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A new biomarker to examine the role
of hippocampal function in the
development of spatial reorientation
in children: a review
Vanessa Vieites*, Alina Nazareth, Bethany C. Reeb-Sutherland and Shannon M. Pruden

Department of Psychology, Florida International University, Miami, FL, USA

Spatial navigation is an adaptive skill that involves determining the route to a particular
goal or location, and then traveling that path. A major component of spatial navigation
is spatial reorientation, or the ability to reestablish a sense of direction after being dis-
oriented. The hippocampus is known to be critical for navigating, and has more recently
been implicated in reorienting in adults, but relatively little is known about the development
of the hippocampus in relation to these large-scale spatial abilities in children. It has
been established that, compared to school-aged children, preschool children tend to
perform poorly on certain spatial reorientation tasks, suggesting that their hippocampi
may not be mature enough to process the demands of such a task. Currently, common
techniques used to examine underlying brain activity, such as electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI), are not suitable for examining
hippocampal development in young children. In the present paper, we argue instead
for the use of eyeblink conditioning (EBC), a relatively under-utilized, inexpensive, and
safe method that is easy to implement in developing populations. In addition, EBC has
a well defined neural circuitry, which includes the hippocampus, making it an ideal tool
to indirectly measure hippocampal functioning in young children. In this review, we will
evaluate the literature on EBC and its relation to hippocampal development, and discuss
the possibility of using EBC as an objective measure of associative learning in relation
to large-scale spatial skills. We support the use of EBC as a way to indirectly access
hippocampal function in typical and atypical populations in order to characterize the
neural substrates associated with the development of spatial reorientation abilities in early
childhood. As such, EBC is a potential, simple biomarker for success in tasks that require
the hippocampus, including spatial reorientation.

Keywords: eyeblink conditioning, hippocampus, spatial memory, spatial navigation, spatial reorientation

Introduction

Imagine being unable to mentally retrace your steps in order to travel back home, or being unable to
retain any memory for the locations of household objects. Remembering where you left your keys,
finding your car in a crowded parking lot, and navigating through an unfamiliar neighborhood
are all tasks that require the use of spatial memory, the kind of memory that allows us to recall
information about our three-dimensional environment, such as the positions of objects relative to
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other environmental features. Spatial memory functions include
spatial navigation, which is the ability to determine a route and
then travel that route to a specific location, and its related com-
ponent, spatial reorientation, which is the ability to reestablish a
sense of position after being lost in the environment. These skills,
known collectively as large-scale spatial abilities, are adaptive
functions that are crucial to the survival of humans and other
animals (Newcombe et al., 2013). As adults, we often take these
skills for granted; however, achieving expertise in these spatial
tasks takes time to develop through the interaction between brain
development and individual experience.

One area of the brain found to be vital for spatial navigation
is the hippocampus (e.g., O’Keefe and Nadel, 1978; Morris et al.,
1982; Abrahams et al., 1999; Burgess et al., 2002;Wills et al., 2014).
The specific role of the hippocampus in spatial reorientation
is less conclusive, but the hippocampus has been implicated in
certain processes for reorientation (for a review, see Sutton and
Newcombe, 2014).Whilemuch is understood about the role of the
hippocampus in various components of adult spatial memory (for
a review, see Burgess et al., 2002), relatively little is known about
the development of the hippocampus in relation to children’s
spatial capacities, specifically spatial reorientation abilities.

