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Abstract: Modeling instruction has been successfully implemented in high school 

science classes and in introductory physics courses at the university level.  

Noticing the gap, the author provides theoretical foundations to support the 

statement that modeling instruction curriculum should be developed for college 

biology courses. 

 

It has been over a decade that college biology faculty, administrators, and students 

demanded for improving university biology education (Wood, 2009; Woodin, Smith, & Allen, 

2009).  Current studies on biology education pay too much attention merely on the improvement 

in students’ concept acquisition and/or academic grades.   However, learning motivation 

(particular intrinsic motivation) is often overlooked, which plays a key role in initiating and 

retaining good learning habits (Palmer, 2005) and in promoting achievements.  Intrinsic learning 

motivation, besides conceptual understanding, can be one of the characteristics that distinguish 

experts from novices.  The intrinsic motivation in learning biology stimulates individuals to 

acquire more biological concepts and perform higher level of biological practices.  Experts with 

high intrinsic motivation in learning biology tend to understand biology as connections of 

coherent concepts and seek solutions to emerging problems.  If a student has no or not enough 

motivation to learn, he or she is not inspired to act (Ryan & Deci, 2000).  Therefore, studies on 

motivation can contribute to the improvement of curriculum in university biology education.  

Significant research attention needs to be paid to examine students’ cognitive attitudes, 

motivation, expectations, views, and epistemological beliefs, all of which begin to link with 

concept learning and academic performance in introductory level biology courses.  Taking the 

factors above into consideration, biology educators should use more effective instructional 

strategies to enhance undergraduate students’ motivation as an essence.  

Early in 2001, the American Association for the Advancement of Science identified 

developing, implementing, and evaluating scientific models as one of the six essential student 

competencies to reform college biology education (Brewer & Smith, 2011).  Since then, 

considerable studies on models and modeling in biology education have been conducted; 

however, it is still pending on what models are, what constitutes the practice of modeling, and 

how to improve modeling skills while delivering content knowledge  (Odenbaugh, 2009; Stewart, 

Cartier, & Passmore, 2005; Windschitl, Thompson, & Braaten, 2008).  Modeling instruction (MI) 

can be one of the leading educational practices in university-level biology education, which can 

enhance undergraduate students’ intrinsic motivation and fill the existing gap that MI curriculum 

is missing in college-level biology classes.  

Modelling Instruction 

From the MI perspective, teaching practice is designed and organized to engage students 

with specific concepts or topics, in developing models, and applying and assessing models in real 

life situations (Jackson, Dukerich, & Hestenes, 2008).  First, a teacher demonstrates or discusses 

a specific concept or topic with students to build a basic understanding of it.  Then students work 

collaboratively in small groups to model the real life question in an experimental setting to 
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predict and explain the scientific phenomenon.  The teacher, with enough knowledge in a certain 

field, is ready to answer students’ questions, guide their model developing, and evaluate their 

models.  Through MI, the understanding of specific concepts is integrated into students’ real 

hands-on practice, which may promote their understanding of knowledge and help them connect 

scientific concepts with real life (Jackson et al., 2008).  

MI in College Physics Education 

The application of MI in physics education has been well studied and practiced for 

decades and has been reported on its positive effects on undergraduate students’ learning in 

introductory physics courses (Brewe, 2008; Brewe, Kramer, & O’Brien, 2009; Hestenes, 1987).  

Brewe et al. (2009), measuring with Colorado Learning Attitudes about Science Survey 

(CLASS), found that MI had a positive effect on students’ attitudes towards introductory physics.  

Current Gap of MI in College Biology Education 

As to biology education, MI has been applied in biology teaching in high schools (Cartier, 

2000; Passmore & Stewart, 2002).  With this instructional strategy, students are encouraged and 

directed to design, build, and evaluate scientific models to predict and/or explain a biological 

phenomenon according to related concepts.  Through the process of instructional modeling, 

activities of biological practices are conducted and replicated in classrooms or teaching labs so 

that the explicit nature of biological themes in curriculum is integrated and transferred to 

students.  However, the university biology MI materials are still under development, and the 

effectiveness of MI in biology education in universities is yet to be examined.  

Given the gap in research studies and practices of MI in university-level biology 

education, this paper aims to establish a theoretical foundation to support the development and 

evaluation of MI curriculum for university biology courses.  

