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ABSTRACT OF THE DISSERTATION 

A NOVEL METHOD FOR RAPID AND SELECTIVE EXTRACTION OF MALE DNA 

FROM RAPE KITS USING ALKALINE LYSIS AND PRESSURE CYCLING 

TECHNOLOGY (PCT) 

by 

Deepthi V. Nori 

Florida International University, 2014 

Miami, Florida 

Professor Bruce McCord, Major Professor 

There is an increasing demand for DNA analysis because of the sensitivity of the 

method and the ability to uniquely identify and distinguish individuals with a high degree 

of certainty. But this demand has led to huge backlogs in evidence lockers since the 

current DNA extraction protocols require long processing time. The DNA analysis 

procedure becomes more complicated when analyzing sexual assault casework samples 

where the evidence contains more than one contributor. Additional processing to separate 

different cell types in order to simplify the final data interpretation further contributes to 

the existing cumbersome protocols. The goal of the present project is to develop a rapid 

and efficient extraction method that permits selective digestion of mixtures.  

           Selective recovery of male DNA was achieved with as little as 15 minutes lysis 

time upon exposure to high pressure under alkaline conditions. Pressure cycling 

technology (PCT) is carried out in a barocycler that has a small footprint and is semi-

automated. Typically less than 10% male DNA is recovered using the standard extraction 

protocol for rape kits, almost seven times more male DNA was recovered from swabs 
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using this novel method. Various parameters including instrument setting and buffer 

composition were optimized to achieve selective recovery of sperm DNA. Some 

developmental validation studies were also done to determine the efficiency of this 

method in processing samples exposed to various conditions that can affect the quality of 

the extraction and the final DNA profile.  

          Easy to use interface, minimal manual interference and the ability to achieve high 

yields with simple reagents in a relatively short time make this an ideal method for 

potential application in analyzing sexual assault samples. 
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CHAPTER I: FORENSIC DNA ANALYSIS 
 

A. History and technology 

          Crime scene investigators abide by Edmond Locard’s dictum, “every contact 

leaves a trace”, when investigating a crime scene because physical evidence is extremely 

crucial in recreating events that transpired [57]. Forensic science deals with the collection 

and examination of evidence to gather information. The application of scientific 

knowledge to understand the cause of a fatality dates back to as early as the time of Julius 

Cesar when his physician determined that only one of his wounds was fatal [134]. One of 

the earliest descriptions of analysis done to determine the kind of weapon used to murder 

a person was given in a Chinese book titled Hsi DuanYu (the Washing Away of Wrongs) 

written by Song Ci in 1248 A.D. The book demonstrated the application of medical 

knowledge towards solving crimes [11]. Though scientific principles have been applied 

to criminal investigations throughout history, it was not until the last century that the 

discipline of forensic science took an identity of its own with fingerprint classifications, 

DNA profiling, toxicology, ballistics, trace evidence analysis and blood spatter analysis 

each carving its own niche. Development of the Henry classification system for 

fingerprint analysis in early 1900s and the discovery of blood typing from dried 

bloodstains by Leone Lattes in 1915 became useful tools for crime scene 

investigations. Dr. Calvin Goddard invented the comparison microscope during the 1920s 

that allowed for comparative analysis of bullets and shell casings leading to the 

development of forensic ballistics [120]. The late 1980s and 1990s saw the development 

of DNA profiling, and the establishment of DNA databases such as CODIS, which can be 
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used for comparison of DNA profiles recovered from crime scenes and suspects [25]. In 

part as a consequence of shows like CSI: Crime Scene Investigation, even a layman is 

aware of the probative value of DNA testing in criminal investigations. Following its 

discovery in 1984 by Sir Alec Jeffreys, DNA fingerprinting has become the most integral 

element of a forensic investigation [67]. Within two years of its discovery, DNA profiling 

was successfully used in a criminal conviction [32]. DNA profiling identifies genetic 

variations that make each person unique, so it is often referred to as DNA fingerprinting.  

          Deoxyribonucleic acid (DNA) is present in almost every nucleated cell in the body 

except mature red blood cells and it is present in a wide variety of samples such as blood, 

saliva, semen, hair, bone, teeth, and urine. The genetic material of humans is packaged 

into 23 pairs of chromosomes in each cell (except for sex cells). One chromosome in each 

pair comes from the father and the other from the mother. Sex chromosomes play an 

important role in forensic DNA testing because the presence of XY sex chromosomes 

indicates a male and the presence of XX chromosomes indicates a female.  

          Nucleotides, the basic building blocks of DNA, are composed of a nitrogenous 

base- adenine (A), guanine (G), thymine (T) or cytosine (C), a deoxyribose sugar 

molecule and a phosphate group [132]. The nucleotide sequence is 99.7% identical 

between any two individuals and the remaining 0.3% variation is used to distinguish one 

person from the other. Examining these polymorphic regions of the genomic DNA can 

generate a profile unique to that individual. DNA profiling has numerous applications 

ranging from criminal law, identification of human remains, determination of paternity 

and in diagnosis of certain genetic disorders [32].  
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          The first breakthrough that paved way for DNA testing was the discovery of 

restriction fragment length polymorphism (RFLP) analysis by Dr. Ray White and Dr. 

Arlene Wyman [141]. They discovered that DNA molecule can be cut using restriction 

enzymes at specific recognition sites and then separated the fragments on the basis of 

size. These restriction enzymes, also called as restriction endonucleases, are harvested 

from bacteria and cleave the DNA molecule at a specific sequence of nucleotides. For 

example, the bacterium Escherichia coli produces an enzyme named EcoRI that cuts 

DNA wherever it encounters the sequence GAATTC [3]. The cut is made between the 

adjacent G and A. Since no two individuals have identical DNA, the length of the 

fragments produced with restriction enzymes is variable between individuals.  

          In 1985, Sir Alec Jeffreys at University of Leicester, UK, discovered regions of 

DNA where the same sequence was repeated end to end and these regions were observed 

to be of variable lengths between two individuals. These fragments, referred to as 

variable number of tandem repeats (VNTR), are large and have a repeat size composed of 

hundreds of nucleotides. Dr. Jeffreys developed a multi-locus probing (MLP) technique 

using RFLP technology, which allows visualization of more than one variable region. In 

the MLP method, a DNA fragment is first digested into small pieces using restriction 

enzymes. The digested DNA fragments are separated on the basis of their size, through a 

process known as electrophoresis in which agarose gel acts like a sieve and allows 

smaller fragments to migrate faster than larger fragments upon the application of an 

electric field [67]. The migration pattern is visualized through a process called Southern 

Blotting where the bands are transferred onto a nylon membrane and hybridized with 

probes. Probes are DNA sequences complementary to the VNTRs, tagged with a 
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radioactive label or a chemiluminescent compound. Upon exposure to X-ray film, 

fragments of DNA bound to the probe appear as dark bands on the film. (Figure 1). Since 

evidence from a crime scene typically contains DNA from more than one individual, Dr. 

Jeffreys developed single-locus probes to simplify the interpretation of complex patterns 

observed with multi-locus approach. The pattern of restricted DNA was used to identify 

individuals based on the unique band patterns and was referred to as DNA fingerprinting 

[67]. 

         

 
Figure 1. An overview of a DNA fingerprinting process using VNTR/RFLP analysis. 
DNA is digested with restriction endonucleases and the fragments are separated by 
electrophoresis. These fragments are transferred onto a nylon membrane and hybridized 
with a radioactive probe. DNA typing results appear as dark bands and are visible upon 
exposure to X-ray film. Adapted from How stuff works website. 
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           Deoxyribonucleic acid (DNA) fingerprinting was used in a criminal investigation 

for the first time in 1986. It resulted in the exoneration of an innocent man implicated in 

two rape-murders that occurred in 1983 and 1986 in Leicestershire, UK and conviction of 

the perpetrator. Although accurate and reproducible, DNA fingerprinting has several 

drawbacks such as laborious protocols, use of harmful reagents and the necessity for a 

large amount of DNA sample [30]. 

          Around the same time, another important discovery was taking place across the 

pond in the United States of America that revolutionized the field of molecular biology 

and forensic science by addressing all the limitations of RFLP analysis. Kary Mullis 

conceived the idea for polymerase chain reaction (PCR) in 1983 that led to more sensitive 

and rapid analysis of DNA [87]. The evidence obtained from a crime scene is usually 

degraded or available in small quantities, which made the use of RFLP analysis futile 

until the advent of PCR technology. Multiple copies of a specific DNA sequence can be 

obtained in a relatively short time with polymerase chain reaction. The first PCR-based 

forensic assay was developed to detect sequence variation at the human leukocyte antigen 

(HLA) locus, DQ-Alpha that could distinguish six variations in the sequence [17]. In 

order to improve the discrimination power, more loci were incorporated into the assay 

and marketed as Polymarker kit that could coamplify five other loci DNA located on 

human chromosomes 4, 7, 11, and 19 [117]. 

          The next development in DNA testing came in the form of PCR amplification of 

variable number tandem repeat (VNTR) polymorphisms that are relatively short. 

Referred to as amplified fragment length polymorphism (AmpFLP), one of the popular 

VNTR loci used in crime laboratories was D1S80 present on chromosome 1 and 
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containing a 16 nucleotide sequence which is repeated between 16 and 40 times [19]. 

AmpFLP markers were not very popular because they are not as discriminatory as RFLP 

markers. 

          Short tandem repeats (STR), also known as microsatellites, contain repetitive 

sequences that are shorter than VNTRs. Each repeat unit in STR is 2-7 base pairs in 

length compared to VNTR that has a repeat unit in the range of 8-100 base pairs [84]. 

Individual STR loci are not very discriminatory but PCR allows amplification of multiple 

STRs in a short time. Short tandem repeat markers are excellent for forensic investigation 

because of their small size. A DNA profile can be generated using STR markers even 

when the sample is degraded, which was not possible with the larger RFLP fragments. 

Coupled with improved detection methods where nucleotides are labeled with fluorescent 

tags, STR analysis has completely replaced RFLP technology and is the method currently 

used for DNA profiling in crime laboratories [117]. 

          Combined DNA Index System (CODIS) is an electronic database that contains 

DNA profiles of people convicted of certain crimes. Laboratories across the nation can 

compare DNA profiles from crime scene evidence to the DNA profiles of convicted 

offenders to find possible suspects. The FBI laboratory did extensive studies to choose a 

set of 13 STR loci that are highly discriminatory and show considerable inter-individual 

variation. The 13 CODIS loci are CSF1PO, FGA, TH01, TPOX, VWA, D3S1358, 

D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11 and a sex marker, 

Amelogenin (Figure 2). The probability of two individuals sharing the same profile at all 

thirteen loci is 1 in a trillion except for identical twins [59]. Some of the commercially 
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available STR kits can amplify more than the 13 CODIS STR loci further improving the 

power of discrimination.       

 
Figure 2. The chromosomal positions and nomenclature of the 13 CODIS core STR Loci 
and the sex marker, Amelogenin (AMEL). Source: Adapted from The National Institute 
of Standards and Technology (NIST) website. 
 

B. DNA biology 

B.1. Introduction 

          Cells are the smallest biological units of all living organisms and are the building 

blocks of life because all living things are composed of cells that can replicate 

independently. Each cell contains two important biomolecules, proteins and nucleic 

acids. The nucleus is contained in the cell and houses the chromosomes that are 

complexes of deoxyribonucleic acid and histone molecules [132]. (Figure 3) 

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 X Y

TPOX
D3S1358 FGA

D5S818
CSF1PO

D7S820D8S1179 TH01 vWA

D13S317 D16S539 D18S51

D21S11 AMEL



 8

 
Figure 3. Structure of a cell. Nuclear DNA is present inside the nucleus of a cell. DNA 
and histone protein complexes called as nucleosomes form chromatin fibers that allow for 
compact packaging of DNA into chromosomes. Maternally transmitted mitochondrial 
DNA is present in mitcochondria found outside the nucleus. 
 
          Deoxyribonucleic acid, or DNA, contains the genetic code required for the 

development of every little trait and function of a living being. The nucleic acid DNA is 

present in every nucleated cell in a eukaryotic organism [5]. Every person gets one half of 

the DNA from his mother and the other half from his father [15]. DNA is a self-

replicating molecule that allows the cells to divide and carry forward this information. 

DNA also carries the necessary genetic information that enables protein synthesis 

required for sustaining any life form [5].  
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B.2. Structure of the DNA molecule 

          Deoxyribonucleic acid (DNA) is composed of nucleotide molecules, which contain 

one of four nitrogenous bases, adenine (A), guanine (G), thymine (T) or cytosine (C), a 

deoxyribose sugar, and a phosphate group.  The sugar and phosphate groups form the 

DNA backbone whereas the variation in the arrangement of these four bases makes an 

individual unique [31]. The nucleotide molecule has a five-carbon ring and phosphate 

group attaches to the 5’ carbon atom. The area surrounding the 5’ end of the molecule is 

referred to as 5’ end and the area surrounding the 3’ carbon atom of the nucleotide is 

referred to as 3’ end [5, 98].  The nucleotide molecules join together through 

phosphodiester bond between 5’ end of one nucleotide and 3’ end of the adjacent 

nucleotide to form a polynucleotide chain. The sugar-phosphate structure is referred to as 

the backbone of a DNA molecule [30, 41] (Figure 4). 

 
Figure 4. Sugar-phosphate backbone of the DNA molecule is formed through 
phosphodiester bonds between hydroxyl group on the 3’ carbon atom of one sugar 
molecule and the phosphate group present on the 5’ carbon atom on the sugar molecule 
of the adjacent nucleotide. The two DNA strands running in opposite directions to each 
other are bound together through complementary base pairing [41]. 
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          DNA exists in the form of a double helix molecule where the two polynucleotide 

strands are joined through complementary base pairing between the bases. Adenine (A) 

base pairs with thymine (T) and guanine (G) base pairs with cytosine (C). There are two 

hydrogen bonds between AT base pairs and three hydrogen bonds between GC base pairs 

due to which the latter pair requires more energy for denaturation [5, 33] (Figure 5) 

 
Figure 5. Structures of the four nitrogenous bases present in the DNA molecule. The two 
strands of DNA are held together through complementary base pairing where adenine (A) 
pairs with thymine (T) via two hydrogen bonds and guanine (G) pairs with cytosine (C) 
via three hydrogen bonds. 
 

          The two strands of DNA are anti-parallel where one strand is in 5’ to 3’ direction 

and the other strand exists in 3’ to 5’ direction relative to the first strand. The sequence on 

one strand can be determined if the sequence on the other strand is known because of the 

complementary base pairing [41]. The two strands of DNA can be separated by 

subjecting it to a variety of conditions such as elevated temperatures or chemical 

treatment. The process of separating the DNA strands is referred to as denaturation [5]. 

Denaturation is a reversible process because when the conditions return to ambient levels, 
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the strands come together and rehybridize in a process referred to as reannealing.   

           X-ray diffraction studies by Rosalind Franklin and Maurice Wilkins indicated the 

helical nature of the DNA molecule. The work done by Erwin Chargaff showed that the 

number of guanine residues is equal to the number of cytosine residues and the number of 

adenine residues is equal to the number of thymine residues [33]. These two observations 

paved way for the elucidation of the double helical structure of DNA molecule by James 

Watson and Francis Crick [131].  

 

B.3. DNA arrangement- Chromosomes 

          Nuclear DNA is found in the nucleus of a cell and it is found in association with 

proteins called histones. The DNA-histone complex is packaged into 22 pairs of 

autosomal chromosomes and one pair of sex chromosome. There are a total of 23 pairs of 

chromosomes in every nucleated cell. Males inherit one copy of the X chromosome from 

their mother and one copy of the Y chromosome from their father and are identified by 

the sex chromosome pair XY. Females contain two copies of X chromosome and are 

identified by the sex chromosome pair XX. Forensic DNA testing for human identity 

examines the recovery of DNA from 22 pairs of autosomal chromosomes whereas sex 

chromosomes are used to identify the gender [132]. Apart from the nuclear DNA, every 

cell has multiple copies of mitochondrial DNA present in the cell cytoplasm. 

Mitochondrial DNA can also be used for human identity testing in certain scenarios. 

          The chromosomes consist of coding and noncoding regions. The coding regions, 

also called as genes, contain all the necessary information for protein synthesis. Genes 

consist of exons, which code for proteins and these exons are interspersed with non-
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coding regions called introns [5, 132]. Most of the variations within individuals that are 

used for identity testing occur in the non-coding regions of the chromosome. The location 

of polymorphism on the chromosome is referred to as a locus and allele is the alternate 

form of the locus. The locus is referred to as heterozygous if the two alleles are different 

and homozygous if they are identical [30]. These allelic differences play a vital role in 

human identity testing. DNA profiling takes into account the allelic profiles at multiple 

loci [51].  

 

B.4. Nomenclature for DNA markers 

          The DNA markers are named for their location on the chromosome or the name of 

the gene if they are present in the coding region of that gene. For example, the marker 

TH01 is found in human tyrosine hydroxylase gene located on chromosome 11. Since the 

repeat region of the TH01 marker is located within the first intron of the gene, the 

nomenclature ends in ‘01’. When the markers are not present in the gene, their name 

starts with the letter ‘D’ for DNA followed by chromosome location. For example, 

D5S818 is found on chromosome number 5 and it is a single copy sequence, which is 

identified by the letter ‘S’. The last digits indicate the order in which the marker was 

discovered on that chromosome [30]. 

 

C. DNA testing 

C.1. STR analysis 

          Extraction, quantitation, amplification, and analysis are the four steps required to 

generate a DNA profile using STR markers. Extraction process focuses on separating the 
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biological sample from the substrate it is deposited on and recover DNA present inside 

the cell nucleus. The amount of DNA in the extracted sample is determined in the 

quantitation step. Since the results from amplification and DNA typing are affected by 

too little or too much input DNA, it is extremely important to know the amount of DNA 

present in the sample. Copies of multiple STR markers are generated in the amplification 

step through polymerase chain reaction. The resulting products are separated by size 

using capillary electrophoresis (CE). ABI Prism 310 and 3130xl Genetic Analyzers are 

the instruments most commonly used to perform electrophoretic separations [29]. The 

number of repeats at each amplified region is determined with the help of an analysis 

software such as ABI Prism GeneMapper® ID software (Applied Biosystems, Foster City, 

CA). The combination of these repeats in all the amplified regions is referred to as a 

DNA profile. The DNA profile of the suspect is compared to the profile generated from 

reference samples. The final laboratory report describes all the evidence analyzed, the 

method of analysis and the loci that were amplified. The suspect is excluded if DNA 

profile from the evidence does not match with the reference sample. A match between the 

known and unknown samples is referred to as an inclusion in which case statistical 

analysis is done to determine the probability of a randomly selected individual in the 

same population having an identical genotype at all interpretable STR loci tested.  [30]. 

Sometimes an inconclusive result is obtained because of a situation in which a partial 

autosomal STR profile is generated as a result of insufficient or degraded samples. 

Mitochondrial DNA analysis can be employed to provide additional information and 

discriminating power when insufficient or degraded nuclear DNA is present. Similarly Y-

chromosome STR analysis plays a vital role in analyzing mixtures such as sexual assault 
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samples where the male component may be masked by the overwhelming quantities of 

female tissue [127].  

 

C.2. Y-chromosome STR analysis 

          The Y-chromosome is a male-specific sex chromosome that is inherited from the 

father [5]. The non-recombining portion of the Y-chromosome (NRY), which comprises 

95% of the Y-chromosome, remains unchanged unless a variation occurs due to mutation 

[32]. As a result, Y-STR profile is not as discriminatory as autosomal STR profile and all 

the paternal relatives exhibit identical Y-STR profile [30]. But STR markers present on 

the Y-chromosome can be helpful in interpreting mixtures containing large amount of 

female cells or azospermic or vasectomized individuals because only the male-specific 

STRs are amplified and the female profile is removed [32].  

 

C.3. Mitochondrial DNA typing 

          Mitochondrial DNA is present outside the nucleus unlike nuclear DNA that is 

encased within the nuclear membrane. Mitochondrial DNA is present in all cells but only 

females pass it on to their offspring because mitochondrial DNA is present in the sperm 

tails that does not combine with the egg during fertilization. As a result, it cannot be used 

to distinguish between siblings and relatives from the maternal line [15].  

          Nuclear DNA has only two copies per cell whereas mitochondrial DNA has 

multiple copies, which permits DNA recovery from highly degraded samples or samples 

with undetectable levels of nuclear DNA [5, 105]. 
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Figure 6. Inheritance pattern of mitochondrial DNA (M) and Y-chromosomal DNA (Y). 
Mitochondrial DNA is passed from mother to her offspring whereas Y-chromosomal 
DNA is inherited by the male offspring from their father. Therefore, male child inherits 
Y-DNA and mitochondrial DNA from father and mother respectively but passes on Y-
DNA to his son. A daughter inherits mitochondrial DNA from her mother and passes this 
on to her son and daughter although only daughter passes this on to her progeny.  
 

          Mitochondrial DNA is very useful in the analysis of highly degraded samples or 

those that have insufficient nuclear material such as hair shafts, old bone samples, and 

teeth. It also aids in identifying unidentified remains by comparing mitochondrial DNA 

profile to any maternal relative [127]. 
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CHAPTER II: EVIDENCE COLLECTION AND CHARACTERIZATION 

A. Introduction 

          All the developments in DNA testing, which ensure the ability to generate a profile 

from even degraded samples, are futile if the evidence is not collected and preserved in a 

proper manner. The first and crucial step in a crime scene investigation is to thoroughly 

document the scene and collect the evidence that is not just visible to the naked eye but 

also examine areas that may lead to clues such as bedspreads with stains that are visible 

only under an alternate light source. Physical evidence plays an important role in not just 

convicting a person but also in acquitting the wrongfully accused [75]. Since new DNA 

techniques such as PCR are extremely sensitive and can replicate even trace amounts of 

DNA, the introduction of contaminants may interfere with the evidence [93]. A forensic 

scientist relies on the crime scene investigator to follow proper protocol in collecting 

evidence and transport it in a manner that ensures no contamination, degradation or loss 

of evidence. Collection and preservation techniques are contingent on the type of 

evidence and the substrate upon which it is present.  

