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ABSTRACT OF THE THESIS 

EXPLORING THE USE OF EVERGLADES AGRICULTURAL AREA 

CANAL WATER AS BASE MEDIUM FOR THE MASS PORDUCTION OF 

ALGAE FOR BIOFUELS 

by 

Nina De la Rosa 

Florida International University, 2014 

Miami, Florida 

Professor Kateel Shetty, Major Professor 

Freshwater use is a major concern in the mass production of algae for biofuels. This 

project examined the use of canal water obtained from the Everglades Agricultural Area 

as a base medium for the mass production of algae. This water is not suitable for human 

consumption, and it is currently used for crop irrigation. A variety of canals were found 

to be suitable for water collection. Comparison of two methods for algal production 

showed no significant difference in biomass accumulation. It was discovered that 

synthetic reticulated foam can be used for algal biomass collection and harvest, and there 

is potential for its application in large-scale operations. Finally, it was determined that 

high alkaline conditions may help limit contaminants and competing organisms in 

growing algae cultures. 
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1. INTRODUCTION 

1.1 Background Information 

The U.S. has a long history of crude oil dependency. In 1870, one percent of the 

country’s yearly energy demand was met by four million barrels of domestically 

produced oil (Enger and Smith, 2002). The petroleum demand rapidly increased in the 

1900’s with the popularization of the automobile, and by 1950, petroleum-based fuels 

were the most consumed fuels, and their demand surpassed domestic production for the 

first time (EIA, 2012). In 1950, the energy imports started in the U.S. (EIA, 2012). In 

1970, fifty percent of the nation’s energy demand was met by oil (Enger and Smith, 

2002). Today, that number is far surpassed as petroleum-based fuels continue to be the 

most popular fuels.  

Although the generation of electricity is responsible for the majority of the energy 

used in the U.S., the transportation sector is a large and important contributor. Utilizing a 

total of twenty seven quads of energy per year, transportation accounts for twenty eight 

percent of the total energy consumed (EIA, 2012). For this, petroleum fuels supply ninety 

three percent of the energy demanded (EIA, 2012). The ample use of private automobiles 

is largely responsible for demand of liquid fuel. In fact, cars in America consume fifteen 

percent of the oil produced worldwide, while the rest of the automobiles in the world 

consume about seven percent (Enger and Smith, 2002). 

The extensive use of petroleum fuels for transportation has been the subject of 

much criticism, notably because this consumption sustains the need of fossil fuel imports, 

typically originating in politically unstable nations. Moreover, fossil fuel combustion 

from the transportation sector is currently the largest source of carbon dioxide (CO2), a 
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primary Greenhouse Gas (GHG) (EIA, 2012). In 1999, the transportation sector’s CO2 

emissions exceeded those from the industrial sector for the first time, and in 2011, the 

transportation sector generated thirty four percent of all CO2 emissions from energy 

consumption in America (EIA, 2012).  The rapid diminishing of oil reserves and 

increasing prices of fossil fuels, combined with increasing concerns of energy security 

and climate change have led to the research and development of renewable, cleaner 

energies such as, biomass derived fuels or biofuels (Christi, 1980). 

Biofuels are currently the only marketable option for liquid fuel for transportation 

(Halim, et al., 2011). Presently, commercial biofuels are manufactured exclusively from 

corn and soybean. However, research on the potential of non-edible crops as feedstock is 

advancing, making biofuels more competitive. Algal biofuels have sparked a lot of 

interest, given their photosynthetic efficiency and capability to store high quantity of 

lipids. Although the manufacturing of biofuels has been expanded to include an extensive 

list of possible feedstock, all current agriculture-based fuels utilize large quantities of 

fresh water. Research addressed by the United Nations cited fresh water supply and 

energy intensification involved in culture collection, drying and lipid extraction for algae 

to be major concerns for third generation biofuels (Waltz, 2013). As a response to these 

concerns, several authors have suggested wastewater as growth medium for microalgae 

(Oswald and Gotaas, 1957; Goldman, 1979; Soedes, 1980; Udoma, et al., 2012; Yuan, et 

al., 2012; Christenson & Sims, 2011); however, empirical data are not abundant. My 

research aims at utilizing agricultural waste water obtained from the canals in the 

Everglades Agricultural Area (EAA). To date, no research that targets the use of South 

Florida canal water has been published. Using canal water as a base medium alleviates 
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the pressure that biofuels have on clean water supplies, and it may facilitate the 

mitigation of excess nutrients when appropriate. 

1.2 Statement of Research 

The main goal of my thesis project is to ascertain the viability of utilizing native 

Florida microalgae and canal water for the production of third generation biofuels. An 

open-air experimental method was set up to grow algae on FIU’s Center for Agroecology 

and Sustainable Agriculture (CASA) under natural South Florida conditions. More 

specifically, two growing systems were be tested: a typical raceway pond where 

suspended algae will circulate and a semi-submerged, rotary surface where algae where 

attached.  

1.3 Hypothesis 

My research is focused on two hypotheses: (1) Native microalgae can be 

successfully grown in EAA canal water in controlled systems for the purpose of biomass 

growth; and (2) proving added nutrients and a surface for attachment will promote rapid 

biomass growth and accumulation. 

1.4 Objectives 

The objectives of this thesis are: 

 Identify the canal in the EAA with highest amount of chlorophyll to serve as the 

source of water. Chlorophyll is an indicator for microalgae biomass  

 Identify the optimal nutrient combination for maximum culture growth 

 Compare the resulting amount of biomass between a raceway pond system and a 

semi-submerged, immobilized cell system under natural conditions 

o Determine if the addition of nutrients promotes biomass growth 



4 
 

o Identify which system and nutrient treatment results in significantly larger 

amount of biomass. 

 Compare the resulting amount of biomass between a raceway pond system and a 

semi-submerged, immobilized cell system under controlled, laboratory conditions 

 Determine the effects of increased pH on biomass growth and culture 

contaminants   

The information obtained from this study may serve to support the use of EAA 

water for the production of biofuels. 
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2. LITERATURE REVIEW 

2.1 Everglades Agricultural Area 

The EAA is a 280,000-hectare tract of land located in South Florida between Lake 

Okeechobee, Water Conservation Areas (WCAs) and Everglades National Park. It 

includes four Florida counties: Palm Beach, Martin, Hendry and Glades. The EAA is one 

of the most active agricultural lands in the United States (Izuno, et al., 1992). It is 

composed of 9 basins, 15 major canals, and 25 water control structures or levees (Cooper, 

1989). The primary system of canals and levees were designed by the U.S .Army Corps 

of Engineers to provide flood protection, water control, agricultural water supply for the 

nearby farms and those in Palm Beach, Broward and Miami Dade counties, and to 

maintain optimum groundwater levels to prevent saltwater intrusion (Cooper, 1989). 

However, the South Florida Water Management District oversees the day-to-day and 

maintenance of all pumps and canals in the area. 

About fifty percent of the irrigation water in the EAA comes from canal water 

(Khanal, 1982). Water from Lake Okeechobee is diverted through canals where is 

pumped onto fields. Excess water is then returned to canals where the water flows 

directly into the WCAs carrying elevated levels of nutrients (Chimney & Goforth, 2001). 

Utilizing this water as a base medium for algae growth represents an opportunity to lower 

the nutrient load entering the Everglades and avoid competition with fresh water supplies. 
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Figure 1. Everglades Agricultural Area (South Florida Water Management District) 

 

2.2 Biofuels 

The term biofuels refers to a fuel product derived from renewable biological 

material (EPA, 2012). In the U.S., the most common biofuels are ethanol, an ethyl 

alcohol that is prepared by fermenting simple sugars; and biodiesel, defined by the 

American Society for Testing and Materials (ASTM) as monoalkyl esters of long chain 

fatty acids derived from a renewable lipid feedstock, such as vegetable oil animal fat 

(Berrios, et al., 2010). Although not as popular, bio-butanol is an alcohol with a 4-carbon 

structure, and it is considered a superior liquid fuel with a potential to replace gasoline 

(Harvey and Meylemans, 2011).  
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2.2.1 First Generation Biofuels 

The first generation biofuels are those derived from sugars, starch, vegetables oils, 

and animal fats. Unfortunately, limitations in production capacity prevent these 

alternatives to meet all the transportation fuel needs (Christi, 2007). Specifically, 

intensive agricultural inputs, land use, and fresh water restrict their use (Sander & 

Murthy, 2010). In the U.S., corn and soybean feedstock are grown almost exclusively on 

prime agricultural land in the Midwest, leaving by-products that are mostly used in 

animal feed, high fructose corn syrup, and other food additives. The use of this land 

sparks a serious moral issue that deals with global food supply. Known as the “food vs. 

fuel” debate, biofuel critics argued that the use of prime land in the U.S. for energy 

increases the price of food.  Globally, that debate was exacerbated as developing 

countries, where not enough food is domestically produced, also use prime soil for the 

production of edible crops that are used for energy instead (Elobeid and Hart, 2007). 

