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ABSTRACT OF THE DISSERTATION 

CHARACTERIZATION OF JUVENILE HORMONE BIOSYNTHETIC ENZYMES IN 

THE MOSQUITO AEDES AEGYPTI 

by 

Pratik Nyati 

Florida International University, 2014 

Miami, Florida 

Professor Fernando G. Noriega, Major Professor 

The juvenile hormones (JHs) are sesquiterpenoid compounds that play a central role in 

insect reproduction, development and behavior. They are synthesized and secreted by a 

pair of small endocrine glands, the corpora allata (CA), which are intimately connected 

to the brain. The enzymes involved in the biosynthesis of JH are attractive targets for the 

control of mosquito populations. This dissertation is a comprehensive functional study of 

five Aedes aegypti CA enzymes, HMG-CoA synthase (AaHMGS), mevalonate kinase 

(AaMK), phosphomevalonate kinase (AaPMK), farnesyl diphosphate synthase (AaFPPS) 

and farnesyl pyrophosphate phosphatase (AaFPPase).  

The enzyme AaHMGS catalyzes the condensation of acetoacetyl-CoA and acetyl-

CoA to produce HMG-CoA. The enzyme does not require any co-factor, although its 

activity is enhanced by addition of Mg2+. The enzyme AaMK is a class I mevalonate 

kinase that catalyzes the ATP-dependent phosphorylation of mevalonic acid to form 

mevalonate 5-phosphate. Activity of AaMK is inhibited by isoprenoids. The enzyme 

AaPMK catalyzes the cation-dependent reversible reaction of phosphomevalonate and 

ATP to form diphosphate mevalonate and ADP. The enzyme AaFPPS catalyzes the 
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condensation of isopentenyl diphosphate (IPP) and dimethylallyl pyrophosphate 

(DMAPP) to form geranyl diphosphate (GPP) and farnesyl pyrophosphate (FPP). The 

enzyme AaFPPS shows an unusual product regulation mechanism, with chain length final 

product of 10 or 15 C depending on the metal cofactor present. The enzymes AaFPPase-1 

and AaFPPase-2 efficiently hydrolyze FPP into farnesol, although RNAi experiments 

demonstrate that only AaFPPase-1 is involved in the catalysis of FPP into FOL in the CA 

of A. aegypti. This dissertation also explored the inhibition of the activity of some of the 

JH biosynthesis enzymes as tools for insect control. We described the effect of N-acetyl-

S-geranylgeranyl-L-cysteine as a potent inhibitor of AaFPPase 1 and AaFPPase-2. In 

addition, inhibitors of AaMK and AaHMGS were also investigated using purified 

recombinant proteins. 

The present study provides an important contribution to the characterization of 

recombinant proteins, the analysis of enzyme kinetics and inhibition constants, as well as 

the understanding of the importance of these five enzymes in the control of JH 

biosynthesis rates. 
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Chapter 1: Introduction 

1.1 Aedes aegypti as the principal vector of dengue fever, yellow fever and 

chikungunya 

Aedes aegypti has been the focus of research in many areas owing to its global 

distribution and its involvement as a vector of dengue viruses, yellow fever and 

chikungunya. The viruses of these deadly diseases are passed on to humans through the 

bites of an infective female A. aegypti mosquito, which acquires the virus while feeding 

on the blood of an infected person (WHO, 2009). In the mosquito, the virus replicates in 

the midgut, invades the salivary gland and is ready for transmission to a new human host 

when the mosquito acquires a new blood meal (WHO, 2009).  

Although A. aegypti is commonly known as the “yellow fever mosquito”, because 

of the availability of an effective vaccine, yellow fever is a less of a concern worldwide 

(Barrett and Higgs 2007); conversely dengue fever and chikungunya are presently a 

major health problem in tropical and subtropical regions of the planet (Barrett and Higgs 

2007; Morens and Fauci 2014).  

Dengue fever is endemic in more than 100 countries, with America, South-east 

Asia and the Western Pacific regions been the most seriously affected (Fig. 1) (Bhatt et 

al., 2013). In recent years, dengue has become a major international public health 

concern as its transmission has increased predominantly in urban and semi-urban areas. 

The last five decades has seen a 30-fold increase in the incidence of dengue fever (WHO, 

2012). It is now estimated that over 2.5 billion people are now at risk from dengue. Some 

50–100 million new infections are estimated to occur annually with a spread to 

previously unaffected areas. Every year hundreds of thousands of severe cases arise, 
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including 20,000 deaths (WHO 2012). There is a projection that by 2055 one third of the 

world’s population will be exposed to the risk of dengue fever. Among the factors 

responsible for this increase are global warming and increases in urbanization and 

resistance to insecticides (Hales et al., 2002). According to the World Health 

Organization the economic costs of dengue fever to human society is comparable to 

tuberculosis, malaria, hepatitis or bacterial meningitis (Gubler, 2002). 

Aedes aegypti is also the vector of the chikungunya virus, which causes a disease 

clinically similar to dengue, with similar epidemiologic problems caused by the lack of 

vaccines and specific treatments (Morens and Fauci 2014). The name ‘chikungunya’ 

which means ‘to become distorted’ is derived from the Kimakonde language of the 

Makonde people (WHO 2014; Morens and Fauci 2014). The disease was given its name 

because a severe musculoskeletal pain caused affected persons to walk in a stooped 

posture. Chikungunya outbreaks have been identified in more than 40 countries in Asia, 

Africa, Europe, and America (Fig. 2). By July 11, 2014, the Pan American Health 

Organization had reported more than 355,000 suspected and confirmed cases of 

chikungunya fever from different jurisdictions in the Americas, with continuing local 

transmission and epidemic spread (Morens and Fauci 2014) 

Over the last several years, A. aegypti transmitted diseases have caused periodic 

epidemics in tropical as well as subtropical regions of the world. Controlling the vector is 

the only way to reduce the burden of these deadly diseases. There are mainly four classes 

of insecticides that are available for public health purposes, namely, organ chlorides, 

organophosphates, carbamates, and pyrethroids (WHO 2013). The extensive use of 

vector control insecticides has contributed to the development of insecticide resistance, 
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cross resistance and adverse effects on the environment and human health. A better 

understanding of the biology of development and reproduction of mosquitoes might 

contribute to the selection of new targets for the development of better effective, safer 

and target specific insecticides. 

Juvenile hormones (JHs) are lipophilic, acyclic sesquiterpenoids, synthesized by 

the corpora allata (CA), a pair of endocrine glands connected to the brain (Tobe et al., 

1985). JH plays a central role in insect development, reproduction, diapause and 

polyphenisms (Goodman and Granger, 2005; Goodman and Cusson, 2012); therefore 

biosynthesis of JH has been considered as an attractive target for the chemical control of 

insects (Cusson et al., 2013). A number of recent reviews have summarized the current 

knowledge on JH biosynthesis in insects (Goodman and Cusson, 2012), as well as its 

potential as a target for insecticide discovery (Cusson et al., 2013). 

1.2 Brief history on JH research and the discovery of JH structures. 

Sir Vincent Brian Wigglesworth in 1934 wrote in his famous article named “The 

physiology of ecdysis in Rhodnius prolixus (Hemiptera). II. factors controlling molting 

and 'metamorphosis', this visionary statement: “The absence of metamorphosis in normal 

nymphs before the fifth stage must therefore be due to an inhibitory factor or hormone in 

the blood” (Wigglesworth, 1934). He also stated that the source of this “inhibitory 

hormone” was the corpora allata (CA). Afterward, Hans Piepho revealed that the 

formation and nature of the cuticle of the Lepidoptera Galleria was under hormonal 

control (Piepho, 1938). The work by Carroll Williams in the 1950s indicated that males 

of the Hyalophora cecropia moth contained a store of lipoidal “golden oil” with JH 

activity (William, 1956). William discovery initiated a series of studies trying to identify 
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JH homologs in different insects, since an active extract of the JH was then available that 

worked on most insect species (Gilbert et al., 2000).  

The first JH (JH I) was identified from the lipid extract of the silkworm, 

Hyalophora cecropia (Roller et al., 1967) (Fig. 1). A second JH homologue (JH II) was 

also identified in H. cecropia extracts, differing from JH I by the presence of a methyl 

group at C7 (Meyer et al., 1968). A third JH homologue (JH III) was identified from the 

CA of the tobacco hornworm, Manduca sexta (Judy et al., 1973). JH III is the most 

ubiquitous homologue in insects, and also the JH form present in Aedes aegypti 

(Schooley and Baker, 1985). JH 0 and 4-methyl JH I (iso JH 0) were identified from eggs 

of M. sexta (Bergot et al., 1981) (Fig. 1). A JH III form with a second epoxide 

substitution at C6, C7 (JH III bisepoxide or JHB3) is present in Drosophila melanogaster 

(Richard et al., 1989) (Fig. 1). Finally, a skipped bisepoxide (JHSB3), with a second 

epoxide substitution at C2, C3, rather than at C6, C7 as in JHB3, was identified from the 

pentatomid, Plautia stali (Kotaki et al., 2009) (Fig. 1). JH analogs (JHA) such as 

methoprene, pyriproxifen and fenoxycarb are compounds that mimic the action of JH and 

have been employed as control agents for mosquitoes, flies, stored-product pests, fleas 

and fire ants (Goodman and Cusson, 2012) (Fig. 1). 

1.3 Juvenile hormone biosynthesis 

1.3.1 Biosynthetic pathway 

The JH biosynthetic pathway can be divided into two distinct biosynthetic units, 

the early steps and the late steps (Fig. 2) (Belles et al., 2005). The early steps follow the 

mevalonate pathway (MVAP) to form farnesyl pyrophosphate (FPP). In the MVAP, 

acetyl-CoA undergoes a series of enzymatic reactions to form the 5-carbon compound 
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isopentenyl-pyrophosphate (IPP). A sequential head to tail condensation of three 5C units 

is used to synthesize the 15-carbon farnesyl pyrophosphate (FPP) (Belles et al., 2005). 

FPP is a precursor of cholesterol in many organisms. Insects do not synthesize cholesterol 

de novo because they lack the genes encoding the enzymes required for the production of 

cholesterol from FPP, including squalene synthase and other subsequent enzymes of the 

sterol branch (Clark and Bloch, 1959). FPP is shunted into other pathways in insects, 

including synthesis of ubiquinone and dolichol, protein prenylation, and pheromone 

synthesis.  

The late steps of JH biosynthesis (JH-branch) include the hydrolysis of FPP to farnesol 

(FOL) (Cao et al., 2009; Nyati et al., 2013), which is then successively oxidized to 

farnesal (FAL) by an alcohol dehydrogenase, and to farnesoic acid (FA) by an aldehyde 

dehydrogenase (Mayoral et al., 2009a; Rivera-Perez et al., 2013) (Fig. 2). The last two 

steps vary in different insect orders. In Lepidoptera, a C-10, 11 epoxidation by a P450 

monooxygenase converts the FA to the epoxy acid (JH acid or JHA), which is then 

methylated by methyltransferase (JHAMT) to form the methyl ester. In Orthoptera and 

Dictyoptera, epoxidation follows methylation and this is also the case in mosquitoes 

(Defelipe et al., 2012; Noriega, 2014).  

  Expression of the first three enzymes of the JH-branch, namely, FPP phosphatase 

(FPPase), farnesol dehydrogenase (FOLD) and farnesal dehydrogenase (FALD), is not 

restricted to the CA (Nyati et al., 2013; Mayoral et al., 2009a; Rivera-Perez et al., 2013);  

but are expressed in several tissues, where they might play a significant role in cellular 

activities such as proliferation, apoptosis, signal transduction, and vesicular transport (Joo 

and Jetten, 2010; Pechlivanis and Kuhlmann, 2006). In contrast, the last two enzymes of 
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the JH-branch, the JHAMT and epoxidase (Epox) are likely exclusive for JH biosynthesis 

and therefore are highly expressed in the CA (Mayoral et al., 2009b; Nouzova et al., 

2011). 

1.3.2 Enzymes: Biochemical characterization 

1.3.2.1 Acetoacetyl-CoA thiolase (EC 2.3.1.9) 

 It catalyzes the condensation of two molecules of acetyl CoA to form acetoacetyl 

CoA. Its activity is yet to be characterized in insects. 

1.3.2.2 HMG-CoA synthase (EC 2.3.3.10) 

HMG-CoA synthase (HMGS) catalyzes the condensation of acetoacetyl-CoA and 

acetyl-CoA into 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA). In insects 

HMGS has been biochemically characterized from the cockroach, Blattella germanica 

(Buesa et al., 1994; Casals et al., 1996) and A. aegypti (chapter 4). In both insects HMGS 

does not require a co-factor for activity; however the activity of the recombinant enzymes 

was enhanced by adding Mg2+ (Buesa et al., 1994; chapter 4). Hymeglusin, a specific β-

lactone inhibitor of the vertebrate HMGS (Greenspan et al., 1987), is an inhibitor of the 

HMGS enzyme activity in crude extracts from thorax and abdominal carcass of A. 

aegypti (chapter 4).  

1.3.2.3 HMG-CoA reductase (EC 1.1.1.34) 

HMG-CoA reductase (HMGR) reduces HMG-CoA to mevalonic acid. The 

activity of the HMGR has been characterized in two cockroach species: Blattella 

germanica (Casalet al., 1996) and Diploptera punctata (Feyereisen and Farnsworth, 

1987). The activity of HMGR strictly depends on NADPH, and it is competitively 

inhibited by mevinolin (Feyereisen and Farnsworth, 1987). 
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1.3.2.4 Mevalonate kinase (EC 2.7.1.36) 

Mevalonate Kinase (MK) catalyzes the phosphorylation of mevalonic acid into 

phosphomevalonate (PM). MK is a member of the “sugar kinase family” that includes 

enzymes such as galactokinase, homoserine kinase, mevalonate kinase, and 

phosphomevalonate (GHMP) kinase (Bork et al., 1993; Cheek et al., 2002). In insects, 

MK has been characterized only in A. aegypti (AaMK) (Nyati et al., in prep). The 

catalytic activity of AaMK increases in a dose response manner when Mg2+ is added as a 

cofactor. AaMK can also utilize Mn2+ and Co2+ as cofactors, but the activity is much 

higher with Mg2+ (Nyati et al., in prep). The activity of AaMK is strongly inhibited by 

long chain isoprenoids such as geranyl-geranyl pyrophosphate (GGPP) (20 C units), 

farnesyl pyrophosphate (FPP) (15 C units) and geranyl pyrophosphate (GPP) (10 C 

units). 

1.3.2.5 Phosphomevalonate kinase (EC 2.7.4.2) 

Phosphomevalonate kinase (PMK) catalyzes the cation-dependent reversible 

reaction of PM and ATP to form diphosphate mevalonate (DPM) and ADP. Metazoans 

PMKs are not related to the GHMP kinases, but exhibit the typical fold of the nucleoside 

monophosphate (NMP) kinase family members (Smith and Mushegian, 2000). In insects, 

PMK has been characterized only in A. aegypti (AaPMK) (Chapter 4). 

1.3.2.6 Mevalonate diphosphate decarboxylase (EC 4.1.1.33) 

Mevalonate diphosphate decarboxylase (MDD) catalyzes ATP dependent 

decarboxylation of DPM to form isopentenyl pyrophosphate (IPP), releasing ADP and 

CO2 as byproducts. Like MKs, MDDs are also classified as members of the GHMP 

kinase family (Bork et al., 1993; Cheek et al., 2002). Although MDDs have been cloned 
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in a variety of insects, and the crystal structure of non-insect proteins are known 

(Miziorko, 2011), its relation to JH biosynthesis is poorly characterized. 

Fluoromevalonate is a potent inhibitor of MDD in several lepidopteran species; inhibiting 

the metabolism of MA to JH very efficiently in Manduca sexta (Quistad et al., 1981). 

1.3.2.7 Isopentenyl diphosphate isomerase (EC 5.3.3.2) 

Isopentenyl diphosphate isomerase (IPPI) catalyzes the reversible conversion of 

IPP into dimethylallyl pyrophosphate (DMAPP). IPPI has been biochemically 

characterized from A. aegypti (Diaz et al., 2012) and two lepidopteran species: 

Choristoneura fumiferana and M. sexta (Sen et al., 2012). IPPIs belong to the Nudix 

hydrolase superfamily. IPPI activity is enhanced by Mg2+ or Mn2+ and inhibited by 

iodoacetamide in A. aegypti (Diaz et al., 2012), and by ammonium diphosphates in 

lepidoptera (Sen et al., 2012). 

1.3.2.8 FPP synthase (EC 2.5.10) 

FPP synthases (FPPSs) are short-chain prenyltransferases that catalyze two 

sequential coupling of IPP in a head to tail manner. The alkylation of IPP by DMAP to 

produce GPP occurs first; that reaction is followed by the alkylation of IPP by GPP to 

yield FPP. In the beetle Phaedon cochleariae, FPPS shows an unusual product regulation 

mechanism; it alters the chain length of its products depending on the cofactor present. 

The FPPS yields C10-GPP in the presence of Co2+ or Mn2+, whereas it produces the 

longer C15-FPP in the presence of Mg2+ (Frick et al., 2013). A similar mechanism has 

been observed in A. aegypti (Rivera-Perez et al., in prep). Inhibitors of the FPPSs include 

bisphosphonates such as BPH-461, BPH-527 and BPH-678 (Cusson et al., 2013). 
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1.3.2.9 FPP phosphatase (EC 3.1.7.6) 

FPP phosphatases (FPPases) catalyze the hydrolysis of FPP into FOL. The first 

insect FPPases were characterized in Drosophila melanogaster (Cao et al., 2009) and A. 

aegypti (Nyati et al., 2013). The FPPases belong to the NagD haloalkanoic acid 

dehalogenase family (HAD). A. aegypti FPPase (AaFPPase) efficiently hydrolyzes FPP 

and GPP but not IPP (Nyati et al., 2013).  Insect FPPases increase their catalytic activity 

in a dose response manner when Mg2+ is used as a cofactor, and it are strongly inhibited 

by N-acetyl-S-geranylgeranyl-L-cysteine (AGGC) (Cao et al., 2009; Nyati et al., 2013). 

1.3.2.10 Farnesol dehydrogenase (FOLD)  

Two types of enzymes have been proposed for the oxidation of FOL into FAL: 1) 

a flavin/iron dependent alcohol oxidase activity was characterized from a CA 

homogenate of Manduca sexta (Sperry and Sen, 2001); and 2) a short chain alcohol 

dehydrogenase (SDR) was molecularly and biochemically characterized in the CA of A. 

aegypti (Mayoral et al., 2009a). The oxidation of farnesol by M. sexta CA extracts was 

weakly inhibited by 1, 10-phenanthroline (Sperry and Sen, 2001). In A. aegypti NADP+ 

was absolutely required for FOLD activity, and NAD+ or FAD+ did not substitute 

(Mayoral et al., 2009a).  

1.3.2.11 Farnesal dehydrogenase (FALD) (EC 1.2.1.B9) 

A fatty aldehyde dehydrogenase (AaALDH3) that oxidizes FAL into FA was 

identified in CA of A. aegypti (Rivera-Perez et al., 2013). The AaALDH3 is structurally 

and functionally a NAD+-dependent class 3 ALDH with orthologues in many insect 

species (Rivera-Perez et al., 2013).  
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1.3.2.12 JH acid methyltransferase (JHAMT) (EC 2.1.1.15) 

Recombinant JH acid methyltransferase (JHAMT) transfers a methyl group from 

S-adenosylmethionine (SAM) into FA to produce MF, as well as into JHA to generate JH 

III in all the insect species studied (Shinoda and Itoyama, 2003; Minakuchi et al., 2008; 

Niwa et al.,2008; Mayoral et al., 2009b). Homology modeling and docking simulations 

confirmed that JHAMT is capable to methylate both FA and JHA (Defelipe et al., 2011). 

JHAMT is an enzyme highly specific to insects hence, JHAMT specific inhibitors are 

expected to be excellent candidates for safe insect growth regulators. 

1.3.2.13 MF epoxidase (Epox) (3.6.2.4) 

MF Epox is generally consider as the last enzyme of the JH biosynthetic pathway, 

that catalyzes epoxidation of MF into JH in most of insects with the exception of 

Lepidoptera (Bhaskaran et al., 1986), Drosophila (Moshitzky and Applebaum, 1995) and 

Hemiptera (Kotaki et al., 2009). MF Epox uses NADPH as a cofactor, and is strongly 

inhibited by 1, 5-disubstituted imidazoles such as TH27 and KK96 (1-Isobutyl-5-[3-

[[(E)-3,7-dimethyl-2,6-octadienyl]oxy]phenyl]-1H-imidazole) (Helvig et al., 2004). 

Recombinant D. punctata EPOX (CYP15A1) shows higher affinity for MF, which it 

converted to JH III and cannot catalyze FA into JHA (Helvig et al., 2004). On the other 

hand Bombyx mori Epox exhibits at least 18-fold higher activity for FA than MF 

(Daimon et al., 2012). Therefore, the order of the methylation/epoxidation reactions 

depends upon the Epox substrate specificity (Defelipe et al., 2011). In Lepidoptera, Epox 

has a higher affinity for FA than JHAMT, so epoxidation precedes methylation; whereas 

in many other insects Epox cannot metabolize FA, so methylation precedes epoxidation. 
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1.4 JH functions  

1.4.1 JH is one of the key hormones regulating growth and metamorphosis of insects 

Two key hormones are responsible for the regulation of growth and 

metamorphosis in insects; JH and 20-hydroxyecdysone (20E) (Nijhout, 1994). Ecdysone 

is secreted by the prothoracic glands of preimaginal stages and the ovary of adult insects. 

Ecdysone is converted in periphery tissues to 20E (Goodman and Granger 2005; Hiruma 

and Kaneko 2013). Periodic pulses of 20E induce molts, and the nature of the molt 

depends on JH. The presence of JH ensures that the molt will produce another immature 

instar (nymphal in hemimetabolous and larval in holometabolous insects). The reduction 

in JH titers in the final nymph instars or larvae stages induces metamorphosis (Nijhout, 

1994). Except for the higher Diptera, treatment of final-instar nymphs, larvae, or pupae 

with JH or JHA causes repetition of that stage (Goodman and Cusson, 2012). Conversely, 

experimental removal of JH at earlier instars leads to precocious metamorphosis. In some 

species, such as the silkworm, Bombyx mori (Tan et al., 2005) and the red flour beetle, 

Tribolium castaneum (Minakuchi et al., 2008), depletion of JH can even yield perfect 

miniature pupae and adults. For its ability to prevent differentiation without interfering 

with growth, JH was termed as a ‘status quo’ hormone (Goodman and Granger, 2005 and 

Dubrovsky, 2005). 

1.4.2 JH assesses nutritional information to regulate reproduction in mosquitoes 

In insect’s life one of the critical components is to correctly distribute nutritional 

reserves among survival, growth and reproduction (Boggs, 2009; Clifton and Noriega, 

2011). JH is part of a transduction system that evaluates nutritional information and 

controls the development of ovaries in insects (Noriega, 2004). There are three major 
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sources of nutrients that are used by female A. aegypti during the three different phases of 

ovarian development. Reserves acquired from preimaginal stages, nectar feeding and 

blood meal are respectively used for the previtellogenesis (PVG), resting stage and 

vitellogenesis (VG) phases of ovary development (Briegel, 1990; Klowden, 1997; 

Noriega, 2004; Zhou et al., 2004a, 2004b). In newly eclosed adult female A. aegypti JH 

synthesis and ovarian previtellogenic maturation are activated only if teneral nutritional 

reserves are elevated (Caroci et al., 2004). Later, after previtellogenic maturation has 

been completed, JH mediates reproductive trade-offs in resting stage mosquitoes in 

response to nutrition (Clifton and Noriega, 2012). An adult female A. aegypti shows 

dynamic changes in JH biosynthesis, and regulation of the CA activity are quite different 

in the previtellogenesis, ovarian resting stage and vitellogenesis phases (Rivera-Perez et 

al., 2014) (Fig. 3). Four distinct nutritional-dependent stages of CA activity have been 

described in female A. aegypti: inactive, active, modulated and suppressed CA on the 

basis of the rates of JH biosynthesis (Rivera-Perez et al., 2014) (Fig. 3). 

