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ABSTRACT OF THE THESIS 

VERTICAL HANDOFF TARGET SELECTION IN A 

HETEROGENEOUS WIRELESS NETWORK USING FUZZY ELECTRE 

by 

Mukesh Ramalingam 

Florida International University, 2015 

Miami, Florida  

Professor Kang K. Yen, Major Professor 

           Global connectivity is on the verge of becoming a reality to provide high-speed, 

high-quality, and reliable communication channels for mobile devices at anytime, 

anywhere in the world. In a heterogeneous wireless environment, one of the key 

ingredients to provide efficient and ubiquitous computing with guaranteed quality and 

continuity of service is the design of intelligent handoff algorithms. Traditional single-

metric handoff decision algorithms, such as Received Signal Strength (RSS), are not 

efficient and intelligent enough to minimize the number of unnecessary handoffs, 

decision delays, call-dropping and blocking probabilities. 

               This research presents a novel approach for of a Multi Attribute Decision 

Making (MADM) model based on an integrated fuzzy approach for target network 

selection. 
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INTRODUCTION  

             Over the past few years, there have been some exciting innovations in wireless 

communications network technology as shown in Figure 1.1.  Wireless and mobile 

networking is becoming an increasingly important and popular way to provide global 

information access to users on the move. The demand in the area of wireless 

communication is to deliver the real-time application over heterogeneous wireless 

network with assured Quality of Service (QoS) and customer satisfaction. New 

technological developments like Fourth Generation (4G) wireless systems offer a rich 

service and applications at high data transfer rates. Most of them usually differ in terms 

of, but are not limited to, their offered bandwidths, operating frequency costs, coverage 

areas, and latencies. Currently, no single wireless technology claims to provide cost-

effective services, which offers high bandwidths and low latencies to all mobile users in a 

large coverage area. This is where the need for well-organized vertical handoffs (VHOs) 

between heterogeneous wireless technologies becomes evident[1]. 

            The term “handoff”, or “handover” [2], refers to the process of transferring a 

mobile station from one base station (BS) or channel to another. One example, handoff is 

a continuous transfer of an ongoing voice or video conversation from one channel served 

by a core network to another channel. In particular, handoff is the process of changing a 

communication channel (frequency, data rate, modulation scheme, spreading code, or 

their combination) associated with the current connection, while, a communication 

session (or call) is in progress. 

 

 



2 
 

 

Figure 1.1: Evolution on Wireless Communications 

         

                  The handoff process has two major stages: handoff initiation, and handoff 

execution[2]. In the handoff initiation phase, a decision is made regarding the selection of 

the new Base Station (BS), or Access Point (AP), to which the Mobile Station (MS) will 

be transferred. In the execution phase, new radio links are formed between the BS/AP 

and MS, and resources are allocated. 

 

Figure 1.2: Overview of the Handoff System 
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1.1 Motivation and Significance of Research 

    So far, significant research has been done to achieve continuous mobility while 

an MS moves across different tiers of heterogeneous wireless network. However, this 

research mainly focuses on an important aspect of continuous mobility: vertical handoff 

initiations and decisions. Horizontal handoff decisions between the cells of same tier are 

made mainly on the basis of Received Signal Strength (RSS), whereas decisions for 

vertical handoffs are typically performed based on more than one network’s parameters, 

including, but not limited to, RSS, MS-Velocity, Security, Cost, and QoS parameters. 

These decisions often incorporate network-operators policies and end-users preferences 

as well. 

 

       Many of the existing handoff algorithms, which are based on a single metric, 

such as RSS, do not exploit the benefits of multi-criteria and inherent knowledge about 

the sensitivities of these handoff parameters in heterogeneous wireless network systems. 

Further, these algorithms do not take QoS into account to maximize the end-users 

satisfaction. Factors like available network bandwidth, latency, security, usage cost, 

power consumption, battery status of MS, and user preferences should be thoroughly 

considered while performing these handoff decisions. 

  

      In nearly all the multi-criteria hand-off schemes, assigning different weights 

helps prioritize network parameters. Most of the time, the assignment of these weights is 

done manually without considering how much weight is needed for a certain network 

parameter. This could lead to a degraded handoff performance if one parameter is given 
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higher weight as compared to another, especially during an ongoing user-session, such as 

a Voice over IP (VoIP) conversations, where achieving a minimum level of QoS is 

essential. Thus, calculating the correct weights for network parameters is an important 

task when operating in a heterogeneous wireless environment. Furthermore, nearly all 

handoff schemes utilize crisp values for these weights, ignoring the fact that typical 

values of parameters in a wireless network are not precise and are characterized by 

inherent uncertainty. Therefore, in order to guarantee the quality of the currently utilized 

service, proper weight assignment, especially for QoS related parameters, is of utmost 

importance and should be done very carefully. In addition, the fuzzy nature of these 

values should be kept in mind while assigning these weights. 

 

 

            

      The ELECTRE1 method overcomes the drawbacks of other MADM (Multi 

Attribute Decision Making) methods by not assuming the performances of the 

alternatives, relative to the criteria. Unlike many other MCDM (Multi Criteria Decision 

Making) methods, ELECTRE1 do not assumed that the criteria are mutually difference 

independent. It also does not assume that the performances of the alternatives with 

respect to different criteria can be evaluated on the basis of a common scale. While other 

MADM like AHP (Analytical Hierarchy Process) requires that comparisons between both 

alternatives and criteria can be quantified, it also requires the assumption that the 

performance of the alternatives with respect to each of the criteria can be evaluated on the 

basis of a common ratio scale. 
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 1.2 Research Contribution 

        In this research work, an intelligent, scalable, and flexible hybrid scheme is 

proposed to perform intelligent and efficient target network selection decisions. In the 

proposed scheme, different parameters of all available candidate networks are utilized to 

determine a new PoA (Point of Access), or an access network, that can best fulfill the 

end-user’s requirements. The target network selection scheme utilizes certain ranking 

algorithms to rank the available networks based on multiple criteria. The proposed 

scheme intends to maximize the end-user’s satisfaction, taking into account the quality of 

the currently utilized service that the end-user experiences at the mobile terminal.  

      

         The fuzzy set theory is ideally suited for handling these ambiguities encountered in 

solving MADM (Multi Attribute Decision Making) problems. Fuzzy logic, together with 

fuzzy arithmetic, could be used to develop the procedures for treating vague and 

ambiguous information which is frequently expressed with linguistic variables and whose 

inaccuracy is not particularly due to the variability of the measures, but due to the 

uncertainties inherent in the available information.  

 

1.3 Organization of the Thesis: 

            The organization of this thesis is as follows. Chapter 2 provides a brief 

background on the process of handoff, followed by a comprehensive overview of the 

related work in the area of vertical handoff decisions. In Chapter 3, an overall framework 
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of the proposed handoff scheme is presented. Simulation and experimental results are 

presented in Chapter 4, and finally, Chapter 5 concludes this research work 
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BACKGROUND AND RELATED WORK 

          This chapter begins by providing a background related to the handoff process 

followed by a comprehensive survey of different approaches to make vertical handoff 

decisions. Through the literature review, the available handoff algorithms can be grouped 

into different categories based on the main handoff decision criterion used[1]: RSS based, 

multiple-criteria decision based. 

 

2.1 Handoff Process Background 

2.1.1 Handoff Classification: 

Handoffs can be classified into several ways as discussed below: 

Horizontal and Vertical Handoff: Depending on the type of network technologies 

involved, handoff can be classified as either horizontal or vertical[3]. Traditional handoff, 

also called horizontal or intra-system handoff, occurs when the MS switches between 

different BSs or APs of the same access network. For example, horizontal handoff 

typically happens when the user moves between two geographically adjacent cells of a 

third generation (3G) cellular network. On the other hand, vertical handoff or inter-

system handoff involves two different network-interfaces representing different wireless 

access networks or technologies, figure 2.1 depicts two types of handoffs in 

heterogeneous wireless networks, where horizontal handoff occurs between two WLANs, 

and vertical handoff occurs between a WLAN and a CDMA network.   
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Hard and Soft Handoff: This classification of handoff depends on the number of BSs 

and/or APs to which an MS is associated with at any given moment[3]. Hard handoff, 

also called “break before make”, involve only one BS or AP at a time. The MS must 

break its connection from the current access network before it can connect to a new 

one[4]. In a soft handoff, also called “make before break”, an MS can communicate and 

connect with more than one access network during the handoff process. 

