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ABSTRACT OF THE DISSERTATION 

THE EFFECT OF MALE-MALE COMPETITION AND ITS UNDERLYING 

REGULATORY MECHANISMS ON THE ELECTRIC SIGNAL OF THE 

GYMNOTIFORM FISH BRACHYHYPOPOMUS GAUDERIO 

by 

Vielka Lineth Salazar 

Florida International University, 2009 

Miami, Florida 

Professor Philip K. Stoddard, Major Professor 

Sexually-selected communication signals can be used by competing males to 

settle contests without incurring the costs of fighting.  The ability to dynamically regulate 

the signal in a context-dependent manner can further minimize the costs of male 

aggressive interactions.  Such is the case in the gymnotiform fish Brachyhypopomus 

gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine 

systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive 

the greatest reproductive benefit. My dissertation research examined the functional role 

of the EOD plasticity observed in male B. gauderio and the physiological mechanisms 

that regulate the enhanced male EOD.  To evaluate whether social competition drives the 

EOD changes observed during male-male interactions, I manipulated the number of 

males in breeding groups to create conditions that exemplified low and high competition 

and measured their EOD and steroid hormone levels. My results showed that social 

competition drives the enhancement of the EOD amplitude of male B. gauderio. In 

addition, changes in the EOD of males due to changes in their social environment were 
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paralleled by changes in the levels of androgens and cortisol.  I also examined the 

relationship between body size asymmetry, EOD waveform parameters, and aggressive 

physical behaviors during male-male interactions in B. gauderio, in order to understand 

more fully the role of EOD waveforms as reliable signals. While body size was the best 

determinant of dominance in male B. gauderio, EOD amplitude reliably predicted body 

condition, a composite of length and weight, for fish in good body condition. To further 

characterize the mechanisms underlying the relationship between male-male interactions 

and EOD plasticity, I identified the expression of the serotonin receptor 1A, a key player 

in the regulation of aggressive behavior, in the brains of B. gauderio.  I also identified 

putative regulatory regions in this receptor in B. gauderio and other teleost fish, 

highlighting the presence of additional plasticity. In conclusion, male-male competition 

seems to be a strong selective driver in the evolution of the male EOD plasticity in B. 

gauderio via the regulatory control of steroid hormones and the serotonergic system. 



ix 
 

TABLE OF CONTENTS 

CHAPTER          PAGE 

I. INTRODUCTION .................................................................................................. 1 
Social systems and sexually-selected communication signals................................ 2 
Aggressive interactions regulate and are regulated by steroid hormones and 
serotonergic neuromodulation ................................................................................ 3 
Gymnotiform fish are a great model system to study the connection between 
social stimuli, motivational state, and the regulation of communication 
signals ..................................................................................................................... 6 
The electrocommunication neural network is a simple and tractable system to 
understand how steroid hormones and the serotonergic system regulate social 
behavior................................................................................................................. 10 
Does male-male competition drive the EOD plasticity observed in males? 
Are these effects paralleled by changes in the circulating levels of 
glucocorticosteroids and androgens and mediated by the activity of the 
serotonin receptor 1A? .......................................................................................... 11 
References ............................................................................................................. 13 

 
II. SOCIAL COMPETITION AFFECTS ELECTRIC SIGNAL PLASTICITY 

AND STEROID LEVELS IN THE GYMNOTIFORM FISH 
BRACHYHYPOPOMUS GAUDERIO .................................................................. 22 
Abstract ................................................................................................................. 23 
Methods................................................................................................................. 26 
Animals ................................................................................................................. 26 
The EOD machine................................................................................................. 27 
Design of social treatment groups......................................................................... 28 
Blood collection .................................................................................................... 29 
Steroid hormone analyses ..................................................................................... 30 
Data analyses ........................................................................................................ 32 
Results ................................................................................................................... 33 
Order of social experiences influences their effects on the EOD ......................... 33 
Differences in EOD circadian rhythm magnitudes across the different social 
conditions .............................................................................................................. 34 
Differences in plasma steroid levels across the different social conditions.......... 34 
Relationship between steroid hormone levels and the EOD circadian rhythm 
across the different social conditions .................................................................... 36 
Relationship between steroid hormone levels and body size ................................ 37 
Discussion ............................................................................................................. 38 
Etho-ecological validity of our study .................................................................... 38 
Social environment affects the EOD plasticity and steroid levels ........................ 39 
Social competition affects EOD amplitude’s circadian plasticity and cortisol 
levels ..................................................................................................................... 42 
Sex differences in steroid hormone levels across gymnotiform species............... 44 



x 
 

Acknowledgments................................................................................................. 46 
References ............................................................................................................. 47 

III. THE EFFECT OF BODY SIZE ASYMMETRY ON ELECTRIC SIGNAL 
WAVEFORM PLASTICITY IN MALE-MALE DYADS OF THE 
GYMNOTIFORM FISH BRACHYHYPOPOMUS GAUDERIO ......................... 66 
Abstract ................................................................................................................. 67 
Introduction ........................................................................................................... 68 
Body size and EOD waveforms as indices ........................................................... 69 
EOD waveforms as handicaps .............................................................................. 71 
Objectives ............................................................................................................. 72 
Methods................................................................................................................. 72 
Study subjects ....................................................................................................... 72 
EOD machine recording ....................................................................................... 73 
Test of body size effects – dyads with no physical contact .................................. 74 
Test of body size effects – dyads with physical contact ....................................... 75 
Results ................................................................................................................... 77 
Resident males increased EOD amplitude when paired with a larger stimulus 
male ....................................................................................................................... 77 
Body size predicted execution of offensive behaviors and dominance in male 
dyads ..................................................................................................................... 78 
Relative EOD amplitude between the two males predicted number of bites ....... 80 
Discussion ............................................................................................................. 80 
EOD amplitude as an honest signal of body condition? ....................................... 80 
EOD responses to body size mismatches between males ..................................... 82 
Body size: the honest signal of dominance? ......................................................... 84 
EOD signals: is different information encoded in EOD amplitude and 
duration? ............................................................................................................... 85 
Acknowledgments................................................................................................. 86 
References ............................................................................................................. 87 

 
IV. MOLECULAR CHARACTERIZATION OF SEROTONIN RECEPTOR 1A 

FROM BRAINS OF THE GYMNOTIFORM FISH BRACHYHYPOPOMUS 
GAUDERIO ........................................................................................................ 102 
Abstract ............................................................................................................... 103 
Introduction ......................................................................................................... 105 
Materials and methods ........................................................................................ 109 
Animals ............................................................................................................... 109 
Brain extraction, RNA isolation and cDNA synthesis........................................ 109 
Design of degenerate primers and product PCR amplification .......................... 110 
Cloning and sequencing ...................................................................................... 111 
Phylogenetic tree analysis ................................................................................... 113 
In silico identification of putative GRE and ARE sequences ............................. 113 
Results ................................................................................................................. 114 
Cloning of 5HT1AR ........................................................................................... 114 



xi 
 

Putative phosphorylation sites ............................................................................ 114 
Sequence homology and transcriptional regulation ............................................ 116 
Discussion ........................................................................................................... 117 
Acknowledgments............................................................................................... 121 
References ........................................................................................................... 122 

 
V. CONCLUSIONS................................................................................................. 135 

Ontogeny of my dissertation research: the functional and mechanistic 
underpinnings of electrocommunication signals ................................................ 136 
Proposed model for the regulation of male EOD plasticity ................................ 143 
References ........................................................................................................... 148 

 
VITA ............................................................................................................................. 151 

 

 
  

 



xii 
 

LIST OF FIGURES 

FIGURE          PAGE 

CHAPTER I 
Figure 1. Conceptual framework of my dissertation research .......................................... 20 
 
Figure 2. The electric organ discharge (EOD) waveform and its sexual dimorphism ..... 21 
 
CHAPTER II 
Figure 1. EOD data acquisition ......................................................................................... 53 
 
Figure 2. Social conditions and experimental design ....................................................... 54 
 
Figure 3. Males displayed differences in their EOD circadian rhythm plasticity 

according to the order they experienced the different social conditions  ............. 56 
 
Figure 4. Means±SEM are shown for the EOD parameters amplitude and τP2 across 

the social conditions .............................................................................................. 57 
 
Figure 5. Plasma levels of T, 11-KT and cortisol (ng/ml) varied significantly with 

social condition and sex ........................................................................................ 58 
 
Figure 6. As plasma cortisol levels (ng/ml) increase, EOD amplitude (mV) increases 

for the low and high competition males but not for the isolated males ................ 59 
 
Figure 7. Testosterone plasma levels were not significantly related to EOD amplitude 

or τP2 at any of the three conditions, isolation, Social 2 or Social 6 ..................... 60 
 
Figure 8. 11-ketotestosterone plasma levels were not significantly related to EOD 

amplitude or τP2 at any of the three conditions, isolation, Social 2 or Social 6 .... 61 
 
Figure 9. Body length (cm) predicts body mass (g) in low and high competition 

males but not in isolated males ............................................................................. 62 
 
CHAPTER III 
Figure 1. EOD metrics and experimental design using male dyads ................................. 91 
 
Figure 2. The percent length and weight difference between the resident and stimulus 

males predicted the percent change in EOD amplitude, but not in τP2 ................. 93 
 
Figure 3. For the most part, the body length and weight of a resident male did not 

predict EOD amplitude and τP2 during either the 24h before or 24h after a 
stimulus male was added to his tank ..................................................................... 95 

 



xiii 
 

Figure 4. Residual body mass predicts EOD amplitude and τP2 only in heavier males .... 97 
 
Figure 5. When the two males in a dyad were allowed to interact physically, the large 

male directed offensive behaviors, such as forward and reverse chases and 
bites or nudges, toward the small male ................................................................. 99 

 
Figure 6. The relative difference in EOD amplitude between the large male and the 

small male predicted the number of times the large male bit the small male 
within the first 10 min of physical interaction .................................................... 100 

 
CHAPTER IV 
Figure 1. Putative 5HT1AR-like PCR products from B. gauderio .................................. 130 
 
Figure 2. Unlike most vertebrates, the teleost fish zebrafish and fugu have two 

5HT1AR isoforms ................................................................................................ 131 
 
Figure 3. B. gauderio 5HT1AR forms a highly-supported clade with zebrafish 1Ab, 

barramundi 1A, mozambique tilapia 1A, and fugu 1Aβ ..................................... 133 
 
Figure 4. Glucocorticosteroids can regulate 5HT1AR expression in teleost fish ............ 134 
 
CHAPTER V 
Figure 1. EOD changes varied with role as resident or intruder ..................................... 142 

Figure 2. The Energetics-Steroids-Serotonergic (ESSS) model based on the 
Challenge Hypothesis and modified from the Energetics-Hormone 
Vocalization (EHV) model ................................................................................. 147 

 
 



xiv 
 

 LIST OF ABBREVIATIONS 

8-OH-DPAT   8-hydroxy-N,N-dipropyl-2-aminotetralin 

5-HT    5-hydroxytryptamine or serotonin 

5HT1AR   serotonin receptor type 1A 

5HT2R    serotonin receptor type 2 

5HT2AR   serotonin receptor type 2A 

11-KT    11-ketotestosterone 

α-MSH   alpha-melanocyte stimulating hormone 

aa    amino acid 

ACTH    adrenocorticotropic hormone 

ANOVA   analysis of variance 

ARE    androgen response element 

cdk5    cyclin-dependent kinase 5 

CRH    corticotropin-releasing hormone 

Cys    cysteine 

DHEA    dehydroepiandrosterone 

DOC    deoxycorticosterone 

EDTA    ethylenediaminetetraacetic acid 

EIA    enzyme immunoassay 

EMN    electromotoneuron 

EO    electric organ 

EOD    electric organ discharge 

F    cortisol 



xv 
 

GC    glucocorticosteroids 

GLM    general linear model 

GPCR    G-protein coupled receptor 

GRE    glucocorticosteroid response element 

HPA    hypothalamic-pituitary adrenal axis 

HPG    hypothalamic-pituitary gonadal axis 

HPI    hypothalamic pituitary interrenal axis 

IACUC   Institutional Animal Care and Use Committee 

LSD    least significant difference 

MAPK    p38 mitogen-activated protein kinase 

MATLAB   matrix laboratory 

NCBI    National Center of Biotechnology Information 

nt    nucleotide 

P1    positive phase 1 of the EOD waveform 

P2    negative phase 2 of the EOD waveform 

PLC    phospholipase C 

PKA    protein kinase A 

PKC    protein kinase C 

Pn    pacemaker nucleus 

PPn    prepacemaker nucleus 

PCR    polymerase chain reaction 

RHP    resource-holding potential 

RSAT    regulatory sequence analysis tools 



xvi 
 

S-15535   4-(benzodioxan-5-yl)1-(indan-2-yl)piperazine 

SEM    standard error of the mean 

Ser    serine 

SPPn    sublemniscal prepacemaker nucleus 

SPSS    statistical package for the social sciences 

T    testosterone 

TBE    Tris-Borate-EDTA buffer 

Thr    threonine 

TM    transmembrane 

τP2    time constant of repolarization of phase 2 

UniProtKB   universal protein resource knowledgebase 

 

 

 

 



1 
 

 

 

 

 

 

 

 

 

 

CHAPTER I 

 

Introduction 

 



2 
 

Social systems and sexually-selected communication signals 

In animal social systems, individuals constantly monitor their social environment 

and their internal motivational state, and integrate these two sources of information to 

make decisions on their behavioral output (Figure 1) (Bradbury & Vehrencamp 1998).  

Social interactions require that individuals in a social group change their motivational 

states over minutes to hours, and continually fine-tune their behavioral responses to other 

individuals’ actions (Figure 1).  Communication signals facilitate the exchange of 

information among individuals in a social group (Bradbury & Vehrencamp 1998). 

Information encoded in these signals, such as the songs of territorial male birds, the claw-

waving in fiddler crab males, and the advertisement calls of male frogs, can help 

individuals to decide who to challenge and who to mate with, both of which are critical 

decisions to attain maximal reproductive output (Andersson 1994; Bradbury & 

Vehrencamp 1998).  Reliable communication signals are particularly important in mating 

systems with skewed sex ratios, scarce resources, and limited reproductive time periods 

(Andersson 1994).  Nevertheless, the reliability of the information encoded in signals 

depends on the overall benefits and costs to the sender and the receiver, and on whether 

they share common interests (Searcy & Nowicki 2005).  When interests differ between 

the sender and the receiver, senders benefit by emitting unreliable signals and receivers 

incur costs by attending to them (Searcy & Nowicki 2005).  Although through time, 

receivers will selectively pay attention to reliable signals, they may be tolerant to low 

levels of deception (Dawkins & Guilford 1991; Johnstone & Grafen 1993). 

Both female mate choice and intrasexual competition prevail in polygamous 

mating systems, where the number of interested males exceeds the number of receptive 
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females at any given time, and females are more limited than males in potential 

reproductive output (Andersson 1994).  Under these conditions, sexual selection will 

favor communication signals that convey reliable information about males’ quality (body 

size, body condition), fighting ability or resource holding potential (RHP) (Andersson 

1994; Parker 1974).  In the context of male-male aggressive interactions, males can use 

these signals to avoid unnecessary physical contests that may lead to injury, depletion of 

energy stores, and high predation risk (Bradbury & Vehrencamp 1998).  Furthermore, the 

outcome of the contest affects the present state of a male and his motivation in future 

contests, and this is mediated via steroid hormones and neuromodulators, such as 

biogenic amines and neuropeptides (Figure 1).  In turn, changes in steroid hormone levels 

and neuromodulators feed back to modulate the organism's motivational state and 

behavioral output, thus affecting the social environment of conspecifics in the social 

group (Figure 1). 

 

Aggressive interactions regulate and are regulated by steroid hormones and 

serotonergic neuromodulation 

Male aggressive interactions regulate circulating levels of the steroid hormones 

glucocorticosteroids (GCs) and androgens (Figure 1) (Abbott et al. 2003; Elofsson et al. 

2000; Goymann & Wingfield 2004; Oliveira et al. 2002; Overli et al. 1999; Summers & 

Winberg 2006; Wingfield et al. 1990; Wingfield et al. 1987).  Dominant individuals, 

those that consistently win aggressive interactions, typically have higher levels of 

androgens than subordinate individuals (Elofsson et al. 2000).  In contrast, the 

relationship between dominance status and circulating GC levels in competing males is 
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more complex.  Although GC levels increase during the initial stages of a contest in both 

dominant and subordinate individuals, they quickly revert back to pre-contest levels in 

dominant males but stay high longer in subordinate males (Overli et al. 1999; Summers 

& Winberg 2006).  In the context of male-male interactions, androgens typically also 

facilitate male signaling behavior (e.g., mating calls/displays), while elevated GCs 

facilitate the release of energy stores necessary to sustain signaling for high-energy 

signalers.  In addition, increases in the density of competing males or in the number of 

perceived competitors in a population have been shown to increase androgen levels in 

competing males (Carlson et al. 2000; Oliveira et al. 2001; Pankhurst & Barnett 1993; 

Remage-Healey & Bass 2005).  As discussed by Oliveira and colleagues (2002) and as 

predicted by the Challenge Hypothesis (Wingfield et al. 1990), an increase in potential 

competitors could intensify agonistic interactions leading to the activation of the 

hypothalamic-pituitary-gonadal (HPG) axis and an increase in circulating androgen 

levels. 