Contributing to our lack of knowledge of hippocampal devel-
opment in relation to spatial development is the lack of age-
appropriate methods that may be used to examine hippocampal
functioning. Popular techniques, such as electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI), typi-
cally used to explore brain function, are not ideal for examining
hippocampal development in young children. Specifically, while
EEG is a suitable technique to examine infant and child neural
activity, its low spatial resolution does not allow one to examine
specific subcortical regions such as the hippocampus. In contrast,
while fMRI has superior spatial resolution and has been suc-
cessfully used to examine hippocampal functioning in relation
to spatial navigation (Rodriguez, 2010) and reorientation (Sutton
et al., 2010, 2012) in adults (although see Devlin et al., 2000 and
Veltman et al., 2000, for discussions on susceptibility artifacts), it is
near impossible to use this technique with children younger than
5 years of agewhile they are awake due to the amount ofmovement
artifact that is present in this population. Here we suggest using
an alternative technique, Pavlovian eyeblink conditioning (EBC),
to indirectly measure hippocampal functioning in young children
in order to further our understanding of the complex interaction
between hippocampal development and spatial reorientation per-
formance. EBC has a well-defined neural circuitry, which includes
the hippocampus, is non-invasive, and can be employed in typical
and atypical pediatric populations, making it a potential tool
that can be used to investigate hippocampal development and its
relation to spatial reorientation abilities in young children.

In the current review, we will provide an overview of research
on spatial cognition in relation to the hippocampus, but specifi-
cally focus on the development of spatial reorientation in children
and the candidate neural mechanisms involved in such devel-
opment. We choose to focus on spatial reorientation because it
is a popular, quick, and practical measure of large-scale spatial
ability (i.e., non-paper-and-pencil task) used with children in a
real-world, three-dimensional space. Furthermore, wewill discuss

the benefits of using EBC as a non-invasive tool to indirectly
examine the development of hippocampal function, and focus
on the potential use of this measure as a proxy for hippocampal
involvement in the development of spatial reorientation abilities
in typical and atypical populations. We propose that if hippocam-
pal development indeed underlies developmental differences
observed in spatial reorientation tasks during early childhood,
then similar differences should be observed in hippocampal-
dependent EBC tasks. Moreover, individual performance on one
task should potentially be associated with performance on the
other task.

Behavioral Development of Spatial
Reorientation

Spatial reorientation relies on the broader cognitive domain of
spatial memory, which involves the ability to mentally represent
objects, other visual features, and their relations to each other
within the environment. This type of memory allows humans and
other animals to keep track of their bodies’ position, to know in
which direction they are headed, and to search for hidden objects
and/or food (Newcombe et al., 2013). There are two potent types
of environmental cues used to reorient oneself in the appropriate
direction: (1) geometric cues (e.g., length, distance, angles) and
(2) featural or landmark cues (e.g., trees, buildings, street signs;
Lyons et al., 2014). Adults frequently combine geometric and
featural cues to guide their spatial navigation and reorientation
(Ratliff and Newcombe, 2008), whereas young children show a
preference for geometric cues (Hermer and Spelke, 1996; Lee and
Spelke, 2010). Specifically, in studies where children are asked
to find the location of an object that is hidden in a corner of
a rectangular enclosure near a featural cue (i.e., colored wall)
after being disoriented, children under the age of 6 years will
typically search for the object in either the correct corner or
the rotationally equivalent, opposite corner (Hermer and Spelke,
1994, 1996). Thus, they are employing the geometric shape of the
enclosure to determine the location of the object, and disregarding
the landmark (i.e., colored wall), which is a better indicator than
geometry of the object’s location in this particular environment. In
contrast, children 6 years of age and older typically use the featural
cue to find the hidden object (Hermer-Vazquez et al., 2001). This
dissociation between the use of geometric and featural cues in
the development of spatial reorientation in young children has
been the focus of many debates, and has led to the development of
several theories over the past 25 years (e.g., Cheng, 1986; New-
combe and Huttenlocher, 2006; Miller and Shettleworth, 2008;
Stürzl et al., 2008). For a review of these theories and subsequent
debates, see Cheng et al. (2013).

While it is typical to observe that children younger than 6 years
of age use geometric rather than featural or landmark cues when
reorienting in the appropriate direction, this phenomenon can
be influenced by various experiential factors (e.g., Twyman and
Newcombe, 2010). For example, spatial reorientation abilities are
malleable across development, meaning that the dependence on
geometric or featural cues to reorient not only changes across
early childhood (Twyman et al., 2013), but is also affected by
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factors such as language use (e.g., Hermer-Vazquez et al., 1999;
Shusterman et al., 2011) and experience with reliable cues (Ratliff
and Newcombe, 2008).

