 

every window along the alignment (steps [2a-b] and [3a-c] of algorithm). For non

recombinants the sequence at minimum genetic distance is chosen as the ancestor 

sequence. In the final phase of the algorithm the evolutionary network is constructed 

(step [4] of algorithm).

An evolutionary network has both tree edges and network edges. Tree edges are 

edges that link a single ancestor sequence to a descendant query sequence (indicating that 

it is the closest ancestor for the whole length of the sequence). Network edges are edges

125



that join two or more ancestor sequences with one descendant query sequence and 

represent a recombination event.

7.2.2 Algorithm 

Algorithm Sliding MinPD

1. For each pair of sequences s, and sj in input S calculate distances for the whole 

alignment

a. if RIP option, then compute the distance matrix Dist(sj,sj)

b. if SB or B-RIP option, then bootstrap input S. For each bootstrap replicate 

Sb, compute the distance matrix Distb(Sb,Si,sj).

c. If SB option, then do

use Distb(Sb,Si,Sj) to create NJ trees per bootstrap replicate Sb and store 

topology distances in distance matrix Distb(Sb,Sj,Sj).

2. For each pair of sequences s; and Sj slide a window along the alignment, and for 

every window wx do

a. if RIP option, then do step [la] for window wx and compute distance 

Distw(si,sj,wx)

b. else if SB or B-RIP option, then do step [lb] for window wx and compute 

average distance in Distw(Sb,Sj,Sj,wx)

3. For each query sequence sj do

a. if (sj is judged to be a recombinant) then identify its closest ancestor 

sequences and the corresponding breakpoints.
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b. else choose as ancestor of s; the sequence at minimum distance from it 

among sequences sampled at all previous times.

c. If SB or B-RIP option, then identify the associated bootstrap value.

4. For each set of sequences with the same chosen ancestor, construct a NJ tree with the 

chosen ancestor as the outgroup.

In Step [3a] above, the automated recombination detection test is performed on all 

query sequences s that are not from the first sampling time point. In what follows, we 

assume that there are w different possible positions for the sliding window as it slides 

along the alignment.

Sliding MinPD Recombination Detection Test for query sequence s

1. For each of the w windows of s, select the sequence that is closest to it in that 

window. Let s; be the sequence chosen from the ith window. Sequence s, is said to 

dominate in the ith window. Put all selected sequences in a list called Candidates. 

(These sequences are candidates for being potential ancestors of s.)

2. For each pair of sequences S; and Sj in Candidates

a. Construct distance vectors for each sequence Sj. In other words, the distance 

vector of s* contains the distance of every window of S; to the corresponding 

window of s.

b. if the Pearson Correlation Coefficient (PCC) between the distance vectors of 

two sequences Sj and Sj is above a distance threshold, then discard the
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sequence S; or Sj whichever has the larger average distance in the two windows 

where the two sequences dominate.

3. If SB or B-RIP option, then do

a. for each Sj from Candidates do pair it up with s and do steps [lb-c] from the 

main Sliding MinPD algorithm after replacing the reference set S by the set 

Candidates.

b. for each window wx, do calculate and store bootstrap values 

Boot(CandidateSb,Si,s,wx).

c. discard from the set Candidates all sequences Sj with short bootstrap spikes or 

spikes below a given threshold (to reduce number of false positives).

d. If any sequences were discarded, then redo steps [3a-b] with the updated 

Candidates.

e. for each breakpoint bkp, do calculate average bootstrap value for the 

corresponding combination of left and right ancestor sequences val(s,sj,sj,bkp). If 

the highest average bootstrap value for combinations of left and right ancestor 

sequences val(sj,sj,bkp) > Boot_threshold) then identify s as recombinant with s, 

and Sj as the ancestor sequences with breakpoint bkp.

4. if RIP option, then

a. For each of the w-1 breakpoints bkp and all sequences in Candidates do 

calculate minimum average distance value for combinations of left and right 

ancestor sequences val(Si,Sj,bkp).

b. If (min(val(sj,sj,bkp)) < RIP_threshold) then identify s as recombinant with s; 

and sj as the ancestor sequences with breakpoint bkp.
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Steps [1] and [2] identify sequences that are at minimum distance in each of the w 

windows. If two sequences have very similar distance vectors (from s), then it is probably 

because they are very similar. In this case, one of them is discarded in Step [2b], since 

either one of them would serve the purpose. Similarity of two distance vectors is 

computed using the Pearson Correlation Coefficient, which is high if the vectors are 

highly correlated (i.e., similar). Step [3] is for the SB and B-RIP options only. In step [3a-

b], the steps [lb-c] from the main algorithm are carried out for each window and the pool 

of candidates for being recombinant donors is reduced once more in step [3c-d].

When the bootscanning options SB or B-RIP are selected, then an intermediate 

step [3c] is needed to discard false positives with short bootstrap spikes or weak bootstrap 

spikes. An increase in the number of false positives was observed when such sequences 

were left in the candidate pool. A bootstrap spike is defined as a segment of consecutive 

windows in which a given sequence has a higher bootstrap value than the other 

sequences. If the spike lasts less than 100 nucleotides (or the number of windows that 

covers this length), it is probably an artifact of the bootstrap procedure. If the spike is not 

high enough, then the sequence can’t be considered a candidate for recombinant ancestor.

In step [3e] the combinations of left and right ancestor sequences with a high 

average bootstrap value that exceed the bootstrap threshold are identified as recombinant 

donors and the query sequence is identified as a recombinant. Step [4] is carried out only 

for the RIP option. In step [4], the combinations of left and right ancestor sequences with 

a minimum distance that is less than the RIP threshold are identified as recombinant 

donors and the query sequence is identified as a recombinant.
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As an alternative procedure to the standard bootstrap, a procedure that we called the 

“bootknife” was also implemented. The same procedure was implemented in RDP2 

(Martin et al. 2005b). With the bootknife a percentage p of the sites (25% to 50%) is 

picked at random and removed and is replaced by other randomly picked sites. The 

remaining sites (roughly half of the sites) are left untouched.

7.2.3 Detecting Multiple Breakpoints

The algorithm we have presented above will find recombination events with only 

one breakpoint. (Note that we use the terms “breakpoint” and “crossover point” 

interchangeably). We propose a method based on the weighted interval scheduling 

algorithm (Kleinberg and Tardos 2005) to find recombination events with one or more 

crossovers. We define a chain of windows to be a set of consecutive windows that would 

be obtained if one were to slide a window over a portion of the sequence. If a chain of 

windows corresponds to an interval, and if its average bootstrap value over the interval 

corresponds to its weight, then it is easy to see that the problem of finding an optimal set 

of (multiple) breakpoints corresponds to the problem of finding an optimal set of 

weighted intervals. Each chain has a start point, the first window position, and an end 

point, the first window position plus the nucleotides covered by the length of the chain. 

