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ABSTRACT OF THE DISSERTATION 

TECHNIQUES FOR EFFICIENT EXECUTION OF LARGE-SCALE SCIENTIFIC 

WORKFLOWS IN DISTRIBUTED ENVIRONMENTS 

by 

Selim Kalayci 

Florida International University, 2014 

Miami, Florida 

Professor S. Masoud Sadjadi, Major Professor 

Scientific exploration demands heavy usage of computational resources for large-scale 

and deep analysis in many different fields. The complexity or the sheer scale of the 

computational studies can sometimes be encapsulated in the form of a workflow that is 

made up of numerous dependent components. Due to its decomposable and parallelizable 

nature, different components of a scientific workflow may be mapped over a distributed 

resource infrastructure to reduce time to results. However, the resource infrastructure 

may be heterogeneous, dynamic, and under diverse administrative control. Workflow 

management tools are utilized to help manage and deal with various aspects in the 

lifecycle of such complex applications. One particular and fundamental aspect that has to 

be dealt with as smooth and efficient as possible is the run-time coordination of workflow 

activities (i.e. workflow orchestration). Our efforts in this study are focused on improving 

the workflow orchestration process in such dynamic and distributed resource 

environments. We tackle three main aspects of this process and provide contributions in 

each of them. Our first contribution involves increasing the scalability and site autonomy 

in situations where the mapped components of a workflow span across several 
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heterogeneous administrative domains.  We devise and implement a generic 

decentralization framework for orchestration of workflows under such conditions. Our 

second contribution is involved with addressing the issues that arise due to the dynamic 

nature of such environments. We provide generic adaptation mechanisms that are highly 

transparent and also substantially less intrusive with respect to the rest of the workflow in 

execution. Our third contribution is to improve the efficiency of orchestration of large-

scale parameter-sweep workflows. By exploiting their specific characteristics, we provide 

generic optimization patterns that are applicable to most instances of such workflows. We 

also discuss implementation issues and details that arise as we provide our contributions 

in each situation.
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CHAPTER 1  

INTRODUCTION 

Scientific workflows are abstractions that capture the business logic of many 

complex applications in different scientific disciplines. More specifically, these 

workflows encapsulate and represent all of the various tasks and data artifacts associated 

with the application lifecycle. Regardless of the size and complexity of the specific 

scientific workflow, Directed-Acyclic-Graphs (DAGs) are a powerful and well-

established method used by many scientists/developers. 

Lifecycle of a typical scientific workflow begins with the specification of 

individual tasks and artifacts, and dependencies among them. This specification is free of 

some concrete run-time specific details, and it is mostly referred to as the abstract 

workflow. Abstract workflows more often than not do not address run-time specific 

details, such as the exact names and locations associated with data artifacts and details 

about the exact mapping of tasks on physical resources.  For such an abstract workflow to 

run successfully to completion, those details need to be determined prior to or during the 

execution of the workflow. This process can be referred to as the concretization of the 

workflow. However, the concretization of the workflow should not be the responsibility 

of the scientist, or even the application developer; as a matter of fact, it has to be 

automated as much as possible based on the criteria provided by the user. 

During the concretization process, one essential step is the mapping of workflow 

tasks onto physical resources. The main goal here is to achieve the minimum makespan 

possible for the execution of the whole workflow. Makespan metric here can be defined 

as the total wall-clock time it takes to execute all of the tasks of a workflow. As such, 
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characteristics of tasks (e.g. estimated runtime) and data artifacts (e.g. estimated size), as 

well as the availability and characteristics of physical resources, play a major role during 

this mapping process.  

Due to the highly parallelizable nature of large-scale workflows, parallel tasks can 

be ideally deployed on parallel resources. Sometimes, these parallel resources may span 

across multiple computational domains, as in the case of a hybrid (public + private) 

cloud, academic cloud (e.g. FutureGrid [1]), and national/international 

cyberinfrastructure (e.g. XSEDE [3], Open Science Grid [2]). In such a scenario, 

mapping and orchestration of the workflow also spans across multiple domains. The key 

common attributes of such multi-site resources are the heterogeneity and dynamicity of 

the resources in terms of size and capability, as well as heterogeneous access and priority 

rights assigned to the users by local administrators. All these factors pose many 

challenges to the successful and effective execution of workflows conforming to the 

makespan requirements of the user. 

In this dissertation, we tackle three main issues to help improve the orchestration 

efficiency of large-scale workflows that span across multiple sites of resources. First, we 

provide a generic decentralization framework for such workflows. This framework also 

provides the common infrastructure for our efforts, tackling the second and third issues. 

Second, we provide generic run-time adaptation mechanisms to help alleviate the 

problems mainly associated with the dynamic nature of resources. Third, we provide 

additional mechanisms to further optimize the orchestration of large-scale parameter 

studies. 
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1.1 DECENTRALIZATION OF THE WORKFLOW ORCHESTRATION 

Regardless of being in an abstract or concrete form, a scientific workflow is 

usually crafted and enacted at a single central location. This means, except for a few 

proprietary solutions, the execution logic of the workflow is handled by a single, central 

workflow execution manager. This central manager keeps track of the progress of tasks 

and coordinates the timely execution of each task based on the specifications of the 

workflow. 

The central workflow manager handles the execution of the workflow even if the 

mapped tasks of the workflow span across multiple sites. Especially in such a scenario, 

employment of a single central workflow execution manager raises several efficiency and 

decision-making accuracy issues. First of all, employing a single central manager 

necessitates each individual activity to be monitored and orchestrated by this central 

manager. For a large-scale workflow (i.e. comprised of a large number of tasks) that is 

mapped on multiple and potentially long-distance sites, orchestration efficiency becomes 

a real issue. Another important issue is the level of information sharing among partnering 

sites. The more detailed resource and workload information that is shared among 

partners, the better decisions can be made by the workflow execution manager(s) to take 

actions in response to changing conditions. However, due to administrative and technical 

reasons (e.g. size of information, delay), it is not possible for a remote workflow 

execution manager to have the same level of information about a certain site’s resources 

compared to its local counterpart. This can cause the central workflow execution manager 

to make non-optimal decisions during run-time adaptation. 
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To overcome these issues, our proposal is to transfer the responsibility of the 

orchestration of the whole workflow from a single workflow execution manager to 

several collaborating workflow execution managers. According to this, each local 

workflow execution manager is going to be responsible for the orchestration of the tasks 

that are mapped locally. At the same time, peer local workflow execution managers 

synchronize among each other when necessary, specifically, to fulfill the requirements of 

those control/data dependencies that span across them.  By collaboratively carrying out 

these activities, the orchestration of the whole workflow is achieved without affecting the 

business logic of the workflow. Through this peer-to-peer orchestration approach, we are 

able to provide (i) improved efficiency for large-scale workflow executions, (ii) better 

results from run-time adaptation. 

We propose a systematic and generic framework for transforming the centralized 

orchestration to a collaborative orchestration via the utilization of DAG transformation 

patterns. Also, we provide a prototype implementation of our framework on a standard 

workflow orchestration tool. However, our framework is generic enough and can be 

easily incorporated by other orchestration tools. 

1.2 RUN-TIME ADAPTATION 

Due to the dynamic nature of the execution environment, certain changes may 

need to be made to the original workflow execution plan at the run-time to meet users’ 

QS requirements. The most common and obvious dynamic change in the execution 

environment is the availability of hardware resources for the utilization of workflow 

tasks. The availability of these resources may change basically due to hardware failures, 

increased workload, and higher priority tasks being deployed in the system. Especially 
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long-running and large-scale workflows are highly susceptible to these kinds of changes 

in the execution environment. Under these circumstances, to be able to execute a 

workflow successfully within QS requirements, proper changes have to be made to the 

original execution plan. 

There are two main issues involved within the run-time adaptation process. The 

first major issue is the planning phase for the run-time adaptation. This phase includes the 

continuous monitoring of workflow progress and resources, and detecting a situation that 

necessitates the run-time adaptation process. After the detection, an appropriate 

corrective action has to be planned to cope with the situation. The second major issue in 

the run-time adaptation process is the enactment of the proposed adaptation plan to the 

ongoing workflow execution process in an efficient and non-intrusive manner. In our 

studies, we focus only on the second aspect of the run-time adaptation process. 

A standard run-time adaptation plan [76 – 78] basically makes changes to the 

original execution plan by modifying the mapping (hence, the execution) site of tasks. 

Modifications to the mapping site of tasks need to be reflected and implemented 

accordingly by the workflow execution manager(s). Here, we provide a run-time 

adaptation framework that integrates with the decentralization framework briefly 

explained above. One key aspect of our framework is the low-level of intrusiveness to 

carry out the adaptation process.  Our pattern-based framework has little effect on the 

ongoing workflow execution process. The peer workflow execution managers implement 

the re-mapping of tasks without any disruption to the orchestration of the rest of the 

workflow. 
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1.3 OPTIMIZATION FOR PARAMETER-STUDIES 

Parameter studies enable the conduct of research for a certain experiment on a 

varying set of data and under various possible circumstances. Through the automated 

design and execution of such studies, large amounts of data/parameters can be processed 

and analyzed; and as a result more accurate research outcomes can be acquired. These 

types of studies are prevalent in a large and diverse group of research fields, such as 

bioinformatics, earthquake science, weather predictions, and molecular dynamics. 

Automated design of parameter studies generally results in a simple and well-

defined structure, which can be easily represented as a DAG-based workflow. We will be 

referring to this type of workflow as a parameter-sweep workflow [79, 80]. Depending on 

the size and scale of the parameter study, these workflows may contain large numbers of 

computational tasks, which are generally highly-parallelizable. Built up on our existing 

decentralized orchestration framework, our optimization mechanisms proposed are 

targeted especially for large-scale parameter-sweep workflows. However, those 

optimization mechanisms may also be applicable to more general workflow instances. 

By exploiting the specific characteristics of parameter-sweep workflows, we 

introduce patterns to optimize the decentralized orchestration process of such workflows. 

Optimization patterns we introduce suggest minor changes in the structure of the 

workflow and the business logic of certain tasks. As long as they are done properly, we 

argue that these changes would not affect the validity and integrity of results. To this end, 

consultation with a scientist and/or a domain expert to verify the appropriateness of such 

changes may be optional or required depending on the case scenario. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 SCIENTIFIC WORKFLOWS 

Scientific workflows [81] are standard abstractions used to represent composition 

of large-scale scientific applications. Such composite applications are typically comprised 

of multiple stand-alone tasks brought together to perform complex operations. Different 

phases of such complex applications are crafted separately and then put together in the 

form of a workflow. The relationships among tasks that depend on each other are 

specified in the form of control/data dependencies among them. We can see many 

examples of such workflows in astronomy [4], climatology [5], bioinformatics [6], and 

many other scientific disciplines. In general, workflows can be categorized as 

computation-intensive or data-intensive workflows, depending on the majority of work 

being performed on computation or data transfer. 

Most scientific workflows can be abstracted and represented as a DAG G = (V, 

E), where V = {V1, V2, …, Vn} is the set of vertices that correspond to the tasks 

comprising the workflow and E = {E1, E2, …, Em} is the set of edges that correspond to 

the dependencies among tasks in V. Any workflow manager’s fundamental task is to 

successfully execute each of the tasks in V complying with the dependency relationships 

among them. For example, if there is a control/data dependency between tasks Vx and Vy, 

Vy can start execution only after that dependency has been met after the successful 

completion of task Vx. 

Workflow management systems [82, 83] deal with various phases of workflows 

throughout their lifetime. A typical workflow basically goes through composition, 
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deployment, mapping onto resources, and execution phases. A workflow management 

system typically receives as input abstract workflow specifications and is required to map 

them onto concrete distributed resources (possibly managed under different 

administrative domains). A workflow management system decides where to map each 

individual task among potential resources based on the information available about the 

workflow application and available resources. Mapping decisions are given in such a way 

to optimize the desired objectives, such as application performance, utilization of 

resources, and cost associated with the execution of the application. 

Due to the dynamic and heterogeneous nature of distributed resource 

environments, there is no deterministic solution to the workflow mapping problem [84]. 

Also, it is possible that mapping decisions made earlier may need to be revised during the 

execution of the workflow. After the workflow is mapped onto resources, the execution 

of the workflow has to be orchestrated. Workflow orchestration basically refers to the 

complete and accurate execution of all the tasks comprising the workflow, respecting the 

control and data dependencies among them as specified in the workflow specification. 

Fig. 2.1 illustrates the basic architecture and functionalities supported by various 

components of the workflow management systems. We can categorize the basic 

functionalities of workflow management systems as build-time functionalities and run-

time functionalities. Build-time functionalities refer to the process of defining and 

modeling the individual tasks that comprise the workflow and dependencies among them. 

Run-time functionalities refer to the process of carrying out the execution of workflow 

tasks and the process of interacting with resource environment in association with the 

workflow execution. 
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During a typical lifecycle of a certain workflow application, users first utilize 

some kind of a workflow-modeling tool and generate the specification of the workflow. If 

this specification is abstract, it has to be transformed into a concrete specification. Then, 

this concrete specification is passed onto the workflow enactment component (a.k.a 

workflow execution engine) for execution. Basic functionalities provided by workflow 

enactment component can be listed as scheduling, fault management, and data movement 

services. 

 

Figure 2.1: Overview of the workflow lifecycle 

2.1.1 Workflow Design 

 Workflow design can be categorized under three main aspects. Those aspects 

namely are: workflow structure, workflow specification, and workflow composition. 
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2.1.1.1 Workflow Structure 

 Connecting multiple tasks according to their dependencies composes a workflow. 

The structure of the workflow indicates the temporal relationship among tasks. In 

general, a workflow can be represented as a Directed Acyclic Graph (DAG) or a non-

DAG. 

In a DAG-based workflow, structure of the workflow can be decomposed into 

sequence, parallelism, and choice patterns. In a sequence pattern, series of tasks are 

ordered in succession, with one task starting after a previous task has completed. 

Parallelism pattern represents tasks which can be performed concurrently, rather than 

serially. In the choice pattern which is not that common in practice, a task is selected to 

execute or not at runtime based on the runtime values of its associated conditions. 

In addition to all patterns contained in a DAG-based workflow, a non-DAG 

workflow also includes the iteration pattern. Iteration is also known as loop or cycle. In 

this pattern, portions of workflow tasks in an iteration block are allowed to be repeated. 

The iteration structure can be quite handy if used properly, since repeated executions are 

quite common in scientific applications. 

These four workflow structure patterns, namely sequence, parallelism, choice and 

iteration, can be used to construct many complex workflows. In addition, large-scale 

workflows can be easily constructed through recurrent usage of these patterns. 

2.1.1.2 Workflow Specification 

 Workflow specification provides the task and dependency information that make 

up the workflow application.  There are two main types of workflow specification, 
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namely abstract specification and concrete specification. In some literature, concrete 

specification is also referred as executable specification. 

In an abstract specification, a workflow is described in an abstract form in which 

the workflow is specified without referring to specific resource information that is used 

for actual task execution. Users/Developers of workflow applications, almost always use 

abstract specification method to define their workflow application. This way they need 

not concern themselves with resource-specific details. Those resource-specific details are 

generally not static information anyways, which makes an otherwise specification 

(concrete specification) infeasible in those cases. Another advantage of using an abstract 

specification is the ease of re-use and also the sharing of the workflow specification with 

others. However, when an abstract specification is used to define a workflow application, 

it first needs to go through concretization process. Various resource discovery and 

mapping mechanisms are generally used to help automate this process. 

In a concrete workflow specification, tasks are associated with specific resources 

at build time. In some cases, a concrete specification may need to specify additional tasks 

to provide data staging in and out of computational resources to facilitate the proper 

execution of the workflow. In some cases again, it may even be needed to specify the 

transfer of computational code among resources yet again to facilitate the proper 

execution of the workflow. 

Based on the basic descriptions given about both types of specifications, it is more 

suitable for users to define workflow applications in abstract form, especially in a diverse 

and heterogeneous resource environment. 



12 
 

2.1.1.3 Workflow Composition 

Workflow composition tools provide capabilities for users to design, create, and 

assemble components of a workflow. Ideally, these tools need to supply a high-level view 

to accomplish these tasks as they hide the unnecessary complexities of the rest of the 

system. 

There are two basic categories of tools for workflow composition. In the first 

category, we find user-directed tools that let users generate workflows through a 

language-based environment. The second category belongs to the group of composition 

tools that allow users to generate workflows through graph-based modeling. 

As part of language-based composition tools, most provide an Extensible Markup 

Language (XML) [7] based markup environment (e.g., WSFL [8], BPEL4WS [9], and 

Gridbus workflow [10]). Some proprietary language formats also do exist (e.g., Condor 

DAGman [11, 16]). Since, it requires manual composition of workflows through a certain 

specific syntax; language-based tools are not suitable for most users. Also, even for 

experts of the syntax, it would be really difficult and time-consuming to compose large 

workflows. However, these language-based formats are better suited for sharing and 

manipulation of workflows. So, even though original composition of workflows may be 

crafted through a graph-based tool, language-based tools bridge the gap between 

workflow execution engine and the graph-based composition. 