Mobile-controlled, Mobile-assisted, and Network-controlled Handoff: As the name 

suggests, these types of handoff classifications are based on the entity, MS or access 

network, which make the handoff decisions[5]. Mobile-assisted handoff is the hybrid of 

mobile-controlled and network-controlled handoff where the MS makes the handoff 

decisions in cooperation with the access network. 

 

Figure 2.1: Horizontal and Vertical Handoff in Heterogeneous Wireless Networks 
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2.1.2 Desirable Features of Handoff 

Figure 2.2 [5] describes several desirable features of handoff algorithms as mentioned in 

the literature [5, 6]. Some of these features are described below: 

• Speed: Handoff should be fast enough to avoid service degradation and/or 

interruption at the MS. Mobility of an MS at high speed requires the handoff to be 

done promptly. 

• Reliability: Handoff should be reliable such that the MS will be able to maintain 

the required QoS after handoff. 

• Successful: Free channels and resources must be available at the target access 

network in order to make the handoff successfully. 

• Number of Handoffs: The number of handoffs must be minimized. Excessive 

number of handoffs results in a poor QoS and excessive processing overheads as 

well as power loss, which is a critical issue in MSs with limited battery power. 

• Multiple criteria Handoff: The target access network should be intelligently 

chosen based on multiple criteria. Identification of a correct AN (Access 

Network) prevents unnecessary and frequent handoffs. 

 

2.1.3 Vertical Handoff Process 

          The traditional horizontal handoff research involves handoff decisions based on 

the manual evaluation of RSS measured at the MS to support the “Always Best 

Connected” communications. These traditional handoffs are triggered when the RSS 

value of the serving BS falls below a specified threshold. On the other hand, an MS in a 
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heterogeneous wireless environment can move between different ANs with different 

functionality and characteristics (bandwidth, latency, power consumption, cost, etc.) 

which cannot be directly compared. Hence, in case of vertical handoffs, RSS itself is not 

sufficient for making efficient and intelligent handoff decisions; other system metrics 

including, but not limited to, cost, network-load and performance, available bandwidth, 

security, and user preferences should be taken into consideration as well. On the other 

hand, the inclusion of multiple metrics increases the complexity of vertical handoff 

decisions and makes the entire process more challenging. A vertical handoff comprises of 

three phases as follows[7]: 

        Network Discovery: An MS with multiple active interfaces can discover several 

wireless networks based on broadcasted service advertisements from these wireless 

networks. However, keeping all these interfaces active all the time can significantly affect 

the battery power of the MS. 

        Handoff Triggering and Decision: This is the phase where the decision regarding 

“when” to perform handoff is made. In this phase, the target wireless access network is 

selected based on multiple criteria, as discussed before. 

        Handoff Execution: This is the last phase of the vertical handoff process where the 

actual transfer of the current session to the new AN takes place. This requires the current 

network to transfer routing and other contextual information related to the MS to the 

newly selected AN as quickly as possible. 
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Figure 2.2: Desirable Handoff Features 

 

2.1.4 Vertical Handoff Criteria and Metrics: 

The metrics of vertical handoff are as follows: 

• Received Signal Strength: This criterion is simple, direct, and widely used in both 

horizontal and vertical handoffs. RSS is easy to measure and is directly relevant to 

the QoS of an application. Also, RSS readings are inversely proportional to the 

distance between the MS and the BS, and could result in excessive and/or 

unnecessary handoffs. 

• Available Bandwidth: Measured in bits/sec (bps), available bandwidth is used to 

determine traffic-loading conditions of an AN, and is a good measure of available 

communication resources at the BS. 
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• Network Connection Duration: This is the amount of time that the MS remains 

connected to a specific AN. This time duration depends on the location and 

velocity of the MS, which in turn affect its RSS. Due to different coverage areas 

in heterogeneous wireless networks, the evaluation of this criterion is very 

important to determine two factors: 1) The triggering conditions required for the 

handoff at the right time in order to maintain a satisfactory QoS while avoiding 

wastage of network resources and 2) to reduce the number of unnecessary 

handoffs. For example, a hasty handoff from an IEEE 802.11 WLAN to a 3G 

cellular network would result in network resources being wasted. On the other 

hand, delaying the handoffs between these networks would result in handoff 

failures and subsequent call drops. Statistics, such as total time spent in an AN 

and arrival time of a new call in the network, can also be used as handoff criteria. 

• Monetary Cost: Different operators may operate heterogeneous wireless networks 

and may have varying costs associated with them. The network with the least cost 

should be a preferred target of handoff. 

• Handoff Latency:  For an MS, handoff latency is defined as the elapsed time 

between the last packet received from the old AN, and the arrival of the first 

packet via the new AN after a successful handoff. This metric varies considerably 

between various heterogeneous wireless technologies. 

• Security: Certain applications require that the confidentiality, and/or the integrity 

of the transferred data be preserved. This metric can be used to handoff to a 

network that offers higher security as compared to other available networks. 
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• Power Consumption: Handoff process demands a fair amount of power 

consumption. If an MS were running low on battery power, it would be preferable 

to handoff to a target AN that would help extend the MS’s battery life. 

• Velocity: Velocity is an important decision factor as it relates to the network-

connection-duration metric and location of the MS. An MS travelling at a very 

high speed may result in excessive handoffs between wireless networks. 

 

2.2 Literature Review 

2.2.1 RSS Based Algorithms: 

            In this approach, the RSSs of the different candidate ANs are measured over time 

and the BS or AP with the strongest signal strength is selected to carry out a handoff[8]. 

A number of studies have been conducted in this area due to the simplistic nature of this 

approach. Since heterogeneous wireless networks comprise of different wireless 

technologies, their RSSs cannot be compared directly, and thus relative RSS does not 

apply to vertical handoff decisions[9]. On the other hand, other network parameters such 

as bandwidth, are typically combined with RSS when making decisions for vertical 

handoffs[10][11]. It is important to mention that the possible signal fluctuations due to 

multipath fading can result in the undesirable so-called “ping-pong effect”, i.e. 

unnecessary handoffs that increases the probability of call failures and drops during the 

handoff process.  
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2.2.2 SIR Based Algorithms: 

            Signal to Interference Ratio is typically used to measure the quality of 

communication. In this approach, a handoff is initiated if the Signal to Interference Ratio 

of the current PoA, BS or AP, is lower than the threshold as compared to the SIR of the 

target network. 

2.2.3 Velocity Based Algorithms: 

          Different techniques have been presented to perform handoffs, using velocity as the 

main decision criterion[11]. If the MS in a heterogeneous environment moves with a 

relatively high velocity, the probability of a call drop may be higher due to excessive 

delays caused by the handoff process[12]. Based on the velocity of the MS, different 

values of the velocity threshold can be used to make handoff decisions. This is due to the 

fact that the sojourn time of slower moving MS is much higher than the MS travelling 

with a relatively higher speed[13]. 

2.2.4 Direction Based Algorithms: 

                  For high mobility MSs, this category of algorithms can make effective 

handoff decisions based on whether the MSs are moving towards or away from the 

network (BS/AP). This can improve handoff performance by lowering the mean number 

of handoffs, thus reducing the overall handoff delays[14]–[16]. 

2.2.5 Minimum Power Algorithms: 

              The proposed technique attempts to find a pair of networks with available 

channel that has a SIR based on minimum transmitted power[17]. This algorithm reduces 

call-dropping probability, but increases the number of unnecessary handoffs. 
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2.2.6 USER PREFERENCE BASED ALGORITHMS: 

           These approaches mainly take into account the end-users’ preferences in terms of 

MS’s power consumption, associated service cost, offered security, and the QoS provided 

by a candidate network. Most of these approaches are developed to maximize the end-

user’s satisfaction while utilizing non-real-time applications[18]–[21].   

2.2.7 Context Aware Based Algorithms: 

             The approaches presented in [21], [22]–[25]use context information to perform 

intelligent handoff decisions. Contextual changes are also taken into account to determine 

the necessity of handoffs. Context information is collected from the following: 

• Mobile Station: Capabilities, remaining battery power, location, and 

velocity. 