          It is important to collect reference samples from suspects to compare with evidence 

collected from the crime scene, and from family members to establish kinship or identify 

victims [120]. The protocol and collection tools may vary between crime labs but the 

least invasive and most commonly used method to collect reference samples is buccal 

swab. A cotton swab is used to rub against the inside of an individual’s cheek to collect 

some buccal epithelial cells. The swab is then air-dried and packaged appropriately for 

storage purposes [94]. It is also very important to collect control samples by collecting an 

unstained area of the substrate on which the evidence is found. There are some general 
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guidelines to bear in mind while collecting evidence for DNA testing. First and foremost, 

air-dry any wet stains because moisture will promote bacterial growth and cause DNA 

degradation. Storing biological samples in refrigerator at 4ºC or in the freezer at -20ºC 

will preserve the evidence for longer periods of time [30]. It is crucial to check for trace 

evidence because it may be lost during DNA analysis [57, 101]. Presumptive testing is 

done to give some indication as to the type of stain before proceeding with confirmatory 

analysis [11, 57, 60]. In keeping with the dissertation topic only evidentiary materials 

important for DNA testing will be discussed in this module.  

 

B. Biological evidence 

B.1. Bloodstains 

          One of the most commonly encountered pieces of evidence in a violent crime 

scene, bloodstains not only are a source of DNA but blood spatter patterns can give 

information on the events that transpired [76]. Red blood cells do not contain DNA but 

they are helpful in detecting blood because of the presence of hemoglobin. White blood 

cells are nucleated and are the primary source of DNA material in blood sample [11, 12]. 

Bloodstains present on small, movable substrates, such as bloodstained clothing can be 

shipped whole in a paper container after allowing the sample to dry. A sterile absorbent 

fabric is used to collect a wet stain present on immovable surface and packaged in a paper 

container [76].  Dried bloodstains are collected by either scraping with a sterile blade or 

by using fingerprint tape to lift it off from the substrate. When a moistened cotton-tip 

applicator is used to pick up the dried stain, the sample should be localized on a small 

area of the swab to ensure optimal recovery during testing. Double-swabbing technique is 
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also performed routinely where a dry swab is used following sample collection with a 

moist swab to ensure thorough sample collection [75]  

          The Hemoglobin (Hb) molecule, found in the red blood cells transports oxygen 

from the respiratory organs to the rest of the tissues in the body, is detected in most of the 

presumptive tests for blood. The ABAcard® HemaTrace kit (Abacus diagnostics Inc., 

West Hills, CA) comes with test strips containing monoclonal antihuman hemoglobin 

antibodies which bind with the antigens of human hemoglobin and migrate through the 

test strip [32]. Antibody-antigen-antibody complexes form upon encountering stationary 

polyclonal antihuman antibodies, labeled with a pink dye, in the test area. An aggregation 

of these complexes results in a pink line on the test strip indicating the presence of human 

blood. Although highly sensitive and specific to human blood, false positives are known 

to occur with ferret blood and higher primates [75, 76] 

          Another popular presumptive test for blood is spraying the area with a solution of 

luminol (5-amino-2, 3-dihydro-1, 4 phthalazinedione) (C8H7N3O2) and hydrogen 

peroxide (H2O2), which exhibits chemiluminescence upon reacting with the iron 

molecule in hemoglobin. The chemiluminescence is very useful in detecting trace 

amounts of blood or bloodstains diluted 10 million times, and luminol was shown to not 

have any detrimental effect on downstream DNA typing [12]. Some of its limitations are 

that it can give false positives with other compounds containing metal ions such as 

copper, nickel, chromium and commercial bleach apart from the fact that it can obliterate 

any blood spatter pattern [12].  
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Figure 7. Mechanism of luminol chemiluminescence.  In the presence of Hydrogen 
peroxide, luminol undergoes oxidation to form 3-aminophthalate that is in an excited 
state. When 3-aminophthalate comes back to the ground state, it emits light, which is the 
characteristic blue glow of a luminol reaction [12].  
 
 

B.2. Seminal evidence  

          The perpetrator in a sexual assault is often male and seminal fluid is a crucial piece 

of evidence in such cases. It consists of seminal fluid that has enzymes that aid in stain 

characterization and sperm cells that contain nuclear DNA. Semen stains are most 

commonly found on victim’s clothing, body and bedspread [105]. Semen stains are 

collected in the same way as blood stains ensuring that the substrate is transported as 

whole whenever feasible and the stain in allowed to sufficiently air-dry before packaging 

[124]. Alternate light source (ALS) testing at a wavelength of 450 nm can be used to aid 

visualization through fluorescence, because semen stains may not be visible to the naked 

eye upon drying. The investigator may mark this area on the substrate before sending it to 

the lab [77].  

          Presumptive testing for the presence of semen relies on the detection of acid 

phosphatase (AP) enzyme or prostate specific antigen (PSA) also known as p30 because 

of its molecular weight of 30,000 Daltons [40]. When subjected to the Brentamine spot 

test, the acid phosphatase enzyme, present in the seminal fluid, and produced by the 
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prostate gland, gives a dark purple color upon reacting with sodium alpha naphthyl 

phosphate and diazo blue dye solution [7]. If the substrate is large, a moistened filter 

paper pressed against it is subjected to the screening test. Since AP is present in low 

levels in other body fluids such as vaginal secretions, Brentamine spot test is strictly for 

screening purposes [124]. Confirmatory tests for sperm include direct visualization under 

a microscope using Christmas tree stain that differentially stains sperm heads and tails. It 

comprises of nuclear fast red, which stains the nuclei in the sperm heads red and the tails 

stain green from picroindigocarmine [83]. In situations such as vasectomized or 

azospermic individuals, identity of semen is confirmed by detecting prostate specific 

antigen (PSA) or p30, a glycoprotein produced by the prostate gland.  Test kits for p30 

detection are available from Abacus diagnostics Inc. (West Hills, CA) and they use the 

same principle as HemaTrace kit for blood detection except that they use anti-p30 

antibodies [60]. 

 

B.3. Saliva stains 

          The epithelial cells, from inside the cheek, that are present in the saliva are a rich 

source of DNA [83]. Saliva stains are difficult to identify with naked eye and requires 

additional means of visualization like alternate light source (ALS) that causes them to 

fluoresce [83]. Saliva stains, like all body fluids, are collected in the same manner as 

blood and semen stains described above [76]. Saliva can be a good source of DNA 

evidence in cases like sexual assault where there are bite marks on the victim. Other 

items that need to be examined for saliva stains include drinking containers, cigarette 

butts, chewing gum, toothbrush, etc. [1]. 
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          Presumptive tests for detecting saliva stains are designed to detect the starch-

digesting enzyme, amylase, which is present in high concentrations in saliva [69]. Since 

amylase is present in a variety of other body fluids, presumptive testing may be bypassed 

if there is limited evidentiary material available for analysis. The Phadebas® forensic 

press test is commonly used to detect saliva stains. The test strip comprises of a filter 

paper containing starch-dye complex that breaks down upon coming in contact with 

amylase enzyme and releases the blue dye [57]  

 

B.4. Hair evidence 

          The hair root contains skin cells called keratinocytes that can be used for nuclear 

DNA testing. When hair is pulled out in a violent struggle, there is a good chance of 

finding the root bulb attached which can be used to generate a DNA profile for the source 

of the hair [84]. When hairs are visible to the naked eye, clean forceps are used to transfer 

them onto paper that is made into a druggist fold and placed in a paper container. A tape 

lifting method is employed when noisy or dark backgrounds make it difficult to visualize 

hairs with the naked eye. A piece of clear adhesive tape is applied to the area of interest, 

lifted off and affixed to a clear backing card which is packaged in a paper container. 

Vacuuming is also done to collect hair and fiber evidence in which the evidence is 

trapped in a filter attached to the vacuum. The evidence is then placed in a druggist fold 

and packaged in a paper envelope. One of the major limitations of this method is that 

there is a higher chance of contamination if the filter is not cleaned properly [104, 105]. 
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B.5. Tissue, urine, bone and teeth 

          Though not as important as body fluids for DNA testing, there are specialized 

branches of forensic science that collect and analyze samples that can greatly aid an 

investigation in piecing clues together. Forensic odontology is a highly specialized field 

where scientists use dental x-rays, teeth impressions, and bite mark analysis in a range of 

caseworks encompassing identification of victims in mass disasters [91], identification of 

the source of bite marks [9], and identification of skeletal remains [23]. Likewise, urine 

analysis can give important information to a forensic toxicologist pertaining to drugs and 

toxins ingested by the victim or suspect [42]. Forensic anthropologists can gain 

information from skeletal remains such as signs of trauma, sex and age of the deceased 

individual that can help a criminal investigation [18].  

          Following established forensic practices means including proper evidence 

collection and preservation methods, maintaining a thorough chain of custody, and 

employing appropriate testing methods. These procedures involve many trained 

personnel and it is the responsibility of every individual involved to make sure the 

integrity of the evidence is not compromised.  
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CHAPTER III: EXTRACTION OF DNA EVIDENCE 

A. Introduction 

          The objective of the extraction methods developed to recover DNA from a field-

collected sample is threefold: 1) separate the tissue from the surface that it is deposited 

on, 2) lyse the cell membrane to release the organelles and 3) obtain a purified DNA 

extract for downstream genetic testing by removing the cellular debris and other possible 

inhibitors [39]. Only a small portion of the sample should be extracted and the rest of the 

material should be stored in a cold and dry environment to ensure that adequate sample is 

available for possible reanalysis. It is important to run a negative control during any 

experiment to ensure there is no contamination from the consumables. The negative 

control should be subjected to the same experimental conditions as evidentiary material. 

The presence of any detectable DNA is indicative of contamination, and this requires the 

sample to be re-extracted [50].  

 

B. Extraction methods 

B.1.Organic extraction (phenol chloroform extraction) 

          As the name suggests, organic extraction (phenol chloroform extraction) refers to 

the isolation of DNA with the aid of organic reagents. It is one of the earliest methods of 

extraction in which an equal volume of phenol chloroform isoamyl alcohol (25:24:1 v/v) 

is added to an aqueous solution of the sample [51]. Following centrifugation, the more 

polar DNA molecules move into the water phase, allowing recovery of a purified extract 

for downstream analysis.  
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          In the organic extraction method, cell lysis primarily occurs through the addition of 

a stain extraction buffer containing a detergent such as sodium dodecyl sulfate (SDS), 

Proteinase K and a reducing agent, Dithiothreitol (DTT). Detergent and Proteinase K lyse 

the cell membranes and dissolve the proteins surrounding the nuclear material. 

Dithiothreitol (DTT) reduces disulfide bonds in the cell to further aid the release of DNA 

material [51, 82]. Following incubation, the substrate is removed and phenol chloroform 

isoamyl mixture is added to separate DNA from other cellular components. Isoamyl 

alcohol acts as an anti-foaming agent whereas phenol-chloroform causes partition of 

hydrolyzed proteins into the organic phase [82]. Ethanol precipitation or centrifugal 

filters are used to recover DNA from the aqueous phase [35]. Though organic extraction 

has been successful in isolating DNA, the use of hazardous solvents, multiple processing 

steps that can introduce contamination and time-consuming protocol make its use less 

appealing. 

 

B.2. Chelex® 100 extraction 

          Chelex 100 (Bio-Rad Laboratories, Hercules, CA) is an ion-exchange resin 

composed of styrene divinylbenzene copolymer containing iminodiacetic acid groups. 

Nucleases, enzymes that cause DNA degradation, require a divalent cofactor such as 

Magnesium (Mg2+). The iminodiacetate ions bind with the Magnesium cofactor and 

inactivate nuclease activity thus preventing DNA degradation [61]. For DNA extraction 

with Chelex resin, the biological sample is boiled in a 5% solution of deionized water and 

Chelex® 100 resin to lyse the cellular structure and isolate the DNA released into the 

supernatant [138]. Though the method has a short processing time and relatively few 
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transfer steps which minimizes contamination, the use of extremely high temperatures 

that can have a detrimental effect on degraded or low level samples is a matter of concern 

[61]. Moreover, single-stranded DNA isolated using this method may not be as stable as 

double-stranded DNA for long term storage. Finally, improper washing that may cause 

resin carryover into the extract can cause PCR inhibition [128, 138]  

 

B.3. FTA™ paper 

         Fast Technology for Analysis of nucleic acids (FTA) was initially developed by Lee 

Burgoyne at Flinders University in Australia as a method of collection and storage of 

biological evidence [28]. The FTA paper is a cellulose-based paper saturated with 

reagents such as weak base, chelating agent, surfactant, and uric acid that lyse cells and 

denature proteins, immobilizing the DNA within the paper.  If biological evidence 

collected on FTA paper is properly dried prior to storage, the method offers a great 

advantage in protecting DNA from environmental and enzymatic elements such as 

nucleases, ultraviolet radiation and microbes [118]. Samples spotted on FTA paper can be 

stored at ambient conditions for a long time. Because of their small size, FTA papers are 

easy to package, ship and do not take up a lot of storage space. 

          A small disc of the FTA paper is used for analysis after washing the paper to 

remove unwanted material. Further analysis does not require DNA elution and testing can 

be performed directly on the paper with DNA entangled in the matrix. There is no need to 

quantify DNA samples extracted from FTA paper before proceeding with amplification 

because similar-sized discs are used each time, and this gives consistent results. One 

major limitation of the method arises from the fact that static electricity may cause 
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difficulties in retaining the paper punch in the sample well leading to contamination 

issues or loss of sample [114].  

 

B.4. Solid-phase extractions 

          In solid-phase extraction, DNA is bound to a solid-phase substance such as silica 

particles and unbound cellular debris is removed through multiple wash steps and 

centrifugation. Pure DNA bound to the silica beads is recovered with a final elution step. 

Recent years have seen the development of many commercially available kits such as 

QIAamp kits from Qiagen, Inc. (Valencia, CA) and DNA IQ™ system from Promega 

Corporation (Madison, WI), which are based on the principle of solid-phase extraction 

[45, 54]. 

          Different QIAamp kits are available for tissue-specific DNA isolation and these 

mainly differ in their wash buffers. With this kit, DNA binds to the silica beads under 

acidic conditions and high salt concentration whereas raising the alkalinity of the solution 

and lowering the salt concentration releases the DNA from the silica particles [54]. A 

chaotropic salt solution disrupts intramolecular interactions such as hydrogen bonding 

leading to denaturation of macromolecules, which bind to the silica beads.  An initial 

wash step with water removes any unbound material from the solution. A second wash 

step is performed with ethanol to remove the chaotropic salts followed by a rinse with 

water to remove any residual ethanol before eluting DNA from the beads. With increase 

in alkalinity the beads become more negative and DNA is eluted from the silica substrate 

[89]. Several robotic platforms such as BioRobot EZ1 workstation (Qiagen, Inc., 
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Valencia, CA) and QIAcube system (Qiagen, Inc., Valencia, CA) have further 

streamlined this extraction process by allowing automation [22].  

          The DNA IQ™ system (Promega Corporation, Madison, WI) is similar to the 

Qiagen kit except that silica-coated paramagnetic beads are used to attract DNA. The 

DNA bound to the magnetic particles is drawn to the side of the tube and immobilized 

with the help of a magnetized tube rack that enables one-pot isolation as multiple wash 

steps can be performed in the same tube without disturbing the DNA pellet. After 

removing the debris present in the solution, the DNA is subjected to more wash steps and 

released into the elution buffer by heating to 65°C for 5 minutes [45]. One major 

limitation of this method is that DNA may be lost during the wash steps if any other 

materials interfere with the magnetic bead binding. A recent study noted the loss of DNA 

extracts in a major criminal investigation because the chemicals present in a presumptive 

test for blood prevented DNA from binding to these beads [97].  

          ChargeSwitch Technology® (CST®, Life Technologies, Grand Island, New York) 

is one of the recent developments in solid-phase DNA extractions where the surface 

charge of the solid phase can be changed by modifying the pH of the surrounding buffer 

solution. Under acidic conditions, the CST® beads have a positive charge which attracts 

the negatively charged DNA molecules. After removing the cellular debris with a wash 

step, raising the pH of the buffer solution neutralizes the surface charge on the bead, and 

this releases the DNA molecules bound to the beads [140]. Since CST method does not 

employ ethanol, organic solvents, or chaotropic salts there is less chance for carryover of 

inhibitory elements into the DNA extract. Moreover, minimal transfer steps and complete 

automation further contain contamination and sample loss. 
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          Fingerprint DNA Finder™ (FDF kit) was recently launched to extract DNA from 

fingerprints that contain low levels of nucleated DNA [73, 112]. During the extraction 

process, proteins and other debris from cell lysis are adsorbed onto the solid phase while 

DNA remains in an unbound state in the solution. The principle behind FDF extraction is 

a reverse approach to the traditional solid-phase extraction to recover purified DNA 

extract. The method can be beneficial to recover DNA sample from handguns, postage 

stamps and other touch samples where there is a higher chance for evidentiary loss due to 

insufficient sample and multiple processing steps [73]. 

 

B.5. Thermostable proteinases 

          Proteinase K enzyme is most commonly used to hydrolyze proteins and aid in 

recovery of cellular components through cell lysis [51]. Proteinase K enzyme is isolated 

from the fungus Tritirachium album and is so named due to its ability to digest native 

keratin (hair) [37]. Proteinase K becomes inactive at a temperature above 55ºC and hence 

requires additional reagents in the form of dithiothreitol (DTT) and sodium dodecyl 

sulfate (SDS) to lyse cells [112].  

           A modified DNA extraction procedure using a proteinase extracted from a 

thermophilic Bacillus species EA1 has been used to extract forensic evidence from a 

wide variety of samples including bloodstains from different substrates, swabs from 

drinking containers, gloves, socks and food items [86]. The sample is incubated at 75ºC 

for 15 minutes followed by inactivation of the enzyme at 96ºC with a 15-minute 

incubation. Exposure to such high temperature induces cell lysis and hydrolyzes proteins 

without the addition of other denaturing reagents.   



 29

          Although DNA was extracted from most of the substrates mentioned above, 

cigarette butts and bloodstains on black denim failed to produce an interpretable profile, 

which was attributed to the possible interference from inhibitors [86]. The biggest 

advantage of the method is there is minimal chance of cross contamination due to lack of 

multiple transfer steps and the simple protocol makes it amenable for automation [79].  

 

B.6. Alkaline lysis 

          An alkaline lysis method is often used in plasmid isolation from bacteria and 

extraction of DNA from plant tissue [16, 130]. Protein unfolding occurs due to ionization 

of amino acid residues in the presence of strong alkaline conditions resulting in 

disruption of the cell structure [72]. The alkaline lysis has been expanded to extract DNA 

from forensic evidence such as bloodstains and semen stains [64].  

          Alkaline lysis employs only two reagents, an alkaline solution such as sodium 

hydroxide, and a neutralization buffer. It requires less than ten minutes to lyse the tissue. 

The method does not give a pure DNA extract and hence should be followed up with a 

purification step such as phenol chloroform extraction. Alkaline lysis can be used as a 

one-step extraction procedure only when the sample contains cells from a single source. 

Because of the harsh conditions that can eventually denature the DNA molecule, it is 

important to optimize the exposure time to alkaline pH [64]. 

 

B.7. Differential extraction 

          Introduced by Peter Gill and coworkers in 1985, organic differential extraction is 

one of the most popular methods to separate different sources of DNA such as a mixture 
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of male and female cells commonly encountered in a rape kit [51]. Separating the male 

fraction from the female profile makes it easier to interpret the suspect’s DNA profile 

[109, 110]. 

          The principle behind the differential extraction protocol is based on the differences 

in DNA packaging in sperm and other tissues. Protamines are sperm nuclear proteins that 

are rich in arginine and contain cysteine residues that form disulfide bonds allowing for a 

denser chromatin structure [92]. The release of sperm nuclear DNA relies on the 

disruption of these disulfide bonds that require harsher lysis conditions compared to other 

cells.  

          Organic differential extraction is a two-step process. In the first step of digestion, 

vaginal epithelial cells in the mixture are lysed with Proteinase K/ Sodium Dodecyl 

Sulfate (SDS) solution and the sperm cells remaining in the solution are collected by 

centrifugation. In the second step of digestion, the sperm cells are lysed with a buffer 

containing Proteinase K, SDS and Dithiothreitol (DTT) as reducing agent (Figure 8). 

DTT is used to target the cross-linked thiol-rich proteins in the sperm nuclear membrane 

that makes them more resistant to organic extraction than epithelial cells in the first step 

of the digestion [49, 51]. Both fractions are purified separately with 

phenol/chloroform/isoamyl alcohol. The differential extraction protocol is employed to 

achieve a complete separation of two different cell types present in the mixture, and to 

obtain a clean male DNA profile that is not obscured by the female DNA. 
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Figure 8. Organic differential extraction 1) Incubation of the mixture in a cell lysis buffer 
containing detergent and Proteinase K results in epithelial cell lysis. The lysed female 
DNA is separated from the sperm pellet through centrifugation 2) Dithiothreitol (DTT) is 
added in the second step to lyse the sperm pellet and recover male DNA.  
 
          Differential extraction and its modified versions are still used today to separate 

different cell fractions in a mixture [53, 90, 125]. Although a gold standard for mixture 

analysis, this method is time-consuming, technique-dependent, difficult to automate, and 

can result in relatively inefficient separations of female DNA from the male component 

[34, 64, 92]. Moreover, if the perpetrator is vasectomized or is azoospermic, differential 

extraction does not aid in mixture resolution due to the lack of sperm cells [32]. 

 

B.8. Laser microdissection 

          Laser microdissection (LM) or laser-capture microdissection (LCM) is used to 

selectively recover cells of interest from a sample with the aid of microscopic 

visualization. The LCM method has been used to successfully isolate sperm cells in 

sexual assault evidence [43, 107]. In order to isolate the cells, the sample is spread over a 

microscope slide and a thin plastic film is placed on top of it. When the cells of interest 

appear in the field of view an infrared laser is switched on to cut out the cells and the 
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plastic film captures them at that specific location. The excision process is repeated by 

moving the slide to capture all the target cells, which are then subjected to extraction 

procedures to isolate DNA. The method has raised concerns over contamination issues 

due to adherence of the cells to the plastic, and the possibility of heat degradation of the 

sample [88]. With the introduction of an ultraviolet (UV) light source during laser 

microdissection, the sample is spread on a polymer slide that is excised at the site of 

target sample and collected into a tube without coming into contact with other 

paraphernalia that can introduce contamination [121]. 

          Laser capture microdissection has proved to be more effective than differential 

extraction in recovering sperm DNA from mixtures [43]. The biggest disadvantage is that 

laser capture of cells is not cost-effective and the downstream extraction protocol should 

involve fewer processing steps to conserve the low sample volume.  

