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ABSTRACT OF THE DISSERTATION  

C-MEMS BASED MICRO ENZYMATIC BIOFUEL CELLS 

by  

Yin Song  

Florida International University, 2015 

Miami, Florida  

 Professor Chunlei Wang, Major Professor  

Miniaturized, self-sufficient bioelectronics powered by unconventional micropower may 

lead to a new generation of implantable, wireless, minimally invasive medical devices, 

such as pacemakers, defibrillators, drug-delivering pumps, sensor transmitters, and 

neurostimulators. Studies have shown that micro-enzymatic biofuel cells (EBFCs) are 

among the most intuitive candidates for in vivo micropower. 

     In the fisrt part of this thesis, the prototype design of an EBFC chip, having 3D 

intedigitated microelectrode arrays was proposed to obtain an optimum design of 3D 

microelectrode arrays for carbon microelectromechanical systems (C-MEMS) based 

EBFCs. A detailed modeling solving partial differential equations (PDEs) by finite 

element techniques has been developed on the effect of 1) dimensions of microelectrodes, 

2) spatial arrangement of 3D microelectrode arrays, 3) geometry of microelectrode on the 

EBFC performance based on COMSOL Multiphysics.  

    In the second part of this thesis, in order to investigate the performance of an EBFC, 

behavior of an EBFC chip performance inside an artery has been studied. COMSOL 

Multiphysics software has also been applied to analyze mass transport for different 
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orientations of an EBFC chip inside a blood artery. Two orientations: horizontal position 

(HP) and vertical position (VP) have been analyzed.  

    The third part of this thesis has been focused on experimental work towards high 

performance EBFC. This work has integrated graphene/enzyme onto three-dimensional 

(3D) micropillar arrays in order to obtain efficient enzyme immobilization, enhanced 

enzyme loading and facilitate direct electron transfer. The developed 3D 

graphene/enzyme network based EBFC generated a maximum power density of 136.3 

μWcm-2 at 0.59 V, which is almost 7 times of the maximum power density of the bare 3D 

carbon micropillar arrays based EBFC. 

   To further improve the EBFC performance, reduced graphene oxide (rGO)/carbon 

nanotubes (CNTs) has been integrated onto 3D mciropillar arrays to further increase 

EBFC performance in the fourth part of this thesisThe developed rGO/CNTs based EBFC 

generated twice the maximum power density of rGO based EBFC. Through a comparison 

of experimental and theoretical results, the cell performance efficiency is noted to be 67%.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview   

The concept of biofuel cells has been known for one century since the first half-cell using 

E.coli was demonstrated by Potter at University of Durham in 1910 [1]. Further 

development of half-cell by Cohen from University of Cambridge led to one of the major 

types of biofuel cells, i.e., microbial fuel cells in 1931 [2]. Since the first enzymatic 

biofuel cell (EBFC) was reported by Yahiro in 1964 [3], noticeable developments have 

been made in terms of the power density, cell lifetime, operational stability for biofuel 

cells [4-6]. More recently, implantable medical devices such as pacemaker, defibrillator, 

insulin pumps, sensor-transmitter systems for animals and plants, nano-robots for drug 

delivery and health monitoring systems gain increasing attention which led to an upsurge 

in research and development in EBFCs as one of the potential alternatives to replace 

current batteries in implantable medical devices. In principle, EBFCs using biocatalysts 

can derive energy from physiological ambient resources abundantly available inside the 

human body [7]. The advantages of EBFCs include their biocompatibility, simple 

operation at physiological conditions, higher selectivity for particular substrates, higher 

volumetric catalytic activity and less resistive losses [8]. Before EBFC become 

competitive in practical applications, two critical issues: short lifetime and poor power 

density, both of which are related to enzyme stability, electron transfer efficiency, 

enzyme loading, etc. have to be addressed. 3-D electrode structures with high effective 

surface area per footprint can significantly improve EBFC power density by increase the 

enzyme loading. Besides, surface functionalization would enhance the enzyme stability 
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by forming the stable covalent bonding. Moreover, integration of nanostructures into 

microelectrode arrays could significantly improve the C-MEMS based EBFCs. 

1.2 Research objectives  

The ultimate goal of this research is to develop on-chip enzymatic biofuel cells with 3-D 

microelectrodes, which have high power density and improved lifetime. To achieve this 

goal, simulation and experimental work have been both conducted. On the one hand, the 

simulation will be conducted to 1) optimize the cell performance by obtaining the design 

rule of the 3-D microelectrode arrays; 2) examine the EBFC performance in the blood 

artery. On the other hand, the main objectives of the experimental work are to 1) increase 

the effective electrode surface area; 2) functionalize the electrode surface for stable 

immobilization of enzyme; 3) improve the electron transfer efficiency between substrate 

and electrode surface; 4) eventually develop the high performance C-MEMS based 

EBFCs.  

    The research problem has three main aspects: 

1. How to properly build a computational modeling for 3-D EBFCs and predicate the 

device performance? 

   First, the steady state condition to mimick 3-D EBFCs in the lab environment has been 

investigated. Mass transport, conductivity and reaction kinetics and output power have 

been considered for optimum 3-D microelectrode designs for the EBFCs. Next, the 

simulation was targeted towards EBFC chip with 3-D microelectrode arrays inside a 

blood artery based on transient state condition. The performance of an EBFC chip placing 

in different orientations in the blood flow and novel design has been also investigated.  

2. How to increase the surface area of electrodes? 
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    One of the major challenges in developing EBFCs is to increase the power density, 

which is usually measured by power generation per surface area of electrode. However, 

for an EBFC to successfully power an implantable medical device, significant reduction 

in size must be achieved while at the same time maintaining relatively high current and 

power density. Normally, reducing size of EBFCs directly results in smaller amount of 

active electrode materials, which may significantly diminish the total energy and power 

output. In this regard, in order to improve the power density of miniaturized EBFCs, 

micro/nano-electrode architectures, which offer increased surface area, superior 

physiochemical properties and enhanced electrode reactions, should be investigated. Here 

the C-MEMS fabraication has been applied to develop 3-D micropillar arrays as platform 

for EBFCs development. 

3. How to effectively immobilize enzyme on the C-MEMS electrodes surface? 

    The critical issue is short lifetime before EBFCs can be used in practical application. 

Enzyme stability upon immobilization on the electrode surface mainly decides EBFC 

lifetime. In this research, appropriate chemical immobilization method with stable 

covalent bonding between enzyme and electrode surface has been investigated. 

Furthermore, nanomaterials have been also integrated to immobilize enzymes onto the 3-

D micropillars.  

1.3 Scope of the dissertation  

    The dissertation work has included four research topics to meet its goal by pursuing the 

above objectives (Fig 1.1): 

1. Optimization of 3-D microelectrode arrays configuration in the steady state model. 

    In an attempt to optimize the design rule of 3-D microelectrode arrays configuration, 

simulation using COMSOL multiphysics is conducted on the effect of dimensions and 
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is based on diazonium salts to form a covalent binding bwteen electrodes and enzymes. 

Performance of 3-D microelectrode arrays based EBFC is evaluated.  

4. EBFC with 3-D graphene integrated microelectrode arrays.  

   In order to improve cell performance based on 3-D design, carbon nanomaterials such 

as graphene, rGO, CNTs are integrated in C-MEMS microelectrode arrays. Glucose 

oxidase and laccase will be immobilized on the anode and cathode, respectively. EBFC 

performance with different nanomaterials modified 3-D EBFCs are evaluated and the 

results are to be compared with 3-D design without nanomaterials.  
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                                               CHAPTER 2  

BACKGROUND AND LITERATURE REVIEW  

2.1. Introduction 

The global energy demands increases significantly every year and current reliance on fossil 

fuels is unsustainable due to finite supplies from environment. In addition, the products from 

using fossil fuels cause critical pollution, which forms global warming. Fuel cells offer an 

alternative solution to this issue. A fuel cell is an electrochemical cell that converts chemical 

energy from a fuel to electrical energy. In a fuel cell, an oxidation reaction occurs at the 

anode and a reduction reaction occurs at the cathode. The oxidation from anode generates 

electrons, which transfer to the cathode through the external circuit. Conventional fuel cells, 

for example, can be operated by using hydrogen or methanol (MeOH) as fuels, to produce 

energy, along with water and carbon dioxide as by-products. However, hydrogen is gaseous 

which gives rise to storage and transport issues. In addition, many of the alternative fuels that 

can be used for fuel cells still rely on petroleum products. Therefore, it is well recognized that 

alternative sources of renewable energy are urgently required. Numerous efforts have been 

made to develop these power sources alternatives that are capable of performing in 

physiological conditions for prolonged lifetime without recharging. More recently, the US 

implantable medical devices market increases at an average rate of 8% every year and is 

expected to reach $73.9 billion by 2017 (Fig. 2.1). The development of miniaturized 

medical implants such as pacemaker, defibrillator, insulin pumps, sensor-transmitter systems 

for animals and plants, nano-robots for drug delivery and health monitoring systems gain 

increasing attention which led to an upsurge in research and development in micropower 

source, especially, biofuel cells (Fig. 2.2) [1-10]. Biofuel cell is a particular kind of fuel cell, 

which converts biochemical energy to electrical energy by using biocatalysts [12-14]. In the 
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electrode surface, hence generating the output potential. There are two types of electron 

transfer mechanisms, which are direct electron transfer (DET) and mediator electron transfer 

(MET). In DET based EBFCs, the substrate is enzymatically oxidized at the anode, 

producing protons and electrons, which directly transfer from enzyme moleculars to anode 

surface. At the cathode, the oxygen reacts with electrons and protons, generating water. 

However, DET between an enzyme and electrode has only been reported with several 

enzymes such as cytochrome c, laccase, hydrogenase, and several peroxidases [20-25]. Some 

enzymes have nonconductive protein shell in which holds active site of enzyme so that the 

electron transfer is inefficient as well as output potential. To overcome this barrier, MET was 

used to enhance the transportation of electrons. The selection and mechanism of MET in 

EBFCs are quite similar to those of MFCs that discussed before. Similarly, there are still 

some challenges in using MET in EBFCs, which are poor diffusion of mediators and non-

continuous supply. Therefore, modification of bioelectrodes to realize DET based EBFCs 

attracted most attention in current researches. In EBFCs system, power density and lifetime 

are two most important factors, which determine the cell performance in the application of 

EBFCs. Significant improvements have been made during the last decade to overcome those 

problems [26-29]. Noticeably, these advancements have been mostly achieved by 

modification of electrode with better performance, improving enzyme immobilization 

methods as well as optimizing the cell configuration.  

    The performance of electrodes for EBFCs depends on these factors: electron transfer 

kinetics, mass transport, stability, and reproducibility. Therefore, the electrode is mostly 

made of gold foil and rod, platinum foil and rod, or carbon paper, rod, paste, metalized 

carbon, glassy carbon and carbon fiber [30-34]. Instead of those conventional materials, 

biocompatible conducting polymers are widely used because they can facilitate electron 

transfer and immobilize the enzymes at the same time which is widely applied in enzyme 
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and MWNT. Improved enzyme activity was observed in comparison to similar enzyme-

containing composites without using SWNTs. It was discussed that the application of 

SWNTs, which possesses a high specific surface area, may effectively adsorb enzyme 

molecules and retains the enzyme within the polymer matrix, whereas other forms of 

enzyme-composites may suffer from enzyme loss when they were placed in contact with 

aqueous solutions. The stable and active enzyme system on conductive CNTs will make a 

great impact in the field of biofuel cells. Furthermore, graphene and its derivtives also have 

potential in developing high performance EBFCs.  Therefore it is necessary to further study 

this area in order to realize high performance EBFCs in the dynamic energy market. 

   In addition, the immobilization of the enzymes on the electrode surface is considered as 

another one of the critical factors that affect cell performance. The immobilization of enzyme 

can be achieved physically or chemically. There are two major types of physical methods. 

The first one is to absorb the enzymes onto conductive particles such as carbon black or 

graphite powder. Hydrogenase and laccase have been immobilized by using this method on 

carbon black particles to construct composite electrodes and EBFCs had been continuously 

worked for 30 days. Another physical immobilization method is polymeric matrices 

entrappment, which usually stabilize the enzymes better than surface adsorption [46-48]. 

Soukharev utilized redox polymers to fabricate enzymatic biofuel cells system. The 

electrodes were built by casting the enzyme-polymer mixed solution onto 7-μm diameter, 2 

cm length carbon fibers. It showed that the glucose–oxygen biofuel cell was capable of 

generating a power density up to 0.35 mW/cm2 at 0.88 V. Compared with the physical 

immobilizaition, which is unstable during the operation, the chemical immobilization 

methods with the efficient covalent bonding of enzymes and mediators are more reliable. 

Katz et al. reported a biofuel cells using co-immobilized enzyme-cofactor-mediator 

composites on metal electrodes to functionalize the electrode surface with a monolayer then 
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integrate with enzymes via bioaffinity. Another example is that a redox monolayer was 

covalently grafted with pyrroloquinoline quinone (PQQ) to Au-electrode. Then GOx-FAD 

electrode was assembled with PQQ as mediators. Other widely materials used to 

functionalize electrode surface have also been reported, such as nitrospiropyran, rotaxane, C-

60, and Au nanoparticles. 

Fuel Enzyme Electrode 
Electron 
transfer 

Power 
density 

(µW cm-2) Ref. 