The weight per chain is either the average modified distance (RIP) or the average 

bootstrap value (SB or B-RIP) of the chain. With more crossovers, more spikes are 

possible, and therefore a penalty is assessed to short spikes. The penalty decreases when 

longer chains are chosen and is subtracted from the average bootstrap value. This helps to 

keep the number of false positives at a minimum. The modified distance for the RIP
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option is modDist = Largest-Dist, where Largest is the largest distance value of all 

windows. This allows for a standardized algorithm that can be applied to all three options 

(in which the maximum distance is preferred). Section 4 of the Sliding MinPD 

recombination detection test will perform the following steps:

4. For each of the w-1 breakpoints bkp, with w the number of windows, and all 

sequences in Candidates do

a. Prepare chains that end at bkp. There are m=n*bkp chains Cj that end at bkp, 

with n the number of sequences in Candidates and 1 < i < m.

b. Calculate maximum average modified distance or bootstrap value for bkp as 

M[bkp] := max(weight(Ci) + M[start(ci)]).

The position start(cO, where a chain c, starts, is a position where another chain ends, and 

is therefore an earlier breakpoint position. The range of the inspected breakpoints goes 

from 1 to w-1. M[start(Ci)] contains the best result up to breakpoint start(Cj). The penalty 

function p is designed to decrease the weight in the following manner:

weight = weight - weight *p.

The penalty is a function of the length of the chain and tends to zero for larger chains as 

its purpose is to diminish the effect of spikes. We therefore propose to use the following 

exponential penalty function

( f l - i r
P =  a ’

where x is the length of the chain of consecutive windows Ci and a = log2 w.
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7.3 Sliding MinPD Results

The performance of Sliding MinPD was tested with simulated sequence data 

generated by the program Serial NetEvolve 1.0; which was described in Chapter 3. Serial 

NetEvolve is a simulation tool that generates random recombinant networks and evolves 

serially-sampled nucleotide sequences along the network. Seven data sets of 100 

replicates were generated, each data set with different rates of recombination. Sliding 

MinPD was run repeatedly on the data sets with different combinations of parameters 

(window size, step size for the sliding windows, choice of detection method, PCC value 

threshold, bootstrap value threshold, and choice of crossover option).

7.3.1 A-D Network Score

The evaluation process for Sliding MinPD is based on the recombination 

detection principle of identifying parental sequences for a given query sequence. In 

accordance with the concepts used in the two main types of recombination detection 

methods (Posada and Crandall 2001a), the ancestor-descendant evaluation score, referred 

to as the A-D Score, also uses two different measures: one based on path length, the other 

based on topological distance (network position). For a query sequence q in the true 

network, the closest parental sequence s was determined using two different distance 

measures as follows:

• Topology measure: the number of nodes traversed from q;

• Path length measure: the total length of the path traversed from q.

If two sequences are at the same distance from q, then the alternative criteria is 

used as a tie-breaker. For example, if two sequences are at the same distance from q with
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respect to the topology measure, then the distance with respect to the path length criterion 

is used to break the tie.

The A-D score was calculated as the percentage of correctly inferred ancestor- 

descendant tuples (q, si, ... , sw), where s i,...,sw are the closest ancestors of query 

sequence q for different portions of the sequence. If q is non-recombinant then there is 

only one ancestor s\ for the whole length of the sequence, and if Sliding MinPD identifies 

q as a non-recombinant with only one ancestor aj, then it is counted as a true negative 

(TN). If si matches ai, the match is counted towards the TN A-D score. If q is a 

recombinant sequence and is identified as such by Sliding MinPD, then it is counted as a 

true positive (TP), false positives (FP) and false negatives (FN) are determined 

correspondingly and express the association between the presence or absence of 

recombination. The A-D score goes further and calculates the percentage of ancestors 

identified by Sliding MinPD that match the true ancestors. The A-D Score for the other 

values are calculated in the same way as that of the TN A-D score described above. The 

BKP Score is calculated as the number of times a breakpoint is identified within a 

distance of n nucleotides to the left or right of the true breakpoint position. The default 

interval size n was set to 60.

7.3.2 Analysis of Simulation Study

Serial NetEvolve 1.0 was used to generate data sets with 7 different 

recombination rates (see graphs). The sequence length was set to 1000, the model of 

evolution to HKY, with the rate heterogeneity alpha parameter set to 0.5, mutation rate of 

0.00001, internal node sampling rate of 0.5, and exponential rate of 0.0005. Breakpoints
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were added uniformly between the positions 150 and 850, the breakpoint margins. A 

sample size of 8 sequences per sampling time was chosen with 6 sampling time points, 

which resulted in a sequence alignment containing 48 sequences, of which 8 were from 

the first sampling period. Sliding MinPD was then used to identify the recombinants 

among the 40 query sequences and to determine the closest ancestors for parts of or the 

entire length of the sequence.

Specificity (SP), sensitivity (SE) and positive predictive values (PPV) were 

calculated for each combination of the parameters used for Sliding MinPD. The 

sensitivity values ranged between 0.5 and 0.7, with an increase in the number of false 

positives for the larger sensitivity values. The goal of the simulation study then was to 

find the settings for which Sliding MinPD could obtain the highest specificity and 

positive predictive values, albeit at the expense of lower sensitivity values. The 

parameters at which the program performed best were found to be different for different 

recombination detection options.

Table 9 shows the results for the default parameters of the 3 recombination 

detection options. The default parameters were chosen from the results of the simulation 

study as the parameters for which Sliding MinPD performed the best.

Rec.
rate

Option TN TP FN FP SP SE PPV TN A-D 
Score

TP A-D
Score

FN A-D 
Score

FP A-D
Score

BKP (60) 
Score

LOW

BRIP

SB

RIP

9635

9725

9637

1359

1301

1358

923 

861

924

83

113

81

0.991

0.989

0.992

0.596

0.602

0.595

0.942

0.920

0.944

0.895

0.795

0.896

0.653

0.596

0.658

0.862

0.698

0.858

0.855

0.726

0.926

0.480

0.467

0.514

HIGH

BRIP

SB

RIP

7284

7396

7303

2467

2421

2532

2161

2063

2096

88

120

69

0.988

0.984

0.991

0.533

0.540

0.547

0.966

0.953

0.973

0.916

0.814

0.914

0.588

0.537

0.599

0.879

0.712

0.882

0.795

0.758

0.855

0.380

0.371

0.414

Table 9. Benchmark results of the simulation studies
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The default values for SB and B-RIP were: 100 bootstrap replicates, a window 

size of 200, a step size of 20, and a seed of -3. The default PCC threshold values were set 

to 0.4 for B-RIP and RIP, and 0.2 for SB. The default bootstrap thresholds were 88 for 

SB and 90 for B-RIP. The default values for the RIP option were: a window size of 100

and a step size of 30. All three options used the TN93 distance and an alpha parameter of

-8 -80.5. Six different recombination rates were used, namely 1x10" (10%), 2x10" (18%), 

3xl0"8 (27%), 4x10’8 (30%), 5xlO'8 (39%), and 6 x l0 ‘8 (44%); the parenthesized 

percentage values correspond to the rough percentage of sequences that were 

recombinant. The first three recombination rates were classified as being “Low”, while 

the last three were classified as “High”. The results for these recombination rates are 

shown in Table 9. The values of TN (true negatives), TP (true positives), FN (false 

negatives), and FP (false positives) were obtained as described previously at the end of 

section A-D Network score. The TN A-D (resp. TP A-D) Score is the percentage of true 

negative (resp. true positive) ancestors that matched the ancestor(s) identified by Sliding 

MinPD. FN A-D Score is the percentage of FN ancestors matched and is calculated when 

Sliding MinPD identifies only one ancestor for a sequence that is recombinant (FN). FP 

A-D Score is calculated correspondingly (see also previous section on the Network A-D 

Score). The BKP Score gives the percentage of breakpoints that were correctly identified 

(a margin of error of 60 nucleotides was allowed for the breakpoint position predictions).