Connections of MI and Social Cognitive Theory 

MI emphasizes and values the importance of learning environments (Jackson et al., 2008), 

which is the essence of social cognitive theory (Schunk, 2000), in science education.  It provides 

students chances to collaborate and interact with group members in a small group to complete a 

project, through which students can learn from each other.  Students with lower self-efficacy 

and/or fewer skills can be motivated to perform better after observing and modeling the 

performances and achievements of peers with higher self-efficacy and/or more skills.  The 

atmosphere of autonomy in MI groups allows students to determine by themselves in how to 

design, plan, and conduct a specific project, which increases their intrinsic motivation in learning 

associated concepts from the project.  

Social Cognitive Theory 

Social cognitive theory (SCT) is based on the idea that people learn by observing others 

(Schunk, 2000).  People learn portions of their knowledge directly from their social 

environments by observing others in social interactions, social experiences, and media content.  

People learn by observing behaviors of models, and those models provide information to learners 

about potential consequences of behaviors.  Learners observe, pair, and remember behaviors and 

associated consequences and then guide their own subsequent behaviors accordingly.  People 

retain observed behaviors that lead to successful consequences and refine or avoid behaviors that 

result in failure and/or punishment (Schunk, 2000).  

Self-Efficacy 

Within the SCT framework, it is assumed that, if an observer (learner) has enough self-

efficacy, he or she will most likely learn the knowledge.  Self-efficacy refers to the personal 

belief of an individual about whether he or she has mastered particular capabilities to learn or 
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perform certain actions (Bandura, 1997).  It is people’s personal assessment and belief of their 

own skills and capabilities to apply those skills to real performance.  Lent and Brown (2006) 

described self-efficacy as a series of dynamic beliefs, rather than a single characteristic, of an 

individual that are context-dependent.  Self-efficacy partially relies on individuals’ abilities.  

That is to say, in general, people with higher abilities tend to have higher self-efficacy in learning 

and acting than those with lower abilities.  However, self-efficacy is not ability.  People with 

higher self-efficacy are more active in learning and completing tasks, tend to put more effort, and 

persist longer time than people with lower self-efficacy, which, in turn, improves their learning 

achievements.  People with high self-efficacy are more likely to be motivated to complete tasks.  

Therefore, even if in the same level of capabilities, people with higher self-efficacy are usually 

more active and perform better than those with lower self-efficacy.  

People acquire information about their efficacies through their own mastery experiences, 

observing others’ performances, persuasion from others, and physiological factors.  According to 

Bandura (1997), an individual acquires his or her self-efficacy primarily from personal mastery 

experiences.  Successful experiences in completing a task may positively influence one’s self-

efficacy in completing a similar task (Bandura, 1997).  The second source of self-efficacy, 

vicarious learning experiences, is particularly important when one has no personal experience 

with the task at hand or similar ones (Bandura, 1997; Zeldin & Pajares, 2000).  VL refers to an 

individual observing someone else performing a similar task.  Others’ success on a task may 

influence the observer’s self-efficacy in performing the similar task.  Social persuasion 

experiences such as encouraging words or positive social messages, as the third source, may 

promote one’s self-efficacy and make this person to put extra effort and persistence to complete 

a task.  Bandura (1997) argued that SP has highest influence on those already with beliefs about 

their ability to complete a task.  

Empirical Studies of Self-Efficacy 

Pajares (1995) reported that self-efficacy affected behaviors by regulating one’s choices 

of performance, the extent of one’s effort in performing specific actions, and one’s affective 

responses to certain behaviors.  Based on self-efficacy theory, Ketelhut (2007) conducted an 

exploratory investigation on the relationship between students’ longitudinal data-gathering 

behaviors and their self-efficacy when participating in an authentic scientific inquiry-based 

activity in a multi-user virtual environment.  Results of this study indicated a correlation between 

students’ self-efficacy and the amount of data-gathering behaviors they initially engaged in.  

Students with higher self-efficacy engaged in more data-gathering behaviors than those with 

lower self-efficacy.  Findings in this study suggested that embedding collaborative scientific 

inquiry-based curriculum project in science teaching might promote students’ self-efficacy and 

learning outcomes.  