Graph-based tools allow composition of workflows through intuitive graphical 

elements. Most such tools provide a simple click and drop interface and hides all other 

details of a workflow specification. Petri Nets [12, 13] and UML (Unified Modeling 
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Language) [14] formats are used by some of these tools. However, majority of tools are 

proprietary. 

Graph-based modeling allows graphical definition of an arbitrary workflow 

through a few basic graph elements. It allows users to work with a graphical 

representation of the workflow. Users can compose and review a workflow by just 

clicking and dropping the components of interest. It avoids low-level details and hence 

enables users to focus on higher levels of abstraction at application level. The major 

modeling approaches are Petri Nets, UML [85], and user-defined component. Graph-

based modeling is preferred by users as opposed to language-based modeling. 

Since graph-based tools are easy to use and generate results quickly, most users 

prefer them over language-based tools. However, if the workflow to be designed is large, 

graphical composition gets challenging. In those circumstances, most graph-based tools 

allow hierarchical composition mechanisms. 

2.1.2 Workflow Scheduling 

Casavant et al. [15] categorizes task scheduling in distributed computing systems 

into global task scheduling and local task scheduling. Global task scheduling is 

concerned with deciding on which resource to execute a task. On the other hand, local 

task scheduling is concerned with assigning the time-slice of a certain resource to execute 

a task. Based on these categories, we have to indicate that the workflow scheduling 

concept falls under the global task scheduling category. 

Especially in distributed resource environments under diverse administrative 

domains, the process of workflow scheduling gets more complex. Because, on top of the 

existing complexities of scheduling workflows in a single-domain resource environment, 
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resource capabilities and policies are now diverse and heterogeneous under these 

circumstances. 

Task scheduling is a very complicated and extensively studies area which is not 

addressed here in a comprehensive manner. We only provide those major concepts and 

issues most relevant to the concept of workflow scheduling [86 – 90]. Namely, we 

discuss various workflow scheduling architectures and the planning schemes for 

workflow scheduling. 

2.1.2.1 Workflow Scheduling Architecture 

The architecture of the workflow-scheduling infrastructure is very important for 

scalability, autonomy, quality and performance of the system. Three major categories of 

workflow scheduling architecture are centralized, hierarchical and decentralized 

scheduling architecture. 

In a centralized architecture, one central workflow scheduler makes scheduling 

decisions for all tasks in the workflow. The scheduler should have the information about 

the entire workflow and periodically collects information of all available resources. 

Ideally, the centralized architecture results in efficient scheduling, due to the fact that the 

central scheduler has the up-to-date information about all the resources. However, the 

major disadvantage of centralized architecture is its scalability. Scalability of the 

centralized architecture suffers as the size of the workflow and resources grow. Another 

disadvantage with it is the problem of single-point of failure. 

In hierarchical scheduling architecture, there is a central manager and multiple 

sub-workflow schedulers. The central manager is responsible for controlling the overall 

workflow execution and it assigns sub-workflows to the low-level schedulers. Lower-
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level schedulers are responsible for scheduling tasks in a sub-workflow onto resources 

owned by the local organization. The biggest advantage of the hierarchical scheduling 

architecture is that each scheduler can utilize different scheduling policies. However, this 

architecture also suffers from the single-point of failure problem. 

In decentralized scheduling architecture, multiple schedulers coordinate the 

scheduling of the whole workflow without a central scheduler. Peer schedulers 

communicate with among themselves and can exchange sub-workflow schedules based 

on their local loads. Decentralized architecture is even more scalable than the hierarchical 

architecture; however it requires more complicated effort to establish and sustain the 

coordination among multiple schedulers. 

Both hierarchical and decentralized scheduling architecture are more scalable than 

the centralized architecture. However, since the scheduling of sub-workflows is done 

independently, the overall workflow schedule may not be optimal. Another problem is 

that, if not coordinated properly, multiple schedulers may produce conflicting scheduling 

decisions. 

2.1.2.2 Workflow Scheduling Plans 

 There are three schemes to plan the scheduling of workflows. These schemes 

namely are: static scheme, dynamic scheme, and hybrid scheme. In a static scheme, 

concrete workflow specification is generated prior to the execution of the workflow. In 

dynamic scheme, scheduling of workflow tasks is done at run-time. Hybrid scheme 

blends these two schemes and performs the scheduling of workflow tasks prior to run-

time (static scheme); however the active scheme is revised and updated at the run-time if 

needed (dynamic scheme). 



16 
 

 Static workflow scheduling scheme is also referred as full-ahead planning. In full-

ahead planning [91, 92], resource information is utilized to make scheduling decisions 

only prior to the execution of workflow. Thus, full-ahead planning is more suitable on 

resource environments where the availability and capability of resources do not change 

much over time. Generally, two different strategies are used to perform full-ahead 

planning. One of them is the user-directed planning. In this strategy, users decide or 

direct the decision for the scheduling of tasks based on their knowledge and experience 

regarding both resource environment and task execution. The other strategy is the 

simulation-based planning. In simulation-based planning, scheduling decisions are made 

based on the best schedule achieved simulating the execution of workflow tasks. 

 Dynamic workflow scheduling scheme is also referred as just in-time scheduling 

[93, 94]. Accordingly, the scheduling of each task or group of tasks is done at run-time 

right before the task is ready to be executed. This scheme is proposed for and suitable 

especially for highly dynamic resource environments. In such resource environments, 

availability and utilization of resources change dramatically over time. Thus, it is very 

difficult to come up with efficient scheduling decisions with a static plan. The major 

disadvantage of dynamic scheme is the overhead incurred due to run-time scheduling of 

tasks. 

Finally, the hybrid scheme brings the best of static scheme and dynamic scheme 

together. As mentioned, using a hybrid scheme [76, 95], first a static scheduling plan is 

made prior to workflow execution. Then, periodically or when the need arises, scheduling 

plans are updated at run-time. Hybrid scheme is suitable especially for resource 

environments where the availability and utilization of resources change occasionally. 
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2.1.3 Fault Tolerance in Workflow Management 

Execution of a task may fail due to myriad reasons in almost all computerized 

systems; which must be dealt with using proper methods accordingly with the specific 

environment.  Workflows are made up of several tasks, and those tasks are prone to 

failure. If not configured in a specific way, the failure of even a single task may result in 

the failure of the whole workflow. 

There are many reasons that would induce task failure on a single resource. In a 

dynamic and heterogeneous distributed resource environment situation gets worse. For 

this type of resource environments, some common reasons that would cause task failure 

include: non-availability of require service or components in a resource, variation in the 

execution environment configuration or policies, resource overload, and failure on 

network fabric. 

Due to the sheer size and volume of computation and data involved, it is very 

important that a workflow management system to be capable of certain fault-management 

mechanisms. A workflow management system has to be able to detect failures and 

provide mechanisms to handle failures properly. 

Workflow failure handling can be managed at either the task-level or workflow-

level [96]. At task-level, methods are developed to prevent or alleviate the effects of task 

failures. Workflow-level methods provide mechanisms to deal with failures by modifying 

the structure of the workflow accordingly. 
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2.1.3.1 Task-level Fault Tolerance 

 Task-level techniques have been widely studied in parallel and distributed 

systems. Some common techniques include task retry, alternate resource, application 

checkpoint/restart and replication. 

Task retry technique is a very simple and intuitive failure recovery technique. In 

this technique, same task is tried to be executed on the same resource after the failure. 

Alternate resource technique is also simple and similar to the previous technique. In this 

case, the failed task is submitted to execute on another resource. Application 

checkpoint/restart techniques transparently creates checkpoint during task execution and 

in the case of a failure resumes the execution of the task from last stable checkpoint. In 

the replication technique, the same task is simply run on multiple resources at the same 

time. This way, the success rate of the application improves as long as one of the replicas 

completes successfully. 

2.1.3.2 Workflow-level Fault Tolerance  

 Workflow-level fault-handling techniques include alternate task, redundancy, 

user-defined exception handling and rescue workflow. 

In the alternate task technique, another implementation of the failed task is 

considered. In the redundancy technique, multiple alternative implementations are 

considered at the same time, similar to the replication technique. In the user-defined 

exception handling technique, user may specify a certain way to deal with a failure. For 

example, the user may tag a certain task as optional, so that the workflow execution can 

continue even if that task fails. In the rescue workflow technique, first developed by 

Condor DAGMan [11, 16], task failures are ignored and the execution of the workflow is 
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continued until it cannot progress any further. Then, the system automatically generates a 

special workflow specification called rescue DAG. This rescue DAG can be submitted 

later after any necessary actions are taken to mitigate the problem. 

2.1.4 Information Retrieval 

A workflow management system does not execute the tasks itself; rather it simply 

coordinates the execution of the tasks by the computational resources. As mentioned 

earlier, an abstract workflow has to be mapped onto resources, which would result in a 

concrete workflow. During this mapping process, information about the resources has to 

be retrieved from appropriate sources. The information retrieval [97, 21] can be 

categorized as three different dimensions, namely static information, dynamic 

information, and historical information. 

Static information refers to information that does not typically change over time. 

This type of information includes infrastructure-related information, such as the number 

of processing cores and the processor clock speed. It also refers to some basic software 

configuration information, such as the operating system, and certain software libraries. 

Another type of information includes user-related and accounting information. Generally, 

the static information is used to make first-level elimination during the mapping process 

to eliminate those resources that are not suitable to perform task execution. 

In a dynamic and distributed resource environment several types of dynamic 

information is very important to the proper mapping of workflow. Some basic 

information that changes dynamically on resources include, queue length of a cluster, 

processor load, network load, and available disk space. Dynamic information is generally 

used to rank resources that are available to execute a task. 
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Historical information refers to the information stored about resources and 

applications based on previous events. This information can be used to predict future 

behavior of resources and applications. Using this information, more reliable decisions 

can be made regarding the mapping and execution of workflow tasks. 

2.2 PEGASUS WORKFLOW MANAGEMENT SYSTEM 

Pegasus [17, 18] is a workflow management system project developed at 

University of Southern California. At the highest level Pegasus works as a workflow 

mapper. Accordingly, it takes an abstract workflow specification and generates a concrete 

workflow by mapping the components of the workflow on local, Grid and/or cloud 

computing resources. 

Pegasus consults various resource information services to find the computational 

and application resources needed for the workflow. A service called Replica Location 

Service (RLS) [19] is used to locate the replicas of the data required in the workflow. 

Similarly, another service called Transformation Catalog (TC) [20] is used to find the 

location of the logical application components (e.g. application software) in the 

workflow. Pegasus also queries Globus Monitoring and Discovery Service (MDS) [21] to 

retrieve information regarding resources and their characteristics. 

Default behavior for scheduling of workflow tasks in Pegasus is based on static 

planning.  However, it also provides support for just in-time scheduling and pluggable 

task scheduling strategies. The concrete workflow is transformed into Condor jobs which 

are orchestrated by Condor DAGMan metascheduler. Fig. 2.2 illustrates the high-level 

layout of the software stack for a typical Pegasus workflow management system 

configuration. 
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Figure 2.2: Pegasus software stack 

Based on this high-level layout, Fig. 2.3 gives a more detailed look at the 

interactions and configurations of these components. At the highest-level Pegasus mapper 

transforms an abstract workflow into a concrete workflow. The concrete workflow is then 

passed onto Condor DAGMan, which acts a metascheduler or more commonly referred 

as in the literature workflow execution engine. Condor DAGMan is a metascheduler, 

hence it does not perform the actual scheduling of jobs itself. In fact, it too depends on 

another layer of software, which is Condor Schedd (scheduler daemon). Condor job 

scheduler performs the actual scheduling of jobs on resources. More information about 

Condor DAGMan and Condor will be given in the next sections. 
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Figure 2.3: Basic configuration and interactions among Pegasus components 

After the mapping of the workflow is completed, Pegasus performs possible 

runtime optimizations. First optimization technique is the workflow reduction, where 

getting rid of some tasks by accessing the already existing output reduces the components 

found in the workflow. Second optimization technique is the clustering, where more than 

one job are clustered into a single cluster of jobs to increase the granularity, so as to 

decrease the scheduling overhead. Third optimization technique is the use of multi-

processor systems. 

Workflow reduction process basically involves skipping the computation of 

certain tasks if the outcome of those tasks already exist somewhere in the system (found 

via RLS). The rationale behind this optimization is the assumption that the computation 

of the data will take longer than transferring the existing data. If such an optimization is 
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performed, in the concrete workflow some of the computational tasks are replaced by 

data transfer tasks. 

Clustering optimization is performed due to two major concerns. First, by 

clustering multiple individual tasks into a single task, the overhead for maintaining large 

number of tasks is lowered by the system. Second, multiple jobs are dispatched at once at 

the target environment instead of being dispatched one by one. This decreases the waiting 

time for jobs at the execution environment. 

Another possible optimization technique is the use of MPI (Message Passing 

Interface) clustering. In this technique, multiple independent jobs are wrapped inside a 

simple MPI program. By this technique, two kinds of optimization benefits mentioned in 

the previous paragraph are achieved. Also, due to the independent characteristics of these 

tasks, they can be executed completely in parallel, which further improves the 

performance. 

After the optimization operations are completed, data stage-in and data stage-out 

jobs are added to the concrete workflow specification. This is a critical step in 

transforming an abstract workflow specification into a specification that can be actually 

executed on the resource environment. Because abstract workflow specifications don’t 

include the physical resource and naming information for the data artifacts that will be 

consumed/generated throughout the lifecycle of the workflow. 

As the final step, Pegasus performs the generation of specific artifacts, namely the 

submit files, that are passed on to the Condor DAGMan. Condor DAGMan takes all these 

submit files and coordinates the execution of workflow tasks accordingly. The details of 

these activities will be discussed in the next sections. 
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2.3 CONDOR DAGMAN 

The Condor Directed Acyclic Graph Manager (DAGMan) [11, 16] is basically a 

meta-scheduler for Condor jobs. As such, it handles the dependencies among jobs. As its 

name implies, it uses DAG as the workflow structure to represent job dependencies. Each 

job is a node in the DAG structure and the edges of the graph identify the dependencies 

among jobs. Each node can have any number of parent or children nodes. Children nodes 

cannot run until their parent nodes have completed their execution. As the definition of it 

implies, cycles are prohibited in a DAG. That means two jobs cannot have bidirectional 

dependencies, or in other words they cannot descend from one another. 

Fig. 2.4 illustrates the flow of interactions during the execution of a sample DAG 

(typically specified in a .dag file). As can be seen, Condor DAGMan acts only as a 

metascheduler. The actual scheduling of each individual job is handled by another 

component, Condor or Condor-G (discussed later). 

 

Figure 2.4: Condor DAGMan interactions during DAG execution 

Condor DAGMan does not support automatic intermediate data movement. Thus, 

users are responsible to specify data movement actions through pre-processing and post-

processing commands associated with the processing of the job. 
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2.3.1 Condor DAGMan Node 

In Condor DAGMan architecture, a DAG is composed of nodes that define 

computational and data requirements of the application. Fig. 2.5 illustrates the elements 

of a Condor DAGMan node. The main component is the Condor Job, which is specified 

in a specific Condor job submission file (discussed in the next section about Condor). 

PRE and POST scripts are optional components. PRE script is commonly used to perform 

data stage-in operations. POST script is commonly used to clean up unnecessary files or 

to perform data stage-out operations. 

 

Figure 2.5: Condor DAGMan node 

Condor DAGMan monitors the exit values of jobs and scripts, and behaves 

accordingly with these values. If the PRE script fails then the Condor job is not run. If the 

PRE script returns an exit value of 0, then the Condor job can be submitted. If the Condor 

job fails and there is no POST script in the node, then the DAG node also fails. However, 

if the Condor job fails and there is a POST script in the node, then the node 

success/failure is determined by the exit value of the POST script. By default, the POST 

script is run even if the Condor job fails. Thus, it is important to make sure to check the 

return value of the Condor job to get expected results. 
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Table 2.1 provides node success/failure outcomes based on all possible values of 

node components. (S represents success, and F represents failure. (-) symbol indicates the 

lack of a certain script. The asterisk (*) symbol indicates that the POST script is run.) 

PRE - - F F S S - - - - S S S S 

JOB S F not run not run S F S S F F S F F S 

POST - - S* F* - - S F S F S S F F 

node S F S* F S F S F S F S S F F 
 

Table 2.1: Node success or failure definition [22] 

2.3.2 Condor DAGMan Input File 

The input file used by Condor DAGMan is called a DAG input file. All items are 

optional, other than that there must be at least one JOB item.  

The lines starting with the pound character (#) identifies that line as a comment.  

A simple diamond-shaped DAG is shown in Fig. 2.6. This DAG contains 4 nodes. 

