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ABSTRACT OF THE THESIS

MULTI-OBJECTIVE OPTIMIZATION OF THE MOLECULAR STRUCTURE OF

REFRIGERANTS

by

Suvrat Bhargava

Florida International University, 2010

Miami, Florida

Professor Arvind Agarwal, Co-Major Professor

Professor George S. Dulikravich, Co-Major Professor

The aim of this work was to develop a new methodology, which can be used to design

new refrigerants that are better than the currently used refrigerants. The methodology draws some

parallels with the general approach of computer aided molecular design. However, the

mathematical way of representing the molecular structure of an organic compound and the use of

meta models during the optimization process make it different. In essence, this approach aimed to

generate molecules that conform to various property requirements that are known and specified a

priori. A modified way of mathematically representing the molecular structure of an organic

compound having up to four carbon atoms, along with atoms of other elements such as hydrogen,

oxygen, fluorine, chlorine and bromine, was developed. The normal boiling temperature, enthalpy

of vaporization, vapor pressure, tropospheric lifetime and biodegradability of 295 different

organic compounds, were collected from open literature and data bases or estimated. Surrogate

models linking the previously mentioned quantities with the molecular structure were developed.

Constraints ensuring the generation of structurally feasible molecules were formulated and used

in commercially available optimization algorithms to generate molecular structures of promising

new refrigerants. This study was intended to serve as a proof-of-concept of designing refrigerants

using the newly developed methodology.
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1. INTRODUCTION

1.1. Problem Statement

As new environmental regulations are enforced and the designs of refrigeration systems

improve, the need to design and produce better refrigerants becomes more profound. These newly

designed refrigerants would gradually replace a number of existing refrigerants that would be

deemed unsuitable for commercial use for various economic and environmental reasons (Calm

2008), (Brown 2009).

Traditional ways of designing, producing and testing a new chemical compound

generally involve design heuristics coupled with direct experimental and computational studies.

The performance of a refrigeration system can be evaluated from the thermodynamic and

transport properties of the working fluid. Some of the most important thermodynamic properties

are the freezing point, boiling temperature, vapor pressure, enthalpy of vaporization and liquid

specific heat. Montreal and Kyoto protocols enforce certain restrictions and limit the use and

production of many refrigerants due to their harmful effects on the atmosphere. Consequently,

other properties are also desirable such as low Ozone Depletion Potential (ODP), very low

Global Warming Potential (GWP), short atmospheric lifetime, low Green House Gas (GHG)

emission and biodegradability.

In the design of a new refrigerant, all the above performance criteria must be looked at

and addressed in a unified and simultaneous way. Little effort has been made in the past to

address these issues simultaneously. Furthermore, since Computer Aided Molecular Design

(CAMD) approach relies heavily on the use of group contribution theory and the availability of

property prediction models, little or no effort has been made to investigate the usability of

response surface methods or meta-models. The motivation of this research is to analyze a

1



different approach based on the creation of response surface methods and the optimization of the

molecular structure to find potential candidates for the replacement of the existing refrigerants.

1.2. Fundamentals of vapor compression refrigeration

As shown in Figure 1.1, the refrigerant in an ideal single stage vapor compression

refrigeration cycle essentially undergoes the following four processes (Moran and Shapiro 2000):

a) Isobaric heat transfer to the refrigerant in the evaporator (process 1-2)

b) Isentropic compression of the refrigerant in the compressor (process 2-3)

c) Isobaric heat removal from the refrigerant in the condenser (process 3-4)

d) Adiabatic expansion of the refrigerant through the throttle valve/ turbine (process 4-1)

The corresponding T-s diagram is as shown in Figure 1.2. It should be noted that for successful

operation of the refrigerator, the refrigerant temperature in the evaporator, TL, should be less than

QH

4 Condenser, TH 3

Turbine Compressor

Evaporator, TL

1 2

Figure 1.1: An illustration showing the components of an ideal single stage vapor compression

refrigeration cycle
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TH 
Winput Temperature of

warm region
Liquid Vapor

Temperature of

cold region
TL -- - - -,

Liquid + :vapor

Specific entropy (s)

Figure 1.2: T-s diagram of a single stage ideal vapor compression refrigeration cycle

the cold region temperature and the refrigerant temperature in the evaporator, TH, should be

greater than the warm region temperature. Heat transfer from the refrigerated space to the

refrigerant causes the vaporization of the refrigerant. This removal of heat causes the refrigeration

of the colder region. The rate of this heat transfer QL is known as the refrigeration capacity and it

is defined by the following equation:

OL = rh(h 2 - h1 ) (1.1)

After the refrigerant exits the evaporator, it is compressed to a relatively higher pressure and

temperature by the compressor. The rate of work done by the compressor is given by

Winput = m(h3 - h2) (1.2)

The rate of heat removal from the refrigerant in the condenser is given by the following equation:

OH = rii(h4 - h3) (1.3)

The COP of the refrigeration cycle, j, is then defined by the following relation:

3



QL/rn _ (h 2 - hi)

Winput/m (h 4 - h2 )

The equations 1.1 through 1.4 remain valid under the following assumptions:

a) Any irreversibilities and stray heat transfer to the surroundings, within the evaporator and

the condenser are ignored.

b) No pressure drops, due to friction effects, exist within the system.

1.3. Findings of past searches for new refrigerants

Calm and Didion (Calm and Didion 1998) summarized the results and observed trends of

many past attempts to search for new refrigerants. The major findings are summarized below:

a) Increasing the number of carbon atoms in the refrigerant molecules not only increases

the molecular weight, it generally also results in an increase in the normal boiling

temperature and the heat capacity.

b) Presence of a large number of hydrogen atoms in the molecule generally decreases the

atmospheric lifetime of the organic compound. Compounds with lower atmospheric

lifetimes are known to have lower ODP and GWP. However, compounds with large

number of hydrogen atoms tend to have higher flammability, especially when the

number of hydrogen atoms in the refrigerant molecule becomes greater than the number

of halogen atoms in the molecule.

c) An increase in the number of oxygen atoms results in a decrease in the ODP and GWP

because it results in reduced stability of the particular compound in the atmosphere.

However, it has also been associated with increased reactivity, flammability and toxicity.

d) The increase in the number of fluorine atoms increases the GWP. Perfluorinated

compounds are examples which support this observation. Perfluorinated compounds

belong to the family of organic compounds in which all the hydrogen atoms on a carbon

4



chain are replaced with fluorine atoms and the molecule contains at least one different

functional group.

e) An increase in the chlorine content generally results in an increased ODP and toxicity. It

also generally results in an increased lubricant miscibility.

f) An increase in the bromine content also generally increases the ODP of the organic

compound. However, increased bromine content in the molecule has also been linked

with reduced flammability of the compound. In general, a larger number of halogen

atoms in the molecule results in an increase in the atmospheric lifetime, ODP and GWP.

This trend is especially observed for perhalogenated compounds. Perhalogenated

compounds belong to the family of organic compounds in which all the hydrogen atoms

on a carbon chain are replaced with a particular halogen atom and the molecule contains

at least one different functional group.

g) Presence of a large number of nitrogen atoms in the molecule has been associated with

an increased reactivity of the compound, thereby reducing stability of the molecule.

Increased nitrogen content is also linked with an increase in the toxicity. Presence of

sulfur also shows similar effects on the toxicity and the stability of the compound.

h) Presence of boron in the molecule makes the compound more reactive and generally

toxic. Iodine atoms in the molecule also increase the reactivity of the compound and

some volatile iodine containing compounds have been rejected in the past because of

their high toxicity. Because of their higher reactivity, organic compounds having iodine

generally have lower atmospheric lifetime. Consequently, this also reduces their

potential use as refrigerants because of similar issues related to their long term stability

inside the refrigeration system.
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1.4. Research objectives

This research aims to test and evaluate the performance of a different approach, which

incorporates some fundamentals of CAMD, in designing new refrigerants. The performance of

the newly designed refrigerants will be evaluated on the basis of the normal boiling temperature,

latent heat of vaporization, vapor pressure variation over the operating range, half life in

troposphere and biodegradability.

This research represents an endeavor of finding an alternative strategy for designing new

functional molecules. Freon-12 will be used as the reference refrigerant and the new refrigerants

will be designed to be equal or better than Freon-12 with respect to all the objectives defined

previously. This new strategy does not rely on the availability of group contribution models.

Instead, it depends on the availability of data for those classes of compounds which are

considered suitable for being used as refrigerants.

1.5. Methodology

The rationale behind the newly developed methodology is very similar to the basis of a

group/ atom/ bond contribution approach (Achenie, Gani and Venkatasubramanian 2003). It is

the fact that intermolecular forces in a molecule are determined by the nature and the number of

the elements constituting the particular molecule, types and locations of bonds between a

particular pair of atoms and the arrangement of atoms themselves. Thus, a given set of structural

variables describing a topology of a molecule should be linked to a unique set of property values

for such a molecule.

Figure 1.3 shows the sequence of operations which together constitute the newly

developed methodology for performing multi-objective optimization of the molecular structure of

refrigerants. An initial pool of organic compounds was constituted. The compounds included in

this pool were chosen while considering currently used refrigerants, the availability of
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experimental data and/ or accurate property estimation models and stability criteria required by an

organic compound to be used as a refrigerant. This initial pool of organic compounds comprised

of the general family of alkanes, halogen substituted alkanes, alkenes, halogen substituted

alkenes, ethers and halogen substituted ethers. These chemicals were chosen in such a way that

none of them had more than four constituting carbon atoms.

Selection of compounds & their
properties for the initial data pool

Parameterization of the

molecular structure and creation

of design variables

Creation & integration of the Specification & integration of

surrogate model for constraints and other system
approximating the objective parameters

functions

Iterative use of the optimization algorithm

until the requirements are satisfied

Obtain the optimum sets

of design variables

Transform the optimized

sets to molecular structures

Validate the results

Figure 1.3: A flowchart explaining the methodology used in performing multi-objective design

optimization of the molecular structure of refrigerants
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A methodology to mathematically represent the molecular structures of those compounds

was developed. Using this methodology, the molecular structures of all the compounds in the

initial data set were represented by a unique set of twenty eight structural design variables. This

approach of mathematically representing the molecular structure was also found capable of

differentiating between isomers of a particular compound.

Using the available data, multi-dimensional surrogate models/ response surfaces were

developed to approximate the objective functions. The weighted approximation method (Sigma-

Technology Company 2009) and modified radial basis functions based method (Sigma-

Technology Company 2009) were considered for creating the response surfaces. The results were

analyzed, and it was found that estimates from the weighted approximation method were more

accurate than the ones which were produced from the radial basis functions based method.

Constraints for governing the individual value of all the design variables, enforcing limits

on the combination of constraints and setting the lower and/ or upper bounds of the desired

property values, were formulated. Constraints were specifically developed and enforced to ensure

the chemical feasibility of a generated molecular structure.

Along with the constraints, the information regarding the meta-models was used in the

process of optimization. The optimization was performed using the commercially available multi-

objective optimization software package, IOSO NM version 1.0 (Sigma Technology).

The parameterization of the molecular structure of an organic compound is described in

section 1.6. Section 3.3 discusses the basic optimization algorithm used in IOSO and advantages

of IOSO over other currently used optimization algorithms. Chapter 4 discusses the selection of

compounds for the data pool, selection of their properties and compilation of the property related

data. Significance of the constraints and their importance is explained in detail in chapter 5.

Chapter 6 discusses the creation of response surfaces, their analysis and comparison of the results

from the two methods used for the construction of the meta-models.
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1.6. Mathematical representation of the molecular structure

The developed methodology is based on the creation and evaluation of 28 structural

design variables, used for representing the molecular structure of any compound considered in

this study. The methodology has been designed to handle molecules which have up to four carbon

atoms. Apart from carbon atoms, the other elements which might be present in the molecule are

restricted to hydrogen, chlorine, fluorine, bromine and oxygen. The compound is only allowed to

have any of the following types of seven bonds:

a) Carbon-carbon single bond

b) Carbon-carbon double bond

c) Carbon-hydrogen single bond

d) Carbon-chlorine single bond

e) Carbon-fluorine single bond

f) Carbon-bromine single bond

g) Carbon-oxygen single bond

Each of the four carbon atoms is associated directly with seven out of a total of twenty eight

structural design variables. Each of these seven structural design variables physically represents

the number of a particular type of bond associated with the particular carbon atom.

Table 1.1 shows the twenty eight structural design variables (X1, X2, X 3... , X27, X 2g). The

first row of the design variables, X1, X2, X3 and X4, represents the number of carbon-carbon

single bonds associated with each of the carbon atoms designated by C 1, C2, C3 and C4 ,

respectively.

Similarly, the second row of design variables, X5, X6 , X, and X8 , represents the number

of carbon-carbon double bonds associated with each of the four carbon atoms designated by C1 ,

C 2, C 3 and C 4, respectively. In a similar manner, X9 X10 , X 11 and X 12 represent the number of

carbon-hydrogen single bonds associated with C1, C2, C 3 and C4, respectively; X1 3 X14 , X15 and
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X16 represent the number of carbon-chlorine single bonds associated with C 1, C2, C 3 and C4,

respectively; X17 , X18, X19 and X 20 represent the number of carbon-fluorine single bonds

associated with C1, C2 , C3 and C 4, respectively; X21, X22, X23 and X24 represent the number of

carbon-bromine single bonds associated with C 1, C2 , C3 and C4, respectively and X25,X26, X27 and

X28 represent the number of carbon-oxygen single bonds associated with C 1, C2, C3 and C4,

respectively.

Table 1.1: Structural design variables used in the design methodology

C1 C2  C3  C4

Number of C-C bonds X, X2 X3 X

Number of C=C bonds X5 X6 X7 X8

Number of C-H bonds X9 X10 X1 i X12

Number of C-Cl bonds X13 X14 X15 X16

Number of C-F bonds X17  X18 X19 X20

Number of C-Br bonds X21 X22 X23 X24

Number of C-O bonds X25 X26 X27  X28

1.6.1. Distinguishing structural isomers using the twenty eight structural design variables

As mentioned earlier, the developed design methodology is capable of differentiating

between structural isomers of an organic compound. In addition differentiates between different

structural isomers by generating unique sets of twenty eight structural design variables for each of

the structural isomers.

Isomers are compounds that have the same molecular formula, but differ in the

arrangement of individual atoms in the molecule. For example, the molecular formula C4H9CI

may correspond to any of the following organic compounds:
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a) 1-chlorobutane

b) 2-chlorobutane

c) 1-chloro-2-methylpropane

d) 2-chloro-2-methylpropane

Figure 1.4, Figure 1.5, Figure 1.6 and Figure 1.7 shows the molecular structure of 1-chlorobutane,

2-chlorobutane, 1-chloro-2-methylpropane and 2-chloro-2-methylpropane, respectively. Even

though they are represented by the same molecular formula, distinct structural features can be

clearly seen in their molecular structures. Values of the corresponding sets of twenty eight

structural design variables show that the proposed design methodology represents the molecular

structure of all the four compounds in a unique manner. Hence, it successfully differentiates

between the four isomers of the organic compound having the formula C4H9Cl.

1 2 2 1

0 0 0 0

2 2 2 3

1 0 0 0

is 0 0 0 0

0 0 0 0

0 0 0 0

C1

Figure 1.4: Molecular structure of 1-chlorobutane and the corresponding set of structural design

variables
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1 2 2 1

0 0 0 0

2 1 2 3a. 0 1 0 00 0 0 0

C1 0 0 0 0

0 0 0 0Figure 1.5: Molecular structure of 2-chlorobutane and the corresponding set of structural designvariables

1 3 1 1
sa0 0 0 0

saa 2 1 3 3

sa1 0 0 0

0: . 0 0 0

Figure 1.6: Molecular structure of 1-chloro-2-methylpropane and the corresponding set of

structural design variables
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C 1S 1 3 1 1
II' 0 0 0 0

''s3 0 3 3

IlS0 1 0 0

'II0 0 0 0

IS0 0 0 0

1.I 0 0 0 0

Figure 1.7: Molecular structure of 2-chloro-2-methylpropane and the corresponding set of the

structural design variables
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2. LITERATURE REVIEW

2.1. Computer Aided Molecular Design (CAMD) in the prediction of properties

CAMD is a reverse engineering procedure which not only reduces the time to develop a

new chemical compound, but also proves to be a more systematic methodology in generating

several new molecules that are promising enough to be considered for experimental verification.

This approach is usually based on the idea that any organic molecule can be constructed from a

pre-specified set of building blocks (descriptors of the molecular structure). The value of a

property for the compound can be estimated by summing the contributions for the specific

property from each chemical group constituting the molecular structure of the compound.

However, this usually requires the availability of structure based property models, which evaluate

the contributions for the specific property of each of the chemical groups used in describing the

molecule. In essence, this approach aims to generate molecules that conform to various property

requirements that are known and specified a priori. However, experimentation, based on

empirical trial and error, becomes the only viable option in most of the cases in which property

models do not exist. Achenie et al. described the methods, tools and the applications of CAMD

methodology in details (Achenie, Gani and Venkatasubramanian 2003).

