
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-14-2014

An Alternative Goodness-of-fit Test for Normality
with Unknown Parameters
Weiling Shi
amandashi3315@gmail.com

Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Applied Statistics Commons, Statistical Models Commons, and the Statistical Theory
Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Shi, Weiling, "An Alternative Goodness-of-fit Test for Normality with Unknown Parameters" (2014). FIU Electronic Theses and
Dissertations. Paper 1623.
http://digitalcommons.fiu.edu/etd/1623

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Florida International University

https://core.ac.uk/display/46950856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.fiu.edu%2Fetd%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/827?utm_source=digitalcommons.fiu.edu%2Fetd%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.fiu.edu%2Fetd%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.fiu.edu%2Fetd%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/1623?utm_source=digitalcommons.fiu.edu%2Fetd%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


 
 

FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

AN ALTERNATIVE GOODNESS-OF-FIT TEST FOR NORMALITY WITH 

UNKNOWN PARAMETERS 

 

 

 

A thesis submitted in partial fulfillment of 

 the requirements for the degree of 

MASTER OF SCIENCE 

in 

STATISTICS 

by 

Weiling Shi 

 

2014



ii 
 

To:  Interim Dean Michael R. Heithaus 
        College of Arts and Sciences 
 
This thesis, written by Weiling Shi, and entitled an Alternative Goodness-of-Fit Test 
for Normality with Unknown Parameters, having been approved in respect to style and 
intellectual content, is referred to you for judgment. 
 
We have read this thesis and recommend that it be approved. 

 

                                                                                                                          Gauri Ghai 

     

 

                                                                                                                   Florence George 

                                                                                        
                                                                                        Zhenmin Chen, Major Professor  
 
Date of Defense: November 14, 2014 
 
The thesis of Weiling Shi is approved. 
 
 
 
 
                                                                                     Interim Dean Michael R.Heithaus 
                                                                                             College of Arts and Sciences 
 
 
 
 
                                                                                                     Dean Lakshmi N. Reddi 
                                                                                               University Graduate School  

 

Florida International University, 2014 



   

iii 
 

 

 

 

 

 

 

 

 

 

© Copyright 2014 by Weiling Shi 

All rights reserved. 

 



iv 
 

 

 

 

 

 

 

 

DEDICATION 

I dedicate this thesis to my parents. The completion of this thesis would not be 

possible without their love, support and encouragement. 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

                                                

 

 

 

ACKNOWLEDGMENTS 

I am deeply grateful to my major professor and mentor Dr. Zhenmin Chen. 

With Dr. Chen’s consistent support, guidance and help I finished my master’s study at 

Florida International University. Dr. Chen’s profession, responsibility and caring exert 

an important influence in my life. I benefited from Dr. Chen’s wisdom and approach to 

research. All his virtues will be a valuable treasure of my whole life in the future. 

I would also like to thank the members of my thesis committee, Dr. Gauri Ghai 

and Dr. Florence George, for their time, advice and reviewing my thesis.  

In the end, I would like to thank my parents for their understanding, 

encouragement and love throughout the years. They gave me the warmest family one 

has ever wished for. 



vi 
 

ABSTRACT OF THE THESIS 

AN ALTERNATIVE GOODNESS-OF-FIT TEST FOR NORMALITY WITH 

UNKNOWN PARAMETERS 

by 

Weiling Shi 

Florida International University, 2014 

Miami, Florida 

Zhenmin Chen, Major Professor 

Goodness-of-fit tests have been studied by many researchers. Among them, an 

alternative statistical test for uniformity was proposed by Chen and Ye (2009). The test 

was used by Xiong (2010) to test normality for the case that both location parameter 

and scale parameter of the normal distribution are known. The purpose of the present 

thesis is to extend the result to the case that the parameters are unknown. A table for 

the critical values of the test statistic is obtained using Monte Carlo simulation. The 

performance of the proposed test is compared with the Shapiro-Wilk test and the 

Kolmogorov-Smirnov test. Monte-Carlo simulation results show that proposed test 

performs better than the Kolmogorov-Smirnov test in many cases. The Shapiro Wilk 

test is still the most powerful test although in some cases the test proposed in the 

present research performs better. 
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CHAPTER I INTRODUCTION 

1.1 Introduction 

The goodness-of-fit test is a particular useful statistical model for testing 

whether observed data are representative of a particular distribution. A goodness-of-fit 

test can summarize the discrepancy between observed values and the values expected 

under any given model. Numerous research papers have been published by scientists 

concerning these tests. There are many existing test statistics including some 

commonly used goodness-of-fit tests such as the Chi-squared test (Pearson, 1900), the 

Kolmogorov-Smirnov test (Kolmogorov, 1933 and Smirnov,1939),  the Cramer-Von 

Mises test (Cramer,1928 and von Mises), and the Anderson-Darling test (Anderson and 

Darling, 1952). All these commonly used statistical tests can be used to test normality. 