Between 2005 and 2008, the World Bank estimated that the food price had increased by 

83%. As a result, 100 million people have fallen into poverty. In addition, it is estimated 

that the demand for biofuel crops contributed to 30% of that food price (World Bank, 

2008). Moreover, a higher demand for crop yield fuels the use of intensive farming 

techniques, such as the extensive use of pesticides and fertilizers. In turn, these contribute 

to important environmental concerns such as soil erosion, loss of field fertility, and 

eutrophication of nearby bodies of water.  

2.2.2 Second Generation Biofuels 

Second generation biofuels are those made from cellulose and lignocellulose, and 

they are obtained from non-edible crops or waste biomass such as corn stover, corncobs, 
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straw, wood, and wood byproduct. While second generation biofuels ease the tension of 

the “food vs. fuel” debates, some concerns are still significant. To start, biofuel critics are 

concerned with land conversion, displacement effects, and biodiversity loss that may 

occur, even if non-edible crops are used for the production of fuels. In addition, concerns 

about carbon mobilization as a product of the removal natural vegetation, and ecosystem 

alteration as a result of nutrient emission are associated with second generation biofuel 

(Christy, 2007). Lastly, land conversion may increase the risk of invasion by exotic 

species. However, when crops are grown in marginal lands, formerly intensively used 

agricultural sites, or superfund sites, the production of biofuels can have positive impacts 

(Midler, et al., 2008). Moreover, lignocellulose ethanol can reduce the greenhouse gas 

emissions by ninety percent (Lang, et al., 2001). Unfortunately, extracting fermentable 

sugars that are locked in cellulose and lignocellulose is a financially expensive as well as 

a technically challenging process. Currently, second generation biofuels are not produced 

commercially, but research and development continue to grow in the field. 

2.2.3 Third generation Biofuels 

Third generation biofuels are those produced from algae. Because algae are 

among the most photosynthetically efficient organisms on earth, a lot of interest has 

grown on their potential for biofuel production (Halim, et al., 2011). Algae have several 

advantages over conventional crops. Because of their simple cellular structure, algae have 

higher rates of biomass and oil production than other conventional crops (Becker, 1994). 

The per-unit area of oil is estimated to be around 18,000 to 75,000 U.S. liters per acre per 

each year (Maryking, 2007; Naredar, 2010). In addition, microalgae have much faster 

growth rates compared to terrestrial crops, which makes the collection of biomass more 
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efficient. In addition, algae use less water than traditional crops and can be grown in 

marginal areas, thus ensuring there is no competition with food crops (Tsukahara & 

Sawayama, 2005). Moreover, algae can efficiently sequester CO2, reducing the emission 

of greenhouse gas (Wang et al., 2010).  A variety of high value biofuels are produced 

from commercial scale cultivation of microalgal biomass. The promising future of third 

generation biofuels has drawn public and private investment. More recently, The U.S. 

Energy Efficiency and Renewable energy department (EERE) announced the support of 

research projects aimed at boosting the productivity of algae cultivation systems. 

Unfortunately, although the number of pilot projects in the U.S. is increasing, a 

streamlined process has not been established for commercial production. In addition, 

research addressed by the United Nations cited fresh water supply and energy 

intensification for algae growth to be major concerns for third generation biofuels (Waltz, 

2013). 

As a result of the above mentioned advantages and concerns, algae fuels were 

chosen as the subject of research. My research investigated the use of canal water, 

specifically from the Everglades Agricultural Area (EAA), as a base medium and source 

of algae for the production of third generation biofuels. 

2.3 Types of Biofuels 

2.3.1 Ethanol 

Ethanol, the world’s most popular biofuel, is obtained through the fermentation of 

sugars (Sun and Cheng, 2002). While it can be produced from any feedstock that contains 

plentiful natural sugars, in the U.S., it is processed almost exclusively from corn. For this, 

the grain is processed to remove the sugar in wet and dry mills via crushing, soaking, 
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and/or chemical treatment first. Next, the sugar is fermented, and the resulting mix is 

distilled and purified (EIA, 2007). Major byproducts from the ethanol production process 

include dried distillers’ grains and solubles, which can be used as animal feed. On a 

smaller scale, corn gluten meal, gluten feed, corn oil, CO2, and sweeteners are also 

byproducts of the ethanol production (EIA, 2007). Although ethanol is primarily derived 

from corn, there are more advanced methods of production that can be used to obtain the 

fuel from cellulosic material such as switch grass, rice straw, and bagasse. 

The biggest use of ethanol as a fuel in the U.S. is as an additive to gasoline, 

specifically to oxygenate gas, thus reducing the amount of carbon monoxide and ozone 

released when burned. It is added up to ten percent in by volume for E10 fuel. In 

addition, it is an alternative to gasoline in specially designed vehicles (Yacobucci, 2007). 

Despite the growing interest in biofuel it is still only a small component of the motor 

fuels consumed in the U.S.,  only representing five percent of the total fuel consumption 

in 2010 (Schnepf, 2011). Unfortunately, recent work suggest that the blend of ethanol and 

gasoline may worsen local air quality and negatively impact human health (Jacobson, 

2007). 

2.3.2 Biodiesel 

According the American Society for Testing and Materials (ASTM), biodiesel is 

defined as monoalkyl esters of long chain fatty acids derived from a renewable lipid 

feedstock, such as vegetable oil or animal fat (Berrios, et al., 2010). Transesterification 

with an alcohol and an acid catalyst is the most common way to manufacture this biofuel 

(Berrios, et al., 2010). Also known as alcoholysis, transesterification refers to the 

displacement of an alcohol from an ester by another alcohol (Meher, et al., 2006). In the 
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U.S., the most common crop utilized for the production of biodiesel is soybean (EIA, 

2007). While biodiesel shares many similarities with conventional diesel, it has different 

chemical, handling, and combustion properties (EIA, 2007). Most commonly, biodiesel is 

mixed with its petroleum counterpart in order to make B2, B5, and B20 blends, where 

each number represents the percentage of biodiesel included in the blend (EIA, 2007). 

The use of biodiesel has many advantages. To start, it is safer than conventional diesel as 

it contains lower sulfur and polyaromatic hydrocarbons (PAHs) than its counterpart. This 

is important considering that sulfur emissions are a significant source of acid rain and 

PAHs are known to be carcinogenic (Wedel, 1999). Next, biodiesel has a higher cetane 

number, which means it ignites faster than conventional diesel; thus, providing a possible 

advantage in very cold climates. Moreover, biodiesel oxygenation makes it a better 

lubricant for engines than conventional diesel 

2.3.3 1-Butanol 

Butanol (1-Butanol), also called butyl alcohol, is an alcohol with a 4-carbon 

structure, and its molecular formula is C4H10O. It is an important industrial chemical and 

superior fuel with the potential to become a replacement for gasoline (Jang, et al., 2012). 

It is estimated that three hundred and fifty million gallons of butanol are sold every year, 

two hundred and twenty of those are sold in the U.S. (Shapovalov & Ashkinazi, 2008). 

As an industrial chemical, butanol is used for the synthesis of acrylate and methacrylate 

esters as well as butyl acetate and butyl glycol. Moreover, it is used for the synthesis of 

butyl amines and aminoresins. Other uses included paint thinner, extracting agent during 

drug, alkaloid, antibiotic, camphor, hormone, as well as vitamin production, detergent 

additive, mobile phase in paper as well as thin-layer chromatography, and polishing 
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additive (Schiel-Bengelsdorf, 2013). Butanol can be derived from fossil fuels or as the 

product of fermentation. The history of the biological production of butanol dates back to 

Louis Pasteur. In 1867, he described the alcohol as a product of fermentation in one of his 

cultures (Durre, 2007). Later, in 1916, ABE (acetone, butanol, ethanol) fermentation was 

used in the industrialization of butanol production. The method utilized the bacterial 

species Clostridium acetobutylicum, and ABE derived butanol was produced from a 

variety of sources such as corn, sugar beets, sugarcane, potatoes, tapioca and millet (Jang, 

et al., 2012) 

The use of butanol as a biofuel is very recent. It was first documented in 2005, 

when David Ramey drove an unmodified motor vehicle across the country using butanol 

as a fuel (Durre, 2007). Since, butanol has gained popularity as a replacement for ethanol 

as a gasoline additive. The main reason for butanol’s  rise over ethanol is because butanol 

contains more energy than ethanol: 110,000 British Thermal Units (BTUs) compared to 

the 84,000 BTUs per gallon of ethanol (Shapovalov & Askinazi, 2008). Moreover, the 

low water solubility of butanol could minimize the co-solvency concern currently 

associated with ethanol, consequently decreasing microbial-induced corrosion in fuel 

tanks and pipelines during transportation. Furthermore, butanol is less evaporative than 

gasoline or ethanol, making it a safer fuel than the others as it generates fewer volatile 

organic compounds (VOC) emissions (Durre, 2007).  Finally, butanol is known to 

increase water uptake in a hydrocarbon fuel; this means that when added to gasoline, 

butanol can increase the octane rating and decrease the emission of nitrogen oxides 