According to Poling et al. (Poling, Prausnitz and O'Connell 2004), most of the CAMD

methodologies used for the estimation of properties are based on additive methods like the Group

Contribution Approach (GCA) or bond/ atom contribution approach. In any of these

methodologies, the properties of a chemical compound are expressed in terms of the number of

occurrences of certain groups of atoms arranged in a specified manner (or individual bonds/

individual atoms), in the molecule. Although these methodologies allow the flexibility to analyze

structurally diverse set of chemicals, their use in certain problems becomes restricted due to their

dependence on the number and types of the chemical groups (or bonds/ atoms) selected a priori.
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Nevertheless, in the past, a number of efforts have been made to predict different properties like

the boiling temperature (Walters, Myrdal and Yalkowsky 1995), (Cholakov, Wakeham and

Stateva 1999), (Nannoolal, et al. 2004), (Li, Higashi and Tamura 2006), (Wang, et al. 2009);

critical volumes (Sastri, Mohanty and Rao 1997); acute toxicity (96-h LCso) of organic

compounds to the Fathead Minnow aquatic species (Martin and Young 2001); enthalpy of

vaporization at different temperatures (Basarova and Svoboda 1995), (Li, et al. 1997); probability

and rate of aerobic biodegradation (Boethling, et al. 1994); by using the group contribution

approach.

In many applications a conventional group/ bond/ atom contribution based approach

cannot be applied due to the absence of suitable property prediction models and the complexity of

the generated molecules. Most of the alternatives to these methodologies are either Quantitative

Structure-Property Relationship (QSPR) based approaches that use molecular descriptors such as

local charge densities, molecular surface area, etc. or are based on the addition of the weighted

contributions of additive properties such as molecular weight, boiling temperature, etc. Harper et

al. (Harper, et al. 1999) proposed a modified CAMD approach based on an atomic/ molecular

structure generation algorithm and molecular modeling tools. However, this methodology still

relied on the conventionally used generation and test approach. This modified methodology was

then applied to the designing of industrial solvents. It was reported that this methodology lacked

the capability to address many of the issues related with conformers. It should be pointed out that

this design methodology is different from the methodology explained in this work which utilizes

multi-dimensional response surfaces and multi-objective constrained optimization algorithms.

Marrero and Gani further tried to enhance the accuracy, reliability and the range of

application of the CAMD methodology (Marrero and Gani 2001). This methodology relied

heavily on the group contribution approach. However, the researchers proposed a three-level

scheme that was developed to estimate the normal boiling temperature, critical temperature,
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critical pressure, critical volume, standard enthalpy of formation, standard enthalpy of

vaporization, standard Gibb's energy, normal melting temperature and standard enthalpy of

fusion of a wide variety of organic compounds. Estimation was performed successively at all

three levels where the first level provided the initial approximation of the property values (only

first order groups were used in the first level), which was consequently improved and refined in

the second (both first order and second order groups were used in the second level) and the third

level (groups belonging to first order, second order and third order, were used in the third level),

respectively.

Fermeglia et al. (Fermeglia, Ferrone and Pricl 2003) proposed a general all atom force

field model for predicting the phase equilibria of low molecular weight hydrofluorocarbons that

can be used as refrigerants. This model was based on the ab initio calculations and molecular

dynamics simulations. Firstly, the molecular structures of all the eight hydrocarbons (each

hydrocarbon only consisted of atoms of carbon, hydrogen and fluorine) considered in this study

was optimized using density functional theory based calculations. Secondly, varied configurations

of the molecules used in this study were obtained to generate the potential energy surface

sampling. The results were consequently fitted using least-square fitting routines. The calculated

intramolecular energetical properties (for molecules in isolation) such as absolute energy,

enthalpy of formation, ionization potential, dipole moment, etc. were reported to be in good

agreement with the experimental data.

Commercially available software packages such as the Estimation Program Interface

(EPI) suite have also been developed for the estimation of a wide variety of chemical, physical

and environment related properties. For example, the atmospheric oxidation (U.S. Environmental

Protection Agency 2008) prediction and biodegradability probability (U.S. Environmental

Protection Agency 2009) of an organic compound may be performed by inputting its Simplified

Molecular Input Line Entry System (SMILES) notation in the user interface of the Atmospheric
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Oxidation Program for Microsoft Windows (AOPWIN) and Biodegradation Probability Program

(BIOWIN).

2.2. Development of replacement refrigerants using computational approaches

One of the earliest reported works on the use of computer aided molecular design in

designing replacement refrigerants was published in the late 1980's (Joback and Stephanopoulos

1989). Some other research efforts such as the one reported by Bhattacharjee (Bhattacharjee

1995), to predict the molecular structure of organic compounds that can be used as viable

refrigerants, were limited to the study of compounds belonging particularly to haloethanes.

With the enforcement of newer and stricter environmental laws and regulations, the

design methodologies developed in the 1990's started incorporating objectives that were

specifically addressing the impact of refrigerants on the environment. For example, Churi and

Achenie (Churi and Achenie 1996) restricted the ODP of the new refrigerant to be less than or

equal to 0.2 (The Clean Air Act of 1995 required the refrigerants to have ODP's below 0.2 by the

year 2000). This work was aimed at optimizing many performance objectives such as the specific

heat and the enthalpy of vaporization, via the formation of a single performance objective. Mixed

integer non-linear programming approach was used in their work. Duvedi and Achenie (Duvedi

and Achenie 1996) also incorporated the ODP of compounds, however, using a different method.

An analytical expression to find the ODP of chlorofluorocarbons, with one or two carbon atoms

and a certain number of chlorine atoms, was developed and utilized. However, again all the

individual performance objectives were linearly combined to form a single objective, which was

optimized using an algorithm designed to solve a finite sequence of non-linear programming sub

problems and mixed integer linear programming master problems.

In 1997, the same authors also reported results of a proof-of-concept study to design

environmentally benign refrigerant mixtures (Duvedi and Achenie 1997). Due to the limited
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availability of experimental data, the basis set consisted of only 21 of the most commonly used

refrigerants. Moreover, only binary refrigerant mixtures were considered due to the relative ease

of vapor-liquid equilibrium calculations and the unavailability of accurate experimental data

related to the normal boiling temperature, pressure, volume, critical temperature, etc. The

objective function comprised of the compressor displacement and the ODP.

Sahinidis and Tawarmalani (Sahinidis and Tawarmalani 2000) demonstrated the

importance of identifying the global optima of a mixed integer non-linear programming

formulation when they attempted to find a replacement for Freon 12. The use of a modified

branch-and-bound algorithm which included range reduction techniques, finite branching

schemes and a theory of convex enclosures for non-linear functions of binary variables, provided

new solutions. However, all the performance objectives were linearly combined to formulate a

single objective optimization problem.

Khetib et al. (Khetib, Meniai and Lallemand 2009) attempted to design CFC and HCFC

substitutes by using the group contribution approach. This approach incorporated functional

groups that specifically excluded chlorine atoms and it explored the idea of generating binary

mixtures between certain generated refrigerants themselves or with other selected compounds.

However, the applications of the method were limited because only five functional groups were

chosen and those groups contained only three different elements: carbon, hydrogen and fluorine.
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3. MULTI-OBJECTIVE OPTIMIZATION

3.1. Basic terms and definitions

This section explains the basic terms necessary for understanding the rest of the chapter.

The terms are commonly used in current literature found on the general topic of multi-objective

optimization. Here, we will relate this terminology to specific applications in design optimization

of molecules.

In our particular application there will be several simultaneous objectives that are often

contradictory For example, we would like to maximize the enthalpy of vapor liquid phase change

while at the same time minimizing the ODP and GWP. Each of these objectives depends on the

number of elements constituting a given refrigerant, the number of atoms of each of these

elements and the number and type of bonds among each of these elements. All of these

parameters thus, represent design variables that could be optimized in order to create an entire set

of new refrigerants that will have the best trade-off among the desired multiple objectives as

defined earlier. In general, we could have m such objective functions each depending on n design

variables. It will be seen at a later stage that the optimization problem studied in this work, deals

with a mixture of discrete and continuous design variables. However, all the objective functions

have real values.

A set of inequality and equality constraints must be specified which limit the values that

individual design variables and/ or a combinations of design variables (and/ or objective

functions) may achieve in order to guarantee the physical relevance of the numerical results

obtained from the optimization algorithm.

The region of search space in which the candidate new refrigerants (designs) satisfy all

the constraints is known as the feasible search space. The region of the search space in which the

designs do not satisfy at least one constraint is called the infeasible search space.
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Multi-objective optimization algorithms are conceptually different from most single-

objective optimization algorithms. Specifically, they do not utilize gradients of the objective

functions with respect to each of the design variables. Instead, they use essentially stochastic

procedures in their search for the best trade-off solutions among several desired objectives. This

approach requires a pool (population) of candidate solutions (population members) to be

evaluated for their multiple properties (objective functions) Consider an example in which m

objectives are to be minimized. A solution X7 is considered to be a dominated solution if there

exists a feasible solution z which satisfies the following two conditions:

a) x is at least as good as xi for all objectivesf (i = 1, ... , m), i.e.,

fi(X) _ fi (i) b 1 < i < m (3.1)

b) z is strictly better than i on at least one objective i, i.e.,

f;(z) < fi(x) for at least one 1 i m (3.2)

If equation 3.1 and equation 3.2 are satisfied, then it is said that z weakly dominates z. For

example, consider an optimization problem in which two objectives, objective 1 and objective 2

3
O

4
ONO

22 O
(N

2

Objective 1 (minimize)

Figure 3.1: An example explaining the concept of dominance

20



that need to be minimized. There are four solutions to this problem. These solutions are

represented in the objective function space (Figure 3.1), by small circles numbered 1, 2, 3 and 4.

It can be seen that solution 1 performs better than all the other solutions with respect to objective

1. Considering the conditions for dominance, it can be concluded that solution 1 dominates

solution 3 and solution 4 with respect to both objectives. Solution 2 does better as compared to

solution 1, with respect to only objective 2. Hence, neither solution 1 is completely dominated by

solution 2 nor solution 2 is completely dominated by solution 1. Thus, these two solutions (1 and

2) represent the best trade-off solutions among the four candidate solutions presented.

The non-dominated set of solutions refers to those solutions which are not dominated by

any other solution. A non-dominated solution is also called Pareto-optimal, and the non-

dominated solution set among all feasible solutions is termed the Pareto-optimal set. In the case

of a two-objective problem, the Pareto-optimal set of solutions manifests as a two-dimensional

curve.

For example, consider the case of an optimization problem with two competing

objectives and both objectives need to be maximized. Figure 3.2 illustrates the concept of non-

Non-dominated solutions

Dominated solutions

O O
Pareto front

O
O

O
O O

Obiective 1

Figure 3.2: A schematic illustrating the concept of non-dominated solution, dominated solution

and Pareto front for a two-objective problem (adapted from (Zitzler 2002))
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dominated solution, dominated solution and the Pareto front, for such a problem.

For a problem involving three objectives, the Pareto front is generally a surface. In

general, for a problem involving m competing objectives, the Pareto front will manifest itself as a

hyper surface in an ni dimensional space.

It should be pointed out that a commonly used approach of minimizing the linear

combination (a weighted sum) of the objective functions will result in finding only a single point

on the Pareto front. Thus, creating a Pareto set of optimal solutions using this approach would be

computationally prohibitively expensive.

3.2. Overview of multi-objective optimization

Consider a multi-objective optimization problem which has n decision variables and m

objective functions defined byflf 2, ff..., f,. Without any loss of generality, it can be assumed that

each of the m components of the vector of objective functions f(z) is to be minimized. Such a

minimization problem could be converted to a maximization problem by multiplying the

objective functions by -1.

This multi-objective optimization problem can be mathematically defined as

minimize fi(z), i = 1, 2, 3 ... , m (3.3)

subject to the equality and inequality constraints given by equations 3.4, 3.5 and 3.6.

xp (1 XP x< XP x(), p = 1, 2, 3 ... , n (3.4)

gk (x) 0, k = 1, 2, 3 ... , l (3.5)

h (z) = 0, j = 1, ... , q (3.6)

A solution vector x = (x 1 , x 2 , x 3 ... , xn) is a vector of the n design variables and, as mentioned

previously, is not unique for a multi-objective problem. Equation 3.4 represents a constraint that

limits the value of the decision variable x, between an upper bound (xp(u)) and a lower bound

(xP(0). Equation 3.5 is a generic representation of / inequality constraints which constrict the
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objective space. Similarly, equation 3.6 is a generic representation of q equality constraints,

which also limit the objective space.

3.3. Multi-objective optimization using Indirect Optimization on the basis of Self

Organization (IOSO) software

The capabilities of IOSO technology algorithms have been documented in the past in

detail (Egorov, et al. 2007), (Egorov-Yegorov, et al. 2003), (Sigma Technology). This algorithm

is based on the application of response surface methodology and the adaptive use of global and

middle range multi point approximation. These techniques allow for a more accurate response

surface fit in the vicinity of the optimum of the most recent optimization cycle. Another

advantage of using these techniques is that they are capable of generating accurate response

surfaces, even when very small amount of data (candidate solutions) is available. IOSO also

achieves this by implementing a number of independent highly efficient evolutionary self

organizing algorithms. The selection of a particular algorithm is done internally and adaptively

and it depends on the specific problem.

Any iteration of IOSO essentially comprises of the following two steps, in the same order

in which they are listed (Egorov, et al. 2007):

1) Creation of surrogate models that analytically approximate the objective functions.

2) Optimization of the approximation function, in the current search region.

Figure 3.3 shows a schematic diagram of the sequence of steps constituting the basic

optimization algorithm used in IOSO. Between two successive iterations the experiment plan is

modified; the current search space is adaptively selected and modified; a global or a middle range

response function is chosen and the response surface is transformed; the parameters and the

structure of the optimization algorithms are modified and if necessary, new potentially promising

points are selected within the current search region. Because of the small number of points in the
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Define the
initial DOE Xw

For each design vector, call
the mathematical model of the

system being optimized

Obtain the value of the
optimization objective and

constraints, for each design vector

From the current DOE select Pareto
optimal points that are distinguishable

with respect to the Pareto objective

In B, optimize the m approximation
Randomly select one Pareto functions to obtain x ,= 1, m

optimal point A from the set xi

Call the mathematical model of the system being
Using linear metrics construct XmcXw designed to obtain the actual values of the

having M points closest toxp particular objective functions at x,j = 1, m

Define current Add x,j = 1, m to the current DOE.
search region B E X

W=W+m

In B, construct approximating
functions for objective

y,,j = 1, m & the constraints Is the stopping
criterion true?

Yes

Generate n points according to the
normal distribution x1 -+ N(xf, -). No Stop

Add the points x1,j = 1, n to the

current DOE W = W + n

Figure 3.3: An illustration of the basic optimization algorithm employed in IOSO

initial Design of Experiments (DOE) and a large search space, the accuracy of the process during

initial stages could be poor. During each iteration, the behavior of the objective functions, inside
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the current search space, near the extremum, is stored and the response function is made more

accurate. The number of points in the search region is increased and the search space itself is

progressively reduced. This results in an increase in the approximation function accuracy, which

in turn increases the efficiency of the whole optimization process.

IOSO NM provides many advantages over the commonly used techniques in solving

multi-objective optimization problems (Sigma Technology). These advantages are the following.

1. The algorithm can solve practical tasks which have non-convex, non-differentiable and

stochastic objective functions and constraints with mixed variables.

2. The algorithm does not need to significantly adapt the mathematical models of the system

being designed.

3. For tasks involving multiple extrema, the algorithm finds the global optimum with a

relatively high probability.

4. The Pareto-optimal solutions are generally obtained by making a relatively small

number of direct calls to the mathematical models of the system, which is being designed.

5. The algorithms used in IOSO find desired number of Pareto points, distributed uniformly

in the objective function space.

6. Convolution methods are not employed to solve multi-objective problems (Egorov, et al.

2007)

7. Parallelization of the whole computational process is possible without much additional

complexity.

25



4. PREPARATION OF THE DATA SET FOR OPTIMIZATION

4.1. Introduction

Figure 4.1 shows the process flow used in the preparation of the data set. As shown, the

process starts with the identification of the different classes of organic compounds that are

represented in the pool of data. Based on the structures of existing refrigerants, availability of

thermo-physical properties and stability related issues, compounds constituting the data set were

identified. Section 4.2 explains this selection in more detail.

Selection of organic compounds which constitute the
pool of data

Identification of the thermodynamic & environment
related properties

Identification of sources which either estimate the
values of these properties or have a compilation of

experimental values.

Verification of the fact that all the property values are
estimated/ found experimentally using similar

methodologies/ experimental setups.

Prepartion of the data set and correction of errors from
the compiled data.

Figure 4.1: An illustration showing the process flow used in the preparation of the data set

Many thermodynamic and environment related properties are important for evaluating the

performance of a given refrigerant and its suitability for a particular application. The

thermodynamic properties may include normal boiling temperature, enthalpy of vaporization,

liquid specific heat, vapor pressure, etc. Whereas, the properties required for estimating its

suitability for a given application may include the ODP, GWP, half-life in troposphere,

biodegradability, flammability and toxicity among others. Because of the non-availability of

experimental/ estimated values of many of such properties in the public domain, this study is
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limited to the use of normal boiling temperature, enthalpy of vaporization, vapor pressure, half-

life in the atmosphere and biodegradability. However, with the availability of more data, this

study can be easily expanded to incorporate any number of properties. Different sources were

identified and used to extract the information about each compound selected in this study.