The Chi-squared test is the most important member of the nonparametric family 

of statistical tests because it has some attractive features including the fact that it can 

be applied to any univariate distribution and calculated much easier than other test 

statistics.  It is used for quantitative and binned data. For non-binned data, a histogram 

or frequency table should be constructed to put the data into the categories before the 

Chi-squared test is used. However, the values of the Chi-squared test are affected by 

skewness and kurtosis. Plus, it is sensitive to the sample size. The Chi-squared test has 

reduced power especially for the small sample size under 50. 

The Kolmogorov-Smirnov test (K-S test) is also a nonparametric test for the 

equality of continuous, one-dimensional probability distributions that can be used to 
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compare a sample with a reference probability distribution, or to compare two samples. 

The K-S test relies on the fact that the value of the sample cumulative density function 

is asymptotically normally distributed. The Kolmogorov–Smirnov statistic quantifies a 

distance between the empirical distribution function of the sample and the cumulative 

distribution function of the reference distribution, or between the empirical distribution 

functions of two samples. However, the K-S test tends to be more sensitive near the 

center of the distribution than it is at the tails of the distribution.  Additionally, the 

most serious limitation is that the distribution must be fully specified. If location, scale, 

and shape parameters are estimated from the data, the critical region of the K-S test is 

no longer valid. The K-S test statistic typically must be determined by simulation. 

Various studies have found that, even in this corrected form, the test is less powerful 

for testing normality than the Shapiro-Wilk test or the Anderson–Darling test. 

 The Anderson-Darling test is a modification of the K-S test which gives more 

weight to the tails of the distribution than the K-S test. The K-S test is “distribution 

free” in the sense that the critical values do not depend on the specific distribution 

being tested, while the Anderson-Darling test makes use of the specific distribution in 

calculating critical values. The Anderson-Darling test has the advantage of allowing a 

more sensitive test than the K-S test and the disadvantage that critical values must be 

calculated for each distribution. 

The Shapiro-Wilk test, proposed by Samuel Sanford Shapiro and Martin Wilk 

in 1965, is used for testing normality and lognormal distributions. It compares the 

observed cumulative frequency distribution curve with the expected cumulative 

frequency curve. The Shapiro-Wilk test is based on the ratio of the best estimator of 
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the variance to the usual corrected sum of squares estimator of the variance. The 

Shapiro-Wilk test is not as affected by ties as the Anderson-Darling test, but is still 

biased by sample size.   

Power study of the most commonly used goodness-of-fit tests has been 

conducted by many researchers including Shapiro, Wilk and Chen (1968), and Aly and 

Shayib (1992).   Some recent research papers concluded that the Shapiro–Wilk’s test 

has the best power for a given significance, followed closely by Anderson-Darling 

when comparing the Shapiro-Wilk, Kolmogorov–Smirnov,  Lilliefors, and Anderson-

Darling tests. Although it was mentioned by Steele and Chaseling (2009) that none of 

the existing test statistics can be regarded as the “best” test statistic, to maximize the 

power of the test statistic for checking normality is still under explored and modified 

by many statistics researchers.  The purpose of this thesis is to compare these tests. 

In the present research, the statistical tests proposed in Chen and Ye (2009) and 

Xiong (2010) will be adopted and will be extended to test normality for the case that 

the location parameter and the scale parameter of the normal distribution are both 

unknown. A table for the critical values of the test statistics is provided using Monte 

Carlo simulation. The performance of the newly updated statistics are compared with 

the Shapiro-Wilk’s test and the Kolmogorov-Smirnov test. 

1.2 Basic Idea 

Chen and Ye (2009) proposed a new test statistic ( G statistic) for testing 

uniformity. The test statistic can be used to test if the underlying population 

distribution is a uniform distribution. On the basis of the probability integral 



4 
 

transformation (See F.N. David and N.L. Johnson, 1948), the underlying population 

distribution can be any distribution. Suppose , , … ,  are the observations of a 

random sample from a population distribution with distribution function F(x). Suppose 

also that , , … ,  are the corresponding order statistics. The purpose is to test: 

).()(: 00 xFxFH 
 

).()(: 01 xFxFH 
 

 It can be seen that )(),...,(),( )()2()1( nxFxFxF are the ordered observations of a random 

sample from the )1,0(U distribution. The G test statistics can be used to conduct the 

following test procedure. The test statistics can be defined as    
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0H  should be rejected at significance level  if *
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G  is the upper critical value of the *G  statistic. The value of *
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the Monte Carlo simulation. For simplicity, ),...,,( )()2()1(
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Expression (2) will be used in the Monte Carlo simulation. The test can be used 

for testing any hypothesized distribution. The normal distribution is merely a special 

case. 
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 The range of the function ),...,,( )()2()1(
*

nxxxG   is from 0 to 1 and the 

mathematical expectation and variance of the test statistic have been given in Chen and 

Ye (2009). 