(Black, et al., 2010). 
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2.3.3.1 ABE Fermentation 

The Acetone, Butanol, Ethanol (ABE) fermentation refers to the process in which 

bacteria from genus Clostridium converts starch into acetone, butanol, and ethanol in the 

ratios 3:6:1, respectively. ABE fermentation is one of the oldest industrial processes for 

the production of butanol, and the second largest, by the yield of product, of ethanol 

production (Shapovalov & Askinazi, 2008). Although butanol is currently manufactured 

using fossil fuels, in 2005, Dupont and British Petroleum (BP) stated their intentions to 

restart industrial scale ABE fermentation for the production of biofuels (Kumar & Gayen, 

2011). ABE fermentation is characterized by two stages: acidogenesis and 

solventogenesis (Ellis, et. al., 2012). In the former stage, fermenting bacteria produce 

butyric, propionic, lactic, and acetic acids. Then, the pH decreases to about 4.5, which 

triggers a metabolic shift to the solventogenesis stage (Shapovalov & Askinazi, 2008). In 

the solventogenesis step, solvent production occurs, resulting in the formation of butanol, 

acetone, and ethanol (Durre, 2007). Current research on ABE fermentation focuses on 

increasing yields, microbial strain improvement and resistance, and exploration if new 

possible feedsctock. Unfortunately, economic studies on the feasibility of butanol 

demonstrated that a switch to this biofuel may not be currently possible (Kumar & 

Gayen, 2011). Because feedstock accounts for sixty percent of the total production cost 

and in order to increase the production of butanol through ABE fermentation, four 

hundred millions bushels of corn (or equivalent crop) will be required per year in the 

U.S., a switch to butanol is not currently possible (Shapovalov & Askinazi, 2008). In 

order to make butanol cost competitive, an alternative feedstock needs to be explored. 
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2.4. Use of Algae as Feedstock for Biofuels 

Algae are highly diverse group of organisms that have important functions in 

aquatic habitats (Round, 1984). More specifically, they are an evolutionarily diverse 

group of photoautotrophic organisms that possess chlorophyll a and b and unicellular 

reproductive structure (Round, 1984). Although they have a common metabolism, they 

vary in shape in size (Rogers & Gallon, 1988). In general terms, there are two types of 

algae – microalgae and macroalgae. Microalgae are very small, and their size range from 

1 – 50 μm (Chang, 2007). Macroalgae, by contrast, can reach up to 120cm in length 

(Mchugh, 2003). Algae through the process of photosynthesis assimilate CO2 in the 

atmosphere as a carbon source for growth and they produce about fifty percent of the 

oxygen on Earth (Chapman, 2013). Algae are extremely important as they are the 

primary food source upon which all aquatic life, both marine and freshwater, depends on 

(Chapman, 2013). Moreover, algae are known to be capable of switching from 

carbohydrate accumulation to intracellular lipids accumulation (Vijayaraghavan & 

Hemanathan, 2009), and these are important qualities when examining them for fuel 

production.  

Phycologists have classified microalgae in a variety of classes, primarily 

differentiated by their pigmentation, life cycle, and basic cellular structure. The most 

important classes are (Borowitzka 1997): 

i. Diatoms (Bacillariophyceae) are mainly dominant phytoplankton of ocean, 

but are also found in fresh and brackish water, and store carbon in the form of 

natural oil or as a polymer of carbohydrate. They use silica to build their cell 
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wall, and this structure makes them useful in the manufacturing of pool filters 

(Chapman, 2013) 

ii. Green algae (Chlorophyceae) are a diverse group from which higher plants 

evolved (Stevenson, et al., 1996). They are commonly found in fresh water 

and swimming pools. It is estimated that there are between six thousand and 

eight thousand species in this group, and ninety percent of them inhabit in 

fresh water (Chapman, 2013). Green algae store their energy in the form of 

form of starch, but oils can also be formed under certain growth conditions. 

Because of their strong presence in fresh water, green algae species are 

favored for the production of biofuels.  

iii. Golden algae (Chrysophyceae) can be yellow, orange or brown in color and 

they produce natural oil and carbohydrates as storage compounds. 

Separately, blue-green algae (Cynophyceae), organisms that are much closer to 

bacteria, are prokaryotes present in almost every conceivable habitat and play an 

important role in nitrogen fixation from atmosphere. My research will utilize the 

organisms present in canal water from the EAA; thus a consortium of algae and 

cyanobacteria is expected. 

2.4.1 Mass Production of Algae 

The production of algal biomass is very challenging and more expensive than 

growing crops. While algae are fast metabolizers, photosynthetic growth requires 

sufficient light, abundant carbon dioxide, water, inorganic salts, and favorable 

temperature (Christi, 2007). Because light does not penetrate more than a few centimeters 

into a dense algae culture, the main issue with large scale production involves increasing 
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surface area, rather than volume (Scott, et al., 2010), and because the optimum 

temperature for algae growth is between 20 and 30°C. (Wan, et al., 2011), mass 

production is not possible in all regions or during all seasons. Keeping these requirements 

in mind, two major pathways of growth have been favored:  raceway ponds and 

photobioreactors.  

Open ponds: 

Raceway ponds are the oldest systems used in the mass cultivation of algae. They 

have been utilized since the 1950s for mass culture of microalgae in the food industry 

(Christi, 2007). They are inexpensive to build and relatively easy to operate (Scott, et. al., 

2010). They vary in size, shape, type of agitation, inclination, and construction material 

(Tredici, 2004). Typically, a raceway pond consists of a closed loop recirculation channel 

of about 0.3m deep, where mixing and circulation are produced by a paddlewheel 

continuously (Christi, 2007). Raceway pond cultures require greater quantities of water 

as substantial amounts are lost to evaporation. In addition, there are concerns regarding 

contamination, competition, and inefficient use of carbon dioxide (Christi, 2007). In 

response to the concerns raised by raceway ponds, photobioreactors were developed.  

 

 Figure 2: Schematic Diagram of an Open Pond (Christi, 2007) 
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 Enclosed Photobioreactors: 

While many prototypes have been completed, tubular reactors are the most 

accepted style. These consist of an array of straight transparent tubes, usually 0.1m in 

diameter connected to a reservoir, where materials constantly circulate through (Chisti, 

2007). The water circulation is powered by a mechanical pump or by air-lift (Scott, et al., 

2010). The two most important advantages of implementing this culture method are the 

avoidance of contamination and the ability to have single-species cultures. In addition, 

biomass harvest is less expensive than open ponds, because the algal biomass is about 30 

times as concentrated as the biomass in the open ponds (Chisti, 2007). However, their 

manufacturing is energy demanding and expensive (Scott, et al., 2010). In spite of these 

drawbacks, photobioreactors still receive support because of their small space 

requirements and their ability to optimize cultures of high oil yielding species to reach 

production of over 200 times the yield from the best-performing plant or vegetable oil 

(Demirbas & Demirbas, 2011). 

 

Figure 3: Schematic Diagram of an Enclosed Photobioreactor (Christi, 2007) 
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Open ponds remain the most popular method of mass cultivation for algae, as 

capital and maintenance cost prohibit photobioreactor s to be competitive. This research 

will compare a typical raceway pond with an open suspended rotary system. The 

experimental system can cut operating cost in batch operations if yield is improved. 

 

2.5 Water and Algae Production 

 Although the algal biofuels diminish the “food vs. fuel” conflict typically 

associated with the notion of biofuel production, they still impose a great challenge in 

water management. It is generally understood that production of biomass for energy is a 

consumptive use of water that may directly compete with food crop production (Berndes, 

2002). According to a report published by National Academy of Science, 1 liter of algal 

biofuel requires up to 3,650 liters of freshwater (NRC, 2012). The amount of water 

required for biofuel production is alarming when considering the 1.2 billion people that 

lack access to clean water for domestic use (WHO, 2003). Moreover, while water is 

physically scarce in Central and West Asia and North Africa at present time, it is 

estimated that over the next several decades two thirds of the world population will be 

affected over water scarcity (Rijsberman, 2004). Hydrologists assess physical water 

scarcity by examining the population-water equation where an area will be considered 

stressed if annual water supplies drop below 1000m3 per person (Gleik, 2008). According 

to this equation, Florida is not under physical water scarcity; however, fresh water supply 

may be impacted by saltwater intrusion, drought, and pressure from an increasing 

population. 
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As a response for the concern of algal biofuels stress in fresh water supply, 

several authors have explored the use of wastewater as a culture medium for algae 

production; specifically, algae obtained from water treatment plants has been proposed 

for anaerobic digestion. (Oswald and Gotaas, 1957; Goldman, 1979; Soedes, 1980; 

Udoma, et al., 2012; Yuan, et al., 2012; Christenson & Sims, 2011). The potential use of 

algae obtained from water treatment plants is important for biofuel economics as algae 

are a bi-product of nutrient mitigation operations; thus, also reducing the feedstock cost. 