 

Figure 2.6: Diamond DAG 

A sample DAG input file for this diamond-shaped DAG is illustrated in Fig. 2.7. 
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Figure 2.7: Diamond DAG input file 

 Here, we briefly explain the basic keywords and the structure of a DAG input 

file description. First of all, every DAG input file must contain at least one Condor job 

that is indicated by the JOB keyword. Each JOB must be associated with a unique name 

(JobName). With each JOB definition, the name of the associated Condor submit file 

must also exist (e.g. ‘A.condor’). The requirements and details of the actual Condor job is 

specified within this Condor submit file. There is also an optional DONE keyword that 

can be used in a JOB line. DONE keyword indicates that the node has already completed. 

This is mainly used by rescue DAGs that are generated automatically by Condor 

DAGMan when the execution of the workflow fails for any reason. By associating those 

nodes that have already completed with the DONE keyword, Condor DAGMan avoids 

those tasks to be run again when the rescue DAG is submitted at a later time. 

 The PARENT and CHILD keywords specify the dependencies among jobs 

within the DAG. Each node has to be specified as either parent and/or a child in a DAG.  

A parent node must be completed successfully before any of its children may be started. 

A child node may be started only after all its parents have completed successfully. 

 To specify a PRE script associated with a certain Condor Job, SCRIPT PRE 

keyword is used together with the associated JobName. Similarly, to specify a POST 

    # diamond.dag input file  
    # contains 4 nodes 
 
    JOB  A  A.condor  
    JOB  B  B.condor  
    JOB  C  C.condor  
    JOB  D  D.condor 
    PARENT A CHILD B C 
   PARENT B C CHILD D
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script associated with a certain Condor Job, SCRIPT POST keyword is used together 

with the associated JobName. In both cases, the name of the specific script to be run must 

be provided. 

 There are several other optional keywords that can be used in a DAG input file. 

However, the keywords described above provide sufficient capability for most of the 

typically used DAG workflows. 

2.3.3 Condor  

Condor [23] is a specialized resource management system project developed at 

the University of Wisconsin-Madison. Condor provides a High Throughput Computing 

(HTC) environment from large collections of distributed computing resources ranging 

from desktop computers to supercomputers. 

Condor also performs as a batch scheduler, and accordingly provides a queuing 

mechanisms, scheduling policies, and priority schemes. End-users submit their 

computational jobs through an interface, which are placed in one of the Condor job 

queues. Condor then takes care of the handling and execution of the job. Job is 

dispatched to a specific resource and executed, after which the user is informed regarding 

the results of their job. 

Job dispatch in Condor occurs according to the matchmaking mechanism in 

Condor. Through matchmaking mechanism jobs and available resources are matched 

with each other according to their job requirements and resource classified 

advertisements. When more than one resource satisfies the requirements of job, the 

resource with higher rank value is chosen. 
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Condor provides support for checkpoint and migration mechanisms. This way, 

should there be a fault or change in the utilization of a resource, execution of a task can 

be continued on a different resource without going over the same calculations again. 

Condor also makes it easy for users to run the same job many different times with 

varying input parameters/data. Condor makes it really simple to construct such job 

submissions, as well as organizing the outputs of such calculations. This is a very 

important feature for scientific experimentation where parameter studies are quite 

commonly used. 

2.3.3.1 Submitting and Running Jobs with Condor 

Following are the steps needed to run a job using Condor. 

 Code preparation: A job run under Condor must be able to run as a background 

batch job. As such, applications that require interactive input/output are not 

suitable to run over Condor. However, making the interactive portions of the 

application to progress via using files may make them Condor-ready. 

 Choosing the Condor universe: A universe in Condor defines an execution 

environment for the application. Condor supports several different universes for 

user jobs: standard, vanilla, grid, java, scheduler, local, parallel, and VM. The 

universe under which a job runs is specified in the submit description file. If a 

universe is not specified, vanilla universe is selected by default. The standard 

universe provides checkpointing and job migration support; however it enforces 

some restrictions on the applications before they can be eligible to use this 

universe. The vanilla universe provides less reliability, however it is the most 

simple and straightforward environment that can be chosen by most applications. 
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The grid universe allows users to submit jobs hassle-free on a remote resource 

management system. The java universe allows users to run jobs using the Java 

Virtual Machine (JVM) as Condor take care of specific details regarding java 

configuration (e.g. locating JVM binary, setting the ‘classpath’). The scheduler 

universe is typically used to run the Condor DAGMan metascheduler. As a 

consequence, Condor DAGMan itself runs as a Condor job on the submit host. 

The parallel universe is aimed for distributed memory programs (e.g. MPI jobs). 

The VM universe allows users to run jobs on a virtual machine by facilitating the 

proper disk image and infrastructure for the application. 

 Preparing submit description file: All the requirements and details of a job has to 

be specified in a submit description file. Some of the basic information found in 

this file includes the executable/binary to be run for the job, input parameters, file 

information regarding input/output data, resource-related requirements, ranking 

method for eligible resources, and user notification information (e.g. email 

information). In this file, user can also specify how many times to run the job, and 

where to put the associated data for each individual run. 

 Job submission: Job is submitted to the Condor queue for execution via a simple 

‘condor_submit’ command. 

2.3.3.2 Condor Submit Description File 

Condor submit description file specifies all the requirements and details of the job 

that is expected to be run by Condor. Accordingly, it contains various keywords and 

parameters that define information about the job such as the executable/binary to be run, 
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command-line arguments, working directory, input/output files, resource requirement 

specifications, and so on. 

Condor allows easy and convenient approach to run multiple copies of the same 

program. Users can easily specify in submit description file for each run to use different 

data sets and to read/write in their own files. Condor simply allows each run to have its 

own working directory, input/output/error files, and command-line arguments. 

The sample submit description file illustrated in Fig. 2.8 submits two copies of the 

application ‘prime’ found under ‘/home/selim’ directory. The first copy runs under 

directory prime_1, and the second runs under directory prime_2. Output, error, and log 

files are associated with each run separately. This means, first copy will generate 

prime.out, prime.err, and prime.log files under prime_1 directory, whereas the second 

copy will generate the same files under prime_2 directory. However, two copies get 

different command-line arguments for the execution. First copy will find prime numbers 

between 2 and 1000000, whereas the second copy will find prime numbers between 

1000000 and 2000000.  For both copies, the standard universe is selected as the execution 

environment which provides additional reliability for the execution of ‘prime’. Both 

copies request a minimum memory of 4 GB RAM to exist in a resource that is going to 

execute the application. 
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Figure 2.8: Sample Condor submit description file 

2.3.4 Condor-G 

 Condor-G [24] is a special component within Condor and serves as a uniform 

interface to heterogeneous batch management systems. Through Condor-G, users can 

utilize resources beyond their own Condor pool of resources. In the meantime, usage of 

Condor-G is transparent to the users of Condor. Users specify their jobs the same way as 

a Condor job. The only change is needed in the universe specification. First of all, the 

grid universe has to be selected as execution environment. Then, Condor-G provides 

support for various grid/cloud computing systems which are distinguished from each 

other by their corresponding middleware. Users can differentiate among those via 

specifying the proper grid_type. 

Condor-G was originally developed to provide support for Globus middleware 

[25, 26]. Still, it is the most commonly used grid_type by Condor-G. In this case, the 

grid_type has to be specified as gt2 or gt5 depending on the specific Globus version at the 

  # Two copies of ‘prime’ is executed      
  # Results are stored in different files 
                                            
  Executable     =    /home/selim/prime           
  Universe       =    standard                    
  Output          =    prime.out                 
  Error          =    prime.error              
  Log             =    prime.log                                 
  Request_memory =    4 GB 
                                   
  Initialdir      =    prime_1   
  Arguments      =    2  1000000 
  Queue                          
                                
  Initialdir      =    prime_2       
  Arguments      =    1000001  2000000 
  Queue 
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remote resource. Once the job specification is done properly, user can submit and manage 

the job the same way as a regular Condor job. At the same time, Condor-G provides all 

the same job management capabilities for the job that is available for Condor jobs. 

In Fig. 2.9, we show a sample job designed to be submitted and controlled via 

Condor-G. The associated specification is done at where Grid_resource is given. In this 

case, the job is submitted to the Lonestar resource located at TACC (Texas Advanced 

Computational Center). From this specification, it is seen that Globus middleware version 

2 is utilized to make the connection to the remote resource. It is also specified that the 

LSF [27] batch management system is going to be used at Lonestar resource. 

 

Figure 2.9: Sample Condor-G submit description file 

With Condor-G, by default, Condor transfers the executable, as well as any input 

files specified in the job description. For this reason, it is important to make sure that the 

executable is compiled for the remote platform. 

Condor-G provides support for remote resource systems with grid types other 

than Globus. Those grid types namely are: Nordugrid [28, 29], Unicore [30, 31], batch 

(for PBS [32, 33], LSF [27], and SGE [34] batch systems), Amazon’s Elastic Computing 

Cloud (EC2) [35] , and cream (for gLite [36]). 

# Condor-G is used in this example 
# Job is submitted to a remote resource at TACC 
 
Executable =   test 
Universe  =   grid 
Grid_resource =   gt2 gatekeeper.lonestar.tacc.teragrid.org/jobmanager-lsf 
Output   =   test.out 
Log   =   test.log 
Queue 
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2.3.5 Fault-tolerance in Condor DAGMan – Rescue DAGs 

The simplest yet the most useful fault-tolerance mechanism in Condor DAGMan 

is the task retry mechanism. The RETRY keyword in Condor DAGMan provides a way 

to retry the execution of failed nodes for a specified number of times. The use of retry is 

optional. Task retry is associated with a DAG node. Thus, if a node fails due to some 

reason and task retry is specified for this node, all parts (including PRE and POST 

scripts) of the node have to be retried. 

As mentioned earlier, Condor scheduler manages the individual job execution in 

Condor DAGMan. Thus, if a job fails due to the nature of the distributed system, such as 

loss of network connection, it will be recovered by Condor while Condor DAGMan is 

unaware of such failures. If the job failures cannot be handled at the Condor level, 

Condor DAGMan notices the job failure and eventually halts and generates a rescue 

DAG. In the case of a job failure, the remainder of the DAG continues until no more 

progress can be made. The rescue DAG indicates the uncompleted portions of the DAG 

with detail of failures. Users can correct the errors of failed jobs and resubmit the rescue 

DAG. If the DAG is resubmitted using the Rescue DAG, the successfully completed 

nodes (labeled as DONE) are not executed again. 

2.4 TRIANA 

Triana [37, 38] is a visual workflow-oriented data analysis environment 

developed at Cardiff University.	 Triana has a GUI to compose workflows and an 

underlying subsystem which allows the integration with multiple services and interfaces. 

Through this GUI, user can drag and drop the tools or services to their workflow 
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application. Each tool has an input and output port, and the user connects dependent tools 

via cables from these ports. 

Underlying subsystem of Triana consists of a collection of interfaces that bind to 

different middleware and services. Grid Application Toolkit (GAT) [39] interface 

provides bindings to Globus GRAM, and GridFTP [42]. Grid Application Prototype 

(GAP) interface provides bindings to JXTA [40], and web services [41]. This integration 

makes it possible for the user to compose complex and heterogeneous workflows by 

utilizing different types of services and tools. 

Workflow specification in Triana is simple and based on XML. Components are 

represented in XML by having properties such as name, input/output ports, optional 

parameters and proxy/reference to the actual component. Dependency among 

components is specified using parent/child relationships. 

Another component within Triana is the gridMonSteer (GMS) which wraps 

legacy applications to be executed on distributed resources. This component also 

monitors the execution and steers the workflow based on the progress of the applications. 

2.5 TAVERNA 

Taverna [43] project is collaboration among several European universities, 

institutes and industries. The main objective of Taverna is to assist scientists with the 

development and execution of bioinformatics workflows on distributed computational 

platforms. To this end, Taverna provides data models, enactor task extensions, and 

graphical user interfaces. FreeFluo [44] is used as the workflow execution engine in 

Taverna. 
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Taverna provides both graphical and language-based models to represent data. 

Language-based model is based on XML and is called Simple Conceptual Unified Flow 

Language (SCUFL). SCUFL allows implicit iteration over incoming data sets. Workflow 

execution engine also provides a multithreading mechanism to speed up the iteration 

process. Users can configure the Thread property to specify how many concurrent 

instances are allowed to send parallel requests. 

Taverna also provides an intuitive multi-window graphical interface for users to 

handle and oversee the complete lifecycle of the workflow. Using this interface, users can 

manipulate workflow specification, select resources, submit the workflow for execution, 

and monitor the progress of the workflow. 

 Taverna provides various fault management mechanisms, including task retry 

and alternate resource mechanisms. Users can also indicate whether a certain task is 

critical or not. If a certain task is specified as not critical, the workflow execution can 

progress even if the task fails. In that case, all those tasks dependent on the failed task 

will also be ignored. 

2.6 ASKALON 

Askalon [45, 46] is an application development and computing environment 

developed at the University of Innsbruck, Austria. Askalon is composed of workflow 

composition service, resource manager, scheduler, workflow execution engine, and 

performance analysis and performance prediction modules. 

Askalon provides two approaches for workflow specification. First approach is a 

graphical tool that is based on the use of standard UML Activity diagrams. Other 

approach is via the proprietary language that is based on XML, namely the Abstract Grid 
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Workflow Language (AGWL) [47]. AGWL has the basic capabilities for composing 

workflows, such as branching, looping, parallel execution, and also resource specification 

constructs. 

Resource manager in Askalon, namely GridARM, provides resource discovery, 

advanced reservation and authorization services. GridARM monitors the allocated 

resources and propagates exceptional situations to the client. It also works as coallocation 

manager. GridARM can be configured to work with multiple MDS services, such as 

Globus version 2 and Globus version 4. 

Scheduler component in Askalon performs three basic operations: workflow 

refinement, workflow mapping, and workflow rescheduling. Workflow converter module 

performs the workflow refinement, to transform the compact but complex specification 

into a pure DAG-based specification. Scheduling engine module performs workflow 

mapping, which incorporates different scheduling algorithms. Event generator module 

uses the monitoring service to monitor the workflow execution and detect whether any 

execution contracts have been violated. In such a case, scheduler sends a rescheduling 

event to the workflow execution engine, which generates a new workflow specification 

based on the current status and sends it back to the scheduler. 

Workflow execution engine is responsible for executing the workflow 

specification, data management activities and also fault management. It also performs 

static and runtime optimizations, such as archiving and compressing multiple files to be 

transferred between two sites or clustering multiple jobs to reduce the job submission 

overhead. 



38 
 

Workflow execution engine also provides fault management mechanisms in three 

levels; activity level, control-flow level, and workflow level. Activity-level mechanisms 

include task retry and replication. Control-flow level mechanisms include lightweight 

workflow checkpointing (in which the workflow state and URL for intermediate data are 

stored) and task migration. Workflow-level mechanisms include workflow-level 

redundancy and workflow-level checkpointing (in which the workflow state and actual 

intermediate data is saved). 

2.7 KEPLER 

Kepler [48, 49] project is derived from Ptolemy II system [50] and it is one of the 

popular workflow systems with advanced features for workflow composition. Besides the 

GUI-based interface, it also provides a composition model in which independent 

components (actors) communicate through well-defined interfaces. An actor encapsulates 

the set of parameterized operations performed on input to produce output data. Another 

component called director imposes the order and timing of actors. This modular 

composition model of Kepler makes it easy to modify and reuse workflow applications. 
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CHAPTER 3 

DECENTRALIZATION OF WORKFLOW ORCHESTRATION 

In this Chapter, we propose a generic framework to decentralize the orchestration 

of workflows that span across multiple administrative domains. Accordingly, we first 

explain the motivating scenarios and the issues that necessitate the utilization of such a 

framework. Later, we present our extensive simulation-based studies to provide us with a 

high-level feasibility assessment regarding the deployment of various workflows over 

multiple administrative domains. Then, we explain the design and prototype 

implementation of our decentralization framework. The main component within our 

decentralization framework is the DAG transformation process and we demonstrate the 

application of this process by presenting both the original and transformed DAG 

specifications over a case scenario. Finally, we compare the performance results obtained 

from centralized orchestration and decentralized orchestration of both a synthetic and a 

real-world workflow, through our experiments conducted on an actual multi-site 

computational infrastructure (i.e. XSEDE [3]). 

3.1 MOTIVATION 

 During the concretization process of the workflow, one essential step is the 

mapping of workflow tasks onto physical resources. The main goal here is to achieve the 

minimum makespan possible for the execution of the whole workflow. As such, 

characteristics of tasks (e.g. estimated runtime) and data artifacts (e.g. estimated size), as 

well as the availability and characteristics of physical resources play a major role during 

this mapping process. Based on the availability of resources, the resulting concrete 
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workflow may span across multiple sites (domains) of resources. Such multi-site 

resources may be made available to the usage of a specific workflow application perhaps 

through research collaboration among multiple partners or through a 

national/international computational infrastructure platform (e.g. XSEDE [3]). The key 

common attributes of such multi-site resources is the heterogeneity and dynamicity of the 

resources in terms of size and capability, as well as the lack of a centralized control 

mechanism.  