Male aggressive interactions are also regulated by GCs and androgens (Figure 1) 

(Abbott et al. 2003; Elofsson et al. 2000; Goymann & Wingfield 2004; Oliveira et al. 

2002; Overli et al. 1999; Summers & Winberg 2006; Wingfield et al. 1990; Wingfield et 

al. 1987).  These steroid hormones typically facilitate aggressive behaviors while 

suppressing behavioral and physiological functions that would otherwise consume the 

time and nutritional resources that could be advantageously reallocated to aggression.  

High circulating levels of androgens and GCs can facilitate agonistic performance but 

incur collateral physiological and behavioral costs such as suppression of immune 

function, depletion of energy stores, and reduced parental care (Romero 2004; Sapolsky 
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et al. 2000).  While high GC levels are typically related to the suppression of androgen 

levels (Sapolsky 1994; Sapolsky et al. 2000), in many species, both glucocorticoid and 

androgen levels are increased during reproduction (Beletsky et al. 1989; Creel et al. 1996; 

Emerson & Hess 2001; Remage-Healey & Bass 2005).   

Serotonin (5-hydroxytryptamine or 5-HT), a biogenic monoamine 

neurotransmitter, also plays a major role in the regulation of aggressive behavior in both 

invertebrate and vertebrate organisms (rev. Nelson 2006).  Aggressive interactions 

regulate and are regulated by the activity of the serotonergic system (Figure 1).  

Serotonin not only regulates overt aggressive physical behaviors but it also regulates 

production of aggressive communication signals (Albers et al. 2002; Larson & Summers 

2001), including electrocommunication signals (Allee et al. 2008; Maler & Ellis 1987; 

Smith & Combs 2008; Stoddard et al. 2003a; Telgkamp et al. 2007). Although high 

chronic serotonin activity is typically related to low levels of aggressive behavior, this is 

not always the case (de Boer & Koolhaas 2005; Nelson & Chiavegatto 2001; Summers 

2001; Veenema et al. 2005).  Serotonergic activity in dominant and subordinate males 

matches their changes in GC levels. Similar to the trends observed for GC levels, 

serotonin activity increases in both dominant and subordinate individuals during an 

encounter but this rise in serotonin rapidly returns to baseline levels in dominant males 

while it stays chronically high in subordinate males (Overli et al. 1999; Summers & 

Winberg 2006).  Associated with these changes in the serotonergic system and GC levels, 

subordinate individuals also display increase levels of the melanocortins 

adrenocorticotropic hormone (ACTH) and alpha-melanocyte stimulating hormone (α-

MSH) (Hoglund et al. 2000). 



6 
 

The effect of serotonin on the regulation of aggressive behaviors seems to be 

mediated by the activation of the HPG axis and the hypothalamic-pituitary-adrenal or 

interrenal (HPA, or HPI in teleost fish) axis.  Ultimately activation of the HPG leads to 

the secretion of androgens into circulation, while activation of the HPA/I axis leads to the 

secretion of melanocortins and glucocorticosteroids (GCs).  In addition, the relationship 

between serotonergic activity and regulation of aggressive behavior depends on the type 

of serotonin receptor, the quantity and location of the receptor in brain centers that 

regulate aggression, and the intracellular signaling pathway activated by the receptor (de 

Boer & Koolhaas 2005; Schiller et al. 2006; Schiller et al. 2003; Veenema et al. 2005). 

For instance, the serotonin receptor type 1A (5HT1AR) is a key player in the regulation of 

aggressive behavior (rev. Nelson 2006).  Activation of the 5HT1AR by 5-HT or specific 

agonists (e.g., 8-OH-DPAT) inhibits or reduces aggression in many invertebrate and 

vertebrate species (rev. Nelson 2006).  Closing this regulatory loop, circulating androgens 

and GCs can alter the expression pattern of serotonin receptors resulting in changes in the 

neuronal activity of brain areas that regulate aggressive behavior.  

 

Gymnotiform fish are a great model system to study the connection between social 

stimuli, motivational state, and the regulation of communication signals 

The main objective of my dissertation research is to determine the effects of male-

male competition and its underlying regulatory mechanisms on the modulation of the 

electric signal of male gymnotiform fish, Brachyhypopomus gauderio.  All members of 

the order Gymnotiformes, electric fish from Central and South America, emit easily-

quantified electric signals generated by a well-mapped neural motor network.  These 
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electric signals, known as electric organ discharges (EODs), are regulated by social 

interactions, androgens, GCs, melanocortins, and the serotonergic system (Stoddard et al. 

2006).  Thus, changes in the electric signal of males during social interactions give a real-

time broadcast of the motivational and physiological state of the fish and their effect on 

the electrocommunication networks of other fish with whom they interact.   

The nocturnal gymnotiform fish Brachyhypopomus gauderio (Giora & Malabarba 

2009) uses its EODs to navigate in its environment, electrolocate objects, and 

communicate with conspecifics in the dark.  B. gauderio is the sister species to B. 

pinnicaudatus (Hopkins 1991).  The southern species, B. gauderio, is found from the 

Pantanal of Brazil and Paraguay south to the Pampas of Argentina and Uruguay, whereas 

B. pinnicaudatus resides in the Amazon and Oronoco basins to the north (Giora & 

Malabarba 2009).  The literature to this point has referred to both as B. pinnicaudatus.  

Given the extreme similarity of these sister species, it seems reasonable to expect that the 

understanding of the physiology developed for one species applies to both.   

The EOD waveform of Brachyhypopomus species is the product of summed 

action potentials generated by specialized cells, known as electrocytes, found in bilateral 

structures that run longitudinally from behind the gills to the tip of the tail (Bennett 1970; 

Hopkins et al. 1990).  In many Brachyhypopomus, including B. gauderio, electrocytes 

generate two action potentials which produce the two phases (conventionally depicted as 

a head-positive phase or P1, followed by a head-negative phase or P2) of the EOD 

waveform (Figure 2A) (Bennett 1970).  The EOD can be deconstructed into: 1) peak-to-

peak waveform amplitude (voltage in mV, Figure 2A), 2) the time constant of 

repolarization of P2 (τP2), a measure of the EOD waveform’s P2 duration (Figure 2A), 
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and 3) repetition rate or frequency (EODs per second) (not shown).  The EODs of B. 

gauderio have a distinct signature or waveform which can potentially encode information 

about the gender, size, and reproductive status of the fish producing it (Silva et al. 1999; 

Stoddard 2002).   

In addition, both EOD amplitude and τP2 appear to be important in the context of 

reproductive behaviors (Stoddard 2002).  During the breeding season, sexually-mature B. 

gauderio males have longer body lengths and tails than females (Caputi et al. 1998; Silva 

et al. 1999).  A male’s body length determines the length of the EO, the number of 

electrocytes, and the magnitude of the EOD waveform (Caputi et al. 1998; Curtis & 

Stoddard 2003; Franchina & Stoddard 1998; Hopkins et al. 1990).  Accordingly, B. 

gauderio’s EOD waveforms are also sexually-dimorphic (Figure 2B) (Caputi et al. 1998).  

When compared to female’s EODs, males emit EODs with bigger amplitudes and 

extended τP2 (Figure 2B) (Franchina & Stoddard 1998; Stoddard et al. 2007).  In addition, 

males further enhance their electric signals following a circadian rhythm, increasing the 

EOD at night and decreasing it during the day (Franchina & Stoddard 1998; Stoddard et 

al. 2007).  Thus, the enhanced male circadian rhythms in the EOD waveform and EOD 

repetition rate further exaggerate the EOD sexual dimorphism in the early evening hours 

of courtship (Figure 2B) (Stoddard et al. 2007).  These enhanced traits drift back towards 

their baseline values to coincide with the period of daytime quiescence.   

Circadian rhythmicity is not only affected by reproductive status, but also by social 

interactions.  For instance, EOD circadian rhythm plasticity is sensitive to changes in the 

social environment.  Social isolation decreases the EOD circadian rhythm, and addition 

of a social companion to the tank of an isolated male restores the reduced EOD circadian 
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rhythm of the isolated male to levels observed in males sampled directly from social 

groups.  Nevertheless, social regulation of the EOD is sex-specific: a male social 

companion induces a bigger and faster effect than a female social companion (Franchina 

et al. 2001).  Yet, the enhanced EOD circadian rhythms of males seem to favor 

reproduction success.  When given a choice between a small and a big male, B. gauderio 

females prefer larger males with larger EODs (Curtis & Stoddard 2003). 

The effect of male-male interactions in the magnitude of the EOD’s circadian 

rhythm indicates that this change in the EOD could be used to communicate dominance 

status. Information regarding dominance status may be critical for males to secure a 

territory and attract females.  In their natural habitat, B. gauderio males are spatially-

distributed in a manner consistent with either an exploded-lek or a nest site polygynandry 

mating system, and display site-fidelity with non-overlapping spatial patterns suggesting 

that males may defend territories to attract females and procure spawning locations 

(Miranda et al. 2008).  Therefore, the rises in nighttime EOD waveform (both amplitude 

and duration) may be adaptations to advertise social status.  In other gymnotiform 

species, both sexes display dominance hierarchies (Black-Cleworth 1970; Hagedorn 

1986; Hagedorn & Heiligenberg 1985; Hopkins & Westby 1986; Westby 1975).  For 

instance, in B. occidentalis both sexes are known to be highly territorial (Hagedorn 1988; 

Hagedorn & Zelick 1989).  Winners of these contests were bigger and enhanced their 

EODs more than their opponents (Hagedorn & Zelick 1989).  In B. gauderio, dominance 

interactions may also be present in both sexes.  Thus, individual B. gauderio may 

advertise their social status via their EOD waveform.   
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The electrocommunication neural network is a simple and tractable system to 

understand how steroid hormones and the serotonergic system regulate social 

behavior 

 Gymnotiform fish have an EOD control center composed of a hierarchical chain 

of nuclei located in telencephalic, midbrain, and medullary brain areas (Heiligenberg et 

al. 1981).  The premotor areas, the sublemniscal prepacemaker nucleus (SPPn) and the 

diencephalic prepacemaker nucleus (PPn), send direct input to the electrogenic motor 

command circuit, the medullary pacemaker nucleus (Pn) (Juranek & Metzner 1998).  The 

Pn directs the activity of the spinal cord’s electromotoneurons (EMNs).  Subsequently, 

EMNs innervate the electrocytes that compose the peripheral EO (Bennett 1970; Bennett 

1971; Bennett et al. 1967).  The electrocytes fire synchronously to generate the EOD 

(Bennett et al. 1967).  In gymnotiform fish, the contributions of the central and the 

peripheral components of the electrocommunication neural network to the electric signal 

phenotype can be dissected out: the EOD repetition rate is controlled by the medullary 

pacemaker nucleus while the EOD waveform’s amplitude and duration are determined by 

the intrinsic properties of the electrocytes (Zakon 1998).   

Accordingly, the electric signal is modulated centrally and peripherally by steroid 

hormones (Bass & Zakon 2005; Zakon 2003).  Androgens can alter the EOD centrally 

(EOD frequency) and peripherally (EOD waveform), and the effects at either level are 

independent from each another (Bass 1986; Bass & Volman 1987; Few & Zakon 2001).  

The androgen 11-ketotestosterone (11-KT) and the glucocorticosteroid cortisol are 

positively related with EOD rate modulations (Dunlap 2002; Dunlap et al. 2002).  In 

addition, several studies have shown that steroid hormones modulate the ion 
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conductances of the electrocytes (Bass & Volman 1987; Dunlap et al. 1997; Mills & 

Zakon 1991; Stoddard et al. 2006; Zakon et al. 1991).   

 Serotonergic neurons send inputs to the electrocommunication neural network of 

gymnotiform fish (Johnston et al. 1990).  Peripheral injections of serotonin increase the 

magnitude of the EOD in B. gauderio, mimicking the changes observed during male-

male interactions (Stoddard et al. 2003b).  Serotonin regulates the EOD waveform via 

two serotonin receptor types, the 1A and 2A (Allee et al. 2008).  In B. gauderio males, 

activation of 5HT1AR reduces the EOD waveform, while activation of 5HT2R enhances 

the EOD waveform to levels observed after serotonin treatment and during male-male 

interactions (Allee et al. 2008; Stoddard et al. 2003b).  In contrast to this pattern, in a 

different gymnotiform fish species, Apteronotus leptorhynchus, activation of 5HT1AR 

enhances, while activation of 5HT2AR suppresses aggressive EOD modulations (Smith 

and Combs 2008).  Furthermore, serotonin indirectly regulates signal waveform via 

central 5-HT receptors (Allee et al. 2008; Markham & Stoddard 2005; Stoddard et al. 

2003a), whereas the melanocortins α-MSH and ACTH augment the electric waveform 

directly through action at the peripheral EO (Markham et al. 2009; Markham & Stoddard 

2005; Stoddard et al. 2006).  

 

Does male-male competition drive the EOD plasticity observed in males? Are these 

effects paralleled by changes in the circulating levels of glucocorticosteroids and 

androgens and mediated by the activity of the serotonin receptor 1a? 

The results of my dissertation research are presented in three chapters (Chapters II 

– IV).  In Chapter II, I investigate the effect of social competition and social history on 
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the electric signal modulation and steroid hormone profiles in B. gauderio. In the current 

study, I measure the EOD and the steroid hormone levels of isolated males, males at low 

competition, and males at high competition, to determine whether short-term changes in 

the social environment of the gymnotiform fish B. gauderio males are accompanied by 

changes in both their electric signals and their steroid hormone profiles.  I also explored 

the effects of past social experiences on the modulation of the EOD. 

In Chapter III, I examine the relationship between body size asymmetry, EOD 

waveform parameters, and aggressive physical behaviors during male-male interactions 

in B. gauderio, in order to understand more fully the role of EOD waveforms as reliable 

information signals.  I specifically address the following questions: 1) How reliably do 

EOD amplitude and τP2 predict male body size (length, weight and condition) in B. 

gauderio?  2) Can resident males use this EOD information to assess body size of distant 

intruder males?  3) Do males respond differently to intruders based on body size?  4) 

How does body size relate to social dominance when males are allowed to interact 

physically and electrically?  5) How do mismatches between body size and EOD 

waveform influence social interactions between males?  I address these questions through 

experiments using dyads of size-mismatched resident and intruder males.   

In Chapter IV, I use a molecular approach to characterize the serotonin receptor 

1A, one of the serotonin receptors involved in EOD regulation in B. gauderio.  In this 

study, I amplify, clone and sequence the serotonin receptor 1A from mRNA isolated from 

the brains of female and male B. gauderio.  I compare B. gauderio’s serotonin receptor 

1A to sequences from other teleost fish and characterize potential regulatory mechanisms 

for this receptor in teleost fish.  
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Figure 1.  Conceptual framework of my dissertation research. Social individuals are 

constantly monitoring their social environment (input variables), comparing it against 

their internal state (state variables), and integrating these two sources of information 

to make decisions on their behavioral output (output variables). Their output 

behaviors feed back into their social environment, affecting the social group and the 

state of its members.  Changes in circulating levels of steroid hormones, such as 

glucocorticosteroids and androgens, and the activity of the serotonergic system 

regulate this process at each level of this dynamic continuum. 
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Figure 2.  The electric organ discharge (EOD) waveform and its sexual dimorphism.  A. 

The EOD waveform can be deconstructed into its peak-to-peak amplitude (mV) and its 

duration (ms) for phase 1 (P1) and phase 2 (P2).  B. The gymnotiform fish 

Brachyhypopomus gauderio shows strong sexual dimorphism in tail size and shape, and 

in its EOD amplitude and the duration of the P2 measured as the time of repolarization 

(τP2).  Males show pronounced day-night differences in the EOD.  Shaded areas on each 

fish’s body show the location of the bilateral electric organs. 
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Abstract 

Sexually-selected communication signals can be used by competing males to settle 

contests without incurring the costs of fighting.  Steroid regulation of these signals can 

render them as reliable indicators of a male’s physiological state.  We investigated how 

plasticity in electrocommunication signals is driven by social competition for mates, 

mediated by steroid hormones, and subject to the effects of past social experience.  We 

measured the electric waveform’s amplitude and duration and steroid hormone levels of 

male gymnotiform electric fish (Brachyhypopomus gauderio) following week-long 

periods of social isolation, and low or high social competition.  To quantify the effect of 

social history on the modulation of the electric signal, six groups of six males 

experienced all the above three social conditions but in different order.  We found that 

males differentially modulate their electric signals depending on the order they 

experienced these conditions.  Thus, past social interactions affect both present and future 

social electric signals.  Cortisol levels and the amplitude of the electric signal appeared to 

track the intensity of competition, while androgen levels and the duration of the electric 

signal only responded to the presence (low and high competition) or absence (isolation) 

of a social environment (low and high androgens respectively).  In addition, cortisol 

levels were related to the body size of the males at high social competition.  Taken 

together, these findings suggest that the capacity of males to modulate their signals in 

response to social competition is regulated by steroids. 

