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 Silicon photonics is a very promising technology for future low-cost high-

bandwidth optical telecommunication applications down to the chip level. This is due to 

the high degree of integration, high optical bandwidth and large speed coupled with the 

development of a wide range of integrated optical functions. Silicon-based microring 

resonators are a key building block that can be used to realize many optical functions 

such as switching, multiplexing, demultiplaxing and detection of optical wave. The 

ability to tune the resonances of the microring resonators is highly desirable in many of 

their applications.  

In this work, the study and application of a thermally wavelength-tunable 

photonic switch based on silicon microring resonator is presented. Devices with 10µm 

diameter were systematically studied and used in the design. Its resonance wavelength 

was tuned by thermally induced refractive index change using a designed local micro-

heater. While thermo-optic tuning has moderate speed compared with electro-optic and 

all-optic tuning, with silicon’s high thermo-optic coefficient, a much wider wavelength 

tunable range can be realized. The device design was verified and optimized by optical 
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and thermal simulations. The fabrication and characterization of the device was also 

implemented. The microring resonator has a measured FSR of ~18 nm, FWHM in the 

range 0.1-0.2 nm and Q around 10,000. A wide tunable range (>6.4 nm) was achieved 

with the switch, which enables dense wavelength division multiplexing (DWDM) with a 

channel space of 0.2nm. The time response of the switch was tested on the order of 10 µs 

with a low power consumption of ~11.9mW/nm. The measured results are in agreement 

with the simulations.  

Important applications using the tunable photonic switch were demonstrated in 

this work. 1×4 and 4×4 reconfigurable photonic switch were implemented by using 

multiple switches with a common bus waveguide. The results suggest the feasibility of 

on-chip DWDM for the development of large-scale integrated photonics. Using the 

tunable switch for output wavelength control, a fiber laser was demonstrated with 

Erbium-doped fiber amplifier as the gain media. For the first time, this approach 

integrated on-chip silicon photonic wavelength control.  
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I. INTRODUCTION 

1.1 Transition from Electronics to Photonics in High-speed Communications 

Now, we are in the information age enabled by the development of the internet. The 

evolution of the internet and pervasive computing creates massive bandwidth demand for 

data communications. As industries move to higher and higher bandwidths, electronic 

communication links are approaching the fundamental distance × bandwidth limitation 

governed by the physical loss mechanisms (a function of distance and bandwidth) and 

noise levels. For example, the bandwidth for today’s high-speed copper interconnects in 

computing systems is roughly 3GHz within a 1m distance. Most experts feel that copper 

interconnect limits will be reached in the 10–40 GHz range for PC board materials within 

1 m distances. Meaning that these interconnect limits will be reached in only a few 

generations. [1]. Moving close to a fundamental limit usually involves ever-increasing 

costs. To ease cost pressure, many industries have chosen to find alternative technology 

platforms that do not suffer from the same physical limitations. For many industries with 

long communication distances such as the long-haul industry and the storage area 

network industry; this choice has been to switch to photonics [1]. As the communication 

bandwidth demand gets higher and higher, applications with shorter and shorter 

communication distances are expected to migrate to photonics.  

In optical communication systems, large communication bandwidth can be 

achieved by wavelength-division multiplexing (WDM) technology. WDM is a 

technology which multiplexes a number of optical carrier signals onto a single optical 

fiber by using different wavelengths of laser light to carry different signals. This allows 
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for a multiplication in capacity, in addition to enabling bidirectional communications 

over one strand of fiber. The S-, C-, L- spectral bands are commonly used for WDM 

systems because of low optical loss in standard optical fiber [31]. The band covers the 

wavelength range of 1460-1625nm (~20THz optical bandwidth), allowing an upper limit 

total data rate of 20Tbps for a single piece of fiber. With zero-water-peak fiber becoming 

commercially available recently [32], the wavelength range can be expanded even wider 

from ~1260nm to 1625nm (~56THz).Dense wavelength-division multiplexing (DWDM) 

uses the same communication band, but with denser channel spacing to achieve high 

bandwidth efficiency. With optical fibers, information can be transmitted thousands of 

kilometers away with optical amplification. Compare to electrical communication 

systems, optical communication systems have a  huge advantage on the distance × 

bandwidth product.  

The transition of communication systems from electronics to photonics depends 

strongly on the cost of the systems. Conventional photonic components usually have 

much higher cost compared to electronic components. Some of them are 10 to 100 times 

more expensive than their electronic equivalents. Lowering the cost of the optical 

solutions is essential for the transition timeframe. The advent of an optical replacement 

solution with suitable cost during this transition will enable earlier conversion. The 

absence of such a suitable optical replacement will delay conversion until the cost of 

electrical components become prohibitive. 
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1.2 Silicon-based Integrated Photonics  

Silicon technology is promising as a means to lower the cost of the optical 

communication systems. Over the last fifty years, the rapid development of the 

electronics industry based on the manufacturing of silicon electronic devices has already 

shown enormous performance improvement and cost reduction. Many improvements 

have been introduced in the manufacturing of electronic devices to keep pace with the 

steady evolution dictated by Moore’s law; which states that the number of transistors on 

an integrated circuit would double approximately every 2 years [33]. By applying silicon 

technology in photonics, we envision similar reduction in cost and improvements in 

performance.  

Most integrated photonics device now in market are based on III-V 

semiconductors or planar lightwave circuits (PLCs). With low refractive index contrast 

between waveguide and cladding, PLC-based device are usually large, not good for high 

integration. And compared with III-V semiconductors, silicon offers the advantages of 

mature fabrication technology and potential monolithic integration with complementary 

metal-oxide-semiconductor (CMOS) devices, which would enable mass production of 

photonics devices with low cost. In addition, silicon-on-insulator (SOI) wafers widely 

used in electronic integrated circuits also provide an ideal platform for optical and 

optoelectronic integrated circuits. The underlying thermal oxide provides simultaneous 

high-quality optical and electrical isolation. Also, silicon-based photonics provides a 

golden opportunity to introduce and marry photonics with electronics. This new 

functionality is not only breaking the bandwidth barrier, but is also offering design 

freedom, small footprint with minimal latency penalty, and power efficiency. With its 
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prospect of breaking the bandwidth bottleneck while extending a massive, low-cost 

electronics manufacturing platform into the photonics domain, silicon-based integrated 

photonics has been the subject of much research in recent years; because of the clear 

advantages of the photonic technology on the silicon platform.. Significant advancements 

had been made in silicon-based integrated photonics recently. Monolithic waveguide-

integrated Ge photodetector offers over 40GHz bandwidth, with a quantum efficiency of 

over 90%  at the 1550nm band [2]. Optical modulators have been reduced to a small size 

with very low power dissipation [3]. Silicon microring resonators provides wavelength 

filtering with free spectral range (FSR) of over 60nm. [4].  

 

1.3 Integrated Photonics towards DWDM Applications 

There is a great opportunity for integrated photonics in DWDM applications to 

enable reaching the limits of bandwidth efficiency, by providing sophisticated 

wavelength filtering in which conventional optical analogues prove difficult or 

impractical to realize. Particularly, when narrow pass-band and high wavelength channel 

count are required, conventional technologies become less economical. Furthermore, the 

introduction of more complex functionality including wide tuning range and multiple 

channel drops make realization in conventional bulk technologies more and more 

challenging. Complexity, dense integration and low power are the advantages for 

integrated photonics.  

One of the key building blocks for the implementation of next-generation flexible 

and cost-effective WDM networks is reconfigurable optical add/drop multiplexer 
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(ROADM) [34].The present WDM networks use mainly fixed optical add/drop 

multiplexers (OADMs); in which the number of wavelengths in the network and their 

service patterns are fixed and predetermined. This imposes a significant limitation on the 

service providers in the management of their optical networks. The lack of flexibility and 

slow service provisioning are the main challenges of building the dynamically 

provisioned network of future. Therefore, the role of development and integration of 

ROADMs into the present WDM networks is of critical value. The switching or 

reconfiguration functions of a ROADM are commonly achieved using switching 

technologies including MEMS [36, 39], PLC [53, 54], liquid crystal [55] and wavelength-

tunable filters [68]. MEMS devices are based on complex architectures and usually need 

sophisticated fabrication processes. PLC-based ROADM normally use array waveguide 

gratings (AWGs) to assign lightwaves with different wavelengths into channels, and need 

to use a separate switch on each channel. Liquid crystal approaches rely on conventional 

optical gratings for wavelength demultiplexing which make the devices bulky. Compared 

to the other approaches, the wavelength–tunable filter is a promising technology due to 

its simple architecture and good scalability for high port count DWDM applications. 

Other than ROADM application, integrated wavelength–tunable filter can be 

applied in other applications in DWDM optical network. Recent progress in DWDM 

technology has called for multi-wavelength light sources. The multi-wavelength 

transmitters for the WDM system are currently built with multiple discrete lasers [86]. 

However, combining discrete lasers for a WDM light source suffers from the high 

packaging cost and the burden of multiple alignments between laser diodes and optical 

fibers. Integration of lasers into a multi-wavelength laser array has been presented as a 
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promising approach to reduce the cost per wavelength so that the cost of packaging and 

of the required pigtail optics can be shared by a large number of wavelengths [87, 88]. By 

multiplexing wavelength-tunable filters, multi-wavelength laser sources could be realized 

using a common gain media.[89] 

WDM networks have been limited by the requirement of exact wavelength 

registration throughout the network, which imposes extremely tight and costly 

wavelength tolerances on the sources. However, the application of wavelength–tunable 

filters can relax these tolerances and make the system more robust. [90, 91] Using 

wavelength–tunable filters, receivers can be tuned to the channel wavelength of the 

sources of interest and locked to that wavelength using feedback while allowing changes 

of source wavelength. For DWDW systems while multi-wavelength sources are used, 

integrated wavelength–tunable filters will be promising for cost-efficient simultaneously 

multi-wavelength tracking.  

 

1.4 Choosing Silicon for Wavelength Tuning  

Wavelength tuning for integrated photonic filters can be realized through several 

mechanisms, such as thermooptic induced index change [37, 38, 69-72], electrooptic 

effect [73, 74], carrier induced index changes [3, 20, 75], and dielectric perturbation by 

MEMS [26]. 

 For many applications in DWDM networks such as ROADM, wide tunable range 

is desired while the tuning speed is not critical; with millisecond time scale sufficient for 

operations. Thus large index change is needed. Electro-optic effect is fast, however, it 
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cannot generate a large index change with practical voltage applied. Carrier induced 

index change by carrier injection [3] or two-photon absorption [20] is relatively small and 

always accompanies absorption. However, this mechanism can be used for modulation 

due to its high speed. MEMS approach usually requires sophisticated fabrication 

processes. Hence, we choose thermooptic tuning for this application.  

 Materials with high thermooptic coefficient (on the order of 10-4/K) include 

semiconductors such as Si , InP, and polymers. Silicon is determined to be more suitable 

for this application as it readily forms strongly-confined, high index contrast waveguides 

using SiO2 as cladding. Polymers [76] generally have a low refractive index, and usually 

prove difficult to form large index contrast system desired to achieve large FSR and high 

integration. Meanwhile III-V semiconductors such as InP do not have readily available 

low-index under cladding materials needed for low-loss and strong confinement.  

 Reconfigurable wide wavelength-tuning range (9.4nm) was demonstrated with 

polymer-based devices [71] by thermooptic index tuning prior to this work. However, the 

device has a relatively large resonance linewidth, (about 2 nm) limited by its relatively 

low index contrast, and is thus not suitable for DWDM applications. A relatively narrow 

tunable range (~1nm) was achieved by carrier injection on III-V devices [75]. Using 

thermooptic tuning on Si3N4 device with SiO2 cladding, a wavelength tunable range of 3-

4nm was achieved [68, 72]. Initial study by the author in 2006 had shown thermooptic 

tuning of 0.11nm/˚C on a silicon-based integrated filter [43]. Thus, much wider tunable 

range is expected by implementing thermooptic tuning on silicon-based integrated filter. 

Recent advances on silicon-based wavelength-tunable filters demonstrated an ultra-wide 

tunable range of 20nm [38]. 



 

8 
 

 

1.5 Objective of This Work 

The objective of this work is to design a silicon-based integrated wavelength-

tunable filter/switch feasible for DWDM applications. To achieve both bandwidth and 

cost efficiency, some key specifications of the tunable filter are desired: 

1. Large free spectral range (FSR) and relatively small filter linewidth to allow a large 

number of channels  

2. Large wavelength tunable range to allow a large number of accessible channels for 

filter 

3. Compatible with common semiconductor fabrication facilities 

4. Good scalability and compact footprint for dense integration 

5. Low power consumption  

 

1.6 Organization of the Dissertation 

In this dissertation, we have investigated the design, simulation and 

characterization of a silicon-based wavelength tunable microring resonator and its 

applications.  

