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ABSTRACT OF THE DISSERTATION 

INTEGRITY-BASED KERNEL MALWARE DETECTION 

by 

Feng Zhu 

Florida International University, 2014 

Miami, Florida 

Professor Jinpeng Wei, Major Professor 

Kernel-level malware is one of the most dangerous threats to the security of users on 

the Internet, so there is an urgent need for its detection. The most popular detection 

approach is misuse-based detection. However, it cannot catch up with today's advanced 

malware that increasingly apply polymorphism and obfuscation. In this thesis, we present 

our integrity-based detection for kernel-level malware, which does not rely on the specific 

features of malware.  

We have developed an integrity analysis system that can derive and monitor integrity 

properties for commodity operating systems kernels. In our system, we focus on two 

classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests.  

We adopt static analysis for data invariant detection and overcome several technical 

challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data 

invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and 

Windows Research Kernel (WRK) with very low false positive rate and very low false 

negative rate. We then develop an Invariant Monitor to guard these data invariants against 

real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten 
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real-world Linux rootkits and nine real-world Windows malware and one synthetic 

Windows malware.  

We leverage static and dynamic analysis of kernel and device drivers to learn the 

legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect 

KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. 

We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation 

shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving 

zero false positives against representative benign workloads after appropriate training and 

very low false negatives against 125 real-world malware and nine synthetic attacks). 

In our system, Invariant Monitor and KQguard cooperate together to protect data 

invariants and KQs in the target kernel. By monitoring these integrity properties, we can 

detect malware by its violation of these integrity properties during execution. 
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1. INTRODUCTION 

1.1. Motivation 

In today's world, the Internet has become an essential part of our daily life. People 

enjoy various services offered on the Internet such as eBay [1], which is an example of 

online commercial services provided on the Internet, or Fackbook [2], a representative of 

online social networking services. However, with more and more users on the Internet, 

their security becomes a serious problem. Especially, their security is significantly 

threatened by malware, which is software used or programmed by attackers to execute 

malicious logic that can damage computer system, disable computer services, steal 

sensitive information or get control of computer system. For instance, malware can be 

created and used by criminals to steal credit card information online for money purpose. 

One of the most dangerous threats to systems security today is kernel-level malware 

such as rootkits. Because kernel-level malware is one type of malware that runs at the same 

privilege level as the operating systems kernel, it can affect the OS behavior for its 

malicious purpose. For example, a common attack of kernel-level malware is to alter the 

existing code and/or data of an OS for the purpose of hiding the runtime state of the system 

in terms of running processes, network connections, and files. Besides, kernel-level 

malware can add new functionalities to the OS to carry out malicious activities such as key 

logging and sensitive information collection. The detection of kernel-level malware is a 

difficult task because kernel-level malware may be able to subvert the software (normally 

running in user space) that is intended to find it.  

To defend against kernel-level malware, it is necessary to detect its existence and then 

stop the execution of its malicious logic. One popular approach is to study behaviors of 
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malware by running it in a virtual machine or isolated sandbox. Such dynamic approach 

can never reason about all potential behaviors. If the malware performs differently while 

being analyzed, or can detect the analysis itself, then the malware has a high probability to 

escape detection. On the other hand, static approach, which performs code analysis to infer 

behaviors of malware without running it, also has difficulties: (1) the source code of 

malware samples is not readily available and analyzing binaries brings along intricate 

challenges. (2) a technique called code packing, which is a transformation of a complied 

program, is adopted by malware authors to obfuscate the intent of the malware and raise 

the difficulty of code analysis. 

1.2. Contribution 

Motivated by the above challenges, we propose our integrity-based detection for 

kernel-level malware in this thesis: we harden the system kernel so that malware can be 

detected due to the violation of integrity properties triggered by its execution. Integrity 

properties are attributes of the target system. For example, kernel code integrity is an 

important integrity property of a system and many rootkits try to subvert kernel code 

integrity to achieve their malicious goals such as concealing malicious running processes. 

Protection of kernel code integrity means preventing attackers from modifying existing 

code in a kernel or from executing injected code with kernel privilege, over the lifetime of 

the system. 

Specifically, this thesis focus on two classes of integrity properties: (1) data 

invariants. These invariants include properties of global data structures and serve as 

specifications of data structure integrity [4]. For example, they can represent critical 

system integrity properties such as the immutability of the Interrupt Descriptor Table 
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(IDT) and the system call table. Therefore, they have been checked by state-of-the-art 

integrity monitors [4][5]. (2) integrity of kernel callback queue (KQ) requests. In modern 

kernels, KQs are the mechanism of choice for handling events. However, KQs can also be 

abused by kernel-level malware to achieve their malicious goals by submitting their KQ 

requests. For example, the Pushdo/Cutwail spam bot has misused one KQ called Registry 

Operation Notification Queue in the Windows kernel to monitor, block, or modify 

legitimate registry operations [6]. Hence, the integrity of KQ requests is important to 

system security. In this thesis, we discuss how we derive specifications of legitimate KQ 

requests and use them to validate all KQ request. 

We have developed a system to derive and monitor these two classes of integrity 

properties (data invariants and integrity of KQ requests) for commodity operating systems 

kernels, which in turn can be used to detect or mitigate kernel-level malware. The 

architecture of our system is demonstrated in Figure 1.1. 

Generally, in order to derive the specifications for these two integrity properties, we 

apply static analysis on the source code of the target kernel or perform dynamic analysis of 

the binary code of the target system. The specifications are then fed into the code generator 

to generate code that can guard the integrity properties of the target kernel as its extension. 

Due to the difference of these two kinds of integrity properties, we separate our system into 

two subsystems in real implementation: one for invariants and the other one for KQs. The 

invariant analysis subsystem generates the source code of Invariant Monitor, and KQ 

analysis subsystem produces EH-Signature (properties of legitimate KQ event handlers, 

which is discussed in Chapter 4) collection which is used by KQguard for validating KQ 
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requests. Invariant Monitor and KQguard work together to protect the target kernel. Details 

of the two subsystems are described in Chapter 3 and 4. 

 

Figure 1.1 The architecture of our system 

1.3. Research Goals 

The main research problems we address in this thesis are: 

(1) Deriving the two classes of integrity properties---data invariants and integrity of 

KQ requests from a commodity operating systems kernel. 

(2) Monitoring the derived integrity properties and detecting kernel-level malware 

that violates the monitored integrity properties.  

1.4. Outline 

The rest of this document is organized as follows. Chapter 2 reviews the modeling of 

data invariants and KQs as important classes of integrity properties. Chapter 3 discusses 

our invariant analysis for Linux kernel and WRK, and malware detection based on our 

Invariant Monitor. Chapter 4 describes our kernel queue analysis for Linux kernel and 
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WRK, and the evaluation of our KQ guard against malware. Finally, Chapter 5 summarizes 

the conclusions and suggests future research directions. 

1.5. Publications 

Most of the material presented in this thesis has appeared previously in the following 

publications: 

 Feng Zhu and Jinpeng Wei (2014). "Static Analysis Based Invariant Detection for 

Commodity Operating Systems." Computer & Security, 43 (2014):49-63. 

 Jinpeng Wei, Feng Zhu, and Yasushi Shinjo. (2011) "Static Analysis Based Invariant 

Detection for Commodity Operating Systems". 7th International Conference on 

Collaborative Computing (CollaborateCom 2011), Orlando, FL, October 15-18, 2011. 

 Jinpeng Wei, Feng Zhu, and Calton Pu (2013). "KQguard: Binary-Centric Defense 

against Kernel Queue Injection Attacks." Computer Security–ESORICS 2013. Springer 

Berlin Heidelberg, 2013. 755-774. 

Specifically, the first two papers are about our invariant analysis work and are the 

base of Chapter 3. The last paper is for our KQ analysis work and presented in Chapter 4. 

  



 

6 
 

2. BACKGROUND 

In this chapter, we first review the basics of integrity measurement and our 

assumptions; then we informally define invariants in the context of integrity protection 

against malware attacks. Finally we introduce the concept of kernel queue(KQ) and KQ 

injection attack.  

2.1. Background on Integrity Measurement and Security Assumptions 

An integrity measurement system typically consists of three components: the target 

system, the measurement agent, and the decision maker [7]. Our first assumption is that the 

measurement agent is isolated from and independent of the target system, therefore it has a 

true view of the internal states (including code and data) of the target system. This is a 

realistic assumption due to the popularity of virtual machine monitors [8] and machine 

emulators such as QEMU [9], and it has also been shown that the measurement agent can 

run on dedicated hardware such as a PCI card [10]. Our second assumption is that 

measurement results are securely stored and transferred to the decision maker.  This can be 

supported by hardware such as a Trusted Platform Module (TPM) [11]. The third 

assumption is that the target system’s states (e.g., code and data) may be compromised by a 

powerful adversary who can make arbitrary modifications; therefore the decision maker 

can rely on very few assumptions about the trustworthiness of the target system. 

Based on these assumptions, the decision maker is given a true view of the target 

system, and its task is to estimate the “healthiness” of the target system.  The healthiness 

include functional correctness (e.g., a function that is supposed to reduce the priority level 

of a task is not modified to actually increase the priority level), and non-functional 
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correctness (e.g., the priority level can be modified by a privileged user instead of a normal 

user).  In the following subsections, we model the healthiness as integrity properties. 

Moreover, the healthiness of the target system may change over time, because it may 

be under constant attacks.  Therefore, the integrity of the target system may need to be 

periodically reevaluated. 

2.2. Data Invariant 

In this section, we first define invariants in this thesis and then discuss existing 

solutions for invariant analysis. 

2.2.1. Data Invariants and Their Relevance in Integrity Protection 

An invariant is a property that holds at a certain point or points in a program. In this 

thesis, we are interested in invariant properties that are true over all program executions. 

More specifically, we focus on four kinds of invariants: constant (var  const), 

membership (var  {a, b, c}), bounds (var ≥ const) (var  const), and non-zero (var ≠ 0) in 

this thesis. The reason of this design is that other invariant analysis tools (e.g., Gibraltar [4], 

ReDAS [5], etc) also focus on these kinds of invariants.  

Data invariants are one important class of integrity properties that concerns the 

expected values of program variables (other integrity properties include control flow 

integrity and information flow integrity). Since the behavior of a program can largely 

depend on its variables, manipulation of data has been an important malware attack 

technique. For example, many rootkits (such as Adore, Haxdoor, and SucKIT) have 

attacked immutable kernel data (such as system call table, System Service Descriptor 

Table, and SYSENTER handler function), which can be characterized as violations of 
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constant invariants. As another example, malware can manipulate a variable used as the 

index into a global array, such that its value exceeds the length of the array; this 

out-of-bound access can trigger a kernel crash and is categorized as a violation of the 

bounds invariant.  

On the defensive side, data invariants are the basis of many rootkit detection systems 

such as ReDAS [5], Copilot [10], Livewire [13], and several commercial tools (e.g., 

[14][15][16], and [17]).  For example, the fact that a variable var satisfies a constant 

invariant (var == c) makes it easy to check its integrity: many rootkit detectors use a clean 

copy or hash value of a constant (e.g., c) as the baseline to tell whether the variable has 

been tampered with by a rootkit. 

2.2.2. Existing Solutions 

Several kinds of approaches have been taken to analyze a target system for invariants. 

Manual analysis is applicable to well-known properties such as the immutability of the 

Interrupt Descriptor Table (IDT) and has been used in early integrity protection systems. In 

response however, rootkits have moved their targets to less-known places such as device 

driver jump tables to evade detection, and the general trend of such attacks is towards more 

sophistication and stealth [18]. Eventually, manual analysis will reach a point where a 

human expert has difficulty understanding the logic of a system, which calls for automated 

tools to assist a human expert. Dynamic analysis tools such as Gibraltar [4] and ReDAS [5] 

can infer likely invariants of a system based on the runtime states of the target system and 

hypothesizing relationship among the variables at runtime. But as mentioned in Chapter 1, 

it is impossible for a dynamic analysis tool to cover all possible execution paths for the 

target system. As a result, dynamic analysis may generate false invariants. Typical solution 
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to overcome such shortcomings is to use a large set of test cases. For example, ReDAS [5] 

created 70 training scenarios and 13,000 training sessions for the ghttpd server. However, 

how to systematically generate a large number of test cases that can trigger all execution 

paths in a program is a challenging and open research problem by itself. 

2.3. Kernel Queue 

One of the most time-critical functions of an operating system (OS) kernel is 

interrupt/event handling, e.g., timer interrupts. In support of asynchronous event handling, 

multi-threads kernels store the information necessary for handling an event as an element 

in a KQ, specialized for that event type. To avoid interpretation overhead, each element of 

a KQ contains a callback function pointer to an event handler specialized for that specific 

event, plus its associated execution context and input parameters. When an event happens, 

a kernel thread invokes the specified callback function as a subroutine to handle the event. 

As concrete examples, we found 20 KQs in the Windows Research Kernel (WRK) [19] and 

22 in Linux kernel 2.4.32. In addition to being popular with kernel programmers, KQs also 

have become a very useful tool for kernel-level malware such as rootkits [6][20]. For 

instance, as we mentioned in Chapter 1, the Pushdo/Cutwail spam bot abuses the Registry 

Operation Notification Queue in the Windows kernel. This thesis includes 125 examples of 

real-world malware misusing KQs demonstrating these serious current exploits, and nine 

additional synthetic potential misuses for illustration of future dangers. 

The above-mentioned kernel-level malware misuses the KQs to execute malicious 

logic, by inserting their own requests into the KQs. This kind of manipulation is called KQ 

Injection or simply KQI. Although KQI appears similar to Direct Kernel Object 

Manipulation (DKOM) [3] or Kernel Object Hooking (KOH) [21], it is more expressive 
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thus powerful than the other two. While DKOM attacks only tamper with non-control data 

and KOH attacks only tamper with control data, KQI attacks are capable of doing both 

because the attacker can supply both control data (i.e., the callback function) and/or 

non-control data (i.e., the parameters). Moreover, KQI is stealthier than DKOM or KOH in 

terms of invasiveness: DKOM or KOH attacks modify legitimate kernel objects so they are 

invasive, while KQI attacks just insert new elements into KQs and do not have to modify 

any legitimate kernel objects. 

Several seminal defenses have been proposed for DKOM and KOH attacks 

[3][4][22][23]. Unfortunately, they are not directly applicable to KQI attacks either 

because of their own limitations or the uniqueness of KQIs. For example, CFI [22] is a 

classic defense against control data attacks, but it cannot address non-control data attacks 

launched via KQ injection (Section 4.1.2 provides a concrete example in WRK). Gibraltar 

[4] infers and enforces invariant properties of kernel data structures, so it seems able to 

cover KQs as one type of kernel data structure. Unfortunately, Gibraltar relies on periodic 

snapshots of the kernel memory, which makes it possible for a transient malicious KQ 

request to evade detection. Petroni [24] advocates detecting DKOM by checking the 

integrity of kernel data structures against specifications, however, the specifications are 

elaborate and need to be manually written by domain experts. Finally, KQI attacks inject 

malicious kernel data, which makes HookSafe [23] an inadequate solution because the 

latter can only protect the integrity of legitimate kernel data. Therefore, new solutions are 

needed to defend against KQI attacks.  
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3. Invariant Analysis System 

Remote attestation is a security mechanism that a party in a distributed environment 

can employ to determine whether a target computer has the appropriate hardware/software 

stack and configuration, so it can be trusted (i.e., it has integrity). The idea of remote 

attestation has been widely adopted. For example, the trusted platform modules [11] chip 

has become a standard component in modern computers. 