 

Keywords: male competition; communication signal; steroid; androgen; cortisol; social 

history; gymnotiform; electric fish; electric organ discharge. 
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Social experiences influence an animal's motivational state during present and 

future social interactions.  Males compete fiercely or adopt alternative mating strategies 

when fewer mates are available, resources are limiting, and the reproductive period is 

short (Andersson 1994).  But contests between males consume time and energy in the 

best case, or can lead to injury in the worst case (Neat et al. 1998).  Ritualized behaviors 

and reliable signals facilitate the resolution of contests while minimizing their costs 

(Grafen 1990; Parker 1974; Smith 1973; Zahavi 1975).  Furthermore, male aggressive 

interactions regulate and are regulated by steroid hormones such as glucocorticosteroids 

and androgens (Abbott et al. 2003; Elofsson et al. 2000; Goymann & Wingfield 2004; 

Oliveira et al. 2002; Overli et al. 1999; Summers & Winberg 2006; Wingfield et al. 1987; 

Wingfield et al. 1990).  Yet, this bidirectional relationship can result in collateral costs 

such as suppression of immune function, depletion of energy stores, and reduced parental 

care (Romero 2004; Sapolsky et al. 2000; Wingfield et al. 1990).  

Some organisms have evolved innovative adaptations to balance the benefits and 

costs of energetically-demanding signals and displays.  Such is the case of the 

gymnotiform fish Brachyhypopomus gauderio1

                                                 
1 Recently, B. pinnicaudatus was divided into two species. Specimens found in the northern range of its distribution 
remain as B. pinnicaudatus, while those found in the southern range are now classified as B. gauderio. Drs. William 
Crampton and David de Santana have confirmed that our laboratory colony originated from the southern species B. 
gauderio.  

 (Giora & Malabarba 2009), which, by 

coupling its electric signal waveform to endocrine systems with circadian, seasonal, and 

behavioral drivers, can direct its expensive signal displays to the times when it might 

derive the greatest benefit (Salazar & Stoddard 2008).  Four features of the life history of 

the nocturnal gymnotiform fish B. gauderio make it an excellent candidate to understand 

the adaptive role of the circadian regulation of communication signals.  First, these fish 
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generate an electric organ discharge (EOD) to navigate, locate prey, and communicate 

with conspecifics in the dark.  During the breeding season, not only do males have larger 

amplitude and longer duration EODs, but they further enhance their EODs by increasing 

these sex differences at night while decreasing them during the day (Franchina & 

Stoddard 1998; Stoddard et al. 2007b).  Second, these sexually dimorphic characters are 

associated with reproductive success.  Gravid female B. gauderio preferentially associate 

with bigger males with larger amplitude and longer duration EODs (Curtis & Stoddard 

2003).  Third, EOD circadian rhythm plasticity is sensitive to changes in the social 

environment.  Social isolation decreases the EOD circadian rhythm, and addition of a 

social companion to the tank of an isolated male restores the reduced EOD circadian 

rhythm of the isolated male to levels observed in males sampled from social groups.  

Nevertheless, this effect is sex-specific: a male social companion induces a bigger and 

faster effect than a female social companion (Franchina et al. 2001).  Fourth, the EOD is 

modulated by melanocortins (Markham et al. 2009; Markham & Stoddard 2005) and by 

steroid hormones (Mills & Zakon 1991; Stoddard et al. 2006). 

 The EOD operates in the same modality as the nervous system’s action potentials, 

making it a tractable system to investigate the role of hormones in the regulation of signal 

production mechanisms in the context of sexually-selected communication.  The EOD 

can be deconstructed into its waveform amplitude (voltage in mV, Figure 1A), its 

waveform duration (time in ms, Figure 1A), and its repetition rate or frequency (EODs 

per second).  The contributions of the central and the peripheral components of the 

electrocommunication neural network can be dissected out (Zakon 1998): the EOD 

repetition rate is controlled by the medullary pacemaker nucleus (Dye & Meyer 1986; 
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Kawasaki & Heiligenberg 1989; Kawasaki & Heiligenberg 1990; Keller et al. 1991), 

while the EOD waveform’s amplitude and duration are determined by the intrinsic 

properties of the peripheral electric organ (EO)’s electrocytes (Bennett 1970; Bennett et 

al. 1967).  Androgens can alter the EOD centrally (EOD repetition rate) and peripherally 

(EOD waveform) (Bass & Volman 1987; Mills & Zakon 1991; Mills et al. 1992; 

Stoddard et al. 2006; Zakon et al. 1991).  The effects at either level are independent from 

each other (Few & Zakon 2001).  Furthermore, 11-ketotestosterone (11-KT) and cortisol 

are positively related to modulations of the EOD repetition rate in taxa with sex 

differences in this parameter (Dunlap 2002; Dunlap et al. 2002).   

 Increasing the density of males in a population has been shown to increase the 

incidence of aggressive encounters and the levels of androgens in teleost fish (Oliveira et 

al. 2002; Pankhurst & Barnett 1993).  Nevertheless, the effect of changing social group 

dynamics on steroid-regulated, condition-dependent communication signals is not well 

understood.  In this study, we measured the EOD and the steroid hormone levels of 

isolated males, and males at low and high competition.  Males experienced all three 

conditions but in different order which allowed us to quantify the effect of social history 

on the modulation of the EOD. 

 

Methods 

Animals 

 Our subjects were male B. gauderio, a gymnotiform pulse-type weakly electric 

fish native to marshes and slow waters of South America.  Fish were selected randomly 

from a captive-reared, 11th generation breeding colony located at Florida International 
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University, Miami, Florida.  Males’ body length ranged from 13.0 to 24.6 cm and 

females’ body length ranged from 14.1 to 17.9 cm.  We categorized juveniles by length 

(7 cm or smaller) and by the absence of sexually-mature characters (e.g., long and thick 

tails indicative of breeding males or swollen abdomens indicative of gravid females).  

Fish were reared and housed in 450-liter (185 x 95 x 26 cm) outdoor pools with water 

conductivity at 90±10 µS cm-1 and mean ambient temperature at 27±2 °C.  The water 

surface of each pool was covered 80-100% with water hyacinths (Eichhornia crassipes).  

Each breeding pool contained 10-20 fish.  All fish were fed live oligochaete blackworms 

(Gulfstream Tropical Aquarium, Dania, Florida) three times per week.  Experiments took 

place during the reproductive months, typically from May to September.   

Before the beginning of the experiment, we tagged male subjects with fluorescent 

visible implant elastomer (VIE, Northwest Marine Technology, Inc.) for individual 

identification.  For individual tagging, we anesthetized each fish using 0.075% 2-

phenoxyethanol for 2-3 min and injected the elastomer tags on the same side of each fish 

caudal to the pectoral fin.  The elastomer tags were injected subcutaneously following a 

numerical code consisting of a combination of orange, yellow and green vertical and 

horizontal lines approx. 2-3 mm in length (supplementary materials 1).  Experiments 

complied with NIH ‘Principles of Animal Care’ publication no. 86-23, rev. 1985, and 

were approved by the FIU IACUC (protocol approval no. 07-004).   

 

The EOD machine 

 This method has been described in detail by (Stoddard et al. 2003).  In brief, this 

automated system allowed us to record and perform online analysis of calibrated EODs in 
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free-swimming fish. We placed male fish into one of the outer compartments of the 

recording tank (Figure 1C) and recorded the fish’s EOD only when it was positioned in 

the center of the tank.  Every 60 s, the peak-to-peak amplitude and τP2 (time constant of 

repolarization of the 2nd phase, a measure of EOD duration) of nine consecutive EODs 

were recorded provided that the fish was in the center of the tank (Stoddard et al., 2003) 

(Figure 1A).  During the night, the EOD was sampled at irregular intervals since the fish 

were more active and did not necessarily swim through the center of the tank during all 

sampling intervals.  Therefore, we fitted a smoothing cubic spline function using the 

MATLAB Spline Toolbox (Mathworks, Natick MA) to the selected 48 h data block of 

each parameter to interpolate for any gaps in the data collection (Stoddard et al. 2007b).  

We used the fitted data to calculate the peak-to-peak amplitude and τP2 values at the day 

minimum and the night maximum (Figure 1B).  The night-day changes were calculated 

by subtracting the day minimum from the night maximum (Figure 1B).   

 

Design of social treatment groups 

 From May to August, thirty-six male fish were randomly sampled from our 

outdoor colony for inclusion in the experiment.  Baseline social conditions in our outdoor 

pools during the experiment period consisted of groups of 10-20 fish with 2-4 males per 

group.  Each group experienced each of the following three social conditions (Figure 2A) 

but in different order:  Isolation (1 male, 0 juveniles, and 0 females), Social 2 (low male 

competition: 2 males, 4 juveniles, and 6 females), and Social 6 (high male competition: 6 

males, 0 juveniles, and 6 females).  In the two competition treatments, juveniles were 

included to keep the total number of fish constant.  
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 Before and after placement in each of the three social conditions, we weighed and 

measured each male, and recorded the circadian oscillation of his EOD for 48 h in the 

EOD machine. Therefore, each group of fish alternated between being housed in outdoor 

pools under their respective social condition (isolation, Social 2, or Social 6) for seven 

days and being individually housed in tanks in the EOD machine for 48 h (Figure 2B).  

Since one group of six males went through one of the six possible combinations, at any 

time, males in the Social 6 group were together in one pool, males in the Social 2 group 

were housed in pairs in three pools, and socially isolated males were housed individually 

in six pools.  At the end of the experiment, each social condition had two replicates 

(Figure 2B).  In all, the design had six groups of six males, counterbalanced by assigning 

subject males to six possible permutations of the three social treatments (Figure 2B). 

 

Blood collection 

 At the end of the experiment, fish were returned to their most recent social 

condition housing pools for another week (Figure 2B).  Then, six males from each social 

condition were quickly netted from their respective social pools in the late afternoon 

(15:00-16:00), lightly anesthetized by immersion for 2-3 min in a solution of 0.075% 2-

phenoxyethanol, quickly bled from the ventral vertebral sinus, and returned back to their 

pools.  We collected 50-200 µl of blood with a 10% EDTA-treated needle and syringe.  

The blood was transferred to a 10% EDTA-treated 0.5 ml polypropylene tube and kept on 

ice until centrifugation.  Blood samples were centrifuged for 15 min at 7000 rpm using an 

Eppendorf MiniSpin centrifuge at 2-4 °C and the plasma was removed and stored at -

80°C for later analysis.  We also sampled blood from 12 females following the same 
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protocol as with the males to quantify sex-specific differences in steroid hormone plasma 

levels.  Females were sampled randomly from either Social 2 or Social 6 pools. 

 

Steroid hormones analyses 

 For males in each of the three social treatments, circulating levels of unbound 

cortisol (F), testosterone (T), and 11-ketotestosterone (11-KT) were quantified in plasma 

using enzyme immunoassays (EIAs) specific for each hormone (Cayman Chemical Co.).  

The detection limits for these immunoassays were 1.2 x 10-2 ng/ml for cortisol, 1.3 x 10-3 

ng/ml for testosterone and 6 x 10-3 ng/ml for 11-ketotestosterone.  The Cayman EIA kits 

have sufficiently high sensitivity that after proper dilution (1:100 for isolated males and 

1:500 for social males) one male plasma sample of 10 µl is sufficient for 3 triplicate 

immunoassays of three steroids.  

We collected sufficient plasma from six females to assay 11-KT and T, but not 

cortisol, so we sampled six additional females to assay cortisol levels.  From these 

additional plasma samples, four of the samples were sufficient to assay a second hormone 

so we measured circulating T levels a second time.  To ensure that the hormone 

concentrations fell within the immunoassay detection range, at least two dilutions were 

tested in duplicate in pilot immunoassays.  Because of their small body size, fish could 

not be bled more than once within a 2-3 weeks period, therefore all the fish in this 

experiment were only bled once.  Fish were bled within the first 3 min after capture; 

therefore, we assumed that the plasma cortisol levels do not reflect the effects of handling 

during blood sampling (Fox et al. 1997; Pottinger & Moran 1993), an assertion reinforced 

by uniformly low cortisol levels in our social isolates (see Results). 
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 A pilot immunoassay using plasma aliquots from untreated fish detected assay 

interference.  Therefore, we triple-extracted steroid hormones from the plasma using 4x 

sample volume of hexane:ethyl acetate (90:10 for samples tested for 11-KT and 70:30 for 

samples tested for T and F).  Systematic pilot tests showed these solvent combinations 

and ratios yielded the best recoveries for all the hormone standards across the entire 

detection ranges of the kits.  Extracted samples were evaporated in a vacuum centrifuge 

(Eppendorf Vacufuge, using the organic mode at 30°C) and reconstituted using the 

immunoassay kit's EIA buffer provided with Cayman’s EIA kits.  Standards of known 

concentrations were processed using the same extraction protocol applied to fish plasma 

samples to calculate percent recovery.  Steroid hormones concentration values were 

adjusted to account for the percent recovery calculated for each assay.   

 Plasma samples were assayed in triplicate using two 96-well assay kits on the 

same day.  The non-extracted and extracted standards were assayed in triplicate in both of 

the two 96-well plates.  We used the extracted standard triplicates from the two plates for 

each hormone to calculate the intra-assay and inter-assay coefficients of variation.  For 

the two cortisol plates, intra-assay variation was 2.6% and 1.9% and the inter-assay 

variation was 2.3%.  For the two testosterone plates the intra-assay variation was 2.6% 

and 2.0% and the inter-assay variation was 2.3%.  For the two 11-KT plates the intra-

assay variation was 2.1% and 2.3% and the inter-assay variation was 2.2%.  Cross-

reactivities of the cortisol antiserum reported by the manufacturer were 100% for cortisol, 

22% for prednisolone, 6.1% for cortexolone, 1.3% for corticosterone, 0.2% for DOC and 

17-hydroxy-progesterone, and less than 0.01% for 18-hydroxy-DOC, progesterone, 

pregnenolone and 17-hydroxy-pregnenolone.  The assays were highly specific for the 
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steroids tested.  Cross-reactivity of the testosterone antiserum was 100% for testosterone, 

27.4% for 5α-dihydrotestosterone, 18.9% for 5β-dihydrotestosterone, 4.7% for 

methyltestosterone, 3.7% for androstenedione, 2.2% for 11-KT, 0.51% for 5-

androstenediol, 0.2% for Epi-testosterone, 0.14% for progesterone, 0.11% for 

testosterone enanthane, 0.05% for androsterone, 0.04% for androsterone sulfate, 0.03% 

for testosterone sulfate, 0.02% for DHEA sulfate, and less than 0.01% for estradiol.  The 

cross-reactivity for the 11-KT antiserum was 100% for 11-KT, 0.01% for 4-androsten-

11β,17b-diol-3-one, and less than 0.01% for testosterone, 5α-androstan-17β-ol-3-one and 

5α-androsten-3β,17β-diol.  We plated, incubated, and developed the samples following 

the kit manufacturer’s instructions specific for each hormone tested.  All developed plates 

were read at 405 nm with the ELx808 Ultramicroplate Reader (Biotek Instruments, Inc.) 

using the software interface KCJunior. 

 

Data analyses 

Plasma steroid levels were calculated against the standard curve (8 standards in 

triplicate) and the extraction recovery values using the Cayman Chemicals Analysis 

Tools (EIA tools available at http://www.caymanchem.com).  We analyzed the effect of 

condition order versus the differences in EOD τP2 and amplitude across the social 

conditions using a two-way mixed ANOVA with repeated measures [GLM repeated 

measures procedure in SPSS v. 14.0, Model I – Fixed factors] with two factors: (1) social 

conditions [within-subjects factor with 4 levels = Baseline, Isolation, Social 2 and Social 

6] and (2) condition order [between-subjects factor with 6 levels].  We log10 transformed 

all plasma steroid levels to fulfill the normality assumption.  Whenever significant 



33 
 

interactions were found between these 2 factors, we used one-way ANOVA for each 

social condition level and evaluated that social condition for each condition order.  For 

non-significant interactions, we calculated the main effects’ p-level across each variable.  

Fisher’s LSD multiple comparison tests were calculated to determine significant pairwise 

differences.  We used the GLM multivariate procedure in SPSS v. 14.0 with social group 

as a fixed factor and steroid hormone as a covariate to evaluate the relationship between 

each steroid hormone with the dependent variables: day minima and night maxima for 

EOD τP2 and amplitude.  We used multiple linear regression to evaluate the relationship 

between each steroid hormone with body length and mass.  All statistical analyses were 

performed with MATLAB or SPSS v.14.0, α=0.05 two-tailed.   

 

Results 

Order of social experiences influences their effects on the EOD 

 The magnitude of the males’ EOD τP2 in any particular social treatment 

condition depended on the order in which they experienced the three social treatments.  

Social condition treatment showed a significant order effect in daytime EOD τP2 (social 

condition x condition order interaction: F (15, 75) = 2.58, p = 0.004).  Males that 

experienced isolation as their first treatment (Figure 3, orders 3 and 6) depressed their 

daytime EOD τP2 significantly below baseline levels (LSD post-hoc tests, p < 0.001 and p 

= 0.011, respectively).  Furthermore, the males in these orders did not recover their 

previous daytime EOD τP2 upon experiencing either the low or high competition 

conditions (Figure 3).  By comparison, males in all other orders produced mean daytime 

EOD τP2 values during the low or high competition conditions that matched or exceeded 
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their baseline levels (Figure 3).  Although we found a significant social condition x 

condition order interaction (GLM repeated measures: F (15, 66) = 2.12, p = 0.02) in 

daytime EOD amplitude, post hoc tests revealed no significant differences between social 

conditions at each condition order. 

