
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-5-2014

Integrity-Based Kernel Malware Detection
Feng Zhu
fzhu001@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Computer Security Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Zhu, Feng, "Integrity-Based Kernel Malware Detection" (2014). FIU Electronic Theses and Dissertations. Paper 1572.
http://digitalcommons.fiu.edu/etd/1572

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Florida International University

https://core.ac.uk/display/46950898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F1572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.fiu.edu%2Fetd%2F1572&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/1572?utm_source=digitalcommons.fiu.edu%2Fetd%2F1572&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

INTEGRITY-BASED KERNEL MALWARE DETECTION

A dissertation submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Feng Zhu

2014

ii

To: Dean Amir Mirmiran
 College of Engineering and Computing

This dissertation, written by Feng Zhu, and entitled Integrity-Based Kernel Malware
Detection, having been approved in respect to style and intellectual content, is referred to
you for judgment.

We have read this dissertation and recommend that it be approved.

Bogdan Carbunar

Xudong He

Gang Quan

Geoffrey Smith

Jinpeng Wei, Major Professor

Date of Defense: June 5, 2014

The dissertation of Feng Zhu is approved.

 Dean Amir Mirmiran

 College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2014

iii

© Copyright 2014 by Feng Zhu

All rights reserved.

iv

DEDICATION

To my advisor, my family and my friends.

v

ACKNOWLEDGMENTS

Thanks, everyone!

vi

ABSTRACT OF THE DISSERTATION

INTEGRITY-BASED KERNEL MALWARE DETECTION

by

Feng Zhu

Florida International University, 2014

Miami, Florida

Professor Jinpeng Wei, Major Professor

Kernel-level malware is one of the most dangerous threats to the security of users on

the Internet, so there is an urgent need for its detection. The most popular detection

approach is misuse-based detection. However, it cannot catch up with today's advanced

malware that increasingly apply polymorphism and obfuscation. In this thesis, we present

our integrity-based detection for kernel-level malware, which does not rely on the specific

features of malware.

We have developed an integrity analysis system that can derive and monitor integrity

properties for commodity operating systems kernels. In our system, we focus on two

classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests.

We adopt static analysis for data invariant detection and overcome several technical

challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data

invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and

Windows Research Kernel (WRK) with very low false positive rate and very low false

negative rate. We then develop an Invariant Monitor to guard these data invariants against

real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten

vii

real-world Linux rootkits and nine real-world Windows malware and one synthetic

Windows malware.

We leverage static and dynamic analysis of kernel and device drivers to learn the

legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect

KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated.

We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation

shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving

zero false positives against representative benign workloads after appropriate training and

very low false negatives against 125 real-world malware and nine synthetic attacks).

In our system, Invariant Monitor and KQguard cooperate together to protect data

invariants and KQs in the target kernel. By monitoring these integrity properties, we can

detect malware by its violation of these integrity properties during execution.

viii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION ... 1
1.1. Motivation ... 1
1.2. Contribution ... 2
1.3. Research Goals .. 4
1.4. Outline ... 4
1.5. Publications ... 5

2. BACKGROUND ... 6
2.1. Background on Integrity Measurement and Security Assumptions 6
2.2. Data Invariant .. 7

2.2.1. Data Invariants and Their Relevance in Integrity Protection 7
2.2.2. Existing Solutions ... 8

2.3. Kernel Queue ... 9

3. Invariant Analysis System ... 11
3.1. Automated inference of global invariants through static analysis................... 13

3.1.1. Overview ... 13
3.1.2. Design Goals ... 14
3.1.3. Major Design Points of the Assignment Recognition 16
3.1.3.1. Field Sensitivity ... 17
3.1.3.2. Array Sensitivity .. 17
3.1.3.3. Pointer Analysis .. 17
3.1.3.4. Union Support ... 18
3.1.3.5. Heuristics-base Assignment Recognition .. 18
3.1.4. Constant Invariant Recognition .. 19
3.1.5. Recognition of Other Kinds of Invariant .. 21
3.1.6. Implementation ... 23

3.2. Evaluation .. 23
3.2.1. Metrics, Methodology, and Test Cases ... 23
3.2.1.1. Comparing with a Dynamic Invariant Detector 24
3.2.1.2. Constant Invariants .. 25
3.2.1.3. Other Kinds of Invariants .. 32
3.2.1.4. Summary of Statically Detected Invariants ... 33
3.2.2. Experimental Evaluation ... 34
3.2.2.1. Implementation of the Invariant Monitor .. 34
3.2.2.2. Evaluation of False Positives .. 36
3.2.2.3. Evaluation of False Negatives ... 37
3.2.2.4. Performance Overhead .. 38

3.3. Limitations of Our Approach .. 40
3.4. Related Work ... 41
3.5. Summary ... 45

ix

4. Kernel Queue Analysis System ... 46
4.1. Problem Analysis: KQ Injection ... 47

4.1.1. Importance of KQ Injection Attacks ... 47
4.1.2. KQ Injection Attack Model .. 49
4.1.3. Design Requirements of KQ Defense ... 50

4.2. Design of KQguard ... 51
4.2.1. Architecture Overview and Assumptions ... 51
4.2.2. Building the EH-Signature Collection .. 54
4.2.2.1. Instrumentation of the Kernel to Log EH-Signatures 54
4.2.2.2. Dynamic Profiling to Collect EH-Signatures 55
4.2.3. Validation Using EH-Signature Collection .. 55
4.2.4. Specification of the Callback-Signatures .. 56
4.2.5. Generation of Callback-Signatures from KQ Requests 60
4.2.5.1. Motivation for Delinking ... 60
4.2.5.2. Details of Delinking .. 61
4.2.6. Automated Detection of KQs.. 64

4.3. Implementations of KQguard .. 66
4.3.1. KQguard Implementation on WRK .. 66
4.3.2. KQguard Implementation in Linux kernel .. 68
4.3.3. KQguard Protection .. 69

4.4. Evaluation of KQguard ... 70
4.4.1. Real-World KQ Injection Attacks .. 70
4.4.2. Protection of All KQs ... 72
4.4.3. Protection of KQguard .. 72
4.4.4. False Alarms ... 73
4.4.5. Performance Overhead .. 75

4.5. Related Work ... 76
4.6. Summary ... 78

5. CONCLUSION AND FUTURE WORK .. 79
5.1. Conclusion ... 79
5.2. Future Work .. 82

REFERENCES ... 85

VITA ... 91

x

LIST OF TABLES

TABLE PAGE

Table 3.1 Overall result of the constant invariant detection ... 25

Table 3.2 Comparison of the static and dynamic analysis results for the .data segment (FN:
false negative; FP: false positive) ... 26

Table 3.3 Examples of non-constants ... 30

Table 3.4 Size Distribution of Membership Invariants ... 33

Table 3.5 Summary of Statically Detected Invariants .. 33

Table 3.6 Rootkit Detection Results ... 38

Table 4.1 Representative Automatically Detected KQs ... 68

Table 4.2 Known KQ Injection Attacks in Representative Malware 71

Table 4.3 Performance Overhead of KQ Guarding in WRK .. 76

xi

LIST OF FIGURES

FIGURE PAGE

Figure 1.1 The architecture of our system .. 4

Figure 3.1 Invariant analysis architecture ... 13

Figure 3.2 Snippet of the analysis report that shows why ctrl_map[2] can be indirectly
modified through the pointer key_map ... 28

Figure 3.3 Relevant Code Path For the False Negatives in WRK 31

Figure 3.4 One example of automatically generated code for checking invariants at runtime
... 35

Figure 3.5 Detection of the invariant violation by Storm ... 39

Figure 4.1 Life cycle of a timer request in Linux ... 48

Figure 4.2 Overall Architecture of KQguard .. 53

Figure 4.3 Illustration of a False Negative Caused by a Callback-Signature that Only
Includes the Shaded Fields. The two KQ requests have different executions (i.e., bar_one
vs bar_two), but their Callback-Signatures are the same. Here bar_two is a malicious
function. .. 57

Figure 4.4 Illustration of Different Allocation Types of Pointers: (a) Heap Variable, (b)
Global Variable, (c) Local Variable .. 62

Figure 4.5 Example Heap Allocation Call Stack .. 63

Figure 4.6 Details of the Power Management Notification Queue on Linux Kernel 2.4.32
... 65

Figure 4.7 Distribution of EH-Signatures in APC queue with 14 callback functions 74

1

1. INTRODUCTION

1.1. Motivation

In today's world, the Internet has become an essential part of our daily life. People

enjoy various services offered on the Internet such as eBay [1], which is an example of

online commercial services provided on the Internet, or Fackbook [2], a representative of

online social networking services. However, with more and more users on the Internet,

their security becomes a serious problem. Especially, their security is significantly

threatened by malware, which is software used or programmed by attackers to execute

malicious logic that can damage computer system, disable computer services, steal

sensitive information or get control of computer system. For instance, malware can be

created and used by criminals to steal credit card information online for money purpose.

One of the most dangerous threats to systems security today is kernel-level malware

such as rootkits. Because kernel-level malware is one type of malware that runs at the same

privilege level as the operating systems kernel, it can affect the OS behavior for its

malicious purpose. For example, a common attack of kernel-level malware is to alter the

existing code and/or data of an OS for the purpose of hiding the runtime state of the system

in terms of running processes, network connections, and files. Besides, kernel-level

malware can add new functionalities to the OS to carry out malicious activities such as key

logging and sensitive information collection. The detection of kernel-level malware is a

difficult task because kernel-level malware may be able to subvert the software (normally

running in user space) that is intended to find it.

To defend against kernel-level malware, it is necessary to detect its existence and then

stop the execution of its malicious logic. One popular approach is to study behaviors of

2

malware by running it in a virtual machine or isolated sandbox. Such dynamic approach

can never reason about all potential behaviors. If the malware performs differently while

being analyzed, or can detect the analysis itself, then the malware has a high probability to

escape detection. On the other hand, static approach, which performs code analysis to infer

behaviors of malware without running it, also has difficulties: (1) the source code of

malware samples is not readily available and analyzing binaries brings along intricate

challenges. (2) a technique called code packing, which is a transformation of a complied

program, is adopted by malware authors to obfuscate the intent of the malware and raise

the difficulty of code analysis.

1.2. Contribution

Motivated by the above challenges, we propose our integrity-based detection for

kernel-level malware in this thesis: we harden the system kernel so that malware can be

detected due to the violation of integrity properties triggered by its execution. Integrity

properties are attributes of the target system. For example, kernel code integrity is an

important integrity property of a system and many rootkits try to subvert kernel code

integrity to achieve their malicious goals such as concealing malicious running processes.

Protection of kernel code integrity means preventing attackers from modifying existing

code in a kernel or from executing injected code with kernel privilege, over the lifetime of

the system.

Specifically, this thesis focus on two classes of integrity properties: (1) data

invariants. These invariants include properties of global data structures and serve as

specifications of data structure integrity [4]. For example, they can represent critical

system integrity properties such as the immutability of the Interrupt Descriptor Table

3

(IDT) and the system call table. Therefore, they have been checked by state-of-the-art

integrity monitors [4][5]. (2) integrity of kernel callback queue (KQ) requests. In modern

kernels, KQs are the mechanism of choice for handling events. However, KQs can also be

abused by kernel-level malware to achieve their malicious goals by submitting their KQ

requests. For example, the Pushdo/Cutwail spam bot has misused one KQ called Registry

Operation Notification Queue in the Windows kernel to monitor, block, or modify

legitimate registry operations [6]. Hence, the integrity of KQ requests is important to

system security. In this thesis, we discuss how we derive specifications of legitimate KQ

requests and use them to validate all KQ request.

We have developed a system to derive and monitor these two classes of integrity

properties (data invariants and integrity of KQ requests) for commodity operating systems

kernels, which in turn can be used to detect or mitigate kernel-level malware. The

architecture of our system is demonstrated in Figure 1.1.

Generally, in order to derive the specifications for these two integrity properties, we

apply static analysis on the source code of the target kernel or perform dynamic analysis of

the binary code of the target system. The specifications are then fed into the code generator

to generate code that can guard the integrity properties of the target kernel as its extension.

Due to the difference of these two kinds of integrity properties, we separate our system into

two subsystems in real implementation: one for invariants and the other one for KQs. The

invariant analysis subsystem generates the source code of Invariant Monitor, and KQ

analysis subsystem produces EH-Signature (properties of legitimate KQ event handlers,

which is discussed in Chapter 4) collection which is used by KQguard for validating KQ

4

requests. Invariant Monitor and KQguard work together to protect the target kernel. Details

of the two subsystems are described in Chapter 3 and 4.

Figure 1.1 The architecture of our system

1.3. Research Goals

The main research problems we address in this thesis are:

(1) Deriving the two classes of integrity properties---data invariants and integrity of

KQ requests from a commodity operating systems kernel.

(2) Monitoring the derived integrity properties and detecting kernel-level malware

that violates the monitored integrity properties.

1.4. Outline

The rest of this document is organized as follows. Chapter 2 reviews the modeling of

data invariants and KQs as important classes of integrity properties. Chapter 3 discusses

our invariant analysis for Linux kernel and WRK, and malware detection based on our

Invariant Monitor. Chapter 4 describes our kernel queue analysis for Linux kernel and

5

WRK, and the evaluation of our KQ guard against malware. Finally, Chapter 5 summarizes

the conclusions and suggests future research directions.

1.5. Publications

Most of the material presented in this thesis has appeared previously in the following

publications:

 Feng Zhu and Jinpeng Wei (2014). "Static Analysis Based Invariant Detection for

Commodity Operating Systems." Computer & Security, 43 (2014):49-63.

 Jinpeng Wei, Feng Zhu, and Yasushi Shinjo. (2011) "Static Analysis Based Invariant

Detection for Commodity Operating Systems". 7th International Conference on

Collaborative Computing (CollaborateCom 2011), Orlando, FL, October 15-18, 2011.

 Jinpeng Wei, Feng Zhu, and Calton Pu (2013). "KQguard: Binary-Centric Defense

against Kernel Queue Injection Attacks." Computer Security–ESORICS 2013. Springer

Berlin Heidelberg, 2013. 755-774.

Specifically, the first two papers are about our invariant analysis work and are the

base of Chapter 3. The last paper is for our KQ analysis work and presented in Chapter 4.

6

2. BACKGROUND

In this chapter, we first review the basics of integrity measurement and our

assumptions; then we informally define invariants in the context of integrity protection

against malware attacks. Finally we introduce the concept of kernel queue(KQ) and KQ

injection attack.

2.1. Background on Integrity Measurement and Security Assumptions

An integrity measurement system typically consists of three components: the target

system, the measurement agent, and the decision maker [7]. Our first assumption is that the

measurement agent is isolated from and independent of the target system, therefore it has a

true view of the internal states (including code and data) of the target system. This is a

realistic assumption due to the popularity of virtual machine monitors [8] and machine

emulators such as QEMU [9], and it has also been shown that the measurement agent can

run on dedicated hardware such as a PCI card [10]. Our second assumption is that

measurement results are securely stored and transferred to the decision maker. This can be

supported by hardware such as a Trusted Platform Module (TPM) [11]. The third

assumption is that the target system’s states (e.g., code and data) may be compromised by a

powerful adversary who can make arbitrary modifications; therefore the decision maker

can rely on very few assumptions about the trustworthiness of the target system.

Based on these assumptions, the decision maker is given a true view of the target

system, and its task is to estimate the “healthiness” of the target system. The healthiness

include functional correctness (e.g., a function that is supposed to reduce the priority level

of a task is not modified to actually increase the priority level), and non-functional

7

correctness (e.g., the priority level can be modified by a privileged user instead of a normal

user). In the following subsections, we model the healthiness as integrity properties.

Moreover, the healthiness of the target system may change over time, because it may

be under constant attacks. Therefore, the integrity of the target system may need to be

periodically reevaluated.

2.2. Data Invariant

In this section, we first define invariants in this thesis and then discuss existing

solutions for invariant analysis.

2.2.1. Data Invariants and Their Relevance in Integrity Protection

An invariant is a property that holds at a certain point or points in a program. In this

thesis, we are interested in invariant properties that are true over all program executions.

More specifically, we focus on four kinds of invariants: constant (var  const),

membership (var  {a, b, c}), bounds (var ≥ const) (var  const), and non-zero (var ≠ 0) in

this thesis. The reason of this design is that other invariant analysis tools (e.g., Gibraltar [4],

ReDAS [5], etc) also focus on these kinds of invariants.

Data invariants are one important class of integrity properties that concerns the

expected values of program variables (other integrity properties include control flow

integrity and information flow integrity). Since the behavior of a program can largely

depend on its variables, manipulation of data has been an important malware attack

technique. For example, many rootkits (such as Adore, Haxdoor, and SucKIT) have

attacked immutable kernel data (such as system call table, System Service Descriptor

Table, and SYSENTER handler function), which can be characterized as violations of

8

constant invariants. As another example, malware can manipulate a variable used as the

index into a global array, such that its value exceeds the length of the array; this

out-of-bound access can trigger a kernel crash and is categorized as a violation of the

bounds invariant.

On the defensive side, data invariants are the basis of many rootkit detection systems

such as ReDAS [5], Copilot [10], Livewire [13], and several commercial tools (e.g.,

[14][15][16], and [17]). For example, the fact that a variable var satisfies a constant

invariant (var == c) makes it easy to check its integrity: many rootkit detectors use a clean

copy or hash value of a constant (e.g., c) as the baseline to tell whether the variable has

been tampered with by a rootkit.