Remote attestation has evolved from static attestation to runtime attestation. 

Traditional remote attestation techniques only ensure that a computer is bootstrapped from 

trusted hardware and software (e.g., operating systems and libraries), but there has been a 

consensus in recent years that such static attestations are inadequate [5][7]. This is because 

runtime attacks such as buffer overflow can invalidate the result of static attestation during 

the execution of the target system, so a remote challenger cannot gain high confidence in a 

target system even if it is statically attested [5]. In order to regain high confidence, the 

challenger must enhance traditional remote attestation with runtime attestation, or runtime 

integrity checking. 

One of the determining factors of the effectiveness of runtime attestation is the 

attestation criteria, i.e., the expected integrity properties of the target system. Other than a 

few static program states (e.g., code segments and constant data), most of the runtime state 

of a system (normal variables, stack, and heap) cannot be trivially characterized. This 

uncertainty about the criteria results in two classic attestation errors: false positives and 

false negatives. False positives happen when the remote challenger endorses an overly 

stringent criterion that even an uncompromised system fails to meet; and false negatives 

happen when the challenger endorses an overly loose criterion that a compromised system 
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can also meet (i.e., the remote challenger ends up trusting a corrupted computer). 

Obviously, both kinds of errors are undesirable for remote attestation. 

The root cause for the above attestation errors is the lack of precise specifications of 

expected integrity properties. While under-specification can reduce the rate of false 

positives by lowering the bar for a target system, it allows a compromised system to obtain 

trust. On the other hand, over-specification errs on the side of safety to ensure that no 

compromised system can pass the integrity check, but it may raise too many false alarms. 

In this chapter, we focus on one class of integrity properties---data invariants. As we 

discussed in Section 2.2.2, the existing solutions for data invariants detection are dynamic 

analysis and have various shortcomings. In contrast, we explore the applicability of static 

analysis for finding data invariants. The basic idea is to use compiler technology to analyze 

the behavior of a program to derive its data invariants, without actually running the 

program. Static analysis can overcome the limitations of dynamic analysis by exploring all 

execution paths. For example, if v=v+2 is found in the true or false branch of a conditional 

statement in the target program, then the property that “variable v always has a constant 

value at runtime” is likely false. However, a dynamic analysis tool cannot observe this 

assignment if the test cases do not satisfy the condition for the assignment; as a result, a 

dynamic analysis tool may conclude that the variable v is a constant. Since static analysis 

has the source code of the program, it has the advantage to reveal all conditions for 

assignments to a variable, so it can be more precise. 

The rest of this chapter is organized as follows. Section 3.1 presents an automated 

invariants detection tool based on static analysis of source code. Section 3.2 discusses a 

thorough evaluation of our invariant detection tool by applying it to the Linux kernel and 
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the Windows Research Kernel. Section 3.3 discusses the limitations of our approach. 

Section 3.4 explores related work. Section 3.5 summaries this chapter. 

3.1. Automated inference of global invariants through static analysis 

3.1.1. Overview 

We have developed a static analysis-based system to detect invariants for commodity 

operating systems kernels. Figure 3.1 shows the overall architecture. We apply compiler 

technology to automatically analyze the control and data flows of a target kernel, e.g., 

assignments, function calls, and conditional statements, to support or reject hypothesis 

about likely invariants. For example, if a variable is assigned multiple times with different 

values, it is unlikely a constant. 

 

Figure 3.1 Invariant analysis architecture 

Our system recognizes two kinds of assignments: direct assignment and indirect 

assignment. Direct assignment recognition is straightforward. Indirect assignment is 

mainly made through pointers in a modern kernel implemented in the C language. To 



 

14 
 

recognize indirect assignment through pointers, our system has a pointer analyzer, as 

shown in Figure 3.1. 

Our system accepts the merged kernel source code as input, which is fed into the 

Pointer Analyzer and the Invariant Analyzer. The Pointer Analyzer processes the kernel 

code and generates the points-to graph, which records the points-to set (i.e., a set of 

variables) of any pointer variable. The Invariant Analyzer scans the kernel source code 

including variable declarations, kernel functions, conditional statements, and assignment 

statements. When it scans an indirect assignment statement such as *p=v, it queries the 

points-to graph generated by the Pointer Analyzer and gets the set of kernel variables that 

can be pointed to by p, and notes that all such variables are potentially assigned once by 

this statement. Internally, the Invariant Analyzer has several supporting components: 

assignment recognition (Section 3.1.3), constant invariant recognition (Section 3.1.4), and 

other kinds of invariant recognition (Section 3.1.5).  

The output of our system is a report of likely invariants over all global variables in the 

input kernel, as well as supporting evidence for manual validation (e.g., for variables that 

are not considered constant, our system reports the relevant assignment statement(s) that 

modify those variables). We have made a sample of such a report available on our web site 

[25]. Another output of our system is the source code for an Invariant Monitor that can be 

installed in the analyzed system as a kernel module to monitor the invariants detected. 

More details of the Invariant Monitor are presented in Section 3.2.2.1. 

3.1.2. Design Goals 

The major goal for our invariant analysis is high precision, i.e., to minimize false 

positive rate and false negative rate. As we discuss in the beginning of Chapter 3, both 
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kinds of errors are undesirable for remote attestation. Below we discuss the technical 

challenges in both cases and our solutions when analyzing programs written in C like 

languages, using static detection of constant invariants (var  const) as an illustration. 

The major reasons for false negatives are a lack of fine-granularity and imprecise 

pointer analysis. If the static analyzer is field-insensitive, i.e., it cannot differentiate 

individual fields in a C structure, it will regard an assignment to any field of a structure as 

an assignment to the entire structure; thus the entire structure may become a non-constant. 

This means that even if some fields of that structure are constant and hold critical data such 

as function pointers, they cannot be protected. This lack of precision obviously causes false 

negatives. Similarly, lack of support for array sensitivity, i.e., being unable to differentiate 

individual elements in an array, is another cause for false negatives. From our experience, 

in a modern kernel such as the Linux kernel, the majority of global data is within some 

structure or array, which means that a static analyzer that is field and array-insensitive is 

almost useless. Therefore, our invariant analyzer must be field and array-sensitive 

(Sections 3.1.3.1 and 3.1.3.2). Another cause of false negatives is the conservativeness of 

pointer analysis algorithms. If the pointer analysis algorithm is too conservative, e.g., a 

pointer can point to all global variables, the invariant analyzer would recognize many 

bogus (or impossible) assignments and thus consider a constant variable as a non-constant. 

Therefore, we need to develop a precise pointer analysis algorithm. We employ a precise 

points-to algorithm in our design (Section 3.1.3.3). 

The major reason for false positives (i.e., incorrect constant invariants) is a failure to 

recognize legitimate assignments.  This can be caused by two reasons: implicit 

assignments and incomplete points-to analysis. One kind of implicit assignment is 
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assignment by assembly code: since our static analyzer does not understand assembly 

code, it cannot capture such assignments. Another example of implicit assignment is 

structure-level assignment: if variables foo and bar are defined as struct{int a;int b}foo,bar; 

then the assignment foo = bar implicitly modifies both foo.a and foo.b. Another cause of 

missing assignment recognition is related to the precision of points-to analysis: if it returns 

an incomplete points-to set for a pointer, the analyzer may miss legal but indirect updates 

to some variables through that pointer; as a result, the analyzer may mistakenly classify 

those variables as constants. In order to capture implicit assignments, we apply heuristics 

in our analyzer (Sections 3.1.3.1, 3.1.3.4, and 3.1.3.5). In order to avoid incomplete pointer 

analysis, we employ a precise points-to analysis algorithm (Section 3.1.3.3). 

3.1.3. Major Design Points of the Assignment Recognition 

One component of our invariant analyzer identifies assignments to variables, which is 

critical to the detection of constant invariants and membership invariants. For programs 

written in C, modifications to a variable can occur in two forms: direct assignment and 

indirect assignment. In the former case, the said variable is the left hand side of an 

assignment statement (e.g., v in v=k+3). In the latter, the said variable is assigned 

indirectly through a pointer that references it (e.g., p=&v,...,*p=k+3). In order to capture 

the second case, the detector needs to first find out the points-to set of the pointer (via a 

points-to analysis [26]), and then note that each target in the points-to set is assigned 

indirectly. 

In the rest of this section, we discuss how our design satisfies the goals outlined in 

Section 3.1.2. 
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3.1.3.1. Field Sensitivity 

To achieve the desired field sensitivity, our analyzer uses lexical names to 

disambiguate structure field references (e.g., p->a is considered a different memory 

location from p->b), in a way similar to [27]. This enables our analyzer to capture explicit 

assignments to structure fields. Moreover, our analyzer treats structure level assignments 

as implicit assignments to the individual fields. For example, if variables foo and bar are 

defined as struct{int a;int b}foo, bar;  then the assignment foo = bar; is translated into foo.a 

= bar.a; foo.b = bar.b. 

3.1.3.2. Array Sensitivity 

Array sensitivity is another method for our analyzer to achieve fine-granularity. The 

basic idea is to treat each element of an array as an independent variable. For example, the 

array int d[3] is treated as three variables d[0], d[1], and d[2]. Our analyzer can handle 

arrays of arbitrary dimension. Finally, our analyzer can recognize pointers into arrays. For 

example, if the analyzer sees int *p = d; it can interpret *(p + 1) as the same as d[1]. 

3.1.3.3. Pointer Analysis 

Our invariant analyzer performs points-to analysis in order to recognize indirect 

assignments through pointers. Based on the analysis in Section 3.1.2, we know that the 

accuracy of the points-to analysis algorithm is the key for reducing false positives and false 

negatives. Therefore, our pointer analyzer is based on the generalized one level flow 

(GOLF) algorithm [28], which is among the most precise pointer analysis algorithms, 

achieving precision close to Anderson’s algorithm [26]. Our pointer analyzer is built on top 

of the field-sensitivity (Section 3.1.3.1) and array-sensitivity (Section 3.1.3.2) capabilities 

to return fine-grained points-to targets. For example, it would return individual structure 
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field foo.b instead of the entire structure foo. Finally, it can also contribute to 

field-sensitivity and array-sensitivity. For example, in struct{int a;int b}bar, *p, if p’s 

points-to set includes bar, then an assignment to p->a is considered an indirect assignment 

to bar.a. 

3.1.3.4. Union Support 

Our analyzer also supports unions: each field of a union is treated as an alias of other 

fields in the same union. This means that an explicit assignment to one field of a union is an 

implicit assignment to all the other fields. Therefore, if one field of a union is not a 

constant, other fields of the union are not constant, either. 

For example, in union uarg{int a; int b}c, c.a and c.b are treated as the same variables; 

if c.a is not a constant, c.b is not a constant, either. 

3.1.3.5. Heuristics-base Assignment Recognition 

The use of assembly code in the kernel poses difficulties to our static analysis. 

Because our analyzer only recognizes C code, variable reads or writes by assembly code 

are not visible to it. One prominent example is get_current(), which returns a pointer to the 

task structure of the current process. Because this function uses assembly code, several 

chains of pointer dependency are broken, and our static analysis suffers inaccuracy as a 

result. To overcome these inaccuracies caused by assembly code, we apply a function 

prototype-based heuristic. The basic idea is to summarize the effect (in terms of 

assignments to the input parameters) of assembly code inside a function body to bridge the 

“analysis gap”. For example, the function memcpy() copies a block of memory to another 

block of memory, so it can change the target memory and thus should be treated as a kind 

of implicit assignment. We identify this kind of functions (the functions that use assembly 
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code) in two steps: first, our static analysis reports all functions that contain assembly code 

in their bodies; second, we manually analyze the reported functions to see if any 

assignment is performed in the assembly code. For function get_current() mentioned 

above, we assume it can return a pointer to the global variable init_task_union.task. In total, 

we apply this heuristic to 11 functions in the Linux kernel and one function in the Windows 

kernel.  

Another difficulty to our static analysis, especially for the Windows kernel, is the use 

of external functions for which we do not have source code. For example, the external 

function InterlockedIncrement increments (increases by one) the value of the specified 

32-bit variable as an atomic operation. To overcome this problem, we first identity this 

kind of functions by their extern tag; second, we figure out the effect of these external 

functions from Microsoft MSDN [29]. Then we can also apply the function 

prototype-based heuristic based on the effect of these functions. We identify eight such 

functions. 

3.1.4. Constant Invariant Recognition 

A second component of our invariant analyzer recognizes constant invariants, defined 

as having a constant value during normal execution of the system (i.e., after system 

initialization). Determination of constant invariants is based on the assignments to each 

variable, i.e., if a variable is assigned only once in its lifetime, it is a constant.  

Because the definition of constant invariants only concerns the variables’ value after 

system initialization, we treat assignments during system initialization differently than 

those during normal execution of the system. Specifically, a constant variable can be 

assigned multiple possible values during initialization, as long as it is not assigned during 
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normal execution. On the other hand, assignments at normal execution time typically 

indicate that a variable is not a constant. Being assigned differently during system 

initialization is quite possible for some constant variables whose known-good values 

depend on hardware configuration; they can get several different values depending on the 

hardware features detected during system initialization.  

In our design, each global variable is associated with a flag that indicates whether it is 

a constant and a legal value list that contains its possible values. Initially, all global 

variables are marked as constant and all legal value lists are empty. 

Our invariant analyzer first scans global variable declarations and initialization 

functions (e.g., those with “__init” directives). If a global variable, which is marked as a 

constant invariant, is assigned a constant value, the analyzer adds this value into the 

variable’s legal value list. On the other hand, if a global variable is assigned a non-constant 

value, the analyzer marks it as a non-constant. 

After this scan, if a global variable's legal value list is still empty, the analyzer adds a 

default value into the list, based on the type of the variable (e.g., 0 for an integer variable).  

Next, the constant invariant analyzer scans the remaining kernel functions. If a global 

variable, which is marked as a constant invariant, is assigned a non-constant value, or a 

constant value but the value is not in its legal value list, or a constant value in its legal value 

list but the length of it legal value list is greater than 1, the analyzer marks it as a 

non-constant (in the third case, we treat this variable as a membership invariant candidate). 

Note that assignments to global variables here include those indirect assignments made 

through pointers, i.e., when an indirect assignment is encountered, our constant invariant 

analyzer regards all global variables in the points-to set as being assigned. 
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At the end of the kernel code scanning, our analyzer generates a report about the 

constant invariant status of all global variables, based on their flags. For those 

non-constants, the report also includes the reason, e.g., the related assignment statement(s) 

in the kernel source code, for in-depth investigation by a human expert. 

3.1.5. Recognition of Other Kinds of Invariant 

In addition to constant invariants, our invariant analyzer can recognize several other 

kinds of invariants: membership invariants, bounds invariants, and non-zero invariants.  