 

Differences in EOD circadian rhythm magnitudes across the social conditions 

 Mean EOD amplitude tracked the differences in level of competition (Social 6 > 

Social 2 > Isolation), while mean EOD τP2 only tracked presence or absence of a social 

environment (Social > Isolation).  Overall, social competition increased the magnitudes 

of minimum daytime values when the fish were at rest (amplitude: F = 11.07, p < 0.001; 

τP2 : F = 8.18, p < 0.001), maximum nighttime values when the fish were active 

(amplitude: F = 10.55, p < 0.001; τP2 : F = 8.17, p < 0.001) , and day-night differences 

reflecting the magnitudes of circadian rhythms (amplitude: F = 5.06, p < 0.001; τP2 : F = 

13.08, p < 0.001) (Figure 4). 

 

Differences in plasma steroid levels across the social conditions 

 Plasma concentrations of both androgens varied significantly with social 

condition and sex (T: F (3, 20) = 39.53, p < 0.001; 11-KT: F (3, 20) = 3.84, p = 0.025) 

(Figure 5).  Overall, males’ androgen levels were higher in both social conditions than in 

social isolation, but did not differ significantly between high and low social competition 

conditions.  Females sampled from Social 2 and Social 6 pools had plasma 11-KT levels 

comparable to those of isolated males, but surprisingly, had testosterone levels 

significantly higher than males in any of the three social treatments (Figure 5). 
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 The cortisol pattern followed the overall pattern of the androgens with one key 

difference – cortisol appeared to track the intensity of competition (number of males in 

the pool), whereas androgens tracked only the presence or absence of competition.  Mean 

levels and variability of cortisol differed significantly between social conditions and 

sexes (F = 7.587; p = 0.001; Bartlett’s test of variance = 8.95, p = 0.03) (Figure 5).  

Cortisol levels among males in the high competition group, Social 6, were significantly 

higher than for males in the low competition group, Social 2, (p = 0.019, Fisher’s LSD 

post-hoc test).  While mean cortisol levels were comparable between isolation and Social 

2, the latter was far more variable.  Cortisol levels in females were high, comparable to 

those of males in the Social 6 treatment, and significantly higher than in the isolated and 

low competition males (p < 0.001 for both) (Figure 5).  Recall that females were sampled 

directly from Social 2 and Social 6 pools, a sex-specific competitive environment 

comparable to the Social 6 treatment that males received. 

 When looking at the variance in the steroid levels of males across the three social 

conditions, we found no significant differences in T levels (Levene statistic1,10: Isolation-

Social2 = 2.09, p = 0.18, Isolation-Social6 = 0.15, p = 0.70, and Social2-Social6 = 1.76, p 

= 0.21).  We found a significant difference in 11-KT levels for the Isolation-Social6 

comparison (Levene statistic1,10 = 11.83, p = 0.006), but not for the Isolation-Social2 

(Levene statistic1,10 = 4.58, p = 0.06) or Social2-Social6 (Levene statistic1,10 = 3.43, p = 

0.09) comparisons.  We also found a significant difference in cortisol levels for the 

Isolation-Social6 (Levene statistic1,10 = 8.53, p = 0.02) and Isolation-Social2 (Levene 

statistic1,10 = 11.97, p = 0.006) comparisons, but not for the Social2-Social6 (Levene 

statistic1,10 = 1.38, p = 0.27) comparison.  In addition, we found no significant 
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relationships between T, 11-KT and cortisol among the males at each social condition.  

For instance, T levels did not predict 11-KT levels (Isolation: F (1,5) = 1.93, R2 = 0.32, p 

(2-tailed) = 0.24, Social 2: F (1,5) = 1.13, R2 = 0.22, p (2-tailed) = 0.35, and Social 6: F 

(1,5) = 3.38, R2 = 0.46, p (2-tailed) = 0.14).  Also, T levels did not predict cortisol levels 

(Isolation: F (1,5) = 0.26, R2 = 0.06, p (2-tailed) = 0.64, Social 2: F (1,5) = 0.40, R2 = 

0.09, p (2-tailed) = 0.56, and Social 6: F (1,5) = 0.005, R2 = 0.001, p (2-tailed) = 0.94).  

In addition, 11-KT levels did not predict cortisol levels in males at each social condition 

(Isolation: F (1,5) = 0.54, R2 = 0.12, p (2-tailed) = 0.50, Social 2: F (1,5) = 0.34, R2 = 

0.08, p (2-tailed) = 0.59, and Social 6

 Cortisol plasma levels covaried significantly and strongly with the EOD 

circadian rhythm across the different social conditions (Wilks’ λ = 7.94, p=0.003, eta-

squared = 0.74, observed power = 0.97).  Plasma levels of cortisol were significantly and 

strongly related to daytime and nighttime EOD amplitude (univariate between-subjects 

tests; 

: F (1,5) = 0.27, R2 = 0.06, p (2-tailed) = 0.63).   

 

Relationship between steroid hormone levels and the EOD circadian rhythm across 

the different social conditions 

day amplitude: p = 0.001, partial eta-squared = 0.57, observed power = 0.98 and 

night amplitude: p < 0.001, partial eta-squared = 0.60, observed power = 0.99).  In 

contrast, plasma levels of cortisol were not significantly related to daytime or nighttime 

EOD τP2 (univariate between-subjects tests; day τP2: p = 0.874, partial eta-squared = 

0.002, observed power = 0.05 and night τP2: p = 0.25, partial eta-squared = 0.09, observed 

power = 0.20).  When evaluating these relationships across each social group, we found 

that plasma cortisol levels positively predicted EOD amplitude in males under both low 
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and high competition treatments but not in the isolated males, which showed almost no 

variance in cortisol (Isolates: day R2 = 0.24, p = 0.32, night R2 = 0.26, p = 0.30; Social 2: 

day R2 = 0.71, p = 0.035, night R2 = 0.70, p = 0.038; Social 6: day R2 = 0.90, p = 0.004, 

night R2 = 0.90, p = 0.004) (Figure 6).  Plasma cortisol levels and EOD τP2 showed no 

apparent relationship (Figure 6). 

 Neither T nor 11-KT plasma levels covaried with the EOD circadian rhythm 

across the different social conditions (11-KT

 Both body length and mass positively predicted plasma cortisol levels in the high 

competition condition only (length: R2 = 0.82, p = 0.045; mass: R2 = 0.65, p = 0.05) 

: Wilks’ λ = 1.68, p = 0.22, partial eta-

squared = 0.38, observed power = 0.36, and T: Wilks’ λ = 0.173, p = 0.95, partial eta-

squared = 0.06, observed power = 0.08).  Even though we saw no significant relationship 

between either androgen and EOD amplitude or τP2 at each social treatment (Figure 7 and 

8), when the three social treatments were pooled, T levels positively predicted EOD τP2 at 

night (R2 = 0.22, p = 0.05) (supplementary materials 2).  We found no significant 

relationship between plasma T levels and the EOD amplitude when all social treatments 

were pooled.  We also found no significant relationship between 11-KT and the EOD 

amplitude or EOD τP2 on pooled analysis (Figure 8).   

 We found significant relationships between the two key EOD parameters 

amplitude and τP2.  Day-night change in EOD amplitude positively predicted EOD τP2 (R2 

= 0.23, p = 0.046), whereas the day minima and night maxima were not associated in 

either parameter (day: R2 = 0.02, p = 0.63; night: R2 = 0.09, p = 0.24) (data not shown). 

 

Relationship between steroid hormone levels and body size 
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(Figure 9).  Body length was associated with mass (Figure 9) although the effect was 

weakest and thus not significant in isolated males (isolates: R2 = 0.39, p =0.19; Social 2: 

R2 = 0.79, p = 0.018; Social 6: R2 = 0.97, p < 0.001).  In addition, although the mean 

mass of all the males was similar across all three social conditions, a high proportion of 

Social 2 males lost weight (66%) (χ2 = 19; df = 2; p < 0.001).   

 

Discussion 

 Our results demonstrate that changes in the social environment of the 

gymnotiform fish B. gauderio males are accompanied by changes in both their electric 

signals and their steroid hormone profiles.  By increasing the number of male competitors 

in a social group, we show that the EOD amplitude, but not the EOD τP2, is responsive to 

these changes.  In addition, we also show an increase in the plasma cortisol levels, but not 

androgens, of these males as a function of the increase in the number of male competitors 

in the social group.  In contrast, the EOD τP2 and the plasma androgen levels only 

increased significantly when the males transition from social isolation to social 

conditions (either low or high competition).  Our findings also suggest that altering the 

order in which males experienced isolation versus social competition had dramatic effects 

on their ability to fully enhance their electric signals during periods of intense 

competition for mates.   

 

Etho-ecological validity of our study 

 Although both male competition groups included six females, the sex ratio 

between these two social conditions varied (low competition: 1 male: 3 females versus 
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high competition: 1 male: 1 female).  Three weeks into the breeding season, a field study 

of B. gauderio populations in Uruguay found a 1:4 female-biased operational sex ratio 

across the multiple sites (Miranda et al. 2008).  Males were spaced out in their habitat and 

displayed non-overlapping home ranges, while females occupied much larger ranges 

overlapping other females and the home ranges of multiple males (Miranda et al. 2008).  

B. gauderio spatially aggregated by day and night, keeping a meter or less of distance 

between each other in an uniform habitat (Miranda et al. 2008).  Based on these findings, 

we suggest that of the three pool conditions, the low competition condition (Social 2) is 

closest to the densities and sex ratios observed in wild B. gauderio populations partway 

through the breeding season (initial conditions have not been observed).  It is important 

to note that although the males in the high competition group were potentially subjected 

to fewer reproductive opportunities, we collected comparable numbers of eggs from both 

the low and high competition pools throughout the experiment indicating that our 

experimental design and manipulations did not disrupt breeding success in our test fish.  

 

Social environment affects the EOD plasticity and steroid levels 

 Our experimental design revealed an effect of past social environment on the 

outcome of present and future social interactions.  The males that experienced social 

competition as their first treatment were more resilient to reduction of their basal 

(daytime) EOD τP2 when subsequently isolated (orders 1, 2, 4 and 5; Figure 3).  It is 

important to note that although all the fish in this experiment were randomly sampled 

from social groups of 10-20 fish with 2-4 males per group (baseline social conditions), 

and that these conditions are equivalent to what they experienced in the experimental 
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social conditions, the baseline social conditions were sustained, stable conditions which 

adult fish had experienced since they were juveniles. We believe that it is the combined 

effect of initial absence of non-specific social stimuli followed by a continually-changing 

social environment (fish were moved every 7 days to a different social condition for 

almost a month) that drives the differences observed in the isolation treatment for those 

condition orders where isolation was experienced first (orders 3 & 6; Figure 3). 

 Social isolation suppressed both EOD parameters and androgen levels of male B. 

gauderio.  Isolated males had lower EOD circadian rhythm magnitudes than males in 

either the low or the high competition conditions (Figure 4).  These results agree with the 

findings reported by Franchina and her colleagues (2001), wherein males isolated for 3-5 

days displayed a significant reduction in the circadian modulation of their EOD 

amplitude and duration.  In our study, isolated males reduced their day and night EOD 

waveforms (Figure 4) along with circulating plasma levels of the androgens T and 11-KT 

(Figure 5, 7 and 8).  Our isolation treatment not only removed all potential male 

competitors but it also removed all potential mates and non-sexual social stimuli (i.e., 

juveniles).  Therefore, we cannot rule out the possibility that the reductions observed in 

the EOD and androgens are due to the lack of complete non-specific social stimuli rather 

than specifically due to the lack of male competitors.  Cortisol levels were significantly 

higher under high competition than low competition, but were not higher in low 

competition than isolation, though isolates had significantly less variance (Figure 5).  

Nevertheless, gymnotiform Apteronotus leptorhynchus size-matched male pairs displayed 

significantly higher circulating levels of cortisol and more EOD chirps, an agonistic EOD 

frequency modulation, than isolated males (Dunlap et al. 2002).   Even though males 
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were tested under isolation for 7 days in both studies, Dunlap and his colleagues (2002) 

kept their males isolated for 2-weeks prior to their experiments, while our fish were under 

either baseline social conditions or the experimental social conditions (Social 2 and 

Social 6) before they were isolated.  In addition, when compared to Apteronotus 

leptorhynchus, B. gauderio’s baseline cortisol levels are much higher (Dunlap et al. 

2002) (Figure 5 and supplementary material 3).  Elevated cortisol levels during the 

breeding season is a pervasive adaptive strategy among vertebrates (Landys et al. 2006), 

a mechanism to deal with high metabolic demands associated with reproduction 

(Wingfield & Kitaysky 2002).  Either of these factors can account for the lack of 

difference in cortisol levels between isolated and social males in our study. 

 The power of the EOD (i.e., voltage squared or the voltage area under both 

waveform’s phases at a constant resistance) perfectly matches the energy expended on 

electrogenesis (Salazar & Stoddard 2008).  Thus for isolated males to reduce both basal 

EOD parameters and their circadian augmentation appears to be an adaptive strategy to 

minimize energetic costs when social benefits due to the enhanced signal parameters are 

absent.  The EOD of B. gauderio males seems to be a condition-dependent trait (Salazar 

& Stoddard 2008).  Male B. gauderio, like male orthopterans, frogs, and some birds, 

invest a considerable fraction of their metabolic energy into signal production (Bucher et 

al. 1982; Eberhardt 1994; Hoback & Wagner 1997; Kavanagh 1987; Prestwich et al. 

1989; Prestwich & Walker 1981; Taigen & Wells 1985).  While androgens typically 

facilitate male signaling behavior, elevated glucocorticoids would be expected to release 

energy stores necessary to sustain signaling for high-energy signalers.  Although high 

glucocorticoid levels are typically related to the suppression of androgen levels (Sapolsky 



42 
 

1994; Sapolsky et al. 2000) in many species, both glucocorticoid and androgen levels are 

increased during reproduction (Beletsky et al. 1989; Creel et al. 1996; Emerson & Hess 

2001; Remage-Healey & Bass 2005).  

 

Social competition affects EOD amplitude’s circadian plasticity and cortisol levels 

 Cortisol and EOD amplitude covary positively with density of males in the social 

group (Figures 4-6), suggesting that cortisol may be a modulator of the EOD amplitude.  

We do not know if this potential modulatory effect is direct or indirect.  Activating the 

hypothalamic-pituitary-interrenal (HPI) axis at various levels enhances the EOD 

amplitude and τP2 in B. gauderio males (Markham et al. 2009; Markham & Stoddard 

2005).  But only the melanocortins, adrenocorticotropic hormone (ACTH) and alpha-

melanocyte-stimulating hormone (α-MSH), exert rapid effects directly at the electrocytes 

(Markham et al. 2009; Markham & Stoddard 2005).  In this study, we measured cortisol 

levels several days after the males had been housed at their specific social conditions.  

Although cortisol could directly initiate slow transcriptional effects that can drive the 

enhancement of the EOD amplitude within this period of time, ACTH and/or α-MSH can 

increase both the EOD waveform and cortisol levels independently within the same 

period of time. Therefore, we cannot rule out the possibility that the relationship that we 

observed between cortisol and EOD amplitude could be mediated by the effect of social 

experience on melanocortins. Beyond that, cortisol may support the enhanced EOD by 

increasing availability of glucose and lipids to support energetically costly signaling and 

swimming behaviors associated with territoriality and courtship (Landys et al. 2006; 

Sapolsky et al. 2000). 
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 Increases in the density of competing males or in the number of perceived 

competitors in a population have been shown to increase androgen levels in other teleost 

fish (Carlson et al. 2000; Oliveira et al. 2001; Pankhurst & Barnett 1993; Remage-Healey 

& Bass 2005).  As discussed by Oliveira and his colleagues (2002) and as predicted by 

the Challenge Hypothesis (Wingfield et al. 1990), an increase in potential competitors 

could intensify agonistic interactions leading to the activation of the hypothalamic-

pituitary-gonadal (HPG) axis and an increase in circulating androgen levels. 

 Unexpectedly, circulating androgen levels did not differ for males in the low and 

high competition groups (Figure 5).  However, if only one male dominates in the low 

competition pool and one or two males dominate in the high competition pools, they 

alone might show elevated androgens while suppressing androgen levels in the 

subordinates.  Thus variance would increase but not group mean, a hypothesis consistent 

with the obtained distribution of 11-KT measurements (Figure 5).  Nevertheless, we only 

found a significant difference in the variance of plasma levels of 11-KT between the 

isolated males and the males in the low competition group. Carlson and his colleagues 

(2000) found in the mormyrid fish Brienomyrus brachyistius, an African electric fish, that 

the dominance status of males housed in social groups determined the levels of 11-KT 

and the changes on their EOD total duration.  We did not assess the dominance status of 

the males in our study.  Body size is usually a good predictor of dominance status in size-

mismatched male-male contests (Maynard Smith 1982; Parker 1974).  We randomly 

paired the males in the low competition (Social 2) condition rather than matching them 

for size.  Eleven of the eighteen Social 2 pairs were size-mismatched, and all three Social 

2 pairs assayed for steroid levels were also size-mismatched.  Therefore, it is possible that 



44 
 

by looking at the males as a group in each social condition rather than as subgroups (i.e., 

alpha males, beta males and omega males) based on their dominance status (Carlson et al. 