However, while this can be presented as a great solution for agricultural runoff, the 

installation of bioreactors may not be an affordable solution for farmers implanting best 

management practices. Thus, the use of raceway ponds should be explored.  
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3. METHODS 

3.1 Assessment of Canal Water Suitability for Algae Growth 

A survey was conducted during July 2013 in the EAA canals in order to 

determine the availability of algae in the canals that can be augmented.  The objective to 

this survey is to determine the best suitable canal in the EAA as a source of nutrient rich 

water to be used for subsequent experiments. The amount of chlorophyll found in the 

water was used as an indicator of algal biomass present.   

Seventeen different canals and levees were sampled in the EAA: L-8, L-12, L-13, 

L-14 (part of the Hillsborough canal), L-19 (part of the North New River canal), L-20 

(part of the North New River canal), L-21, C-6 (Miami Canal), an unmarked levee on 

Teddar Road, and unmarked levee on Gator Road, a small canal marked “411” on county 

road 880, and a canal leading to water pump G2. In addition, an outflow canal for 

pumping station 308S, and an unmarked canal that borders Loxahatchee National 

Wildlife Refuge were sampled. Sampling was completed over a period 48 hours. 

From each canal, 3 separate surface water samples of 500mL each were collected 

for filtering. For this, a 9.6-Volt portable and rechargeable submersible utility pump 

(AquaCharge, Model # AQ500-100) was used. Each sample was filtered using a 

Whatman GF/A fiber glass filter (1.6 µm) in order to trap planktonic microorganisms.  

Each filter was stored in the dark, cooled and taken to the lab for chlorophyll extraction. 

 



21 
 

 
                     Figure 4. EAA canals sampled in July 2013 

 

Sample processing procedure for chlorophyll extraction was adapted from Dere, 

et al., (1997). Each filter was placed in a 15mL conical Falcon tube, and 5mL of 100% 

acetone (Fisher) was added. Tubes were covered in aluminum foil and stored at 4°C for 

24 hours.   

Next, samples were centrifuged at 5000 rpm for 10 minutes. Supernatant was 

transferred into a 2mL cuvette.  Absorbance was measured at 662nm and 646nm for 

chlorophyll a and b, respectively, using a Thermo Scientific Spectromic 200 

photospectrometer.  Readings were recorded and the amount of pigment was calculated 
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according to the formulas of Lichtentaler and Wellburn (1984). The formulas are shown 

in Table 1. 

Chlorophyll a 11.75 A662 - 2.350 A645 

Chlorophyll b 18.61 A645 - 3.960 A662 

Total Chlorophyll Ca + Cb 

      Table 1. Formulas used in the calculation of pigments 

 

3.2 Assessment of Different Growth Media    

The sampling site with the highest amount of chlorophyll found (LOX) was 

selected for this experiment. Two additional sites, Station Pump S308 and the MC canal 

were selected following recommendation of SFWMD’s staff. The objective of the 

experiment is to identify an optimal media that augments algal biomass growth across the 

EAA.  Thus, its components will be used to supplement the canal water used in 

subsequent experiments.  

Three selective media were prepared as per Andresen (2005). The media were 

prepared without recipe modification and mixed in a 1:1 ratio with canal water, making 

the media half-strength. The total volume of the samples was 60ml, and they were kept in 

125ml Erlenmeyer flasks capped with foam stoppers. The cultures were grown in an 

incubator shaker (New Brunswick Scientific Excella E24) at 150 rpm and 25°C for 21 

days.  Light source consisted of LED bulbs with a 380 lm intensity (LED bulbs, 8.5-watt, 

efficacy 45 lm/watt, 3000K warm color temperature, high CRI 84).  

To determine the best suitable media, algal biomass was quantified via 

chlorophyll levels present in the cultures and total dried weight. The total chlorophyll 
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present in the cultures was quantified by collecting 5mL of each sample and filtering it 

using a Whatman GF/A filter. Chlorophyll extraction and quantification was adapted 

from Dere, et al., (1997) and executed as per section 3.1. In addition, total biomass 

present was obtained by filtering the cultures using a Whatman GF/A filter on the 21st 

day. Filter weight was recorded before filtering and 48 hours after filtering, allowing time 

for them to dry. Weight change was recorded and noted as algal biomass. The three 

locations and media were compared, and the one demonstrating the greatest amount 

biomass accumulated was selected as source for the subsequent experiments. 

3.2.1 Media Preparation 

The media used in this experiment were chosen for their selectivity of green algae 

and accessibility of materials. All solutions were prepared by dilution into 1000mL of 

deionized water, mixed to homogeneity and sterilized at 121°C for 15 minutes.  The 

chosen recipes were prepared as broth and are as follows (Andersen, 2005): 

‐ Chu Medium: 

This is a synthetic medium that is designed to mimic lake water. Thus, it is used 

to grow a variety of algae, including green algae, diatoms, and cyanobacteria. 

 

Component Stock Solution 
(g·L-1 dH2O) 

Quantity 
Used 

Concentration in 
Final medium 

(M) 
Ca(NO3)2 40.0 1 mL 2.44 x 10-4 
K2HPO4 5.0 1 mL 2.87 x 10-5 

MgSO4 · 7H2O 25.0 1 mL 1.01 x 10-4 
Na2CO3 20.0 1 mL 1.89 x 10-4 
Na2SiO3 25.0 1 mL 2.05 x 10-4 

FeCl3 0.8 1 mL 4.93 x 10-6 
Table 2. Chu Medium Recipe. 
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‐ DyIII Medium 

This medium is based on concentrations of anions and cations present in a pond 

during exponential growth.  

Component Stock Solution 
(g·L-1 dH2O) 

Quantity 
Used 

Concentration in 
Final medium 

(M) 
MES Buffer - 200 mg 1.02 x 10-3 

CaCl2 · 2H2O 75.00 1 mL 5.10 x 10-4 
NaSiO3 · 9H2O 15.00 1 mL 5.28 x 10-5 
MgSO4 · 7H2O 50.00 1 mL 2.03 x 10-4 

NH4NO3 5.00 1 mL 6.25 x 10-5 
NaN O3 20.00 1 mL 2.35 x 10-4 

KCl 3.00 1 mL 4.02 x 10-5 
Na2β-

glycerophosphate 
10.00 1 mL 4.63 x 10-5 

H3BO3 4.58 1 mL 7.40 x 10-5 
Trace Element 

Solution 
(See following 

recipe) 
1 mL - 

Vitamin Solution (see following 
recipe) 

1 mL - 

 
Trace Element Solution 

Na2EDTA  - 8.000g 2.74 x 10-5 
Fe - 0.700g 1.25 x 10-5 

MnCl2 ·4H2O - 0.720g 3.64 x 10-6 
ZnSO4 · 7H2O - 0.176g 6.12 x 10-7 

Na2MoO4 · 6H2O 50 1mL 2.08 x 10-7 
CoCl2 · 6H2O 29 1mL 1.22 x 10-7 

 
Vitamin Solution

C12H17N4OS - 200mg 5.93 x 10-7 
C10H16N2O3S 0.5 1mL 2.05 x 10-9 

C63H88CoN14O14P 0.5 1mL 3.69 x 10-10 
Table 3. Recipe for DyIII Medium. 
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‐ WC Medium 

Although this medium is used particularly for the cultivation of cryptophytes, it is 

known to support of the growth of some cyanobacteria and a wide array of 

chlorophytes. This medium was selected for its slightly alkaline condition (pH8), 

which is similar to the pH of Lake Okeechobee and its tributaries. 

 

Component Stock Solution 
(g·L-1 dH2O) 

Quantity 
Used 

Concentration in 
Final Medium (M) 

Tris (buffer) - 500mg 4.13 x 10-3 

NaNo3 85.01 1mL 1.00 x 10-3 
CaCl2 · 2H2O 36.76 1mL 2.50 x 10-4 

MgSO4 · 7H2O 36.97 1mL 1.50 x 10-4 
NaHCO3 12.60 1mL 1.50 x 10-4 

Na2SiO3  · 9H2O 28.42 1mL 1.00 x 10-4 
K2HPO4 8.71 1mL 5.00 x 10-5 

Trace element 
Solution 

(See following 
recipe) 

1mL - 

Vitamin Solution (See following 
recipe) 

1mL - 

 
Trace Elements Solution 

Na2 EDTA - 4.36 g 1.17 x 10-5 
FeCl3 · 6H20 - 3.15 g 1.17 x 10-

5 
CuSO4 · 5H2O 10.0 1mL 4.01 x 10-8 
ZnSO4 · 7H2O 22.0 1mL 7.65 x 10-8 
CoCl2 · 6H2O 10.0 1mL 4.20 x 10-8 
MnCl2 · 4H2O 180.0 1mL 9.10 x 10-7 

Na2MoO4 · 2H2O 6.0 1mL 2.48 x 10-8 
H3BO3 - 1.00g 1.62 x 10-5 

 
Vitamin Solution 

Thiamine ·HCl - 100 mg 2.96 x 10-7 
Biotin 0.5 1mL 2.05 x 10-9 

Cyanocobalamin 0.5 1mL 3.69 x 10-10 
Table 4. Recipe for WC medium 
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3.3 Different Systems for Biomass Growth 

Two different growing systems for outdoor mass cultivation of algae were tested. 