4.2. Selection of organic compounds for the data pool

Currently used refrigerants involve an extensive use of chlorofluorocarbon (CFC),

hydrochlorofluorocarbon (HCFC), perfluorocarbon (PFC) and other halogenated hydrocarbon

based compounds. Non-fluorochemical, fluorochemical and hydrofluoroethers based compounds

are also used as refrigerants in some applications (Sekiya and Misaki 2000), (Calm 2008),

(Mohanraj, Jayaraj and Muraleedharan 2009).

Only those compounds which have four or fewer carbon atoms were selected in this

study. Duvedi et al. (Duvedi and Achenie 1996) reported that molecules with larger number of

carbon atoms do not exhibit vapor pressures in the range desired for refrigerants. Churi et al.

(Churi and Achenie 1996) also reported similar observations.

It is observed that compounds having double or higher bonds show stability problems by

spontaneously decomposing or by polymerizing in a short period of time. In many situations

stability problems can be avoided by simply ensuring that the new refrigerant does not have

double or triple bonds. Therefore, compounds containing any triple bonds are not considered.

However, this study uses compounds with carbon-carbon double bonds to prevent any

elimination of potentially good molecules.

Compounds containing nitrogen atoms are not considered, because of primarily two

reasons. They are:

1. When both halogen and nitrogen groups exist in a low boiling compound, the compound

shows strong tendencies to explode (Duvedi and Achenie 1996).

27



2. We could not find a sufficiently large number of nitrogen containing compounds, with

their properties available. Consequently, such compounds would not be represented well

in the data pool.

Compounds containing other elements like sulphur, phosphorous, iodine, etc. are also not

considered. Again, this is because of the fact that the number of such compounds for which either

experimental or estimated property data could be found, is not sufficient to be incorporated in the

data pool. An insufficient representation in the data pool would result in a decrease in the

accuracy of the response surface. Because of the above concerns, compounds belonging to the

generic class of alkanes, alkenes, alkyl halides, ethers and halogenated ethers only were

considered for selection in the present effort.

4.3. Selection of properties for the refrigerant problem

Each of the sections numbered between 4.3.1 and 4.3.5 explains the necessity of choosing

a particular property, its relevance to the refrigerant design problem and in certain cases, the

comparison of different models considered for the estimation of that specific property.

4.3.1. Normal boiling temperature

In general, refrigerants with normal boiling temperatures (boiling temperatures at one

standard atmosphere pressure) lower than the room temperature have been found to have wider

applications. This requirement might be different for compounds which are intended to be used as

refrigerants in industrial applications. However, in most cases, the replacement refrigerant should

be such that it has its normal boiling temperature close to the normal boiling temperature of the

refrigerant which it is designed to replace.
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4.3.2. Vapor pressure

The vapor pressure of the refrigerant fluid is considered to be an important property for

the refrigerant design. In order to reduce the chances of air/ moisture leaking into the system and

to reduce the chances of any explosions if a hydrocarbon is used as a refrigerant, the lowest

pressure in the cycle should be more than the atmospheric pressure. Whereas, a high value of

system pressure increases the size of the system, thereby, indirectly increasing the cost of the

system. It has been reported in the current literature that the capacity of a refrigeration system is

almost directly proportional to the evaporating pressure inside the system (Granryd 2001).

Therefore, the replacement refrigerant should have similar vapor pressure as that of the

refrigerant it is designed to replace. It has also been observed that those refrigerants that are

required to work in heat pumps above 90 C should possess vapor pressures which vary with

temperature at a moderate rate (Pfeiffenberger 1982).

4.3.3. Enthalpy of vaporization

The enthalpy of vaporization (latent heat of liquid/ vapor phase change) is directly linked

to the volumetric flow necessary to produce a certain amount of cooling. A higher enthalpy of

vaporization of the refrigerant fluid reduces the amount of the volumetric flow needed to produce

the desired amount of cooling. A reduced volumetric flow requirement indirectly reduces the size

of the refrigeration system, thereby reducing the cost of operation and installation.

4.3.4. Half-life time in troposphere

The atmospheric lifetime is one of the major factors in determining the environmental

impact of a refrigerant. In some cases, it has even been observed that refrigerants with longer

lifetimes can have a higher negative environmental impact than what can be expected by

measuring their actual concentration in the atmosphere (Halimic, et al. 2003). Atmospheric

29



lifetime has been linked directly and indirectly with global warming. Because of this reason, the

use of refrigerants with extremely large lifetimes should be avoided (Kopko 1990).

The hydroxyl radical, OH, possesses the ability to react with almost all the gases which

are emitted into the atmosphere. This ability makes it the most important radical for driving the

atmospheric chemistry (Carr, Heard and Blitz 2009). Therefore, hydroxyl radicals are often seen

as oxidants that control the removal of pollutants from the atmosphere.

In troposphere, OH radicals are mainly produced through the photolysis of ozone, which

results in the formation of excited O ('D) species at wavelengths k < 320nm. This is followed by

the reaction of O ('D) with a molecule of either N 2 or 02. Although most of the atoms of the

excited species get deactivated through collisions with other gases, a small percentage of them do

cause the formation of OH radicals. The whole process is illustrated in the chemical reactions,

which are listed below (Li, Matthews and Sinha 2008).

03 + hv( 320nm) - 0('D) + 02 (4.1)

0(1D) + M -> O(3P) + M (where M is N2 or 02) (4.2)

0(1D) + H2 0 -> 20H (4.3)

Under a steady state approximation, the production rate for OH (RoH) can be calculated

from the kinetics analysis of the above reaction sequence. RoH is given by equation

2 - j k k [H 2 0] - [03]

RoH (k1 [H2 0] + k2 [M])

In the above equation, j is the 03 photolysis rate to form O ('D), k, is the rate constant for the

reaction of O ('D) with water and k2 is the rate constant for deactivation of O ('D) by gases like

N 2 and 02. [03] and [H 2O] represent the concentration of ozone and water, respectively.

It can be safely assumed that the chemical, with which OH radical is reacting, is present

in the troposphere at a very low concentration. Moreover, a steady state concentration of OH

radical is maintained by its generation in the presence of sunlight. Under these assumptions the
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reaction can be considered a pseudo first order reaction and the half-life in the troposphere can be

calculated by using equation 4.5.

0.693 (4.5)
t = koH[OH]

Here,

kOH - hydroxyl radical rate constant (in cm3/ molecule-second)

[OH] - hydroxyl radical concentration (in molecules (or radicals)/cm 3)

Hence, the half-life of a chemical compound can be calculated if an experimental value or an

estimated value of the rate constant of the chemical is known as well as some average hydroxyl

radical concentration. This average hydroxyl radical concentration depends on the time frame in

which it is calculated. For chemicals which react faster, a twelve hour daylight time frame might

be used to estimate the average OH radical concentration. However, for the chemicals which react

slowly (the average life times in the atmosphere are expected to be more than a few days), a

twenty four hour time frame might be more applicable.

It should be noted that the hydroxyl radical concentration varies with the temperature,

time of the year, cloud cover, latitude, the hemisphere of the place where the OH radical

concentration is found out, etc. However, global mean OH radical concentrations for the

troposphere (up to a height of 14 km) have been reported previously as 9.2 x 10' mol/cm 3 (Bahm

and Khalil 2004). The concentrations were averaged over a 24-hour time period. The zonally and

monthly averaged OH concentrations have been reported previously. They are listed in Appendix

B.

4.3.5. Biodegradability

Biodegradation is the process of the transformation of organic compounds by micro

organisms through enzymatic reactions like oxidation, reduction and/ or hydrolysis. The

biodegradability of organic compounds, which could be used as refrigerants, has been a subject of
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many experimental studies (Sablijic and Peijnenburg 2001). For many of the existing substances,

results of a ready biodegradability test may be available which help in determining if the

substance is potentially persistent. However, for many other substances, such a preliminary

assessment aid may not be available. QSAR based models have been used to overcome this

difficulty. A number of models for predicting the probability and/or rate of aerobic/anaerobic

biodegradation of chemical compounds have been proposed. Some of the most commonly used

approaches to develop models for estimating the biodegradability of organic compounds have

been the group contribution approach, the expert system approach and a combination of expert

system and probabilistic modeling of pathways.

BIOWIN (U.S. Environmental Protection Agency 2009) has been used to estimate the

biodegradability of all the 295 compounds considered in this study. This program estimates the

probability of an organic compound for rapid aerobic and anaerobic biodegradation. It is assumed

that the compound is subjected to an atmosphere in which mixed populations of environmental

organisms is present. The program classifies the organic compounds in one of the two categories

- the ones which biodegrade easily and the ones which biodegrade slowly. The models used in

the program have been described in more details in current literature (Sablijic and Peijnenburg

2001), (Pavan and Worth 2006).

The biodegradability of any compound can be estimated based on the possible

contribution of any of the 36 chemical groups accounted for in this software. For each of these 36

chemical groups, the contribution to biodegradability and a molecular weight chemical group

constant is utilized. During the development of the program, 295 chemicals from the

Biodegradation Probability Program (BIODEG) database were used to derive the chemical

group probability values. These constants were developed by using multiple linear and non-linear

regression analyses. This dataset consisted of 186 easily biodegradable chemicals and 109 slowly

32



biodegradable compounds. The version 4.10 of BIOWIN contains seven separate models. These

models are listed below:

1. Biowin 1 - linear probability model

2. Biowin2 - non-linear probability model

3. Biowin3 - expert survey ultimate biodegradation model

4. Biowin4 - expert survey primary biodegradation model

5. Biowin5 - Japanese Ministry of International Trade and Industry (MITI) linear model

6. Biowin6 - MITI nonlinear model

7. Biowin7 - anaerobic biodegradation model

Tests conducted for the validation of the models using a large set of consistent

biodegradation data of 733 compounds, have previously shown that the overall performance of

the BIODEG model is only 61.1 % of correct predictions. However, the model correctly identified

91.1% of the chemical compounds that were classified as 'ready' biodegradable.

BIOWIN is a model which is based on the group contribution approach. Therefore, like

many other models which are based on group contribution approach, it lacks the sophistication to

consider the neighboring substituents and their position. For example, 2, 4, 6 - trichlorophenol

which is considered 'ready' degradable in the MITI-1 test, is predicted to be 'not-ready'

biodegradable by this model. When small molecules, containing only commonly found chemical

groups that are present in small numbers, are presented to the model for prediction, it is generally

found that the model produces reasonable estimates.

However, wrong predictions become more likely if larger molecules with relatively

complicated structures are presented. For example, it is found that the model is also prone to

make unreasonable predictions for isomers of larger molecules and other similar chemicals.

Minor differences in the chemical structure may lead to differences in the ways micro organisms

perform degradation of an organic compound. Due to this fact, these seemingly small structural
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differences may also cause large differences in the rates of degradation. BIOWIN also ignores the

role of steric factors or low solubility in predicting the biodegradability of an organic compound.

For practical reasons, many chemical groups which are significant for biodegradation do not have

sufficient representation in the training set. Due to this reason, the model lacks coefficients for

many chemical groups including phosphonate (C-P bond), pyrimidine ring and cycloaliphatics. If

a compound containing such features is presented for the estimation of biodegradability, such

structural features are not considered for the prediction of biodegradability.

Table 4.1 and Table 4.2 summarize the key results of the evaluation of all the seven

Biowin models used in BIOWIN v 4.10. It should be noted that among all the seven models,

Biowin 5 and Biowin 6 were trained using the largest number of chemical compounds. The total

number of compounds in their training set was 589.

Table 4.1: Results of the evaluation of Biowin 1, Biowin 2, Biowin 3, Biowin 4 and Biowin 7

Biowin 1 Biowin 2 Biowin 3 Biowin 4 Biowin 7
Parameter Linear Non-Linear Ultimate Primary Anaerobic

Model Model Model Model Model

Total 264 275 167 165 152
Correct

Compounds
in training 295 295 200 200 169

set

% correct 89.5 93.2 83.5 82.5 89.9
total

% correct, ___9. 35_%81 = 9 7 .3a 181 = 97.3 a 101 = 93.5 01 = 8 4 .9 75
degradable 186 186 108 119 82

% correct, 83 94 66 64 77
slow -= 76.1 = 86.2 = 71.7 - = 79.0 - = 88.5

degradable 109 109 92 81 87
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a When the predicted probability is greater than 0.5, the compound is considered to be degrading
fast.

b A compound displays fast ultimate degradation if the calculated rating (numerical value from
the model) is found greater than 2.5.

A compound displays fast primary degradation if the calculated rating (numerical value from the
model) is found greater than or equal to 3.5.

d When the predicted probability is greater than 0.5, the compound is considered to be degrading
fast.

Table 4.2: Results of the evaluation of Biowin 5 and Biowin 6

Biowin 5 Biowin 6
Set Parameter

Linear MITI Model' Non-Linear Model*

Total Correct 485 488

Compounds in the set 589 589

Training

% correct total 82.3 82.9
Set

% Readily Degradable 79.1 (201/254) 80.3 (204/254)

% Not Readily
84.8 (284/335) 84.8 (284/335)

Degradable

Total Correct 240 238

Compounds in the set 295 295

Validation

% Correct Total 81.3 80.7
Set

% Readily Degradable 80.2 (105/131) 103/131 (78.6)

% Not Readily
82.3 (135/164) 135/164 (82.3)

Degradable
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During the critical evaluation of the biodegradability, 'readily biodegradable' was assigned a

numeric value of I and 'not readily biodegradable' was assigned a numeric value of 0. Thus, the

probability of degradation ranges from 0 to 1.

The linear MITI biodegradation model is selected for predicting the probability of

biodegradation. It belongs to the set of six officially approved protocols as ready biodegradability

test guidelines of the Organization for Economic Cooperation and Development (OECD). The

chemical group probability values that are applied in the MITI biodegradability method were

developed from a dataset of 884 chemicals. This set comprised of 499 chemicals that were

critically evaluated as 'not readily biodegradable' and 385 chemicals that were critically

evaluated as 'readily biodegradable'.

For the derivation of the chemical group values, the dataset of 884 chemical compounds

was divided into two separate sets: the training dataset (containing 589 compounds) and the

validation dataset (containing 295 compounds). The derivation of the chemical group values was

done by using the training dataset. The biodegradability estimates of the chemical compounds

from this model might be less accurate if their molecular weight lies outside the molecular weight

range of the training set compounds (U.S. Environmental Protection Agency 2009). The

molecular weights of the training compounds in the original model ranged from 30.02g/mol to

959.2g/mol. For those compounds which have a chemical group(s) or some structural features

which are not represented well in the training set, the predictions are solely based on their

molecular weight. In the present study, the maximum and the minimum molecular weights of the

compounds were found to be 320.73g/mol and 40.07g/mol, respectively. Hence, it is expected

that reasonable estimations of the biodegradability would be obtained from BIOWIN models.

4.4. Compilation and preparation of data

In all, 295 compounds were selected in the data pool. The sections 4.4.1, 4.4.2, 4.4.3,

4.4.4 and 4.4.5 provide more detailed information on how their normal boiling temperature, vapor
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pressure over a range of temperatures, enthalpy of vaporization, half-life in the troposphere and

the biodegradability, respectively, was estimated/ compiled.

4.4.1. Compilation of normal boiling temperatures

Horvath (Horvath 2001) reported the normal boiling temperatures ( C) of a number of

halogenated organic compounds. The reported normal boiling temperatures have been measured

experimentally over a period of three decades. The listed organic compounds either belong to the

general classes of halogenated aliphatic ethers, halogenated aliphatic hydrocarbons and

halogenated cyclic hydrocarbons or they belong to other closely related compounds.

In this publication, the normal boiling temperatures of all the 295 compounds in the data

pool could be found. However, some of the compounds were listed two or more times, with

slightly different normal boiling temperatures. In these cases, due to the absence of any way to

validate the listed data and because of the closeness of the listed normal boiling temperatures, a

normal boiling temperature is randomly picked among the multiple published values and used

further in the analysis.

4.4.2. Vapor pressures over a temperature range

The vapor pressures over a range of temperatures have been found out for the entire set of

295 compounds. These vapor pressure values were either experimentally measured values, as

listed in the NIST web thermo tables (Kazakov, et al. 2009) or were estimated values from the

vapor pressure module of the SPARC online calculator (Hilal, Karickhoff and Carreira 2003). In

the total set of 295 compounds, experimentally measured values could only be found for 44

compounds. The number of different temperatures at which the experimentally measured vapor

pressures were available ranged between 16 and 70. For the rest of the 251 compounds, the vapor

pressures were estimated using SPARC online calculator. The estimation was performed over a

temperature range, at 30 different equally spaced temperature values. The limits of this

37



temperature range were set at 225 "C and -80 0C, respectively. Figure 4.2 shows the process for

using the information derived from vapor pressure values to formulate an objective for

optimization.

Hilal et. al. (Hilal, Karickhoff and Carreira 2003) tested the performance of the vapor

pressure model of the SPARC physical properties calculator on 447 non-polar organic

compounds and 300 polar compounds. The root mean squared (RMS) deviation error between

the observed values and the calculated values and correlation coefficient (R 2) values were found

to be 0.096 and 0.999, respectively. The calculation of the process parameters is primarily based

on equation 4.6.

AGProcess = Ginteraction + AGOther (4.6)

In the estimation of vapor pressure, AGinteraction describes the difference in the intermolecular

interactions between the molecules in the gaseous and the liquid phase. Under the following

assumptions, the intermolecular interactions in the liquid phase are expressed by equation 4.7.

a) The intermolecular forces are additive.

b) Interactions in the gaseous phase can be ignored.