The graphs in Figure 22 show various measures of performance for different 

choices of the parameters. Based on the results, the best combination of parameters was 

compiled for the analysis of the empirical data (see Chapter 8). The evaluation procedure 

of previous comparison studies consisted of measuring the number of data sets for which
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the presence or absence of recombination were correctly identified (Posada and Crandall 

2001a). These procedures did not measure how many sequences were correctly identified 

as recombinant, or how many breakpoints and donors were correctly identified for the 

recombination events. The evaluation study we carried out is therefore unique in that it 

attempts to go beyond a simple pass or fail test for the three methods that were 

implemented in Sliding MinPD.

Program options and evaluation criteria: The three different program options as well 

as the 2 different evaluation criteria were tested for different recombination rates (Figure 

22a-b). Overall, the standard bootscan (SB), an option that uses phylogenetic trees to 

compute the answer, performed better when the topology evaluation criterion was applied 

on data sets with low recombination rates. A slight decrease in the specificity values 

could be observed when the methods were evaluated with the topology criterion, however 

this also caused an increase in the sensitivity scores. The sensitivity score fell 

dramatically for larger recombination rates. In all of the following tests, note that the SB 

method was always used in conjunction with the topology measure, and the RIP and B- 

RIP methods were used in conjunction with the path length measure.

Window and Step Sizes: Different combinations of window and step sizes were 

chosen for comparing the three program options (Figure 22c). The X-axis shows 

combinations of window sizes (top) and step sizes (bottom) ordered by increasing 

number of windows. B-RIP and SB showed improved performance at the default window 

size of 200 and step size of 20. The RIP option however was drastically affected by the 

choice of these parameters, with lower specificity and higher sensitivity for the smaller 

step sizes, and higher specificity and lower sensitivity for larger step sizes. The default
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values chosen for RIP in all other studies were a window size of 100 and a step size of 

30. The RIP performance can be explained by the observation that it does not generate 

bootstrap replicates and that therefore the distance values between windows fluctuate 

more for larger step sizes when the sequences are sufficiently divergent (default mutation 

rate: 0.00001) and the distances are not averaged over all bootstrap replicates. The study 

also shows that smaller window sizes negatively affected the sensitivity but improve the 

specificity values of all options, but specially that of SB and BRIP.

Crossovers: We tested our algorithm that is able to detect more than one crossover 

(recombination event) with different recombination rates (Figure 22d). The detection of 

multiple crossovers algorithm improved the performance of B-RIP and SB considerably, 

with the sensitivity increasing by as much as 5 percentage points for a small decrease in 

specificity; it did, however, have an adverse effect on RIP. The sensitivity values of RIP 

decreased considerably, while the specificity values increased marginally. The BKP 

scores for B-RIP and SB improved by an average of 5% and more so for the higher 

recombination rates (data not shown). It is possible that the weight penalty adversely 

affected the computation of RIP, in which no bootstraps are performed.

Bootstrap Threshold: As has been observed in many studies, an optimal calibration of 

the parameters is difficult because of the delicate balance between sensitivity and 

specificity values. The bootstrap study highlights this point very clearly (Figure 22e). 

With higher bootstrap thresholds the specificity increases but the sensitivity decreases. 

Based on this study the bootstrap threshold of 88 was chosen as the default value for SB 

and a threshold of 90 for B-RIP with the goal of keeping the sensitivity at a value close to
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0.60 and the specificity at a value close to 0.99 for the data sets generated with low rates 

of recombination.

PCC Threshold: This study shows the effect of different PCC threshold values on the 

selection of an appropriate pool of donor candidates (Figure 22f). The three options show 

very different levels of performance for the different threshold values. The RIP option is 

highly affected by this parameter, with the specificity falling and sensitivity increasing 

for higher threshold values. A high threshold value reduced the pool of candidates only 

minimally. The SB option appeared to be at an advantage for very low threshold values, 

which greatly reduces the pool of candidates.

BKP Score: The BKP score is clearly affected by the choice of the recombination rate, 

with SB performing rather poorly at higher rates (Figure 22g). However, when the 

evaluation interval around the breakpoint position (i.e., the region around the breakpoint 

that was analyzed to perform the analysis) was increased (from 60 sites to 80 sites, and 

then to 100 sites), the performance of SB improved markedly and was better than that of 

the other methods for 100 sites. The small graph (Figure 22g) shows a comparison 

between all three options for different breakpoint intervals averaged over all 

recombination rates.

Bootstrap/Bootknife Comparison: The three options with their respective default 

values were tested with the standard bootstrap and with the bootknife method (described 

in the algorithms section). In Figures 22h-i, each of the three options was tested with the 

two bootstrap procedures (label is used BKN for bootknife, and BST for the standard 

bootstrap). Our results show that the bootknife procedure is marginally better, thus 

justifying its choice as the default option for the other comparison studies reported here.
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Corrected Distance Models: We compared the effect of using one of the three 

different distance formulas, a setting in Sliding MinPD (Figure 22j): Jukes Cantor 69 

(JC69), Kimura-2-Paramter (K2P), and Tamura Nei 93 (TN93). The results show that the 

choice of a distance model affected the performance of the different options, with TN93 

showing the best results for all three options. RIP was especially affected by the choice of 

distance formula. This gives evidence to the robustness of the bootstrap process, which 

balances out substitution effects that are misinterpreted by the simpler distance models.

Low and High Mutation Rates: This study compared the effect of simulating data 

with a different mutation rate, a setting in Serial NetEvolve (Figure 22k-l). Posada and 

Crandall used mutation rates in the range of 0.0000025 to 0.00005, while the default 

value of our simulations is 0.00001. Our results are comparable to the Posada and 

Crandall study for the low mutation rate (0.0000025). The methods perform poorly with 

sequence data that has low divergence. This observation with regards to low mutation 

rates extends to all phylogenetic tools. The option RIP was ran with a different window 

size of 200 and a step size of 50 as the default settings returned very poor results. This 

again proves that the bootstrap process (not part of RIP) imparts robustness to the 

detection process. Our studies showed that too high a mutation rate (0.00005) also caused 

a decrease in performance of the different detection options, with RIP especially affected. 

RIP was ran with a window size of 160 and a step size of 20, settings that are known to 

increase this options’ sensitivity. This decrease in performance was not observed in the 

Posada and Crandall study, but as stated before, their study did not involve identification 

of recombinant sequences and donor sequences, but only measured the presence or
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absence of recombination in a data set. The two studies are therefore not easily 

comparable.