2000), we were not able to identify the link between 11-KT levels and male-male 

competition as we increased the number of competing males. 

 In both gymnotiform and mormyrid electric fish species, the electric organ (EO) 

that generates the EOD has been shown to be a direct androgen-target tissue (Few & 

Zakon 2001), and androgen receptors have been identified in the nuclei of the 

electrocytes that composed the EO (Bass et al. 1986; Dunlap & Zakon 1998).  

Furthermore, androgens directly change the ion conductances of the electrocytes leading 

to changes in the EOD waveform (Zakon et al. 1999).  Androgen implants in male and 

female B. gauderio (Allee et al. 2009; Silva et al. 2002; Stoddard et al. 2007a) and its 

congener B. occidentalis (Hagedorn & Carr 1985) enhance the duration of the 2nd phase 

of the EOD but have little or no effect on EOD amplitude.  Androgen implants increase 

the effect of melanocortins on the EOD of B. gauderio (Allee et al. 2009; Stoddard et al. 

2007a).  Therefore, we speculate that during the breeding season, in B. gauderio, 

interaction with competing males and prospective mates stimulates the HPG axis leading 

to an increase in baseline circulating androgen levels.  Higher level of circulating 

androgens would enhance the EOD τP2.  The additional metabolic cost associated with 

the enhancement of the EOD via androgens and melanocortins would be sustained by 

increasing cortisol to release energy. 

 

Sex differences in steroid hormone levels across gymnotiform species 

 In teleost fish, 11-KT and T are the major androgens in circulation in breeding 
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males (Kime 1993).  In many species, females have similar or higher levels of the 

aromatizable androgen, testosterone (Borg 1994).  In our study, B. gauderio females had 

significantly higher plasma levels of T than the males irrespective of their experimental 

condition (Figure 5).  Females tend to have much lower levels of 11-KT than breeding 

males (Borg 1994).  Accordingly, the plasma 11-KT levels of B. gauderio females were 

very similar to those observed in isolated males and were in the lower end of the range of 

plasma 11-KT levels observed in the males under social conditions (Figure 5).  The 

androgen profiles of B. gauderio males and females follow a similar trend as in other 

gymnotiform species tested, where females have lower 11-KT levels than males but 

similar or higher levels of T (supplementary materials 3).  

 Although females had similar plasma cortisol levels than the males in the high 

competition group, they displayed higher levels of cortisol when compared to isolated 

males and the males in the low competition group (Figure 5).  To our knowledge, this is 

the first time that circulating plasma cortisol levels for female gymnotiform fish have 

been reported.  As mentioned earlier, B. gauderio baseline cortisol levels are much higher 

than the cortisol levels reported for one other gymnotiform species (Dunlap et al. 2002). 

 In conclusion, social environment regulates the enhanced male EOD potentially 

via 11-ketotestosterone and cortisol.  Social competition further enhances the day to night 

changes in male EOD suggesting that circadian regulation of the EOD plays a role in 

male-male interactions.  Cortisol levels increase in males as the level of competition 

increases, and cortisol is related to the social males’ body size.  Since the male EOD is an 

energetically expensive trait, we speculate that cortisol may be regulating EOD amplitude 

directly as well as indirectly by providing the fuel to sustain it.   
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Figure 1.  EOD data acquisition.  A. The EOD of B. gauderio is a biphasic waveform 

composed of a positive phase (P1) and a negative phase (P2).  We measured the peak-to-

peak amplitude and the time constant of P2 repolarization (τP2).  B. To determine changes 

in the EOD circadian rhythm, we measured daytime low, nighttime high, and the night-

to-day difference for the amplitude and τP2.  C. The tank set-up in the EOD machine 

automated system (Stoddard et al., 2003) allowed us to record the EOD of free-

swimming fish continuously and accurately.
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Figure 2.  Social conditions and experimental design.  A. We used three social 

conditions: Isolation, Social 2 and Social 6.  For the Isolation condition, we housed males 

singly in a pool to deprive them of any social stimuli.  For the Social 2 condition, we 

housed two males with six females and 4 juveniles in a pool to create a low competition 

social environment.  For the Social 6 condition, we housed six males with six females in 

a pool to create a high competition social environment.  B. We used a counterbalanced 

design where six groups of six males experienced all three social conditions but in 

different order.  We chose this approach to evaluate the effect of social experience on the 

EOD changes displayed by the males at each social condition.  For each group of six 
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males, we recorded their EODs for 48 hours continuously at the beginning of each 

experimental order (baseline values) and after each social condition.  Males remained at 

each social condition for a week.  At the end of an experimental order, we chose one 

replicate for each condition, kept those males under this condition for another week and 

then bled them to assay their plasma for circulating levels of steroid hormones. 
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Figure 3.  Males displayed differences in their EOD circadian rhythm plasticity according 

to the order they experienced the different social conditions.  The magnitude of the day 

EOD τP2 was affected by social experience.  Particularly, males that experienced the 

Isolation condition first in the order displayed significantly lower day EOD τP2 values 

than their prior baseline values.  In addition, when compared to the day EOD τP2 of the 

males on the other orders, the day EOD τP2 of these males (orders 3 and 6) was lower 

than baseline levels during both the Social 2 and the Social 6 conditions. 
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Figure 4.  Means±SEM are shown for the EOD parameters amplitude and τP2 across the 

social conditions.  Daily minima, nightly maxima, and day-night differences follow the 

same trends wherein the highest competition (Social 6) promoted the highest values and 

social isolation promoted the smallest.  P values are derived from post-hoc LSD pairwise 

tests following repeated-measures ANOVA. 
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Figure 5.  Plasma levels of T, 11-KT and cortisol (ng/ml) varied significantly with social 

condition and sex.  Both T and 11-KT were lower in isolated males than in social males.  

Although females’ T levels were higher than males’, their 11-KT levels were similar to 

those of isolated males.  High competition males’ cortisol levels were higher than low 

competition males’.  Females displayed higher cortisol levels than those of isolated and 

low competition males.  Filled circles depict raw values while crosses depict mean ± 

SEM.  Significant p-values from Fisher’s LSD post-hoc pairwise comparisons are also 

shown. 
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Figure 6.  As plasma cortisol levels (ng/ml) increase, EOD amplitude (mV) increases for 

the low and high competition males but not for the isolated males (low competition; day: 

y = 0.12x + 0.77 & night: y = 0.15x + 0.70 and high competition; day: y = 0.09x – 1.44 & 

night: y = 0.11x – 1.52).  EOD τP2 and cortisol were not related in our dataset. 
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Figure 7.  Testosterone plasma levels were not significantly related to EOD amplitude or 

τP2 at any of the three conditions, isolation, Social 2 or Social 6. 
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Figure 8.  11-ketotestosterone plasma levels were not significantly related to EOD 

amplitude or τP2 at any of the three conditions, isolation, Social 2 or Social 6. 
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Figure 9.  Body length (cm) predicts body mass (g) in low and high competition males 

but not in isolated males (low competition; y = 0.52x – 0.67 and high competition; y = 

0.89x – 7.15).  Only under high competition (Social 6), the body length (cm) and body 

mass (g) of the males predicts their circulating plasma cortisol levels (ng/ml).  The 

regression models are y = 6.21x – 43.24 for body length vs. cortisol and y = 6.75x + 8.40 

for body mass vs. cortisol.
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CHAPTER III 

 

“The effect of body size asymmetry on electric signal waveform plasticity in male-male 

dyads of the gymnotiform fish Brachyhypopomus gauderio” 
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Abstract 

Sexually-selected communication signals can convey both reliable as well as dishonest 

information about an organism’s status or resource-holding potential (RHP).  Here I 

examine the information encoded in the electric organ discharge (EOD) of the South 

American weakly electric fish, Brachyhypopomus gauderio, with reference to male-male 

interactions, to determine if signal characteristics act as reliable indicators of a male’s 

body size and dominance status.  My results suggest that while body size is the best 

determinant of dominance in this fish, EOD amplitude can reliably predict body 

condition, a composite of length and weight, for fish with good body condition (positive 

residuals).  As such EOD amplitude (but not EOD duration) can act as an honest signal of 

RHP under some circumstances.  Interestingly, I also observed evidence of bluffing 

(increased EOD amplitude) in small resident male fish when they encountered a larger 

male intruder, and diminished responses of resident males upon encountering a smaller 

intruder.  Such responses suggest a more complex suite of physiological and behavioral 

processes at work in these agonistic interactions between males when size mismatches 

occur between males.  The fact that size/dominance can be encoded in some elements of 

the EOD (EOD amplitude) but not others (EOD duration) suggests that these two signal 

properties can be regulated independently and may encode different information content. 

 

 

Keywords: body size; body condition; Brachyhypopomus gauderio; communication 

signal; dominance; electric fish; electric organ discharge; Gymnotiformes; knifefish.
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Introduction 

Sexually-selected signals can convey information about an organism’s resource-

holding potential (RHP), such as body size, fighting ability and ownership of a territory 

(rev. Andersson, 1994; Maynard-Smith and Harper, 2003).  For instance, complex signals 

such as birdsongs, and the calls of frogs and insects can act as both indices of RHP and 

handicaps of a condition-dependent trait (Maynard-Smith and Harper, 2003).  Females 

can use this information to make decisions about who to mate with, while males can 

make decisions about whether or not to challenge a specific rival.  Failure to make the 

correct decision can lead to ineffective investment of energy in contests and/or poor 

reproductive output.  Although signals  are, on average, honest because they are 

constrained by physical characteristics of the organism (indices) or incur high costs 

(handicaps) (Maynard-Smith, 1982), low frequency cheating using unreliable signals may 

be tolerated under certain conditions (rev. Searcy and Nowicki, 2005).   

Many studies have established how receivers use visual, acoustic and chemical 

signals to obtain information about a sender’s RHP (Andersson, 1994).  Whether signals 

in other sensory modalities, such as the electric signals of weakly electric fish, operate as 

reliable indices and/or handicaps in the context of male competition for mates and mate 

attraction is less clear.  The gymnotiform fish Brachyhypopomus gauderio (Giora and 

Malabarba, 2009), a nocturnal species found in various freshwater habitats in South 

America, provides a good model system for exploring the information content encoded in 

electrical communication signals and its reliability as a measure of RHP.  This 

gymnotiform fish continuously generates discrete electrical pulses (approx. 1mV), known 

as electric organ discharges (EODs) which are used to navigate in their environment, 
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electrolocate objects, and communicate with conspecifics in the dark.  The EODs of B. 

gauderio have a distinct signature or waveform which can potentially encode information 

about the gender, size, and reproductive status of the fish producing it (Silva et al., 1999; 

Stoddard, 2002). 

 

Body size and EOD waveforms as indices 

The EOD waveform of B. gauderio is the product of summed action potentials 

generated by specialized cells, known as electrocytes.  These cells are organized in rows 

and columns within the electric organ (EO), a bilateral structure that runs longitudinally 

along approximately two-thirds of the length of the fish, (Bennett, 1970; Hopkins et al., 

1990).  In B. gauderio, electrocytes generate two action potentials which produce the two 

phases (conventionally depicted as a head-positive phase or P1, followed by a head-

negative phase or P2) of the EOD waveform (Figure 1A) (Bennett, 1970).  The biphasic 

EOD waveform has two behaviorally-relevant measurable parameters: 1) amplitude and 

2) the time constant of repolarization of P2 (τP2), a measure of EOD P2 duration (Figure 

1A). 

Both EOD amplitude and τP2 appear to be important in the context of reproductive 

behaviors (Stoddard, 2002).  During the breeding season, males emit EODs with bigger 

amplitudes and extended τP2 when compared to female’s EODs.  Males further enhance 

these traits during the night hours of courtship (Franchina and Stoddard, 1998; Stoddard 

et al., 2006).  Males’ EOD amplitude and τP2 are also sensitive to changes in the social 

structure of the species (Salazar and Stoddard, 2009; Silva et al., 1999).  For instance, 

males enhance their EOD amplitude and τP2 even more by the presence of other males, 
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and suppress these enhancements if they are isolated artificially (Franchina et al., 2001; 

Franchina and Stoddard, 1998; Stoddard et al., 2006).   

When assessing potential mates or rivals, Brachyhypopomus gauderio have the 

potential to use either relative body size differences or information encoded in their EOD 

waveform to decide when to challenge a competitor or select a mate.  Although body size 

appears to play an important role in mate attraction in B. gauderio, less is known about its 

role in male-male competition.  For instance, sexually-mature B. gauderio males have 

longer body lengths and tails than females (Caputi et al., 1998; Silva et al., 1999), 

enabling gender to be distinguished based on morphology alone.  Female B. gauderio 

also prefer large males over small males in a two-choice test, suggesting that large males 

have access to more reproductive opportunities (Curtis and Stoddard, 2003).   How can 

weakly electric fish assess the size and condition of conspecifics?  Weakly electric fish 

can determine the size and volume of objects in the dark via active electrolocation within 

approximately one body length distance (von der Emde and Fetz, 2007).  Consequently, 

B. gauderio males can determine the length of other conspecifics without receiving EOD 

waveform cues or physically interacting with them, as long as both fish are within a few 

centimeters of each other.  Physical interactions between fish, such as orienting 

antiparallel to one another, may also provide more precise information relating to 

differences in relative size (Aguilera et al., 2001; Terleph and Moller, 2003). 

Because body length is also related to the length of the EO, body size information 

may also be encoded in the electrical signal.  Several studies have shown that a male’s 

total body length determines the length of the EO, the number of electrocytes, and the 

EOD amplitude (Caputi et al., 1998; Curtis and Stoddard, 2003; Franchina and Stoddard, 
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1998; Hopkins et al., 1990).  A fish can determine the magnitude of a conspecific’s EOD 

amplitude at a distance of several body lengths, via passive electrolocation (by comparing 

distance to electric field strength) and scan sampling (Hopkins, 1986; Hopkins et al., 

1997; Hopkins and Westby, 1986).  Therefore, gymnotiform fish may use EOD 

amplitude to assess a composite of length, weight, and body condition of conspecifics, 

particularly when these fish are positioned further apart.  Although, based on this 

evidence, EOD amplitude could be used as an RHP index, the relationship between 

length and EOD amplitude can vary depending on the recent social experience of the 

males (Franchina et al., 2001; Salazar and Stoddard, 2009).  Consequently, EOD 

amplitude can vary independently of size and thus may not always be an honest indicator 

of RHP. 

 

EOD waveforms as handicaps 

The EOD is also a condition-dependent signal.  The power of the EOD is 

significantly more energetically expensive in males than in females and strongly related 

to body condition in males (Salazar and Stoddard, 2008).  Furthermore, the enhanced 

asymmetric male EOD is more attractive and readily detected by electroreceptive 

predators (Stoddard 1999).  As such, the enhanced male EOD operates as a handicap 

signal and presumably conveys honest information on a male’s condition and survival 

ability (Zahavi, 1975).  Interestingly, males can boost their EOD amplitude within 

minutes by increasing the time between the firing of the two action potentials within each 

electrocyte, a process under the control of melanocortins (Markham and Stoddard, 2005), 

that renders the EOD as an unreliable signal if only assessed for a short time interval.  
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Therefore, males with low body condition could take advantage of this melanocortin-

driven EOD dishonest enhancement to deter competitors of superior body condition. 

 

Objectives 

In this study, I investigated the relationship between male size, behavior, and 

EOD waveform parameters in male-male agonistic interactions to understand the role of 

EOD waveforms as reliable information signals.  I specifically addressed the following 

questions: 1) How reliably can EOD amplitude and τP2 predict male body size (length, 

weight and condition) in B. gauderio? 2) Can resident males gain body size information 

from an intruder male at a distance, using only electrical cues, and do they respond 

differently to these fish based on size? 3) How does body size relate to social dominance 

when males are allowed to interact physically and electrically? And 4) How do body size 

and EOD waveform mismatches influence these social interactions between males?  I 

addressed these questions by undertaking experiments using dyads composed of size-

mismatched resident males and intruder males.  In the first of these sets of experiments, I 

physically isolated resident males from intruder males to explore the information content 

passed between males based on EOD waveforms alone.  The second experiment explored 

the effect of both waveform and physical contact in male-male behavioral interactions.    

 

Methods 

Study subjects 

 Males of the pulse-type weakly electric fish Brachyhypopomus gauderio (Giora & 

Malabarba, 2009) were sampled randomly from a captive-reared, 11th generation 
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breeding colony located at Florida International University, Miami, Florida.  Fish were 

housed in 450-liter (185 x 95 x 26 cm) outdoor pools with water conductivity at 90±10 

µS cm-1 and mean ambient temperature at 27±3 °C.  The water surface of each pool was 

covered 80-100% with water hyacinths (Eichhornia crassipes).  Each breeding pool 

contained 10-20 fish.  All fish were fed live oligochaete blackworms (Gulfstream 

Tropical Aquarium, Dania, FL, U.S.A.) three times per week.  I weighed and measured 

the length of all the males at the beginning of the experiment.  Experiments complied 

with NIH ‘Principles of Animal Care’ publication no. 86-23, revised 1985, and were 

approved by the F.I.U. IACUC (protocol approval no. 07-004). 