 We propose a framework that facilitates the decentralized orchestration of 

workflows that are mapped on multi-site resources. Through our decentralized 

orchestration scheme, orchestration of the whole workflow is achieved collaboratively by 

local workflow managers deployed at each site. The main advantages of orchestrating a 

workflow through our decentralized framework are the performance improvement (i.e. 

makespan reduction) and the preservation of the site autonomy. We provide more details 

regarding the advantages of our framework as we discuss specific workflow 

mapping/orchestration scenarios in the next Section. 

3.1.1 Multi-site Workflow Mapping Scenarios 

We provide three concrete scenarios where multiple sites of resources can be 

utilized for the mapping of a workflow. We discuss workflow orchestration alternatives 

available for each scenario. Then, we discuss advantages specific to each scenario 

through the usage of our orchestration decentralization framework. 

 Workflow mapping scenario 1: In this scenario, the user has access to a certain multi-

site computational infrastructure (e.g. XSEDE [3]). In such an environment, user can 

make use of computational and data resources belonging to multiple administrative 
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domains accordingly with the proper allocations and policies made for him. The real 

merits of such platforms manifest themselves through the collaborative usage of 

hardware and software resources belonging to partner sites. To this end, they provide 

various middleware (e.g. Globus [25]) and software tools (e.g. GridFTP [42], Condor 

DAGMan [16]) to enable the communication and cooperation among partner sites.  

Users can map their workflows on such an environment manually or 

automatically (e.g. Pegasus [17, 18]) to result in a mapping of workflow tasks that 

spans across multiple sites. Then, the user can utilize an existing centralized 

workflow orchestration tool (e.g. Condor DAGMan [16]) to control and manage the 

orchestration of the whole workflow.  In such a scenario, the control, monitor, and 

management of all the individual tasks in the workflow reside with a single workflow 

orchestration tool instance located at one of the partner sites. This would result in 

each interaction between the workflow orchestration tool instance and a remote 

partner site, for the purpose of control and management of each task, to incur 

additional overheads. First overhead incurred is simply due to the communication 

overhead and delay between partner sites. Another type of overhead incurred is due to 

various middleware and software layer communication and processing delays that are 

encountered during the interactions. 

Our proposal in such a scenario is the decentralized orchestration of the workflow 

rather than the centralized orchestration. Through our generic decentralization 

framework, we facilitate the orchestration of a workflow that span across multiple 

sites in decentralized manner.  The main advantage of the decentralized orchestration 

is the improved performance, achieved via significant reductions in overheads 
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sustained through centralized orchestration. Another advantage is the preservation of 

site autonomy. By appointing a local workflow manager at each site responsible for 

the control and management of those tasks mapped on their own domain, each site 

can employ their own set of policies rather than a global set of policies enforced by 

the central workflow manager. These policies include, among others, task 

dispatch/monitoring policies, fault-recovery policies, and data management policies. 

 Workflow mapping scenario 2: In this scenario, the user has access to both local 

computational resources and to a multi-site computational infrastructure (e.g. XSEDE 

[3]). The user aims to utilize both sets of resources in combination for the execution 

of a certain workflow. In such a scenario, there is not an established middleware layer 

and software tools to allow the integration of both set of resources seamlessly. 

Accordingly, there is not an available workflow manager tool that is able to achieve 

the orchestration of a workflow in centralized manner over both sets of resources. 

In a scenario as explained above, our goal is to facilitate the utilization of both 

sets of resources without having to employ any cumbersome proprietary mechanisms. 

To this end, we propose the orchestration of the workflow in a decentralized manner 

in such an environment. Following our generic decentralization framework, which 

operates at the application layer, a certain workflow specification can be transformed 

into multiple, individually executable workflow specifications. The required 

communication/synchronization interactions among those peer workflow 

orchestrations can be provided independently from any other system components, via 

basic standard mechanisms. 
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 Workflow mapping scenario 3: This scenario is similar to the previous scenario. The 

user has access to multiple, independently administered sites of resources. In the 

previous scenario, one (or more) set of resources belong to an existing multi-site 

infrastructure (e.g. XSEDE [3]), thus providing the capabilities for centralized 

orchestration of a workflow in part; which is then combined with an additional set (or 

more) of resources for improved performance, or due to cost reasons. In this scenario, 

there are no established mechanisms/tools among any of the sites that would facilitate 

the centralized orchestration of a workflow. 

The solution we propose for this scenario is again the utilization of our 

decentralized workflow orchestration framework. Following the same approach as 

explained in Scenario 2, multiple independent sites of resources can be made 

available for the orchestration of a workflow via basic standard mechanisms. 

3.2 FEASIBILITY ASSESSMENT FOR MULTI-SITE WORKFLOW ORCHESTRATIONS 

To be able to help us understand the conditions and circumstances where the 

deployment of a workflow on multiple sites of resources can be beneficial for the user, 

we conducted an extensive amount and range of simulation studies. Through simulating 

the execution of workflows with various size and characteristics, we measured the 

expected makespan values on single site versus multiple sites deployment of workflows. 

We present the setup conditions and assumptions followed with the results we obtained 

for a variety of workflows. Referring to these results, we can have an approximate idea 

regarding the performance expectations of real-world deployment of various workflows. 
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3.2.1 Simulation Setup 

We conducted our simulation studies using the GridSim [98] discrete event-based 

simulator that has been widely used among Grid computing researchers. We have 

developed a module within GridSim environment that simulates the behavior of 

decentralized workflow orchestration approach. Input to this module is a workflow 

specification that is extended with mapping information of tasks on sites. Mapping of 

workflow tasks on sites of resources is performed via METIS [99]. METIS is a family of 

programs for multi-level partitioning of graphs and hypergraphs. Graph partitioning 

techniques deal with dividing the vertices of a graph into a given number of disjoint sets 

while trying to minimize the edge-cut value. Edge-cut value of a graph partitioning is the 

sum of the weights of edges that cross between different sets. The weight of each disjoint 

set (i.e. sum of the weights of vertices) is also as close to each other as possible according 

to the result of a weighted graph partitioning. Graph partitioning is widely used in 

parallel computing for load balancing [100, 101] and task mapping [102] purposes. It has 

also been adopted [103] to be used to map workflows on heterogeneous distributed 

environments. The performance metric we measure in this study is the makespan value 

for the execution of workflows as reported by GridSim. 

Our simulations were conducted on both synthetic and real-world workflows. 

More information regarding the real-world workflow simulation setup will be presented 

later. For the simulation of synthetic workflows, we generated a wide range of synthetic 

workflows using TGFF v3.1 [104]. TGFF tool generates pseudo-random DAGs 

according to user-given input configurations. Using this tool, we generated DAGs of size 

40, 80, 160, and 320 tasks where the maximum in-degree (number of edges coming in to 
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a task) for a task was specified as 4, and maximum out-degree (number of edges going 

out of a task) for a task was specified as 8. We chose these specific in-degree and out-

degree values for two reasons. First, using these values makes it possible for the 

generated workflows to involve sub-workflows with a certain degree of parallelization. 

Second, using these values makes the workflows generated with this tool to have a 

similar structure to most of their real-world counterparts. As such, only a few numbers of 

tasks in these workflows have high in-degree and/or out-degree values whereas most 

tasks have an in-degree and/or out-degree value of 1. 

For each synthetic workflow size, we generated 5 different DAGs. For each task 

within a workflow, we assigned a random task computation time between 300-900 

seconds. We also need to observe the effect of overall communication-to-computation 

ratio (CCR) of a workflow on the performance values. For this reason, we simulated the 

execution of each workflow for CCR values of 0.1, 0.5, 1, and 5. To achieve this, each 

communication link going out from a task was given a cost value proportional to the 

computation cost value of the task and the target CCR value. 

To keep the simulation environment controllable and to be able to isolate our 

assessment from myriad factors (e.g., middleware/software overhead, communication 

failures, hardware/software failures, etc.), following assumptions were made during the 

simulations of both synthetic and real-world workflows: 

 Resources reported available by each domain remains available throughout the 

execution of the workflow. 

 Every domain schedules tasks within its domain in first-come first-served (FCFS) 

manner. 
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 Communication cost between two tasks that were mapped on the same domain is 

ignored (assuming that network file system (NFS) is employed within each domain). 

 All the resources within a domain and across different domains have identical 

hardware/software capabilities and background loads.  

3.2.2 Synthetic Workflows Simulation Results 

In this section, we present and analyze the results from various simulation runs. 

The execution of synthetic workflows on a single domain was simulated as the baseline. 

All the results given in this section are the average values obtained from the execution of 

5 randomly generated workflows for each workflow size. 
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Figure 3.1: Speedup values simulating multiple domain executions of synthetic 
workflows 
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In the first set of experiments, we measure the speedup values obtained for 

multiple domain mapping/execution versus single domain mapping/execution of 

workflows. For this set of experiments, the number of CPUs available in each domain is 

set to be 8. According to this, in the case of 4 domains, there are a total of 32 CPUs 

available across domains for mapping/execution of a workflow. Fig. 3.1(a) shows the 

speedup values obtained for the workflow sizes of 40 tasks. A speedup value of more 

than 1 is achieved only when the CCR value is 0.1 for all multiple domain executions. 

For CCR value of 0.5, only the 2 domain execution achieves a speedup value of slightly 

larger than 1. The maximum speedup obtained for the set of workflows simulated at this 

workflow size is around 1.1 across all metrics (number of domains, CCR values). This 

result suggests that for workflows with size of around 40 tasks and under the assumed 

conditions, there isn’t a significant performance improvement to be gained by mapping a 

workflow on multiple domains. 

As the size of workflows get larger, a substantial increase in all speedup values is 

observed. In Fig. 3.1(b), all the speedup values for multiple domain executions with CCR 

value of 0.1, 0.5, and 1 are larger than 1. 4-domain execution outperforms all others when 

CCR value is 0.1; however its performance degrades more than others relatively as the 

CCR value increases. In both Fig. 3.1 (c) and Fig. 3.1 (d), speedup values obtained for 3-

domain executions are higher than the 2-domain executions (except when CCR value is 

5), and similarly speedup values for 4-domain executions are higher than the 3-domain 

executions. These results suggest that as the sizes of workflows get larger, mapping the 

workflow on more domains is likely to provide better performance results under these 

conditions. Another observation to note here is that, the speedup values obtained for all 
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multiple domain executions are less than 1 when CCR value is 5, except when the 

workflow size is the largest. This behavior indicates that, a communication-intensive 

workflow should carefully be analyzed before deciding to map/execute the workflow on 

multiple domains. A communication-intensive workflow with high-degree of parallelism 

may still be suitable for multiple domain executions. 
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Figure 3.2: Average makespan values for the synthetic workflows with 320 tasks 

In the next set of experiments, we provide the makespan trend of workflows as 

the number of available CPUs is increased in each domain. For this study, synthetic 

workflows with only the size of 320 tasks are used. Fig. 3.2 displays the average 

makespan values for single and multiple domain executions across different CCR values 

of the synthetic workflows. First thing to note here is that the single domain makespan 
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shows a logarithmic behavior as the number of CPUs increases and then it reaches its 

limit around 64 CPUs. It is also observed that the makespan values for all multiple 

domain executions remain flat beyond 32 CPUs in each domain. These results provide us 

with guidelines in terms of mapping/executing workflows on single or multiple domains 

of resources based on the number of resources available for the utilization of the 

workflow. Fig. 3.2 illustrates also the effects of the CCR characteristics of the workflow 

on the makespan values for multiple domain executions, which is significantly adverse 

when the CCR value is 5. 

3.2.3 Real-world Workflows Simulation Results 

In this section, we present the results we gathered from the simulation of two real-

world scientific workflows. These workflows namely are the Montage [4] and LIGO 

Inspiral Analysis [105] workflows. We have used the execution profile results from [106] 

to map these workflows into our simulation environment. 

Based on the execution profile results [106], the proper data dependency 

characteristics among tasks were included in the workflow specifications to be taken into 

account by the simulation environment. For the data transfer rate between different 

domains, we have used a fixed 1 MB/s bandwidth rate (based on the data transfer test 

results among different XSEDE [3] sites at the time these simulations were conducted). 

Similarly, for each data transfer between different domains, 1 second of communication 

and software overhead has been introduced as a parameter to the simulation. Each 

domain was configured to have a total of 2 computational nodes to execute tasks 

submitted to their domain. 
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Figure 3.3: DAG structure and task types of a Montage workflow [106] 

The basic DAG structure of a Montage workflow with 20 tasks is shown in Fig. 

3.3. The number of inputs processed by a Montage workflow may change based on the 

scale of the study. Accordingly, structure of the workflow is adjusted to accommodate the 

processing of inputs. Thus, a specific Montage workflow instance may encompass 

varying number of computational tasks. In our simulation studies, we utilize two different 

instances of the Montage workflow. First Montage workflow instance is comprised of a 

total of 50 computational tasks, and the second Montage workflow instance is comprised 

of a total of 100 computational tasks. 

Fig. 3.4 shows the speedup results we gathered from simulating the execution of 

Montage workflow on multiple domains. We observe that the multiple domain 

mapping/execution of the Montage workflow instance with 50 tasks yields around a 



51 
 

speedup value of around 1.2 across all three scenarios. On the other hand, the Montage 

workflow instance with 100 tasks yields significant and steady speedup results as more 

domains are utilized for the mapping/execution of the workflow. 
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Figure 3.4: Speedup values simulating the multiple domain executions of the Montage 
workflow 

 
The simplified DAG structure of a LIGO Inspiral Analysis workflow is shown in 

Fig. 3.5. The number of inputs processed by a LIGO Inspiral Analysis workflow may 

change based on the amount of data retrieved to be processed from LIGO (Laser 

Interferometer Gravitational Wave Observatory) detectors. Accordingly, the actual 

number of computational tasks in a LIGO Inspiral Analysis workflow varies. In our 

simulation studies, we utilize two different sizes of the LIGO Inspiral Analysis workflow. 

First workflow instance is comprised of a total of 50 computational tasks, and the second 

workflow instance is comprised of a total of 100 computational tasks. As can be seen 

from their DAG structures, LIGO Inspiral Analysis workflow has a much higher degree 

of parallelism than Montage workflow. Also, referring to their execution profiles, LIGO 

Inspiral Analysis workflow is found to be more computationally intensive than the 

Montage workflow. 
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Figure 3.5: DAG structure and task types of a LIGO Inspiral Analysis workflow [106] 

Fig. 3.6 shows the speedup results we gathered from simulating the execution of 

LIGO Inspiral Analysis workflow on multiple domains. We observe that the speedup 

values gained with the simulations of LIGO Inspiral Analysis workflow instances is 

noticeably better than the ones we gained with simulating the Montage workflow 

instances, except for the workflow instance with 50 tasks executed on 2 domains. Beyond 

the mapping on 2 domains, significant and steady speedup results are gained for multiple 

domain executions of the workflow instance with 50 tasks. On the other hand, the LIGO 

Inspiral Analysis workflow instance with 100 tasks yields near linear speedup values 

when it is mapped on 2 domains or 3 domains. However, when the same workflow 

instance is mapped on 4 domains - even though it still yields a significant speedup value 

of around 2 - the speedup value measured is significantly worse than that of the 3 

domains execution case and almost at the same level as that of the 2 domains execution 

case. We detected that the reason for such behavior is the non-optimal mapping produced 
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by the graph partitioning tool due to insufficient adaptation of its mechanisms to the 

specific nature of the application. We argue that, with a proper mapping of this workflow 

instance, a higher speedup value can be obtained by employing 4 domains of resources 

than that of the 3 domains of resources. 
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Figure 3.6: Speedup values simulating the multiple domain executions of the LIGO 
Inspiral Analysis workflow 

 
3.3 DESIGN OF THE DECENTRALIZATION FRAMEWORK 

Our decentralization framework [51] utilizes the common DAG patterns to 

transform the concrete workflow at each site. Following the transformation process, the 

whole workflow is ready to be orchestrated in decentralized fashion by local workflow 

managers at each site. Fig. 3.7 illustrates these stages that the original DAG specification 

goes through to result in multiple decentralized workflow processes. 
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Figure 3.7: DAG specification stages according to our decentralized orchestration 
framework 

 
We first introduce the DAG patterns, and then we explain the patterns necessary 

for the transformation process performed at each site. 

3.3.1 DAG Patterns 

 DAG patterns form the basic building blocks for the transformation process. The 

key point here is that all possible scientific workflows in DAG form can be represented 

using a proper combination of these DAG patterns. 
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Figure 3.8: DAG patterns 
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Fig. 3.8 illustrates three DAG patterns, namely: Sequence pattern, Fork/Branch 

pattern and Join pattern. In these graphs, vertices correspond to the computational tasks, 

whereas directed edges correspond to the control and/or data dependencies between tasks. 