In Xiong’s research, the parameters including the expected value and the 

standard deviation of the normal distribution are assumed to be known. When the 

parameters of the distribution are unknown, the test is no longer valid. 

To solve this problem, Lilliefors’ idea is adopted here to treat the case with 

unknown parameters. Estimation of the population mean and population variance 

derived from the sample data is conducted before calculating  statistic. 

The procedure in this research for simulating the critical values of the *G   test 

statistic is summarized as follows: 

1. Generate a pseudo random sample nxxx ,...,, 21  of size n  from the  standard 

normal distribution; 

2. Calculate the sample mean ( x ) and variance ( 2s ); 

3. Find the ordered values )()2()1( ,...,, nxxx and define 0)0( x and 1)1( nx ; 

4. Calculate )(),...,(),( )()2()1( nxFxFxF . Here )(xF  is the cumulative distribution 

function of the  distribution; 

5. Calculate the value of ),...,,( )()2()1(
*

nxxxG    using Equation (2); 

6. Repeat steps 1 to 5  k times ( k=1,000,000 in this research); 

7. Sort all the values of *G   in ascending order; 
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8. Find the critical values with  = 0.1, 0.05, 0.01, 0.005, 0.001, that is, to 

calculate the 90th, 95th, 99th, 99.5th and 99.9th percentiles. 

The procedure shown above uses the standard normal distribution. It will not affect the 

simulation result. In fact, it can be shown that it remains invariant when the parameters 

of the normal distribution change.   

Suppose X  has a normal distribution with the mean   and standard deviation .  
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This is the same as in the case that the standard normal distribution is picked. 

     The performance of the *G  test statistics is compared with the Shapiro-

Wilk’s test and the K-S test for testing normality. Since the Shapiro-Wilk’s test can 
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only be used for testing normal distribution and lognormal distribution, the normality 

test for the power comparison is conducted in this research. 

      Chapter 2 outlines the method for calculating these three test statistics. The 

power study results of these three tests are analyzed in Chapter 3. Chapter 4 concludes 

the performance comparisons of the performance comparisons with the G test, the 

Shapiro-Wilk’s test and the Kolmogorov-Smirnov test. 

      Monte Carlo simulation was used to conduct power study for these three 

tests. The computer programming languages used in this research are SAS/IML and 

SAS/Base. 
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CHAPTER II METHODOLOGY 

The performance of a test statistic can be evaluated by a power study. To 

evaluate the performance of test statistic ),...,,( )()2()1(
*

nxxxG  proposed in this thesis, 

various alternative distributions are used to find the power of the test statistic. The *G  

test power is compared with the Shapiro-Wilk test and the Kolmogorov-Smirnov test 

in the present research. The null hypothesis assumes that the underlying distribution is 

a normal distribution, while the alternative hypothesis assumes a distribution that is not 

a normal distribution. The alternative distributions used here include the triangle 

distributions, V-shaped triangle distributions, and Beta distributions. 

2.1 Methodology of Three Tests 

2.1.1 G test 

Suppose nxxx ,...,, 21  are the observations of a random sample from a 

population distribution with a distribution function )(xF . Suppose also that 

)()2()1( ,...,, nxxx  are the corresponding order statistics. To test whether or not the 

underlying distribution is a normal distribution, the null and alternative hypotheses are  

0H : The population distribution is a normal distribution, 

    H : The population distribution is not a normal distribution. 

As discussed in Chapter 1, when the test statistics  is used,  

should be rejected at significant level  if *
)()2()1(

* ),...,,( GxxxG n  , where *
G  is the 

),...,,( )()2()1(
*

nxxxG 0H
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critical value of the *G test statistic. The value of ),...,,( )()2()1(
*

nxxxG  can be calculated 

using equation (2) for convenience. 

2.1.2 Shapiro-Wilk Test 

The Shapiro-Wilk test utilizes the null hypothesis principle to determine 

whether a sample nxxx ,...,, 21 come from a normally distributed population. The W test 

statistic is the ratio of the best estimator of the variance (derived from the square of a 

linear combination of the order statistics) to the usual corrected sum of squares 

estimator of the variance (Shapiro and Wilk; 1965). When n  is greater than three, the 

coefficients to compute the linear combination of the order statistics can be 

approximated by the method of Royston (1992). The statistic W is always greater than 

zero and less than or equal to one ( 10 W ). Small values of W lead to the rejection 

of the null hypothesis of normality. The distribution of W  is highly skewed. Seemingly 

large values of    W  (such as 0.90) may be considered small will result in rejecting the 

null hypothesis. Research papers show that the Shapiro-Wilk test has the better 

performance compared with the Anderson-Darling test and the Kolmogorov-Smirmov 

test. 