Glucose/ O2 GOx/laccase 
Carbon fiber 

electrodes MET 64 
Chen et al. 

(2001) 

Glucose/ O2 GOx/BOx 
Carbon fiber 

electrodes MET 432 
Mano et 

al. (2002) 

Glucose/ O2 GDH/BOx 
Glassy carbon 
disc electrodes MET 58 

Tsujimura 
et al. 

(2002) 

Glucose/ O2 GOx/COx 

Gold 
electrodes 

coated with 
Cu MET 4.3 

Katz & 
Willner 
(2003) 

Glucose/ O2 GOx/BOx 
Carbon fiber 

electrodes MET 50 
Kim et al. 

(2003) 

Glucose/ O2 GOx/BOx 
Carbon fiber 

electrodes MET 440 
Mano et 

al. (2003) 

Glucose/ O2 GOx/BOx 
Carbon fiber 

electrodes MET 244 

Mano & 
Heller 
(2003) 

Glucose/ O2 GOx/laccase 
Carbon fiber 

electrodes MET 350 
Heller 
(2004) 

EtOH to CH3 
CHO to 

CH3COOH 

ADH, ADH 
+AldDH, 

dehydrognas
e + FDH 

Carbon coated 
with 

poly(methylen
e) MET 1160 

Akers et 
al. (2005) 
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Glucose/ O2 
PLL-VK3 / 

PDMS Pt MET 130 
Togo et al. 

(2007) 

Ethanol/H2O
2 

QH-
ADH/AOx Pt DET 30 

Ramanavi
cius et al.  

(2008) 

Glucose/ O2 GDH/PDMS Pt DET 11000 
Sakai et 

al. (2009) 

Glucose/ O2 GOx/laccase 

Silicon/ 

SWNTs DET 30 
Wang et 

al. (2009) 

Glucose/ O2 GOx/laccase Au/SWNTs DET 960 
Lee et al. 

(2010) 

Glucose/ O2 GDH/BOD Au/MWNTs DET 200 
Tanne et 
al. (2010) 

Glucose/O2 GDH/NB 

Glass carbon/ 

SWNTs DET 100 
Saleh et 

al. (2011) 

Glucose/O2 GOx/BOD CRGO/Au MET 24.3 
Liu et al. 
(2010) 

Glucose/O2 GOx/laccase GCE/graphene DET 58 
Zhang et 
al. (2010) 

Glucose/O2 GOx/laccase CRGO/Au MET 78.3 
Liu et al. 
(2011) 

Glucose/O2 GOx/laccase 
GCE/ERGO-

MWCNTs MET 46 

Devadas 
et al. 

(2012) 

Table 2.1 The performance of EBFCs 

    Rapid development on EBFCs has been achieved in the past decade with the arised 

demands for reliable power supplies for implantable medical device. The table 1 has shown 

the performance of the EBFCs. However, there are still challenges for further development of 

long term stability of the enzymatic bioelectrodes and efficient electron transfer between 
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enzymes and electrode surfaces. Recent efforts have been given to protein engineering, 

reliable immobilization method and novel cell configuration. 

2.4 Miniature biofuel cells  

       Miniature power systems are widely applied in devices that require miniature electrical 

power sources especially in implantable medical device. The prospects of medical implants 

can be realized only if the implantable device could be extremely small. This can be achieved 

by miniaturization of different functional components such as electrodes, power supply, and 

signal processing units. Efforts have been made in miniature biofuel cells in the past ten 

years. Development of miniature biofuel cells offers great opportunities for long-term power 

sources of implantable device where frequent switching of battery is not practical. The ability 

of biocatalyst in converting indigenous fuels into electrical energy makes miniature biofuel 

cells applicable because biocatalysts can replenish to enable long-term and self-sustained 

power system as long as there is enough supply of fuels. Common procedures for fabricating 

microfluidic systems are photolithography, etching, polymer molding, and metal deposition 

and these have been widely applied in fabricating miniature biofuel cells. For example, Siu 

and Chiao applied photolithography and polymer molding to fabricate polydimethylsiloxane 

(PDMS) electrodes. It was also used by Hou et al. to fabricate gold electrode arrays for the 

microbe screening. Besides polymer molding, etching can also be used to transfer micro-

patterns onto device-building substrate. Chiao applied wet etching to construct silicon-based 

chambers containing serpentine channels. Additionally, C-MEMS microfabrication technique 

for 3D microstrustures, involving the pyrolysis of patterned photoresist has been developed 

which can be used as microelectrodes for miniature biofuel cells [49-50]. Besides, photoresist 

with micro-pattern was used to define the chambers as well. With current microfabrication 

processes, the miniature biofuel cells offer unique advantages such as large surface area-to-

volume ratio, short electrode distance, fast response time and low Reynolds number. Here we 
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will introduce principles, design strategies and experimental demonstrations of representative 

miniature biofuel cells, along with the discussion of the key challenges and opportunities for 

realizing the practical potential of miniaturized biofuel cells for medical implants. 

    The first micro-size enzymatic biofuel cells reported in 2001. A glucose/oxygen biofuel 

cell, consisting of two 7-μm diameter, 2-cm long, 0.44 mm2, electrocatalyst-coated carbon 

fibers and operating at ambient temperature in a pH 5 aqueous solution was described. The 

areas of the anode and the cathode of the cell were about 60 times smaller than those of the 

smallest reported fuel cell and 180 times smaller than those of the smallest area biofuel cell. 

The power density of the cell is 64 μW/cm2 at 23 °C and 137 μW/cm2 at 37 °C, and its power 

output is 280 nW at 23 °C and 600 nW at 37 °C. The results revealed that the miniature 

enzymatic biofuel cells could generate sufficient power for slower and least power-

consuming CMOS circuit.  Later, a miniature enzymatic biofuel cell with the same micro size 

carbon fiber operating in a physiological buffer was reported. In a week operation the cell 

generates 0.9 J of electrical energy while passing 1.7 C charge. Based on this result, Mano 

developed a miniature compartment-less glucose-O2 biofuel cell operating in a living plant. 

Implantation of the fibers in the grape leads to an operating biofuel cell producing 2.4 μW at 

0.52 V, which is adequate for operation of low-voltage CMOS/SIMOX integrated circuits. 

The performance of the miniature enzymatic biofuel cell was upgraded to 0.78V operating at 

37C in ph 5 buffer later on. In 2004, a miniature single-compartment glucose−O2 biofuel cell 

made with the novel cathode operated optimally at 0.88 V, the highest operating voltage for a 

compartmentless miniature fuel cell. The enzyme was formed by “wiring” laccase to carbon 

through an electron conducting redox hydrogel, its redox functions tethered through long and 

flexible spacers to its cross-linked and hydrated polymer, which led to the apparently 

increased electron diffusion coefficient. The latest report on miniature glucose/O2 biofuel 

cells demonstrated a new kind of carbon fiber microelectrodes modified with single-wall 
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typically a parallel arrangement of a planar cathode and an anode separated by a solid or 

liquid electroyte. In order to maximize power density, three-dimensional bioelectrocatalytic 

electrodes should include multidimensional and multidirectional pore structures. 

Multidimensionality provides small pores to support enzyme stabilization and high loading 

densities. More recently, The revolutionary carbon-microelectromechanical (C-MEMS) 

fabrication technologies have offered a wide range of opportunities to engineers and 

researchers to reproducibly fabricate complex carbon-based EBFCs, having 3D highly dense 

micro-scaled electrodes arrays with low cost and on chip switchable designs. Electrodes 

based on 3D microstructures offer higher surface area and significant advantages in 

comparison to thin-film devices for powering MEMS and miniaturized electronic devices.  C-

MEMS, describes a manufacturing technique in which carbon microstructures are fabricated 

by baking UV sensitive polymers at high temperatures in an inert environment. It has been 

demonstrated that 3D high-aspect-ratio carbon structures can be made from carbonizing 

(pyrolysis) patterned NANOTM SU-8 negative photoresist layers. Both positive photoresists 

(AZ4620, AZ1518) and negative photoresist (SU-8) can be converted by carbon by pyrolysis 

depending on the application.  

   Although the 3D structures have significant advantages, such as an increase in the surface 

area and power density for same foot print area, compared to 2D planar electrodes or thin 

films, there are yet certain important issues, which need to be solved in order to use these 

structures effectively. Anandan and Godino have studied the mass transport phenomenon in 

micro and nano-electrodes by finite element analysis approach. They suggest that in order to 

accommodate the specific analyte species in terms of reaction kinetics and mass transport, it 

is necessary to optimize the geometry of nanopillars (their diameter, spacing and height), to 

reap the true benefit of using micro-nanostructured electrodes for enhancing the performance 

of biosensors. They reveal that the glucose immediately react with the top portions of the 
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2.6 Finite element analysis simulation  

   Modeling could play a vital role in optimizing the design of increasingly sophisticated 

devices, taking into account various factors regarding mass transport, electron transfer, and 

reaction kinetics. Until now, majority of the EBFCs research have been focused on in vitro 

experiments by mimicking physiological conditions. However, additional complications may 

arise when an EBFC chip is placed inside a blood artery, such as implantation process, the 

stability of chip inside an artery and the clotting of the blood, etc. Ideally, the EBFC chip 

should be placed in a manner that it would not obstruct the blood flow and it should not result 

in substantial pressure drop inside an artery. In order to investigate the stability of an EBFC, 

we have mimicked the behavior of an EBFC chip performance inside an artery [26]. We 

applied COMSOL 3.5 Multiphysics software to analyze mass transport for different 

orientations of an EBFC chip inside a blood artery. During the initial stage, we have analyzed 

two orientations: horizontal position (HP) and vertical position (VP). The stability of the chip 

in these positions, diffusion and convectional fluxes around microelectrodes has been finely 

investigated in Fig 2.5. From the comparison between HP and VP in the blood artery, we can 

conclude that the chip can be more stable in the VP as there is no external drag force due to 

turbulences surrounded the chip. The diffusion in between microelectrodes is negligible in 

HP and it is better in VP of a chip. In HP, the flux distribution is very different for each 

electrode from center to edge. The diffusive flux and convective flux are higher for 

microelectrodes located on the circumference of the horizontally positioned chip. At the 

central electrodes, these fluxes are negligible. In VP, these fluxes are uniform for all 

electrodes although negligible in between electrodes. In VP, there will not be limitation of 

increasing the foot print area. In HP, an increase in foot print area will allow thicker boundary 

layers to be formed, which can obstruct the blood flow. Based on the results, we have 

proposed a novel chip design with holes in between all electrodes on the substrate, which can 
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drastically improve the diffusion in between microelectrodes. From the comparison between 

a prototype design without holes and a proposed design with holes, it is concluded that the 

diffusive flux and convective flux have been significantly improved in a chip with holes. The 

uniformity of these fluxes has also been improved with all microelectrodes receiving similar 

diffusive and convective flux. The overall flux has been drastically improved in the HP with 

holes compared to a chip without holes in both horizontal and vertical position. 

  In this thesis, establishing rigorously validated models in conjunction with experimental 

studies to develop advanced microbiofuel cells with optimized 3D C-MEMS-based EBFCs 

has been targeted. A modeling study based on coupling mass transport, enzyme kinetics, and 

electron transfer with a COMSOL multiphysics module, has been investigated. 
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CHAPTER 3 

METHODOLOGY 

3.1. Comsol Multiphysics simulation  

The simulation conducted in this thesis has been based on COMSOL Multiphysics. 

COMSOL Multiphysics is a powerful interactive environment for modeling and solving 

all kinds of scientific and engineering problems. The software provides a powerful 

integrated desktop environment with a model builder where the users get full overview of 

the model and access to all functionality. When solving the models, COMSOL 

Multiphysics uses the proven finite element analysis. The software runs the finite element 

analysis together with adaptive meshing and error control using a variety of numerical 

solvers. COMSOL Multiphysics creates sequences to record all steps that create the 

geometry, mesh, studies and solver settings, and visualization and results presentation. 

Partial differential equations (PDEs) form the basis for the laws of science and provide 

the foundation for modeling a wide range of scientific and engineering phenomena.  

    The main product is COMSOL desktop which is an integrated user interface 

environment designed for cross-disciplinary product development with a unified 

workflow for electrical, mechanical, fluid, and chemical applications. The optional 

modules are optimized for specific application areas and offer discipline-standard 

terminology and physics interfaces. In this thesis, several optional modules (AC/DC 

module, batteries & fuel cells module, chemical reaction engineering module) have been 

incorporated as well. The AC/DC module provides a unique environment for simulation 

of AC/DC electromagnetics in 2D and 3D modeling. The module is designed for detailed 

analysis of coils, capacitors, and electrical machinery. The batteries & fuel cells module 

provides customized physics interfaces for modeling of batteries and fuel cells. These 
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In this work, a computational model of an enzymatic biofuel cell system to simulate mass 

transport, enzyme kinetics and electric current were evaluated by COMSOL 

multiphysics. Both steady state and transient state conditions have been considered 

shown in Figure 3.1.  