          Nucleic acid extraction is one of the most challenging and critical steps in sample 

processing and continuous advancements in the field prove that there is still room to 

improve the extraction procedure which requires a method that is rapid, reliable, easy to 

use, cost-effective and gives high yields. 
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CHAPTER IV. AMPLIFICATION: POLYMERASE CHAIN REACTION (PCR) 

          The description of polymerase chain reaction in 1985 by Kary Mullis has opened 

new doors in evidence analysis. By generating multiple identical copies of a particular 

DNA sequence in a test tube with simple reagents, it is possible to obtain a viable DNA 

profile even with trace amounts of sample. Polymerase chain reaction (PCR) is used for 

identifying genetic disorders, DNA fingerprinting, paternity testing, genetic engineering, 

and to study evolution. Kary Mullis was awarded Nobel Prize in 1993 for his significant 

contribution [32].  

 

A. PCR process 

          Polymerase chain reaction (PCR) involves three basic steps that are repeated for 30 

to 40 cycles. Since the target DNA is duplicated, approximately double the amount of 

DNA is present at the end of each cycle if the reaction proceeds at 100% efficiency [32]. 

The three stages of a PCR reaction, denaturation, annealing, and extension, occur at 

different temperatures. The PCR reaction is carried out in a thermal cycler, an automated 

instrument used to rapidly heat and cool the reaction mixture. As the name suggests, the 

first step involves denaturation of the double-stranded DNA molecule by heating the 

mixture to more than 90° C. The high temperature breaks the hydrogen bonds between 

the nucleotides of the two DNA strands, resulting in two single-stranded DNA molecules. 

During the annealing step of PCR, temperature is lowered to 40-60° C to allow binding 

of primers to the complementary sequence on the template DNA and target the DNA to 

be amplified.  Annealing temperature depends on the melting temperature of the primers. 

The annealing step prepares the reaction for multiplication in the third step by identifying 
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the region to be amplified. The temperature is raised to approximately 72° C during 

extension, the third and final step of PCR. The DNA polymerase enzyme activity is 

optimal at this temperature, and it extends the primers annealed to the DNA strands 

through the addition of deoxynucleotide triphosphates (dNTPs) in a manner 

complementary to the target DNA sequence [38, 39] (Figure 9).  

          At the end of one cycle, two single-stranded DNA molecules are amplified to form 

two double-stranded DNA molecules and this is repeated with every cycle resulting in an 

exponential accumulation of the template. The number of copies at the end of a reaction 

is approximately 2n where n is the number of amplification cycles. As a result, a 32-cycle 

reaction will give rise to approximately a billion copies of the original template (232= 1, 

073, 741, 842) [32]. 

 
Figure 9. An overview of the PCR process.  The target DNA sequence is heat-denatured 
in the first step to form single-strand DNA molecules. During annealing, primers are 
added to each of these DNA strands by complementary base pairing. DNA polymerase 
binds to the primers and adds nucleotides to extend and amplify the template molecule 
during the final step of the PCR cycle. 
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B. PCR components 

          A PCR reaction requires just a few simple components to drive the reaction 

forward. These components are added together to achieve optimal final concentrations 

and the rest of the volume is made up with deionized water. Low reaction volumes can 

lead to pipetting inaccuracies and sample evaporation, while excess volume may require 

a longer cycling time in order to achieve thermal equilibrium [38]. The PCR components 

include template DNA, DNA polymerase, primer pair, buffer and deoxynucleotide 

triphosphates (dNTPs) containing the four bases- adenine (A), guanine (G), thymine (T) 

and cytosine (C). 

          The highly sensitive PCR technology will amplify any DNA extracted from other 

sources of contamination apart from the target sequence. Therefore it is important to have 

a high quality, uncontaminated template. It is important to amplify an optimal amount of 

DNA to avoid artifacts in DNA typing such as allelic drop out and drop in, associated 

with either too little or an overload of sample respectively [31].  

          The location for PCR amplification on the template DNA is identified by primers, 

which are short DNA sequences that are complementary to the target DNA. Since the 

primers bind to the template strand through complementary base pairing, some prior 

knowledge of the DNA sequence that needs to be amplified is required [45]. Another 

important consideration during primer design is the prevention of the formation of 

secondary structures such as hairpins and primer dimers. The secondary structures will 

reduce amplification efficiency by hindering the annealing of primers to the template 

strand [122].  
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          Polymerase enzymes bind to the primer sequence and extend the primer strand 

through the addition of nucleotide molecules present in the reaction mix. Initial PCR 

studies used the Klenow fragment, a portion of a polymerase derived from E. coli, to 

amplify the target DNA sequence [87]. Because the Klenow fragment was inactivated 

during the denaturation step of PCR, the reaction mix required enzyme replenishment at 

the end of every temperature cycle which proved to be labor-intensive until the discovery 

of the thermophilic bacteria, Thermus aquaticus. The Taq polymerase derived from this 

bacterium is stable at 95ºC, the denaturation temperature that enabled the automation of 

the PCR process [65]. Processivity, fidelity and persistence are the three important 

aspects of a polymerase enzyme. Processivity refers to the rate at which it copies a DNA 

strand, fidelity is the ability to incorporate the correct nucleotides and persistence 

indicates the stability of the enzyme at high temperatures. The effect of low fidelity of 

Taq polymerase has negligible effect on PCR amplification because of the short amplicon 

size. Hence Taq polymerase still enjoys immense popularity in PCR applications [62]. 

          A mixture containing equal concentrations of the four deoxynucleotide 

triphosphates (dNTP) is added to the PCR reaction to supply the basic building blocks 

required for DNA synthesis. These are incorporated into the DNA strand by polymerase 

enzyme [65].  

          Buffer solution is optimized for the polymerase being used. It maintains a stable 

environment to achieve optimum activity. Some of the buffers contain MgCl2 that 

provides the Magnesium cofactor required by DNA polymerases. Dimethyl sulfoxide 

(DMSO), bovine serum albumin (BSA), and glycerol are some of the additives that are 

commonly encountered in a PCR setup [81]. These chemicals are believed to aid in 
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driving the reaction forward by relaxing the secondary structure of the DNA strand, 

increasing the processivity of an enzyme, and preventing non-specific attachment of the 

polymerase enzyme [38].  

Table 1. A list of typical PCR components [20] 
Reagent Concentration 

Tris-HCl, pH 8.3 10 mmol/L to 50 mmol/L 

Magnesium chloride 1.2 mmol/L to 2.5 mmol/L 

Potassium chloride 50 mmol/L 

Deoxynucleotide triphosphates (dNTPs) 0.2 mmol/L each 

DNA polymerase 0.5-5 U 

Bovine serum albumin (BSA) 100 µg/mL 

Primers 0.1 µmol/L to 1.0 µmol/L 

Template DNA 1 ng to 10 ng 

 
 
C. Reaction controls 

          Three types of controls- positive controls, reagent blanks and negative controls, are 

used to ensure that no other variables are affecting the results. The positive control is 

used to assess whether all the reaction components and parameters are working 

effectively. It consists of a known DNA sequence of good quality that is added to the 

reaction mix. The DNA sequence in the positive control will amplify if all the PCR 

reaction proceeds as planned and all reagents are input properly. A negative control is 

used to rule out cross-contamination between samples, from personnel handling the 

samples, from unsterilized consumables, and from contaminated reagents. A negative 



 38

control contains all the components of a reaction mix except for the template DNA. The 

presence of amplified peaks in the negative control indicates the presence of 

contaminating DNA. An extraction control that does not have any template DNA is 

recommended to further rule out the presence of any exogenous DNA in the sample that 

was recovered during the extraction step. This control is subjected to all the steps 

involved in DNA extraction followed by PCR amplification and should not produce any 

amplified DNA if the reaction is not compromised [65].  

 

D. Thermal cyclers 

          Thermal cyclers are the instruments used to rapidly heat and cool the reaction 

during the PCR process. Thermal cyclers mostly differ in the number of samples that can 

be amplified at once, the size of the reaction tube and the time taken to reach the target 

temperature. The different parameters that can be adjusted on a thermal cycler are 

temperature at each step of the amplification process, number of amplification of cycles 

and ramp speeds. 

           One of the first thermal cyclers required the addition of a drop of mineral oil on 

top of the sample to prevent condensation during the reaction. Heated lids were 

introduced in the newer models, which prevents condensation in the sample tube [65]. 

GeneAmp® PCR system 9700 (Applied Biosystems, Foster city, CA) is an example of a 

commonly used thermal cycler (Figure 10). The GeneAmp® PCR system 9700 system is 

fully programmable, has a maximum ramp speed of 4ºC per second and can process up to 

96 samples simultaneously. Newer models of thermal cyclers have been designed to 

reduce the experimental time which is achieved through increasing the heating and 
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cooling rates, installing thermal blocks containing special coating and providing 

specialized tubes that permit faster heat transfer to the sample [2].  

 
 Figure 10. GeneAmp® PCR system 9700 thermal cycler Source: Life Technologies 
 

E. PCR inhibitors 

          As a consequence of the nature of evidence encountered at a crime scene, there is 

potential for many elements to interfere with the quality of any analysis. The effect of 

inhibitors on PCR and the measures to overcome it has been the subject of many studies 

[39, 46, 93]. Inhibitors may be introduced into the evidence during sample collection. For 

example, hemoglobin in blood, humic acid found in soil, and collagen in the bone, are all 

known to interfere with PCR amplification. Improper handling of evidence and 

inefficient pre-amplification steps can also introduce inhibitors into the sample [32, 138]. 

For example, phenol in organic extraction is notorious for interfering with post-extraction 

analysis. Presence of trace phenol from improper wash steps can inhibit DNA 

amplification and result in loss of evidence [39].  
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          Inhibitors usually interfere with the PCR process by directly interacting with the 

DNA molecule or by targeting the DNA polymerase enzyme. Among the various 

measures employed to avoid PCR inhibition, the most effective approach is to avoid co-

extraction of the inhibitor with DNA [4]. For example, when stains are present on denim 

jeans, swabbing the area may be more beneficial than processing the whole cutting, 

because of the inhibitory effects of indigo dye present in denim. Alternatively, the DNA 

sample may be diluted in order to reduce the inhibitor concentration [4, 32]. Another 

approach is to add additional DNA polymerase enzyme so that enough polymerase is 

available for PCR reaction after the inhibitor molecules bind some of it [32]. The analysis 

of internal positive control (IPC) amplification and PCR efficiency following real-time 

PCR analysis are excellent tools to monitor inhibitors [93, 119]  

 

F. Real-time PCR 

          Real-time PCR, when applied to DNA quantification, is useful because instead of 

only determining the amount of DNA in a sample, this method can also predict how the 

DNA will respond during subsequent PCR analysis conditions. In addition to determining 

the quantity of human DNA present, real-time PCR techniques can also be used to detect 

the presence of inhibitors of the PCR reaction by analyzing amplification efficiency [95]. 

Determining the amount of DNA present in the sample aids in optimizing the input DNA 

levels during STR analysis. Newer quantification kits offer the ability to determine the 

total amount of human DNA and male-specific DNA in a sample at the same time. 

Quantifying the amount of male specific DNA in a sample is especially useful for Y-STR 

analysis in samples overwhelmed by female DNA. 
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          Real-time PCR monitors the amplification process and detects the fluorescence 

signals as the reaction progresses. The amount of DNA amplified is detected through 

accumulation of fluorescent signals with increasing amount of DNA product or through 

fluorescence quenching where the fluorescent probe is displaced with product 

amplification. There are three stages in real-time PCR that define this process- the 

exponential phase, the linear phase and the plateau phase (Figure 11). If the reaction is 

proceeding at 100% efficiency, amount of DNA will double at the end of every cycle 

during the exponential phase. In the linear phase, the exact doubling of the copies will not 

occur and the reaction starts to slow down as a result of crowding and depletion of the 

reagents [38, 32]. The reaction finally plateaus off in the final phase after the reaction 

components are used up. The point at which the fluorescence intensity exceeds the 

background noise is called the threshold and cycle threshold (Ct) is the cycle at which the 

reaction reaches this point.  

 
Figure 11. An overview of real-time PCR process. The initial phase is the exponential 
phase where a large amount of reagents move the reaction forward and plateau phase 
occurs upon depletion of the reagents.  
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          Real-time PCR analysis makes use of different chemistries to perform 

fluorescence-based quantification [38]. The DNA binding dyes bind to a double-stranded 

DNA molecule and emit fluorescence. The amount of fluorescence increases with 

increasing amount of DNA. The dye Sybr® green l is a very popular intercalating dye 

that is widely used in real-time PCR analysis [50]. Since these dyes are not sequence-

specific and can bind to any double-stranded DNA, they can be used for a wide variety of 

assays. At the same time, this very feature is a disadvantage because the dye suffers from 

lack of specificity and cannot be used for multiplex reactions [139].  

          Hydrolysis probes are sequence-specific and the fluorescence intensity is 

proportional to the amount of DNA in the reaction. TaqMan® probes are the most popular 

hydrolysis probes for real-time PCR. TaqMan® probes rely on 5’-3’ exonuclease activity 

of Taq polymerase enzyme to release fluorescence quenchers [62]. Sybr green emits 

fluorescence upon hybridization whereas TaqMan® probes emit fluorescence upon 

hydrolysis [80]. Fluorescence is quenched through fluorescence resonance energy 

transfer (FRET) when the fluorophore present on 5’ end is in close proximity to the 

quencher present on the 3’end of the probe. Upon binding to the complementary 

sequence on the template DNA, polymerase enzyme hydrolyzes the probe and releases 

the fluorophore resulting in fluorescence [58]. Quantifiler® Duo (ABI, Foster City, CA) is 

the most popular kit that uses TaqMan® probes. 

          The Plexor® HY system (Promega Corporation, Wisconsin, MA) system detects 

DNA amplification on the basis of fluorescence quenching. It is capable of simultaneous 

determination of both autosomal DNA and human male-specific (Y) DNA concentration. 
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It also has an internal positive control (IPC) that detects any inhibition in the samples.  

          Plexor chemistry utilizes two modified bases that are complementary to each other- 

isoguanine (iso-dG) and 5’-methylisocytosine (iso-dC). One of the two primers contains 

iso-dC and is labeled with a fluorescent tag on the 5’ end. When the deoxynucleotides 

mixture containing iso-dG modified with the quencher molecule, Dabcyl, is added to the 

reaction, Dabcyl-iso-dG gets incorporated on the opposite side of iso-dC nucleotide and 

this causes fluorescent quenching. As a result, fluorescence signal decreases with 

increase in DNA concentration (Figure 12).          

 
Figure 12. Schematic representation of the Plexor® real-time PCR process. Fluorescence 
quenching occurs when the modified nucleotide containing the quencher molecule is 
incorporated opposite the complementary nucleotide tagged with the fluorescent reporter. 
As a result, a decrease in fluorescence signal is observed as the amplification takes place. 
Adapted from Promega Corporation website 
 

          Real-time PCR is highly sensitive and detects very low quantities of DNA. For 

example, Plexor® HY system can detect DNA levels down to 6.4 pg/µL. High 
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throughput, rapid analysis time, and minimal sample handling are some of the biggest 

advantages of real-time PCR. Multiple probes with different fluorescent labels can be 

used to perform multiplexing [74].  
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CHAPTER V. SHORT TANDEM REPEATS (STR) 

A. STR: Basics 

          Microsatellites or short tandem repeats (STR) are a type of variable number tandem 

repeat consisting of repetitive sequences of DNA that are 2-7 base pairs long. Because of 

their small size, there are several advantages that make STR testing the method of choice 

for DNA profiling in today’s DNA labs [19]. More than 20,000 microsatellites have been 

discovered in the last 20 years suggesting their potential usefulness. Preferential 

amplification is less of a problem because both the copies, one inherited from each 

parent, are similar in size. Secondly, forensic samples are often degraded or contaminated 

with more than one contributor, which calls for a method that is highly discriminatory 

and can amplify even small, degraded targets [32]. Lastly, their small size makes it easier 

to distinguish them from other amplified loci present during electrophoresis thereby 

simplifying the analysis and interpretation of the data [103].  

          Primers can be designed to amplify the target microsatellites by using the sequence 

of the conserved regions flanking the microsatellite and designing complementary primer 

sequences to bind to those regions. The number of nucleotides present in one repeat unit 

defines an STR locus. For example, a tetranucleotide repeat such as (AGAT) n has four 

nucleotides in each repeat unit. There are different types of STRs determined by the 

repeat unit pattern. Simple repeats contain repeat units of equal length and sequence, 

compound repeats have more than one simple repeat whereas complex repeats have units 

of variable length and sequence. Some regions of STR have incomplete alleles and these 

are called microvariants. For example, the HUMTH01 locus has an AATG 
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tetranucleotide repeats but one of its alleles has 9 copies of the tetranucleotide repeat and 

the last copy has only 3 nucleotides thus giving it the designation allele 9.3 [32]  

          Tetranucleotide repeats are commonly used in forensic testing because they 

produce lower percentage of stutter products compared to smaller repeats. Stutter 

products have one repeat unit more or less than the true allele because of slippage of 

template strand from the primer sequence [129].  It is also easier to resolve 

tetranucleotide repeats that are four base pairs apart than shorter repeat units by 

electrophoresis. Currently, 13 core tetranucleotide STR loci have been established by the 

FBI for identification of individuals through the national database, CODIS [25, 103]. 

Apart from these autosomal STR loci, The Scientific Working Group for DNA Analysis 

Methods (SWGDAM) has established 11 core Y-STR loci [32]. These aid in 

identification of male contributors in sexual assault cases, in which the female component 

overwhelms the male cells. They also help identify more than one male contributor to the 

sample. Though not as discriminatory as autosomal loci, these can be used to determine 

paternal lineage or identify victims in mass disasters by establishing match with the male 

relatives [95, 127].  

 

B. Commercially available STR kits 

          It is time-consuming and expensive to design PCR primers and validate a multiplex 

kit. Moreover, using a commercially available kit provides a standardized platform that 

allows for data sharing with other jurisdictions.  These kits contain all the components 

necessary for amplification and separation of STR markers. This includes primers, allelic 

ladder, and master mix containing polymerase, buffer and dNTPs.  
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           The first commercially available STR kit was developed in 1994 and was able to 

amplify three loci simultaneously, CSFIPO, TPOX and TH01. By 1997, 13 core STR loci 

were chosen to be included in the CODIS national database, which made a random match 

probability rare (1 in a trillion) [32]. The loci included were TPOX, D3S1358, FGA, 

CSF1PO, D5S818, D7S820, D8S1179, THO1, VWA, D13S317, D16S539, D18S51, 

D21S11 and AMEL. Out of these 13 loci, FGA, D18S51, and D21S11 offer the greatest 

amount of variation between individuals whereas TPOX, CSF1PO, and TH01 are the 

least polymorphic [32, 103].  

          TPOX, CSF1PO, D5S818, D13S317, D16S539 are simple repeats where all the 

repeats are of identical length and sequence. TH01, D18S51, D7S820 are simple repeats 

containing microvariants and the rest of the loci are compound repeats with non-

consensus alleles except for D21S11 which is a complex motif containing repeats of 

variable length or sequence [32]. 

          At the European Network of Forensic Science Institute (ENFSI) meeting five 

additional loci were included in European STR kit that also contains seven STR loci from 

European Standard Set (ESS). These twelve STR markers are TH01, vWA, FGA, 

D8S1179, D18S51, D21S11, D3S1358, D12S391, D1S1656, D2S441, D10S1248, and 

D22S1045.  

          To improve database sharing with other countries and improve discrimination of 

the multiplex kits, the FBI formed the CODIS Core Loci Working Group that published a 

to expand the CODIS STR loci set used in the United States and many other countries.  

D12S391, D1S1656, D2S441, D10S1249, D2S1338, D19S433, Penta E and male-

specific DYS391 were the additional loci suggested to expand this core set [56]. 
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C. Allelic ladders 

          Allelic ladders consist of all the alleles that can be present at a particular locus. 

They are constructed by co-amplifying PCR products from various individuals in a 

population such that all possible variations are represented at that particular locus. It is 

important to use the same primers as those used for testing unknown samples so that the 

alleles in the unknown sample can align accurately with the ladder, which allows for 

more reliable genotyping [73]. Data analysis software helps in allele designation by 

comparing the size of the fragments of unknown alleles to the size of the alleles in the 

ladder.  If an allele has the same color fluorescent label and is within half a base pair of 

the ladder, it is designated as being that allele [31].  

 
Figure 13. An electropherogram of PowerPlex® 16 ladder showing all the alleles at all 
loci [20]   
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          Each manufacturer of STR kits provides allelic ladders for accurate genotyping. 

Allelic ladder can be obtained by diluting and re-amplifying the original ladder with the 

same set of primers. Allelic ladder is also important to adjust for any differences such as 

mobility shifts that arise from different instruments and variations in environmental 

conditions [30]. 
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CHAPTER VI. CAPILLARY ELECTROPHORESIS: INSTRUMENTATION  

AND ANALYSIS 

 

A. Introduction 

          Multiplex amplification reactions produce multiple fragments that are labeled with 

different fluorescent tags and are variable in length. Capillary electrophoresis (CE) is the 

preferred method of choice to separate these fragments that are then analyzed by 

fluorescence detection. Capillary electrophoresis (CE) can also be used in other forensic 

applications such as in drug analysis, gun shot residue analysis and explosive analysis. 

The instrument comprises of a glass capillary, two buffer vials and two electrodes 

connected to a power supply.  

          The silica capillary is very thin with an internal diameter of 50 μm and 36 cm or 50 

cm long. Capillaries as long as 80 cm are used when higher resolution is required.  The 

capillary is filled with a viscous polymer medium, which separates the DNA fragments 

on the basis of their size. The larger fragments move slowly through the sieve-like matrix 

compared to the smaller fragments. The negatively charged DNA fragments move 

towards the positive electrode upon applying voltage. Runs are faster with CE than slab 

gel electrophoresis because of the application of higher electric fields to the sample. A 

laser present near the end of the capillary illuminates the DNA fragments as they pass the 

laser window. The fluorescence emitted by the dyes attached to the DNA fragments is 

plotted as relative fluorescence intensity as they pass the detector.  
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Figure 14. ABI PRISM® 310 Genetic Analyzer is used for fragment separation using 
capillary electrophoresis. This instrument has a mobile sample tray that presents sample 
during injection. Under the application of electric field, negatively charged DNA 
molecules move through the polymer-filled capillary towards the anode. A laser in the 
detection window activates the fluorescent end-labels and these fluorescence signals are 
collected and converted into peaks for data interpretation. Adapted from Life 
Technologies. 
 