The test statistic is  
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is the sample mean;  is the 	 	order statistic; the constants sai
'  are given by  

.
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Here nmmm ,..,, 21 are the expected values of the order statistics of independent 

and identically distributed random variables sampled from the standard normal 

distribution and V is the covariance matrix of those order statistics. Reject 0H  if W  is 

too small. 

To compute the value of test statistic W  for a given complete random sample 

nxxx ,...,, 21 , the procedure proposed in Shapiro &Wilk (1965) is as follows: 

(1) Order the observations to obtain an ordered sample )()2()1( ... nxxx  . 

(2) Compute  
 


n

i

n

i
ii xxxx

1 1

22
)( )()( , where x  is the sample mean. 

(3) (a) If n  is even, mn 2 , compute )( )()1(
1

1 iin

m

i
in xxab  


 , where the 

values of 1iaa  are given in Shapiro and Wilk (1965). 

(b) If n  is odd, 12  mn  the computation is the same as the one in (3)(a) since 

01 ma . Thus )(...)( )()2(2)1()( mmmnn xxaxxab   , where the value of )1( mx , 

the sample median, does not enter the  computation of b . 

(4) Compute ).)(/(
1

22 



n

i
i xxbW  

(5) Compare with the critical values from quantiles of the Shapiro-Wilk test for 
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normality table. If the calculated value of the test statistic  W  is smaller than W  , 0H  

is rejected at the significance level   . 

2.1.3 Kolmogorov-Smirnov Test   

The Kolmogorov-Smirnov test statistic is defined as  

),,max()()(sup *  nnn
x

n DDxFxFD
 

 ,)()(sup * xFxFD n
x

n 

 

 .)()(sup * xFxFD n
x

n 

 

Here F is the cumulative distribution function specified by the null hypothesis. 

Let )()2()1( ... nxxx    be the order statistic of )()2()1( ... nxxx   . Then the empirical 

distribution function is 

)(* xFn =
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Similarly, 













 




 0,)
1

(maxmax )(
1 n

i
xFD i

ni
n  

If the calculated value of the test statistic is greater than D , 0H  is rejected at 

the stated significance level. Here D  is the critical value of the Kolmogorov-

Smirrnov test statistic. 
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The popularity of the Kolmogorov-Smirnov test relates to the fact that the test 

does not depend on the underlying cumulative distribution function being tested. 

However, its disadvantages also limit its application sometimes because it only applies 

to continuous distributions. The test statistic becomes more sensitive near the center of 

the distribution than at the both tails. All the parameters such as location, scale and 

shape of a distribution must be fully specified. If not, the K-S test is no longer valid. It 

must be estimated by simulation. 

2.1.4  Monte Carlo Simulation Method 

Monte Carlo simulation is applied to generate pseudo random samples from a 

variety of alternative distributions to compare the power of the *G  test , Shapiro-Wilk 

test and K-S test. Firstly, k pseudo random samples of size n are generated from a 

specified distribution. In this research, V-shape triangle distribution, triangle 

distribution and the Beta distribution are chosen. For each pseudo random sample, the 

observations nxxx ,...,, 21   are sorted and become  order statistics one )()2()1( ,...,, nxxx . 

Then put the ordered statistics into the formulas of the *G  test and Shapiro-Wilk test, 

and the K-S test. The values of the test statistics can be computed. By comparing the 

calculated value and the critical values of the G test, Shapiro-Wilk test and the K-S 

test, the rejection rates can be found. 

 In the present research, the sample sizes n  =5, 10, 20, 30, 40, 50 are selected 

to conduct Monte Carlo simulation.  The number of repetitions is selected to be 

000,000,1k  to ensure the accuracy of the power. The procedure for calculating the 

power is summarized as follows: 
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1. Generate a random sample nxxx ,...,, 21  from the specified alternative 

distribution listed above; 

2. Find the ordered values )()2()1( ... nxxx   and define 0)0( x   and 1)1( x  ; 

3. Calculate the corresponding )(),...,(),( )(0)2(0)1(0 nxFxFxF ,where 0F  is the 

cumulative distribution function of normal here and the expected value and 

standard deviation of the normal distribution are calculated from the pseudo 

random sample; 

4. Calculate the value of  ),...,,( )()2()1(
*

nxxxG  using equation (2); 

5. Compare the value of ),...,,( )()2()1(
*

nxxxG  with the indicated critical value at 

significance level α=0.05, and determine whether  0H   is rejected; 

6. Using the method mentioned above to calculate the value of the Shapiro-Wilk 

test statistic W ; 

7. Compare the value of W with  W  at the same significance level as in step 5, 

and determine whether 0H  is rejected; 

8. Using the method mentioned above to calculate the value of the K-S test statistic 

D ; 

9. Compare the value of D  with D  at the same significance level, and determine 

whether 0H  is rejected; 

10. Repeat steps 1 to 9 1,000,000 times; 

11. Calculate the rejection rates for the *G  test, the Shapiro-Wilk test and the K-S 

test. 
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2.2 Power Study 

The power of a statistical test is the probability that it correctly rejects the null 

hypothesis when the null hypothesis is false. That is, Power = P (reject null hypothesis/ 

null hypothesis is false) which can be denoted as  1 	where β is the probability 

of committing type II error. 