    The efficiency of utilization of the fuel is directly related to the enzyme kinetics. The 

Michaelis-Menten kinetics for a single-substrate reaction is considered for anode and 

cathode, respectively.  The steady state kinetics of the enzyme reaction (v) is expressed 

by: 

v=(k_cat [E])/(1+K_M/[S]) 

where kcat is catalytic rate constant, KM is the Michaelis Mention constant of the 

enzyme. [E] and [S] are the concentration of the enzyme and the substrate. .    In the 

diffusion module, the diffusion of substrate with enzyme kinetics is solved based on 

reaction-diffusion equations: 

(∂c)/∂t+∇(-D·∇c) =v 

where c is the concentration of substrate, D is the diffusion coefficient, v is the redox 

reaction rate. Conduction in this simulation occurs by a combination of electric field and 

diffusion, which is proportional to diffusion constant D and charge density. The current 

density is then described by generalized ohm’s law: 

J= σ∇ø+ zFD∇c 

where σ is electric conductivity of the buffer and F is Faraday constant. In the above 

equation, electroneutrality condition is assumed. 

   The overall of redox reaction at the electrode surface is assumed to be reversible. The 

electrode potential-concentration relationship is defined by Nernst equation: 

ø = ø^o+RT/zFln (([ø_ox])/([ø_red])) 
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Boundary Diffusion Potential Pressure 

Top boundary of bulk domain Inward flux Insulation Inlet pressure 

Bottom boundary of bulk domain Convective flux Insulation Outlet pressure 

Bulk-mediator interface Continuity 
Potential 

expressions 
Continuity 

mediator-electrode interface Zero inward flux Continuity Wall-no slip 

SiO2 layer Insulation Insulation Insulation 

Table 3.2. The boundary condition for transient state modeling 

3.2 C-MEMS 

Carbon MEMS, or C-MEMS describes a manufacturing technique in which carbon 

devices are made by converting a pre-patterned organic structure to glassy carbon under 

the high temperatures in an inert environment. It has been shown recently that 3D high-

aspect-ratio carbon structures can be made from patterned thick SU-8 negative 

photoresist layers. The experimental setup and details of the C-MEMS process used in 

this thesis has been reported previously [1-8]. Illustration of the typical C-MEMS 

fabrication procedure is shown in Figure 3.2. In brief, the C-MEMS based 3D micropillar 

arrays are prepared by a two-step photolithography process followed by a pyrolysis step. 

In the first photolithography step, a two-dimensional circle (diameter of 8 mm) pattern as 

current collector is firstly created using NANOTM SU-8 25. The photoresist film is spin-

coated onto a silicon oxide wafer (4” in diameter, (1 0 0)-oriented, n-type) at 500 rpm for 
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12 sec and 3000 rpm for 30 sec by using a Headway researchTM photoresist spinner, 

followed by soft bake at 65 °C for 3 min and hard bake at 95 °C for 7 min on a hotplate. 

The baked photoresist is patterned with a UV exposure dose of 300 mJ cm-2. Post-

exposure bake is conducted at 65 °C for 1 min and 95 °C for 5 min on a hotplate. Next, 

second photolithography process is employed using NANOTM SU-8 100 photoresist to 

build cylindrical micropillar arrays on patterned circle. SU-8 100 is spin-coated at 500 

rpm for 12 sec and 1500 rpm for 30 sec by using a Headway researchTM photoresist 

spinner. The spincoated photoresist is then soft baked at 65 °C for 10 min and hard baked 

at 95 °C for 45 min in an oven. The exposure is done using a UV exposure dose of 700 

mJ cm−2. Post-exposure bake was performed at 65 °C for 3 min and 95 °C for 10 min in 

an oven. Then the sample is developed by NANOTM SU-8 developer (Microchem, USA) 

for 5-10 min to wash away the remaining unexposed photoresist followed by isopropanol 

rinsing and nitrogen drying. Finally, the resulting SU-8 structures are pyrolyzed at 1000 

°C for 1 h in a Lindberg alumina-tube furnace with a continuous flow at 500 sccm 

forming gas (95% nitrogen, 5% hydrogen) then naturally cooled down to room 

temperature. 



3

In

ca

b

te

b

aq

el

so

ar

p

 

.3 Diazoniu

n order to im

arbon micro

inding with 

etrafluorobor

ind to glassy

queous solu

lectrochemic

olution with 

re electroch

otential.  

 

m surface f

mmobilize en

opillar array

carboxyl gr

rate---a diaz

y carbon sur

utions for 4

cal reductio

a scan rate o

hemically red

Figure 3.

functionaliz

nzyme cova

ys are grafte

roups in enzy

zonium ion d

face irrevers

 h, the 3D 

n of nitro g

of 50 mVs-1

duced to am

   31

2 Schematic

ation 

alently on th

ed with fun

ymes. The 4

derivative is 

sibly [9]. Af

carbon mi

groups to am

. It is expect

mino groups

c of C-MEM

e surface of

nctional amin

4-(4’-nitroph

a highly rea

fter placing t

cropillar arr

mino group

ted that all th

s during the 

 

MS 

f electrode, t

no groups t

henylazo) be

active pheny

the samples 

rays sample

p in an aque

he electro-ac

 first negati

the fabricate

to form cov

enzene diazo

yl radical tha

in diazonium

es are cond

eous 0.1 M

ctive nitro gr

ive sweep o

ed 3D 

valent 

onium 

at can 

m salt 

ducted 

M KCl 

roups 

of the 



   32

3.4 Electrophoretic deposition 

EPD is a versatile method that has been successfully applied for the deposition of carbon 

nanotubes, graphite oxide, graphene as well as enzymes for electrochemical applications 

[10-11]. Particularly, the EPD method has a number of advantages such as high 

deposition rate, good thickness controllability, good uniformity and simple operation 

[12]. In this study, EPD method has been applied to fabricate composite bioanodes and 

biocathodes. Carbon based nanomaterials such as graphene, reduced graphene oxide, 

CNTs and enzyme are first dispersed in water and then the resultant solution is sonicated. 

The nanomaterials/enzyme composite migrated toward the positive electrode when a 

voltage of 10 V was applied for 3 min. During the EPD process, evolution of gas bubbles 

at the cathode is observed because of the water electrolysis, and the deposition occurred 

at the anode. The microstructures of EPD co-deposited nanomaterials/enzyme based 3D 

carbon micropillar arrays have been investigated by SEM. 

3.5 Reference 

1. C. Wang, L. Taherabadi, G. Jia, M. Madou, Electrochem. Solid State Lett., 2004, 7, 
A435 

 
2. C. Wang, G. Jia, L. Taherabadi, M. Madou, Microelectromechanical Syst., 2005, 14, 

348 
 
3. C. Wang, M. Madou, Biosens. Bioelectron., 2005, 20, 2181 
 
4. B.Y. Park, L. Taherabadi, C. Wang, J. Zoval, M. Madou, J. Electrochem. Soc. 2005, 

152, J136 
 
5. K. Malladi, C. Wang, M. Madou, Carbon, 2006, 44, 2602 
 
6. B. Park, Y.R. Zaouk, C. Wang, M. Madou, ECS Trans., 2006, 1, 1 
 
7. B.Y. Park, R. Zaouk, C. Wang, J. Zoval, M. Madou, ECS Trans. 2007, 4, 83 
 
8. C. Wang, R.B. Zaouk, Y. Park, M. Madou, Int. J. Manuf. Tech. Manag. 2008, 13, 360 



   33

 

9. S. Pei, J. Du, Y. Zeng, C. Liu, H, Cheng, Nanotechnol., 2009, 20, 235 
 
10. S. Hong, S. Jung, S. Kang, Y. Kim, X. Chen, S. Stankovich, S. R. Ruoff, S. Baik, J. 

Nanosci. Nanotechnol., 2008, 8, 424 
 
11. M. Ammam, J. Fransaer, Biosens. Bioelectron., 2009, 25, 191 
 
12. S. J. An, Y. Zhu, S. H. Lee, M. D. Stoller, T. Emilson, S. Park, A. Velamakanni, J. 

An, R.S. Ruoff, J. Phys. Chem. Lett., 2010, 1, 1259 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 



   34

CHAPTER 4 

MODELING AND SIMULATION OF ENZYMATIC BIOFUEL CELLS WITH 
THREE-DIMENSIONAL MICROELECTRODES 

4.1. Introduction 

    The last decade has seen an upsurge in the development of enzymatic biofuel cells 

(EBFCs) for their potential use as sustainable micropower sources in the implantable 

medical devices. In principle, EBFCs convert the biochemical energy in living organisms 

into electrical energy via various enzyme catalyzed redox reactions [1-6]. The EBFCs, in 

addition to powering the future generation of implanted medical devices, could also 

power biosensors for continuously monitoring chemical and physical conditions in 

environmental and military applications [7]. Recently, model biofuel cells were tested in 

vitro towards their ultimate goal as implanted micropower source in human bodies 

extracting power from glucose in blood [8-9]. However for an EBFC to successfully 

power an implantable medical device or autonomous sensor, significant reduction in size 

must be achieved while at the same time maintaining relatively high current and power. 

Normally, reducing size of EBFCs directly results in smaller amount of active electrode 

materials, which may significantly diminish the total energy and power output [10]. In 

this regard, in order to improve the power density of miniaturized EBFCs, researchers 

have proposed and investigated the novel micro/nano-electrode architectures, which offer 

increased surface area, superior physiochemical properties and enhanced electrode 

reactions. In particular, three-dimensional (3-D) microelectrode architectures have been 

considered as an attractive alternative solution due to the enhanced mass transport and 

higher electrode surface area compared to thin film two-dimensional (2-D) design in the 

same footprint area. Previous studies have shown that batteries with three dimensional 
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architectures have reached 350% larger energy capacity compared to traditional two-

dimensional designs [11]. Moreover, the ion transport distance for the 3-D microelectrode 

based batteries during discharge is 3.5 times shorter than that in the thin film batteries 

[12]. Therefore, it could be predicted that 3-D microelectrode architectures might offer 

great opportunities to maximize output power density and reducing the mass transport 

distances between electrodes in the EBFCs. 

    Although the 3-D microelectrode architectures have significant advantages over the 

thin film electrodes, requisite multifunction-mass transport, conductivity and reaction 

kinetics must be considered for 3-D microelectrode designs for the EBFCs. Modeling can 

be highly useful to obtain optimized design rule when coupling with geometrical 

arrangement and reaction mechanisms. Anandan et al. [13] and Godino et al. [14] 

investigated the mass transport phenomenon in micro and nano-electrodes by using finite 

element analysis approach. Their study showed that the increased active surface area 

leads to enhanced electrochemical performance when the reaction rate constant of the 

target species is low. However, at higher reaction rate constants, only the top part of 

electrodes could transfer electrons. In addition, the principle that an array of 

microelectrodes could behave as a single electrode makes it necessary to investigate the 

design of the 3-D microelectrode array. Therefore, it is critical to optimize the 

microelectrode geometry and configuration for the 3-D array to obtain uniform current 

density distribution, enhanced mass transport and improved reaction kinetics, which 

could be translated to optimized EBFC performance. 

    Recently, a more economical alternative, carbon microelectromechanical systems (C-

MEMS) technique involving the pyrolysis of patterned photoresist has developed a 

promising platform for a wide variety of potential applications such as lithium-ion 
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batteries, fuel cells, supercapacitors, electrochemical sensors and biosensors shown in 

Figure 1(a). Our group has been focusing on developing C-MEMS based 

micro/nanostructures [15-23], and building C-MEMS based electrodes for EBFCs [24-

29]. One of the most important concerns is to achieve direct electron transfer (DET) 

between the enzyme reaction site and the electrode. In order to realize DET after enzyme 

immobilization, nano- or micro-structure of the electrode are widely used as a conductive 

agent, which would allow increasing the developed surface area of the electrode without 

modifying its geometric dimensions, where by developing a volumic network where 

enzyme can be entrapped or by creating pores enabling the adsorption of enzymes. In 

such an environment the number of orientations where each point of the enzyme surface 

is close enough to the electroactive surface to allow DET process. Carbon-based 

materials are the most widely used due to invaluable properties of carbon. Among the 

most cited are single-wall and multi-wall carbon nanotubes, carbon black, carbon 

nanoparticles, hollow carbon spheres, graphene, mesoporous carbon [30-38].  

    In this study, in order to obtain the optimum design of the 3-D microelectrode arrays 

for practical C-MEMS based EBFCs application, numerical simulations have been 

conducted by utilizing batteries & fuel cell module from COMSOL Multiphysics 4.3b 

commercial software (license No. 1023246), which solves partial different equations by 

finite element technique. In order to simplify the simulation, the 2-D modeling has been 

applied in this research.a C-MEMS based 3-D microelectrode array will be simulated as 

electrode for EBFC. A 10 µm conductive layer composed of mesoporous carbon and 

enzyme is proposed. We assumed that this mesoporous carbon structure has well-ordered 

porosity allowing enzyme entrapment and substrate diffusion. One of our recent efforts 

on simulation was targeted towards orientation of a C-MEMS based EBFC chip with 3-D 
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microelectrode arrays inside a blood artery. However, we only investigated the stability 

of an EBFC chip placing in different orientations in the blood flow and novel design to 

minimize the convective flux and optimize the mass transport around microelectrode 

arrays [39]. More detailed work regarding cell performance of microelectrode arrays 

based on both mass transport and enzyme kinetics have not been considered. In this work, 

we have conducted a detailed simulation study on the effect of dimensions and spatial 

arrangement of 3-D microelectrode arrays on the EBFC performance by incorporating the 

mass transport and enzymatic kinetics. In addition, four different electrode geometries 

were simulated to evaluate the distribution of current density on the electrodes.  