Specifically, regarding language use, it has been suggested that
the emergence of spatial language, particularly directional terms
(e.g., left, right, above, below), accounts for the ability of 6-year-
olds, but not younger children, to use landmark features to locate
hidden objects after being disoriented in small enclosures (e.g.,
Hermer-Vazquez et al., 2001; Shusterman et al., 2011). Improved
spatial reorientation performance among 4-year-old children
after being taught left and right directions (Shusterman, 2006)
supports the idea that language experience significantly influences
spatial reorientation. In addition to language experience, previous
exposure to the environment, aswell as the size of the space, boosts
spatial reorientation abilities in children younger than 6 years
of age. For example, 3-year-old children can use landmark cues
if they are allowed to explore the room before being tested on
the spatial reorientation task (Learmonth et al., 2008), suggesting
that observing the relevant featural information needed to locate
the object is sufficient to elicit success on the task. In addition,
toddlers and children under the age of 6 years are more likely
to use featural cues when tested in a large (e.g., 8′ × 12′) rather
than small (e.g., 4′ × 6′) enclosure (Learmonth et al., 2001, 2002).
Room size similarly affects spatial reorientation in adults (Ratliff
and Newcombe, 2008) as well as animals (Sovrano et al., 2005;
Chiandetti and Vallortigara, 2008).

It has been suggested that organisms rely more on geometric
properties than landmarks to reorient in small spaces because it
is easier to gauge, or scan, the geometric layout of small environ-
ments compared to large ones (Sovrano and Vallortigara, 2006).
Therefore, featural cues within a small environment appear prox-
imal while, in contrast, features in large rooms appear more distal.
This distinction between proximal and distal cues is important
because animals have shown a preference for using distal rather
than proximal cues when reorienting (Hebb, 1938; O’Keefe and
Nadel, 1978; Zugaro et al., 2004; Nadel and Hupbach, 2006), thus
providing some explanation as to why featural or landmark cues
are not typically used to reorient in small spaces. However, this
does not fully explain why young children continue to perseverate
on geometric cueswhen reorienting compared to older children. It
is likely that these developmental differences at the level of behav-
ior are linked to developmental differences at the level of the brain.
Specifically, when neural structure and function related to spatial
behaviors are activated, we should expect to see corresponding
shifts in such behaviors. In the next section, we will focus on
one particular region of the brain known to be involved in spatial
memory, namely, the hippocampus.

Neurobiology of Spatial Memory

The hippocampus of humans and other animals has long been
implicated in spatial navigation (for reviews, see Burgess et al.,
2002; Wills et al., 2014), and, more recently, in virtual reorien-
tation in human adults (Sutton et al., 2010, 2012). It has been
proposed that the hippocampus forms a cognitivemap of the envi-
ronment, representing locations and their contents, which allows
us to encode spatial relations and traverse our surroundings using

allocentric and egocentric frames of reference (O’Keefe andNadel,
1978).While an egocentric strategy for navigating relies on a series
of body motions and left–right turns used to arrive at the goal,
an allocentric strategy relies on information outside of the body.
Thus, an egocentric frame of reference is used to compute spatial
relations between oneself and the goal (Zaehle et al., 2007), while
an allocentric frame of reference requires one to focus on fixed
environmental landmarks, locations of objects, and their relations
to each other (Bohbot et al., 2004). Allocentric and egocentric
frames of reference are also utilized in the learning of locations
in the environment, known as place learning (Waller et al., 2000).
In particular, the use of allocentric spatial strategies (i.e., mapping
the relations between multiple landmarks in the environment
in order to navigate) has shown to be hippocampal-dependent
(Bohbot et al., 2004). Specifically, fMRI data revealed that the
hippocampus was significantly activated in healthy participants
who used spatial strategies to locate an object on a virtual 8-arm
radialmazewith distant landmarks; however, patients withmedial
temporal lobe resections, including the hippocampus, showed
impaired performance (Bohbot et al., 2004).