The power of the test statistic in this research can be presented as 

)()( **


HGGPGGPH   for G test; 

)()( 
HWWPWWPH   for Shapiro-Wilk test; 

)()( 
HDDPDDPH   for Kolmogorov-Smirnov test; 

The power estimate is high means that the performance of the test is good. 

Statistical power may depend on a number of factors. Some of these factors may be 

particularly because of a specific testing situation, but at a minimum, power always 

depends on the following three factors: sample size, the significance level, and the 

sensitivity of the data. 

The rejection rates of the three test statistics are used as estimates of their 

power in the thesis. High rejection rates means the power of the test statistic is high. To 

evaluate the performance of the test statistic ),...,,( )()2()1(
*

nxxxG   proposed in this 

research, various alternative distributions including V-shape triangle distribution, Beta 

distributions and triangle distributions are used to study the power of this test statistic.   
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To find the powers of the *G  test, Shapiro-Wilk test and Kolmogorov-Smirnov 

test, Monte Carlo simulation was used to generate pseudo random samples from the 

various alternative distributions.  To accomplish this, k pseudo random samples of size 

n are generated from a specified distribution. For each pseudo random sample, the 

observation nxxx ,...,, 21  are sorted and the sorted observations become )()2()1( ,...,, nxxx

.Then the values of the test statistics can be computed for all three tests. Finally, the 

rejection rates or powers for the *G test, Kolmogorov-Smirnov test and Shapiro-Wilk 

test are calculated. 

In the present research, the sample sizes n = 5 to 50 are selected to conduct the 

Monte Carlo simulation. In order to ensure the accuracy of the power study, the 

number of the repetitions is selected to be k= 1,000,000. 
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CHAPTER III    POWER COMPARISON 

3.1 Alternative Distributions 

3.1.1 V-shaped Triangle Alternative Distributions 

The probability density function of the V-shaped triangle distribution is 

                                                     

 

 

 

Here  is a constant between 0 and 1. The following V-shaped triangle distributions are 

used in this research: 

Alternative Distribution 1 

 Consider  = 0.25. This is a left-skewed V-shaped triangle distribution. The 

power comparison result under this V-shaped triangle distribution is shown in Table 2. 

It can be found that the *G  test is performs better than Shapiro-Wilk test when sample 

size is 5. When sample size increases, the power of these three tests also increases. 

Compared with the Kolmogorov-Smirnov test, the *G  test outperforms the 

Kolmogorov-Smirnov test in all cases. The Shapiro-Wilk test performs better than the 

other two tests when the sample size becomes large. 
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Alternative Distribution 2 

 Consider  = 0.5. This is a symmetric V-shaped triangle distribution. The 

power comparison result under this V-shaped triangle distribution is shown in Table 3. 

The result is similar to the previous case. The *G  test performs better than Shapiro-

Wilk test when sample size is 5 and is more powerful than Kolmogorov-Smirnov test 

for all sample sizes. When sample size increases, the power of Shapiro-Wilk test 

increase faster than the other two test statistics. 

Alternative Distribution 3 

Consider  = 0.75. This is a right-skewed V-shaped triangle distribution. The 

power comparison result under this V-shaped triangle distribution is shown in Table 4. 

It shows that the *G  test is performs better than Shapiro-Wilk test also when sample 

size is 5. Shapiro-Wilk test performs very well when sample size increases. The *G  

test still outperforms the Kolmogorov-Smirnov test in all cases. 

Since there is no function call of V-shape triangle distribution in SAS, the 

following proposition is needed.  

Proposition: 

Suppose U  is a random variable with uniform distribution on interval (0, 1). Then  

)(UH has a V-shaped triangle distribution with parameter h .  Here )(uH is defined as                              










.1)1(

0
)(

2

2

uhuhhhh

huhuhh
uH  

Let )(UHX  . Then the cumulative distribution of X is 
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Then the pdf of X  (denoted as )(xf ) is:  
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which is the probability density function of V-shape triangle distribution with parameter 
.h  

3.1.2 Beta Alternative Distributions 

The probability density function of the Beta distribution is  

.)0,0(

0

10)1(
)()(

)(

)(
11






 








 

elsewhere

xxx
xf  

The following special cases of the beta distributions are used in the power study: 
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Alternative Distribution 4 

)2,4(B distribution. This is a left-skewed Beta distribution. The power 

comparison result under this Beta alternative distribution is shown in Table 5. It can be 

found that the *G  test performs better than Shapiro-Wilk test under small sample size 

case when  = 5. When sample size increases, the power of these three tests increases 

too. The Shapiro-Wilk test increases more than *G  test. The Shapiro-Wilk test 

performs still well in most cases. However, the *G  test is better than Shapiro-Wilk test 

for small sample size when 5n . Kolmogorov-Smirnov test outperforms the *G  test 

under this distribution. 