B. Electrokinetic injection 

          The most popular way to introduce the DNA sample into the capillary is known as 

electrokinetic injection. When the capillary is immersed into the sample tube and a 

voltage is applied, the negatively charged DNA molecules are pulled into the medium 
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upon application of a positive charge. The amount of DNA that enters a CE column is 

dependent on the electric field applied (E), the injection time (t), electrophoretic mobility 

(µEP), electroosmotic flow (µEOF) the concentration of DNA in the sample, the area of the 

capillary opening (πr2), the ionic strength of the sample (λsample) and the ionic strength of  

the buffer (λbuffer) (Equation 1) [32, 102]. 

 

Equation 1. DNA injection 

 

 

As indicated by the equation, modifying the injection time and voltage can control the 

amount of sample injected. Since the amount of DNA injected is inversely proportional to 

the ionic strength of the sample, presence of competing ions such as chloride ions (Cl-) 

will result in poor injection. When a sample of low conductivity is introduced into a 

highly conductive environment, a phenomenon called sample stacking occurs in which 

the analyte is concentrated in the form of a band at the interface between the low 

conductive and high conductive environments, which improves the injection sensitivity 

[32].  

          Under the influence of an applied voltage, the rate at which the ionic species 

migrate towards an electrode is directly proportional to the electric field  (E) and 

electrophoretic mobility (µEP). The following equation for electrophoretic mobility 

indicates that the mobility of the ions is affected by charge-to-size ratio where net charge 

(q) is directly proportional and the radius of the ion (r) is inversely proportional to the 
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mobility. The electrophoretic mobility increases with a decrease in the frictional forces 

(f) in the buffer that is directly related to the viscosity of the medium (η) and the size of 

the analyte. (Equation 2) [134] 

Equation 2. Electrophoretic mobility 

6
 

 

C. Sample preparation 

          The PCR products are mixed with deionized formamide to denature the double-

stranded DNA molecules and reduce sample conductivity. Formamide of low 

conductivity must be used because formamide degradation produces negatively charged 

by-products that can compete with the DNA molecules, and may be preferentially 

injected into the CE system [26]. The conductivity of the formamide should be below 100 

µS/cm for optimum performance [32]. Water can also be used instead of formamide 

followed by heat denaturation at 95ºC and snap cooling to 4ºC to denature the DNA 

molecule but there is a possibility of the DNA strands reannealing [14].  

 

D. Sample separation 

          Once voltage is applied, DNA fragments migrate through the capillary where 

smaller fragments move faster compared to the larger fragments. There are three 

important variables that affect the efficiency of sample separation in a CE system- 

capillary, sieving matrix and buffer. 
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D.1. Capillary 

           Joule heating refers to the heat that is generated when electric current flows 

through another resistive medium. The separation efficiency will be affected due to 

temperature gradients across the capillary if the capillary walls do not dissipate this heat 

efficiently [134]. Most of the CE systems in forensics use a fused silica capillary that is 

47 cm long with an internal diameter of 50 µm. Fused silica capillaries allow for efficient 

heat dissipation and the small internal diameter allows application of high electric fields 

and enables fast separations. Most of the capillaries have a polyimide coating that offer 

durability. A small optical window is created by burning a small portion of this coating in 

order to facilitate laser excitation and fluorescence detection of the fragments as they pass 

the detection window [32, 142]. 

          Electroosmotic flow (EOF) will affect the separation when uncoated silica 

capillaries are used. The hydroxyl groups on the silanol molecules undergo ionization at a 

pH above 5 and these negative ions attract the positive ions from the buffer solution. An 

electrical double layer is created with the inner layer remaining stationary and the outer, 

more mobile layer starts moving towards the negative electrode upon application of 

electric field. [32]. The EOF can be suppressed by coating the inner walls of the capillary 

with the polymers in the matrix.  

 

D.2. Buffer 

          Buffer composition plays a critical role on the efficiency of sample separation. The 

components of a buffer are directly responsible for the ionic strength, denaturing 
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capability, solubility of the DNA and solution pH, which affect the quality of the 

injection. EOF is highly sensitive to the pH of the buffer solution.  

Equation 3. Electroosmotic flow (EOF) 

∈
4

	  

where ∈	is the buffer’s dielectric constant, η is the viscosity of the buffer, E is the field 

strength and  is the zeta potential at the interface of the capillary and the buffer solution. 

The pH of the buffer plays a critical role in the degree of ionization of the silanol groups. 

At a high pH, the silanol groups on the capillary walls become fully ionized resulting in 

strong zeta potential and increased electroosmotic mobility. The ionic strength of the 

buffer shares an inverse relationship with the rate of electroosmotic flow. Therefore, 

increasing the buffer concentration aids in containing the EOF [102, 132].        

          The most commonly used buffer for CE separations in forensic DNA analysis is 

100mM 3-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]propane-1-sulfonic acid 

(TAPS),1mM ethylenediaminetetraacetic acid (EDTA) adjusted to a pH of 8 with sodium 

hydroxide [31, 32]. Poor resolution will occur if the buffer concentration is too high or 

too low causing excessive heating or long separation times respectively. Since CE 

separations are carried out at a temperature of 60ºC, the buffer components should be 

stable at high temperatures. 

 

D.3. Polymer 

          The polymer in the capillary acts as a sieve for the migrating DNA molecules. 

There are two popular models that describe the movement of DNA molecules through the 
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matrix- Ogston sieving and reptation.  Ogston sieving predicts that DNA moves as a 

spherical molecule through a polymer solution as spherical molecules with a radius of 

gyration. The fragments having radius of gyration smaller than the pore size move freely 

whereas the movement of molecules with a radius of gyration larger than the pore size is 

hindered. Reptation theory predicts that the large DNA fragments unwind and migrate 

through the pores in a snake like manner [19, 30]. Polymer solutions containing 4% or 

6% dimethyl polyacrylamide and urea are routinely used in CE separations. The role of 

urea is to ensure that the DNA molecule remains in its denatured state. The 4% polymer 

is used for routine STR typing whereas the 6% polymer is used in DNA sequencing 

which requires a higher resolution [32].        

 

E. Fluorescence detection 

          During the amplification process, primers labeled with fluorescent tags bind to the 

DNA strands. The fluorescence from these tags is detected as the fragments pass the 

detection window. Argon-ion laser at 488nm is commonly used to excite multiple 

fluorescence dyes. The emission spectrum is recorded using a charge coupled device 

(CCD) camera. Spectral calibration is performed using matrix standards that allow peak 

distribution into their respective lanes [30].  

 

F. Data interpretation 

An internal lane standard (ILS) contains known DNA fragment sizes and this is 

used to determine the size of the alleles using either a local southern method or global 

southern method fit [32]. These two methods differ in that the local method uses an 
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interpolation method by using two size peaks before and after the unknown whereas the 

latter uses all size data available. Genemapper® ID software (Applied Biosystems, 

Valencia, CA) is used to perform data analysis including allele designation. Once the size 

of the alleles is determined, the user creates virtual bins that define the allele size range. 

Alleles are called by comparing them to the alleles of known sizes in the ladder [111]. 

The DNA profile thus generated is compared to known suspects or uploaded into the 

national database for a match. 
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CHAPTER VII. PRESSURE CYCLING TECHNOLOGY 

 

A. Introduction 

          Pressure cycling technology sample preparation system (PCT SPS) is a novel 

method that employs cycles of hydrostatic pressure between ambient and high levels to 

induce mechanical stress on cells resulting in compromised cellular integrity [12, 37]. 

Cell lysis and efficient recovery of the cellular components dictates the success of 

downstream applications. Pressure cycling technology (PCT) has been used successfully 

in a variety of applications in molecular biology. Smejkal et al. successfully extracted 

protein from Escherichia coli using PCT [74]. It has also been used in the extraction of 

biomolecules such as DNA and RNA from animal and plant tissues, insects, and 

microbes [31] (Table 2). The advantage of pressure cycling is its ability to produce a 

highly efficient extraction and disruption of cell nuclei from a wide variety of substrates.  

          Most of the extraction methods in forensic biology rely on a combination of 

physical and chemical extraction protocols to achieve maximum yields. Achieving 

maximum DNA yields from a sample is especially challenging because the evidence 

collected from a crime scene is mostly present on a substrate, and recovery from the 

substrate is inefficient when the material is an absorbent. Long incubation times, 

contamination issues, health hazards from the use of chemicals and the combination of 

treatments that are too harsh on the biomolecules of interest are some of the biggest 

disadvantages associated with the current extraction methods. Pressure cycling 

technology sample preparation system (PCT SPS) was developed to rapidly and 
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efficiently release cellular contents from biological samples using alternate cycles of high 

and ambient pressure in a safe and controlled environment. 

Table 2. A list of different kinds of tissues processed using PCT for various downstream 
applications [77] 

 

B. Instrumentation 

B.1. Barocycler 

        The Barocycler™ NEP2320 (Pressure BioSciences Inc., Boston, MA) is a 

commercially available instrument that is equipped with a hydrostatic pressure chamber 

that can withstand high pressures up to 45000 psi. Both solid tissue and liquid samples 

can be processed using this instrument offering versatility.  The Barocycler is a 

lightweight, portable instrument that can easily fit on a bench top. It comes equipped with 

Sample group Lysed material Extracted 
biomolecules 

Downstream 
applications 

Animal tissue Soft- liver, brain, 
pancreas, spleen, 
kidney, lung 

DNA, RNA, Proteins PCR, RT-
PCR, ELISA, 
SDS-PAGE, 
Western blot 

Hard- tail, heart, 
intestine, skeletal 
muscle 

DNA, RNA PCR, RT-
PCR 

Plant tissue Soft- corn sprouts, 
leaves, grape skin 

DNA, RNA, Proteins PCR, RT-
PCR, SDS-
PAGE 

Hard- stem, pine 
needle, grape seed 

DNA PCR 

Insects, small 
organisms 

Mosquito, fruit fly, 
mealworm, tick 

DNA, RNA PCR, RT-
PCR 

Microbes Yeast, C. elegans DNA, RNA, Proteins PCR, RT-
PCR, SDS-
PAGE 

mycobacteria, 
bacteria/ spores, soil 

DNA, RNA PCR 
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a microprocessor and a keypad that is used to input different user-controlled variables 

such as pressure and number of cycles. The instrument is connected to a compressor that 

creates high pressure. The Barocycler™ NEP2320 is a smaller version compared to 

NEP3229 that can hold three PULSE™ tubes [37]. 

 

B.2. PULSE™ tubes (Pressure Used to Lyse Samples for Extraction)  

          PULSE tubes are single-use tubes that are specially designed to withstand high 

pressures generated to cause cell lysis. There are two types of PULSE tubes- FT500 

comes with an integrated perforated lysis disk, which is used for processing tissue 

samples that require some homogenization whereas the FT500-ND is not equipped with 

this lysis disk and is more suited for processing liquid samples.  

          The FT500 PULSE tubes are open-ended on both sides and are assembled by 

placing the sample on the lysis disk and sealing with ram on one end. Ram is made up of 

polypropylene and is responsible for transmitting pressure from the chamber to the 

sample. Lysis buffer is added to the fluid retention chamber that lies on the other side of 

the lysis disk and is sealed with a screw cap. A PULSE tube thus assembled is placed into 

the pressure chamber and subjected to cycles of ambient and high pressure. When there is 

a difference in pressure between the chamber and the contents of the tube, the ram moves 

up and pushed the sample through the lysis disk. The ram recedes when the pressure is 

released and this action causes the sample, along with lysis buffer, to be pulled through 

the disk. This process is repeated with multiple cycles of high and ambient pressure 

resulting in tissue homogenization and weak biomolecular interactions that ultimately 

lead to cell lysis.  
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Figure 15. A. Barocycler® NEP 2320 1) Pressure chamber in which sample is suspended 
2) Keypad to input pressure, number of cycles and holding time 3) Temperature and 
pressure is displayed on the screen during the treatment. B. PULSE tube (FT500) a. Ram 
b. Lysis disk c. Fluid retention chamber d. Screw cap [116]  
 

B.3. PCT MicroTubes and MicroCaps 

          Up to 48 samples can be processed in a barocycler when working with sample 

volumes less than 150 µL. This can be achieved by switching to PCT MicroTubes, which 

are designed for use with smaller sample volumes. PCT MicroCaps are designed for use 

with MicroTubes and three kinds of caps, designated 50, 100, and 150, are available 

depending on the final sample volume. MicroCaps are designed to form a tight seal and 

prevent air bubble formation that may lead to foaming and sample loss. They have an 

indentation that can be used to excise material from slab gels and transfer it to the sample 

tube for PCT processing. The PCT MicroTube cartridge is designed to hold the 

MicroTubes in the pressure chamber. These tubes are constructed with a fluoropolymer, 

fluorinated ethylene propylene (FEP) that can withstand high temperatures and has a non-

absorbent surface that allows for complete sample recovery. PCT MicroCaps are made 

from polytetraflouroethylene (PTFE) that can maintain integrity under extreme pressure 

changes.  

B A 
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B.4. User-controlled variables 
 
          There are four main parameters that can be varied to achieve an optimum 

environment for cellular disruption. The applied pressure, exposure time, and number of 

cycles can all be adjusted using a programmable interface. Furthermore, connecting an 

external circulating water bath can control the temperature of the pressure chamber.  

        The Barocycler can withstand pressures up to 45000 pounds per square inch (psi) 

and samples can be exposed to target high pressure or ambient pressure anywhere from 1 

to 99 seconds.  Cycling between high pressure and ambient pressure can be repeated up 

to 99 times. The microprocessor is capable of saving up to 99 user-defined protocols [47, 

55, 77].  

 
Figure 16. Mechanism of PCT extraction. Rapid cycles of high and ambient pressures 
cause disruption of lipid bilayer and cell lysis. Adapted from Gross et al. [55]. 
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C. Mechanism 

          Application of alternating cycles of hydrostatic pressure between ambient and high 

levels causes disruption of biomolecular interactions. When high pressure is applied, the 

lipid bilayer is compressed and release of this pressure results in destabilization of the 

cell membrane, which leads to compromised cellular integrity and subsequent release of 

cellular components. (Figure 16) 

 

D. Advantages and limitations 
 
          The Barocycler is easy to use, requires minimal training, semi-automated and can 

be used along with commercially available extraction kits to further increase the yields. 

Minimal sample handling and a closed pressure chamber limit contamination and 

exposure to harmful reagents. One of the biggest limitations to pressure cycling is low 

sample throughput when using the large PULSE™ tubes because Barocycler NEP 2320 

is capable of processing only one sample at a time.  
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CHAPTER VIII. THE ROLE OF PRESSURE CYCLING TECHNOLOGY IN 

DIFFERENTIAL EXTRACTION 

A. Introduction 

          Separating the sources of DNA from different contributors to a stain reduces the 

difficulty associated with mixture analysis and data interpretation. This is especially 

important in sexual assault cases where the samples often consist of mixtures of body 

fluids from the victim and suspect. The processing and interpretation of such mixed DNA 

samples has long been recognized as a bottleneck in forensic DNA analysis [63, 126]. 

The examination of physical evidence submitted in such cases can be tedious and time-

consuming. As a result, subsequent DNA analysis and interpretation can be challenging 

especially if the evidence left behind by a male suspect is overwhelmed by the female 

component. 

          Organic differential extraction is one of the most popular methods to separate 

different sources of DNA encountered in a rape kit [51]. Although modified versions of 

this method are still being used in crime laboratories around the world, several limitations 

such as inefficient recoveries, incomplete separation of male and female cells and time-

consuming protocols have led to numerous studies to achieve better separation. Chen et 

al. employed nylon mesh filters to physically separate smaller sperm cells from the much 

larger epithelial cells [34]. The method using nylon filters was not applied to dried stains, 

and the authors suggested that there is a possibility for folded cells to pass through the 

filters. Flow cytometry studies have demonstrated that the sperm cells can be isolated 

using flow cytometry when the cells are tagged by immuno-staining and other nuclear 

staining material [109, 110]. Another new approach to achieve differential recovery is 
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isolation of single sperm cells by laser microdissection [43]. The LCM method involves 

staining the cells and using a laser beam fitted with an optical microscope to cut out the 

cells of interest from smears on microscopic slides. The microdissection technique has 

not been tested for mixtures with overwhelming female component or rehydrated old 

stains that might not be effectively stained. More recently microchip-based sorting of 

non-lysed cells has been employed to separate the sperm cells and epithelial cells 

followed by DNA extraction from each cell type [63]. The study did not address the use 

of old and dried seminal material on different substrates routinely encountered in sexual 

assault cases. The presence of other cell types in mixtures, which might impede the flow 

of cells down the microchannels, was also not explored.  

          Among the commercial efforts to improve the processing of such samples includes 

the Differex™ System, a commercial kit for differential extraction available from 

Promega, which involves the use of a special separation solution and the use of a spin 

basket. The principle behind this kit is similar to the organic differential extraction where 

the procedure begins with a Proteinase K digestion to lyse non-sperm cells. The 

separation solution effectively separates the sperm from any soluble DNA and cell debris 

in the sample. The DNA IQ™ Lysis Buffer containing DTT is next added to the 

epithelial and sperm fractions. This buffer effectively lyses the sperm without the need 

for further Proteinase K digestion. DNA can then be purified from each fraction using a 

magnetic separation system which can be automated, helping to reduce sample 

processing time and avoid the use of organic solvents [45]. Though systems such as these 

have made it easier to handle sexual assault evidence, they still require a fairly complex 

two-step extraction procedure to obtain a clean male DNA fraction. 
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          Up to this point, the application of pressure cycling technology in the lysis of 

sperm cells or epithelial cells has not been studied. The present thesis was aimed at 

evaluating the effect of pressure on the differential recovery of sperm and vaginal 

epithelial cells resulting from sexual assault. The effect of different parameters and the 

buffer compositions were studied to determine the optimal conditions for cell lysis. The 

variables that produced differential lysis for one cell type over another were further 

explored to determine the potential of this application in processing mixtures and 

separating fractions of sperm and epithelial cells. The overall goal of this study is to 

develop a reliable and efficient method to selectively recover sperm DNA from sexual 

assault evidence using pressure-based extraction.  

 

B. Materials and Methods 

B.1. Sample preparation 

          Sperm cells and vaginal epithelial cells were collected from volunteers according 

to the protocol approved by the institutional review board (IRB) of Florida International 

University. Semen sample was collected by masturbation and ejaculation into a sterile 

collection tube. The sample was allowed to liquefy at room temperature before diluting it 

with 1X PBS buffer (pH 7.5) (Fisher Scientific, Fair Lawn, NJ) to obtain a final 

concentration of 1-1.5 x 106 cells/mL. Vaginal swabs collected from healthy female 

volunteers were incubated in 1X PBS buffer with gentle agitation for 2 hours on Adams 

Nutator (Clay Adams, Parsipanny, NJ). Following incubation, the swab was transferred 

to a spin basket and the samples were subjected to micro centrifugation at 13,000 rpm for 
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10 minutes to pellet the epithelial cells. The pellet was washed and diluted in 1X PBS 

buffer to a density of 1-1.5 x 106 cells/mL. 

 

B.2. Cell count 

          Cell density (cells/mL) was measured using Neubauer-improved disposable C-chip 

hemocytometers (INCYTO, Fisher Scientific, Fair Lawn, NJ). The hemocytometer has a 

large grid that is divided into nine squares with each square having a surface area of 1 

mm2 and a depth of 0.1 mm thus representing a total volume of 10-4 cm3. Since 1 cm3 is 

equivalent to approximately 1 mL, the product of average cell count per square and 104 

gives the final concentration in cells/mL (Figure 17). Cell count in the four large corner 

squares was performed after injecting 10 L sample into the injection port and 

visualizing it under 40x magnification with a light microscope (Micromaster Model E, 

Fisher Scientific, NJ, USA) [51].  

 
Figure 17. INCYTO C-Chip disposable hemocytometer used for cell count. Sample is 
injected into the sampling area and the large grid present in the detection area is used to 
count the number of cells present in the sample [70] 
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B.3. Cell staining 

          A common dye-exclusion method involving trypan blue 0.4% solution (MP 

Biomedicals, LLC, Solon, OH) was used to determine cell viability in samples subjected 

to pressure treatment. The cell suspension was mixed with an equal volume of trypan 

blue 0.4% solution and incubated for 2-3 minutes at room temperature [6]. A drop of this 

mixture was placed on a clean microscope slide and covered with a coverslip before 

visualization with a light microscope to perform a simple, preliminary determination of 

cell lysis. 

 

B.4. Pressure cycling technology sample preparation system (PCT SPS) 

         A Barocycler® NEP 2320 (Pressure BioSciences Inc., South Easton, MA) 

was used to perform pressure cycling between ambient and high pressure to induce cell 

lysis by exposing the sample to rapid pressure changes. PULSE tubes and MicroTubes 

are single-use sample containers that effectively transmit this hydrostatic pressure to the 

sample resulting in pressure-induced cell lysis and the subsequent release of 

biomolecules. The effect of different pressure parameters on sperm and epithelial cells 

was studied by transferring a known volume of sperm cells or epithelial cells suspended 

in 1X PBS buffer into MicroTubes or PULSE tubes and exposing the samples to 

pressures ranging from 10,000 psi to 45,000 psi using 5-60 pressure pulses at room 

temperature.  The temperature of the pressure chamber was also raised to 60°C by 

connecting it to a Endocal RTE-110 water circulator (Neslab Instruments, Inc., 

Newington, NH) to determine the effect of pressure treatment at increased temperature on 

DNA recovery from sperm cells and vaginal epithelial cells.                 
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          For mixture studies, sperm cells and epithelial cells were added to a sterile cotton 

swab (Puritan Medical Products Co., Guilford, ME) in the ratio of 1:4 and air dried for 1 

hour at room temperature. The swab cutting was placed in a PULSE tube and 1X PBS 

buffer was added to completely submerge the substrate. The PULSE tube was then 

transferred to the pressure chamber and exposed to 60 alternating cycles of ambient 

pressure and high pressure at 45000 psi with each cycle lasting 30 seconds. After 

pressure treatment, the sample was transferred into a 2 mL micro centrifuge tube and the 

swab was transferred to a spin basket (DNA IQ, Promega corp., Madison, WI) placed in 

the same tube followed by centrifugation at 13000 rpm for 10 minutes. The swab was 

discarded along with the spin basket and the DNA was purified using phenol chloroform 

isoamyl alcohol (25:24:1 v/v).              