The inference of membership invariants is similar to that of constant invariants 

discussed in Section 3.1.4, in the sense that each variable is associated with a flag and a 

legal value list. The difference is that the collection of legal values happens throughout the 

program, not only inside the initialization functions, and the flag means whether a 

membership invariant can be safely reported for that variable. Specifically, when a global 

variable is assigned a constant value, directly or indirectly, the value is added to that 

variable’s legal value list; however, if a non-constant value is used in the assignment, the 

variable is marked as unsafe for membership invariants. At the end of the analysis, 

membership invariants for variables still marked as safe are reported, and constants in the 

legal value list of each such variable are used to generate the specification of the 

membership invariants. 

To infer bounds invariants, we apply two heuristics during the code scan: (1) if a 

global variable is used as an index of an array, its value should fall within the range [0, 

Len-1], where Len is the length of the array; (2) if a global variable is compared with a 

constant in a conditional statement, and one of the branches leads to a kernel crash (such as 

by calling panic or do_exit), then we have a constraint for this variable that its legal value 
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should not satisfy the condition for the kernel crash. At the end of the code scan, we solve 

the inferred constraints for each global variable and derive the upper bound and lower 

bound. For example, if we have one constraint g≥2 and another constraint g10, the 

analyzer will decide a bounds invariant 2g10 for g. 

We recognize non-zero invariants based on a heuristic similar to the second heuristic 

for the bounds invariants (about a branch that causes kernel crash), where the global 

variable is compared against zero. 

For the inferred invariants, the analysis report also includes relevant information, e.g., 

the conditional statement(s) in the kernel source code, which provides convenience for 

human validation. 

We should note that the heuristics mentioned in this section are conservative in order 

to avoid detecting incorrect invariants, so our invariant analyzer may miss some invariants. 

For example, we give up the membership invariant for a variable var that is assigned a 

non-constant value (e.g., another variable w) because it may be very difficult to statically 

determine what values the other variable (e.g., w) may have. For another example, when a 

variable is compared against a non-constant in a conditional statement, we do not infer a 

non-zero invariant because we do not know whether the non-constant variable always 

contains zero or not. In this case, we may miss a non-zero invariant if the non-constant 

variable is always equal to zero. We can combine the result of constant invariants analysis 

and our existing heuristics to improve the situation. Finally, our invariant detection 

architecture can be extended with new heuristics once they are identified. We leave these 

improvements as future work. 
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3.1.6. Implementation 

We implement a prototype of our static invariant detector based on the C Intermediate 

Language (CIL) [30]. Our pointer analyzer is implemented in 5,000 lines of Ocaml code, 

and our invariant analyzer is implemented in 4,300 lines of Ocaml code. 

3.2. Evaluation 

In this section, we report a large-scale evaluation of our invariant detection tool, using 

Linux kernel 2.4.32 and Windows Research Kernel (version Windows Server 2003) as the 

input kernels. Our evaluation focuses on the precision of the detected invariants and the 

performance of the detection tool. 

3.2.1. Metrics, Methodology, and Test Cases 

We choose two common metrics to evaluate the precision of the detected data 

invariants for the input kernels: 

 False positives happen when variables whose values do not satisfy a certain invariant 

are mistakenly recognized as such. A monitor can generate false alarms when such 

variable’s runtime values violate the “fake” invariants (e.g., when a variable that can legally 

change its value is recognized as being constant).  

 False negatives happen when a true invariant is not recognized as such. As a result of 

false negatives, a monitor may fail to detect rootkits that tamper with global variables so as 

to violate the true invariants. For example, if a critical variable that should be constant is not 

monitored, a rootkit can modify it and at the same time evade detection. 

We evaluate the false positive and false negative rates of the static invariant detection 

in two ways: (1) comparing with the result of a dynamic invariant detector, and (2) running 

against real software (benign or malicious). In the evaluation on the Linux kernel, the set of 
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benign test programs includes Mozilla Firefox, the Linux Test Project [31], Iperf [32], 

Andrew benchmark [33], and Kernel compilation; and the malicious test programs are ten 

real-world rootkits such as Adore 0.42. Similarly, we evaluate WRK with a set of benign 

test programs: Mozilla Firefox, Internet Explorer, Notepad, WinSCP, Super PI [34], 

Iozone [35], 7zip [36] and Windows Driver Kit [37]. And we use nine real-world malware 

samples as the malicious test programs. 

3.2.1.1. Comparing with a Dynamic Invariant Detector 

We develop a dynamic invariant detector (as a loadable kernel module in Linux or as 

a Windows Device Driver in Windows) that periodically reads the values of the global 

variables of the kernel during a training phase and hypothesizes likely invariants satisfied 

by the global variables based on their observed values. For comparison purposes, this 

dynamic invariant detector detects the same kinds of invariants as our static invariant 

analyzer: constant invariants, membership invariants, bounds invariants, and non-zero 

invariants. To be fair in the comparison, we aim to trigger as many modifications to the 

global variables as possible. Therefore, we choose benign test programs (mentioned in 

Section 3.2.1) that represent comprehensive workloads. For example, the Linux Test 

Project (version 20050107) is an open source test suites that validate the reliability, 

robustness, and stability of Linux kernel, and it includes more than 700 test cases that test 

the Linux kernel in many aspects (such as system calls and file system functionality) and 

more than 60 test cases that exercise the basic functionalities of the network.  

In the rest of this subsection, we mainly focus on the constant invariant (Section 

3.2.1.2), and we briefly report the comparison on other kinds of invariants in Section 

3.2.1.3. 
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3.2.1.2. Constant Invariants 

Table 3.1 summarizes the constant invariant analysis results for the .data and the 

.rodata segments of Linux kernel 2.4.32, as well as the .data and the .rdata segments of 

WRK. The third column is the total number of global variables (with field and 

array-sensitivity). The fourth column shows the number of statically-detected constant 

invariants out of all the variables, and the fifth column shows the number of 

dynamically-detected constant invariants out of all the variables.  

Kernel Segment # Variables # Static inv. # Dynamic inv. 
Linux 
kernel 

.data 154,132 136,778 153,978

.rodata 4,502 4,502 4,502
WRK .data 116,057 94,199 115,876

.rdata 6,617 6,617 6,617
Table 3.1 Overall result of the constant invariant detection 

From Table 3.1 we can see that both static and dynamic constant invariant detection 

achieve 100% accuracy on the .rodata segment and the .rdata segment, which is expected 

because variables in the .rodata segment and the .rdata segment are supposed to be 

constant. 

The dynamic constant invariant detector reports that more than 99% of the variables 

in the .data segment of either Linux kernel or WRK are constants. Comparatively, static 

analysis reports 88.7% of the variables in the .data segment of Linux kernel and 81.2% of 

the variables in the .data segment of WRK as constants. This difference implies that 

despite our effort to use comprehensive test cases, they still may not be able to trigger 

every possible modification to global variables, so there may still exist some false constant 

invariants in the dynamically-detected set. 
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Table 3.2 gives a more in-depth comparison of the results of the static and dynamic 

analyzers for the .data segment. Since each variable can be considered constant or 

non-constant by each of the analyzer, there are four combinations. For example, the 

category “S.NC, D.C” includes all variables that are considered non-constant by the static 

analyzer but constant by the dynamic analyzer.  

We can see that there are in total 154 variables in Linux kernel and 181 variables in 

WRK that both analyzers agree to be non-constant. We are confident about the correctness 

of the results because the dynamic analyzer classifies a variable as non-constant only if it 

observes that the value of the variable does change at runtime. Therefore, the non-constants 

reported by the dynamic analyzer must be truly non-constants. 

Kernel Category Total # # Error static # Error dyna. 
 
Linux 
kernel 

S.NC, D.NC 154 0 0
S.NC, D.C 17,200 18(FN) 17,182(FP)
S.C, D.NC 0 0 0
S.C, D.C 136,778 1(FP) 1(FP)

 
WRK 

S.NC, D.NC 181 0 0
S.NC, D.C 21,677 7(FN) 21,670(FP)
S.C, D.NC 0 0 0
S.C, D.C 94,199 1(FP) 1(FP)

Table 3.2 Comparison of the static and dynamic analysis results for the .data segment (FN: 
false negative; FP: false positive) 

Next, we see from Table 3.2 that a large number (e.g., 17,200 in Linux kernel) of 

variables in the "S.NC, D.C" category are classified as non-constants by the static analyzer 

but constants by the dynamic analyzer. Here we cannot trust the dynamic analyzer because 

it may not observe legal but conditional assignments due to the incompleteness of the test 

coverage, and we cannot trust the static analyzer either, because its points-to analysis is 

conservative. 
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To find the ground truth about these variables, we manually verify whether they are 

indeed non-constants. This verification task seems daunting, but it is actually made much 

easier by the following facts about our static analyzer: (1) if a variable is directly modified, 

the assignment statement logged in the analysis report is straightforward evidence that the 

variable is a non-constant; (2) if a variable is only indirectly modified through a pointer, 

our analyzer outputs the relevant statements from the source code that support the points-to 

relationship, which is relatively straightforward to verify by a human (e.g., Figure 3.2 is a 

portion of our analysis report that shows why ctrl_map[2] can be indirectly modified 

through the pointer variable key_map); (3) because our analysis is array sensitive, we can 

generalize from one confirmed non-constant array element to all other elements in the 

same array. E.g., given an array arr of size 1024, if we confirm that arr[0] is a non-constant 

due to an assignment to arr[i], then we can conclude that arr[1] through arr[1023] are all 

non-constants. In other words, we can confirm non-constants in batches, which 

significantly speed up the verification. Because of the above reasons, it took one graduate 

student about 20 hours to finish the verification of the 17,200 variables in the "S.NC, D.C" 

category of Linux kernel. As a result, we are able to confirm that 17,182 of such variables 

are non-constants, i.e., they can be modified by assignments at runtime. Similarly, we 

confirm that 21,670 out of 21,677 variables in the "S.NC, D.C" category of WRK are 

non-constants, which took one graduate student around 24 hours. Below we give some 

examples of these non-constant variables: 

 The array ctrl_map in Linux kernel holds the values of the Control Key combinations. 

Figure 3.2 shows how an element of this array (e.g., ctrl_map[2] ) can be indirectly 

modified through a pointer in function do_kdsk_ioctl. However, since our dynamic analysis 
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test cases do not trigger function do_kdsk_ioctl, the dynamic invariant analyzer wrongly 

classifies all elements of the array ctrl_map as constants. 

 KeBootTime in WRK stores the absolute time when the system was booted. One of its 

fields, KeBootTime.QuadPart, can be changed by KeBootTime.QuadPart += 

TimeDelta.QuadPart in function KeSetSystemTime. However, the dynamic invariant 

analyzer reports KeBootTime.QuadPart as a constant because KeSetSystemTime is invoked 

only during system boot but our test cases do not reboot the kernel. 

<Name>ctrl_map[2]</Name> 
<Invariant>No</Invariant> 
<Reason1> 
*(key_map + 0) = (unsigned short )(((2 << 8) | 126) ^ 61440);  
vt.c:224, Indirectly modified through key_map. 
 
Path from ctrl_map[2] to key_map: 
<Label>ctrl_map[2]</Label> 
<STMT>ctrl_map=&ctrl_map[2]  defkeymap.c:65</STMT> 
<Label>l_473154</Label> 
<STMT>key_maps[4]=ctrl_map  
defkeymap.c:141</STMT> 
<Label>l_479876</Label> 
<STMT>key_map = key_maps[tmp.kb_table];vt.c:174  
</STMT> 

Figure 3.2 Snippet of the analysis report that shows why ctrl_map[2] can be indirectly 
modified through the pointer key_map 

 The array PspLoadImageNotifyRoutine in WRK is used to hold driver-supplied 

callback functions that are subsequently invoked whenever an image is loaded (or mapped 

into memory). Specifically, it is written into by tmp = ExCompareExchangeCallBack(& 

PspLoadImageNotifyRoutine[i], CallBack, (PEX_CALLBACK_ROUTINE_BLOCK )((void 

*)0)) in function PsSetLoadImageNotifyRoutine. Therefore, this array is obviously not 

constant. However, since our dynamic analysis test cases do not trigger any new 

driver-supplied callback registration, the dynamic invariant analyzer cannot see any 
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changes to PspLoadImageNotifyRoutine; so it mistakenly concludes that the entire array 

PspLoadImageNotifyRoutine is constant. 

We study the distribution of evidence (direct assignment and/or indirect assignment) 

applicable to the 17,336 confirmed non-constants in Linux kernel (including the 154 

non-constants in the “S.NC, D.NC” category and the 17,182 non-constants in the “S.NC, 

D.C” category). We see that 13,191 non-constants (or 76% of 17,336) can be modified 

only indirectly through a pointer, 2,615 non-constants can be modified only directly, and 

the rest (1,530 non-constants) can be modified in both ways. Note that we have merged the 

non-constants recognized via heuristics (Section 3.1.5) into the direct or indirect group 

depending on whether the address of the target variable is taken. A similar study of the 

21,851 confirmed non-constants in WRK (181 non-constants in the “S.NC, D.NC” 

category plus 21,670 non-constants in the “S.NC, D.C” category) shows that 4,321 

non-constants can be modified only directly, 489 non-constants can be modified both 

directly and indirectly, and 17,041 non-constants (or 78% of 21,851) can be modified only 

indirectly through a pointer. Our observation confirms the wide-scale use of pointers in 

both the Linux kernel and WRK to manipulate memory and also means that for any static 

invariant detector of them, the points-to analysis part is critical for the overall precision. 

We further look at the type and meaning of the confirmed non-constants in the “S.NC, 

D.C” group to see whether the classification makes sense. We coarsely divide them into 

several categories, such as list heads, locks, accounting information (e.g., counters), 

resource management information (e.g., page tables and memory zone lists), and 

configuration data. Table 3.3 shows example variables for each category. From this 

analysis, we feel that the static analysis results make sense. For example, list heads, locks, 
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and performance counters should be dynamic, so they should not be constants. 

Unfortunately, our dynamic analyzer classifies this large group of non-constants in the 

wrong way, due to the incompleteness of test cases in our experiment. We believe that the 

large number of non-constants highlight the relative advantage of static analysis over 

dynamic analysis. 

Category Example variables 
Linux kernel WRK 

List heads acpi_bus_drivers.next 
arp_tbl.gc_timer.list.next 

AcquireOpsEvent.Header.WaitL
istHead 
CmpDelayedLRUListHead 

Locks context_task_wq.lock.lock 
dev_base_lock.lock 

AcquireOpsEvent.Header.Lock 
CmpHiveListHeadLock 

Auditing 
information 

kernel_module.archdata_end 
kernel_module.archdata_start 

ExPoolCodeEnd 
ExPoolCodeStart 

Accounting 
information 

console_sem.count.counter 
con_buf_sem.count.counter 

CcFastReadResourceMiss 
CcLostDelayedWrites 

Resource 
mgmt data 

contig_page_data.node_zonelists[0].
zones[0] 
contig_page_data.node_zones[0].fre
e_area[0].map 

ExPoolTagTables[0] 
ExpNonPagedPoolDescriptor[0] 

Configurati
on data 

FDC2, FLOPPY_DMA, 
FLOPPY_IRQ, 
can_use_virtual_dma, fifo_depth 

KeMaximumIncrement 
KeMinimumIncrement 

Table 3.3 Examples of non-constants 

The 18 false negatives in the “S.NC, D.C” group of Linux kernel are the fields of a 

global structure called i810_fops (e.g., i810_fops.ioctl, i810_fops.read, i810_fops.write, 

etc). Our static analyzer reports that they can be assigned indirectly through a pointer to 

i810_fops. However, our manual verification indicates that such a points-to relationship is 

wrong, most likely due to imprecision introduced by the unification step of the GOLF 

algorithm [28] that our pointer analyzer uses.  