 

Figure 4.1 (a) A miniaturized EBFC with 3D interdigitated microelectrode arrays. (b) 
Schematic depiction of EBFC reaction mechanism. 
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4.2. Mechanism of EBFCs 

    Among today’s glucose-oxidizing enzymes, glucose oxidase (GOx) has been the most 

widely used redox enzyme due to its thermostability and high selectivity for glucose. 

However, glucose oxidase is defined as oxidoreductases that can utilize oxygen as the 

external electron acceptor, which will cause the oxygen competetion between GOx and 

laccase catalysis. Therefore, glucose dehydrogenase (GDH), which is insensitive to 

oxygen has been considered in this study for simplicity. Figure 1(b) shows the schematic 

of 3-D microelectrodes immobilized with (GDH) and laccase on anode and cathode, 

respectively. The overall redox reaction of this EBFC is given by: 

Anode:                      Glucose    GDH     Gluconolactone + 2H+ + 2e-                                               (1)                                         

Cathode:                     O2 + 4H+ + 4e-   laccase    2H2O                                                      (2)                           

    In principle, glucose is catalyzed by GDH and produces gluconolactone and hydrogen 

ions and generates electrons on the anode. On the cathode, laccase catalyst reduces 

oxygen and water is generated by combining with electrons and hydrogen ions. Laccase 

is multi-copper protein that can catalyze the four electron reduction of oxygen to water. It 

is believed that laccase catalysis involves reduction of the copper by reducing substrate. 

The FAD-GDH comprises oxidoreductases that catalyze the first hydroxyl group of 

glucose and other sugar molecules, utilizing FAD as the primary electron acceptor. When 

GDH catalyzes glucose oxidation, the GDH-FAD is reduced to GOx-FADH2, which can 

be oxidized by the electrode back to GDH-FAD shown in the following reaction.  

                      GDH-FAD + Glucose           GDH-FADH2 +Gluconolactone                   (3)                          

                            GDH-FADH2                     GDH-FAD + 2H+ + 2e-                                    (4)                         

    For this modeling, we will consider that enzyme (GDH-FAD/laccase) and electrode 

reactions are coupled by DET in this simulation. In such a system, the coupled overall 
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technology. In order to simplify the simulation, the 2-D modeling has been applied in this 

study. With the microelectrode dimension and foot print area, the change of distance 

between two electrodes (well width) is from 10-200 µm, which will affect the number of 

microelectrodes within the same foot print in one row on the chip.  In our previous paper, 

the pressure variation in each cardiac cycle is considered with a simple trigonometry 

function to maintain normal systolic/diastolic pressure variation of 120/80 mmHg in 

the artery [39]. The glucose amount flowing in the artery will also change at the inlet 

according to contraction and extraction of blood artery which is considered as a transient 

model. In this study, in order to obtain the optimized design for 3-D microelectrode 

arrays, we simulate the model considering the 3-D microelectrode arrays is in the 

experimental beaker with glucose concentration at 5 mol·m-3.    In the diffusion module, 

the diffusion of substrate with enzyme kinetics is solved based on reaction-diffusion 

equations:  

                                                  
	డ௖డ௧ + ܦ−)∇ ∙ ∇ܿ) 	=                         (7)                                                  	ݒ

where c is the concentration of substrate, D is the diffusion coefficient, v is the redox 

reaction rate.  

   To compute the electric field ∇ø, we need to solve the continuity equation for current	∇ܬ 
= 0. Current density is proportional to the conductivity and electric field ܬ =  .ø∇ߪ	

Conduction in this simulation occurs by a combination of electric field and diffusion, 

which is proportional to diffusion constant D and charge density. The current density is 

then described by generalized ohm’s law: 



   41

ܬ                                                   =                         ø + zFD∇c                                                         (8)∇ߪ	

where σ is electric conductivity of the buffer and F is Faraday constant. In the above 

equation, electroneutrality condition is assumed. 

   The overall of redox reaction at the electrode surface is assumed to be reversible. The 

electrode potential-concentration relationship is defined by Nernst equation: 

                                                     ø = ø௢+ ோ்௭ி ln ቀ [ø೚ೣ][øೝ೐೏]ቁ                                                     (9)                           

where ø௢ is the standard potential, [ø௢௫	] and [ø௥௘ௗ] represent the concentration of the 

oxidized and reduced enzyme. In this simulation, we consider the concentration of the 

oxidized and reduced forms are from the active redox center of FAD/FADH2 for GDH 

and type 1 copper for laccase.  

    The boundary conditions and the relevant constants are shown in Table 4.1 and Table 

4.2, respectively. 

Boundary Diffusion        Potential 

Top boundary of bulk domain ܿ = ܿ଴ ݊ · ܬ = 0 

Bulk-enzyme interface −݊( ଵܰ − ଶܰ) = 0 ܸ = ଴ܸ 
Enzyme-electrode interface −݊( ଵܰ − ଶܰ) = 0 ଵܬ)݊ − (ଶܬ = 0 

Side and bottom boundaries of 

bulk domain 

(ܿ∇ܦ−)݊− = 0 	݊ · ܬ = 0 

                                 Table 4.1. Boundary conditions for simulation models 

Constant Ref. Value Reference 
 R 8.314 J·mol·K-1  
 T 300 K  
 F 96485 C·mol-1  
Dglucose 
Doxygen 

7·10-10 m2·s-1  
1.74·10-9 m2·s-1 

[40-42]  
[43, 44] 
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KM GDH 17.4 mM  [45]  
KM laccase 133.4 mM  [46] 
kcat_GDH 360 s-1 [45] 

kcat_laccase 117 s-1 [46] 

øo
A -0.32 V  [47] 

ø oC 0.585 V  [47] 

σcarbon 8000 S·m-1 [48] 

σsubstrate 4 S·m-1  

Table 4.2. Simulation parameters 

 In addition, several assumptions have been made in this simulation.  

1) 2-D simulation is used to simplify the 3-D microelectrode design. 

2) The DET between enzyme and electrode is aussumed. 

3) The enzyme kinetics constant is obtained from the literatures based on 

immobilized enzymes. 

4) The enzyme is uniformly distributed in the enzyme layer.  

5) Negligible change in heat transfer is assumed between enzyme layer and electrode 

interface. 

6) Temperature distribution around the EBFCs is assumed to be uniform.  

4.4 Results and discussions 

4. 4.1 Steady state response 

    Initially at time t=0, the concentration of the glucose is constant along the electrode. 

From t>0, the glucose starts to react with enzyme. The glucose depletion from the 

reaction from the bottom of the electrode causes the glucose diffusion from the bulk 

domain to the well between electrodes. We theninvestigated the response time for glucose 
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to diffuse within one pair of microelectrode before reaching a steady stateFigure 2 

illustrates the steady state response time for electrode with height of 200 µm and well 

width of 40 µm. The glucose concentration is from the top point of the electrode. Based 

on the glucose concentration evolution over operation time, the steady state response time 

for microelectrode arrays at this dimension is around 700s. In the following study, we 

investigate the EBFC performance after the steady state condition has been met for each 

configuration of microelectrode array.  

 

Figure 4.2.  Response time to reach steady state for electrode at height of 200 µm with 
well width of 100 µm. 

 

4.4.2 Impact of mass transport and reaction rate 

    Mass transport is investigated based on glucose and oxygen diffusion around 

electrodes in different configurations of microelectrode arrays. The glucose 

concentrations along the electrode surface inside the well at different electrode 

dimensions after reaching steady state are shown in Figure 3(a-b). The starting point is 
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0.05 µm from the bottom to the top of the electrode. Ideally, glucose should interact with 

the total surface area of electrodes from top to bottom to fully utilize the enzymes 

immobilized onto them. However, the glucose reacts immediately with the top portion of 

the electrode where it diffuses first and the rest of glucose reacts gradually down to the 

bottom of the electrode. From the results, we observed the non-uniformity of the 

concentration of glucose along the surface of electrode at all dimensions. There is a 

decrease in the glucose concentration along the vertical direction inside the well from the 

top to bottom of the electrode. We have simulated a microelectrode array with height of 

200 µm with two well widths of 40 and 100 µm. The smaller glucose depletion occurs for 

the larger well width between two electrodes because there is more space for glucose. In 

order to investigate the effect of height on diffusion change, different height of 

microelectrode arrays at a fixed well width of 50 µm have been simulated and results 

were shown in Figure 3c. The glucose concentration is decreased from the top to the 

bottom of the electrode for all different height of microelectrode arrays. The 

concentration of the bottom of the electrode decreases as the height of the electrode 

increase. The competition between higher enzyme reaction rate and lower diffusion rate 

causes glucose depletion throughout the electrode surface and consequently generates 

non-uniform glucose concentration. Since the concentration gradient on the electrode 

surface is influenced by the enzyme kinetics defined by the Michaelis-Menten reaction 

rate equation (6), the concentration gradient of the glucose and oxygen along the vertical 

direction from top to bottom of electrode surface leads to the relevant enzyme reaction 

variation in the enzyme layer shown in Figure 4. From the simulation results, the enzyme 

reaction rate decreases from the top to bottom along the surface of microelectrodes, 

which is consistent with the result of concentration gradient. It is also observed that the 
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well width (dash line). As we discussed before, even though current density for larger 

well width is higher, increase in well width causes decrease in number of microelectrodes 

in the same foot print. Therefore, integration of the current density along the electrode 

surface in one row on the chip has been evaluated at different well width for each 

constant height of microelectrode arrays, which qualitatively represents the total current 

collected on each post-electrode in one row within the same foot print area. The change 

of the line current density with respect to the well width and height is obtained by 

simulation and shown in Fig 5(d). For each height, with the increase of well width the 

line current density reaches a peak and then decreases. This is because even though 

glucose depletion is less in the larger well width, the less micoelectrodes in one row 

could result in the decrease in total line current density. A conclusion can be drawn from 

the simulation results that the maximum line current density is obtained when the height 

is roughly equal to two times the well width. It could be noticed that among the three 

cases, microelectrode array with 200 µm exhibited the highest current density of 0.52 

mA/cm2. Ease of fabrication is an important consideration and since it is difficult to 

manufacture carbon microelectrodes higher than 200 µm by C-MEMS. Therefore, based 

on the results and practical application, to design the microelectrode arrays within 15mm 

x15mm foot print, the optimum configuration is height and well width keeping as 200 µm 

and 100 µm. 

    One of the most important characteristics to examine in an EBFC is power density. In 

this work, simulation was conducted by incorporating the Nernst equation. To compare 

the performance among different electrode configurations, we simulated EBFCs with 

threeheights: 100 µm, 150 µmand 200 µm, all at 2:1 fixed ratio of height to well width 

based on the previous results, which the optimized configuration of microelectrodes is 
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4.4.4 Geometry of the electrodes 

     The simulation profile of electric field is shown in Figure 6 for rectangular electrodes. 

The contour plot also shows the electric field; with more contours at higher value of 

electric field and less contours at lesser values of electric field. The arrow plot shows the 

direction of the charge transfer, with tails coming out of cathodes and heads going into 

anodes. The electric field is inversely proportional to the distance between electrodes and 

hence it is higher in between the post rather than in surrounding region. At the corners 

and sharp edges as area decreases the charge density increases and so does the electric 

field, because the electric field is perpendicular to the surface area and proportional to the 

charge density. According to Ohm’s law, current density is directly proportional to 

electric field, and hence the current density is higher at sharp corners and edges. This may 

result in more heat dissipation/resistive heating and so electrodes can eventually degrade 

at those portions of electrodes. This higher heating can cause harm to enzymes 

immobilized onto posts. This may reduce the life span of enzymes, which can reduce the 

fuel cell longevity. In order for the electrodes and enzymes to last for long time, current 

density should be uniform around electrodes and edge effect should be minimized.  

    From above discussions, it is inferred that not only dimensions, but geometry of the 

electrodes also plays an important role in EBFC output performance. To find out more 

reliable and long lasting electrode configurations, four different geometries of one pair of 

electrodes with height of 100 µm, well width of 20 µm at bottom and diameter of 20 µm 

is implemented in order to obtain a more suitable configuration with uniform current 

density along the single electrode. In all these simulations, the open circuit potential for 

anodes is at -0.32 V (vs. SHE) and cathodes at 0.585 V (vs. SHE). For the anode, when 

the potential is in the interval from - 0.32 V to 0 V (vs. SHE), dissolved O2 would get 
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reduced on the carbon and then decrease the current, voltage and faradic efficiency [49]. 

In order to simplify the simulation, we don’t take into account any putative O2 reduction 

on the anode. The current density and resistive heating profiles for a) rectangular, b) 

triangular, c) tapered, and d) semi-elliptical electrodes with height of 100 µm, well width 

of 20 µm at bottom and diameter of 20 µm are shown in Figure 7 (a-d), respectively. In 

the figures, the left Y-axis and the right Y-axis show the values for current density and 

resistive heating, respectively. The current density and resistive heating profiles follow 

almost the same trend for all the four geometries since heat dissipation is proportional to 

current density. The values for current density and resistive heating, for all the 

geometries, are summarized in  

 

Table 3.3.  