The objective of this experiment is to identify which system is superior for biomass 

production. The water used for this experiment was collected from the selected site 

(LOX). In June 2014, 350 liters of water were collected simultaneously, using a 9.6-Volt 

portable and rechargeable submersible utility pump (AquaCharge, Model # AQ500-100), 

and transported to the study site.  Artificial ponds or mesocosms were set-up using 20 

plastic bins of 59.7 x 42.9 x 14.9cm in the Center for Agroecology and Sustainable 

Agriculture (CASA) in Homestead, FL for 45 days between the months of July and 

August of 2014.  

Half of the bins were used as raceway pond systems and the other half were used 

as semi-submerged, immobilized cell systems. The mesocosms were set up on the ground 

and left uncovered in order to be exposed to natural light, temperature changes, and 

precipitation. The top surface of each of the 20 bins was covered with a thin, light mesh 

fabric to exclude the debris and macrofauna. All mesocosms received full sun and were 

set up as per the diagram: 
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Figure 5. Raceway Pond (RW) and Suspended Rotary System (SRS) Mesocosm Set-Up.  
Bins marked with the yellow cross represent those that received a nutrient treatment  

 
 

 

 
Figure 6. Mesocosms set-up at CASA 

 

3.3.1 Raceway Pond 

Typical raceway ponds were built using 10 bins. Each one of the bins consisted of 

a plexiglass sheet in the middle, and a submerged Hydor Koralia Nano 425-GPH 

Raceway Ponds 

Semi‐submerged, 

rotary system 

Power Supply
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aquarium circulation pump to keep the water constantly circulating. Figure 7 depicts the 

bins that were built to mimic a raceway pond.  Out of the 10 bins, nutrients were added to 

the water of 5 bins following the Chu medium recipe that selected in experiment 3.2; 

thus, all the ingredients listed in table 2 were added per liter of water in the bins, allowing 

the water to have the full-strength medium concentration. To the other 5 bins, water was 

added without any amendment. Each plastic bin has a maximum capacity of 27 liters, but 

the water was kept at the 10 liter mark. 

 

                               
Figure 7. Mimic Raceway Pond 

 

Excess rainwater accumulated in the ponds was removed every 5 days until the 

bins reached the 8 liter mark. In addition, 2 additional liters of water were removed. For 

the bins with the nutrient treatment, 2 liters of canal water supplemented with all Chu 

medium ingredients were added back into the bin. For the bins without the nutrient 

treatment, 2 liters of canal water were added without amendment into the bin. On the 45th 

day of experiment, water was collected from the bins and transported back to Florida 

International University for biomass collection and dewatering 

 

Circulation Pump

Plexiglas sheet 

divider 

Added strings 

to deter birds 
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3.3.2 Semi-Submerged, Immobilized Algae Cell System 

The semi-submerged, immobilized system was build using 10 plastic bins. This 

experimental set up involves a rotating a PVC pipe, in which 1sq. ft. of Polytech® type S 

reticulated foam was attached by 4 screws. The weight of the foam was used as the 

indicator of the biomass accumulated in it; thus, the initial foam weight was taken and 

recorded. The cylinder was powered by a 120V motor, and its rotation allows the foam to 

be constantly aerated. Correspondingly to the raceway ponds, 5 of the plastic boxes used 

for the semi-submerged, rotary system received the nutrient treatment and the other 5 did 

not, and all bins contained 8 liters of water. 

 

 
Figure 8. Semi-Submerged, Rotary System 

 

 

Consistently with the raceway ponds, excess rainwater accumulated was removed 

every 5 days until the bins reached the 8 liter mark. Additional 2 liters of water were 

removed. For the bins with the nutrient treatment, 2 liters of canal water supplemented 

with Chu medium were added back into the bin. For the bins without the nutrient 
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treatment, 2 liters of canal water were added without amendment into the bin. On the 45th 

day of experiment, water was collected for processing, and the PVC pipe with the foam 

was collected and taken to the lab for drying and weight recording. 

3.3.3 Quantification of Biomass 

A Millipore Easy-Load Masterflex (model No.77410-10) peristaltic pump was 

used to harvest algal cells and obtain a biomass-rich water sample for all of the 20 bins. 

Next, water obtained from the bins was centrifuged using Beckman Coulter Avanti J-26S 

Series at 8,000rpm for 20 minutes, supernatant was discarded and the remaining algal 

biomass was stored in 50mL Falcon tubes and frozen. For the semi-submerged system, 

the foam was removed, oven dried, and weighted. The difference in weight was recoded 

as biomass accumulation.  

Lyophilization was completed using a Virtis Bench Top Manifold freeze-dryer 

Freeze drying was used to eliminate any water. The algae obtained were placed in 50mL 

Falcon tubes and were dried at -82ºC for 7 hours. Dried biomass weight was recorded for 

statistical comparison. 

 

3.4 The Use of Reticulated Foam for Algal Biomass Production  

In order to eliminate the influence of uncontrolled variables, the use of the 

reticulated foam was tested in laboratory conditions. For this, 20 samples of canal water 

collected from the LOX site were amended to reflect full-strength Chu medium. Each 

sample consisted of 50mL. Cultures were kept in a 125 mL capacity Erlenmeyer flask 

and incubated in a New Brunswick Scientific Excella E24 incubator shaker at 150 rpm 
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and 25°C for 45 days with continuous light at 380 lm of intensity (LED light bulbs - 8.5-

watt, efficacy 45 lm/watt, 3000K warm color temperature, high CRI 84).  

To ten of the flasks, a 1sq. inch of Polytech® type S reticulated foam was added 

to 10 of the flasks. This ester-based foam is manufactured by Polymer Technologies Inc., 

a New Jersey company. Reticulated foam is typically utilized in filtration. The pore 

selected is 24-45psi, which provides ample space for biomass accumulation. The tensile 

strength of the foam ranges between 16-30psi. The foam was obtained in Charcoal Grey, 

the only available color. The foam’s dry weight was recorded. The remaining 10 cultures 

included no foam and were used for comparison.  

3.4.1 Quantification of Biomass 

Culture growth was measured via chlorophyll levels present in the cultures and 

total biomass accumulated. Chlorophyll quantifications were carried out every 5 days in 

order to record algal growth.  For this, 5mL of each sample was collected and filtered 

using a Whatman GF/A filter. Chlorophyll extraction and quantification was executed as 

per section 3.1. 

In order to measure total biomass accumulated, cultures were filtered using a 

Whatman GF/A filter on the 45th day, in order to trap the biomass. Filter weight was 

recoded 48 hours after filtering, allowing time for them to dry under a heating lamp. 

Weight change was recorded and noted as algal biomass. Foam was allowed to dry and 

weight change was also noted as biomass.  
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3.5 The Impact of Alkaline pH on Algal Growth   

The possibility for reducing culture contamination in open ponds was explored 

through pH manipulation. For this experiment, Zarrouk’s medium was mixed 1:1 with 

canal water samples collected for the canal assessment (section 3.1), making the medium 

half-strength. Zarrouk’s medium was selected for its high content of salts and high pH.  

The only two cultures that demonstrated growth originated from sampling site S308; 

thus, they were transferred to full strength medium. The medium composition is provided 

in table 4.   

The medium’s pH was adjusted from 8.9 to 9, 10, 11, and 12 with a solution of 

potassium hydroxide, and 3 replicates were set-up per pH adjustment, for each of the two 

samples obtained in site S308. Each replicate contained 70mL of medium and 5mL of 

inoculant from the selected cultures, and they were kept in 125mL Erlenmeyer flask. The 

cultures were incubated in a New Brunswick Scientific Excella E24 incubator shaker 

rotating at 150rmp for 35 days. Temperature was set at 25°C, and light was continuous at 

380 lm of intensity (LED bulbs 8.5-watt, efficacy 45 lm/watt, 3000K warm color 

temperature, high CRI 84).  