 

EOD machine recording 

 The EOD machine consists of 12 recording tanks and an automated real-time data 

acquisition system designed to record the EOD of one fish per tank. Each recording tank 

(120 x 44 x 44 cm) was kept in a light- and temperature-controlled room on a 12:12 light-

dark cycle and was divided with two screen-mesh partitions into three compartments of 

equal size.  The two outer compartments were connected via a ceramic tube (Stoddard et 

al., 2003).  Resident fish typically hid inside the ceramic tube during the day, and swam 

back and forth between the outer compartments of the tank during the night.  An 

electrode pair monitored the position of the resident fish, while another electrode pair 

sampled the EOD when the fish was centered in the tube (for more details, see Stoddard 

et al. 2003).  This system was not capable of measuring the EOD of a second stimulus 

fish while the resident fish was being recorded.  The EOD data were analyzed in real-

time with MATLAB (The MathWorks, Inc, Natick, MA, U.S.A.) to yield the peak-to-
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peak amplitude and τP2 (Figure 1A) (Stoddard et al., 2003).  I measured the EOD 

amplitude and τP2 at the following points in the 24h period before and after the addition 

of the stimulus male: (1) daytime low, (2) nighttime peak, and (3) time of peak (Figure 

1B).  

 

 Test of body size effects - dyads with no physical contact 

 To determine the relationship between body length, weight, condition and EOD 

change that resulted from male-male interaction, I randomly sampled 27 males from their 

outdoor breeding pools (hereafter deemed the “resident” male) and paired each one with 

a second male fish (the “stimulus”) (Figure 1C).  Prior to the experiment, I placed each 

resident male in a tank in the EOD machine and recorded its electric signal for 24h.  

During the early hours of the morning of the second day, the stimulus male was placed in 

the middle compartment of the EOD machine tank of the resident male (Figure 1C), 

allowing the two males to interact electrically without direct body contact.  I measured 

the EOD waveform of the resident male continuously for 24h throughout the social 

interaction.  At the end of this social interaction, I returned the stimulus male to his 

previous tank.  This design allowed me to measure the EOD waveform modulation 

experienced by the resident male before and during the social interaction.  I calculated 

differences in daytime low, nighttime peak, and peak time for amplitude and τP2 between 

the 24h prior to the addition of the second male and during the 24h of interaction between 

the two males. 

I calculated the percent difference in body length (cm) and weight (g) between the 

resident male and the stimulus male.  Then, I calculated the percent change (from the 24h 
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prior to addition of the stimulus male and 24h of interaction) in the daytime low and 

nighttime peak EOD amplitude and τP2 of the resident male (Figure 1B).  I used linear 

regression to evaluate the relationship between body size (length and weight) differences 

and EOD changes.  Previous studies have shown that male B. gauderio’s EOD amplitude 

highly correlates with body length (Curtis and Stoddard, 2003; Franchina and Stoddard, 

1998; Salazar and Stoddard, 2008).  To determine whether the relation that I observed 

between body size difference and EOD change was the result of the intrinsic relationship 

between these variables in individual males, I looked at this relationship in resident males 

at their daytime low and nighttime peak before and during the intrusion. I regressed 

resident males’ total length against their weight and regressed mass residuals against both 

EOD amplitude and τP2.  I partitioned the males into two analysis groups, those that were 

lighter than predicted for their specific lengths (negative residual mass) and those that 

were heavier (positive residual mass).  All statistical analyses were performed with 

MATLAB or SPSS v.15.0 (SPSS Inc., Chicago, IL, U.S.A.), α=0.05 two-tailed. 

 

 Test of body size effects - dyads with physical contact 

To determine the relationship between body size and EOD with physical 

behaviors during male-male interactions, I selected seven dyads of size-mismatched 

males and individually isolated these fourteen males for 5 days in EOD machine tanks to 

reset their waveforms following their previous social encounters (Franchina et al., 2001) 

(Figure 1C).  I recorded the EODs of each male during the last 24h of isolation (Figure 

1C).  At the end of this isolation period, just before dark, one dyad at a time was reunited 

in a behavioral observation tank (122 cm x 45 cm x 52cm) containing only one plant 
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refuge.  The plant refuge contained the only food dish, provisioned daily with live 

oligochaete food (“blackworms”).  The tank was kept on a 12:12 light cycle, at 27°C 

(±1), and water conductivity100 μS (±5). 

I videotaped social interactions starting at the onset of darkness using a digital 

camcorder (Sony DCR-TRV310) and an infrared LED array for illumination.  The 

changes in the EOD rate were detected with two carbon electrodes, amplified, and 

recorded on the digital audio track of the camcorder. I used pilot videos to generate an 

ethogram listing all behaviors observed during male-male interactions (supplementary 

materials 1).  Analysis of pilot videos showed that the first 30-min of interaction were 

sufficient to determine the dominance status of each male in a dyad.  Accordingly, I 

converted the first 30-min recording of each interacting pair to Quicktime video using 

iMovie (Apple Computer, Cupertino, CA, U.S.A.) and continuously scored behaviors 

using the behavioral analysis program JWatcher (v. 1.0, Animal Behaviour Laboratory, 

Macquarie University, Sydney, Australia).  I assigned to each behavior a unique 

computer keyboard code (supplementary materials 1) for data acquisition in JWatcher, 

and a general description (supplementary materials 1) based on a previously described 

ethogram for another gymnotiform species, Gymnotus carapo (Black-Cleworth, 1970).   

I took the 30-min continuous sequence of scored behaviors for each of the 10 

dyads and analyzed them in two ways.  First, I compiled them into one dataset, tallied 

repeated key codes of behaviors performed by the big male and the small male in the 

dyad, and computed the transitional probabilities (for lag 0 to lag 1) matrices using 

JWatcher’s Sequential Analysis tool.  I used transition probabilities that were greater than 

0.15 and had a p-value smaller than 0.05 to build first-order Markov chains of offensive-
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defensive behavioral sequences classified by behaviors performed by the big male and 

the small male in a dyad.  In addition, in the context of agonistic interactions, B. gauderio 

males modulate their EOD rate to generate stereotypic EOD patterns such as 

accelerations (Perrone et al., 2009).  Therefore, I scored the occurrence of EOD 

accelerations in relation to physical offensive behaviors.  Second, I took the first 10 min 

of each 30 min dyad sequence, and counted the number of offensive behaviors (e.g., 

bites), and mutual assessment behaviors (e.g., parallel and antiparallel lateral body 

orientations) to assess if differences in the body size and the EOD of the two males 

predicted the incidence of these behaviors. 

 

Results 

Resident males increased EOD amplitude when paired with a larger stimulus male 

Despite the lack of physical contact with stimulus males, resident males 

responded to the presence of an intruder through changes in the amplitude of their EOD.  

The direction and magnitude of the change in EOD amplitude of resident males in the 

24h of electrical interaction with a stimulus male depended on the extent of mismatch in 

their relative sizes (length and weight).  Residents increased amplitude when the intruders 

were larger, and decreased amplitude when the intruders were smaller (Figures 2A and 

2B).  The percent difference in length or weight between the two males predicted the 

percent change in the resident male’s EOD amplitude during the intrusion (Figure 2).  I 

did not observe a similar effect for EOD τP2. Neither difference in length nor in weight 

predicted the change in the resident males’ τP2 (Figures 2C and 2D).   

In addition, neither the body length nor the weight of the resident males 
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significantly predicted EOD amplitude or τP2 (Figure 3).  Therefore, the relationship 

between percent size (length and weight) difference and EOD amplitude change was not 

confounded by an intrinsic relationship between the body size and the EOD amplitude of 

resident males (Figures 2 and 3).  

The body lengths of resident males were strongly related to body weight (Figure 

4).  I found two different EOD responses depending on whether the male had a positive 

residual mass (heavier than predicted for length) or negative residual mass (lighter than 

predicted).  Residual mass of heavy resident males was positively associated with day 

and night EOD amplitude both before and during the intrusion (Figure 4B), and 

negatively associated with τP2 before and during the intrusion during the day (Figure 4C).  

Night values of τP2 showed the same trend as day but the p value was marginal (Figure 

4C).  In contrast, the residual mass of light males predicted neither EOD amplitude nor 

τP2 (Figures 4D and 4E). 

 

Body size predicted execution of offensive behaviors and dominance in male dyads 

In physical encounters between size-mismatched males, larger males consistently 

dominated the interactions despite the fact that these males did not consistently have 

higher EOD amplitudes.  During the first 30 min of observation within dyads, large males 

performed all offensive behaviors, such as bites-nudges, chases, nose rubs and head butts, 

while small males consistently swam away after each confrontation (Figure 5).  Of those 

behaviors expressed during the first 10 min of the session, the first male to perform a bite, 

a forward chase or a reverse chase proceeded to display all offensive behaviors during the 

entire 30 min observation period.  I classified these males as dominant or winners of the 
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interaction.  Losers or subordinate males were identified as those who first withdrew or 

swam away from an approaching or chasing male within the first 10 min of the 

interaction.   

To determine the behavioral responses of small males to offensive behaviors by 

larger dominant males, I evaluated the sequence of behaviors with significant transition 

probabilities.  I identified the following chain of events as predictive patterns of 

behaviors leading to the establishment of dominance relationships in size-mismatched 

male dyads.  After a large male bit-nudged or chased (forward or reverse) a smaller male, 

the small male swam away from the large male (Figure 5).  In some instances, the big 

male’s bite-nudge was so forceful that the small male’s body jerked before swimming 

away (Figure 5).  Forward chases by the larger male were typically associated with an 

increase in its EOD rate followed by a sharp EOD acceleration after nose-rubbing the 

smaller fish (Figure 5).  In addition, EOD accelerations had a significant probability of 

occurring in the context of ‘a big male’s bite followed by small male retreat’ sequence 

(Figure 5).  Both a head butt and a nose rub led to the antiparallel lateral body orientation 

(Figure 5).  Optimal electrolocation range is attained when the fish are within few 

centimeters of each other. In addition, the majority of the electroreceptors are located at 

the fish’s head.  Therefore, running the head along the full length of another fish’s body 

at close proximity provides accurate information on that fish’s body characteristics. As 

such, males may obtain more precise information of an opponent’s body length and 

weight by engaging in these behaviors.  I also found that forward chases were followed 

by a rise in EOD rate presumably to increase electrosensory sampling rate and to 

accurately track the position of the opponent fish (Figure 5).  In addition, nose rubs were 
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always followed by EOD accelerations and were only performed by the big male (Figure 

5).  The nose rub-EOD accelerations sequence could serve two purposes, as a mechanism 

to obtained refined information of another fish’s position, size, and electric field, and as 

an aggressive signal of close-range electrical interference.   

 

Relative EOD amplitude between the two males predicted number of bites 

 While size differences explained many aspects of the interaction between 

dominant and subordinate fish, EOD differences between the fish also were important in 

explaining some behavioral responses.  Aggressiveness, interpreted as the number of 

times the large male bit the small male within the first 10 min of the interaction, was 

reduced when the dominant male’s EOD amplitude was smaller than the small male’s 

EOD amplitude (Figure 6). Conversely, aggressiveness increased when the dominant 

males displayed larger EOD amplitudes when compared to the subordinate fish.   

  

Discussion 

EOD amplitude as an honest signal of body condition? 

Body size and condition are typically good indicators of fighting ability because 

they are related to physical strength and availability of energy stores (Beaugrand et al., 

1996; Breitburg, 1987; Lindstrom, 1988).  Although I found no relationship between the 

EOD parameters of resident males and their body length and weight (Figure 3), body 

condition, measured as residual mass adjusted for length,  showed more complex effects 

on the EOD than previously reported for this species (Figure 4) (Salazar and Stoddard, 

2008).  In males of above average condition, body condition was associated with a larger 
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EOD amplitude and smaller τP2 (Figures 4B and 4C), whereas males of below average 

condition showed no relationship between body condition and EOD parameters (Figures 

4D and 4E).  Thus for males of average to high body condition the signal tracks body 

condition (Figure 4).  As males lose condition, some continue to put out an EOD signal 

that is not honest (Figure 4D).  Therefore, the EOD is not a reliable indicator of body 

condition, though it may still honestly indicate instantaneous energy expenditure given 

the energetic expense of signal production (Salazar and Stoddard, 2008).   

If males are using EOD amplitude to assess each other’s body condition when 

they are several body lengths away from each other, they may not be receiving reliable 

information.  Such constraints may influence the behavioral interactions displayed by 

competing males, including the stereotypical displays observed in dyads here (Figures 5 

and 6).  For instance, males may approach each other to be within their active 

electrolocation range and in doing so gain more precise information on their relative 

lengths.  Nevertheless, even at close range, they may not be able to determine accurately 

relative volume differences, a potential indicator of an opponent’s body condition. 

Although weakly electric fish can discriminate objects based on size and volume, their 

ability to perform this task accurately depends on the shape and conductance properties 

of the objects (von der Emde and Fetz, 2007).  Therefore, a fish may not be able to 

determine the overall size (length and volume) of another fish accurately using active 

electrolocation because a fish’s body is not composed of a uniform material and has a 

complex geometry lacking sharp edges (Kelly et al., 2008; von der Emde and Fetz, 2007).  

Thus, even though EOD amplitude may not be a reliable indicator of body condition, it 

may be a useful proxy because 1) it is reliable for males with above average condition 
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who can put up a good fight, and 2) information on an opponent’s body condition cannot 

be obtained consistently via active electrolocation.   

 

EOD responses to body size mismatches between males 

While resident male fish were expected to detect and respond to male intruders, 

size asymmetries had unexpected effects on enhancement of EOD parameters previously 

associated with body length and condition (Curtis and Stoddard, 2003; Hopkins et al., 

1990; Salazar and Stoddard, 2008).  During simulated intrusions with no physical 

interaction, resident males that were smaller than their intruders increased their EOD 

amplitude, whereas resident males that were larger than their intruders decreased theirs 

(Figures 2A & 2B).  No effects were seen in other components of the signal.  These 

results were opposite to my predictions.  I was expecting to see an EOD increase from the 

resident males that were larger than their intruders, and an EOD decrease from the 

resident males that were smaller than their intruders.  I based these predictions on the 

assumption that unlike the smaller males, larger males had the energy stores to sustain the 

energetic cost and the predation risk associated with enhanced EODs (Salazar and 

Stoddard, 2008; Stoddard, 1999; Stoddard, 2002). Despite this expected response, 

perceived ownership of a territory can reverse a size asymmetry effect if the value of the 

territory is high (Turner, 1994).  Similar interactions between size asymmetry and 

perceived value of a resource have been documented in pumpkinseed sunfish Lepomis 

gibbosus (Dugatkin and Biederman, 1991; Dugatkin and Ohlsen, 1990).  I speculate 

therefore that perceived ownership of the tank acts as a motivational driver for resident 

males.   
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There is some supporting evidence for this in field studies of B. gauderio. During 

the breeding season, B. gauderio males are spatially-distributed in a manner consistent 

with either an exploded-lek or a nest site polygynandry mating system (Miranda et al., 

2008).  In addition, Miranda and her colleagues (2008) found that B. gauderio males 

displayed site-fidelity and non-overlapping spatial patterns suggesting that males may 

defend territories to attract females and procure spawning locations.  Given this site 

fidelity, it is possible that large resident males perceive their size and tank ownership 

advantage, and adjust the energy allocated to their EODs by decreasing their EOD 

amplitude, in preparation for energetically-expensive behaviors such as courtship and 

physical confrontation with other males.  In contrast, smaller resident males may perceive 

their size disadvantage, but have a high motivational drive because of their perceived 

tank ownership, thus increasing their EOD amplitude.  In addition, the mesh dividers 

provided an artificial condition that allow for small resident males to have a higher 

motivational drive to enhance their EOD amplitudes in the presence of a large challenger 

since the threat of a potential physical challenge was absent. Therefore, a male’s 

perceived ownership of a tank seems to provide him with the motivational drive to 

enhance his EOD amplitude upon the presence of a challenger, regardless of the presence 

of a size disadvantage. 

Empirical evidence has also shown that when hawk-dove models are put to the 

test, small males do not necessarily act as predicted by the model (i.e., as doves) but 

instead display a ‘Napoleon complex’ (Dugatkin and Ohlsen, 1990; Jenssen et al., 2005).  

As such, small males may adopt a hawk strategy when in the presence of a larger 

challenger, presumably because they have nothing to lose, and if their bluff is not put to 



  

84 
 

the test by the large male challenger, they have much to gain (Just and Morris, 2003).  

Although the melanocortin-activated spike time-shifting mechanism may provide the 

means for a small male to bluff his EOD amplitude in a particular night, predation risk 

may prevent the enhanced EOD from becoming pervasively unreliable in the population.  

Enhancing the EOD can increase predation risk (Stoddard, 2002).  Electroreceptive 

predators readily detect the enhanced EODs of males over the symmetrical EODs of 

females (Hanika and Kramer, 1999; Hanika and Kramer, 2000; Stoddard, 1999; 

Stoddard, 2002). 

 

Body size: the honest signal of dominance? 