Rate Heterogeneity Parameter: This study (Figure 22m) compared the effect of 

simulating sequence data with a homogenous mutation rate across all sites (alpha 

parameter = oo) to that of simulating sequence data with a gamma rate heterogeneity 

(alpha parameter =0.5). The rate heterogeneity parameter is a setting in Serial NetEvolve, 

not in Sliding MinPD. To evaluate the power of the different recombination tests, Posada 

and Crandall (Posada and Crandall 2001a) generated data with homogenous rates, which 

as our results show, improve the recombination detection performance of the different 

options, with the specificity, sensitivity and positive predicative values clearly improving.
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Figure 22. Graphs representing the results of simulation studies with Sliding MinPD
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7.4 Summary

In this chapter we have described a new method, Sliding MinPD, that implements 

a recombination detection approach to study the phylogenetic relationship of serially- 

sampled data. Three of the dissertation goals were achieved with this method and with 

the comparison studies performed. Sliding MinPD constructs an evolutionary network 

reflecting these relationships. Three recombination detection methods were implemented 

in Sliding MinPD as user options and the results of an extensive comparison study using 

computer simulations are provided, resulting in an evaluation of recombination detection 

methods that is more comprehensive than in previous studies (Posada and Crandall 

2001a; Wiuf et al. 2001). Detecting recombinants in a set of input sequences is a difficult 

problem, and the performance of existing methods with regard to the accuracy of 

identification of recombinants, donors and breakpoint positions is not known. Previous 

studies did not measure specificity or sensitivity values, or how many breakpoints and 

donors were correctly identified for the recombination events. The main reason why such 

evaluation studies were not carried out is that the existing detection methods only offer 

graphical outputs from which the user is left to decide whether or not a given sequence is 

recombinant. Sliding MinPD implements three recombination detection methods and 

automates the detection process replacing the visual output with a list of the inferred 

recombinant sequences along with statistical significance values associated with the 

inference. Sliding MinPD uses this output to construct a network that describes the 

evolutionary relationship of the data.
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Applying our method on simulated data returned an average sensitivity score of

0.60 for low recombination rates (up to 27% of recombinants) and few false positives 

with all rates (specificity rates of 0.99). About 50% of breakpoint positions were 

correctly detected for the low recombination rates, this rate increased by an average of 

6% when the interval to the left and right of the true breakpoint position was increased 

from 60 to 100 in the evaluation process. We presented two versions of our algorithm — 

one that detects only one crossover and another that detects multiple crossovers. The 

multiple crossovers alternative also increased the accuracy of detection of breakpoint 

positions for two of the options (SB and B-RIP).

Sliding MinPD is a method that can be applied to recombining, fast-evolving 

viruses such as HIV. While traditional phylogenetic methods assume a tree-like model of 

evolution, MinPD seeks to recover the evolutionary relationships within a network 

structure that represents recombination events. Sliding MinPD is a versatile tool, which 

offers different options of recombination detection. An analysis study of serially sampled 

data with the multiple options implemented in Sliding MinPD provides a complete 

approach in which the main aspects of serially-sampled viral data are considered, such as 

the temporal nature of the data, the ancestor-descendant relationships and the detection of 

recombinants.
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8 Analysis of Serially-Sampled HIV Data Sets

The tools developed in this dissertation were intended to help in the study of the 

evolution of rapidly evolving viral species within host environments, and to shed light on 

the evolutionary mechanisms and patterns of evolution. In this chapter we present the 

results of applying the Sliding MinPD method on real, serially-sampled, viral sequences.

8.1 Introduction

As discussed in chapter 2, some of the remarkable properties of RNA viral 

populations are their large population sizes within host systems, their high replication 

rate, and short generation time. Recombination in RNA viruses is another process that 

creates population diversity and is significant in that it produces genomes with selective 

growth advantage (Flint et al. 2000b). The human immunodeficiency virus (HIV) is a 

RNA retrovirus with a high mutation rate (0.2 errors per genome per cycle) and an even 

higher recombination rate (3 events per genome per cycle). HIV has been determined to 

be the cause of the AIDS disease, with 5 million people becoming infected with HIV in 

2002 alone and, of which, 70% live in sub-Saharan Africa (Rambaut et al. 2004).

In 1999 a groundbreaking study on HIV evolution was published (Shankarappa et 

al. 1999). The study performed phylogenetic and statistical analysis on sequence data 

(viral DNA and plasma RNA) from viral samples that were collected at recurring time 

intervals from nine patients over a span of 8 to 12 years. Henceforth we will refer to the 

HIV data set as the Shankarappa99 data set.
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In this chapter we will analyze the Shankarappa99 data set using data for eight of 

the nine patients. We anticipate this data set to provide an ideal source for the testing of 

our method, Sliding MinPD, with the goal of studying the viral evolutionary 

relationships, evolutionary patterns, splitting and merging of lineages, and determining 

how these correlate with the disease status of the patient. Our analysis provides insight 

into within-host viral evolution and helps find patterns that may explain the emergence of 

harmful mutants associated with disease progression.

8.2 Data Sets and Algorithms

The Shankarappa99 data set was made available at GenBank and the HIV Los 

Alamos database. Two hand-aligned versions of the data set were made available from 

the URL: http://www.cebl.auckland.ac.nz/~hros001/HIVpossel/, as supplementary

material for the work of Ross and Rodrigo, who used the data to study immune-mediated 

positive selection driven by HIV-1 molecular variation (Ross and Rodrigo 2002). Both 

versions were available in the PAUP Nexus format and were separated into subsets, each 

corresponding to a single patient. One version was a gapped, hand-aligned file of the 

entire Shankarappa99 data set (separated into lists by patients), where gaps signified 

insertions or deletions (Ross and Rodrigo 2002). The length of the sequences was 786 

nucleotides. The second data set contained a gap-balanced alignment of each of the 

subsets of the same data. Gaps had been removed from this data set in a “balanced” 

manner, i.e., such that codon alignments were preserved. Both the data sets, gapped and 

gap-balanced, were aligned against reference HIV sequences (HIV-1 type B accession 

numbers K03455, M17451, U63632, and U21135) from the Los Alamos database. The
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sampled sequences corresponded to amino acid positions 342 to 594 in the reference 

sequences. The data sets of eight patients were then analyzed using Sliding MinPD. The 

Nexus files were converted to aligned files in FASTA format, as required by Sliding 

MinPD. Duplicate sequences from the same sampling point were removed as they 

represented the same ancestral sequence, retaining just one copy, but marked with an x 

followed by the number of duplicate copies. Thus “11x2” from Figure 24 refers to two 

copies of sequence 11 from the sampling time point 20. Duplicate sequences from 

different sampling points were left untouched in the data set; we will comment on this 

decision later in this chapter.