• User: User’s preferences in terms of preferred network usage-cost, 

security, and desired QoS. 

• Candidate Network: Provided QoS, coverage area, available bandwidth, 

security offerings, cost of usage, and latency. 

• Application: QoS requirements based on the type of service 

(Conversational, Background, Streaming, etc.) needed. 

2.2.8 Cost Function Based Algorithms: 

            The cost function based approaches[3], [27]–[29] combine different system’s 

metrics in a cost function that represents a measure of the benefit obtained by handing off 

to a particular candidate network. For every candidate network, the sum of weighted 
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functions of specific parameters is evaluated to produce the final cost of the network. The 

general form of a cost function for a wireless network is given by: 

௡݂ = ∑ ∑ .௦,௜ݓ ௡ೞ,೔௜௦݌                                              (2.1) 

Where ݌௡ೞ,೔is the cost related to the ݅௧௛	parameter for providing service ݏ on 

network	݊,ݓ௦,௜ is the importance weight associated with the ݅௧௛ parameter and ∑ ௜௜ݓ = 1. 

Two commonly used cost functions found in literature are provided in Equations    

ܿ௦௡ = ௦,௝௡ݓ∑ ܳ௦,௝௡                       s.t. ܧ௦,௝௡ ≠ ,ݏ		∀		0 ݅               (2.2) 

Where ܥ௦௡is the per-service cost for network  ݊ ,ܳ௦,௝௡  is the normalized QoS provided by 

network ݊ for parameter ݆ and service ݓ,ݏ௦,௝௡  is the weight which indicates the impact of 

the QoS parameter on the user or the network, and ܧ௦,௝௡ is the network elimination factor, 

indicating whether the minimum requirement of parameter ݆ for service ݏ can be met by 

network ݊. The second cost function represents the total cost as the sum of all the 

weighted cost associated with all QoS parameters used. 

ܳ௦,௝௡ = ௜ܥ௖ݓ + ௦ݓ ௜ܵ + ௣ݓ ௜ܲ + ௜ܦௗݓ +  ௜                                        (2.3)ܨ௙ݓ

Where ܳ௜ is the quality factor of network   ݅; ,௜ܥ ௜ܵ , ௜ܲ , ,௜ܦ  ,௜ are the cost of the serviceܨ

offered security, MS’s power consumption, and network conditions & performance, and ݓ௖,ݓ௦, ,௣ݓ ,ௗݓ  ௙ are the associated weights to the network parameters selected. Aݓ

normalization process 

ܳ௜ = ௪೎൬ భ಴೔൰୫ୟ୶ቀ భ಴భ,…, భ಴೙ቁ + ௪ೞ	ௌ೔௠௔௫(ௌభ,…,ௌ೙) + ௪೛൬ భು೔൰௠௔௫ቀ భುభ,.., భುమቁ + ௪೏	஽೔௠௔௫(஽భ,..,஽೙) + ௪೑ி೔௠௔௫(ிభ,…,ி೙)   (2.4) 
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is used to calculate a normalized quality factor for network n. This is required as each 

network’s parameter has a different unit. 

2.2.9 Multiple Criteria Based Algorithms: 

                       This approach is based on a typical MADM problem where the selection 

of an access network is performed based on multiple attributes measured from all 

available candidate networks. Some of these MADM techniques are as follows: 

• Simple Adaptive Weighting (SAW): SAW is the best known and widely used 

scoring method utilized by[27], [30]–[34] to rank candidate networks. A weighted 

sum of all the network attributes is used to determine the overall score of each 

candidate network. The score of the ݅௧௛  candidate network is obtained by adding 

the normalized contributions from each metric ݎ௜,௝ multiplied by the weight ݓ௝ 
assigned to the ݆௧௛ metric. The selected network has the highest score and is given 

by: 

ௌ஺ௐܣ	  = ௜ݔܽ݉݃ݎܽ ∑ ே௝ୀଵ	௜௝ݎ௝ݓ 										݅ ∈  (2.5)                                ܯ

௜௝ݎ                                   = ௫೔ೕ௫ೕశ 	݆	݁ݎℎ݁ݓ			 ∈       (2.6)                                  ܤ

Or 

௜௝ݎ																																						 = ௫ೕష௫೔ೕ 	݆	݁ݎℎ݁ݓ		 ∈  (2.7)                                                                 ܥ

௝ାݔ																																							 =  ௜௝                                                                        (2.8)ݔ	௜∈ெݔܽ݉	

௝ିݔ																																					 = ݉݅݊௜ఢெݔ௜௝                                                                             (2.9) 
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																																					∑ ௝ே௝ୀଵݓ = 1                                                                                 (2.10) 

Where, ݔ௜,௝ is the ݆௧௛ attribute of the ݅௧௛ network, ܰ is the number of parameters, ܯ denotes the number of candidate networks, ܤ represents benefit type criteria 

(like throughput), and ܥ represents cost type criteria (like delay). 

 

• Multiplicative Exponent Weighting (MEW): In these techniques[30], [35], [36], a 

handoff decision matrix is formed where a particular row and column corresponds 

to the ݅௧௛  candidate network and ݆௧௛ attribute of the network, respectively. The 

weighted product of the attributes is used to determine the score ௜ܵ of the ݅௧௛ 

network as follows: 

௜ܵ = ∏ ௜௝௪ೕே௝ୀଵݔ                                                (2.11) 

Where  ݔ௜௝ denotes ݆௧௛ attribute of the ݅௧௛ candidate network, ݓ௝ denotes the 

weight of attribute ݆, and ∑ ௝ே௝ୀଵݓ = 1. The rank of the selected network is given 

by: 

ொௐܣ  = ௜ݔܽ݉	݃ݎܽ ௜ܵ											݅ ∈  (2.12)                       ܯ

Where ܯ denotes the number of available candidate networks. 

 

• Techniques for Order Preference by Similarity to Ideal Solution: The selected 

network in the TOPSIS schemes [30], [31], [33] is the one that is closest to the 

ideal solution and the farthest from the worst-case solution. This ideal solution is 
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obtained by using the best value for each metric. The selected network is given 

by: 

ை௉ௌூௌ்ܣ	  = ݅			௜ܿ௜ݔܽ݉	݃ݎܽ− ∈  (2.13)                  ܯ

where ܥ௜ denotes the relative closeness (similarity) of the candidate network ݅ to 

the ideal solution. This technique can be applicable to problems spaces for the 

attributes with monotonically increasing or decreasing levels of utility. The 

algorithm calculates perceived positive/negative ideal solutions based on the 

range of attribute values available for the alternatives. 

 

• Elimination and Choice Translating Priority (ELECTRE): This is another 

scheme[31], [34], [37], [38] used to rank the alternatives. The authors utilize a 

reference vector of attributes as an ideal alternative to adjust the raw attributes of 

the candidate networks. A matrix containing the difference between the attribute 

values of this reference vector and other alternatives is formed, and normalized. 

The resultant matrix contains attributes that have a monotonically decreasing 

utility. Weights are assigned to each attribute to take into account their relative 

importance. Finally, the concept of concordance (measure of satisfaction) and 

discordance (measure of dissatisfaction) is applied during the comparison of each 

alternative network with others. A candidate network with the highest value of 

concordance index and lowest value of discordance index would be the preferred 

network. 
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• Analytic Hierarchy Process and Grey Relational Analysis (GRA): The AHP 

decomposes the network selection problem into several smaller problems and 

assigns a weight value to each of them[34], [39]–[41]. GRA is then used to rank 

the candidate networks, and the network with the highest ranking value is chosen. 

The Grey Relational Coefficient (GRC) of each network, which describes the 

similarity between each candidate networks and the ideal network, is calculated. 

The selected network is given by: ீܣோ஺ = ݅								଴,௜߁௜ݔܽ݉݃ݎܽ ∈  (2.14)                          		ܯ

Where ߁଴,௜ is the GRC of the ݅௧௛ network. 

The authors propose a combined application of AHP and Grey System theory to 

evaluate the users’ preferences and service requirements, and combine the QoS 

requirements with the candidate networks’ performances to make the final 

network selection decisions. 