 

Table 4.3 Statistical analysis of current density (CD) and resistive heating (RH) for 
rectangular, triangular, tapered and semi-elliptical geometry of electrodes 
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    From the simulation results, it could be observed that the current density values are 

very high at the tip corners of the rectangular electrodes. The resistive heating is almost 5 

times higher at tip corners compared to other locations due to the edge effect. In contrast, 

for the other majority locations of side and top of electrodes, the current density and 

resistive heating is uniformly distributed. In triangular electrodes, those localized high 

current density and resistive heating regions, are located at the tips of the electrodes, with 

values much more stronger than the values taken from the side walls. In the case of 

tapered electrodes, the non-uniformity of current density and resistive heating are much 

less compared to the rectangular and triangular electrode geometries. In semi-elliptical 

electrodes, the current density and resistive heating values are more uniformly distributed 

compared to all other geometries. The resistive heating values are very small at the top 

curvature as well as at edges. According to Ohm’s law, current density is directly 

proportional to electric field, and hence the current density is higher at sharp corners and 

edges. From these simulation results, semi-elliptical shaped geometry is more favorable 

due to lack of sharp corners and edges. But it should be noted that although semi-

elliptical electrodes provides the least resistive heating, it might not be easy to fabricate 

such microstructures using conventional C-MEMS technology.  
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performance within the fixed print area, the ratio of the height and the well width of the 

electrode should be kept as 2:1 in general. From the modeling, the maximum power 

density for 3-D microelectrode EBFC reaches 110 µW/cm2 at 0.44 V in voltage when the 

dimension of electrodes is keeping height as 200 µm and well width as 100 µm. From 

current density and resistive heating distribution analysis for different geometries of 

electrodes, we highly recommend that semi-elliptical shaped electrode is more favorable 

to deliver uniform current density along the electrode. 
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CHAPTER 5 

MODELING AND SIMULATION OF ENZYMATIC BIOFUEL CELLS WITH 

THREE-DIMENSIONAL MICROELECTRODES П: IN BLOOD ARTERY 

5.1 Introduction 

     Since numerous active implantable medical devices (IMDs) such as pacemakers, 

defibrillators, cochlear implants, neuro-stimulators, artificial hearts, and drug delivery 

systems have been developed from 1950s [1-6], one of the major challenges in the 

development of these devices for clinical use is to find a suitable continuous power 

supply to substitute conventional power sources such as lithium primary or lithium ion 

secondary batteries which could not last much beyond 2 years at physiological 

environment in the human body [9-12]. The ideal power source should be capable of 

generating electricity for prolonged period of time utilizing natural biological fuel 

abundantly available inside a human body. Therefore, enzymatic biofuel cells (EBFCs) 

have attracted considerable attention as a promising alternative of the power source for 

IMDs. EBFCs can take advantage of glucose and oxygen naturally present in the human 

beings and operate at physiological condition of pH 7, body temperature 37 °C and body 

pressure 80-120 mmHg [13-14]. More importantly, the enzymes involved in the system 

such as glucose oxidase and laccase assure biocompatibility of this power source [15].  

    Until now, EFBCs performance has been significantly improved to reach the 

operational power requirement range for various types of IMDs such as Pacemaker (30-

100 µW), cardiac defibrillator (30-100 µW), neurological stimulator (30 µW-3 mW), 

drug delivery (100 µW to 2 mV), cochlear implants (5-10 mW), etc [16-17]. However, 

the results from majority researches are based on in-vitro experiments by imitating 

physiological conditions of human body. Even though it is necessary to conduct the in-
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mediator-electrode interface Zero inward flux Continuity Wall-no slip 

SiO2 layer Insulation Insulation Insulation 

    Table 5.1. Boundary conditions for simulation models 

 Constant Value Reference 

 R Universal gas constant 8.314 J·mol·K-1  

 T Body Temperature 300 K  

 F Faraday’s constant 96485 C·mol-1  

Dgluc 

Doxyg 

Diffusion coefficient of glucose 

Diffusion coefficient of oxygen 

7-10 m2·s-1  

2.13-(0.0092Ht)·10-9 

m2·s-1 

[23-25]  

[26-27] 

 Michaelis Menten constant for 

GOx 

1.82 mM  [28]  

KM_ Michaelis Menten constant for 

laccase 

3.28 mM  [29] 

kcat Catalytic rate constant of GOx 6.5 S-1 [30] 

kcat_l Catalytic rate constant of laccase 

Concentration of  Mox 

2.69 S-1

5 mM 

[31] 

Initial value

Eo
A Reference potential for anode -0.32 V  [31] 

Eo
C Reference potential for cathode 0.585 V  [31] 

σcarb Conductivity of glassy carbon 8000 S·m-1 [32, 33] 

σgluco Conductivity of glucose  

Density of blood     

10000 S·m-1

1060 kg m-3 

[34, 35] 

[36] 
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Viscosity of  blood                          0.005 Pa s [37] 

    Table 5.2. Constants and parameters for simulation modeling 

  The pressure variation in each cardiac cycle is considered with a simple trigonometry 

function (fluid structure interaction in a network of blood vessels model, COMSOL 

Multiphysics), plotted in Fig. 4, to maintain normal systolic/diastolic pressure variation of 

120/80 mmHg in the artery [38-39].  

5.4 Results and discussions 

5.4.1 Glucose concentration profile for HP orientation 

     Mass transport between microelectrodes has been investigated based on glucose 

concentration variation around electrodes in HP orientation. The glucose amount flowing 

in the artery changes at the inlet according to contraction and extraction of blood artery. 

To show the effect of varying amount of glucose, the EBFC is multiplied with glucose 

concentration at the artery inlet to consider continuously varying glucose flux in time 

shown in Fig 5(a) and 5(b) which are the point glucose concentration from the bottom of 

well between microelectrodes. The glucose concentration from the EBFC chip 

experiences a cyclic variation based on a trigonometry function. Ideally, glucose should 

interact with the total surface area of electrodes from top to bottom to fully utilize the 

biocatalysts immobilized onto them. However, the glucose reacts immediately with the 

top portion of the electrode where it diffuses first and the rest of glucose reacts gradually 

down to the bottom of the electrode. In comparison between an EBFC chip with holes 

and without holes, the lowest and highest concentration for chip with holes are 65 

mmol/L and 238 mmol/L while for without holes are 22 mmol/L and 162 mmol/L. It is 

inferred that glucose diffusion has been significantly improved in the chip with holes 
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Figure 4.4. Glucose concentration profile over time for (a) EBFC chip with hole and (b) 
without hole. (c) Comparison of total glucose surface concentration in one cyclic pressure 
change between two designs. 
 
5.4.2 Current density profile for HP orientation 

    In contrast to a 2-D battery, in which a uniform current density is naturally obtained 

over the surfaces of the cathode and anode, the current density in a 3-D EBFC is 

inherently non-uniform. The substrate will react with the biocatalysts immobilized on the 

top of the electrodes first and at the meantime diffuse and react along the electrode 

surface from top to bottom. The competition between higher redox reaction rate and 

lower diffusion rate causes non-uniform electron transfer throughout the electrode surface 

and consequently generates non-uniform current density from top to bottom of the 

electrode. Fig. 6 represent the current distribution along the surface from leftmost to 

rightmost electrode for EBFC chip without holes (Fig. 6a) and with holes (Fig. 6b). 

Because of cyclic pressure variation, the current density distribution varies over time as 

well. At time of 2s, 4s, 6s, 8s, 10s, etc., the current density is at the lowest while it 

reaches highest at time of 3s, 5s, 7s, 9s, etc. The current density is not uniform from the 

central to outer electrodes. The electrodes located at the circumference of a chip are 

having higher current density compared to those located in the center of the chip. The 

variation of the current density distribution around the single electrode is much higher in 

the chip without holes than that of chip with holes. In order to quantitively compare the 

uniformity of current density of two designs over the time, the integration of the total 

surface current density along the electrode surface at different time point has been studied 

in Table 5.3.  

Time (s) Total surface current density (10-2 Total surface current density (10-2 
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general, non-uniform currents result in poor utilization of the electrode materials, and are 

thus associated with lower cell efficiencies, reduced electrode stability due to non-

uniform stresses, and non-uniform heat dissipation. Therefore, the EBFC chip with holes 

is highly preferred in practical applications. 

5.4.3 Power density profile for HP orientation 

    One of the most important characteristics to examine in an EBFC is power density. In 

this work, simulation was conducted by incorporating the Nernst equation. Various 

external loads at the range of 5-500 kΩ are considered in the simulation in order to 

understand the power density-voltage relationship. As shown in Fig. 7, the power density 

for both designs of EBFC chip increases as the voltage gets higher and reaches a 

maximum. After reaching the maximum, increasing the voltage leads to a decrease in the 

power density. The EBFC chip with holes is observed to have the higher power density at 

around 160 µW/cm2 when the voltage is approximately 0.55 V than that of chip without 

holes. This performance of EBFC is adequate for operation of low-voltage CMOS 

integrated circuits. 

 

Figure 5.6. Power density vs. cell voltage for two designs in HP orientation.  
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improve 3-D microelectrode EBFC arrays design. From the simulation, more favorable 

design is obtained for HP and VP orientation, respectively. The power density for 3-D 

microelectrode EBFC arrays in blood artery reaches 160 µW/cm2 at 0.55 V in voltage in 

HP while 155 µW/cm2 at 0.58 V in voltage in VP. However, the biomechanical process 

and hemodynamic process are more complex when it comes to practical application, 

especially on the micro-scale level. More detailed research needs to be studied with 

biologists in order to reach the applicable level of the EBFCs as the functional power 

source for IMDs. 
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CHAPTER 6 

GRAPHENE/ENZYME ENCRUSTED THREE-DIMENSIONAL CARBON 
MICROPILLAR ARRAYS FOR MEDIATORLESS MICRO-BIOFUEL CELLS 

 
6.1 Introduction 

   Nowadays the undergoing miniaturization of implantable medical devices (IMDs), such 

as pacemaker, drug delivering pumps, neuro-stimulators, cochlear implants etc., requires 

the development of unconventional power source systems [1]. These devices should be 

capable of continuously operation for prolonged periods of time without external 

refueling or recharging while generating sufficient power output in a miniaturized size [2, 

3]. Among all the prospective alternatives as the future power source systems for IMDs, 

glucose based enzymatic biofuel cell (EBFC), where the electric power is converted from 

the redox reactions, show significant promise as theoretically they are able to operate 

indefinitely, given the abundance of glucose and oxygen in human body [4]. The EBFC 

consists of two bioelectrodes immobilized with two types of enzymes, respectively, 

which catalyze the oxidation of glucose at the anode and reduction of oxygen at the 

cathode [5]. Ever since the invention of the first biofuel cell by Yahiro et al [6], 

advancements have been achieved by using high surface area materials to increase the 

enzyme loading, chemical covalent immobilization to stabilize the enzyme and redox 

mediators to facilitate the electron transfer since the active site of enzyme is buried deep 

under the protein shell [7]. However, the immobilization of mediators usually involves 

complex procedures and leads to a drop in the theoretical open-circuit potential [7]. 

Besides, the leakage of mediators from the electrodes may result in toxicity considering 

that the EBFC is implantable in the human body [7]. To date, the main challenges in 

developing EBFCs are how to increase the power output and cell lifetime [8]. The search 
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for proficient immobilization techniques and novel electrode architectures to enable 

direct electron transfer (DET) has been targeted [7, 8].  

     The recent developments in nanotechnology have opened up new opportunities in 

enzyme immobilization at nanostructured interfaces for efficient electrocatalysis to 

diminish the usage of mediators in EBFC and still realize DET [9]. Nanomaterials such as 

carbon nanotubes, carbon nanoparticles, hollow carbon spheres, graphene, and 

mesoporous carbons have been used as conductive agents, which allow further increasing 

the surface area of the electrode without changing the geometric dimensions [10-16]. 

Graphene, a two-dimensional sheet of carbon atoms, with its excellent conductivity, high 

surface area and good mechanical stability, has attracted an enormous amount of attention 

[17]. On one hand, in the application of conventional fuel cells, graphene that acted as 

good anchoring sites for deposition of catalyst has led to the improvement of Pt catalyst 

performance and stability [18-20]. On the other hand, graphene has also shown to be 

particularly appropriate to establish electronic communication with biocatalyst such as 

redox enzyme in the bio-electrochemical application, since it can reach close proximity to 

the redox active sites to promote DET [21]. It can be integrated quite effectively with 

biocatalysts to fabricate networked electrode interfaces, where high loading of 

biocatalysts can lead to improved power output for EBFC [22]. Since 2010, several works 

on graphene based EBFC have been published [23-28]. Most of them used planer glassy 

carbon or metal thin film electrodes as current collectors, some of which can support 

certain low energy-consumable IMDs [25-28]. Previous studies on batteries with 3D 

microelectrodes have shown a 350% larger energy capacity as compared to traditional 

two-dimensional designs in the same areal footprint [29]. The ion transport distance for 

the 3D microelectrode based batteries during discharge is 3.5 times shorter than that in 
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this system combines top-down C-MEMS technology to fabricate the 3D micropillar 

arrays platform and bottom-up electrophoretic deposition (EPD) to deposit 

graphene/glucose oxidase (GOx) and graphene/laccase composites onto the 3D 

micropillar arrays based anode and cathode, respectively. EPD is a versatile method that 

has been successfully applied for the deposition of carbon nanotubes, graphite oxide, 

graphene as well as enzymes for electrochemical applications [50-52]. Particularly, the 

EPD method has a number of advantages such as high deposition rate, good thickness 

controllability, good uniformity and simple operation [53]. In this study, the co-

deposition of enzyme with graphene to form an enzyme/graphene network has been first 

investigated. For comparison, the bare C-MEMS based 3D micropillar arrays have been 

functionalized by Diazonium salt electrochemical reduction method [54-57], and then 

immobilized with glucose oxidase and laccase on anode and cathode, respectively. By 

comparing the EBFC performance of graphene/enzyme encrusted 3D micropillar arrays 

to bare 3D micropillar arrays, the graphene based EBFC generated a maximum power 

density of 136.3 µWcm-2 at 0.59 V, which is almost 7 times that of the maximum power 

density from bare carbon based EBFC.   