AGinteraction = AGDispersion interaction + AGInduction interaction

+ AGDipole-dipole interaction (4.7)

+ AGHydrogen-bonding interaction

In equation 4.7, each of the four individual interaction energies is expressed in terms of a finite

set of molecular level descriptors such as density based volume, molecular polarizability,

molecular dipole and hydrogen bonding parameters which constitute the total interaction. All of

these descriptors are estimated from the molecular structure of the compound. According to the

model, the vapor pressure P of a pure solute can be expressed as a function of AGinteraction using

equation 4.8.
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Identify the sources for obtaining

experimentally measured/ estimated
values of vapor pressure

Use NIST/ TRC Web Thermo Tables Use SPARC online calculator to

for obtaining the experimentally estimate the vapor pressures at a pre-

measured vapor pressures specified range of temperatures

Compile the information from the two
sources and use this file as an input for the

computer code used for fitting a general
Gaussian curve given by equation 4.9

Find the values of a, b & c. Exclude up to
three data points for which the percentage

error is more than 50%

Find the median percentage error for

every compound. Remove those

compounds for which the median
percentage error is more than 10%

For each compound, find the vapor
pressures at five equally spaced

temperature points inside the refrigeration

cycle.

Compare these five vapor pressures with

those obtained for Freon-12 and find the
root mean squared value of the error.

Use this root mean squared value of error
as an indicator for vapor pressure in the

data pool.

Figure 4.2: A schematic diagram showing the process flow for acquiring vapor pressure

data and setting up an objective based on the vapor pressure values
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ogP = - AGinteraction + logT + C (4.8)
2.303RT

Here, the term (logT + C) describes the change in the entropy contribution during the change in

the volume, when the fluid goes from the liquid phase to the gaseous phase. Hilal et al. (Hilal,

Karickhoff and Carreira 2003) provided further details on the calculations of the energy changes

involved in the interaction mechanisms used in SPARC.

Using a computer code written in MATLAB, the experimentally measured and the

estimated vapor pressures were then fitted to a general Gaussian curve given by equation 4.9.

TSb2

Vapor Pressure (Tsc) = a - e(cb) (4.9)

Here, a, b and c are constants that are uniquely determined for each compound.

A scaled temperature TS, is used for fitting. In general, different scaled temperatures were

used for different compounds. The scaled temperatures for each compound were calculated using

the equation 4.10.

T -Tmn4 
0Tsc =(.1)

Tmax - Tmin

Here, T is any temperature in the temperature range, Tmnin is the minimum temperature at which an

experimentally measured/ estimated value of vapor pressure is known and Tma is the maximum

temperature at which an experimentally measured/ estimated value of vapor pressure is known.

For each compound the percentage error between fitted vapor pressure and the known

value of the vapor pressure was calculated at each data point. Those data points were identified

for which this percentage error exceeded 50%. These data points were excluded and the data was

refitted using a similar Gaussian curve. The new values of the coefficients a, b and c, were then

used to replace the older values of the coefficients for the particular compound. The equation of

the Gaussian curve was used to interpolate the vapor pressure values at all the temperatures at

which the vapor pressure values were known. The median percentage difference was then
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calculated between the known vapor pressure values and the interpolated vapor pressure values.

This procedure was repeated for all the compounds in the data set.

Compounds for which the median percentage error was found to be greater or equal to

10% were removed from any further analysis. During this analysis, four compounds were found

to have median percentage error greater than 10%. Further analysis was, thus, performed on the

remaining 291 compounds. The refrigeration cycle used by Churi and Achenie (Churi and

Achenie 1996) was used to set the limits on the temperature, expected in a refrigeration cycle.

The following conditions were used for the refrigeration cycle.

a) Evaporating temperature, TL -1.1 0C

b) Condensing temperature, TH = 43.3 C

c) Mean temperature, Tmean= 21.1 0C

d) Superheat temperature Tsuperheat TL (under the assumption of saturated conditions)

Using the values of coefficients (a, b and c) and the equation 4.10, the vapor pressure values were

calculated at five equally spaced temperatures between TL and TH. The temperatures at which the

vapor pressures were calculated were thus set to be equal to -1.1 C, 10.0 C, 21.1 0C, 32.2 C and

43.3 C. Freon-12 is one of the compounds selected in the pool of 295 compounds. The values of

the vapor pressures were also calculated for Freon-12. Root mean squared values of the

difference of the vapor pressures of the particular compound and Freon-12 were calculated. This

value was tabulated and then used as an objective in the optimization process. This vapor pressure

indicator (equation 4.11) needs to be minimized if the new refrigerant is expected to have similar

vapor pressure-temperature curves as that of Freon-12.

Vapor pressure indicator

(4.11)
Estimated vapor pressure - Observed vapor pressure)i

n
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4.4.3. Enthalpy of vaporization at 298.15 K and 1 atm pressure

Experimentally measured values of the enthalpies of vaporization (at 298.15 K and I

atm) of all the 295 compounds used in this study, could not be found in the available literature.

Therefore, the enthalpies of vaporization included in the pool of data comprise of 54

experimentally measured values and 241 estimated values. All the experimentally measured

values used in the analysis have been reported by Chickos et al. (Chickos and Acree Jr. 2003) in a

compendium of vaporization enthalpies published within the period 1910-2002.

In the absence of experimentally measured values of enthalpies of vaporization,

estimations were performed. As discussed by Chickos et al., Jr. (Chickos and Acree Jr. 2003),

vaporization enthalpies can be calculated using the Antoine constants in two different ways. Any

known vapor pressure-temperature data can be represented in the form of Antoine equation given

by equation 4.12 (Poling, Prausnitz and O'Connell 2004).

B
log 1 0 P = A - (4.12)

(C + T)

Here, P represents the vapor pressure, T represents the temperature in 0C and A, B and C are the

Antoine constants. This equation can then be used to estimate the vapor pressures over a

temperature range, the mean temperature of which is 298.15K. However, Antoine equation

should not be used outside this specified temperature range as this kind of extrapolation may lead

to inaccurate results.

This vapor pressure-temperature data can then be formulated in terms of the integrated

Clausius-Clapeyron equation, given by equation 4.13.

lnP = - AH -(Tm) ( + C1  (4.13)
R \T

Here, AHv(Tm) represents the enthalpy of vaporization at the mean temperature and C, is a

constant of integration. AHv(Tm) may then be calculated from a linear regression analysis of lnP
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and 1/T. As suggested by Chickos et al. (Chickos and Acree Jr. 2003), the AHv(Tm) can also be

calculated by using an alternative approach, utilizing the Antoine constants in equation 4.14.

T 2

AHv(Tm) = 2.303RB (Tm+ ) (4.14)

However, none of the previously discussed methods were employed in the estimation of

vaporization enthalpy. This was done primarily due to the following two reasons.

a) The variation of enthalpy of vaporization with temperature is not reflected very

accurately by the use of Antoine equation.

b) Generally, for a given compound, the temperature values at which Antoine equation can

be used satisfactorily are not large. Usually, these small temperature values correspond to

vapor pressure values between 0.01 bar to 2 bar. Since, the anticipated vapor pressures

inside the refrigeration cycle are expected to be larger; the use of Antoine equation would

not have provided accurate estimation of the vapor pressures.

The enthalpy of vaporization values were instead estimated using the enthalpy of

vaporization model (Hilal, Karickhoff and Carreira 2003) and implemented in SPARC online

calculator V 4.5. In this model, temperature dependence of physical properties has been

accounted for by the use of temperature dependant free energies, molecular orientation

requirements for dipole-dipole coupling and hydrogen bonding interactions. Hilal et al. (Hilal,

Karickhoff and Carreira 2003) tested the model's performance at 298.15 K and 1 atm on 422

polar organic compounds and 841 non-polar organic compounds. The RMS deviation error

between the measured and the estimated values was found to be 0.41 kcal/ mol. A relatively high

correlation coefficient (R2 ) value of 0.990 suggested that SPARC predicts the enthalpy of

vaporization with relatively good accuracy.
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4.4.4. Half-life in troposphere

As discussed in section 4.3.4., hydroxyl radical concentration in the troposphere can be

used to estimate the half-life of an organic compound in the troposphere under the following

assumptions:

a) The chemical, with which OH radical is reacting, is present in the troposphere at a very

low concentration.

b) A steady state concentration of OH radical is maintained by its generation in the

presence of sunlight.

Under the above assumptions the reaction can be considered a pseudo first order reaction and the

half-life in the troposphere can be calculated by using equation 4.5.

SMILES representations of all the 295 compounds were imported in the AOPWIN

module of the EPI Suite program (U.S. Environmental Protection Agency 2008). Computations

were performed for the estimation of the overall hydroxyl radical rate constant. Out of the 295

estimated rate constants, 269 rate constants were found to be non zero. For 53 out of those 269

compounds, AOPWIN also lists the experimentally measured hydroxyl radical rate constants.

Wherever applicable, the estimated rate constants were replaced by the experimentally measured

rate constants and were used in further calculation of the half-life of the compound in the

troposphere, using equation 4.5.

Figure 4.3 reiterates the fact that along with the estimated (or experimentally measured)

hydroxyl (OH) radical rate constant of a compound, a suitable OH radical concentration in an

appropriate time frame is also needed to estimate the half-life of a given organic compound in the

troposphere. Before any computations were made, it was assumed that in general the compounds

react more slowly and they remain present in the troposphere for more than a few days. Hence, 24

hours averaged hydroxyl radical concentration at 298 K might be more appropriate. The global

average OH radical concentration of 9.2x10 5 mol/ cm 3 was used for the estimation of the half
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lives of the compounds in the troposphere. These half lives were tabulated and used as an

additional objective during the optimization process.
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Figure 4.3: Process flow chart for the estimation of the half life of an organic compound in the

troposphere using AOPWIN

4.4.5. Biodegradability

SMILES representations of all the 295 compounds were imported to the BIOWIN

module of the EPI Suite program (U.S. Environmental Protection Agency 2009). The numerical

rating and biodegradation probability was calculated for each of the 295 compounds using the

ultimate biodegradation model (BIOWIN 3) and MITI linear model (BIOWIN 5), respectively. It

has been previously reported (Pavan and Worth 2006) that most non-readily biodegradable

compounds have their MITI non-linear model prediction value less than 0.5 and the ultimate

biodegradation time frame prediction less than or equal to 2.2. For each compound, the results

from both of these models were added and a single objective was formulated for the optimization.
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5. SPECIFICATION OF CONSTRAINTS AND THEIR SIGNIFICANCE

5.1. Introduction

As described earlier, each molecular structure is represented by a unique set of values of

the 28 structural design variables (Table 1.1). Algorithms applied on the initial data, which

actually is a pool of different sets of these 28 design variables, generate newer sets of design

variable values. Since each of these new sets of design variables, in essence, represents a unique

molecular structure, it is highly important that each of these sets of values correspond to a

feasible molecular structure. This is ensured by binding the values of the design variables by

different equality and inequality constraints. These constraints not only limit the values that can

be attained by the design variables; they also place restrictions on how a design variable needs to

be combined with other design variables. These equations remain valid for each and every

organic compound considered during the construction of meta-models. At the same time, the

satisfaction of these equations or constraints remains necessary for any new molecule. The

following sections list some of the different constraints which are important from the point of

view of obtaining a feasible molecular structure. The sections also explain the necessity and

importance of some of the many such constraints.

5.2. Limitations on the individual values of design variables

All the 28 design variables are strictly integers as they represent the number of different

bonds. It should be noted at this point, that resonance effects in the molecular structure are not

considered. The design variables XI, X2, X3 and X4 represent the number of single bonds used by

the respective carbon atom to bond itself to the remaining three carbon atoms. In general, no

carbon atom can have more than four carbon atoms attached to it via single bonds and no carbon

atom can have less than zero number of carbon atoms attached to it via single bonds. However,

since the total number of carbon atoms in the refrigerant molecule, considered in this study, was
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restricted to four, a carbon atom may be attached to a maximum of three other carbon atoms via

carbon-carbon single bonds. Mathematically, this fact can be represented by the following

equation.

O Xi < 3 for i = 1, 2, 3,4 (5.1)

The design variables X5, X6, X7 and X8 represent the number of carbon atoms attached to

each of the four carbon atoms via carbon-carbon double bonds. Only a maximum of two carbon

atoms may get attached to a given carbon atom and there cannot be fewer than zero carbon atoms

that are attached to any carbon atom via carbon-carbon double bonds. Hence, the following

relationship remains satisfied.

O Xj < 2 for j = 5, 6, 7,8 (5.2)

Similarly, the design variables X9, Xio, X~ and X12 can only take values between 0 and 4.

The reason for this is the fact that in order for the octet rule to be valid, there cannot be more than

four hydrogen atoms attached to a single carbon atom and there cannot be fewer than zero

hydrogen atoms attached to a carbon atom. Mathematically, this can be represented by the

following relationship.

0 Xk 4for k=9,10,11,12 (5.3)

Using a similar argument, it can be concluded that there cannot be more than four

chlorine/ fluorine/ bromine atoms attached to a single carbon atom via single bonds. Hence, the

following relation holds true.

O X 1  4 for 13 l 24 (5.4)

The same argument also remains true in the case of oxygen atoms bonded to a carbon

atom via single bonds. Thus, the number of oxygen atoms attached to a carbon atom via a single

bond may vary between zero and four. However, the initial pool of 295 data had molecules which

either lacked an oxygen atom or contained just a single oxygen atom. Because of this reason, no
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carbon atom was found, in the original dataset, to be associated with more than one carbon-

oxygen single bond. Hence, equation 5.5 needs to be satisfied.

0 < Xm < 1 for m = 25, 26, 27, 28 (5.5)

In cases where the vapor pressure is also represented in one of the objectives, three

additional design variables (X29, X 30 and X31) are needed. In general, these three design variables

are continuous real variables, unlike the other 28 design variables, which strictly attain non-zero

values. X 29, X 3o and X 31 represent the coefficients a, b and c, respectively, of the Gaussian curve,

represented by equation 4.9.

The least value of coefficient 'a' among all the 295 initial compounds was found to be

0.6726. Since this value was found to be close to zero, the lower bound of X29 was set to 0. The

upper limit of the design variable X 29 was set according to the following relation.

X29(higher) = amax + 0.1(amax - amin) (5.6)

Here, amax represents the maximum value of 'a' among all the 295 initial compounds.

This value was found to be 22554.06. The X29(higher) is found to be 24809.399. Hence, X29 was

limited by the following equation.

0 < X2 9  24810 (5.7)

Similarly, the higher bound of X30 was found out by the following relationship.

X30(higher) = bmax + 0.10(bmax - bmin) (5.8)

and the lower bound of X30 was found out from the following relationship.

X30(lower) = bmin - 0.10(bmax - bmin) (5.9)

Here, bmax and bmin are the maximum value of 'b' and the minimum value of 'b', respectively,

among all the 295 compounds. bmax and bmin were found to be 1.2513 and 1.9780, respectively.

Thus, X30 is limited by the following equation.

1.20 _ X30 < 2.05 (5.10)

Similarly, the higher bound of X31 was found out from the following relationship.
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X31(higher) = Cmax + 0.10(Cmax - Cmin) (5.11)

and the lower bound of X 31 was found out from the following relationship.

X31(lower) = Cmin - 0.10(Cmax - Cmin) (5.12)

Here, cmnax and cm,, were the maximum value of 'c' and the minimum value of 'c', respectively,

among all the 295 initial compounds. Cmax and Cmin were found to be 0.2852 and 1.7997,

respectively. Thus, X31 was limited by the following equation.

0.17 < X31  1.95 (5.13)

5.3. Equality and inequality constraints involving combinations of multiple design

variables

Multiple equality and inequality constraints were formulated to regulate the combinations

of the structural design variables. These constraints ensured structural feasibility of the generated

sets of the 28 design variables after optimization.

5.4. Physical property and other constraints

As discussed earlier, the primary objective of the study is to develop refrigerants which

are better than the currently used refrigerants (specifically Freon-12) in as many aspects as

possible. Hence, the property constraints depend on the property values of Freon-12.

For limiting the volumetric flow of the refrigerant inside a refrigeration system, the

enthalpy of vaporization of the refrigerant should be high. In other words, a larger enthalpy of

vaporization reduces the amount of refrigerant required to produce the desired amount of cooling.

The enthalpy of vaporization of Freon-12 at 272 K is 18.4 kJ/ mol. Thus, by setting the lower

limit of enthalpy of vaporization as 15.0 kJ/ mol (or 3.585 kcal/ mol), it can be ensured that the

generated refrigerant will be at least comparable to Freon 12, in terms of the enthalpy of

vaporization. A slightly lower value of enthalpy of vaporization was chosen as the lower bound
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on the possible values of the enthalpy of vaporization during the design optimization process,

because of the following reasons.

a) It ensures that potentially good molecules whose enthalpy of vaporization is slightly

lower than that of Freon-12 are not rejected during the enforcement of constraints.

b) The surrogate model (multi-dimensional response surface fit of the initial data pool)

which was used to predict the values of the enthalpy of vaporization, based on a set of

discrete variables, was expected to have a complex topology. In order to account for

errors in the method, the lower value of enthalpy of vaporization was slightly relaxed.