• VIKOR: VIKOR is an MADM method[31], [32], [42], [43] that is developed to 

optimize the multi-attribute based complex systems. It is a compromise 

programming approach that is based on an aggregating function that represents 

closeness to the ideal solution. Thus, VIKOR is able to determine a compromise-

ranking list of alternatives in the presence of conflicting criteria. 

         A comparative analysis of some of these methods with numerical examples, for 

voice and data applications, in a 4G wireless system is proposed[30]. It is shown that 

methods such as SAW, TOPSIS, and VIKOR are suitable for voice connections, whereas 

GRA and MEW provide a better performance for data connections. 
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        Another comparison of these methods, using bandwidth, delay, jitter, and BER as 

system’s parameters[31]. GRA provides a slightly higher bandwidth and lower delay for 

Interactive and Background traffic classes. Results also demonstrated that the 

performance of these algorithms depends on the priority weights assigned to the system 

parameters. 
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FUZZY ELECTRE FOR TARGET SELECTION OF VERTICAL HANDOFF  

3.1 MADM: 

              The term MADM stands for Multi-Attribute Decision Making method. MADM 

methods are used for circumstances that necessitate the consideration of different options 

that cannot be measured in a single dimension. Each method provides a different 

approach for selecting the best among several preselected alternatives. The MADM 

methods help DMs (Decision Maker) learn about the issues they face, the value systems 

of their own and other parties, and the organizational values and objectives that will 

consequently guide them in identifying a preferred course of action [44]. The primary 

goal in MADM is to provide a set of attribute-aggregation methodologies for considering 

the preferences and judgments of DMs. Several methods have been proposed for solving 

MADM problems (i.e., Analytic Hierarchy Process (AHP), Technique for Order 

Preference by Similarity to the Ideal Solution (TOPSIS), and ELECTRE). 

            In this study, we use the Electre method. The main strength of this particular tool 

lies in its non-compensatory nature[45]. ELECTRE needs less input compared to AHP, 

eliminates the necessity for pairwise comparisons and can be performed easily when the 

number of alternatives and criteria are very large[36]. Other advantages of ELECTRE 

include the ability to take purely ordinal scales into account without the necessity of 

converting the original scales into abstract ones with an arbitrary imposed range (thus 

maintaining the original concrete verbal meaning), and the ability to take into 

consideration the DM’s indifference and preference thresholds when modeling the 

imperfect knowledge of data[46]. 
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3.2 ELECTRE: 

             The ELECTRE method is a family of MADM methods developed to rank a set of 

alternatives. Soon after the introduction of the first version known as ELECTRE I, this 

approach has evolved into a number of variants. Today, the most widely used versions 

are known as ELECTRE II and ELECTRE III [47]. Electre is a procedure that 

sequentially reduces the number of alternatives. The DM is faced within a set of non-

dominated alternatives. The Electre method has been extensively applied in many real-

world applications, including environment management, education systems, and water 

resources planning. The ELECTRE (Elimination Et Choix Traduisant He realite) is based 

on the concept of ranking by paired comparisons between alternatives on the appropriate 

criteria[48]. An alternative is said to dominate the other if one or more criteria are met 

(compared with the criterion of other alternatives) and it is equal to the remaining criteria. 

Ranking relations are between two alternatives.  

 

3.3 Fuzzy ELECTRE: 

             In traditional ELECTRE methods, the weights of the criteria and the ratings of 

alternatives on each criterion are known precisely, and crisp values are used in the 

evaluation process. However under many conditions, exact or crisp data are inadequate to 

model real-life situations. Therefore, these data may have some structures such as fuzzy 

data, bounded data, ordinal data and interval data[49]. In fuzzy ELECTRE, linguistic 

preferences can easily be converted to fuzzy numbers[50]. In other words decision 

makers utilize fuzzy numbers instead of single values in the evaluation process of the 

ELECTRE[51]. 
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               The fuzzy set theory is ideally suited for handling these ambiguities encountered 

in solving MADM problems. Fuzzy logic – together with fuzzy arithmetic – could be 

used to develop procedures for treating vague and ambiguous information which is 

frequently expressed with linguistic variables and whose inaccuracy is not particularly 

due to the variability of the measures, but to the uncertainties inherent in the available 

information. Since [52] introduced fuzzy set theory, and [53] described the decision 

making method in fuzzy environments, an increasing number of studies have dealt with 

uncertain fuzzy problems by applying fuzzy set theory. 

 

3.4 Fuzzy Set Theory: 

Definition 1: Let ܺ be a universal set [54]. The fuzzy set Ã in the universe of discourse ܺ 

is characterized by the membership function ߤÃ(ݔ) → [0,1], whereߤÃ(ݔ), ݔ∀ ∈ ܺ, 

indicates the degree of membership of ܣ toܺ. 

Definition 2: A triangular fuzzy number Ã is described as the triplet (ܽ௟, ܽ௖, ܽ௨), ܽ௟ ≤	ܽ௖ 	≤ 	ܽ௨ [55]. The membership function ߤÃ(ݔ) is defined by  

(ݔ)Ãߤ =
۔ۖۖەۖۖ
ۓ ݔ			,0 ≤ ܽ௟௫ି௔೗௔೎ି௔೗ ,			ܽ௟ < ݔ < ܽ௖1,				ݔ = ܽ௖௔ೠି௫௔ೠି௔೎ ,				ܽ௖ < ݔ < ܽ௨0,			ݔ ≥ ܽ௨	

                                             (3.1) 

 

Definition 3: For two fuzzy numbers Ã and ܤ෨ , the Hamming  distance (Ã,  ෨) is definedܤ

by the following formula, 
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׬ (ݔ)Ãߤ| − ோ|(ݔ)஻෨ߤ                                                   (3.2) 

Where R is the set of real numbers [55]. 

Definition 4: A linguistic variable is a variable whose values are expressed in linguistic 

terms. The concept of a linguistic variable is very useful in dealing with situations, which 

are too complex or not well defined to be reasonably described in conventional 

quantitative expressions[55]. For example, ‘‘weight is a linguistic variable whose values 

can be defined as very low, low, medium, high, very high, etc. Fuzzy numbers are able to 

represent these linguistic values. 

Definition 5: Assuming two fuzzy sets, Ã and ܤ෨ , their standard intersection, ܣ ∩  and ,ܤ

their standard ܣ ∪ ݔ are defined for all ,ܤ ∈ ܺ as[54]: 

                               ൫Ã ∩ (ݔ)෨൯ܤ = ݉݅݊	[Ã(ݔ),  (3.3)                       [(ݔ)෨ܤ

൫Ã ∪ (ݔ)෨൯ܤ = ,(ݔ)Ã]	ݔܽ݉  [(ݔ)෨ܤ
Where ݉݅݊ and ݉ܽݔ refer to minimum and maximum operators respectively. 

 

Definition 6: Consider the two fuzzy sets, Ã and ܤ෨ , defined on the universal set ܺ with a 

continuous membership function and Ã ∩ ෨ܤ = ∅. Assume that ݔ௠ ∈ ܺ   is the point such 

that (Ã ∩ (௠ݔ)(෨ܤ ≥ (Ã ∩ ݔ for all (ݔ)(෨ܤ ∈ ܺ and ܣ(ݔ௠) =  ௠ isݔ moreover ,(௠ݔ)ܤ

between two mean values of Ã and ܤ෨ . Then, as suggested by [56], the operation max can 

be implemented as follows: 
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max(ܣ, (ܤ = ൜(ܣ ∩ ,(ݖ)(ܤ ݖ < ܣ)௠ݔ ∪ ,(ݖ)(ܤ ݖ ≥  ௠                                    (3.4)ݔ

where ݖ ∈ ܺ, and ∪ and ∩ denote the standard fuzzy intersection and union, respectively. 

 

3.5 Proposed Frame Work: 

                              The ELECTRE method is quick, operates with simple logic, and has 

the strength of being able to detect the presence of incomparability. It uses a systematic 

computational procedure, an advantage of which is an absence of strong axiomatic 

assumptions [57]. The fuzzy group ELECTRE method proposed in this study is an 

extension of the ELECTRE I method described next through a series of structured and 

successive steps depicted in Figure 3.1[58]. 