The seven false negatives in the “S.NC, D.C” group of WRK are the fields of a global 

structure called KiInitialProcess (e.g., 
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KiInitialProcess.AddressCreationLock.Gate.Header.Absolute, 

KiInitialProcess.AddressCreationLock.Gate.Header.Type, etc). For them, our manual 

analysis indicates that they should be constants, which is due to the limitation of our 

analyzer. The source code relevant to these false negatives is shown in Figure 3.3. First, 

based on the heuristics about KeGetCurrentThread (Section 3.1.3.5), the variable Thread is 

assigned a pointer to KiInitialThread; then our pointer analyzer indicates that 

Thread->ThreadsProcess is a pointer to KiInitialProcess. Next, since VdmRundownDpcs is 

an external function for which we do not have source code, we have to apply the function 

prototype-based heuristics (Section 3.1.3.5) for this function, which conservatively 

assumes that every field of the structure pointed to by the input parameter (i.e., 

KiInitialProcess) can be modified to reduce false alarms as many as possible. As a result, 

we have the seven false negatives.  

In function PspExitThread: 
 
Thread = KeGetCurrentThread(); 
Process = Thread->ThreadsProcess; 
... 
VdmRundownDpcs(Process); 

Figure 3.3 Relevant Code Path For the False Negatives in WRK 

These false negatives illustrate the limitation of our pointer analyzer, which employs a 

conservative points-to algorithm. However, given the total number of real constant 

invariants, our static analyzer still has very low false negative rate: in Linux kernel we have 

141,297 real constant invariants (we have 136,778 + 4,502 = 141,280 statically detected 

constant invariants, 18 false negatives, and one false positive, so the total number is 

141,280 + 18 - 1 = 141,297) with a false negative rate of 0.013% (18 out of 141,297); in 

WRK we have 100,822 real constant invariants (94,199 + 6,617 = 100,816 statically 
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detected constant invariants, seven false negatives, and one false positive, so the total 

number is 100,816 + 7 - 1 = 100,822) with a false negative rate of 0.007% (7 out of 

100,822). 

Continue on Table 3.2, we see that no variable is classified as "S.C, D.NC", which 

means that no variable is classified as constants by the static analyzer but non-constants by 

the dynamic analyzer. Such variables, if they exist, would be false positives for the static 

analyzer. 

Finally, for the variables in "S.C, D.C" group, both analyzers believe they should be 

constants. Since our static analyzer does not provide evidence for constants, we cannot 

verify the correctness statically. Similarly, the dynamic analyzer does not provide evidence 

to prove constants, either. Therefore, we decide to experimentally verify the results 

(Section 3.2.2). 

3.2.1.3. Other Kinds of Invariants 

In addition to constant invariants, our static analyzer detects 143,098 membership 

invariants, 41 bounds invariants and 35 non-zero invariants without false positives in 

Linux kernel. Our static analyzer also works well on WRK: it detects 101,897 membership 

invariants, 265 bounds invariants and 8 non-zero invariants from WRK with no false 

alarms. The size distribution of the membership invariants is shown in Table 3.4.  

We can see that the detected membership invariants can have up to 45 legal values, 

but the majority of membership invariants have no more than two legal values. 

Comparatively, the dynamic analyzer can only detect less precise invariants. More 

specifically, the dynamic bounds detector only reports sub-ranges of statically detected 

bounds invariants. For example, sel_cons in Linux is used as an index for array vc_cons 
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with a length of 64 and it can be modified by the assignment sel_cons=fg_console in 

function set_selection; therefore, our static detector recognizes a bounds invariant 

0sel_cons63. However, the dynamic analyzer recognizes a tighter bounds invariant 

0sel_cons0 because 0 is the only observed value of sel_cons during the training process.  

Kernel Size of Legal Value Set Number of Invariants 
 
 
Linux kernel 

1 140,626
2 2,340
3 50
4 49
5 32

11 1
 
 
 
 
WRK 

1 26,129
2 75,553
3 192
4 49
5 10
6 8

10 2
15 1
45 1

Table 3.4 Size Distribution of Membership Invariants 

3.2.1.4. Summary of Statically Detected Invariants 

In total, our static analyzer detects 284,471 invariants in Linux kernel and 202,992 

invariants in WRK. The details are shown in Table 3.5. 

 Linux kernel WRK 
Constant Invariant 141,297 100,822 
Membership Invariant 143,098 101,897 
Bound Invariant 41 265 
Non-zero Invariant 35 8 
Total 284,471 202,992 

Table 3.5 Summary of Statically Detected Invariants 
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3.2.2. Experimental Evaluation 

3.2.2.1. Implementation of the Invariant Monitor 

We implement an Invariant Monitor that periodically (every 30 seconds) checks the 

statically detected invariants in the memory of a Linux kernel 2.4.32 (the kernel that our 

static tool analyzed). To simply the implementation, our proof-of-concept Invariant 

Monitor is implemented in the form of a loadable kernel module. Other techniques such as 

virtual machine monitor (VMM) or dedicated hardware can also be leveraged in the 

implementation (e.g., Livewire [13] uses a VMM and Copilot [10] runs on a PCI card).  

The monitor loops over each invariant and verifies if it is satisfied by the runtime 

values of the global variables. The monitor emits a warning message if any invariant is not 

satisfied. The list of invariants as well as their specifications is derived by the static 

invariant analyzer presented in Section 3.1. We also implement an Invariant Monitor for 

WRK as part of the kernel in a similar way. 

One practical difficulty that our Invariant Monitor overcomes is the semantic gap 

between the monitor and the rest of the kernel – not all global variables are exposed to the 

monitor as symbols. For example, msg_ctlmax is an unresolved symbol when we try to 

load the monitor in Linux. For this reason and for better portability (e.g., running the 

monitor from a hypervisor in the future), our monitor refers to global variables by their 

runtime addresses rather than symbolic names. However, our static invariant analyzer 

reports invariants using symbolic names of global variables. Therefore, we need to bridge 

the gap between names and runtime addresses. To solve this problem, in Linux kernel we 

use the information contained in the System.map file, a standard file generated during the 
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kernel compilation process, which contains a mapping from kernel variable names to their 

runtime addresses. In WRK, we use wrkx86.map file instead of System.map file. 

A related difficulty brought by the semantic gap is the lack of offset information when 

our monitor makes fine-grain memory accesses to individual fields of structure variables or 

array elements, because System.map and wrkx86.map only provide the starting address of a 

structure or array variable but our monitor needs to look inside it. As a scalable approach, 

we leverage the power of static analysis to automatically generate code for the monitor. 

Specifically, the static analyzer generates code that declares pointer variables of the 

appropriate type, uses pointer dereferencing expressions to represent fine-grain memory 

accesses, and lets the compiler find out the correct offset information. For example, the 

static analyzer generates the code snippet in Figure 3.4 for the constant invariant 

timedia_data[3].num == 8 where timedia_data is an array whose elements are of type 

struct timedia_struct that has a field named num. Here 0xc0272420 is the runtime address 

of the timedia_data array. Note that the known-good value 8 that is compared in the if 

statement is automatically supplied during the code generation because it is available to the 

static invariant analyzer by the time of code generation (i.e., in the legal value list). If the 

length of legal value list of a constant invariant is greater than 1 and its runtime value in the 

first time check is also in its legal value list, this value will be treated as the only legal value 

of the constant invariant in the following checks. 

p=(struct timedia_struct*)0xc0272420; 
 
if (((struct timedia_struct*)p)[3].num!=8) 
  {printk(KERN_WARNING "Bad invariant 
  timedia_data[3].num \n");}; 

Figure 3.4 One example of automatically generated code for checking invariants at runtime 
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3.2.2.2. Evaluation of False Positives 

To estimate the false positive rate of our invariant analyzer, we run the benign test 

programs (Section 3.2.1) while our Invariant Monitor is running in the background. The 

goal is to find whether the test programs can trigger warnings of invariant violations. To 

maximize the detection probability of false invariants, we choose benign programs that to 

our knowledge exercise all important subsystems of the kernel. 

We run these test programs after the kernel is fully booted and our Invariant Monitor 

module is running. During the long time execution of the test programs, our Invariant 

Monitor in Linux kernel reports warning messages about only one constant invariant, 

which we categorize as a false positive in the "S.C, D.C" group of Table 3.2. The 

associated variable of this invariant is ipv4_devconf_dflt.rp_filter. Our invariant analyzer 

misses an assignment to it mainly due to a very subtle pointer arithmetic operation by the 

Linux kernel. We believe that this false positive can be eliminated by modifying our static 

analyzer.  

We perform a similar experiment in WRK with our Invariant Monitor. As a result, 

only warning messages for the variable WmipDockUndockNotificationEntry are generated. 

To understand why our static invariant analyzer recognizes it as a constant, we perform a 

manual analysis, and we find that the main reason is that the value of this variable can be 

changed by an external function (IoRegisterPlugPlayNotification) that we do not have 

source code. However, since we can know the effect of this function from Microsoft 

MSDN, we believe that this false positive can be eliminated by modifying our static 

invariant analyzer with heuristics based on the knowledge of such external functions.  
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3.2.2.3. Evaluation of False Negatives 

Having false negatives means that our invariant detection does not recognize some 

invariants; if a rootkit manipulates the relevant variables to violate such invariants, our 

Invariant Monitor will not be able to detect the manipulation. One way to estimate the 

impact of false negatives is to run real-world rootkits on a system with our Invariant 

Monitor installed, and see whether our Invariant Monitor can detect them. 

We select ten real-world rootkits for this purpose in Linux kernel and nine real-world 

malware samples in WRK. Our Invariant Monitor successfully detects all of them. We also 

develop a proof-of-concept malware for WRK whose target is ExpPoolScanCount (a 

bounds invariant within [0, 31]). This malware modifies the value of ExpPoolScanCount to 

63 and causes a kernel crash when ExpPoolScanCount is used as an index for array 

KiProcessorBlock because 63 exceeds the length of this array. Our Invariant Monitor 

successfully detects the violation to the bounds invariant associated with 

ExpPoolScanCount before it can cause the kernel crash.  

The overall result is shown in Table 3.6. Each rootkit (or malware sample) violates 

one or more constant invariants. For example, SucKIT 2 tampers with one entry of the 

system call table: sys_call_table[59], whose known-good value should be sys_olduname, 

and Adore 0.42 tampers with 15 entries in this table. For clarity, we do not show the 

constant values for the invariants in Table 3.6. 

Figure 3.5 shows a screenshot about how our Invariant Monitor detects Storm [38], a 

notorious spam botnet, in WRK. As we can see, our Invariant Monitor generates a warning 

message about violations to two constant invariants: KiServiceTable[77] whose value 

should be 0x8226B73A (address of NtEnumerateValueKey) but is changed to 
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0xFA92539B; KiServiceTable[151] whose value should be 0x826A4D28 (address of 

NtQueryDirectoryFile) but is changed to 0xFA9251B0. The two suspicious values 

(0xFA92539B and 0xFA9251B0) both fall within the address range of a device driver called 

kernelv.sys that is loaded by Storm. This can help us to confirm the detection of Storm. 

3.2.2.4. Performance Overhead 

In this section, we report the performance of our prototype implementations. All 

experiments are performed on a server with a 2.93 GHz, 8-core Intel Xeon CPU and 16 GB 

of RAM.  

Kernel Name Violated Invariants 
 Real-world Rootkits
 
 
 
 
Linux 
kernel 

Adore 0.42 sys_call_table[2,4,5,6,18,37,39,84,106, 
107,120,141,195,196,220] 

Adore 0.53 sys_call_table[1,2,6,26,37,39,120,141,220] 
All-root sys_call_table[24] 
Kbdv2 sys_call_table[24,106] 
Kbdv3 sys_call_table[30,199] 
Modhide sys_call_table[5] 
Phide  sys_call_table[2,37,141] 
Rial sys_call_table[3,5,6,141,167] 
Rkit 1.01 sys_call_table[23] 
Suckit 2 sys_call_table[59] 

 
 
 
 
 
 
WRK 

Real-world Malware Samples 
Alureon KiServiceTable[185] 
Bot Mailer 2 IDT[0] , IDT[1] ,..., IDT[255] 
Cutwail KiServiceTable[x], where x=68,75,77,126,256 
Haxdoor KiServiceTable[x], 

where x=49,50,128,134,151,181 
Rustock.A IDT[0] , IDT[1] ,..., IDT[255] 
Rushtock.B IDT[0] , IDT[1] ,..., IDT[255] 
Storm KiServiceTable[77], KiServiceTable[151] 
TDL KiServiceTable[185] 
Trojan.Mssync KiServiceTable[x], 

where x=39,43,75,77,122,125,151,181 
Proof-of-Concept Malware Sample 

Crash Kernel 0  ExpPoolScanCount  31 
Table 3.6 Rootkit Detection Results 



 

39 
 

In the evaluation for Linux kernel, our invariant monitor and runtime analyzer run in a 

virtual machine with 2GB of RAM and 20GB of disk, running a Red Hat 7.3 system with 

Linux 2.4.32 kernel. Our static analyzer takes a merged Linux 2.4.32 kernel with 400,492 

lines of C code as input, and produces the invariant report and the source code of the 

invariant monitor. The whole process takes 272 minutes and 4.3GB memory on average. In 

more detail, the pointer analyzer takes 151 minutes on average, and the invariant analyzer 

takes 121 minutes on average.  

 

Figure 3.5 Detection of the invariant violation by Storm 

Similarly, our invariant monitor and runtime analyzer also run in a virtual machine 

during the evaluation for WRK. The host operating system is Microsoft Windows XP 

Service Park 3 running Microsoft Virtual PC 2007 (version 6.0.156.0). The guest operating 

systems is Windows Server 2003 Service Pack 1 running the WRK, and it is allocated 256 

MB of RAM and 20 GB of hard disk. The input to our static analyzer is a merged WRK 

kernel with 665,969 lines of C code. The static analysis takes 684 minutes and 6.2 GB 
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memory on average (the pointer analyzer takes 369 minutes and the invariant analyzer 

takes 315 minutes). 

From the above description, an astute reader may have an impression that execution 

time of our static analyzer is quite long. Our justification is that the static invariant 

detection only needs to run offline, so we have not optimized our static analyzer for speed; 

we leave it as future work. 

We also evaluate the performance overhead of our Invariant Monitor on WRK. We 

first use a mircobenchmark that measures the actual time taken by the Invariant Monitor, 

specifically the total time spent in performing 100 invariant checks (one per 30 seconds). 

They consumed 20.1 seconds of CPU time in total, which happens over a time span of 

3,006 seconds (50 minutes 6 seconds), so the CPU overhead of our Invariant Monitor is 

about 0.66%. Next, we choose five resource-intensive application benchmarks for the 

performance evaluation: Super PI [34], copying a directory with a total size of 1.5 GB, 

performing the compression and decompression of the 1.5 GB directory with 7-Zip, and 

downloading a 160 MB file with WinSCP. The results show that the overhead caused by 

our Invariant Monitor ranges from 0.41% for the file downloading to 0.62% for Super PI, 

which is consistent with the microbenchmark measurement. 