The sequences in the Shankarappa99 data set from the same time point had a 

relatively low level of diversity (average genetic distance: 0.03) and a low level of 

divergence relative to an initial founder sequence from the first sampling period (average 

genetic distance: 0.05). The exceptions were the data sets for patient 9 at all sampling 

points, and the sequences for patients 2, 3, and 7 for the last sampling times (Shankarappa 

et al. 1999). Low divergence causes a drop in performance in most recombination 

detection methods (Posada and Crandall 2001a). The number of false positive predictions 

increases for sequence data with low divergence. We provided the alignment files, two 

for each patient, as input to Sliding MinPD, which ran each file using the three different 

recombination detection options: B-RIP (Bootscan RIP), SB (standard Bootscan) and 

RIP, producing 6 result files for each patient. In a final step, a consensus file was 

manually created by combining information from the 6 result files using a consensus 

strategy and a keen awareness of the strengths and weaknesses of the three methods used 

(based on the experiments and analyses from Chapter 7). The settings for each option of
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the program were the same as the default options presented in Chapter 7, with the 

exception of the RIP program, which was executed with a window size of 200 and a step 

size of 50, to compensate for the low divergence rates in the data sets. The default options 

are as follows —  corrected distance: TN93, window size: 200, step size: 20, bootstrap 

replicates: 100, bootstrap threshold: 90, PCC of 0.2 (SB) and 0.4 (RIP and B-RIP), rate 

heterogeneity alpha shape parameter: 0.5, and a bound of 1 for the number of crossovers. 

The results for non-recombinant predictions were less compromised given that MinPD 

(the predecessor of Sliding MinPD’s RIP option) has been proven to perform well for 

data with low mutation rates (Buendia et al. 2006a).

A consensus file of the 6 result files was created manually by looking at each 

ancestor-descendant relationship and by observing the following guidelines that apply to 

recombinants and non-recombinants alike:

■ Majority rule: The relationship chosen by a majority (at least four) of the six methods 

was chosen as the consensus. If this rule was not applicable, then we proceed to the 

next rule.

■ Consensus by bootstrap support: The result with the highest bootstrap value was 

chosen.

■ Consensus by priority: The results by B-RIP method on the aligned data were given 

highest priority because of its superior performance and because it outputs the 

statistical bootstrap support for each estimate. RIP was given the second highest 

priority for the ancestor choice, when all options agreed on a non-recombinant 

relationship. The results by SB had the second highest priority when choosing
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recombinant relationships. The results for the gap-balanced data were given 

secondary consideration when choosing the consensus ancestor-descendant 

relationships, as the length of the alignment was often different from that of the 

gapped alignment and breakpoint positions could not be easily matched.

A computational tool that constructs the serial evolutionary network from (a 

manually created) consensus file containing the ancestor-descendant relationships and an 

input of aligned sequences was developed. The consensus file was created manually from 

the 6 results files by applying the consensus rules specified earlier. The network builder 

generates the collection of Neighbor-Joining trees using the same procedure as in Sliding 

MinPD and according to the chosen relationships in the consensus file. The Neighbor- 

Joining trees are used to draw a single HIV-1 serial evolutionary network that reflects the 

consensus result of the previously obtained 6 results.

8.3 The Networks

The serial evolutionary networks of the 8 patients were manually drawn using the 

visualization approach, described in detail in Section 4.3.2. A short summary of the 

guidelines used for drawing and interpreting the graphs is given below:

■ The sampling times in units of “months” from the time of seroconversion (the time 

when the production of antibodies started in response to the infection) are shown for 

every sequence at the top of each network directly above it. Thus, all sequences from 

the same sampling time are aligned vertically under the corresponding time.

■ Full lines indicate branch lengths. Thus longer full lines indicate greater evolutionary 

distance. Dotted lines indicate linking relationships and are used merely to retain the
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vertical alignments enforced on sequences sampled from the same time point (as 

mentioned in the previous item). Finally, dashed blue lines indicate recombination- 

linking relationships between donors and recombinants.

■ Recombinant sequences are underlined in blue.

■ Breakpoint positions appear after a slash. If the left donor is at the top (bottom, 

respectively) end of the recombination-linking dashed line, this is indicated by a 

forward (backward, respectively) slash followed by the breakpoint position.

■ X4-mutants appear in red and are marked with an elevated small x after the sequence,

as in the taxon 14(96)x from Figure 24. The X4 mutations can be identified by a K

(Lysine) or R (Arginine) located at amino acid positions 40, 53, or 54 of the protein 

sequence alignments.

■ An equal sign “=” next to a node indicates that the sequence is identical to an

ancestral sequence from a previous sampling period. For example, the sequence

18(100) of patient 2 at 91 months is identical to sequence 18(82) from the 80 months 

sampling period.

The new method, Sliding MinPD, outputs additional values of importance, such 

as statistical bootstrap support values. The bootstrap values provide statistical

significance scores for the ancestor-descendant predictions. When the program has to 

choose between highly similar sequences the bootstrap values may be low, signifying that 

the results are less conclusive. Due to the value of this information it was necessary to 

incorporate it in the network representation. Besides the guidelines summarized above, 

the changes/additions to the network representation are as follows:

■ The bootstrap values are added in parenthesis after the sequence ID.
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o The bootstrap values correspond to the ancestor-descendant relationship and 

not to the clades or topological position in the subtrees. The bootstrap value 

represents the support given to the choice of linking a specific query sequence 

to the ancestor at the root of the immediate subtree. Thus, the taxon labeled 

43(97) at 61 months in Figure 24 corresponds to a bootstrap value of 97 for 

the ancestor-descendant relationship between taxon 43 and 08 at 40 months.

o Unlike the bootstrap values of recombinant sequences, the bootstrap values of 

non-recombinant sequences were calculated by using the data set containing 

all sequences up to the previous sampling point of the query sequence.

o Bootstrap values of recombinant sequences were from computations involving 

only a few sequences from the pool of donor candidates. A threshold of 90 

was used in the computation.

■ The sequence IDs have been shortened to decrease the amount of clutter and to make 

space for the bootstrap values. In their shortened form, they are unique within a 

sampling point, but not across the whole serial evolutionary network. For example, 

the GenBank ID of p2c005-03 is shortened as 03 in the network of patient 2 under the 

sampling time 5 months.
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8.4 Discussion

In Chapter 4, the network of patient 2 (labeled as patient S in that chapter), was 

constructed using the MinPD method (see Figure 13). This chapter presents a serial 

evolutionary network produced by the improved method, Sliding MinPD (see Figure 24). 

We will therefore start the discussion by analyzing the differences between the two 

results. For this discussion, we will use the complete ID of the sequences as it appears in 

Genbank. The name includes the patient information, which appears as “pX” for patient 

X, followed by the information on sampling time, which appears as “cN” for time period 

N months since seroconversion, followed by a dash, and a ID number unique within that 

sampling period. For example p2c51-19 refers to sequence with ID 19 sampled at 51 

months from patient 2. A suffix of “x” followed by a number n indicates that the same 

sequence was sampled n times during the same sampling time point. A suffix of “g” 

indicates that a duplicate was only found in the gap-balanced alignments. The 

information about the health status of the patients, the therapy administered to each, and 

the CD4+ T-Cell counts were obtained from published results (Shankarappa et al. 1999).

8.4.1 Comparison of two networks for patient 2

The two networks, one obtained by applying MinPD and the other obtained by 

applying Sliding MinPD were compared. They were found to be similar when 

considering the splitting of lineages, and showed some differences with respect to the 

identification of recombinant sequences. As in the network of Figure 13, up to the 51- 

months sampling period there were three different lineages. Also like in Figure 13 one 

lineage ceased to exist at that point with sequence p2c51-25 as its last sampled sequence.
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As shown in Figure 13, another lineage with the last sampled representative as p2c68-14 

disappeared at 68 months. After 68 months both networks showed no distinct lineages, 

with clear indications of the occurrence of recombination events. As suggested by both 

networks, the X4 mutation that was widespread in most sequences sampled later appears 

to have descended from p2c61-30 and its putative ancestor p2c51-19. However, the two 

methods disagreed on whether or not the sequence p2c61-30 was a recombinant. 