The inability of the small male to withstand a physical challenge by a larger male 

may ultimately prevent the relationship between body condition and EOD amplitude 

from being unreliable (Searcy and Nowicki, 2005).  In males, body size typically 

determines the likelihood of winning a physical contest (Andersson, 1994).  Likewise, 

when I placed two males in a tank simultaneously and allowed them to interact 

physically, the larger male consistently bit and chased the smaller male, causing the 

smaller male to retreat by swimming away from his attacker (Figure 6).  In fact, body size 

predicted dominance in male B. gauderio in physically interacting dyads irrespective of 

differences in the signal properties between these two fish (Figure 6).   

The EOD signals still are important, however.  Although I could assess 

dominance within the first 10 min of physical interactions by identifying which fish 

performed the first bite or chase, the aggressiveness of the dominant fish depended on 

whether there was a mismatch between length and EOD amplitude asymmetry (Figure 5).  
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Accordingly, the large male bit the small male more often when length and EOD 

asymmetry matched, but bit him less if there was a mismatch (Figure 5).  This 

observation suggests that, despite size advantages, males pay attention to the EOD 

amplitudes of their rivals and compare this information with the length information 

obtained via active electrolocation, adjusting his level of aggressiveness accordingly. 

Despite potential ambiguities between length and EOD amplitude information, however, 

length differences seem to be what ultimately determines which male dominates a 

physical interaction.   

 

EOD signals: is different information encoded in EOD amplitude and duration? 

EOD power in male B. gauderio is energetically-expensive (Salazar and Stoddard, 

2008).  Males may be able to generate high amplitude EODs at low cost for a short time 

interval by changing the timing between their electrocytes’ action potentials under the 

regulation of melanocortins (Markham and Stoddard, 2005), however, concordant 

increases in τP2 will necessarily use extra energy.  Curiously, most studies to date on 

EOD modulation in B. gauderio have reported co-modulation of EOD amplitude and τP2.  

For instance, social stimulation of isolated males causes both amplitude and duration to 

increase (Franchina et al., 2001).  Serotonin and melanocortins mediate both effects 

(Allee et al., 2008; Markham et al., 2009; Stoddard et al., 2003).  The present study finds 

males regulating amplitude and τP2 in opposite directions depending on their relative body 

condition (Figure 4).  Although the mechanism underlying this division is not known, 

androgens have been shown to regulate EOD τP2 but not amplitude, while cortisol 
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regulates EOD amplitude but not τP2, suggesting a possible mechanism for independent 

regulation of the two parameters (Allee et al., 2009; Salazar and Stoddard, 2009). 
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Figure 1.  EOD metrics and experimental design using male dyads.  A.  B. gauderio’s 

biphasic EOD waveform is composed of a positive phase (P1) and a negative phase (P2).  
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The amplitude of the waveform is measured peak-to-peak for P1 and P2 and τP2 is 

measured as the slope of the repolarizing segment of P2.  B.  For both amplitude and τP2, 

I sampled a 10-sec train of EODs every min constantly for the 24h before and after a 

stimulus male was added to the resident male’s tank (indicated by arrow).  For night-day 

comparisons of the EOD amplitude and τP2, I focused on the daytime low, nighttime 

peak, and the time of the nighttime peak within a 24h cycle.  C.  Males were randomly 

sampled from different outdoor breeding pools.  The EOD of resident males was recorded 

24h before and 24h after pairing.  Resident and stimulus males were physically separated 

by a mesh divider (dashed lines).  A subset of resident and stimulus males were 

subsequently isolated in EOD machine tanks. Their EODs were recorded for the last 24h 

of isolation.  Then, I re-paired them in an observation tank where they could interact 

physically for one night. I videotaped and recorded EOD modulations for the first 30min 

of the interaction. 
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Figure 2.  The percent length and weight difference between the resident and stimulus 

males predicted the percent change (before and after the addition of stimulus male) in 

EOD amplitude, but not in τP2.  A. Increasing percent difference in length between 

resident and stimulus males predicted a smaller change in the resident male’s EOD 

amplitude upon addition of the stimulus male, while decreasing percent length difference 

predicted a bigger change in the resident male’s EOD amplitude.  B. Although I observed 

the same trends for the percent difference in weight between resident and stimulus males 

and the change in the resident male’s EOD amplitude, this negative relationship was only 
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significant for the change in day EOD amplitude, and not for the change in night EOD 

amplitude.  C. The percent difference in length between resident and stimulus males did 

not significantly predict the change in the resident male’s EOD τP2 from before to after 

the addition of the stimulus male.  D. The percent difference in weight between resident 

and stimulus males also did not significantly predict the change in the resident male’s 

EOD τP2 from before to after the addition of the stimulus male.  Open squares and solid 

lines = daytime values and filled circles and dashed lines = nighttime values. 
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Figure 3.  For the most part, the body length and weight of a resident male did not predict 

EOD amplitude and τP2 during either the 24h before or 24h after a stimulus male was 

added to his tank.  A. Resident males’ body length did not predict the magnitude of their 

EOD amplitude during the day (day1) and night (night1) before or the day (day2) and 

night (night2) after pairing with stimulus male.  B. Although resident males’ length did 

not predict their τP2 on the day and night before pairing and the day after pairing, this 
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relationship was significant for the night after pairing.  C. Resident males’ weight did not 

predict their EOD amplitude on the day and night before or after pairing.  D. Weight did 

not predict EOD τP2 on the day and night before or after pairing with a stimulus male. 
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Figure 4.  Residual body mass predicts EOD amplitude and τP2 only in heavier males.  A. 

The body length (cm) of a resident male positively predicts its body weight.  B.  Once 
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adjusted for length, the residual mass of the resident males that were heavier than 

predicted for their length (i.e., positive residuals) significantly predicted the magnitude of 

their EOD amplitudes before and after the stimulus males were added to the resident 

males’ tanks.  C. Heavier resident males’ residual mass also significantly predicted day 

τP2, but not night τP2, before and after pairing with the stimulus male.  D. Once adjusted 

for length, the residual mass for the resident males that were lighter than predicted for 

their lengths (i.e., negative residuals) did not predict the magnitude of the EOD amplitude 

either before or after the addition of the stimulus male.  E. Lighter resident males’ 

residual mass did not predict the magnitude of the τP2 either before or after the addition of 

the stimulus male.   
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Figure 5.  When the two males in a dyad were allowed to interact physically, the large 

male directed offensive behaviors, such as forward and reverse chases and bites or 

nudges, toward the small male. The small male responded by swimming away, and in 

few instances, his body jumped or jerked after a bite attack before he swam away from 

his aggressor.  Large males also performed head butts and nose rubs towards the small 

males.  These presumably offensive behaviors led to mutual inspection via antiparallel 

lateral orientation, rather than an attack.  EOD accelerations were significantly related to 

the behavioral sequence of a large male biting a small male followed by the retreat of the 

small male, and EOD rises were significantly performed in relation to forward chases.  I 

only included in this first-order Markov chain transition probabilities for sequences 

involving behaviors from the large male that significantly led to behaviors from the small 

male (probabilities bigger than 0.15 with a significance level smaller than 0.05).  

Descriptions of the behaviors are available in the supplementary materials 1.   
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Figure 6.  The relative difference in EOD amplitude between the large male and the small 

male in a dyad predicted the number of times the large male bit the small male within the 

first 10 min of physical interaction.  A. When the day EOD amplitude of the large male in 

the dyad was smaller than the day EOD amplitude of the small male, the large male bit 

the small male fewer times during the first 10 min of physical interaction.  The opposite 

pattern was observed when the large male’s day EOD amplitude was higher than that of 

the small male.  In this case, the large male bit the small male more during the first 10 

min of physical interaction.  B. The same trends were observed for the night EOD 

amplitude.
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Supplementary material 1.  Ethogram of physical and electrical behaviors observed 

during B. gauderio male-male interactions 
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CHAPTER IV 

 

“Molecular characterization of serotonin receptor 1A from brains of the gymnotiform fish 

Brachyhypopomus gauderio” 
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Abstract 

Serotonin, a neurotransmitter with a wide range of effects in the central nervous system, 

plays a major role in regulating aggressive behavior.  Although higher serotonin levels 

are typically related to low levels of aggressive behavior, this is not always the case.  The 

relationship between serotonergic activity and regulation of aggressive behavior depends 

on the type of serotonin receptor, the quantity and location of the receptors, and the 

intracellular signaling pathway activated by the receptor.  The serotonin receptor 1A, 

5HT1AR, is a key player in the regulation of aggressive behavior.  This receptor occurs 

both as a somatodendritic autoreceptor in serotonergic neurons and as a postsynaptic 

receptor in serotonin target neurons.  Its expression is regulated by glucocorticosteroids 

and androgens and its function is regulated by posttranslational modifications via 

phosphorylation.  Although the 5HT1AR is conserved across all vertebrates, two isoforms 

of this receptor have been found in at least two species of teleost fish.  

The nocturnal gymnotiform fish Brachyhypopomus gauderio generates dual-

function electric signals for electrolocation and communication.  The serotonergic 

system, steroid hormones, and melanocortins augment the electric signal waveform 

during social interactions.  Pharmacological activation of the 5HT1AR reduces the 

magnitude and duration of the electric waveform in male B. gauderio.  To further 

characterize the role of the serotonergic system in the regulation of gymnotiform male 

electric signals, I analyzed the sequence of one 5HT1AR receptor in B. gauderio that is 

homologous to and phylogenetically more-closely related to the b/β isoform found in 

other teleost fish.  I confirmed the presence of previously reported and identified putative 

novel phosphorylation sites in the 5HT1AR of B. gauderio and other teleost fish.  I also 
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identified a putative glucocorticoid response element in the promoter region of zebrafish 

1Ab gene.  Taken together, these findings highlight additional plasticity at 5HT1AR in 

teleost fish. 

 

Keywords: Brachyhypopomus gauderio; gymnotiform fish; serotonin; serotonin receptor 

1A; phosphorylation 

 

Abbreviations: aa, amino acid; ACTH, adrenocorticotropic hormone; α-MSH, alpha-

melanocyte-stimulating hormone; ARE, androgen response element; cdk5, cyclin-

dependent kinase 5; CRH, corticotropin-releasing hormone; EDTA, 

ethylenediaminetetraacetic acid; GC, glucocorticosteroids; GPCR, G-protein coupled 

receptor; nt, nucleotide; GRE – glucocorticosteroid response element; 5-HT, 5-

hydroxytryptamine or serotonin; HPG, hypothalamic-pituitary-gonadal axis; HPA, 

hypothalamic-pituitary-adrenal axis; HPI, hypothalamic-pituitary-interrenal axis; MAPK, 

p38 mitogen-activated protein kinase; PKA, protein kinase A; PKC, protein kinase C; 

PLC, phospholipase C; 5HT1A, serotonin receptor 1A; TBE, Tris-Borate-EDTA buffer; 

TM, transmembrane.  
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Introduction 

Among its many functions in the central nervous system, serotonin (5-

hydroxytryptamine or 5-HT), a biogenic monoamine neurotransmitter, plays a major role 

in the regulation of aggressive behavior in both invertebrate and vertebrate organisms 

(rev. Nelson, 2006).  Although higher serotonin levels are typically related to low levels 

of aggressive behavior, this is not always the case (de Boer and Koolhaas, 2005; Nelson 

and Chiavegatto, 2001; Summers, 2001; Veenema et al., 2005).  The relationship 

between serotonergic activity and regulation of aggressive behavior depends on the type 

of serotonin receptor, the quantity and location of the receptor in brain centers that 

regulate aggression, and the intracellular signaling pathway activated by the receptor (de 

Boer and Koolhaas, 2005; rev.Nelson, 2006; Schiller et al., 2006; Schiller et al., 2003; 

Veenema et al., 2005).  All serotonin receptors, with the exception of the type 3, are 

members of the G-protein coupled receptor (GPCR) superfamily of proteins, 

characterized by seven transmembrane regions, an extracellular N-terminus, a short 

intracellular C-terminus, and three intracellular loops (Kroeze and Roth, 1998).  The 

second and third intracellular loops (i2 and i3) play a major role in G-protein coupling, 

which consequently dictates the specificity of the signaling pathway that is activated or 

inhibited (Albert and Tiberi, 2001).  

The serotonin receptor 1A (5HT1AR) is a key player in the regulation of 

aggressive behavior (rev. Nelson, 2006).  Activation of the 5HT1AR by 5-HT or specific 

agonists (e.g., 8-OH-DPAT) inhibits or reduces aggression in many invertebrate and 

vertebrate species (rev.Nelson, 2006).  Furthermore, the 5HT1AR is localized in brain 

regions, such as the raphe nuclei, cortical and limbic areas, that control or regulate 
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aggressive behaviors (Hensler, 2003).  An interesting feature of the 5HT1AR is that it 

functions both as a somatodendritic autoreceptor in serotonergic neurons of the raphe 

nuclei where it inhibits serotonin release, and as a postsynaptic receptor in corticolimbic 

brain areas, modulating the response to serotonin of postsynaptic target neurons (Barnes 

and Sharp, 1999; Hensler, 2003).  Furthermore, the brain area in which 5HT1AR is 

expressed seems to dictate what G protein it interacts with, thus affecting the intracellular 

signaling pathway it regulates, and whether it is desensitized via phosphorylation 

(Hensler, 2003).  Therefore, to understand how 5HT1AR regulates aggressive behavior in 

any organism, it is important to fully characterize the receptor including its potential 

transcriptional and post-translational regulatory mechanisms. 

The effect of serotonin on the regulation of aggressive behaviors seems to be 

mediated by the activation of the hypothalamic-pituitary-gonadal (HPG) axis and the 

hypothalamic-pituitary-adrenal or interrenal (HPA, or HPI in teleost fish) axis.  

Ultimately activation of the HPG leads to the secretion of androgens into circulation, 

while activation of the HPA/I axis leads to the secretion of melanocortins and 

glucocorticosteroids (GCs).  Closing this regulatory loop, circulating androgens and GCs 

can alter the expression pattern of serotonin receptors resulting in changes in the neuronal 

activity of brain areas that regulate aggressive behavior.  For instance, in rodents, either 

gonadectomy or adrenalectomy increases the expression (mRNA levels) of the 5HT1AR 

(Kroeze and Roth, 1998; Zhang et al., 1999), suggesting that androgen and glucocorticoid 

response elements (ARE and GRE respectively) may be present in the promoter region of 

the 5HT1AR.  This steroids-serotonergic pathway may explain why activation of the 

5HT1AR in fish that experience handling-stress (high circulating GC levels) inhibits the 



  

107 
 

HPI, while activation of this receptor in non-handled fish (low circulating GC levels) has 

the opposite effect (Hoglund et al., 2002).  In addition, the 5HT1AR acts directly at the 

level of the anterior pituitary to regulate the release of the melanocortin 

adrenocorticotropic hormone (ACTH) (Dinan, 1996).  Furthermore, increased 

serotonergic activity also increases plasma levels of another melanocortin, alpha-

melanocyte-stimulating hormone (α-MSH) (Olivereau et al., 1980).  Thus, GCs can 

potentially activate 5HT1AR transcription and exert negative feedback at the molecular 

level on the serotonergic regulation of the HPA/HPI axis.  Less is known about the 

bidirectional regulation between the HPG axis and the serotonergic system.  

Serotonin not only regulates overt aggressive physical behaviors but it also 

regulates production of aggressive communication signals (Albers et al., 2002; Larson 

and Summers, 2001), including electrocommunication signals (Allee et al., 2008; Maler 

and Ellis, 1987; Smith and Combs, 2008; Stoddard et al., 2003; Telgkamp et al., 2007).  

Gymnotiforms, a group of nocturnal fish from Central and South America, continuously 

generate electric signals to navigate and communicate with conspecifics in the dark.  

These electric signals, known as electric organ discharges (EODs), are regulated by 

aggressive interactions, androgens, GCs, melanocortins, and the serotonergic system 

(Stoddard et al., 2006).  This group of fishes provides an excellent opportunity to explore 

how androgens, GCs and the serotonergic system interact to modify aggressive 

communication behavior, since electric signals are already in the same currency as the 

nervous system, action potentials.  

The electrocommunication neural network of gymnotiform fishes is extensively 

innervated by serotonergic neuron terminals (Johnston et al., 1990).  In the gymnotiform 
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fish, Brachyhypopomus gauderio (Giora and Malabarba, 2009), males injected 

peripherally with serotonin enhanced their EOD, mimicking the EOD enhancement 

displayed by both sexes during aggressive interactions (Allee et al., 2009; Stoddard et al., 

2003).  These effects were mediated via the serotonin receptors 1A and 2A (Allee et al., 

2008).  In B. gauderio males, activation of 5HT1AR reduced the EOD waveform, while 

activation of 5HT2R enhanced the EOD waveform to levels observed after serotonin 

treatment (Allee et al., 2008).  Opposite to this pattern, in a different gymnotiform fish 

species, Apteronotus leptorhynchus, activation of 5HT1AR enhanced, while activation of 

5HT2AR suppressed aggressive EOD modulations (Smith and Combs 2008).  