Chap. II covers the main aspects of microring resonator theory including the 

wavelength tuning mechanism. In Chap. III, detailed design and theoretical analysis of 

the device are explained, including the optical and thermal design. Chap. IV described the 

fabrication process flow of the device. The characterization of the device is covered in 

Chap. V. The characterization results are compared with the theoretical model and 
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followed by a discussion in the chapter. In Chap. VI, we demonstrated two applications 

which suggest the feasibility of the device towards DWDM applications. Finally, the 

dissertation concludes in Chap. VII.  
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II. THEORY OF MICRORING RESONATOR 

2.1 Introduction of Microring Resonator 

The microring resonator is a wavelength-selective integrated photonic device. The 

most common application for the microring resonator is optical filtering. When used as 

an optical filter, the microring resonator provides great design flexibility to meet desired 

filter specifications. In this work, it will be configured as optical add/drop-type filter for 

DWDM applications.  

Essentially, an optical resonator is an optical cavity that resonates at some specific 

wavelengths which are defined as resonance wavelengths. When properly excited, light 

waves can propagate in a back-and-forth or circulating manner in the optical resonator 

with minimum attenuation. The optical resonator can be in the form of two mirrors facing 

each other, microdisk, microring, microsphere or other type of cavities. Among the 

optical resonators, microring resonators don’t require facets or gratings for optical 

feedback and are thus particularly suited for monolithic integration with other 

components.  

Microring resonators consists of a waveguide in a close loop, commonly in the 

shape of a ring or race-track. When placing the loop within close proximity of an input 

waveguide, light can be coupled into the cavity via evanescent field, and can propagate 

around the periphery of the cavity. Resonance will take place because of the constructive 

interference for light whose phase change after each full trip around the closed loop is an 

integer multiple of 2π, i.e., in phase with the incoming light. Light not meeting this 

resonance condition will be transmitted through the input waveguide. 
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Microring resonator is now considered as one of the most important building 

block of integrated photonics and has gained widespread interest over the last decade. 

Various functions have been realized based on the microring resonator configuration, 

including optical filters [5], optical modulators [3], add-drop multiplexers [6], optical 

sensors [7, 8], optical dispersion compensators, [9, 10] and even laser source [11].  

Silicon microring resonators have been an active research area in favor of recent 

advances in the fabrication technologies. With high refractive index, silicon provides 

tight optical confinement necessary for high-density photonic integration and nonlinear 

optics. Extremely compact microring resonators [43, 4] have been demonstrated. Due the 

compact size, larger FSR of 47nm (5.9THz) and 62.5nm (7.8THz) at wavelengths around 

1550nm were realized, which allowed a large number of channels to be supported,  

enabling DWDM. 

 

2.2 Model of Microring Resonator with Standard Configuration  

The theoretical analysis of microring resonators has been well established and studied 

using the oscillator model [56] and the coupling model [57].  In this work, we use the 

coupling model. Section 2.2 and 2.3 in this work follows derivations in ref [58] with a 

different nomination system.  

The standard add/drop configuration for a microring resonator consists of two 

straight waveguides and a ring as described in Figure 2.1. The straight waveguides, also 

known as the bus or the port waveguides, are coupled either by directional couplers 

through the evanescent field or by multimode interference (MMI) couplers to the 
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microring. In order to numerically analyze the model, some assumptions are made to 

simplify the case. The assumptions include: 

1. There only exists single unidirectional mode of the resonator  

2. Only one polarization is considered 

3. The coupling between bus waveguide and the microring is lossless 

4. The losses of various kinds distribute evenly along the propagation path in the 

microring resonator  

 

Figure 2.1 Model of a standard add/drop type microring resonator 

As shown in Figure 2.1, Ei, Et, Ed and Ea are the normalized complex mode 

amplitudes at the input port, throughput port, drop port and add port, respectively. And t1, 

t2 are the transmission coefficients,and κ1 , κ2 are coupling coefficients at the two 

coupling regions. The microring has a radius of r with inner circulation factor of the 

microring defined as α. For zero internal loss α = 1. The * denotes the conjugated 
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complex value. The couplers under consideration are reciprocal, thus the following 

relationship between the coupler parameters are valid: 

                                                    (2.1) 

                                                    (2.2) 

At the upper coupler shown in Figure 2.1, the interaction can be described by the 

matrix: 

                                          (2.3) 

While at the lower coupler, we obtain: 

                    (2.4) 

where is the phase change of the mode propagation: 

 

L is the perimeter of the ring and λ is the wavelength of the light beam. The index 

 denotes the effective group index of the propagation mode in a guide-wave 

system. We simplified it as “group index” in this work. It is different from the effective 

mode index which will be used later in this work and is simplified as 

“effective index”. β is the propagation coefficient and  is the vacuum 

wavevector. 

 To further simplify the model, Ei is chosen to be 1 and we assume there is no light 

from the add port, i.e. Ea = 0. Equations (2.3) and (2.4) can be simplified as following: 

                                                  (2.6) 

                                                (2.7) 
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                                              (2.8) 

                                        (2.9) 

By solving the mode amplitudes from the equations above, the mode amplitudes are 

given by 

 

 

 

 

As the complex mode amplitudes are normalized, their squared magnitude corresponds to 

the modal power. The circulating power Pr, the drop port power Pd and the through port 

power Pt are given by 

 

 

 

where  and ,  representing the phase changes 

of the couplers. 

 On resonance, , where m is an integer, the following are 

obtained: 
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By observing Equation (2.18), full transfer of power from the input port to the 

drop port, i.e., Pd-resonance =1, occurs when both of the following conditions are satisfied: 

α = 1 (negligible internal losses) and  (symmetric coupling). In this case, the 

throughput port power will be zero. In reality, the value α =1 cannot be satisfied without 

gain incorporated to the microring. For a passive microring resonator (without any gain 

within the microring), α is always smaller than 1. From (2.19), to achieve zero power at 

the throughput port (Pt-resonance =0), the relation of  must be satisfied. Thus, the 

full transfer of power to the drop port in real case, which we called “critical coupling” 

condition, can only be satisfied in microring resonators with asymmetric coupling. 

 

2.3 Parameters of Microring Resonator 

Microring resonator filters can be described by some points of merit which are 

also generally used to describe optical filters. In this part of the chapter, we will introduce 

some important parameters for the microring resonator based on the derived model in the 

last part.  
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2.3.1 Free spectral range (FSR) 

One important parameter for microring resonators is the free spectral range (FSR), 

which is the distance between two adjacent resonance peaks. For a microring resonator, 

when on resonance,  will be satisfied, where m is an integer, L is the 

perimeter of the ring and  is the propagation coefficient. Group index, as defined 

previously can be written as . Neglecting the 

wavelength dependence of group index ng, 

 

As we can see, FSR is inversely proportional to the radius of the ring. In many 

applications such as communications, a large FSR is usually desired to achieve a higher 

communication bandwidth. Thus, a smaller radius would be beneficial.  

 

2.3.2 Full width at half maximum (FWHM) 

The next parameter of importance is the resonance width which is defined as the 

full width at half maximum (FWHM) or 3dB bandwidth of the resonance lineshape.  

Using the expression for the drop port (2.15), we obtain 

 

(2.21) 

Let , we have 
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(2.22) 

For small φ, using the first 2 items of Taylor expansion of Euler formula, 

 

Therefore 

 

If the loss of the ring is negligible and the coupling of the two coupler is 

symmetric ( ), 

 

In the wavelength domain, compared to the phase change of 2π for FSR, we have 

 

 

Assuming weak coupling ( , note that   , we have , then 

 

 FWHW or 3dB bandwidth is widely used in describing the spectral width of an 

optical source.  

 

2.3.3 Finesse (F) 

 The parameter finesse (F) is defined to be the ratio of the FSR and FWHM: 
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With the same FSR, a resonator with higher F shows sharper peak. 

 

2.3.4 Quality factor (Q) 

 For resonators, quality factor (Q) is an essential parameter. There are two separate 

definitions for quality factor which are equivalent for high Q resonators [59]. 

Generally, Q is defined in terms of the ratio of the peak energy stored in the resonator to 

that of the energy being lost in one cycle such that: 

 

The factor  is used to keep this definition of Q (for high values of Q) with the second 

definition: 

 

The quality factor Q of a resonator is a measure of sharpness of the resonance. 

Resonators having higher Q factors resonate with greater amplitudes (at the resonant 

frequency) but have a smaller range of frequencies around that frequency for which they 

resonate. Thus, a high Q resonator has higher selectivity; it would do a better job of 

filtering out undesired signals that lay nearby on the spectrum. From Equation (2.30) it is 

proportional to the Finesse (F). 
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2.3.5 Intensity enhancement factor (B) 

 The intensity in the microring resonator can be much higher than that in the bus 

waveguides, as the traveling light in the microring resonator interferes constructively at 

the resonance with the input light and thus the amplitude builds up. Other than the 

intensity, the field has a phase-shift of an integer time of  each cycle. With the 

configuration as in Figure 2.1, the intensity enhancement factor (B) can be described as 

 

On resonance,  

 

Assuming lossless  resonator and symmetric and weak coupling 

, B can be simplified as  

 

Microring resonators can be used for nonlinear optical device because of the much higher 

intensity achievable in the microring compared to the bus ports.  

 

2.3.6 Extinction ratio (re) 

 The parameter of extinction ratio (re) for the microring resonator is the ratio 

between the on-resonance drop port power and off-resonance drop port power, usually in 

dB scale. High extinction ratio is desired to achieve low error bit rate (EBR) in 

communication. 
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2.4 Tuning of Microring Resonator 

The optical performance of a resonator can be tuned using different approaches. 

With the microring resonator model established previously, the tuning can be generally 

done by adjusting three major parameters: the inner circulation factor (α), the power 

coupling coefficient (κ2) and the group index (ng).  The inner circulation factor (α) can be 

tuned by electro-absorption [12], gain trimming [13], and metal absorption [14].  The 

tuning of power coupling coefficients (κ2) are usually applied in optical bandwidth tuning 

[24] by using Mach-Zehnder interferometer (MZI) [25], micro-electro-mechanical system 

(MEMS) [26-29] and micro-fluidic approaches [30]. Wavelength tuning is usually done 

through changing group index (ng) by thermooptic effect [15-17], electro-optical effect 

[18], and carrier injection [19].  Wavelength tuning can also be achieved by adjusting 

cavity length by strain [21-23].  

 Assuming the two couplers are symmetric (κ = κ1 = κ2, t = t1 =t2) and the phase 

change due to coupling is negligible ( ), Equation 2.15 can be 

simplified as 

 

And from Equation (2.5), at a wavelength λ close to a resonance wavelength λ0, we can 

obtain  
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The optical spectral response can be simulated analytically, as demonstrated in ref 

[58, 40]. To demonstrate the effects of different tuning approaches, the spectral responses 

while tuning a specific parameter were simulated analytically. By plugging Equation 

(2.35) into Equation (2.34), the drop port power  can be written as a function of α, κ2( 

), ng and λ. The drop port spectrum response versus  are simulated 

around a resonance using Equation (2.34) and (2.35). The resonance wavelength at 

~1556.01nm was found around 1550nm using Equation (2.5) at resonance (  ). 

Some typical parameters were assumed as follows: α = 0.999, κ2 = 0.02, r = 5µm and ng 

=4.21. Figure 2.2 (a), (b) and (c) illustrate the tuning of the simulated drop port spectrum 

response by altering α, ng and κ2, respectively. Figure 2.2(a) shows the spectrum change 

by adjusting α from 0.999 to 0.995 and 0.990.  The peak power dropped dramatically 

from 0.9 to 0.64 and 0.44. Figure 2.2(b) demonstrates the resonance wavelength change 

by controlling the group index. For a microring resonator with such a high Q, at the 

original resonance wavelength, the drop port power can be tuned to about 20% of the 

original power with a minimal change of group index of 0.0003. The group index change 

can be realized by changing only a couple of degrees in temperature due to the large 

thermooptic coefficient of silicon. The bandwidth tuning was shown in Figure 2.2(c) by 

altering κ2. As also indicated in Equation (2.27), the resonance linewidth is proportional 

to the power coupling efficient.  Apart from the bandwidth tuning, Figure 2.2(c) also 

shows the resonance power change when tuning the coupling ratio. This effect is due to 

the symmetry of the two couplers. As discussed previously, the critical coupling 

condition is satisfied when . For a symmetric configuration, the critical 
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coupling cannot be achieved in reality because the ring cannot be lossless, i.e, . For 

the symmetric configuration with a fixed α, the larger the coupling efficiency, the closer 

it will be to critical coupling and thus the higher the resonance power. To tune the 

bandwidth without tuning the resonance power can be achieved by individually tuning 

the coupling efficiency [40, 26] of the couplers to bring the resonator to critical coupling 

condition.  

 

 

(a) 

(b) 
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Figure 2.2 Calculated drop port transmission spectra of a microring resonator (α = 0.999, κ2 = 0.02, r = 
5µm and ng =4.21) with (a) tunable resonator loss, (b) tunable resonant wavelength, and (c) tunable 

coupling ratio. 

 

2.5 Thermooptic Wavelength Tuning of Microring Resonator 

The thermooptic coefficient is a measure of refractive index change of a material 

when a temperature perturbation occurs. To find the thermooptic wavelength coefficient 

for a specific mode, we need to link the effective index change and group index change 

of the mode with the temperature change.  