2.2.2. Existing Solutions

Several kinds of approaches have been taken to analyze a target system for invariants.

Manual analysis is applicable to well-known properties such as the immutability of the

Interrupt Descriptor Table (IDT) and has been used in early integrity protection systems. In

response however, rootkits have moved their targets to less-known places such as device

driver jump tables to evade detection, and the general trend of such attacks is towards more

sophistication and stealth [18]. Eventually, manual analysis will reach a point where a

human expert has difficulty understanding the logic of a system, which calls for automated

tools to assist a human expert. Dynamic analysis tools such as Gibraltar [4] and ReDAS [5]

can infer likely invariants of a system based on the runtime states of the target system and

hypothesizing relationship among the variables at runtime. But as mentioned in Chapter 1,

it is impossible for a dynamic analysis tool to cover all possible execution paths for the

target system. As a result, dynamic analysis may generate false invariants. Typical solution

9

to overcome such shortcomings is to use a large set of test cases. For example, ReDAS [5]

created 70 training scenarios and 13,000 training sessions for the ghttpd server. However,

how to systematically generate a large number of test cases that can trigger all execution

paths in a program is a challenging and open research problem by itself.

2.3. Kernel Queue

One of the most time-critical functions of an operating system (OS) kernel is

interrupt/event handling, e.g., timer interrupts. In support of asynchronous event handling,

multi-threads kernels store the information necessary for handling an event as an element

in a KQ, specialized for that event type. To avoid interpretation overhead, each element of

a KQ contains a callback function pointer to an event handler specialized for that specific

event, plus its associated execution context and input parameters. When an event happens,

a kernel thread invokes the specified callback function as a subroutine to handle the event.

As concrete examples, we found 20 KQs in the Windows Research Kernel (WRK) [19] and

22 in Linux kernel 2.4.32. In addition to being popular with kernel programmers, KQs also

have become a very useful tool for kernel-level malware such as rootkits [6][20]. For

instance, as we mentioned in Chapter 1, the Pushdo/Cutwail spam bot abuses the Registry

Operation Notification Queue in the Windows kernel. This thesis includes 125 examples of

real-world malware misusing KQs demonstrating these serious current exploits, and nine

additional synthetic potential misuses for illustration of future dangers.

The above-mentioned kernel-level malware misuses the KQs to execute malicious

logic, by inserting their own requests into the KQs. This kind of manipulation is called KQ

Injection or simply KQI. Although KQI appears similar to Direct Kernel Object

Manipulation (DKOM) [3] or Kernel Object Hooking (KOH) [21], it is more expressive

10

thus powerful than the other two. While DKOM attacks only tamper with non-control data

and KOH attacks only tamper with control data, KQI attacks are capable of doing both

because the attacker can supply both control data (i.e., the callback function) and/or

non-control data (i.e., the parameters). Moreover, KQI is stealthier than DKOM or KOH in

terms of invasiveness: DKOM or KOH attacks modify legitimate kernel objects so they are

invasive, while KQI attacks just insert new elements into KQs and do not have to modify

any legitimate kernel objects.

Several seminal defenses have been proposed for DKOM and KOH attacks

[3][4][22][23]. Unfortunately, they are not directly applicable to KQI attacks either

because of their own limitations or the uniqueness of KQIs. For example, CFI [22] is a

classic defense against control data attacks, but it cannot address non-control data attacks

launched via KQ injection (Section 4.1.2 provides a concrete example in WRK). Gibraltar

[4] infers and enforces invariant properties of kernel data structures, so it seems able to

cover KQs as one type of kernel data structure. Unfortunately, Gibraltar relies on periodic

snapshots of the kernel memory, which makes it possible for a transient malicious KQ

request to evade detection. Petroni [24] advocates detecting DKOM by checking the

integrity of kernel data structures against specifications, however, the specifications are

elaborate and need to be manually written by domain experts. Finally, KQI attacks inject

malicious kernel data, which makes HookSafe [23] an inadequate solution because the

latter can only protect the integrity of legitimate kernel data. Therefore, new solutions are

needed to defend against KQI attacks.

11

3. Invariant Analysis System

Remote attestation is a security mechanism that a party in a distributed environment

can employ to determine whether a target computer has the appropriate hardware/software

stack and configuration, so it can be trusted (i.e., it has integrity). The idea of remote

attestation has been widely adopted. For example, the trusted platform modules [11] chip

has become a standard component in modern computers.

Remote attestation has evolved from static attestation to runtime attestation.

Traditional remote attestation techniques only ensure that a computer is bootstrapped from

trusted hardware and software (e.g., operating systems and libraries), but there has been a

consensus in recent years that such static attestations are inadequate [5][7]. This is because

runtime attacks such as buffer overflow can invalidate the result of static attestation during

the execution of the target system, so a remote challenger cannot gain high confidence in a

target system even if it is statically attested [5]. In order to regain high confidence, the

challenger must enhance traditional remote attestation with runtime attestation, or runtime

integrity checking.

One of the determining factors of the effectiveness of runtime attestation is the

attestation criteria, i.e., the expected integrity properties of the target system. Other than a

few static program states (e.g., code segments and constant data), most of the runtime state

of a system (normal variables, stack, and heap) cannot be trivially characterized. This

uncertainty about the criteria results in two classic attestation errors: false positives and

false negatives. False positives happen when the remote challenger endorses an overly

stringent criterion that even an uncompromised system fails to meet; and false negatives

happen when the challenger endorses an overly loose criterion that a compromised system

12

can also meet (i.e., the remote challenger ends up trusting a corrupted computer).

Obviously, both kinds of errors are undesirable for remote attestation.

The root cause for the above attestation errors is the lack of precise specifications of

expected integrity properties. While under-specification can reduce the rate of false

positives by lowering the bar for a target system, it allows a compromised system to obtain

trust. On the other hand, over-specification errs on the side of safety to ensure that no

compromised system can pass the integrity check, but it may raise too many false alarms.

In this chapter, we focus on one class of integrity properties---data invariants. As we

discussed in Section 2.2.2, the existing solutions for data invariants detection are dynamic

analysis and have various shortcomings. In contrast, we explore the applicability of static

analysis for finding data invariants. The basic idea is to use compiler technology to analyze

the behavior of a program to derive its data invariants, without actually running the

program. Static analysis can overcome the limitations of dynamic analysis by exploring all

execution paths. For example, if v=v+2 is found in the true or false branch of a conditional

statement in the target program, then the property that “variable v always has a constant

value at runtime” is likely false. However, a dynamic analysis tool cannot observe this

assignment if the test cases do not satisfy the condition for the assignment; as a result, a

dynamic analysis tool may conclude that the variable v is a constant. Since static analysis

has the source code of the program, it has the advantage to reveal all conditions for

assignments to a variable, so it can be more precise.

The rest of this chapter is organized as follows. Section 3.1 presents an automated

invariants detection tool based on static analysis of source code. Section 3.2 discusses a

thorough evaluation of our invariant detection tool by applying it to the Linux kernel and

13

the Windows Research Kernel. Section 3.3 discusses the limitations of our approach.

Section 3.4 explores related work. Section 3.5 summaries this chapter.

3.1. Automated inference of global invariants through static analysis

3.1.1. Overview

We have developed a static analysis-based system to detect invariants for commodity

operating systems kernels. Figure 3.1 shows the overall architecture. We apply compiler

technology to automatically analyze the control and data flows of a target kernel, e.g.,

assignments, function calls, and conditional statements, to support or reject hypothesis

about likely invariants. For example, if a variable is assigned multiple times with different

values, it is unlikely a constant.

Figure 3.1 Invariant analysis architecture

Our system recognizes two kinds of assignments: direct assignment and indirect

assignment. Direct assignment recognition is straightforward. Indirect assignment is

mainly made through pointers in a modern kernel implemented in the C language. To

14

recognize indirect assignment through pointers, our system has a pointer analyzer, as

shown in Figure 3.1.

Our system accepts the merged kernel source code as input, which is fed into the

Pointer Analyzer and the Invariant Analyzer. The Pointer Analyzer processes the kernel

code and generates the points-to graph, which records the points-to set (i.e., a set of

variables) of any pointer variable. The Invariant Analyzer scans the kernel source code

including variable declarations, kernel functions, conditional statements, and assignment

statements. When it scans an indirect assignment statement such as *p=v, it queries the

points-to graph generated by the Pointer Analyzer and gets the set of kernel variables that

can be pointed to by p, and notes that all such variables are potentially assigned once by

this statement. Internally, the Invariant Analyzer has several supporting components:

assignment recognition (Section 3.1.3), constant invariant recognition (Section 3.1.4), and

other kinds of invariant recognition (Section 3.1.5).

The output of our system is a report of likely invariants over all global variables in the

input kernel, as well as supporting evidence for manual validation (e.g., for variables that

are not considered constant, our system reports the relevant assignment statement(s) that

modify those variables). We have made a sample of such a report available on our web site

[25]. Another output of our system is the source code for an Invariant Monitor that can be

installed in the analyzed system as a kernel module to monitor the invariants detected.

More details of the Invariant Monitor are presented in Section 3.2.2.1.

3.1.2. Design Goals

The major goal for our invariant analysis is high precision, i.e., to minimize false

positive rate and false negative rate. As we discuss in the beginning of Chapter 3, both

15

kinds of errors are undesirable for remote attestation. Below we discuss the technical

challenges in both cases and our solutions when analyzing programs written in C like

languages, using static detection of constant invariants (var  const) as an illustration.

The major reasons for false negatives are a lack of fine-granularity and imprecise

pointer analysis. If the static analyzer is field-insensitive, i.e., it cannot differentiate

individual fields in a C structure, it will regard an assignment to any field of a structure as

an assignment to the entire structure; thus the entire structure may become a non-constant.

This means that even if some fields of that structure are constant and hold critical data such

as function pointers, they cannot be protected. This lack of precision obviously causes false

negatives. Similarly, lack of support for array sensitivity, i.e., being unable to differentiate

individual elements in an array, is another cause for false negatives. From our experience,

in a modern kernel such as the Linux kernel, the majority of global data is within some

structure or array, which means that a static analyzer that is field and array-insensitive is

almost useless. Therefore, our invariant analyzer must be field and array-sensitive

(Sections 3.1.3.1 and 3.1.3.2). Another cause of false negatives is the conservativeness of

pointer analysis algorithms. If the pointer analysis algorithm is too conservative, e.g., a

pointer can point to all global variables, the invariant analyzer would recognize many

bogus (or impossible) assignments and thus consider a constant variable as a non-constant.

Therefore, we need to develop a precise pointer analysis algorithm. We employ a precise

points-to algorithm in our design (Section 3.1.3.3).

The major reason for false positives (i.e., incorrect constant invariants) is a failure to

recognize legitimate assignments. This can be caused by two reasons: implicit

assignments and incomplete points-to analysis. One kind of implicit assignment is

16

assignment by assembly code: since our static analyzer does not understand assembly

code, it cannot capture such assignments. Another example of implicit assignment is

structure-level assignment: if variables foo and bar are defined as struct{int a;int b}foo,bar;

then the assignment foo = bar implicitly modifies both foo.a and foo.b. Another cause of

missing assignment recognition is related to the precision of points-to analysis: if it returns

an incomplete points-to set for a pointer, the analyzer may miss legal but indirect updates

to some variables through that pointer; as a result, the analyzer may mistakenly classify

those variables as constants. In order to capture implicit assignments, we apply heuristics

in our analyzer (Sections 3.1.3.1, 3.1.3.4, and 3.1.3.5). In order to avoid incomplete pointer

analysis, we employ a precise points-to analysis algorithm (Section 3.1.3.3).

3.1.3. Major Design Points of the Assignment Recognition

One component of our invariant analyzer identifies assignments to variables, which is

critical to the detection of constant invariants and membership invariants. For programs

written in C, modifications to a variable can occur in two forms: direct assignment and

indirect assignment. In the former case, the said variable is the left hand side of an

assignment statement (e.g., v in v=k+3). In the latter, the said variable is assigned

indirectly through a pointer that references it (e.g., p=&v,...,*p=k+3). In order to capture

the second case, the detector needs to first find out the points-to set of the pointer (via a

points-to analysis [26]), and then note that each target in the points-to set is assigned

indirectly.

In the rest of this section, we discuss how our design satisfies the goals outlined in

Section 3.1.2.

17

3.1.3.1. Field Sensitivity

To achieve the desired field sensitivity, our analyzer uses lexical names to

disambiguate structure field references (e.g., p->a is considered a different memory

location from p->b), in a way similar to [27]. This enables our analyzer to capture explicit

assignments to structure fields. Moreover, our analyzer treats structure level assignments

as implicit assignments to the individual fields. For example, if variables foo and bar are

defined as struct{int a;int b}foo, bar; then the assignment foo = bar; is translated into foo.a

= bar.a; foo.b = bar.b.

3.1.3.2. Array Sensitivity

Array sensitivity is another method for our analyzer to achieve fine-granularity. The

basic idea is to treat each element of an array as an independent variable. For example, the

array int d[3] is treated as three variables d[0], d[1], and d[2]. Our analyzer can handle

arrays of arbitrary dimension. Finally, our analyzer can recognize pointers into arrays. For

example, if the analyzer sees int *p = d; it can interpret *(p + 1) as the same as d[1].

3.1.3.3. Pointer Analysis

Our invariant analyzer performs points-to analysis in order to recognize indirect

assignments through pointers. Based on the analysis in Section 3.1.2, we know that the

accuracy of the points-to analysis algorithm is the key for reducing false positives and false

negatives. Therefore, our pointer analyzer is based on the generalized one level flow

(GOLF) algorithm [28], which is among the most precise pointer analysis algorithms,

achieving precision close to Anderson’s algorithm [26]. Our pointer analyzer is built on top

of the field-sensitivity (Section 3.1.3.1) and array-sensitivity (Section 3.1.3.2) capabilities

to return fine-grained points-to targets. For example, it would return individual structure

18

field foo.b instead of the entire structure foo. Finally, it can also contribute to

field-sensitivity and array-sensitivity. For example, in struct{int a;int b}bar, *p, if p’s

points-to set includes bar, then an assignment to p->a is considered an indirect assignment

to bar.a.

3.1.3.4. Union Support

Our analyzer also supports unions: each field of a union is treated as an alias of other

fields in the same union. This means that an explicit assignment to one field of a union is an

implicit assignment to all the other fields. Therefore, if one field of a union is not a

constant, other fields of the union are not constant, either.

For example, in union uarg{int a; int b}c, c.a and c.b are treated as the same variables;

if c.a is not a constant, c.b is not a constant, either.

3.1.3.5. Heuristics-base Assignment Recognition

The use of assembly code in the kernel poses difficulties to our static analysis.

Because our analyzer only recognizes C code, variable reads or writes by assembly code

are not visible to it. One prominent example is get_current(), which returns a pointer to the

task structure of the current process. Because this function uses assembly code, several

chains of pointer dependency are broken, and our static analysis suffers inaccuracy as a

result. To overcome these inaccuracies caused by assembly code, we apply a function

prototype-based heuristic. The basic idea is to summarize the effect (in terms of

assignments to the input parameters) of assembly code inside a function body to bridge the

“analysis gap”. For example, the function memcpy() copies a block of memory to another

block of memory, so it can change the target memory and thus should be treated as a kind

of implicit assignment. We identify this kind of functions (the functions that use assembly

19

code) in two steps: first, our static analysis reports all functions that contain assembly code

in their bodies; second, we manually analyze the reported functions to see if any

assignment is performed in the assembly code. For function get_current() mentioned

above, we assume it can return a pointer to the global variable init_task_union.task. In total,

we apply this heuristic to 11 functions in the Linux kernel and one function in the Windows

kernel.

Another difficulty to our static analysis, especially for the Windows kernel, is the use

of external functions for which we do not have source code. For example, the external

function InterlockedIncrement increments (increases by one) the value of the specified

32-bit variable as an atomic operation. To overcome this problem, we first identity this

kind of functions by their extern tag; second, we figure out the effect of these external

functions from Microsoft MSDN [29]. Then we can also apply the function

prototype-based heuristic based on the effect of these functions. We identify eight such

functions.

3.1.4. Constant Invariant Recognition

A second component of our invariant analyzer recognizes constant invariants, defined

as having a constant value during normal execution of the system (i.e., after system

initialization). Determination of constant invariants is based on the assignments to each

variable, i.e., if a variable is assigned only once in its lifetime, it is a constant.

Because the definition of constant invariants only concerns the variables’ value after

system initialization, we treat assignments during system initialization differently than

those during normal execution of the system. Specifically, a constant variable can be

assigned multiple possible values during initialization, as long as it is not assigned during

20

normal execution. On the other hand, assignments at normal execution time typically

indicate that a variable is not a constant. Being assigned differently during system

initialization is quite possible for some constant variables whose known-good values

depend on hardware configuration; they can get several different values depending on the

hardware features detected during system initialization.

In our design, each global variable is associated with a flag that indicates whether it is

a constant and a legal value list that contains its possible values. Initially, all global

variables are marked as constant and all legal value lists are empty.

Our invariant analyzer first scans global variable declarations and initialization

functions (e.g., those with “__init” directives). If a global variable, which is marked as a

constant invariant, is assigned a constant value, the analyzer adds this value into the

variable’s legal value list. On the other hand, if a global variable is assigned a non-constant

value, the analyzer marks it as a non-constant.