Landmarks often serve as reliable sources of locations for ani-
mals that must constantly travel far from their home (e.g., nest)
in search for food and/or water. When navigating, animals appear
to rely more on landmarks that are farther away from them, also
known as distal cues (for a review, see Chiandetti and Vallorti-
gara, 2008). Previous studies have demonstrated that hippocampal
lesions affect rats’ performance on place navigation (i.e., learning
the location of a hidden goal after a delay period between training
and testing; e.g., Morris et al., 1982; Jacobson et al., 2012). In these
studies, rats with exclusive hippocampal lesions had significant
impairments using allocentric spatial processing (mapping the
relations among multiple, distal landmarks) to locate a hidden
platform compared to control rats, which underwent either (1)
superficial cortical lesions (hole drilled in other brain regions
leading up to, but not including, the hippocampus), (2) sham
surgery (burr holes drilled in skull, but no brain damage), or (3) no
surgery. In contrast, using proximal or local cues to locate a goal
has not been found to rely on an intact hippocampus (Pearce et al.,
1998; Stackman and Herbert, 2002). In sum, these studies suggest
that the processing of distal, but not proximal, landmarks in order
to navigate and reorient is especially hippocampal-dependent.

The preference for using distal over proximal cues to navigate
and orient oneself may be due to the firing of two kinds of cells
that are dependent on the information provided by distal cues
(Knierim andRao, 2003; Zugaro et al., 2004). These neurons, place
cells and head-direction cells, work together to aid in navigation
and orientation, playing a key role in the brain’s spatial representa-
tion system (Moser et al., 2008).Hippocampal place cells firewhen
an animal occupies specific locations in the environment, known
as place fields, while head-direction cells, located in various brain
regions separate from the hippocampus (e.g., anterior dorsal tha-
lamic nucleus, post-subiculum, dorsal striatum; Taube, 1998), dis-
charge when the animal orients its head in a specific, “preferred”
direction (Zugaro et al., 2001; Kubie and Fenton, 2009). Both types
of cells are influenced by relatively distant landmark cues. For
instance, place cells and head-direction cells have been found to
fire with respect to the rotations of distal cues, as opposed to
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proximal cues (i.e., cues that are relatively close in proximity to the
target location and/or the animal). In contrast, when distal cues
remain still while proximal cues are in motion, these cells have
been found not to shift, or rotate, along with the moving proximal
cues, so they remain fixed on the unchanging landmarks (O’Keefe
and Conway, 1978; Zugaro et al., 2001; Knierim and Rao, 2003;
Yoganarasimha et al., 2006). In addition, when rats are exposed to
proximal and distal cues rotating in conflicting directions, their
place cells and head-direction cells rotate to the same degree as the
distal cues instead of the proximal cues (Knierim and Rao, 2003;
Zugaro et al., 2004; Yoganarasimha et al., 2006). These findings are
suspected to occur because distal cues that designate meaningful
locations tend to appear large and relatively motionless, making
them more salient and reliable to a navigating animal.

The human hippocampus and adjacent medial temporal lobe
structures have also been implicated in object-location binding
(Crane and Milner, 2005), while the parahippocampus has been
shown to be involved in the processing of spatial scenes (for a
review, see Burgess et al., 2002; Ekstrom et al., 2003). Making
object-location or object-place associations involves the use of
associative memory, the formation of which is supported by the
hippocampus (e.g., Goodrich-Hunsaker et al., 2009). A typical
object-location task involves showing participants an array of
objects on a tabletop, asking them to remember where the objects
are located with respect to one another, and then asking them
to replace those same objects on a blank tabletop. Aside from
not being able to learn a new route (for review, see Burgess
et al., 2002), patients with damage to their right hippocampus or
right medial temporal lobe, in particular, show deficits in object-
location tasks that (Crane and Milner, 2005), especially after their
viewpoint has been shifted (Shrager et al., 2007). Furthermore,
various neuroimaging studies found increased right hippocampal
activation during, not only route learning, but object-location
memory tasks as well (for reviews, see Burgess et al., 2002; Bau-
mann and Mattingley, 2014). Thus, given the significance of the
hippocampus in remembering where things are, and that spatial
reorientation tasks involve recalling the specific location of an
invisible object and linking it to a salient landmark (Lee et al.,
2006), it is quite possible that the hippocampus, particularly the
right hippocampus, is involved in reorienting behaviors as well.