3.3.2 DAG Transformation Patterns 

We propose a systematic and generic framework for transforming the centralized 

orchestration to a collaborative orchestration via the utilization of DAG transformation 

patterns.  These patterns are built on basic DAG patterns introduced in Section 3.3.1, and 

illustrate the transformations on the original DAG specifications to meet the needs of the 

collaborative orchestration style. Each local workflow manager individually performs 

these transformations at its local site, based on the mapping decisions during the 

concretization process. 

 Transformations for the Sequence DAG pattern: Fig. 3.9 illustrates the set of DAG 

transformations on the Sequence DAG pattern corresponding to four possible 

mapping scenarios. If both tasks comprising the Sequence DAG pattern are mapped 

locally, as in Fig. 3.9(a), then no transformation is necessary. If both tasks comprising 

the Sequence DAG pattern are mapped remotely, as in Fig. 3.9(b), then these tasks 

are marked to indicate that they will be orchestrated by another manager. Fig. 3.9(c) 

illustrates the case where the parent task is mapped locally, whereas the child task is 

mapped remotely. In this case, the transformation process incorporates a 

synchronization stub between these tasks. The responsibility of a synchronization 

stub is to provide a peer workflow manager with the necessary means to 

communicate and synchronize with other peers regarding the workflow execution 

progress. In this case, the synchronization stub is responsible with informing the 
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remote workflow manager of the completion of the parent task. Fig. 3.9(d) illustrates 

the case where the parent task is mapped remotely, and the child task is mapped 

locally. In this case, the transformation process again incorporates a synchronization 

stub between these tasks. However, in this case the local workflow manager waits to 

be informed by its remote partner about the completion of the parent task. 
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Figure 3.9: DAG transformations for the Sequence DAG pattern 

 Transformations for the Fork/Branch DAG pattern: Fig. 3.10 illustrates the DAG 

transformations on the Fork/Branch DAG pattern corresponding to two possible 

mapping scenarios. We skip the two other possible mapping scenarios, in which all 

the set of tasks are either mapped locally or remotely, as the transformations will be 

very limited and done similar to the ones in Fig. 3.9(a) and Fig. 3.9(b). Fig. 3.10(a) 

illustrates the case where the parent task is mapped locally, whereas the children tasks 

are mapped remotely. In this case, the transformation incorporates a synchronization 

stub after the parent task. This synchronization stub is responsible for informing the 
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remote workflow execution manager(s) of the completion of the parent task. Fig. 

3.10(b) is similar to the previous scenario, however this time parent task is mapped 

remotely and children tasks are mapped locally. Accordingly, the synchronization 

stub inserted in this scenario is responsible to wait for its remote partner to perform 

its corresponding synchronization stub activities. 
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Figure 3.10: DAG transformations for the Fork/Branch DAG pattern 

 Transformations for the Join DAG pattern: Fig. 3.11 illustrates the DAG 

transformations on the Join DAG pattern corresponding to two possible mapping 

scenarios. As in Fig. 3.10, we skip the two other possible mapping scenarios. Fig. 

3.11(a) illustrates the case where the parent tasks are mapped locally, and the child 

task is mapped remotely. In this case, the transformation incorporates a single 

synchronization stub before the child task. This synchronization stub is responsible to 

inform the remote partner regarding the completion of the parent tasks. According to 

the scenario in Fig. 3.11(b), parent tasks are mapped remotely and the child task is 

mapped locally. The synchronization stub inserted in this scenario is responsible to 
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wait for its remote partner(s) to perform all of its (their) corresponding 

synchronization stub activities. 
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Figure 3.11: DAG transformations for the Join DAG pattern 

One thing to note for the transformation of Fork/Branch and Join DAG patterns is 

that we incorporate a single synchronization stub among the parent and children tasks, 

regardless of the number of parent and children tasks in the original DAG. This design 

choice significantly reduces the number of synchronization activities (hence overhead) 

among peers, and also simplifies the transformation process. 

3.4 PROTOTYPE IMPLEMENTATION 

Our prototype implementation [52] is based on Condor DAGMan [11, 16] 

workflow execution engine. Condor DAGMan is a widely used workflow execution tool 

that is available in most High-Performance and High-Throughput Computing 

environments. 

The original orchestration architecture of Condor DAGMan is centralized. Condor 

DAGMan specifies a DAG structure by listing the tasks and their dependencies in a 
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standard text file. This specification is parsed and then the execution of tasks is 

orchestrated by submitting them to local and/or remote resources by Condor DAGMan. 

In our decentralized framework, each site has its own deployment of Condor 

DAGMan tool, and each engine submits computational tasks only to their local resources. 

Thus, the orchestration of the workflow is managed in collaboration with local Condor 

DAGMan workflow execution engines employed at each site. 

Here, we explain the steps performed prior to the actual orchestration of the 

workflow. After these steps, orchestration of the workflow is accomplished in 

decentralized fashion as explained above. 

3.4.1 Creation of the Aggregated DAG Specification 

In the first stage, the original DAG specification is incorporated with some 

additional information so as to facilitate the transformation processes in the second stage.  

This is performed at the site where the DAG creation and mapping is originated. At this 

point, DAG specification has been concretized with actual physical resource information. 

However, before this original DAG specification is submitted to the local Condor 

DAGMan engine for orchestration, it is subjected to an aggregation process. The 

aggregated DAG specification then goes through the transformation process as explained 

in Section 3.3.2. 

During this process, the original DAG specification is aggregated with mapping 

and site-specific contact information. Mapping information denotes the site that is 

responsible for each task’s execution. Site-specific contact information includes the 

GRAM (Grid Resource Allocation and Management) end-point reference to facilitate 
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communication among sites, and the GridFTP [42] server and URL information to 

facilitate the transfer of data artifacts among sites. 

This aggregated DAG specification is then distributed to all the sites that take part 

in the execution of the workflow. Upon receiving the aggregated DAG specification, 

workflow managers at each site proceed to the transformation process of the DAG 

specification. 

3.4.2 Transformation Process for the Aggregated DAG Specification 

The second stage of decentralization process is performed at each site upon 

receiving the aggregated DAG specification. Each workflow manager transforms its own 

copy of the DAG specification based on the aggregated DAG specification. There are 4 

basic activities that need to be performed during the transformation process: 

 Remotely mapped tasks are labeled as DONE. This way, local Condor 

DAGMan engine will not attempt to submit these tasks to local resources. 

 DAG transformations illustrated in Fig. 3.9(c) and Fig. 3.10(a) is 

accomplished via the implementation of the synchronization stub as a POST 

script accompanying the parent task. A POST script is a standard mechanism 

found in Condor DAGMan to perform any kind of activity following the 

completion of a task. In our implementation, this POST script is populated 

with proper code informing the remote partner(s) about the completion of the 

parent task. 

 DAG transformations illustrated in Fig. 3.9(d), Fig. 3.10(b), and Fig. 3.11(b) 

are accomplished via the implementation of the synchronization stub as a PRE 

script accompanying the child(ren) task(s). A PRE script is also a standard 
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mechanism found in Condor DAGMan to perform any kind of activity prior to 

execution of a task. In our implementation, this PRE script is populated with 

proper code that holds the execution of the main task until the completion of 

the parent task is conveyed by the remote partner(s). 

 DAG transformation for the Join pattern illustrated in Fig. 3.11(a) is 

accomplished via the implementation of the synchronization stub as a single 

light-weight sync task followed with a POST script in the original DAG 

specification. The reason behind this implementation choice is due to multiple 

numbers of tasks being the parent of the synchronization stub. Rather than 

inserting a POST script after each parent task, insertion of a single light-

weight DAG task (sync task) serves as the local synchronization point, which 

is then followed with the actual synchronization activity through the usage of 

the POST script. 

Our POST script prototype simply generates a dummy file that is named 

specifically to uniquely identify the proper synchronization stub. Then, this file is 

transferred to the remote workflow manager site according to the information included in 

the aggregated DAG specification. The PRE script on the other hand simply expects to 

receive the proper file associated with the synchronization stub from the remote site. 

After each site completes this process and creates its own copy of the transformed 

DAG specification, the transformed DAG specification is submitted to the local Condor 

DAGMan workflow execution engine. This way, as each transformed DAG specification 

is orchestrated by peer Condor DAGMan engines, collaboratively, the orchestration of 

the whole workflow is accomplished. 
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3.4.3 Case Scenario for the Implementation of Decentralized Orchestration 

In this case scenario, we demonstrate the transformation process of our 

decentralization framework and provide the corresponding DAG specifications for a 

sample workflow, based on a sample mapping scenario. Fig. 3.12 provides a sample 

workflow, with a sample mapping scenario, where the mapping of workflow tasks span 

across two sites. Fig. 3.13 presents a basic DAG specification for this workflow that can 

be orchestrated via standard centralized Condor DAGMan workflow engine. 
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Figure 3.12: Sample workflow mapped on two sites 

 
 

Figure 3.13: Basic Condor DAGMan specification for the workflow in Fig. 3.12 
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Based on the mapping scenario as illustrated in Fig. 3.12, the transformation 

process of our decentralization framework creates a corresponding transformed DAG 

specification at each site. Fig. 3.14 illustrates the resulting DAG structure at site WFM-1 

after the transformation process. Fig. 3.15 illustrates the corresponding DAG 

specification for the transformed DAG, which will be orchestrated by the local Condor 

DAGMan engine at site WFM-1. 

A

EB C D

F

WFM‐1

 
 

Locally mapped 
task

Remotely mapped 
task

Synchronization 
stub

Local execution
control

Remote execution 
control

Legend:

 

Figure 3.14: Transformed DAG structure at site WFM-1 after the transformation process 
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Figure 3.15: Transformed DAG specification to be orchestrated at site WFM-1 

Similarly, based on the mapping scenario as illustrated in Fig. 3.12, Fig. 3.16 

illustrates the resulting DAG structure at site WFM-2 after the transformation process. 

Fig. 3.17 illustrates the corresponding DAG specification for the transformed DAG, 

which will be orchestrated by the local Condor DAGMan engine at site WFM-2. 
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Figure 3.16: Transformed DAG structure at site WFM-2 after the transformation process 

 

Figure 3.17: Transformed DAG specification to be orchestrated at site WFM-2 

3.5 PERFORMANCE EVALUATION 

To evaluate the performance of our prototype implementation based on our 

generic decentralization framework for workflow orchestration, we conducted several 

experiments on a real distributed computing environment. We have conducted our 

experiments using one synthetic workflow and one real-world workflow (i.e. Montage 

Astronomy workflow [4]). For each workflow type, we have used two different sizes of 

workflow instances. We map each abstract workflow instance on domains of resources 

and create the concrete workflow instance. Then, each concrete workflow instance is 

executed using both the centralized orchestration and the decentralized orchestration. We 

measure the makespan value for the execution of each workflow instance. We repeat this 

process 5 times and calculate the average makespan value for the centralized 

orchestration and decentralized orchestration of each workflow instance. Based on these 
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makespan values, we calculate and report the speedup values obtained through the 

utilization of our decentralization framework. 

3.5.1 Experimental Setup 

We conducted our experiments on a real multi-domain computational 

infrastructure, XSEDE [3], which is a collaboration of specialized high-performance and 

high-throughput computational and storage systems across the United States of America, 

which is made available through a National Science Foundation (NSF) project. These 

computational and storage resources within the XSEDE project are owned and 

administered by different organizations. The authentication of users, communication 

interactions, and access to resources among sites are made possible mainly through the 

Globus middleware [25, 26]. Various other software tools and services are used for more 

specialized purposes. We have utilized the computational resources of three specific 

systems within the XSEDE infrastructure, namely the NCSA Abe cluster, Purdue Condor 

pool, and LONI Queenbee cluster.  

The following is the brief information regarding the properties of resources at the 

time our experiments were conducted. Abe cluster is located at National Center for 

Supercomputing Applications (NCSA), Urbana, Illinois, and provides a total of 9600 

CPU cores. Purdue Condor pool is located at Purdue University, West Lafayette, Indiana, 

and provides over 14000 CPU cores (the actual number varies since idle resources are 

scavenged into the system over time). Queenbee cluster is located at Louisiana Optical 

Network Initiative (LONI), Baton Rouge, Louisiana, and provides a total of 5344 CPU 

cores. All these resources are shared among many users and the scheduling of 

computational jobs is managed through individual batch management software at each 
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domain. Each system has Network File System (NFS) support to provide uniform access 

to data files across all local compute nodes. The main tool that is used to transfer data 

across these domains is GridFTP [42]. 

Each system, by default, provides a local deployment of Condor [23], Condor 

DAGMan [16], Condor-G [24], and Pegasus [18] software tools that are used for the 

various phases of our experiments. In our experiments, for the centralized orchestration 

of a workflow, the Condor DAGMan workflow engine that is deployed at the Purdue 

Condor pool is used. There has been made no changes to the existing coding of these 

tools throughout the implementation and conducting of our experiments.  

Pegasus [18] is used to map abstract workflow instances and generate the 

corresponding concrete workflow instances. In our experiments, we have performed the 

mapping of workflow instances on both 2 domains and 3 domains, and run them 

separately to measure the performance variation. For the mapping of a workflow instance 

on 2 domains, we used the Purdue Condor pool domain and the NCSA Abe domain. The 

DAG transformations on a concrete workflow instance required for our decentralization 

framework is performed manually.    

To prevent the effects of variance in the availability of computational resources 

on the performance results, we monitored and controlled the amount of resources utilized 

throughout the experiments. First, in each domain, we made changes to the local job 

scheduler configuration, so that maximum 4 computational jobs (translates to workflow 

tasks in our context) are allowed to execute at any given time. We also monitored the 

time each workflow task spends waiting in the local job scheduler queue. If a workflow 

task spends more than 1 minute waiting in the local queue, the result obtained from the 
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execution of that workflow instance is discarded.   

3.5.2 Synthetic Workflow Evaluation Results  

The synthetic workflow in our experiments almost serves as a yardstick 

evaluating the performance expectations originating from the workflow orchestration 

process. Accordingly, our synthetic workflow has a simple diamond-shaped DAG 

structure, similar to that of Fig. 3.12. Such a DAG structure makes the workflow 

application to have a degree of parallelism that is near maximum. Also, due to the same 

DAG structure, peer workflow managers found in the decentralized orchestration 

framework can operate almost completely in parallel with minimum level of interactions 

required among them.  

To be able to expose and emphasize the performance characteristics of workflow 

orchestration strategies, the computational costs associated with workflow tasks and data 

dependencies among them were kept at relatively minimum levels. Accordingly, a 

random computational time of between 50-200 seconds (implemented through basic 

‘sleep’ command in Linux) were assigned to each task. Similarly, the sizes of data files 

required to be transferred among dependent tasks were assigned a random size between 1 

Megabyte and 50 Megabytes. 

We generated two synthetic workflows complying with these characteristics. First 

workflow has a total of 40 computational tasks whereas the second workflow has a total 

of 80 computational tasks. Both of these workflows were mapped and then executed 

within our experimental environment as explained before. Based on the makespan values 

generated from centralized and decentralized orchestration of the workflows, speedup 

values comparing both strategies are presented in Fig. 3.18. The speedup values gained 



69 
 

through decentralization of the orchestration of these workflows range between 1.23 and 

1.27 within the confines of our experimental environment and conditions. We can 

observe that the performance gain through the decentralized orchestration is higher with 

the larger size of the synthetic workflow. We can also observe that the performance gain 

attained through decentralized orchestration is slightly higher when the mapping of 

workflow spans across 3 domains rather than just 2 domains. 
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Figure 3.18: Speedup values obtained for decentralized versus centralized orchestration 
of the synthetic workflow 

 
3.5.2 Montage Workflow Evaluation Results  

We conducted our performance evaluation studies comparing the centralized 

orchestration and decentralized orchestration strategies via experimenting with the 

Montage [4] Astronomy workflow. Montage has a basic DAG structure as shown in Fig. 

3.3 and the detailed execution profile of Montage workflow tasks and dependencies is 

available [106]. In our experiments, we have used a Montage workflow instance 

consisting of 50 tasks and another Montage workflow instance consisting of 100 tasks. 

Both of these workflow instances were mapped and then executed within our 

experimental environment as explained before. 
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Based on the makespan values generated from centralized and decentralized 

orchestration of the workflows, speedup values comparing both strategies are presented 

in Fig. 3.19. The speedup values gained through decentralization of the orchestration of 

these workflows range between 1.08 and 1.11. First thing to note with these results is 

that, the speedup values obtained for the orchestration of the Montage workflows are 

substantially lower than those obtained for the orchestration of the synthetic workflows. 