                        

B.5. Study of buffer composition 

          Tween-20 (Sigma-Aldrich, St. Louis, MO), Dodecyl sulfate sodium salt, 99% 

(SDS) (Acros Organics, Fair Lawn, NJ) or N-Lauroyl sarcosine sodium salt (Sarkosyl) 

(MP Biomedicals) was added to the sample buffer to a final concentration of 2% v/v or 

2% w/v. A stock solution of 0.5 M Tris (2-carboxyethyl) phosphine (TCEP) (Gold 

Biotechnology, St.Louis, MO) was prepared by adding 1.4 g of TCEP to 10 mL of HPLC 

grade water (Fisher Scientific, Fair Lawn, NJ) and this solution was added to the sample 

buffer to a final concentration of 10 mM, 20 mM, 30 mM, 40 mM and 50 mM TCEP. A 

stock solution of 1M Dithiothreitol (DTT) (Promega Corp., Madison, WI) was prepared 

by adding 1.54 g of DTT to 10 mL of water and this was added to the buffer to a final 

concentration of 20 mM, 40 mM, 60 mM, 80 mM and 100 mM DTT. A stock solution of 
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500 µg/mL of cellulase enzyme derived from Aspergillus niger (TCI America, Portland, 

OR) was prepared by adding 5 mg to 10 mL of water and this was added to the buffer to a 

final concentration of 10 µg/mL, 50 µg/mL and 100 µg/mL. 

 

B.6. Calculating DNA recovery efficiency 

          Since pressure cycle technology has not been previously applied to rape kits, it was 

necessary to determine the efficiency of this treatment on DNA recovery. For comparison 

of relative efficiency, standard organic extraction was performed to determine the amount 

of DNA in each cell type [31]. The quantity of DNA recovered from pressure treatment 

was plotted as percent recovery of DNA obtained from organic extraction. Organic 

extraction was performed by incubating the samples in stain extraction buffer (10 mM 

Tris, 100mM NaCl, 10 mM EDTA, 2% SDS, 39 mM DTT) and proteinase K (20 mg/ml) 

at 56°C for 2-4 hours followed by phenol-chloroform-isoamyl alcohol purification and 

ethanol precipitation.  

 

B.7. Nucleic acid purification 

          An equal volume of phenol chloroform isoamyl alcohol (25:24:1 v/v) (Sigma-

Aldrich, St. Louis, MO) and 80 µL of 3 M sodium acetate solution were added to the 

extracted samples. After vortexing for 10 seconds, the samples were centrifuged at 13000 

rpm for 10 minutes and the aqueous layer was transferred to a 1.5 mL micro centrifuge 

tube. Double the volume of absolute ethanol and 40 µL of 3 M sodium acetate solution 

was added to the aqueous phase followed by gentle agitation and overnight incubation at 

4°C (or 1-2 hour incubation at -20°C). The samples were centrifuged at 13000 rpm for 10 
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minutes and the DNA pellet was washed with 1 mL of 70% ethanol. After air-drying, the 

pellet was resuspended in water or 1X Tis-EDTA (TE) buffer (Sigma-Aldrich, St.Louis, 

MO) and incubated in a water bath at 56°C for 15 minutes.  

 

B.8. DNA quantification 

          Amplification and quantitation of DNA extracted with pressure cycling technology 

was performed to establish a correlation between the pressure treatment and the amount 

of DNA recovered. Plexor® HY system (Promega Corp., Madison, WI) was used for 

simultaneous quantification of total human DNA and male human DNA. The Plexor HY® 

standard curve was made from a dilution series of male genomic DNA standard provided 

by the manufacturer. Sample preparation was performed according to the manufacturer's 

protocols using 10 µL Plexor® HY 2X Master Mix, 7 µL amplification-grade water, 1 

µL Plexor® HY 20X Primer/IPC Mix and 2 µL DNA sample to make a total reaction 

volume of 20 µL. The samples were amplified on Rotor-Gene 6000 (Corbett, Australia) 

using the following conditions: initial hold for 2 min at 95°C followed by 40 cycles at 

95 °C for 10 s and 60 °C for 45 s.  

 

B.9. Short tandem repeat (STR) analysis 

          The quality of the DNA recovered from pressure treatment was assessed by 

performing STR analysis using PowerPlex® 16 HS system (Promega Corp., Madison, 

WI) according to the manufacturer’s protocol. The PowerPlex® 16 HS System co-

amplifies sixteen loci including Amelogenin marker. Three different colored fluorescent 

labels are used for detection. Fluorescein-labeled primers are used for the detecting Penta 
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E, D18S51, D21S11, TH01 and D3S1358 loci; primers for FGA, TPOX, D8S1179, vWA 

and Amelogenin loci are labeled with carboxy- tetramethylrhodamine (TMR); and one 

primer for each of the Penta D, CSF1PO, D16S539, D7S820, D13S317 and D5S818 loci 

is labeled with 6-carboxy-4 ́,5 ́-dichloro- 2 ́,7 ́-dimethoxy-fluorescein (JOE).  

          Autosomal quantification data from real-time PCR analysis was used to normalize 

DNA input into PowerPlex® 16 HS reactions where a total of 1 ng of DNA, or less for 

samples with lower yields, was amplified using GeneAmp® 9700 thermal cycler. After 

amplification, samples were prepared for STR analysis by adding 1 µL of sample to a 

mixture of 9.5 µL of Hi-Di™ formamide (Applied Biosystems, Foster city, CA) and 

0.5 µL of Internal Lane Standard 600 (Promega Corp., Madison, WI). Separation and 

detection of STR amplification products were performed using an ABI Prism™ 310 

Genetic Analyzer (Applied Biosystems, Foster City, CA). Initial fragment sizing and 

allele calling was performed using GeneMapper® ID v.3.2 (Applied Biosystems, Foster 

City, CA). The percentage of male DNA was calculated using relative fluorescence units 

(RFU) as [(2 x Y rfu)/(X rfu + Y rfu)] x 100% and the percentage of female DNA was 

calculated as [(X rfu - Y rfu)/(X rfu + Y rfu)] x 100% [13]. 

 

C. Results and Discussion 

C.1. Microscopic examination 

          Trypan blue dye exclusion assay was used to verify if cells are undergoing lysis 

when exposed to pressure treatment. This assay is based on the ability of viable cells with 

intact cell membrane to exclude this dye, compared to a compromised cell membrane that 

readily allows for this dye to leak into the cytoplasm of the cell [6]. Our results indicate 
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that upon interaction with trypan blue stain both vaginal epithelial cells and sperm cells, 

exposed to 60 cycles of pressure at 35000 psi, appeared blue due to a compromised cell 

membrane thus indicating that they are vulnerable to pressure-induced lysis (Figure 18).  

                                    

Figure 18. Trypan blue staining of vaginal epithelial cells (left) and sperm cells (right) 
treated with pressure cycling at 35000 psi resulted in the uptake of dye by the cells 
indicating a compromised cell membrane.  
 
C.2. Determination of optimum pressure parameters 

          In the initial studies, individual cell types were subjected to pressure treatment 

under varying conditions of pressure and number of cycles to determine the optimum 

parameters to facilitate differential digestion and high recovery. To perform the pressure 

experiments, samples were suspended in 1X PBS buffer and subjected to pressure pulses 

from 5000 to 45000 using 5-60 total pulses.  No significant improvement in DNA 

recovery was observed with more than 60 pressure cycles. When operated at a 60-cycle 

pulse rate, optimal recovery of DNA from sperm cells was observed at a pressure of 

20,000 psi while epithelial cells produced their best recovery at 25,000 psi. Best 

selectivity was observed at 15000 psi with three times more recovery of epithelial DNA. 

Overall extraction efficiency was very low with only 5% ± 0.6 of epithelial DNA and 3% 

± 0.5 of sperm DNA recovered with 60 cycles of pressure at 45000 psi, which 

necessitates the application of simultaneous chemical digestion (Figure 19). 
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Figure 19. The effect of increasing pressure on DNA recovery from sperm cells and 
vaginal epithelial cells indicates overall low yields in the absence of chemical digestion 
(n=3 ± standard error) 
 
C.3. Improving differential lysis and developing selective recovery of sperm DNA 

          The next step was to develop a procedure for selective extraction of DNA from 

sperm and improve DNA recovery efficiency. To do this the effects of three types of 

stress-temperature, detergents and reducing agent, was examined at 45000 psi and 60 

cycles. In these experiments, sperm cells and epithelial cells were treated independently 

of one another to determine how they react before developing a protocol for selective 

extraction of mixtures.  

          The barocycler was connected to an external circulating water bath, and the 

samples were subjected to a high pressure of 45000 psi at 40º C, 50º C and 60º C. An 

increase in temperature resulted in 4-fold enrichment (16%±1) of vaginal epithelial DNA 

compared to pressure cycling at room temperature (3%±1) whereas no change was 

observed in sperm DNA yield. Detergents are a common component in extraction buffers 
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due to their ability to solubilize the lipid membrane and aid cell lysis. The effect of ionic 

and non-ionic detergents on epithelial and sperm cell lysis was studied to determine if 

they can be used for selective recovery when coupled with pressure cycling. Buffer 

solutions containing 2% (v/v) Tween-20, 2% (w/v) sodium dodecyl sulfate (SDS) or 2% 

(w/v) sarkosyl were examined by applying pressure treatment at 45000 psi for 60 cycles. 

Tween-20 did not improve DNA yields but SDS and sarkosyl produced higher epithelial 

DNA yields compared to sperm DNA. Sarkosyl treatment resulted in 14% ± 1 female 

DNA recovery compared to 3% ± 2 sperm DNA recovery indicating that selective 

recovery of female DNA is possible when samples are extracted with pressure-induced 

mechanical stress in the presence of detergents. Dithiothreitol (DTT) is a reducing agent 

commonly used in the organic differential extraction protocol to target sperm cells and 

extract male DNA. Protamines are sperm nuclear proteins that are rich in arginine and 

contain cysteine residues that form disulfide bonds. The disulfide bonds crosslink the 

protamines in the sperm nucleus [92]. Reducing agents such as DTT reduce disulfide 

linkages in protamines resulting in decondensation of sperm nuclei. A 10% increase in 

the quantity of DNA extracted from sperm cells was observed in the presence of 20 mM 

Dithiothreitol (DTT) with twice the amount of sperm DNA recovered compared to 

epithelial cells. 

          The overall results Figure 20, demonstrated that depending on the buffer 

conditions, differential lysis of epithelial cells or sperm cells is possible. In particular, 

increasing temperature or addition of detergent aided in the recovery of female cells, 

while the addition of reducing agents permitted selective recovery of sperm cells. 
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Figure 20. The effect of chemical digestion on DNA recovery with pressure treatment at 
45000 psi for 60 cycles indicated relatively higher sperm DNA recovery in the presence 
of a reducing agent (DTT) and selective female DNA recovery in the presence of high 
temperature and a detergent (Sarkosyl). (n=3 ± standard error) 
 
 
          Further exploration of the effects of DTT concentration and pressure was 

performed to determine if DNA recovery from sperm cells could be further improved. 

Sperm cells and vaginal epithelial cells were treated with 40 mM, 60 mM, 80 mM or 100 

mM DTT and extracted with 60 cycles of 45000 psi pressure. The results from figure 21 

demonstrate that sperm DNA recovery could be improved to 73%±4 at 40mM DTT but 

the selectivity dropped with almost 47% ±12 of epithelial DNA recovery (Figure 21). As 

a result we evaluated tris (2-carboxyethyl) phosphine (TCEP), a stronger reducing agent, 

under the assumption that the key issue for selective extraction was the disruption of the 

disulfide bonds in the sperm cells [78]. 
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Figure 21. The effect of increasing concentration of dithiothreitol (DTT) indicates an 
increase in DNA yields but overall loss of selectivity between sperm and epithelial cell 
lysis. (n=3 ± standard error) 
 
 
          TCEP is a stronger reducing agent than DTT and is commonly used to break 

disulfide bonds within and between proteins. Moreover, properties such as high stability 

over a wide pH range and its odorless nature have made its use popular in biochemical 

applications [49, 78].  

          Sperm cells and vaginal epithelial cells were suspended in buffer containing 10 

mM, 20 mM, 30 mM, 40 mM or 50 mM concentration of TCEP and treated with 45000 

psi pressure for 60 cycles. The results Figure 22, showed a significant increase in 

selectivity when TCEP was added with a relatively high percentage of the sperm cells 

being lysed when compared to the epithelial cells. At 20 mM TCEP, nearly 60% of sperm 

cells were lysed with less than 20% epithelial DNA recovery. Overall compared to 

treatment by reduction with DTT, TCEP resulted in an improved selectivity for sperm 

and epithelial cell lysis with maximum sperm DNA recovery (58%±4) at 20 mM TCEP 

and an optimal selectivity (9/1 sperm/epithelial) at 40 mM TCEP. 
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Figure 22. The effect of a stronger reducing agent (Tris (2-carboxyethyl) phosphine) on 
DNA recovery, with pressure treatment at 45000 psi for 60 cycles, indicates a significant 
increase in sperm DNA yields with minimal digestion of vaginal epithelial cells. (n=3 ± 
standard error) 
 
 
 

 
Figure 23. Electropherogram of DNA products extracted with PCT indicates good quality 
of genomic DNA A. Sperm control B. Sperm DNA- 20 mM TCEP + PCT (25K  psi)  
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C.4. Application of pressure treatment to mixtures  

          Since preliminary studies using pressure cycling technology indicated that it was 

possible to selectively recover more sperm DNA than female epithelial DNA when using 

reducing agents such as TCEP and DTT, pressure treatment was next applied to mixtures 

of sperm and epithelial cells in the presence of TCEP and DTT. In order to maximize 

DNA recovery without compromising the selectivity of digestion, mixtures of sperm and 

epithelial cells were suspended in a 1X phosphate buffered saline (PBS) buffer with a 

final concentration of 40 mM TCEP and 20 mM DTT. Addition of DTT resulted in 13% 

increase in sperm DNA recovery compared to TCEP treatment alone (32%±5) while 

retaining a selectivity factor of 2/1 sperm to epithelial cells. (Figure 24). An increase in 

digestion time by exposing the samples to a maximum number of 99 pressure cycles did 

not improve the yields.  

 
Figure 24. The effect of pressure treatment at 45000 psi on DNA recovery from a mixture 
in the presence of TCEP and DTT indicates a 13% increase in yields compared to TCEP 
treatment alone. No increase in yield was observed when the number of pressure cycles 
was increased to 99 cycles. (n=3 ± standard error) 
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          For the next step, the effect of pressure treatment on DNA recovery from cotton 

swabs was evaluated since cotton swabs are routinely used for sample collection. Organic 

differential extraction is traditionally used for the extraction of rape kits from swabs in 

which vaginal epithelial cells are initially lysed and removed from the mixture prior to 

the digestion of sperm cells with DTT treatment. . Many studies have reported inefficient 

sperm DNA recoveries with organic differential extraction protocol leading to numerous 

studies to improve cell elution and subsequent DNA recovery [64, 78, 125]. Voorhees et 

al.  demonstrated a slight increase in cell recovery by using cellulase enzyme to digest the 

cellulose fibers of the cotton swab [125]. Addition of detergents during incubation period 

[90], and use of alternate collection tools such as nylon flocked swabs [13] have also 

been shown to improve the recovery of intact cells from the cotton substrate. To 

determine the effect of PCT treatment on DNA recovery from swabs, mock samples were 

created by adding sperm cells and epithelial cells in the ratio of 1:4 to the swab and air-

drying at room temperature for 1-2 hours. Prior to extraction with pressure treatment, the 

swab was incubated in a water bath at 42ºC for 2 hours to loosen the cellular material 

from the matrix. Following incubation, TCEP was added to the buffer to a final 

concentration of 20 mM to maximize the DNA recovery and subjected to 60 cycles of 

pressure treatment at 45000 psi. The overall results Figure 8, demonstrate that the DNA 

recoveries dropped to less than 5% when pressure treatment was applied to swabs 

incubated in 1X PBS buffer. Based on the assumption that inefficient cell recovery from 

cotton swabs may lead to a drop in DNA recovery, treated cotton swabs were incubated 

in cellulase enzyme at 10 µg/mL, 50 µg/mL or 100 µg/mL concentrations for 2 hours at 

42ºC. This treatment did not result in any significant improvement in the yields with an 
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overall recovery of only 6-7% of sperm DNA. Benschop et al. demonstrated a 6-fold 

improvement in the recovery of intact cells from nylon-flocked swabs compared to cotton 

swabs [8]. Pressure treatment of nylon flocked swabs containing a mixture of sperm cells 

and epithelial cells was not efficient and resulted in nearly 98% loss in sperm and 

epithelial DNA recovery as demonstrated in figure 28. Due to poor yields, a 1% solution 

of SDS detergent was included in the incubation buffer in an attempt to improve recovery 

of cells, however the overall recovery remained around 6% for sperm DNA. 

          Dithiothreitol (DTT) is commonly used for sperm cell lysis and in previous results 

it produced an improvement in sperm DNA recovery with pressure treatment. When 

swab cuttings were incubated in 1X PBS buffer containing a final concentration of 20 

mM DTT for 2 hours at 42ºC followed by pressure treatment (45000 psi for 60 cycles) in 

the presence of 20 mm TCEP, a nearly 10% increase in sperm DNA yield  (from 4.3%±1 

to 14%±4) occurred compared to incubation in 1X PBS buffer (pH 7.4) alone. The PCT 

treatment did not have a significant impact on epithelial cell lysis, which showed an 

overall recovery of 2.3%±0.4. (Figure 25) 
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Figure 25. The effect of various treatments on DNA recovery from a swab with pressure 
treatment at 45000 psi for 60 cycles indicates that the best yields and selective recovery 
of sperm DNA was observed with a buffer containing TCEP and DTT although the 
overall yields dropped due to inefficient sample recovery from a cotton swab. (n=3 ± 
standard error) 
 
 
          Analysis of STR data for samples extracted with DTT and TCEP revealed that a 

full autosomal STR profile could be obtained for the male contributor while allelic drop 

out was observed at the Penta E and D7S820 loci for the female contributor (Figure 26). 

A mixed profile was expected considering that the swab had four times more female 

cells.  Although DTT treatment gave the best recoveries with 14% sperm DNA recovered 

from the sample, the overall recovery was still low. In addition, the selectivity of this 

extraction procedure was low resulting in a mixed DNA profile in the purified DNA 

extract. To estimate the male contribution in the extracted sample, the peak height ratio at 
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the amelogenin (AMEL) locus was used, and the profile indicated male DNA enrichment 

with 59%± 4 of the total DNA recovered as male and 41%±4 as female. 

 

 

 

 

 

 

 

 

.  

 

Figure 26. PowerPlex 16 HS amplification products of sperm DNA control (top panel) 
Epithelial DNA control (middle) DNA recovered from pressure treatment of a mixed 
stain on a swab, in the presence of 20 mM TCEP following incubation at 42°C for 2 
hours in 20 mM DTT (bottom panel). The arrow indicates the loss of female allele at 
Penta E locus. 
 

D. Concluding remarks 

          The data indicates less than 5% DNA recovery occurs from both male and female 

cells when pressure cycling technology was used as a stand-alone treatment for cell lysis. 

In the presence of reducing agents such as DTT and TCEP, almost 60-70% sperm DNA 

was recovered using a pressure treatment at 45000 psi for 60 cycles. Treatment with 

TCEP further improved selectivity with nine times more sperm DNA recovered 

compared to epithelial DNA. These results demonstrate the potential of this technology in 
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analyzing samples from sexual assault casework that often contain mixtures of sperm and 

vaginal epithelial cells.   

          When the study was conducted on samples deposited on a cotton swab, the overall 

recoveries dropped to less than 5% with TCEP treatment at high pressure of 45000 psi. 

This is a significant loss in recoveries that may be attributed to the inefficient sample 

elution from the cotton matrix. The best yields from cotton swabs were obtained when 

the swabs were incubated in a DTT solution, but the overall recoveries were still low at 

14%±4 and selectivity was compromised. The study demonstrates that pressure cycling 

technology improves DNA yields from liquid samples but requires additional treatments 

to obtain optimal yields when the sample is present on a cotton substrate.  

          Lastly these results suggest that a selective extraction of female cells should be 

possible through the combined use of detergents, pressure and elevated temperatures. 
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CHAPTER IX. ALKALINE LYSIS: IMPROVE DNA RECOVERY FROM SWABS 

 

A. Introduction 

          There is a demand for protocols to recover DNA more quickly and efficiently from 

substrates. Due to the high discriminatory power of DNA evidence, it has become routine 

to collect biological samples as part of any crime scene investigation. Unfortunately, 

time-consuming protocols create backlogs resulting in thousands of samples remaining to 

be processed.  

          The major contributing factors to this problem are cumbersome extraction 

procedures and long incubation times necessary to successfully recover samples from the 

substrates on which evidence is deposited. Studies have reported inefficient sperm DNA 

recoveries from cotton swabs [22, 90, 125]. Considering the fact that cotton swabs are the 

most common collection tools, and that sometimes there is little to no evidence left 

behind in a crime scene, it is a matter of utmost importance to develop methods that can 

rapidly and efficiently recover evidence from the substrate. 

           Most of the methods utilized to process cotton swabs recover intact cells through 

incubation prior to subjecting the cell suspension to lysis conditions. The goal of this 

study was to develop a method using alkaline buffer conditions to lyse cells directly from 

the swab and improve DNA yields. In order to optimize differential recovery of sperm 

and epithelial DNA encountered in rape kits, varying concentrations of sodium hydroxide 

and the effects of different incubation temperatures and high pressures in the presence of 

alkaline conditions were studied.      
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B. Materials and Methods 

B.1 Sample preparation  

          Vaginal epithelial cells and semen samples were collected from volunteers in 

accordance with protocols approved by the Institutional Review Board (IRB) of Florida 

International University. The samples were suspended in 1X PBS buffer (pH 7.4) (Fisher 

Scientific, NJ) and diluted to approximately 1 million cells per milliliter. The cell count 

was performed using a disposable hemocytometer (INCYTO C-Chip, Covington, 

Georgia, USA) [70]. Equal volumes of epithelial cells and sperm cells were added to a 

cotton swab and air dried at room temperature. Post-coital samples obtained from healthy 

volunteers were stored at -20 C until further use.   