JH biosynthesis rate changes correspond well with the changes in transcript levels for 

most of the JH biosynthetic enzymes. Transcript levels are very low in early pupae 

(Nouzova et al., 2011) and JH synthesis rates are undetectable in pupae 24 and 12 h 

before adult eclosion (Rivera-Perez et al., 2014) (Fig. 3). Subsequently, in the last 6-8 h 

before adult emergence transcript levels for the biosynthetic enzymes commence to rise, 

the pupal CA becomes “competent” and starts to synthesize JH (Nouzova et al., 2011). 

Although the CA of the newly eclosed adult female is fully competent; for the next 10-11 

h it synthesizes relatively low levels of JH (10 fmol/h) (Rivera-Perez et al., 2014) (Fig 3). 

The brain of the mosquito plays a key role in sensing the nutrients and regulating the 
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activity of CA, since decapitation during 12 h after emergence prevents the rise in JH 

levels (Hernandez-Martinez et al., 2007). A sharp increase in JH synthesis is observed 12 

h after adult emergence, which conveys information on teneral nutritional reserves and 

gives signal for the previtellogenic maturation of the ovaries. The process of “activation” 

of CA is very fast and short lasted; JH synthesis increases from 10 fmol/h to almost 100 

fmol/h in 2 h, and decreases to less than 40 fmol/h in the next 2 h; remaining at this 

relatively high and constant rate until 24 h after emergence (Rivera-Perez et al., 2014) 

(Fig. 3). Later, during the ovarian resting stage, female mosquitoes are capable of 

synthesizing different rates of JH depending upon the amount of nutrients available. A. 

aegypti that were fed on a restricted 3% sucrose diet had reduced JH synthesis (Rivera-

Perez et al., 2014) (Fig. 3).  Finally at the VG phase; 24 h after blood feeding there is a 

suppression of JH synthesis (Li et al., 2003a; Rivera-Perez et al., 2014). 

1.5 Regulation of JH biosynthesis 

1.5.1 Role of the insulin/TOR signaling pathway  

The insulin/TOR signaling pathways play a central role in the transduction of 

nutritional signals into cell growth and metabolism in almost all eukaryotic cells (Howell 

and Manning, 2011; Siddle, 2012). In D. melanogaster specific silencing of the insulin 

receptor (InR) in the CA completely suppresses HMG-CoA expression and renders a JH-

deficient phenotype (Belgacem and Martin, 2007). In addition, D. melanogaster InR 

mutants have reduced JH synthesis (Tu et al., 2005). In Culex pipiens, the ability to enter 

into overwintering diapause is regulated by JH (Sim and Denlinger, 2008). Silencing the 

InR by RNAi or the downstream FOXO protein (fork head transcription factor) in C. 

pipiens leads to a diapause phenotype (Sim and Denlinger, 2008).  
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There are eight insulin like peptides (ILPs) reported in the genome of A. aegypti; 

three of them (ILP 1, 3 and 8) show expression specifically in brains of adult females 

(Riehle et al., 2006). ILP3 shows the highest affinity binding for the A. aegypti insulin 

receptor (InR); and stimulates egg maturation by activating the insulin signaling pathway 

in the ovaries (Brown et al., 2008). Insulin receptor tyrosine kinase activity and 

phosphatidylinositol 3-kinase mediate mosquito ILPs action (Riehle and Brown, 1999). 

Selective activators and inhibitors of insulin signaling cascades have strong effects on 

insulin-regulated physiological processes in mosquitoes (Riehle and Brown, 1999); for 

example, knockdown of the A. aegypti “phosphatase and tensin homolog” (AaegPTEN) 

affects insulin signaling (Arik et al., 2009). Bovine insulin shows a strong and fast 

stimulation of JH synthesis by mosquito CA-CC dissected from 1 or 3 day old sugar fed 

females (Perez-Hedo et al., 2013). Incubation of CA-CC with LY294002, an inhibitor of 

insulin signaling pathway resulted in a strong decrease in JH synthesis (Perez-Hedo et al., 

2013). JH biosynthetic transcript levels and JH synthesis were reduced by the systemic 

depletion of TOR by RNAi, as well as by administration of the TOR modulator 

rapamycin (Perez-Hedo et al., 2013). 

In A. aegypti starvation decreases JH synthesis via a decrease in insulin signaling 

in the CA. Starvation results in up regulation of the insulin receptor, which increases CA 

insulin sensitivity and might ‘‘prime’’ the gland to respond rapidly to increases in insulin 

levels after feeding resumption (Perez-Hedo et al., 2014). During this response to 

starvation the synthetic potential of the CA remained unaffected, and the gland rapidly 

and efficiently responds to insulin stimulation by increasing JH synthesis to rates similar 

to those of CA from non-starved A. aegypti (Perez-Hedo et al., 2014). 
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1.5.2 JH biosynthesis regulation by allatotropins and allatostatins  

Allatotropins (ATs) are neuropeptides that stimulate CA activity, while 

allatostatins (AST) inhibit JH synthesis (Goodman and Cusson, 2012). The insect AT 

receptor belongs to a family of G-Protein-Coupled Receptors (GPCRs) orthologues of the 

vertebrate orexin/hypocretin receptors (Yamanaka et al., 2008; Horodyski et al., 2011; 

Vuerinckx et al., 2011; Nouzova et al., 2012). The Bombyx mori AT receptor (BmATr) is 

not expressed in the CA, but in the corpora cardiaca (CC); and it was suggested that AT 

inhibits the release of short Neuropeptide F, which in its turn inhibits JH synthesis. Thus 

AT exerts an indirect allatotropic effect by “derepression” (Yamanaka et al., 2008) which 

has not been tested in mosquitoes or additional insect species. Unlike BmATr, A. aegypti 

AT receptor (AeATr) is expressed in the CA (Nouzova et al., 2012). The pattern of 

changes of AeATr mRNA in the CA resembles the changes in JH biosynthesis, and it was 

suggested that the AeATr might play a role in the regulation of JH synthesis in 

mosquitoes (Nouzova et al., 2012); however its exact roles in vivo and the mechanisms of 

action of AT still need to be elucidated.  

Insects AST can be grouped into three families, cockroach allatostatins (YXFGL-

amide or type-A), cricket allatostatins (W2W9 or type-B), and Manduca allatostatins 

(PISCF or type-C) (Stay et al., 1994; Bendena et al., 1999; Stay and Tobe, 2007). The 

receptors for the three ASTs (A, B and C) also belong to the GPCR family with 

vertebrate orthologues. The AST-A receptors are related to the vertebrate galanin 

receptors (Kreienkamp et al., 2002), the AST-B receptors to the bombesin receptors 

(Johnson et al., 2003), and the AST-C receptors show similarity to the 

somatostatin/opioid receptors (Kreienkampet al., 2006, Mayoral et al., 2010).  AST-A 
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inhibits JH synthesis in Diploptera punctata CA, by reducing the availability of acetyl-

CoA from glucose or amino acid metabolism, although the incorporation of acetate into 

the JH pathway remains unaffected (Sutherland and Feyereisen, 1996).  Thus a major 

target of AST-A could be either the transport of citrate across the mitochondrial 

membrane or/and the cleavage of citrate to yield cytoplasmic acetyl-CoA (Sutherland and 

Feyereisen, 1996).  Similar results have been described for the action of AST-C in 

mosquitoes. Aedes aegypti AST-C (AeaAST-C) showed no inhibitory activity in the 

presence of any of the intermediate precursors of JH indicating that the AeaAST-C target 

is located before the entry of acetyl-CoA in the pathway (Nouzova et al., in prep). 

Stimulation experiments using different sources of carbon (glucose, pyruvate, acetate and 

citrate) suggest that AST-C acts after pyruvate is transformed to citrate in the 

mitochondria. In vitro inhibition of the citrate mitochondrial carrier (CIC) mimicked the 

effect of AeaAST-C, and was overridden by addition of citrate or acetate. Treatment of 

the CA with a calcium modulator, thapsigargin (inhibitor of SERCA pumps) superseded 

AeaAST-C inhibition, suggesting an involvement of Ca2+ in the AeaAST-C signaling 

pathway (Nouzova et al., unpublished manuscript). 

1.5.3 Regulation of JH synthesis by 20-hydroxyecdysone and ecdysis triggering 

hormone  

Twenty-hydroxyecdysone (20E) is a steroid hormone that controls molting, 

metamorphosis and oogenesis in mosquitoes (Margam et al., 2006; Attardo et al., 2005). 

20E regulates JH synthesis in Bombyx mori (Gu and Chow 1996, Kaneko et al., 2011), 

possibly by means of a direct control on the expression of some of the JH biosynthetic 

enzymes (Hiruma and Kaneko 2013).  
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Ecdysis triggering hormone (ETH) is a small C-terminally amidated peptide that 

is released into the hemolymph to activate pre-ecdysis and ecdysis motor programs in the 

central nervous system (CNS) (Zitnan and Adams, 2012). Specialized endocrine cells 

called Inka cells synthesize ETH (Adams et al., 2006; Zitnan et al., 2007). The 

expression of the ETH gene is regulated by 20E (Zitnan and Adams, 2012). ETH 

receptors are expressed in the CA of the moths Bombyx mori and Manduca sexta 

(Yamanaka et al., 2008); so it has been suggested that ETH could play a role in the 

regulation of JH biosynthesis (Yamanaka et al., 2008).  In A. aegypti, in vitro stimulation 

of the pupal CA with ETH resulted in an increase in JH synthesis; conversely silencing of 

A. aegypti ETH receptor in pupa resulted in reduced JH synthesis by the CA of one day 

old adult females (Areiza et al., 2014). There is an increase in the activity of JHAMT 

when A. aegypti CA is stimulated with ETH (Areiza et al., 2014). ETH increases JH 

synthesis in A. aegypti by mobilizing calcium from intracellular stores (Areiza et al., 

2014).   

1.5.4 Flux control of JH synthesis rate   

The rate of JH biosynthesis is controlled by the rate of flux of isoprenoids in the 

pathway, which is the outcome of a complex interplay of changes in precursor pools, 

enzyme levels and external regulators (Fig. 4) (Nouzova et al., 2011). Changes in the 

nutritional status in female mosquitoes, as well as the manipulation of individual 

precursor pool concentrations (e.g. FOL, FAL and FA) affect the rate of JH biosynthesis 

(Fig. 4) (Nouzova et al., 2011; Rivera-Perez et al., 2014). There is a coordinated 

expression of JH biosynthetic enzymes in female pupae and adult mosquito. Positive 

correlations between JH synthesis and transcripts levels for the JH biosynthetic enzymes 
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suggest that a coordinated regulation in the transcription of the genes encoding JH 

biosynthetic enzymes is at least partially responsible for the changes of JH biosynthesis 

in the CA of mosquitoes (Nouzova et al., 2011). To understand how regulators modify 

JH synthesis, it is important to know their effect on the changes in the levels of all 

enzymes and precursor pool sizes.  

The 13 distinct enzymatic steps of the JH synthetic pathway are arranged in an 

obligatory sequence. Each product represents the substrate for the next downstream 

enzyme. Enzymes are connected by metabolite pools that are common to them, for 

example FAL is the product of the FOLD and the substrate for FALD which shows that 

the pools and fluxes are critical variables in JH regulation. Fluxes are distributed to all the 

enzymes of the pathway rather than restricting to the rate limiting enzyme but the control 

of the flux differ widely in a pathway and  the questions of its control cannot be answer 

by looking at one step in isolation or even each step in isolation (Kacser and Burns 1973).  

It has been postulated that in a pathway with multiple enzymes all the enzymes are in 

excess, so that individual amounts can be significantly reduced without considerable 

effect on the flux (Noriega, 2014). For example in D. punctate, inhibition of HMGR 

activity by one third resulted in less than 15% inhibition of JH III synthesis (Sutherland 

and Feyereisen, 1996), showing that this enzyme is in excess and has a low control 

coefficient on JH synthesis. Rate limiting bottlenecks have been proposed at different 

enzymatic steps in both the MVAP and JH-branch in the CA of different insects, for e.g. 

the activity of AaMK is controlled by feedback regulation of metabolites such as FPP and 

GPP operating in the downstream portions of the pathway (Nyati et al, unpublished 

manuscript). The low enzymatic activity of FPPase and FALD could limit the flux of 
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precursors and JH biosynthesis in the CA of blood-fed mosquitoes (Nyati et al., 2013; 

Rivera-Perez et al., 2012). In A. aegypti five enzymes: acetoacetyl-CoA thiolase, PMK, 

FPPase, FOLD and FALD presented overall low levels of expression in the CA (Nouzova 

et al., 2011; Rivera-Perez et al., 2012; Nyati et al., 2013). Under some conditions any of 

these enzymes could become rate limiting or bottleneck. In contrast recent studies 

suggest that there are multiple regulatory points in the pathway and they might change in 

different physiological stages (Rivera-Perez et al., 2014).  

Addition of exogenous precursors such as FPP, FOL, FAL, FA, and MF stimulate 

JH synthesis in CA dissected from female mosquitoes. Stimulation of JH synthesis is 

independent of their spontaneous JH biosynthetic activity and rate of stimulation is 

significantly lower in suppressed CA with low JH biosynthetic activity (Nouzova et al., 

2011).  It is often puzzling to note that even with high endogenous pools of FOL, FAL 

and FA there is a limited JH synthesis in the newly emerged mosquitoes CA which can 

strongly be stimulated by exogenous supply of these precursors (Nouzova et al., 2011; 

Rivera-Perez et al., 2014). These results suggest differences in the channeling of 

endogenous and exogenous pools of JH precursors. Although the transcripts and catalytic 

activities of MVAP and JH branch enzymes are well coordinated with JH biosynthesis, 

the global fluctuations in the metabolite pools sizes are inversely related in the two 

pathways (Rivera-Perez et al., 2014; Nouzova et al., 2011). Analysis of the precursor 

pool size revealed remarkable modifications in the fluxes in the MVAP and JH-branch 

during first 24 h after adult eclosion; a 10-fold increase in JH synthesis rates by 12 h 

caused a striking depletion of all MVAP metabolite pools, with some of them replenished 

by 24 h (Rivera-Perez et al., 2014). In addition, there are examples of a reversal of the 
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flux in the MVP and its branches. Phosphatase activities converting DPM back into PM 

and PM back into MA, a kinase activity converting FOL back into FPP, and a reductase 

activity converting FAL back into FOL have been previously described in plants, animals 

and in the CA of mosquitoes (Thai et al., 1999; Rizzo and Craft, 2000; Rivera-Perez et 

al., 2013). Altogether these results show that the regulation of the JH biosynthesis 

pathway is very complex, and further studies will be necessary to reveal what factors 

restrict the flux into JH III at specific physiological conditions. 

1.6 Dissertation objectives 

Juvenile hormone (JH) plays important roles in the regulation of development, 

metamorphosis and reproduction of insects (Nijhout, 1994; Goodman and Cusson 2012; 

Noriega, 2014). The study of JH is very challenging because of the minute size of the CA 

and the “sticky” and unstable nature of JH. To understand the rate limiting steps and 

regulatory points on the regulation of JH synthesis we need to complete the molecular 

and biochemical characterization of the 13 enzymes involved in the pathway. Four CA 

enzymes IPP isomerase (Diaz et al., 2012), farnesol dehydrogenase (Mayoral et al., 

2009a), farnesal dehydrogenase (Rivera-Perez et al., 2013) and methyl transferase 

(Mayoral et al., 2009b) have already been characterized in our laboratory. The goal of my 

dissertation research is to characterize five additional CA enzymes namely, HMG-CoA 

synthase (HMGS), mevalonate kinase (MK), phosphomevalonate kinase (PMK), farnesyl 

pyrophosphate synthase (FPPS) and farnesyl pyrophosphatase (FPPase), and to establish 

their role in the regulation of JH synthesis.  
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1.7 Dissertation organization 

In the first chapter of my dissertation I introduce my research model organism, 

Aedes aegypti. The mosquito is an important vector of three deadly human viral diseases: 

dengue fever, yellow fever and chikungunya. The study of the hormonal regulation of 

development and reproduction, including a better characterization of the enzymes 

involved in JH synthesis might offer opportunities to identify new targets for alternative 

control strategies.  

Chapter 2 describes the characterization of an A. aegypti corpora allata farnesyl 

phosphatase, the enzyme responsible for the conversion of farnesyl pyrophosphate (FPP) 

into farnesol in the biosynthesis of juvenile hormone. 

Chapter 3 reports the characterization of an A. aegypti corpora allata mevalonate 

kinase, the enzyme responsible for the conversion of mevalonate into 

phosphomevalonate. This chapter describes for the first time the existence of a negative 

feedback on juvenile hormone synthesis through the action of isoprenoids on the 

mevalonate kinase activity. 

Chapter 4 reports the partial characterization of the activities of recombinant 

HMG-CoA synthase, phosphomevalonate kinase and FPP synthase from A. aegypti 

  Chapter 5 summarizes the conclusions of my research and the future directions of 

studies aiming to complete the characterization of the enzymes of the JH biosynthetic 

pathway. 
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Figure 1: Current global burden of dengue. The map represents the cartogram of the 
annual number of infections for all ages, as a proportion of national or subnational 
geographical area (Bhatt et al., 2013).  
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Figure 2: Map of the countries and territories where chikungunya cases have been 
reported. Dark green represent the areas where chikungunya have been reported (as of 
August 26, 2014, map courtesy WHO, 2014).  
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Figure 3: Structure of juvenile hormones. Chemical strutures of major naturally occuring 
JH homologues and commonly used JH agonists (from Goodman and Cusson, 2012).  
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         Acetyl-CoA + Acetyl-CoA 
                               1. Aceto-acetyl-CoA thiolase (Thiol) 
         Acetoacetyl-CoA (4C) 
                                2. HMG-CoA synthase (HMGS) 
        3-HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) (6C) 
                                3. HMG-CoA reductase (HMGR) 
                Mevalonate (C6)                                    
                               4. Mevalonate Kinase (MK) 
           5-phosphomevalonate 
                               5. Phosphomevalonate kinase (PMK) 
          5-pyrophosphomevalonate      
                               6. Mevalonate decarboxylase (MDD) 
          Isoprene intermediate (C5). 
                  Isopentenyl-PP (5) x 3 7.IPP isomerase (IPPI) 
                            8. Farnesyl Diphosphate synthase (FPPS) 
          Farnesyl diphosphate (FPP) (C15) 
                               9. Farnesyl Pyrophosphatase (FPPase) 
           Farnesol (FOL) (C15) 
                               10. Farnesol dehydrogenase (FOLD) 
            Farnesal (FAL) (C15)  
                                11. Farnesal dehydrogenase (FALD) 
            Farnesoic acid (FA) (C15)  
                                12. Methyltransferase (JHAMT)  
            Methyl Farnesoate (MF) (C16) 
                               13. Epoxidase (Epox) 
              Juvenile Hormone III 
 
 
Figure 4: Juvenile hormone III (JH III) biosynthetic pathway in mosquitoes. The 
biosynthetic pathway of JH III in the CA of mosquitoes is divided into two steps: early 
step (mevalonate pathways, MVP) and late steps (JH branch of the MVP) (modified from 
Belles et al., 2005). Precursors are shown in bold and connected by arrows. Enzymes are 
shown in italic and numbers before the enzymes refer to their positions in the pathway. 
Abbreviations for the enzymes are between brackets.  
  

Mevalonate 
Pathway 

JH 
Branch 
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Figure 5: Rate of JH biosynthesis and ovarian development in female Aedes aegypti. Top 
panel: representative images of the progression of ovary development from emergence to 
24 h after blood feeding. The inset in 96 h shows the lipid content of follicles from 
females fed 3% sugar (top) and 20% sugar (bottom). Colors for the panels match colors 
for the CA physiological phases described in the bottom panel. Bottom panel: JH 
biosynthesis by CA dissected from pupa, sugar-fed and blood-fed adult females. Hours 
represent times before (pupa) and after adult emergence (sugar-fed), or after blood 
feeding (BF). Colors represent the four distinct CA physiological phases identified: 
inactive or low activity CA (blue), active CA (black), modulated CA (green) and 
suppressed CA (red) (River-Perez et al., 2014) 
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Figure 6: Flux model of juvenile hormone synthesis. This is a schematic representation of 
a working model for the control of the flux of precursors in the JH biosynthetic pathway. 
Precursor pools (Acetyl-CoA, S2, etc.) are represented by circles and connected by 
arrows. E: Enzymes are followed by a number that refers to the position in the pathway 
(from Nouzova et al., 2011). 
  



28 
 

1.8 References 
 
1. Adams ME, Kim YJ, Park Y, Zitnan D (2006) Developmental Peptides: ETH, 

Corazonin, and PTTH In Handbook of Biologically Active Peptides (Abba J. Kastin 
ed), Burlington: Academic Press, pp. 163–169. 
 

2. Areiza M, Nouzova M, Rivera-Perez C, Noriega FG (2014) Ecdysis triggering 
hormone ensures proper timing of juvenile hormone biosynthesis in pharate adult 
mosquitoes. Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2014.09.006. 
 

3. Arik AJ, Rasgon JL, Quicke KM, Riehle MA (2009) Manipulating insulin signaling 
to enhance mosquito reproduction. BMC Physiol 9:1-11. 

 
4. Attardo GM, Hansen IA, Raikhel AS (2005) Nutritional regulation of vitellogenesis 

in mosquitoes: implications for anautogeny. Insect Biochem Molec Biol 35:661-675.  
 

5. Barrett ADT, Higgs S (2007) Yellow fever: A disease that has yet to be conquered. 
Ann Rev 52:209-229.   

 
6. Belgacem YH, Martin JR (2007) Hmgcr in the corpus allatum control sexual 

dimorphism of locomotor activity and body size via the insulin pathway in 
Drosophila.  PLoS ONE 2(1): e187. doi: 10.1371/journal.pone.0000187 

 
7. Belles X, Martin D, Piulachs MD (2005) The mevalonate pathway and the synthesis 

of juvenile hormone in insects. Ann Rev Entomol 50:181-199. 
 

8. Bergot BJ, Baker FC, Cerf DC, Jameison G, Schooley DA (1981) Qualitative and 
quantitative aspects of juvenile hormone titers in developing embryos of several 
insect species: discovery of new JH like substances discovery from the eggs of 
Manduca sexta. In Juvenile Hormone Biochemistry (GE Pratt and GT Brooks eds), 
Amsterdam: Elsevier/North Holland Biomedical Press, pp. 33-45. 

 
9. Bhaskaran G, Sparagana SP, Barrera P, Dahm KH (1986) Change in corpus allatum 

function during metamorphosis of the tobacco hornworm Manduca sexta: regulation 
at the terminal step in juvenile hormone biosynthesis Arch Insect Biochem Physiol 
276:7465-7474. 

 
10. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake 

JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint 
GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and 
burden of dengue. Nature 496:504-507. 

 
11. Boggs CL (2009) Understanding insect life histories and senescence through a 

resource allocation lens, Functional Ecology, vol. 23, no. 1, pp. 27–37. 
 



29 
 

12. Briegel H 1990 Metabolic relationship between female body size, reserves and 
fecundity of Aedes aegypti. J Insect Physiol 36:165-172. 

 
13. Brown MR, Clark KD, Gulia M, Zhao Z, Garczynski SF, Crim JW, Suderman 

RJ, Strand MR (2008) An insulin like peptide regulates egg maturation and 
metabolism in the mosquito Aedes aegypti, Proc Natl Acad Sci USA 15:5716-21. 

 
14. Buesa C, Martinez-Gonzalez J, Casals N, Haro D, Piulachs MD (1994) Blattella 

germanica has two HMG-CoA synthase genes. Both are regulated in the ovary during 
the gonadotrophic cycle J Biol Chem 269:11707–13.  

 
15. Cao L, Zhang P, Grant DF (2009) An insect farnesyl phosphatase homologous to the 

N-terminal domain of soluble epoxide hydrolase. Biochem Biophys Res Comm 
380:188–192. 

 
16. Caroci AS, Li Y, Noriega FG (2004) Reduced juvenile hormone synthesis in 

mosquitoes with low teneral reserves reduces ovarian previtellogenic development in 
Aedes aegypti, J Exp Biol 207:2685–2690. 