Although the RIP option in Sliding MinPD continued to identify this sequence as a 

recombinant, the other methods did not. In particular, the gap-balanced version of B-RIP 

suggested that sequence p2c51-19 was the only donor with a bootstrap support of 98%. 

As for the donors of sequence p2c51-19, two of the results, the ones using the SB and B- 

RIP options, suggested that it was a recombinant sequence. However, the two methods 

disagreed on the donors (Left:p2c30-12 and Right:p2c40-08 versus Left:p2c30-01 and 

Right: p2c40-01); a majority of the other results identified sequence p2c30-05 as the only 

donor, albeit with low bootstrap support. Although a recombinant history would have 

made more sense because of its X4 mutation, both networks linked it to a non-X4 

ancestor. It is worth pointing out that the original MinPD initially identified a large 

number of potential recombinants, but only a few were added to the network after doing 

additional analysis using the Bootscanning program Simplot (Ray 2003). As a majority 

consensus rule was used to choose recombination events in Sliding MinPD, which gives 

priority to the B-RIP method, the recombination results were quite different in the 

resulting network. The networks suggest an increase in recombination activity in the later 

sampling periods. This coincided with a decrease in the number of CD4 T-Cells. More 

importantly, it also coincided with the start of the antiretroviral drug therapy at the 103rd
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month period. In fact, the largest number of recombinants (with strong recombination 

signals) were found during the last sampling period after the patient started taking three 

different drugs. These drugs included Zidovudine- ZDV, Lamivudine-3TC (which the 

patient stopped taking at 120 months), and Stavudine-d4T (which was continued until the 

126 months period). An interesting recombination event was suggested for sequence 

p2cl26-19 with a putative left-side donor of p2c68-19, which was sampled almost 5 

years earlier, and which was from a different lineage and did not carry the X4 mutation. 

As will be seen with other patients (patients 8 and 9), the appearance of recombinant 

sequences that join separate lineages seems to be a recurring theme typically after the 

start of retroviral drug therapies.

8.4.2 Analysis of networks for other patients

Patient 9

Only Sliding MinPD was applied to the data set from patient 9, as well as to the 

other data sets discussed in this section (Section 8.4.2). The network of patient 9 suggests 

the resurgence of reservoir virus as suggested by the recombination events at 129 months. 

The presence of different types of HIV reservoirs cells that harbor dormant virus has been 

discussed in many studies (Chun and Fauci 1999; Imamichi et al. 2001). The persistence 

of reservoirs of HIV, including latently infected, resting CD4+ T-cells that can give rise to 

infectious HIV after a period of latency, has posed a sobering challenge to the long-term 

control or eradication of HIV in infected individuals receiving highly active antiretroviral 

therapy (HAART).
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Sequences p9c09-383x2 (with 2 identical copies sampled at 9 months) and p2c09- 

393 with progeny p9c86-3 are putative dormant strains of which a few might have 

escaped latency through the low degree of ongoing viral replication that is thought to 

occur in latently infected, resting CD4+ T cells. We hypothesize that reservoir strains that 

co-infect a cell already infected with virus from the dominant quasispecies, may replicate 

and get assembled together with a copy of the current strain into a new viral particle. The 

viral particle with 2 different parental RNA strands may infect another cell and 

recombine during replication.

One aspect that becomes apparent is the elevated number of recombinants among 

the X4-mutants, some of which produce strains without the X4 mutation. It is interesting 

to note that the earliest putative ancestor of the lineage with a large number of X4- 

mutants is a recombinant itself, namely the sequence p9c63-9 (with 99% bootstrap 

support), and has donors from two separate lineages, one that ceased to exist at 111 

months and the other that persisted in recombination events through 129 months. Yet 

another feature of interest is that many recombinant sequences in patient 9 are themselves 

putative parental donors contributing to other recombination events. Patient 9 was on 

Zidovudine (ZDV) therapy since before the 63 month sampling time point and was the 

only patient (among the ones considered in this work) with data spanning a long period of 

therapy of over 6 years. It is possible that a consequence of the drug therapy, which seeks 

to inhibit reverse transcriptase activity, is an increase in recombination events, which is 

known to happen by the switching of templates during the reverse transcription phase. 

Acceleration of recombination events is perhaps a stress response or an evolutionary 

mechanism used by the virus to explore ways of achieving drug resistance.
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As with the network of patient 9, we can observe a putative recombination event 

between a possible dormant strain from an early period and a later X4 mutant strain 

resulting in p8c81-14. The putative right-hand donor and early strain p8cl7-c did not 

have any direct descendants that inherited the whole length of its sequence. As discussed 

previously, this may be evidence of a pattern with dormant viral strains involved in 

recombination events with strains from later periods.

As with the networks of other patients, one can observe that the X4 sequences 

were grouped into their own lineage. However, in the network for the data set from 

patient 8, the recombinant sequences from 70 months and later had one donor that was 

from a different lineage. The recombination event generating the sequence p8c95-07 

joined two separate lineages of which the last representative was sampled at 70 months. 

Patient 8 started on antiretroviral therapy at the 81 months period after a drastic decline in 

the number of CD4+ T-cells. The administration of drugs started rather late (at 81 

months) as opposed to patient 9 and there was not enough data to reflect that the same 

effect of increased recombination occurred with the infected viral population in this 

patient.

Patient 8
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This patient started on ZDV therapy at the 67 months sampling period. A change 

in the pattern of the linking relationships can be observed in the sampling periods before 

and after the drug therapy. In the periods before the drugs were administered, most 

sequences from the same sampling time point clustered together in the same subtrees, 

sharing the same ancestor and creating a very “orderly” structured network. However, 

this order broke down after the drug therapy was started. The strain p3c30-13, which is 

the putative ancestor of the lineage that appears to have survived until 96 months, and 

which contains a majority of the X4 mutants, had low bootstrap support (33) and a large 

genetic distance (see full line branch length) to its putative ancestor (i.e., sequence p3c26- 

21) suggesting that a close ancestral sequence was not sampled for this strain. This 

patient developed AIDS at the last sampling period and died a year after that (at 9.1 years 

after seroconversion).

Patient 1

This patient was never administered antiretroviral drug therapy. Although the 

number of X4 strains fell to close to zero (data not shown) after the 77 months sampling 

point, the patient’s CD4+ T-cell count continued to decline dramatically and the patient 

died at 9.1 years after seroconversion. There are little remarkable details in the network 

of patient 1. Not many recombinant sequences, nor recombination events involving 

different lineages.