After this scan, if a global variable's legal value list is still empty, the analyzer adds a

default value into the list, based on the type of the variable (e.g., 0 for an integer variable).

Next, the constant invariant analyzer scans the remaining kernel functions. If a global

variable, which is marked as a constant invariant, is assigned a non-constant value, or a

constant value but the value is not in its legal value list, or a constant value in its legal value

list but the length of it legal value list is greater than 1, the analyzer marks it as a

non-constant (in the third case, we treat this variable as a membership invariant candidate).

Note that assignments to global variables here include those indirect assignments made

through pointers, i.e., when an indirect assignment is encountered, our constant invariant

analyzer regards all global variables in the points-to set as being assigned.

21

At the end of the kernel code scanning, our analyzer generates a report about the

constant invariant status of all global variables, based on their flags. For those

non-constants, the report also includes the reason, e.g., the related assignment statement(s)

in the kernel source code, for in-depth investigation by a human expert.

3.1.5. Recognition of Other Kinds of Invariant

In addition to constant invariants, our invariant analyzer can recognize several other

kinds of invariants: membership invariants, bounds invariants, and non-zero invariants.

The inference of membership invariants is similar to that of constant invariants

discussed in Section 3.1.4, in the sense that each variable is associated with a flag and a

legal value list. The difference is that the collection of legal values happens throughout the

program, not only inside the initialization functions, and the flag means whether a

membership invariant can be safely reported for that variable. Specifically, when a global

variable is assigned a constant value, directly or indirectly, the value is added to that

variable’s legal value list; however, if a non-constant value is used in the assignment, the

variable is marked as unsafe for membership invariants. At the end of the analysis,

membership invariants for variables still marked as safe are reported, and constants in the

legal value list of each such variable are used to generate the specification of the

membership invariants.

To infer bounds invariants, we apply two heuristics during the code scan: (1) if a

global variable is used as an index of an array, its value should fall within the range [0,

Len-1], where Len is the length of the array; (2) if a global variable is compared with a

constant in a conditional statement, and one of the branches leads to a kernel crash (such as

by calling panic or do_exit), then we have a constraint for this variable that its legal value

22

should not satisfy the condition for the kernel crash. At the end of the code scan, we solve

the inferred constraints for each global variable and derive the upper bound and lower

bound. For example, if we have one constraint g≥2 and another constraint g10, the

analyzer will decide a bounds invariant 2g10 for g.

We recognize non-zero invariants based on a heuristic similar to the second heuristic

for the bounds invariants (about a branch that causes kernel crash), where the global

variable is compared against zero.

For the inferred invariants, the analysis report also includes relevant information, e.g.,

the conditional statement(s) in the kernel source code, which provides convenience for

human validation.

We should note that the heuristics mentioned in this section are conservative in order

to avoid detecting incorrect invariants, so our invariant analyzer may miss some invariants.

For example, we give up the membership invariant for a variable var that is assigned a

non-constant value (e.g., another variable w) because it may be very difficult to statically

determine what values the other variable (e.g., w) may have. For another example, when a

variable is compared against a non-constant in a conditional statement, we do not infer a

non-zero invariant because we do not know whether the non-constant variable always

contains zero or not. In this case, we may miss a non-zero invariant if the non-constant

variable is always equal to zero. We can combine the result of constant invariants analysis

and our existing heuristics to improve the situation. Finally, our invariant detection

architecture can be extended with new heuristics once they are identified. We leave these

improvements as future work.

23

3.1.6. Implementation

We implement a prototype of our static invariant detector based on the C Intermediate

Language (CIL) [30]. Our pointer analyzer is implemented in 5,000 lines of Ocaml code,

and our invariant analyzer is implemented in 4,300 lines of Ocaml code.

3.2. Evaluation

In this section, we report a large-scale evaluation of our invariant detection tool, using

Linux kernel 2.4.32 and Windows Research Kernel (version Windows Server 2003) as the

input kernels. Our evaluation focuses on the precision of the detected invariants and the

performance of the detection tool.

3.2.1. Metrics, Methodology, and Test Cases

We choose two common metrics to evaluate the precision of the detected data

invariants for the input kernels:

 False positives happen when variables whose values do not satisfy a certain invariant

are mistakenly recognized as such. A monitor can generate false alarms when such

variable’s runtime values violate the “fake” invariants (e.g., when a variable that can legally

change its value is recognized as being constant).

 False negatives happen when a true invariant is not recognized as such. As a result of

false negatives, a monitor may fail to detect rootkits that tamper with global variables so as

to violate the true invariants. For example, if a critical variable that should be constant is not

monitored, a rootkit can modify it and at the same time evade detection.

We evaluate the false positive and false negative rates of the static invariant detection

in two ways: (1) comparing with the result of a dynamic invariant detector, and (2) running

against real software (benign or malicious). In the evaluation on the Linux kernel, the set of

24

benign test programs includes Mozilla Firefox, the Linux Test Project [31], Iperf [32],

Andrew benchmark [33], and Kernel compilation; and the malicious test programs are ten

real-world rootkits such as Adore 0.42. Similarly, we evaluate WRK with a set of benign

test programs: Mozilla Firefox, Internet Explorer, Notepad, WinSCP, Super PI [34],

Iozone [35], 7zip [36] and Windows Driver Kit [37]. And we use nine real-world malware

samples as the malicious test programs.

3.2.1.1. Comparing with a Dynamic Invariant Detector

We develop a dynamic invariant detector (as a loadable kernel module in Linux or as

a Windows Device Driver in Windows) that periodically reads the values of the global

variables of the kernel during a training phase and hypothesizes likely invariants satisfied

by the global variables based on their observed values. For comparison purposes, this

dynamic invariant detector detects the same kinds of invariants as our static invariant

analyzer: constant invariants, membership invariants, bounds invariants, and non-zero

invariants. To be fair in the comparison, we aim to trigger as many modifications to the

global variables as possible. Therefore, we choose benign test programs (mentioned in

Section 3.2.1) that represent comprehensive workloads. For example, the Linux Test

Project (version 20050107) is an open source test suites that validate the reliability,

robustness, and stability of Linux kernel, and it includes more than 700 test cases that test

the Linux kernel in many aspects (such as system calls and file system functionality) and

more than 60 test cases that exercise the basic functionalities of the network.

In the rest of this subsection, we mainly focus on the constant invariant (Section

3.2.1.2), and we briefly report the comparison on other kinds of invariants in Section

3.2.1.3.

25

3.2.1.2. Constant Invariants

Table 3.1 summarizes the constant invariant analysis results for the .data and the

.rodata segments of Linux kernel 2.4.32, as well as the .data and the .rdata segments of

WRK. The third column is the total number of global variables (with field and

array-sensitivity). The fourth column shows the number of statically-detected constant

invariants out of all the variables, and the fifth column shows the number of

dynamically-detected constant invariants out of all the variables.

Kernel Segment # Variables # Static inv. # Dynamic inv.
Linux
kernel

.data 154,132 136,778 153,978

.rodata 4,502 4,502 4,502
WRK .data 116,057 94,199 115,876

.rdata 6,617 6,617 6,617
Table 3.1 Overall result of the constant invariant detection

From Table 3.1 we can see that both static and dynamic constant invariant detection

achieve 100% accuracy on the .rodata segment and the .rdata segment, which is expected

because variables in the .rodata segment and the .rdata segment are supposed to be

constant.

The dynamic constant invariant detector reports that more than 99% of the variables

in the .data segment of either Linux kernel or WRK are constants. Comparatively, static

analysis reports 88.7% of the variables in the .data segment of Linux kernel and 81.2% of

the variables in the .data segment of WRK as constants. This difference implies that

despite our effort to use comprehensive test cases, they still may not be able to trigger

every possible modification to global variables, so there may still exist some false constant

invariants in the dynamically-detected set.

26

Table 3.2 gives a more in-depth comparison of the results of the static and dynamic

analyzers for the .data segment. Since each variable can be considered constant or

non-constant by each of the analyzer, there are four combinations. For example, the

category “S.NC, D.C” includes all variables that are considered non-constant by the static

analyzer but constant by the dynamic analyzer.

We can see that there are in total 154 variables in Linux kernel and 181 variables in

WRK that both analyzers agree to be non-constant. We are confident about the correctness

of the results because the dynamic analyzer classifies a variable as non-constant only if it

observes that the value of the variable does change at runtime. Therefore, the non-constants

reported by the dynamic analyzer must be truly non-constants.

Kernel Category Total # # Error static # Error dyna.

Linux
kernel

S.NC, D.NC 154 0 0
S.NC, D.C 17,200 18(FN) 17,182(FP)
S.C, D.NC 0 0 0
S.C, D.C 136,778 1(FP) 1(FP)

WRK

S.NC, D.NC 181 0 0
S.NC, D.C 21,677 7(FN) 21,670(FP)
S.C, D.NC 0 0 0
S.C, D.C 94,199 1(FP) 1(FP)

Table 3.2 Comparison of the static and dynamic analysis results for the .data segment (FN:
false negative; FP: false positive)

Next, we see from Table 3.2 that a large number (e.g., 17,200 in Linux kernel) of

variables in the "S.NC, D.C" category are classified as non-constants by the static analyzer

but constants by the dynamic analyzer. Here we cannot trust the dynamic analyzer because

it may not observe legal but conditional assignments due to the incompleteness of the test

coverage, and we cannot trust the static analyzer either, because its points-to analysis is

conservative.

27

To find the ground truth about these variables, we manually verify whether they are

indeed non-constants. This verification task seems daunting, but it is actually made much

easier by the following facts about our static analyzer: (1) if a variable is directly modified,

the assignment statement logged in the analysis report is straightforward evidence that the

variable is a non-constant; (2) if a variable is only indirectly modified through a pointer,

our analyzer outputs the relevant statements from the source code that support the points-to

relationship, which is relatively straightforward to verify by a human (e.g., Figure 3.2 is a

portion of our analysis report that shows why ctrl_map[2] can be indirectly modified

through the pointer variable key_map); (3) because our analysis is array sensitive, we can

generalize from one confirmed non-constant array element to all other elements in the

same array. E.g., given an array arr of size 1024, if we confirm that arr[0] is a non-constant

due to an assignment to arr[i], then we can conclude that arr[1] through arr[1023] are all

non-constants. In other words, we can confirm non-constants in batches, which

significantly speed up the verification. Because of the above reasons, it took one graduate

student about 20 hours to finish the verification of the 17,200 variables in the "S.NC, D.C"

category of Linux kernel. As a result, we are able to confirm that 17,182 of such variables

are non-constants, i.e., they can be modified by assignments at runtime. Similarly, we

confirm that 21,670 out of 21,677 variables in the "S.NC, D.C" category of WRK are

non-constants, which took one graduate student around 24 hours. Below we give some

examples of these non-constant variables:

 The array ctrl_map in Linux kernel holds the values of the Control Key combinations.

Figure 3.2 shows how an element of this array (e.g., ctrl_map[2]) can be indirectly

modified through a pointer in function do_kdsk_ioctl. However, since our dynamic analysis

28

test cases do not trigger function do_kdsk_ioctl, the dynamic invariant analyzer wrongly

classifies all elements of the array ctrl_map as constants.

 KeBootTime in WRK stores the absolute time when the system was booted. One of its

fields, KeBootTime.QuadPart, can be changed by KeBootTime.QuadPart +=

TimeDelta.QuadPart in function KeSetSystemTime. However, the dynamic invariant

analyzer reports KeBootTime.QuadPart as a constant because KeSetSystemTime is invoked

only during system boot but our test cases do not reboot the kernel.

<Name>ctrl_map[2]</Name>
<Invariant>No</Invariant>
<Reason1>
*(key_map + 0) = (unsigned short)(((2 << 8) | 126) ^ 61440);
vt.c:224, Indirectly modified through key_map.

Path from ctrl_map[2] to key_map:
<Label>ctrl_map[2]</Label>
<STMT>ctrl_map=&ctrl_map[2] defkeymap.c:65</STMT>
<Label>l_473154</Label>
<STMT>key_maps[4]=ctrl_map
defkeymap.c:141</STMT>
<Label>l_479876</Label>
<STMT>key_map = key_maps[tmp.kb_table];vt.c:174
</STMT>

Figure 3.2 Snippet of the analysis report that shows why ctrl_map[2] can be indirectly
modified through the pointer key_map

 The array PspLoadImageNotifyRoutine in WRK is used to hold driver-supplied

callback functions that are subsequently invoked whenever an image is loaded (or mapped

into memory). Specifically, it is written into by tmp = ExCompareExchangeCallBack(&

PspLoadImageNotifyRoutine[i], CallBack, (PEX_CALLBACK_ROUTINE_BLOCK)((void

*)0)) in function PsSetLoadImageNotifyRoutine. Therefore, this array is obviously not

constant. However, since our dynamic analysis test cases do not trigger any new

driver-supplied callback registration, the dynamic invariant analyzer cannot see any

29

changes to PspLoadImageNotifyRoutine; so it mistakenly concludes that the entire array

PspLoadImageNotifyRoutine is constant.

We study the distribution of evidence (direct assignment and/or indirect assignment)

applicable to the 17,336 confirmed non-constants in Linux kernel (including the 154

non-constants in the “S.NC, D.NC” category and the 17,182 non-constants in the “S.NC,

D.C” category). We see that 13,191 non-constants (or 76% of 17,336) can be modified

only indirectly through a pointer, 2,615 non-constants can be modified only directly, and

the rest (1,530 non-constants) can be modified in both ways. Note that we have merged the

non-constants recognized via heuristics (Section 3.1.5) into the direct or indirect group

depending on whether the address of the target variable is taken. A similar study of the

21,851 confirmed non-constants in WRK (181 non-constants in the “S.NC, D.NC”

category plus 21,670 non-constants in the “S.NC, D.C” category) shows that 4,321

non-constants can be modified only directly, 489 non-constants can be modified both

directly and indirectly, and 17,041 non-constants (or 78% of 21,851) can be modified only

indirectly through a pointer. Our observation confirms the wide-scale use of pointers in

both the Linux kernel and WRK to manipulate memory and also means that for any static

invariant detector of them, the points-to analysis part is critical for the overall precision.

We further look at the type and meaning of the confirmed non-constants in the “S.NC,

D.C” group to see whether the classification makes sense. We coarsely divide them into

several categories, such as list heads, locks, accounting information (e.g., counters),

resource management information (e.g., page tables and memory zone lists), and

configuration data. Table 3.3 shows example variables for each category. From this

analysis, we feel that the static analysis results make sense. For example, list heads, locks,

30

and performance counters should be dynamic, so they should not be constants.

Unfortunately, our dynamic analyzer classifies this large group of non-constants in the

wrong way, due to the incompleteness of test cases in our experiment. We believe that the

large number of non-constants highlight the relative advantage of static analysis over

dynamic analysis.

Category Example variables
Linux kernel WRK

List heads acpi_bus_drivers.next
arp_tbl.gc_timer.list.next

AcquireOpsEvent.Header.WaitL
istHead
CmpDelayedLRUListHead

Locks context_task_wq.lock.lock
dev_base_lock.lock

AcquireOpsEvent.Header.Lock
CmpHiveListHeadLock

Auditing
information

kernel_module.archdata_end
kernel_module.archdata_start

ExPoolCodeEnd
ExPoolCodeStart

Accounting
information

console_sem.count.counter
con_buf_sem.count.counter

CcFastReadResourceMiss
CcLostDelayedWrites

Resource
mgmt data

contig_page_data.node_zonelists[0].
zones[0]
contig_page_data.node_zones[0].fre
e_area[0].map

ExPoolTagTables[0]
ExpNonPagedPoolDescriptor[0]

Configurati
on data

FDC2, FLOPPY_DMA,
FLOPPY_IRQ,
can_use_virtual_dma, fifo_depth

KeMaximumIncrement
KeMinimumIncrement

Table 3.3 Examples of non-constants

The 18 false negatives in the “S.NC, D.C” group of Linux kernel are the fields of a

global structure called i810_fops (e.g., i810_fops.ioctl, i810_fops.read, i810_fops.write,

etc). Our static analyzer reports that they can be assigned indirectly through a pointer to

i810_fops. However, our manual verification indicates that such a points-to relationship is

wrong, most likely due to imprecision introduced by the unification step of the GOLF

algorithm [28] that our pointer analyzer uses.

The seven false negatives in the “S.NC, D.C” group of WRK are the fields of a global

structure called KiInitialProcess (e.g.,

31

KiInitialProcess.AddressCreationLock.Gate.Header.Absolute,

KiInitialProcess.AddressCreationLock.Gate.Header.Type, etc). For them, our manual

analysis indicates that they should be constants, which is due to the limitation of our

analyzer. The source code relevant to these false negatives is shown in Figure 3.3. First,

based on the heuristics about KeGetCurrentThread (Section 3.1.3.5), the variable Thread is

assigned a pointer to KiInitialThread; then our pointer analyzer indicates that

Thread->ThreadsProcess is a pointer to KiInitialProcess. Next, since VdmRundownDpcs is

an external function for which we do not have source code, we have to apply the function

prototype-based heuristics (Section 3.1.3.5) for this function, which conservatively

assumes that every field of the structure pointed to by the input parameter (i.e.,

KiInitialProcess) can be modified to reduce false alarms as many as possible. As a result,

we have the seven false negatives.