Consider the waveguide of microring resonator with a propagation constant β at 

resonant frequency ω at temperature T. The thermooptic tuning can be described as a 

two-step process: first, the temperature T is changed by a small amount ∆T, which 

changes the propagation constant by ∆βΤ  and the resonance is no longer ω0. Then, the 

frequency is changed which induces another propagation constant change of ∆βω . For 

this process, we have 

 

(c) 
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Note that and , the 

equation above can be expanded as 

 

 

Where c is the light speed in vacuum. 

In terms of wavelength tunability, we have 

 

The thermooptic wavelength tuning coefficient is 

 

Now, the wavelength tuning is connected with the group index (ng) and the 

effective thermooptic coefficient of the waveguide mode ( ) which depends on 

the overlap intergral of the mode with the thermal index perturbation.  For the waveguide 

with a single core material and a single cladding material,  the coefficient can 

be written as 

 

 From Equation (2.39), one can find that thermooptic effects of both the core 

material and the cladding material contribute to the wavelength tuning. Their 

contributions are  and , respectively. The contributions 

are related to the distribution of the optical field. Generally, if most of the field 
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concentrated in the core, the contribution of thermooptic effect of the core material is 

bigger compared to that of the cladding material.  

 For a waveguide structure with most of optical field confined in the core, core 

material with a larger thermooptic coefficient yields a larger wavelength tuning with the 

same temperature change. Thus, materials with large thermooptic coefficients are 

preferred as core material of a waveguide for applications which need wide thermooptic 

tunable range. Also, waveguide designs which allow higher optical confinement in the 

core are preferred if the thermooptic coefficient of the core material is much higher 

compared to that of the cladding.  

 The thermooptic tuning effect for the core and cladding could add or compete 

with each other depending on the sign of the thermooptic coefficient for the materials. 

Typically, the thermooptic coefficient of polymers is negative, while that of the 

semiconductors like silicon is positive. Designs may be chosen to make athermal 

resonators which are insensitive to temperature change, by balancing the thermooptic 

tuning effect of the silicon core and polymer cladding. Such a thermal design is common 

in PLC waveguide design [77]. 
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III. DESIGN OF THE THERMALLY TUNABLE FILTER 

In the previous chapter, we briefly introduced the theories of microring resonator 

as well as its tuning mechanism. When using a microring resonator as a tunable filter, 

many parameters and issues need to be considered to achieve an optimal design. Here are 

some general considerations for the tunable filter: optical loss, FSR, filter tunable range, 

quality factor, tuning speed, device feature size, and fabrication tolerance.  

In this chapter, the design of the thermally tunable filter was studied, taking into 

consideration  the factors  stated above. Optical and thermal simulations were performed 

to verify and optimize the design. Some key parameters were calculated from the 

simulation result, which will be used to compare with the real device fabricated.   

In this work, two simulation programs called BeamProp and FullWave (both 

made by Rsoft Design Group) were used for modeling the optical properties of the device. 

The two programs are based on beam propagation method (BPM) and finite-difference 

time domain metrod (FDTD), respectively. The thermal simulations were carried out 

using the heat transfer module in Comsol Multiphysics simulation software package 

(formerly FEMLAB).  

All simulations were done on a HP desktop equipped with Intel 2.8GHz Core2 

Duo CPU and 4GB memory. Usually, larger memory size and longer simulation time are 

needed for simulations with finer simulation grid size. In these simulations, we chose the 

finest simulation grid size supported by the computer in order to get an accurate result.   
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3.1 Optical Design of the Tunable Filter 

3.1.1Waveguide dimension 

In integrated photonic devices, waveguides serve as transmission media. For ease 

of fabrication, we usually use strip waveguides with rectangular cross-sections. The 

device was designed based on a silicon waveguide embedded in silica with rectangular 

cross-section of 450nm×250nm. This dimension was used widely in other silicon 

photonics devices [3, 52, 62]. Due to the asymmetric dimension, it has different optical 

properties when transmitting light with different polarizations.  

In this work, electromagnetic waves with electrical fields polarized in the plane of 

the chip are referred as TE polarized; and with electrical fields polarized normally to the 

plane are referred as TM polarized. This nomination is commonly acceptable to describe 

the polarization states in integrated photonics. In general, dielectric waveguides with high 

index contrast support modes with hybrid polarization. However, the waveguides usually 

support modes of interest, that are quasi-TE (TE-like) or quasi-TM (TM-like). And in this 

work, the nomenclature is simplified to TE and TM to refer to these modes. Optimization 

of a waveguide in this chapter was done with TE polarization only, however, the 

performance for both polarizations is considered. 

The waveguide with cross-section of 450nm×250nm is single mode for both TE 

and TM polarized light at the proposed working wavelength of ~1.55µm. The cross-

section is close to the maximal dimension for single-mode SOI for TE mode with which 

light is maximally confined in the core. With higher light confinement in the core, 

waveguides can be sharply bent without significant loss. And given much higher 
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thermooptic coefficient of Si (1.84×10-4/˚C) [35] compared to SiO2 (~10-5/˚C), higher 

light confinement in the core provides higher wavelength tuning with same the 

temperature change. The TE and TM mode fields were simulated at wavelength of 

1.55µm by beam propagation method (BPM) using Beamprop software as shown in 

Figure 3.1 (a) and (b), respectively. The dark line shows the boundary of the silicon core. 

The refractive indexes for Si and SiO2 were assumed to be 3.48 and 1.46 in the 

simulation at the working wavelength around 1550nm. The same indexes are assumed in 

other works [60, 61] using similar SOI substrate. The effective refractive indexes were 

calculated by the simulation software to be 2.51 for TE mode and 2.05 for TM mode. In 

our design, the thickness of upper cladding SiO2 was set to be 1.5µm.  

 

(a) 
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Figure 3.1 Simulated field distributions for fundamental (a) TE and (b) TM modes at 1550nm wavelength. 
Dark lines shows the boundary of the silicon core. 

 

3.1.2 Microring radius 

The FSR of a microring resonator is inversely proportional to the ring radius 

according to Equation (2.20) in the previous chapter. A smaller ring radius is needed to 

achieve higher FSR. However, as the radius gets smaller and smaller, there will be 

significant bending loss which will limit the quality factor (Q). In our design, a 5µm 

radius microring was used where the bending loss can be negligible in similar devices 

[42], however, an acceptable quality factor has been achieved in smaller microrings [43, 

4].  

(b) 



 

30 
 

3.1.3 Microring- waveguide gap 

 A high Q is usually desired for a resonator. For our microring resonator, smaller 

filter linewidth will be achieved with higher Q, which means more non-overlapping 

channels can be located within the tunable range. However, when the Q is too high, it 

limits the maximum modulation frequency of a channel. For a modulator working at 10-

20Gbit/s [3], a moderately high operating Q on the order of 10,000 would be appropriate. 

The Q corresponds to an optical bandwidth of ~20GHz. As the intrinsic loss and bending 

loss of the microring is negligible, the operating Q was determined by the power coupling 

efficiency κ2 according to Equation (2.28) and (2.30). The straightforward way of tuning 

the coupling efficiency is to adjust the gap width between the straight waveguide and the 

microring.  

 

Figure 3.2 (a) Schematic of the simulated structure with a straight waveguide coupled with a 5µm-radius 
microring. The green boxes are the power monitors. (b) Simulated electrical field distribution on cross-

section of the device demonstrating the coupling between straight waveguide and microring. Color 
indicates the amplitude of electrical field Ex. 

To determine the gap width, a Finite-difference time-domain (FDTD) simulation 

using Fullwave software from Rsoft was performed with different gaps between a straight 

(a) (b) 
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waveguide and a 5µm radius microring. The schematic is shown in Figure 3.2(a).  A 

450nm×250nm cross-section was assumed in the simulation where the refractive index 

was set to 3.48 in the channel and 1.46 outside of the channel. A pulse was input from the 

lower end of the straight waveguide and measured by the monitors located at different 

locations shown as green boxes in the plot. The Fourier transform of the detected time 

response was done to find out the coupling efficiency for different wavelengths. Because 

of the limit of the computer memory, the simulation grid was set to 0.05µm; however, it 

is accurate enough for us to determine the gap width. Figure 3.2(b) demonstrates the 

coupling between the waveguide and the ring. The power coupling efficiency at 1.55µm 

for different gaps is plotted in Figure 3.3 with the corresponding Q shown on the right. 

From Figure 3.3, one can find that the minimal gap to obtain a Q of 10,000 is 180 nm. 

The simulation does not include propagation losses along the microring such as losses 

caused by the sidewall roughness. The losses will decrease the Q. In the design, we 

choose a slightly larger gap of 200nm with simulated Q of 14,800. The higher theoretical 

Q in the design gives some margin for possible Q degradation caused by the losses. The 

200nm gap size can be well controlled with electron-beam lithography, which makes the 

design practical at the fabrication stage. 
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Figure 3.3 Power coupling coefficient and corresponding Q for different gap width.  

The simulation was also performed for TM mode with gap of 200nm. The power 

coupling efficiency of both TE and TM mode with wavelength range of 1500-1650nm 

was plotted in Figure 3.4(a) and (b). For the same wavelength, the coupling efficiency for 

TM mode is much higher than the one for TE mode, indicating a much lower Q for TM 

mode. One can see that the coupling efficiency increases with wavelength for both modes. 

This is because the tails of the modes extend more outside of the core with larger 

wavelength and increase the overlap between the mode of the straight waveguide and 

microring waveguide. 
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Figure3.4 Power coupling coefficient of (a)TE mode and (b) TM mode between straight waveguide and a 

5µm-radius microring with gap of 200nm.  

 

3.1.4 Cladding thickness  

The absorption loss by the metal heater above the microring could impair Q by a 

large degree if it is close to the optical field propagating in the microring waveguide. To 

avoid strong absorption, the thickness of the top cladding layer needs to be big enough. 

From the simulated mode field distributions for TE and TM modes as shown in 
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Figure 3.1, one can see that the field amplitudes at 0.8µm above the center plane of the 

waveguide (0.925um from the bottom of the waveguide) are very small. To leave some 

margin for thickness error during cladding dioxide deposition, we designed the heater 

1.5µm above the waveguide. The absorption loss simulation result can be found 

elsewhere [62], which indicates a negligible loss on the order of ~1× 10-4cm-1 with upper 

cladding of 1.25um. 

 

3.1.5 Overall optical design  

The optical design of the filter is shown in Figure 3.5. The outline shows the size 

of the chip we designed. The size of the chip is about 6mm in length and 4mm in width. 

The size approaches the minimal size capable of being manipulated comfortably with 

tweezers. The input and output waveguides were offset, and both ends are with 

nanotapers [44], which make characterization convenient. The nanotaperes can 

theoretically reduce insertion loss to below 1 dB and was proved by experiment to greatly 

increase the fiber to waveguide coupling efficiency. The input port and drop port were 

designed perpendicularly to each other instead of parallel. Compared to the standard 

configuration in the simulation, this configuration is expected to have identical optical 

response, while being more convenient to locate multiple filters along the common 

through port for the applications which will be described later. The two waveguides were 

separated by 0.5µm at the intersection to avoid crosstalk between them.  
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Figure 3.5 Optical design of the tunable filter chip. Inset: magnified picture of the design of the microring 
resonator  

 

3.1.6 Verification of optical design  

To verify the optical design, a FDTD simulation was performed with the structure 

plotted in Figure 3.6. A pulse was sent from the lower end of the left straight waveguide. 

Time monitors were set at the through port and drop port.  Similar to the coupling 

simulation, the Fourier transform was done with the time response of the power at the 

through port and the drop port to obtain the spectra. Simulations were performed for both 

TE and TM modes and the spectra in range of 1520 to 1620 nm are shown in Figure 3.7(a) 

and (b). The simulations consume a lot of time and memory. So the space grids and light 
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propagation time were limited to the capability of the computer. With longer propagation 

time and finer space grid, the simulation results get more accurate. In the simulation the 

space grids are set to be 0.05µm and the FDTD stop time was set to 219× time_step in the 

simulation. A FSR of ~18nm was observed from both TE and TM spectra in this 

wavelength range. A much larger resonance linewidth was found for TM mode 

resonances, indicating a lower Q compared to TE mode. The linewidth may not reflect 

the real Q for the system because of the limited simulation time for the Fourier transform. 

But it reflects its nature and trends.  

  

Figure 3.6 Schematic of simulated structure in FDTD simulation of the microring with input and output 
waveguides in perpendicular 
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Figure 3.7 Simulated through port and drop port spectra of (a) TE mode (b) TM mode 

Another FDTD simulation was carried out with the TE mode input with 

continuous wave at the measured resonance wavelength of 1.5584 µm to verify the 

spectrum response. The electrical field Ex distribution at the end of the simulation time of 

219 × time_step and the time response of the through port and drop port power are shown 

(a) 

(b) 
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in Figure 3.8(a) and (b). The simulation helps to understand the power accumulating 

process in the microring due to constructive interference between the coupled light and 

the circulating light.  Eventually, the drop port and through power will get stabilized. 