Hence, the following property constraint was enforced.

h_ > 3.585 kcal/ mol (5.14)

It has been reported (Sekiya and Misaki 2000), (Calm 2008), that refrigerants which have

very short lifetime (atmospheric or tropospheric) tend to decompose near Earth's surface,

generally very close to the location of their release into Earth's atmosphere. This results in

problems similar to the production of smog or other harmful chemicals. On the other hand,

refrigerants with very long lifetimes contribute to the global warming phenomena. Therefore, the

desired lifespan of the refrigerants has been a topic of much debate. The desired lifetimes have

been reported to be from a few days to a few years depending on the organic compounds used as

refrigerants. Under these considerations, this study restricted tropospheric half-life time of the

generated molecule to be between 30 days and 365 days. Thus,

30 days S troposheric half life 365 days (5.15)

An organic compound is considered to be readily biodegradable if both of the following

conditions are satisfied (Pavan and Worth 2006).

a) The result of the BIOWIN 3 model (Ultimate biodegradation model) is greater than or

equal to 2.75.

b) The result of the BIOWIN 5 model (MITI linear model) is greater than or equal to 0.5.
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However, slightly lower limits were used in the constraints in this design optimization

methodology. It was assumed that the use of slightly lower limits would not generate a molecule

which is highly non-biodegradable. Also, the use of slightly lower values reduces the chances of a

potentially good molecule been eliminated during the constraint satisfaction process. Hence, the

following limits were used.

ResultBIOWIN 3 ? 2.25 (5.16)

ResultBIOWIN 5 > 0.45 (5.17)
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6. CREATION OF RESPONSE SURFACES AND THEIR ANALYSIS

6.1. Introduction

Response surfaces are multi-dimensional equivalents of spline fitting a function given at

a number of isolated data points. Since response surface topology is expressed analytically, this

means that for any interpolated data point it is extremely easy and fast to read the corresponding

interpolated value of the function, off the response surface. For example, enthalpy of vaporization

is one such possible function of 28 design variables. Since the initial data set has heats of

vaporization for 295 compounds this means that we will have 295 isolated points in a 28-

dimensional space. Building a response surface, in this case means fitting a 28-dimensional

surface as closely as possible to these original 295 points, while assuring that this hyper-surface

has minimal oscillations between these 295 points. For, any set of 28 values of design variables it

is very easy to find the corresponding interpolated function value (enthalpy of vaporization) on

the fitted response hyper-surface.

Response surfaces generating algorithms (Sigma-Technology Company 2009) were used

for fitting the 28-dimensional response surfaces for each of the following design objectives.

a) P1 = Normal boiling temperatures

b) P2 = Enthalpy of vaporization

c) P3 = Tropospheric half-life time

d) P4 = Root mean squared value of the difference in the vapor pressure of the particular

organic compound and that of Freon-12

e) P5a = Biodegradability value obtained from BIOWIN 3

f) P5b = Biodegradability obtained from BIOWIN 5

IOSO software (Sigma-Technology Company 2009) offers several methods for

automatically generating multi-dimensional response surfaces. In this research, method of
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weighted approximations and the method of radial basis functions were used. There are other

methods for generating response surfaces available in the open literature. One such method is the

wavelet based neural network methodology (Sahoo and Dulikravich 2006). However, this method

was not implemented because it has been reported hat radial basis function based polynomial

methodology performs better for higher dimensional spaces in terms of accuracy and the required

computing time (Colaco, Dulikravich and Sahoo 2007). The weighted approximation method is

described in section 6.2. The radial basis functions based methodology for creating response

surfaces is briefly explained in section 6.3. In section 6.4, the response surface created by the two

methodologies from IOSO are compared and analyzed.

6.2. Weighted approximation method used in IOSO software

The value of the function f(X) whose value is known for the set of i data points (or

different designs), is given by the following equation:

frs() >L = 1WjGx) (6.1)

Here, X' represents the jth point (or design) of the plan of the experiment, f(iI) represents the

value of the function f at the j"' point and WI(X) represents the weighting function for the j"

point.

WI (X) represents a function which takes a value of 1 at the point x = P. Its value

decreases as the distance between the points X and PJ increases. Weighting function is given by

the following equation:

= 1 R'(X) (6.2)
W1(X) =C3 c2
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Here, C1 represents a constant, C 2 represents the flexibility parameter. In general, a lower value of

the flexibility factor makes the approximation function more flexible. Ri(z) represents the

normalized distance and is given by equation 6.3.

RJ(i) = . 2 (6.3)

max (n1 (x - 1)2)

6.3. Methods based on radial basis functions used in IOSO software

The radial basis function (RBF) methodology in IOSO software is strongly coupled with

the general concept of artificial neural networks. An artificial neural network of RBF type has

three layers: the input layer, the hidden layer (or the intermediate layer) and the output layer.

In the algorithm used to build the response surface, the number of neurons in the input

layer is equal to the number of the independent variables which affect the output function. The

number of neurons in the output layer is determined by the number of parameters which should

be approximated simultaneously. Every neuron in the hidden layer (or the output layer) is

connected to all the neurons in the input layer (or the hidden layer). The number of neurons in the

hidden layer can be varied to suit the particular problem. A density parameter governs the number

of neurons in the hidden layer. A value of 0 corresponds to the minimum and the value 1

corresponds to the maximum number of neurons in the hidden layer. A Gauss function (uniquely

specified by its center and the radius) is used as the transmission function for neurons in the

intermediate layer.

6.4. Comparison and analysis of the response surfaces based on the two methods

Table 6.1 shows the results of the analysis of the response surface built using the

weighted approximation methods in IOSO software. The mean and the maximum values of the

relative errors, for all the six objectives, are found when the flexibility parameter is changed from
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0.01 to 0.50. As expected, the errors are the smallest when a flexibility factor of 0.01 is used in

the construction of the response surface.

Table 6.1: Analysis of the response surfaces built using the weighted approximation method

Flexibility factor = 0.01 Flexibility factor = 0.02 Flexibility factor = 0.50

Objective Mean Maximum Mean Maximum Mean Maximum
relative relative relative relative relative relative

error error error error error error

Normal

boiling 0.00067 0.00265 0.00961 0.03484 0.16230 0.49315

temperature

Enthalpy of 0.00074 0.00317 0.00972 0.02973 0.15430 0.43618
vaporization

Tropospheric 0.00097 0.00827 0.01196 0.12953 0.10311 0.92814
half-life time

Indicator for

vapor 0.00038 0.00500 0.00790 0.10946 0.06109 0.83981

pressure

BIOWIN 3 0.00086 0.00358 0.01057 0.03812 0.15972 0.45921
result

BIOWIN 5 0.00092 0.00536 0.01130 0.04491 0.17591 0.48671
result

Table 6.2 shows the results of the analysis of the response surfaces built using the radial

basis function methodology combined with the artificial neural networks. The response surfaces

were built at two different levels of the number of neurons in the hidden layer. The density of
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neurons was varied from an almost minimum value of 0.01 to the highest possible value of 1.00.

Again the mean and the maximum relative errors were tabulated and it can be seen from Table

6.2 that as the density of neurons in the intermediate layer is increased the relative errors

decrease.

Table 6.2: Analysis of the response surface built using the method based on radial basis functions

Density parameter = 0.01 Density parameter = 1.00
Objective

Mean relative Maximum Mean relative Maximum
error relative error error relative error

Normal boiling 0.18429 0.58644 0.08700 0.33795
temperature

Enthalpy of 0.17801 0.53726 0.06710 0.27462
vaporization

Tropospheric half- 0.10786 0.95752 0.07069 0.41602
life time

Indicator for vapor 0.06224 0.85123 0.03631 0.31702
pressure

BIOWIN 3 result 0.18407 0.52428 0.12739 0.40180

BIOWIN 5 result 0.20350 0.55018 0.27891 2.75827

A comparison of the response surfaces generated by IOSO software using the two

methodologies suggests that the response surface generated using the weighted approximation is

more accurate as the maximum and the mean relative errors are lower than that of the response

surface generated using the radial basis function methodology. In fact, the response surface built

using a flexibility factor of 0.01 have been found better than any other response surface built and

analyzed in this study. Figures 6.1-6.6 show the approximate relative errors in estimating all the
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six objectives for all the 265 designs since, only 265 of the original 295 compounds had all six

objectives available.

It is interesting to note that the mean relative error in approximating the function for the

indicator of the vapor pressure is lower than mean relative errors in approximating other

functions. This observation may be explained using the fact that experimentally measured/

estimated vapor pressure values were fitted to a Gaussian curve before any further analysis was

performed. During this fitting of the data, few outliers were removed and were not included in the

fit. This resulted in an overall smoothing of the data and because of this reason the response

surface could conform itself better.
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Figure 6.1: Relative approximation error value for the normal boiling temperature using the

weighted approximation method with a flexibility parameter of 0.01
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Figure 6.2: Relative approximation error value for the enthalpy of vaporization using the

weighted approximation method with a flexibility parameter of 0.01
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Figure 6.3: Relative approximation error value for the tropospheric half life time using the

weighted approximation method with a flexibility parameter of 0.01
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Figure 6.4: Relative approximation error value for the indicator of the vapor pressure using the

weighted approximation method with a flexibility parameter of 0.01
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7. RESULTS AND CONCLUSION

7.1. Analysis of the initial data set

The initial pool of compounds was analyzed for any noticeable trends. Two compounds

which showed the largest and the least values for each objective were selected and radar plots

were generated. The scaled values of the objective functions were plotted on the radar plots. The

following symbols have been used to denote the scaled values of objectives.

a) P1 - scaled normal boiling temperature

b) P2 - scaled enthalpy of vaporization

c) P3 - scaled logarithm (base 10) of tropospheric half-life time

d) P4 - scaled indicator for vapor pressure difference with respect to Freon-12 (equation

4.11)

e) P5a - scaled BIOWIN 3 estimation result

f) P5b - scaled BIOWIN 5 estimation result

The set of compounds (for which the values of all the six objectives are known) numbers

265 out of the original 295 compounds. Table 7.1 lists the maximum and the minimum values of

all the six objectives, for the set of 265 compounds, for which the values of all the objectives are

known.

Figure 7.1 shows the objective function values of the four organic compounds which

have the two highest and two lowest normal boiling temperatures in the entire set of 265

compounds. It is interesting to note that the two compounds which are found to have the two

highest normal boiling temperatures (1,2-dibromo-1-chloroethane with a normal boiling

temperature of 163 C and 1,2-dibromo-1,1-dichloroethane with a normal boiling temperature of

161.5 C) also have relatively high enthalpies of vaporization. The compounds which are found to

have two of the lowest normal boiling temperatures (trifluoromethane with a normal boiling
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temperature of -82 C and bromotrifluoromethane with a normal boiling temperature of -59"C)

also have relatively small enthalpies of vaporization. These compounds also show relatively

higher tropospheric half-life times.

Table 7.1: Maximum and minimum values of the six objective functions for the set of 265

compounds (for which the values of all the six objective functions were known)

Objective Maximum value Minimum value

Normal boiling temperature( C) 163 -82

Enthalpy of vaporization (kcal/mol) 13.07 2.94

Tropospheric half-life time (days) 89120.37 0.16943

Vapor pressure indicator (kPa) 8859.464 0

BIOWIN 3 estimation result 3.3691 1.1031

BIOWIN 5 estimation result 0.6415 -0.0569

Figure 7.2 shows the objective function values of the four organic compounds which

have the two highest and the two lowest enthalpies of vaporization in the entire set of 265

compounds. Figure 7.2 also suggests a possible relationship between the normal boiling

temperature of a compound and its enthalpy of vaporization. The compounds which are found to

have two of the highest enthalpies of vaporization (1,1,1-trichloro-2-(dichloromethoxy)-2,2-

difluoroethane with an enthalpy of vaporization of 13.07 kcal/mol and 2,2-dichloro-1-

(dichloromethoxy)-1,1-difluoroethane with an enthalpy of vaporization of 12.54 kcal/mol) also

have relatively large boiling temperatures. The compounds which were found to have two of the

lowest enthalpies of vaporization (1,1,2-trifluoroethene with an enthalpy of vaporization of 2.94

kcal/mol and 1,1,1-trifluoroethane with an enthalpy of vaporization of 3.297 kcal/mol) also have

relatively small normal boiling temperatures. It is interesting to observe from Figure 7.1 and
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Figure 7.2 that the compounds which have larger normal boiling temperatures and enthalpies of

vaporization, not only have moderately large tropospheric lifetimes, they are also found to be not

very easily biodegradable and their vapor pressures vs. temperature curve is similar to the vapor

pressure vs. temperature curve of Freon-12.

Figure 7.3 shows the objective function values of the four organic compounds which

have the two highest and the two lowest tropospheric half-life times in the entire set of 265

compounds. Figure 7.3(a) shows that the compounds which were found to have two of the largest

tropospheric half-lives (bromotrifluoroethane with an estimated tropospheric half-life of 89120.37

days and 1,2-dibromo-1,1,2,2-tetrafluoroethane with an estimated tropospheric half-life of

68554.13 days) have similar vapor pressure vs. temperature curves to that of Freon-12. These

compounds also do not biodegrade very easily.

This observation supports the fact that organic compounds containing higher number of

halogen atoms or perhalogenated organic compounds generally have higher atmospheric life-

times. On the other hand compounds represented in Figure 7.3 (b) are not only found to have two

of the lowest tropospheric half-life times ((ethenyloxy) ethane with a tropospheric half-life of

0.16943 days and ethoxyethene with a tropospheric half-life of 0.2208 days), they are also found

to have relatively higher probability to undergo biodegradation. As expected compounds with

unsaturations are usually unstable and are found to be the ones which have the least tropospheric

half- lives.

Figure 7.4 (b) shows that among all the considered 265 compounds, 1,1-difluoroethane is

the closest to Freon-12 in terms of the vapor pressure variation with temperature. Moreover, both

1,1-difluoroethane and Freon-12 have higher biodegradation probability.

Figure 7.5 (a) shows that butane (BIOWIN 3 biodegradation probability prediction is

3.3691) and propa-1,2-diene (BIOWIN 3 biodegradation probability prediction is 3.1106) have

two of the highest BIOWIN 3 prediction values. It should be noted that none of the two
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compounds have any halogen atoms in their molecular structures. Both these compounds have

relatively smaller normal boiling temperatures, smaller enthalpies of vaporization, lower

tropospheric half-live times and variation of vapor pressures with temperature similar to that of

Freon-12. The compounds having two of the lowest BIOWIN 3 estimation results have a large

number of halogen atoms in their molecular structures (1,1-dichloro-2-(1-chloro-2,2,2-

trifluoroethoxy)-l,2,2-trifluoroethane has a BIOWIN 3 prediction value of 1.1031 and 1,1,1-

trichloro-2-(dichloromethoxy)-2,2-difluoroethane has a BIOWIN 3 prediction value of 0.0402).

Figure 7.5 (b) shows that these compounds also have relatively large tropospheric half-lives. It

should be noted that they also have a large number of halogen atoms in their molecular structures.

Figure 7.6 (a) shows the objective values of the two compounds that are found to have

largest BIOWIN 5 estimation results (difluoromethane has the BIOWIN 5 prediction result of

0.6415 and butane has the BIOWIN 5 prediction result of 0.6389). Both these compounds also

have relatively larger values of the BIOWIN 3 estimation results. Figure 7.6 (b) shows the

objectives values of the compounds which have two of the smallest values of the BIOWIN 5

estimation result (1-chloro-1-(1-chloro-2,2-difluoroethoxy)-2,2-difluoroethane has the BIOWIN 5

prediction value of -0.0569 and 1-chloro-1-(dichloromethoxy)-2,2,3,3-tetrafluoropropane has the

BIOWIN 5 prediction value of -0.04). As seen from their IUPAC nomenclature, both of these

compounds have multiple halogen atoms in their molecular structures.

Such an analysis of the pool of 265 compounds reiterates the fact that different families

of organic compounds are suitable for optimizing different objectives. A single compound may

have optimal values for a few of the objectives, but for some other objectives it may have

undesired values. Therefore, multi-objective optimization needs to be used as a tool in order to

find the molecular structures that are considered suitable with respect to a number of

simultaneous, often conflicting objectives subject to a number of constraints discussed in Chapter

5.
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Figure 7.1: Representation of the performance of compounds which have (a) two of the largest

normal boiling temperatures, and (b) two of the lowest normal boiling temperatures
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Figure 7.2: Representation of the performance of compounds which have (a) two of the largest

enthalpies of vaporization, and (b) two of the lowest enthalpies of vaporization
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Figure 7.3: Representation of the performance of compounds which have (a) two of the largest

tropospheric half-life times, and (b) two of the smallest tropospheric half-life times
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Figure 7.4: Representation of the performance of compounds which have (a) two of the largest

values of the indicator of the vapor pressure, and (b) two of the smallest values of the indicator of

the vapor pressure
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Figure 7.5: Representation of the performance of compounds which have (a) two of the largest

BIOWIN 3 estimation values, and (b) two of the smallest BIOWIN 3 estimation values
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Figure 7.6: Representation of the performance of compounds which have (a) two of the largest

BIOWIN 5 estimation values, and (b) two of the smallest BIOWIN 5 estimation values
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7.2. Analysis of the results of multi-objective optimizations

Multi-objective optimizations, using IOSO software, were performed on 10 different

combinations of objectives and constraints. The number of objectives that were simultaneously

optimized in these cases varied between 2 and 5. Five out of these 10 multi-objective design

optimization tasks were 2-objective optimization tasks. Two tasks involved the simultaneous

optimization of 3 objectives and two other cases dealt with the simultaneous optimization of 4

different objectives. The remaining case involved the simultaneous optimization of all the 5

objectives considered in this study. Sections 7.2.1 through 7.2.10 describe the different

optimization cases studied in this endeavor, their results and the probable implications.