Alternative Distribution 5  

 )5.0,5.0(B 	distribution. This is a symmetric bathtub-shaped Beta distribution. 

The power comparison result under this Beta alternative distribution is shown in Table 

6. It can be found from the table that *G  test performs better than Shapiro-Wilk test 

under small sample size when  =5. The *G test is still more powerful than the 

Kolmogorov-Smirnov test in all cases. 

Alternative Distribution 6  

)4,2(B distribution. This is a right-skewed Beta distribution. The power 

comparison result under this Beta alternative distribution is shown in Table 7. The 

power comparison result shows that *G test performs better than Shapiro-Wilk test 

under small sample size when  = 5. *G  test is more powerful than the Kolmogorov-

Smirnov test  when sample size is 10,20,30 ,40,50 except the case of sample size 5 
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Alternative Distribution 7  

)1,1(B distribution. This is actually a uniform distribution. The power 

comparison result under this Beta alternative distribution is shown in Table 8. It can be 

seen from the table that *G test performs better than Shapiro-Wilk test under small 

sample size case including   = 5 and 10. The *G  test is also more powerful than the 

Kolmogorov-Smirnov test when sample size is 10, 20, 30, 40, 50.  

 

3.1.3 Triangle Alternative Distribution 

The probability density function of the triangle distribution is  
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Here  is a constant between 0 and 1. The following triangle distributions are used in 

the power study. 

Alternative Distribution 8 

Consider =0.75. This is a left-skewed triangle distribution. The power 

comparison result of this alternative distribution is shown in Table 9. It can be found 

form the figure that the *G test performs better than Shapiro-Wilk test when sample 

size  =5 and 10. The Shapiro-Wilk size performs well when the sample size increases. 

Kolmogorov-Smirnov test performs better than the *G test in this case.   
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Alternative Distribution 9 

Consider =0.5. This is a symmetric triangle distribution. The power 

comparison result of this alternative distribution is shown in Table 10.  The *G   test 

statistic performs the best in this case. *G  test is more powerful than the Shapiro-Wilk 

test when sample size is n = 5,10,20,30.  

Alternative Distribution 10  

 Consider =0.25. This is a right-skewed triangle distribution. The power 

comparison result of this alternative distribution is shown in Table 11. It can be found 

form the figure that the *G   test performs better than Shapiro-Wilk test when sample 

size n  =5. The Kolmogorov-Smirnov test performs better than the *G test in this case. 

3.2 Summary of Power Comparison 

       From the above analysis, we can conclude the following: 

 For all the above alternative distributions, the *G  test statistics performs better 

than the Shapiro-Wilk test for small sample size; 

 For all the V-shaped alternative distributions, including three V-shaped triangle 

distributions and the left-skewed, bathtub shaped, right-skewed Beta distribution, the 

*G  test statistics performs better than the Shapiro-Wilk test for small sample size. 

 For all the V-shaped alternative distributions and bathtub shaped Beta 

distributions, the *G  test statistics performs better than the Kolmogorov-Smirnov test 

for all cases; 
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 For the symmetric triangle alternative distribution, the *G  test statistics 

performs the best among all these cases conducted. It performs better than the Shapiro-

Wilk test does when sample sizes are 5,10,20,30 40; 

 For the left-skewed and right-skewed triangle alternative distributions, the *G  

test performs better than the Kolmogorov-Smirnov test for small sample sizes; 

 For the uniform alternative distribution, the *G  test statistics performs better 

than the Kolmogorov-Smirnov test and shows  similar power to the Kolmogorov-

Smirnov test when sample size increases; 

 For the uniform alternative distributions, the *G  test statistics performs better 

than the Shapiro-Wilk test when sample size is less than 10. 
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CHAPTER IV   CONCLUSION AND DISCUSSION 
 

The goodness-of-fit test is a statistical procedure to measure the discrepancy 

between observed values and the values expected under a specific distribution. The 

goal of the goodness-of-test is to check whether the underlying probability distribution 

differs from a hypothesized distribution. There are many existing test statistics 

including some commonly used goodness-of-fit tests such as the Shapiro-Wilk test, 

Kolmogorov-Smirnov test, Anderson-Darling test and Cramer-Von Mises test.  All 

these commonly used statistical tests can be used to test normality. Among them, an 

alternative statistical test G test for uniformity was proposed by Chen and Ye (2009). 