Note that the drop port power in this simulation will not reach unity because it is not in a 

critical coupling condition although on resonance.  

 

 

Figure 3.8 (a) Simulated electrical field Ex distribution of the device at the center plane of the waveguide 
and the ring (b) Simulated time response of the through port power and the drop port power. The time scale 
shows the free space propagation length in µm. The simulation was done with continuous wave input at a 

resonance wavelength of 1.5584µm 

(a) 

(b) 
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3.2 Thermal Design of the Wavelength-tunable Filter 

3.2.1 S-shape micro-heater design and verification 

A resistive micro-heater was proposed to provide heat to thermally tune the 

resonance of the microring resonator. The fabrication capability and cost was taken into 

consideration when designing the heater. Photolithography using a contact aligner was 

proposed to generate the heater pattern to avoid the high cost of ebeam lithography and 

stepper.  However, the relative low resolution (1-2µm) of the contact photolithography 

compared to the feature size of the microring waveguide (0.45 µm) greatly limits the 

power efficiency of the heater. To avoid the heater filament breaking due to fabrication 

defects, the filament width of our micro-heater was set to be 5µm.  To demonstrate 

significant wavelength tuning with most of the power generated at the heater area, we 

choose Nichrome, an alloy of nickel (80%) and chromium (20%) with high resistivity of 

1.5×10-6Ωm, as the heater material. A thickness of 100nm was proposed for the heater 

which can be controlled very well when fabricated with thermal evaporation. An S-shape 

heater with a linewidth of 5µm was designed as shown in Figure 3.9 to provide uniform 

heating in an area of approximately 50µm ×50µm, allowing misalignment between heater 

and the microring. Gold electrical feedlines with linewidth of 10 µm were designed as 

well as sub-millimeter-size electrode pads for probing and wire bonding located at the 

side of the chip. The center of the heater was vertically aligned with the center of the 

microring resonator on the optical layer of the device. 
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Figure 3.9 Design of micro-heater, feedlines and electrode pads. Inset: magnified picture of the designed 
micro-heater aligned with the microring 

 

Figure 3.10 Design for the thermal simulation using Comsol Multiphysics 
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To estimate the heater performance and to help further optimization, a 3D thermal 

simulation of the device was carried out using Comsol Multiphysics simulation package, 

a finite-element analysis software. The 3D simulation design was shown in Figure 3.10 

with heater shown in red and the microring and waveguides shown in blue. The key 

simulation conditions and assumptions are summarized as below: 

1. An area of 100µm×100µm and the substrate thickness of 100µm wereconsidered for 

the simulation although the real thickness of the substrate is 500µm. The 3D 

simulation dimension is limited by the memory size of the computer. However, the 

result should be accurate with the reduced substrate thickness considering the ~100 

time larger thermal conductivity of silicon substrate compared to the silicon oxide 

top layers.  

2. Thermal isolation was assumed at the four side walls of the simulation cube because 

temperature change at those areas is negligible when heating.  

3. Perfect heat sink was assumed at the back of the substrate, meaning that the 

temperature at the bottom was fixed at the room temperature (295K). The device 

initial temperature was also set to room temperature.  

4. The heater and its feedlines are assumed to be thin and highly conductive layers. 

Thickness of 100nm is assigned to the heater and feedlines.  

5. The resistivity change of the heater and feedline material with temperature was 

neglected in this simulation. 

6. Joule heating was calculated using shell, conductive media DC model in Comsol 

with fixed voltage set at the edges of the feedlines. And heat flux due to the DC 

generated heat was set to the boundaries at the surface of the heater.  
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7. Natural air convection was assumed between air and the top surface of the device. 

The heat transfer coefficient is h = 5W/m2K [45]. 

First, the steady state simulation was performed with input voltage of 5V. A total 

joule power of 40.33mW was obtained from the DC model, which corresponds to a total 

resistance of 620Ω. Figure 3.11 shows the simulated temperature distributions.  A 

significant temperature gradient was observed along the microring. There is an 

approximately 8.6˚C temperature difference between the maximum and minimum 

temperatures on the ring. The temperature gradient is mainly due to the partial heater 

filament coverage of the microring. Because of the temperature gradient, the resonance 

shift is then proportional to the average temperature change. The average temperature 

change of 49.39˚C was then estimated by integration of the temperature along the center 

of the microring waveguide. The average temperature change was found proportional to 

the heating power by repeating the simulation with different input voltage.  Thus, the 

heating coefficient for this heater design was calculated to be 0.81mW/˚C. 
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microring 

(a) 

(b) 
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Figure 3.11 Simulated temperature distributions of (a) the whole device (b) x-z  plane cross-section at the 
geometry center of the microring (c) along the microring . All temperatures in Kelvin. The coordinate is 

shown in (a) 

 To simulate the time response of the device, a transient simulation was done with 

time from 0 to 1ms with a time step of 1µs.  The heat was taken off from t = 0.5ms to 

show the time response at cooling. The time is long enough to allow the whole system 

reaching thermal equilibrium at both heating cycle and cooling cycle. Figure 3.12(a) 

shows the simulated temperature change time response at the spots with maximum and 

minimum temperature change on the ring, along with the average temperature change.  

Besides the absolute temperature change, we also observed the difference of the time 

response at different parts of the microring. Figure 3.12(b) shows the time response of the 

normalized temperature change for first 50µs of the heating cycle.  The normalized curve 

shows slightly slower initial temperature change at the lower temperature part of the 

(c) 
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microring. The time response of the average temperature change falls in between the two 

normalized curves.  For the cooling cycle, a similar effect is observed. The differences in 

time response are due to the asymmetry of the designed micro-heater.  For different part 

of the microring, the contribution to the temperature change of the heat source right 

above the ring is different. And the closer to the heater source, the faster the time 

response.  

 

 

Figure 3.12 (a) Simulated time response of the temperature change of the microring; (b) Normalized 
simulated time response of the temperature change during the first 50µs of the heating cycle. 

(a) 

(b) 
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 The cross talk due to the heating between two adjacent tunable filters is also a key 

issue to be considered in the design. To enable fiber array coupling to a chip with 

multiple filter device, the distance between two adjacent filters was set to 250µm, the 

diameter of a common optical fiber.  Here we simulate the temperature change due to a 

heater with center laterally placed 250µm away from the center of the microring. Since 

the 3D simulation of such a big dimension is beyond the capability of our computer, we 

simplify the problem with a 3D cylindrical simulation where axial symmetry was 

assumed around the center of the microring. The generated heat was assumed to be 

evenly distributed over an area of a 2500µm2 circle (the covered area of the 50µm×50µm 

S-shape micro-heater) with center right on top of the center of the microring. An input 

power of 48.6mW was assumed which corresponds to 60˚C change of average ring 

temperature. The temperature was chosen according to the maximum designed tuning 

range. The temperature distribution on the axial cross-section is shown in Figure 3.13(a). 

Substrate thickness of 500µm was assumed in this simulation. Figure 3.13(b) plots the 

temperature distribution along the ring plane with x-axis showing the distance to the 

microring center. From the plot, one can see that the temperature drops quickly outside of 

the heater covered area. The temperature change measured at a distance of 250µm away 

from the ring center is ~0.2˚C, resulting in a tuning of 0.015nm for the TE mode 

according to the optical simulation, this is much smaller compared to the linewidth of the 

resonance. Thus the cross talk between two adjacent filters is minimal.  
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Figure 3.13 Simulated temperature distribution (a) on the cross-section (b) along x-axis across the 
microring 

[m] 

(a) 

(b) 

[m] 

[m] 
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3.2.2 Ring-shape micro-heater design and verification 

From the simulations shown in previous section, we can see that the S-shape 

heater is far from ideal for this tuning application.  Firstly, only a very small portion of 

the heating power generated contributes to the temperature change of the microring. 

Secondly, the large and asymmetric dimension of the heater compared to the ring hinders 

the time response of the filter.  The design was limited by the fabrication method as 

stated previously. Assuming a high-resolution lithography tool (e.g., ebeam lithography) 

could be used for the micro-heater patterning, an optimized design was proposed as 

shown in Figure 3.14. In this design, we locate a 5µm-radius circular heater with 1µm 

wide filament (shown in red) right on top of the microring to realize efficient and almost 

symmetric heating.  As the heat generated by feedlines can be negligible, we ignored the 

feedlines in this simulation.  

 

Figure 3.14 Design of ring-shape micro-heater 

 With an input voltage of 1V applied at both ends of the heater, the steady-state 

simulation results are shown in Figure 3.15, as an analog of Figure 3.11. Approximately 
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1.97mW power was generated from the DC Joule heating corresponding to a resistance of 

~500Ω. The average temperature change of the microring was 24.99˚C, which is obtained 

by integrating the temperature change along the microring, The temperature change 

yields a heating coefficient of 0.079mW/˚C, about 10% of the S-shape design. That is to 

say, the same wavelength tuning can be achieved with only 10% of the heating power 

using the optimized ring heater. Temperature difference of ~5˚C between the maximum 

and minimum temperatures on the ring was observed in the simulation, mainly due to the 

proximity to the straight waveguides.  

 

(a) 
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Figure 3.15 Simulated temperature distributions of (a) the whole device (b) x-z  plane cross-section at the 
geometry center of the microring (c) along the microring . All temperatures in Kelvin. The coordinate is 

shown in (a) 

 The time response of the optimized heater was simulated also with results shown 

in Figure 3.16, as an analog of Figure 3.12. The normalized time response of temperature 

(b) 

(c) 

microring 
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change is almost uniform along the microring. Figure 3.17 compares the time responses 

of average temperature change for both heaters. From the plot, by measuring the time for 

the average temperature to reach half of its maximum, one can see that the optimized 

design improves the time response by a factor of two.   

 

 

Figure 3.16 (a) Simulated time response of the temperature change of the microring with ring-shape micro-
heater ;(b) Normalized simulated time response of the temperature change with ring-shape micro-heater 

(a) 

(b) 
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Figure 3.17 Time response of average microring temperature change with the two micro-heater designs 

 In summary, the optimized design is expected to improve the time response of the 

heater by a factor of two and at the same time reduce the power consumption by 90%.  

 

3.3 Thermooptic Tunable Range 

The thermooptic wavelength tuning coefficient of the designed filter at 

wavelength around 1.55µm was estimated using Equation (2.38): .The 

group index  and effective thermooptic coefficient  were obtained by the 

optical simulations. The group indexes for TE and TM modes used in the calculation 

were 4.21 and 4.48, which are calculated using Equation (2.20) with the FSR measured  

from the simulated TE and TM mode spectra in Figure 3.7(a) and (b). To find the 

effective thermooptic coefficient, a series of BPM simulations were performed to obtain 

effective index at different temperatures from -20 to 100˚C. A straight waveguide was 
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used in the simulations assuming bending effect for the waveguide on microring is 

negligible. At each temperature, refractive indexes for both silicon and SiO2 are 

calculated taking into account the thermooptic induced index change.  The simulated 

effective indexes for TE and TM mode were plotted versus temperature in Figure 3.18 (a) 

and (b). Linear relations were found from the curves with fit slopes of 1.98×10-4/˚C and 

1.73×10-4/˚C for TE and TM mode, respectively. The thermooptic tunability for both 

modes was found to be 0.075nm/˚C and 0.063nm/˚C according to Equation (2.38).  

Tunability for TM mode is lower compared to that of the TE mode. This is because the 

optical field for TM mode is less confined in the high thermooptic coefficient area 

(silicon core) compared to TE mode, which can be observed from Figure 3.1.  

 

 

Figure 3.18 Simulated effective index versus temperature for (a) TE mode (b) TM mode 

(a) 

(b)  
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 The tunable range is decided by the maximum microring temperature achievable 

through heating. It is limited by oxidation, which increases rapidly at high temperatures 

and electro-migration damage of the heater metal, which happens at high current density 

and high temperatures. A practical estimation of the maximum heater temperature would 

be 300˚C [72] (about 280˚C temperature change compared to room temperature).  The 

microring temperature is considered to be reduced by approximately a factor of two, i.e., 

~140˚C, according to the simulated temperature distribution shown in Figure 3.11(a) (S-

shape heater) and Figure 3.15(a) (ring-shape heater). With maximum ring temperature 

change of 140˚C, wide tunable ranges of 10.5nm for TE mode and 8.8nm for TM mode 

were then estimated.   
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IV. DEVICE FABRICATION 

4.1 Fabrication Process Flow 

Using the design described in the previous chapter, we fabricated the thermally 

tunable microring resonator device. The fabrication is totally compatible with silicon-on-

insulator (SOI) technology, which is standard in semiconductor industry. Thus, the device 

is very promising for photonic integrated circuits.  

 The fabrication process flow is outlined in Figure 4.1. The fabrication started with 

a SOITEC SOI wafer with 250 nm thick Si device layer over a 3 µm buried oxide layer. 

The device layer thickness was chosen according to the designed waveguide dimension. 

The silicon layer was lightly P-doped (Boron) with nominal resistivity of 13.5-22.5 Ωcm. 