3.3. Limitations of Our Approach 

The static detection of data invariants presented in this thesis has some limitations. 

First, it requires that source code of the kernel be available, so for closed-source kernels, 

our tool can only be applied by the vendor of the kernel. Second, our prototype 

implementation of the tool cannot handle assembly code. Third, the imprecision of our 

pointer analyzer can introduce false positives, as is discussed in Section 3.2.1.2. Fourth, a 
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transient attack, which modifies the value of an invariant temporarily between two checks, 

may bypass our Invariant Monitor due to its fixed check interval. Fifth, since our approach 

is based on the source code, the correctness of the derived data invariants (i.e., whether 

they would agree with the knowledge of a human expert) depends on the correctness of the 

source code. In other words, if the source code contains any error (e.g., due to coding errors 

or unexpected side effects), the analysis result can also be wrong according to a human 

expert. To overcome the first and the second limitations, we could leverage static binary 

analysis techniques such as Vine in BitBlaze [39] and its successor BAP [40], which 

provides an infrastructure for analyzing programs at the binary level. To address the third 

limitation, we could build a pointer analyzer based on the Anderson's algorithm [26], 

which has a better precision than the generalized one level flow (GOLF) algorithm. To 

handle the fourth limitation, we can randomize the check interval to reduce the 

effectiveness of a transient attack. For the last limitation, our tool is intended to assist, 

rather than replace, a human expert. When there is any conflict between the analysis result 

of our tool and the knowledge of a human expert in this area, the final judgment should be 

made by the human expert. 

If an attacker knows about our integrity model, he might be able to write a rootkit that 

avoids the detection by attacking the unmonitored data. However, such an attack is out of 

the scope of our work. Our work is not a panacea but it still raises the bar for an attacker. 

3.4. Related Work 

In this section, we briefly discuss some related work. 
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Invariants detection 

The Daikon invariant detector [41] is a dynamic invariant detector that generates 

likely invariants using program execution traces collected during sample runs. Gibraltar [4] 

and ReDAS [5] also adopt Daikon's idea.  

Closely related to our bounds invariants detection, significant research has been 

performed in static detection of array bounds violations [42] or integer range analysis [43]. 

However, a common goal among these traditional research projects is to detect program 

vulnerabilities (e.g, buffer overflow), rather than derive runtime integrity properties. 

Integrity measurement mechanisms 

There is much previous research on integrity measurement. IMA [44] uses hashing or 

digital signatures to measure the software but only at load time. Recent research such as 

ReDAS [5] and DynIMA [45] improve IMA so that they can support runtime measurement 

of software integrity. Other related work includes [13], [7], [10], [24], [46], and [47]. These 

approaches have different mechanisms for measurement, but they do not focus on the 

integrity properties. 

Copilot [10], a co-processor based integrity checker for the Linux kernel, checks 

kernel code, module code, and jump tables of kernel function pointers. Copilot did not 

focus on deriving integrity properties although it provided a specification language [24] 

later. In our thesis, we figure out the properties from analyzing the target software itself. 

Livewire [13] is a host-based intrusion detection system. It uses a VMM (a modified 

version of VMware workstation) to monitor the states of a guest OS so that it can detect 

intrusions, and interposes on certain events, such as interrupts and updates to device and 
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memory state. Like Copilot, Livewire just focuses on checking known properties but not 

on the identification of integrity properties. 

LKIM [7] leverages the concept of contextual inspection to produce detailed records 

of the states of security relevant structures within the Linux kernel. However, it relies on 

domain knowledge to identify security relevant structures. 

KOP [48] presents a nice approach for traversing the kernel memory based on 

extended type graph and can infer types for generic pointers with high accuracy. Although 

integrity checking applications can be built on top of KOP, the requirement of source code 

is a limitation of KOP. 

Specialized integrity property measurement 

There are some specialized integrity property measurements such as control flow 

integrity (CFI) [49] and Information flow integrity [50]. CFI, which essentially checks a 

sequence property of the target software, checks whether the control transfer from one 

function to the next is consistent with a pre-computed control flow graph. PRIMA [50] 

leverages the reasoning about information flows to check the integrity of a system, but it 

makes assumptions that there is no direct memory modification attack, e.g., information 

flows are triggered by well-defined interfaces (function calls or file reads). HookSafe [23] 

is designed to protect legitimate kernel data structures. It takes kernel hooks as input and 

then protects them. But some input kernel hooks are obtained manually, which implies a 

coverage issue. Furthermore, HookSafe only protects the hooks but not the non-control 

data. IndexedHooks [51] provides an alternative implementation of CFI for the FreeBSD 

8.0 kernel by replacing function addresses with indexes into read-only tables, but 

IndexedHooks still requires source code.  
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Rootkits detection and recovery 

There has been much research on rootkits. [10] gives us a nice survey of rootkits and 

detection software. A list of popular rootkits can be found from [14]. Some work such as 

[52] and [53] attempts to use the integrity measurement mechanisms (such as [13], [10], 

[46], and [47]) mentioned above to detect rootkits and recover the software from 

known-good copies. 

Christodorescu et al [54] proposes an algorithm called semantics-aware malware 

detection. This static approach for malware detection uses instruction semantics to identify 

malicious behavior in a program from the binary of the program. 

Analysis Tools 

CIL [30] is a high-level representation along with a set of tools that permit easy 

analysis and source-to-source transformation of C programs. 

BitBlaze [39] focuses on binary analysis and has a static analysis component called 

Vine that provides an intermediate language for assembly (ILA) and an infrastructure for 

analyzing programs written in this language. 

BAP [40] is the successor to the binary analysis techniques developed for Vine. BAP 

provides a formally specified intermediate language called BIL with techniques and 

interfaces for formally reasoning about binary programs down to the bit level. 

Trusted computing  

TPM (Trusted Platform Module) [11], whose state cannot be corrupted by a 

potentially malicious host system, is already embedded in hardware by industry vendors 

such as Intel. The Trusted Computing Group [55] has proposed several standards for 

measuring the integrity of a software system and storing the result in a TPM. Such 
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standards and technologies have provided the root of trust for secure booting [56], and 

enabled remote attestation [57]. With hardware support such as TPM and application level 

technique such as AppCore [58], a small Trusted Computing Base can be built to facilitate 

integrity analysis and monitoring. 

3.5. Summary 

In this chapter, we have studied the application of static source code analysis to derive 

integrity properties of an operating system kernel. We design and implement automated 

tools that can derive data invariants out of the target kernel without running it. 

To evaluate our methodology, we apply our tools to the Linux kernel 2.4.32 and the 

Windows Research Kernel. In Linux kernel, our tool identifies 284,471 invariants that are 

critical to Linux’s runtime integrity. Furthermore, for the constant invariants, we compare 

the invariant list generated by our static analyzer with the one generated by a dynamic 

invariant analyzer, and find a large number of variables that can cause false alarms for the 

dynamic analyzer. Our tool also works for Windows Research Kernel and detects 202,992 

invariants. Comparison with a dynamic invariant detector on the WRK shows similar 

results. Our experience suggests that static analysis is a viable option for automated 

integrity property derivation, and it can potentially have very low false positive and false 

negative rates.  
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4. Kernel Queue Analysis System 

Inspired by the research discussed in Section 2.3, our KQ defense endorses the 

general idea of using data structure invariants. However, we address the limitation of 

existing approaches so that our KQ integrity checking covers both persistent and transient 

attacks. More specifically, our defense intercepts and checks the validity of every KQ 

request to ensure the execution of legitimate event handlers only, by filtering out all 

untrusted callback requests. In [59], Wei et al develop a KQ defense for Linux (called 

PLCP) that employs static source code analysis to automatically derive specifications of 

legitimate KQ requests. However, the reliance on source code limits the practical 

applicability of PLCP in systems such as Windows in which there are a large number of 

third-party, closed source device drivers that need KQs for their normal operation. 

Therefore, in this chapter, we introduce KQguard, an effective defense against KQI 

attacks that can support closed source device drivers. Specifically, we make the following 

contributions: (1) we introduce the KQguard mechanism that can distinguish attack KQ 

requests from legitimate KQ event handlers, (2) we employ dynamic analysis of the binary 

code to automatically generate specifications of legitimate KQ requests (called 

EH-Signatures) in closed source device drivers, (3) we build a static analysis tool that can 

automatically identify KQs from the source code of a given kernel, (4) we implement the 

KQguard in WRK and the Linux kernel, (5) our extensive evaluation of KQguard on WRK 

shows its effectiveness against KQ exploits (125 real-world malware samples and nine 

synthetic rootkits), detecting all except two of the attacks (very low false negative rate). 

With appropriate training, we eliminated all false alarms from KQguard for representative 



 

47 
 

workloads. For resource intensive benchmarks, KQguard carries a small performance 

overhead of up to about 5%. 

The rest of this chapter is organized as follows. Section 4.1 summarizes the problem 

caused by rootkits misusing KQs. Section 4.2 describes the high level design of KQguard 

defense by abstracting the KQ facility. Section 4.3 outlines some implementation details of 

KQguard for WRK, validating the design. Section 4.4 presents the results of an 

experimental evaluation, demonstrating the effectiveness and efficiency of KQguard. 

Section 4.5 outlines related work and Section 4.6 summaries this chapter. 

4.1. Problem Analysis: KQ Injection 

4.1.1. Importance of KQ Injection Attacks 

Functionally, KQs are kernel queues that support the callback of a 

programmer-defined event handler, specialized for efficient handling of that particular 

event. For example, the soft timer queue of the Linux kernel supports scheduling of timed 

event-handling functions. The requester (e.g., a device driver) specifies an event time and a 

callback function to be executed at the specified time. When the system timer reaches the 

specified time, the kernel timer interrupt handler invokes the callback function stored in the 

soft timer request queue (Figure 4.1). More generally and regardless of the specific event 

semantics among the KQs, their control flow conforms to the same abstract type: for each 

request in the queue, a kernel thread invokes the callback function specified in the KQ 

request to handle the event. 

KQ injection attacks (e.g., by supplying malicious callback function or data in step 1 

of Figure 4.1) only uses legitimate kernel interface and it does not change legitimate kernel 

code or statically allocated data structures such as global variables. Therefore, syntactically 
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a KQ injection request is indistinguishable from normal event handlers. Consider the 

Registry Operation Notification Queue as illustration. Using it in defense, anti-virus 

software event handlers can detect potential intruder malicious activity on the Windows 

registry. Using it in KQ injection attack, Pushdo/Cutwail [6] can monitor, block, or modify 

legitimate registry operations. 

 

Figure 4.1 Life cycle of a timer request in Linux 

Several KQ injection attacks by real world malware have been documented. First, 

rootkits have misused KQs to hide better against discovery. For example, the Rustock.C 

spam bot relies on two Windows kernel timers [60] to check whether it is being 

debugged/traced [73], [74] (e.g., whether KdDebuggerEnabled is true). Second, rootkits 

have misused normal KQ functionality for covert rootkit operations. For example, 

Pushdo/Cutwail botnet sets up a callback routine by invoking 

IoRegisterFsRegistrationChange [6], which enables it to monitor file system registrations, 

and Rustock.C invokes PsSetCreateProcessNotifyRoutine [61], [75] to inject code into 

seemingly benign processes (e.g., services.exe) so that spamming can be done in the 
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context of an innocent process. Third, rootkits have misused KQ functionality to attack 

security products directly. For example, the Storm/Peacomm spam bot invokes 

PsSetLoadImageNotifyRoutine to register a malicious callback function that disables 

security products when they are loaded [76]. Table 4.2 (Section 4.4.1) shows some 

representative KQ hijack attacks against WRK that we have studied, which cover some of 

the most notorious malware today: the TDSS botnet consists of 4.5 million infected 

machines and is considered the most sophisticated threat [62], and Duqu [63] is believed to 

be closely related to the widespread Stuxnet worm [64]. 

4.1.2. KQ Injection Attack Model 

The KQ injection malware listed in Table 4.2 (Section 4.4.1) misuse KQs in a 

straightforward way. They prepare a malicious function in kernel space and use its address 

as the callback function pointer in a KQ request. We call these callback-into-malware 

attacks. Since their malicious functions must be injected somewhere in the kernel space, 

callback-into-malware attacks can be detected by runtime kernel code integrity checkers 

such as SecVisor [65]. Therefore, they are considered the basic level of attack. 

Unfortunately, a more sophisticated level of KQ injection attacks, called 

callback-into-libc (in analogy to return-into-libc [66], [67]), create a malicious callback 

request containing a legitimate callback function but malicious input parameters. When 

activated, the legitimate callback function may carry out unintended actions that are 

beneficial to the attacker. For example, one legitimate callback function in the 

asynchronous procedure call (APC) queue of the WRK is PsExitSpecialApc, which can 

cause the currently executing thread to terminate with an exit status code that is specified in 

the “NormalContext” parameter field of the APC request structure. Therefore, 
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hypothetically an attacker can inject an APC request with PsExitSpecialApc as the callback 

function to force a thread to terminate with a chosen exit status code (set in the 

“NormalContext” field). This kind of Callback-into-libc attack can be used to shutdown an 

anti-virus program but make the termination appear normal to an Intrusion Detection 

System, by setting a misleading exit status code. 

Callback-into-libc KQ injection attacks represent an interesting challenge, since they 

allow an attacker to execute malicious logic without injecting his own code, and the above 

example shows that such attacks can target non-control data (e.g., the exit status code of a 

thread). Therefore, they cannot be defeated by approaches that focus on control data (e.g., 

CFI [22]). 

The design of KQguard in Section 4.2 shows how we can detect both 

callback-into-malware and callback-into-libc KQ injection attacks. 

4.1.3. Design Requirements of KQ Defense 

An effective KQ defense should satisfy four requirements: efficiency, effectiveness, 

extensibility, and inclusiveness. In this section, we outline the reasons KQguard satisfies 

these requirements. Some previous techniques may solve specific problems but have 

difficulties with satisfying all four requirements. We defer a discussion of related work to 

Section 4.5. 

Efficiency 

It is important for KQ defenses to minimize their overhead; KQguard is designed to 

protect KQs with low overhead, including the time-sensitive ones.  
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Effectiveness 

KQ defenses should detect all the KQ injection attacks (zero false negatives) and 

make no mistakes regarding the legitimate event handlers (zero false positives); KQguard 

is designed to achieve this level of precision and recall by focusing on the recognition of all 

legitimate event handlers.  

Extensibility  

Due to the rapid proliferation of new devices, it is important for KQ defenses to 

extend their coverage to new device drivers; the KQguard design isolates the knowledge on 

legitimate event handlers into a table (EH-Signature collection) that is easily extensible.  

Inclusiveness 

A practical concern of commercial kernels is the protection of third-party, closed 

source device drivers; KQguard uses static analysis when source code is available and 

dynamic analysis to protect the closed source legitimate drivers. 

4.2. Design of KQguard 

In this section, we describe the design of KQguard as a general protection mechanism 

for the KQ abstract type. The concrete implementation is described in Section 4.3. 