 
17. Casals N, Buesa C, Piulachs MD, Cabano J, Marrero PF, Belles X, Hegardt FG 

(1996) Coordinated expression and activity of 3-hydroxy-3-methylglutaryl coenzyme 
A synthase and reductase in the fat body of Blattella germanica (L.) during 
vitellogenesis. Insect Biochem Mol Biol 26(8-9):837-43.  

 
18. Clark AJ, Bloch K (1959) The absence of sterol synthesis in insects. J Biol Chem 

254:2578–2582.  
 

19. Clifton ME, Noriega FG (2011) Nutrient limitation results in juvenile hormone-
mediated resorption of previtellogenic ovarian follicles in mosquitoes J Insect Physiol 
57:1274-1281. 

 
20. Clifton ME, Noriega FG (2012) The fate of follicles after a blood meal is dependent 

on previtellogenic nutrition and juvenile hormone in Aedes aegypti. J Insect Physiol 
58:1007-1019. 

 
21. Cusson M, Sen SE, Shinoda T (2013) Juvenile Hormone Biosynthetic Enzymes as 

Targets for Insecticide Discovery.  In Advanced Technologies for Managing Insect 
Pests (Ishayya I, Palli SR, Horowitz AR eds), Springer pp. 31-55. 

 
22. Daimon T, Kozaki T, Niwa R  Kobayashi I, Furuta K, Namiki T, Uchino K, Banno 

Y, Katsuma S, Tamura T, Mita K, Sezutsu H, Nakayama M, Itoyama K, Shimada 
T, Shinoda T (2012) Precocious metamorphosis in the juvenile hormone-deficient 
mutant of the silkworm, Bombyx mori, PLoS Genetics 8(3):e1002486. 
 



30 
 

23. Defelipe LA, Dolghih E, Roitberg AE, Nouzova M, Mayoral JG, Noriega FG, 
Turjanski, AG (2011) Juvenile Hormone Synthesis: “esterify then epoxidize” or 
“epoxidize then esterify”? Insights from the Structural Characterization of Juvenile 
Hormone Acid Methyltransferase Insect Biochem Molec Biol 41:228-235. 

 
24. Diaz M, Mayoral JM, Priestap H, Nouzova M, Rivera-Perez C, Noriega FG (2012) 

Characterization of an isopentenyl diphosphate isomerase involved in the juvenile 
hormone pathway in Aedes aegypti. Insect Biochem Molec Biol 42:751-757. 

 
25. Dubrovsky EB 2005 Hormonal cross talk in insect development. Trends Endocrinol 

Metab 16:6-11. 
 

26. Feyereisen R, Farnsworth DE (1987) Characterization and regulation of HMG-CoA 
reductase during a cycle of juvenile hormone synthesis. Mol Cell Endocrinol 
53(3):227-38. 

 
27. Frick S, Nagel R, Schmidt A, Bodemann RR, Rahfeld P, Pauls G, Brandt W, 

Gershenzon J, Boland W, Burse A (2013) Metal ions control product specificity of 
isoprenyl diphosphate synthases in the insect terpenoid pathway Proc Natl Acad Sci 
USA 110(11):4194-9. 

 
28. Gilbert LI, Granger NA, Roe RM (2000) The juvenile hormones: Historical facts and 

speculations on future research directions. Insect Biochem Mol Biol 30:617-644. 
 

29. Goodman WG, Cusson M (2012) The Juvenile Hormones. In Insect Endocrinology 
(Gilbert LI, ed), Elsevier, pp. 310–365. 

 
30. Goodman WG, Granger NA (2005) The Juvenile Hormones. In Comprehensive 

Molecular Insect Science (Gilbert, LI ed) Elsevier, pp. 320-408. 
 

31. Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, 
social, and economic problem in the 21st century. Trends Microbiol 10:100-103. 

 
32. Gu SH, Chow YS (1996) Regulation of juvenile hormone biosynthesis by ecdysteroid 

levels during the early stages of the last two larval instars of Bombyx mori. J. Insect 
Physiol. 42:625-632.  

 
33. Hales S, de Wet N, Maindonald J, Woodward A (2002) Potential effect of population 

and climate changes on global distribution of dengue fever: an empirical model. 
Lancet 360:830-834. 

 
34. Helvig C, Koener JF, Unnithan GC and Feyereisen R (2004) CYP15A1, the 

cytochrome P450 that catalyzes epoxidation of methyl farnesoate to JH III in 
cockroach corpora allata Proc Natl Acad Sci USA 101:4024-4029. 

 



31 
 

35. Hiruma K, Kaneko Y (2013) Hormonal regulation of insect metamorphosis with 
special reference to juvenile hormone biosynthesis. Curr Top Dev Biol. 103:73-100. 

 
36. Horodyski FM, Verlinder H, Filkin N, Vandermissen HP, Fleury C, Reynolds SE, 

Vanden Broeck J (2011) Isolation and functional characterization of an allatotropin 
receptor from Manduca sexta. Insect Biochem Molec Biol 41:804-814. 

 
37. Howell JJ and Manning BD (2011) mTOR couples cellular nutrient sensing to 

organismal metabolic homeostasis. Trends Endoc Metab 22, 94-102. 
 

38. Johnson EC, Bohn LM, Barak LS, Birse RT, Nassel DR (2003) Identification of 
Drosophila neuropeptide receptors by G protein-coupled receptors-β-arrestin2 
interactions. J. Biol. Chem. 278:52172–78. 

 
39. Judy KJ, Schooley DA, Dunham LL, Hall MS, Bergot J, Siddall JB (1973) Isolation, 

structure and absolute configuration of a new natural insect juvenile hormone from 
Manduca sexta. Proc Natl Acad Sci USA 70:1509-1513.   

 
40. Kaneko Y, Kinjoh T, Kiuchi M, Hiruma K (2011) Stage-specific regulation of 

juvenile hormone biosynthesis by ecdysteroid in Bombyx mori. Mol Cell Endocrinol 
335(2):204-10. 

 
41. Klowden MJ 1997 Endocrine aspects of mosquito reproduction. Arch Insect Biochem 

Physiol 35:491-512. 
 

42. Kotaki T, Shinada T, Kaihara K, Ohfune Y, Numata H (2009) Structure 
determination of a new juvenile hormone from a heteropteran insect. Org. Lett., 
11:5234–5237. 

 
43. Kreienkamp HJ, Larusson HJ, Witte I, Roeder T, Birgül N, Hönck HH, Harder S, 

Ellinghausen G, Buck F, Richter D (2002) Functional annotation of two orphan G-
protein-coupled receptors, Drostar-1 and -2, from Drosophila melanogaster and their 
ligands by reverse pharmacology. J Biol Chem 42:39937-39943. 

 
44. Kreienkamp HJ, Liew CW, Bächner D, Mameza MG, Soltau M, Quitsch A, Christenn 

M,  Wente W,  Richter D (2004) Physiology of Somatostatin Receptors: from 
Genetics to Molecular Analysis. In Somatostatin (Srikant CB ed), Kluwer Academic 
Publishers, Boston, pp. 185-202. 

 
45. Li Y, Unnithan C, Veenstra J, Feyereisen R, Noriega FG 2003b Stimulation of 

Juvenile hormone biosynthesis by the corpora allata of adult Aedes aegypti in vitro: 
effect of farnesoic acid and Aedes allatotropin. J Exp Biol 206:1825-1832.  

 



32 
 

46. Li YP, Hernandez-Martinez S, Unnithan GC, Feyereisen R, Noriega FG, 2003a 
Activity of the corpora allata of adult female Aedes aegypti: Effects on mating and 
feeding. Insect Biochem Mol Biol 33:1307-1315. 

 
47. Lombard J, Moreira D, (2010) Origins and early evolution of the mevalonate pathway 

of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87-99. 
 

48. Maestro JL, Cobo J, Belles X (2009) Target of rapamycin (TOR) mediates the 
transduction of nutritional signals into juvenile hormone production. J Biol Chem 
284:5506-5013.  

 
49. Margam, VM., Gelman, DB., Palli, SR. (2006) Ecdysteroid titers and developmental 

expression of ecdysteroid-regulated genes during metamorphosis of the yellow fever 
mosquito, Aedes aegypti . J Insect Physiol 52:558-568. 

 
50. Mayoral JG, Nouzova M, Brockhoff A, Goodwin M, Hernandez-Martinez S, Richter 

D, Meyerhof W and  Noriega FG (2010) Allatostatin-C receptors in mosquitoes. 
Peptides 31: 442-450. 

 
51. Mayoral JG, Nouzova M, Navare A, Noriega FG, (2009a) NADP+ dependent farnesol 

dehydrogenase, a corpora allata enzyme involved in juvenile hormone synthesis. 
Proc Natl Acad Sci USA 106:21091-21096. 

 
52. Mayoral JG, Nouzova M, Yoshiyama M, Shinoda T, Hernandez-Martinez S, Dolghih 

E, Turjanski AG, Roitberg AE, Priestap H, Perez M, Mackenzie L, Li Y, Noriega FG, 
(2009b) Molecular and functional characterization of a juvenile hormone acid 
methyltransferase expressed in the corpora allata of mosquitoes. Insect Biochem Mol 
Biol 39:31-37. 

 
53. Meyer AS, Schneiderman HA, Hanzmann E, Ko J (1968) The two juvenile hormones 

from the cecropia silk moth Proc Natl Acad Sci USA 60:853-860. 
 

54. Minakuchi C, Namiki T, Yoshiyama M, Shinoda T (2008) RNAi-mediated 
knockdown of juvenile hormone acid O-methyltransferase gene causes precocious 
metamorphosis in the red flour beetle Tribolium castaneum. FEBS J 275:2919–2931. 

 
55. Miziorko HM (2010) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. 

Arch Biochem Biophys 505:131-143.  
 

56. Morens DM, Fauci AS (2014) Chikungunya at the Door — Deja Vu All Over Again? 
N Engl J Med doi: 10.1056/NEJMp1408509. 
 

57. Moshitzky P, Applebaum SW (1995) Pathway and regulation of JH III bisepoxide 
biosynthesis in adult Drosophila melanogaster corpus allatum. Arch Insect Biochem 
Physiol 30:225-286. 



33 
 

 
58. Nijhout HF (1994) Insect Hormones. Princeton, N.J: Princeton University Press. 

 
59. Niwa R, Niimi T, Honda N, Yoshiyama M, Itoyama K, Kataoka H, Shinoda T (2008) 

Juvenile hormone acid O -methyltransferase in Drosophila melanogaster. Insect 
Biochem Mol Biol 38:714–720. 

 
60. Noriega FG (2004) Nutritional regulation of JH synthesis: a mechanism to control 

reproductive maturation in mosquitoes? Insect Biochem Mol Biol  34:687–693. 
 

61. Noriega FG (2014) Juvenile Hormone Biosynthesis in Insects: What Is New, What 
Do We Know, and What Questions Remain? ISRN 2014:967361.  

 
62. Noriega FG, Ribeiro JMC, Koener JF,Valenzuela JG, Hernandez-Martinez S, Pham 

VM, Feyereisen R (2006) Comparative genomics of insect juvenile hormone 
biosynthesis. Insect Biochem Mol Biol 36:366-374. 

 
63. Nouzova M, Edwards MJ, Mayoral JG, Noriega FG, 2011 A coordinated expression 

of biosynthetic enzyme controls the flux of juvenile hormone precursors in the 
corpora allata of mosquitoes. Insect Biochem Mol Biol 9:660-669. 

 
64. Nouzova M, Mayoral JM, Brockhoff A, Goodwin M, Meyerhof W, Noriega FG 

(2012)  Functional characterization of an allatotropin receptor expressed in the 
corpora allata of mosquitoes. Peptides 34:201-208. 

 
65. Nouzova M, Rivera-Perez C, Noriega FG Allatostatin-C reversibly blocks the 

transport of citrate out of the mitochondria and inhibits juvenile hormone synthesis in 
mosquitoes. In prep. 

 
66. Nyati P, Nouzova M, Rivera-Perez C, Clifton ME, Mayoral JG Noriega FG (2013) 

Farnesyl phosphatase, a corpora allata enzyme involved in juvenile hormone 
synthesis in Aedes aegypti. PLoS ONE 8(8): e71967. 
doi:10.1371/journal.pone.0071967. 

 
67. Nyati P, Rivera-Perez C, Noriega FG Negative feedback by isoprenoids upon 

mevalonate kinase activity might regulate juvenile hormone synthesis in Aedes 
aegypti. In prep 

 
68. Perez-Hedo M, Rivera-Perez C and Noriega FG (2013) The Insulin/TOR signal 

transduction pathway is involved in the nutritional regulation of juvenile hormone 
synthesis in Aedes aegypti. Insect Biochem Molec Biol 43:495-500. 

 
69. Perez-Hedo M, Rivera-Perez C, Noriega FG (2014) Starvation increases insulin 

sensitivity and reduces juvenile hormone synthesis in mosquitoes. PLoS 
ONE9(1): e86183. doi: 10.1371/journal.pone.0086183. 



34 
 

 
70. Piepho H 1938 Wachstum und totale metamorphose an hautimplantaten bei der 

Wachsmotte Galleria mellonella L. Bio. Zbl. 58:356–366. 
 

71. Quistad GB, Cerf DC, Schooley DA, Staal GB (1981) Fluoromevalonate acts as an 
inhibitor of juvenile hormone biosynthesis. Nature 289:176-177. 

 
72. Richard DS, Applebaum SW and Gilbert LI (1989) Development regulation of 

juvenile hormone biosynthesis by the ring gland of Drosophila melanogaster J Comp 
Physiol 159:383-387. 

 
73. Riehle MA, Brown MR (1999) Insulin stimulates ecdysteroid production through a 

conserved signaling cascade in the mosquito Aedes aegypti. Insect Biochem Molec 
Biol. 29:855-860. 

 
74. Riehle MA, Fanb Y, Caoc C, Brown MR (2006) Molecular characterization of 

insulin-like peptides in the yellow fever mosquito, Aedes aegypti: expression, cellular 
localization, and phylogeny. Peptides 27:2547-2560. 

 
75. Rivera-Perez C, Nouzova M, Clifton ME, Martin Garcia E, LeBlanc E, Noriega FG 

(2013) Aldehyde dehydrogenase 3 converts farnesal into farnesoic acid in the corpora 
allata of mosquitoes. Insect Biochem Mol Biol 43:675-682. 

 
76. Rivera-Perez C, Nouzova M, Lamboglia I, Noriega FG (2014) Metabolic analysis 

reveals changes in the mevalonate and juvenile hormone synthesis pathways linked to 
the mosquito reproductive physiology. Insect Biochem Mol Biol 51:1-9. 

 
77. Rivera-Perez C, Nyati P, Noriega FG A corpora allata prenyltransferase in mosquito 

displaying a metal ion substrate specificity. In prep. 
 

78. Roller H, Dahm KH, Sweeley CC, Trost BM (1967) The structure of the juvenile 
hormones. Angew Chemie 4:190–191. 

 
79. Schooley DA, Baker FC (1985) Juvenile Hormone Biosynthesis. In Comprehensive 

Insect Physiology Biochemistry and Pharmacology Kerkut, G.A., (Gilbert LI ed), 
volume 7, Pergamon Press, Oxford, pp. 363-389. 

 
80. Sen SE, Tomasello A, Grasso M, Denton R, Macor J, Beliveau C, Cusson M, Crowell 

DN (2012) Cloning, expression and characterization of lepidopteran isopentenyl 
diphosphate isomerase. Insect Biochem Mol Biol 42:739-750.  

 
81. Shinoda T, Itoyama K (2003) Juvenile hormone acid methyltransferase: a key 

regulatory enzyme for insect metamorphosis. Proc Natl Acad Sci USA 100:11986-
11991. 

 



35 
 

82. Siddle K, (2012) Molecular basis of signaling specificity of insulin and IGF 
receptors: neglected corners and recent advances. Front Endoc 3:1-24. 

 
83. Sim C, Denlinger DL (2008). Insulin signaling and FOXO regulate the overwinter 

diapause of the mosquito Culex pipiens. Proc Natl Acad Sci 105:6777-6781.  
 

84. Smit A, Mushegian A (2000) Biosynthesis of isoprenoids via mevalonate in archaea: 
the lost pathway. Genome Res 10:1468-1484. 

 
85. Sperry AE, Sen SE (2001) Farnesol oxidation in insects: evidence that the 

biosynthesis of insect juvenile hormone is mediated by alcohol oxidase. Insect 
Biochem Mol Biol 31:171-178. 

 
86. Stay B, Tobe SS 2007 The role of allatostatins in juvenile hormone synthesis in 

insects and crustaceans. Ann Rev Entomol 52:277-299.  
 

87. Stay B, Tobe SS, Bendena WG (1994) Allatostatins: identification, primary 
structures, functions and distribution In Advances in Insect Physiology, vol. 25, pp. 
267–337. 

 
88. Sutherland TD, Feyereisen R (1996) Target of cockroach allatostatin in the pathway 

of juvenile hormone biosynthesis. Mol  Cell Endocrinol 120:115–123. 
 

89. Tan A, Tanaka H, Tamura T, Shiotsuki T (2005) Precocious metamorphosis in 
transgenic silkworms overexpressing juvenile hormone esterase. Proc Natl Acad Sci 
USA 102:11751–56. 

 
90. Tobe SS, Stay B (1985) Structure and regulation of the corpus allatum. Adv Insect 

Physiol 18:305–432. 
 

91. Tu MP, Yin CH, Tatar, M (2005) Mutations in insulin signaling pathways alter 
juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol 
142:347-356.  

 
92. Vuerinckx K, Verlinder H, Lindermans M, Vanden Broeck J Huybrechts R (2011) 

Characterization of an allatotropin-like peptide receptor in the red flour beetle, 
Tribolium castaneum. Insect Biochem Molec Biol 41:815-822. 

 
93. WHO (2009) Dengue guidelines for diagnosis, treatment, prevention and control. In 

Ciceri K, Tissot, P, editor. 2009 ed. Geneva: World Health Organization. 
 

94. WHO (2012) Dengue and severe dengue. World Health Organization Monograph 
Series (Fact sheet N°117). 

 



36 
 

95. WHO (2013). WHO recommended insecticides for indoor residual spraying against 
malaria vectors. World Health Organization. 

 
96. WHO (2014) Chikungunya. World Health Organization Monograph Series (Fact 

sheet N°327). 
 

97. Wigglesworth VB. 1936. The function of the corpus allatum in the growth and 
reproduction of Rhodnius prolixus (Hemiptera). QJ Microsc Sci 79:91–121. 

 
98. Williams CM (1956) The juvenile hormone of insects Nature 178:212–213. 

 
99. Yamanaka N, Yamamoto S, Zitnan D, Watanabe K, Kawada T, Satake H, Kaneko Y, 

Hiruma K, Tanaka Y, Shinoda T, Kataoka H (2008) Neuropeptide receptor 
transcriptome reveals unidentified neuroendocrine pathways. PLoS One 3(8): e3048. 
doi: 10.1371/journal.pone.0003048. 

 
100. Zhou G, Flowers M, Friedrich MK, Horton J, Pennington J, Wells MA 2004a 

Metabolic fate of [14C]-labeled meal protein amino acids in Aedes aegypti 
mosquitoes. J Insect Physiol 50:337-349. 

 
101. Zhou G, Pennington J, Wells MA 2004b. Utilization of pre-existing energy stores 

of female aedes aegypti mosquitoes. Insect Biochem Mol Biol 50:337-349. 
 

102. Zitnan D, Kim YJ, Zitnanova I, Roller L, Adams ME (2007) Complex steroid–
peptide–receptor cascade controls insect ecdysis. Gen Comp Endocrinol 153(1–
3):88–96. 

 

 

 
 
 
 
 
 
  



37 
 

Chapter 2: Farnesyl phosphatase, a corpora allata enzyme involved in juvenile 

hormone biosynthesis in Aedes aegypti 

2.1 Abstract 

The only recognized FPP phosphatase (FPPase) expressed in the corpora allata 

(CA) of an insect was recently described in Drosophila melanogaster (DmFPPase). A 

search for orthologs of the DmFPPase in Aedes aegypti led to the identification of 3 

putative FPPase paralogs expressed in the CA of the mosquito (AaFPPases-1, -2, and -3). 

AaFPPase-1 and AaFPase-2 were found to efficiently hydrolyze farnesyl diphosphate 

(FPP) into farnesol (FOL) and considered as the members of the NagD family of the 

Class IIA C2 cap-containing haloalkanoic acid dehalogenase (HAD) super family. Using 

a newly developed assay utilizing fluorescent tags, we demonstrate that AaFPPase 

activities were different in CA of sugar and blood-fed females. Injection of dsRNAs 

resulted in a significant reduction of AaFPPase-1 and AaFPPase-2 mRNAs, but only 

depletion of AaFPPase-1 caused a significant decrease on JH synthesis. These results 

suggest that AaFPPase-1 is involved in the catalysis of FPP into FOL in the CA of A. 

aegypti.    

2.2 Introduction 

Characterization of corpora allata (CA) enzymes has been hindered by the 

minute size of the endocrine gland; recently, the first description of an FPP phosphatase 

(FPPase) expressed in the CA of an insect was described in Drosophila melanogaster 

(Cao et al., 2009). This enzyme is a member of the haloalkanoic acid dehalogenase 

(HAD) super family that catalyzes phosphoryl transfer reactions on a remarkably diverse 

set of substrates and includes enzymes such as: phosphoesterases, ATPases, 
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phosphonatases, dehalogenases and sugar phosphomutases (Allen and Dunaway-

Mariano, 2004; Arvind et al., 1998). HAD phosphatases employ an aspartate residue as a 

nucleophile in a magnesium-dependent phosphoaspartyl transferase reaction. The HAD 

superfamily is represented in the proteomes of organisms from all three super-kingdoms. 

The highly conserved structural core of the HAD enzymes consists of a α/β domain that 

adopts the topology typical of the Rossmann α/β folds housing the catalytic site and can 

be distinguished from all other Rossmanoid folds by two unique structural motifs: 1) an 

almost complete α-helical turn, named the ‘squiggle’, and 2) a β hairpin turn, termed the 

‘flap’ (Lahiri et al., 2004; Allen and Dunaway-Mariano, 2009). The catalytic site is thus a 

composite of the four loops of the core domain and loop 5 of the cap domain. Whereas 

the core domain orchestrates the core chemistry, the cap domain functions in adapting 

that chemistry to a specific substrate (Lahiri et al., 2004).  

The HAD superfamily can be divided into three generic classes on the basis of 

existence and location of a cap domain involved in substrate recognition. Class I 

possesses a small α-helical bundle cap between motifs I and II; Class II displays a cap 

between the second and third motifs; and Class III members present no cap domain 

(Lahiri et al., 2004). Members of the HAD phosphatase superfamily have four conserved 

amino acid signature motifs (Koonin and Tatusov, 1994; Arvind et al., 1998; Seifried et 

al., 2013). These 4 signature motifs are also well conserved in the FPPase described in 

Drosophila (DmFPPase) (Cao et al., 2009). Bioinformatics searches for orthologs of the 

DmFPPase in A. aegypti led to the identification of 3 putative FPPase paralogs expressed 

in the CA of the mosquito (AaFPPase-1, -2, and -3). Recombinant AaFPPase-1 and 

AaFPPase-2 were found to efficiently hydrolyze FPP into FOL. Different FPPase 
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activities were detected in CA extracts from adult female mosquitoes having diverse JH 

biosynthetic rates. Injection of dsRNAs resulted in a significant reduction of AaFPPase-1 

and AaFPPase-2 mRNAs, but only reduction of AaFPPase-1 caused a significant decrease 

on JH biosynthesis. These results suggest that AaFPPase-1 is predominantly involved in 

the catalysis of FPP into FOL in the CA of A. aegypti.  

2.3 Materials and Methods 

2.3.1 Chemicals 

Farnesyl diphosphate (FPP), geranyl diphosphate (GPP) and isopentenyl 

diphosphate (IPP) were purchased from Echelon Biosciences (Salt Lake City, UT). We 

purchase p-nitrophenyl phosphate from MP Bio medicals (Santa Ana, CA). The N-acetyl-

S-geranylgeranyl-L-cysteine (AGGC) and N-acetyl-S-farnesyl-L-cysteine (AFC) were 

purchased from Cayman chemicals (Ann Arbor, MI). Taurolithocholic acid 3-sulfate was 

purchased from Sigma-Aldrich (St. Louis, MO). 