In function PspExitThread:

Thread = KeGetCurrentThread();
Process = Thread->ThreadsProcess;
...
VdmRundownDpcs(Process);

Figure 3.3 Relevant Code Path For the False Negatives in WRK

These false negatives illustrate the limitation of our pointer analyzer, which employs a

conservative points-to algorithm. However, given the total number of real constant

invariants, our static analyzer still has very low false negative rate: in Linux kernel we have

141,297 real constant invariants (we have 136,778 + 4,502 = 141,280 statically detected

constant invariants, 18 false negatives, and one false positive, so the total number is

141,280 + 18 - 1 = 141,297) with a false negative rate of 0.013% (18 out of 141,297); in

WRK we have 100,822 real constant invariants (94,199 + 6,617 = 100,816 statically

32

detected constant invariants, seven false negatives, and one false positive, so the total

number is 100,816 + 7 - 1 = 100,822) with a false negative rate of 0.007% (7 out of

100,822).

Continue on Table 3.2, we see that no variable is classified as "S.C, D.NC", which

means that no variable is classified as constants by the static analyzer but non-constants by

the dynamic analyzer. Such variables, if they exist, would be false positives for the static

analyzer.

Finally, for the variables in "S.C, D.C" group, both analyzers believe they should be

constants. Since our static analyzer does not provide evidence for constants, we cannot

verify the correctness statically. Similarly, the dynamic analyzer does not provide evidence

to prove constants, either. Therefore, we decide to experimentally verify the results

(Section 3.2.2).

3.2.1.3. Other Kinds of Invariants

In addition to constant invariants, our static analyzer detects 143,098 membership

invariants, 41 bounds invariants and 35 non-zero invariants without false positives in

Linux kernel. Our static analyzer also works well on WRK: it detects 101,897 membership

invariants, 265 bounds invariants and 8 non-zero invariants from WRK with no false

alarms. The size distribution of the membership invariants is shown in Table 3.4.

We can see that the detected membership invariants can have up to 45 legal values,

but the majority of membership invariants have no more than two legal values.

Comparatively, the dynamic analyzer can only detect less precise invariants. More

specifically, the dynamic bounds detector only reports sub-ranges of statically detected

bounds invariants. For example, sel_cons in Linux is used as an index for array vc_cons

33

with a length of 64 and it can be modified by the assignment sel_cons=fg_console in

function set_selection; therefore, our static detector recognizes a bounds invariant

0sel_cons63. However, the dynamic analyzer recognizes a tighter bounds invariant

0sel_cons0 because 0 is the only observed value of sel_cons during the training process.

Kernel Size of Legal Value Set Number of Invariants

Linux kernel

1 140,626
2 2,340
3 50
4 49
5 32

11 1

WRK

1 26,129
2 75,553
3 192
4 49
5 10
6 8

10 2
15 1
45 1

Table 3.4 Size Distribution of Membership Invariants

3.2.1.4. Summary of Statically Detected Invariants

In total, our static analyzer detects 284,471 invariants in Linux kernel and 202,992

invariants in WRK. The details are shown in Table 3.5.

 Linux kernel WRK
Constant Invariant 141,297 100,822
Membership Invariant 143,098 101,897
Bound Invariant 41 265
Non-zero Invariant 35 8
Total 284,471 202,992

Table 3.5 Summary of Statically Detected Invariants

34

3.2.2. Experimental Evaluation

3.2.2.1. Implementation of the Invariant Monitor

We implement an Invariant Monitor that periodically (every 30 seconds) checks the

statically detected invariants in the memory of a Linux kernel 2.4.32 (the kernel that our

static tool analyzed). To simply the implementation, our proof-of-concept Invariant

Monitor is implemented in the form of a loadable kernel module. Other techniques such as

virtual machine monitor (VMM) or dedicated hardware can also be leveraged in the

implementation (e.g., Livewire [13] uses a VMM and Copilot [10] runs on a PCI card).

The monitor loops over each invariant and verifies if it is satisfied by the runtime

values of the global variables. The monitor emits a warning message if any invariant is not

satisfied. The list of invariants as well as their specifications is derived by the static

invariant analyzer presented in Section 3.1. We also implement an Invariant Monitor for

WRK as part of the kernel in a similar way.

One practical difficulty that our Invariant Monitor overcomes is the semantic gap

between the monitor and the rest of the kernel – not all global variables are exposed to the

monitor as symbols. For example, msg_ctlmax is an unresolved symbol when we try to

load the monitor in Linux. For this reason and for better portability (e.g., running the

monitor from a hypervisor in the future), our monitor refers to global variables by their

runtime addresses rather than symbolic names. However, our static invariant analyzer

reports invariants using symbolic names of global variables. Therefore, we need to bridge

the gap between names and runtime addresses. To solve this problem, in Linux kernel we

use the information contained in the System.map file, a standard file generated during the

35

kernel compilation process, which contains a mapping from kernel variable names to their

runtime addresses. In WRK, we use wrkx86.map file instead of System.map file.

A related difficulty brought by the semantic gap is the lack of offset information when

our monitor makes fine-grain memory accesses to individual fields of structure variables or

array elements, because System.map and wrkx86.map only provide the starting address of a

structure or array variable but our monitor needs to look inside it. As a scalable approach,

we leverage the power of static analysis to automatically generate code for the monitor.

Specifically, the static analyzer generates code that declares pointer variables of the

appropriate type, uses pointer dereferencing expressions to represent fine-grain memory

accesses, and lets the compiler find out the correct offset information. For example, the

static analyzer generates the code snippet in Figure 3.4 for the constant invariant

timedia_data[3].num == 8 where timedia_data is an array whose elements are of type

struct timedia_struct that has a field named num. Here 0xc0272420 is the runtime address

of the timedia_data array. Note that the known-good value 8 that is compared in the if

statement is automatically supplied during the code generation because it is available to the

static invariant analyzer by the time of code generation (i.e., in the legal value list). If the

length of legal value list of a constant invariant is greater than 1 and its runtime value in the

first time check is also in its legal value list, this value will be treated as the only legal value

of the constant invariant in the following checks.

p=(struct timedia_struct*)0xc0272420;

if (((struct timedia_struct*)p)[3].num!=8)
 {printk(KERN_WARNING "Bad invariant
 timedia_data[3].num \n");};

Figure 3.4 One example of automatically generated code for checking invariants at runtime

36

3.2.2.2. Evaluation of False Positives

To estimate the false positive rate of our invariant analyzer, we run the benign test

programs (Section 3.2.1) while our Invariant Monitor is running in the background. The

goal is to find whether the test programs can trigger warnings of invariant violations. To

maximize the detection probability of false invariants, we choose benign programs that to

our knowledge exercise all important subsystems of the kernel.

We run these test programs after the kernel is fully booted and our Invariant Monitor

module is running. During the long time execution of the test programs, our Invariant

Monitor in Linux kernel reports warning messages about only one constant invariant,

which we categorize as a false positive in the "S.C, D.C" group of Table 3.2. The

associated variable of this invariant is ipv4_devconf_dflt.rp_filter. Our invariant analyzer

misses an assignment to it mainly due to a very subtle pointer arithmetic operation by the

Linux kernel. We believe that this false positive can be eliminated by modifying our static

analyzer.

We perform a similar experiment in WRK with our Invariant Monitor. As a result,

only warning messages for the variable WmipDockUndockNotificationEntry are generated.

To understand why our static invariant analyzer recognizes it as a constant, we perform a

manual analysis, and we find that the main reason is that the value of this variable can be

changed by an external function (IoRegisterPlugPlayNotification) that we do not have

source code. However, since we can know the effect of this function from Microsoft

MSDN, we believe that this false positive can be eliminated by modifying our static

invariant analyzer with heuristics based on the knowledge of such external functions.

37

3.2.2.3. Evaluation of False Negatives

Having false negatives means that our invariant detection does not recognize some

invariants; if a rootkit manipulates the relevant variables to violate such invariants, our

Invariant Monitor will not be able to detect the manipulation. One way to estimate the

impact of false negatives is to run real-world rootkits on a system with our Invariant

Monitor installed, and see whether our Invariant Monitor can detect them.

We select ten real-world rootkits for this purpose in Linux kernel and nine real-world

malware samples in WRK. Our Invariant Monitor successfully detects all of them. We also

develop a proof-of-concept malware for WRK whose target is ExpPoolScanCount (a

bounds invariant within [0, 31]). This malware modifies the value of ExpPoolScanCount to

63 and causes a kernel crash when ExpPoolScanCount is used as an index for array

KiProcessorBlock because 63 exceeds the length of this array. Our Invariant Monitor

successfully detects the violation to the bounds invariant associated with

ExpPoolScanCount before it can cause the kernel crash.

The overall result is shown in Table 3.6. Each rootkit (or malware sample) violates

one or more constant invariants. For example, SucKIT 2 tampers with one entry of the

system call table: sys_call_table[59], whose known-good value should be sys_olduname,

and Adore 0.42 tampers with 15 entries in this table. For clarity, we do not show the

constant values for the invariants in Table 3.6.

Figure 3.5 shows a screenshot about how our Invariant Monitor detects Storm [38], a

notorious spam botnet, in WRK. As we can see, our Invariant Monitor generates a warning

message about violations to two constant invariants: KiServiceTable[77] whose value

should be 0x8226B73A (address of NtEnumerateValueKey) but is changed to

38

0xFA92539B; KiServiceTable[151] whose value should be 0x826A4D28 (address of

NtQueryDirectoryFile) but is changed to 0xFA9251B0. The two suspicious values

(0xFA92539B and 0xFA9251B0) both fall within the address range of a device driver called

kernelv.sys that is loaded by Storm. This can help us to confirm the detection of Storm.

3.2.2.4. Performance Overhead

In this section, we report the performance of our prototype implementations. All

experiments are performed on a server with a 2.93 GHz, 8-core Intel Xeon CPU and 16 GB

of RAM.

Kernel Name Violated Invariants
 Real-world Rootkits

Linux
kernel

Adore 0.42 sys_call_table[2,4,5,6,18,37,39,84,106,
107,120,141,195,196,220]

Adore 0.53 sys_call_table[1,2,6,26,37,39,120,141,220]
All-root sys_call_table[24]
Kbdv2 sys_call_table[24,106]
Kbdv3 sys_call_table[30,199]
Modhide sys_call_table[5]
Phide sys_call_table[2,37,141]
Rial sys_call_table[3,5,6,141,167]
Rkit 1.01 sys_call_table[23]
Suckit 2 sys_call_table[59]

WRK

Real-world Malware Samples
Alureon KiServiceTable[185]
Bot Mailer 2 IDT[0] , IDT[1] ,..., IDT[255]
Cutwail KiServiceTable[x], where x=68,75,77,126,256
Haxdoor KiServiceTable[x],

where x=49,50,128,134,151,181
Rustock.A IDT[0] , IDT[1] ,..., IDT[255]
Rushtock.B IDT[0] , IDT[1] ,..., IDT[255]
Storm KiServiceTable[77], KiServiceTable[151]
TDL KiServiceTable[185]
Trojan.Mssync KiServiceTable[x],

where x=39,43,75,77,122,125,151,181
Proof-of-Concept Malware Sample

Crash Kernel 0  ExpPoolScanCount  31
Table 3.6 Rootkit Detection Results

39

In the evaluation for Linux kernel, our invariant monitor and runtime analyzer run in a

virtual machine with 2GB of RAM and 20GB of disk, running a Red Hat 7.3 system with

Linux 2.4.32 kernel. Our static analyzer takes a merged Linux 2.4.32 kernel with 400,492

lines of C code as input, and produces the invariant report and the source code of the

invariant monitor. The whole process takes 272 minutes and 4.3GB memory on average. In

more detail, the pointer analyzer takes 151 minutes on average, and the invariant analyzer

takes 121 minutes on average.

Figure 3.5 Detection of the invariant violation by Storm

Similarly, our invariant monitor and runtime analyzer also run in a virtual machine

during the evaluation for WRK. The host operating system is Microsoft Windows XP

Service Park 3 running Microsoft Virtual PC 2007 (version 6.0.156.0). The guest operating

systems is Windows Server 2003 Service Pack 1 running the WRK, and it is allocated 256

MB of RAM and 20 GB of hard disk. The input to our static analyzer is a merged WRK

kernel with 665,969 lines of C code. The static analysis takes 684 minutes and 6.2 GB

40

memory on average (the pointer analyzer takes 369 minutes and the invariant analyzer

takes 315 minutes).

From the above description, an astute reader may have an impression that execution

time of our static analyzer is quite long. Our justification is that the static invariant

detection only needs to run offline, so we have not optimized our static analyzer for speed;

we leave it as future work.

We also evaluate the performance overhead of our Invariant Monitor on WRK. We

first use a mircobenchmark that measures the actual time taken by the Invariant Monitor,

specifically the total time spent in performing 100 invariant checks (one per 30 seconds).

They consumed 20.1 seconds of CPU time in total, which happens over a time span of

3,006 seconds (50 minutes 6 seconds), so the CPU overhead of our Invariant Monitor is

about 0.66%. Next, we choose five resource-intensive application benchmarks for the

performance evaluation: Super PI [34], copying a directory with a total size of 1.5 GB,

performing the compression and decompression of the 1.5 GB directory with 7-Zip, and

downloading a 160 MB file with WinSCP. The results show that the overhead caused by

our Invariant Monitor ranges from 0.41% for the file downloading to 0.62% for Super PI,

which is consistent with the microbenchmark measurement.

3.3. Limitations of Our Approach

The static detection of data invariants presented in this thesis has some limitations.

First, it requires that source code of the kernel be available, so for closed-source kernels,

our tool can only be applied by the vendor of the kernel. Second, our prototype

implementation of the tool cannot handle assembly code. Third, the imprecision of our

pointer analyzer can introduce false positives, as is discussed in Section 3.2.1.2. Fourth, a

41

transient attack, which modifies the value of an invariant temporarily between two checks,

may bypass our Invariant Monitor due to its fixed check interval. Fifth, since our approach

is based on the source code, the correctness of the derived data invariants (i.e., whether

they would agree with the knowledge of a human expert) depends on the correctness of the

source code. In other words, if the source code contains any error (e.g., due to coding errors

or unexpected side effects), the analysis result can also be wrong according to a human

expert. To overcome the first and the second limitations, we could leverage static binary

analysis techniques such as Vine in BitBlaze [39] and its successor BAP [40], which

provides an infrastructure for analyzing programs at the binary level. To address the third

limitation, we could build a pointer analyzer based on the Anderson's algorithm [26],

which has a better precision than the generalized one level flow (GOLF) algorithm. To

handle the fourth limitation, we can randomize the check interval to reduce the

effectiveness of a transient attack. For the last limitation, our tool is intended to assist,

rather than replace, a human expert. When there is any conflict between the analysis result

of our tool and the knowledge of a human expert in this area, the final judgment should be

made by the human expert.

If an attacker knows about our integrity model, he might be able to write a rootkit that

avoids the detection by attacking the unmonitored data. However, such an attack is out of

the scope of our work. Our work is not a panacea but it still raises the bar for an attacker.

3.4. Related Work

In this section, we briefly discuss some related work.

42

Invariants detection

The Daikon invariant detector [41] is a dynamic invariant detector that generates

likely invariants using program execution traces collected during sample runs. Gibraltar [4]

and ReDAS [5] also adopt Daikon's idea.

Closely related to our bounds invariants detection, significant research has been

performed in static detection of array bounds violations [42] or integer range analysis [43].

However, a common goal among these traditional research projects is to detect program

vulnerabilities (e.g, buffer overflow), rather than derive runtime integrity properties.

Integrity measurement mechanisms

There is much previous research on integrity measurement. IMA [44] uses hashing or

digital signatures to measure the software but only at load time. Recent research such as

ReDAS [5] and DynIMA [45] improve IMA so that they can support runtime measurement

of software integrity. Other related work includes [13], [7], [10], [24], [46], and [47]. These

approaches have different mechanisms for measurement, but they do not focus on the

integrity properties.

Copilot [10], a co-processor based integrity checker for the Linux kernel, checks

kernel code, module code, and jump tables of kernel function pointers. Copilot did not

focus on deriving integrity properties although it provided a specification language [24]

later. In our thesis, we figure out the properties from analyzing the target software itself.

Livewire [13] is a host-based intrusion detection system. It uses a VMM (a modified

version of VMware workstation) to monitor the states of a guest OS so that it can detect

intrusions, and interposes on certain events, such as interrupts and updates to device and

43

memory state. Like Copilot, Livewire just focuses on checking known properties but not

on the identification of integrity properties.

LKIM [7] leverages the concept of contextual inspection to produce detailed records

of the states of security relevant structures within the Linux kernel. However, it relies on

domain knowledge to identify security relevant structures.

KOP [48] presents a nice approach for traversing the kernel memory based on

extended type graph and can infer types for generic pointers with high accuracy. Although

integrity checking applications can be built on top of KOP, the requirement of source code

is a limitation of KOP.