The waveguide pattern was generated by a LeicaVB6-HR 100kV ebeam lithography 

system at 1 nA exposure current with 5 nm beam step. A negative ebeam resist named 

hydrogen silsesquioxane (HSQ) was used. The ebeam lithography process and fabrication 

considerations will be discussed in detail later in this chapter. The resist was spun at 2000 

rpm and baked at 200˚C for 2 min. A HSQ film of ~120nm thickness was generated after 

the bake. The dose we used to write the waveguide and rings is 1100 µC/cm2. The 

waveguides are finished with nanotapers which were assigned higher doses from 

1300 µC/cm2 to 2300 µC/cm2. Post-exposure bake was carried out at 200˚C for two 

minutes. Development was performed in MIF-300 developer for two minutes and rinsed 

in deionized water. Samples were characterized by SEM after this step. A SEM image of 

a waveguide- ring coupling region is shown in Figure 4.2(a). The waveguide pattern was 

then transferred to silicon by Cl2 reactive ion etching (RIE) process using a PlasmaTherm 
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770 ICP etching tool. The RIE process etched the unpatterned area, leaving a vertical 

sidewall on the edge of the patterned area, which forms the strip waveguide. The 

remaining HSQ layer on top of the waveguide does not need to be stripped off because 

the optical property of the HSQ is very close to SiO2, which will be the cladding of the 

waveguide later. The etched microring resonator SEM picture is shown in Figure 4.2(b). 

An optional LPCVD Si3N4 process was done on the etched device after a MOS clean 

process required for the LPCVD process. About 30nm thick Si3N4 layer was deposited 

after the process, serving as a protective layer for prospective future development of the 

device that need to remove upper cladding by buffered oxide etch (BOE). Considering 

the very thin thickness of the silicon nitride layer and the significant lower refractive 

index of about 2.02 [63] compared to 3.48 of the silicon core, it is not expected to affect 

the optical property of the device significantly. The upper SiO2 cladding was deposited 

using PECVD with a measured thickness of 1.4 µm, close to the designed thickness of 

1.5 µm. The SEM picture was then taken as shown in Figure 4.2(c).  
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Figure 4.1 Fabrication process flow of the tunable microring resonator device  



 

58 
 

 

 

 

(a) 

(b) 
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Figure 4.2 SEM pictures of (a) patterned HSQ resist at gap between microring and straight waveguide (b) 
microring resonator device after silicon etch (c) microring resonator device with SiO2 cladding 

 The micro-heater and its feedlines were generated separately on the SiO2 cladding 

using liftoff technique. As the dimension of the micro-heater and the feedlines are in µm 

size, photolithography was used for pattern generation. In order to form an undercut 

profile which is critical for the liftoff process, double-layer resist was used.  First, a layer 

of LOR 10A resist was spun on the SiO2 cladding at 4000rpm and baked at 170̊C for 

five minutes. This step results in a LOR resist layer of about 1 µm in thickness. The LOR 

layer thickness is much bigger than the metal thickness to be deposited, making the liftoff 

process easy. Then, a S1813 photo resist was spun on top of the LOR resist. The spin 

speed is 4000rpm and post bake was at 115̊ C for one minute. The thickness of the S1813 

resist was estimated to be 1.3 µm. Photolithography was done using a HTG contact 

aligner with wavelength of 365-405nm broadband illumination. Intensity of the 

(c) 
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illumination was measured as ~10mW/cm2 at 365nm and ~20mW/cm2 at 405nm. The 

heater pattern was aligned to the waveguide pattern using alignment marks designed on 

both patterns. The sample was developed using MIF300 developer after a 6-second 

exposure. A 100nm-thick film of Ni-Cr was then deposited using a CVC 4500 evaporator 

with a deposition rate of 3-5 Å/sec in order to form a uniform metal layer. The liftoff was 

performed using LOR remover. The Ti/Au feedlines were deposited using similar liftoff 

process. However, the film was deposited by sputtering using an AJA ATC1600 

sputtering machine. A thin layer of Ti (~5 nm) was sputtered before the Au layer in order 

to promote the adhesion between Au and SiO2. The Au layer was measured to be about 

120nm. The feedline pattern was then aligned to the heater pattern. A top-view 

microscopic picture of a fabricated device is shown in Figure 4.3. 

 

Figure 4.3. Top-view microscopic image of micro-heater on top of Si based microring resonator 

 



 

61 
 

4.2 Electron-beam Lithography 

Electron beam lithography (often called “ebeam lithography”) is a technique of 

scanning a beam of electrons across a surface coated with resist and selectively removing 

either exposed or non-exposed area of the resist depending on the resist type. Compared 

to photolithography, it can create smaller structures in the resist because it beats the 

diffraction limit of light. It is capable of making features in the nanometer regime. On the 

other hand, the key limitation of ebeam lithography is throughput. A very long exposure 

time is often needed for a common sample. The technique has found wide usage in 

photomask-making, low-volume production of semiconductor components, and research 

and development.  

Since patterning of our designed device based on 450nm-width waveguide with 

nanometer precision is beyond the capability of the conventional photolithography tools, 

we decided to use ebeam lithography for the waveguide patterning. The Leica VB6-HR 

system for patterning the optical layer of the device is an advanced ebeam lithography 

system capable of reproducibly achieving feature sizes less than 30 nm. The system has a 

precision stage with stage positioning monitored by a laser interferometer with λ / 1024 = 

0.6 nm precision. It makes possible exposing pattern with area larger than the size of the 

electron beam writing field (usually a square with side length a few hundred of 

micrometer) by stitching (tiling writing fields exactly against each other) and pattern 

overlay (aligning a pattern to a previously made one).  The VB6 is also equipped with a 

real-time laser height sensor for dynamic field size corrections and dynamic 

focus/astigmatism corrections. 
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 XR-1541 HSQ 6% was used as the ebeam resist. Unlike the most popular ebeam 

risist PMMA, the HSQ resist is a negative resist. The choice of negative resist is made 

according to the nature of our pattern, in which, the total area of waveguide to be exposed 

took only less than 1% of the total sample area. As the exposure time is proportional to 

the exposed area, we only expose the waveguide region in order to reduce the exposure 

time. Thus a negative resist is chosen (the exposed area stays).  

The VB6 system can align different patterns. Like in photolithography, alignment marks 

are always needed on the pre-existing pattern. An electron microscopic system was used 

to “see” the alignment marks by detecting the backscattered electrons from the substrate. 

The VB6 can establish a coordinate system based on alignment marks detected on the 

wafer and precisely place a pattern with respect to preexisting patterns. Alignment marks 

are recommended to be designed far from the device area because the mark detecting 

process will expose the area around it.  

4.3 Sample Preparation and Packaging 

The fabricated samples need further processing before they are ready to be 

characterized. Integrated photonic circuits enables optical devices with multiple functions 

integrated in a very small area of substrate, usually with dimension of centimeters or 

millimeters and sometimes even micrometers. The small footprint enables us to put tens 

or even hundreds of devices on a single wafer, which greatly increases the throughput. 

However, preparation and packaging need to be done before one can use or test the 

device. Nowadays, it is one of the major challenges in integrated photonics.  
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 The way we test the device is by coupling light in and out via tapered fiber. This 

configuration requires that the input and output waveguides end at the edge of the chip 

and the facet need to have a good flatness to avoid big losses due to light scattering. As 

mentioned previously, nanotapers [44] were used at the end of the waveguide to increase 

coupling efficiency by tapering down the width of the waveguide from 450nm to 120nm. 

Figure 4.4 shows a microscopic picture of a fabricated nanotaper.  

 

Figure 4.4 Microscopic picture of a fabricated nanotaper 

4.3.1 Dicing 

 To prepare the sample for optical characterization, the fabricated substrate was 

diced into small samples first using a K&S 7100 dicing saw. The sample was glued on a 

film held firmly on the system. The dicing saw uses a vision system to detect marks on 

the sample and establish a coordinate system for the dicing pattern similar to the 

tip 
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alignment system for lithography. A rotating blade then makes cuts along X and Y 

direction at positions defined by the dicing pattern. The edges after dicing are with 

roughness of about 50µm measured by microscopic inspection. Our samples are cut 

150 µm away from the end of the nanotapers, allowing enough room to avoid the 

nanotaper from damaging by the blade.  

4.3.2 Polishing 

Like most of the optical components, ultra-flat and clean optical interfaces are 

needed to avoid high light-scattering loss. Polishing is a common approach to prepare the 

optical interfaces. For our device, aside from the requirement for the facets, precise 

control of the positions and orientations of the interface (edge of the chips) is critical 

because the nanotaper tips need to be located at the edges of the chip and perpendicular to 

the waveguide in order to couple light in and out of the waveguide-based device 

efficiently. This is a challenge for polishing. The samples were polished manually using a 

rotating plate equipped with diamond lapping films. To manipulate the samples to be 

polished, the samples were glued on a holder by crystal bond. A lapping film with the 

larger diamond grit size removes materials faster, however, it will yield a rougher 

surface. In order to achieve good facet quality and efficiency, a procedure was developed 

using a multi-step polishing process. Samples were polished first with a rough lapping 

film (with large diamond grit size), followed by finer and finer films to remove the rough 

edge left by the last step.  The finest film we use was with diamond grid size of 0.05µm, 

which left a very shiny facet. To have the polished facets end at the tip of the nanotapers 

with precision of a few tens of micrometers, the removal thickness of each step need to 
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be planned. We usually set the removal thickness of each step as three times of the 

diamond grid size for the last step to make sure the rougher surface from the last step was 

completely removed. Frequent inspection under microscope is crucial in monitoring the 

orientation and distance to the target plane. Over-polishing is unacceptable as it will  

damage the nanotaper. In order to facilitate the polishing process, polishing marks and 

guidelines were designed and patterned together with the waveguide. A sample polishing 

pattern is shown in Figure 4.5.  

 

Figure 4.5 Design of a polishing pattern 

 

4.3.3 Wire bonding 

For an application discussed in Chap.VI, while many wavelength-tunable filters 

need to work simultaneously and independently, connecting multiple conventional 

electrical probes to the millimeter size sample is impractical. Wire bonding is a 

technology developed and widely used in micro-electronics to solve this problem. With 

this technology, a very thin metal wire with thickness of tens of micrometer or even 

smaller can be used to make electrical connections between electrode pads.  

Polishing pattern 
Nanotaper 
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To simultaneously connect multiple microheaters, a special mount as the bonding 

platform was designed with a printed circuit board (PCB) containing the interface circuits 

for collecting micro-heaters to the electrical source. A polished sample was fixed on the 

holder.  Thermal silver epoxy was used to bond fine stripped magnet wires with a 

diameter of 45 µm to the PCB and the electrode pads on the sample. A microscopic 

picture of an electrode pad was shown in Figure 4.6. The bonded device with mount will 

be shown later in this work in Figure 6.2. The wire bonding was performed by our 

research partner H.Y.Ng at the University of Miami.   

 

Figure 4.6 Microscopic picture of electrode pad connected to a micro-heater feedline. The dark lines are 
silicon waveguide which is under the metal micro-heater and feedline/pad layer separated by the upper 

cladding of 1.4µm.   

Electrode pad  

Feedline 
connected to 
micro-heater  
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V. DEVICE CHARACTERIZATION 

5.1 Characterization Setup 

The performance of the fabricated tunable microring resonator device was tested 

using our optical characterization setup. The block diagram of the setup is shown in 

Figure 5.1.  To characterize the optical property of the device, light needs to be launched 

into the input waveguide and collected from the output waveguide. For the input part, we 

use a polarization-maintaining tapered fiber to couple light from the light source to the 

input waveguide ended with a nanotaper [44] as described before.  As for the output, 

either a tapered fiber or an objective lens could be used in different applications. The 

tradeoff between them will be discussed later in this chapter. Two Thorlab NanoMAX 

manual XYZ stages with piezo were used to align the input and output tapered 

fiber/objective lens to the input and output waveguide on the sample. The fine alignment 

was done using the internal piezos of the stage, which can be adjusted without touch with 

20nm resolution for all 3 axes. A long working distance 20x objective lens was mounted 

on top of the sample movable in all 3 axes for rough alignment monitoring.  Either a 

RGB camera or an IR camera can be used for imaging with help of the objective. The 

long working distance (over 20mm) between the objective lens and the sample enables 

direct electrical probing without blockage by the lens. The whole setup was mounted on 

an optical table with vibration isolation and covered by an enclosure to avoid heat 

exchange of the sample with the ambient environment due to the air flow.  
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Figure 5.1 Experimental setup block diagram for device characterization. Obj.-objective lens, TF –tapered 
fiber, ASE- amplified spontaneous emission source, OSA-optical spectrum analyzer, PC-polarization 

controller, TL-wavelength tunable laser, OM-optical meter, PD-photodiode. 

Photographs of the setup are shown in Figure 5.2. It includes the input and output 

stage, the top-view system with objective lens and a RGB camera, the sample mount for 

testing, all in an enclosure. A close-up view shows the input and output tapered fibers and 

the electrical probes for micro-heater current injection. All instruments are mounted on 

the shelf over the optical table to avoid vibration. 