 Chlorophyll was used as an indicator of culture growth and health, and 

quantifications were carried out every 7 days. For this, 5mL of each sample was collected 

and filtered using a Whatman GF/A filter. Chlorophyll extraction and quantification was 

adapted from Dere, et al., (1997) and executed as per section 3.1 
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Component Chemical 
Composition 

Concentration 
(g/L) 

Sodium Bicarbonate NaHCO3 18.00 
Sodium Nitrate NaNO3 2.5 
Potassium Sulfate K2SO4 1.00 
Sodium Chloride NaCl2 1.00 
Potassium Phosphate Dibasic K2HPO4 0.5 
Magnesium Sulfate 
Heptahydrate 

MgSO4 · 7H2O 0.2 

Na2EDTA C10H14N2Na2O8 0.08 
Calcium Chloride CaCl2 0.04 
Iron (II) Sulfate Heptahydrate FeSO4 · 7H2O 0.01 
Trace Element Solution - 1mL 

Trace Element Solution 

Boric Acid H3BO3 2.86 
Manganese Chloride 
Tetrahydrate 

MnCl2 · 4H2O 1.80 

Zinc Sulfate Heptahydrate  ZnSO4 · 7H2O 0.22 
Copper (II) Sulfate Cu2SO4 0.08 
Ammonium Molybdate 
Tetrahydrate 

(NH4)6Mo7O24 · 
4H2O 

0.02 

Table 5. Recipe for Zarrouk’s Medium 

 

3.6 Statistical Analysis 

 All statistical analysis was conducted using SPSS 21 (SPSS, Chicago, IL, USA). 

The different hypothesis are listed per experiment below: 

3.6.1 Canal Water Suitability for Algae Growth 

 A one-way ANOVA between subjects was conducted to determine which 

sampling site displayed a higher level of chlorophyll at the p<0.05 level 

3.6.2 Assessment of Different Growth Media    

A Kruskal-Wallis test was conducted to determine if there is a significant 

difference in the biomass accumulation among each site as the data was nonparametric. 
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Independently, the same test was conducted in order to determine if there is a significant 

difference in the biomass accumulation in each medium.  

3.6.3 Biomass Production in a Raceway Pond System and Semi-Submerged, 

Immobilized Cell System 

A two-way ANOVA was conducted to determine if there is a significant 

difference in the biomass accumulated between the two different types of systems and the 

nutrient treatment at the p<0.05 level. In addition, a two-way ANOVA was used to 

determine if there was a significant difference when comparing the biomass accumulated 

between the mesocosms that received nutrient treatment versus those that did not. 

3.6.4 The Use of Reticulated Foam for Algal Biomass Production  

An independent-sample t-test was conducted to compare the total chlorophyll 

present in day 45 of the experiment. An independent-samples t-test was conducted to 

compare the total biomass accumulated in the cultures where the foam was added and the 

cultures without the foam as well. 
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4. RESULTS  

4.1 Biomass in Canal Water 

 Biomass was found in all the canals sampled at a relatively similar level, except 

for sampling sites LOX and L-8. Site LOX showed to have the highest level of 

chlorophyll among the canals sampled. Contrary, site L-8 displayed the lowest amount of 

chlorophyll. A one-way ANOVA between subjects revealed that there was a significant 

difference in the level of chlorophyll among the sampling sites at the p<0.05 level 

[F(13,28)=18.71, p=0.00].  Furthermore, a post-hoc comparison using the Tukey HSD 

test indicated that site LOX was significantly different from any other canal and it 

demonstrated the highest chlorophyll content (M=4.37, SD=0.95). 

 
Figure 9. Chlorophyll (in µg.mL-1) concentrations found in the EAA canals sampled in July 2013. Site 

LOX was found to be significantly higher than the rest of the canals sampled.  
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Considering the significant difference in chlorophyll, site LOX was selected as a 

water source for subsequent experiments.  

 
4.2 Biomass in Canal Water Supplemented with Nutrients  

4.2.1 Total Chlorophyll  

A comparison in the levels of chlorophyll shows that none of the media used 

displayed higher levels of chlorophyll in all 3 sites. WC medium displayed the highest 

levels of chlorophyll in sites S308 and MC; however, it displayed the lowest levels of 

chlorophyll in LOX cultures. Furthermore, Chu medium displayed the largest amount of 

chlorophyll in site LOX, and the second largest in sites MC and S308. While DyIII 

medium displayed the second largest levels of chlorophyll in site LOX, it displayed the 

lowest in site S308 and MC. The results of the Krusskal-Wallis test revealed that there is 

no significant difference in chlorophyll (µg.mL-1) among the different kinds of media 

[X2(2, N=27)=1.91; p=0.39]. In addition, the same test revealed that there is no 

significant difference in the chlorophyll (µg.mL-1) present among the different sites [X2 

(2, N=27) = 2.77; p=0.25].   
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Figure 10. Mean Total Chlorophyll (in µg.mL-1) Comparison among Sampling Sites per Media. 

No significant difference was found among media [X2(2, N=27)=1.91; p=0.39] or among sites [X2 (2, 
N=27) = 2.77; p=0.25]. 

 
 
4.2.2 Dry Weight 

A comparison in the total dry weight revealed that none of the media used 

accumulated the largest amount of biomass in all 3 sites. WC medium displayed the 

highest biomass weight in site MC, and the second highest in sites LOX and S308 

Furthermore, Chu medium displayed the largest amount of chlorophyll in site LOX and 

the second largest in site MC; however, it displayed the lowest weight of sampling site 

S308. Contrary, DyIII medium displayed the largest amount of biomass in site 308. DyIII 

medium had the second largest biomass weight in site LOX, and it displayed the lowest 
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in site MC. The results of the Krusskal-Wallis test revealed that no significant difference 

in the quantity of biomass accumulated was found among the different kinds of media 

[X2 (2, N=27) = 0.23; p=0.9]. In addition, the same test revealed that there is no 

significant difference in the biomass accumulation among the different sites [X2 (2, 

N=27) = 2.39; p=0.1]. 

 
Figure 11. Mean Total Biomass Dry Weight (gr/l) Comparison among Sampling Sites. No significant 

difference was found among the three different media [X2 (2, N=27) = 0.23; p=0.9] or among the three sites 
[X2 (2, N=27) = 2.39; p=0.1]. 

 

It is important to note that while no significant difference was found, Chu medium 

displayed the largest mean of both chlorophyll levels and dry weight in sampling site 
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LOX; thus, it was selected as the medium for nutrient amendment in subsequent 

experiments. 

 

4.3 Biomass Production in Raceway Pond System  

Biomass accumulated in the raceways pond systems was separated based on 

nutrient treatment. The bins that received the Chu medium amendment displayed the 

largest amount of biomass accumulated. An independent-samples t-test confirms there is 

a significant difference in dry weight between the bins that received the nutrient 

treatment (M= 3.77, SD=1.41) and those that did not receive a nutrient treatment 

(M=0.89, SD= 0.50), t(8)= 2.21; p=0.00. 
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Figure 12. Mean Total Biomass (gr/l) in Raceway Pond Systems. Significant difference was found 
between the bins that received the nutrient treatment (M= 3.77, SD=1.41) and those that did not (M=0.89, 

SD= 0.50), t(8)= 2.21; p=0.00. 
4.4 Biomass Production in Semi-Submerged, Immobilized Cell System 

Biomass accumulated in the Semi-submerged, Immobilized Cell Systems was 

divvied based on whether or not a nutrient treatment was added. The bins that received 

the Chu medium amendment displayed the largest amount of biomass dry weight, about 4 

times larger than the bins that did not receive treatment.  The results of an independent-

samples t-test revealed there is a significant difference in dry weight between the bins 

that received the nutrient treatment (M= 3.97, SD=0.78) and those that did not receive a 

nutrient treatment (M=0.79, SD= 0.58), t(8)= 0.99, p=0.00. 
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Figure 13. Mean Total Biomass (gr/l) in Semi-Submerged, Immobilized Cell Systems. Significant 
difference was found between the bins that received the nutrient treatment (M= 3.98, SD=0.78) and those 

that did not (M=0.79, SD= 0.58), t(8)= 0.99, p=0.00. 
 

4.5 System Comparison 

Both systems displayed similar means of biomass accumulated in the bins with 

the nutrient amendment and the bins without nutrient treatment. A two-way ANOVA 

revelead that no significant difference was found in the biomass accumulated between the 

two tested systems [F(1,19)= 0.16, p=0.90].. However, a significant difference was found 

when comparing the biomass accumulated between the mesocosms that received nutrient 

treatment versus those that did not [F(1,19)=57.33, p=0.00]. Higher biomass 

accumulation was observed in the bins that received the nutrient treatment. 
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Figure 14. Mean total biomass (gr/l) accumulated in two tested systems; raceway ponds and suspended 

rotary systems and nutrient treatment 
 

It is important to mention that there was a distinct difference in the biomass 

accumulated from the mesocosms with nutrient treatment and those without. The bins 

that received nutrient generated biomass that appeared to be mostly composed of green 

algae species. Contrary, the bins that did not receive treatment appear to have yielded 

mostly cyanobacteria and brown algae. 
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Figure 15. Water collected from the mesocosms. Difference in color can be observed between the 

bins that received nutrient treatment (right) and those that did not (left). 
 