This is simply due to the DAG structure and the computational requirements of the 

Montage workflow. Montage workflow has a less degree of parallelism compared to the 

synthetic workflow, which results in more interactions being performed among peer 

workflow managers during decentralized orchestration. Also, the computational cost 

associated with Montage workflow tasks is much larger than that of the synthetic 

workflow. Due to this characteristic, workflow orchestration overhead has less impact in 

the overall makespan value of the Montage workflow compared with the synthetic 

workflow. 
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Figure 3.19: Speedup values obtained for decentralized versus centralized orchestration 
of the Montage workflow 
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Comparing various speedup values in Fig. 3.19, we observe that the performance 

gain attained through decentralized orchestration of the Montage workflow is slightly 

worse for the instance with 100 tasks compared to that of the instance with 50 tasks. We 

also observe that, similar to the synthetic workflows, the performance gain attained 

through the decentralized orchestration of the Montage workflow is slightly higher when 

the mapping of workflow spans across 3 domains rather than just 2 domains. 
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CHAPTER 4  

RUN-TIME ADAPTATION FOR WORKFLOW ORCHESTRATION 

In this chapter, we propose mechanisms to provide efficient adaptation 

capabilities during the decentralized orchestration of workflows. Thus, the designs and 

mechanisms provided here builds upon the decentralization framework that were 

explained in Chapter 3. 

First, we explain the motivating issues that demand run-time adaptation 

capabilities during workflow orchestration. Then, we explain the extent of activities that 

are entailed with providing such capabilities. Later, we explain the system design and 

mechanisms we provide to carry out those activities within our decentralized workflow 

orchestration framework. Then, we provide some details regarding the prototype 

implementation for our adaptation mechanisms. Finally, we provide the performance 

evaluation results obtained via the utilization of our adaptation mechanisms during the 

decentralized orchestration of both a synthetic and a real-world workflow, through our 

experiments conducted on an actual multi-site computational infrastructure (i.e. XSEDE 

[3]). 

4.1 MOTIVATION 

 The main goal of the run-rime adaptation process is to keep the makespan metric 

of the workflow execution within user expectations. There are two main reasons that may 

necessitate run-time adaptation during the orchestration of a workflow. 

The first main reason that may necessitate run-time adaptation during the 

orchestration of a workflow is the change/dynamicity of the availability of computational 

resources for the utilization of workflow tasks at the run-time. The availability of these 
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resources may change basically due to hardware failures, increased workload, and higher 

priority tasks being deployed in the system.  Especially long-running and large-scale 

workflows are highly susceptible to these kinds of changes in the execution environment. 

The second main reason that may necessitate run-time adaptation during the 

orchestration of a workflow stems from inaccurate task runtime predictions made during 

the workflow mapping process. During the workflow mapping process, making use of 

historical data or domain expertise knowledge, runtime predictions are made for each 

task in the workflow. However, a large number of factors may cause variations - 

insignificant to dramatic - in the accuracy of these predictions. These factors range from 

the inaccuracy/unpredictability issues caused by various hardware/software configuration 

metrics to code-level unpredictability issues such as the utilization of random numbers in 

determining the number of compute intensive iterations. 

Resource availability metrics and task runtime predictions are the two main 

criteria while making decisions during the workflow mapping process. Thus, variations in 

the accuracy of these criteria at the run-time may cause inefficient execution of individual 

tasks followed by inefficient progress over the execution of the whole workflow.  

Consequently, these efficiency problems would negatively affect the makespan of the 

workflow. 

 For the following discussions we provide, we make the assumption that the 

workflow tasks span across multiple sites due to the decisions made during the original 

workflow mapping process. Also, here, we are not concerned with the adaptation/re-

scheduling activities that may be performed within a single site. Our discussions and 
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mechanisms are based on the run-time adaptation activities that are performed across 

different sites. 

4.2 RUN-TIME ADAPTATION PROCESS 

We can categorize the activities that need to be performed for run-time adaptation 

process into three main phases. 

 Monitoring phase for the run-time adaptation: This phase involves the continuous 

monitoring of workflow progress and the status of resources. During this, it is also 

checked whether a condition has arisen that necessitates an adaptation process. 

 Planning phase for the run-time adaptation: After the detection, an appropriate 

corrective action has to be planned to cope with the condition. Some of these plans 

may only be concerned with some adjustments and/or rescheduling activities that are 

internal to the site. However, sometimes, the corrective actions may require re-

mapping of a set of tasks among different sites. Set of tasks that needs to be re-

mapped and the site(s) that will be involved in the adaptation process are identified in 

this phase. 

 Enactment phase for the run-time adaptation: In this phase, adaptation plan proposed 

in the previous phase is enacted upon the ongoing workflow orchestration/execution 

process. Efficient and non-intrusive enactment of such a plan is as important as 

coming up with the adaptation plan itself. 

4.3 SYSTEM DESIGN 

Fig. 4.1 shows the main components for the system design of our decentralized 

run-time adaptation framework. Gray-colored components and artifacts denote those that 

are specifically concerned with the run-time adaptation. As our framework is based on 
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peer-to-peer communication and collaboration of workflow managers, each workflow 

manager is responsible for detecting any problems in their own domain that may prevent 

QS objectives from being met. In such a case, a set of tasks may then be migrated to other 

available domains for execution. The orchestration of the rest of the workflow is not 

affected by this adaptation. Only the peer workflow managers directly involved within 

this adaptation process need to perform necessary steps. 
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Figure 4.1: System design for the decentralized run-time adaptation framework 

4.4 RUN-TIME ADAPTATION FRAMEWORK 

Following the detection of a condition that necessitates an adaptation process, a 

corresponding adaptation plan to remedy the effects of unfavorable conditions is 

generated. A standard run-time adaptation plan basically involves making changes to the 

original mapping/execution site of a set of workflow tasks based on problems 

encountered during run-time. Modifications to the mapping site of tasks needs to be 

reflected and implemented accordingly by the workflow execution managers. Here, we 
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provide a run-time adaptation framework that integrates with our decentralized workflow 

orchestration framework discussed in Chapter 3. One key aspect of our framework is the 

low-level of intrusiveness to carry out the adaptation process. Our pattern-based 

framework has little effect on the ongoing workflow orchestration process. The peer 

workflow execution managers implement the re-mapping of tasks without any disruption 

to the orchestration of the rest of the whole workflow. 

Please note that even though the contributions presented in Section 4.4.1 

(Monitoring and Detection), and Section 4.4.2 (Planning) are published in (Kalayci, 

Dasgupta, Fong, Ezenwoye, & Sadjadi, 2010) [52], the main ideas introduced in these 

sections belong to Dr. Gargi Dasgupta. These sections are included in this dissertation 

because the mechanisms provided through these contributions complement those other 

mechanisms we present to make up our complete run-time adaptation framework. 

4.4.1 Monitoring and Detection 

Each workflow manager (WFM) independently monitors its resource queues for 

normal operations, as well as detection of problems and troubleshooting. A backed-up 

resource queue is almost always an indication of some underlying problem. We consider 

readyQ (Fig. 4.1) that queues all the tasks that are ready for execution at the WFM. 

Under normal operating conditions, tasks from the readyQ are steadily dispatched for 

execution to the underlying scheduler resources. A steadily building up readyQ signifies 

that there is some problem with the underlying infrastructure resources (e.g., resource 

outages, surge in background traffic, etc). We use readyQ-length as the indicator for the 

onset of congestion and proactively make runtime reconfigurations to deal with this. 
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To detect a congested queue, each WFM continually monitors its readyQ-length. 

For every readyQ, we assign two thresholds, low and high. The average queue length is 

calculated, using an exponential weighted moving average, given by: 

avgt = (1 − w)* avgt−1 + w * qlent, 

where qlent is the length of readyQ at time t, and w takes values between [0,1]. 

At time t, the following decisions are taken: 

 If the queue length is below low, no corrective action is taken. 

 If the queue length is between low and high, we probabilistically pick some 

tasks for remapping. 

 If the queue length is above high, we pick all tasks for remapping. 

4.4.2 Planning  

A runtime reconfiguration in the original mapping involves the movement of yet-

to-start computation or data management tasks to another domain. Our approach is based 

on RED [107], albeit accounting for data transfer involved in remapping the tasks. The 

probability, pj
^, of selecting a particular task j for moving depends on the average queue 

length, last time a task was moved from the queue, and also on data characteristics of the 

task. 

Since the average length varies at a queue (belonging to site i) from low to high, 

the probability that a new compute task j is moved varies linearly from 0 to P (a small 

fraction). The final moving probability pj
^, however, also increases slowly with the 

number of tasks seen since last move (count), and decreases as the local data of j at i 

increases. We define the probability, 

pj
^ = {pb/(1 − count *pb)} * pij, where 
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pb = {(avgq − lowq)/(highq − lowq) }*P, 

pij = (Δmax − Δi,j)/ (Δmax − Δmin) 

where Δmax, Δmin denote the maximum, minimum data requirements of j, respectively, 

and Δi,j is the size of local data present for j at site i. 

4.4.3 Enactment  

We utilize DAG adaptation patterns [51] at peer workflow managers to enact the 

re-mapping of tasks at run-time. Through this adaptation, the responsibility for the 

orchestration of the set of tasks being re-mapped (ST) is transferred from the originating 

site to the destination site(s). 
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Figure 4.2: DAG adaptations for the Sequence DAG pattern 

 DAG adaptation patterns at the originating site: At the originating site, DAG 

adaptation patterns transform ST from being local tasks to remote tasks. Also, 

if there is a synchronization stub between ST and child(ren) task(s), it is 

removed. Fig. 4.2(a) illustrates this scenario for the Sequence pattern, Fig. 

4.3(a) illustrates the same scenario for the Fork/Branch pattern, and Fig. 4.4(a) 
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illustrates the same scenario for the Join pattern. However, if the child(ren) 

task(s) of ST is (are) mapped locally, then a synchronization stub is 

incorporated between ST and child(ren) task(s). Fig. 4.2(b) illustrates this 

scenario for the Sequence pattern, Fig. 4.3(b) illustrates the same scenario for 

the Fork/Branch pattern, and Fig. 4.4(b) illustrates the same scenario for the 

Join pattern. 
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Figure 4.3: DAG adaptations for the Fork/Branch DAG pattern 
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Figure 4.4: DAG adaptations for the Join DAG pattern 
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 DAG adaptation patterns at destination site(s): The destination site(s) 

basically captures the re-mapped tasks (ST) and orchestrates them in 

accordance with the resulting DAG structure. However, attempting to capture 

and integrate this DAG structure with the transformed DAG specification at 

destination site(s) proves to be cumbersome to design and implement. For this 

reason, we propose the orchestration of these DAG structures in isolation from 

the transformed DAG structure(s) at destination site(s). In fact, we refer to 

these DAG structures that are generated through run-time adaptation 

processes as patch DAGs. These patch DAGs at destination site(s) are 

orchestrated in isolation. The combined orchestration of patch DAGs with the 

transformed DAGs provides the same business logic as the orchestration of 

the original complete DAG. 

The essential duty of a destination site involved in the run-time adaptation 

process is to capture ST and compose the corresponding patch DAG. Once the 

patch DAG is ready, destination site orchestrates the patch DAG in isolation. 

Fig. 4.5 illustrates the corresponding patch DAGs for the adaptation of the 

Sequence patterns in Fig. 4.2. In both Fig. 4.5(a) and Fig. 4.5(b), the 

corresponding patch DAG has the same structure. The difference between 

them is the specific implementation of the synchronization stub. In Fig. 4.5(b), 

the synchronization stub informs the originating site regarding the completion 

of the parent task. On the other hand, synchronization stub in Fig. 4.5(a) 

informs a third site different from the originating site regarding the 

completion of the parent task. In fact, the third site involved in this process is 



81 
 

the one that is originally responsible for the execution of the child task, and it 

is unaware of these changes made at run-time. 
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Figure 4.5: Patch DAG patterns corresponding to the adapted Sequence patterns 

Patch DAGs corresponding to the adaptation of the Fork/Branch patterns 

look and operate the same way as explained for the adapted Sequence 

patterns. The only difference between these two patterns is the number of 

children tasks the patch DAG synchronization stub enables for progression. 

The corresponding patch DAG structures to the adaptation of the Join 

pattern in Fig. 4.4(a) and Fig. 4.4(b) are also identical. As in the Sequence 

pattern, the difference between them is the specific implementation of the 

synchronization stub. However, in the Join pattern, it is possible for more than 

one site to be involved in the re-mapping of ST, due to the multiplicity of the 

number of tasks in ST. To illustrate this point, we provide two alternative 

scenarios for the patch DAG composition and operation corresponding to the 
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case in Fig. 4.4(b). Fig. 4.6 illustrates the corresponding patch DAG structure 

in a scenario where only one site ends up re-mapping all the tasks in ST.  For 

this scenario, the composition and the operation of the patch DAG is quite 

similar to the patterns explained earlier. 
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Figure 4.6: Patch DAG pattern corresponding to the adapted Join pattern in a scenario 
where a single site re-maps ST 

 
Fig. 4.7 illustrates the corresponding patch DAG structure in a scenario 

where two destination sites are involved in re-mapping of the tasks in ST. In 

this scenario, two patch DAGs need to be composed, and one of those DAGs 

is designated as the primary patch DAG. Primary patch DAG is responsible 

for handling the synchronization with the originating site. In addition, an 

additional layer of synchronization is needed between the destination sites in 

this scenario. 
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Figure 4.7: Patch DAG pattern corresponding to the adapted Join pattern in a scenario 
where two sites re-map the tasks in ST 

 
4.5 PROTOTYPE IMPLEMENTATION 

We provide run-time adaptation through an adaptation daemon running at each 

site as illustrated in Fig. 4.1. The adaptation daemon constantly monitors the execution 

progress of the workflow and the length of the ready queue. It also has a thread that 

listens for requests that might come from other workflow managers. 

Workflow execution engine of our prototype implementation [52] is based on 

Condor DAGMan [11, 16] workflow execution engine. 

The specific functionality of an adaptation daemon in case of an adaptation 

process varies depending on its role. 

 Adaptation process at the originating site: As a fault-tolerance feature, Condor 

DAGMan provides a checkpoint-style recovery mechanism via the creation of 

rescue DAGs. The rescue DAG represents the specification of a DAG that 

was not run to completion due to various reasons. In a rescue DAG 
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specification, those tasks that have successfully finished execution are labeled 

as DONE, which prevents them to be executed again.  At the originating site, 

we utilize the rescue DAG mechanism to halt the DAG specification prior to 

the adaptation and then to re-enact the corresponding DAG specification after 

adaptation. To generate the proper corresponding DAG specification, 

decisions made in the adaptation plan should be reflected on to the standard 

rescue DAG specification. This is achieved via labeling re-mapped tasks as 

DONE and also performing similar DAG transformation activities as was 

done for decentralization purposes. Fig. 4.8 lists the steps performed at the 

originating site during a basic adaptation process. 

 

Figure 4.8: Adaptation process at the originating site 

 Adaptation process at the destination site(s): At the destination site(s), 

corresponding patch DAG specification(s) needs to be generated. DAG 

pattern of the task(s) received from the originating site provides enough 

1. Detecting the need for adaptation 
2. Selection of task(s) to re-map 
3. Pick a site among candidates 

a. if negotiation is successful, move to step 4 
b. if negotiation is unsuccessful, pick another site, repeat step 3 
c. if tried all the sites, abort the adaptation 

4. Send the list of task(s) to be re-mapped to the receiver site 
5. Remove re-mapped tasks from the local queue 
6. Wait for a rescue DAG to be created by Condor DAGMan 
7. Modify the rescue DAG  
 a. label the migrated tasks as DONE 

b. incorporate Pre script(s) for those local tasks that are children of 
the migrated task(s)  

8. Submit the modified rescue DAG to Condor DAGMan. 
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information for this purpose. The destination site can then perform the same 

kind of DAG transformation activities to generate the corresponding patch 

DAG specification. Following this, destination site submits and orchestrates 

the patch DAG at its local site in isolation. Fig. 4.9 lists the steps performed at 

the destination site during a basic adaptation process. 

 

Figure 4.9: Adaptation process at the destination site 

4.6 PERFORMANCE EVALUATION 

To evaluate the performance of our prototype implementation based on our 

adaptation framework which is built upon the decentralized workflow orchestration 

framework, we conducted several experiments on a real distributed computing 

environment. We have conducted our experiments using one synthetic workflow and one 

real-world workflow (i.e. Montage astronomy workflow [4]). 

The DAG structure of the synthetic workflow is illustrated in Fig. 4.10. Each task 

in this workflow is assigned a random runtime between 100 and 300 seconds. We also 

associated each data dependency between tasks with a random size data transfer activity 

(assuming an average rate of 1 Megabyte/second for each data transfer) to result in an 

average communication-to-computation ratio (CCR) of 0.1, 0.5, and 1, to generate three 

different workflow instances. 

1. Receive the request to re-map task(s) 
2. Check the status of the local queue and respond to the request 
 a. if response is negative, go back to step 1 
 b. if response is positive, go to step 3 
3. Receive the list of task(s) 
4. Generate the corresponding patch DAG specification 
5. Submit the patch DAG to the local Condor DAGMan  



86 
 

 

Figure 4.10: DAG structure of the synthetic workflow 

The Montage astronomy workflow [4] has a DAG structure as illustrated in Fig. 