In this entire study, Freon-12 was used as the reference refrigerant and each of the

optimization tasks was aimed at finding a molecule that showed improvement over Freon-12,

with respect to the considered objectives. In each optimization case, k, for an objective function, i,

(except for the indicator of vapor pressure), a performance index was defined for a newly

generated molecular structure,j, using equation 7.1.

(Performance index)ijk = (P. I )ijk

Pijk -P(Freon-12)i X 100(71

\ (Freon-12)i/

Here, Pjk represents the property value of objective i, for the newly generated molecule, j, in

optimization case k and P(Fe,,Jz), represents the value of the objective, i, for Freon-12. For the

vapor pressure indicator, the value of the objective itself is treated as the performance index. The

values of the objectives used to find the performance indexes were estimated using different

property models. For each of the newly generated molecular structures, the normal boiling

temperatures, the enthalpies of vaporization and the vapor pressure indicators were estimated

using the SPARC online calculator. Similarly, their tropospheric half-life times and the

biodegradabilities were predicted using AOPWIN and BIOWIN, respectively. These estimated
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property values were not only used to calculate the performance indexes; they were also used for

an overall verification and validation of the results obtained from the IOSO software.

Performance indexes were used in comparing the performance of each of the newly generated

molecular structures with respect to that of Freon-12.

Scaled values of the performance indexes were then calculated for each of the objectives,

i, for each of the newly generated molecular structures, j, in each of the optimization cases

denoted by k. This scaled performance index (S.P.I.) was calculated using the following equation.

(Scaled Performance Index) ijk = (S. P. I.ijk

Pijk - P(Freon-12)i (7.2)

(Phigh)ik - (Plow)ik

Here, (Plow)ik represents the lowest value of the property for objective i and in the case k and

(Phigh)ik represents the highest property value for all the generated molecules for the objective i,

in the case k. The scaled performance index was used to gauge the performances of each of the

generated molecules with respect to each other and Freon-12. Any generated molecule was

considered to be highly preferable if it possessed a relatively higher S.P.I. for an objective that

was supposed to be maximized. Similarly, any newly generated molecule was considered

desirable if it possessed relatively lower S.P.I. for an objective that was supposed to be

minimized.

The importance of each of the objectives depends on the particular practical situation for

which an optimized refrigerant is needed. Therefore, this importance can be the topic of a lengthy

subjective discussion. In this study, it was assumed that each of the objectives is equally

important and for the sole purpose of ranking the generated molecules, a single entity was

created. This entity was called the average scaled performance index and it was used to rank the

candidate solutions in the order of their importance. The average scaled performance index of any

newly generated molecular,j, was then calculated using the following equation.
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(Average S. P.!. = (S. P. )uk) (7.3)
n

Here, ci represents user specified weighting coefficient for the particular objective, i. In this

study, its value is specified to be 1 if the objective is maximized and -1 if the objective is

minimized. n represents the total number of simultaneous objectives involved in the optimization

process. The generated molecules were ranked according to the average value of the scaled

performance indexes of all the objectives.

7.2.1. Case-I: The simultaneous maximization of the normal boiling temperature and the

maximization of the enthalpy of vaporization

This design optimization task was aimed at finding molecular structures that showed the

largest possible increase in the normal boiling temperatures and the enthalpies of vaporization,

over that of Freon-12. Constraints used in this two-objective constrained optimization problem

were specified using equations 5.1 through 5.14. Other multiple equality and inequality

constraints involving combinations of design variables were also enforced. Information related to

all the 295 compounds in the initial pool of data was used in the creation of the response surfaces.

Figure 7.7 shows significant differences in the normal boiling temperatures obtained by

IOSO software and those generated by SPARC online calculator. The points are labeled 1

through 6 for easy identification. 6 unique chemically possible molecular structures were

obtained as a result of the optimization. Table 7.2 shows the results obtained for task 1 and the

comparison of the properties (IOSO software estimations) of the six generated molecular

structures with those obtained from the SPARC online calculator. The differences in the SPARC

estimated normal boiling temperatures and those predicted by IOSO can also be attributed to the

relatively larger inaccuracy of the normal boiling temperature model used in the SPARC online

calculator.
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Figure 7.7: Properties of the molecular structures obtained for case-1 using IOSO software and

their comparison with those generated through SPARC online calculator

Table 7.2: Comparison of the IOSO generated and SPARC predicted properties of all the six

generated molecular structures in case-I

IOSO SPARC IOSO
Results for SPARC predicted

predicted predicted predicted
Pareto-enapyf

normal boiling normal boiling enthalpy of
optimized vaporization

temperature temperature vaporization
molecules

K % K % kcal/mol % kcal/mol %

Molecule 1 456.58 186.24 496.15 202.39 12.73 266.24 13.97 292.38

Molecule 2 371.78 151.65 439.85 179.42 13.62 284.95 12.06 252.41

Molecule 3 369.59 150.76 410.45 167.43 13.91 291.02 10.37 217.04

Molecule 4 369.50 150.72 515.85 210.42 14.14 295.73 15.25 319.17

Molecule 5 369.26 150.62 475.15 193.82 14.17 296.51 13.78 288.41

Molecule 6 369.15 150.58 469.45 191.50 14.19 296.86 12.96 271.24
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Figure 7.8 gives an idea of the errors present in the predictions of the normal boiling

temperatures through SPARC. The root mean squared error between the SPARC estimations of

the normal boiling temperatures and the experimentally known values of the normal boiling

temperatures for the initial pool of 295 organic compounds was found to be 17.605 K.

CoIpari ln ol flie P \.R( te"timnateld [1401nlrm1I boilin te mperatures k ith the cartespurndinl"
e perimental knlw ai salves for A l tle 295 r1 an c Comlpund ia inhe initial data piol

c vmct ofK [ld lolld I. .i:i ltisj'r ;Itr 1-I:

Figure 7.8: Comparison of the SPARC estimated normal boiling temperatures with the

corresponding experimentally known values for all the 295 organic compounds in the original

data pool

The root mean squared error between the IOSO generated normal boiling temperature

and the SPARC estimated normal boiling temperature for all the 6 generated molecules was

found to be 91.79 C. Similarly, the root mean squared error between the IOSO generated

enthalpies of vaporization for all the 6 generated molecules was found to be 1.80 kcal/ mol.

Again, the large differences between the SPARC estimated enthalpies of vaporization and the

IOSO predictions of the enthalpies of vaporization can also be partially attributed to the errors in
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the estimations of the enthalpies of vaporization using SPARC online calculator. Figure 7.9 gives

an idea of the errors present in the estimation of the enthalpies of vaporization of 54 compounds

from the initial pool of data. The causes of errors will be discussed in detail in Section 7.3.

( 4flg sJ - flh it h \RPX e4tunaed ethIi 1 f I .j aI t,I)i iuh the coeQ endtttf
exper Inentdll kow~ n tie tlu o the 54 *irganicL cuompounlds in the hnitiaiI da.tj powI fr wthlvh
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Figure 7.9: Comparison of the SPARC estimated enthalpies of vaporization with the

corresponding experimentally known values of the 54 organic compounds in the initial data pool

for which experimental values of the enthalpies of vaporization were known

On an average, the 6 generated molecules were found to have their normal boiling

temperatures 139.16 C more than that of Freon-12, if these values are calculated using the

normal boiling temperatures generated by I0S0 software. However, average increase in the

normal boiling temperatures was found to be 222.67 C, if SPARC estimations of the normal

boiling temperatures were considered.

Similarly, when IOSO generated enthalpies of vaporization were used, it was found that

the average of the enthalpies of vaporization of the 6 generated molecules surpassed the enthalpy

of vaporization of Freon-12 by 9.02 keal/ mol. However, when SPARC generated values were

used the average difference between the enthalpy of vaporization of Freon-12 and those of the 6

newly generated molecules, was found to be 8.29 kcal/ mol.
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7.2.2. Case-II: The simultaneous minimization of the normal boiling temperature and the

maximization of the enthalpy of vaporization

This two-objective optimization task was aimed at generating molecular structures which

exhibited lower normal boiling temperature, but at the same time possessed the highest possible

enthalpies of vaporization. Constraints used in this two-objective constrained optimization

problem were similar to those used in Case-I. Information related to all the 295 compounds in the

initial pool of data was used in the creation of the response surfaces.

As a result of the optimization process 12 structurally feasible molecular structures were

generated. Table 7.3 lists the performance indices of all the 12 newly generated molecular

structures. From this table, it can be seen that, in general, as the normal boiling temperature

increases the enthalpy of vaporization also increases. Table 7.4 shows the scaled performance

indices of all the generated molecules and their ranks based on the value of their average S.P.I.

Table 7.3: Performance indices for all the newly generated molecules in case-2

Results for Pareto- Performance index (%) for

optimized Normal boiling Enthalpy of
molecules temperature vaporization

Molecule 1 -36.83 -58.37

Molecule 2 -19.84 -39.96

Molecule 3 17.01 16.53

Molecule 4 33.62 45.61

Molecule 5 34.11 71.76

Molecule 6 34.55 71.13

Molecule 7 61.55 98.54

Molecule 8 58.94 126.36

Molecule 9 64.98 136.61

Molecule 10 68.94 141.00

Molecule 11 83.7 187.66

Molecule 12 91.5 171.13
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Table 7.4: Scaled performance indices of the molecules generated in case-2 and their ranks

Results for Pareto- Scaled performance index (S.P.I.) for
optimized Normal bAverage Rank

Normal boiling Enthalpy of S.P.I.
molecules temperature vaporization

Molecule 1 -0.29 -0.24 0.02 3

Molecule 2 -0.15 -0.16 0 8

Molecule 3 0.13 0.07 -0.03 11

Molecule 4 0.26 0.19 -0.04 12

Molecule 5 0.27 0.29 0.01 6

Molecule 6 0.27 0.29 0.01 6

Molecule 7 0.48 0.4 -0.04 12

Molecule 8 0.46 0.51 0.03 2

Molecule 9 0.51 0.56 0.02 3

Molecule 10 0.54 0.57 0.02 3

Molecule 11 0.65 0.76 0.06 1

Molecule 12 0.71 0.7 -0.01 10

Freon-12 0 0 0 8

Based solely on the average S.P.I., the molecule 1 1 was ranked 1. This molecule showed

an increase of 83.7% and 187.66% in the normal boiling temperature and the enthalpy of

vaporization, respectively over that of Freon-12. For the newly generated molecules, the value of

the root mean squared error between the SPARC estimations of the normal boiling temperatures

and IOSO predicted normal boiling temperatures was found to be 56.99 K. Similarly, the rot

mean squared error between the SPARC estimated enthalpies of vaporization and IOSO predicted

enthalpies of vaporization for the newly developed molecules was found to be 1.21 kcal/ mol.

Figure 7.10 graphically shows the performance of each of the newly generated molecular

structures on a normal boiling temperature-enthalpy of vaporization plane. The molecules are

numbered from 1 to 12 for easy identification.
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Figure 7.10: Performance of the newly generated molecular structures in case-2

7.2.3. Case-III: The simultaneous maximization of the enthalpy of vaporization and the

minimization of the tropospheric half-life time

The aim of this two-objective optimization task was to find a molecular structure which

showed the maximum possible enthalpy of vaporization, but had the least possible tropospheric

half-life time. Information regarding 269 compounds was used during the optimization process.

The constraints involved in this task were given by equations 5.1 through 5.15.

As a result of the optimization, IOSO software produced 5 chemically possible molecular

structures. The distribution of these molecular structures on the enthalpy of vaporization-

tropospheric half-life plane is shown in Figure 7.11. The optimization process generated 5

different chemically feasible molecular structures. The performance indexes for all the 5 newly

generated molecular structures, are shown in Table 7.5. In the calculation of the performance

indices, the enthalpy of vaporization and the tropospheric half-life time values of the newly
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Figure 7.11: Distribution of the newly generated molecular structures on the enthalpy of

vaporization-tropospheric half-life plane

generated molecules were estimated using SPARC online calculator and AOPWIN program,

respectively.

Table 7.5: Performance indexes of the newly generated molecular structures in case-III

Molecular Performance Index (%) for the

Structure ID Enthalpy of vaporization Tropospheric half-life

136.50 -99.16

2 141.11 -99.97

3 101.97 -99.89

4 113.69 -99.94

5 81.88 -99.91
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Table 7.5 shows that each of the newly generated molecules showed a more than 80o

increase in the estimated values of the enthalpy of vaporization over that of Freon-12. Not only

this, each of the generated molecules also possessed an estimated tropospheric half-life which

was found to be less than 1% of that of Freon-12.

Table 7.6 lists the scaled performance indices of all the 5 generated molecular structures

in case-3. During the validation of the results using AOPWIN, it was found that molecules

numbered from 2 through 5, violated the property constraint related to the tropospheric half-life

given by equation 5.36. Since, these compounds were obtained from IOSO using the constraint

given by equation 5.36; the scaled performance indices related to the tropospheric half-lives of

these compounds were not penalized.

Table 7.6: Scaled performance indices of the generated compounds and their ranks for case-3

Molecule 1 Molecule 2 Molecule 3 Molecule 4 Molecule 5

Enthalpy ofEtapof 0.9674 1.0000 0.7226 0.807 050
vaporization 8057 0.5802

hropospheric -0.9920 -1.0000 -0.9992 -0.9998 -0.9995
S half-life time

Average S.P.I. 0.9797 1.0000 0.8609 0.9027 0.7899

Rank 2 1 4 3 5

These compounds were then ranked according to the values of their average scaled

performance indices. Thus, molecule 2 was ranked 1. It should be noted that this molecule

showed a 141.11% increase over the estimated enthalpy of vaporization of Freon-12. At the same

time, its tropospheric half-life time was approximately equal to 0.03% of that of Freon-12. For the

newly generated molecular structures, the root mean squared error between the SPARC estimated

values of the enthalpies of vaporization and those predicted by IOSO was found to be 1.681 kcal/

mol. Similarly, for the newly generated molecules, the root mean squared error between the

81



estimations of the tropospheric half-life using AOPWIN and those predicted using IOSO software

was found to be 66.77 days.

7.2.4. Case-IV: The simultaneous maximization of the enthalpy of vaporization and the

minimization of the vapor pressure indicator

This optimization task was aimed at generating a molecular structure that possessed the

highest possible enthalpy of vaporization, but at the same time had vapor pressure variation over

a temperature range as similar as possible to that of Freon-12. The optimization process used

information about 291 different organic compounds for which the enthalpies of vaporization and

the variation of vapor pressure over a temperature range was known (or estimated). This

constrained 2-objective design optimization problem involved all the constraints used in case-11.

Three additional constraints on the values of a, b and c were also used. The optimization resulted

in the generation of 6 new chemically possible molecular structures.

Table 7.7 lists the performance indices for all the 6 newly generated molecules in case-4.

It shows that each of the generated molecules, except molecule 6, shows improvement in the

enthalpy of vaporization over that of Freon-12.

Table 7.7: Performance indices for all the 6 generated molecules in case-4

Results for Performance index (%)
Pareto-optimized for Vapor pressure indicator

molecules Enthalpy of vaporization

Molecule 1 216.032 577.381

Molecule 2 162.453 577.002

Molecule 3 100.712 574.773

Molecule 4 59.481 558.614

Molecule 5 33.738 507.819

Molecule 6 -16.492 101.835
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Table 7.8 shows the scaled performance indices for the 6 generated molecular structures.

SPARC predicted values were used in the calculation of the scaled performance indices. Despite

of the fact that 5 out of the 6 generated molecules had higher enthalpies of vaporization than

Freon-12, the average scaled performance indices of the molecules suggested that Freon-12 was

better than any of the generated molecules. However, molecule 1, which was ranked just below

Freon-12, showed 216.032% higher estimated enthalpy of vaporization than that of Freon-12.

Table 7.8: Scaled performance indices for the 6 generated molecules and their ranks in case-4

Scaled performance index (S.P.I.)

Molecular for Average Rank
structure ID Enthalpy of Vapor pressure S.P.I.

vaporization indicator

Molecule 1 0.929 1.000 -0.035 2

Molecule 2 0.699 0.999 -0.150 4

Molecule 3 0.433 0.995 -0.281 5

Molecule 4 0.256 0.967 -0.356 6

Molecule 5 0.145 0.880 -0.367 7

Molecule 6 -0.071 0.176 -0.124 3

Freon-12 0.000 0.000 0.000 1

The root mean squared error between the SPARC predicted enthalpies of vaporization of

all the newly generated molecular structures and the corresponding predictions using the IOSO

software was found to be 1.63 kcal/ mol. Similarly, the root mean squared error between the

estimations of vapor pressure indictor using SPARC online calculator and the corresponding

predictions using the IOSO software was found to be 1163.909 kPa.
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7.2.5. Case-V: The simultaneous maximization of the normal boiling temperature, the

maximization of the enthalpy of vaporization and the minimization of the tropospheric

half-life time

The primary aim of this optimization task was to find molecules that possessed the largest

possible normal boiling temperatures and the largest possible values of the enthalpy of

vaporization, but which had relatively low tropospheric half-life. The least value of the

tropospheric life-time was specified to be 30 days. Data related to 269 compounds was used in

the creation of the response surfaces. The specified constraints were similar to those specified in

the case-III.