4.2.1. Architecture Overview and Assumptions 

The main idea of KQguard is to differentiate legitimate KQ event handlers from 

malicious KQ injection attacks based on characteristics of known-good event handlers. For 

simplicity of discussion, we call such characteristics Callback-Signatures. A 

Callback-Signature is an effective representation of a KQ event handler (or a KQ request) 

for checking. One special type of Callback-Signatures is those of the legitimate KQ event 

handlers, and we call them EH-Signatures. 
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How to specify or discover the EH-Signatures is a practical challenge in the design of 

KQguard. Since legitimate KQ requests are originated from legitimate kernel or device 

drivers, in order to specify EH-Signatures we need to study the behavior of the core kernel 

and legitimate drivers. In an ideal kernel development environment, one could imagine 

annotating the entire kernel and all device driver code to make KQ requests explicit, e.g., 

by defining a KQ abstract type. Processing the KQ annotations in the complete source code 

will give us the exact EH-Signature collection. Unfortunately, this is not practical because 

many third-party closed source device drivers are unlikely to share their source code.  

Therefore, our design decision is to apply dynamic binary code analysis to automate 

the process of obtaining a specialized EH-Signature collection that fits the configuration 

and usage of each system. Specifically, our design uses the architecture shown in Figure 

4.2. We extend the kernel in a dedicated training environment to log (collect) 

EH-Signatures of KQ requests that the kernel encounters during the execution of legitimate 

device drivers. Then we extend the kernel in a production environment to use such learned 

EH-Signatures to guard against KQ injection attacks, which can be launched by malware 

installed in the production environment. 

By employing dynamic analysis, our design does not require source code of the 

device drivers, thus it satisfies the inclusiveness requirement. Moreover, by having two 

kinds of environments, we decouple the collection and the use of EH-Signatures, which 

allows future legitimate drivers to be supported by KQguard: we can run the new driver in 

the training environment to collect its EH-Signatures and then add the new EH-Signatures 

into the signature collection used by the production environment. By using this method, 

our design satisfies the extensibility requirement. 
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Figure 4.2 Overall Architecture of KQguard 

In order to guarantee that EH-Signatures learned from the training environment is 

applicable to the production environment, we assume that the training environment and the 

production environment run the same OS and set of legitimate device drivers. 

In order to guarantee that all the Callback-Signatures learned from the training 

environment represent legitimate KQ requests, we assume that any device driver that is run 

in the training environment is benign. This assumption may not hold on a consumer system 

because a normal user may not have the knowledge and capability to tell whether a new 

driver is benign or not. Therefore, we expect that KQguard is used in a strictly controlled 

environment (such as military and government) where a knowledgeable system 

administrator ensures that only benign device drivers are installed in the training 

environment, by applying standard security practices. 
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As is typical of any dynamic analysis approach, we assume that a representative and 

comprehensive workload is available during training to trigger all the legitimate KQ event 

handlers. Because some legitimate KQ requests may be made only under certain 

conditions, the workload must be comprehensive so that such KQ requests can be triggered 

and thus logged. Otherwise, KQguard may raise false alarms. 

4.2.2. Building the EH-Signature Collection 

In order to collect EH-Signatures in a training environment, we first instrument the 

kernel with KQ request logging capability and then run comprehensive workloads to 

trigger legitimate KQ requests. 

4.2.2.1. Instrumentation of the Kernel to Log EH-Signatures 

To collect EH-Signatures, we instrument all places in the kernel where KQ request 

information is available. Specifically, we extend kernel functions that initialize, insert, or 

dispatch KQ requests. We extend these functions with a KQ request logging utility, which 

generates and logs Callback-Signatures from every “raw” KQ request (i.e., with absolute 

addresses) submitted by the legitimate kernel and device drivers. The details of 

Callback-Signature generation are non-trivial and deferred to Section 4.2.5.  

In general, the information contained in EH-Signatures is readily available in the 

kernel, although the precise location of such information may differ from kernel to kernel. 

It is a matter of identifying the appropriate location to instrument the kernel to extract the 

necessary information. Section 4.2.6 describes our non-trivial search for all the locations of 

these simple changes, in which we employ static source code analysis on the entire kernel. 

The extensions are applied to the kernel at source code level. The instrumented kernel is 

then rebuilt for the EH-Signature collection process. 
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4.2.2.2. Dynamic Profiling to Collect EH-Signatures 

In this step, we run a representative set of benchmark applications using a 

comprehensive workload on top of the instrumented kernel. During this phase, the kernel 

extensions described in Section 4.2.2.1 are triggered by every KQ request. 

To avoid false negatives in KQ defense, the training is performed in a clean 

environment to ensure no malware Callback-Signatures are included. To avoid false 

positives, the training workload needs to be comprehensive enough to trigger all of the 

legitimate KQ requests. Our evaluation (Section 4.4.4) shows a very low false positive rate, 

indicating the feasibility of the dynamic profiling method. In general, the issue of test 

coverage for large scale software without source code is a significant challenge and beyond 

the scope of this thesis. 

4.2.3. Validation Using EH-Signature Collection 

As shown in the “Production Environment” part of Figure 4.2, we modify the 

dispatcher of every identified KQ to introduce a KQ guard that checks the legitimacy of a 

pending KQ request before the dispatcher invokes the callback function. To perform the 

check, the KQ guard first builds the Callback-Signature from a pending request (detailed in 

Section 4.2.5), and then matches the Callback-Signature against the EH-Signature 

Collection. If a match is found, the dispatcher invokes the confirmed event handler. 

Otherwise, the dispatcher takes necessary actions against the potential threat (e.g., 

generating a warning message). The details of signature matching are discussed in Section 

4.2.4. 

To reduce performance overhead, we cache the results of KQ validation so as to avoid 

repeatedly checking a KQ request if its Callback-Signature has not changed since the last 
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time it is checked. Specifically, we maintain cryptographic hashes of the “raw” KQ 

requests (identified by memory location) that pass the validation, so that when the same 

KQ request (at the recorded memory location) is to be checked again, we recalculate the 

cryptographic hash and compare it with the stored one. Our profiling study confirms that a 

significant fraction (~90%) of KQ validation is redundant because the same KQ requests 

are repeatedly enqueued, dispatched, dequeued, and enqueued again. Therefore, caching 

the validation results for such repeated KQ requests can reduce performance overhead of 

KQ defense. 

4.2.4. Specification of the Callback-Signatures 

A critical design issue of KQguard is the determination of the set of characteristics in 

the Callback-Signatures: it must precisely identify the same KQ requests in the training and 

production environments. On one hand, the set must not include characteristics that can 

vary between the two environments (e.g., the expiration time in a soft timer request) 

because otherwise even the same legitimate KQ requests would appear different (false 

positives); on the other hand, the set must include all the invariant characteristics between 

the two environments because otherwise a malicious KQ request that differs from a 

legitimate request only in the missing characteristics would also pass the check, resulting 

in false negatives. For example, the malicious KQ request in Figure 4.3.b is allowed by a 

KQ guard that only checks the shaded fields, although it causes a malicious function 

bar_two to be invoked; and the malicious KQ request achieves this by tampering with the 

“action” field of structure se that is not covered by the Callback-Signature. Here when the 

KQ request is dispatched, foo is invoked with qe.data as its parameter. 
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Figure 4.3 Illustration of a False Negative Caused by a Callback-Signature that Only 
Includes the Shaded Fields. The two KQ requests have different executions (i.e., bar_one 

vs bar_two), but their Callback-Signatures are the same. Here bar_two is a malicious 
function. 

In order to minimize false negatives such as the one demonstrated in Figure 4.3, one 

could include more characteristics (e.g., se.action) into the Callback-Signatures. However, 

there are some challenges in doing that with closed source device drivers. Specifically, in 

order to realize that se.action is important, one can get hints from how foo works, but 

without source code, it is non-trivial to figure out that foo invokes se.action. Another 

possibility is to use the type information of se (e.g., struct S) to know that its “action” field 

is a function pointer and such information can be derived from the type of KQ request data 

fields (e.g., qe.data); unfortunately, this is often not possible because the data fields of KQ 

requests are often generic pointers (i.e., void *); in that case, one cannot figure out the type 

of se easily if it resides in a closed source device driver. Therefore, in order to support 

closed source device drivers, our KQ defense assumes that: 
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Kernel data reachable from KQ requests (e.g., se.action) can be identified and it has 

integrity in both the training and the production environments (i.e., changing of this field 

from bar_one to bar_two is prohibited by some other security measures).  

To avoid “reinventing the wheel”, we note that techniques such as KOP [48] can 

correctly locate kernel data such as se.action despite the existence of generic pointers, and 

techniques such as HookSafe [23] can prevent malware from tampering with invariant 

function pointers in legitimate kernel data structures, such as se.action. Moreover, both 

KOP and HookSafe can be used to cover even “deeper” kernel data such as be in Figure 

4.3. Note that the inclusion of qe.data in the Callback-Signature is very critical because it 

ensures that if qe can pass the check performed by KQguard, se is a legitimate kernel data 

structure, and thus its “action” field can be protected by HookSafe (HookSafe is designed 

to protect only legitimate kernel data structures). 

Note that HookSafe cannot be an alternative defense against KQ injection attacks 

from the top level (e.g., by ensuring that “func” and “data” fields in Figure 4.3 are not 

tampered with) for two reasons. First, not all top-level KQ request data structures are 

legitimate because malware can allocate and insert its own KQ request data structure. 

Second, not all top-level legitimate KQ request data structures are invariant (i.e., their 

values do not change) but HookSafe can only protect invariant kernel data. We have 

observed multiple cases in the APC queue of the WRK in which top-level legitimate KQ 

requests change their values during normal execution. For example, IopfCompleteRequest 

(in WRK\base\ntos\io\iomgr\iosubs.c) inserts an APC request with callback function 

IopCompleteRequest (in WRK\base\ntos\io\iomgr\internal.c); when this APC request is 
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dispatched (i.e., IopCompleteRequest is invoked), its callback function field is changed to 

IopUserCompletion before it is inserted back to the APC queue. 

To summarize the above discussion, (1) we need to support closed source device 

drivers, (2) we need a way to defend against KQ injection attacks from the top level, and 

(3) techniques are available to guard deeper kernel data reachable from KQ requests. Based 

on these three observations, in this chapter we choose a Callback-Signature format that 

focuses on KQ request level (the top level) characteristics: (callback_function, 

callback_parameters, insertion_path, allocation). Here callback_function is the callback 

function pointer stored in a KQ request, callback_parameters represents the relevant 

parameters stored in it, insertion_path represents how the KQ request is inserted (by which 

driver? along which code path?), and allocation represents how its memory is allocated 

(global, heap, or stack? by which driver?). 

Each characteristic in our Callback-Signature is important for effective KQ guarding. 

callback_function is used to protect the kernel against callback-into-malware attacks, and 

both callback_function and callback_parameters are used to protect the kernel against 

callback-into-libc attacks (Section 4.1.2). Furthermore, insertion_path and allocation 

provide the context of the KQ request and thus can also be very useful. For example, if 

KQguard only checks callback_function and callback_parameters, malware can insert an 

existing and legitimate KQ request object LKQ if it can somehow benefit from the 

dispatching of LKQ (e.g., resetting a watchdog timer). 

To ensure that the signature matching of a KQ request observed during the production 

use and one observed during the training can guarantee the same execution, we need to 

make sure that the code and static data of the core kernel and legitimate device drivers have 
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integrity in the production environment. We also need to ensure that malware cannot 

directly attack KQ guards, including their code and the EH-Signature collection. We 

leverage the Xen [8] hypervisor to satisfy the above requirements. The implementation 

details is discussed in Section 4.3.3.  

4.2.5. Generation of Callback-Signatures from KQ Requests 

In both EH-Signature collection (Section 4.2.2) and KQ request validation (Section 

4.2.3), Callback-Signatures need to be derived from raw KQ requests. This is called 

Callback-Signature generation and we discuss the details in this subsection. 

4.2.5.1. Motivation for Delinking 

As we discuss in Section 4.2.4, a Callback-Signature is a tuple (callback_function, 

callback_parameters, insertion_path, allocation). Since callback_function and 

callback_parameters correspond to fields in KQ requests (e.g., the “func” field of qe in 

Figure 4.3), it seems that we can simply copy the value of those fields into a 

Callback-Signature. However, when a Callback-Signature contains a memory reference 

(e.g., a parameter that points to a heap object), we have to overcome one challenge: 

namely, what the KQ loggers and the KQ guards can directly observe is an absolute 

memory address; however, the absolute addresses of the same variable or function can be 

different in the training and production environments, for example, when they are inside a 

device driver that is loaded at different starting addresses in the two environments. 

Therefore, if we use absolute addresses in the Callback-Signatures, there will not be a 

match for the same callback function, which results in false positives. 

In order to resolve this issue, we raise the level of abstraction for memory references 

in the Callback Signatures so that variations at the absolute address level can be tolerated. 



 

61 
 

For example, we translate a callback function pointer (absolute address) into a unique 

module ID, plus the offset relative to the starting address of its containing module (usually 

a device driver, and we treat the core kernel as a special module). Under the assumption 

that the kernel maintains a uniform mapping of module location to module ID, the pair 

(module ID, offset) becomes an invariant representation of the callback function pointer 

independent of where the module is loaded. This kind of translation is called delinking. 

Due to delinking, our approach can also work with address space layout randomization: 

ASLR [68] randomizes the memory address space layout of a running process to make it 

more difficult to exploit existing vulnerabilities (e.g., buffer overflows). It works by 

randomly rearranging the positions of a process’s code section, stack, etc in its address 

space. Note that ASLR can only add an offset to the starting position of the code section of 

a module, but it does not rearrange the internal layout of the code section. Since our 

Callback-Signature definition does not rely on the absolute starting address of the code 

section, we can support ASLR. 

4.2.5.2. Details of Delinking 

KQguard delinks memory references (i.e., pointers) in different ways depending on 

the allocation type of the target memory. As Figure 4.4 shows, there can be three types of 

allocations: global variable, heap variable, and local variable. 

The pointer to a global variable is translated into (module ID, offset), in the same way 

as the callback function pointer (Section 4.2.5.1). There can be two kinds of global 

variables depending on whether they reside in a device driver inside the kernel or in a 

user-level library (e.g., a DLL on Windows). We care about user-level global variables 

because some KQ parameters reference user-level memory (e.g., the APC queue on 
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Windows). We regard device drivers and user-level libraries uniformly as modules and we 

modify the appropriate kernel functions to keep track of their address ranges when they are 

loaded (e.g., PspCreateThread for DLLs). 

 

Figure 4.4 Illustration of Different Allocation Types of Pointers: (a) Heap Variable, (b) 
Global Variable, (c) Local Variable 

The pointer to a heap object is translated into a call stack that corresponds to the code 

path that originates from a requester (e.g., a device driver) and ends in the allocation of the 

heap object. We use a call stack rather than the immediate return address because the 

immediate return address may be in some wrapper function for the heap allocation function 

and a device driver can call a function at the top of the call chain to allocate a heap object 

(for example, atapi.sys calls IoCreateDevice to create a heap object in Figure 4.5). Since 

most kernels do not maintain the request call stack for allocated heap objects, we 

instrument their heap allocator functions to collect such information, and the 

instrumentation is called Heap ID Tracker in Figure 4.2. Specifically, the Heap ID Tracker 

traverses the call stack frames backwards until it reaches a return address that falls within 

the code section of a device driver or it reaches the top of the stack; if no device driver is 
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found during the traversal, the core kernel is used as the requester; all return addresses 

encountered during this traversal are part of the call stack, and each of them is translated 

into a (module ID, offset) pair, in the same way as the callback function pointer discussed 

in Section 4.2.5.1. Similar to global variables, our delinking supports two types of heap 

objects: kernel-level and user-level. 