6.2 Experimental section 

6.2.1 Fabrication of 3D C-MEMS micropillar arrays 

   The experimental setup and details of the C-MEMS process used in this work has been 

reported previously [31-38]. Illustration of the typical C-MEMS fabrication procedure is 

shown in Fig. 1. In brief, the C-MEMS based 3D micropillar arrays were prepared by a 

two-step photolithography process followed by a pyrolysis step. In the first 

photolithography step, a two-dimensional circle (diameter of 8 mm) pattern as current 
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collector was firstly created using NANOTM SU-8 25. The photoresist film was spin-

coated onto a silicon oxide wafer (4” in diameter, (1 0 0)-oriented, n-type) at 500 rpm for 

12 sec and 3000 rpm for 30 sec by using a Headway researchTM photoresist spinner, 

followed by soft bake at 65 °C for 3 min and hard bake at 95 °C for 7 min on a hotplate. 

The baked photoresist was patterned with a UV exposure dose of 300 mJ cm-2. Post-

exposure bake was conducted at 65 °C for 1 min and 95 °C for 5 min on a hotplate. Next, 

second photolithography process was employed using NANOTM SU-8 100 photoresist to 

build cylindrical micropillar arrays on patterned circle. SU-8 100 was spin-coated at 500 

rpm for 12 sec and 1500 rpm for 30 sec by using a Headway researchTM photoresist 

spinner. The spincoated photoresist was then soft baked at 65 °C for 10 min and hard 

baked at 95 °C for 45 min in an oven. The exposure was done using a UV exposure dose 

of 700 mJ cm−2. Post-exposure bake was performed at 65 °C for 3 min and 95 °C for 10 

min in an oven. Then the sample was developed by NANOTM SU-8 developer 

(Microchem, USA) for 5-10 min to wash away the remaining unexposed photoresist 

followed by isopropanol rinsing and nitrogen drying. Finally, the resulting SU-8 

structures were pyrolyzed at 1000 °C for 1 h in a Lindberg alumina-tube furnace with a 

continuous flow at 500 sccm forming gas (95% nitrogen, 5% hydrogen) then naturally 

cooled down to room temperature. 

6.2.2 Construction of bare 3D micropillar arrays based EBFC 

   Step 1-functionalization: The modification of glassy carbon was conducted by the 

reduction of the diazonium salt. The 40 mM 4-(4’-nitrophenylazo) benzene diazonium 

tetrafluoroborate (Aldrich) dissolved in 1% sodium dodecyl sulfate (Aldrich) aqueous 

solution was prepared according to previously established procedures [55]. The 
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developed C-MEMS samples were placed in the newly prepared aqueous solutions for 4 

h under shaking. Electrochemical reductions were performed in a 0.1 M KCl (Aldrich) 

solution by cycling scan five times between 0 to -1.5 V versus Ag/AgCl at 50 mV/s using 

a multichannel potentiostat/galvanostat (VMP3, Princeton Applied Research). Step 2-

immoblization: the GOx (Aldrich) and laccase (Aldrich) (1.5mg/mL) were prepared in 

0.1 M N-hydroxysuccinimide (NHS, Aldrich) and 0.4 M 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC, Aldrich) to activate the carboxyl group. The 

immobilizations were conducted by placing the samples in the prepared enzyme solutions 

for 2 h at 37 °C in a humidified chamber. Cyclic voltammograms were measured by 

VMP3 to confirm the functionalization and immobilization. FTIR (JASCO FT/IR 4100 

spectrometer) was also used to analyse the functionalization of glassy carbon surface. The 

resulting bioanodes and biocathodes were connected with an external circuit for EBFC 

performance testing using a CHI 660C workstation. EBFC performance was tested in 100 

mM air saturated glucose in PBS (pH=7.4)  

6.2.3 Construction of graphene integrated 3D micropillar arrays based EBFC 

   EPD has been performed to integrate graphene and enzyme composite onto the 3D 

micropillar arrays surface. Graphene (1.5 mg/mL) and GOx (1.5 mg/mL) were first 

dispersed in water and then the resultant solution was sonicated for 1 h in order to 

fabricate the bioanode. Similar preparation was used for graphene and laccase dispersion 

for fabrication of the biocathode. Graphene/enzyme composites were then deposited by 

EPD with an applied DC voltage 10 V at a distance of 2 cm for 3 min. After the 

deposition, samples were dried at room temperature then kept at 4 °C to protect the 

enzyme from denaturisation before using. The morphology of the graphene/cabon 
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and laccase. The 4-(4’-nitrophenylazo) benzene diazonium tetrafluoroborate-a diazonium 

ion derivative is a highly reactive phenyl radical that can bind to glassy carbon surface 

irreversibly. After placing in diazonium salt aqueous solutions for 4 h, the 3D carbon 

micropillar arrays samples were conducted electrochemical reduction of nitro groups (-

NO2) to amino group (-NH2). Fig. 2(a) shows five repeated cyclic voltammograms of the 

nitro groups terminated glassy carbon surface in an aqueous 0.1 M KCl solution with a 

scan rate of 50 mVs-1. As the potential was brought negative, the nitro groups were 

reduced to amino groups at a potential of ~1.0 to -1.1 V, resulting in the first reduction 

peak in first reduction sweep of the cyclic voltammogram. As the potential went more 

negative, the reduction peak at -1.5 V was attributed to the hydrogen evolution peak of 

water. This is consistent with the results of previous research conducted on glassy carbon 

[55]. As the potential was brought positive, there was no corresponding oxidation peak to 

be observed, which indicated that the electrochemical reduction was irreversible and the 

amino groups cannot be easily re-oxidized. The consecutive four cyclic voltammograms 

were featureless with no characteristic reduction or oxidation peaks. It was demonstrated 

that the all the electro-active nitro groups were electrochemically reduced to amino 

groups during the first negative sweep of the potential. Fig. 2(b) presents the FTIR 

spectra of 3D carbon micropillar arrays (i) before the functionalization and (ii) after the 

functionalization. From (ii), the broad transmission peak centering at around 3300 cm-1 in 

the spectrum is assigned as amine N-H stretching vibration [58]. The presence of amine 

N-H bending vibration was signalled by the peak at around 1600 cm-1 and C-N stretching 

vibration was also observed by the peak at around 2340 cm-1 [59]. None of those 

characteristic peaks were observed in 3D carbon micropillar arrays before the 

functionalization. From both cyclic voltammogram and FTIR results, it can be concluded 
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high homogeneity and proper surface roughness onto both conductive 2D current 

collector and high respect ratio 3D micropillar. Fig. 3(b) presents the morphology of 

deposited graphene/GOx film on the top of the micropillar. The image suggests that small 

stacks of graphene layers with size around 0.5-1 µm were formed. As expected, the 

graphene maintained its fidelity even after EPD process and shape of stack indicated its 

ordered and soft texture. Furthermore, pores with dimension around several hundred nm 

between the stacks of graphehe layers were observed. It is indicated that the 3D 

graphene/enzyme network has been achieved by EPD process. These pores within the 

grapehene layers can improve the mass transport and the direct electron transfer from 

enzyme. Fig. 3(c) shows titled 60° view of the deposited graphene/GOx film. The 

thickness of the film was found to be around 4.6 µm. Uniformly stacked graphene sheets 

can be observed locally with porous structures, which can act as diffusion channels and 

facilitate easy penetration of mass transport species. From the SEM images, uniform 

stacks of graphene layers with porous multi-channel features have been formed by EPD 

process. Throughout the thickness of deposited film, there was almost no sign of heavily 

stacked graphene sheets. This developed 3D graphene/enzyme network is expected to 

exhibit excellent electrochemical performance for EBFC application. 

    The constructed 3D graphene based EBFC is shown in Fig. 1(b). Bioanodes and 

biocathodes were fabricated based on top-down C-MEMS and bottom-up EPD as 

described. GOx entrapped on graphene based anodes oxidizes the glucose to 

gluconolactone and generates electrons, which are transferred from anode to cathode. 

Then the laccase entrapped on graphene based cathode accepts the transferred electrons 

and reacts with oxygen to form water. In order to investigate the entrapment of GOx and 

laccase on anode and cathode the FTIR spectra have been studied in Fig. 4. Fig. 4 curve 
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(a) presents the pristine graphene on the substrate, in which there was no characteristic 

peak. After EPD deposition of graphene/laccase on cathode, numerous adsorption perks 

were observed as shown in Fig. 4 curve (b). The adsorption peak centering at 3310 cm-1 

is assigned as N-H stretching vibration, which is the characteristic peak for amino group 

from enzymes [58]. The peak at 2340 cm-1 is consistent with C-N stretching vibration 

[59]. The presence of N-H bending vibration was signalled by the peak at 1620 cm-1 [59]. 

The phenolic C-O peak at 1250 cm-1 was from carbonyl groups and peak at 1054 cm-1 is 

consistent with C-O stretching vibration [60]. The spectrum also shows the presence of 

epoxy C-O stretching at a peak of 970 cm-1 [61]. Similarly, the FTIR spectrum for EPD 

deposited graphene/GOx anode is also shown in Fig. 4 curve (c). The peaks indicated N-

H stretching vibration (3310 cm-1) and C-N stretching vibration (2340 cm-1) as well as all 

the C-O stretching vibration peaks were also observed. Besides, the 1730 cm-1 which is 

assigned to C=O stretching vibrations was for carboxylic group and C=C stretching 

vibration (1404 cm-1) was also observed [62]. As we know, the amino groups (-NH) and 

carboxylic groups (-COOH) are abundantly available in enzymes. Although the FTIR 

results cannot quantify the amount of enzyme, they clearly indicate the successful co-

deposition of the GOx and laccase with graphene on the 3D carbon micropillar arrays. 

6.3.3 Comparison of electrochemical performance and cell performance between bare 

and graphene based 3D carbon micropillar arrays 

To compare the electron transfer properties of the bioanodes and to verify the successful 

immobilization, the cyclic voltammograms were performed. Fig. 5a (i) and (ii) show the 

cyclic voltammograms obtained from bare 3D carbon micropillar arrays covalently 

immobilized with GOx and graphene/enzyme encrusted 3D carbon micropillar arrays, 
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the electrode surface than physical immobilization methods. In the case of graphene 

based EBFC, the enzyme and graphene were simple mixture deposited by EPD. Thus 

there are no stable chemical bonds between enzyme and graphene but only physical 

absorption immobilization. There are several reasons that could cause more decrease in 

power output for graphene based EBFC: 1) enzyme leaking into electrolyte; 2) enzyme 

denaturation in the graphene matrix; 3) enzyme agglomeration in the graphene matrix 

compared to uniform distribution of single layer of enzyme on bare carbon surface. 

Therefore, even though the performance of bare carbon based EBFC was much lower 

than graphene based EBFC, the chemical covalent immobilization of enzymes enabled 

EBFC to achieve better stability in cell performance over a period of time. Future work 

on developing and evaluating next generation EBFCs based on on-chip interdigital 

graphene encrusted C-MEMS arrays will be reported. 

6.4 Conclusions 

In this paper, fabrication of graphene-enzyme encrusted 3D carbon micropillar arrays for 

mediatorless micro-biofuel cells involving both top-down C-MEMS technology and 

bottom-up EPD has been demonstrated. The novelty of this design is to build graphene-

enzyme matrix on the 3D microstructures. The deposited graphene exhibited uniform 

morphology and excellent electrochemical properties. Moreover, successful evaluation of 

the probability of employing the developed graphene based micropillar arrays as a 

potential candidate for developing EBFC has been conducted. The graphene based EBFC 

generated a maximum power density of 136.3 µWcm-2 at 0.59 V, which is almost 7 times 

of the maximum power density from bare carbon based EBFC. 
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CHAPTER 7 

HIGH-POWER MICRO BIOFUEL CELLS BASED ON THREE-DIMENSIONAL 
CARBON MICROPILLAR ARRAYS OF REDUCED GRAPHENE 

OXIDE/CARBON NANOTUBE COMPOSITE 

7.1 Introduction 

Since the first successful implantation of the cardiac pacemaker in 1960, the market for 

implantable medical devices (IMDs) has been continuously expanding for surgical 

treatments ranging from hearing loss to neurological disorders [1-3]. In US the demand 

for IMDs is expected to increase 7.7 percent annually to $52 billion in 2015 and reach 

$73.9 billion by 2018, which urges the development of advanced miniaturized IMDs with 

micropower source systems [4]. The rigorous search for alternative power sources, 

imposed by economic and ecological concerns, has motivated researchers in finding 

green and efficient energy conversion sources. Enzymatic biofuel cells (EBFCs), are a 

subclass of fuel cells that employ enzymes to convert chemical energy into electricity, 

and have been touted as a potentially promising strategy for continuous power supply of 

IMDs requiring power in range of micro to milli watts [5]. EBFCs offer several 

advantages over conventional power sources including the use of renewable and non-

toxic biocomponents, high reaction selectivity, flexibility and availability of fuel, and the 

ability of operation under physiological conditions (human body temperature and near 

neutral pH) [6]. Over the last decade, the development of EBFCs has increased 

tremendously in the terms of enzyme immobilization and loading, power density and cell 

lifetime, etc [7-8]. However, despite all the strengths and possible applications of EBFCs, 

in order to achieve a qualified practical device, it is essential to consider some crucial 

factors when furthering the development of this power source system. One of the most 

fundamental concerns is that although enzymes are highly selective and efficient 
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catalysts, these biomolecules must be effectively immobilized onto an electrode surface 

to ensure retention of catalytic activity. Additionally, achieving high efficiency of 

electron transfer from the active site of the immobilized enzyme to the electrode surface 

is probably the most critical challenge when developing EBFCs.  