          The total amount of DNA in a known volume of sample (60,000-70,000 cells) was 

determined by extracting the samples using an organic extraction method that involved 

incubating the samples at 56ºC for 2-4 hours in a lysis buffer (10 mM Tris, 100mM NaCl, 

10 mM EDTA, 2% SDS, 39 mM DTT) containing proteinase K solution (20 mg/ml) 

Following incubation, the samples were purified using phenol chloroform isoamyl 

alcohol and ethanol precipitation. The extracted samples were quantified with real-time 

PCR analysis using Plexor® HY system (Promega Corp., Madison, WI). In order to 

determine the efficiency of DNA recovery, the amount of DNA recovered from 

subsequent experiments during method development was calculated as percent recovery 

compared to DNA extracted from neat sperm or epithelial samples using organic 

extraction.  
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B.2 DNA extraction 

Alkaline lysis 

          Hudlow et al. developed an alkaline-based differential extraction method that when 

combined with DNase digestion generated a purified sperm fraction [64]. Upon applying 

this method and quantifying the extracted DNA, it was observed that there was a 

significant loss of sperm DNA prior to DNase digestion. This led us to initiate a study to 

determine the effect of alkaline lysis on sperm cells and vaginal epithelial cells without 

DNase digestion at different temperatures and concentrations of sodium hydroxide. 

          Sodium hydroxide crystals (Fisher Scientific, NJ) were dissolved in molecular 

biology grade water (Fisher Scientific, NJ) to achieve concentrations of 0.2 N, 0.4 N, 0.6 

N, 0.8 N and 1 N NaOH concentration. In order to maximize DNA recovery from cotton 

swabs, three different incubation temperatures (75°, 85°, and 95° C) and two different 

incubation times (2 minutes and 5 minutes) were studied for each concentration of 

sodium hydroxide. A cotton swab containing an equal quantity of sperm cells and 

epithelial cells was suspended in 400 L of a specific concentration of sodium hydroxide 

and exposed to either 75°, 85°, or 95° C for 2 or 5 minutes.  

 

Pressure Cycling Technology (PCT) 

        A Barocycler NEP 2320 (Pressure BioSciences Inc., South Easton, MA) was used 

to generate cycles of high pressure and ambient pressure to apply mechanical stress on 

the cells and cause lysis. After determining the effect of alkaline conditions on sperm 

cells and epithelial cells, different parameters were examined including the pressure 

intensity and number of cycles in an effort to increase extraction selectivity. PULSE 



 88

tubes (Pressure Biosystems Inc., South Easton, MA) are specially designed tubes that are 

able to withstand high pressures. To perform pressurized extraction, swabs containing 

mixtures of sperm cells and vaginal epithelial cells were transferred to PULSE tubes 

containing 0.4 N NaOH solution (the optimum concentration determined by alkaline lysis 

studies) and exposed to 10000 psi, 20000 psi or 45000 psi to determine the optimum 

pressure necessary to achieve selective lysis of female cells. The efficiency of the 

pressure treatment in the presence of increasing number of cycles was studied by varying 

the cycle number between 10, 20 and 60 cycles. During each pressure cycle, the holding 

time of the sample at ambient pressure (T1) and target pressure (T2) was 15 seconds 

each.    

 

B.3 Post-extraction purification 

          Following extraction, the samples were neutralized with 2M Tris (pH 7.5). Then 

the swabs were transferred to DNA IQ™ Spin Baskets (Promega Corp., Madison, WI) 

and centrifuged at 13000 rpm for 5 minutes. Extracted samples were purified by adding 

an equal volume of phenol-chloroform-isoamyl alcohol (25:24:1) (Sigma-Aldrich, 

St.Louis, MO), and precipitated with 3 M sodium acetate and 95% ethanol. Following 

precipitation, the pellet was washed with 70% ethanol, air-dried and re-suspended in 1X 

Tris-EDTA buffer (pH 8.0) (Fisher Scientific, NJ).  

 

B.4 Quantification 

          The extracted DNA was quantified using real-time PCR assay with a commercially 

available kit, the Plexor® HY system (Promega Corp., Madison, WI) on Rotor-Gene 6000 
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(Qiagen, Inc., Valencia, CA). The system can simultaneously quantify autosomal DNA 

and male DNA. By calculating the Autosomal/Y ratio, the amount of male DNA and 

female DNA recovered from the mixture could be determined.  The percent recovery of 

each cell type was determined by comparing the resultant quantity of DNA with samples 

containing a single cell type that have been directly extracted with proteinase K (20 

mg/mL) based organic extraction. All the samples were analyzed in triplicate and the 

Plexor® HY analysis was performed following the manufacturer’s instructions [96].  

B.5 Short tandem repeat (STR) analysis 

          The quality of the DNA recovered from alkaline lysis and pressure treatment was 

assessed by performing STR analysis using PowerPlex® 16 HS system (Promega Corp., 

Madison, WI) according to manufacturer’s protocols (PowerPlex® 16 HS system, 

Technical Manual# TMD022, Promega Corp., Madison, WI). Quantification data was 

used to normalize the input DNA for STR analysis. 1 ng of sample was amplified using 

GeneAmp® 9700 thermal cyclers and 1 µL of the amplified products were separated 

using ABI Prism™ 310 genetic analyzer (Applied Biosystems, Foster City, CA).   Data 

analysis was performed using GeneMapper® ID v3.2 (Applied Biosystems, Foster City, 

CA).  

C. Results and Discussion 

C.1 Effect of alkaline lysis on DNA recovery from swab 

          The goal of the alkaline lysis studies was to determine parameters to maximize 

sperm DNA recovery from a cotton swab while maintaining sufficient selectivity to 

enable differential lysis of mixtures. The effect of varying concentrations of NaOH at 
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different temperatures and incubation times was studied, and it was observed that 

incubating the swab in 0.4 N NaOH at 95C for 5 minutes resulted in the recovery of 2.5 

times more sperm DNA than epithelial DNA (Figure 27). Moreover, depending on NaOH 

concentration and temperature, either sperm DNA or epithelial DNA exhibited relatively 

higher recoveries from mixtures    

          Though cotton swabs have been traditionally used to collect evidentiary material, 

recovery of biological samples is poor from this matrix. Many methods have been 

reported previously to improve cell recovery from cotton swabs but they involve 2-4 

hours incubation time [34, 125, 126]. In cases where there are mixtures present, all the 

cellular material must be eluted prior to the extraction step, before differential lysis can 

take place.   Initial results demonstrated that by incubating the swab at high temperature 

in alkaline conditions, almost all the cellular DNA can be extracted from the substrate in 

as little as 5 minutes. Furthermore, differential extraction of epithelial and sperm cells 

can be performed directly off of the swab without prior elution, by adjusting the 

concentration of base and the incubation parameters.  

          The results show that at any given temperature, maximum DNA recovery from 

sperm cells is produced at 0.4-0.6 N NaOH, whereas 0.2 N NaOH produces optimal 

recovery of epithelial DNA (Table 3). The best selectivity and reproducibility for the 

removal of sperm cells from the swabs was achieved by increasing the incubation time to 

5 minutes in the presence of 0.4 N NaOH. The removal of sperm was further improved 

by increasing the temperature to 95C, with the result that 99%1 of the sperm DNA was 

recovered from controlled mixtures. 
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Figure 27. Effect of alkaline lysis treatment on sperm and epithelial DNA recovery. At a 
concentration of 0.4 N NaOH and incubation at 95ºC, twice the amount of sperm DNA 
was recovered compared to epithelial DNA. (n=3 ± standard error) 
 

 Lower temperatures and lower concentrations of base were more conducive for the 

selective recovery of DNA from female epithelial cells.   Overall results are show in 

Table 3.  
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Table 3. Amount of DNA recovered from mixtures in the presence of alkaline conditions 
at high temperatures. 
 
Concentration 
of NaOH 
solution (N) 

Incubation 
temperature 
(°C) 

Incubation 
 time 
 (Minutes) 

Sperm DNA 
recovered 
 (%) 

Vaginal 
epithelial DNA 
recovered (%) 
 

0.2  
0.2  

95 
95 

2 
5 

60 ± 6 
98 ± 10 

75 ± 12 
78 ± 21 

0.4  
0.4 

95 
95 

2 
5 

*131 ± 22 
99± 1.0 

64 ± 18 
41 ± 2 

0.6  95 2 *115 ± 15 46 ± 4 

0.6 95 5 64 ± 11 54 ± 8 
0.8 95 2 94 ± 7 42 ± 5 

0.8 95 5 52 ± 12 41 ± 3 
1 95 2 71 ± 4 33 ± 1 

1 
 

95 5 49 ± 7 45 ± 5 

0.2  
0.2  

85 
85 

2 
5 

44 ± 13 
70 ± 8 

85 ± 14 
60 ± 4 

0.4  
0.4 

85 
85 

2 
5 

86 ± 5 
75 ± 10 

68 ± 17 
47± 9 

0.6  85 2 75 ± 10 52 ± 10 
0.6 85 5 66 ± 6 35± 3 
0.8 85 2 55 ± 6 35 ± 9 
0.8 
1 

85 
85 

5 
2 

62 ± 8 
81 ± 6 

45 ± 5 
53 ± 17 

1 
 

85 5 54 ± 2 55 ± 9 

0.2  
0.2  

75 
75 

2 
5 

33± 6 
40 ± 6 

69 ± 7 
41 ± 3 

0.4  
0.4 

75 
75 

2 
5 

60 ± 9 
57 ± 1 

46 ± 6 
30 ± 8 

0.6  75 2 *113 ± 6 52 ± 21 
0.6 75 5 87 ± 19 46± 6 
0.8 75 2 83 ± 16 41± 16 
0.8 75 5 64 ± 17 38 ± 3 
1 75 2 62 ± 6 34 ± 9 
1 75 5 61 ± 2 34± 2 
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1. DNA recovery values represent the percent recovery of DNA in each fraction 
compared to the total amount of DNA extracted using organic extraction of neat samples 
and are expressed as the mean (n=3) ± standard error 

2. Bold and underlined parameters represent the optimized alkaline conditions for 
selective sperm DNA recovery from mixtures.  

3. Values with asterisk (*) indicate that more DNA was recovered with the experimental 
parameters compared to the organic extraction of a similar amount of neat semen 
sample. 

C.2 Optimization of PCT parameters 

          Although the results from the alkaline lysis studies showed that 0.4 N NaOH gave 

the best recovery and selectivity for sperm DNA from mixtures, there was still some 

DNA recovery from epithelial cell lysis that resulted in a mixed profile. In order to 

minimize epithelial cell lysis during sperm DNA recovery, a pressure-based extraction 

step was introduced before incubating the swab at high temperature.  In order to do this, it 

was important to determine the effect of pressure treatment on the swabs in the presence 

of 0.4 N NaOH.  

          The results indicated that 104 6% recovery of epithelial DNA occurred at 20,000 

psi with a minimum of 10 cycles of pressure in the presence of 0.4 N NaOH (Table 4). 

Furthermore, this mild pressure treatment did not have a significant impact on sperm cell 

lysis, thus enabling the development of a two-step differential extraction protocol. 

Another upside of this treatment was that compared to the current extraction methods 

which can take up to 2-4 hours to remove cells from a swab, the total time required to 

remove epithelial DNA from the swab using the pressure cycling procedure under 

alkaline conditions was only 5 minutes. It should be noted that semen also contains non-

spermatogenic cells such as epithelial and inflammatory cell types that may be 
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susceptible to digestion under same conditions as vaginal epithelial cells.  Thus the slight 

recovery of male DNA seen during PCT treatment may be due to the degradation of the 

non sperm cells present in semen.  

Table 4.  Effect of pressure treatment on DNA recovery from mixtures in the presence of 
0.4 N NaOH solution 
 
Pressure 
(psi) 

Number of cycles Sperm DNA 
recovered 
(%) 

Vaginal epithelial 
DNA recovered 
(%) 
 

10,000 10 8± 1 93± 3 
20,000 10 25± 13 104± 6 
20,000 20 17± 3 110± 20 
20,000 60 43± 9 46± 13 
45,000 20 16 ± 3 58± 5 
45,000 60 26 ± 6 54± 3 

Note: DNA recovery values represent the percent recovery of DNA in each fraction 
compared to the total amount of DNA extracted using organic extraction of neat samples 
and are expressed as the mean (n=3) ± standard error 

 
C.3 Development of a two-step protocol for differential extraction 

          To achieve complete separation of both cell fractions and obtain a clean DNA 

profile, a two-step method was developed in which swabs were first placed in 0.4 N 

NaOH and exposed to pressure cycling for 5 min to lyse and remove the epithelial DNA.  

The cells remaining on the swab (sperm fraction) were then subjected to alkaline lysis at 

95ºC for 5 min. To perform this process, the swabs were first treated with 20,000 psi 

pressure for 10-20 cycles in the presence of 0.4 N NaOH solution. Following pressure 

treatment, the sample was immediately neutralized with 2 M Tris (pH 7.5) and the swab 

was transferred to a spin basket placed in 2.0 mL tube and centrifuged at 13,000 rpm for 

5 minutes. DNA was purified with phenol-chloroform-isoamyl alcohol (25:24:1) 
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followed by ethanol precipitation (epithelial fraction). The swab was transferred to a 1.5 

mL tube containing 0.4 N NaOH solution and the sample (sperm fraction) was incubated 

at 95C for 5 minutes. Following incubation, the sample was neutralized with 2 M Tris 

(pH 7.5) and the swab was transferred to a spin basket for centrifugation at 13,000 rpm 

for 5 minutes. The swab was discarded and DNA from the sperm fraction was purified 

using phenol-chloroform-isoamyl alcohol and ethanol precipitation (Figure 28). 

          The results indicate complete female DNA recovery from mixture deposited on a 

cotton swab following pressure treatment at 20,000 psi with only 10 pressure cycles 

lasting 5 minutes. A small amount of sperm DNA was also recovered following this 

pressure treatment under alkaline conditions (17%± 3). When this swab was exposed to 

high temperature under alkaline conditions in the second step, 63%± 4 of sperm DNA 

was recovered (Figure 29). There was no female epithelial DNA recovery in the final 

sperm fraction.  

           Short tandem repeat (STR) analysis of both epithelial and sperm fractions revealed 

that the male and female components were successfully separated from the mixture. The 

STR profile of the sperm fraction indicates 100% ±2 contribution by the male donor. 

(Figure 30) (Table 4). Comparative analysis of the genotypes of the mixture, neat sperm 

and epithelial samples with both the extracted fractions showed that this two-step 

protocol resulted in a clean male and female DNA profiles that are identical to the 

profiles generated with organic extraction of neat samples.    
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Figure 28. Flowchart depicting the protocol for differential extraction of mixtures using 
alkaline lysis and pressure cycling technology 
 
 

 

         

 

 

Place cotton swab in a 
Pulse™ tube and add 0.4 

N NaOH.Pressure cycle at 
20,000 psi for 5 min at 

room temperature

Neutralize with 2M Tris 
(pH 7.5) and centrifuge 

the swab in a spin basket 
at 13,000 rpm for 5 

minutes

Place processed swab to 
1.5 mL tube and add 0.4 N 
NaOH. Incubate at 95°C 
for 5 minutes to remove 

sperm

Neutralize with 2M Tris 
(pH 7.5)  transfer swab to 

a spin basket, and 
centrifuge at 13,000 rpm 

for 5 minutes

Discard the swab and 
purify the sperm fraction 
with phenol-chloroform-

isoamyl alcohol

Remove swab and spin 
basket. Purify the eluted  
epithelial fraction with 

phenol-chloroform-
isoamyl alcohol



 97

   
Figure 29. The effect of alkaline lysis and pressure cycling technology on DNA recovery 
from mixtures. The results indicate the recovery of female DNA (fraction E) with 
minimal sperm lysis after pressure treatment. More sperm DNA was recovered in the 
second step following exposure to high temperature under alkaline conditions (fraction 
S). (n=3 ± standard error) 
 
 

 

A 
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Figure 30.  Powerplex 16 HS products of mixture, sperm control, epithelial fraction 
(post-PCT purified fraction) and sperm fraction (post-alkaline lysis treatment). 
Electropherogram shows that the DNA profile obtained from sperm fraction is identical 
to sperm control at all loci. 
A) Carboxy-tetramethylrhodamine (TMR) labeled loci  
B) Fluorescein (FL)-labeled loci  
C) 6-carboxy-4′, 5′-dichloro-2′, 7′-dimethoxy-fluorescein (JOE)-labeled loci  
 

B 

C 
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Table 5.  Comparison of the female and male genotypes with mixture and fractions 
obtained from PCT treatment (Fraction E) and alkaline lysis (Fraction S). The results 
indicate that both male and female components were successfully separated from the 
mixture. 
 

 
 

 Mixture Epithelial 

control 

Fraction E Sperm 

control 

Fraction S 

Locus 

Penta E 11, 12, 19, 21 11, 12 11, 12 19, 21 19, 21 

D18S51 11, 12, 14, 17 11, 12 11, 12 14, 17 14, 17 

D21S11 29, 31, 31.2 31, 31.2 31, 31.2 29, 31 29, 31 

TH01 7, 8, 9 8, 8 8, 8 7, 9 7, 9 

D3S1358 14, 15, 16, 17 16, 17 16, 17 14, 15 14, 15 

FGA 19, 23, 24 23, 24 23, 24 19, 23 19, 23 

TPOX 8, 11 8, 11 8, 11 8, 11 8, 11 

D8S1179 10, 12, 13 10, 10 10, 10 12, 13 12, 13 

vWA 16, 18 18, 18 18, 18 16, 18 16, 18 

Amelogenin X, Y X, X X, X X, Y X, Y 

Penta D 9, 12, 13 12, 12 12, 12 9, 13 9, 13 

CSF1PO 10, 11, 12 11, 12 11, 12 10, 11 10, 11 

D16S539 8, 11, 12 8, 12 8, 12 11, 12 11, 12 

D7S820 10, 11 10, 11 10, 11 10, 10 10, 10 

D13S317 8, 10, 12 8, 10 8, 10 12, 12 12, 12 

D5S818 11, 12, 13 11, 13 11, 13 12, 13 12, 13 
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          In the differential extraction protocol used by Broward Sheriff’s Office (BSO) 

crime lab, BioRobot EZ1 workstation (Qiagen, Inc., Valencia, CA) is used to purify the 

extracted samples. This method gives better yields than standard organic differential 

extraction but it employs long incubation times to recover sample from the substrate. In 

the first step, the 1X TNE buffer  (10 mM Tris, 1 mM EDTA Na2·2H2O, 1 M NaCl) 

containing 1% SDS and proteinase K (20 mg/mL) is added to the swab and incubated in a 

water bath at 56ºC for 2 hours with intermittent mixing at 900 rpm. The supernatant is 

separated to recover female DNA with EZ1 purification and the swab is incubated at 

56ºC for 2 hours in 1X TNE buffer containing proteinase K (20 mg/mL) and 1M DTT. 

This fraction is purified with EZ1 trace protocol to recover sperm DNA. Since BSO 

method has been extensively validated and gives a clean separation, STR profiles 

obtained from differential digestion using alkaline lysis and pressure cycling technology 

was compared to the former. The results indicate that the genotypes of female and male 

fractions obtained with alkaline lysis and pressure-based extraction were identical to 

those obtained with the BSO protocol. (Figure 31)       

          Since the two-step extraction protocol using alkaline conditions and pressure 

cycling technology gave comparable results with a validated method, another study was 

performed to compare yields from this method to organic differential extraction and a 

commercially available kit used for mixture separation. These results indicate that no 

sperm DNA was recovered from the mixture using organic differential extraction. This is 

consistent with studies that reported more than 95% loss of sperm sample using this 

method. It is important to note here that the samples were incubated for only 2 hours. In a 

crime lab, this incubation step is often increased to overnight to ensure adequate 
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recoveries. With longer incubation times the recovery may have been better than what we 

observed, but this defeats the purpose of reducing the analysis time. With a commercially 

available kit that is based on solid-phase extraction and magnetic bead separation, the 

yields were 5% more than with organic differential extraction but the overall recoveries 

were still poor (5% ± 4). On the other hand, alkaline lysis and pressure cycling resulted in 

ten times more sperm DNA recovery (54% ± 9) with the total lysis time lasting less than 

15 minutes. (Figure 32) 

 

Figure 31. STR profiles of sperm and epithelial fractions extracted from a post-coital 
swab. One swab was processed using Broward sheriff’s office (BSO) crime lab method 
and another swab from the same volunteer was processed using alkaline lysis and 
pressure cycling technology. A) Sperm fraction recovered using BSO protocol B) Sperm 
fraction recovered using alkaline lysis and pressure cycling technology C) Epithelial 
fraction recovered using BSO protocol D) Epithelial fraction recovered using alkaline 
lysis and pressure cycling technology. The profiles indicate identical genotypes were 
obtained using both the protocols.  

A

B

C

D
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Figure 32. Comparison of PCT extraction with commercially available kit and organic 
differential extraction indicates better male DNA yields with alkaline lysis and PCT. (n=3 
± standard error) (Alk+PCT-E: Epithelial fraction obtained with alkaline lysis and PCT; 
Alk+PCT-S: Sperm fraction obtained with alkaline lysis and PCT; Kit-E: Epithelial 
fraction recovered with commercial kit; Kit-S: Sperm fraction recovered with commercial 
kit; DE-E: Epithelial fraction obtained with organic differential extraction; DE-S: Sperm 
fraction obtained with organic differential extraction) 
 
 
D. Concluding remarks 

           Cotton swabs have been known to be a difficult matrix to work with considering 

the challenges associated with successfully recovering sample from tightly wound fibers. 