The transmitted power can be collected using a tapered fiber or an objective lens. 

Either of them can be aligned to the output waveguide using the XYZ stage mounted with 

different fixtures. The objective lens makes possible imaging of the output facet of the 

sample by camera, which gives the information of the power distribution at the output 

instead of the total output power. However, the tapered fiber makes the alignment easier 
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given the micron-sized tip and provides convenient connection to other instrument by the 

FC connector at the other end of the fiber. 

 

 

Figure 5.2 Pictures of the characterization setup 

RGB Camera 
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Input Stage 
Output Stage 

Sample Stage 

Fiber 

Sample 

Electrical Probe 
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 The spectrum response of the device under test was often of interest. With our 

testing setup, it can be obtained using either a tunable laser (ANDO AQ4321D) or a 

broadband amplified spontaneous emission (ASE) source (ANDO AQ4310) shown as 

Option 1 and Option 2 in Figure 5.1, respectively. For Option 2, the output from the 

device was connected to an optical spectrum analyzer (OSA) (ANDO AQ6317B). Both 

light sources cover the target working wavelength of our device of around 1.55µm, the 

standard wavelength band used in fiber communication. Option 2 is usually used for 

quick measurements with low resolution. For high-resolution characterization, Option 1 

was configured. The tunable laser is a polarized light source with output wavelength 

confined within 1pm. The output wavelength can be tuned in range of 1520-1620nm with 

1pm resolution. A polarization controller was connected to control the input polarization 

state of the sample. In this configuration, the transmitted light was detected by a 

calibrated photo-detector (Newport 818-IR) and the optical power was read by a Newport 

1835-C optical meter.  While maintaining the output power of the tunable laser, the 

transmitted optical spectrum response of the device under test was measured by sweeping 

the output wavelength of the tunable laser and recording the detected transmitted power 

for each wavelength.  Both tunable laser and optical meter were controlled by a computer 

through GPIB ports.  A LabView program was written to control the tunable laser and the 

optical meter while recording data.  
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5.2 Optical Spectral Response Measurements and Analysis 

The optical properties of our fabricated tunable microring resonators were characterized 

without heater current injection first. At room temperature of 22˚C, drop port spectra 

were measured with input polarization set to TE (E-field parallel to device plane) and TM 

(E-field perpendicular to device plane) using the tunable laser configuration in Figure 5.1 

(Option 1). Figure 5.3 plots the drop port transmitted TE and TM spectra of one 

microring in wavelength range 1520nm-1620nm. Each spectrum was normalized to its 

maximum power. With the data, the values of resonance wavelengths, FSR and FWHM 

for TE and TM modes were extracted and listed in Table 5.1 and Table 5.2, respectively. 

Table 5.1 Summary of TE mode parameters 

Resonance (nm) 1537.46 1555.31 1573.70 1592.43 1611.59 

FSR (nm)  17.85 18.39 18.73 19.16 

FWHM (nm) 0.10 0.20 0.14 0.17 0.18 

Ng  4.26 4.24 4.26 4.26 

Q 15374.60 7776.55 11240.71 9367.24 8953.28 
 

Table 5.2 TM Summary of TM mode parameters 

Resonance (nm) 1533.81 1550.32 1568.00 1586.84 1605.16 

FSR (nm)  16.51 17.68 18.84 18.32 

FWHM (nm) 0.71 0.81 1.26 1.24 1.98 

Ng  4.58 4.38 4.20 4.43 

Q 2160.30 1913.98 1244.44 1279.71 810.69 
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Figure 5.3 Measured drop port transmission spectra of a fabricated tunable microring resonator at room 
temperature of 22˚C with TE and TM input polarization. Inset shows the resonance spectrum of peak 

around 1555nm with higher resolution. 

Measurements were repeated for the other eight microring resonators with 

identical design on the same sample. The group index and quality factor for all nine 

measured microring resonators were calculated from the extracted parameters using 

Equation (2.20) and (2.30), respectively. Figure 5.4 (a) and (b) plot the measured group 

index and simulated group index using FDTD and BPM for TE and TM modes, 

respectively. The FDTD group index was extracted from Figure 3.7. And the BPM one 

was calculated by [64]. The measured group indexes are in 

agreement with the simulation results. The extracted Qs for TE and TM modes are ploted 

in Figure 5.5 comparing them with the simulated Qs. The simulated Qs are calculated 
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from the coupling efficiency shown in Figure 3.4 using Equation (2.30) and (2.28). One 

can observe that the measured Qs are in agreement with the simulation as well, indicating 

a low loss in the microring. In Figure 5.5 (a), a much lower Q at ~1555nm is due to its 

double resonance shown in the inset of Figure 5.3. The double-peak is a signature of 

contra-directional coupling in the ring resonator. Roughness, surface scattering defects 

and shape non-idealities can couple the two counter-propagating modes [46]. The higher 

deviations for measured group indexes and Qs of the TM mode shown in Figure 5.4 (b) 

and 5.5 (b) are due to the larger measurement errors for resonance wavelength and 

FWHM because of the broad linewidth of TM resonance. 

The optical properties of the microring resonator were compared to other similar 

devices reported [78-80], showing excellent agreement. Table 5.3 summarizes the results 

from the literature. All these devices were fabricated on SOI and have the same microring 

radius of 5µm. All measurements are taken with TE polarization input. The waveguide 

dimension are slightly different, however, and the width/height ratio are all around two.  

The gap between microring and the straight waveguide ranges from 200nm to 450nm. 

The measured FSR are about 18nm except in Reference [80] where wider microring 

waveguide are used. The resonance FWHMs are all in the range of 0.1-0.2nm except the 

one with large gap in [80]. In that device, the Q is higher due to the much smaller 

coupling coefficient with the larger gap. 
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Figure 5.4 Measured group indices (dots) for (a) TE and (b) TM polarization compared with simulated 
calculations based on FDTD (solid), beam-propagation (dashed). 

(a) 

(b) 

TE 

TM 

FDTD 



 

75 
 

 

 

Figure 5.5 Measured quality factor (dots) for (a) TE and (b) TM polarization and compared with simulated 
(solid).  

  

(a) 

(b) 

TM 

TE 
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Table 5.3 Comparison of optical properties measured in this work and in other literatures 

Reference Waveguide 
Height 
(nm) 

Waveguide 
Width  
(nm) 

Ring 
Radius 
(µm) 

Microring-
waveguide 
Gap (nm) 

Launched 
Polarization 

FSR 
(nm) 

FWHM 
(nm) 

This 
work 

250 450 5 200 TE 18.4 0.1-0.2 

[80] 250 

250 

500 

600 

5 

5 

300 

450 

TE 

TE 

16 

16 

0.11 

0.025 

[78] 250 450 5 250 TE 18.1 0.11 

0.2 

[79] 200 400 5 350 TE 17.9 0.12 
 

5.3 Wavelength Tuning by Controlling Substrate Temperature 

As discussed previously, tuning of the filter pass-band wavelength was done by 

changing the resonance wavelength of the microring resonator. The resonance 

wavelength tuning is realized by thermal tuning the refractive index of the waveguide 

material, making use of silicon’s large thermooptic coefficient.  To test the thermal 

tuning property of the silicon-based microring resonator, drop port transmitted spectra of 

the same microring resonator were measured at different equilibrium temperatures (from 

12˚C to 60˚C) to observe peak shift. The temperature of the chip was controlled by a 

peltier thermoelectric module and monitored by a thermocouple attached on the sample 

surface in this experiment. Figure 5.6 shows the normalized transmitted power spectra 

taken at different sample temperature with TE input polarization. All curves were 

normalized to their maxima and only a segment of the spectrum from 1570 to 1580nm 
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was shown in the figure to demonstrate the shifts of a resonance peak with TE input 

polarization.  

 

Figure 5.6 Normalized drop port transmitted power spectra taken at different sample temperature with TE 
input polarization. Legends shows the sample temperature when spectrum was measured. 

 From the spectra, we can observe that the resonance peak shifts red when the 

sample is heated up and shifts blue when cooling. The resonance shift compared with the 

resonance at room temperature (22˚C) versus temperature change for all five TE 

resonance peaks within the laser tunable range was plotted in Figure 5.7.  The shift of 

different resonance peaks was found to be the same when temperature change is the 

same. A clear linear relation was observed between the resonance shift and temperature 

change with a slope of 0.095nm/˚C. Similar wavelength tuning coefficient was reported 

previously with similar silicon-based microring resonators [43, 81]. For TM resonances, 

linear resonance shifts were also observed versus temperature changes. The slope was 
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determined to be 0.076nm/˚C. The measured thermooptic tunability for the TE  and TM 

mode were found to be slightly larger compared to the simulated ones of 0.075nm/˚C and 

0.063nm/˚C. The reason for the larger value is still not clear. A possible explanation 

could be the bending effect or the effect due to the deposited Si3N4 layer, which were not 

considered in the simulation. 

 

Figure 5.7 Measured resonance shift versus temperature change of five TE resonance peaks when tuning 
the sample temperature. 

 

5.4 Wavelength Tuning by Micro-heater 

The resonance wavelength tuning of the same microring resonator by micro-

heater on top of it was then tested.  Constant current was applied to the heater using a pair 

of electric probes. While keeping the bottom of the sample at room temperature, the 
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spectra was taken a minute after the current was applied to make sure the device reached 

thermal equilibrium. As the microing resonator only got heated up with current applied, 

only red shift was observed. The TE resonance spectra with various current applied to the 

heater is shown in Figure 5.8.  

 

Figure 5.8 Normalized drop port TE transmitted power spectra taken at various heating currents. Legend 
shows the constant currents applied to the micro-heater when the spectrum was measured. 

 The resonance shift versus the micro-heater current is plotted in Figure 5.9(a). As 

expected, the resonance shift was proportional to the power applied to the micro-heater, 

i.e., the square of micro-heater current as demonstrated in Figure 5.9(b), assuming the 

resistance change of the micro-heater over temperature is negligible. The slope was 

determined to be 0.0522nm/mA2. Using the simulated micro-heater resistance of 620Ω 

and the thermooptic tunability of 0.095nm/˚C, the heating coefficient was calculated to be 

1.13mW/˚C, about 40% higher when compared to the simulated one of 0.81 mW/˚C. It is 
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possibly because of imperfect heat sink or the larger convective heat transfer caused by 

the air flow in the environment.  

 

 

Figure 5.9 Resonance shift versus (a) micro-heater current applied (b) current square.  

 

(a) 

(b) 
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5.5 Time Response of Micro-heater Tuning  

Time response is a key measurement of the performance of a tunable filter. To 

characterize the time response of the filter, we study the time response of the following 

typical switching process: A signal with wavelength λt (target resonance wavelength for 

the filter) is transmitted from the input port of the filter while the filter is in “idle” state 

with a resonance at λ0, and with no current applied to the heater. Starting at the moment 

t=0, a constant current is applied to the heater. The temperature of the microring device 

increases until it reaches the thermal equilibrium; while the resonance wavelength 

increases along with the temperature and finally tunes to and stays at λt. With the 

resonance tuned to λt, the input signal was switched from the through port to the drop 

port. The thermal switching of the microring filter between λ0 and λt is characterized by 

four time constants, with each time constant corresponding to a different tuning or 

detuning process. During heating cycle, we observe detuning from λ0, and tuning to λt; 

while during the cooling cycle, the detuning from λt, and tuning to λ0.  

To test the switching time constants, an experiment was setup as described below. 

While keeping the backside of the chip always at room temperature, the tunable laser 

wavelength was first set to a predefined λt, which is larger than λ0. The micro-heater was 

connected to a HP8116A function generator, which is capable of generating waveforms 

with frequency up to 50MHz and voltage up to 16V peak to peak. The voltage amplitude 

of the square wave was set to the value that tunes the resonance to λt. A 100 Hz square 

wave voltage with 10% “on” duty cycle was applied to the micro-heater. The small “on” 

duty cycle time was set to avoid heat building up with high power heating. The period 
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was significantly longer than the switching time, which allows equilibrium to be reached 

during both “heater on” periods and “heater off” (cooling) periods. A Newport 818-IR 

photodetector was used at the output. The detector has a rising time of ~1µs. The 

Newport 1835C optical meter connected to the photodetector can output a voltage 

waveform proportional to the detected power. The voltage waveform and the voltage 

applied to the heater were simultaneously monitored by an HP 54645D oscilloscope 

which is able to detect voltage variation up to 400MHz. Using the oscilloscope, the 

power transients of tuning process to λt and the detuning process from λt were detected at 

the rising and falling edges of the heater voltage and recorded.  By setting the laser 

wavelength to λ0 while keeping the driving voltage of the micro-heater, the detuning 

process from λ0 and tuning process to λ0 were detected in the same manner.  