    Today, impressive achievements in nanoscience and nanotechnology have provided 

fascinating opportunities in biotechnology development. The new trends in EBFCs design 

include incorporating nanomaterials as the optimal environment to immobilize enzymes 

[9]. Graphene, the one-atom-thick planar sheet of sp2-bonded carbon atoms exhibits 

phenomenal mechanical, electrical and thermal properties, which have given it a stellar 

status in the scientific community. [10-11]. Of specific interest is oxygen-containing 

graphene, also referred to as graphene oxide (GO). In essence, GO is basically graphene 

decorated with oxygenated functional groups on both basal planes and edges. It is these 

functional groups that make GO such special since they can serve as sites for chemical 

modification or functionalization. This remarkable nanomaterial with great defects offers 

an ideal platform for the accommodation of various biomolecules through covalent 

bonds, which can solve the key issue in the fabrication of biofunctional electrodes for 

electrochemical applications. Recent studies have shown that GO can be used to 

covalently bind biomaterials such as bovine serum albumin, DNA and enzymes and it 

also exhibits excellent biocompatibility, enhanced electrochemical reactivity and electron 

transfer efficiency of biomolecules [12-15]. Meanwhile, the large effective surface area 

of GO can also provide a large number of active sites where high loading of biomolecules 

can lead to improved electron generation [16]. Owing to these specific advantages, GO-

based bioelectrodes have great potential for the development of high performance 

EBFCs.  
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    In order to further increase the surface area of electrode over the same footprint, 

previous studies have demonstrated the development of different three dimensional (3D) 

micro and nanostructures onto carbon microelectromechanical systems (C-MEMS) [16-

25]. The high aspect ratio and short transport distance of this 3D carbon platform 

exhibited excellent performance for various electrochemical applications such as lithium-

ion batteries, supercapacitors, biosensors and biofuel cells [26-36]. Recently, we have 

successfully developed an EBFC based on graphene/enzyme encrusted 3D micropillar 

arrays [36]. A maximum power density of 136.3 µWcm-2 was obtained at 0.59 V, which 

is the highest performance among the reported works on graphene based EBFC since 

2010 [Table S1]. However, the physical absorption immobilization in the system led to 

the stability issue of the developed EBFC. Therefore, in order to increase the longevity of 

the cell system, substitution of graphene for GO in the fabrication of bioelectrodes to take 

the advantage of functionality of GO and covalent bonding with enzymes is highly 

necessary. Furthermore, the performance of GO-based EBFC may be hindered by the fact 

that these nanosheets tend to aggregate and restack and the actual accessible electrode 

surface area is much smaller than the theoretical value. From our previous study on GO-

based ultra-high power micro-supercapacitors [30], the effective strategy to overcome the 

aggregation behavior is the addition of one-dimensional (1D) nanomaterials carbon 

nanotubes (CNTs) as spacers between nanosheets. CNTs not only prevent restacking of 

graphene sheets by acting as nanospacers but also add to conductivity of the GO.  

    Herein we present an enzymatic micro-biofuel cell based on CNT (1D)/GO (2D) 

hybrid nanomaterials in the form of 3D carbon micropillar arrays. The fabrication 

methods of this study associate top-down C-MEMS technology to build to 3D micropillar 

arrays platform with bottom-up electrophoretic deposition (EPD) to co-deposit 
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enzyme/nanomaterials composites onto the 3D micropillar arrays. EPD is a versatile 

method that has been successfully applied for the co-deposition of graphene with enzyme 

onto 3D micropillar arrays in our previous research [36]. In this study, GO and CNTs 

composite in the weight ratio of 9:1 has been firstly dispersed in deionized water with 

enzymes for covalent bonding, then followed by EPD. It was confirmed that EPD could 

be utilized for simultaneous deposition and reduction of GO to reduced graphene oxide 

(rGO). In order to demonstrate the effects of the addition of CNTs between GO 

nanosheets, we have fabricated sole GO-based 3D micropillar arrays for comparison. 

Upon comparison, the rGO/CNTs based EBFC generated almost twice the maximum 

power density as rGO based EBFCs. In addition, on the basis of our prototype design of 

an EBFC chip [37], the simulation modeling utilizing COMSOL Multiphysics based on 

this study has been proposed. Two modules have been applied to obtain the maximum 

theoretical cell performance: 1) diffusion module to incorporate the mass transport and 

enzymatic kinetics; 2) conductive module to integrate concentration and potential. The 

parameters and constants have been either extracted from the experiment data or 

considered under the same circumstances. By comparing both experimental and 

theoretical results, the efficiency of experimental rGO/CNTs based EBFC reached 71.1% 

for theoretical cell performance.   

7.2 Methods  

Chemicals. Two negative photoresists: NANOTM SU-8 25 and SU-8 100 and SU-8 

developer were purchased from Microchem. GOx from Aspergillus niger (100 U mg-1 

solid), laccase form Trametes versicolor (20 U mg-1 solid) and glucose were purchased 

from Sigma-Aldrich and used without further purification. Glucose was prepared in 

phosphate buffer solution (pH=7.4). Single layer GO (0.7-1.2 nm thickness and 300-800 
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nm dimension) and multi walled CNT (30-50nm) were purchased from CheapTubes, Inc. 

All aqueous solutions were prepared in deionized water.  

Instrumentation. The C-MEMS fabrication was performed using a Headway researchTM 

photoresist spinner, OAI 800 mask aligner and Lindberg alumina-tube furnace. The 

morphology of the microstructures was investigated using JOEL 6335 FE-scanning 

electron microscopy (SEM). FTIR (JASCO FT/IR 4100 spectrometer) was used to 

analyze the functionalization of carbon surface.Cyclic voltammograms were measured by 

a multichannel potentiostat/galvanostat (VMP3, Princeton Applied Research). The 

resulting bioanodes and biocathodes were connected with an external circuit for EBFC 

performance testing using a CHI 660C workstation. The simulations have been conducted 

by utilizing COMSOL Multiphysics 4.3b commercial software (license No. 1023246). 

Briefly, the C-MEMS based 3D micropillar arrays were prepared by a two-step 

photolithography process followed by a pyrolysis step. In the first step, a 2D sphere 

(diameter of 8 mm) pattern as the current collector was formed. The NANOTM SU-8 25 

photoresist was spin-coated onto a silicon oxide wafer (4” in diameter, (1 0 0)-oriented, 

n-type) at 500 rpm for 12 sec and 3000 rpm for 30 sec, followed by soft bake at 65 °C for 

3 min and hard bake at 95 °C for 7 min on a hotplate. The photoresist film was then 

patterned under a UV exposure dose of 300 mJ cm-2, followed by post-exposure bake at 

65 °C for 1 min and 95 °C for 5 min on a hotplate. Second photolithography step was 

conducted using NANOTM SU-8 100 photoresist to construct cylindrical micropillar 

arrays on patterned circle. The photoresist was spin-coated at 500 rpm for 12 sec and 

1500 rpm for 30 sec followed by soft baked at 65 °C for 10 min and hard baked at 95 °C 

for 45 min. The exposure was conducted under a UV exposure dose of 700 mJ cm−2. 

Post-exposure bake was done at 65 °C for 3 min and 95 °C for 10 min. The sample was 
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main reasons of using EPD process to is to seamlessly deposit nanomaterials/enzyme 

composite thin film simultaneously, as well as with proper surface roughness and good 

homogeneousness on both conductive 2D current collector and high respect ratio 3D 

micropillar arrays as shown from Fig 2(a). In order to obtain the thickness of 

nanomaterials/enzyme composite thin film, the cross-sectional views of rGO/GOx and 

rGO/CNTs/GOx have been investigated and shown in Fig 2(b) and Fig 2(c), respectively.  

Fig 2 (b), a 35° tilted view from the cross-section of rGO/GOx thin film peeled from C-

MEMS 2D current collector layer, showed the local folding and non-uniform stacking of 

the rGO layers. The thickness of the film was found to be around 3.7 µm. Several to 

hundreds of stacked graphene nanosheets can be observed locally with extended irregular 

porous structures. In addition, in order the investigate the morphology of 

nanomaterials/enzyme composite thin film on the 3D microelectrode arrays, the top view 

of co-deposited rGO/GOx film on the top of one 3D micropillar is shown (inset in Fig. 

2(b)). The small stacks of rGO nanosheets with micro-sized wrinkles that are possibly the 

result of GO bending during the EPD process have been observed. As expected, the rGO 

maintained its fidelity and the firm shape of stack indicated its soft texture. Furthermore, 

pores with dimension around several hundred nm between the stacks of graphehe layers 

were also observed. However, the heavily stacked rGO nanosheets would inhibit the 

diffusion of mass transport species into the rGO film and hinder the electron transfer 

efficiency from the enzyme to the electrode. In order to avoid the rGO restacking, the 

10%wt of 1D CNTs was added to 90% wt 2D rGO and the mixture was deposited by 

EPD under the same condition. The 40° tilted view from the cross-section of 

rGO/CNTs/GOx thin film on C-MEMS 2D current collector layer is shown in Fig. 2(c). It 

clearly showed uniformly packed rGO nanosheets with the appearance of CNTs between 
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ability of GO as electrically active materials. Thus the reduction of GO to rGO is highly 

desired. The studies of the surface chemistry of deposited films with Fourier Transform 

Infrared Spectroscopy (FTIR) showed that the GO has been reduced to rGO during the 

EPD process. The FTIR spectra of GO before and after deposition are shown in Fig. S1. 

The broad adsorption peak centering at around 3310 cm-1 in the spectrum of GO was 

assigned to be isolated hydroxyl groups [38]. Water, which signals an H-O-H bending at 

1635 cm-1, was observed [38]. The existence of -CO2 was confirmed by the peak at 2300 

cm-1. The peak at 1054 cm-1 was consistent with C-O stretching vibration. The presence 

of phenol and carboxylic acid groups were signaled by peak at 1222 cm-1 and 1726 cm-1, 

respectively [38]. According to the structural model of GO, these functional groups are 

existed on the periphery of GO nanosheets. After the EPD process, the intensities of 

oxygen functionalities and water were significantly weakened. The spectrum of EPD-

rGO exhibited mainly peaks originating from C-O and C=O stretching. The FTIR 

analysis demonstrated that the GO has been effectively reduced to rGO during the EPD 

process.  

   In order to investigate the immobilization of GOx and laccase on anode and cathode, 

respectively, the FTIR spectra have been studied in Fig. 2 (d). Fig. 2 (d)(i) presented 

rGO/CNTs on the micropillar, in which there was no obvious characteristic peak. After 

EPD deposition of rGO/CNTs/laccase on biocathode, various adsorption perks were 

observed as shown in Fig. 2 (d)(ii). The adsorption peak centering at 3310 cm-1 was 

assigned as N-H stretching vibration, which is the characteristic peak for amino group 

from enzymes [39]. The peak at 2340 cm-1 was consistent with C-N stretching vibration 

indicating covalent bonds between enzyme and rGO. The 1730 cm-1 assigned to C=O 

stretching vibrations was from carboxylic group and C=C stretching vibration (1404 cm-
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1) was also seen [38]. The presence of N-H bending vibration has been signaled by the 

peak at 1620 cm-1. The phenolic C-O peak at 1250 cm-1 was from carbonyl groups and 

peak at 1054 cm-1 was from C-O stretching vibration [38]. The spectrum also showed the 

presence of epoxy C-O stretching at a peak of 970 cm-1. The FTIR spectrum for EPD 

deposited rGO/CNTs/GOx bioanode was also studied shown in Fig. 2 (d)(iii). The similar 

characteristic peaks were observed as well. As we know, the amino groups (-NH2) and 

carboxylic groups (-COOH) abundantly exist in GOx and laccase. Therefore, FTIR 

results clearly indicated that the successful immobilization of the enzymes with 

rGO/CNTs composite on the 3D carbon micropillar arrays.  

In order to calculate the Michaelis-Menten constant (KM) of GOx on the developed 

rGO/CNTs/GOx bioanode, which is relative to enzymatic affinity and ratio of 

microscopic kinetic constant, the current–time relationship of the rGO/CNTs/GOx 

bioanode on additions of glucose at an applied potential of 0.05 V was investigated. The 

results showed that the bioanode could respond very rapidly to a change in the glucose 

concentration (Fig. 3b).The response displayed a linear glucose concentration range from 

0.02 to 7.24 mM. Based on the slope, the KM of GOx after fabrication was calculated to 

be 2.1 mM according to the Lineweaver-Burk equation [56]. The resulted KM is larger 

than that of free enzyme (1.8 mM) which means GOx is less active after EPD on the 

microelectrodes. However, the result KM is much smaller than the average published KM 

of GOx after different immobilization methods [45-48]. It is suggested that enzyme after 

EPD based immobilization could remain comparatively active. To compare the electron 

transfer properties of the bioanodes and biocathodes and to verify the successful 

immobilization, the cyclic voltammograms were performed. Fig. 3a (i) and (ii) show the 

cyclic voltammograms obtained from rGO/GOx and rGO/CNTs/GOx based micropillar 
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In order to predict the performance of the developed rGO/CNTs/enzyme based EBFCs, a 

detailed modeling of the EBFC system has been conducted by using COMSOL 

Multiphysics, which solves partial differential equations (PDEs) by finite element 

techniques (Fig 4a). Two modules have been applied: 1) diffusion module to incorporate 

the mass transport and enzymatic kinetics; 2) conductive module to integrate 

concentration and potential.  