4.6 The Use of Reticulated Foam for Algal Biomass Production  

4.6.1 Chlorophyll 

Results from the chlorophyll quantification demonstrate that algal growth was not 

constant and population fluctuated throughout the study time. Although the chlorophyll 

recorded varied, a downwards trend in population size can be seen in Figure 16. It is 

important to note that cultures that included the foam displayed the largest levels of 

chlorophyll except for on day 20 of the experiment 
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Figure 16.  Total mean chlorophyll (ug. mL-1) of cultures with and without the foam over the experiment 

time (45 days). 
 
 

Samples with the foam displayed higher chlorophyll levels than that those without 

the foam in day 45. However, chlorophyll levels were considerately lower (half) than the 

samples with the foam on day 10, when both treatments displayed their largest levels of 

chlorophyll. No significant difference was found in the chlorophyll levels in the last day 

of the experiment (day 45) between the cultures with the foam (M=0.71, SD=0.28) and 

without the foam (M=0.66, SD=0.20), although the cultures with the foam displayed a 

higher mean, t(18)= 1.48, p>0.05. 
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Figure 17. Difference in Chlorophyll levels (ug. mL-1) between the cultures where the foam was added and 

cultures where the foam was not added. No significant difference was found t(18)= 1.48, p>0.05. 
 
 

4.4.2 Dry Weight 

Samples with the foam displayed the highest amount of biomass when observing 

the dry weight. An independent-samples t-test revealed that there was a significant 

difference between the biomass accumulated for cultures with the foam (M=0.12, SD= 

0.003) and without the foam (M=0.09, SD=0.003). These results suggest that the use of 

the foam promotes biomass accumulation, t(18)= 2.6, p= 0.018. 
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Figure 18. Mean Total Biomass (gr/l) Accumulated in Samples With and Without Reticulated Foam. 
Samples including the foam displayed a significantly higher amount of biomass t(18)= 2.6, p= 0.018. 

 
 

4.5 The Effect of Alkaline pH on Algal Growth   

Cultures grown in Zarrouk’s medium displayed growth in alkaline conditions. 

While pH 5-7 is known to be the optimal range for growth of eukaryotic algae (Andersen, 

2005), the cultures obtained from site S308’s water samples demonstrated to be alkaline 

tolerant and growth was seen in pH 9 and 10. Cultures exposed to pH 11 and 12 did not 

survive. Figure 19 displays the chlorophyll measurements recorded for this experiment. 
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Figure 19. Mean Total Chlorophyll (ug. mL-1) Displayed in Cultures Grown in Zarrouk’s Medium over 35 Days. 
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Furthermore, when comparing the sample from the initial enrichments versus the 

culture growing in Zarrouk’s medium in a microscope, there is a visible decrease in 

contaminants and in species composition in the algae consortia. 

 

 
Figure 20. Algae Consortia Present in Cultures from Site S308 Growing in Zarrouk’s Medium at 

Unmodified pH (8.9). 
 
 

 

 
Figure 21. Algae Present in Cultures from Site S308 Growing in Zarrouk’s Medium at pH 10 at 35 Days.  

 



49 
 

5. DISCUSSION  

5.1 Assessment of Canal Water Suitability for Algae Growth 

With 14 major canals and dozens of small ones, there is ample opportunity to 

collect water from the EAA. Here, water from Lake Okeechobee is transported through 

large farming fields where it serves for irrigation; then, nutrient-enriched agricultural 

drainage water is discharged to WCAs, ENP, or the South Florida coastal estuaries.  The 

Everglades Forever Act, passed in 1994, mandates the use of Best Management Practices 

(BMP) in agricultural fields in order to reduce the nutrient runoff that can have 

considerable effects on the Everglades, an oligotrophic system. For the EAA, BMP 

implementation guidelines have been outlined in a South Florida Water Management 

District (SFWMD) regulatory rule, Chapter 40E-63, Florida Administrative Code (FAC) 

(Daroub, et. al, 2011). The implementation of BMP is considered a success in the EAA as 

phosphorous loads have been consistently reduced by 50% of the historic baseline since 

their enactment (Daroub, et al., 2011). Because of this successful application, 

eutrophication was not expected in the EAA canals. However, the presence of herbicides 

and pesticides may interfere with algal growth and contribute to variation in biomass 

accumulation among the canals. 

The chlorophyll survey in canals revealed that there was a similar amount of 

biomass on the most of the fourteen canals sampled. These results indicate that collection 

of algal biomass can be proposed for most of the farms in the EAA. However, the 

significant difference in sample site LOX demonstrated that this particular canal could 

potentially outperform all others. In addition, site LOX is adjacent to the Arthur R. 
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Marshall Loxahatchee National Wildlife Refuge, an area that could benefit from further 

nutrient mitigation (Chen, et al., 2012). 

It is important to note that the chlorophyll survey was completed during the South 

Florida rainy season. The total rainfall recorded for July 2013 was 9.65 inches in the east 

and 9.37 inches in the western portion of the EAA (http://www.sfwmd.gov/portal/page 

/potal/xweb%20weather/rainfall%20historical%20%28monthly%29), which is higher 

than the average of 6.40 and 7.59in for east and west respectively (http:// www. sfwmd.g 

ov/portal/page/portal/xweb%20weather/rainfall%20historical%20%28monthly%29). The 

excess water containing nutrients, pesticides, and herbicides is drained from farms to 

adjacent canals; however, it is believed that present organisms, excess nutrient, and other 

pollutants may be diluted in higher water levels. 

Prior to recommending the EAA as a water source for mass production of algae, it 

is important to survey the canals during the dry season. In addition, canals surveys can be 

separated by their proximity to organic or conventional farms, sugarcane or vegetable 

crop seasons, and by herbicide application. These factors will have significant influence 

on the algal biomass in the canals as under each scenario the runoff composition will be 

different. Furthermore, nitrogen and phosphorous content data collected by the SFWMD 

can be incorporated into the survey in order to have a better understanding of the 

potential for use of EAA drainage water in biofuel feedstock production.  

 

5.2 Media Comparison 

While the augmentation of algal biomass using run-off water from farmlands may 

be considered as a part of BMP in the future, in order to produce sufficient biomass using 
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EAA water under the present conditions, nutrient enrichment will be necessary. There are 

many different kinds of isolation media that target specific green microalgae species 

(Andersen, 2011). For this project, three media were chosen for their generalized use, 

simplicity in preparation, availability of ingredients, and resemblance to lake water 

composition. Site LOX was selected as a baseline. Two additional sites, S308 and MC 

were recommended by SFWMD’s staff because of their accessibility and history of 

spikes in chlorophyll levels.  

The comparison of these sites yielded no significant difference neither in the 

accumulation of biomass nor in the levels chlorophyll present in the water. However, 

they demonstrate that algal biomass augmentation can be completed in different areas of 

the EAA with nutrient enrichment; thus, supporting the idea that establishing of raceway 

ponds in farms can become a constant source of feedstock for biofuels. In addition, these 

systems could be included to the list of BMP in the area. Moreover, having a reliable 

source of feedstock could have a positive impact in the production and use of regional 

biofuels in the state of Florida.   

On the other hand, while it was hoped that a specific medium composition would 

favor more biomass accumulation, the experimental results, however, provided little 

support for this theory; therefore, no specific nutrient combination can be recommended 

for the implementation of these systems.  Nonetheless, the use of herbicides and 

pesticides, and cross contamination are source of concern for the possibility of biomass 

augmentation on a larger scale. 

Future research should aim at exploring the biomass yielded when using the 

fertilizer currently applied in different areas of the EAA. This would give farmers a better 
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understanding of how much biomass they could generate and sell for profit without any 

additional materials and costs to the farm. Larger farms would be especially benefited 

from a nutrient studies as they can be carried out in the small canal and ditches that 

divide the property into smaller fragments, which would also demonstrate the efficacy of 

employing algae as a BMP for the property. 

For subsequent experiments, medium Chu was selected, and all of its components 

were added to canal water obtained from site LOX.  

5.3 Biomass Production in a Raceway Pond System and Semi-submerged, 

Immobilized Cell System 

In order to determine if biomass augmentation is possible on a larger scale, 

mesocosms were built. These represent the two types of systems that can be 

recommended for use in the EAA. The first one is a small-scale mimic raceway pond that 

can potentially be suggested to farmers in order to trap runoff in their property while 

generating income from algal biomass. These structures are inexpensive and easy to build 

and operate. On the other hand, a semi-submerged rotary system could potentially be 

used if a surface is provided for algae to attach. The material that is going to be used in 

the semi-submerged rotary system for algal surface attachment must be durable, 

inexpensive, and allow for easy harvesting of the biomass. Unlike the raceway ponds, 

these semi-submerged structures could be installed in major and minor canals and levees 

and they could be owned and operated by the SFWMD, or the county government. 