Specialized integrity property measurement

There are some specialized integrity property measurements such as control flow

integrity (CFI) [49] and Information flow integrity [50]. CFI, which essentially checks a

sequence property of the target software, checks whether the control transfer from one

function to the next is consistent with a pre-computed control flow graph. PRIMA [50]

leverages the reasoning about information flows to check the integrity of a system, but it

makes assumptions that there is no direct memory modification attack, e.g., information

flows are triggered by well-defined interfaces (function calls or file reads). HookSafe [23]

is designed to protect legitimate kernel data structures. It takes kernel hooks as input and

then protects them. But some input kernel hooks are obtained manually, which implies a

coverage issue. Furthermore, HookSafe only protects the hooks but not the non-control

data. IndexedHooks [51] provides an alternative implementation of CFI for the FreeBSD

8.0 kernel by replacing function addresses with indexes into read-only tables, but

IndexedHooks still requires source code.

44

Rootkits detection and recovery

There has been much research on rootkits. [10] gives us a nice survey of rootkits and

detection software. A list of popular rootkits can be found from [14]. Some work such as

[52] and [53] attempts to use the integrity measurement mechanisms (such as [13], [10],

[46], and [47]) mentioned above to detect rootkits and recover the software from

known-good copies.

Christodorescu et al [54] proposes an algorithm called semantics-aware malware

detection. This static approach for malware detection uses instruction semantics to identify

malicious behavior in a program from the binary of the program.

Analysis Tools

CIL [30] is a high-level representation along with a set of tools that permit easy

analysis and source-to-source transformation of C programs.

BitBlaze [39] focuses on binary analysis and has a static analysis component called

Vine that provides an intermediate language for assembly (ILA) and an infrastructure for

analyzing programs written in this language.

BAP [40] is the successor to the binary analysis techniques developed for Vine. BAP

provides a formally specified intermediate language called BIL with techniques and

interfaces for formally reasoning about binary programs down to the bit level.

Trusted computing

TPM (Trusted Platform Module) [11], whose state cannot be corrupted by a

potentially malicious host system, is already embedded in hardware by industry vendors

such as Intel. The Trusted Computing Group [55] has proposed several standards for

measuring the integrity of a software system and storing the result in a TPM. Such

45

standards and technologies have provided the root of trust for secure booting [56], and

enabled remote attestation [57]. With hardware support such as TPM and application level

technique such as AppCore [58], a small Trusted Computing Base can be built to facilitate

integrity analysis and monitoring.

3.5. Summary

In this chapter, we have studied the application of static source code analysis to derive

integrity properties of an operating system kernel. We design and implement automated

tools that can derive data invariants out of the target kernel without running it.

To evaluate our methodology, we apply our tools to the Linux kernel 2.4.32 and the

Windows Research Kernel. In Linux kernel, our tool identifies 284,471 invariants that are

critical to Linux’s runtime integrity. Furthermore, for the constant invariants, we compare

the invariant list generated by our static analyzer with the one generated by a dynamic

invariant analyzer, and find a large number of variables that can cause false alarms for the

dynamic analyzer. Our tool also works for Windows Research Kernel and detects 202,992

invariants. Comparison with a dynamic invariant detector on the WRK shows similar

results. Our experience suggests that static analysis is a viable option for automated

integrity property derivation, and it can potentially have very low false positive and false

negative rates.

46

4. Kernel Queue Analysis System

Inspired by the research discussed in Section 2.3, our KQ defense endorses the

general idea of using data structure invariants. However, we address the limitation of

existing approaches so that our KQ integrity checking covers both persistent and transient

attacks. More specifically, our defense intercepts and checks the validity of every KQ

request to ensure the execution of legitimate event handlers only, by filtering out all

untrusted callback requests. In [59], Wei et al develop a KQ defense for Linux (called

PLCP) that employs static source code analysis to automatically derive specifications of

legitimate KQ requests. However, the reliance on source code limits the practical

applicability of PLCP in systems such as Windows in which there are a large number of

third-party, closed source device drivers that need KQs for their normal operation.

Therefore, in this chapter, we introduce KQguard, an effective defense against KQI

attacks that can support closed source device drivers. Specifically, we make the following

contributions: (1) we introduce the KQguard mechanism that can distinguish attack KQ

requests from legitimate KQ event handlers, (2) we employ dynamic analysis of the binary

code to automatically generate specifications of legitimate KQ requests (called

EH-Signatures) in closed source device drivers, (3) we build a static analysis tool that can

automatically identify KQs from the source code of a given kernel, (4) we implement the

KQguard in WRK and the Linux kernel, (5) our extensive evaluation of KQguard on WRK

shows its effectiveness against KQ exploits (125 real-world malware samples and nine

synthetic rootkits), detecting all except two of the attacks (very low false negative rate).

With appropriate training, we eliminated all false alarms from KQguard for representative

47

workloads. For resource intensive benchmarks, KQguard carries a small performance

overhead of up to about 5%.

The rest of this chapter is organized as follows. Section 4.1 summarizes the problem

caused by rootkits misusing KQs. Section 4.2 describes the high level design of KQguard

defense by abstracting the KQ facility. Section 4.3 outlines some implementation details of

KQguard for WRK, validating the design. Section 4.4 presents the results of an

experimental evaluation, demonstrating the effectiveness and efficiency of KQguard.

Section 4.5 outlines related work and Section 4.6 summaries this chapter.

4.1. Problem Analysis: KQ Injection

4.1.1. Importance of KQ Injection Attacks

Functionally, KQs are kernel queues that support the callback of a

programmer-defined event handler, specialized for efficient handling of that particular

event. For example, the soft timer queue of the Linux kernel supports scheduling of timed

event-handling functions. The requester (e.g., a device driver) specifies an event time and a

callback function to be executed at the specified time. When the system timer reaches the

specified time, the kernel timer interrupt handler invokes the callback function stored in the

soft timer request queue (Figure 4.1). More generally and regardless of the specific event

semantics among the KQs, their control flow conforms to the same abstract type: for each

request in the queue, a kernel thread invokes the callback function specified in the KQ

request to handle the event.

KQ injection attacks (e.g., by supplying malicious callback function or data in step 1

of Figure 4.1) only uses legitimate kernel interface and it does not change legitimate kernel

code or statically allocated data structures such as global variables. Therefore, syntactically

48

a KQ injection request is indistinguishable from normal event handlers. Consider the

Registry Operation Notification Queue as illustration. Using it in defense, anti-virus

software event handlers can detect potential intruder malicious activity on the Windows

registry. Using it in KQ injection attack, Pushdo/Cutwail [6] can monitor, block, or modify

legitimate registry operations.

Figure 4.1 Life cycle of a timer request in Linux

Several KQ injection attacks by real world malware have been documented. First,

rootkits have misused KQs to hide better against discovery. For example, the Rustock.C

spam bot relies on two Windows kernel timers [60] to check whether it is being

debugged/traced [73], [74] (e.g., whether KdDebuggerEnabled is true). Second, rootkits

have misused normal KQ functionality for covert rootkit operations. For example,

Pushdo/Cutwail botnet sets up a callback routine by invoking

IoRegisterFsRegistrationChange [6], which enables it to monitor file system registrations,

and Rustock.C invokes PsSetCreateProcessNotifyRoutine [61], [75] to inject code into

seemingly benign processes (e.g., services.exe) so that spamming can be done in the

49

context of an innocent process. Third, rootkits have misused KQ functionality to attack

security products directly. For example, the Storm/Peacomm spam bot invokes

PsSetLoadImageNotifyRoutine to register a malicious callback function that disables

security products when they are loaded [76]. Table 4.2 (Section 4.4.1) shows some

representative KQ hijack attacks against WRK that we have studied, which cover some of

the most notorious malware today: the TDSS botnet consists of 4.5 million infected

machines and is considered the most sophisticated threat [62], and Duqu [63] is believed to

be closely related to the widespread Stuxnet worm [64].

4.1.2. KQ Injection Attack Model

The KQ injection malware listed in Table 4.2 (Section 4.4.1) misuse KQs in a

straightforward way. They prepare a malicious function in kernel space and use its address

as the callback function pointer in a KQ request. We call these callback-into-malware

attacks. Since their malicious functions must be injected somewhere in the kernel space,

callback-into-malware attacks can be detected by runtime kernel code integrity checkers

such as SecVisor [65]. Therefore, they are considered the basic level of attack.

Unfortunately, a more sophisticated level of KQ injection attacks, called

callback-into-libc (in analogy to return-into-libc [66], [67]), create a malicious callback

request containing a legitimate callback function but malicious input parameters. When

activated, the legitimate callback function may carry out unintended actions that are

beneficial to the attacker. For example, one legitimate callback function in the

asynchronous procedure call (APC) queue of the WRK is PsExitSpecialApc, which can

cause the currently executing thread to terminate with an exit status code that is specified in

the “NormalContext” parameter field of the APC request structure. Therefore,

50

hypothetically an attacker can inject an APC request with PsExitSpecialApc as the callback

function to force a thread to terminate with a chosen exit status code (set in the

“NormalContext” field). This kind of Callback-into-libc attack can be used to shutdown an

anti-virus program but make the termination appear normal to an Intrusion Detection

System, by setting a misleading exit status code.

Callback-into-libc KQ injection attacks represent an interesting challenge, since they

allow an attacker to execute malicious logic without injecting his own code, and the above

example shows that such attacks can target non-control data (e.g., the exit status code of a

thread). Therefore, they cannot be defeated by approaches that focus on control data (e.g.,

CFI [22]).

The design of KQguard in Section 4.2 shows how we can detect both

callback-into-malware and callback-into-libc KQ injection attacks.

4.1.3. Design Requirements of KQ Defense

An effective KQ defense should satisfy four requirements: efficiency, effectiveness,

extensibility, and inclusiveness. In this section, we outline the reasons KQguard satisfies

these requirements. Some previous techniques may solve specific problems but have

difficulties with satisfying all four requirements. We defer a discussion of related work to

Section 4.5.

Efficiency

It is important for KQ defenses to minimize their overhead; KQguard is designed to

protect KQs with low overhead, including the time-sensitive ones.

51

Effectiveness

KQ defenses should detect all the KQ injection attacks (zero false negatives) and

make no mistakes regarding the legitimate event handlers (zero false positives); KQguard

is designed to achieve this level of precision and recall by focusing on the recognition of all

legitimate event handlers.

Extensibility

Due to the rapid proliferation of new devices, it is important for KQ defenses to

extend their coverage to new device drivers; the KQguard design isolates the knowledge on

legitimate event handlers into a table (EH-Signature collection) that is easily extensible.

Inclusiveness

A practical concern of commercial kernels is the protection of third-party, closed

source device drivers; KQguard uses static analysis when source code is available and

dynamic analysis to protect the closed source legitimate drivers.

4.2. Design of KQguard

In this section, we describe the design of KQguard as a general protection mechanism

for the KQ abstract type. The concrete implementation is described in Section 4.3.

4.2.1. Architecture Overview and Assumptions

The main idea of KQguard is to differentiate legitimate KQ event handlers from

malicious KQ injection attacks based on characteristics of known-good event handlers. For

simplicity of discussion, we call such characteristics Callback-Signatures. A

Callback-Signature is an effective representation of a KQ event handler (or a KQ request)

for checking. One special type of Callback-Signatures is those of the legitimate KQ event

handlers, and we call them EH-Signatures.

52

How to specify or discover the EH-Signatures is a practical challenge in the design of

KQguard. Since legitimate KQ requests are originated from legitimate kernel or device

drivers, in order to specify EH-Signatures we need to study the behavior of the core kernel

and legitimate drivers. In an ideal kernel development environment, one could imagine

annotating the entire kernel and all device driver code to make KQ requests explicit, e.g.,

by defining a KQ abstract type. Processing the KQ annotations in the complete source code

will give us the exact EH-Signature collection. Unfortunately, this is not practical because

many third-party closed source device drivers are unlikely to share their source code.

Therefore, our design decision is to apply dynamic binary code analysis to automate

the process of obtaining a specialized EH-Signature collection that fits the configuration

and usage of each system. Specifically, our design uses the architecture shown in Figure

4.2. We extend the kernel in a dedicated training environment to log (collect)

EH-Signatures of KQ requests that the kernel encounters during the execution of legitimate

device drivers. Then we extend the kernel in a production environment to use such learned

EH-Signatures to guard against KQ injection attacks, which can be launched by malware

installed in the production environment.

By employing dynamic analysis, our design does not require source code of the

device drivers, thus it satisfies the inclusiveness requirement. Moreover, by having two

kinds of environments, we decouple the collection and the use of EH-Signatures, which

allows future legitimate drivers to be supported by KQguard: we can run the new driver in

the training environment to collect its EH-Signatures and then add the new EH-Signatures

into the signature collection used by the production environment. By using this method,

our design satisfies the extensibility requirement.

53

Figure 4.2 Overall Architecture of KQguard

In order to guarantee that EH-Signatures learned from the training environment is

applicable to the production environment, we assume that the training environment and the

production environment run the same OS and set of legitimate device drivers.

In order to guarantee that all the Callback-Signatures learned from the training

environment represent legitimate KQ requests, we assume that any device driver that is run

in the training environment is benign. This assumption may not hold on a consumer system

because a normal user may not have the knowledge and capability to tell whether a new

driver is benign or not. Therefore, we expect that KQguard is used in a strictly controlled

environment (such as military and government) where a knowledgeable system

administrator ensures that only benign device drivers are installed in the training

environment, by applying standard security practices.

54

As is typical of any dynamic analysis approach, we assume that a representative and

comprehensive workload is available during training to trigger all the legitimate KQ event

handlers. Because some legitimate KQ requests may be made only under certain

conditions, the workload must be comprehensive so that such KQ requests can be triggered

and thus logged. Otherwise, KQguard may raise false alarms.

4.2.2. Building the EH-Signature Collection

In order to collect EH-Signatures in a training environment, we first instrument the

kernel with KQ request logging capability and then run comprehensive workloads to

trigger legitimate KQ requests.

4.2.2.1. Instrumentation of the Kernel to Log EH-Signatures

To collect EH-Signatures, we instrument all places in the kernel where KQ request

information is available. Specifically, we extend kernel functions that initialize, insert, or

dispatch KQ requests. We extend these functions with a KQ request logging utility, which

generates and logs Callback-Signatures from every “raw” KQ request (i.e., with absolute

addresses) submitted by the legitimate kernel and device drivers. The details of

Callback-Signature generation are non-trivial and deferred to Section 4.2.5.

In general, the information contained in EH-Signatures is readily available in the

kernel, although the precise location of such information may differ from kernel to kernel.

It is a matter of identifying the appropriate location to instrument the kernel to extract the

necessary information. Section 4.2.6 describes our non-trivial search for all the locations of

these simple changes, in which we employ static source code analysis on the entire kernel.

The extensions are applied to the kernel at source code level. The instrumented kernel is

then rebuilt for the EH-Signature collection process.

55

4.2.2.2. Dynamic Profiling to Collect EH-Signatures

In this step, we run a representative set of benchmark applications using a

comprehensive workload on top of the instrumented kernel. During this phase, the kernel

extensions described in Section 4.2.2.1 are triggered by every KQ request.

To avoid false negatives in KQ defense, the training is performed in a clean

environment to ensure no malware Callback-Signatures are included. To avoid false

positives, the training workload needs to be comprehensive enough to trigger all of the

legitimate KQ requests. Our evaluation (Section 4.4.4) shows a very low false positive rate,

indicating the feasibility of the dynamic profiling method. In general, the issue of test

coverage for large scale software without source code is a significant challenge and beyond

the scope of this thesis.

4.2.3. Validation Using EH-Signature Collection

As shown in the “Production Environment” part of Figure 4.2, we modify the

dispatcher of every identified KQ to introduce a KQ guard that checks the legitimacy of a

pending KQ request before the dispatcher invokes the callback function. To perform the

check, the KQ guard first builds the Callback-Signature from a pending request (detailed in

Section 4.2.5), and then matches the Callback-Signature against the EH-Signature

Collection. If a match is found, the dispatcher invokes the confirmed event handler.

Otherwise, the dispatcher takes necessary actions against the potential threat (e.g.,

generating a warning message). The details of signature matching are discussed in Section

4.2.4.

To reduce performance overhead, we cache the results of KQ validation so as to avoid

repeatedly checking a KQ request if its Callback-Signature has not changed since the last

56

time it is checked. Specifically, we maintain cryptographic hashes of the “raw” KQ

requests (identified by memory location) that pass the validation, so that when the same

KQ request (at the recorded memory location) is to be checked again, we recalculate the

cryptographic hash and compare it with the stored one. Our profiling study confirms that a

significant fraction (~90%) of KQ validation is redundant because the same KQ requests

are repeatedly enqueued, dispatched, dequeued, and enqueued again. Therefore, caching

the validation results for such repeated KQ requests can reduce performance overhead of

KQ defense.

4.2.4. Specification of the Callback-Signatures

A critical design issue of KQguard is the determination of the set of characteristics in

the Callback-Signatures: it must precisely identify the same KQ requests in the training and

production environments. On one hand, the set must not include characteristics that can

vary between the two environments (e.g., the expiration time in a soft timer request)

because otherwise even the same legitimate KQ requests would appear different (false

positives); on the other hand, the set must include all the invariant characteristics between

the two environments because otherwise a malicious KQ request that differs from a

legitimate request only in the missing characteristics would also pass the check, resulting

in false negatives. For example, the malicious KQ request in Figure 4.3.b is allowed by a

KQ guard that only checks the shaded fields, although it causes a malicious function

bar_two to be invoked; and the malicious KQ request achieves this by tampering with the

“action” field of structure se that is not covered by the Callback-Signature. Here when the

KQ request is dispatched, foo is invoked with qe.data as its parameter.