STEP1: Construct a fuzzy decision matrix: Assume that a decision making committee 

involves ܭ  decision makers (DMs)ܦ௞(݇ = 1, 2, … ,  The DMs are expected to .(ܭ

determine the important weights of ݊ attributes ܥ௝(݆ = 1, 2, … , ݊)  and the performance 

ratings of ݉ possible alternatives ܣ௜(݅ = 1, 2, … ,݉) on the attributes by means of 

linguistic variables. These linguistic variables will be transformed into positive triangular 

fuzzy numbers[58]. The fuzzy ratings of the alternatives and the fuzzy importance 

weights of the attributes for each DM are characterized by ෨ܺ௜௝௞ = ( ௜ܺ௝௞௟ , ௜ܺ௝௞௖ ௜ܺ௝௞௨ ) and ݓ෥௝௞ = ௝௞௟ݓ) , ௝௞௖ݓ , ௝௞௨ݓ ), respectively(݅ = 1, 2, … . ,݉, ݆ = 1, 2, … , ݊, ݇ = 1, 2, … . ,  For .(	ܭ

simplicity, we apply the average value method to get the consensus of the DMs’ option. 

We also consider a voting power for each DMs, Ϛ௞, as the proportion of the total power 

(where the total power is normalized to 1) according to some pre-specifies rule(s). In 
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contrast, the DMs can give equal weights where appropriate. Thus, the aggregated fuzzy 

ratings of the alternatives can be computed as follows: 

෨ܺ௜௝ = ( ௜ܺ௝௟ , ௜ܺ௝௖ , ௜ܺ௝௨) ,  ݅ = 1, 2, … ,݉, ݆ = 1, 2, … , ݊.                             (3.5) 

Where,  

௜ܺ௝௟ = ଵ௄ ∑ Ϛ௞௄௞ୀଵ ௜ܺ௝௞௟ 	, ௜ܺ௝௖ = ଵ௄ ∑ Ϛ௞௄௞ୀଵ ௜ܺ௝௞௖ 	, ௜ܺ௝௨ = ଵ௄ ∑ Ϛ௞௄௞ୀଵ ௜ܺ௝௞௨                                    

(3.6)  

And Ϛ௞ is the voting power of the  ݇ݐℎ DM. Analogously, the aggregated fuzzy 

importance weights of the attributes can be calculated as  

෥௝ݓ = ൫ݓ௝௟, ,௝௖ݓ ݆						௝௨൯ݓ = 1, 2, … , ݊                                                 (3.7) 

Where, 

௝௟ݓ = ଵ௄ ∑ Ϛ௞௄௞ୀଵ ௝௞௟ݓ , ௝௖ݓ = ଵ௄ ∑ Ϛ௞௄௞ୀଵ ௝௞௖ݓ , ௝௨ݓ = ଵ௄ ∑ Ϛ௞௄௞ୀଵ ௝௞௨ݓ                                       (3.8) 

 

 

Therefore the decision problem can expressed in matrix format as 

෩ܷ = ێێۏ
ۍ ෨ܺଵଵ ෨ܺଵଶ ⋯ ෨ܺଵ௡෨ܺଶଵ ෨ܺଶଶ ⋯ ෨ܺଶ௡⋮ ⋮ ⋮ ⋮෨ܺ௠ଵ ෨ܺ௠ଶ ⋯ ෨ܺ௠௡ۑۑے

෥ݓ , 	ې = ,෥ଵݓ) ,෥ଶݓ …   ෥௡)                                                    (3.9)ݓ,

where పܺఫ෪  is the fuzzy importance of the ݅ݐℎ alternative with respect to the ݆ݐℎ attribute 

and ݓఫ෦ is the fuzzy weight of the ݆ݐℎ attribute. 
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Figure 3.1: Proposed Frame work 

 

Step 2:  Normalize the fuzzy decision matrix: Depending on the Linguistic Variables and 

their corresponding triangular fuzzy numbers, normalization may not be necessary 

step[59]. In many cases, the fuzzy decision matrix is already normalized since the 

triangular fuzzy numbers belongs to the range [0, 1]. A linear scale normalization is 

applied next to ensure that all values in the decision matrix have homogeneous and 

comparable units. The normalized fuzzy decision matrix is constructed as follows: 
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෨ܴ =  ௜௝൧௠௫௡                                                           (3.10)ݎ̃ൣ

௜௝ݎ̃ = ൫ݎ௜௝௟ , ,௜௝ఊݎ ௜௝௨൯ݎ = ൬௑೔ೕ೗஼ೕ∗ , ௑೔ೕം஼ೕ∗ , ௑೔ೕೠ஼ೕ∗ ൰ ,			݅ = 1, 2, … ,݉, ݆ ∈ B.                                  (3.11) 

∗௝ܥ = max௜( ௜ܺ௝௨) , ݆ ∈                                                                       ܤ

Where B is the set of benefit attributes and 

௜௝ݎ̃ = ൫ݎ௜௝௟ , ,௜௝ఊݎ ௜௝௨൯ݎ = ቆ௔ೕష௑೔ೕೠ , ௔ೕష௑೔ೕം , ௔ೕష௑೔ೕ೗ ቇ , ݅ = 1, 2… ,݉.										݆ ∈  (3.12)                             ܥ

௝ܽି = min௜ ( ௜ܺ௝௟ ) , ݆ ∈  ܥ

Where C is the set of cost attributes. 

 

Step 3: Compute the weighted normalized fuzzy decision matrix: Assuming that the 

importance weights of the attributes are different, the weighted normalized fuzzy decision 

matrix is obtained by multiplying the importance weights of the attributes and the values 

in the normalized fuzzy decision matrix[58]. 

෨ܸ =  ୬                                                                                                                         (3.13)	୶	෤௜௝൧௠ݒൣ

෤௜௝ݒ = ൫ݒ௜௝௟ , ௜௝௖ݒ , ௜௝௨൯ݒ = ௜௝ݎ̃෥௝(x)ݓ = ௜௝௟ݎ௝௟ݓ) , ௜௝௖ݎ௝௖ݓ ,  (௜௝௨ݎ௝௨ݓ
 

Step 4: Calculate the distance between any two alternatives: The concordance and 

discordance matrices are constructed by utilizing the weighted normalized fuzzy decision 
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matrix and paired comparison among the alternatives. Considering two alternatives ܣ௣ 

and	ܣ௤, the concordance set is formed as ܬ஼ = ൛݆หݒ෤௣௝ ≥ ஼ܬ ෤௤௝หൟ whereݒ  is the 

concordance coalition of the attributes in which ܣ௣ܵܣ௤, and the discordance set is defined 

as ܬ஽ = ൛݆หݒ෤௣௝ ≤  ௣ is at least asܣ" ௤ means thatܣ௣ܵܣ is the outranking relation and	௤. Note that ܵܣ௣ܵܣ ஽ is the discordance coalition and it is against the assertionܬ ෤௤௝หൟ whereݒ

good asܣ௤"[58]. 

        In order to compare any two alternatives, ܣ௣ and ܣ௤ with respect to each attribute, 

and to define the concordance and discordance sets, we specify the least upper bound of 

the alternatives, max	(ݒ෤௣௝,  ෤௤௝) and then, the Hamming distance method is used whichݒ

assumes that ݒ෤௣௝ ≥ ෤௤௝ݒ ⇔ ݀൫݉ܽݔ൫ݒ෤௣௝, ෤௤௝൯ݒ , ෤௤௝൯ݒ 	≥ ,෤௣௝ݒ൫ݔܽ݉)݀ ෤௤௝൯ݒ ,  ෤௣௝)         (3.14)ݒ

෤௣௝ݒ ≤ ෤௤௝ݒ ⇔ ,෤௣௝ݒ൫ݔܽ݉)݀ ෤௤௝൯ݒ , (෤௤௝ݒ ≤ ,෤௣௝ݒ൫ݔܽ݉)݀ ,෤௤௝൯ݒ   ෤௣௝)            (3.15)ݒ

 

 

 

 

Step 5: Construct the concordance and discordance matrices: The concordance and 

discordance matrices are obtained based on the Hamming distances. The following 
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concordance matrix is formed in which the elements are the fuzzy summation of the 

fuzzy importance weights for all the attributes in the concordance set[58]. 