 

Figure 4.5 Example Heap Allocation Call Stack 

The pointer to a local variable is translated into a pair (call_stack, l_offset). The call 

stack starts in a function where a KQ request is inspected (e.g., in a KQ insertion function), 

and it stops in the function that contains the local variable (e.g., L in function foo in Figure 

4.4.c). Each return address encountered during the traversal is translated into a (module ID, 

offset) pair. Finally, l_offset is the relative position of the local variable in its containing 

stack frame. For example, if [ebp-8] is used to represent the local variable, l_offset is 8. We 

have not observed any pointers to user-level local variables, so we do not cover the 

translation for pointers to user-level local variables. 
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Because the static type of a KQ request data (e.g., the “data” field of a soft timer 

request structure) is often a generic pointer (i.e., void *), we have to detect its actual type at 

runtime. Given the raw value of a piece of KQ request data, we run a series of tests to 

decide the suitable delinking for it if it is considered a pointer. First, we test whether the 

raw value falls within the address range of a loaded driver or a user-level library to decide 

whether it should be delinked as a pointer to a global variable. If the test fails, we test 

whether it falls within the address range of an allocated heap object to decide whether it 

should be delinked as a pointer to a heap variable. If this test also fails, we test whether it 

falls within the address ranges of the stack frames to see whether it should be delinked as a 

pointer to a local variable. If this test still fails, we determine the KQ data to be a 

non-pointer, and no delinking is performed. 

4.2.6. Automated Detection of KQs 

Since every KQ can be exploited by malware (part of the attack surface), we need to 

build the EH-Signatures for all of KQs. But before we can guard a KQ, we must first know 

its existence. Therefore, we design and implement a KQ discovery tool that automates the 

process of finding KQs in a kernel by analyzing its source code. Since kernel programmers 

are not intentionally hiding KQs, they usually follow similar programming patterns that 

our tool uses effectively: 

- A KQ is typically implemented as a linked list or an array. In addition to 

insert/delete, a KQ has a dispatcher that operates on the corresponding type.  

- A KQ dispatcher usually contains a loop to act upon all or a subset of queue 

elements. For example, pm_send_all in Figure 4.6 contains the dispatcher loop for the 

Power Management Notification queue of Linux kernel 2.4.32. 
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- A KQ dispatcher usually changes the kernel control flow, e.g., invoking a callback 

function contained in a queue element. 

/* linux-2.4.32/kernel/pm.c */ 
int pm_send_all (pm_request_t rqst, void *data) 
{ 
   …… 
   entry = pm_devs.next; 
   while (entry != &pm_devs) { 
     struct pm_dev *dev=list_entry(entry, struct pm_dev, entry); 
     if (dev->callback) { 
       int status = pm_send(dev, rqst, data); 
       …… 
     } 
     entry = entry->next; 
   } 
   …… 
} 
 
int pm_send(struct pm_dev *dev, pm_request_t rqst, void *data) 
{ 
   …… 
   status = (*dev->callback)(dev, rqst, data); 
   …… 
} 

Figure 4.6 Details of the Power Management Notification Queue on Linux Kernel 2.4.32 

Based on the above analysis, the KQ discovery tool recognizes a KQ in several steps. 

It starts by detecting a loop that iterates through a candidate data structure. 

Then it checks whether a queue element is derived and acted upon inside the loop. 

Next, our tool marks the derived queue element as a taint source and performs a 

flow-sensitive taint propagation through the rest of the loop body; this part is 

flow-sensitive because it propagates taint into downstream functions through parameters 

(e.g., dev passed from pm_send_all to pm_send in Figure 4.6). During the propagation, our 

tool checks whether any tainted function pointer is invoked (e.g., dev->callback in 

pm_send in Figure 4.6), and if that is the case, it reports a candidate KQ. Here we omit 
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further details, but the results (e.g., KQs found in WRK) are interesting and discussed in 

Section 4.3. 

4.3. Implementations of KQguard 

In this section, we discuss our KQguard design (Section 4.2) that is implemented on 

the WRK and Linux kernel.  

4.3.1. KQguard Implementation on WRK 

Our implementation on the WRK is consists of about 3,900 lines of C code and 2,003 

lines of Objective Caml code, which can be divided into four components: 

Construction of Callback-Signatures in WRK  

In order to collect the Callback-Signatures for the 20 KQs in the WRK, we instrument 

the kernel in two sets of functions. The first set of functions initialize, insert, or dispatch 

KQs and our instrumentation consists of 600 lines of C code. Some representative KQ 

dispatcher functions instrumented are list in Table 4.1.  

To support delinking of Callback-Signatures, we instrument the device driver loader 

function (IopLoadDriver) and the thread creation function (PspCreateThread), and we also 

instrument heap allocation or deallocation functions (ExAllocatePoolWithTag, 

ExFreePool, NtAllocateVirtualMemory, and NtFreeVirtualMemory) to keep track of the 

address ranges of allocated heap memory blocks and the call stack to the heap allocation 

function. Our instrumentation of the heap allocator / deallocator consists of 800 lines of C 

code.  

Automated Detection of KQs for the WRK  

We implement the KQ discovery algorithm (Section 4.2.6) based on static source 

code analysis, using the C Intermediate Language (CIL) [69]. Our implementation consists 
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of 2,003 lines of Objective Caml code. We applied the KQ discovery tool to the WRK 

source code (665,950 lines of C), 20 KQs were detected (seven of them are mentioned in 

Table 4.2 in Section 4.4.1 and the rest can be found in [70]), and they include all the KQs 

that we are aware of, which suggests the usefulness of our KQ discovery algorithm. 

However, whether these 20 KQs cover all KQs in the WRK is an interesting and open 

question.  

KQ Name Queue header 
variable 

#param 
tainted

Name of 
Dispatcher 
Function(s) 

Windows Research Kernel 
I/O timer queue IopTimerQueueHe

ad 
2 IopTimerDispatch 

RegistryCallback 
queue 

CmpCallBackVect
or 

1 CmpCallCallBacks

Load image 
notification queue 

PspLoadImageNot
ifyRoutine 

0 PsCallImageNotify
Routines 

APC queue Part of a thread 
structure 

3 KiDeliverApc 

Process 
creation/deletion 
notification queue 

PspCreateProcess
NotifyRoutine 

0 PspCreateThread,  
PspExitProcess 

File system 
registration change 
notification queue 

IopFsNotifyChang
eQueueHead 

0 IoRegisterFileSyste
m, 
IoUnregisterFileSy
stem, 
IoRegisterFsRegist
rationChange 

Callback object 
queue 

ExpInitializeCallb
ack 

1 ExNotifyCallback 

Linux Kernel 
Tasklet queue tasklet_vec[],  

tasklet_hi_vec[] 
1 tasklet_action,  

tasklet_hi_action 
Packet type queue ptype_all, 

ptype_base[] 
1 dev_queue_xmit_n

it,  
netif_receive_skb 

Power management 
notification queue 

pm_devs 1 pm_send_all 

INET protocol 
handlers queue 

inet_protos[] 0 ip_local_deliver_fi
nish, icmp_unreach



 

68 
 

Table 4.1 Representative Automatically Detected KQs 

Callback-Signature Collection Management 

We developed a set of utility functions to manage the Callback-Signatures, including 

the EH-Signatures. These functions support the generation, comparison, insertion, and 

search of Callback-Signatures. They are implemented in 2,200 lines of C code. 

Validation of Callback-Signature in WRK  

We instrument the dispatcher of every identified KQ in the WRK in the production 

environment so that the dispatcher checks the legitimacy of a pending KQ request before 

invoking the callback function (Section 4.2.3). Our instrumentation consists of about 300 

lines of C code. 

4.3.2. KQguard Implementation in Linux kernel 

Our Linux implementation of KQguard follows the same conceptual design as our 

WRK implementation in Section 4.3.1. Of course, the names and syntax of specific 

functions that we instrument are different. For example, the heap object identification 

instruments kmalloc and kfree, which are specific to Linux. 

We apply the KQ detector to Linux kernel and it found 22 KQs. Four representative 

KQs are listed in Table 4.1. Perhaps not surprisingly, we found differences as well as 

similarities between WRK and Linux. As an example of differences, WRK KQs are 

implemented both as linked lists and arrays, but all Linux KQs are implemented as linked 

lists. 

To validate the pending KQ requests in Linux, we instrument the dispatcher functions 

for the 22 KQs detected. The retrieval of Callback-Signature follows the same process as 
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the WRK implementation, and the EH-Signature management functions were ported from 

our WRK implementation. 

4.3.3. KQguard Protection 

Specifically, we run the guest kernel (with KQ guard) on top of Xen 4.1.2 hypervisor 

and extend the shadow-based memory management of Xen to write-protect the code and 

static data of the guest kernel. Note that this protection covers KQ guards and the 

EH-signature collection because they are part of the guest kernel. For this purpose, we add 

a new hypercall to Xen. This hypercall allows the guest kernel to request memory regions 

(whose size can be any number of bytes) in its address space to be write-protected. If a page 

contains any portion of a protected region, the hypervisor sets the protection bit of the page 

table entry of that page to read-only in the shadow page table. At runtime, the guest kernel 

utilizes this hypercall to protect the memory regions that contain code and static data (of 

the guest kernel). Since the hypercall accepts two physical addresses as its input 

parameters which are the start (physical) address and the end (physical) address of the 

memory region to be protected, we translate the virtual addresses (of the start and the end 

of a memory region) to physical addresses (for the reason that we can directly get the 

virtual addresses of a memory region but not its physical addresses) and then invoke the 

hypercall. We also modify the page fault handler of Xen so that any write access to the 

protected regions on this kind of page will be denied, but legitimate writes to other parts of 

this kind of page is able to go through as normal. 

The instrumentation (of the hypercall mentioned above and relevant utility functions) 

on Xen hypervisor is consists of 1,000 lines of C code.  
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4.4. Evaluation of KQguard 

In this section, we report the evaluation results of the WRK implementation of 

KQguard. We evaluate both the effectiveness and efficiency of KQguard through 

measurements on production kernels. By effectiveness we mean precision (whether it 

misidentifies the attacks found, measured in false positives) and recall (whether it misses a 

real attack, measured in false negatives) of KQguard when identifying KQ injection 

attacks. By efficiency we mean the overhead introduced by KQguard. In both the training 

and the production systems used in our evaluation, the hardware is a 2.4 GHz Intel Xeon 

8-Core server with 16 GB of RAM, and the operating system is Windows Server 2003 

Service Pack 1 running the WRK. 

4.4.1. Real-World KQ Injection Attacks 

We start our evaluation of KQguard effectiveness by testing our WRK 

implementation (Section 4.3) against real-world KQ injection attacks in Windows OS. 

Since malware technology keeps advancing, we focus on the most recent and the most 

influential malware samples that represent the state of the art. Specifically, we chose 125 

malware samples from the top 20 malware families [71] and the top 10 botnet families 

[72]. These samples are known to have KQ injection behaviors. 

Overall, our test confirmed that 98 samples inject the APC queue, 34 samples inject 

the DPC queue, 32 samples inject the load image notification queue, 20 samples inject the 

process creation/deletion notification queue, four samples inject the file system registration 

change queue, four samples inject the registry operation notification queue, and two 

samples inject the system worker thread queue. 
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Table 4.2 reports the results of 10 representative spam bot samples. We started with 

malware with reported KQ injection attacks, which are marked with a “” with citation. 

We were able to confirm some of these attacks, shaded in gray. The rows with shaded “” 

without citations are confirmed new KQ injection attacks that have not been reported by 

other sources. For example, Rustock.J injects an APC request with a callback function at 

address 0xF83FE316, which falls within the address range of a device driver called 

msliksurserv.sys that is loaded by Rustock.J; this APC request raises an alarm because it 

does not match any of the EH-Signatures we have collected. 

For all the malware that we were able to activate (the Rustock.C sample failed to run 

in our test environment), we confirmed the reported KQ injection attacks, except for the 

Duqu attack on load  image  notification  queue  and Storm on the APC queue. 

           KQ 
Malware 

Timer/ DPC
Worker 
Thread 

Load 
Image

Create 
Process

APC 
FsRegistrat
ionChange 

RegistryOp
Callback 

Rustock.C  [73][74]    [75]  [75]   
Rustock.J        
Pushdo     [6]   [6]  [6] 
Storm    [76]   [77]   
Srizbi        
TDSS        
Duqu    [63]     
ZeroAccess   [78]    [78]   
Koutodoor        
Pandex        
Mebroot        

Table 4.2 Known KQ Injection Attacks in Representative Malware 

The Rustock samples show that malware designers have significant ability and 

flexibility in injecting different KQs. Concretely, Rustock.J has stopped using the timer 

queue, which Rustock.C uses, but Rustock.J started to use the load image notification 
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queue, which Rustock.C does not. This may have happened to Duqu’s attack on the same 

queue, or Duqu does not activate the attack on load image notification queue during our 

experiment. Overall, our evaluation indicates that KQguard can have a low false negative 

rate because it detects all except two of the KQ injection attacks by 125 real-world malware 

samples. 

4.4.2. Protection of All KQs  

In addition to real world malware, we create synthetic KQ injection attacks for two 

reasons. First, nine KQs have maximum queue length of zero during the testing in Section 

4.4.1, suggesting that malware is not actively targeting them for the moment; however, the 

Rustock evolution shows that malware writers may consider such KQs in the near future, 

so we should ensure that guards for such KQs work properly. Second, the malware 

analyzed in Section 4.4.1 belongs to the callback-into-malware category. Although there 

have been no reports of callback-into-libc attacks in the wild, it is important to evaluate the 

effectiveness of KQ-guard for both kinds of attacks. Therefore, for completeness, we 

developed test Windows device drivers for each of the KQs  that have not been called and 

we have confirmed that our KQ defense can detect all the test drivers, which suggests that 

our defense is effective against potential and future KQ injection attacks. 

4.4.3. Protection of KQguard 

As we mentioned in Section 4.3.3, the code of KQguard and the EH-Signature 

collection are under write-protection. To verify the effectiveness of the write-protection, 

we create three synthetic attacks that try to alter the code of KQguard and five synthetic 

attacks that try to modify the data of EH-Signature collection. We launch these attacks after 
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KQguard code the EH-Signature collection are write-protected. As a result, all eight 

attacks are all detected and prevented. 

4.4.4. False Alarms 

We have experimentally confirmed that it is possible to reduce the false positives of 

KQ guarding to zero. This is achievable when the training workload is comprehensive 

enough to produce the full EH-Signature collection. 

We first collect EH-Signatures on a training machine with Internet access. We 

repeatedly log in, run a set of normal workload programs, and log off. In order to trigger all 

possible code paths that insert KQ requests, we actively do the above for fifteen hours. 