The test was used by Xiong (2010) to test normality for the case that both location 

parameter and the scale parameter of the normal distribution are known. The purpose 

of this thesis is to extend the result to the case that the parameters are unknown. 

Power study is conducted to compare the performance of this proposed test 

with the Shapiro-Wilk test and the Kolmogorov-Smirnov test. The result of the Monte 

Carlo simulation shows that the *G  test performs better than the Shapiro-Wilk test for 

small sample cases under all the alternative distributions used in this research. The 

*G  test also outperforms the Kolmogorov-Smirnov test in most of cases. It can also 

be found that the Shapiro-Wilk test performs better when the sample size increases. 

Since the computation of the *G test statistic is less complicated than the Shapiro-

Wilk test. Therefore, the *G  test statistics in this thesis is worth being recommended 

to be an alternative approach for testing normality, especially when the sample size is 
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small. However, when sample size increases, its power does not increase as fast as the 

Shapiro-Wilk test does. 

Since the Kolmogorov-Smirnov test and the *G  test can be used to test any 

hypothesized distribution, while Shapiro-Wilk test can be only used for checking 

normality and lognormality, the power comparison between them of normality test 

among the three tests is conducted in this research. 

 Extending the usage of the *G  test for the case that the parameters of the 

distribution are unknown is useful. When normality is tested, the mean and the 

variance of the distribution are usually unknown. For testing whether or not the 

underlying distribution of a data set belongs to a specified distribution family such as 

the normal distribution family, the exponential distribution family and so on, *G  test 

can still be used even if the parameters of the distribution are unknown.  
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Table 1 Critical Value of G test Statistic 

 

n 100.0
*G  050.0

*G  010.0
*G  005.0

*G  001.0
*G  

5 0.1865 0.2190 0.2813 0.3026 0.3414 

6 0.1664 0.1958 0.2548 0.2769 0.3190 

7 0.1492 0.1757 0.2316 0.2524 0.2955 

8 0.1349 0.1583 0.2100 0.2307 0.2743 

9 0.1227 0.1440 0.1919 0.2115 0.2508 

10 0.1127 0.1320 0.1757 0.1941 0.2340 

11 0.1040 0.1215 0.1616 0.1784 0.2164 

12 0.0965 0.1125 0.1495 0.1655 0.2024 

13 0.0900 0.1047 0.1393 0.1542 0.1883 

14 0.0841 0.0976 0.1296 0.1433 0.1759 

15 0.0791 0.0917 0.1210 0.1340 0.1649 

16 0.0705 0.0812 0.1065 0.1178 0.1445 

17 0.0705 0.0812 0.1065 0.1178 0.1445 

18 0.0669 0.0770 0.1008 0.1114 0.1370 

19 0.0635 0.0729 0.0953 0.1052 0.1295 

20 0.0605 0.0692 0.0904 0.1000 0.1225 

21 0.0577 0.0660 0.0858 0.0948 0.1159 

22 0.0552 0.0631 0.0817 0.0902 0.1109 

23 0.0529 0.0603 0.0781 0.0860 0.1049 

24 0.0507 0.0578 0.0745 0.0822 0.1004 

25 0.0487 0.0554 0.0712 0.0784 0.0961 

26 0.0469 0.0532 0.0682 0.0750 0.0916 

27 0.0453 0.0516 0.0657 0.0721 0.0878 

28 0.0437 0.0494 0.0631 0.0693 0.0845 
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29 0.0421 0.0476 0.0606 0.0664 0.0817 

30 0.0408 0.0460 0.0586 0.0642 0.0783 

31 0.0395 0.0445 0.0564 0.0617 0.0745 

32 0.0382 0.0430 0.0544 0.0595 0.0718 

33 0.0371 0.0416 0.0525 0.0575 0.0694 

34 0.0360 0.0404 0.0509 0.0555 0.0673 

35 0.0349 0.0392 0.0493 0.0537 0.0651 

36 0.0340 0.0392 0.0493 0.0537 0.0624 

37 0.0330 0.0370 0.0463 0.0506 0.0606 

38 0.0322 0.0360 0.0450 0.0490 0.0591 

39 0.0314 0.0350 0.0435 0.0472 0.0573 

40 0.0305 0.0341 0.0424 0.0461 0.0552 

41 0.0300 0.0332 0.0412 0.0448 0.0540 

42 0.0291 0.0323 0.0401 0.0435 0.0521 

43 0.0284 0.0315 0.0390 0.0424 0.0508 

44 0.0277 0.0308 0.0380 0.0413 0.0490 

45 0.0271 0.0301 0.03702 0.0401 0.0478 

46 0.0265 0.0294 0.0362 0.0392 0.0465 

47 0.0259 0.0287 0.0353 0.0382 0.0456 

48 0.0254 0.0281 0.0344 0.0372 0.0446 

49 0.0248 0.0275 0.0336 0.0363 0.0431 

50 0.0243 0.0269 0.0329 0.0355 0.0422 
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Table 2 Power Comparison : V-Shape triangle (h=0.25) 

n G-Test SW-Test KS-Test 

5 0.1680 0.1245 0.1224 

10 0.2882 0.3954 0.2371 

20 0.5390 0.8692 0.5330 

30 0.7502 0.9884 0.7425 

40 0.8915 0.9996 0.8811 

50 0.9635 1 0.9554 

 