Alkaline lysis and pressure-based extraction uses inexpensive buffers, has a very short 

extraction time, and more importantly, can recover most of the DNA from the matrix, 

which is a significant improvement to the methods in existence. With a total of time of 

approximately 20 minutes to remove both sperm and epithelial cells from spiked swabs, 

this new process is quick and efficient.  Current methods for removal of cellular debris 

from swabs require an incubation time of 2-4 hours, which does not include the 

differential DNA extraction. By using sodium hydroxide solution for lysis and phenol-

chloroform-isoamyl alcohol to purify the extracted sample, it has been shown that with 
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the aid of simple solvents available in every lab, sperm and epithelial fractions could be 

successfully separated in a rapid and efficient manner. This gives leeway to substitute 

different methods for downstream purification to further streamline the process that is 

suited to individual labs.  
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CHAPTER X. DEVELOPMENTAL VALIDATION 

 

A. Introduction 

          Different variables such as environmental conditions, inhibitors, and sample 

substrate affect the final outcome of analysis. This may be a departure from how the 

samples respond to certain treatments in a controlled environment. It is important to 

develop methods that can overcome obstacles that interfere with downstream genetic 

analysis. Since all the studies so far were performed using clean laboratory conditions, 

validation studies were done to determine if good quality genomic DNA would be 

obtained in high yields even when the sample is exposed to different kinds of trauma. 

           Following the SWGDAM guidelines, the efficiency of the new lysis method was 

evaluated in the presence of PCR inhibitors, after exposure of the samples to 

environmental insults, and when the sample was present on different substrates. The 

sensitivity of the method was evaluated to determine the effect of variable mixture ratios 

and quantity of sample on the ability to generate a conclusive autosomal STR profile. A 

reproducibility study to gauge the consistency of this method and a correlation study to 

evaluate how this method compares to existing protocols were also done. 

 

B. Materials and methods 

B.1. Samples and reagents 

          Sperm samples were collected from two male donors, and vaginal epithelial swabs 

were collected from four female donors according to the protocols approved by the 

Institutional Review Board (IRB) of Florida International University. Indigo was 
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obtained from TCI (Tokyo Kasei Kogyo Co. Ltd,. Tokyo, Japan), hematin and humic 

acid were purchased from ICN Biomedicals Inc. (Aurora, Ohio) and Alfa Aesar (Ward 

hill, MA) respectively.  

 

B.2. Extraction and purification 

          Samples were extracted using the new lysis method comprising of pressure cycling 

technology and alkaline lysis. The sample suspended in 0.4 N NaOH was exposed to 

20,000 psi pressure for 10 cycles followed by separation of the lysate, and incubation of 

the swab in a water bath at 95º C for 5 minutes. Post-extraction purification was 

performed using phenol chloroform isoamyl alcohol (25:24:1 v/v) and ethanol 

precipitation. The purified DNA pellet was suspended in 50 µL of 1X Tris-EDTA (TE) 

buffer. 

 

B.3.Quantification 

          The Plexor® HY system (Promega Corp., Madison, WI) was used to quantify 

autosomal DNA and male-specific Y-chromosomal DNA. All the samples were analyzed 

in triplicate and Plexor® HY analysis was performed following the manufacturer’s 

instructions (Plexor® HY system, Technical Manual# TM299, Promega Corp., Madison, 

WI).  

B.4. STR Analysis 

           DNA extracts obtained from the biological samples were amplified with the 

PowerPlex® 16 HS system (Promega Corp., Madison, WI) according to manufacturer’s 
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protocols (PowerPlex® 16 HS system, Technical Manual# TMD022, Promega Corp., 

Madison, WI). Quantification data obtained using real-time PCR was used to normalize 

the input DNA for STR analysis. 1 ng of sample was amplified using GeneAmp® 9700 

thermal cyclers and 1 µL of the amplified products were separated using ABI Prism™ 

310 genetic analyzer (Applied Biosystems, Foster City, CA).   Data analysis was 

performed using GeneMapper® ID v3.2 (Applied Biosystems, Foster City, CA).  

B.5. Stability studies 

          Two sets of samples  (S1E1, S2E1) were prepared using two different sperm 

donors (S1, S2) and one female epithelial cell donor (E1).  For environment exposure, 

two sets of samples (S1E1, S1E3) were created using one sperm donor (S1) and two 

female donors (E2, E3). DNA was extracted in triplicate from samples exposed to three 

different conditions: 

1) Inhibitor mix: An inhibitor mix was prepared consisting of 12.5 mM indigo, 0.5 

mM hematin and 2.5 mg/mL humic acid. Semen samples were diluted to 1:50 and 

50 µL of the diluted semen was added to a vaginal swab. The swab containing the 

mixture was spotted with 5 µL of inhibitor mix. A small cutting of the air-dried 

swab was extracted.  

2) Stains on denim were created by adding 50 µL each of sperm and epithelial cell 

samples. A 1 x 1-cm cutting of this stain was extracted 

3) Mixture on cotton swab exposed to outdoor environment for 7 days. Semen 

samples were diluted to fifty times and 50 µL of diluted semen was added to 



 107

vaginal swab. The swab containing the mixture was left outside where it was 

exposed to environmental elements for 1 week. 

 

B.6. Reproducibility studies 

          Reproducibility studies were performed over a course of three consecutive days. 

Six sets of samples (S1E1, S1E2, S1E3, S2E1, S2E2, S2E3) were prepared by mixing 

sperm cells from two male donors (S1, S2) and epithelial cells from three female donors 

(E1, E2, E3). Semen samples were diluted to fifty times and 50 µL of diluted semen was 

added to vaginal swab. The swabs were left to air-dry at room temperature. A small 

cutting from the swab was used for each extraction. All six sets of the samples were 

extracted in triplicates on three different days to check for reproducibility in the results.  

 

B.7. Sensitivity studies 

          Two kinds of studies were performed to determine the sensitivity of this extraction 

method. In the first study, variable ratios of mixture of sperm cells and epithelial cells 

were extracted to evaluate how this method performs in enriching sperm fraction and 

generating a conclusive male DNA profile when the sample is overwhelmed with vaginal 

epithelial cells. Semen sample from one male donor and epithelial swab from one female 

donor were collected. The cells were eluted into 1X PBS buffer and diluted to 1-1.5 

million cells/mL using a hemocytometer for cell count. Swabs were prepared by adding a 

defined volume of each sample type to achieve the target ratio and allowing them to air 

dry at room temperature (Table 6). 
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Table 6. Sensitivity studies. Varying ratios of sperm cells and epithelial cells for 
sensitivity study 
 
Ratio of male: 
female 

Number of sperm cells Number of vaginal epithelial cells

1:1 96000 96000 

1:2 48000 96000 

1:5 19200 96000 

1:10 9600 96000 

1:50 3000 150000 

  

          For the second sensitivity study, the total number of cells was reduced while 

maintaining a mixture ratio of 1:5 sperm to epithelial cells. This was done to determine 

the effect of alkaline lysis and PCT on recovering sufficient DNA yields to generate an 

autosomal STR profile from low samples levels. (Table 7) 

Table 7. Sensitivity studies. Low sample levels in the ratio of 1:5 male to female cells  

Total number of cells Number of sperm cells Number of vaginal 

epithelial cells 

48000 8000 40000 

24000 4000 20000 

12000 2000 10000 

6000 1000 5000 

3000 500 2500 
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B.8. Case type samples 

          DNA was extracted from stains present on five different substrates. This study was 

performed to mimic the casework samples from sexual crimes and determine the effect of 

various substrates on DNA recovery using the new extraction protocol. 

          Stains were prepared on bedspread, cotton panties, socks, colored cotton T-shirt 

and denim. Semen sample and epithelial cells were diluted to 1:50 with 1X PBS buffer 

and 50 µL of each sample type was added to the substrate. A 1x1 cm cutting was then 

excised from the substrate to perform extractions. All the extractions were performed in 

triplicate.  

 

B.9. Correlation studies 

          Post-coital samples received in 2011 were extracted using alkaline lysis coupled 

with pressure cycling technology, organic differential extraction, and a selective digestion 

method used by the Broward sheriff’s office (BSO) crime lab (Table 8). This was done to 

compare the DNA yields and STR profiles recovered using the new protocol with 

established practices. A small portion of the swab was used for extraction and all the 

extractions were performed in triplicate 

Table 8. Correlation studies: Post-coital samples  

Sample 

ID 

Time since 

intercourse 

(hours) 

Vasectomized 

partner 

Race Age 

range 

(years) 

Time since 

menstruation 

(days) 

PC161 7-12 No Caucasian 31-40 8-14 
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PC162 7-12 No Caucasian 21-30 8-14 

PC176 13-18 No Caucasian 31-40 8-14 

PC177 13-18 No Caucasian 21-30 8-14 

PC178 13-18 No Caucasian 21-30 8-14 

PC179 13-18 No Caucasian 31-40 15-21 

PC180 13-18 No Caucasian 31-40 15-21 

PC181 13-18 No Caucasian 31-40 15-21 

PC164 31-36 No Caucasian 31-40 8-14 

PC163 37-42 No Caucasian 31-40 8-14 

 

C. Results and discussion 

C.1. Stability studies 

          Stability studies were performed to determine if alkaline lysis and PCT method 

could extract high quality genomic DNA from samples exposed to environmental and 

chemical insults. Forensic samples are seldom found in a pristine condition in a crime 

scene. They are exposed to environment and come in contact with other agents that can 

degrade DNA. For example, a stain found on denim may be challenging to recover 

without co-extracting the indigo dye that can interfere with DNA and inhibit the PCR 

reaction. Humic acid found in soil binds to the DNA template and inhibits the 

processivity of polymerase enzyme. Hematin is found in red blood cells and is 

encountered in samples containing bloodstains. It interferes with the amplification of 

DNA molecule by binding to the Taq polymerase enzyme. These types of inhibitors are 
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common at crime scenes and it is therefore imperative to develop methods that can 

generate a full DNA profile despite these challenges. 

          In the presence of environmental and chemical insults, the concentration of Y-

chromosomal DNA recovered from sperm donor 1 (S1) ranged from 24 ng/µL ± 1 to  

43 ng/ µL ± 7 compared to 16 ng/µL ±4 extracted from the control. The concentration of 

Y-chromosomal DNA recovered from sperm donor 2 (S2) ranged from 5 ng/ µL to 9 ng/ 

µL compared to 2 ng/µL ±0.8 recovered from the control (Table 9). The results indicate 

that alkaline lysis and PCT successfully recovered DNA from samples exposed to 

different insults and produced higher yields compared to standard organic extraction.  

Reproducible DNA yields and complete male autosomal profiles were obtained from all 

samples. (Figure 33-36) 

Table 9. Stability studies: Average concentration of Y-chromosomal DNA extracted from 
the samples. 
 

Treatment S1E1 S2E1 S1E3 

Inhibitor mix 32 ± 5 9 ± 1 ** 

Denim 43 ± 7 5 ± 3 ** 

Outdoor 
environment 

31 ± 4 ** 24 ± 1  

** Note: Stability study was not performed on these mixtures 

DNA yield from control# 1 (sperm donor 1)- 24 ng/µL ± 1 

DNA yield from control# 2 (sperm donor 2)- 16 ng/µL ± 4 

The samples were extracted and quantified in triplicate ± standard error (SE) 
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Figure 33. Stability studies. Concentration of Y-chromosomal DNA recovered from 
samples exposed to environmental insults. Alkaline lysis and PCT successfully extracted 
genomic DNA from all samples. (n=3 ± standard error) 
 
 

 
Figure 34. Stability studies. Concentration of autosomal DNA recovered from samples 
exposed to environmental insults. Alkaline lysis and PCT successfully extracted genomic 
DNA from all samples (n=3 ± standard error) 
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Figure 35. Electropherograms of DNA extracts recovered from samples exposed to 
environmental and chemical insults. A) Sperm control B) S1E1- Inhibitor mix C) S1E1- 
Denim D) S1E1- Outside environment E) S1E3- Outside environment.  Full male DNA 
profiles were generated under all conditions. Blue panel represents fluorescein (FL)-
labeled loci and black panel represents 6-carboxy-4′, 5′-dichloro-2′, 7′-dimethoxy-
fluorescein (JOE)-labeled loci 
 



 114

 
 
 

 

 

Figure 36. Electropherograms of DNA extracts recovered from samples exposed to 
environmental and chemical insults. A) Sperm control B) S2E1- Inhibitor mix C) S2E1- 
Denim. Full male DNA profiles were generated under all conditions but female DNA 
carryover is observed in the last two samples. Blue panel represents fluorescein (FL)-
labeled loci and black panel represents 6-carboxy-4′, 5′-dichloro-2′, 7′-dimethoxy-
fluorescein (JOE)-labeled loci 
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C.2. Reproducibility studies 

          To assess the reproducibility of the extraction efficiency using alkaline lysis and 

pressure cycling technology, six sets of samples were extracted in triplicate on three 

different days.  

          The average Y-chromosomal DNA concentration for sperm donor 1 (S1) ranged 

from 21 ng/µL to 23 ng/µL and for sperm donor 2 (S2) ranged from 4 ng/µL- 6 ng/µL. 

The values were reproducible in the presence of epithelial cells from different donors and 

when performed on three different days. The average concentration of male DNA 

recovered on three different days is given in Table 10. The control samples for sperm 

donor 1 and sperm donor 2 produced 16 ng/µL ±4 and 2 ng/µL ±0.8 Y-chromosomal 

DNA respectively. The results indicate that alkaline lysis and PCT gave reproducible and 

higher male DNA yields compared to control samples extracted with standard proteinase 

K organic extraction. 

Table 10. Reproducibility studies: Average concentration of Y-chromosomal DNA 

 

Note: The minimum, maximum and mean values were obtained from samples extracted 
over the course of 3 days.  
 
SE, standard error 
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Figure 37. Reproducibility studies. Concentration of Y-chromosomal DNA extracted 
from samples on three different days indicates reproducibility of the extraction procedure 
remains unaffected. (n=3 ± standard error) 
 
 
C.3. Sensitivity studies 

          Sexual assault samples obtained from real crime scenes are often overwhelmed 

with female epithelial cells resulting in a DNA profile that favors the female victim more 

than that of the perpetrator. In order to determine if the current method can lead to sperm 

fraction enrichment in the presence of overwhelming amount of vaginal epithelial cells, 

the method was applied to samples containing increasing amount of epithelial cells with a 

maximum of 150000 epithelial cells for a mixture containing fifty times more female 

cells compared to male cells.  

          Male autosomal STR profiles were obtained with samples containing up to ten 

times more female epithelial cells. The peak height ratio (PHR) of the Amelogenin 

marker indicates whether the profile is predominantly male or female. When the value of 

the relative fluorescence unit (rfu) of Y allele divided by the relative fluorescence unit 

(rfu) of the X allele is closer to 1.0, it indicates a predominantly male profile. The lower 
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the value is below 1.0, the greater is the amount of female DNA in the mixture. The 

results indicate a clean male profile in the presence of equal ratio of sperm cells to 

epithelial cells. Although a mixed profile was obtained with samples containing more 

than 1:2 ratio of male to female cells, a complete autosomal male STR profile could still 

be recovered from samples containing up to ten times more female cells (Table 11) 

Table 11. Sensitivity studies: Effect of alkaline lysis and PCT on samples with mixture 
imbalance 
 

 

          Allelic peak heights from male and female contributors were divided by the total 

peak height at the respective locus. A total of seven loci with no shared alleles between 

the male and female DNA profiles were selected to calculate the percent contribution of 

male and female DNA in the sperm fraction.  
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Figure 38. Sensitivity studies.  Sperm fraction enrichment is observed in samples 
overwhelmed by almost ten times more female cells. More male DNA is recovered from 
samples containing up to five times more female cells. 
 
         The results from sensitivity studies indicate that a clean male autosomal STR 

profile can be obtained with samples containing a 1:1 mixture. Above this level, 

increasingly larger amounts of female DNA are present (Figure 38). The major and minor 

contributor in the final fraction was determined by dividing the sum of peak heights of 

male or female alleles by the sum of peak heights of all alleles at the respective locus. 

STR loci that are heterozygous for both male and female profile were chosen to calculate 

the percent contribution to the final DNA profile generated following extraction by 

alkaline lysis and pressure cycling technology. Results in figure 39 indicate that a 

complete male autosomal STR profile was obtained from samples with ten times more 

female cells. Loss of male alleles were observed when samples had female component in 

excess of fifty times to that of male cells.  

 



 119

 

 

 

A 

B 



 120

Figure 39. Electropherograms of DNA extracts recovered from different ratios of sperm 
cells and epithelial cells A) A clean separation of male profile is observed with 1:2 ratio 
of male to female cells B) A full male autosomal profile is seen with 1:10 ratio of male to 
female cells but female DNA carryover is also observed C) A complete loss of male 
alleles is observed in samples overwhelmed by female component (1:50 male to female) 
 

          In the presence of a 1:1 ratio of male sperm cells to female epithelial cells, a clean 

male profile was obtained but a mixed profile was seen with increasing amount of female 

cells. In the presence of double the amount of female cells, the final sperm fraction 

obtained with alkaline lysis and pressure cycling technology contained four times more 

male DNA compared to female DNA resulting in a predominantly male DNA profile. 

Male allelic dropout was observed when the sample was overwhelmed with 150,000 

female cells compared to 3000 male cells (Figure 39).  

          To determine the sensitivity of the method, mixtures were created in the ratio of 

1:5 sperm cells to vaginal epithelial cells and overall cell count was dropped from 48000 

C 
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to 3000 cells. Sperm fraction enrichment was observed and male DNA was recovered 

from even a small sample volume of 500 sperm cells. (Figure 40) 

 
Figure 40. Sensitivity studies. The effect of alkaline lysis and pressure cycling technology 
on low sample levels. Male DNA was recovered from as little as 500 sperm cells.	 (n=3 ± 
standard error) 
 
 
          Evaluation of the peak height ratios at amelogenin marker indicates the presence of 

a predominantly female profile. But there was no loss of male alleles and all the 16 loci 

were detected in the male genotype. (Table 12) 

          Although a mixed profile was obtained with major contribution from female 

epithelial cells, a complete male autosomal STR profile was obtained with as little as 500 

sperm cells (Figure 41). This indicates the effectiveness of pressure-based alkaline 

extraction on recovering sample from difficult substrates. 
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Table 12. Sensitivity studies. Effect of alkaline lysis and PCT on low sample volumes 
 

 
  

          

 

Figure 41.  Sensitivity studies. Electropherograms of DNA extracts recovered from low 
sample levels. A complete male autosomal profile was obtained from as little as 500 
sperm cells in the presence of five times more female cells. 
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C.4. Case-type samples 

          Clothing is one of the most common places to look for evidence in sexual assault 

cases. Sample deposited on different items of clothing was extracted with alkaline lysis 

and PCT to determine how the DNA yields and the genomic profile are affected. 

          Since the same volume of sample was applied to all substrates, similar DNA yields 

were expected. The amount of DNA extracted from the sperm control was 16 ng/µL ± 4. 

The yields from case-type samples varied between 0.2 ng/µL ±0.1 and 7 ng/µL ±1 

depending on the substrate and the sampling area. For example, yields dropped 

significantly when sperm DNA was extracted from a cotton panty (0.2 ng/µL ±0.1) 

(Figure 42). It was observed during sampling that the fabric of the cotton panty had 

spandex in it that rendered the fabric more elasticity. The fabric got stretched when the 

substrate was excised and we hypothesize that as a result of this fewer cells were 

subjected to the extraction procedure compared to other more rigid and compact 

materials. The materials with less open structure and elasticity gave higher yields. For 

example, denim exhibited the best recovery among all the substrates with 7 ng /µL ±1 

male DNA recovery. The recovery dropped with increasing elasticity and more open 

weave like a pair a socks (2 ng/µL ±1) that caused the sample to seep out before it air-

dried. Nevertheless, complete male autosomal STR profiles were still obtained from all 

the substrates. The major contribution came from the male DNA even in samples that 

showed a mixed profile. (Figure 43) 
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Figure 42. Case-type samples. The effect of alkaline lysis and pressure cycling 
technology on mixtures deposited on various substrates. DNA yields varied depending on 
the substrate but a complete male profile was obtained from all samples. (n=3 ± standard 
error) 
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Figure 43. Electropherograms of DNA extracts recovered from samples deposited on 
various substrates A) Sperm control B) Denim C) Cotton panty D) Bedspread E) Socks 
F) Colored T-shirt. Full male DNA profiles were generated from all samples. Blue panel 
represents fluorescein (FL)-labeled loci and black panel represents 6-carboxy-4′, 5′-
dichloro-2′, 7′-dimethoxy-fluorescein (JOE)-labeled loci 
 
 
C.5. Correlation studies 

          Pressure-based alkaline lysis was compared with the method used by Broward 

sheriff’s office crime lab and organic differential extraction. Most of the practicing labs 

use some modification of the organic extraction protocol. This comparison study was 

therefore done to evaluate the performance of the new alkaline method by comparing the 

DNA yields in the final sperm fraction. The concentration of Y-chromosomal DNA is 

used to determine the amount of male DNA recovered which is the target of interest. 

Autosomal DNA concentration was also evaluated to determine the amount of female 

DNA carryover and its effect on the STR profile.  
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          Post-coital samples collected from ten volunteers were extracted in triplicate using 

each method for a total of 60 samples. The concentrations of autosomal and male DNA 

recovered is summarized below (Table 13). The data indicates that alkaline-based 

pressure cycling lysis recovered more male DNA from all post-coital samples compared 

to organic differential extraction. These yields were either comparable or better than the 

samples extracted using Broward sheriff’s office (BSO) method. (Figure 44) This is a 

significant observation because alkaline lysis requires a total of less than 15 minutes 

incubation in lysis conditions whereas the two other protocols require couple of hours of 

incubation in the lysis buffer.  

Table 13. Correlation studies. Comparison of DNA yields obtained using different 
extraction protocols reveals alkaline lysis and PCT to be comparable or better than BSO 
method and much more efficient than organic differential extraction. 
 