2.3.2 Insects 

Aedes aegypti of the Rockefeller strain were reared at 28ºC and 80% relative 

humidity under a photoperiod of 16 h light: 8 h dark. A cotton pad soaked in 3% sucrose 

solution was provided to adults. Four-day-old female mosquitoes were membrane-fed 

porcine blood equilibrated to 37ºC, and ATP was added to the blood meal to a final 

concentration of 1 mM immediately before use.  

2.3.3 Expression of recombinant AaFPPases 

The AaFPPase cDNAs were expressed in E. coli cells as described by Mayoral et 

al., 2009. Recombinant His-tagged proteins were purified using HiTrap chelating 

columns and PD-10 desalting columns (Amersham Pharmacia, Piscataway, NJ). Glycerol 
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was added to the enzyme solution (final concentration 50%), and samples were stored at -

20ºC until used. Protein concentrations were determined using the bicinchoninic acid 

protein assay reagent (BCA) (Pierce, Rockford, IL). Bovine serum albumin was used as a 

standard. 

2.3.4 Enzyme assays 

2.3.4.1 Phosphatase assay 

The catalytic activity of recombinant AaFPPases towards p-NPP was measured in 

96 well plates as described by Cao et al., 2009. Phosphatase activities towards different 

isoprenoid pyrophosphate substrates were determined using the Malachite Green 

Phosphate Assay Kit (Bioassay Systems, Hayward, CA); enzymatic activities were 

assayed using 40 µL reaction mixtures containing 100 mM MES, pH 6.0, 2 mM MgCl2, 

substrate (150 µM) and 75 ng of enzyme. After 20 min of incubation at 37ºC, the reaction 

was terminated by the addition of the malachite green reagent (4:1 v/v), and 30 min later 

the production of Pi was measured at 630 nm using a BioTek plate reader (BioTek, 

Winooski, VT). Kinetic parameters were determined by non-linear curve fitting using the 

GraphPad Prism software (San Diego, CA).  

2.3.4.2 RP-HPLC analysis of FPPase catalytic products.  

Production of FOL from FPP hydrolysis was analyzed by reverse-phase HPLC. 

FPP (250 µM) was incubated with recombinant AaFPPase for 60 min in buffer (100 mM 

MES, pH 6.0, 2 mM MgCl2). Reactions were terminated by adding 500 µl of acetonitrile. 

Samples were centrifuged at 14,000 rpm for 5 min and the organic phase was recovered, 

filtered and analyzed by reverse-phase HPLC on a Dionex Summit System (Dionex, 

Sunnyvale, CA) equipped with a UVD 170U detector, 680 HPLC pump, TCC 100 
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column oven and Chromeleon software. The HPLC analysis was performed on an 

analytical column Acclaim 120 C18 (250 X 2.1 mm ID, particle size 5 µm) (Dionex), 

using isocratic elution from 0 to 20 min (acetonitrile-water, 1:1 v/v), followed by a linear 

gradient from 20 to 50 min (acetonitrile-water (50 to 95%, v/v) and another isocratic 

elution from 50 min (acetonitrile, 95%). Flow rate was 0.2 ml/min and column 

temperature was 25ºC. The eluate was monitored with UV (214 nm). Water or/and 

glycerol were used in place of recombinant enzymes in negative controls. 

2.3.4.3 Effect of inhibitors on AaFPPase activity  

Recombinant AaFPPases were pre-incubated with different concentrations (0 to 

40 µM) of putative inhibitors for 10 min and their activities were measured using the p-

NPP assay. The following compounds were tested: N-acetyl-S-geranylgeranyl-L-cysteine 

(AGGC), N-acetyl-S-farnesyl-L-cysteine (AFC) and taurolithocholic acid 3-sulfate. 

2.3.5 Quantitative real-time PCR (qPCR) 

The RNA isolation and qPCR were performed as described by Nouzova et al., 

2011. The primers and probes for the house keeping gene 60S ribosomal protein rpL32 

and AaFPPase transcripts are included in Table 1.  

2.3.6 RNAi experiments 

Synthesis and microinjections of double-stranded RNA (dsRNA) were performed 

as described by Perez-Hedo et al., 2014. The AaFPPases and YFP (yellow fluorescent 

protein) target sequences for dsRNA synthesis were amplified by PCR using the 

AaFPPase-i and YFP-i primers (Table 1). The resulting amplicons were diluted 50-fold, 

and 1 µl was used as template in PCR reactions with primers containing T7 promoter 

sequences (Table 1). The products from these PCR reactions were purified using a 
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QIAquick PCR purification kit (QIAquick sciences, Germantown, MD), and 1–2 µg of 

the purified DNA templates were used to synthesize dsRNAs with a Megascript RNAi kit 

(Ambion, Austin, TX). dsRNAs were precipitated using ammonium acetate/ethanol, and 

resuspended in ddH2O to a final concentration of 3–4 µg/µl. In each knockdown 

experiment, newly emerged female mosquitoes were cold anesthetized and injected 

intrathoracically with 1.6 µg of dsRNA using a Drummond Nanoject II microinjector and 

a micromanipulator. The effect of dsRNA was evaluated 4 days after injection, a time 

selected based on the analysis of dsRNA depletion experiments. 

2.3.7 FPPase activity in CA extracts 

FPPase activities in mosquito CA-CC (corpora allata-corpora cardiaca complex) 

were measured by HPLC coupled to a fluorescent detector (HPLC-FD) monitoring the 

production of farnesol. Glands were dissected in buffer solution (100 mM MES pH 6.0, 2 

mM MgCl2). CA-CC were homogenized for 1 min, sonicated 3 min and centrifuged at 

10,000 g for 10 min at 4ºC. Supernatants were recovered and used as crude extract for 

activity assays as previously described (Rivera-Perez et al., 2013). The reaction products 

were labeled with DBD-COC1 for further quantification on HPLC-FD (Rivera-Perez et 

al., 2012). Controls such as boiled crude extract and reactions without enzyme were 

included. A standard curve was constructed for the quantification of tagged farnesol. 

2.3.8 JH biosynthesis assay 

The amount of JH synthesized by CA-CC complexes in vitro was quantified by 

high performance liquid chromatography coupled to a fluorescent detector (HPLC-FD) 

(Rivera-Perez et al., 2012). The assay uses derivatization of JH III with a fluorescent tag 

with subsequent analysis by reverse phase HPLC-FD. 
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2.3.9 Secondary structure and phylogenetic analysis 

The secondary structure for AaFPPase-1 was predicted using the protein structure 

homology-modeling server Swiss v.8.05 (Schwede et al., 2003; Arnold et al., 2006) and 

the Human pyridoxal phosphate phosphatase (2oycA), that share a similarity of 29%, as 

template. A Maximum-Likelihood tree was built using MEGA software version 5.1 

(Tamura et al., 2011), with a bootstrapping of 1000. Pairwise deletion method was 

selected for the gap/missing data. 

2.3.10 Statistical analysis 

Statistical analyses were performed using the GraphPad Prism Software (San 

Diego, CA, USA). The results are expressed as means ± S.E.M. Significant differences (P 

< 0.05) were determined with a one-tailed student t-test or one-way ANOVA followed by 

a pair-wise comparison of means (Tukey’s test).  

2.4 Results 

2.4.1 Identification of three A. aegypti FPPases expressed in the CA 

Using the sequence of a D. melanogaster FPPase (CG15739) that converts FPP 

into FOL (DmFPPase) (Cao et al., 2009) we screened the A. aegypti genome 

(Vectorbase) (Lawson et al., 2009). Eight HAD genes displaying over 48% amino acid 

sequence similarity were identified (Genbank accession numbers: AAEL012292, 

AAEL010099, AAEL010098, AAEL007097, AAEL007094, AAEL007098, 

AAEL007090 and AAEL009503). By examining the temporal and tissue dependent 

expression of the 8 HAD genes by PCR we identified 3 HADs that were expressed in the 

CA of adult female mosquito at appropriate times (Genbank: AAEL010099, 

AAEL007090 and AAEL009503) (Fig. 7); we named them AaFPPase-1, AaFPPase-2 and 
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AaFPPase-3 respectively, and were further considered as putative AaFPPases that could 

be involved in JH biosynthesis. Amino acid sequence alignments of A. aegypti and D. 

melanogaster FPPases revealed a number of well conserved residues typical of the HAD 

phosphatases, including an aspartic acid (Asp36) that acts as the catalytic nucleophile, a 

serine or threonine (Ser67) for binding the phosphate group and two aspartic acid residues 

(Asp253, Asp258) important for binding the Mg2+ cofactor (Cronin et al., 2003; Seifried et 

al., 2013) (Fig. 8). The AaFPPase-1 structure obtained by homology modeling exhibited 

the typical HAD core and cap regions, with the catalytic site as a composite of the four 

conserved loops of the core region and the loop 5 of the cap region (cap 2 domain) (Fig. 

8). 

A phylogram was generated using FPPase orthologs found in insects and human 

(Fig. 9). The HAD classes IA and IIA clearly separated in two distinct clusters; the main 

cluster comprises members of the NagD family included in the class IIA with a C2 cap 

domain (motif V or loop 5) located between the second and third motif. Each of these 

amino acid sequences contains the conserved four loops (Motif I–IV). Most of the insects 

phosphatases identified presented one functional HAD domain in the N-terminal of the 

protein; with many displaying a second incomplete HAD domain in the C-terminus. In 

addition, three D. melanogaster phosphatases had a second functional HAD domain on 

the C-terminal. We also identified three D. melanogaster sequences with a single 

catalytic HAD domain in the C-terminus of the proteins. Two Human HAD phosphatases 

(phosphoglycolate phosphatase and pyridoxal phosphatase) were also grouped in the 

class IIA. Finally, as outgroup we used the bi-functional human epoxy hydrolase that 

belongs to the Class IA, having a C1 cap located between the motif I and II; this enzyme 
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possess both phosphatase and epoxy hydrolase functional domains. We identified three A. 

aegypti orthologs of the epoxy hydrolase, but they only possess the epoxy hydrolase 

domain.  

2.4.2 All AaFPPases hydrolyzed p-NPP, but only AaFPPase-1 and -2 converted FPP 

into farnesol  

The three putative AaFPPases were overexpressed in E. coli. Recombinant His-

tagged proteins (~35 kDa) were purified and phosphatase activities were measured using 

para-nitrophenyl phosphate (p-NPP), a chromogenic substrate for most phosphatases, 

including alkaline, acid, protein tyrosine and serine/ threonine phosphatases. AaFPPase-2 

(Km= 315.5 ± 46.9 µM) had higher affinity for p-NPP than AaFPPase-1 (Km = 3959.43 ± 

126.78 µM). All AaFPPases increased their catalytic activities in a dose-response manner 

when Mg2+ was used as a cofactor (Fig. 10) reaching their maximum activity at pH 6.0 

(Fig. 10), which is consistent with previous findings in fruit flies (Cao et al., 2009).  

The specific activities of AaFPPases toward isoprenoid phosphates were 

measured using the malachite green assay, in which the amount of released inorganic 

phosphate is determined by quantifying the formation of a complex between malachite 

green molybdate and free orthophosphate that absorbs at 620–640 nm (Veldhoven and 

Mannaerts, 1987). Only AaFPPase-1 and AaFPPase-2 efficiently hydrolyzed FPP into 

FOL (Km = ~222 µM) (Table 2). AaFPPase-1 (Km = 184.45 ± 14.16 µM) and AaFPPase-2 

(Km = 273.98 ± 2.52 µM) also efficiently hydrolyzed GPP. Both enzymes also 

demonstrated a low affinity for IPP (Table 1). Both enzymes displayed higher ‘‘catalytic 

efficiencies’’ for GPP than for FPP with Kcat/Km specificity constants for GPP 3–4 fold 

higher than those for FPP (Table 2). Conversion of FPP into FOL by AaFPPase-1 and 
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AaFPPase-2 was confirmed by RP-HPLC analysis (Fig. 11). For the substrates used in 

the present study we found no evidence that pyrophosphate was released from AaFPPases 

catalyzed reactions. The malachite green phosphate assay does not detect pyrophosphate, 

but only identifies free phosphate released in solution. In addition, when we treated the 

products of the AaFPPases catalyzed reaction with pyrophosphatase (an enzyme which 

cleaves a pyrophosphate into two phosphate ions) we did not detect any significant 

increase in the amount of free phosphate.  

Two isoprenoid-derived compounds, AGGC, AFC and a lipid sulfate were 

evaluated as potential inhibitors of the AaFPPase catalytic activity. While AGGC was a 

potent inhibitor of AaFPPase-1 and AaFPPase-2 (Fig. 12), AFC and taurolithocholic acid 

3-sulfate had little effect. 

2.4.3 The CA exhibited variable FPPase activity 

Corpora allata extracts were able to convert FPP into FOL, with the FPPase 

catalytic activity increasing more than 4 fold when 2 mM MgCl2 was added (Fig. 13A). 

AaFPPase activities were measured in CA extracts from adult female mosquitoes having 

three distinct JH biosynthetic conditions: basal activity (0 h or newly emerged adult), 

high activity (24 h sugar-fed) and suppressed activity (24 h after blood feeding). In the 

presence of an excess of FPP, highly active glands produced 92 fmol of FOL/CA/h, while 

suppressed glands produced only 45 fmol of FOL/CA/h. The CA with basal activity from 

newly emerged females, that produced only 12 fmol/h of JH, had quite elevated FPPase 

activity (210 fmol of FOL/CA/h) (Fig. 13B).  
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2.4.4 Tissue- and developmental-stage-specific expression of AaFPPases 

Quantitative real time PCR was used to analyze the tissue- and developmental-

stage-specific expression of AaFPPases. All three AaFPPase genes were expressed in the 

CA, but highest transcript levels were detected in other mosquito tissues. The highest 

level of AaFPPase-1 mRNA was detected in midgut and Malphigian tubules, while that 

of AaFPPase-2 mRNA in Malpighian tubules and AaFPPase-3 transcripts were most 

abundant in brain and ovaries (Fig. 14). A developmental time course of mRNA 

expression in the CA showed that transcripts of AaFPPase-1 and AaFPPase-2 were low in 

late pupae, increased after emergence and peaked at day one in sugar-fed mosquitoes 

(Fig. 15A). The AaFPPase-3 transcripts levels remained relatively constant for the same 

period. Transcript levels for the three AaFPPase genes moderately increased after blood-

feeding (Fig. 15B).  

2.4.5 Reduction of AaFPPase-1 by RNAi caused a significant decrease on JH 

biosynthesis 

Since AaFPPase-3 did not appear to catalyze FPP, it was not further considered to 

have a major role in JH biosynthesis. Therefore the effect of mRNA depletion using 

RNAi was only studied with AaFPPase-1 and AaFPPase-2. Injection of dsRNA resulted 

in a significant reduction of AaFPPase-1 and AaFPPase-2 mRNAs (~80%) (Fig. 16A). 

Reduction of AaFPPase-1 transcripts resulted in a significant reduction in JH biosynthesis 

when compared with CA of females treated with dsYFP or dsAaFPPase- 2 (Fig. 16B). 
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2.5 Discussion 

2.5.1 Molecular and functional characterization of AaFPPases expressed in the 

corpora allata of mosquitoes 

In this study we identified and characterized two corpora allata mosquito NagD 

phosphatases that are able to convert FPP into FOL. The homology model of AaFPPase-1 

exhibited the typical HAD core and cap regions [Burroughs et al., 2006; Seifried et al., 

2013). The core region is considered to be a modular phosphoryl-transfer unit with the 

squiggle and flap motifs providing a solvent exclusion mechanism that allows HAD 

enzymes to alternate between ‘‘open’’ and ‘‘closed’’ conformations. The enzyme in the 

‘‘open’’ configuration allows the substrate to enter the active site and interact with the 

highly conserved catalytic residues in the four core motifs and the cap (Arvind et al., 

1998; Seifried et al., 2013). Upon cap closure, some residues in the cap domain enter the 

active site and engage in catalysis. Once the substrate is bound, the enzyme assumes a 

‘‘closed’’ configuration and the Mg2+ ion in the active site interacts with the negatively 

charged phosphate, preparing it for nucleophilic attack by the first conserved aspartate on 

motif I (Seifried et al., 2013) (Fig. 17). The AaFPPase-1 and previously described 

DmFPPase (GC15739) (Cao et al., 2009) are both expressed in the CA, process FPP into 

FOL and are part of a cluster of NagD family members that contain one functional active 

site (HAD domain) in the N-terminus of the core unit. Additional close related NagD 

sequences in other insects exhibited variability on the number and location of the HAD 

domains; although the effect of these changes on activity and substrate specificity 

remains to be studied. The study of FPPases from additional insect species could help to 
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improve our understanding of the basis of isoprenoid phosphate binding specificity in 

NagD insect proteins.  

2.5.2. Expression of AaFPPases genes 

Previous studies in Bombyx mori (Kinjoh et al., 2007; Ueda et al., 2009) and A. 

aegypti (Nouzova et al., 2011) suggested that the transcripts for most of the JH 

biosynthetic enzymes were highly enriched or exclusively expressed in the CA. The last 

two metabolic reactions, the methylation of FA and the epoxidation of MF, are most 

likely exclusive for JH biosynthesis and therefore the enzymes involved (juvenile 

hormone acid methyl transferase and epoxidase) should be highly expressed in the CA 

(Nouzova et al., 2011). In contrast, other enzymes in the late pathway, such as the 

AaFPPases described in these studies, farnesol dehydrogenases (Mayoral et al., 2009) and 

farnesal dehydrogenases (Rivera-Perez et al., 2013) are broadly expressed in many 

tissues, which is not surprising since farnesol and farnesal homeostasis are vital for cells 

in all insect tissues. Farnesol acts as a signaling molecule in cell proliferation and 

apoptosis (Roullet et al., 1999; Joo and Jetten, 2010; Joune et al., 2008). Posttranslational 

modifications by attachment of a farnesyl group to C-terminal cysteine of target proteins 

by farnesyl-transferases are essential for signal transduction and vesicular transport 

(Pechlivanis and Kuhlmann, 2006). Farnesal dehydrogenases play key roles in the 

generation of fatty alcohols and fatty acids as well as in the elimination of toxic biogenic 

and xenobiotic aldehydes, such as those produced by oxidative damage of glycerolipids 

or during protein deprenylation (Jakoby and Ziegler, 1990; Rizzo and Craft, 1991; 

Tschantz et al., 2001). The presence of more than one isozyme capable of catalyzing the 

hydrolysis of long chain pyrophosphates in mosquitoes suggests that selection 
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mechanism caused duplication and diversification of members of the NagD family and 

facilitated the evolution of more efficient substrate specificities, as well as a better tissue 

and developmental regulation; essential for the critical role that these phosphatases play 

in every cell. 

2.5.3 AaFPPase-1 and JH biosynthesis 

Using an HPLC-fluorescence approach, we were able to measure the changes in 

the production of FOL by AaFPPase from CA extracts dissected from newly emerged 

mosquitoes, sugar-fed and blood-fed female mosquitoes. As was shown with the 

recombinant proteins, the FPPase activity of the CA extracts were Mg2+ dependent, and 

exhibited remarkable differences among basal, highly active and depressed glands. In 

sugar-fed females, we found a good concordance between AaFPPase-1 and -2 mRNA 

expressions in the CA and JH biosynthesis (Li et al., 2003). Although the highest 

transcript levels of AaFPPases were found in highly active glands, the maximum enzyme 

activity was found in basal active glands, suggesting that the molecular basis for JH 

regulation is quite unique at different times during the reproductive cycle of an adult 

female mosquito.  

 We have previously described a 1000-fold difference in the levels of mRNA 

expression in the CA among the JH biosynthetic enzymes (Nouzova et al., 2011). Four 

enzymes presented overall low levels of expression, acetoacetyl-CoA thiolase, 

phosphomevalonate kinase, farnesol dehydrogenase and farnesal dehydrogenase 

(Nouzova et al., 2011; Rivera-Perez et al., 2013); transcripts numbers for AaFPPase-1 are 

also low and comparable to the levels of those 4 genes. Under some conditions any of 

these enzymes could become rate limiting or ‘‘bottleneck’’. We have reported that the 
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low enzymatic activity of farnesal dehydrogenase could be a restrictive factor for JH 

biosynthesis in the CA of blood-fed mosquitoes (Rivera-Perez et al., 2013); a similar 

condition might apply to AaFPPase-1, the decrease in enzymatic activity detected after 

blood-feeding might reduce the farnesol pool to levels that could limit the flux of 

precursors and JH biosynthesis.  

AaFPPase-1 and -2 efficiently hydrolyzed FPP into FOL. Therefore, we selected 

these 2 genes for RNAi studies. Although the RNAi mediated silencing was efficient for 

both enzymes, we found JH biosynthesis was significantly reduced only in AaFPPase- 1 

silenced mosquitoes CA, suggesting that AaFPPase-1 is predominantly involved in JH 

biosynthesis.  