57

Figure 4.3 Illustration of a False Negative Caused by a Callback-Signature that Only
Includes the Shaded Fields. The two KQ requests have different executions (i.e., bar_one

vs bar_two), but their Callback-Signatures are the same. Here bar_two is a malicious
function.

In order to minimize false negatives such as the one demonstrated in Figure 4.3, one

could include more characteristics (e.g., se.action) into the Callback-Signatures. However,

there are some challenges in doing that with closed source device drivers. Specifically, in

order to realize that se.action is important, one can get hints from how foo works, but

without source code, it is non-trivial to figure out that foo invokes se.action. Another

possibility is to use the type information of se (e.g., struct S) to know that its “action” field

is a function pointer and such information can be derived from the type of KQ request data

fields (e.g., qe.data); unfortunately, this is often not possible because the data fields of KQ

requests are often generic pointers (i.e., void *); in that case, one cannot figure out the type

of se easily if it resides in a closed source device driver. Therefore, in order to support

closed source device drivers, our KQ defense assumes that:

58

Kernel data reachable from KQ requests (e.g., se.action) can be identified and it has

integrity in both the training and the production environments (i.e., changing of this field

from bar_one to bar_two is prohibited by some other security measures).

To avoid “reinventing the wheel”, we note that techniques such as KOP [48] can

correctly locate kernel data such as se.action despite the existence of generic pointers, and

techniques such as HookSafe [23] can prevent malware from tampering with invariant

function pointers in legitimate kernel data structures, such as se.action. Moreover, both

KOP and HookSafe can be used to cover even “deeper” kernel data such as be in Figure

4.3. Note that the inclusion of qe.data in the Callback-Signature is very critical because it

ensures that if qe can pass the check performed by KQguard, se is a legitimate kernel data

structure, and thus its “action” field can be protected by HookSafe (HookSafe is designed

to protect only legitimate kernel data structures).

Note that HookSafe cannot be an alternative defense against KQ injection attacks

from the top level (e.g., by ensuring that “func” and “data” fields in Figure 4.3 are not

tampered with) for two reasons. First, not all top-level KQ request data structures are

legitimate because malware can allocate and insert its own KQ request data structure.

Second, not all top-level legitimate KQ request data structures are invariant (i.e., their

values do not change) but HookSafe can only protect invariant kernel data. We have

observed multiple cases in the APC queue of the WRK in which top-level legitimate KQ

requests change their values during normal execution. For example, IopfCompleteRequest

(in WRK\base\ntos\io\iomgr\iosubs.c) inserts an APC request with callback function

IopCompleteRequest (in WRK\base\ntos\io\iomgr\internal.c); when this APC request is

59

dispatched (i.e., IopCompleteRequest is invoked), its callback function field is changed to

IopUserCompletion before it is inserted back to the APC queue.

To summarize the above discussion, (1) we need to support closed source device

drivers, (2) we need a way to defend against KQ injection attacks from the top level, and

(3) techniques are available to guard deeper kernel data reachable from KQ requests. Based

on these three observations, in this chapter we choose a Callback-Signature format that

focuses on KQ request level (the top level) characteristics: (callback_function,

callback_parameters, insertion_path, allocation). Here callback_function is the callback

function pointer stored in a KQ request, callback_parameters represents the relevant

parameters stored in it, insertion_path represents how the KQ request is inserted (by which

driver? along which code path?), and allocation represents how its memory is allocated

(global, heap, or stack? by which driver?).

Each characteristic in our Callback-Signature is important for effective KQ guarding.

callback_function is used to protect the kernel against callback-into-malware attacks, and

both callback_function and callback_parameters are used to protect the kernel against

callback-into-libc attacks (Section 4.1.2). Furthermore, insertion_path and allocation

provide the context of the KQ request and thus can also be very useful. For example, if

KQguard only checks callback_function and callback_parameters, malware can insert an

existing and legitimate KQ request object LKQ if it can somehow benefit from the

dispatching of LKQ (e.g., resetting a watchdog timer).

To ensure that the signature matching of a KQ request observed during the production

use and one observed during the training can guarantee the same execution, we need to

make sure that the code and static data of the core kernel and legitimate device drivers have

60

integrity in the production environment. We also need to ensure that malware cannot

directly attack KQ guards, including their code and the EH-Signature collection. We

leverage the Xen [8] hypervisor to satisfy the above requirements. The implementation

details is discussed in Section 4.3.3.

4.2.5. Generation of Callback-Signatures from KQ Requests

In both EH-Signature collection (Section 4.2.2) and KQ request validation (Section

4.2.3), Callback-Signatures need to be derived from raw KQ requests. This is called

Callback-Signature generation and we discuss the details in this subsection.

4.2.5.1. Motivation for Delinking

As we discuss in Section 4.2.4, a Callback-Signature is a tuple (callback_function,

callback_parameters, insertion_path, allocation). Since callback_function and

callback_parameters correspond to fields in KQ requests (e.g., the “func” field of qe in

Figure 4.3), it seems that we can simply copy the value of those fields into a

Callback-Signature. However, when a Callback-Signature contains a memory reference

(e.g., a parameter that points to a heap object), we have to overcome one challenge:

namely, what the KQ loggers and the KQ guards can directly observe is an absolute

memory address; however, the absolute addresses of the same variable or function can be

different in the training and production environments, for example, when they are inside a

device driver that is loaded at different starting addresses in the two environments.

Therefore, if we use absolute addresses in the Callback-Signatures, there will not be a

match for the same callback function, which results in false positives.

In order to resolve this issue, we raise the level of abstraction for memory references

in the Callback Signatures so that variations at the absolute address level can be tolerated.

61

For example, we translate a callback function pointer (absolute address) into a unique

module ID, plus the offset relative to the starting address of its containing module (usually

a device driver, and we treat the core kernel as a special module). Under the assumption

that the kernel maintains a uniform mapping of module location to module ID, the pair

(module ID, offset) becomes an invariant representation of the callback function pointer

independent of where the module is loaded. This kind of translation is called delinking.

Due to delinking, our approach can also work with address space layout randomization:

ASLR [68] randomizes the memory address space layout of a running process to make it

more difficult to exploit existing vulnerabilities (e.g., buffer overflows). It works by

randomly rearranging the positions of a process’s code section, stack, etc in its address

space. Note that ASLR can only add an offset to the starting position of the code section of

a module, but it does not rearrange the internal layout of the code section. Since our

Callback-Signature definition does not rely on the absolute starting address of the code

section, we can support ASLR.

4.2.5.2. Details of Delinking

KQguard delinks memory references (i.e., pointers) in different ways depending on

the allocation type of the target memory. As Figure 4.4 shows, there can be three types of

allocations: global variable, heap variable, and local variable.

The pointer to a global variable is translated into (module ID, offset), in the same way

as the callback function pointer (Section 4.2.5.1). There can be two kinds of global

variables depending on whether they reside in a device driver inside the kernel or in a

user-level library (e.g., a DLL on Windows). We care about user-level global variables

because some KQ parameters reference user-level memory (e.g., the APC queue on

62

Windows). We regard device drivers and user-level libraries uniformly as modules and we

modify the appropriate kernel functions to keep track of their address ranges when they are

loaded (e.g., PspCreateThread for DLLs).

Figure 4.4 Illustration of Different Allocation Types of Pointers: (a) Heap Variable, (b)
Global Variable, (c) Local Variable

The pointer to a heap object is translated into a call stack that corresponds to the code

path that originates from a requester (e.g., a device driver) and ends in the allocation of the

heap object. We use a call stack rather than the immediate return address because the

immediate return address may be in some wrapper function for the heap allocation function

and a device driver can call a function at the top of the call chain to allocate a heap object

(for example, atapi.sys calls IoCreateDevice to create a heap object in Figure 4.5). Since

most kernels do not maintain the request call stack for allocated heap objects, we

instrument their heap allocator functions to collect such information, and the

instrumentation is called Heap ID Tracker in Figure 4.2. Specifically, the Heap ID Tracker

traverses the call stack frames backwards until it reaches a return address that falls within

the code section of a device driver or it reaches the top of the stack; if no device driver is

63

found during the traversal, the core kernel is used as the requester; all return addresses

encountered during this traversal are part of the call stack, and each of them is translated

into a (module ID, offset) pair, in the same way as the callback function pointer discussed

in Section 4.2.5.1. Similar to global variables, our delinking supports two types of heap

objects: kernel-level and user-level.

Figure 4.5 Example Heap Allocation Call Stack

The pointer to a local variable is translated into a pair (call_stack, l_offset). The call

stack starts in a function where a KQ request is inspected (e.g., in a KQ insertion function),

and it stops in the function that contains the local variable (e.g., L in function foo in Figure

4.4.c). Each return address encountered during the traversal is translated into a (module ID,

offset) pair. Finally, l_offset is the relative position of the local variable in its containing

stack frame. For example, if [ebp-8] is used to represent the local variable, l_offset is 8. We

have not observed any pointers to user-level local variables, so we do not cover the

translation for pointers to user-level local variables.

64

Because the static type of a KQ request data (e.g., the “data” field of a soft timer

request structure) is often a generic pointer (i.e., void *), we have to detect its actual type at

runtime. Given the raw value of a piece of KQ request data, we run a series of tests to

decide the suitable delinking for it if it is considered a pointer. First, we test whether the

raw value falls within the address range of a loaded driver or a user-level library to decide

whether it should be delinked as a pointer to a global variable. If the test fails, we test

whether it falls within the address range of an allocated heap object to decide whether it

should be delinked as a pointer to a heap variable. If this test also fails, we test whether it

falls within the address ranges of the stack frames to see whether it should be delinked as a

pointer to a local variable. If this test still fails, we determine the KQ data to be a

non-pointer, and no delinking is performed.

4.2.6. Automated Detection of KQs

Since every KQ can be exploited by malware (part of the attack surface), we need to

build the EH-Signatures for all of KQs. But before we can guard a KQ, we must first know

its existence. Therefore, we design and implement a KQ discovery tool that automates the

process of finding KQs in a kernel by analyzing its source code. Since kernel programmers

are not intentionally hiding KQs, they usually follow similar programming patterns that

our tool uses effectively:

- A KQ is typically implemented as a linked list or an array. In addition to

insert/delete, a KQ has a dispatcher that operates on the corresponding type.

- A KQ dispatcher usually contains a loop to act upon all or a subset of queue

elements. For example, pm_send_all in Figure 4.6 contains the dispatcher loop for the

Power Management Notification queue of Linux kernel 2.4.32.

65

- A KQ dispatcher usually changes the kernel control flow, e.g., invoking a callback

function contained in a queue element.

/* linux-2.4.32/kernel/pm.c */
int pm_send_all (pm_request_t rqst, void *data)
{
 ……
 entry = pm_devs.next;
 while (entry != &pm_devs) {
 struct pm_dev *dev=list_entry(entry, struct pm_dev, entry);
 if (dev->callback) {
 int status = pm_send(dev, rqst, data);
 ……
 }
 entry = entry->next;
 }
 ……
}

int pm_send(struct pm_dev *dev, pm_request_t rqst, void *data)
{
 ……
 status = (*dev->callback)(dev, rqst, data);
 ……
}

Figure 4.6 Details of the Power Management Notification Queue on Linux Kernel 2.4.32

Based on the above analysis, the KQ discovery tool recognizes a KQ in several steps.

It starts by detecting a loop that iterates through a candidate data structure.

Then it checks whether a queue element is derived and acted upon inside the loop.

Next, our tool marks the derived queue element as a taint source and performs a

flow-sensitive taint propagation through the rest of the loop body; this part is

flow-sensitive because it propagates taint into downstream functions through parameters

(e.g., dev passed from pm_send_all to pm_send in Figure 4.6). During the propagation, our

tool checks whether any tainted function pointer is invoked (e.g., dev->callback in

pm_send in Figure 4.6), and if that is the case, it reports a candidate KQ. Here we omit

66

further details, but the results (e.g., KQs found in WRK) are interesting and discussed in

Section 4.3.

4.3. Implementations of KQguard

In this section, we discuss our KQguard design (Section 4.2) that is implemented on

the WRK and Linux kernel.

4.3.1. KQguard Implementation on WRK

Our implementation on the WRK is consists of about 3,900 lines of C code and 2,003

lines of Objective Caml code, which can be divided into four components:

Construction of Callback-Signatures in WRK

In order to collect the Callback-Signatures for the 20 KQs in the WRK, we instrument

the kernel in two sets of functions. The first set of functions initialize, insert, or dispatch

KQs and our instrumentation consists of 600 lines of C code. Some representative KQ

dispatcher functions instrumented are list in Table 4.1.

To support delinking of Callback-Signatures, we instrument the device driver loader

function (IopLoadDriver) and the thread creation function (PspCreateThread), and we also

instrument heap allocation or deallocation functions (ExAllocatePoolWithTag,

ExFreePool, NtAllocateVirtualMemory, and NtFreeVirtualMemory) to keep track of the

address ranges of allocated heap memory blocks and the call stack to the heap allocation

function. Our instrumentation of the heap allocator / deallocator consists of 800 lines of C

code.

Automated Detection of KQs for the WRK

We implement the KQ discovery algorithm (Section 4.2.6) based on static source

code analysis, using the C Intermediate Language (CIL) [69]. Our implementation consists

67

of 2,003 lines of Objective Caml code. We applied the KQ discovery tool to the WRK

source code (665,950 lines of C), 20 KQs were detected (seven of them are mentioned in

Table 4.2 in Section 4.4.1 and the rest can be found in [70]), and they include all the KQs

that we are aware of, which suggests the usefulness of our KQ discovery algorithm.

However, whether these 20 KQs cover all KQs in the WRK is an interesting and open

question.

KQ Name Queue header
variable

#param
tainted

Name of
Dispatcher
Function(s)

Windows Research Kernel
I/O timer queue IopTimerQueueHe

ad
2 IopTimerDispatch

RegistryCallback
queue

CmpCallBackVect
or

1 CmpCallCallBacks

Load image
notification queue

PspLoadImageNot
ifyRoutine

0 PsCallImageNotify
Routines

APC queue Part of a thread
structure

3 KiDeliverApc

Process
creation/deletion
notification queue

PspCreateProcess
NotifyRoutine

0 PspCreateThread,
PspExitProcess

File system
registration change
notification queue

IopFsNotifyChang
eQueueHead

0 IoRegisterFileSyste
m,
IoUnregisterFileSy
stem,
IoRegisterFsRegist
rationChange

Callback object
queue

ExpInitializeCallb
ack

1 ExNotifyCallback

Linux Kernel
Tasklet queue tasklet_vec[],

tasklet_hi_vec[]
1 tasklet_action,

tasklet_hi_action
Packet type queue ptype_all,

ptype_base[]
1 dev_queue_xmit_n

it,
netif_receive_skb

Power management
notification queue

pm_devs 1 pm_send_all

INET protocol
handlers queue

inet_protos[] 0 ip_local_deliver_fi
nish, icmp_unreach

68

Table 4.1 Representative Automatically Detected KQs

Callback-Signature Collection Management

We developed a set of utility functions to manage the Callback-Signatures, including

the EH-Signatures. These functions support the generation, comparison, insertion, and

search of Callback-Signatures. They are implemented in 2,200 lines of C code.

Validation of Callback-Signature in WRK

We instrument the dispatcher of every identified KQ in the WRK in the production

environment so that the dispatcher checks the legitimacy of a pending KQ request before

invoking the callback function (Section 4.2.3). Our instrumentation consists of about 300

lines of C code.

4.3.2. KQguard Implementation in Linux kernel

Our Linux implementation of KQguard follows the same conceptual design as our

WRK implementation in Section 4.3.1. Of course, the names and syntax of specific

functions that we instrument are different. For example, the heap object identification

instruments kmalloc and kfree, which are specific to Linux.

We apply the KQ detector to Linux kernel and it found 22 KQs. Four representative

KQs are listed in Table 4.1. Perhaps not surprisingly, we found differences as well as

similarities between WRK and Linux. As an example of differences, WRK KQs are

implemented both as linked lists and arrays, but all Linux KQs are implemented as linked

lists.

To validate the pending KQ requests in Linux, we instrument the dispatcher functions

for the 22 KQs detected. The retrieval of Callback-Signature follows the same process as

69

the WRK implementation, and the EH-Signature management functions were ported from

our WRK implementation.

4.3.3. KQguard Protection

Specifically, we run the guest kernel (with KQ guard) on top of Xen 4.1.2 hypervisor

and extend the shadow-based memory management of Xen to write-protect the code and

static data of the guest kernel. Note that this protection covers KQ guards and the

EH-signature collection because they are part of the guest kernel. For this purpose, we add

a new hypercall to Xen. This hypercall allows the guest kernel to request memory regions

(whose size can be any number of bytes) in its address space to be write-protected. If a page

contains any portion of a protected region, the hypervisor sets the protection bit of the page

table entry of that page to read-only in the shadow page table. At runtime, the guest kernel

utilizes this hypercall to protect the memory regions that contain code and static data (of

the guest kernel). Since the hypercall accepts two physical addresses as its input

parameters which are the start (physical) address and the end (physical) address of the

memory region to be protected, we translate the virtual addresses (of the start and the end

of a memory region) to physical addresses (for the reason that we can directly get the

virtual addresses of a memory region but not its physical addresses) and then invoke the

hypercall. We also modify the page fault handler of Xen so that any write access to the

protected regions on this kind of page will be denied, but legitimate writes to other parts of

this kind of page is able to go through as normal.