ሚܥ = ێێێۏ
ۍێ − ⋯ ሚଵ௤ܥ ⋯ ሚଵ(௠ିଵ)ܥ ⋮ሚଵ௠ܥ ⋱ ⋮ ⋱ ⋮ ሚ௣ଵܥ⋮ ⋯ ሚ௣௤ܥ ⋯ ሚ௣(௠ିଵ)ܥ ⋮ሚ௣௠ܥ ⋱ ⋮ ⋱ ⋮ ሚ௠ଵܥ⋮ ⋯ ሚ௠௤ܥ ⋯ ሚ௠(௠ିଵ)ܥ − ۑۑۑے

ېۑ
                                              (3.16) 

Where, 

ሚ௣௤ܥ = ൫ܥ௣௤௟ , ௣௤௖ܥ , ௣௤௨ܥ ൯ = ∑ ෥௝ݓ = (∑ ,෥௝௟ݓ ∑ ,෥௝௖ݓ ∑ ෥௝௨௝∈௃಴௝∈௃಴௝∈௃಴ݓ )௝∈௃಴                            (3.17) 

We then determine the concordance level as̿ܥ = ,௟ܥ) ,௖ܥ  ௨), whereܥ

௟ܥ =෍ ෍ ݉)௣௤௟݉ܥ − 1)௠௤ୀଵ௠௣ୀଵ , ఊܥ =෍ ෍ ݉)௣௤ఊ݉ܥ − 1)௠௤ୀଵ௠௣ୀଵ ,
and	ܥ௨ =෍ ෍ ݉)௣௤௨݉ܥ − 1) .௠௤ୀଵ௠௣ୀଵ  

The discordance matrix is structured as  

ܦ = ێێۏ
ۍێ − ⋯ ݀ଵ௤ ⋯ ݀ଵ(௠ିଵ) ݀ଵ௠⋮ ⋱ ⋮ ⋱ ⋮ ⋮݀௣ଵ ⋯ ݀௣௤ ⋯ ݀௣(௠ିଵ) ݀௣௠⋮ ⋱ ⋮ ⋱ ⋮ ⋮݀௠ଵ ⋯ ݀௠௤ ⋯ ݀௠(௠ିଵ) − ۑۑے

ېۑ
                                                                    (3.18) 

 

 

Where 
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݀௣௤ = ୫ୟ୶ೕ∈಻ವห௩෤೛ೕି௩෤೜ೕห୫ୟ୶ೕห௩෤೛ೕି௩෤೜ೕห = ୫ୟ୶ೕ∈಻ವหௗ(୫ୟ୶൫௩෤೛ೕ,௩෤೜ೕ൯,	௩෤೜ೕ)ห୫ୟ୶ೕหௗ(୫ୟ୶൫௩෤೛ೕ,௩෤೜ೕ൯,	௩෤೜ೕ)ห                                      (3.19) 

And the discordance level is defined as ܦഥ = ∑ ∑ ௗ೛೜௠(௠ିଵ)௠௤ୀଵ௠௣ୀଵ  

Step 6: Construct the Boolean Matrix ܧ and ܨ: The Boolean matrix ܧ is determined by a 

minimum concordance level,̿ܥ, as follows: 

 

ܧ = ێێۏ
ۍێ − ⋯ ݁ଵ௤ ⋯ ݁ଵ(௠ିଵ) ݁ଵ௠⋮ ⋱ ⋮ ⋱ ⋮ ⋮݁ଵ௣ ⋯ ݁௣௤ ⋯ ݁௣(௠ିଵ) ݁௣௠⋮ ⋱ ⋮ ⋱ ⋮ ⋮݁௠ଵ ⋯ ݁௠௤ ⋯ ݁௠(௠ିଵ) − ۑۑے

ېۑ
                                               (3.20) 

 

where  

ቊܥሚ௣௤ ≥ ܥ̿ ⇔ ݁௣௤ = ሚ௣௤ܥ1 < ܥ̿ ⇔ ݁௣௤ = 0                                                                                                           (3.21) 

and similarly, the Boolean matrix F is obtained based on the minimum discordance 

level,ܦഥ, as follows: 

ܨ = ێێۏ
ۍێ − ⋯ ଵ݂௤ ⋯ ଵ݂(௠ିଵ) ଵ݂௠⋮ ⋱ ⋮ ⋱ ⋮ ⋮௣݂ଵ ⋯ ௣݂௤ ⋯ ௣݂(௠ିଵ) ௣݂௠⋮ ⋱ ⋮ ⋱ ⋮ ⋮௠݂ଵ ⋯ ௠݂௤ ⋯ ௠݂(௠ିଵ) − ۑۑے

ېۑ
                                                                       (3.22) 

 

where 
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ቊ݀௣௤ < ഥܦ ⇔ ௣݂௤ = 1݀௣௤ ≥ ഥܦ ⇔ ௣݂௤ = 0                                                                                                             (3.23) 

The elements in matrices ܧ and ܨ with the value of 1 indicate the dominance relation 

between alternatives. 

Step7: Construct the General Matrix: By peer-to-peer multiplication of the elements of 

the matrices ܧ and[58]ܨ, the general matrix ܩ is constructed as  

ܩ =  (3.24)                                                                                                                                  ܨ⨂ܧ
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RESULTS AND COMPARISON 

             In this chapter, the performance evaluations of the proposed scheme are 

presented. The designed VHITS target network selection results are shown. This section 

shows the example to verify the validity and usability of proposed model.   

4.1 Fuzzy ELECTRE Based Network Selection: 

           Scenario1: In this section we consider an example to verify the proposed model. 

There are four (target networks) alternatives A1, A2, A3, and A4 from which we need to 

select an optimum target network for the user. Three decision makers with the different 

voting power are used. The DM1 have 41% of the voting power (ϛଵ = 0.41) and DM2 

have 34% of the voting power (ϛଶ = 0.34) and the DM3 have 25% of the voting power (ϛଷ = 0.25) respectively. 

Table 4.1: Input Parameters: 

 A1 A2 A3 A4 

C1 RSS (dbm) -87 -93 -83 -98 

C2 Velocity 
(km/hr) 

90 100 82 50 

C3 cost 52 42 38 30 

 

Figure 4.1 Membership Function for input variable RSS 
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Figure 4.2 Membership Function for input variable velocity 

 

 

Figure 4.3 Membership Function for input variable cost 
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Table 4.2: Linguistic variables used to express important weights: 

Linguistic Variables Fuzzy Number 

Very Low (VL) (1,1,3) 

Low (L) (1,3,5) 

Medium (M) (3,5,7) 

High (H) (5,7,9) 

Very High(VH) (7,9,9) 

 

           Table 4.1 show the linguistic variables for expressing the important weights which 

represents the five linguistic variables Very Low (VL), Low (L), Medium (M), High (H), 

Very High(VH) used to characterize the important weights of attributes.  

 

Table 4.3 Linguistic variables used to express performance ratings of networks: 

Linguistic Variables Fuzzy number 

Very Low (VL) (1,1,1.5) 

Very Low to Low (VLL) (1.5,2,2.5) 
Low (L) (2.5,3,3.5) 

Medium Low (ML) (3.5,4,4.5) 
Medium (M) (4.5,5,5.5) 

Medium High (MH) (5.5,6,6.5) 
High (H) (6.5,7,7.5) 

High to Very High (HVH) (7.5,8,8.5) 
Very High (VH) (8.5,9,9.5) 

 

                  Similarly Table 4.2 shows the fuzzy number which represent the nine 

linguistic variables of Very Low (VL), Very Low to Low (VLL), Low (L), Medium Low 
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(ML), Medium (M), Medium High (MH), High (H), High to Very High (MVH), Very 

High (VH) which are used to characterize the performance rating of each network on 

each attributes. 

                Consider three attributes to assess each network (RSS (C1), Velocity (C2), and 

Cost (C3)). Table 4.3 shows the important weights of the attributes represented by 

linguistic variable. 