2.6 Conclusions 

A search for orthologs of a farnesyl phosphatase described in D. melanogaster led 

to the identification of two NagD AaFPPases that are expressed in the CA of A. aegypti 

and efficiently hydrolyzed FPP into FOL. A combination of RNAi experiments and 

biochemical studies using CA extracts and recombinant proteins support the hypothesis 

that these HAD enzymes convert FPP into FOL in the CA and might be involved in JH 

biosynthesis in mosquitoes.  
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Primers used for RT-PCR 
Gene accession 
number 

Forward Primer Reverse Primer 

AAEL012292 5’CGTTGATTCGTTCGATTGTG 3’  5’CGAATGTACGAACGCTGTTG 3’ 
AAEL010099 5’GAGGACGTCGTTCATCCAGT 3’ 5’AATCTACCACCACCGCTTTG 3’ 
AAEL010098 5’TTCGAGGGTTTGATCTACGC 3’  5’GAATGCACTCGGGATCACTT 3’ 
AAEL007097 5' TCTCCGAAACGAGCAGTACA 3'  5' GGATTCCGTTCCAGATAGCA 3' 
AAEL007094 5’ GTCGTGAGGCTTTGGTTCTC 3’ 5’AATTCTTCGGGCTTGTTGTG 3’ 
AAEL007098 5’ GTCGTGAGGCTTTGGTTCTC 3’  5’ AATTCTTCGGGCTTGTTGTG 3’ 
AAEL007090 5’ TTGGGACGGAGGTGTTTAAG 3'  5' GGCTTTCATGAGATGGGACA 3' 
AAEL009503 5’ CATCGAGAATGGGAAGCAGT3’  5’ GGAACCGACCACGTACACTT 3’  
 
Primers used for Q-RT-PCR 
 
Primer Sequence 
rpL32 Forward 5’ CCATCAGTCCGATCGCTATGA 3’ 
rpL32 Reverse 5’ GTTGTCAATACCTTTCGGCTTACG 3’ 
rpL32 Probe 5’ CAAGCTTGCCCCCAACTG 3’ 
AaFPPase 1  Forward 5’ AGGGATGCAGGGTTTGAAGTTATTC 3’ 
AaFPPase 1  Reverse  5’ GATAAGACGGAGCGATTCTGGTT 3’ 
AaFPPase 1 Probe  5’ ATGGGCCGAACGATGCA 3’ 
AaFPPase 2 Forward 5’ GGAGGTGTTTAAGAACTATCTACGATCA 3’ 
AaFPPase 2 Reverse 5’ GGCGGCGCCTCCAT 3’ 
AaFPPase 2 Probe 5’ CCGTTGGCCCATCTAG 3’ 
AaFPPase 3 Forward 5’ GTGGCCAAATCGGTGAAACTG 3’ 
AaFPPase 3 Reverse 5’ GCAGCTAGATAGGCGGTAGAGATAA 3’ 
AaFPPase 3 Probe 5’ TTGTCAACGCCAACATT 3’ 
 
Primers used for production of dsRNA 
 
Primers Sequence 
AaFPPase-1 
Forward T7 

5’ TAATACGACTCACTATAGGGAGTTATTCATGGGCCGAACGATGC 3’ 
 

AaFPPase-1  
Reverse T7 

5’TAATACGACTCACTATAGGGATATCGACCCGAGCCCAGAACTTCAA3’ 
 

AaFPPase-2 
Forward T7 

5’ TAATACGACTCACTATAGGGCGATCAGAAGGATTTACTGTTCTAG 3’ 
 

AaFPPase-2 
Reverse T7 

5’ TAATACGACTCACTATAGGGCAGCAAACAGTCAGGATTGC 3’ 
 

YFP-Forward 
T7 

5’ TAATACGACTCACTATAGGGAACCGCATCGAGCTGA 3’ 

YFP-Reverse 
T7 

5’ TAATACGACTCACTATAGGGATGGTCAGGCGGGACT 3’ 

 
Table 1: Primers used for RT-PCR, Q-RT-PCR, and production of dsRNA 
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Figure 7: PCR analysis of the expression of eight putative phosphatase genes in the CA 
of adult female Aedes aegypti. cDNA was made from: (1) CA dissected at the time of 
adult emergence, (2) one day-old sugar-fed females. From left to right: AAEL012292, 
AAEL010099 (AaFPPase-1), AAEL010098, AAEL007097, AAEL007094, AEL007098, 
AAEL007090 (AaFPPase-2) and AAEL009503 (AaFPPase-3). 
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Figure 8: Homology model of the overall fold of AaFPPase-1 and amino acid sequence 
alignment of HAD motifs and cap domains from mosquito, fruit fly and human. (A) 
Homology model of the overall fold of AaFPPase-1. Core region is colored in green and 
cap region in light blue. Motifs are indicated by colors: motif I (red), motif II (orange), 
motif III (pink), motif IV (yellow), cap domain (dark blue) and squiggle (chocolate). B) 
Molecular surface diagram illustrating the active site pocket and the cap 2 region of 
AaFPPase-1. Core region is colored green and cap region in light blue. Motifs are 
indicated by colors: Motif I (red), motif II (orange), motif III (pink), motif IV (yellow), 
cap domain (dark blue) and squiggle (chocolate). The two structures were constructed by 
PyMOL using the Human pyridoxal phosphate phosphatase (2oycA) as template. C) 
Amino acid sequence alignment of HAD motifs and cap domains from mosquito 
(AaFPPase-1, -2 and -3), fruit fly (DmFPPase), human pyridoxal phosphatase (H. 
sapiens_PLP) and human epoxy hydrolase (H. sapiens_sEH). The suggested functions 
for the motifs are: motif I is required for nucleophilic attack, motif II is responsible for 
substrate binding, the motif III Lys is required for stabilizing the negative charge of the 
reaction intermediate together with the Ser/Thr of motif II, motif IV is needed for Mg2+ 
ion binding and the cap domain is involved in substrate recognition. Bold letters indicate 
the conserved residues in each motif. The numbers represent the amino acid positions in 
the sequences. ‘‘h’’ denotes a hydrophobic residue and ‘‘x’’ any residue. Accession 
numbers: DmFPPase (CG15739), H. sapiens_PLP (NP_064711.1) and H. sapiens_sEH 
(NP_001243411.1). 
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Figure 9: Phylogenetic analysis of HAD superfamily sequences from insects and human. 
Sequences are labeled with species names and accession numbers in between brackets. 
The bifunctional human epoxy hydrolase (NP_001243411.1) was used as outgroup. 
Sequences grouped in two clades. All sequences in Clade 1 are members of the NagD 
family included in the class IIA of HAD proteins. Sub-clades are separated by the 
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localization of the HAD domain and the presence of a Ser (S) or Thr (T) in motif II. The 
position of the functional domain is referred as N-terminus or C-terminus. Insects with 
two potential HAD functional domains are shown with an asterisk. Bold labels represent 
the AaFPPase- 1, AaFPPase-2 and AaFPPase-3. Human sequences are represented by 
dotted lines in the tree. All sequences in Clade 2 are epoxy hydrolases, which are 
members of the class IA of HAD proteins.  
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Figure 10: Metal dependence and optimum pH of AaFPPase. Phosphatase activity was 
measured using p-NPP. A) Magnesium dose-dependent increases of activities. B) 
Optimum pH determinations. Three different buffers were used: Sodium acetate at pH 4.5 
to 5.5, MES at pH 5.5 to 7 and Tris at pH 7 to 9. Each value represents the means ± 
S.E.M. of three replicate assays. Relative activity is defined as a percentage of the highest 
value recorded. 
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Substrate Km  

(µM ± SE) 
Vmax 

(min-1 mg-1 ±SE) 
Kcat 

(s-1) 
Kcat/Km 
(M-1s-1) 

Recombinant 
enzymes 
 

FPP 222.36 ± 11.0 6.45 ± 0.76 3.33 1.5 X 104 AaFPPase-1 
GPP 184.45 ± 14.16 12.71 ± 0.37 7.92 4.3 X 104 AaFPPase-1 
IPP >900 ND ND ND AaFPPase-1 
FPP 221.02 ± 15.62 5.77 ± 0.15 2.98 1.32 X 104 AaFPPase-2 
GPP 273.98 ± 2.52 28.3 ± 0.95 17.49 6.3 X 104 AaFPPase-2 
IPP >900 ND ND ND AaFPPase-2 
 
 
Table 2: Substrate specificity of AaFPPase-1 and AaFPPase-2 
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Figure 11: Chromatogram of a reverse-phase high performance liquid (HPLC) analysis 
showing the production of farnesol from FPP by AaFPPase-1. A) 300μM FPP was 
incubated with AaFPPase-1 in reaction buffer for 1hr at RT. Arrow indicates farnesol 
(retention time 37.5 min). B) Negative control in which 1mM FPP was incubated in 
reaction buffer without adding enzyme for 1hr at RT. 
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Figure 12: Effect of the inhibitor AGGC on AaFPPase activity. Recombinant AaFPPase-1 
and -2 were pre incubated with different concentrations (0 to 40 μM) of N-acetyl-S-
geranylgeranyl-L-cysteine (AGGC) for 10 min and their activities were measured using 
the p-NPP assay.  
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Figure 13: FPPase activity in CA extracts. A) Effect of Mg2+ on FPPase activity: Extracts 
of CA dissected from sugar-fed females 24 h after emergence were incubated with or 
without 2 mM MgCl2. Bars represent the means ± S.E.M. of three replicates of extracts 
from groups of 5 CA. Asterisks denote significant difference (unpaired t-test, 
***P<0.001). B) The CA exhibited variable FPPase activity: Extracts of CA dissected 
from newly emerged females (0), 24 h after emergence (24SF) and 24 h after blood 
feeding (24BF) were incubated for 1 h in the presence of an excess of FPP. Bars 
represent the means ± S.E.M. of three replicates of extracts from groups of 10 CA. 
Different letters above the columns indicate significant differences among treatments 
(one way ANOVA p < 0.05, with Tukey’s test of multiple comparisons). 
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Figure 14: Tissue specific expression of AaFPPases  

All tissues were dissected from 3-day-old sugar-fed females, except for testis and 
accessory glands dissected from 3-day-old sugar-fed males. BR: brain; CA: corpora 
allata; SG: salivary gland; HT: heart; TG: thoracic ganglia; VG: ventral ganglia; FB: fat 
body; MG: midgut; HG: hindgut; MT: Malpighian tubules; OV: ovaries; TS: testis and 
AG: accessory gland. Each value represents the means ± S.E.M of two independent 
biological replicates of 10–20 tissue samples evaluated in triplicate. AaFPPase mRNAs 
are expressed as copy number of mRNA/10,000 copies of rpL32 mRNA. 
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Figure 15: Developmental expression of AaFPPases. A) Expression on pupae and sugar-
fed females: mRNA was isolated from CA of pupae 24 h (-24) and 6 h before adult 
eclosion, newly emerged adult female (0 h), sugar-fed females 24, 48 and 72 h after 
eclosion. B) Expression after blood feeding. Each data point is the means ± S.E.M. of 
three independent biological replicates of 20 CA evaluated in triplicate. AaFPPase 
mRNAs are expressed as copy number of mRNA/10,000 copies of rpL32 mRNA.  
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Figure 16: dsRNA mediated knockdown of AaFPPase-1 and -2. Newly emerged female 
mosquitoes were injected with dsAaFPPase-1, dsAaFPPase-2 or dsYFP; 4 days later 
transcript and JH levels were evaluated. A) Transcript levels are expressed as % of the 
YFP controls. Bars represent the means ± S.E.M. of two replicates of RNA extracted 
from thoraxes. B) JH synthesized in vitro: CA were dissected from females injected with 
dsAaFPPase-1, dsAaFPPase-2 or YFP dsRNA and incubated in vitro for 4 h. JH was 
evaluated by HLPC-FD. Bars represent the means ± S.E.M. of four replicates of 4 CA. 
Different letters above the columns indicate significant differences among treatments 
(one way ANOVA p < 0.05, with Tukey’s test of multiple comparisons). 
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Figure 17: Schematic representation of the catalytic mechanism for AaFPPases. Catalysis 
proceeds through an aspartylphosphate intermediate. 1) Once the FPP is bound, the Mg2+ 
ion in the active site interacts with the negatively charged phosphate, preparing it for 
nucleophilic attack by the first conserved aspartate on motif I. 2) As a result, an acyl 
phosphate intermediate is formed with the carboxyl group of this aspartate and a water 
molecule is deprotonated by the second aspartate of motif I; hydrolyzing the acyl 
phosphate intermediate and returning the enzyme to the native state 3) The enzyme forms 
a new complex with FMP. 4) Catalysis of FMP occurs again through an 
aspartylphosphate intermediate. 5) Farnesol is released and the enzyme returns to the 
initial state. 
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Chapter 3: Structural and biochemical characterization of a mevalonate kinase 

involved in juvenile hormone pathway in Aedes aegypti 

3.1 Abstract 

Mevalonate kinase catalyzes the ATP-dependent phosphorylation of mevalonic acid 

to form mevalonate 5-phosphate, a key intermediate in the juvenile hormone (JH) pathway. 

Here we report the expression, biochemical and structural characterization of an Aedes 

aegypti mevalonate kinase (AaMK) enzyme expressed in the corpora allata. Different 

isoprenoids were analyzed as inhibitors of the recombinant enzyme using a traditional 

spectrophotometric assay and a HPLC assay. We found that AaMK was strongly inhibited 

by long chain isoprenoids pyrophosphates including the 20-carbon geranyl-geranyl 

pyrophosphate (GGPP), the 15-carbon farnesyl pyrophosphate (FPP) and the 10-carbon 

geranyl pyrophosphate (GPP), all of them in the nanomolar range. Short chain isoprenoids 

pyrophosphates such as the 5-carbon compounds isopentenyl pyrophosphate (IPP) and 

dimethylallyl pyrophosphate (DMAPP) also inhibited but only in the micro molar range. 

Other precursors of the JH biosynthesis pathway such as phospho mevalonate (PM), 

diphospho mevalonate (DPM) and farnesol (FOL) were not inhibitors of MK activity. In 

addition we also found a feedback inhibition of AaMK activity by FPP and GPP in 

mosquito crude extracts.  

3.2 Introduction  

Mevalonate kinases (MK) (EC 2.7.1.36) catalyze the synthesis of 

phosphomevalonate (PM) by transferring the γ-phosphoryl group from ATP to the C5 

hydroxyl oxygen of mevalonic acid (MA) (PM) (Fu et al., 2002). The irreversible reaction 

requires a divalent cation and represents a key step in the production of juvenile hormone 
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(JH) in insects (Noriega, 2014). Originally described in the late 1950’s for its role on 

cholesterol synthesis (Amdur et al., 1957), MK is also involved in the synthesis of a 

diverse group of non-sterol isoprenoid metabolites important in various cellular functions; 

such as protein prenylation, protein glycosylation and cell cycle regulation (Belles et al., 

2005). In addition MK dysfunctions are responsible for human inherited diseases, such as 

mevalonic aciduria and hyperimmunoglobulinemia D/periodic fever syndrome (Hoffman et 

al., 1986). 

Mevalonate kinases are found in the three domains of life (Lombard and Moreira, 

2010). They are members of the “GHMP kinase family”, a group of sugar kinase that 

originally included galactokinases, homoserine kinases, mevalonate kinases, and 

phosphomevalonate kinases (Bork et al., 1993; Cheek et al., 2002). The GHMP kinase 

family has been now extended to include other kinases such as archaea shikimate kinases, 

L-threonine kinases, N-acetylgalactosamine kinases, glucuronokinases, arabinose kinases, 

galacturonic acid kinases, mevalonate diphosphate decarboxylases (MDD), and 4-(cytidine 

5-diphospho)-2-Cmethyl- D-erythritol kinases (Cheek et al., 2002). Members of the 

GHMP kinase family have a number of conserved amino acid signature motifs, which are 

involved in the binding of ATP-Mg, as well as the substrates to be phosphorylated (Houten 

et al., 2000; Fu et al., 2002).  

Mevalonate kinases from different organisms have a homodimeric structure in 

solution, which is composed of identical subunits with a molecular weight ranging from 70 

to 105 KDa (Yang et al., 2002; Fu et al., 2002; Andreassi et al., 2007). Kinetic studies 

suggest that the enzyme catalyzes an ordered sequential reaction, with mevalonate binding 

first to the enzyme, and with PM as the first product released after catalysis (Beytia et al., 
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1970; Fu et al., 2002). Above mechanism of reaction has been postulated for the rat MK 

(Rattus norvegicus MK or RnMK) (Fu et al., 2002). The structure of the RnMK shows that 

the C5-hydroxyl group of the MA and the γ-phosphate group of ATP are located close to 

Aspartic acid204 that makes a salt bridge with Lysine13. In the complex, penta-coordinated 

γ-phosphate transition state is stabilized by the magnesium ion, the side chains of Glutamic 

acid193 and Lysine13, as well as the main-chain carbonyl group of Serine146. Aspartic acid204
 

act as a base, abstracting a proton from a hydroxyl group in the MA. This converts MA 

into an excellent nucleophile, which then attacks the γ-phosphorus of ATP. Lysine13
 is 

believed to maintain the aspartate residue in the deprotonated state and decrease its pKa to 

facilitate the proton transfer (Fu et al., 2002). The “catalytic base mechanism” is supported 

by site-directed mutagenesis studies. In the Homo sapiens MK (HsMK), a mutation of the 

critical aspartate residue (catalytic base) decreases the activity by ten thousand fold 

compared with the wild type (Potter and Miziorko, 1997). Similarly, the catalytic rate is 

reduced by a modification of the lysine residue (Potter and Miziorko, 1997; Potter et al., 

1997). 

Another important feature of this enzyme is that its activity is regulated by 

feedback inhibition by isoprenoids, such as farnesyl pyrophosphate (FPP) and geranyl 

pyrophosphate (GPP). The inhibition has been described for several MKs, including Homo 

sapiens MK (Hinson et al., 1999), Rattus norvegicus MK, (Tanaka et al., 1990) and Sus 

domesticus MK (Beytia et al., 1970). A similar type of inhibition is also observed for MK 

of plants, including Phaseolus vulgaris, Cucumis melo and Hevea latex (Gray and 

Kekwick, 1972), yeast such as Saccharomyces cerevisia (Oulmouden and Karst, 1991), 

bacteria such as Staphylococcus aureus (Voynova et al., 2003) and archaea such as 
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Methanococcus jannaschii (Huang et al., 1999). Isoprenoids are potent competitive 

inhibitors for the binding of ATP to MKs (Hinson et al., 1997; Potter and Miziorko, 1997). 

Sensitivity to feedback inhibition is much greater in eukaryotic enzymes than bacterial or 

archaeal enzymes (Fu et al., 2008; Primak et al., 2011). On the basis of their feedback 

inhibition, MKs can be classified into at least three different classes: 1) class I MKs: 

showing feedback inhibition by isoprenoids, but not by diphosphomevalonate (DPM), 2) 

class II MKs: which do not show feedback inhibition by isoprenoids, but are strongly 

inhibited by DPM, and 3) class III MKs: that do not show feedback inhibition by either 

isoprenoids or DPM (Primak et al., 2011).  

We have characterized a mevalonate kinase activity from the CA of Aedes aegypti 

(AaMK). Similarly to other animal MKs, recombinant AaMK displays a strong feedback 

inhibition by long chain isoprenoids, such as geranyl-geranyl pyrophosphate (GGPP), FPP 

and GPP; with Ki values of less than 1 µM. The endogenous activity of AaMK was also 

strongly inhibited by adding long chain isoprenoids to the crude extract of mosquito 

thoraces (containing the CA). Homology modeling was used to build the structure of 

AaMK in order to elucidate the mechanism of reaction and feedback inhibition by 

isoprenoids.  

3.3 Materials and methods 

3.3.1 Chemicals 

Geranyl-geranyl pyrophosphate (GGPP), farnesyl pyrophosphate (FPP), geranyl 

pyrophosphate (GPP), isopentenyl pyrophosphate (IPP), dimethyl allyl pyrophosphate 

(DMAPP) and farnesol (FOL) were purchased from Echelon Biosciences (Salt Lake City, 

UT). Mevalonic acid (MA), phosphomevalonate (PM), diphosphomevalonate (DPM), 
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phosphoenolpyruvate (PEP) and nicotinamide adenine dinucleotide reduced (NADH) were 

purchased from Sigma-Aldrich (St. Louis, MO). Pyruvate kinase (PK) and lactate 

dehydrogenase (LDH) were purchased from LEE bioscience. 

3.3.2. Insects 

Aedes aegypti of the Rockefeller strain were reared at 28 °C and 80% relative 

humidity under a photoperiod of 16 h light: 8 h dark. A cotton pad soaked in 3% sucrose 

solution was provided to adults. 

3.3.3. Secondary and tertiary structure of AaMK 

The secondary structure was predicted online using the ExPASy web tools (Peter et 

al., 1974). The mosquito deduced amino acid sequence and those selected from other insect 

species were aligned using ClustalW (Thompson et al., 1997); the MK from Rattus 

norvegicus was included in the alignment to identify some of the conserved motifs that 

characterize this group of enzymes.  

The three dimensional model structure for AaMK was predicted using the crystal 

structure of Human MK (Protein Data Bank ID code 2r3v.3) as a template. The identity of 

the model and AaMK was 37.75%. The model was performed using the protein structure 

homology modeling server Swiss v.8.05 (Schwede et al., 2003; Arnold et al., 2006) 

3.3.4. Expression of recombinant AaMK 

The AaMK cDNA was expressed in E. coli cells as described by (Nyati et al., 

2013). Recombinant His-tagged proteins were purified using HiTrap chelating columns 

and PD-10 desalting columns (Amersham Pharmacia, Piscataway, NJ). Glycerol was added 

to the enzyme solution (final concentration 50%), and samples were stored at -20 ºC until 
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used. Protein concentrations were determined using the bicinchoninic acid protein assay 

reagent 

(BCA) (Pierce, Rockford, IL). Bovine serum albumin was used as a standard. 

3.3.5 Enzyme assays 

3.3.5.1 Enzyme coupled spectrophotometric assay 

The catalytic activity of the AaMK was measured using a modified 

spectrophotometric assay that couples ADP formation to pyruvate synthesis and reduction 

to lactate (Primak et al., 2011). The initial rate of disappearance of NADH serves as a 

measurement of the phosphorylation of MA by MK. The assays were performed in 

triplicate in 96-well plates (BioTek, Winooski, VT) for 10 min at 30 °C. Each 100 µl of 

reaction mixture contained 0.5 mM phosphoenolpyruvate, 0.01 mM DTT, 0.35 mM 

NADH, 10 mM MgCl2, 2 U of LDH, and 2 U of PK in 100 mM Tris-HCl pH 7.6.  

The Michaelis-Menten constant, Km-MA was determined at a saturating concentration 

of ATP (5 mM); with MA concentrations ranging from 0.005 to 2.5 mM. The reactions 

were initiated with the addition of 150 ng of recombinant AaMK. The Km-ATP was 

determined using saturating concentrations of MA (1.25 mM) and ATP concentrations 

ranging from 0.005 to 5 mM. The amount of NADH oxidized to NAD+ was monitored 

continuously at 340 nm. Absorbance changes were plotted against time to determine the 

rates of the MK-coupled reactions. To determine steady-state kinetic parameters, data were 

subjected to nonlinear regression fits to the Michaelis–Menten equation using the 

GraphPad Prism software (San, Diego, CA).  

The AaMK inhibition studies were performed in triplicate by adding to the reaction 

mix precursors of JH synthesis (DPM, DMAPP, IPP, GPP and FPP), as well as GGPP at 
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various concentrations. To determine the Ki value for GPP, FPP and GGPP, we used the 

multicurve fits of the GraphPad Prism software. 

3.3.5.2. RP-HPLC analysis of the products of MK catalysis.  

The phosphorylation of MA into PM was analyzed by reverse-phase HPLC. MA 

(200 µM) and ATP (250 µM) were incubated with  recombinant AaMK for 60 min in the 

reaction buffer (100 mM Tris-HCl pH 7.5, 10 mM MgCl2, 0.5 mM DTT). Reactions were 

terminated by adding 500 µl of acetonitrile, and then vortex 1 min. Samples were 

centrifuged at 14,000 rpm for 5 min and the organic phase was recovered, filtered and 

analyzed by reverse-phase HPLC on a Dionex Summit System (Dionex, Sunnyvale, CA) 

as previously described (Nyati et al., 2013). Water or/and glycerol were used in place of 

recombinant enzyme in negative controls. 

3.3.6. MK activity in the crude extract (CE) of mosquitoes 

Mevalonate kinase activities from mosquito female thoraxes were measured by 

monitoring the production of PM using RP-HPLC. Thoraxes from 24h old 3% sugar-fed 

females were dissected in Aedes saline solution and transferred to a buffer solution (100 

mM Tris-HCl pH 7.5, 10 mM MgCl2, 0.01 mM DTT). Thoraxes were homogenized for 1 

min, sonicated 3 min and centrifuged at 10,000 g for 10 min at 4 ºC. Supernatants were 

recovered and used as crude extract (CE) for activity assays as previously described (Nyati 

et al., 2013). The protein contents of the CE were measured by BCA assay. Enzymatic 

assay was performed as previously described using 4 mg of protein. Controls such as 

boiled crude extract and reactions without enzyme were included. A standard curve was 

constructed for the quantification of PM.  
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3.3.7 Statistical analysis  

Statistical analyses were performed using the GraphPad Prism Software (San 

Diego, CA, USA). The results are expressed as means ± S.E.M. Significant differences (P 

< 0.05) were determined with one-way ANOVA followed by a pair-wise comparison of 

means (Tukey’s test).  

3.4 Results 

3.4.1 Molecular and structural characterization of A. aegypti mevalonate kinase  

A single orthologue gene to the AaMK EST was found in the genome of A. aegypti 

(VectorBase) (Lawson et al., 2009). The AaMK gene (Vectorbase accession Num. 

AAEL006435) is located on supercontig 1.205, and it is composed of three exons 

interrupted by two introns with lengths of 68 and 57 bp. It encodes a 397 amino acid 

protein with an estimated molecular weight of 43.27 kDa.  

 Analysis of the AaMK structure revealed a fold consisting of a mixture of α-helices 

and β-sheets, which are organized into N- terminal (include amino acids 1 to 246, 358 to 

397) and C-terminal (include amino acids 247 to 357) domains arranged in a V-shape that 

creates a central cleft, with the active site located at the base of the cleft (Fig 18). The N-

terminal domain (blue in Fig. 18) is composed of ten β sheets (β1-β9 and β12) and eight α- 

helices (α1- α7 and α12). The C-terminal domain (green in Fig. 18) is composed of four 

helices (α8-α11) and two β sheets (β10 and β11) (Fig. 18). A similar structure was 

previously described for other MKs (Yang et al., 2002; Fu et al., 2002; Andreassi et al., 

2007). 

 Amino acid sequence alignments of MKs from seven insect species including 

Aedes aegypti (AaMK), Culex quinquefasciatus (CqMK), Anopheles gambiae (AmMK), 
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Drosophila melanogaster (DmMK), Bombyx mori (BmMK), Danaus plexippus (DpMK), 

Apis mellifera (AmMK) and Acyrthosiphon pisum (ApMK) (with similarities between 36% 

and 44%) revealed the  four well conserved motifs typical of MKs (Fig. 19). The Rattus 

norvegicus MK, a protein with a solved crystal structure (Fu et al., 2002) and a close 

similarity with the sequence of AaMK (31 %) was also included in the analysis.  