Hazari, Sonnert, Sadler, and Shanahan (2010) reported that self-efficacy contributed to 

students’ retention in physics as one of the primary dimensions of their physics identity.  Further, 

Sawtelle, Brewe, and Kramer (2012) conducted a quantitative study investigating the 

relationship of undergraduate students’ self-efficacy and their retention in the Introductory 

Physics course.  This study applied self-efficacy theory to explain the difference between female 

and male students in persistence in the introductory physics course.  The authors discussed four 

sources of an individual’s self-efficacy: mastery experiences, vicarious learning experiences, 

social persuasion experiences, and physiological state.  They proposed self-efficacy theory as the 

framework to explore the sources of information that female students perceive and rely on to 

determine their capabilities to success in physics (Sawtelle et al., 2012), which was supported by 
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the evidence from previous studies of Zeldin and Pajares (2000) and Zeldin, Britner, and Pajares 

(2008) showing gender difference in students’ self-efficacy sources in science learning.  Sawtelle 

et al. examined the self-efficacy of students in the introductory physics classes to explore the 

gender difference in the sources of self-efficacy with regard to their persistence in physics.  

Results suggested delicate distinctions by gender in the predictive capabilities of the sources of 

self-efficacy regarding to students’ success in physics.  The predictive capability for women’s 

success in physics primarily relies on vicarious learning experiences, while no significant 

contribution from social persuasion experiences.  The predictive capability for men’s success in 

physics only relies on mastery experiences.  

Self-Determination and Autonomous Learning Environment 

Self-determination and autonomous learning environment is another critical characteristic 

of MI.  It originates in infants and is people’s internal psychological need that, if satisfied, leads 

to optimal intrinsic motivation (Deci & Ryan, 1991).  Along with human development, the need 

differentiates into various areas, which is influenced by people’s interactions with environments 

(Schunk, 2000).  Many extrinsic rewards in social environment may not originally fit with an 

individual’s need for self-determination, but they can stimulate good behaviors.  As people 

develop, these extrinsic motivators may be internalized and produce intrinsic motivators through 

self-determination.  Self-determination theory suggests that the motivated degree of behaviors 

differs depending on whether they are autonomous or controlled.  Deci and Ryan (1991) argued 

that autonomous behaviors are developed originally from an individual’s integrated sense of self.  

Controlled behaviors can be internalized to become autonomous, in which an individual 

identifies the value of specific behavior and accepts its regulation as one’s own.  The degree of 

an individual’s behaviors are autonomous or controlled is influenced by the interpersonal context.  

By autonomy support, the teacher, as a person in authority, thinks from students’ perspectives, 

takes their feelings into consideration, and provides them with enough relevant information and 

chances to determine and select by themselves, while avoiding or at least minimizing the use of 

pressure (Deci & Ryan, 1985).  Autonomy support facilitates in maintaining or improving 

intrinsic motivation and enhancing internalization of external regulation into internal regulation.  

Empirical Studies of Self-Determination and Autonomous Learning Environment 

Deci, Schwartz, Sheinman, and Ryan (1981) reported that students, autonomy-supported 

by their teachers, were more intrinsically motivated.  Students in autonomy-supportive context, 

according to the research findings of Grolnick and Ryan (1987), had better conceptual 

acquisition.  The study of Black and Deci (2000) examined the effects of students’ course-

specific self-regulation and their perceptions of instructors’ autonomy support on students’ 

adjustment and academic performances in an undergraduate organic chemistry course.  Results 

indicated that students’ autonomous reasons for learning organic chemistry predicted their 

perceived competence, interest/enjoyment, anxiety, and grade-oriented performance in the 

organic chemistry course and were also related to students’ dropping out of this course.  Students’ 

perceptions of their instructors’ autonomy support predicted their autonomous self-regulation, 

perceived competence, interest/enjoyment, and anxiety.  Students’ autonomous self-regulation 

further predicted students’ performance in the organic chemistry course.  Furthermore, 

instructor’s autonomy support from students’ perceptions also directly predicted course 

performance of students with low level of initial autonomous self-regulation.  

Deci and Ryan (1985, 1991) argued that motivation can be classified along with the level 

of self-determination, according to which intrinsic motivation is the most self-determined one 

and extrinsic motivation is the least self-determined one.  Lavigne, Vallerand, and Miquelon 
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(2007) proposed and examined a motivational model of persistence in science education, which 

is supported by self-determination theory.  This model hypothesized that the autonomy support 

from science teachers positively influences students’ self-perceptions of autonomy and 

competence, and that these self-perceptions further positively affect students’ autonomous 

motivation towards science, which leads to their intentions to pursue science education and 

eventually work in a scientific area.  Cognitive evaluation theory was also applied in this study, 

which suggests that social agents, such as teachers, may affect one’s motivation through 

autonomy support.  The proposed model is supported by the results from this study.  In addition, 

it was found that students’ perceptions of competence predicted their persistence intentions to 

pursue science education.  Findings in this study direct future research in science education from 

a motivational perspective.  