Involvement of governmental agencies in the generation of feedstock is likely to signal 

restored confidence in the biofuel industry producers, and promote private sector 

participation in South Florida  
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Polytech ® reticulated foam was chosen for trapping algal biomass in the semi-

submerged system. The foam is typically used for filtration and claims to retain small 

particulates. The use of the foam was tested in both laboratory condition and outdoors.  In 

both cases, water from sampling site LOX was used as a base for preparing growth 

medium, into which components from Chu medium were added.  

The mesocosms were compared on their nutrient treatment. A significant 

difference was found in biomass accumulation between the two treatments. The results 

support the hypothesis that additional nutrient input will promote algal growth and 

biomass accumulation in EAA water. Nonetheless, because a smaller amount of biomass 

was gathered from the mesocosms where nutrients were not added, the implementation of 

a biomass collecting systems can be recommended for the small canals that separate 

larger farms, where nutrient levels are expected to be higher as a result of nutrient runoff. 

Here, algal biomass augmentation system can also act as a tool for nutrient reduction.  

It is important to mention that the distinction of the resulting biomass between the 

systems that received nutrient treatments and the systems that did not. Green algae appear 

visibly dominant in the bins where nutrients were added. Contrary, the biomass 

accumulated from bins where no nutrients were added consisted predominantly of 

cyanobacteria. These results were expected as cyanobacteria has known dominance in 

low-nutrient, fresh water settings (Jensen, et al., 1994; Olding, et al., 2000; Rattan, et al., 

2012). In addition, similar to the results obtained by Ernst, et al. (2005), the biomass 

obtained from the mesocosms with no nutrient treatment appears to be phycoerythrin 

rich. Because it falls out if the scope of this research, identification of species was not 

sought. 
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In addition, a comparison of total algal biomass generated revealed that there is no 

significant difference between the two systems. This does not support the hypothesis that 

increased surface area for algae attachement will promote higher growth rates and 

biomass accumulation. The foam’s dark color might have caused it to absorb and retain 

more heat, thus making the environment less conducive for algae. Nonetheless, these can 

be encouraging results. Because there is no significant difference between the systems, 

recommendation can be given to farmers depending on land availability and accessibility 

to canals in the farms without compromising the amount of biomass production. In 

addition, mass production of algal biomass can be recommended even for farms that do 

not possess separating ditches or canals by building raceway ponds. 

Finally, the water used for this experiment was collected on July, 2014. Similar to 

July, 2013, the rainy season in 2014 experienced higher than usual rainfall. Therefore, it 

is possible that the nutrient concentration in the canals was lower because of dilution. 

Future research should aim for comparing the two biomass augmentation systems during 

the dry season, when nutrient levels in run-off and canal water are expected to increase. 

In addition, vegetables are grown in the EAA during the dry season, and this change in 

crops may affect the combination of nutrients in the water and the concentration of 

pesticides and herbicides present. 

 

5.4 The Use of Reticulated Foam for Algal Biomass Production  

While the results of this experiment are not sufficient evidence to determine that 

temperature of the foam prevented the accumulation of biomass while outdoors, it opens 

the opportunity for additional research. First, it is important that the semi-submerged, 
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rotary system be tested during the dry season when average ambient temperature is lower 

than the one during the raining season. Next, in order to determine if this system can be 

recommended to farmers in the EAA, studies using scale-up models should be explored. 

In addition, the possibility of adding the foam to a raceway pond paddle wheel 

(combining the two systems) should be considered. Finally, the use of the reticulated 

foam in a photobioreactor should be considered. The latter option is ideal for farms where 

space is limited and start-up costs are not a determining factor. The use of 

photobioreactors may also be appealing to private ventures who are solely dedicate to the 

mass production of algal biomass for biofuel manufacturing.   

One of the key findings from the experiment was the observation that the 

reticulated foam captured 67% of the biomass collected from the cultures in which the 

foam was submerged (0.08gr out of 0.12gr). Thus, adding the foam to an enclosed system 

may improve the efficiency in biomass harvesting and dewatering, a major hurdle in mass 

production of algae (Uduman, et al., 2010). This sheds a positive light on the use of 

foams in photobiareactors, as it will allow for biomass harvesting without the use of 

sophisticated equipment. Nonetheless, because of their simplicity and inexpensive costs, 

it is recommended to explore the use of the foam in open systems; therefore, future 

research should focus on how to improve the rotary system. While many details can be 

improved, using a lighter colored foam may be a simple way to determine if their efficacy 

can be improved. 

5.5 The Impact of Alkaline pH on Algae Growth   

The mix of Zarrouk’s medium with canal water yielded only 3 cultures that 

displayed growth: S308, TD, and MC. These surviving samples were inoculated in full-
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strength medium, and only the cultures from site S308 survived and displayed growth. 

This was not surprising as samples from site S308 were obtained from a Lake 

Okeechobee outflow. “The Lake” as it is popularly referred to, has a basic pH that ranges 

from 7.75-8.5 (James, et al., 1995). Therefore, it is believed that organisms present in the 

sample will not only be able to handle the alkalinity, but thrive in it.  

While all cultures seemed to be flourish with the initial pH adjustment, those 

subjected to pH 11 and 12 died. Nonetheless, cultures in pH 9 and 10 experienced higher 

growth than even those grown in canal water. Moreover, periodic observations revealed 

that the cultures appeared less diverse and fewer bacteria and fungi were observed. It was 

then concluded that high alkaline conditions may help limit contaminants and competing 

organisms. 

These results are encouraging, especially when considering species-specific 

cultivations. This is particularly the case for high lipid producing species used for the 

production of biodiesel. While it may not be the case for other freshwater bodies, algae in 

samples obtained from the Lake Okeechobee outflow appear to be tolerant to alkaline 

conditions which could have important implications for the regional development of the 

biofuels industry. 

Biomass was not collected for this part of the project as additional experiments 

need to be completed in the future. Selection for native algal strains with alkali-

halotolerance capability will be more desirable; this makes it possible for growing algae 

in brackish waste water and reducing fresh water use. If the algae are grown in 

photobioreactors, algal alkali-halotolerance is of advantage as pH and salinity of the algal 

culture usually increases due to sodium carbonate accumulation when carbon dioxide is 
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supplied as carbon source. In addition with algal strains that are alkali-halotolerant, it is 

also possible to recycle carbon dioxide in a more cost-efficient way using biocarbonate 

system (Chi et al., 2011). Finally, it would be interesting to see if the alkalinity of the 

medium would deter algae predators. 
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6. CONCLUSION  

Benefiting from Florida’s optimal sunlight and mild temperature, the EAA can 

serve as a location for the mass production of algae for biofuels. The purpose of this 

thesis was to explore the potential use of water from the EAA in the production of algal 

biomass for biofuel production.  A survey of fourteen canals revealed that algal biomass 

is present in the area. Specifically, a canal adjacent to the Arthur R. Marshall 

Loxahatchee National Wildlife Refuge, named LOX in this research, displayed the 

largest amount of biomass in the EAA, promoting itself as the preferred source for water. 

Moreover, in spite of farm nutrient runoff, it was determined that nutrient treatments are 

necessary for mass production of algae using canal water. A media experiment using 

revealed that similar quantities of biomass can be obtained from different areas of the 

EAA; thus, strengthening the idea that feedstock production is possible. 

 However, a comparison of the systems tested in this research yielded no 

significant difference in the amount of biomass harvested. These results provide 

flexibility in the recommendations as other factors such as surplus of land or canal 

availability can be considered without compromising for lower biomass yields when 

choosing a system. As the hypothesis stating the rotary, semi-submerged system would 

yield more biomass was not supported, laboratory test on the reticulated foam were 

performed. In this case the foam aided in the production of biomass. 

Finally, it was determined that species present in the EAA are tolerant to alkaline 

conditions. Although identification of the species is pending, it is believed that utilizing 

them for outdoor mass production under alkaline conditions can lead to successful 

harvesting of algal biomass for fermentation.  
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7. RECOMMENDATIONS 

While continued research on algae biofuels is ongoing, it has certainly already 

proven to be superior choice as a replacement of liquid fuels derived from petroleum. 

Nonetheless, algal-fuel technology is very complex and it is continuously evolving as 

opportunities for improvement arise; therefore, investment in research and development 

in technical expertise is still needed to make algal fuels a marketable and profitable 

product. In order to more effectively reap the benefits of algae fuels, it is important to 

consider to the advantages of regional productions, especially in Florida, where optimal 

growing conditions for algae exists. 

Taking in consideration the results obtained in this research, further studies are 

recommended in the EAA. In particular, a continued and comprehensive canal survey 

will determine specific locations where mass production of algal biomass is possible. In 

addition, cross-contamination reduction can be further explored by selective enrichment 

process for both salt tolerance (halotolerance) and alkaline-tolerant without impacting the 

biomass production capability. Next, species identification through rDNA sequence 

analysis is required. Finally, outdoor trials are recommended in order to determine the 

culture medium efficacy to reduce cross-contamination and increase biomass production. 
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