The instrumentation (of the hypercall mentioned above and relevant utility functions)

on Xen hypervisor is consists of 1,000 lines of C code.

70

4.4. Evaluation of KQguard

In this section, we report the evaluation results of the WRK implementation of

KQguard. We evaluate both the effectiveness and efficiency of KQguard through

measurements on production kernels. By effectiveness we mean precision (whether it

misidentifies the attacks found, measured in false positives) and recall (whether it misses a

real attack, measured in false negatives) of KQguard when identifying KQ injection

attacks. By efficiency we mean the overhead introduced by KQguard. In both the training

and the production systems used in our evaluation, the hardware is a 2.4 GHz Intel Xeon

8-Core server with 16 GB of RAM, and the operating system is Windows Server 2003

Service Pack 1 running the WRK.

4.4.1. Real-World KQ Injection Attacks

We start our evaluation of KQguard effectiveness by testing our WRK

implementation (Section 4.3) against real-world KQ injection attacks in Windows OS.

Since malware technology keeps advancing, we focus on the most recent and the most

influential malware samples that represent the state of the art. Specifically, we chose 125

malware samples from the top 20 malware families [71] and the top 10 botnet families

[72]. These samples are known to have KQ injection behaviors.

Overall, our test confirmed that 98 samples inject the APC queue, 34 samples inject

the DPC queue, 32 samples inject the load image notification queue, 20 samples inject the

process creation/deletion notification queue, four samples inject the file system registration

change queue, four samples inject the registry operation notification queue, and two

samples inject the system worker thread queue.

71

Table 4.2 reports the results of 10 representative spam bot samples. We started with

malware with reported KQ injection attacks, which are marked with a “” with citation.

We were able to confirm some of these attacks, shaded in gray. The rows with shaded “”

without citations are confirmed new KQ injection attacks that have not been reported by

other sources. For example, Rustock.J injects an APC request with a callback function at

address 0xF83FE316, which falls within the address range of a device driver called

msliksurserv.sys that is loaded by Rustock.J; this APC request raises an alarm because it

does not match any of the EH-Signatures we have collected.

For all the malware that we were able to activate (the Rustock.C sample failed to run

in our test environment), we confirmed the reported KQ injection attacks, except for the

Duqu attack on load image notification queue and Storm on the APC queue.

 KQ
Malware

Timer/ DPC
Worker
Thread

Load
Image

Create
Process

APC
FsRegistrat
ionChange

RegistryOp
Callback

Rustock.C  [73][74]  [75]  [75]
Rustock.J   
Pushdo   [6]   [6]  [6]
Storm   [76]  [77]
Srizbi  
TDSS   
Duqu   [63] 
ZeroAccess   [78]  [78] 
Koutodoor  
Pandex 
Mebroot 

Table 4.2 Known KQ Injection Attacks in Representative Malware

The Rustock samples show that malware designers have significant ability and

flexibility in injecting different KQs. Concretely, Rustock.J has stopped using the timer

queue, which Rustock.C uses, but Rustock.J started to use the load image notification

72

queue, which Rustock.C does not. This may have happened to Duqu’s attack on the same

queue, or Duqu does not activate the attack on load image notification queue during our

experiment. Overall, our evaluation indicates that KQguard can have a low false negative

rate because it detects all except two of the KQ injection attacks by 125 real-world malware

samples.

4.4.2. Protection of All KQs

In addition to real world malware, we create synthetic KQ injection attacks for two

reasons. First, nine KQs have maximum queue length of zero during the testing in Section

4.4.1, suggesting that malware is not actively targeting them for the moment; however, the

Rustock evolution shows that malware writers may consider such KQs in the near future,

so we should ensure that guards for such KQs work properly. Second, the malware

analyzed in Section 4.4.1 belongs to the callback-into-malware category. Although there

have been no reports of callback-into-libc attacks in the wild, it is important to evaluate the

effectiveness of KQ-guard for both kinds of attacks. Therefore, for completeness, we

developed test Windows device drivers for each of the KQs that have not been called and

we have confirmed that our KQ defense can detect all the test drivers, which suggests that

our defense is effective against potential and future KQ injection attacks.

4.4.3. Protection of KQguard

As we mentioned in Section 4.3.3, the code of KQguard and the EH-Signature

collection are under write-protection. To verify the effectiveness of the write-protection,

we create three synthetic attacks that try to alter the code of KQguard and five synthetic

attacks that try to modify the data of EH-Signature collection. We launch these attacks after

73

KQguard code the EH-Signature collection are write-protected. As a result, all eight

attacks are all detected and prevented.

4.4.4. False Alarms

We have experimentally confirmed that it is possible to reduce the false positives of

KQ guarding to zero. This is achievable when the training workload is comprehensive

enough to produce the full EH-Signature collection.

We first collect EH-Signatures on a training machine with Internet access. We

repeatedly log in, run a set of normal workload programs, and log off. In order to trigger all

possible code paths that insert KQ requests, we actively do the above for fifteen hours.

During this process, we gradually collect more and more EH-Signatures until the set does

not grow. At the end of training, we collect 813 EH-Signatures. The set of workload

programs include Notepad, Windows Explorer, WinSCP, Internet Explorer, 7-Zip,

WordPad, IDA, OllyDbg, CFF Explorer, Sandboxie, and Python.

Next we feed the collected EH-Signatures into a production machine with KQ

guarding and use that machine for normal workloads as well as the KQ injection malware

evaluation and the performance overhead tests. During such uses, we observe zero false

alarms. The normal workload programs include the ones mentioned above as well as others

such as Firefox not used in training.

While the experimental result appears encouraging, we avoid making a claim that

dynamic analysis can always achieve zero false positives. For example, the APC queue has

733 EH-Signatures, such EH-Signatures have 14 unique callback functions (Figure 4.7),

and the most popular callback function is IopCompleteRequest, occurring in 603

EH-Signatures. While these 603 EH-Signatures share the same callback function, their

74

insertion paths originate from 51 device drivers, two DLLs, and the core kernel, so the

average number of EH-Signatures per requester (e.g., a device driver) is 11, and the largest

number is 45 (from the driver ntfs.sys). This result implies that there can be potentially

many code paths within a driver that can prepare and insert an APC request with the same

callback function, which may or may not be triggered in our training.

Figure 4.7 Distribution of EH-Signatures in APC queue with 14 callback functions

Moreover, there are in total 199 device drivers in our evaluation system, but our

training only observes a subset of them (e.g., 51 in terms of IopCompleteRequest); so some

legitimate KQ requests from the remaining drivers may be triggered by events such as

inserting a USB device, which we have not tested yet. Fortunately, our experience suggests

that it is possible to collect the set of EH-Signatures that fits the configuration and usage of

a given system with enough training workloads.

ExpTimerApcRoutine (10)

IopCompletePageWrite (31)

IopCompleteRequest (603)

KiSuspendNop (2)

WmipPumpThreadApc (1)

VdmpQueueIntApcRoutine (3)

VdmpDelayIntApcRoutine (4)

CmpPostApc (5)

PspQueueApcSpecialApc (7)

IopUserCompletion (45)

PsExitSpecialApc (18)

PspGetSetContextSpecialApc (2)

AfdSuperAcceptApcKernelRoutine (1)

AfdConnectApcKernelRoutine (1)

0 100 200 300 400 500 600 700

Number of Signatures

75

4.4.5. Performance Overhead

We evaluate the performance overhead of KQguard in two steps: microbenchmarks

and macrobenchmarks.

For the first step, we measure the overhead of KQguard validation check and heap

object tracking. KQguard validation check matches Callback-Signatures against the

EH-Signature Collection, and its overhead consists of matching the four parts of a

Callback-Signature. Heap object tracking affects every heap allocation and deallocation

operation (e.g., ExAllocatePoolWithTag and ExFreePool). These heap operations are

invoked at a global level, with overhead proportional to the overall system and application

use of the heap. Specifically, we measure the total time spent in performing 1,000 KQguard

validation checks for the DPC queue and the I/O timer queue, two of the most active KQs.

The main result is that global heap object tracking during the experiment dominated

the KQguard overhead. Specifically, DPC queue validation consumed 93.7 milliseconds of

CPU, while heap object tracking consumed 8,527 milliseconds. These 1,000 DPC callback

functions are dispatched over a time span of 250,878 milliseconds (4 minutes 11 seconds).

Therefore, the total CPU consumed by our KQguard validation for DPC queue and the

supporting heap object tracking is 8,620.7 milliseconds (or about 3.4% of the total elapsed

time). The measurements of the I/O timer queue (180 ms for validation, 11,807 ms for heap

object tracking, and 345,825 ms total elapsed time) confirm the DPC queue results.

For the second step, Table 4.3 shows the results of five application level benchmarks

that stress one or more system resources, including CPU, memory, disk, and network. The

first benchmark is Super PI, a CPU-intensive workload calculating 32 million digits of .

The second benchmark copies a directory with a total size of 1.5 GB, which stress the file

76

system. The third and the fourth benchmarks are also CPU-intensive, performing the

compression and decompression of the 1.5 GB directory with 7-Zip. The fifth benchmark

downloads a 160 MB file with WinSCP, which stresses the network connection. Each

workload is run multiple times and the average is reported. We can see that in terms of

execution time of the selected applications, KQguard incurs modest elapsed time increases,

from 2.8% for decompression to 5.6% for directory copy. These elapsed time increases are

consistent with the microbenchmark measurements, with higher or lower heap activities as

the most probable cause of the variations. We also run the PostMark file system benchmark

and the PassMark PerformanceTest benchmark and see similar overhead (3.9% and 4.9%,

respectively).

Workload Original
(sec)

KQ Guarding
(sec)

Slowdown

Super PI [34] 2,10841 2,21337 5.0%
Copy directory (1.5 GB) 2319.0 24415.9 5.6%
Compress directory (1.5 GB) 1,11324 1,14516 2.9%
Decompress directory (1.5 GB) 1814.1 1865.1 2.8%
Download file (160 MB) 14511 15111 4.1%

Table 4.3 Performance Overhead of KQ Guarding in WRK

4.5. Related Work

In this section, we survey related work that can potentially solve the KQ injection

problem and satisfy the four design requirements: efficiency, effectiveness, extensibility,

and inclusiveness (Section 4.1.3).

SecVisor [65] and NICKLE [79] are designed to preserve kernel code integrity or

block the execution of foreign code in the kernel. They can defeat callback-into-malware

KQ attacks because such attacks require that malicious functions be injected somewhere in

77

the kernel space. However, they cannot detect callback-into-libc attacks because such

attacks do not inject malicious code or modify legitimate kernel code.

HookSafe [23] is capable of blocking the execution of malware that modifies

legitimate function pointers to force a control transfer to the malicious code. However,

HookSafe cannot prevent KQ injection attacks because they do not modify existing and

legitimate kernel function pointers but instead supply malicious data in their own memory

(i.e., the KQ request data structures).

CFI [22] can ensure that control transfers of a program during execution always

conform to a predefined control flow graph. Therefore, it can be instantiated into an

alternative defense against KQIs that supply malicious control data. However, CFI cannot

defeat the type of KQI attacks that supply malicious non-control data because they do not

change the control flow.

SBCFI [46] can potentially detect a callback-into-malware KQ attack. However,

SBCFI is designed for persistent kernel control flow attacks (e.g., it only checks

periodically) but KQ injection attacks are transient, so SBCFI may miss many of them.

Moreover, SBCFI requires source code so it does not satisfy the inclusiveness requirement.

IndexedHooks [51] provides an alternative implementation of CFI for the FreeBSD

8.0 kernel by replacing function addresses with indexes into read-only tables, and it is

capable of supporting new device drivers. However, similar to SBCFI, IndexedHooks

requires source code so it does not satisfy the inclusiveness requirement.

PLCP [59] is a comprehensive defense against KQ injection attacks, capable of

defeating both callback-into-malware and callback-into-libc attacks. However, PLCP does

not satisfy the inclusiveness requirement due to its reliance on source code.

78

4.6. Summary

Kernel Queue (KQ) injection attacks are a significant problem. We test 125 real world

malware attacks [73][76][6][78][62][63][74][77][75] and nine synthetic attacks to cover

20 KQs in the WRK. It is important for a solution to satisfy four requirements: efficiency

(low overhead), effectiveness (precision and recall of attack detection), extensibility

(accommodation of new device drivers) and inclusiveness (protection of device drivers

with and without source code). Current kernel protection solutions have difficulties with

simultaneous satisfaction of all four requirements.

We describe the KQguard approach to defend kernels against KQ injection attacks.

The design of KQguard is independent of specific details of the attacks. Consequently,

KQguard is able to defend against not only known attacks, but also anticipated future

attacks on currently unscathed KQs. We evaluated the WRK implementation of KQguard,

demonstrating the effectiveness and efficiency of KQguard by running a number of

representative application benchmarks. In effectiveness, KQguard achieves very low false

negatives (detecting all but two KQ injection attacks in 125 real world malware and nine

synthetic attacks) and zero false positives (no false alarms after a proper training process).

In performance, KQguard introduces a small overhead of about 100 microseconds per

validation and up to about 5% slowdown for resource-intensive application benchmarks

due to heap object tracking.

79

5. CONCLUSION AND FUTURE WORK

5.1. Conclusion

In this thesis, we have addressed two research problems: (1) detection of data

invariants and integrity of KQ requests from a commodity operating systems kernel; (2)

defense against kernel-level malware that violates these two integrity properties.

For the detection of data invariants, we develop a program analysis tool that can

automatically derive data invariants from the source code of a given kernel, using static

analysis. Our tool applies compiler technology to analyze the control and data flows (e.g.,

assignments and function calls) of a target program and reason about the global variables

that are invariants. In developing this tool, we have overcome several challenges in

large-scale C program analysis, such as field-sensitivity, array-sensitivity, pointer analysis,

and handling of assembly code.

With this analysis tool, we are able to make a thorough study of invariants detection

for the Linux kernel and the Windows Research Kernel using static analysis. To the best of

our knowledge, there has not been a similar study. Both kernels are very complex software

posing great challenges for static analysis by their wide use of pointers and complex

structures. Our tool is able to process 400,492 lines of Linux kernel (version 2.4.32) code

and identify 284,471 invariants essential to the Linux kernel’s runtime integrity. To

validate the result of our tool (e.g., precision), we develop a dynamic invariant detector

(following the spirit of Daikon [41]) and compare it with our static analyzer. The

comparison suggests that static invariant detection outperforms dynamic invariant

detection in terms of false positives. For example, in the constant invariants category, we

80

find 17,182 variables that can cause false alarms for the dynamic analyzer, while our static

tool only misses 18 true invariants (with false negative rate 0.013%).

We also develop an invariant monitor based on the result of the static analysis, which

detects invariant violations by ten real-world Linux rootkits and generates only one false

alarm against benign workloads. Moreover, although Windows Research kernel (version

Windows Server 2003), which has 665,969 lines of C code, is even more complex than the

Linux kernel, our tool analyzes it successfully and detects 202,992 invariants. Comparison

with the result of a dynamic analyzer shows that the dynamic analyzer generates 21,670

false constant invariants while our static tool wrongly classifies only seven true constant

invariants as non-constants (with false negative rate 0.007%). We develop an invariant

monitor in the same way as the Linux kernel and this monitor successfully detects nine

real-world Windows malware samples and one synthetic Windows malware, while

emitting only one false alarm. Our study shows that our static tool is an effective tool for a

system security expert. Furthermore, our experience suggests that static analysis is a viable

option for automated integrity property derivation, and it can potentially have very low

false positive and false negative rates.

On the other hand, we first build a static analysis tool to automatic detect KQs from

kernel source code. As a result, we found found 20 KQs in the Windows Research Kernel

and 22 in Linux kernel. We then figure out the KQguard mechanism that can decide the

legitimacy of a KQ request (e.g., we can distinguish the KQ requests made by a rootkit

from the legitimate ones). Due to the lack of source code of many third-party device

drivers, we apply dynamic analysis of the binary code for the automatic generation of the

81

specifications of legitimate KQ requests (called EH-Signatures). In this way, we avoid the

requirement of source code of the device drivers and satisfy the inclusiveness.

Based on the KQguard mechanism and the EH-Signatures generated, we implement

KQguard in WRK and the Linux kernel. We further evaluate its effectiveness against KQ

exploits. First, we chose 125 malware samples from the top malware families and top

botnet families and create 9 synthetic rootkits. KQguard is able to detect all except two KQ

injection attacks, which means it has very low false negatives. Second, after a proper

training, KQguard can have no false alarms for representative workloads. The very low

false negatives and no false alarms together demonstrate the effectiveness of KQguard.

The performance evaluation shows that for resource intensive benchmarks, KQguard

introduces a small overhead of up to about 5%, which illustrates the efficiency of

KQguard. In KQguard design we isolate the legitimate KQ request into a table

(EH-Signature collection) that can be easily extended in a training phrase, which achieves

the goal of extensibility.

Unlike the various signature-based detection approaches, our defense not only works

for existing malware but also can handle future malware. Specifically, our defense can

detect a kind of malware that temper with invariants or adopt KQI attacks. To catch up with

numerous new malware, most existing commercial anti-virus software need to update their

malware signature database very frequently. Even though, they still can only detect

existing malware whose signature is known. While our defense does not need updates

unless the system kernel is changed or there is a new legitimate device driver, and can also

deal with future malware.