During this process, we gradually collect more and more EH-Signatures until the set does 

not grow. At the end of training, we collect 813 EH-Signatures. The set of workload 

programs include Notepad, Windows Explorer, WinSCP, Internet Explorer, 7-Zip, 

WordPad, IDA, OllyDbg, CFF Explorer, Sandboxie, and Python. 

Next we feed the collected EH-Signatures into a production machine with KQ 

guarding and use that machine for normal workloads as well as the KQ injection malware 

evaluation and the performance overhead tests. During such uses, we observe zero false 

alarms. The normal workload programs include the ones mentioned above as well as others 

such as Firefox not used in training. 

While the experimental result appears encouraging, we avoid making a claim that 

dynamic analysis can always achieve zero false positives. For example, the APC queue has 

733 EH-Signatures, such EH-Signatures have 14 unique callback functions (Figure 4.7), 

and the most popular callback function is IopCompleteRequest, occurring in 603 

EH-Signatures. While these 603 EH-Signatures share the same callback function, their 
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insertion paths originate from 51 device drivers, two DLLs, and the core kernel, so the 

average number of EH-Signatures per requester (e.g., a device driver) is 11, and the largest 

number is 45 (from the driver ntfs.sys). This result implies that there can be potentially 

many code paths within a driver that can prepare and insert an APC request with the same 

callback function, which may or may not be triggered in our training.  

 

Figure 4.7 Distribution of EH-Signatures in APC queue with 14 callback functions 

Moreover, there are in total 199 device drivers in our evaluation system, but our 

training only observes a subset of them (e.g., 51 in terms of IopCompleteRequest); so some 

legitimate KQ requests from the remaining drivers may be triggered by events such as 

inserting a USB device, which we have not tested yet. Fortunately, our experience suggests 

that it is possible to collect the set of EH-Signatures that fits the configuration and usage of 

a given system with enough training workloads. 
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4.4.5. Performance Overhead 

We evaluate the performance overhead of KQguard in two steps: microbenchmarks 

and macrobenchmarks. 

For the first step, we measure the overhead of KQguard validation check and heap 

object tracking. KQguard validation check matches Callback-Signatures against the 

EH-Signature Collection, and its overhead consists of matching the four parts of a 

Callback-Signature. Heap object tracking affects every heap allocation and deallocation 

operation (e.g., ExAllocatePoolWithTag and ExFreePool). These heap operations are 

invoked at a global level, with overhead proportional to the overall system and application 

use of the heap. Specifically, we measure the total time spent in performing 1,000 KQguard 

validation checks for the DPC queue and the I/O timer queue, two of the most active KQs.  

The main result is that global heap object tracking during the experiment dominated 

the KQguard overhead. Specifically, DPC queue validation consumed 93.7 milliseconds of 

CPU, while heap object tracking consumed 8,527 milliseconds. These 1,000 DPC callback 

functions are dispatched over a time span of 250,878 milliseconds (4 minutes 11 seconds). 

Therefore, the total CPU consumed by our KQguard validation for DPC queue and the 

supporting heap object tracking is 8,620.7 milliseconds (or about 3.4% of the total elapsed 

time). The measurements of the I/O timer queue (180 ms for validation, 11,807 ms for heap 

object tracking, and 345,825 ms total elapsed time) confirm the DPC queue results. 

For the second step, Table 4.3 shows the results of five application level benchmarks 

that stress one or more system resources, including CPU, memory, disk, and network. The 

first benchmark is Super PI, a CPU-intensive workload calculating 32 million digits of . 

The second benchmark copies a directory with a total size of 1.5 GB, which stress the file 



 

76 
 

system. The third and the fourth benchmarks are also CPU-intensive, performing the 

compression and decompression of the 1.5 GB directory with 7-Zip. The fifth benchmark 

downloads a 160 MB file with WinSCP, which stresses the network connection. Each 

workload is run multiple times and the average is reported. We can see that in terms of 

execution time of the selected applications, KQguard incurs modest elapsed time increases, 

from 2.8% for decompression to 5.6% for directory copy. These elapsed time increases are 

consistent with the microbenchmark measurements, with higher or lower heap activities as 

the most probable cause of the variations. We also run the PostMark file system benchmark 

and the PassMark PerformanceTest benchmark and see similar overhead (3.9% and 4.9%, 

respectively). 

Workload Original 
(sec) 

KQ Guarding 
(sec) 

Slowdown 

Super PI [34]  2,10841 2,21337 5.0%
Copy directory (1.5 GB) 2319.0 24415.9 5.6%
Compress directory (1.5 GB) 1,11324 1,14516 2.9%
Decompress directory (1.5 GB) 1814.1 1865.1 2.8%
Download file (160 MB) 14511 15111 4.1%

Table 4.3 Performance Overhead of KQ Guarding in WRK 

4.5. Related Work 

In this section, we survey related work that can potentially solve the KQ injection 

problem and satisfy the four design requirements: efficiency, effectiveness, extensibility, 

and inclusiveness (Section 4.1.3).  

SecVisor [65] and NICKLE [79] are designed to preserve kernel code integrity or 

block the execution of foreign code in the kernel. They can defeat callback-into-malware 

KQ attacks because such attacks require that malicious functions be injected somewhere in 
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the kernel space. However, they cannot detect callback-into-libc attacks because such 

attacks do not inject malicious code or modify legitimate kernel code. 

HookSafe [23] is capable of blocking the execution of malware that modifies 

legitimate function pointers to force a control transfer to the malicious code. However, 

HookSafe cannot prevent KQ injection attacks because they do not modify existing and 

legitimate kernel function pointers but instead supply malicious data in their own memory 

(i.e., the KQ request data structures). 

CFI [22] can ensure that control transfers of a program during execution always 

conform to a predefined control flow graph. Therefore, it can be instantiated into an 

alternative defense against KQIs that supply malicious control data. However, CFI cannot 

defeat the type of KQI attacks that supply malicious non-control data because they do not 

change the control flow. 

SBCFI [46] can potentially detect a callback-into-malware KQ attack. However, 

SBCFI is designed for persistent kernel control flow attacks (e.g., it only checks 

periodically) but KQ injection attacks are transient, so SBCFI may miss many of them. 

Moreover, SBCFI requires source code so it does not satisfy the inclusiveness requirement. 

IndexedHooks [51] provides an alternative implementation of CFI for the FreeBSD 

8.0 kernel by replacing function addresses with indexes into read-only tables, and it is 

capable of supporting new device drivers. However, similar to SBCFI, IndexedHooks 

requires source code so it does not satisfy the inclusiveness requirement. 

PLCP [59] is a comprehensive defense against KQ injection attacks, capable of 

defeating both callback-into-malware and callback-into-libc attacks. However, PLCP does 

not satisfy the inclusiveness requirement due to its reliance on source code. 
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4.6. Summary 

Kernel Queue (KQ) injection attacks are a significant problem. We test 125 real world 

malware attacks [73][76][6][78][62][63][74][77][75] and nine synthetic attacks to cover 

20 KQs in the WRK. It is important for a solution to satisfy four requirements: efficiency 

(low overhead), effectiveness (precision and recall of attack detection), extensibility 

(accommodation of new device drivers) and inclusiveness (protection of device drivers 

with and without source code). Current kernel protection solutions have difficulties with 

simultaneous satisfaction of all four requirements.  

We describe the KQguard approach to defend kernels against KQ injection attacks. 

The design of KQguard is independent of specific details of the attacks. Consequently, 

KQguard is able to defend against not only known attacks, but also anticipated future 

attacks on currently unscathed KQs. We evaluated the WRK implementation of KQguard, 

demonstrating the effectiveness and efficiency of KQguard by running a number of 

representative application benchmarks. In effectiveness, KQguard achieves very low false 

negatives (detecting all but two KQ injection attacks in 125 real world malware and nine 

synthetic attacks) and zero false positives (no false alarms after a proper training process). 

In performance, KQguard introduces a small overhead of about 100 microseconds per 

validation and up to about 5% slowdown for resource-intensive application benchmarks 

due to heap object tracking. 
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5. CONCLUSION AND FUTURE WORK 

5.1. Conclusion 

In this thesis, we have addressed two research problems: (1) detection of data 

invariants and integrity of KQ requests from a commodity operating systems kernel; (2) 

defense against kernel-level malware that violates these two integrity properties.  

For the detection of data invariants, we develop a program analysis tool that can 

automatically derive data invariants from the source code of a given kernel, using static 

analysis. Our tool applies compiler technology to analyze the control and data flows (e.g., 

assignments and function calls) of a target program and reason about the global variables 

that are invariants. In developing this tool, we have overcome several challenges in 

large-scale C program analysis, such as field-sensitivity, array-sensitivity, pointer analysis, 

and handling of assembly code. 

With this analysis tool, we are able to make a thorough study of invariants detection 

for the Linux kernel and the Windows Research Kernel using static analysis. To the best of 

our knowledge, there has not been a similar study. Both kernels are very complex software 

posing great challenges for static analysis by their wide use of pointers and complex 

structures. Our tool is able to process 400,492 lines of Linux kernel (version 2.4.32) code 

and identify 284,471 invariants essential to the Linux kernel’s runtime integrity. To 

validate the result of our tool (e.g., precision), we develop a dynamic invariant detector 

(following the spirit of Daikon [41]) and compare it with our static analyzer. The 

comparison suggests that static invariant detection outperforms dynamic invariant 

detection in terms of false positives. For example, in the constant invariants category, we 
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find 17,182 variables that can cause false alarms for the dynamic analyzer, while our static 

tool only misses 18 true invariants (with false negative rate 0.013%).  

We also develop an invariant monitor based on the result of the static analysis, which 

detects invariant violations by ten real-world Linux rootkits and generates only one false 

alarm against benign workloads. Moreover, although Windows Research kernel (version 

Windows Server 2003), which has 665,969 lines of C code, is even more complex than the 

Linux kernel, our tool analyzes it successfully and detects 202,992 invariants. Comparison 

with the result of a dynamic analyzer shows that the dynamic analyzer generates 21,670 

false constant invariants while our static tool wrongly classifies only seven true constant 

invariants as non-constants (with false negative rate 0.007%). We develop an invariant 

monitor in the same way as the Linux kernel and this monitor successfully detects nine 

real-world Windows malware samples and one synthetic Windows malware, while 

emitting only one false alarm. Our study shows that our static tool is an effective tool for a 

system security expert. Furthermore, our experience suggests that static analysis is a viable 

option for automated integrity property derivation, and it can potentially have very low 

false positive and false negative rates. 

On the other hand, we first build a static analysis tool to automatic detect KQs from 

kernel source code. As a result, we found found 20 KQs in the Windows Research Kernel 

and 22 in Linux kernel. We then figure out the KQguard mechanism that can decide the 

legitimacy of a KQ request (e.g., we can distinguish the KQ requests made by a rootkit 

from the legitimate ones). Due to the lack of source code of many third-party device 

drivers, we apply dynamic analysis of the binary code for the automatic generation of the 
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specifications of legitimate KQ requests (called EH-Signatures). In this way, we avoid the 

requirement of source code of the device drivers and satisfy the inclusiveness. 

Based on the KQguard mechanism and the EH-Signatures generated, we implement 

KQguard in WRK and the Linux kernel. We further evaluate its effectiveness against KQ 

exploits. First, we chose 125 malware samples from the top malware families and top 

botnet families and create 9 synthetic rootkits. KQguard is able to detect all except two KQ 

injection attacks, which means it has very low false negatives. Second, after a proper 

training, KQguard can have no false alarms for representative workloads. The very low 

false negatives and no false alarms together demonstrate the effectiveness of KQguard. 

The performance evaluation shows that for resource intensive benchmarks, KQguard 

introduces a small overhead of up to about 5%, which illustrates the efficiency of 

KQguard. In KQguard design we isolate the legitimate KQ request into a table 

(EH-Signature collection) that can be easily extended in a training phrase, which achieves 

the goal of extensibility. 

Unlike the various signature-based detection approaches, our defense not only works 

for existing malware but also can handle future malware. Specifically, our defense can 

detect a kind of malware that temper with invariants or adopt KQI attacks. To catch up with 

numerous new malware, most existing commercial anti-virus software need to update their 

malware signature database very frequently. Even though, they still can only detect 

existing malware whose signature is known. While our defense does not need updates 

unless the system kernel is changed or there is a new legitimate device driver, and can also 

deal with future malware. 
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5.2. Future Work 

In this thesis, we protect the detected invariants with our Invariant Monitor that 

checks the invariants periodically (every 30 seconds). However, such kind of protection 

can possibly be defeated by a transient attack---an attack who knows the check mechanism 

can modify the value of an invariant after one check and restore its original value before 

next check. One mitigated solution to such attack is to randomize the interval between two 

checks (e.g., the check interval can vary from 1 second to 60 seconds). 

Another solution is to leverage the hardware-based protection so that any write-access 

to the invariants can be monitored. However, nowadays the hardware can only provide 

page-level protection, which means that if we want to write-protect an invariant, the 

memory page that contains the invariant will be also write-protected. While in a 

commodity OS kernel such as Linux and Windows, it is very common that there exist 

hundreds of thousands of invariants (as our detection results in Section 3.2) and these 

invariants are widely scattered cross the kernel space. And it is normal that the invariants 

can co-locate with some frequently modified variables together in the same page. Suppose 

we deploy the approach that we write-protect all pages that contain the invariants and 

verify all write-accesses to these pages (whether the write-access is applied to an invariant), 

it will cause significant performance overhead, which is mostly introduced from the 

unnecessary page faults that are triggered by write-accesses to non-invariants. 

We recognize this protection granularity gap that hardware can only provide 

page-level protection but invariant protection needs byte-level granularity. To address this 

challenge, we can adopt a solution similar to HookSafe [23] that we relocate invariants to a 

dedicated page-aligned memory region and then introduce an indirection layer to manage 
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accesses to them with hardware-based page-level protection. Specifically, the access to the 

original invariant will be redirected to the relocated one by the indirection layer. In this 

way, we can avoid the unnecessary page faults triggered by the write-accesses to irrelevant 

non-invariants. 

Our current invariant analysis is only applied on the global variables---more 

specifically, statically allocated variables. However, except these global variables, there 

also exist many kernel objects that are dynamically allocated from heap at runtime. During 

our study of kernel queues, we found that the life time of some heap objects can last from 

the time they are allocated till when the system is shut down. So we can view this kind of 

heap objects as global variables. Furthermore, this kind of heap objects can also be critical 

to system security. For example, we found there are eight elements in the I/O timer queue 

at runtime and the callback function pointers in the eight elements do not change once the 

elements are inserted, which implies that we can apply invariant analysis to derive such 

heap invariants. 

Since our static detection of data invariants needs source code, it will not work for the 

closed-source kernel. And it cannot handle assembly code without human aid. We can 

improve our approach by applying the static binary analysis techniques such as Vine in 

BitBlaze [39] and BAP [40], which provides an infrastructure for analyzing binary.  

Our invariant detection has false positives due to the imprecision of our pointer 

analyzer based on the generalized one level flow (GOLF) algorithm. We can build a more 

precise pointer analyzer based on the Anderson's algorithm [26].  

Nowadays, the smartphone become more and more popular in our daily life and it also 

has an operating system with a Linux kernel, which means that it is possible for us to apply 
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our system on it and derive data invariants and integrity of KQs and further defend against 

the malware that tries to exploit them.  
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