Table 4.4: The importance weight of the attributes represented by linguistic variables: 

Attributes Decision Makers 

DM1 DM2 DM3 

RSS (C1) H M M 
Velocity (C2) VH H H 

Cost(C3) M L VL 
  

 

 

Table 4.5: The performance ratings of network represented by linguistic variables: 

  

Attributes Decision 
Makers 

Alternatives 
A1 A2 A3 A4 

C1 DM1 H MH H M 
DM2 H MH H M 
DM3 H H MH M 

C2 DM1 L VL MH H 
DM2 L L MH H 
DM3 ML L MH MH 

C3 DM1 L L ML MH 
DM2 VL L ML MH 
DM3 VLL ML L M 

 

            As shown in Table 4.5, the performance ratings of the target network A1, A2, A3, 

A4 were evaluated by three DMs using the linguistic variables defined in Table 4.3. 
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Table 4.6: The important weight and performance ratings represented by triangular fuzzy 
numbers: 

Attribute
s 

Important 
Weights 

Alternatives 

A1 A2 A3 A4 

C1 (1.27,1.94,2.
61) 

(2.17,2.33,2.
50) 

(1.92,2.08,2.
50) 

(2.08,2.25,2.
41) 

(1.50,1.67,1
.83) 

C2 (1.94,2.60,3) (0.92,1.08,1.
25) 

(0.71,0.83,1.
00) 

(1.833,2,2.1
7) 

(2.08,2.25,2
.41) 

C3 (0.606,1.106,
1.77) 

(0.58,0.69,0.
86) 

(0.75,0.92,1.
08) 

(1.08,1.25,1.
41) 

(1.75,1.92,2
.08) 

 

Table 4.6 is constructed using the Equations (3.6) and (3.8). 

The normalized fuzzy decision matrix (Table 4.6) is obtained using Equation (3.11) for 

the benefits of the attributes. 

 

Table 4.7: Normalized Fuzzy decision Matrix: 

Attributes Alternatives 

A1 A2 A3 A4 

C1 (0.86,0.93,1) (0.76,0.83,0.90) (0.83,0.9,0.96) (0.6,0.66,0.73)

C2 (0.38,0.45,0.52) (0.29,0.34,0.41) (0.76,0.82,0.89) (0.86,0.93,1) 

C3 (0.27,0.33,0.41) (0.36,0.44,0.51) (0.52,0.6,0.68) (0.84,0.92,1) 

 

Table 4.8 shows the weighted normalized fuzzy decision matrix by substituting values in 

Equation (3.13) 
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Table 4.8: The weighted normalized fuzzy decision matrix: 

Attributes Alternatives 

A1 A2 A3 A4 

C1 (1.09,1.8,2.61) (0.96,1.61,2.34) (1.05,1.74,2.52) (0.76,1.29,1.93)

C2 (0.74,1.16,1.55) (0.57,0.89,1.24) (1.47,2.15,2.68) (1.67,2.42,3) 

C3 (0.17,0.36,0.73) (0.21,0.48,0.91) (0.31,0.66,1.20) (0.50,1.01,1.77)

 

 

 

The concordance Matrix is  

Table 4.9: The Concordance Matrix: 

 A1 A2 A3 A4 

A1 --------- (3.21,4.50,5.61) (1.27,1.94,2.60) (1.27,1.94,2.60)

A2 (0.606,1.11,1.77) ----------- 0 (1.27,1.94,2.60)

A3 (2.54,3.70,4.77) (3.81,5.64,7.38) ----------- (1.27,1.94,2.60)

A4 (2.54,3.70,4.77) (2.54,3.70,4.77) (2.54,3.70,4.77) ----------- 

 

 

 

 

 

Table 4.10: Discordance Matrix: 

 A1 A2 A3 A4 

A1 -------- 0.277 1 1 

A2 1 ---------- 1 1 

A3 0.084 0 ------- 0.99 

A4 0.49 0.714 1 --------- 
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Table 4.11: The Boolean matrix E according to minimum Concordance level: 

 A1 A2 A3 A4 

A1 ------- 1 0 0 

A2 0 -------- 0 0 

A3 1 1 --------- 0 

A4 1 1 1 --------- 

 

Table 4.12: The Boolean matrix F according to minimum Discordance level: 

 A1 A2 A3 A4 

A1 ______ 1 0 0 

A2 0 _______ 0 0 

A3 1 1 ______ 0 

A4 1 1 1 ______ 

 

 

Table 4.13 The Global Matrix G: 

 A1 A2 A3 A4 

A1 ______ 1 0 0 

A2 0 ______ 0 0 

A3 1 1 _______ 0 

A4 1 1 1 ________ 
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Table 4.14 Final Raking of alternatives: 

Alternatives Non-dominant alternatives Final Ranking 

A1 A2 3 

A2 -- 4 

A3 A1,A2 2 

A4 A1,A2,A3 1 

 

The ranking of alternatives shows that: 

• Network A1 dominates the network A2. 

• Network A2 is dominated by the networks A1, A3, A4. 

• Network A3 dominates the network A1 and A2. 

• Network A4 dominates the network A1, A2, and A3.  

Scenario 2: Assuming the end-user is leaving the home for work and starts walking 

towards the nearest bus stand while watching the same webcast. The distance between the 

WLAN and MS increases and the RSS become weaker the further the user walks away 

from his/her home. Handoff estimation is done and module will trigger the handoff, and 

execute the target network selection module to find out the best available network that 

can support the continuity and the quality of the currently utilized service.  

Table 4.15 Input parameters when end-user is walking: 

 A1 A2 A3 A4 

C1 RSS (dbm) -112.05 -125.40 -103.10 -98 

C2 Velocity (m/s) 4 8 2 10 

C2 Cost 52 42 38 30 
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Table 4.16 The Global Matrix when end-user walking: 

 A1 A2 A3 A4 

A1 ______ 1 0 1 

A2 0 ______ 0 0 

A3 1 1 _______ 1 

A4 0 1 1 _______ 

 

Table 4.17 Ranking of alternatives when end-user walking: 

Alternatives Non-Dominant Alternatives Final Ranking 

A1 A2 3 

A2 _____ 4 

A3 A1,A2,A4 1 

A4 A2,A3 2 

 

On using the target network selection module for the end-user walking and the final 

ranking is obtained. 
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4.2 ELECETRE based Network Selection: 

               In this scenario, using only ELECTRE method for network selection in 

heterogeneous wireless network. Fuzzy logic is not used in this scenario to check the 

results. 

Table 4.18:  The Boolean matrix E according to minimum Concordance level of 

ELECTRE: 

 A1 A2 A3 A4 

A1 ------ 0 1 0 

A2 1 ------- 0 0 

A3 1 1 -------- 1 

A4 1 0 1 ---------- 

 

Table 4.19: The Boolean matrix F according to minimum Discordance level of 

ELECTRE: 

 A1 A2 A3 A4 

A1 --------- 1 1 1 

A2 0 -------- 1 0 

A3 1 0 ------- 1 

A4 0 0 1 ------- 

 

Table 4.20: The Global Matrix G for ELECTRE: 

 A1 A2 A3 A4 

A1 -------- 0 1 0 

A2 0 --------- 0 0 

A3 1 1 ---------- 1 

A3 0 1 1 --------- 
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Table 4.21: Final Raking of alternatives of ELECTRE: 

Alternatives Non-dominant alternatives Ranking 

A1 A3 3 

A2 ------ 4 

A3 A1,A2,A4 1 

A4 A2,A3 2 

 

4.3 Comparison of Results: 

                The Tables 4.18 shows the ranking of Fuzzy ELECTRE method and the 

ranking of the ELECTRE method. This comparison indicates that there is a change of 

ranking between the two methods. A problem with formulating the ELECTRE algorithm 

is the arbitrary selection of threshold values. These minimum values can significantly 

impact the outcome of the algorithm. In addition, the results of this method do not 

provide complete ranking for all the alternatives. 

Table 4.22 Comparing of Results: 

Alternatives Fuzzy ELECTRE Ranking ELECTRE Ranking 

A1 3 3 

A2 4 4 

A3 2 1 

A4 1 2 

 

The difficulty of dealing with ambiguous and imprecise nature of linguistic assessment in 

traditional ELECTRE 1 method is overcome by the fuzzy ELECTRE1 method. It also 

integrates experts’ judgement, experience and expertise in more flexible and realistic 

manner using the membership functions and the linguistic variables.  
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             On adding fuzziness into the ELECTRE Methods gives greater stability and 

robustness, by allowing variations in the values of certain thresholds. With crisp values, a 

given change in criterion values, no matter how small, can result in creation or 

destruction of an outranking relationship and modifies the result significantly. With fuzzy 

criteria, this modification would certainly change the indices of the credibility and thus 

the result, but not in quite a terrible manner. 
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CONCLUSION 

This chapter summarizes the research work of handoff research. 