Patient 3
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There are two remarkable observations to be made on the network for the data set 

from patient 5. The first one is that there are two lineages that coexist until the 56 months 

sampling time point and these are not joined via any recombination events. The other 

observation is related to the recombinant sequence p5c56-g, which as observed in other 

patient networks represents a recombination event between a possible dormant virus from 

a very early period and a current strain. Patient 5 was started on therapy after the 62 

months sampling time point and passed away 8.1 years after seroconversion. Unlike other 

patients there’s repeated sampling of the virus in short intervals, such as during the 

sampling time points 21, 25, and 28, and 40, 42 and 43. If the sequences are too similar it 

will cause the predictions to be less statistically significant as shown by bootstrap values 

below 70.

Patient 6

There is little that is noteworthy about this network, as there is only one 

discernible lineage until the last sampling point. The recombinant sequence p8c30-03 is 

the putative ancestor of a majority of the sequences sampled after time point 36. 

Furthermore, the only X4-genotype sequence has a very low bootstrap support indicating 

that no clear ancestor relationship was found for that strain. Therapy started early at 36 

months and the patient died of AIDS at 7.1 years after initial detection of the virus.

Patient 5
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There are 2 major lineages that are however not sufficiently distinguishable 

because of repeated putative recombination events between them and also because of 

single strains that are linked with neither one of these lineages, such as p7c56-79a, 

p7c56-108, and specially p7c74-26b . The X4 genotype appeared early and disappeared 

early, and as observed in all other patients it was part of the largest surviving lineage. 

Therapy started early at 44 months and the patient died at 9.1 years after initial detection 

of the virus.

8.5 Summary

In this chapter, we have applied our method Sliding MinPD to “real” sequence 

data from the HIV-1 envelope region of eight patients sampled serially over a period of 

many years. We discussed the representation of our results in the form of a serial 

evolutionary network and we made inferences on the patterns of evolution of the different 

strains. The evolution of HIV within host environments is very different from general 

HIV evolution (say, within a host population). There is strong evidence that natural 

selection is the driving force of within-host evolution. Within-host HIV phylogenies have 

a strong temporal structure, reflecting the successive fixation of advantageous mutations 

and the extinction of unfavorable lineages (Rambaut et al. 2004). This can be observed in 

all the serial evolutionary networks presented in this chapter. Each of the networks 

obtained from the sequence data for the different patients appears to be qualitatively 

different and reveals different aspects of the evolutionary relationships among the data.

Patient 7
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It is important to mention the role that the visualization of the results plays in 

understanding the different patterns of within-host viral evolution. First, with our network 

representation, we can locate any viral strain easily due to the temporal positioning within 

the network, where strains sampled at the same sampling point are vertically aligned. 

Second, it allows us to better understand the evolutionary relationships of the X4 strains. 

By displaying recombination information we can study another kind of relationship 

among the serial samples. The data of all patients included X4 mutant strains, which are 

known to be associated with a higher rate of CD4+T-cell decline, and therefore, a more 

rapid progression to AIDS (Rambaut et al. 2004). The network representation allowed us 

to take a closer look at the evolution of these strains and to connect our observations with 

the known facts and published results by researchers who study molecular viral 

evolution.

A few of the recurring patterns observed in the 8 patient’s networks are:

1. The X4-strains always belong to the largest and longest surviving lineage (all 

patients).

2. The founder strain of the largest lineage (the one containing the X4 genotype) is a 

recombinant or has very low bootstrap support, which often happens when the 

methods are split on whether the strain is or is not a recombinant or on their choice of 

an ancestor. This observation is evidence of the unique status of these strains in the 

networks (sequence plc34-81 in patient 1 has low bootstrap support, as do p2c51-19 

in patient 2, p7c25-21a in patient 7, p8c41-04 in patient 8, p3c30-13 in patient 3, 

p6c30-03 in patient 6 is a recombinant sequence, as well as p9c63-9 in patient 9).
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3. Recombination events that involve strains sampled at much earlier times suggest the 

existence of dormant viruses escaping latency and that recombine with viruses from 

the later populations (patients 2, 5, 8, 9).

4. Recombination events linking two different major lineages is a recurring event in 

several patients (patients 3, 7, 9, 8).

The findings indicate that there is a possibility of increased fitness when patterns

2 and 3 are observed as patient 8 and 9 are the only surviving patients (during the length 

of the study) whose CD4+ T-cell count remained above 0 and even rebounded slightly in 

the late stages of the study when the number fell dramatically. There was no discemable 

pattern related to the administration of antiretroviral drugs, possibly also because with the 

exception of 3 patients all patients started with therapy relatively late (at the last 2 

sampling time points).

The visualization of the results played an important role in understanding the 

different patterns of evolution of the viral data sampled from eight patients. With our 

network representation, we located certain viral strains more easily due to the temporal 

positioning within the network allowing for a better understanding of the evolutionary 

relationships of for example the disease inducing X4 strains. The network representation 

allowed us to take a closer look at the evolution of these strains and to connect our 

observations with the known facts and published results by biologists and virologists that 

study the molecular viral evolution. It is our belief that the use of our serial evolutionary 

network to represent the relationships inferred by our method Sliding MinPD will
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improve the understanding and modelling of the within-host molecular evolution and 

epidemiology of recombining RNA viruses such as HIV.
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9 Conclusion

Our studies confirm that our newly developed distance-based phylogenetic tools are both 

accurate and efficient in analyzing serially-sampled sequence data, detecting 

recombination and inferring the complex evolutionary network to represent the sequence 

data. Such evolutionary networks can be of great assistance in the understanding and 

modeling of the molecular evolution of recombining RNA viruses. We start with a 

general discussion of the main accomplishments of this dissertation and then discuss how 

each of the sub goals mentioned in the introductory chapter were addressed.

9.1 A ccom plishm ents o f  the dissertation

The main objective of this dissertation work was to develop new methods to study 

the evolution of recombinant, serially-sampled viral populations within a single host. Our 

study is a contribution to the ongoing research on infectious viral diseases and on the role 

of within-host viral evolution on the health of the infected patient and their prognosis. We 

have developed a suite of versatile tools that help to provide new insights into the 

evolutionary relationships of recombinant serially-sampled data. The main tool called 

Sliding MinPD performs a combined analysis of the different aspects of viral evolution. 

The soundness, efficacy, accuracy, and utility of our method were demonstrated using 

extensive experimentation with both real data (from experimental evolutionary studies) as 

well as simulated data. Sliding MinPD was also carefully and comprehensively compared 

with other competing methods, even on a feature-by-feature basis. The accuracy of 

Sliding MinPD compared favorably with the best methods on individual features. 

Furthermore, Sliding MinPD remains unique in terms of the overall array of features it
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offers. Its strongest feature, however, remains its efficiency. It is orders of magnitude 

faster than methods that use maximum likelihood or Bayesian techniques, while 

remaining competitive in terms of accuracy. We expect the utility of Sliding MinPD to 

grow enormously as serially-sampled data sets start to grow larger and larger in size. 

Most of the competing methods are not geared to handle data sets that are tens or 

hundreds of times larger than existing data sets.

To perform the large volume of simulation experiments required for this 

dissertation, another sequence generation tool was developed called Serial NetEvolve.

There was also a clear need for comprehensive evaluation techniques to assess 

recombination detection methods; the previous ones were insufficient. The results of our 

comparison studies should prove significant to the phylogenetic community and the many 

researchers currently working on the important area of recombination detection.