13 new chemically possible molecular structures were generated as a result of the

optimization process using IOSO software. IOSO also predicted the values of their normal boiling

temperatures, enthalpies of vaporization and the tropospheric half-life times. For the validation of

results, the normal boiling temperatures and the enthalpies of vaporizations of the 13 newly

generated molecular structures were then estimated using the SPARC online calculator. AOPWIN

was used to validate the tropospheric half-life times of the generated molecules. Table 7.9 shows

that considerable difference between the IOSO estimations and those obtained from other

prediction models were found. A relatively large difference in the predictions of the normal

boiling temperatures can also be partially attributed to the relatively higher inaccuracy of the

normal boiling temperature prediction model used in the SPARC online calculator. However, it

should be noted that the molecule structures generated from IOSO, show significant

improvements with respect to Freon-12, with respect to all the three objectives. This observation

was confirmed by the performance indices listed in Table 7.10.

Table 7.11 lists the scaled performance indices and the ranks of the 13 newly generated molecular

structures in this case.
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Table 7.9: Validation of the results obtained in task 5 and their comparison with Freon-12

Normal Enthalpy of Tropospheric
For the 13 newly generated molecular boiling vaporization half-life time

structures temperature (kcal/mol) (days)

("C)

RMS error between the IOSO generated

values and those predicted by other 45.81* 2.73* 102.63"

models

Average change in the property values, +141.94 +4.83* -22200.13#
as compared to those of Freon-12

For the purpose of the validation of the results, this property was estimated using SPARC online calculator

"For the purpose of the validation of the results, this property was estimated using AOPWIN module

Table 7.10: Performance indices for all the generated molecules in case-5

Results for Performance Index (%) for

Pareto-

optimized Normal Enthalpy of Tropospheric
moleculesboilingmolecules vaporization half-life

temperature

Molecule 1 102.386 192.382 -97.862

Molecule 2 87.701 171.452 -99.794

Molecule 3 56.659 95.061 -99.818

Molecule 4 66.979 116.409 -99.837

Molecule 5 27.367 37.505 -99.811

Molecule 6 31.809 44.621 -99.454

Molecule 7 45.854 72.039 -99.975

Molecule 8 73.343 130.013 -99.806

Molecule 9 59.147 101.967 -99.889

Molecule 10 62.288 113.688 -99.941

Molecule 11 30.948 52.574 -99.515

Molecule 12 49.733 81.875 -99.911

Molecule 13 58.495 104.270 -99.721

Freon-12 0.000 0.000 0.000
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It should be noted that the molecule 1 was ranked 1. It not only showed vast

improvements in terms of the normal boiling temperature and enthalpy of vaporization over

Freon-12. Its estimated tropospheric half-life time was only 2.138% of that of Freon-12.

Table 7.11: Scaled performance indices for the 13 newly generated molecules and their ranks in

case-5

Scaled performance index (S.P.I.)

Molecular for
Average Rank

structure Normal Enthalpy of Tropospheric S.P.I.
ID boiling vaporization half-life

temperature

Molecule 1 1.000 1.000 -0.979 0.993 1

Molecule 2 0.857 0.891 -0.998 0.915 2

Molecule 3 0.553 0.494 -0.998 0.682 8

Molecule 4 0.654 0.605 -0.999 0.753 4

Molecule 5 0.267 0.195 -0.998 0.487 13

Molecule 6 0.311 0.232 -0.995 0.512 12

Molecule 7 0.448 0.374 -1.000 0.607 10

Molecule 8 0.716 0.676 -0.998 0.797 3

Molecule 9 0.578 0.530 -0.999 0.702 7

Molecule 10 0.608 0.591 -1.000 0.733 5

Molecule 11 0.302 0.273 -0.995 0.524 11

Molecule 12 0.486 0.426 -0.999 0.637 9

Molecule 13 0.571 0.542 -0.997 0.704 6

Freon-12 0.000 0.000 0.000 0.000 14
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7.2.6. Case-VI: The simultaneous maximization of the normal boiling temperature, the

maximization of the enthalpy of vaporization and the minimization of the indicator of

vapor pressure

The aim of this 3-objective optimization task was to find a molecular structure which

possessed the highest possible normal boiling temperature and the highest possible enthalpy of

vaporization, but at the same time had similar variations in the vapor pressure over a temperature

range, to that of Freon-12. Data related to 291 compounds was used in the optimization process.

Constraints used in this optimization task ensured structural feasibility of the newly generated

molecular structures, set the lower bound of the enthalpy of vaporization and enforced limits on

the coefficients a, b and c.

The optimization process resulted in the generation of 6 chemically feasible molecular

structures. Table 7.12 shows the performance indices of all the 6 newly generated molecular

structures in this task. As seen from Table 7.13, molecule I is ranked 1 among the generated

molecular structures. It shows an increase of 110.749% in the normal boiling temperature over

that of Freon-12. It also has a 213.102% higher enthalpy of vaporization as compared to that of

Freon-12. However, among all the 6 newly generated molecular structures, this molecule is found

to be the one having the most different vapor pressure variations over a range of temperatures,

than Freon-12.

The root mean squared errors were calculated for all the 6 newly generated molecular

structures between the SPARC estimated values of the normal boiling temperature, enthalpy of

vaporization and vapor pressure indicator, and the corresponding predicted values using IOSO

software. The results are listed below.

a) RMS error between the SPARC estimated normal boiling temperatures and the

corresponding predictions using IOSO software: 46.62 K
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b) RMS error between the SPARC estimated enthalpies of vaporization and the

corresponding predictions using IOSO software: 1.94 kcal/ mol

c) RMS error between the estimated vapor pressure indicator using SPARC and the

corresponding predictions using IOSO software: 688.16 kPa

Table 7.12: Performance indices of the 6 newly generated molecular structures in case-6

Results for Performance Index (%) for
Vapor

Pareto- pressure
optimized Normal Enthalpy of indicator

mlclsboilingincaomolecules vaporization

Molecule 1 110.749 213.102 577.383

Molecule 2 103.732 216.032 577.381

Molecule 3 63.512 100.712 574.773

Molecule 4 43.373 59.481 558.614

Molecule 5 27.196 33.738 507.819

Molecule 6 2.509 -16.492 101.835

Table 7.13: Scaled performance indices of all the newly generated molecular structures in case-6

Scaled performance index (S.P.I.)

Molecular for Average Rank
structure ID Normal Enthalpy of Vapor S.P.I.

boiling vaporization pressure
temperature indicator

Molecule 1 1.000 0.916 1.000 0.305 1

Molecule 2 0.937 0.929 1.000 0.289 2

Molecule 3 0.573 0.433 0.995 0.004 3

Molecule 4 0.392 0.256 0.967 -0.107 6

Molecule 5 0.246 0.145 0.880 -0.163 7

Molecule 6 0.023 -0.071 0.176 -0.075 5

Freon-12 0.000 0.000 0.000 0.000 4
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7.2.7. Case-VII: The simultaneous minimization of the indicator of the vapor pressure

and the maximization of the sum of the BIOWIN 3 and the BIOWIN 5 values

This optimization task was aimed at generating molecules similar to Freon-12 with

respect to the variation of vapor pressure, over a temperature range. However, the generated

molecules were required to be as highly biodegradable as possible. Apart from the constraints

used in case-6, two additional constraints were also enforced. These constraints were used to set

the lower bounds on the BIOWIN 3 and BIOWIN 5 results. Data related to 265 compounds from

the initial pool was used during the optimization process.

The optimization process resulted in the generation of only 3 chemically feasible

molecular structures. The performance indices for all those 3 newly generated molecules are

shown in Table 7.14. The performance indices and the ranks of each of these 3 molecular

structures are listed in Table 7.15. It should be noted that the molecule ranked 1 (molecule 2)

showed an increase of 41.946% and 39.803% in the BIOWIN 3 and BIOWIN 5 values,

respectively over the corresponding values of Freon-12. As compared to the other generated

molecular structures, its vapor pressure variation with temperature was not found very much

different than that of Freon-12.

Table 7.14: Performance indices of all the 3 newly generated molecules in case-7

Results for Performance Index (%) for Vapor
Pareto- pressure

optimized BIOWIN 3 BIOWIN 5 indicator
molecules result result

Molecule 1 28.637 9.431 101.835

Molecule 2 41.946 39.803 319.630

Molecule 3 31.443 28.337 558.714

Freon-12 0.000 0.000 0.000
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Table 7.15: Scaled performance indices of all the newly generated molecular structures in case-7

Scaled performance index (S.P.I.)

Molecular for Average Rank
structure ID BIOWIN 3 BIOWIN 5 Vapor S.P.I.

result result ndicator

Molecule 1 0.683 0.237 0.182 0.246 2

Molecule 2 1.000 1.000 0.572 0.476 1

Molecule 3 0.750 0.712 1.000 0.154 3

Freon-12 0.000 0.000 0.000 0.000 4

For all the 3 newly generated molecular structures, the RMS errors between the IOSO

predicted values of BIOWIN 3, BIOWIN 5 and vapor pressure indicator and their corresponding

estimations using BIOWIN and SPARC were calculated. They are presented below.

a) RMS error between SPARC estimated values of indicator of vapor pressure and the

corresponding values predicted by IOSO software: 355.51 kPa

b) RMS error between BIOWIN estimated values of BIOWIN 3 model and the

corresponding values predicted by IOSO software: 0.14

c) RMS error between BIOWIN estimated values of BIOWIN 5 model and the

corresponding values predicted by IOSO software: 0.03

7.2.8. Case-VIII: The simultaneous maximization of the normal boiling temperature, the

maximization of the enthalpy of vaporization, the minimization of the tropospheric half-

life time and the minimization of the vapor pressure indicator

The aim of this 4-objective optimization task was to find molecular structures which

possessed highest possible normal boiling temperatures and enthalpies of vaporization, had

relatively low tropospheric half-life time and had vapor pressure variations similar to that of
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Freon-12. Properties of 265 compounds in the initial data set were used in the optimization

process. Constraints used in this optimization process not only ensured structural feasibility of the

generated molecular structures, they also limited the values of the coefficients a, b and c.

Constraints also limited the tropospheric half-life of any newly generated compound.

12 new structurally feasible molecules were generated as the result of the optimization.

The performance indices are listed in Table 7.16 and the scaled performance indices are listed in

Table 7.17. On the sole basis of the average scaled performance index, molecule 2 was ranked 1.

It showed an increase of 103.732% in terms of the normal boiling temperature and 216.032% in

terms of the enthalpy of vaporization over the corresponding values of Freon-12. Its tropospheric

half-life was also estimated to be equal to 0.699% of that of Freon-12. However, the value of the

indicator of vapor pressure for this particular molecule is relatively higher as compared to the

other newly generated molecular structures.

Table 7.16: Performance indices of all the 12 newly generated molecular structures in case-8

Results for Performance index (%) for
Vapor pressure

Pareto-optimized Normal boiling Enthalpy of Tropospheric indicator
molecules temperature vaporization half-life

Molecule 1 63.512 100.712 -95.829 574.773

Molecule 2 103.732 216.032 -99.301 577.381

Molecule 3 56.659 95.061 -99.818 573.067

Molecule 4 29.684 36.040 -99.879 520.539

Molecule 5 27.196 33.738 -99.500 507.819

Molecule 6 49.733 81.875 -99.911 568.925

Molecule 7 29.684 36.040 -99.879 520.539

Molecule 8 27.196 33.738 -99.500 507.819

Molecule 9 -27.983 -54.793 -99.856 2758.556

Molecule 10 5.495 -1.214 -99.832 140.539

Molecule 11 0.090 -19.841 -99.771 187.675

Molecule 12 2.509 -16.492 -98.876 101.835
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Table 7.17: Scaled performance indices for all the newly generated molecular structures in case-8

Results for Scaled performance index (S.P.I.) for

Pareto- Normal Vapor Average Rank
optimized boiling Enthalpy of Tropospheric pressure S.P.I.

molecules temperature vaporization half-life indicator

Molecule 1 0.482 0.372 -0.959 0.208 0.401 2

Molecule 2 0.788 0.798 -0.994 0.209 0.592 1

Molecule 3 0.430 0.351 -0.999 0.208 0.393 3

Molecule 4 0.225 0.133 -1.000 0.189 0.292 5

Molecule 5 0.206 0.125 -0.996 0.184 0.286 7

Molecule 6 0.378 0.302 -1.000 0.206 0.368 4

Molecule 7 0.225 0.133 -1.000 0.189 0.292 6

Molecule 8 0.206 0.125 -0.996 0.184 0.286 7

Molecule 9 -0.212 -0.202 -0.999 1.000 -0.104 13

Molecule 10 0.042 -0.004 -0.999 0.051 0.246 9

Molecule 11 0.001 -0.073 -0.999 0.068 0.214 11

Molecule 12 0.019 -0.061 -0.990 0.037 0.228 10

Freon-12 0.000 0.000 0.000 0.000 0.000 12

The RMS errors between the IOSO software predicted values and the corresponding

property predictions using other models were also computed. The results are listed below.

a) RMS error between SPARC estimated values of the normal boiling temperatures and the

corresponding values predicted by IOSO software: 56.849 K

b) RMS error between SPARC estimated values of the enthalpies of vaporization and the

corresponding values predicted by IOSO software: 2.27 kcal/ mol

c) RMS error between AOPWIN estimated values of the tropospheric half-lives and the

corresponding values predicted by IOSO software: 249.69 days

d) RMS error between SPARC estimated values of indicator of vapor pressure and the

corresponding values predicted by IOSO software: 805.70 kPa
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7.2.9. Case-IX: The simultaneous maximization of the normal boiling temperatures, the

maximization of the enthalpy of vaporization, the minimization of the indicator of vapor

pressure and maximization of the sum of the BIOWIN 3and the BIOWIN 5 values

This 4-objective design optimization was aimed at obtaining structurally feasible organic

compounds that showed highest possible normal boiling temperatures, enthalpies of vaporization

and biodegradabilities, but at the same time displayed similar vapor pressure variations with

temperature as that of Freon-12. Constraints used in this optimization task were similar to the

constraints used in case-8. However, unlike case-8, no constraints were used to restrict the

tropospheric half life of the newly generated compounds. Data related to 265 organic compounds

from the initial data pool was used in the optimization process.

Table 7.18 shows that most of the newly generated molecular structures showed

improvements in the objective values when compared with Freon-12. Table 7.19 lists the scaled

performance indices of each of the molecules and their ranks which were solely based on the

value of the average scaled performance index.

Table 7.18: Performance indices of all the newly generated molecular structures in case-9

Results for Performance index (%) for
Vapor

Pareto- Normal pesr
optimized boiling Enthalpy of BIOWIN 3 BIOWIN 5 pressure

mvaporization result result indicator
molecules temperature vprzto

Molecule 1 29.684 36.040 25.861 16.958 520.539

Molecule 2 19.572 24.529 25.477 1.028 437.319

Molecule 3 13.017 14.483 2.191 4.201 321.632

Molecule 4 -27.983 -54.793 31.987 36.433 2758.556

Molecule 5 0.090 -19.841 30.314 39.256 187.675

Molecule 6 27.196 33.738 24.188 -12.845 507.819

Molecule 7 37.683 52.156 18.871 -4.289 549.226

Molecule 8 2.509 -16.492 28.637 9.431 101.835

Freon-12 0.000 0.000 0.000 0.000 0.000
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Table 7.19: Scaled performance indices and the ranks of the generated molecules in case-9

Results for Scaled performance index (S.P.I.) for

Pareto- Normal Vapor Average Rank
optimized boiling Enthalpy of BIOWIN BIOWIN pressure S.P.I.
molecules temperature vaporization 3 result 5 result indicator

Molecule 1 0.452 0.337 0.808 0.325 0.189 0.35 1

Molecule 2 0.298 0.229 0.796 0.020 0.159 0.24 4

Molecule 3 0.198 0.135 0.068 0.081 0.117 0.07 7

Molecule 4 -0.426 -0.512 1.000 0.699 1.000 -0.05 9

Molecule 5 0.001 -0.186 0.948 0.753 0.068 0.29 2

Molecule 6 0.414 0.315 0.756 -0.247 0.184 0.21 5

Molecule 7 0.574 0.488 0.590 -0.082 0.199 0.27 3

Molecule 8 0.038 -0.154 0.895 0.181 0.037 0.18 6

Freon-12 0.000 0.000 0.000 0.000 0.000 0.00 8

Molecule 1, which was ranked 1 among all the generated molecules, showed a higher

normal boiling temperature, enthalpy of vaporization, BIOWIN 3 value and the BIOWIN 5 value

than the corresponding values of Freon-12. The value of the vapor pressure indicator was neither

found to be the minimum among all the newly generated molecules nor was it was the highest. As

done in previously discussed optimization cases, the RMS errors between the predictions using

the IOSO software and the estimations based on the property prediction models were calculated

for all the 8 generated molecular structures. These RMS errors are listed below.

a) RMS error between SPARC estimated values of the normal boiling temperatures and the

corresponding values predicted by IOSO software: 56.31 K

b) RMS error between SPARC estimated values of the enthalpies of vaporization and the

corresponding values predicted by IOSO software: 2.04 kcal/ mol

c) RMS error between SPARC estimated values of indicator of vapor pressure and the

corresponding values predicted by IOSO software: 859.97 kPa
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d) RMS error between BIOWIN estimated values of BIOWIN 3 result and the

corresponding values predicted by IOSO software: 0.24

e) RMS error between BIOWIN estimated values of BIOWIN 5 result and the

corresponding values predicted by IOSO software: 0.098

7.2.10. Case-X: The simultaneous maximization of the normal boiling temperature, the

maximization of the enthalpy of vaporization, the minimization of the tropospheric half-

life time, the minimization of the indicator of vapor pressure and the maximization of the

sum of the BIOWIN 3 and the BIOWIN 5 values

The aim of this five-objective design optimization task was to find a molecular structure

which not only possesses higher normal boiling temperature, enthalpy of vaporization, BIOWIN

3 value and the BIOWIN 5 value, but also shows lower tropospheric life-time and has a similar

vapor pressure-temperature profile as that of Freon-12. Figure 7.12 shows the location of these

new molecules in the objective function space.