Research on the neural basis of spatial navigation and reorien-
tation has shed light on different underlying means of encoding
spatial information (for review, see Sutton and Newcombe, 2014).
O’Keefe and Nadel (1978) proposed that we use locale (i.e., allo-
centric, map-based representation of the environment) and taxon
(i.e., egocentric, route based representation of the environment)
systems for navigating. The former system relies on the hippocam-
pus and its place cells (O’Keefe, 1976), while the latter system
depends more so on the dorsal striatum (White and McDonald,
2002). Similarly, the usage of geometric and featural cues impli-
cates a two-factor hippocampal-striatal system (For a review, see
Cheng et al., 2013). Evidence from fMRI studies supports the
hypothesis that the hippocampus encodes geometric information,
while the striatum encodes landmark information (Doeller and
Burgess, 2008; Doeller et al., 2008). For example, it was found that
encoding an object’s location relative to a boundary (geometric
cue) activated the hippocampus, while doing so relative to a

landmark (featural cue) activated the dorsal striatum. However,
in the studies conducted by Doeller et al. (2008), participants
were not disoriented, so it would be difficult to draw conclu-
sions regarding brain regions involved in reorientation per se
(Sutton et al., 2010). Yet, in virtual reorientation studies, signif-
icantly greater hippocampal activation following disorientation
was found in conditions where a non-geometric feature (i.e., red
wall) was present (Sutton et al., 2010, 2012). The disparity in
these findings implies the use of different neuropsychological
mechanisms in reorienting. As such, virtual reorientation studies
highlight the specific importance of the hippocampus in spatial
reorientation. In sum, it appears that the hippocampus plays a sig-
nificant role in remembering the locations of objects and binding
said locations to allocentric representations of the environment.
Moreover, as highlighted in the next section, typical and atypical
structural changes in the hippocampus across childhood lead to
functional changes such as developmental differences in memory
and, potentially, spatial reorientation abilities.

Typical and Atypical Hippocampal
Development

It is now known that the hippocampus of non-human animals
and humans is not fully formed at birth, but continues to develop
and mature. Evidence suggests that the rat hippocampus reaches
maturity between the 4th (Altman and Das, 1965) and 7th (Poko-
rny and Yamamoto, 1981) week after birth. More recent find-
ings show that normal human hippocampal development may
continue into early adulthood (Gogtay et al., 2006). Therefore,
this immaturity should be reflected in hippocampal-dependent
behaviors, including spatial reorientation behaviors. Indeed, we
have seen in studies on mice that compared to 5- and 9-week-
oldmice, 3-week-oldmice had significantly more trouble locating
food by orienting to distal cues on an 8 arm radialmaze (Chapillon
et al., 1995). Similarly, children under the age of 3.5 years have
difficulty in forming allocentric relations among cues in order to
locate a reward (Ribordy et al., 2013). The latter behavioral finding
coincides with previous findings on memory and the maturation
of the hippocampus in young children, such that while children
under the age of 2 years are unable to form episodic memo-
ries (Bauer, 2007), children between the ages of 4 and 6 years
improve dramatically in their abilities to recall the details of events
(Drummey and Newcombe, 2002), possibly as a result of the
hippocampal synaptic connectivity that matures at 5 years of age
(Serres, 2001). Thus, it appears that the hippocampus undergoes
a pivotal shift in development between 4 and 6 years of age; the
very same time period in which children begin to show success
on a variety of hippocampal-dependent tasks, including spatial
reorientation tasks (Learmonth et al., 2008).