3.4.2 Expression and purification of recombinant A. aegypti mevalonate kinase 

Expression of the recombinant His-AaMK protein was induced in the E. coli 

Rosetta strain (DE3 cells) using the pET28 vector. AaMK was purified from the soluble 

fraction by immobilized metal affinity chromatography; yielding a protein with a 

molecular weight consistent with the estimated molecular weight of 43.27 kDa (Fig. 21). It 

has been previously reported that inclusion of the His tag had no effect on the kinetics 

properties of Homo sapiens MK (HsMK) (Hinson et al., 1997) and RnMK (Chu et al., 

2007); therefore the recombinant His-AaMK was used to study its enzymatic properties 

without cleavage of the His tag.  

3.4.3 Mevalonate kinase activity 

Mevalonate kinase activity was measured by using both the enzyme-coupled assay 

and the HPLC method (Fig. 22). The catalytic activity of AaMK increased in a dose 

response manner when Mg2+ was used as a cofactor. Mn2+ and Co2+ also enhanced MK 

activity to a lesser degree than Mg2+ (Fig. 23). The AaMK activity was investigated at 

different pHs. The optimum pH was found to be 7.5 to 8.0; with the enzyme exhibiting 60-

70% of its optimum activity over a rather broad pH range (7 to 8.5) (Fig. 23). To determine 

the nucleotide specificity of MK, we first investigated the rates at which pyruvate kinase 

(PK) could use nucleoside diphosphates other than ADP. The activity of PK was measured 
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by coupling the nucleotide diphosphate-dependent production of pyruvate and reduction to 

lactate catalyzed by lactate dehydrogenase (LDH). Relative rates measured for three 

replicate assays for ADP, GDP, UDP and CDP were respectively 100, 70, 40 and 20 

percent. We utilized the enzyme coupled assay to determine catalytic rates in the presence 

of different triphosphates phosphoryl donors. Relative rates of MK activity when ATP, 

GTP, TTP and CTP were used as phosphoryl donors were 100, 15, 11 and 5 percent 

respectively (Fig. 23).  

3.4.4. Kinetic properties of AaMK 

Kinetic constants were measured for the purified recombinant AaMK using the 

enzyme-coupled assay. The AaMK had a Vmax of 37 µmol/min/mg. The Kms (affinities) for 

MA and ATP were 90 ± 18 µM and 140 ± 28 µM respectively. The Km of the MK for MA 

was comparable to those previously described in archaea, bacteria and eukaryotes (Table 

3). On the other hand, the Km for ATP varies greatly in different organisms.  

3.4.5 Feedback inhibition of AaMK 

AaMK activity was strongly inhibited by long chain isoprenoids, including GGPP, 

FPP and GPP with Ki values of 0.55 ± 0.28 µM, 0.44 ± 0.2 µM and 0.93 ± 0.19 µM 

respectively (Fig. 24). Short chain isoprenoids, such as DMAPP and IPP inhibited only in 

the micromolar range, with a Ki value greater than 10 µM; while 6C compounds, such as 

PM and DPM did not inhibit AaMK activity. Similar feedback inhibitions were described 

for other eukaryotic MKs (Table 4).    



80 
 

3.4.6 Inhibition of MK activity in crude extract (CE) of mosquitoes by long chain 

pyrophosphates  

The activity of MK in crude extracts from thoraxes dissected from sugar-feed (SF) 

mosquitoes 24 h after adult eclosion was measured using the enzyme-coupled assay. 

Addition of 100 µM FPP decreased the kinase activity by 25% (Fig 25A). The optimal 

conditions for catalysis of three ATP-dependent enzymes (MK, phosphomevalonate kinase 

and mevalonate diphosphate decarboxylase) are similar (Rivera-Perez et al., 2014); 

therefore we hypothesized that in our in vitro assays the catalytic reactions continued from 

mevalonate (MA) to isopentenyl pyrophosphate (IPP) via phosphomevalonate (PM) and 

diphosphomevalonate (DPM). That prevented us from detecting changes in the pools of 

PM and DPM by HPLC; so we measured the changes in the pools of IPP as a proxy for 

MK activity (Fig. 25). In the presence of 100 µM FPP we found a significant decrease in 

the pool of IPP, confirming the inhibitory effect of FPP on MK activity (Fig 25B).  

3.5 Discussion 

3.5.1 Structural and biochemical characterization of AaMK 

We have biochemically characterized an A. aegypti MK involved in the synthesis 

of JH in the CA. An expressed sequence tag (EST) encoding AaMK was obtained from 

an A. aegypti corpora-allata + corpora cardiaca library, constructed and sequenced as 

previously described (Noriega et al., 2006). Analysis of the AaMK sequence revealed the 

features of a typical GHMP kinase protein. AaMK exhibits a compact globular α/β 

structure similar to that described for Rattus norvegicus MK (RnMK) (Fu et al., 2002). 

Analysis of the structure of AaMK revealed the presence of two large insertions in the N-

terminal domain. The first insertion lies between β5 and α6, and includes the disordered 
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residues 71-110, located between the α2 and α3 (Fig. 18). The disordered residues in the 

sequence of AaMK are longer than in RnMK, which include residues 73-88 (Fu et al., 

2002). The next insertion lies between α5 and α6 (Fig. 18). As these two insertions lie at 

the surface of the molecule, they are probably not involved in the catalytic function of the 

enzyme. However, these insertions must play a role in the stability of the MK protein (Fu 

et al., 2002).  

The crystal structure of Methanococcus jannaschii MK (MjMK) revealed the 

existence of a disulfide bridge by Cys107 and Cys281 (Yang et al., 2002). The crystal 

structures of RnMK (Fu et al., 2002) and Streptococcus pneumoniae MK (SpMK) 

(Andreassi et al., 2007) were also solved. Despite the similar overall structural folding in 

these three enzymes, the disulfide bridge was absent in these 2 MKs. The cysteine 

residues forming the disulfide bond of MjMK are in motif II and motif IV respectively 

(Chu et al., 2007). Sequence alignments of the seven insects MK revealed that there is no 

cysteine residue present in the motif II (Fig. 19); therefore insects MKs do not have a 

disulfide bridge. The overall polypeptide folding of MKs from insects and rat are also 

very similar. The catalytic base aspartate and lysine are also conserved in the structure of 

insects; hence it is reasonable to propose a catalytic base mechanism for insects as shown 

in figure 20.  

We measured the activity of the recombinant AaMK (Fig. 22), and compared it 

with different recombinant enzymes from archaea, bacteria and eukaryotes. Although it 

seems that the essential cation in vivo is probably Mg2+, our investigation of recombinant 

AaMK suggest that Mg2+ can be partially replaced in vitro by other divalent cations such 

as Mn2+ and Co2+ (Fig. 23). Similarly, in the process of phosphorylation, although other 
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nucleotide triphosphates including GTP, CTP and TTP can partially substitute for ATP as 

phosphoryl donors in vitro (Fig. 23), most likely ATP is the preferential in vivo 

phosphoryl donor. The results for the analysis of cofactor requirements, phosphoryl 

source and optimal pH of the AaMK were in agreement with those from other previously 

characterized MKs (Voynova et al., 2003; Hedl and Rodwell, 2003).  

Our kinetic studies revealed that the AaMK Vmax for the formation of PM was 

comparable to that described for other MK’s, ranging from 12 to 50 µmol min-1 mg-1 

(Table 3). The AaMK Michaelis-Menten constants for mevalonate (KM MA) and ATT (KM 

ATP) were in the range of those previously described for other MKs: KM MA are in a range 

of 19 to 236 µM; while KM ATP varied between 74 to 1180 µM (Table 3).  

It has been shown that the two phosphate groups of FPP compete for the binding 

of the phosphoryl groups of ATP; but large contributions to the inhibitor affinity are 

derived from binding interactions for the farnesyl moieties (Fu et al., 2008). The structure 

of animal MKs display an extra region of 25 to 50 amino acids between motif I and motif 

II, which are absent in bacterial and archaeal MKs. It constitutes part of the FPP binding 

pocket, thereby facilitating the isoprenoid binding in animal MKs (Fu et al., 2008). On 

the basis of the structure, kinetics and inhibition profile of the insect MKs, we could 

classify them into the same class of other animal MKs.  

AaMK was also found to be inhibited by isoprenoids; with the pattern of this 

inhibition resembling well those of other eukaryotic MKs (Table 4). Inhibition of the 

activity of MKs by isoprenoids is competitive with respect to ATP (Fu et al., 2008), and 

the eukaryotic enzymes are 1000 fold more sensitive to the inhibition by isoprenoids than 

bacterial and archaeal enzymes (Table 4); even if their Km values differ by only 2-3 fold 
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(Table 3).  The MK activity in thoraces extracts of sugar-feed (SF) mosquitoes was 

significantly reduced in the presence of FPP, confirming the results obtained in the 

studies performed with the recombinant enzyme. 

3.5.2 Role of mevalonate kinase on JH synthesis in mosquitoes 

Mevalonate kinase is a key enzyme of the MVP and therefore for the synthesis of 

JH (Goodman and Cusson, 2012). AaMK is expressed in most adult female mosquito 

tissues (Fig. 26) (Nouzova et al., 2011); suggesting that AaMK is involved in many 

metabolic pathways. In the CA, there is a good correlation between AaMK mRNA 

expression and JH synthesis (Fig. 27) (Nouzova et al., 2011; Rivera-Perez et al., 2014). 

JH synthesis is suppressed during pupae development, and therefore AaMK mRNA levels 

are very low in the CA of early pupae. In adult females, CA AaMK transcript levels and 

JH synthesis reached maximum values during the first day after eclosion (Fig. 27A). In 

addition, changes in AaMK transcripts in the CA of sugar-fed and blood-fed female 

mosquitoes were also in agreement with the changes in JH synthesis (Fig. 27A). In 

larvae, pupae and adult female Bombyx mori the CA also displayed a good correlation 

between JH biosynthesis and expression of MK (Kinjoh et al., 2007). Likewise changes 

in AaMK enzymatic activity correlated well with rates of JH biosynthesis (Fig. 27B). The 

highest MK enzymatic activity was found in highly active glands (12h and 24h sugar-fed 

females), and the lowest enzymatic activity was found in the suppressed gland of blood-

fed mosquitoes (Fig. 27B).  

3.6 Conclusions 

We have completed the first functional and molecular characterization of a 

mevalonate kinase involved in the production of JH in the CA of insects. AaMK is a class 
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I MK that has the typical structure and functional features of other members of the 

GHMP kinase family. Changes in MK mRNA levels and enzymatic activity in the CA of 

pupa and adult female mosquitoes corresponded well with changes in JH synthesis, 

suggesting that AaMK transcript and activity fluctuations are at least partially responsible 

for the dynamic changes of JH biosynthesis during the gonotrophic cycle of female 

mosquitoes. The activity of AaMK was strongly inhibited in vitro and in vivo by 

isoprenoids such as GPP and FPP. Further studies are necessary to determine if the 

inhibition of MK activity by downstream metabolites might be important to regulate JH 

synthesis in the CA of insects.  
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    β1             β2               α1                     β3                         β4                          β5      
M N S L N S F E I S A P G K V I L H G E H S V V Y G K P A I A G P I G L R T Y L T Y K K L D V P E I I L D F  
 

                β6                 α2     
A S I P F T S K L S L E S F N Q F L Q Q H N C H S D M Q P L E F L S K L R T S E E F P F A Q Y V S P Q P  
       

                               α3                                        α4                                 β7  
A Q D S T K E R Y S L G V A L Y L I N R I M R S E G V D A L P T K S G F Q L T I K S V M S I G A G L G S S  
  

               α5                                                                                                             α6 
A G Y G V C V S A G A Y V I T K L A K G E L T V D N A L N Y S F Q G N E P E V L K K I S Q W A F D S E  
 

                                       α7                  β8                  β9                          α8 
L V M H E R P S G I D N T I C T Y G N L I KF R K G E P F E S L K L R Q Q I N I L I V D T K V S R T T S K L  
 

       α9                                            α10                                                                            α11                         
V A N V A A L K N K H L K M M E S I L D A M G H L VD D A VE L L E D E R D Q F E A L R T L V A V N N  
 

                                          α12                            β10                               β11 
N L L R A I G V S H P S L E K V F Q L A D S S G F D A K L T G A G G G G C A L V F L P K D Y E S L K E F  

 
   α13                               β12 
G V L T G S L T E A G F S W M A T T I G G S G V E F K A I E 

Motif I 
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Motif IV 
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Figure 18: Homology model of the overall fold of AaMK and its amino acid sequence. 
(A) Three dimensional structure of AaMK. The N-terminal is shown in cyan, C-terminal 
is green, and motifs are indicated by colors; motif I (red), motif II (orange), motif III 
(pink) and motif IV (yellow). This structure was constructed by PyMOL using the 
Human MK (PDB: 2r3v.3) as template. (B) N-terminal amino acids are shown in black 
and C terminal with green color. Helices are numbered α1 through α13 and shown inside 
yellow box, β-strand are numbered β1 through β12 and shown inside red box. Motifs I-IV 
are shown in red underlined color. Two large insertions (i.e. residues 71-110 and residues 
175-194) not involved in the catalytic function of AaMK are shown with blue line above 
them.  
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                   Motif I               Motif II             Motif III            Motif IV                             
     AaMK 12 PGKVILHGEHSVVYGKPA 29 151 SIGAGLGSSAG 161 209 SELVMHERPSGIDN 222 343 KLTGAGGGGC 352        
     CqMK 11 PGKVILHGEHSVVYGKPA 28 148 SIGAGLGSSAG 158 201 SEIVMHERPSGIDN 214 335 KLTGAGGGGC 344     
     AgMK 14 PGKVILHGEHSVVYGHPA 31 160 SIGAGLGSSAS 170 210 SEIIMHVKPSGIDN 223 348 KLTGAGGGGC 359     
     DmMK  9 PGKVILHGEHAVVYHRPA 26 148 TVGAGLGSSAS 158 195 SERVNHGTPSGLDN 208 335 KLTGAGAGGY 344     
     BmMK 16 PGKVILHGEHSVVYGKTA 33 161 TIGAGTGSSAS 171 219 CEKIMHGTPSGIDN 232 362 KLTGAGGGGY 371     
     DpMK 11 PGKVILHGEHSVLYGEIA 28 150 TIGAGTGSSAS 160 199 SEKIMHGTPSGIDN 212 341 KLTGAGGGGH 350     
     AmMK  9 PGKVILFGEHAVVYGKTA 26 138 AINSGLGSSAS 148 186 CERIMHGNPSGIDN 199 332 KLTGAGGGGH 343     
     ApMK 12 PGKIILFGEHSVVYGKPA 29 146 KLGAGTGSSAS 156 223 AENFIHTKASGLDN 236 365 KLTGAGMGGY 374     
     RnMK 11 PGKVILHGEHAVVHGKVA 28 138 PPGAGLGSSAA 148 192 GERMIHGNPSGVDN 205 330 KLTGAGGGGC 339      
             ***:**.***:*:: . *          .:* ****.          * . *  .**:**         ****** **              
 

Figure 19: Amino acid sequence alignment of conserved motifs of MK from A. aegypti, 
compared with seven different insects and rat orthologs. Amino acid sequence alignment 
of MK motifs from Aedes aegypti (AaMK), Culex quinquefasciatus (CqMK), Anopheles 
gambiae (AmMK), Drosophila melanogaster (DmMK), Bombyx mori (BmMK), Danaus 
plexippus (DpMK), Apis mellifera (AmMK), Acyrthosiphon pisum (ApMK) and Rattus 
norvegicus (RnMK). Catalytic aspartate is shown in red and lysine in blue color. The 
suggested functions for the motifs as according to (Houten et al., 2000) are Motif I has 
shown to be involved in targeting MK to peroxisomes and also in the stabilization of 
ATP binding and protein tertiary and quaternary structure. Motif II has an ATP binding 
site and also its high hydrophobicity makes it a good candidate for isoprenoid binding 
site. Motif III has function in the activation of the enzyme. Motif IV is involved in the 
stabilization of the mevalonate binding. Accession numbers: AaMK (AAEL006435), 
CqMK (EDS42994.1), AgMK (EAA14782.5), DmMK (AGB93455.1), BmMK 
(NP_001093299.1), DpMK (EHJ79258), AmMK (XP_006558673.1), ApMK 
(XP_001942835) and RnMK (NP_112325.1) 
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Figure 20: Scheme of catalytic mechanism of AaMK. This outline for Aedes aegypti MK 
(AaMK) reaction has been inspired from previously postulated catalytic base mechanism 
for the rat, Rattus norvegicus MK (RnMK) (Fu et al., 2002). Asp221 makes a salt bridge 
with Lys14; the penta-coordinated γ-phosphate transition state is stabilized by the Mg2+, 
Glu210, Ser159 and Lys14. Asp204 acts as a general base, abstracting a proton from the 
hydroxyl group in MA. This converts MA into an excellent nucleophile, which then 
attacks the γ-phosphorus of ATP. Lys13 is believed to maintain the aspartate residue in the 
deprotonated state and lower its pKa to facilitate the proton transfer.   
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A)             B) 

           

 

Figure 21: SDS PAGE (A) and Western blot (B) analysis of the recombinant mosquito 
AaMK. Lane contents of the gel were: 1, molecular weight standard; 2 and 3, AaMK. 
Molecular weight of protein standards are depicted on the Y axis.    
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A)  

         

  B) 

         

Figure 22: Chromatogram of a reverse phase-HPLC analysis showing the production of 
PM from MA by AaMK. (A) Mevalonate kinase reaction in which 100 µM MA and 100 
µM ATP were incubated with AaMK in reaction buffer for 1 h at 30 °C. Arrow indicates 
PM. (B) Negative control in which 100 µM MA and 100 µM ATP were incubated in 
reaction buffer without adding enzyme for 1 h at 30 °C. 
  

Phosphomevalonate 
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C)    

 

Figure 23: AaMK pH curve, effect of metal ions and specificity of the phosphoryl donor. 
Kinase activity was measured by enzyme coupled spectrophotometric assay; ATP and 
MA were held constant and data were normalized to the maximum observed reaction 
velocities. To ensure MK was the rate-limiting enzyme, when necessary results were 
verified with the following conditions: doubling the amount of MK added doubled the 
observed rate, doubling the amount of PK and LDH did not affect the observed rate, and 
doubling the PEP concentration did not affect the observed rate. (A) pH curve. Two 
different buffers were used: MES at pH 5.5 to 7 and Tris-HCl at pH 7 to 9. (B) Effect of 
metal ions. Different metal cofactors Mg2+, Mn2+ and Co2+ were assayed for the MK 
activity. (C) Specificity of the phosphoryl donor. Each value represents the means ± S.E. 
of three replicate assays. Relative activity is defined as a percentage of the highest value 
recorded. 
  

**
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Km MA 

(µM) 

Km 

ATP 

(µM) 

Vmax     

(µmol min-

1 mg-1) 

Kcat 

(sec-1) 
Reference 

 
 
Eukaryotic  

AaMK 90 140 33 10.1 This Work 
ScMK 131 650 ND 38.0 Primak et al., 2011 
RnMK 35 950 39 21.9 Chu et al., 2007 
SdMK 19 302 17 ND Beytia et al., 1970 
HsMK 24 74 37 ND Potter and Miziorko, 

1997 
HsMK 150 440 14 ND Hinson et al., 1999 

Bacterial  SpMK 27 1361 ND 228.0 Andreassi et al., 2004 
SpMK 236 372 ND 11.0 Primak et al., 2011 
SaMK 41 339 12 ND Voynova et al., 2003 

Archaeal  MjMK 106 1180 50 28.5 Chu et al., 2007 
MmMK 68 464 ND 4.3 Primak et al., 2011 

Table 3 Kinetics of MKs. MjMK: Methanococcus jannaschii MK, MmMK: 
Methanosacrina mazei, SpMK: Streptococcus pneumonia MK, SaMK: Staphylococcus 
aureus MK, ScMK: Saccharomyces cerevisiae, AaMK: Aedes aegypti MK, RnMK: 
Rattus norvegicus MK, SdMK: Sus domesticus MK, HsMK: Homo sapiens MK. ND: Not 
Determined 
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Figure 24: Inhibition of AaMK activity by GPP (A), FPP (B) and GGPP (C). The rate of 
MK activity was measured at different ATP concentrations, without inhibitor and with 
several fixed concentration of inhibitor (indicated in bracket). Secondary plots of slope 
versus inhibitor concentration indicated that the Ki values for GPP, FPP and GGPP were 
respectively 0.93 ± 0.19 µM, 0.44 ± 0.2 µM and 0.55 ± 0.28 µM. 
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Recombinant 

Enzyme 
Ki DPM 

(µM) 

Ki     
GPP 
(µM) 

Ki 
FPP 
(µM)

References 

 
Eukaryotic  

AaMK NI 0.93 0.54 This Work 
ScMK NI 0.25 0.13 Primak et al., 2011 
RnMK NI ND 2.5 Tanaka et al., 1990 
PigMK NI 2 2 Beytia et al., 1970 
HsMK NI 0.116 0.104 Hinson et al., 1999 

Bacterial  SpMK 0.63 NI NI Andreassi et al., 2004 
SpMK Inhibition NI NI Primak et al., 2011 
SaMK NI ND >10 Voynova et al., 2003 

Archaeal 
 

MjMK NI >10 >10 Huang et al., 1999 
MmMK NI NI NI Primak et al., 2011 

 
Table 4: Feedback Inhibition of MK using short (DPM, 6C) and long chain isoprenoids 
(GPP, 10 C; FPP, 15C). MjMK: Methanococcus jannaschii MK, MmMK: 
Methanosacrina mazei, SpMK: Streptococcus pneumonia MK, SaMK: Staphylococcus 
aureus MK, ScMK: Saccharomyces cerevisiae, AaMK: Aedes aegypti MK, RnMK: 
Rattus norvegicus MK, SdMK: Sus domesticus MK, HsMK: Homo sapiens MK. NI: No 
Inhibition ND: Not Determined 
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Figure 25: Inhibition of mevalonate pathway and AaMK activity by long chain 
pyrophosphates. (A) Inhibition of the mevalonate pathway kinase activity by FPP: 5 µg 
protein from thorax extracts dissected from sugar-fed females 24 h after emergence were 
incubated in presence and absence of 100 µM FPP in Tris-HCl buffer, pH 7.5 containing 
5 mM MgCl2 and 1 mM DTT. Kinase activities ware measured by enzyme coupled assay. 
(B) Inhibition of the AaMK activity by FPP: 5 µg protein from thorax extracts dissected 
from sugar-fed females 24 h after emergence were incubated in absence and presence of 
100 µM FPP in Tris-HCl buffer, pH 7.5 containing 5 mM MgCl2, 1 mM DTT, 500 µM 
MA & 500 µM ATP. CE represents the endogenous levels of IPP. Bars represent the 
means ± SD of three replicates of extracts from groups of 3 thoraxes. Different letters 
above the columns indicate significant differences among treatments (one way ANOVA 
p < 0.05, with Tukey’s test of multiple comparisons).  

A) 

B) 
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Fig. 26: Tissue specific expression of AaMK. All tissues were dissected from 3-day-old 
sugar-fed females. BR: brain; CA: corpora allata; BR: brain; FB: fat body; MG: midgut; 
MT: malpighian tubules; OV: ovaries. Each value represents the means ± S.E.M of two 
independent biological replicates of 10–20 tissue samples evaluated in triplicate. 
AaFPPase mRNAs are expressed as copy number of mRNA/10,000 copies of rpL32 
mRNA (Nouzova et al., 2011).  
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Fig. 27: Transcript levels (A) and enzyme activity (B) of the AaMK in the developmental 
stage of female A. aegypti. Each data point is the means ± S.E.M. of three independent 
biological replicates of 20 CA evaluated in triplicate. AaMK mRNAs are expressed as 
copy number of mRNA/10,000 copies of rpL32 mRNA (Modified from Nouzova et al., 
2011 & Rivera-Perez et al., 2014). 
  