 

Table 3 Power Comparison: V-Shape triangle (h=0.5) 

n G-Test SW-Test KS-Test 

5 0.2462 0.1681 0.1576 

10 0.5004 0.5307 0.3429 

20 0.7751 0.9586 0.3443 

30 0.9173 0.9992 0.7393 

40 0.9770 1 0.9829 

50 0.9956 1 0.9974 
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Table 4 Power Comparison: V-triangle (h=0.75) 

 

 

Table 5 Power Comparison:  Beta (α= 4, β=2) 

n G-Test SW-Test KS-Test 

5 0.0575 0.0408 0.0528 

10 0.0639 0.0650 0.0632 

20 0.0718 0.1222 0.0979 

30 0.07831 0.1856 0.1208 

40 0.0869 0.2902 0.1512 

50 0.0980 0.3935 0.1884 

 

 

 

 

 

n G-Test SW-Test KS-Test 

5 0.1690 0.1246 0.1209 

10 0.2873 0.3947 0.2366 

20 0.5378 0.8697 0.5335 

30 0.7504 0.9884 0.7413 

40 0.8916 0.9996 0.8804 

50 0.9632 1 0.9556 
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Table 6 Power Comparison: Beta (α= 0.5, β=0.5) 

n G-Test SW-Test KS-Test 

5 0.1436 0.1045 0.0964 

10 0.2135 0.2819 0.1526 

20 0.3466 0.7301 0.3376 

30 0.5043 0.9519 0.5026 

40 0.6766 0.9969 0.6643 

50 0.8271 0.9999 0.7971 

 

 

Table 7 Power Comparison: Beta (α= 2, β=4) 

n G-Test SW-Test KS-Test 

5 0.0577 0.0409 0.0527 

10 0.0635 0.0650 0.0636 

20 0.0714 0.1222 0.0981 

30 0.0780 0.1848 0.1206 

40 0.0869 0.2909 0.1519 

50 0.0975 0.3924 0.1889 
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Table 8 Power Comparison: Beta (α= 1, β=1) 

n G-Test SW-Test KS-Test 

5 0.0721 0.0451 0.0523 

10 0.0921 0.0763 0.0626 

20 0.1161 0.2033 0.1072 

30 0.1394 0.4122 0.1434 

40 0.1713 0.6869 0.1945 

50 0.2111 0.8601 0.2574 

 

 

Table 9 Power Comparison: Triangle (h=0.25) 

n G-Test SW-Test KS-Test 

5 0.0614 0.0433 0.0552 

10 0.0716 0.0712 0.0710 

20 0.0837 0.1372 0.1220 

30 0.0923 0.2147 0.1608 

40 0.1026 0.3417 0.2090 

50 0.1143 0.4604 0.2663 
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Table 10 Power Comparison: Triangle (h=0.5) 

n G-Test SW-Test KS-Test 

5 0.0495 0.0334 0.0451 

10 0.0512 0.0342 0.0417 

20 0.0537 0.0336 0.0441 

30 0.0538 0.0364 0.0401 

40 0.0539 0.0559 0.0402 

50 0.0550 0.0753 0.0416 

 

 

Table 11 Power Comparison: Triangle (h=0.75) 

n G-Test SW-Test KS-Test 

5 0.0612 0.0433 0.0556 

10 0.0713 0.0708 0.0707 

20 0.0833 0.1376 0.1219 

30 0.0931 0.2154 0.1604 

40 0.1030 0.3409 0.2097 

50 0.1146 0.4598 0.2655 
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Figure 1 Power Comparison: V-Shape triangle (h=0.25) 

 

 

Figure 2 Power Comparison: V-Shape triangle (h=0.5) 
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Figure 3 Power Comparison: V-triangle (h=0.75) 

 

 

Figure 4 Power Comparison: Beta ( 2,4   ) 
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Figure 5 Power Comparison: Beta ( 5.0,5.0   ) 

 

 

Figure 6 Power Comparison: Beta ( 4,2   ) 
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Figure 7 Power Comparison: Beta ( 1,1   ) 

 

 

Figure 8 Power Comparison: Triangle (h=0.25) 
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Figure 9 Power Comparison: Triangle (h=0.5) 

 

 

Figure 10 Power Comparison: Triangle (h=0.75) 
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