Although several studies have tested behavioral spatial reorien-
tation abilities in typical individuals, it is rare to find one that used
this particular spatial task with atypical participants. The most
notable and recent study that has related atypical development to
spatial reorientation abilities found that individuals between the
ages of 9- and 27-years-old who were diagnosed with Williams
Syndrome (WS), a genetic defect that affects hippocampal
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development and visual-spatial abilities (Bernardino et al., 2013),
were impaired in their abilities to use the geometric properties
of a relatively small enclosure (6.25′ × 4′) to locate a hidden
toy, compared to controls (Lakusta et al., 2010). However, the
participants in this study were relatively unimpaired in their
abilities to use a distinct feature (i.e., colored wall) as a cue to
the location of the toy. Judging by the findings of Lakusta et al.
(2010), it may appear as though the hippocampus is related to
the geometric processing of spaces, but not featural processing.
However, in contrast with 6-year-olds in other studies on spatial
reorientation (e.g., Learmonth et al., 2002), individuals with WS
appear to have trouble reorienting, not only by geometry, but by
features as well, indicating that an under-developed or less mature
hippocampus may contribute to lower performance in using both
geometric and featural information to locate objects after being
disoriented.

Given that the hippocampus undergoes significant develop-
ment during the first 5 years of life, then it is reasonable to
suggest that an immature hippocampus would hinder a young
child’s ability to reorient by using non-geometric features in the
environment. This could explain why 3-year-olds have signifi-
cantly more difficulty than 6-year-olds performing well on spatial
reorientation tasks involving a feature. However, there is no evi-
dence to date to directly support that this is the case. In the next
section, we will briefly discuss why such data in young children
is difficult to obtain. Additionally, we will discuss the advan-
tages of using a relatively inexpensive, well-described technique
known to indirectly tap into hippocampal functioning: eyeblink
conditioning.

Measuring Hippocampal Functioning in
Young Children: Eyeblink Conditioning
(EBC)

Although the evidence from animal and human adult studies
highlights the significant role of the hippocampus in spatial nav-
igation, and potentially spatial reorientation, it remains unclear
whether developmental differences observed in spatial reorienta-
tion are mediated by developmental changes in the hippocampus.
The paucity of data examining this is likely due to the difficulties
and limitations of certain methodologies used to examine brain
function in pediatric populations, namely EEG and fMRI. For
example, EEG, which is a relatively inexpensive tool that has
been extensively used to examine neural activation in infants and
young children, does not provide the spatial resolution needed to
examine subcortical regions such as the hippocampus. In contrast,
fMRI, which provides excellent spatial resolution, has certain
methodological constraints associated with it, such as having to
remain still in a relatively small, enclosed space while performing
a virtual task (typically). These restrictions are likely to result in
participants opting out of the study due to discomfort, or failing
to remain still during the task, which can render the data collected
unusable. In addition, regions closest to bone-air interface, such
as the hippocampus, are subject to susceptibility artifacts, which
have led to functional discrepancies between fMRI and PET
results (Devlin et al., 2000; Veltman et al., 2000). Hence, these

artifacts may have played a confounding role in hippocampal
activation studies with adults, suggesting that similar problems
may also arise with data collected from children. Therefore, when
taking the high monetary cost of fMRI (>$500/hour per partic-
ipant) into consideration, utilizing this method to examine real-
time brain function in children younger than 5 years of age is not
feasible. In light of the potential difficulties, including attrition,
associated with using fMRI, it is necessary to find alternative ways
of studying children’s hippocampal development and its effect on
performance onhippocampal-dependent spatial tasks.We suggest
that EBC may serve as an ideal tool to examine the development
of hippocampal functioning.

Classical EBC is a procedure often used to study the brain
areas involved in associative learning (Cheng et al., 2008). In
general, EBC occurs when a neutral stimulus (i.e., the conditioned
stimulus or CS) is paired with a stimulus that elicits a biologi-
cal response (i.e., the unconditioned stimulus or US) for several
trials so that the subject presented with the stimuli learns the
pairing between the two. As a result of this learned association,
the subject will respond to the CS (i.e., tone) in relatively the
same way that he or she responds to the US (i.e., puff of air to
the eye), for instance, by blinking. Therefore, the overall goal of
EBC is to measure whether participants can learn the temporal
contingencies, or associations, between said stimuli. Two types
of classical conditioning paradigms widely studied are trace EBC
and delay EBC. In trace conditioning, the offset of the CS and
onset of the US are separated by a silent trace period, whereas in
delay conditioning, the CS andUS are presented in succession, but
co-terminate (Cheng et al., 2008).