Sample 
ID 

BSO Differential Extraction 
(DE) 

Alkaline lysis + PCT 

 [Auto] [Y] [Auto] [Y] [Auto] [Y] 

PC161 2 ± 0.5 2 ± 0.5 4 ± 3 1 ± 0.6 25 ± 9 4 ± 2 

PC162 0.4 ± 0.1 0.2 ± 
0.03 

0.2 ± 0.06 0.04 ± 
0.01 

0.7 ± 0.4 0.2 ± 
0.4 

PC176 3 ± 2 3 ± 1 3 ± 1 2 ± 1 11 ± 6 2 ± 1 

PC177 0.03 ± 
0.02 

0.02 ± 
0.02 

0.004 
±0.002 

0.001 
±0.00 

0.08 ± 
0.03 

0.06 ± 
0.06  

PC178 0.2 ± 0.1 0.1 ±0.08 0.05 ± 0.01 0.02 ± 
0.01 

1 ± 0.4 0.04 ± 
0.01 
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PC179 0.5 ± 0.3 0.4 ± 0.3 0.09 ± 0.08 0.03 ± 2 11 ± 7 2 ± 1 

PC180 4 ± 1 4 ± 1 2 ± 0.7 0.6 ± 0.2 33 ± 6 4 ± 2 

PC 181 2 ± 1 2 ± 1 2 ± 0.7 0.6 ± 0.3 64 ± 9 5 ± 0.8 

PC164 0.3 ± 0.08 0.3 ± 0.2 0.7 ± 0.1 0.03 ± 
0.01 

13 ± 4 0.5 ± 
0.3 

PC163 0.7 ± 0.3 0.2 ± 
0.08 

2 ± 1 0.02 ± 
0.01 

65 ± 13 0.3 ± 
0.05 

 
Note: BSO- Method validated and used by Broward sheriff’s office (BSO) crime lab 
 
          Alkaline lysis + PCT- The novel differential extraction protocol developed using       

pressure cycling technology (PCT) under alkaline conditions 
 

 
Figure 44. Correlation studies. Comparison of male-specific Y-chromosomal DNA yields 
revealed better recoveries with alkaline lysis and pressure cycling technology compared 
to existing differential extraction protocols.(BSO- Differential digestion method used by 
Broward sheriff’s office crime lab; DE- Organic differential extraction; AL +PCT- 
Alkaline lysis with pressure cycling technology) (n=3 ± standard error) 
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          All three methods failed to recover DNA from samples PC 177 and PC 178 that 

may be attributed to insufficient sample. Alkaline lysis with pressure cycling technology 

and BSO extraction protocol produced consistently better yields compared to organic 

differential extraction. Alkaline lysis with pressure cycling technology produced the 

highest yields from three samples (PC 161, PC 179 and PC 181) compared to the other 

two protocols (Table 13). The male DNA yields using alkaline lysis and PCT for these 

three samples ranged from 2 ng/µL ±1 to 5 ng/µL ±0.8 which is sufficient to obtain a 

complete male autosomal STR profile. But this was not the case when all the STR 

profiles were analyzed. Even with samples that gave higher male DNA yields using 

alkaline extraction, the male contribution to the STR profile was lower than with other 

extraction methods (Figure 45). This may be due to inefficient separation in the presence 

of large amount of female tissue.  Studies done by other groups reported that male DNA 

can go undetected when it is overwhelmed more than ten times by female amplification 

products [85]. Since the input DNA for PCR amplification is normalized using autosomal 

DNA yields, samples containing at least twenty times more male DNA compared to 

autosomal DNA will result in loss of male profile. 

          The results from correlation studies therefore indicate that alkaline lysis coupled 

with pressure-based extraction gives the best DNA recoveries under 2 hours which 

includes 15-minute extraction procedure followed by phenol chloroform purification 

compared to other extraction protocols that include an incubation time ranging between 2 

hours and overnight to lyse the cells [13, 23, 34, 48]. But female DNA carryover and loss 

of male profile is observed when the sample is overwhelmed by fifty times female tissue.  
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Figure 45. Correlation studies. Percent male contribution in sperm fraction indicates loss 
of male profile in samples containing more autosomal DNA compared to male-specific 
DNA indicating insufficient sample separation with alkaline lysis compared to other 
methods. 
 
 
D. Concluding remarks 

          Using this method a clean male DNA profile was generated from mixtures 

containing a comparable amount of sperm cells and vaginal epithelial cells. Mixed profile 

was obtained in instances where an imbalance of mixtures favoring female tissue is 

observed. Loss of male alleles was observed when the sample was overwhelmed with 

fifty times more female cells but a complete male profile was obtained with mixtures 

containing low levels of sperm cells indicating that in contrast to previous reports that 

observed almost 90% sperm cell loss from cotton swabs due to inefficient recoveries this 

method proved to be more effective in recovering tissue from substrates. Therefore 

methods involving alkaline lysis combined with pressure cycling technology may provide 
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a new direction to address issues such as inefficient sample recoveries despite the long 

incubation times employed by current extraction protocols that create a bottleneck in 

forensic DNA testing.  
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XI. CONCLUSIONS 

          

          Sexual assault cases are plagued by challenges in sample analysis due to the 

presence of mixtures of male and female cells. The extracted sample is often 

overwhelmed by female epithelial DNA that results in the male autosomal STR profile 

masked by the female STR profile thus leading to difficulties in data interpretation.  The 

goal of this study was to develop a method combining the use of pressure cycling 

technology and alkaline lysis to disrupt sperm cells and recover their DNA.  

          The extraction procedure is performed utilizing the Barocycler® NEP 2320, a 

commercially available instrument from Pressure Biosciences Inc. (South Easton, MA), 

equipped with a hydrostatic pressure chamber that generates alternating cycles of ambient 

and high pressures with a range of 5- 45 kpsi. Another goal of this study was to enhance 

sample recovery from cotton swabs. Cotton swabs are often used to collect evidence in a 

crime scene but the inefficient sample recovery from this substrate is a common problem. 

In order to enhance DNA recovery and hence improve downstream genetic analysis, the 

effect of alkaline lysis on sample recovery from cotton swabs was studied. 

       The current study involves the application of pressure cycling technology in the 

selective digestion of sperm cells from evidence mixtures with an emphasis on the role of 

buffer composition on sperm DNA yields and increase in selectivity of extraction.  The 

cells were extracted into 1X PBS buffer (pH 7.4) with varying buffer compositions and 

subjected to 45000 psi pressure. To improve sample recoveries, cotton swabs containing 

sample were incubated in different concentrations of Sodium hydroxide under varying 

temperature and incubation times. Following extraction, all the samples were purified 
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using phenol chloroform isoamyl alcohol purification and quantified with Promega 

Plexor® HY system followed by an STR analysis using Promega PowerPlex® 16 HS 

system.  

          These results indicate that the application of pressure cycling technology, in the 

presence of appropriate buffers, can result in 50-60% recovery of male DNA from 

mixtures. These observations were reproduced with mixtures on cotton swabs where six 

times more male DNA was recovered compared to female epithelial DNA.   Furthermore, 

alkaline lysis studies were performed to determine the effect of DNA recovery from 

cotton swabs, which have always posed a challenge in sample processing. Almost seven-

fold increase in DNA recovery from swabs was observed under specific alkaline lysis 

conditions. Combining pressure cycling technology and alkaline lysis resulted in resulted 

in 5-6-fold enhancement in the relative ratio of sperm DNA in these mixtures and also 

improved DNA yields with an incubation time of less than 10 minutes in lysis buffer.  

          Validation studies were done to test the robustness and the reliability of this 

method in generating a male DNA profile from mixtures. Even in the presence of most 

commonly encountered inhibitors in forensic casework such as hematin (found in blood), 

indigo dye (denim) and humic acid (soil), full male DNA profiles were obtained. 

Exposure to environmental insults for one week did not affect male DNA yields. 

Reproducibility studies indicated that the yields are unaffected in the presence of 

different female contributors and when samples are extracted on three different days. The 

DNA recovery from sperm donor 1 ranged from a minimum of 21 ng/µL± 2 to 22 

ng/µL± 4 and the DNA recovery from sperm donor 2 ranged from a minimum of 4 

ng/µL± 0.7 to 6 ng/µL± 1. Sensitivity studies demonstrated that a predominantly male 
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DNA profile is obtained from samples overwhelmed by five times more female cells. 

Male allelic dropout was observed when the samples contained in excess of fifty times 

more female cells. This method was also able to generate a full male STR profile from as 

little as 500 sperm cells. Sperm DNA was successfully extracted from a variety of 

substrates including bedspread, cotton panty, t-shirt, socks and denim which proves the 

potential application of this method in forensic casework. Finally correlation studies were 

done to compare this method with established protocols. The observations from this study 

indicate that equal or better male DNA yields were obtained with alkaline lysis coupled 

with pressure cycling technology but female DNA carryover was observed in samples 

overwhelmed by female tissue which resulted in predominantly female DNA profile. 

          Short extraction times including less than 20 minutes incubation in a lysis buffer, 

high yields, inexpensive reagents and semi-automated platform further make alkaline 

lysis-based pressure cycling technology a potential candidate for extracting DNA from 

forensic evidentiary materials.  
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XII. FUTURE WORK 

 

          This study introduced a new technique to effectively extract biological tissue from 

difficult substrates and further demonstrated its potential in analyzing complicated 

mixtures but there are three points that need further exploration. One of the biggest 

limitations of this method is the ability to process only one sample at a time using PULSE 

tubes in a barocycler. The ability to expand this protocol for use with smaller MicroTubes 

that permit larger sample throughput will highly benefit this study. Second issue concerns 

the female DNA carryover observed in samples overwhelmed with more than fifty times 

female epithelial cells. The current method employs a short 5-minute incubation time to 

lyse female cells which is not sufficient when the sample has exceedingly large amount 

of female tissue. Increase in incubation time to ten minutes indicated a decrease in male 

DNA yields. Other approaches to further minimize this female DNA carryover need to be 

studies. Lastly, more validation studies including a large population will further 

strengthen the findings of this study. 
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APPENDICES 

Appendix 1 

Stock Solutions 
 
0.5M EDTA, 500 mL: Add 93.05 g Ethylenediaminetetraacetic acid di-sodium salt 
dehydrate to 400 mL ddH2. Adjust pH to 8.0 with 10N NaOH. Adjust final volume to 
500 mL. 
 
20% SDS, 500 mL: Dissolve 100 g sodium dodecyl sulfate in 400 mL ddH2O and adjust 
final volume to 500 mL. 
 
0.9% NaCl, 500 mL: Dissolve 4.5 g NaCl in 400 mL ddH2O. Adjust final volume to 500 
mL. 
 
2M Tris-HCl, pH 8.0, 1000 mL: 242.2.10 g Tris base in 800 mL ddH2O.  Adjust pH to 
8.0 with HCl.  Adjust final volume to 1000 mL. 
 
10 N NaOH, 50 mL. 20 g NaOH to 30 mL ddH2O. Adjust final volume to 50 mL. Store 
in plastic bottle. 
 
Buffers: 
 
TE (10mMTris-HCl/ 0.5 mM EDTA, pH 8.0), 500 mL: Add 5 mL of 1 M Tris-HCl and 
100 uL of 0.5 M EDTA to 395 mL ddH2O. Autoclave. 
 
310 Buffer 10X (1M TAPS, 20 mM EDTA pH 8.0), 100 mL: Add 24.33 g TAPS and 4 
mL 0.5M EDTA to 70 mL ddH2O. Adjust pH to 8.0 with 10N NaOH.  Adjust final 
volume to 100 mL. 
 
Differential Lysis Buffer (DEB) (100 mM NaCl, 10 mM EDTA, 0.4% SDS), 500 mL: 
2.92 g NaCl, 10 mL 0.5 M EDTA, 10 mL 20% SDS. Adjust final volume to 500 mL with 
ddH2O. 
 
Stain Extraction Buffer (SEB) (10 mM Tris, 100 mM NaCl, 10 mM EDTA, 2% SDS, 38 
mM DTT), 500 mL: Dissolve 2.92 g NaCL in 250 mL ddH2O. Add 5 mL 1M Tris, 10 mL 
0.5 M EDTA, 50 mL SDS.  Titrate to pH 8.0 with HCl. Adjust final volume to 500 mL 
with ddH2O.  Add 6 mg/mL DTT when ready to use. Keeps for 2 weeks in fridge after 
DTT is added. 
 
 
 
 
 



 148

Appendix 2 
 

Protocol: Standard organic extraction 
 

I. Purpose 
To extract and purify human DNA from cotton swabs containing single-source 
samples. 
 
II. Safety considerations 
Observe all standard laboratory precautions 
 
Warning: The following reagents are considered to be hazardous and require the use 
of appropriate personal protective equipment. These reagents should be handled in a 
fume hood. 
 
Phenol/chloroform/isoamyl alcohol has toxic, corrosive and suspected carcinogenic 
properties that render it harmful or fatal if ingested, inhaled, or exposed to the eyes. 
Phenol is also a skin irritant and may cause burn if it comes in contact with skin. It is 
mandatory to perform experiments involving phenol in a fume hood and wear 
protective gloves.  
 
DTT is an irritant and can be harmful if ingested, inhaled or if it comes in contact 
with skin.  

 
Reagents 
 

PCR ddH2O 
Stain Extraction Buffer with dithiothreitol (DTT) 
Proteinase K (20 mg/mL) 
Phenol/Chloroform/Isoamyl Alcohol (25:24:1) (PCIA) 
ddH2O 

 
Procedure 
 

1) Cut the swab with sterile scissors and place it in a 2 mL microcentrifuge tube 
 

2) Preparation of stain extraction buffer (SEB). 
a. Weigh out 6 mg of Dithiolthreitol (DTT) per mL of SEB to be used. 
b. Add DTT to filtered SEB in 15 mL tube, and mix. May be stored up to 

two weeks in the refrigerator. 
 

3) Add 300µL of  SEB and 2 µL of Proteinase K to each swab sample. 
 

4) Incubate samples at 56ºC for 2-4 hours. 
 



 149

5) Remove swab sample from tube and place in spin basket. Place spin basket back 
in tube, cap, and spin in microcentrifuge for 1 minute at 5000 rpm. 
 

6)  Remove spin basket from tube and throw away. 
 

7) Add 300 µL PCIA to each sample. Mix and spin at 13000 rpm for 10 minutes. 
 

8) Remove aqueous (top layer) from sample tube with 100 µL pipettor and tips. 
Transfer to another fresh tube.  Make sure not to remove any of the organic layer. 
 

9) Add 2.5 volumes of absolute ethanol and 1/10 the volume of 3M Sodium acetate 
solution to the aqueous layer. Place the samples in the freezer for overnight 
incubation. 
 

10) Centrifuge the samples at 13000 rpm for 10 minutes 
 

11) Remove the supernatant and do not disturb the DNA pellet 
 

12) Wash the pellet with 70% alcohol 
 

13) Re-suspend the pellet in 60 µL water  
 

14) Incubate in the water bath at 56º C for 15 minutes. 
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Appendix 3 
 
Protocol: Differential DNA extraction using alkaline lysis and pressure cycling 
technology (PCT)  
 

I. Purpose 
To extract and purify DNA from cotton swabs containing a mixture of male 
sperm cells and female vaginal epithelial cells using pressure-based extraction 
procedure 

 
II. Safety considerations 

Refer to the safety instructions in buccal swab extraction 
 
Reagents 
 

1X Phosphate buffered saline (PBS)  
PCR ddH2O 
Phenol/Chloroform/Isoamyl Alcohol (25:24:1) (PCIA) 
0.4 N Sodium hydroxide (NaOH) solution 
2M Tris HCl pH 7.5 
ddH2O 

 
Instrumentation 
 

a. Barocycler set up 
 

i. Turn the compressor tank on by flipping the switch to “auto” or “on”. 
 

ii. Turn and barocycler on and ensure that the waste container is empty and 
the supply bottle is filled with ddH2O up to the fill line. 
 

iii. Clear tube goes into the supply bottle and the red and blue tubes go into 
the waste bottle. 
 

iv. On the keypad, click “edit” and give a name for the protocol, using the 
touch pad, to save it for future runs. 
 

v. Click “enter” which leads to the next selection where the user can define 
the target high pressure. Choose a pressure value between 5000 psi and 
45000 psi and click “enter”. 
 

vi. The next screen displays “Time1” which is the number of seconds that the 
sample will be exposed to high pressure. Choose a value between 1 and 99 
seconds and hit “enter”. 
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vii. The next screen displays “Time2” which is the number of seconds that 
sample is exposed to ambient pressure. Choose a value between 1 and 99 
seconds and hit enter. 
 

viii. Next, choose the number of pressure cycles by selecting a value between 1 
and 99 and hit enter. 
 

ix. The user is given an option to save this protocol, which can be done by 
hitting “yes” or “no” on the touchpad. 
 

b. Barocycler operation 
 

i. Chamber closure seals the pressure chamber and lock pin holds the 
chamber closure to create a tight seal. 
 

ii. The vent button on top of the chamber closure is used to purge air from 
the chamber before the beginning of a run. 
 

iii. Slide the door open and pull the lock pin out while holding down the vent 
button. This allows the user to remove the chamber closure. 
 

iv. Place the tube containing the sample in the pressure chamber. 
 

v. Seal the chamber with chamber closure and locking pin. 
 

vi. Push the “precharge” key on the touch pad which pushing on the vent 
button to purge any air from the chamber. 
 

vii. Select a saved protocol or create a new one following the procedure 
described in the barocycler set up section. 
 

x. Hit “run” to begin. 
 

c. PULSE tube loading 
 

i. Use the provided PULSE tube tool to assemble the tube. 
 

ii. Place the ram into the ram end of the tube and push it in using the PULSE 
tube tool until it hits resistance. 
 

iii. Place the sample in the sample chamber and add the reagents specific to 
the protocol. The PULSE tube can hold between 0.2 mL and 1.5 mL of 
liquid sample and the optimum sample input if working with solid or 
semi-solid samples is between 50 and 300 mg per tube. 
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iv. Screw the blue screw cap in the sample end of the tube with the help of the 
PULSE tube tool to seal the tube. 
 

v. Use a forceps to retrieve the PULSE tube from the pressure chamber 
following pressure treatment. 

 
 
Procedure 
 

1) Cut the swab with a sterile scissors and place it in the PULSE tube.  
 
2) Add 800 µL of 0.4 N NaOH solution to the sample chamber and seal the 

tube with the blue screw cap. 
 

3) Select the appropriate protocol, “precharge” the chamber by pushing down 
the vent button and hit “run” to begin. The optimized pressure parameters 
are, 
Pressure- 20,000 psi 
Time1- 15 seconds 
Time2- 20 seconds 
Number of cycles- 10 
 

4) After pressure treatment, remove the PULSE tube from the chamber and 
transfer the solution and the swab cutting to 2.0 mL microcentrifuge tube. 
 

5) Add 57.6 µL of 2M Tris-HCl solution. 
 
6) Mix and spin at 5000 rpm for 2 minutes. 
 
7) Remove swab sample from tube and place in spin basket. Place spin 

basket back in tube, cap, and spin in microcentrifuge for 1 minute at 5000 
rpm. 
 

8) Transfer the swab cutting to 1.5 mL microcentrifuge tube to proceed with 
alkaline lysis at high temperature and purify the remaining solution by 
adding equal volume of PCIA. Refer to the standard organic extraction for 
PCIA purification and ethanol precipitation. This fraction contains female 
epithelial DNA. 
 

9) To the swab cutting in 1.5 ml microcentrifuge tube, add 400 µL of NaOH 
solution. 
 

10) Mix and spin at 5000 rpm for 2 minutes. 
 
11) Incubate the sample at 95ºC for 5 minutes. 



 153

12) Remove the sample from the water bath and spin at 5000 rpm for 2 
minutes. 
 

13) Add 28.8 µL of 2M Tris-HCl solution. 
 
14) Mix and spin at 5000 rpm for 2 minutes 

 
15) Remove swab sample from tube and place in spin basket. Place spin 

basket back in tube, cap, and spin in microcentrifuge for 1 minute at 5000 
rpm. 
 

16) Remove spin basket from tube and throw away. Proceed with PCIA 
purification. 
 

17) Add 1 volume of PCIA to each sample. Mix and spin at 13000 rpm for 10 
minutes. 
 

18) Remove aqueous (top layer) from sample tube with 100 µL pipettor and 
tips. Transfer to another fresh tube.  Make sure not to remove any of the 
organic layer. 
 

19) Add 2.5 volumes of absolute ethanol and 1/10 the volume of 3M Sodium 
acetate solution to the aqueous layer. Place the samples in the freezer for 
overnight incubation. 
 

20) Centrifuge the samples at 13000 rpm for 10 minutes. 
 

21) Remove the supernatant and do not disturb the DNA pellet. 
 

22) Wash the pellet with 70% alcohol. 
 

23) Re-suspend the pellet in 60 µL water. 
 

24) Incubate in the water bath at 56º C for 15 minutes. This fraction contains 
sperm DNA. 
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Appendix 4 
 

Protocol: Organic differential extraction of DNA from semen stains 
 

I. Purpose 
To extract and purify DNA from cotton swabs containing a mixture of male 
sperm cells and female vaginal epithelial cells using organic differential isolation 
procedure. 
 

II. Safety considerations 
Refer to the safety instructions in standard organic extraction 

 
Reagents 
 

PCR ddH2O 
Stain Extraction Buffer  
Proteinase K (20 mg/mL) 
390 mM dithiothreitol (DTT) 
Phenol/Chloroform/Isoamyl Alcohol (25:24:1) (PCIA) 
ddH2O 

 
Procedure 
 

1) Cut the swab with sterile scissors and place it in 2.0 mL microcentrifuge tube. 
 

2) Add 500 µL SEB and 5 µL  Proteinase K to the sample. 
 

3) Incubate samples at 37ºC for 2-4 hours. 
 

4) Remove swab sample from tube and place in spin basket. Place spin basket back 
in tube, cap, and spin in microcentrifuge for 5 minutes at 13000 rpm. 

 
5) Discard the spin basket and the swab. 

 
6) Transfer the liquid portion above the sperm cell pellet into a new microcentrifuge 

tube (D1 fraction) and retain the pellet for further processing (D2 fraction) 
 

7) Add 350 µL SEB, 40  µL  390 mM DTT and 10 µL  Proteinase K to the sperm 
cell pellet (D2 fraction) 

 
8) Incubate at 37°C for two hours.  

 
9) Remove the sample from the water bath and spin at 5000 rpm for 2 minutes. 

 
10) Perform PCIA purification on D1 and D2 fractions 
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11) Add 1 volume of PCIA to each sample. Mix and spin at 13000 rpm for 10 

minutes. 
 

12) Remove aqueous (top layer) from sample tube with 100 µL pipettor and tips. 
Transfer to another fresh tube.  Make sure not to remove any of the organic layer. 
 

13) Add 2.5 volumes of absolute ethanol and 1/10 the volume of 3M Sodium acetate 
solution to the aqueous layer. Place the samples in the freezer for overnight 
incubation. 
 

14) Centrifuge the samples at 13000 rpm for 10 minutes 
 

15) Remove the supernatant and do not disturb the DNA pellet 
 

16) Wash the pellet with 70% alcohol 
 

17) Re-suspend the pellet in 60 µL water  
 

18) Incubate in the water bath at 56º C for 15 minutes. 
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