Table 7.20 shows the performance index of all the 7 newly generated molecular

structures. It can be seen from this table that all the generated molecules perform better than

Freon-12 with respect to the tropospheric half-life time and the biodegradability values. However,

not all the molecules are found to have higher normal boiling temperature and a higher enthalpy

of vaporization than Freon-12.

Table 7.21 shows the scaled performance indexes of all the 7 generated molecular

structures with respect to each of the objectives. This table gives an indication of the performance

of each of the molecules as compared to the other generated molecules and also ranks them

according to their average performance indices.
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Table 7.20: Performance indexes for all the 7 molecular structures generated in case-10

Results for Performance index (%) for
Vapor

Pareto- Nra
opti d ol Enthalpy of Tropospheric BIOWIN 3 BIOWIN 5 pressure

molecules temperature vaporization half-life result result indicator

Molecule 1 29.7 36.0 -99.9 25.9 17.0 520.539

Molecule 2 -28.0 -54.8 -99.9 32.0 36.4 2758.556

Molecule 3 5.50 -1.2 -99.8 4.00 14.3 140.539

Molecule 4 1.00 -19.8 -99.8 30.3 39.3 187.675

Molecule 5 27.2 33.7 -99.5 24.2 -12.8 507.819

Molecule 6 -9.90 -23.8 -95.9 5.40 12.6 600.693

Molecule 7 2.50 -16.5 -98.9 28.6 9.40 101.835

Table 7.21: Calculation of the scaled performance indices of the generated molecular structures

and determination of their ranking in case-10

Molecule structure ID Freon-

1 2 3 4 5 6 7 12

Normal boiling 0.515 -0.485 0.095 0.002 0.472 -0.172 0.044 0.000
temperature
Enthalpy of 0.397 -0.603 -0.013 -0.218 0.371 -0.262 -0.182 0.000
vaporization

Tropospheric -1.000 -1.000 -1.000 -0.999 -0.996 -0.961 -0.990 0.000
half-life

S Vapor pressure 0.189 1.000 0.051 0.068 0.184 0.218 0.037 0.000
Sindicator

BIOWIN 3 0.808 1.000 0.126 0.948 0.756 0.167 0.895 0.000
result

BIO WIN 5
result 0.325 0.699 0.274 0.753 -0.247 0.242 0.181 0.000

Average S.P.I. 0.476 0.102 0.239 0.403 0.361 0.120 0.315 0.000

Rank 1 7 5 2 3 6 4 8
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(a)
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(b)

Figure 7.12: Distribution of the newly generated molecules in the (a) thermodynamic property

space (b) environmental property space

On the basis of the average scaled performance index values the best three molecular structures

were found to be molecule 1, molecule 4 and molecule 5. Molecule I boiled at a temperature
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which was 29.7% higher than that of Freon-12 at 1 atm. It also possessed 36% more enthalpy of

vaporization than that of Freon-12 and had a tropospheric half-life time which was almost 99%

less than that of Freon-12. Not only this, it showed 25.9% and 17% more biodegradability than

that of Freon-12, as estimated by BIOWIN 3 and BIOWIN 5, respectively.

As done in previously discussed optimization cases, the RMS errors between the

predictions using the IOSO software and the estimations based on the property prediction models

were calculated for all the 8 generated molecular structures. These RMS errors are listed below.

a) RMS error between SPARC estimated values of the normal boiling temperatures and the

corresponding values predicted by IOSO software: 61.54 K

b) RMS error between SPARC estimated values of the enthalpies of vaporization and the

corresponding values predicted by IOSO software: 2.40 kcal/ mol

c) RMS error between AOPWIN estimated values of the tropospheric half-lives and the

corresponding values predicted by IOSO software: 226.45 days

d) RMS error between SPARC estimated values of indicator of vapor pressure and the

corresponding values predicted by IOSO software: 746.94 kPa

e) RMS error between BIOWIN estimated values of BIOWIN 3 result and the

corresponding values predicted by IOSO software: 0.24

f) RMS error between BIOWIN estimated values of BIOWIN 5 result and the

corresponding values predicted by IOSO software: 0.079

7.3. Causes of errors

There are many potential sources of errors which affect the accuracy and validity of the

final results. Many of the errors are related to the quality of the initial data itself, while some

others are attributed to the accuracy of response surfaces. Section 7.3.1 discusses the main

sources of errors in the initial pool of data and their overall effects on the results, while Section
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7.3.2 explains the influence of the inaccuracy of the meta-models (response surfaces) on the

newly designed molecules.

7.3.1. Quality of the data used in this study

The values of the properties (normal boiling temperature, vapor pressure, enthalpy of

vaporization, half-life time in the troposphere and biodegradability) of the 295 compounds were

either estimated using a suitable prediction model or compiled from the experimentally measured

values as published in peer reviewed journals.

The estimations were made using those models which were found to possess relatively

higher accuracies for the classes of compounds that have been considered in this study. However,

even the best of the prediction models produce results which are not 100% accurate.

The biodegradability was estimated using the models which are based on the group

contribution methodology. It is highly likely that not all the chemical groups of significance with

respect to the set of 295 compounds were included and represented adequately in the training set

of the estimation model. Even if they were represented sufficiently, it is very hard to prepare a

training set which provides equal representation to all the unique structural components.

Moreover, biodegradability of a compound also depends on the temperature of the surroundings

in which the micro-organisms exist. Temperature variations are known to have direct and

indirect influence on such biological processes. In most cases, the transformations that micro

organisms perform cannot be scaled with temperature by the use of equations such as the

Arrhenius equation (equation 7.4).

k = A - e-Ea/RT (7.4)

Here, k and T represent the rate constant of the chemical reaction and the absolute temperature,

respectively. Ea and A represent the activation energy and the pre-exponential factor,

respectively. R represents the gas constant.
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Errors in estimating the half-life of compounds in troposphere also creep up because of

the similar reasons. Discrepancies in experimentally measured values of the tropospheric half-life

may exist because of the human error, mechanical errors in the devices used for measurements

and due to any differences in the techniques used for measurement. Moreover, during the

estimation of the half-life of an organic compound in the troposphere it was assumed that the

hydroxyl radical concentration is constant. However, there are variations in the hydroxyl radical

concentration depending on the time of the day and the month of the year (season).

The SPARC model used for the estimation of vapor pressure in this study also induces

additional errors in the data set. The root mean squared error value of the vapor pressure model

used in SPARC has already been mentioned as 0.096, earlier in Section 4.4.2. Figure 7.14 and

Figure 7.14 are shown as examples of compounds for which a difference between the vapor

pressures estimated by SPARC and those listed in the NIST experimental database (Kazakov, et

al. 2009), was found. It should be noted that the difference in the vapor pressures is more

significant only at higher temperatures. In general, these vapor pressure differences are found to

be relatively small inside the temperature range considered as the operating temperature range of

the refrigeration system.

Errors were also observed in the estimation of the enthalpies of vaporization when they

were estimated using the SPARC online calculator. The root mean squared value of the difference

between the experimentally observed values and the estimated values of the enthalpy of

vaporization of the organic compounds used in the development of SPARC has been reported to

be 0.41 (Hilal, Karickhoff and Carreira 2003).

The regression line as computed by Hilal et al. (Hilal, Karickhoff and Carreira 2003) is

given by equation 7.5. The relative error between the estimated values and the experimentally

observed values of the AHv is given by equation 7.6.
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Figure 7.14: Comparison of the SPARC estimated vapor pressure against NIST experimental

database listed vapor pressure for 2-chloro-1,1,1,2-tetrafluoroethane
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Figure 7.14: Comparison of the SPARC estimated vapor pressure against NIST experimental

database listed vapor pressure for 2-bromo-1,1,1-trifluoroethane
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Equation 7.6 suggests that this relative error should decrease for organic compounds which have

higher enthalpies of vaporization. The median value of AH, for the set of 265 compounds was

AHvestimated = 1.0563 AHvb d - 0.7061 (7.5)

AHvestimated - AHvobserved = 0.0563 - 0.7061 (7.6)AHv observed AHv observed

found to be 7.5 kcal/ mol. Thus, a median relative error of about -3.79% may be expected in the

estimation of AH, using SPARC.

The experimental values of the normal boiling temperatures used in this study were listed

in a peer reviewed publication (Horvath 2001). However, the normal boiling temperatures listed

in this publication were extracted from other original documents without any corrections or

validations. In the absence of any verification, this source is bound to have some errors. Those

values of the enthalpy of vaporization which were not estimated using SPARC calculator were

listed in (Chickos and Acree Jr. 2003). Again, in the absence of thorough validation and

verification, this source is also expected to have some errors.

7.3.2. Errors due to the inaccuracy of the response surfaces

The response surface which is created from the information about the 295 compounds in

the data pool is also expected to have some errors. Therefore, the result of any objective function

evaluation using the surrogate model during the optimization process is expected to have some

inaccuracy. Moreover, the topology of the response surface is also expected to be highly

complex, because the design space is made up of twenty eight discrete structural design variables

and three other real design variables (for coefficients a, b and c in equation 4.9).
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7.4. Conclusion

Multi-objective design optimizations were successfully performed using an initial pool of

data, constraints which also ensure the structural feasibility of any generated molecule and meta

models. It was found that the methodology successfully generated several candidate solutions

which were generally found better than Freon-12 in one or more objectives. Errors between the

property predictions using IOSO software and those obtained through property prediction models

used in this study were also calculated. The inaccuracies of the property prediction models are

also partially responsible for these relatively larger errors, apart from the different sources of

inaccuracies present in this methodology.
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8. SCOPE FOR FUTURE WORK

Many properties and constraints which are not included in this study might be considered

important for designing a new molecule. For example, a constraint on the Gibb's free energy of

formation, at a particular temperature, can be used to ensure the thermodynamic feasibility of a

compound. For a molecule to be feasible at a particular temperature, the Gibb's free energy of

formation, Gf, at that temperature should be less than zero. Mathematically, for obtaining a stable

compound

Gf(T) < 0 (8.1)

Although, this constraint ensures the feasibility of the compound, it may eliminate those

compounds which are not stable at the particular temperature, but have very slow dissociation

rates. In other words, some of these compounds may exist without considerable dissociation, long

enough for them to be useful as commercial refrigerants. Thus, the study of kinetics may be

involved in further studies.

It is expected that even with a slight increase in the number of elements that could

constitute the molecule of a new refrigerant, the number of ways in which these elements could

be combined to form the molecule would increase very rapidly. This combinatorial explosion

may drastically increase the computational time to solve the problem. It has been reported in the

past (Harper, et al. 1999) that a multilevel generate-and-test approach may be used to address this

issue of combinatorial explosion and to make the whole optimization process more robust,

flexible and computer efficient. With an increase in the size of the molecules, the present

methodology would need to tackle the problem of combinatorial explosion. A multi-level

approach used with the methodology discussed may prove to be a better overall approach.

In the absence of reliable experimentally measured ODP values of a large number of

compounds, expressions for estimating the ODP by utilizing the number of abstractable hydrogen

atoms, number of chlorine/bromine/iodine atoms along with their positions in the molecule need
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to be used. Similar expressions have been reported previously (Duvedi and Achenie 1996).

However, the application of these expressions has been limited because the expressions were

developed for a small family of organic compounds with a number of restrictions on the type of

atoms that could constitute the organic molecule.

Freezing temperature and the liquid/ vapor phase change specific heat of a particular

refrigerant are of much importance in the evaluation of the performance of the refrigeration cycle.

Due to the lack of available experimental/ estimated data for a large number of promising organic

compounds, these properties were not considered in this study. It would be highly desirable to

search a credible and accurate model which could estimate the liquid specific heat of compounds

and integrate the estimated values in the form of another objective.

The developed methodology can handle only those organic compounds which have up to

four carbon atoms. In order to handle compounds containing a larger number of carbon atoms,

the methodology would need to be modified. Apart from the number of bonds of a particular kind

associated with each carbon atom, the way in which carbon atoms themselves are arranged in the

molecule would also need to be addressed. In addition to this, a number of constraints would need

to be modified, since some constraints might become irrelevant and some others might need to be

formulated from scratch.

With an inclusion of a number of additional elements such as nitrogen, boron,

phosphorous, etc., the complexity of the design problem should increase significantly. In many

such situations, the octet rule would not remain valid. Odd electron species (such as nitrogen

oxide NO, nitrogen dioxide NO2 , etc.) and compounds constituted by elements having incomplete

octets (such as boron trifluoride BF 3) and/ or expanded octets (such as phosphorous pentachloride

PCI5 ) would need to be considered. Although some of these compounds may be toxic, flammable

and unsuitable for use as a refrigerant due to other reasons, an ideal compound may belong to the

category of organic compounds in which one or more atoms violate the octet rule.
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It is expected that in the immediate future, new refrigerants will be required to have low

GWP. Atmospheric lifetimes of organic compounds have been directly/ indirectly linked to their

GWP. Incorporation of the GWP as a separate objective should be given a high priority in any of

the future work related to the design optimization of new refrigerants.

Many of the currently used refrigerants are also mixtures of two or more organic

compounds. In many cases, it has been found that mixtures when used as refrigerants perform

better than any of their constituting components. An attempt to find the optimal mixture with two

or more constituents would require a considerable change in the methodology used in this study.

Consequently, such attempts may result in the generation of better refrigerants that may be

obtained by the methodology suggested in this study.
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APPENDICES

APPENDIX A - SMILES Notation

SMILES (Simplified molecular input line entry system) is a way of representing the

structure of a chemical compound, which is compatible with many of the computer codes (U.S.

Environmental Protection Agency 2009). SMILES requires five basic rules of Chemistry to be

observed. They are the following:

1) Atoms and bonds

SMILES notation supports all the elements of the periodic table. Any atom is

represented by its respective atomic symbol. If this symbol contains two letters, the first

letter would be upper case and the second letter should be in lower case. Letters in upper

case are used to represent non-aromatic atoms. Lower case atoms represent aromatic

atoms. A SMILES string is terminated by a blank. Bonds are represented as:

- single bond

= double bond

# triple bond

* aromatic bond

. disconnected structures

2) Simple Chains

Simple chain structures are represented by using a combination of atomic and

bond symbols. Hydrogen bonds may or may not be explicitly specified. However, a

presence of a Hydrogen bond in the SMILES string requires the explicit identification of

all the Hydrogen atoms in the molecule.

3) Branches
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A branch is specified by placing the SMILES string corresponding to the branch

inside parenthesis. The string is placed directly after the symbol of the atom to which the

branch is attached and the left parenthesis is followed by the appropriate bond symbol.

4) Rings

Ring structures are identified in SMILES notation by using numerals. The

numerals are used to identify the opening and closing ring atom. In case the chemical

compound contains multiple rings, individual rings are assigned different numbers. The

bond symbol before the ring closure number identifies the type of bond.

5) Charged Atoms

Charged atoms, if any, are identified by placing the charge inside brackets and

using this directly after the symbol of the atom which is charged.
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APPENDIX B - Zonally and monthly averaged hydroxyl radical concentrations (105

mol/cm 3)

Latitude December March June September Annual Hemisphere
average average

85 N - - 6.3 0.1 1.6

75 N - 0.1 8.1 0.4 2.1

65N - 0.4 10.3 1.2 3.0

55 N 0.0 1.3 10.9 2.9 3.8

45 N 0.5 3.4 14.9 6.1 6.2 9.8 NH

35"N 2.3 6.9 18.7 10.6 9.6

25 N 5.8 11.6 17.9 13.3 12.1

15"N 8.8 13.6 16.7 14.9 13.5

5"N 13.2 17.0 16.0 18.1 16.0

50S 16.9 15.8 12.6 19.7 16.3

15"S 17.4 12.4 8.3 15.6 13.4

25 S 15.5 9.7 4.7 11.2 10.3

350S 11.0 6.6 2.3 6.4 6.6

45"S 7.7 4.1 0.8 3.8 4.1 8.5 SH

55 S 5.1 2.1 0.1 1.9 2.3

65"S 3.5 0.8 - 0.6 1.2

75 S 4.0 0.2 - 0.1 1.1

85"S 3.1 0.0 - - 0.8

Global Average

Average 8.4 8.3 10.0 9.9 9.2
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