Connections of MI and Constructivism 

In teaching practice, MI involves and promotes constructivist learning.  Through MI, 

students learn scientific concepts by really experiencing them in working collaboratively to 

model them in their real process to utilize specific concepts to explain and predict scientific 

phenomena.  During MI process, students construct scientific knowledge internally by 

interacting with real science experiences, cooperative peers, and the teacher.  The research study 

findings (Amaral, Garrison, & Klentschy, 2002; Park Rogers & Abell, 2008) particularly support 

the application of inquiry-based science teaching curriculum, which is one of the aspects of MI.  

Constructivism 

Constructivism assumes that people are active learners and that knowledge is not 

acquired automatically but constructed by learners via its interaction with learners’ experiences 

and perceptions of new information.  Constructivism underlies integrated curriculum, which 

support students learning a topic in various ways.  According to constructivism, teaching, rather 

than a simple delivery of knowledge to learners, is to provide materials and instruction to help 

students involved in active learning through social interactions with materials, peers, and the 

teacher.  Those active learning activities include generating learning goal, monitoring and 

assessing learning process, observing, and working collaboratively with peers (Schunk, 2000).  

Individuals construct new knowledge from interactions between one’s mental framework and 

experienced environments.  

From a constructivist perspective, teaching is to help students investigate and resolve 

conflict in their experiences (Sandoval, 1995).  In science education, it is to help students 

identify and correct misconceptions (Mayer, 1999).  It engages students in hands-on activities 

and collaboration with others to solve proposed problems through their experiences.  Students 

come to class with their own personal pre-constructed scientific concepts.  Thus, according to the 

constructivist perspective in science education, teachers could first know and understand students’ 

scientific preconceptions, then identify conceptual conflict with their preconceptions, and finally 

help them to explore and modify their scientific conceptions (Nussbaum & Novick, 1982).  

Teachers can associate hands-on experiences in science with students’ real life to promote their 

interest and motivation in learning science.  According to Vygotsky’s sociocultural theory 

(Vygotsky, 1978), learning is a socially mediated process, and people learn through interaction 

with others.  As to the teaching practice, teacher should provide rich real experiences to 

encourage students to learn.  

Empirical Studies of Constructive Teaching in Science Classes 

Paris and Turner (1994) found that engaging students in hands-on biology activities 

improved their intrinsic motivation and self-regulation learning behaviors.  Paris, Yambor, and 



6 
 

 
 

Packard (1998) investigated the effects of an extracurricular hands-on curriculum and instruction 

in biology on students’ interest and learning achievements.  Students' both interest in science and 

problem-solving skills through all grade levels were increased.  Female students reported more 

positive attitudes towards science and higher problem-solving skills than male students did.  Data 

from qualitative interviews with three teachers supported the benefits of the hands-on biology 

curriculum and instruction.  

Stohr-Hunt (1996) conducted a variance analysis of the relation between the frequency of 

students experiencing hands-on science and their science achievements.  Data were collected by 

the National Education Longitudinal Study of 1988 on a nationally representative sample of 

eighth-grade students.  Students who engaged in hands-on activities every day or once a week 

scored significantly higher on a standardized test of science achievement than those who 

engaged in hands-on activities once a month, less than once a month, or never.  

Amaral, Garrison, and Klentschy (2002) reported the findings of a four-year project in 

science education with English learners in grades K–6.  Participating students’ achievements in 

science, writing, reading, and mathematics were measured and analyzed according to the number 

of years that students participated in the inquiry-based science education program.  The English 

learners’ achievements correlated with the number of years they were engaged in the program.  

The longer they were in the program, the higher they scored in science, writing, reading, and 

mathematics.  

Concluding Thoughts for Future Discussion 

MI engages students collaboratively and autonomously in real hands-on inquiry-based 

scientific activities to develop and use models to describe, explain, and predict scientific 

phenomena.  As a practical application of SCT, MI could enhance students’ self-efficacy in 

science learning, which could promote students’ learning motivation, rewarding learning 

behaviors, persistence in science learning, and further improve their academic achievements.  It 

could also, through autonomy support, improve students’ learning motivation and attitudes and 

further improve their academic persistence in science.  In addition, MI could promote students’ 

interests and academic achievements in science by providing real hands-on experiences and 

stimulating constructivist learning.  With its inquiry-based characteristics, MI can enhance 

interests and motivations of both science and non-science major undergraduate students.  MI 

may even benefit English learners in their science achievements as an inquiry-based science 

teaching strategy.  MI may also contribute to the diminishing of gender gap in college biology 

education.  
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