Measurements were taken tuning the resonance peak of λ0 = 1573.76nm and 

setting ∆λ = λt-λ0 to multiples of 0.2nm, namely 0.2, 0.4, 0.8, 1.6, 3.2 and 6.4 nm. Figure 

5.10 (a)-(d) shows the normalized output power for the four different processes. For all 

curves, the heater driving voltages turns on or off at t=0. Note that the plots showing the 

tuning processes have a much longer time scale compare to the detuning one. That is 

because the tuning process is usually much slower as compared to the detuning process.   
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(a) 
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Figure 5.10 Measured output power transients for processes of (a) tuning to λt (b) detuning from λt (c) 
tuning to λ0 (d) detuning from λ0, when tuning the resonance with wavelength λ0 = 1573.76nm. Different 
curves in each plot shows the measurements with different wavelength shift (∆λ= λt-λ0) of 0.2, 0.4, 0.8, 

1.6, 3.2 and 6.4 nm Each curve was normalized related to its maximum. 

(c) 

(d) 
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 The tuning time response for the same resonance at 1573.76nm was simulated 

using the time response of the average microring temperature change modeled in 

Chapter III. Given the resonance wavelengths at the beginning and the end of the heating 

and cooling process, the simulated resonance wavelength time responses during the 

processes were calculated. Using a Lorentzian lineshape for the resonance peak fitted 

with the measured FWHM of 0.13nm for the 1573.76nm peak, the simulated tuning time 

responses for the four processes as measured and demonstrated in Figure 5.10 were 

calculated and shown in Figure 5.11. By comparing the measured responses with 

simulated responses, we can find close agreement between them. Measurements are taken 

and simulations are repeated for two other peaks to gather more data. Figure 5.12 

summarized the measured and simulated time response by plotting the rise/fall delay time 

as a function of ∆λ for three resonance peaks at 1573.76 nm, 1592.52 nm and 

1611.68 nm at room temperature. The rise/fall delay time (τdr/τdf) for the tuning/detuning 

process is defined as the time between the heating power on/off time and the 

photodetector voltage signal rising/falling to 50% of the maximum power. Measured 

FWHM of the resonance peaks was used for calculation of the rise/fall delay time 

responses. The peaks with FWHM measurement are shown in the insets of Figure 5.12. 
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(a) 

(b) 
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Figure 5.11 Simulated output power transients for processes of (a) tuning to λt (b) detuning from λt (c) 
tuning to λ0 (d) detuning from λ0, when tuning the resonance with wavelength λ0 = 1573.76nm. Different 
curves in each plot shows the measurements with different wavelength shift (∆λ= λt-λ0) of 0.2, 0.4, 0.8, 

1.6, 3.2 and 6.4 nm Each curve was normalized related to its maximum. 

(c) 

(d) 
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Figure 5.12 Plots of tuning rise delay times of room-temperature resonance peaks at (a) 1573.76 nm (Peak 
A), (b) 1592.65 nm (Peak B) and (c) 1611.80 nm (Peak C) as well as plots of fall delay times of the peaks 
(d), (e) and (f), respectively. The curves are simulated results and the dots are measured values. The insets 

are the corresponding peak spectra. Note the different time scale between rise and fall plots. 

As shown in Figure 5.12, the rise/fall times are in close agreement with the 

simulated values. For different resonance peaks, the simulated switching times are 

different due to the slightly different FWHM, in spite of the same temperature time 

response. The fall times (the detuning process) are typically much shorter than the rise 

(tuning) times, due to the initial rapid increase of the temperature as seen in Figure 

3.13(a). On the other hand, the quasi-exponential nature of the temperature tuning to the 

final value, either through cooling or heating, leads to a slow natural log trend for higher 

resonance shifts. The cooling and heating rise-delay times are not identical due to the 

asymmetry of the measured lineshape, as seen in the insets of Figure 5.10. Furthermore, a 
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stronger deviation from the simulated values can be seen in the high resonance shift 

region, when tuning by heating as seen in Figure 5.12(a-c). Parasitic feedline heating, 

imperfect heat sinking, convection or perhaps strain-induced anisotropy effects could also 

be the cause, and deserve further exploration. The measured fall times are in agreement 

with the simulation, being higher than the simulation due to the ~1 µs photodetector 

rise/fall time. 

Silicon based thermooptic switches usually have µs or sub-µs response and mW 

power consumption. Comparing the performance of different switches is difficult because 

1) they are based on different structures 2) the speed and power consumption depend on 

the distance between the heat source and light circuit. Table 5.4 attempts to summarize 

the time response and power consumption of different thermooptic switches based on 

silicon. The Mach-Zehnder interferometer is a popular platform for thermooptic switch 

[35, 82, 84] due to its high speed. The microring resonator [37, 85] and Fabry-Perot 

cavity [83] can be used as wavelength-selective switches which add an important 

function. Our device is slower compared to the other devices listed, due to the far 

distance between heater and optical layer and the need for wide wavelength tuning range.  

The power consumption for our device is relatively low for switching applications with 

no need for large wavelength tuning.  With the ring-shape heater, an improvement in 

performance is expected. 
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5.6 Summary  

In this chapter, we experimentally characterized the thermally wavelength tunable 

microring resonator based filter. The compact 10µm-diameter microring resonator has a 

Q of around 10,000. The wide tunable range (>6.4 nm) and large free spectrum range 

(~18 nm) of the switch element enables wavelength reconfigurable multi-channel matrix 

switching by wavelength multiplexing and demultiplexing. Average rise delay time of 

14 µs with low switching power of 3.15 mW has been achieved with 0.2 nm wavelength 

tuning and 78 µs, 104 mW for 6.4 nm tuning. Fall delay times are usually less than 10 µs. 

Thermal simulations show  agreement within 15% error with the measurements up to 

3.2 nm tuning. The compact size of the switch shows its potential as an active element in 

photonic integrated circuits. 

Table 5.4 Comparison of performances of silicon-based thermooptic switch 

Reference Platform Rise Time 
(µs) 

Power 
(mW) 

Note 

This work Microring 
Resonator 

14 

78 

3.15 

104 

0.2nm tuning 

6.4nm tuning 

1.4 µm from heater 

[85] Microring 
Resonator 

5 17 

57 

0.05nm tuning 

0.25nm tuning 

0.3µm from heater 

[35] Mach-Zehnder <3.5 50 1µm from heater 

[84] Mach-Zehnder <1 250 1µm from heater 

[82] Mach-Zehnder 0.6 <0.1 Self-heating, multi-stage 

[83] Fabry-Perot 1.9 10 1µm from heater 
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VI. APPLICATIONS  

The wavelength-tunable filter was designed as ROADM for DWDM optical 

communication systems.  In this chapter, two applications are demonstrated towards this 

objective with the designed wavelength-tunable filter: 1) an on-chip 1x4 and 4x4 switch 

and 2) on-chip wavelength control of fiber laser.  

The former work was to demonstrate high port count DWDM system with 

scalable ROADM structures using the wavelength-tunable filter. It was a collaboration 

work with New Span Opto-technology, Inc and the Photonics and Microdevice Lab in the 

University of Miami. In this work, the 1x4 and 4x4 switch samples were designed and 

fabricated by the author. And the characterization was performed by our partners. 

The later work was towards the integration of lasers on silicon photonic chips. The 

realization of this application helps to evaluate the feasibility of reconfigurable multi-

wavelength laser generation by the wavelength-tunable filter. Reconfigurable multi-

wavelength lasera are also a subject of interest for DWDM optical communication 

system.  

6.1 1x4 and 4x4 Reconfigurable Photonic Switch 

Many wavelength channels can be selected through local thermal tuning of 

resonators for reconfigurable switching and wavelength-division multiplexing and 

demultiplexing. The tunable filter investigated previously in this work has an FSR of 

18 nm and FWHM in the range 0.1-0.2 nm. Given the narrow linewidths of the microring 

resonators, 0.2 nm or 25-GHz channel spacing is appropriate for our switch device. Also,  

a wide-range wavelength tuning of at least 6.4 nm was demonstrated which enables 32 
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side by side channels within the tunable range. With the compact size of the filter (50µm 

x 50µm), 1xN or NxN reconfigurable photonic switch can be realized on a millimeter 

size chip by integrating multiple filters.  

To demonstrate the idea of 1xN and NxN reconfigurable photonic switch, we 

designed, fabricated and configured a 1x4 [47] and a 4x4 [48] switch. The switch was 

designed by using multiple identical input and output microrings on a common bus 

waveguide, with a micro-heater located on each of the rings. The layout diagram of the 

1x4 and 4x4 reconfigurable photonic switch was shown in Figure 6.1(a) and (b). For the 

1x4 switch, a multiplexed signal which combines the four input channel signals is sent to 

the input waveguide. These four signals are then selectively routed to the corresponding 

output ports by tuning the resonances of the microring resonators to the corresponding 

channels. And for the 4x4 configuration, the four input signals are sent to the four input 

waveguides.  The input microring resonators multiplexed the four input channel signals 

to the bus waveguide. A routing path from input end to output end is formed when an 

input microring and an output microring are tuned to a matched resonance wavelength. 

For 4x4 configuration, we designate input and output sides for easier reference. The 

device can operate bi-directionally.  
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Figure 6.1 Layout diagrams of the (a) 1x4 and (b) 4x 4 wavelength reconfigurable photonic switches based 
on thermally tunable microring resonators on SOI substrate. 

The fabrication process for the 1x4 and 4x4 reconfigurable switch is identical to 

the single thermally tunable filter/switch as described previously in this work. Only the 

designs of them are different. The setup used to characterize the devices are slightly 

different to the one described in Chapter V, the details of the setup can be found in 

reference [47]. To implement local thermooptic tuning with micro-heaters, a printed 

circuit board (PCB) was fabricated with electric wires bonded to the electrode pads on the 

(a) 

(b) 
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switch device. Thermal silver epoxy was used to bond fine stripped magnet wires with a 

diameter of 45 µm to the PCB and the electrode pads on the device. Figure 6.2 shows a 

photo of the TEC-controlled 4x4 switch device and the PCB assembly.  

 

Figure 6.2 Picture of the TEC temperature-regulated 4x4 switch device and PCB assembly. 

For the 1x4 configuration, four ITU grids (λ1, λ2, λ3, and λ4) of 1562.43, 1562.83, 

1563.23, and 1563.63 nm were chosen as the output channels (50-GHz adjacent channel 

spacing) of the switch device, so that these channels are well separated from each other 

with minimal crosstalk. For a 1x4 wavelength reconfigurable switch, there are a total of  

4!= 24 switching combinations, with Figure 6.3 showing one switching state of the 

device, where input signals λ1, λ2, λ3, and λ4 are routed to output ports 4, 3, 1, and 2, 

respectively. It was found that a heating current of approximately 5 mA was needed to 

tune a resonance across four wavelength channels of 1.2 nm.  
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Figure 6.3 Output spectrum of the device showing wavelength routing of 1562.43, 1562.83, 1563.23, and 
1563.63 nm to output ports 4, 3, 1, and 2, respectively 

For the 4x4 configuration, the resonant wavelength peaks of the eight microring 

resonators and the resistances of their corresponding micro-heaters are presented in Table 

6.1. For this 4 × 4 photonic switch, the following four ITU grids were chosen as the 

wavelength channels: λ1 = 1562.23 nm, λ2 = 1562.63 nm, λ3 = 1563.03 nm and λ4 = 

1563.43 nm. As a result, there are total 4! × 4! = 576 switching configurations. Figure 6.4 

shows one switching configuration with input 1 and output 4, input 2 and output 2, input 

3 and output 3, and input 4 and output 1 microring pairs, tuned to λ1, λ2, λ3, and λ4, 

respectively. Given the different resonant wavelength peaks (at a fixed temperature) of 

the microring resonators and the different resistances of the micro-heaters, as listed in 

Table 1, the electric heating currents needed to tune the microring resonators to the 

chosen channel wavelengths have to be determined individually. To determine the 

heating current to tune a microring resonator to λ1, for instance, the laser source was fixed 

at λ1, and then the heating current was gradually increased to the corresponding micro-
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heater until the microring resonator reached resonance at λ1. Table 6.2 summarizes the 

heating currents required to tune the microring resonators to the corresponding 

wavelength channels, with the values in bold determined for the switching configuration 

described in Figure 6.4. 

Table 6.1 Resonant wavelength peaks of the microring resonators and the resistances of their 
corresponding micro-heaters 

 Input 1 Input 2 Input 3 Input 4 Output 
1 

Output 
2 

Output 
3 

Output 
4 

Resonant 
Wavelength 

(nm) 

1561.29 1561.51 1561.11 1561.71 1561.99 1561.48 1561.30 1561.60 

Resistance 
(Ω) 

963 1029 1045 970 782 607 868 784 

 

Table 6.2 Heating currents determined to tune the microring resonators to the corresponding 
wavelength channels with the current set marked in bold for the switching configuration shown in 

Figure 6.4 

 λ1 (1562.23 
nm) 

λ2 (1562.63 
nm) 

λ3 (1563.03 
nm) 

λ4 (1563.43 
nm) 

Input Port 1 (I-MR 1) 4.40 mA 5.21 mA 6.00 mA 6.59 mA 

Input Port 2 (I-MR 2) 4.14 mA 5.09 mA 5.83 mA 6.48 mA 

Input Port 3 (I-MR 3) 4.27 mA 5.05 mA 5.74 mA 6.30 mA 

Input Port 4 (I-MR 4) 3.12 mA 4.28 mA 5.13 mA 5.87 mA 

Output Port 1 (O-MR 1) 2.25 mA 3.73 mA 4.71 mA 5.58 mA 

Output Port 2 (O-MR 2) 3.75 mA 4.72 mA 5.57 mA 6.19 mA 

Output Port 3 (O-MR 3) 4.47 mA 5.38 mA 6.18 mA 6.83 mA 

Output Port 4 (O-MR 4) 3.76 mA 4.75 mA 5.56 mA 6.36 mA 

 



 

97 
 

 

Figure 6.4 One switching configuration of the 4 × 4 photonic switch with λ 1, λ2, λ3, and λ4 routed from 
input ports (1, 2, 3, and 4) to output ports (4, 2, 3 and 1), respectively. 