82

5.2. Future Work

In this thesis, we protect the detected invariants with our Invariant Monitor that

checks the invariants periodically (every 30 seconds). However, such kind of protection

can possibly be defeated by a transient attack---an attack who knows the check mechanism

can modify the value of an invariant after one check and restore its original value before

next check. One mitigated solution to such attack is to randomize the interval between two

checks (e.g., the check interval can vary from 1 second to 60 seconds).

Another solution is to leverage the hardware-based protection so that any write-access

to the invariants can be monitored. However, nowadays the hardware can only provide

page-level protection, which means that if we want to write-protect an invariant, the

memory page that contains the invariant will be also write-protected. While in a

commodity OS kernel such as Linux and Windows, it is very common that there exist

hundreds of thousands of invariants (as our detection results in Section 3.2) and these

invariants are widely scattered cross the kernel space. And it is normal that the invariants

can co-locate with some frequently modified variables together in the same page. Suppose

we deploy the approach that we write-protect all pages that contain the invariants and

verify all write-accesses to these pages (whether the write-access is applied to an invariant),

it will cause significant performance overhead, which is mostly introduced from the

unnecessary page faults that are triggered by write-accesses to non-invariants.

We recognize this protection granularity gap that hardware can only provide

page-level protection but invariant protection needs byte-level granularity. To address this

challenge, we can adopt a solution similar to HookSafe [23] that we relocate invariants to a

dedicated page-aligned memory region and then introduce an indirection layer to manage

83

accesses to them with hardware-based page-level protection. Specifically, the access to the

original invariant will be redirected to the relocated one by the indirection layer. In this

way, we can avoid the unnecessary page faults triggered by the write-accesses to irrelevant

non-invariants.

Our current invariant analysis is only applied on the global variables---more

specifically, statically allocated variables. However, except these global variables, there

also exist many kernel objects that are dynamically allocated from heap at runtime. During

our study of kernel queues, we found that the life time of some heap objects can last from

the time they are allocated till when the system is shut down. So we can view this kind of

heap objects as global variables. Furthermore, this kind of heap objects can also be critical

to system security. For example, we found there are eight elements in the I/O timer queue

at runtime and the callback function pointers in the eight elements do not change once the

elements are inserted, which implies that we can apply invariant analysis to derive such

heap invariants.

Since our static detection of data invariants needs source code, it will not work for the

closed-source kernel. And it cannot handle assembly code without human aid. We can

improve our approach by applying the static binary analysis techniques such as Vine in

BitBlaze [39] and BAP [40], which provides an infrastructure for analyzing binary.

Our invariant detection has false positives due to the imprecision of our pointer

analyzer based on the generalized one level flow (GOLF) algorithm. We can build a more

precise pointer analyzer based on the Anderson's algorithm [26].

Nowadays, the smartphone become more and more popular in our daily life and it also

has an operating system with a Linux kernel, which means that it is possible for us to apply

84

our system on it and derive data invariants and integrity of KQs and further defend against

the malware that tries to exploit them.

85

REFERENCES

[1] eBay. http://www.ebay.com/

[2] Facebook. https://www.facebook.com/

[3] Butler, J. DKOM (Direct Kernel Object Manipulation).
http://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf.

[4] A. Baliga, V. Ganapathy, and L. Iftode, “Automatic inference and enforcement of
kernel data structure invariants”, In ACSAC ’08, pages 77–86. IEEE Computer
Society, 2008.

[5] C. Kil, E. Sezer, A. Azab, P. Ning, and X. Zhang, “Remote attestation to dynamic
system properties: Towards providing complete system integrity evidence”, DSN’09,
Lisbon, Portugal, 2009.

[6] Decker, A., Sancho, D., Kharouni, L., Goncharov, M., and McArdle, R.
Pushdo/Cutwail: A Study of the Pushdo/Cutwail Botnet. Trend Micro Technical
Report, 05/2009

[7] P. A. Loscocco, P. W. Wilson, J. A. Pendergrass, C. D. McDonell, “Linux kernel
integrity measurement using contextual inspection”, 2007 ACM workshop on STC.
October 2007.

[8] P. Barham, B. Dragovic, K. Fraser, et al., “Xen and the art of virtualization”, ACM
SOSP, Bolton Landing, NY, Oct. 2003

[9] F. Bellard, “QEMU, a fast and portable dynamic translator”, Proceedings of the 2005
USENIX Annual Technical Conference, 2005.

[10] N. Petroni, Jr., T. Fraser, J. Molina, W. A. Arbaugh, “Copilot—a coprocessor-based
kernel runtime integrity monitor”, 13th USENIX Security Symposium, San Diego, CA,
Aug. 2004.

[11] Trusted Platform Modules.
http://www.trustedcomputinggroup.org/developers/trusted_platform_module/specific
ations.

[12] C. Kil, E. Sezer, A. Azab, P. Ning, and X. Zhang, “Remote attestation to dynamic
system properties: Towards providing complete system integrity evidence”, DSN’09,
Lisbon, Portugal, 2009.

[13] T. Garfinkel, M. Rosenblum, “A virtual machine introspection based architecture for
intrusion detection”, NDSS, February 2003.

86

[14] Chkrootkit - rootkit detection tool v0.49. http://www.chkrootkit.org.

[15] RootkitRevealer. http://technet.microsoft.com/en-us/sysinternals/bb897445.aspx

[16] Sophos anti-rootkit.
http://www.sophos.com/products/freetools/sophos-anti-rootkit.html

[17] Yi-Min Wang, Roussi Roussev, Chad Verbowski, Aaron Johnson, Ming-Wei Wu,
Yennun Huang, and Sy-Yen Kuo. “Gatekeeper: Monitoring auto-start extensibility
points (aseps) for spyware management”. In LISA ’04.

[18] A. Baliga, P. Kamat and L. Iftode, “Lurking in the shadows: identifying systemic
threats to kernel data”, IEEE S&P, Oakland, CA, May 2007

[19] Microsoft. Windows Research Kernel v1.2.
https://www.facultyresourcecenter.com/curriculum/pfv.aspx?ID=7366&c1=en-us&c2
=0

[20] Brumley, D. 1999. Invisible intruders: rootkits in practice. ;login:, 24, Sept. 1999

[21] Hoglund, G. 2006. Kernel Object Hooking Rootkits (KOH Rootkits).
http://my.opera.com/330205811004483jash520/blog/show.dml/314125.

[22] Abadi, M., Budiu, M., Erlingsson, U., and Ligatti, J. 2005. Control flow integrity.
Proceedings of the 12th ACM Conference on Computer and Communications Security.

[23] Z. Wang, X. Jiang, W. Cui, and P. Ning, “Countering kernel rootkits with lightweight
hook protection”, Proceedings of ACM Conference on Computer and Communications
Security (CCS ’09), 2009.

[24] N. Petroni, T. Fraser, A. Walters, and W. Arbaugh, “An architecture for
specification-based detection of semantic integrity violations in kernel dynamic data”,
15th USENIX Security Symposium, 2006.

[25] http://users.cis.fiu.edu/~weijp/Jinpeng_Homepage_files/report.xml (It is a huge file.
Please open it with a text editor instead of the browser).

[26] L. O. Anderson, “Program analysis and specialization for the C programming
language”, PhD thesis, University of Copenhagen, 1994.

[27] David Wagner. “Static analysis and computer security: New techniques for software
assurance”, Ph.D. dissertation, Dec. 2000, UC Berkeley.

[28] Manuvir Das, Ben Liblit, Manuel Fähndrich, and Jakob Rehof, “Estimating the Impact
of Scalable Pointer Analysis on Optimization”, In SAS’01, London, UK, 2001.

[29] Microsoft MSDN. http://msdn.microsoft.com.

87

[30] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. “CIL: Intermediate language
and tools for analysis and transformation of C programs”, Conference on CC,
Grenoble, France, Apr. 2002.

[31] Linux Test Project, version 20050107. http://ltp.sourceforge.net.

[32] Iperf v2.0.5. http://sourceforge.net/projects/iperf.

[33] Andrew benchmark, reinterpreted version by Yasushi Saito, HP Labs, Storage
Systems Department. http://www.ysaito.com/andrew-tcl-bench-0.3.tgz.

[34] Super PI v1.5. http://www.superpi.net.

[35] Iozone v3.405. http://www.iozone.org.

[36] 7zip v9.20. http://www.7-zip.org.

[37] Windows Driver Kit v7.1.0.
http://msdn.microsoft.com/en-us/windows/hardware/hh852365.aspx.

[38] Tom Espiner. “’Storm Worm’ Slithers on”,
http://www.zdnet.com/storm-worm-slithers-on-3039285565.

[39] Dawn Song, et al. “BitBlaze: a new approach to computer security via binary
analysis”, Information systems security. Springer Berlin Heidelberg, 2008, pp 1-25.

[40] David Brumley, et al. “BAP: a binary analysis platform”, Computer Aided
Verification. Springer Berlin Heidelberg, 2011.

[41] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and
C. Xiao, “The Daikon system for dynamic detection of likely invariants”, In Science of
Computer Programming, 2007.

[42] Radu Rugina and Martin Rinard, “Symbolic bounds analysis of pointers, array indices,
and accessed memory regions”, PLDI’00, pages 182-195, 2000.

[43] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken, “A First Step
Toward Automated Detection of Buffer Overrun Vulnerabilities”, Proceedings of the
Network and Distributed System Security Symposium, San Diego, California,
February 2000.

[44] R. Sailer, X. Zhang, T. Jaeger, L. van Doorn, “Design and implementation of a
TCG-based integrity measurement architecture”, 13th USENIX Security Symposium,
2004.

88

[45] L. Davi, A. Sadeghi, and M. Winandy, “Dynamic Integrity Measurement and
Attestation: Towards Defense against Return-Oriented Programming Attacks”, 2009
ACM workshop on STC. November 2009.

[46] N. Petroni and M. Hicks, “Automated detection of persistent kernel control-flow
attacks”, 14th ACM CCS, Alexandria, VA, Oct. 2007.

[47] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer, “Secure coprocessor-based
intrusion detection”, Tenth ACM SIGOPS European Workshop, Saint-Emilion,
France, September 2002.

[48] Martim Carbone, et al. “Mapping kernel objects to enable systematic integrity
checking”, Proceedings of the 16th ACM conference on Computer and
communications security. ACM, 2009.

[49] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity”, ACM
Conference on CCS, Alexandria, VA, Nov. 2005.

[50] T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: policy-reduced integrity measurement
architecture”, SACMAT 2006.

[51] J. Li, Z. Wang, T. Bletsch, D. Srinivasan, M. Grace, and X. Jiang, “Comprehensive
and Efficient Protection of Kernel Control Data”, IEEE Transactions on Information
Fo-rensics and Security, 6(2), June 2011.

[52] J. Grizzard, E. Dodson, G. Conti, J. Levine, and H. Owen, “Toward a trusted
immutable kernel extension (TIKE) for self-healing systems: a virtual machine
approach”, 5th IEEE IAW, 2004.

[53] J. Levine, J. Grizzard, and H. Owen, “Re-establishing trust in compromised systems:
recovering from rootkits that trojan the system call table”, Proceedings of 9th European
Symposium on Research in Computer Security, Sophia Antipolis, France, September
2004.

[54] Mihai Christodorescu, et al. “Semantics-aware malware detection”, Security and
Privacy, 2005 IEEE Symposium on. IEEE, 2005.

[55] Trusted Computing Group. http://www.trustedcomputinggroup.org.

[56] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and reliable bootstrap
architecture”, In IEEE S&P 1997, pp. 65–71.

[57] J. Sheehy, G. Coker, J. Guttman, et al. “Attestation: evidence and trust”, Mitre
Technical Paper, 2007.
http://www.mitre.org/publications/technical-papers/attestation-evidence-and-trust,
accessed Jan 5, 2014.

89

[58] L. Singaravelu, C. Pu, H. Haertig, C. Helmuth, “Reducing TCB complexity for
security-sensitive applications: three case studies”, Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems, Leuven, Belgium,
April 2006.

[59] Wei, J., and Pu, C. 2012. Towards a General Defense against Kernel Queue Hooking
Attacks. Elsevier Journal of Computers & Security, Volume 31, Issue 2, pp. 176-191.

[60] Microsoft. Using Timer Objects.
http://msdn.microsoft.com/en-us/library/ff565561.aspx

[61] Chiang, K., Lloyd, L. 2007. A Case Study of the Rustock Rootkit and Spam Bot.
Proceedings of the First Workshop on Hot Topics in Understanding Botnets
(HotBots'07).

[62] Kapoor, A. and Mathur, R. 2011. Predicting the future of stealth attacks. Virus Bulletin
2011, Barcelona.

[63] Kaspersky Lab. The Mystery of Duqu: Part Five.
http://www.securelist.com/en/blog/606/The_Mystery_of_Duqu_Part_Five.

[64] Symantec Connect Community. W32.Duqu: The Precursor to the Next Stuxnet. Oct.
2011. http://www.symantec.com/connect/w32_duqu_precursor_next_stuxnet,
accessed April 2013.

[65] Seshadri, A., Luk, M., Qu, N., and Perrig, A. 2007. SecVisor: A tiny hypervisor to
provide lifetime kernel code integrity for commodity OSes. In Proceedings of ACM
SOSP’07.

[66] Solar Designer. Bugtraq: Getting around non-executable stack (and fix). Website.
http://seclists.org/bugtraq/1997/Aug/63.

[67] Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V. W., and Ning, P. 2011. On
the Expressiveness of Return-into-libc Attacks. In Proceedings of RAID 2011.

[68] PaX Team. PaX address space layout randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt, accessed April 2013

[69] Necula, G. C., McPeak, S., Rahul, S. P. and Weimer, W. 2002. CIL: Intermediate
language and tools for analysis and transformation of C programs. Proceedings of
Conference on Compiler Construction (CC), Apr. 2002.

[70] Wei, J., Zhu, F., and Pu, C. 2012. KQguard: Protecting Kernel Callback Queues.
Florida International University Technical Report, TR-2012-SEC-03-01.
http://www.cis.fiu.edu/~weijp/Jinpeng_Homepage_files/WRK_Tech_Report_03_12.
pdf

90

[71] Top 20 Malware Families in 2010.
http://blog.fireeye.com/research/2010/07/worlds_top_modern_malware.html.

[72] Top 10 Botnet Families in 2009. https://blog.damballa.com/archives/572.

[73] Anselmi, D., et al. 2011. Battling the Rustock Threat. Microsoft Security Intelligence
Report, Special Edition, January 2010 through May 2011.

[74] Kwiatek, L. and Litawa, S. Yet another Rustock analysis... Virus Bulletin, August
2008.

[75] Prakash, C. 2008. What makes the Rustocks tick! Proceedings of the 11th Association
of anti-Virus Asia Researchers International Conference (AVAR’08).

[76] Boldewin, F. 2007. Peacomm.C - Cracking the nutshell. Anti Rootkit, September
2007.
http://www.antirootkit.com/articles/eye-of-the-storm-worm/Peacomm-C-Cracking-th
e-nutshell.html.

[77] OffensiveComputing. Storm Worm Process Injection from the Windows Kernel.
http://offensivecomputing.net/papers/storm-3-9-2008.pdf

[78] Giuliani, M. ZeroAccess – an advanced kernel mode rootkit, rev 1.2.
www.prevxresearch.com/zeroaccess_analysis.pdf

[79] Riley, R., Jiang, X., and Xu, D. 2008. Guest-transparent prevention of kernel rootkits
with VMM-Based memory shadowing. Proceedings of RAID’08.

91

VITA

FENG ZHU

2005-2009 B.A., Computer Science

Nanjing University
Nanjing, China

2009-2014 Doctoral Candidate
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Jinpeng Wei, Calton Pu, Carlos V. Rozas, Anand Rajan, and Feng Zhu (2010). Modeling
the Runtime Integrity of Cloud Servers: a Scoped Invariant Perspective. International
Workshop on Cloud Privacy, Security, Risk and Trust (CPSRT 2010). In conjunction with
the 2nd IEEE International Conference on Cloud Computing Technology and Science
(CloudCom 2010), Indianapolis, IN, Nov. 30 - Dec. 3, 2010.

Jinpeng Wei, Feng Zhu, and Yasushi Shinjo (2011). Static Analysis Based Invariant
Detection for Commodity Operating Systems. 7th International Conference on
Collaborative Computing (CollaborateCom 2011), Orlando, FL, October 15-18, 2011.

Jinpeng Wei, Calton Pu, Carlos V. Rozas, Anand Rajan, and Feng Zhu (2013). Modeling
the Runtime Integrity of Cloud Servers: a Scoped Invariant Perspective. Privacy and
Security for Cloud Computing. Springer London, 2013. 211-232.

Jinpeng Wei, Feng Zhu, and Calton Pu (2013). KQguard: Binary-Centric Defense against
Kernel Queue Injection Attacks. Computer Security–ESORICS 2013. Springer Berlin
Heidelberg, 2013. 755-774.

Feng Zhu and Jinpeng Wei. (2014). Static Analysis Based Invariant Detection for
Commodity Operating Systems. Computer & Security, 43 (2014):49-63.

	Florida International University
	FIU Digital Commons
	6-5-2014

	Integrity-Based Kernel Malware Detection
	Feng Zhu
	Recommended Citation

	Integrity-Based Kernel Malware Detection