5.1 Summary: 

                      In a highly integrated ubiquitous heterogeneous wireless environment, the 

selection of a network that can fulfill end-users’ service requests while keeping their 

overall satisfaction at a very high level is vital. A wrong selection can lead to undesirable 

conditions such as unsatisfied users, weak QoS, network congestions, dropped and/or 

blocked calls, and wastage of valuable network resources. The selection of these 

networks is performed during the handoff process when an MS switches its current PoA 

to a different network due to the degradation or complete loss of signal and/or 

deterioration of the provided QoS. The traditional schemes use only single metric for 

target selection. These schemes are not efficient enough to give good quality of service, 

so they do not take into consideration the traffic characteristics, user preferences, network 

conditions and other important system metrics. 

         The focus of this research work is on the design of a scheme that can perform the 

vertical handoffs efficiently in the heterogeneous wireless networks. The main objective 

of this scheme is to give the good QoS to the end-users. 

         The proposed module for VHITS Handoff Target Network selection utilizes fuzzy 

logic theory in addition to different ranking algorithms to select the best target network 

that can fulfill the end-user’s preferences. According to this study Fuzzy ELECTRE 

method is the preferable method to achieve these targets.  
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Appendix  

Matlab code: 

function main() 
[U, w] = GenFuzzyInputData(); 
R = NormalizeData(U); 
V = NormalizeWeighted(w,R); 
[C, D] = ConDiscMatrix(V, w); 
[E, F] = FindEandF(C,D); 
G = E.*F; 
end 
 
function [U, w] = GenFuzzyInputData()  %For fuzzy input data% 
% Params 
N_dm = 3; 
 
% Define linguistic variables 
VL  = {1 1 1.5}; 
VLL = {1.5 2 2.5}; 
L   = {2.5 3 3.5}; 
ML  = {3.5 4 4.5}; 
M   = {4.5 5 5.5}; 
MH  = {5.5 6 6.5}; 
H   = {6.5 7 7.5}; 
HVH = {7.5 8 8.5}; 
VH  = {8.5 9 9.5}; 
 
% Enter performance ratings 
PR = [H MH H H; 
      H MH H M; 
      H H MH M; 
      L VL MH H; 
      L L MH H; 
      ML L MH MH; 
      L L ML MH; 
      VL L ML MH; 
      VLL VL L M]; 
 
x_ij_l = zeros(N_alt,N_attr); 
x_ij_g = x_ij_l; 
x_ij_u = x_ij_l; 
for n = 1:N_attr 
    for k = 1:N_alt 
        l=0; g=0; u=0; 
        for x = 1:N_dm 
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            idx_col = (k-1)*3+1; 
            idx_row = (n-1)*N_dm+x; 
            l = l + zeta_k(x)*PR{idx_row,idx_col}; 
            g = g + zeta_k(x)*PR{idx_row,idx_col+1}; 
            u = u + zeta_k(x)*PR{idx_row,idx_col+2}; 
        end 
        x_ij_l(k,n) = 1/N_dm*l; 
        x_ij_g(k,n) = 1/N_dm*g; 
        x_ij_u(k,n) = 1/N_dm*u; 
    end 
end 
U = {x_ij_l, x_ij_g, x_ij_u}; 
 
% Define linguistic variables for weights 
VLw  = {1 1 3}; 
Lw   = {1 3 5}; 
Mw   = {3 5 7}; 
Hw   = {5 7 9}; 
VHw  = {7 9 9}; 
 
% Weights of attributes 
WA = [Hw Mw Mw; 
      VHw Hw Hw; 
      Mw Lw VLw]; 
 
w_j_l = zeros(N_attr,1); 
w_j_g = w_j_l; 
w_j_u = w_j_l; 
for n = 1:N_attr 
    l=0; g=0; u=0; 
    for x = 1:N_dm 
        idx_col = (x-1)*3+1; 
        l = l + zeta_k(x)*WA{n,idx_col}; 
        g = g + zeta_k(x)*WA{n,idx_col+1}; 
        u = u + zeta_k(x)*WA{n,idx_col+2}; 
    end 
    w_j_l(n) = 1/N_dm*l; 
    w_j_g(n) = 1/N_dm*g; 
    w_j_u(n) = 1/N_dm*u; 
end 
w = {w_j_l, w_j_g, w_j_u}; 
 
end 
Normalizing the data: 
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function R = NormalizeData(U) 
x_ij_l = U{1}; 
x_ij_g = U{2}; 
x_ij_u = U{3}; 
C_j = max(x_ij_u,[],1); 
r_ij_l = x_ij_l./repmat(C_j,size(x_ij_l,1),1); 
r_ij_g = x_ij_g./repmat(C_j,size(x_ij_l,1),1); 
r_ij_u = x_ij_u./repmat(C_j,size(x_ij_l,1),1); 
R = {r_ij_l, r_ij_g, r_ij_u}; 
end 
 
Weighted Normalizing: 
 
function V = NormalizeWeighted(w,R) 
r_ij_l = R{1}; 
r_ij_g = R{2}; 
r_ij_u = R{3}; 
w_j_l = w{1}'; 
w_j_g = w{2}'; 
w_j_u = w{3}'; 
v_ij_l = repmat(w_j_l,size(r_ij_l,1),1).*r_ij_l; 
v_ij_g = repmat(w_j_g,size(r_ij_g,1),1).*r_ij_g; 
v_ij_u = repmat(w_j_u,size(r_ij_u,1),1).*r_ij_u; 
V = {v_ij_l, v_ij_g, v_ij_u}; 
end 
 
Calculating concordance and Discordance Matrix: 
 
function [C, D] = ConDiscMatrix(V, w) 
C = cell(3,1); 
C{1} = zeros(size(V{1},1)); 
C{2} = zeros(size(V{2},1)); 
C{3} = zeros(size(V{3},1)); 
D = C{1}; 
for p = 1:size(C{1},1) 
    for q = 1:size(C{1},2) 
        if(p~=q) 
            Jd = []; 
            d_vpj_vqj = zeros(1,size(V{1},2)); 
            for j = 1:size(V{1},2) 
                v_pj = [V{1}(p,j) V{2}(p,j) V{3}(p,j)]; 
                v_qj = [V{1}(q,j) V{2}(q,j) V{3}(q,j)]; 
                d_vpj_vqj(j) = HammingDistFuzzy(v_pj, v_qj); 
                d_vqj_vpj = HammingDistFuzzy(v_qj, v_pj); 
                if(d_vpj_vqj >= d_vqj_vpj) 
                    C{1}(p,q) = C{1}(p,q) + w{1}(j); 
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                    C{2}(p,q) = C{2}(p,q) + w{2}(j); 
                    C{3}(p,q) = C{3}(p,q) + w{3}(j); 
                end 
                if(HammingDistFuzzy(v_pj, v_qj) <= HammingDistFuzzy(v_qj, v_pj)) 
                    Jd = [Jd j]; 
                end 
            end 
            if(~isempty(max(d_vpj_vqj(Jd))/max(d_vpj_vqj))) 
                D(p,q) = max(d_vpj_vqj(Jd))/max(d_vpj_vqj); 
            end 
        end 
    end 
end 
end  
 
Finding E and F matrix: 
 
function [E, F] = FindEandF(C,D) 
m = size(C{1},1); 
cl = sum(sum(C{1}))/(m*(m-1)); 
cg = sum(sum(C{2}))/(m*(m-1)); 
cu = sum(sum(C{3}))/(m*(m-1)); 
C_bar = [cl cg cu]; 
D_bar = sum(sum(D))/(m*(m-1)); 
E = zeros(m); 
F = zeros(m); 
for p = 1:m 
    for q = 1:m 
        if(p~=q) 
            c_pq = [C{1}(p,q) C{2}(p,q) C{3}(p,q)]; 
            if(HammingDistFuzzy(c_pq,C_bar) >= HammingDistFuzzy(C_bar,c_pq)) 
                E(p,q) = 1; 
            end 
            if(D(p,q)<D_bar) 
                F(p,q) = 1; 
            end 
        end 
    end 
end 
end 
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