Another important contribution of this dissertation is a novel way of representing 

the networks obtained by using MinPD and Sliding MinPD on serially-sampled, 

recombinant sequence data by displaying them in a structure we called an evolutionary 

network. We also demonstrate its value by making critical biologically relevant 

inferences from the resulting networks with relative ease.

Last, but not the least, we used the Sliding MinPD method to infer patterns of 

evolution and predict the evolutionary relationships of real viral data sampled serially 

from HIV patients.
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9.2 Addressing the goals o f the dissertation

We articulated a number of goals for this dissertation. We describe below how these 

goals were addressed.

Goal 1: to develop new computational tools to find  ancestor-descendant relationships 

between serially-sampled data and to construct an evolutionary network fo r  

them.

We developed a method to analyze serially-sampled sequence data based on minimum 

pairwise distance computations (aptly named “MinPD”), which infers ancestor- 

descendant relationships (by identifying the sequences at a minimum distance) and 

detects recombination (by dividing the sequence into equal-sized fragments and 

identifying sequences whose corresponding fragments were at a minimum distance). The 

MinPD’s features were tested with simulated data that showed it performed well with 

recombinant as well as with non-recombinant data. The results of MinPD were presented 

in an “evolutionary network” structure that places the sequences sampled at the same 

time in different columns to show the relationships between the taxa. MinPD was also 

successfully applied to the HIV-1 envelope gene sequences of a patient.

Sliding MinPD, an enhanced version of MinPD, was specifically designed to 

analyze recombinant serially-sampled data and to also construct an evolutionary network. 

This method helped us to address the second goal of the dissertation, as discussed below.
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Goal 2: to develop computational tools to automatically detect recombination in serially- 

sampled data and display the recombination events within an evolutionary 

network structure

We considered the problem of detecting recombinant sequences in a set of serially- 

sampled sequences. Instead of dividing the sequence into equal-sized fragments, we 

chose a sliding-window approach. Three standard methods were implemented as user 

options in the program. An important feature was the elimination of user intervention, an 

undesirable feature of several of the earlier methods. Of the three methods implemented, 

one method used bootstrapped phylogenetic trees and used changes in the pattern of the 

location/closeness of the taxa in the trees to find recombinant sequences. Another method 

used bootstrapped genetic distances to find a change in the choice of sequence at 

minimum distance between windows along the sequence. The third option, which is a 

generalization of the fragment analysis approach of MinPD, used a sliding window, but 

without bootstrap. The results of the program showed that careful calibration of the 

parameters could lead to high specificity (0.99) and high positive predictive values 

(>0.90). Sliding MinPD outputs the evolutionary network with additional information: 

the bootstrap support for linking a descendant with the inferred ancestor(s).

Goal 3: to build tools to generate realistic synthetic data sets

We developed a tool called Serial NetEvolve to simulate the evolution of serially- 

sampled recombinant viruses. Inspired by its predecessor, Treevolve, Serial NetEvolve 

simulates the evolution of serially-sampled recombinant viral sequences along a
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randomly generated coalescent tree or network. An array of additional features make 

Serial NetEvolve superior to competing programs. Other features of this program include: 

(1) the option to output serially-sampled sequences, (2) the option to use variable rates of 

evolution instead of the clock model, (3) the option to sample from the internal nodes of 

the tree or network, (4) the option to output the topology of the tree or network created, 

and (5) the option to output the network using a newly developed format called the 

NeTwick format. Serial NetEvolve was used in two major comparison studies. The 

resulting tool was invaluable in helping to perform the large volume of experiments 

performed as part of this dissertation.

Goal 4: to establish the criteria and mechanisms to perform comparison studies on 

recombination detection tools and phylogenetic tools fo r  serially-sampled 

recombinant data

The AD-Score and RF-distance score were devised to effectively compare the tools to 

predict ancestor-descendant relationships and predicted network topologies. Due to the 

complexity of recombination detection approaches, special evaluation procedures were 

established. Previous studies did not compute specificity and sensitivity values, and more 

importantly, did not assess the breakpoints and donors that were correctly identified 

(Posada and Crandall 2001a; W iuf et al. 2001). We developed a tool, called Recldentify, 

which parsed the information contained in a network generated by Serial NetEvolve to 

identify recombinant sequences, their donors and breakpoints. The tool proved valuable 

in evaluating recombination detection tools for synthetically generated data sets.
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Goal 5: to evaluate the performance o f methods to study serially-sampled data

We performed two comprehensive evaluation studies that used biological data from 

empirical evolution studies with “known” phylogenies and data simulated with Serial 

NetEvolve. Seven methods were included in the comparison studies. The results showed 

that for inferring ancestor-descendant relationships, the distance method MinPD 

outperforms methods specifically designed to analyze serially-sampled sequence data. An 

important characteristic of MinPD is that it does not require an explicit assumption of a 

molecular clock. The simulation studies corroborated the results of the studies with 

empirical data. In particular, the topological score results were surprisingly good. As 

shown by the results with the simulated data, when data sets included the most recent 

common ancestors for each sequence, tree-based programs failed to place them at basal 

positions in the tree, resulting in large topological distances from the true tree.

Goal 6: to evaluate methods to study serially-sampled recombinant sequence data 

through extensive computer simulation studies.

Extensive computer simulations were carried out, resulting in an evaluation of 

recombination detection methods that is more comprehensive than in previous studies. 

The main reason why such evaluation studies were not carried out is that the existing 

detection methods only offer graphical outputs from which the user is left to decide 

whether or not a given sequence is recombinant. Sliding MinPD implements three 

recombination detection methods and automates the detection process replacing the 

visual output with a list of the inferred recombinant sequences along with statistical
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significance values associated with the inference. Applying our method on simulated data 

returned an average sensitivity score of 0.60 for low recombination rates (up to 27% of 

recombinants) and few false positives with all rates (specificity rates of 0.99). About 50% 

of breakpoint positions were correctly detected for the low recombination rates; this rate 

increased by an average of 6% when the interval to the left and right of the true 

breakpoint position was increased from 60 to 100 in the evaluation process.

Goal 7: to apply the newly developed tools and techniques to “real” data sets and to 

interpret the results in biologically meaningful ways.

We applied our method Sliding MinPD to sequence data from the HIV-1 envelope region 

of five patients sampled serially over a period of many years. We discussed the 

representation of our results in the form of an evolutionary network and we made 

inferences on the patterns of evolution of the different strains. We could observe a strong 

temporal structure, reflecting the successive adaptation of advantageous mutations and 

the extinction of unfavorable lineages in the evolutionary networks presented and studied 

in this dissertation. Every structure representing the evolutionary relationships of the 

patients was different and revealed different aspects of the evolutionary relationships 

among the data.

The visualization of the results played an important role in understanding the 

different patterns of within-host viral evolution. With our network representation, we 

located certain viral strains more easily due to the temporal positioning within the 

network allowing for a better understanding of the evolutionary relationships of for
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example the disease inducing X4 strains. The network representation allowed us to take a 

closer look at the evolution of these strains and to connect our observations with the 

known facts and published results by biologists and virologists that study the molecular 

viral evolution.

Putting all the pieces together, the end result is an effective and useful tool for 

studying the evolution of serially-sampled recombinant sequence data.
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