A) 

B) 
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Chapter 4: Characterization of additional corpora allata enzymes involved in 

juvenile hormone biosynthesis pathway 

4.1 Abstract 

The present study describes the partial characterization of three additional CA 

enzymes involved in JH synthesis: HMG-CoA synthase (HMGS), phosphomevalonate 

kinase (PMK) and FPP synthase (FPPS). Aedes aegypti cDNAs encoding HMGS, PMK 

and FPPS were expressed as fusion proteins in Escherichia coli DH5α cells, and purified 

by affinity chromatography. HMGS catalyzes the condensation of acetoacetyl-CoA and 

acetyl-CoA to produce HMG-CoA. The reaction did not require any co-factor, although the 

activity of the recombinant enzyme was enhanced by adding Mg2+. Hymeglusin, a specific 

β-lactone inhibitor of the vertebrate HMGS, inhibited HMGS enzyme activity in crude 

extracts from thoraces and abdominal carcasses of A. aegypti. AaPMK, a member of the 

nucleoside monophosphate family, catalyzes the cation-dependent reversible reaction of 

phosphomevalonate and ATP to form diphosphate mevalonate and ADP. Kinetics for both 

forward and backward reactions were determined, and we observed that the activity of 

AaPMK was not inhibited by any of the downstream metabolites. FPPS catalyzes the 

synthesis of different chain length isoprenyl diphosphates depending upon availability of 

metal cofactors. AaFPPS yielded 84% C10-geranyl pyrophosphate (GPP) and 16% C15-

farnesyl pyrophosphate (FPP) in the presence of Co2+ as a cofactor, whereas it yielded 33% 

C10 GPP and 67% C15 FPP in the presence of Mg2+.  
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4.2 Introduction 

HMG-CoA synthase  

HMGS is the second enzyme of the JH pathway. It catalyzes the condensation of 

acetoacetyl-CoA and acetyl-CoA into HMG-CoA, releasing free CoA. Kinetic studies 

have established that this enzymatic step proceeds via a Bi-Bi Ping-Pong mechanism; 

where HMG-CoA is formed in three consecutive steps that include acetylation, 

condensation and hydrolysis (Fig. 28) (Miziorko and Lane, 1977; Pojer et al., 2006). Step 

1 is the acetylation of acetyl-CoAS to an acetyl-S-enzyme intermediate. Step 2 involves 

the condensation of acetoacetyl-CoAS and acetyl-S-enzyme to form CoAS-HMG-S-

enzyme. Step 3 is the hydrolysis of CoAS-HMG-S-enzyme to produce HMG-CoA (Fig. 

28) (Miziorko and Lane, 1977; Pojer et al., 2006). Acetylation is the rate limiting step in 

the synthesis of HMG-CoA, as the rate of acetylation of HMGS by acetyl-CoA is much 

slower than the hydrolysis of CoAS-HMG-S-enzyme (Miziorko and Lane, 1977). 

 Two isoforms of the enzyme have been identified in mammals; HMGS1 and 

HMGS2. HMGS1 is a cytosolic protein involved in isoprenoid/cholesterol biosynthesis, 

while HMGS2 is a mitochondrial protein involved in the biosynthesis of ketone bodies 

(Goldstein and Brown 1990; Dooley et al., 1998; Willamson et al., 1968; Dashti and 

Ontko, 1979). HMG-CoA reductase and HMGS1 are considered key regulatory enzymes 

in the biosynthesis of cholesterol (Goldstein and Brown 1990; Dooley et al., 1998). In 

insects, HMGS does not have any recognizable N-terminal targeting sequence to 

mitochondria, which suggests it is present in the cytosol (Buesa et al., 1994; Tittiger et 

al., 2000). Most insects have one HMGS gene, but Blattella germanica is an exception 

with 2 HMGS genes (HMGS1A and HMGS1B), showing 78% similarity (Buesa et al., 
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1994; Belles et al., 2003). HMGS1A is intronless, and expression studies and 

phylogenetic analysis suggest it represent a functional retrogene derived from HMGS1B 

by retrotransposition (Buesa et al., 1994; Cabano et al., 1997; Casals et al., 2001). In 

insects HMGS has been biochemically characterized only from the cockroach Blattella 

germanica (Buesa et al., 1994; Casals et al., 1996).   

Phosphomevalonate kinase 

Phosphomevalonate kinase (PMK) is the second ATP-dependent enzyme in the 

mevalonate pathway. It catalyzes the phosphorylation of phosphomevalonate (PM) to 

diphosphomevalonate (DPM) (Fig. 29). PMKs are related to various human diseases, 

such as Zellweger syndrome and rhizomelic chondrodysplasia punctata (Braverman et 

al., 1997; Wanders and Romeijn, 1998). However, in mammals, PMKs have not been as 

well characterized as are other enzymes involved in isoprenoid biosynthesis. Animal 

PMKs are encoded by genes that are non-orthologous to plant, fungal, and bacterial 

PMKs genes (Smit and Mushegian, 2000). Analysis of the crystal structure of 

Streptococcus pneumoniae PMK confirmed that this protein belongs to the GHMP kinase 

family (Romanowski et al., 2002; Andreassi et al., 2009). Mammalian PMKs have been 

purified and characterized from a variety of tissues (Hellig and Popjak 1961a, 1961b; 

Bazaes et al., 1980a, 1980b; Lee and O'Sullivan 1985; Chambliss et al., 1996; 

Herdendorf and Miziorko, 2006, 2007). Kinetic and biophysical studies suggest that the 

animal PMKs belong to the nucleoside monophosphate (NMP) family, which is also 

known as P-loop kinases family (Herdendorf and Miziorko, 2006, 2007). 

In the P-loop kinases, the β sheet is five stranded, with a highly conserved order 

of 23145 (Walker et al., 1982). There are two highly conserved motifs known as Walker 



105 
 

A (GXXXXGK/T/S) and Walker B (ZZZZD, where Z is any hydrophobic residue) 

(Cheek et al., 2002). The mechanism of reaction involves the Walker A motif forming a 

phosphate-binding loop (P-loop) that is located at the end of the first β-strand, and 

includes the first half-turn of the following α-helix. The conserved lysine residue of the 

Walker A motif binds to and orients oxygen atoms of the β and γ-phosphate groups of 

ATP (Cheek et al., 2002).  The essential magnesium cation is coordinated directly by the 

hydroxyl group of the conserved threonine/serine of the Walker A motif, and indirectly 

by the conserved aspartate residue of the Walker B motif (Cheek et al., 2002).  

FPP synthase  

FPPS are prenyltransferases, also known as isoprenyl diphosphate synthases 

(IDS). Prenyltransferases catalyze the consecutive condensation of isopentenyl 

diphosphate (IPP) with allylic prenyldiphosphates, to yield products with chain lengths 

varying from C10 up to many C. Based on the geometry of newly formed double bond (E 

or Z), and the size of the isoprenoid chain in the final product, prenyltransferases can be 

classified as short chain and long chain prenyltransferases. GPP synthase (GPPS) 

produces GPP (C10), FPPS produces FPP (C15) and geranyl-geranyl pyrophosphate 

synthase (GPPS) produces GGPP (C20). They are classified as short chain E-

prenyltransferases (Ogura and Koyama, 1998). The enzyme IDS, which produce 

compounds involved in respiratory quinone biosynthesis, with chain length varying from 

C30 to C50, are considered as long chain E-prenyltransferases (Okada et al., 1996). The Z-

polyprenyl diphosphate synthases are involved in the synthesis of long chain dolichols 

and several other very long chain isoprenoids (Sato et al., 1999). These enzymes could be 

encoded by different genes, but they share the mechanism of reaction and well-defined 
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highly conserved motifs characteristic of proteins evolved from a common ancestor 

(Chen et al., 1994; Fujihashi et al., 2001).  

The crystal structure of FPPS has not been determined in insects, but X-ray 

structures have been resolved for a several organisms, including avian FPPS (Tarshis et 

al., 1994, 1996), Staphylococcus aureus FPPS, Escherichia coli FPPS (Hosfield et al., 

2004), Trypanosoma cruzi FPPS (Gabelli et al., 2006), and human FPPS (Rondeau et al., 

2006). These studies described the enzymes as homodimers, with each subunit folded in a 

single domain, whose central feature is a core composed of 10 α- helix surrounding a 

large deep cleft which is identified as the substrate binding pocket.  

The reaction mechanism for FPPS is postulated as a dissociative electrophilic 

alkylation, which is divided into three steps as shown in figure 30. In step 1, the C1–

oxygen bond in DMAPP or GPP ruptures to generate a resonance stabilized allylic cation. 

In step 2, this allylic cation alkylates the double bond in IPP to produce a tertiary 

carbocation. During step 3, hydrogen is subsequently eliminated from C2 of the IPP unit 

to produce a new allylic diphosphate which is one isoprene unit longer than the substrate 

(Fig. 30) (Poulter and Rilling, 1978; Poulter, 2006). The reaction depends upon the metal 

cofactor usually Mg2+, Mn2+ or Co2+ (Aaron and Christianson, 2010). In the beetle 

Phaedon cochleariae, FPPS shows an unusual product regulation mechanism; it alters the 

chain length of its products depending on the cofactor present. The FPPS yields C10-GPP 

in the presence of Co2+ or Mn2+, whereas it produces the longer C15-FPP in the presence 

of Mg2+ (Frick et al., 2013).  
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4.3. Methods 

4.3.1. Insects 

A. aegypti of the Rockefeller strain were reared at 28 °C and 80% relative 

humidity under a photoperiod of 16 h light: 8 h dark. A cotton pad soaked in 3% or 20% 

sucrose solution was provided to adults. 

4.3.2. Tertiary structure of proteins 

The three dimensional model structures for AaPMK and AaFPPS were predicted 

using the crystal structures of human PMK (Protein Data Bank ID code 3ch4.1) and 

avaian FPPS (Protein Data Bank ID code 1ubx.1) respectively as templates. The identity 

of the human PMK and AaPMK was 49.08 % and that of avian FPPS and AaFPPS was 

47.35%. The models were performed using the protein structure homology modeling 

server Swiss v.8.05 (Schwede et al., 2003; Arnold et al., 2006) 

4.3.3. Expression of recombinant proteins  

The cDNAs of AaHMGS, AaPMK and AaFPPS were expressed in E. coli cells as 

described by Nyati et al., 2013. Recombinant His-tagged proteins were purified using 

HiTrap chelating columns and PD-10 desalting columns (Amersham Pharmacia, 

Piscataway, NJ). Glycerol was added to the enzyme solution (final concentration 50%), 

and samples were stored at -20 ºC until used. Protein concentrations were determined 

using the bicinchoninic acid protein assay reagent (BCA) (Pierce, Rockford, IL). Bovine 

serum albumin was used as a standard. 
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4.3.4 Enzymatic assays 

4.3.4.1 PMK assays 

The catalytic activity of the AaPMK was measured using a modified spectrophotometric 

assay that couples ADP formation to pyruvate synthesis and reduction to lactate as 

described in chapter 4.  

 4.3.4.2 FPPS assays 

AaFPPS assays were carried out in a final volume of 100 μL containing 100 mM Tris-

HCl (pH 7.5), 100 μM IPP, 100 μM DMAPP, and 5 mM Mg2+ or 1 mM Co2+. Reactions 

were started with the addition of 4 μg recombinant enzyme. Formation of FPP and GPP 

were monitored by transforming them into FOL and geraniol using 50 μL 3N HCL and 

quantifying them by reverse phase-HPLC as shown in chapter 3.  

4.3.4.3 HMGS assays 

The dependence of enzyme activity on the cofactor concentration was measured by 

monitoring the disappearance of acetoacetyl-CoA at 300 nm (εmM = 3.6) in 100 mM Tris-

HCl at 30°C containing 200 μM acetyl-CoA, 15 μM acetoacetyl-CoA and 0, 1, 2, 5, or 10 

mM MgCl2. The pH dependency of AaHMGS activity was measured by the same assay 

by increasing the pH in 0.5-unit increments from 7 to 9 using the acetoacetyl-CoA 

extinction coefficients (300 nm) appropriate for each pH value. To determine the Km of 

acetyl-CoA, 2 μg of AaHMGS was incubated in 100 mM Tris-HCl (pH 8) at 30°C with 

15 μM acetoacetyl-CoA and acetyl-CoA concentrations ranging from 4 to 400 μM, and 

activity was determined by monitoring the disappearance of acetoacetyl-CoA at 300 nm. 

The Km of acetoacetyl-CoA was determined using fixed concentration of acetyl-CoA 

(250 μM) and acetoacetyl-CoA concentrations ranging from 0.25 to 100 μM.   
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4.4 Results and discussion 

4.4.1 Structural analysis of AaPMK through molecular modelling 

AaPMK is a 187 amino acid protein comprised of three domains; the core region 

(residues 1-41, 100-107, 120-130 and 164-187), the LID region (132-164) and the 

substrate binding region (42-99, 108-118) (Fig. 32). It has in the center five-stranded 

parallel β-sheet, with a strand order of 23145, and eight α-helices (Fig. 32). The structure 

of AaPMK discloses the typical NMP kinase fold (Fig. 32), similar to the structure of the 

enzyme from Homo sapiens (HsPMK) (Chang et al., 2008). During the PMK catalysis, 

the P-loop or Walker A motif is involved in binding with the triphosphate, the substrate 

binding region binds with PM, and the LID region has an opening and closing motion, to 

permit the binding and release of substrates (Chang et al., 2008; Olson et al., 2009). 

4.4.2. Characterization of the activity of AaPMK 

A PMK has been kinetically characterized for the first time in insects. The proper 

expression of the functional AaPMK protein was verified by SDS-PAGE and western 

blot (Fig. 31). AaPMK activity was investigated at different pHs. The optimum pH for 

AaPMK was 7.5, which decreases in activity at pHs lower than 6.5 and higher than 8 

(Fig. 33A). AaPMK shows a cation dependence on Mg2+, with a 2 mM concentration 

revealing the maximal activity (Fig. 33B). Kinetic constants were determined by 

nonlinear regression analysis using the GraphPad Prism Software. The Km values for ATP 

and MA were 104 ± 11 and 190 ± 16 respectively. The Km values for PM and ADP were 

respectively 180 ± 39 and 107 ± 29. The Vmax was 7.9 ± 0.8 μmol/min/mg enzyme for the 

forward reaction, and 3.1 ± 1.2 μmol/min/mg enzyme for the backward reaction.  The 

kinetics constants for the PMKs from the bacteria Enterococcus faecalis (EfPMK) (Doun 
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et al., 2005) and Streptococcus pneumonia (SpPMK) (Pilloff et al., 2003), the yeast 

Saccharomyces cerevisiae (SCPMK) (Garcia and Keasling, 2014) and the mammals Sus 

domesticus (SdPMK) (Eyzaguirre et al., 2006) and Homo sapiens (HsPMK) (Herdendorf 

and Miziorko, 2006) are compared with the AaPMK kinetic constants in table 5.  

Addition of GPP and FPP did not affect AaPMK activity at concentrations up to 

200 μM, hence feedback inhibition mechanisms can be ruled out for AaPMK.  

4.4.3 Molecular model of AaFPPS 

Based upon the available crystal structure of an avian, Gallus gallus FPPS 

(GgFPPS) (Tarshis et al., 1994), the 3-D structure of AaFPPS was modeled (Fig. 34). The 

homology model of AaFPPS shows that protein folded as a single domain, composed of 

all antiparallel α-helixes and no β-sheets (Fig. 34). Other enzymes, which also utilize 

isoprenyl diphosphate as their substrate, such as squalene cyclase, 5-epi-articolochene 

synthase, pentalenene synthase and protein farnesyl transferase, showed similar core 

structures formed only by α-helices (Wendt et al., 1997; Starks et al., 1997; Lesburg et 

al., 1997; Long et al., 1998). Hence these structures of proteins have been given the name 

‘terpenoid synthase fold’ (Wang and Ohnuma, 2000). 

Amino acid sequence alignments of FPPS from four insect species including 

Aedes aegypti (AaFPPS), Culex quinquefasciatus (CqFPPS), Anopheles gambiae 

(AmFPPS), and Drosophila melanogaster (DmFPPS) revealed the sequences of the five 

well conserved motifs typical of E-prenyltransferases (Fig. 35). The avian, Gallus gallus 

FPPS (GgFPPS) was also used for comparison, since its crystal structure is known 

(Tarshis et al., 1994) and has close similarity with the sequence of AaFPPS (44 %). The 

AaFPPS contains five conserved motifs found in other insects, as well as in the avian 
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FPPS (Fig. 8). The sequence of AaFPPS revealed two prominent aspartate rich motifs, 

DDXXD, known as FARM (first aspartate rich motif) and SARM (second aspartate rich 

motif), located in the II and V motif respectively (Fig. 35). The presence of FARM and 

SARM motifs represents a typical feature of E- prenyltransferases, and they have also 

been reported in the sequences of other enzymes that use isoprenyl diphosphate as 

substrate, such as monoterpene cyclases, sesquiterpene cyclases, and diterpene cyclase. 

The FARM motif and the first two aspartate residues in the SARM are involved in the 

enzyme catalytic mechanism via a metal cofactor; while the last aspartate residue is 

involved only in binding but not in the catalytic efficiency of the enzyme (Marrero et al., 

1992; Joly et al., 1993; Song et al., 1994; Koyama et al., 1996). In addition motifs I and 

IV are also involved in binding with IPP, as experiments have demonstrated a very high 

fold increase in Km IPP of enzyme when the conserved lysine is mutated into an aliphatic 

amino acid in Bacillus stearothermophilus FPP synthase (Koyama et al., 1996).  

 4.4.4. Partial characterization of AaFPPS activity 

The expression of a functional AaFPPS protein was verified by SDS-PAGE and 

western blot (Fig. 36). Optimum pH values for the FPPS previously characterized from 

other insects such as cotton boll weevil, Anthonomus grandis (Taban et al., 2009) and 

horseradish leaf beetles, Phaedon cochleariae (Frick et al., 2011) was 7.5 in 50 mM Tris-

HCl buffer; hence the activity of AaFPPS was also measured under similar conditions of 

buffer and pH. AaFPPS yielded 84% C10-geranyl pyrophosphate (GPP) and 16% C15-

farnesyl pyrophosphate (FPP) in the presence of Co2+ as a cofactor; whereas it yielded 

33% C10 GPP and 67% C15 FPP in the presence of Mg2+ (Fig. 36). This unusual product 

regulation mechanism by metal cofactor was also observed in the beetle Phaedon 
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cochleariae FPPS (Frick et al., 2013). The physiological significance of the product 

regulation of FPPS by cofactors is unknown. In A. aegypti 24 h before adult eclosion, the 

pool of GPP is very high (50,000 fmol/CA) and the FPP pool is low (60 fmol/CA) 

(Rivera-Perez et al., 2014).  After the adult eclosion the size of the GPP pool decreases, 

and GPP becomes undetectable; while the FPP pool fluctuated from a low of 10 to a high 

of 100 fmol/CA, depending upon the physiological state of the CA (Rivera-Perez et al., 

2014).  

4.4.5 Characterization of the AaHMGS activity 

The expression of the functional AaHMGS protein was verified by SDS-PAGE and 

western blot (Fig. 31). The activity of AaHMGS was measured using both the DNTB-

CoA assay and the disappearance of acetoacetyl-CoA at 300 nm. The AaHMGS activity 

was investigated at different pHs. The optimum pH for AaHMGS was 8-8.5 (Fig. 37). 

This value is comparable to the pH 9.4, reported for the avian liver cytoplasmic HMGS, 

(Clinkenbeard et al., 1975), the plant Brassica juncea HMGS (pH 8.5) (Nagegowda et 

al., 2004), the bacterial E. faecalis HMGS (pH 9.8) (Sutherlin et al., 2002) and the 

archaeal Haloferax volcanii HMGS (pH, 8.5) (VanNice et al., 2013). The HMGS does 

not require any co-factor; however the activities of the animal recombinant enzymes were 

enhanced by adding Mg2+. The AaHMGS was 180% activated in the presence of 5 mM 

Mg2+, similar to that avian liver cytoplasmic HMGS (Clinkenbeard et al., 1975) and the 

insect, Blattella germanica (Cabona et al., 1996). On the contrary, the activity of the 

plant, Brassica juncea HMGS did not show any increase in the presence of metal 

cofactor (Nagegowda et al., 2004).  
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AaHMGS exhibited a Vmax of 3.3 μmol/min/mg enzyme, and the Km for acetyl-

CoA and acetoacetyl-CoA were 98 μM and 14 μM respectively. These values were in the 

range of Vmax and the Km values reported for HMGSs of different organisms. Hymeglusin 

is a fungal metabolite that exhibits high specificity for inhibition of the HMGS activity 

(Tomoda et al., 1988). It inhibits the activity of the recombinant enzyme as well as 

HMGS activity in crude extracts from thorax and abdominal carcass of A. aegypti (Fig. 

38).  

4.4.6 HMGS expression and activity in the abdominal carcass of 0% Vs 20% sugar 

fed mosquitoes 

Expression of AaHMGS is found in almost all female mosquito tissues (Nouzova 

et al., 2011). It has been shown in various organisms that expression of HMGS 

transcripts can be varied with source of nutrients. In the mycelia of fungi Ganoderma 

lucidum, HMGS expression profile analysis revealed that signaling molecules such as 

salicylic acid, abscisic acid and methyl jasmonate up regulated GlHMGS transcript levels 

(Ren et al., 2013). In addition carbon source has significant effects on GlHMGS 

transcript levels (Ren et al., 2013). Similarly, expression of AaHMGS is significantly 

reduced with silencing of TOR (Meritxell-Perez et al., 2013). In contrast we found that 

AaHMGS transcripts do not change with the nutritional condition of the insects (Fig. 39), 

but its activity gets significantly reduced when mosquitoes are starved for three days (Fig. 

40).  

4.5 Conclusions 

We have started the characterization of Aedes aegypti HMGS, PMK and FPPS, 

three additional enzymes in the JH pathway. These studies will be the foundation for 
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further analyses. They need to be completed in the future, but they are already revealing 

some interesting features that might be relevant for a better understanding of JH synthesis 

in mosquitoes. 
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Figure 28: Reaction catalyzed by HMG-CoA synthase. HMGS catalyzes the formation of 
HMG-CoA in three steps: acetylation, condensation, and hydrolysis (Miziorko and Lane, 
1977; Pojer et al., 2006). Step 1 is the acetylation of acetyl-CoAS to acetyl-S-enzyme 
intermediate, step 2 involves the condensation of acetoacetyl-CoAS and acetyl-S-enzyme 
to form CoAS-HMG-S-enzyme, and step 3 is the hydrolysis of CoAS-HMG-S-enzyme to 
produce HMG-SCoA. 
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Figure 29: Reaction catalyzed by PMK. AaPMK catalyzes the cation-dependent 
reversible reaction of phosphomevalonate and ATP to form diphosphate mevalonate and 
ADP. 
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Figure 30: Reaction catalyzed by FPP synthase. FPPS catalyzes the dissociative 
electrophilic alkylation of IPP and DMAPP or GPP, which is divided into three steps. In 
step 1, the C1–oxygen bond in DMAPP or GPP ruptures to generate a resonance 
stabilized allylic cation. In step 2, this allylic cation alkylates the double bond in IPP to 
produce a tertiary carbocation. During step 3, hydrogen is subsequently eliminated from 
C2 of the IPP unit to produce a new allylic diphosphate which is one isoprene unit longer 
than the substrate (Poulter and Rilling, 1978; Poulter, 2006). 
 