One significant advantage of using EBC is that it provides
a behavioral measure of brain function, with a well-defined,
underlying neural circuitry that is conserved between animals
and humans. Specifically, the cerebellum has been implicated
in both delay and trace conditioning, while the hippocampus is
primarily involved in trace conditioning (Christian and Thomp-
son, 2003). Using animal models, it has been shown that dam-
age to the cerebellum leads to deficits in learning acquisition
during delay and trace conditioning (Woodruff-Pak and Dister-
hoft, 2008), while damage to the hippocampus results in deficits
acquiring trace conditioning exclusively (Beylin et al., 2001).
Consistent with these findings in animals, results from an fMRI
study with humans showed that the cerebellum is similarly acti-
vated during both trace and delay conditioning, while the hip-
pocampus is significantly activated during trace conditioning only
(Cheng et al., 2008). Interestingly, the greatest activation was
observed in the right medial temporal lobe, a region similarly
important for spatial memory (Burgess et al., 2002), suggesting
that similar neural mechanisms related to associative learning
processes are involved in both trace EBC and spatial mem-
ory. Given that spatial reorientation relies on spatial memory,
it is likely that it too shares similar underlying processes with
trace EBC.

Another major advantage of employing EBC to examine hip-
pocampal functioning is that it is relatively easy to implement
in infants and young children as well as atypical pediatric pop-
ulations. EBC can be successfully used with neonates (Little
et al., 1984; Fifer et al., 2010; Reeb-Sutherland et al., 2011),
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4–5-month-old infants (Ivkovich et al., 1999; Claflin et al., 2002),
and 4–6-year-old children (Werden and Ross, 1972). In addition,
EBChas been used as a tool to explore cerebellar and hippocampal
functioning in several neurodevelopmental disorders (for review,
see Reeb-Sutherland and Fox, 2015) in pediatric populations,
including autism spectrum disorder (ASD; Sears et al., 1994;
Oristaglio et al., 2013), Down syndrome (Ohlrich and Ross, 1968),
fetal alcohol syndrome (FAS; Coffin et al., 2005; Jacobson et al.,
2008, 2011), and attention-deficit/hyperactivity disorder (ADHD;
Coffin et al., 2005; Frings et al., 2010). The fact that EBC can
be employed with infants and young children as well as atypical
pediatric populations, which are typically difficult to collect fMRI
data from, demonstrates that EBC may be a reliable tool that
can be implemented in children to examine the development
of hippocampal functioning in relation to spatial reorientation
abilities.

One criticism of using EBC to examine hippocampal function-
ing in relation to spatial tasks, however, is that it does not directly
assess the behavior of interest (e.g., spatial reorientation) as is the
case in fMRI studies with adults. Given the indirect nature of
studying EBC in relation to hippocampal-driven behaviors, it may
seem analogous to hippocampal measures obtained via structural
MRI. However, in contrast to measures of hippocampal structure,
EBC provides a measure of hippocampal function while retain-
ing its well-defined neural circuitry and child-friendly nature.
Another potential criticism of EBC is that it has been primarily
used to analyze group level differences as opposed to individ-
ual differences. Recent infant studies have begun to investigate
heterogeneity in associative learning via EBC (Reeb-Sutherland
et al., 2012). Hence, we propose that individual differences in
EBCperformance should be further explored to better understand
the development and role of hippocampal function in spatial task
performance.