3.3 and the detailed execution profile of Montage workflow tasks and dependencies is 

available [106]. In our experiments, we have used three different Montage workflow 

instances differing from each other by the number of total tasks in them. Accordingly, 

these workflow instances include 20, 40, and 80 total tasks respectively. 

We conduct our experiments via the decentralized orchestration of each workflow 

instance under various load conditions. To this end, each time, we introduce no overload, 

partial overload, or constant overload on the computational resources, and measure the 

makespan metric for the execution of the workflow instance. We repeat this process 5 

times for each workflow instance with and without the utilization of our run-time 

adaptation framework and calculate the average makespan value. 

4.6.1 Experimental Setup 

We conducted our experiments on a real multi-domain computational 

infrastructure, XSEDE [3], which is a collaboration of specialized high-performance and 

high-throughput computational and storage systems across the United States of America, 

which is made available through a National Science Foundation (NSF) project. These 
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computational and storage resources within the XSEDE project are owned and 

administered by different organizations. The authentication of users, communication 

interactions, and access to resources among sites are made possible mainly through the 

Globus middleware [25, 26]. Various other software tools and services are used for more 

specialized purposes. We have utilized the computational resources of two specific 

systems within the XSEDE infrastructure, namely the NCSA Abe cluster, and Purdue 

Condor pool. 

The following is the brief information regarding the properties of resources at the 

time our experiments were conducted. Abe cluster is located at National Center for 

Supercomputing Applications (NCSA), Urbana, Illinois, and provides a total of 9600 

CPU cores. Purdue Condor pool is located at Purdue University, West Lafayette, Indiana, 

and provides over 14000 CPU cores (the actual number varies since idle resources are 

scavenged into the system over time). Each system has Network File System (NFS) 

support to provide uniform access to data files across all local compute nodes. The main 

tool that is used to transfer data across these domains is GridFTP [42]. 

Each system, by default, provides a local deployment of Condor [23], Condor 

DAGMan [16], Condor-G [24], and Pegasus [18] software tools that are used for the 

various phases of our experiments. Pegasus [18] is used to map abstract workflow 

instances and generate the corresponding concrete workflow instances. There has been 

made no changes to the existing coding of these tools throughout the implementation and 

conducting of our experiments. 

To prevent the effects of variance in the availability of computational resources 

on the performance results, we monitored and controlled the amount of resources utilized 
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throughout the experiments. First, in each domain, we made changes to the local job 

scheduler configuration, so that maximum 4 computational jobs (translates to workflow 

tasks in our context) are allowed to execute at any given time. We also monitored the 

time each workflow task spends waiting in the local job scheduler queue. If a workflow 

task spends more than 1 minute waiting in the local queue (besides the artificial queue 

wait time introduced by us to emulate various resource overload conditions), the result 

obtained from the execution of that workflow instance is discarded. 

Our adaptation daemon has been configured to check the status of the tasks in the 

system every 30 seconds. If more than 80% of the tasks in submission are in the queue, 

then the adaptation daemon performs the migration of all the tasks in the queue. If 

between 50% and 80% of the tasks in submission is in the queue, then the adaptation 

daemon probabilistically selects a number of tasks from the queue for migration to reduce 

the queue length below 50%. 

4.6.2 Evaluation Results under Constant Overload 

In the first set of experiments, we introduced extra overload to one of the sites 

(Purdue Condor pool) throughout the execution of a workflow instance. We simulate the 

presence of an overload in the system by putting all the jobs submitted at Purdue Condor 

pool into a Hold state for a random time between 100 and 250 seconds. If no adaptation is 

applied, a task in a Hold state waits in the local queue with no progress until it is released. 

Fig. 4.11 shows the makespan results from the execution of the synthetic 

workflow. Makespan value under no overload is also measured for reference. Makespan 

value obtained when the adaptation mechanism is in place shows better results than with 

no adaptation for the workflows with average CCR values of 0.1 and 0.5. However, in the 
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case of the workflow with average CCR value of 1, the adaptive execution performs 

worse than the non-adaptive execution. This occurs due to costly data transfers between 

sites to facilitate the migration of those tasks chosen during adaptation. 
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Figure 4.11: Makespan values for the synthetic workflow under constant overload 

Fig. 4.12 shows the makespan results from the execution of the Montage 

workflow. Here, the makespan values for varying sizes of the Montage workflow are 

displayed. According to these results, our adaptation mechanism is able to improve the 

performance of the Montage workflow under constant load due to its specific data and 

computation characteristics. Also, we observe that our mechanism is able to provide this 

improvement for varying sizes of the Montage workflow. 
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Figure 4.12: Makespan values for the Montage workflow under constant overload 

In addition, Fig. 4.13 represents the performance improvement achieved via our 

adaptation framework for the Montage workflow under constant overload by comparing 

average queue wait times. With the deployment of our adaptation framework, the 

extended queue wait times resulting under constant overload are reduced significantly. 
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Figure 4.13: Average queue wait times for the Montage workflow under constant 
overload 
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4.6.3 Evaluation Results under Partial Overload 

In this set of experiments, each task submitted at Purdue Condor pool is put in to 

Hold state with a 0.5 probability. The time to keep a task in the Hold state is between 100 

and 250 seconds. 

Fig. 4.14 shows the makespan results from the execution of the synthetic 

workflow under the partial load. For the average CCR values of 0.1, and 0.5, the adaptive 

workflow execution performs slightly better than the non-adaptive execution. For the 

average CCR value of 1, adaptive workflow execution generates worse results than the 

non-adaptive execution; however the performance difference is much less in this case 

compared with the constant overload scenario. 
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Figure 4.14: Makespan values for the synthetic workflow under partial overload 

Fig. 4.15 shows the makespan results from the execution of the Montage 

workflow. In this case, the improvement achieved through run-time adaptation is almost 

negligible. The main reason behind this behavior is the selection of only a portion of 

tasks to be migrated from the partially overloaded site. Due to the strong existence of data 

dependencies among those tasks that are migrated with the ones that are not migrated, the 



92 
 

benefits gained through the reduction in queue wait times are almost cancelled out by the 

additional data transfer costs resulting from the adaptation process. 
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Figure 4.15: Makespan values for the Montage workflow under partial overload 
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CHAPTER 5 

OPTIMIZATION TECHNIQUES FOR PARAMETER STUDIES 

In this chapter, we provide some optimization techniques for efficient 

orchestration of workflows that are especially targeted for parameter-sweep applications. 

Optimization techniques we provide are once again meant for large-scale workflows that 

span across multiple sites of resources.  Thus, we base our optimization efforts on the 

decentralized workflow orchestration framework that we introduced in Chapter 3. 

First, we give some background information regarding parameter-sweep 

workflows and their characteristics. Then, we introduce the limited behavior resulting 

from standard decentralized orchestration of such workflows. Based on those limitations, 

we explain the design and benefits of a few generic optimization patterns. Then, we 

discuss some issues that are relevant to the implementation of these patterns. Finally, we 

present a couple of real-world parameter studies and discuss how our optimization 

patterns benefit such studies. 

5.1 BACKGROUND 

A large number of scientific fields make use of computational approaches, at 

varying degrees, to conduct research. Due to the increased availability of data and 

computational resources, utilization of such computational research tools has been 

following a consistently upward trend. This does not however necessarily point to a linear 

increase in the variety of scientific exploration. Most of the increased usage of 

computational tools arises from the repeated and extensive usage of the same type of 

tools on different sets of data. These types of computational studies are commonly and 

broadly referred as parameter studies. 
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Scientific exploration demands repeatable experimentation, and sound and 

reliable analysis. Computational resources have provided great means to achieve these 

goals at much deeper level and much wider scale in almost all fields of research.   Using 

computational tools, scientists are able to conduct larger studies that produce much 

detailed and high-precision results. Most of the scientific exploration necessitates the 

same or similar experimentation and analysis tools to be run over a wide-ranging 

spectrum of parameters/conditions. The multitude of observations helps the scientist to 

make better decisions concerning her study. Although, scientists from almost all 

disciplines, to a certain extent, conduct such parameter studies, here we especially focus 

on those that are compute- and data-intensive in terms of today’s existing technological 

capabilities. 

Due to the repetitive nature of large parameter studies, scientists ideally utilize 

automation tools in this otherwise labor-intensive process. DAG-based workflows can 

easily and successfully capture the business logic of most parameter studies. After the 

scientist or a computational expert captures the business logic of the parameter study in a 

DAG-based workflow specification, it can be handed over to a workflow management 

system to automate the rest of the lifecycle of the workflow. 

At this point, we give more detailed information regarding the structure and 

characteristics of a couple of basic types of parameter-sweep workflow DAGs. Namely, 

these are: single-level parameter-sweep workflows and multi-level parameter-sweep 

workflows. These DAGs differ from each other by the number of levels that comprise the 

computation intensive portion of the workflow.  
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5.1.1 Single-level Parameter-sweep Workflows 

Fig. 5.1 illustrates the DAG structure of a typical single-level parameter-sweep 

workflow. The top-level task acts as to generate and distribute the input data/parameters 

that would be consumed by the Processing Tasks. Each Processing Task receives a 

different set of input data/parameters and independently executes the same or similar 

software/service using those data/parameters. The results generated by these Processing 

Tasks are then passed on to the Data Aggregation/Post-Processing Task. This task, 

depending on the specifics of the study, performs some sort of data aggregation and/or 

post-processing activities utilizing the results acquired from Processing Tasks. The set of 

Processing Tasks in this given DAG structure comprises the parameter-sweep aspect of 

the workflow application. 

A

. . . . . . . . .

B

. . . . . .

Post-Processing /
Data Aggregation

Processing 
Tasks

Parameter Initialization / 
Data Distribution

 

Figure 5.1: DAG structure of a single-level parameter-sweep workflow  

In a parameter-sweep workflow, typically, the Processing Tasks are the most 

computationally intensive components of the workflow. At the same time, these tasks are 

typically embarrassingly parallel, making them eligible to be executed concurrently on 

various computational resources. Also, the top-level task (i.e. Parameter Initialization) 
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and the bottom-level task (i.e. Post-processing Task) are typically more data-intensive in 

nature than Processing Tasks. 

5.1.2 Multi-level Parameter-sweep Workflows 

Fig. 5.2 illustrates the DAG structure of a typical two-level parameter-sweep 

workflow. These types of workflows are used to perform more intense 

exploration/analysis activities iteratively at each level based on the results acquired from 

the previous level.    A more coarse-grain computation and analysis is performed over a 

higher-number of Processing Tasks at the first level. Then, based on the results acquired 

at the first level, more fine-grain computation and analysis is performed using the same 

or perhaps a different software/service over a less number of Processing Tasks at the 

second level. This process can be repeated in the same manner as many times as deemed 

necessary by the user. 

As also can be seen from Fig. 5.2, in a two-level parameter-sweep workflow 

DAG, each of level-1 and level-2 tasks are comprised of same kind of DAG structure as 

it is found in a single-level parameter-sweep workflow DAG. Typically, purpose of 

employing such multiple levels in a parameter-sweep study is to conduct a coarse-grain 

analysis at level-1 for a large number of potential parameters. After these potential 

parameters are narrowed down to a more manageable number, a finer-grain analysis can 

be conducted at level-2. 
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Figure 5.2: DAG structure of a two-level parameter-sweep workflow  

5.2 OPTIMIZATION PATTERNS 

Here, we introduce the optimization patterns [63] that we employ on our existing 

decentralized orchestration framework (Chapter 3) [51, 52]. Even though they may be 

applicable to more general instances of workflows as well, these patterns are mainly 

designed to exploit the general characteristics of parameter-sweep workflows. 

Optimization patterns that we introduce here suggest minor changes in the DAG 

structure of the workflow. These changes are proposed due to the specific nature of a 

parameter-sweep workflow where the dependencies among tasks are much more loosely 

coupled than a more generic workflow instance. Also, the relationships among different 

levels of tasks at a parameter-sweep workflow are more uniform and flexible than a more 

generic workflow instance. By exploiting these characteristics of parameter-sweep 

workflows, we provide optimizations to the decentralized orchestration of such 

workflows. 
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5.2.1 Parameter Initialization / Data Distribution 

This pattern applies to the Fork/Branch pattern that manifests itself between the 

top-level Parameter Initialization Task and the lower-level Processing Tasks. At a multi-

site deployment of a large-scale parameter-sweep workflow, all these embarrassingly 

parallel Processing Tasks have control and data dependency on the single Parameter 

Initialization Task. Fig. 5.3 illustrates a typical scenario for such behavior. Each different 

color notates deployment of a task on a different site. Fig. 5.3 also illustrates the 

data/control logistics of this pattern following a centralized orchestration approach. 

Accordingly, the centralized workflow manager handles all the data and control logistics 

even though the tasks span across multiple different sites. This behavior incurs significant 

control and data overhead to the total wall-clock execution time of the workflow 

(makespan). 

A

. . . . . . . . .

 
 

Figure 5.3: DAG-mapping and centralized orchestration of the Fork/Branch pattern 

Fig. 5.4 illustrates the overall view for the orchestration of the same pattern 

following our standard decentralized approach. In these Figures, dashed lines indicate the 

boundaries for the responsibility of each site. Each site employs its own local workflow 

manager as it is discussed in Chapter 3. Also, the rectangle boxes that cross between two 

site boundaries illustrate the synchronization activities which are inserted to the DAG 
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specification during the second phase of DAG transformation process (Fig. 3.7). Thus, 

Fig. 5.4 illustrates the collaborative DAG structures and the interactions among them to 

achieve synchronization. 

A

. . .. . . . . .

 
 

Figure 5.4: Overall view for the decentralized orchestration of the Fork/Branch pattern 

Due to flexible characteristics of the Parameter Initialization Task at the top-level 

of this DAG pattern, we propose an optimization pattern as illustrated in Fig. 5.5. In Fig. 

5.5, it can be seen that, task A (Parameter Initialization Task) has been replicated such 

that each site employs its own copy. As a result, each peer workflow manager can 

orchestrate the local DAG structure completely independent from others. Thus, the 

orchestration of the presented DAG structure incurs no additional overhead to the 

workflow execution time.  Notice that, the replicated task A is referred as A’ as it may be 

necessary to make minor adjustments in the business logic of task A. We will discuss this 

issue in Section 5.3. 
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A’

. . . . . . . . .

A’ A’

 
 

Figure 5.5: Overall view for the optimized Fork/Branch pattern DAG orchestrated in 
decentralized manner 

 
5.2.2 Post-Processing / Data Aggregation 

This pattern applies to the Join pattern that manifests itself between the 

Processing Tasks and the lower-level Post-Processing Task. At a multi-site deployment 

of a large-scale parameter-sweep workflow, all these embarrassingly parallel Processing 

Tasks have control and data dependency with the single Post-processing Task. Fig. 5.6 

illustrates the data/control logistics of this pattern following a centralized orchestration 

approach. Accordingly, all the data and control logistics is handled through the 

centralized workflow manager even though the tasks span across multiple different sites. 

This behavior incurs significant control and data overhead to the total workflow 

execution time. 

B

. . . . . . . . .

 
 

Figure 5.6: DAG-mapping and centralized orchestration of the Join pattern 
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Fig. 5.7 illustrates the overall view for the orchestration of the same pattern 

following our standard decentralized approach. The collaborative DAG structures and the 

interactions among them to achieve synchronization are illustrated.  

B

. . . . . . . . .

 
 

Figure 5.7: Overall view for the decentralized orchestration of the Join pattern 

We propose a corresponding optimization pattern for this DAG pattern as 

illustrated in Fig. 5.8. In Fig. 5.8, it can be seen that, task B (Post-Processing Task) has 

been replicated such that each site employs its own copy. As a result, the collaborative 

peers can perform the Post-processing Task at their local site.  Notice that, the replicated 

task B is now referred as B’ as it may be necessary to make minor adjustments in the 

business logic of task B. Also, notice that, in this case we need a second-level Post-

Processing Task (task B*) to further perform post-processing on local results.  However, 

even with the inclusion of task B*, the optimized orchestration can help reduce the 

overheads incurred due to data transfers between Processing Tasks and (original) task B. 

The reasoning behind this behavior is as follows. Due to their nature, most scientific 

applications generate large sizes of output files. During the non-optimized orchestration 

(centralized or decentralized) of such a pattern, all of the individual output files generated 

by Processing Tasks are required to be transferred to a remote site, so that a single task B 
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can perform post-processing activities on all this data. According to our optimized 

orchestration of this pattern, individual output files are not required to be transferred to a 

remote site. Each site needs to only transfer the output files generated by the local task B’ 

(that are generally much more modest in size), which are then further post-processed by 

task B*. 

B*

. . . . . . . . .