 

 



118 
 

                                       

Figure 31: SDS-PAGE analysis of the recombinant mosquito AaHMGS, AaPMK and 
AaFPPS. Lanes are: 1, molecular standard; 2, AaHMGS; 3, AaPMK; 4, AaFPPS. The 
molecular weights of the protein standard are depicted on the Y axis.  
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Figure 32: Homology model of the overall fold of AaPMK. The core region is shown in 
cyan, substrate binding region is shown in green, LID region is shown in yellow, Walker 
A loop motif or P-loop is shown in red, and Walker B motif is shown in pink. 
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Figure 33: Characterization of AaPMK activity. The kinase activity was measured by an 
enzyme coupled spectrophotometric assay; ATP and PM were held constant, and data 
were normalized to the maximum observed reaction velocities. To ensure that PMK was 
the rate-limiting enzyme, when necessary the results were verified with the following 
conditions: doubling the amount of PMK added doubled the observed rate, doubling the 
amount of PK and LDH did not affect the observed rate, and doubling the PEP 
concentration did not affect the observed rate. (A) pH curve. Two different buffers were 
used: MES at pH 6 to 7 and Tris-HCl at pH 7 to 9. (B) Effect of metal cofactors Mg2+ was 
assayed for the AaPMK activity. Each value represents the means ± S.E. of three 
replicate assays. Relative activity is defined as a percentage of the highest value recorded. 
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Family  Enzyme  Km    ATP

µM ± SE 

Km  PM

µM ± SE 

Km  ADP

µM ± SE 

Km  DPM

µM ± SE 

References 

NMP  AaPMK  104 ± 11  190 ± 16  107 ± 29 180 ± 39 This work 

HsPMK  52 ± 1  34 ± 3  47 ± 5  41 ± 3  Herdendorf  and.  Miziorko

2006 

SdPMK  43  12  ND  ND  Eyzaguirre et al., 2006 

GHMP 

kinase 

ScPMK  98  885  ND  ND  Garcia and Keasling, 2014 

SpPMK  74 ± 9  4 ± 1  350 ± 20 12 ± 1  Pilloff et al., 2003 

EfPMK  170  190  ND  ND  Doun et al., 2005 

 

Table 5: Kinetics of PMK.  AaPMK kinetics were compared with the kinetics of HsPMK 
(Homo sapiens PMK), SdPMK (Sus domesticus PMK), ScPMK (Saccharomyces 
cerevisiae PMK), SpPMK (Streptococcus pneumoniae PMK), EfPMK (Enterococcus 
faecalis PMK).  
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Figure 34: Homology model for the overall fold of AaFPPS. Three dimensional structure 
of AaFPPS. Motifs are indicated by colors; motif I (red), motif II (blue), motif III 
(yellow), motif IV (purple), motif V (Orange). The structure was constructed by PyMOL 
using the avian FPPS (PDB: 1ubx.1) as template.  
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AaFPPS          -MLSTLIRAGS----LQTMGRQFARSVETPVQMQHARFISKSSEVN--------SDYMTM 47 
CqFPPS          --------------------------------MVSSRFLFLELES--------------- 13 
AgFPPS          MSLFNLARFGVGVALEAAITRTAAPITATSGVVQLRRSISKSSEVNNSDFMTIRTENQNH 60 
DmFPPS          --MFKLARMLLP----------QQRILASP--LRLQRLISTSDEVN--------AEPIIK 38 
GgFPPS          --------------------------------------MHKFTGVN-------------- 8 
                                                      :                      
 
AaFPPS          RENQTQKVSRDYNSKLQVRLKKVSRTLSTLNNSIPEAASQTIVTKSDAREFMAVFPDLVR 107 
CqFPPS          FLNRTDKII----------------TLSTLNCSVPEAATHTAVSKSESREFMAVFPDLVR 57 
AgFPPS          PHHHQKGSSRNCDSKQQIRLKKVSRTLSTLNSSVPEAATQTAVPKSESREFMAVFPDVVR 120 
DmFPPS          SMDTIGGLPTELVNEQ--KLKKTSRTLSTLQNHSVPIAARVTVSKDESRDFMAVFPDLVR 96 
GgFPPS          ---------------------------AKFQQPALRNLSPVVVER-EREEFVGFFPQIVR 40 
                                           :.::       : . * : : .:*:..**::** 
      I      
AaFPPS          DLTEYCKKYDNT-LAPKWFVKALQYNVPQGKKNRGLAAVLAYRMLSKSEDLTPENIRRAH 166 
CqFPPS          DLTDYIKKYDEK-VAAKWFARALQYNVPQGKKNRGLAAVLAYRMLAKSHELTPENIRRAH 116 
AgFPPS          DLTAYASKYDKN-VATKWFVKALQYNVPQGKKNRGLACVLAYRMLARSEDLTPENIRRAQ 179 
DmFPPS          DITTVTKAYNCS-DAAKWFAQVLQYNVPRGKKNRGILTVLTYKNLVPTQDLTPENIKLAQ 155 
GgFPPS          DLTEDGIGHPEVGDAVARLKEVLQYNAPGGKCNRGLTVVAAYRELSGPGQKDAESLRCAL 100 
                *:*     :     *   : ..****.* ** ***:  * :*: *  . :  .*.:: *  
         II 
AaFPPS          YLGWVIEMFQAVFLICDDAMDGSQTRRGQPCWYKLEDVKLSGINDALMIDAAIFYVLKKQ 226 
CqFPPS          YLGWCIEMFQSVFLICDDVMDGSQTRRGQPCWYKVDDVKLTAVNDALMLDAAIFHVLKKQ 176 
AgFPPS          YLGWAIEMLHSMFLIMDDVMDGSVTRRGQPCWHTLDDVKLSGVNDAIMIEAAIAHLVKIQ 239 
DmFPPS          YLGWCVEMLQSFFIISDDVMDNSTTRRGQPCWHKVENVGLTAINDALMIENAMYAILKKH 215 
GgFPPS          AVGWCIELFQAASLVADDIMDQSLTRRGQLCWYKKEGVGLDAINDSFLLESSVYRVLKKY 160 
                 :** :*::::  :: ** ** * ***** **:. :.* * .:**::::: ::  ::*   
       III       IV 
AaFPPS          FGDEPYYSKLVETFNEIKFITTIGQSLDLRSA---RMDVTKYTMDLYKSIVCHKTAYYTF 283 
CqFPPS          FGDEPYYNKLVEMFNEIKFITTVGQSLDLQSA---KLDVTQYTMDLYKSIVSHKTAYYTF 233 
AgFPPS          YGNEPYYPRLLELFNEMKFITTIGQSLDLRSA---KLDVTDYSMDLYKSIVFHKTAYYTF 296 
DmFPPS          FSHLDCYVALMELFHEITYITTCGQSLDQLNS---NRCVSEFTMENYKAIVENKTAYYSF 272 
GgFPPS          CRQRPYYVHLLELFLQTAYQTELGQMLDLITAPVSKVDLSHFSEERYKAIVKYKTAFYSF 220 
                  .   *  *:* * :  : *  ** **  .:   .  ::.:: : **:**  ***:*:* 
             V 
AaFPPS          YLPVALAMHMTGFTDPEVFRQTKTILLEIGLFYQTQDDFLDCFGDPAVTGKIGTDIEEGK 343 
CqFPPS          YLPVALAMHMTGFNDPEVFRQTKTILLEIGRFFQAQDDFLDCFGDPAVTGKIGTDIEEGK 293 
AgFPPS          YLPVAMAMHLTGYTDPEMFRQAKTILLEIGQFYQTQDDFFDCFGDPAVIGKVGTDIAEGK 356 
DmFPPS          YLPFALALHLAGYKDAEAFRQSKTILLEMGNFFQVQDDFLDCFGNPEVTGKIGTDIQDNK 332 
GgFPPS          YLPVAAAMYMVGIDSKEEHENAKAILLEMGEYFQIQDDYLDCFGDPALTGAVGTDIQDNK 280 
                ***.* *:::.*  . * ..::*:****:* ::* ***::****:* : * :**** :.* 
 
AaFPPS          CTWLSVVAMQRASDEQKELMKQCYGSSDPEKVARVKKLYEELGLPTTYAIYEEESYNMIK 403 
CqFPPS          CTWLAVVCMQRASDEQKDIMKEFYGSSDPEKVARVKKLYEELGLPTTYAIYEEESYNIIK 353 
AgFPPS          CSWLAVVAMQRATEEQKEVMKACYGSTDPENIARVKKLYEQLGLPTTYSIYEEESYNMIK 416 
DmFPPS          CSWLAVVAMQRANVEQKQIMVDCYGKEEPAKVERVKELYKELGLPSTYAIFEEESYNMIK 392 
GgFPPS          CSWLVVQCLQRVTPEQRQLLEDNYGRKEPEKVAKVKELYEAVGMRAAFQQYEESSYRRLQ 340 
                *:** * .:**.. **::::   **  :* :: :**:**: :*: :::  :**.**. :: 
 
AaFPPS          THIQQISRGLPHELFFKIMEKIYRRDC 430 
CqFPPS          THIQQISRGLPHELFFKIMEKIYRRDC 380 
AgFPPS          THIQQISRGLPHELFFKIMEKIYRREA 443 
DmFPPS          THIQQTSRGVPHQTFLQILNKIYQRDS 419 
GgFPPS          ELIEKHSNRLPKEIFLGLAQKIYKRQK 367 

                  *:: *. :*:: *: : :***:*: 

Figure 35: Sequence alignment of the deduced amino acid sequence from insect FPPSs. 
The sequence of AaFPPS was aligned with insect FPPS from Culex quinquefasciatus 
(CqFPPS), Anopheles gambiae (AgFPPS), Drosophila melanogaster (DmFPPS), and the 
avian Gallus gallus (GgFPPS). Identical residues are indicated by an asterisk. The box 
indicates five highly conserved regions. Accession number AaFPPS (AAEL003497), 
AgFPPS (AGAP007104), CqFPPS (EDS25700.1), DmFPPS (NP_477380.1), GgFPPS 
(1UBV_A) 
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Figure 36: Effect of metal cofactors on enzyme activity and product formation of 
AaFPPS. 100 μM IPP and 100 μM DMAPP were incubated in presence of 5 mM Mg2+ 
(A) or 1 Mm Co2+ (B). Reactions were started with the addition of 4 μg recombinant 
enzyme. Formation of FPP and GPP were measured as described in method section.  
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Figure 37: Characterization of AaHMGS activity A) Magnesium dose-dependent 
increases of activities. B) Optimum pH determinations. Each value represents the means 
± S.E.M. of three replicate assays. Relative activity is defined as a percentage of the 
highest value recorded. 
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Figure 38: Inhibition of AaHMGS abdominal carcass activity by hymeglusin. The 
reaction was performed by the DNTB-CoA assay. 1 mg of protein was added in 24 h 
20% SF females after adult eclosion in the presence and absence of hymeglusin. Each 
point (± SEM) represents the mean of 3 biological replicates of extracts from 5 AC from 
female mosquitoes. Significant differences (p<0.01) were determined with one way 
ANOVA followed by Tukey’s test.  
 
 
 
  

*** 
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Figure 39: Activity of HMGS from female AC extracts. The reaction was performed by 
the DNTB-CoA assay. 1 mg of protein was added in each of the three points; 24 h 20% 
SF, 96 h 20% SF and 96 h 0% SF females after adult eclosion. Each point (± SEM) 
represents the mean of 3 biological replicates of extracts from 5 AC from female 
mosquitoes. Significant differences (p<0.05) were determined with one way ANOVA 
followed by Tukey’s test.  
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Figure 40: Expression of HMGS mRNAs from female abdominal carcass (AC) extracts. 
Expression of HMGS AC mRNAs of 24 h 20% SF, 96 h 20% SF and 96 h 0% SF 
females after adult eclosion. HMGS mRNAs are expressed as copy number of HMGS 
mRNA/10,000 copies of rpl32 mRNA. Each RT-PCR data point is average of three 
independent biological replicates of 5 AC. Significant differences (p<0.05) were 
determined with one way ANOVA followed by Tukey’s test.  
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Chapter 5: Conclusions and future directions 

5.1 Conclusions 

This dissertation is a comprehensive study of five Aedes aegypti CA enzymes, 

HMGS, MK, PMK, FPPS, and FPPase involved in JH synthesis. The study mainly 

focused on the expression and characterization of recombinant protein, the analysis of 

their kinetics and inhibition constants, as well as the understanding the importance of 

these enzymes in the control of JH biosynthesis rates. 

In chapter 2 FPP phosphatase responsible for the transformation of FPP into FOL 

in the CA of A. aegypti was characterized at molecular and biochemical levels. Some of 

the observations from chapter 2 include: 

1. Identification of AaFPPase-1 and AaFPPase-2 as members of the NagD family 

of the Class IIA C2 cap-containing haloalkanoic acid dehalogenase (HAD) 

super family that efficiently hydrolyzed FPP and GPP but not IPP. 

2.  Different FPPase activities in CA of sugar-fed as compared to blood-fed 

females. 

3.  Injection of dsRNAs resulted in a significant reduction of both AaFPPase-1 

and AaFPPase-2 mRNAs, but only former resulted in a significant decrease of 

JH biosynthesis.  

4. AaFPPase-1 appears to be the major enzyme involved in the catalysis of FPP 

into FOL in the CA of A. aegypti. 

5. N-acetyl-S-geranylgeranyl-L-cysteine appears as a potent inhibitor of 

AaFPPase 1 and AaFPPase 2 in blocking JH synthesis in A. aegypti.   

Chapter 3 describes the first characterization of a mevalonate kinase in insects.  
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Some of the conclusions of the studies included are: 

1. AaMK is a class I MK that has the typical structure and functional features of 

other members of the GHMP kinase family.  

2. Recombinant AaMK is found to be inhibited by isoprenoids; with a pattern similar 

to those of other eukaryotic MKs.  

3. Inhibition of the activity of MKs by isoprenoids is found to be competitive with 

respect to ATP and the eukaryotic enzymes are 1000-fold more sensitive to the 

inhibition by isoprenoids than bacterial and archaeal enzymes.  

4. The MK activity in thoraces extracts of sugar-fed (SF) mosquitoes was also 

significantly reduced in the presence of FPP.  

Chapter 4 reports the partial characterization of the activities of recombinant HMGS, 

PMK and FPPS from A. aegypti. Some of the conclusions of the studies included are: 

1. HMGS transcripts do not change with the nutritional condition of the insects. 

However its activity was reduced when mosquitoes are starved for three days. 

2. Hymeglusin is a specific inhibitor of HMGS that could be used to block the 

mevalonate pathway in A. aegypti.  

3. AaPMK is a member of the nucleoside monophosphate family.  

4. The present study is the first report on kinetics of AaPMK for both forward and 

backward reactions in insects. AaPMK catalytic activity is not inhibited by any of 

the downstream metabolites. 

5. Recombinant AaFPPS possesses an interesting product regulation mechanism; it 

alters the chain length of its products depending on the cofactor present. 
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5.2. Future directions 

All the thirteen corpora allata enzymes involved in the pathway of juvenile 

hormone biosynthesis have been identified in the mosquito A. aegypti. With the inclusion 

of appropriate cofactors, CA extracts are capable of de novo synthesis of JH metabolites 

from precursors (Rivera-Perez et al., 2013, 2014; Nyati et al., 2013); these in vitro assay 

have been used to study the endogenous activities of eight of these enzymes, HMGS, 

MK, PMK, FPPS, FPPase, FOLD, FALD and JHAMT. These eight enzymes along with 

IPPI have been expressed as recombinant proteins and their activities were characterized 

in vitro (Mayoral et al., 2009a, 2009b; Diaz et al., 2012; Rivera-Perez et al., 2013; Nyati 

et al., 2013). Only four enzymes remain to be characterized in mosquitoes, acetoacetyl-

CoA thiolase, HMGR, MDD and epoxidase.  

The enzymes of the JH-branch have been considered as more suitable for 

insecticides target of JH biosynthesis; given that inhibitors targeting them are less likely 

to affect non-insect organisms. Inhibitors directed at the MVP enzymes may lack insect-

specificity; however, in some groups of insects, MVP enzymes may display unique 

features that will permit the development of target-specific inhibitors (Cousson et al., 

2013). There are examples of such effective inhibitors; 6-fluoromevalonate 5-diphosphate 

fluoromevalonolactone (FMev) completely inhibits the activity of lepidopteran MDD 

(Quistad et al., 1981; Baker et al., 1986; Cusson et al., 2013). Inhibitors of FPPSs, such 

as lipophilic bisphosphonates, have been designed as drugs and herbicides (Oldfield, 

2010; Cromartie, 1991). Lipophilic bisphosphonates effectively inhibit protein 

prenylation and invasiveness in tumor cells and has been used as anticancer agents 

(Zhang et al., 2009; Oldfield, 2010). The completion of the functional analyses of all the 
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enzymes involved in the biosynthesis of JH in A. aegypti will permit the search for 

specific inhibitors that target some of these enzymes and disrupt the mosquito 

reproductive physiology.  

Recombinant enzymes have been used in building of wide range of natural and 

synthetic isoprenoids to be used as medicines, cosmetics, flavors, fragrances and biofuels 

(Hale et al., 2007; Lacaze et al., 2011; Peralta-Yahya et al., 2011; Zhang et al., 2011). 

Recent attempts include the production of isoprenoid-based biofuels that might help to 

overcome rising petroleum costs, trade imbalances and environmental concerns (Peralta-

Yahya et al., 2011; Zhang et al., 2011). Artemisinin, an antimalarial drug has been 

enzymatically synthesized from acetyl-CoA using genetic engineering at very low costs 

(Hale et al., 2007; Lacaze et al., 2011). Similar approaches could be applied for the 

development of a multienzyme JH pathway bioreactor. The enzymes of the JH pathway 

may be segregated in a module, immobilized on a membrane, or attached to a support for 

the development of the JH bioreactor. This could result in significant enhancements in 

yield, purity, production time and cost when compared to traditional chemical synthetic 

methods for the synthesis of JHs, pheromones, defensive secretions and many other 

isoprenoid-derived compounds. Additionally, linking the bioreactor with the HPLC-

fluorescent detection assay could help in the study of metabolites flux and changes in 

pool sizes, helping to model JH regulation, as well as the design of a multi-enzyme 

inhibitor.     



137 
 

5.3 References 
 
1. Cromartie TH, Fisher KJ, Grossman JN (1991) Discovery of a novel site of action for 

herbicidal bisphosphonates. Pestic Biochem Physiol 63:114-126. 
 

2. Cusson M, Sen SE, Shinoda T (2013) Juvenile Hormone Biosynthetic Enzymes as 
Targets for Insecticide Discovery.  In Advanced Technologies for Managing Insect 
Pests (Ishayya I, Palli SR, Horowitz AR eds), Springer pp. 31-55. 

 
3. Diaz M, Mayoral JM, Priestap H, Nouzova M, Rivera-Perez C, Noriega FG (2012) 

Characterization of an isopentenyl diphosphate isomerase involved in the juvenile 
hormone pathway in Aedes aegypti. Insect Biochem Molec Biol 42:751-757. 

 
4. Mayoral JG, Nouzova M, Navare A, Noriega FG, (2009a) NADP+ dependent farnesol 

dehydrogenase, a corpora allata enzyme involved in juvenile hormone synthesis. 
Proc Natl Acad Sci USA 106:21091-21096. 

 
5. Mayoral JG, Nouzova M, Yoshiyama M, Shinoda T, Hernandez-Martinez S, Dolghih 

E, Turjanski AG, Roitberg AE, Priestap H, Perez M, Mackenzie L, Li Y, Noriega FG, 
(2009b) Molecular and functional characterization of a juvenile hormone acid 
methyltransferase expressed in the corpora allata of mosquitoes. Insect Biochem Mol 
Biol 39:31-37. 

 
6. Nyati P, Nouzova M, Rivera-Perez C, Clifton ME, Mayoral JG Noriega FG (2013) 

Farnesyl phosphatase, a corpora allata enzyme involved in juvenile hormone 
synthesis in Aedes aegypti. PLoS ONE 8(8): e71967. 
doi:10.1371/journal.pone.0071967. 

 
7. Nyati P, Rivera-Perez C, Noriega FG Negative feedback by isoprenoids upon 

mevalonate kinase activity might regulate juvenile hormone synthesis in Aedes 
aegypti. In prep 

 
8. Hale V, Keasling JD, Renninger N, Diagana TT (2007) Microbially derived 

artemisinin: a biotechnology solution to the global problem of access to affordable 
antimalarial drugs. Am J Trop Med Hyg 77:198–202. 

 
9. Hucka, M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H et al., (2003) The 

systems biology markup language (SBML): a medium for representation and 
exchange of biochemical network models. Bioinformatics 19:524-531.  

 



138 
 

10. Lacaze C, Kauss T, Kiechel JR, Caminiti A, Fawaz F, et al. (2011) The initial 
pharmaceutical development of an artesunate/amodiaquine oral formulation for the 
treatment of malaria: a public-private partnership. Malar J 10:142. 

 
11. Oldfield E (2010) Targeting isoprenoid biosynthesis for drug discovery: bench to 

beside. Acc Chem Res 43:1216-1226.  
 

12. Oldfield E, Lin FY (2012) Terpene biosynthesis: modularity rules. Angew Chem Int 
Ed Engl 51:1124–1137. 

 
13. Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, et al. (2011) 

Identification and microbial production of a terpene-based advanced biofuel. Nat 
Commun 2:483. 

 
14. Quistad GB, Cerf DC, Schooley DA, Staal GB (1981) Fluoromevalonate acts as an 

inhibitor of juvenile hormone biosynthesis. Nature 289:176-177. 
 

15. Rivera-Perez C, Nouzova M, Clifton ME, Martin Garcia E, LeBlanc E, Noriega FG 
(2013) Aldehyde dehydrogenase 3 converts farnesal into farnesoic acid in the corpora 
allata of mosquitoes. Insect Biochem Mol Biol 43:675-682. 

 
16. Rivera-Perez C, Nouzova M, Lamboglia I, Noriega FG (2014) Metabolic analysis 

reveals changes in the mevalonate and juvenile hormone synthesis pathways linked to 
the mosquito reproductive physiology. Insect Biochem Mol Biol 51:1-9. 

 
17. Rivera-Perez C, Nyati P, Noriega FG Characterization of a farnesyl pyrophosphate 

synthase involved in juvenile hormone biosynthesis in Aedes aegypti. In prep 
 

18. Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial 
pathways for advanced biofuels production. Curr Opin Biotechnol 22:775–783. 

 
19. Zhang Y, Cao R, Yin F (2009) Lipophilic bisphosphonates as dual 

farnesyl/geranylgeranyl diphosphate synthase inhibitors: an X-ray and NMR 
investigation. J Am Chem Soc 131: 5153-5162.    

  



139 
 

VITA 
 

PRATIK NYATI 
 

    Born, Indore, India 
 
2004-2007    B.S., Biotechnology 

Holkar Science College 
Indore, India 

 
2007-2009   M.S., Biotechnology 

Devi Ahilya Vishwavidyalaya 
Indore, India 

 
2009-2014    Doctoral Candidate 

Florida International University 
Miami, Florida 

 
Teaching Assistant 
Florida International University 
Miami, Florida 
 

PUBLICATIONS AND PRESENTATIONS 
 
Nyati P, Nouzova M, Mayoral JG, Noriega FG. Identification and characterization of a 
Farnesyl pyrophosphatase involved in juvenile hormone synthesis in the Aedes aegypti 
mosquito. 13th annual FIU Biomedical and Comparative Immunology Symposium. 
March 3rd-4th 2011 Florida International University, Miami, Florida.   
  
Nyati P, Nouzova M, Rivera-Perez C, Clifton ME, Mayoral JG, Noriega FG (2013) 
Farnesyl Phosphatase, a Corpora allata Enzyme Involved in Juvenile Hormone 
Biosynthesis in Aedes aegypti. PLoS ONE 8(8): e71967. 
doi:10.1371/journal.pone.0071967. 
 
Nyati P, Rivera-Perez C, Noriega FG. Characterization of mosquito juvenile hormone 
biosynthetic enzymes. 13th annual Meeting of Entomological Society of America, 
November 11th- 13th 2013, Austin, Texas. 
 
Nyati P, Rivera-Perez C, Noriega FG. Negative feedbacks by isoprenoid intermediates on 
mevalonate kinase activity might regulate juvenile hormone synthesis in Aedes aegypti. 
16th annual FIU Biology Research Symposium. February 1st 2014 Florida International 
University, Miami, Florida. 
 



140 
 

Nyati P, Rivera-Perez C, Noriega FG Negative feedbacks by isoprenoid intermediates 
on mevalonate kinase activity might regulate juvenile hormone synthesis in Aedes 
aegypti. In preparation 
 
Rivera-Perez C, Nyati P, Noriega FG A corpora allata prenyltransferase in mosquito 
dispaying a metal ion substrate specificity. In preparation 

 
 


	Florida International University
	FIU Digital Commons
	11-5-2014

	Characterization of Juvenile Hormone Biosynthetic Enzymes in the Mosquito, Aedes aegypti
	Pratik Nyati
	Recommended Citation


	Characterization of Juvenile Hormone Biosynthetic Enzymes in the Mosquito, Aedes aegypti