Developmental Implications of Eyeblink
Conditioning

Associative learning, or the ability to identify the causal relations
between events in the environment, is crucial for adaptation
and survival. These two forms of associative learning, delay and
trace conditioning, have different developmental trajectories. For
example, in humans, delay conditioning is present very early after
birth (Little, 1973; Fifer et al., 2010; Reeb-Sutherland et al., 2011),
while trace conditioning takes longer to develop, presumably due
to the higher order cognitive abilities recruited during trace condi-
tioning (Herbert et al., 2003). Newborns can learn the predictive
relation between a tone and a puff of air to their eye while they
sleep, suggesting that their ability to learn contingencies during
sleep may be important for their cognitive development (Fifer
et al., 2010). In addition, 2-month-old infants have been shown
to be able to learn a delay (but not trace) conditioned response
(CR) after extensive training (Little, 1973; Little et al., 1984).
Standard delay conditioning, in which the delay between the
onset of the CS and the onset of the US is 650 ms, is present
in 5-month-old infants just as well as in adults, but long-delay
(e.g., 1250 ms delay) and trace (e.g., 500 ms trace) conditioning
are less robust in 5-month-olds than in adults (Herbert et al.,

2003). Furthermore, typical preschool children aged 4 through
6 years have shown greater difficulty acquiring trace than delay
conditioning compared to typical adults, who do not display
deficits in either procedure (Werden and Ross, 1972). In addition,
although performance in trace conditioning continues to improve
throughout childhood, it still does not reach adult levels even by
12 years of age (Jacobson et al., 2011).

Studies demonstrating that infants acquire learning similarly to
adults when they are conditioned using a delay EBC paradigm
with a short delay period (i.e., 650 ms; Hoffman et al., 1985;
Herbert et al., 2003) suggest that the cerebellum is sufficiently
developed within the first half of the first year of life. In con-
trast, infants do not display adequate learning acquisition during
trace conditioning until approximately 4–6 years of age (Werden
and Ross, 1972), implying slower hippocampal than cerebellar
development. These results further suggest that the hippocampus
develops in a protracted fashion throughout childhood, consis-
tent with the development of memory abilities-both spatial and
episodic.

There are no studies to date that have systematically examined
hippocampal-dependent EBC in typically developing children
between 2–4 years of age, so the development of hippocampal-
dependent learning and memory during this period of time still
remains a mystery. Having this information would greatly inform
us of whether there is indeed a shift in hippocampal development
between 2–6 years of age. Furthermore, no studies to date have
linked the development of hippocampal function to large-scale
spatial behaviors in children, but EBC provides a novel means
to do so. Hence, the use of EBC can help close a gap in our
understanding of why preschool children have greater difficulty
than school-aged children reorienting by a distal, non-geometric
cue in order to identify the location of a hidden object.

Conclusion and Future Directions

In the present paper, we discuss the development of spatial navi-
gation and reorientation as well as that of EBC, and the underlying
neurobiology involved in these tasks. If the hippocampus is in fact
utilized during spatial reorientation tasks involving a distinct fea-
ture, not only would we be able to observe age-related differences
in performance via EBC, but also predict individual trajectories
in performance on certain spatial tasks. Future neuroimaging
studies on children performing a virtual version of the classic
reorientation task are needed in order to determine whether the
hippocampus is indeed significantly less activated in preschool
children than in older children during such a task. Until then it
may be best to employ a simpler, indirect approach to studying
hippocampal functioning, namely EBC. This technique could illu-
minate long-standing questions about the underlyingmechanisms
involved in large-scale spatial abilities in children, thus provid-
ing one explanation for the observed developmental differences
in spatial reorientation tasks. More importantly, these results
would broaden our understanding of early hippocampal devel-
opment, primarily by closing a gap in the EBC literature, where
not much data has been gathered about hippocampal-dependent
EBC in typically developing children, in particular. Further-
more, we reason that the ability to detect hippocampal-dependent
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contingencies is likely a biomarker for success in spatial tasks
that require the hippocampus, including, but not limited to, spa-
tial reorientation. In conclusion, this developmental work can
provide convergent evidence with adult and animal cognitive
neuroscience, allowing us to connect rich but disparate studies on
the neural and behavioral development of spatial cognition.
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