B’ B’ B’

 
 

Figure 5.8: Overall view for the optimized Join pattern DAG orchestrated in 
decentralized manner 

 
5.3 PROTOTYPE IMPLEMENTATION 

Workflow execution engine of our prototype implementation is based on Condor 

DAGMan [11, 16] workflow execution engine. However, as mentioned before, the 

original orchestration approach for Condor DAGMan is centralized. Our optimization 

patterns rely on the decentralized orchestration framework that we discussed in Chapter 

3. Thus, all the DAG specifications and the workflow orchestration activities mentioned 

here correspond to those discussed in Chapter 3. 

Here, we only address specific implementation issues pertaining to the 

optimization efforts (patterns) that we introduced in Section 5.2. 



103 
 

As it was explained in Section 5.2, we introduce optimization patterns to exploit 

certain characteristics of large-scale parameter-sweep workflows. However, these 

patterns necessitate minor changes to the original DAG structure, which in turn may 

affect the business logic of the workflow application. Thus, a domain expert should 

verify these structural changes to be appropriate.  After the domain expert approves the 

DAG structure change, he/she should also be consulted regarding the adjustments 

intended for Parameter Initialization Task and Post-processing Task. Once the 

appropriate task adjustment methods are agreed upon, these methods can be reused 

multiple times to run similar instances of large-scale parameter-sweep workflows. 

As suggested above, the domain expert should contribute to the proper method for 

replicating the Parameter Initialization Task (see Fig. 5.5). In some cases, the Parameter 

Initialization Task involves generating input data/parameters in a randomized way. In 

some other cases, this task involves splitting a wide-range of input data/parameters 

uniformly among the Processing Tasks. For these and similar cases, the proper task 

adjustment methods are expected to be much more trivial than more sophisticated cases. 

The business logic of the Post-processing/Data Aggregation Tasks also usually 

consists of standard and well-defined behavior, which may be adjusted accordingly 

through consultation with a domain expert. For example, in some cases this task involves 

generating statistical results from the data generated by Processing Tasks. In some other 

cases, this task mainly involves choosing the best results (or eliminating worst results) 

among all the generated results according to certain criteria.  For these and similar cases, 

the proper task adjustment methods are expected to be much more trivial than more 

sophisticated cases. 
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After the consultation and proper task adjustment phases are completed 

successfully, these behaviors are required to be specified in the Aggregated DAG 

specification. At this point, we provide this information (i.e. tasks to be restructured, task 

adjustment methods) manually. In the next stage of the DAG transformation process, 

each local site comes up with its own local transformed DAG specification. Finally, since 

we only make use of standard Condor DAGMan functionalities throughout the 

transformation process, no other changes are necessary in the system. 

5.4 PERFORMANCE ANALYSIS  

5.4.1 Molecular Modeling and Dynamics 

Molecular modeling [64] is concerned with theoretical and computational 

techniques used for mimicking/simulating the behavior of molecules. As the size of 

molecules increase, the computational requirements of modeling the molecule also 

increases. Molecular modeling and simulation techniques are used for various purposes in 

the fields of computational chemistry [67], computational biology [68], materials science 

[69], drug design [70, 71], protein folding [72-74], and others. 

Another related line of research is the study of molecular dynamics. Molecular 

dynamics [65] mainly is the study of simulating the physical movements of atoms and 

molecules abiding by the rules of N-body simulation [66] concept. Because of the vast 

number of particles and vast parameter space, computational simulation software is 

essential for conducting this type of study. Several advanced software suites [55 - 59] 

have been developed and utilized by the research community to serve the needs of 

various molecular modeling and dynamics purposes.  
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The specific parameter-sweep workflow we provide as a sample scenario in the 

area of molecular dynamics is concerned with the study of advanced materials [53, 54]. 

The field of nanoscience and nanotechnology is the initiative to assemble and manipulate 

matter at the molecular or even atomic level. Physics, chemistry, biology and materials 

engineering jointly contribute to the effort of tailoring novel materials by arranging small 

constituents in a controlled manner. Nanoscience research is largely guided by the 

promise of novel devices at the nanoscale that will be vastly more compact, fast, flexible 

and energy efficient than the tools used in current technology. To realize this goal, it is 

necessary to understand the principles that govern the nanosphere, characterized by 

spatial dimensions in the order of 10-9 m. Similarly, in-depth knowledge of the physical 

and chemical properties of nanomaterials is required. Studies on these and related 

problems involve various computational methods based on quantum physics and 

chemistry, such as density functional theory (DFT) as well as methods of ab initio theory. 

The specific software suite used in this parameter space exploration for advanced 

material studies, due to our domain expert’s specific needs at East Tennessee State 

University (ETSU), is the Vienna Ab initio Simulation Package (VASP). VASP [108, 

109] is a program for atomic scale materials modeling, and is used to perform electronic 

structure calculations and quantum-mechanical molecular dynamics. This is 

accomplished by solving the Schrödinger equation - a partial differential equation that 

describes how the quantum state of some physical system changes with time - using 

appropriate approximations for energies and forces. VASP allows researchers to perform 

a wide variety of atomic/molecular interaction simulations, and is widely used by 

research groups in academia and industry worldwide. 
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VASP is a computation intensive application that provides both shared-memory 

(OpenMP) and distributed-memory (MPI) parallelization. Due to its tightly-coupled 

communication characteristics, it scales nicely over multiple nodes only if those nodes 

communicate over a low-latency network infrastructure (e.g. Infiniband). Thus, a single 

VASP application is not suitable to be executed across different resource sites. 

VASP as an input receives multiple input files (POSCAR, INCAR, POTCAR, 

KPOINTS, etc.) that define the conditions and boundaries for the specific simulation 

study. An unlimited number of simulations can be studied over varying the setup 

configuration files of VASP. In its simplest case, the POSCAR file defines the initial 

positions of the atoms used within the simulation. In our benchmark parameter space 

exploration conducted with VASP at ETSU cluster computing resources, we utilized 

many variations of the POSCAR file settings. To automate this process, we created a 

script that would generate each POSCAR file that is used for each VASP simulation run. 

After the pre-set number of VASP simulations are run independently from each other, the 

results from each run is post-processed simply comparing the specific parameter of 

interest (i.e. energy value) and choosing the most appropriate ones among them. 

The parameter space exploration study explained above complies with all aspects 

and characteristics discussed in our optimization patterns effort. The script that is used to 

initialize a subset of parameter setup serves as the Parameter Initialization Task. Each 

individual VASP run (which typically takes up multiple physical nodes at once through 

MPI parallelization) serves as a Processing Task. Finally, the task of selecting the 

simulations with best output results serves as the Post-Processing Task.  
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Here, we give more details regarding each component of the molecular dynamics 

parameter-sweep simulation study. The script that serves as the Parameter Initialization 

Task is a very simple executable that takes a few seconds to generate multiple input files 

with pseudorandom values. Thus, replication of this script does not incur a significant 

overhead on resources or the makespan of the parameter-sweep workflow. Depending on 

the availability of computational resources, we run between 10 and 100 VASP 

simulations as part of each parameter-sweep workflow. Each simulation run, in general, 

takes between 10 minutes and 2 hours to complete its execution and produces output data 

of size typically between 50 and 300 Megabytes. Thus, the size of data artifacts resulting 

from most of our parameter-sweep studies range between 0.5 and 30 Gigabytes. This 

means, when we utilize both clusters (namely, Knightrider and Blackpearl) at our 

disposal locally, by performing one local Post-Processing Task at each cluster, we 

eliminate the unnecessary costs associated with the transfer of around 0.25 and 15 

Gigabytes of data.  

The behavior and results explained above applies only to a single instance of 

VASP parameter-sweep simulation study. Due to its nature and vast parameter space, the 

same process is repeated many times in accordance with the computational availability 

and researcher needs.  

5.4.2 Ensemble Forecasting – Weather Forecasting 

Ensemble forecasting [75] is a computational prediction method that is used for 

simulating the state and behavior of a dynamical system. The fundamental aspect of 

ensemble forecasting studies is the conduct of multiple computational simulations with 

slightly different initial conditions/parameters. Those initial conditions/parameters are 
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typically gathered from a set of observations and measurements on the system being 

forecasted. The main reason for conducting multiple simulations, forecasting the same 

dynamical system, stems from the uncertainties inherent in forecasting models. Two 

major sources of uncertainty in forecasting models are: 

1. Errors introduced by the use of imperfect initial conditions/parameters.  

2. Errors introduced by the imperfections found in the forecast model itself. For 

example, the imperfection of mathematical methods (i.e. approximate 

methods) used in the forecast model. 

Perhaps the most common and popular ensemble forecasting study is the one that 

is used for weather forecasting [62] purposes. In this scenario, the dynamic system is the 

atmosphere, which is a very complex system with a vast number of parameters. 

Computational forecasting techniques have been used for a while for weather forecasting. 

However, these forecasting models suffer from those imperfections mentioned above. 

Thus, to obtain more accurate results from a weather forecast simulation, an ensemble 

weather forecasting is used preferably. 

Weather Research and Forecasting (WRF) model [60, 61] is one of the widely 

used forecasting models used for both research and operational forecasting purposes. The 

current version of WRF has been designed to run either on a single machine or on a 

cluster of homogeneous nodes. The distributed memory parallelization is established 

through MPI and it also has a tightly-coupled communication characteristics. The high 

resource requirements of WRF for fine resolution and ensemble forecasting demand a 

larger number of computing nodes with substantial memory and disk storage connected 

through a high speed network. 
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A typical ensemble WRF study can be conducted simply by simulating multiple 

forecasts with slightly different initial conditions. Another typical way to conduct an 

ensemble WRF study is done by simulating multiple forecasts through different models 

found in the WRF software suite (multi-model ensemble forecasting). In either ensemble 

WRF study, individual forecast results are combined to come up with a forecasting 

report. Here, the results are combined mostly following one of these two simple 

techniques: 

1. Average of the individual forecasting results are calculated 

2. Degree of agreement between individual forecasting results are measured, and 

then the results are represented by their overall spread  

Fig. 5.9 displays the DAG structure and components in our WRF ensemble 

forecasting study [5] consisting of 5 ensemble members. Please note that, in our 

experimental studies, all ensemble members belong to the FIU administrative domain. 

Real is a standard module (real.exe) found in WRF. The main purpose of the Real 

module is to retrieve data from the WRF Preprocessing System (WPS) to initialize input 

conditions for the WRF simulation. Perturb module is a custom script that takes the input 

conditions generated by the Real module and performs random variations on those 

conditions. The outputs generated by the Perturb module is then consumed by each WRF 

instance (wrf.exe) executed at various ensemble member locations. Finally, the 

Aggregate module is another custom script that performs post-processing activities (e.g. 

calculating the average) on the output data generated by each ensemble member. 
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Figure 5.9: WRF Ensemble Forecast 

The computational requirements for each of the following modules can be 

summarized as follows. Real and Perturb modules (Parameter Initialization Tasks) 

together, in general takes less than a minute to execute and does not change much based 

on the specific setup conditions of the studies. However, being the computationally heavy 

module of the studies, each WRF instance (Processing Task) show a great variation based 

on the geographical size (e.g. state of Florida vs. the continental U.S.A) and the degree of 

resolution (1 kilometer vs. 15 kilometers) sought in the specific study. At our local 

benchmark studies conducted on FIU cluster resources which covered a square area of 75 

x 75 km with a 4 km resolution, the WRF instance execution time typically varied 

between 5 and 20 minutes. Nevertheless, except for more trivial scenarios, the 

computational requirements of other modules in the ensemble study are negligible 

compared to those of the WRF instances. Similarly, the output data artifacts associated 
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with the execution of a WRF instance varies greatly based on the geographical size and 

the degree of resolution. However, in our benchmark studies conducted at local FIU 

cluster resources, the size of output data generated by each WRF instance execution 

typically varied between 120 and 380 Megabytes.  

The operational and research oriented forecasting studies targeted in the future 

cover much larger geographical area with much higher resolution. This greatly increases 

the demand for computational and storage capabilities.  For those multi-site deployment 

and execution of such ensemble forecast studies, without careful investigation, 

unnecessary costs (especially data transfer costs) would be incurred through the 

automated orchestration. Due to the specific characteristics of such an ensemble forecast 

study, the optimization patterns introduced here can be utilized to avoid those additional 

costs to a large extent.   
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CHAPTER 6  

CONCLUSIONS 

Scientific applications are becoming more complex, resulting in the need for more 

computational resources than may be available to scientists locally. As a result, for many 

scientists, utilization of remote and heterogeneous computational resources has become a 

standard practice. However, effective utilization of these resources, especially for large-

scale workflow applications, necessitates the employment of software tools that are 

efficient and adaptive. 

In this dissertation, we propose a generic framework for the decentralization and 

run-time adaptation for the execution of large-scale workflow applications that span 

across diverse and heterogeneous resource domains. Our framework is applicable to any 

scientific workflow application that is specified in a DAG form. By investigating 

recurring DAG patterns, we devise corresponding transformation and adaptation patterns 

to incorporate decentralization and run-time adaptation capabilities to standard workflow 

execution managers. 

Our decentralization framework adopts the separation of concerns and 

consequently does not alter the business logic of the application. Our prototype 

implementation on a standard workflow orchestration tool (i.e. Condor DAGMan) shows 

the feasibility and transparency of our approaches. Also, our framework is generic 

enough and can be easily incorporated by other orchestration tools. 

Another related and major contribution in this dissertation focuses on large-scale 

parameter studies. A large and diverse group of computational scientific research efforts 

deals with parameterized studies, in which same or similar computational tools are 
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applied on different sets of data. Such uniform and well-defined analysis efforts can be 

encapsulated as parameter-sweep workflows.  Due to the computation and data-intensive 

nature, resources that span across multiple domains may be needed for timely and 

efficient execution of this type of workflow as well. 

Building on our existing decentralization framework, we provide further 

improvements to the orchestration of such workflows. Basically, we propose some 

additional optimization patterns specific to the characteristics and requirements of 

parameter-sweep workflows. By exploiting the general characteristics of parameter-

sweep workflows, we provide ways to reduce control and data overheads associated with 

the decentralized orchestration. 

We also discuss some implementation issues that arise from the adoption of these 

optimization patterns. The utilization of these optimization patterns may require minor 

changes to the structure of the original DAG specification and business logic of certain 

tasks. We discuss the potential drawbacks of making such changes and argue that in most 

cases they can be easily addressed by incorporating the feedback of a domain expert in 

the process. Even though these patterns were designed and aimed primarily for 

parameter-sweep workflows, they may be applicable, to a certain extent, for more 

general-purpose large-scale workflows as well. 

By no means do we claim that the frameworks and mechanisms provided here 

address all problems in the field and represent final solutions to those problems. First of 

all, there are many other aspects of workflow management that we do not address in our 

studies. We primarily focus on the orchestration efficiency of certain workflows. 

Workflow orchestration occurs following or in cooperation with other components in a 
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workflow management system. Thus, decisions made and/or efficiency of those other 

components in the workflow management system may significantly affect or alter the 

usage and actual efficiency of our frameworks. 

Also, the frameworks and mechanisms explained here are designed specifically 

for workflows and resource environments that meet certain criteria. Our proposals target 

large-scale workflows that span across multiple administrative resource domains. Here, a 

workflow being large-scale - among other things - depends on the specific size, 

capability, and availability of the resources that will be utilized. Thus, we do not attempt 

to provide any specific details pertaining to this aspect of a workflow. 

Another feature of our proposals is their generic applicability to the application 

and resource environments. Due to the nature of the field, both application and resource 

environments happen to vary and scale in a very wide range of size and feature-list. Also, 

both application and resource environments are dynamic entities with future size and 

feature aspects in flux. Thus, our proposals aimed for no specific current or future 

application/resource platform. 

The solutions provided in our study can be extended in various ways. First of all, 

the prototype implementation of our frameworks/mechanisms can be improved and 

adopted by other workflow execution managers as well. It is quite plausible that, during 

these extension efforts, further and/or better solution designs to the same issues may 

emerge. 

Second, our studies focus only on DAG-based workflows. The artifacts of our 

studies may be extended to address non-DAG-based workflows as well. The major 
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differences between non-DAG-based and DAG-based workflows are the availability of 

selection and iteration patterns in the workflow structure of the former. 

Third, it is also an interesting avenue of research to investigate various business 

and technical aspects of cloud bursting on the orchestration and adaptation of workflow 

applications. Cloud bursting is basically the act of shifting some or all computational 

requirements of an application to public and/or private cloud resources at runtime, due to 

unavailability or insufficiency of local resources. Due to specific concerns and 

requirements of them, cloud bursting of large-scale workflows would require careful 

decision-making and sophisticated system designs. Decentralization and adaptation 

frameworks introduced here may provide a good starting point for such studies. 

Last but not least, further optimization patterns and mechanisms can be 

incorporated to the existing framework. It may be possible to identify certain DAG (even 

non-DAG) patterns, which can then be exploited accordingly to provide further 

optimization benefits. 
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