Thermal cross-talk between adjacent devices was considered at the design stage. 

To facilitate standard fiber array connection, adjacent waveguide ports on both input and 

output sides are spaced at 250 µm. Simulation using the model described in Chapter III 

was performed to estimate the temperature change of a microring device due to heating of 

a heater 250µm away with result shown in Figure 3.13(b). Minimal crosstalk was 

predicted from the simulation. 

The tuning thermal cross-talk between adjacent micro-heaters was evaluated 

experimentally also. We monitored the peak wavelength shift of one microring while 

heating up the micro-heater of an adjacent one. There was no peak wavelength shift 

observed even when a high heating current of 7 mA was provided to the adjacent micro-

heater, as seen in Figure 6.5. It should be noted that 7 mA heating current is sufficient to 
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tune a microring by approximately 2.5 nm if supplied directly to the corresponding 

micro-heater. Therefore, the fabricated 1x4 and 4x4 photonic switch has no observable 

thermal cross-talk. 

 

Figure 6.5 Transmission spectrum of a microring resonator with various heating currents sent to an adjacent 
micro-heater. 

In summary, 1x4 and 4x4 reconfigurable photonic switches were successfully 

demonstrated based on the thermally tunable microring resonator with FWHM of 0.1-

0.2nm, tunable range larger than 6.4nm and time response in the order of 10µs. 

Independent thermooptic tuning of microring resonators was achieved with highly 

localized micro-heaters fabricated on the same substrate, yielding no cross-talk between 

adjacent microring resonators. The results suggest the feasibility of high port-count 
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photonic circuitry with dynamic wavelength reconfiguration capability for the 

development of large-scale integrated photonics. 

 

6.2 On-chip Wavelength Control of Optical Fiber Laser 

One of the biggest challenges for silicon integrated photonics is the light 

generation on-chip. Recently, generation of light on silicon using an external optical 

pump was demonstrated by taking advantage of the strong Raman emission in silicon [49, 

50]. This approach requires tuning of the external optical pump wavelength to control 

emission wavelength.  

Using the thermally tunable filter,  an alternative approach that integrates on-chip 

silicon photonic tuning and control of lasing wavelength was demonstrated using an 

external Erbium-doped fiber amplifier as a gain source. Repeatable and predictable 

tuning of the filter wavelength is achieved. The use of an Er+-doped fiber with 

heterogeneously broadened gain enables the generation of multiple arbitrary wavelengths 

by a single chip with each wavelength independently tuned. With a small footprint, 

dozens, if not hundreds of such devices can be integrated on a single Si-photonic chip 

with a single external EDFA, leading to individual wavelength control of DWDM 

channels. This work was published in [65] 

A schematic of the tunable laser experiment is shown in Figure 6.6. The two 

major components of the tunable laser are the Erbium-doped fiber (EDF) and the silicon-

based tunable filter. A piece of EDF serves as the gain media which is pumped by a 

980 nm laser diode. The amplified light from the EDF is coupled to the input of the 
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silicon-based intracavity wavelength-selective filter by a tapered fiber, which is followed 

by an isolator and a polarization controller. Light from the output of the filter is collected 

by another tapered fiber and coupled back to the input of the EDF. The tap port of a 1×2 

coupler with a nominal splitting ratio of 1:99 as the laser output was used. 

The overall fiber-chip-fiber insertion loss was measured to be ~15dB, higher than 

previously reported 10.4 dB of a very similar structure in ref. [42], mainly due to 

observed imperfections of the fabricated waveguides and nanotapers. Round-trip losses 

include additional contributions from the polarization controller and the 1×2 coupler 

which are measured to be 0.6 dB and 1.0 dB, respectively. The gain obtained from EDF 

at λ=1.55 µm, which exceeds 20 dB as shown in Figure 6.9 (inset) overcomes the losses 

stated above; therefore lasing was expected in this band with the proposed silicon 

microring filter.  
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Figure 6.6 (a) Experimental setup of the tunable laser (b) top view microscopic picture of fabricated switch 
element 

The birefringent nature of the microring resonator leads to separated quasi-TE 

resonances and quasi-TM resonances observed within a FSR of the filter [51]. Thus, the 

filter transmission spectrum is sensitive to input polarization. Our device is optimized at 

quasi-TE resonances with a much narrower linewidth (FWHM = 0.1-0.2 nm) compared 

to quasi- TM ones (FWHM = 1- 2 nm).  Figure 6.7(a) shows the transmission spectrum 

around 1.55 µm of the filter that was taken using the broadband unpolarized ASE source 

when the chip was at room temperature (~24°C). The quasi-TE and quasi-TM resonance 

wavelengths were measured to be 1555.56 nm and 1550.93 nm respectively. Similar peak 

transmissions and extinction ratios were achieved for both quasi-TE and quasi-TM 

resonances. The extinction ratios were measured to be over 10 dB. The double resonance 

characteristic of the TE peak has been attributed to sidewall back scattering on the 

microring [46]. By tuning the input polarization state using the polarization controller, the 
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polarization-dependent loss can be controlled to switch on/off the TE or TM lasing 

modes. Figure 6.7(b,c) shows lasing spectra at 1555.57 ± 0.01 nm or 1550.90 ± 0.1 nm 

corresponding to the quasi-TE or quasi-TM filter resonances, respectively. Simultaneous 

operation at two-wavelengths is demonstrated by adjusting the input polarization at 45º to 

the chip normal with lasing observed at both TE and TM wavelengths (Figure 6.7(d)). 

Significantly narrower FWHMs of 0.02 nm were observed in both lasing modes, 

approaching the resolution limit of the optical spectrum analyzer (0.01nm). The lasing 

wavelength of the TM mode was observed to shift ± 0.1 nm around 1550.90 nm due to 

the broad peak linewidth of the quasi-TM resonance of the filter. However, for the TE 

mode, the lasing wavelength shift was ± 0.01 nm, which is significantly reduced, 

compared to TM lasing mode and approaches the wavelength resolution of the OSA. An 

interesting phenomenon was observed when comparing the top-view infrared images 

captured of the microring filter at corresponding lasing modes as shown in the insets of 

Figure 6.7(b-d). An infrared camera was used to monitor and capture the top view image 

with exactly the same camera settings. From the images, greater scattering around the 

ring area was observed when lasing at the TE mode compared to the TM mode although 

slightly higher lasing output was measured at the TM mode. This is due to the increased 

off-plane scattering of TE mode with electric field parallel to the surface of the sample. 

The speckle pattern observed around the filter area is due to reflections from the 

unpolished bottom surface of the chip. The TM mode preferentially scatters along the 

plane of the sample, hence the reduced intensity collected by the top viewing camera. 

Other filter resonances within EDF gain bandwidth are found at 1537.45 nm (quasi-TE) 

and 1533.81nm (quasi-TM), however, lasing was never observed on those wavelengths 
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even with highest EDF pumping current provided.  This is because the corresponding 

gain at those wavelengths are at least 6 dB lower than at 1550 nm band for our EDF and 

thus below the lasing threshold.  

 

 
Figure 6.7 (a) Transmission spectrum of the filter using unpolarized ASE source. Lasing spectra of: (b) TE 
mode; (c) TM mode; and (d) simultaneous lasing of both TE and TM modes.  Insets show corresponding 

top view infrared images of the ring area during lasing. 
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Figure 6.8 Laser output power versus the EDF pumping bias current. Inset shows the EDF gain at 1550 nm 
for different input power at pumping current from 100 mA to 400 mA 

 
Figure 6.8 plots the laser output power versus the EDF pump bias current with the 

tuning filter chip maintained at room temperature. In this experiment, the input 

polarization state was adjusted by a manual polarization controller that was set to TE 

mode at the highest pumping current. The pump current was decreased to below 

threshold and an ANDO AQ6317B optical spectrum analyzer (OSA) was used to record 

the emission spectra. The peak position and power were noted at each pump current.  

From the plot we can determine a lasing threshold of ~260 mA. We estimate the power in 

the loop after the EDF to be ~ 0.3 mW with pumping current of 400 mA. The small value 

is due to the high losses in our current silicon tunable filter chip. It is important to note 

that losses in silicon photonics have been shown to be as low as 3.6±0.1 dB/cm [52]. The 
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output power was observed to fluctuate significantly for pumping currents above 300 

mA, however, lasers built with same EDF and FBG grating filters showed a stable output. 

This effect is attributed to fluctuations losses in the fiber-to-chip coupling. 

 

 
Figure 6.9 (a) Filter spectra and (b) lasing spectra at applied heating current of 0, 1, 3 and 5mA (c) filter 

and lasing peak wavelength shift versus applied heating power. 

 
Tuning of the lasing wavelength was achieved by adjusting the current into the 

micro-heater to tune the silicon microring resonance. Previously we demonstrated pulsed 

operation of the silicon microring tunable filter up to 6.4 nm [37]. However, continuous 

operation is restricted to 5mA at which point the probe contacts are not reliable. Figure 

6.9(a,b) show the filter transmission spectra and the laser emission spectra taken at the 
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same microheater currents of 0, 1, 3 and 5 mA after thermal equilibrium had been 

reached. Both spectra were found to red-shift with constant current heating as previously 

demonstrated [43]. The peak shift was found to be proportional to the electrical heating 

power as seen in Figure 6.10(c) which shows wavelength shifts versus applied heating 

power with a measured slope of ~0.067 nm/mW. These results agree with the 

thermooptic effect as demonstrated in [37]. Lasing wavelengths were found to closely 

match the peak transmission wavelengths of the filter and following the shift. A tunable 

range of over 1.3 nm has been demonstrated with low heating power of 20 mW although 

much wider tunable range is achievable. 

In summary, we have demonstrated a new application of silicon photonics for the 

control of on-chip wavelengths through the use of an external gain source. Tuning of 1.3 

nm was demonstrated with 20 mW electrical power, with wider tuning ranges of at least 

up to 6.4 nm possible with larger currents. Simultaneous lasing at two different 

wavelengths was achieved using the natural birefringence of the devices. The use of 

parallel ring configurations will enable simultaneous lasing wavelengths to be selected 

and tuned across the whole Er+ range. This integration of the wavelength control of 

optical sources into silicon photonics is an important step towards DWDM applications. 
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VII. CONCLUSION AND FUTURE WORK 

A thermally wavelength-tunable photonic filter/switch was designed based on 

silicon microring resonator. The large FSR (~18nm), sharp filter passband (0.1-0.2nm) 

and wide tunable range (>6.4nm), enables DWDM applications with the device. The 

tunable range was highest on a single silicon microring to the best of our knowledge until 

its publishing date. The device provides a scalable approach for high port count optical 

routing with a profitable architecture. With compact footprint (50µm ×50µm, 10µm 

×10µm for optimized heater design), low power consumption (on the order of ~10 mW 

with S-shape heater and ~mW expected with optimized heater design) and full 

compatibility with SOI technology, a large number of these devices can be integrated on 

a single silicon chip which is promising for low cost production. The time response of the 

switch is on the order of ~10µs.  

 Two important and novel applications were demonstrated in this work, the on-

chip 4x4 reconfigurable routing, and the silicon on-chip laser wavelength tuning. The 

former makes possible high port count DWDM application up to at least 32 input and 

output ports. The latter work demonstrated on-chip wavelength control in a silicon 

photonics platform for the first time, and is a very promising approach to realize 

independent controlled multi-wavelength lasing on chip using a common gain media. The 

demonstrated applications are significant as they are fundamental in establishing a 

silicon-based platform for silicon photonics towards DWDM applications that will apply 

to all types of optical communication, including on-chip interconnects. 



 

108 
 

 Future work of this project includes improvement of device performance, 

implementation of new functions, and demonstration of other applications.  

According to this work and other studies, there is improvement space of the 

device performance including: 1) larger FSR and smaller footprint with reduced ring 

diameter [4]; 2) wider tunable range [38]; 3) lower power consumption and faster speed. 

The microring resonator platform also offers design flexibility for implementing 

functions desirable for optical communication applications such as high speed 

modulation [3], tunable bandwidth ROADM [40], hitless operation [66, 62], and flat-top 

and fast roll-off filter for telecomm applications[67,41].  

 With the wavelength-tunable filter, we will work on multi-wavelength laser 

wavelength tuning and tracking of external laser wavelength.  
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