    Mass transport is investigated based on glucose and oxygen diffusion around 

electrodes in microelectrode array. Ideally, glucose should interact with the total surface 

area of electrodes from top to bottom to fully utilize the enzymes immobilized onto them. 

However, the glucose reacts immediately with the top portion of the electrode where it 

diffuses first and the rest of glucose reacts gradually down to the bottom of the electrode. 

From the concentration profile in Fig 4b, non-uniformity of the concentration of glucose 

along the surface of electrode was observed. There was a decrease in the glucose 

concentration inside the well from the top to bottom of the electrode. The competition 

between higher enzyme reaction rate and lower diffusion rate causes glucose depletion 

throughout the electrode surface and consequently generates non-uniform glucose 

concentration. Since the concentration gradient on the electrode surface is influenced by 

the enzyme kinetics defined by the Michaelis-Menten reaction rate Equation [2], the 

concentration gradient from top to bottom of electrode surface leads to the relevant 

enzyme reaction variation in the enzyme layer shown in the reaction rate in Fig 4b. From 

the simulation results the enzyme reaction rate decreases from the top to bottom along the 

surface of microelectrodes, which is consistent with the concentration gradient results. It 

is also observed that the outer surfaces of the microelectrodes experience larger enzyme 

reaction rates in the enzyme layer due to the diffusion. In addition, the noticeable 
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maximum enzyme reaction rate at the top edges of the microelectrodes results from the 

edge effect of the electrode design. The cell performance of this EBFC was simulated and 

shown in Fig 4(b). The substrate will react with the enzymes immobilized on the top of 

the electrodes first and at the meantime diffuse and react along the electrode surface from 

top to bottom. The competition between higher enzyme reaction rate and lower diffusion 

rate causes non-uniform electron transfer throughout the electrode surface and 

consequently generates non-uniform current density. The current density is relatively low 

from the bottom of the electrode and increase in the higher portion of the electrode. It is 

observed that the current density maximum occurs on the top corner of each electrode. 

The integration of the current density along the electrode surface has been evaluated 

according to our previous work to calculate power density, one of the most important 

characteristics to examine EBFC performance. In this work, simulation was conducted by 

incorporating the Nernst equation as well. Various external loads at the range of 500Ω–

500 kΩ are considered in the simulation in order to understand the power density-voltage 

relationship. As shown in Figure 5, the power density for this EBFC increases as the 

voltage gets higher and reaches a maximum. After reaching the maximum, increasing the 

voltage leads to a decrease in the power density. The maximum power density is around 

272 μW/cm2 when the voltage is approximately 0.58 V.  

The EBFC devices were constructed using rGO/enzyme and rGO/CNTs/enzyme 

bioelectrodes, respectively as shown in Fig 5a. Evaluations were conducted by varying 

the external resistors between bioanode and biocathode. The current voltage behavior at 

various external resistors of rGO/enzyme based EBFC has been shown in Fig. 5(a). The 

open circuit voltage and the maximum current density of were found to be 0.81 V and 

431.2 µAcm-2. Similarly, the rGO/CNTs/enzyme based 3D carbon micropillar arrays 
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dropped 35.5%. This performance of EBFC is adequate for operation of low-voltage 

CMOS integrated circuits. 

7.4 Discussion 

The novelty of this study is to combine the 1D and 2D carbon-based materials in the form 

of 3D microstructures to develop high performance micro EBFCs. In this paper, 

fabrication of rGO/CNTs encrusted 3D carbon micropillar arrays for micro-biofuel cells 

involving both top-down C-MEMS technology and bottom-up EPD has been 

demonstrated. The resulted new structure exhibited the following desirable 

characteristics: 1) conformal deposition with ordered 3D rGO/CNTs structures; 2) high 

surface area with active surfaces; 3) feasibility of embedding other catalysts for 

electrochemical reactions. The deposited rGO/CNTs thin film presented uniform 

morphology and the resulted bioelectrodes exhibited excellent electrochemical properties. 

One of the challenges in this research is to quantify the enzyme within rGO/CNTs layer 

because the amount of enzyme deposited by EPD is difficult to measure. Instead, the 

apparent Michaelis menten constant KM was calculated as an inverse measure of the 

substrate's affinity for the enzyme. A smaller KM indicates higher affinity, meaning that 

the enzyme reaction rate is greater. In this study, the apparent KM of GOx after 

immobilization was 2.1 mM, which is not much lower than KM of free GOx. Moreover, 

the evaluation of the developed rGO/CNTs based 3D micropillar arrays as a potential 

candidate for developing EBFC has been conducted. The rGO/CNTs based EBFC 

generated a maximum power density of 196.04 µWcm-2 at 0.61 V, which is about 2 times 

of the maximum power density from bare sole rGO based EBFC. Moreover, the 

rGO/CNTs based EBFC is believed to have highest performance among the graphene 

based EBFCs. In addition, the cell performance measurements were conducted within the 
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same rGO/CNTs based EBFC system after 7 days and the power output dropped 35.5%. 

Compared with our previous work on graphene based EBFC, the stability of rGO/CNTs 

based EBFC has been improved. The prolonged life might result from the covalent 

immobilization formed between the functional groups of GO and enzymes.  

    Furthermore, detailed and rigorously validated simulations have been used in 

conjunction with experimental studies in order to evaluate the efficiency of this practical 

EBFC system. Modeling has been incorporated to obtain the theoretical maximum 

performance from the same system by coupling with geometrical arrangement and 

reaction mechanisms. From the comparison, the rGO/CNTs based EBFC has reached 

71.1% of the theoretical performance. The difference in performance between simulation 

and experiment has arisen several concerns. First, even though the EPD is known to form 

a uniform layer on different substrates, however, it was observed that some 3D 

microelectrodes were not fully covered. Thus, the uniform boundary condition in the 

nanomaterials layer could result higher cell performance in simulation results. Second, 

the distribution of enzyme in the rGO/CNTs layer is not predictable during EPD while 

the subdomain condition in simulation assumed evenly distributed. Third, the diffusion of 

fuel in the enzyme/rGO/CNTs layer is also not uniform in the experiment, but in the 

simulation, it has constant diffusion coefficient. Therefore, although the simulation is a 

useful tool in the pre-evaluation of actual systems, there remain different limitations in 

every case.   

    From the published performance for micro EBFCs, Mano et al. reported a high-

performance EBFC generating 740 µWcm-2. However, the single carbon nanofibre was 

used in this study and the total power could be a concern. Even though such EBFCs 

exhibit a high power density, they are not designed for the practical applications. The 
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novel microstructure in this study, instead, has integrated nano-enabled micro on-chip 

system, which can be suitable for powering IMDs.  
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CHAPTER 8 

SUMMARY AND FUTURE WORK  

8.1 Summary  

Modeling could play a vital role in optimizing the design of increasingly sophisticated 

devices, taking into account various factors regarding mass transport, electron transfer, 

and reaction kinetics. The prototype design of an EBFC chip, having 3D intedigitated 

microelectrode arrays was proposed to obtain an optimum design of 3D microelectrode 

arrays for C-MEMS based EBFCs. I have developed a detailed modeling on the effect of 

1) dimensions of microelectrodes, 2) spatial arrangement of 3D microelectrode arrays, 3) 

geometry of microelectrode on the EBFC performance based on COMSOL Multiphysics, 

which solves partial differential equations (PDEs) by finite element techniques. Two 

modules have been applied: 1) diffusion module to incorporate the mass transport and 

enzymatic kinetics; 2) conductive module to integrate concentration and potential. To 

optimize the performance of the EBFCs, numerical simulations have been performed for 

cylindrical electrodes with various electrode heights and well widths in terms of mass 

transport of glucose, enzymatic reaction rate, current density and open circuit output 

potential. In addition, to find out potential long lasting electrode design, four different 

geometries (rectangular, triangular, tapered, semi-elliptical) were implemented in order to 

obtain a more uniform current density along the electrode.  

    Until now, majority of the EBFCs research have been focused on in vitro experiments 

by mimicking physiological conditions. However, additional complications may arise 

when an EBFC chip is placed inside a blood artery, such as implantation process, the 

stability of chip inside an artery and the clotting of the blood, etc. Ideally, the EBFC chip 

should be placed in a manner that it would not obstruct the blood flow and it should not 
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result in substantial pressure drop inside an artery. In order to investigate the performance 

of an EBFC, behavior of an EBFC chip performance inside an artery has been studied. I 

applied COMSOL Multiphysics software to analyze mass transport for different 

orientations of an EBFC chip inside a blood artery. Two orientations: horizontal position 

(HP) and vertical position (VP) have been analyzed. The objective of this research is to 

further investigate diffusion phenomenon of glucose, output potential, current density and 

power density of the EBFC chip in the blood artery. To improve the performance of the 

EBFCs in the horizontal position, the EBFC chip with holes is preferred. In the case of 

vertical position, optimized cell performance was obtained when four cathodes surround 

each anode. 

    Furthermore, two-dimensional graphene is a promising material candidate for high 

performance enzymatic biofuel cell (EBFC). The work has integrated graphene/enzyme 

onto three-dimensional (3D) micropillar arrays in order to obtain efficient enzyme 

immobilization, enhanced enzyme loading and facilitate direct electron transfer. The 

fabrication process of this system combines top-down carbon microelectromechanical 

systems (C-MEMS) technique to fabricate the 3D micropillar arrays platform and 

bottom-up electrophoretic deposition (EPD) to deposit the graphene/enzyme onto the 

electrode surface. The amperometric response of the graphene-based bioelectrode 

exhibited excellent electrochemical activity, which indicated the successful co-deposition 

of graphene with the enzymes. The developed 3D graphene/enzyme network based EBFC 

generated a maximum power density of 136.3 μWcm-2 at 0.59 V, which is almost 7 times 

of the maximum power density of the bare 3D carbon micropillar arrays based EBFC. 

    Finally, miniaturized self-contained enzymatic biofuel cells with high cell performance 

possess the ability to enable a new generation of minimally invasive implantable medical 
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devices in vivo studies. A novel method for fabricating micro-biofuel cells based on 

three-dimensional carbon micropillar arrays with reduced graphene oxide and carbon 

nanotube composite was proposed. The fabrication process of this system combines top-

down carbon microelectromechanical systems (C-MEMS) technique to fabricate the 3D 

micropillar arrays platform and bottom-up electrophoretic deposition (EPD) to deposit 

the reduced graphene oxide (rGO)/carbon nanotubes (CNTs)/enzyme onto the electrode 

surface. Theoretical modeling of this EBFC system has also been conducted to obtain the 

cell performance efficiency of experimental work. Without the use of thermal or chemical 

based reduction methods, GO nanosheets have been readily reduced to rGO during the 

EPD process. The developed rGO/CNTs based EBFC generated twice the maximum 

power density of rGO based EBFC. Through a comparison of experimental and 

theoretical results, the cell performance efficiency is noted to be 67%. 

8.2 Future Scope of the Research  

A few years ago, one could say that the applicability of the enzymatic biofuel cell as an 

alternative energy source was questionable or a dream that would be difficult to come true. 

Rapid development on EBFCs has been achieved in the past decade with the arised demands 

for reliable power supplies for implantable medical device. It has shown particular 

advantages over conventional batteries because of the specific biocatalysts and the possibility 

of miniaturization. However, these systems still need to meet the requirements of practical 

commercial application. Significant improvements in terms of enzyme immobilization, power 

density, stability, cost of the employed materials, and issues related to the electron transfer 

between enzymes and electrode surfaces still need to be achieved. Over the last years, there 

have been many outcomes both in terms of mediated and direct electronic connection 

between enzymes and electrode surfaces. These efforts have increased the amount of research 



   118

describing enhanced electron shuttle through different electrode surfaces. Moreover, 

elegantly designed bioelectrodes have also been reported to enable direct electrical 

connection between several enzymes and solid supports. 

    To achieve higher power density output, the use of nanomaterials has emerged as an 

interesting strategy to obtain high power devices. Besides, in terms of protein engineering, 

despite the progress seen in the past years in enzymatic biofuel cells using mutant enzymes 

have been achieved, challenges still exist in this field. Fundamental studies on protein 

structure-function relationships are still necessary to achieve better electron transfer and 

substrate conversion at electrode surfaces. Moreover, standardizing stability and operation 

tests is crucial to obtaining consistent data on enzymatic activity retention over long periods. 

Therefore, in the future, besides investigating performance parameters researchers of 

enzymatic biofuel cells must also consider interface engineering; i.e., they must evaluate the 

prepared biomaterials in prototype devices, to better visualize them under operational 

conditions. 

    Finally, considering implantable technology, this area has witnessed many advances, 

including the promising results in terms of the generated current density. The in vivo use of 

enzymatic biofuel cells still requires further investigation, especially with regard to 

operational stability tests, to attend to the desirable durability.  
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