In B. gauderio, serotonin indirectly regulates signal waveform via central 5-HT 

receptors (Allee et al., 2008; Markham and Stoddard, 2005; Stoddard et al., 2003), 

whereas the melanocortins α-MSH and ACTH augment the electric waveform directly 

through action at the peripheral electric organ, which generates the EOD, enhancing the 

EOD (Markham et al., 2009; Markham and Stoddard, 2005; Stoddard et al., 2006).  I 

have not determined which brain regions regulate the waveform through the activation of 

the 5HT1AR, or whether these modulations are regulated by somatodendritic 

autoreceptors, postsynaptic receptors, or both.  In B. gauderio, males treated with a 

5HT1AR specific agonist, 8-OH-DPAT, displayed split responses, some enhanced their 

EODs and some reduced it (Allee et al., 2008).  These findings suggest the presence of 

5HT1AR both as a somatodendritic autoreceptor and as a postsynaptic receptor.  

Treatment of males with S-15535, a selective agonist at 5HT1AR autoreceptors and an 

antagonist at postsynaptic 5HT1AR, enhanced their EOD waveforms, suggesting that the 

effects of 5HT1AR on the EOD are mediated postsynaptically (P. Stoddard & A. Silva, 
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unpublished data).  Here, I characterize the 5HT1AR in the brains of male and female B. 

gauderio using a molecular approach.  I amplified, cloned and sequenced the 5HT1AR 

from mRNA isolated from the brains of female and male B. gauderio.  I compared B. 

gauderio’s 5HT1AR to homologous sequences from other teleosts available in GenBank, 

and identified putative phosphorylation sites and a GRE in the promoter region of 

zebrafish’s 5HT1AR, to further characterize potential regulatory mechanisms for this 

receptor in teleost fish.  My study represents the first stage in a series of studies 

examining the bidirectional regulation between androgens, GCs, and the 5HT1AR in the 

context of aggressive behaviors.  

 

Materials and methods 

Animals 

I sampled sexually mature males and females of the pulse-type weakly electric 

fish B. gauderio from a captive-reared, 13th generation breeding colony, located at 

Florida International University, Miami, Florida.  I housed the fish in 450-liter (185 x 95 

x 26 cm) outdoor pools with water conductivity at 90±10 µS cm-1 and mean ambient 

temperature at 27±2 °C.  The water surface of each pool was covered 80-100% with 

water hyacinths (Eichhornia crassipes).  Each breeding pool contained 10-20 fish.  I fed 

all fish live oligochaete blackworms (Gulfstream Tropical Aquarium, Dania, FL, USA) 

three times per week. 

 

Brain extraction, RNA isolation and cDNA synthesis 

I netted fish from their housing pool, deeply anesthetized them with a 10 µl 
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injection of 10% pentobarbital, and perfused them intracardially with ice-cold Hickman's 

Ringer solution, pH 6.8-7.0, containing 1 mg/ml of EDTA to reduce blood clotting, 1 

mg/ml of lidocaine to sustain analgesia, and 0.1 mg/ml of flaxedil (gallamine 

triethiodide) to minimize involuntary muscle contractions.  I surgically removed the 

brains and placed them in RNAlater®.  All surgical materials were treated with RNase 

AWAY®.  Reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA), unless 

noted otherwise. 

I isolated total RNA from homogenized brain tissue using the TRIzol® reagent 

(Invitrogen Co., Carlsbad, CA, USA), followed by chloroform extraction (1µl/5µl of 

TRIzol) and purification using the RNeasy mini kit (Qiagen Inc., Valencia, CA, USA) as 

per manufacturers’ instructions.  Following RNA isolation, samples were treated with 

RQ1 RNase-free DNase (Promega Co., Madison, WI, USA) to further minimize DNA 

contamination.  I synthesized the first-strand cDNA from the isolated RNA using 

SuperScript® III First-Strand Synthesis System for RT-PCR (Invitrogen) following the 

manufacturer’s instructions.  

 

Design of degenerate primers and product PCR amplification 

I obtained both the nucleotide (nt) sequences and the deduced amino acid (aa) 

sequences from mouse, rat, human, gorilla, chimpanzee, silver fox, dog, horse, African 

clawed frog, Mozambique tilapia, fugu (japanese puffer fish), and goldfish from the 

NCBI database (http://www.ncbi.nlm.nih.gov) (Table 1), and aligned the nt and aa 

sequences as two separate groups using the multiple sequence alignment tool ClustalX 

(Higgins et al., 2003).  From the aa alignment, I selected consensus regions from 

http://www.ncbi.nlm.nih.gov/�
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conserved functional domains, TM segments I through VII (Barnes and Sharp, 1999), and 

seven functional motifs (PRINTS, protein motif fingerprint database, 

http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/, PR00512, 5HT1ARECEPTR).  

I located these regions in my nt alignment and chose regions for primer design that 

minimized the degeneracy of my primers while maintaining conserved functional 

relevance specific to the 5HT1AR.  I avoided regions that were conserved for all the 

serotonin receptors because of concerns over amplifying other serotonin receptor genes 

(Table 2). 

I used the first-strand cDNA and several combinations of the forward and reverse 

degenerate primers to amplify via polymerase chain reaction (PCR) products 

corresponding to the partial sequence of the 5HT1AR.  The cycling conditions were 3 min 

incubation at 94°C, followed by 35 cycles of 45 s denaturing at 94°C, 30 s annealing at 

58°C and 1.5 min extension at 72°C.  I incubated the samples for another 10 min at 72°C 

and immediately stored them at 4°C.  

The PCR products were visualized in a 1% agarose gel prepared with SYBR® 

Safe DNA gel stain (Invitrogen) in 0.5X TBE buffer.  Because I obtained multiple 

fragments from the PCR reaction (Figure 1), I gel-extracted each fragment.  The DNA 

from each gel fragment was isolated with 3 gel volumes of Buffer QG (solubilization and 

binding buffer, Qiagen) followed by 1 gel volume of isopropyl alcohol, and purified 

using the QIAquick PCR purification kit (Qiagen). 

 

Cloning and sequencing 

I cloned purified PCR products using the TOPO TA Cloning kit (Invitrogen), and 
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verified successful transformation by colony-PCR using M13 forward and reverse 

primers.  I extracted plasmids from successfully transformed bacterial colonies using the 

QIAprep spin miniprep kit (Qiagen).  Cloned inserts were sequenced in the DNA Core 

Facility at Florida International University (Department of Biological Sciences) using an 

ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) with 

BigDye-Terminators and M13 primers.  I assembled and edited DNA sequences using 

ABI AutoAssembler to generate a consensus sequence.  I translated the nt consensus 

sequence to aa using the ExPasy Translate Tool (Swiss Institute of Bioinformatics; 

http://us.expasy.org/tools/dna.html).  I searched the deduced aa sequence against the 

NCBI GenBank database using blastx and scanned with ExPasy’s PROSITE 

(http://www.expasy.ch/prosite/) to confirm 5HT1AR identity.  Three additional piscine 

5HT1AR sequences were published in GenBank after I began this study, allowing me to 

align B. gauderio 5HT1AR partial sequence with 5HT1AR deduced aa sequences for the 

six teleost fishes (Table 1): zebrafish, goldfish, barramundi, mozambique tilapia, fugu 

(japanese puffer fish), and gulf toadfish.  Amino acid alignments were done using 

ClustalW (Higgins et al., 2003).  I annotated the alignment with functional regions 

identified from human and fugu 5HT1AR genes (Yamaguchi and Brenner 1997) and from 

UniProtKB (Universal Protein Resource Knowledgebase, http://www.uniprot.org, 

Query=P08908, 5HT1A_HUMAN).  Since Yamaguchi and Brenner (1997) identified 

phosphorylation sites in their fugu 5HT1AR sequences that were not present in the human 

5HT1AR sequence, I performed an in silico identification of all amino acid residues in the 

B. gauderio 5HT1AR partial sequence that showed phosphorylation probability scores  

greater than 0.50 (Blom et al., 1999) using the NetPhos 2.0 server 

http://us.expasy.org/tools/dna.html�
http://www.uniprot.org/�
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(http://www.cds.dtu.dk/services/NetPhos/).  To further characterize these phosphorylation 

sites, I identified their putative target kinases (sites with scores > 0.75) by entering all the 

teleost sequences from my alignment into the NetPhosK 1.0 server 

(http://www.cbs.dtu.dk/services/NetPhosK/) (Blom et al., 2004).  

 

Phylogenetic tree analysis 

Using MacClade (Maddison and Maddison, 1992), I did multiple alignments on 

deduced aa sequences of 5HT1AR for all fish listed in the previous section along with 

homologous sequences for human, rhesus macaque, gorilla, chimpanzee, bornean 

orangutan, european rabbit, long-tailed ground squirrel, horse, silver fox, domestic dog, 

house mouse, brown rat, desert grassland whiptail lizard, little striped whiptail lizard, and 

african clawed frog (Table 1).  This alignment was imported into PAUP (Swofford et al., 

1996) for phylogenetic analysis using the neighbor-joining method (Saitou and Nei, 

1987).  I rooted the tree at midpoint and calculated the strength of each branch via 

bootstrapping with 1000 replicates (Felsenstein, 1985).  Only bootstrap values of 50% or 

more are presented. 

 

In silico identification of putative GRE and ARE sequences 

 To characterize the regulatory mechanism underlying 5HT1AR expression in 

teleost fish, I identified putative GRE and ARE regions upstream the 5HT1AR gene in the 

zebrafish genome.  Using the toolkit RSAtools (Regulatory sequence analysis tools; 

http://rsat.ulb.ac.be/rsat/), I retrieved the upstream sequences for the two zebrafish 

5HT1AR genes (gene ID: htr1a, corresponding to 5HT1ARa located in chromosome 8 

http://www.cds.dtu.dk/services/NetPhos/�
http://www.cbs.dtu.dk/services/NetPhosK/�
http://rsat.ulb.ac.be/rsat/�
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(DNA contig: BX571721, location: 32,697,755 to 32,699,540) and gene ID: htr1ab, 

corresponding to 5HT1Ab located in chromosome 21 (DNA contig: BX927332, location: 

22,237,194 to 22,238,348).  For comparison, I imported the consensus frequency 

matrices generated for GRE and ARE of human, mouse, and rat sequences (Nelson et al., 

1999) and searched upstream from -2000 to -1, using pattern-matching (patser) matrices, 

for the presence of GRE and ARE in the promoter region of the 5HT1AR in zebrafish (van 

Helden et al., 1998).  

  

Results 

Cloning of 5HT1AR 

I amplified two fragments close to the expected 5HT1AR amplicon size of 645 bp 

for one of my degenerate primers (Table 2 and Figure 1A).  I successfully gel-extracted 

the two fragments (Figure 1B), cloned, and sequenced them.  Although the deduced aa 

sequence of the 5HT1AR-like band 1 amplicon does not display any similarity to a 

specific gene, my band 2 amplicon displayed 82% identity with zebrafish1Ab (E value 

1e-93), 77% identity with barramundi 1A (E value 2e-84), 75% identity with Mozambique 

tilapia 1A (E value 9e-83), 72% identity with fugu 1Aβ (E value 6e-80), and 70% identity 

with goldfish 1A (E value 5e-35). 

 

Putative phosphorylation sites 

The partial sequence of B. gauderio 5HT1AR extends downstream from TM III to 

a little upstream from TM VI.  In B. gauderio 5HT1AR, the Ser68 and Thr69 binding sites 

in TM V are conserved (for reference, these sites correspond to Ser208 and Thr209 in fugu 
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1Aα and Ser198 and Thr199 in human 1A).  In fact, these sites are conserved for all teleost 

fish with sequence data for this region of the protein (Figure 2).  Within B. gauderio 

5HT1AR’s partial sequence, there are a conserved disulfide bond site at Cys56 (for 

reference, Cys196 in fugu 1α) and twelve putative phosphorylation sites with high 

probability (score > 0.53: Thr13, Ser45, Tyr65, Thr98, Thr102, Thr127, Ser130, Ser131, Ser152, 

Thr171 and Ser186) (Table 3 & Figure 2).  

From these twelve phosphorylation sites, four (i.e., Thr13, Thr98, Thr102 and 

Thr127) correspond to previously identified phosphorylation sites in the fugu’s 5HT1AR 

genes (Figure 2) (Yamaguchi and Brenner, 1997).  The partial sequence for B. gauderio 

5HT1AR does not include the last phosphorylation site found in the fugu (Thr344 for fugu 

1Aα and Thr337 for fugu 1Aβ, Figure 2).  Of the four phosphorylation sites shared by B. 

gauderio and fugu 5HT1AR sequences, one corresponds to a different aa residue.  Instead 

of a serine found at position 264 in fugu 1Aβ, B. gauderio has a threonine (Thr102) and 

the fugu 1Aα lacks a phosphorylation site at this position in the alignment (Table 3 & 

Figure 2).  Although Yamaguchi and Brenner (1997) identified phosphorylation sites at 

Thr332 in fugu 1Aα and Thr325 in fugu 1Aβ, these phosphorylation sites are not supported 

by NetPhos.  Instead, NetPhos identifies possible phosphorylation sites at Thr330 in fugu 

1Aα and Thr323 in fugu 1Aβ (Figure 2).  This threonine is conserved across all teleost 1A 

sequences with the exception of the gulf toadfish 1A and B. gauderio 1A, which have 

serine residues instead.  Interestingly, these serine residues, but not the threonine 

residues, are predicted to be PKC phosphorylation target sites by NetPhos (Table 3).  

Using an in silico analysis to identify putative target kinases for phosphorylation 

sites, I predicted with a high probability (score > 0.75) that the Thr13, Thr98, Thr102, Thr127 
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and Ser186 sites in the B. gauderio 1A are targeted by protein kinase C (PKC), while the 

Ser131 site is targeted by protein kinase A (PKA) and the Thr171 site is targeted by cyclin-

dependent kinase 5 (cdk5) (Table 3).  In the B. gauderio 1A only Thr98 remains consistent 

across teleost fish as a PKC target site (scores > 0.75).  Although NetPhosK predicts that 

PKC targets Thr13 in B. gauderio 1A and the corresponding Thr148 in zebrafish 1Ab, all 

other teleost 1A sequences had p38 mitogen-activated protein kinase (MAPK) as the 

predicted kinase targeting their corresponding threonine (Table 3).  Targeting of PKC at 

Thr102 in B. gauderio 1A is also supported for the corresponding threonine in fugu 1Aβ, 

barramundi 1A and tilapia 1A (Table 3 and Figure 2).  Targeting of PKA at Ser131 in B. 

gauderio 1A is likewise supported for the corresponding serine in fugu 1Aβ, barramundi 

1A and zebrafish 1Aa (Table 3 and Figure 2).  Finally, targeting of cdk5 at Thr171 in B. 

gauderio 1A is supported for the corresponding threonine in barramundi 1A, tilapia 1A 

and zebrafish 1Ab (Table 3 and Figure 2). 

 

Sequence homology and transcriptional regulation 

My partial sequence for B. gauderio 5HT1AR is more closely related to the 

zebrafish 1Ab, barramundi 1A, tilapia 1A, and fugu 1Aβ; all branches are highly 

supported, with bootstrap values ranging from 95-100% (Figure 3).  The zebrafish 1Aa 

sequence is more closely related to the goldfish 1A (bootstrap value 93%, Figure 3). 

Although the cladogram clusters the gulf toadfish 5HT1AR and the fugu 1Aα, the 

bootstrap value is too low to support this clade (Figure 3).  As expected, all the 

mammalian 1A sequences cluster together as a sister clade to the lizards 1A clade, and 

both clades descend from the amphibian 1A clade (Figure 4). 
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I found one putative GRE site located -115 to -89 upstream (score = 7.76, ln(P) = 

-10, Figure 4) from the coding region for zebrafish 5HT1AbR in the D strand of zebrafish 

chromosome 21.  I found no matches for ARE sites within the 2.0 kb upstream sequence 

region of either zebrafish 5HT1AR. 

 

Discussion 

 Yagamuchi and Brenner (1997) found two 5HT1AR genes, α and β, in fugu, 

suggesting that a duplication event for the 5HT1AR took place at least within the 

superclass Ostheichthyes.  Recently, two 5HT1AR sequences, a and b, were also identified 

in zebrafish (Norton et al., 2008).  These two 5HT1AR genes are found in two different 

chromosomes in the zebrafish genome, 1Aa in chromosome 8 and 1Ab in chromosome 

21.  Although it is possible that all teleosts have two 5HT1AR genes, my degenerate 

primers pulled out only one 5HT1AR gene from B. gauderio.  The partial sequence of B. 

gauderio 5HT1AR has the highest aa identity and is phylogenetically most closely related 

to zebrafish 1Ab.  The fact that B. gauderio 1A, zebrafish 1Ab, barramundi 1A, tilapia 

1A, and fugu 1Aβ form a robust clade (bootstrap value = 100%) at the exclusion of 

zebrafish 1Aa and fugu 1Aα, suggests that most of the identified teleost 5HT1AR genes 

are structurally and functionally like the b/β gene.  As suggested by Yamaguchi and 

Brenner (1997), the two teleost 5HT1AR homologs might have different functions.  In 

mammals, the 5HT1AR is localized as a somatodendritic autoreceptor in serotonergic 

neurons of the raphe nuclei, and as a post-synaptic receptor in neurons receiving 

serotonergic input in cortical and limbic areas (Hensler 2003).  Their diverging 

pharmacological and regulatory characteristics suggest that the autoreceptor and 
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postsynaptic receptor may represent distinct subtypes of the 5HT1AR (Clarke et al., 1996; 

Newman-Tancredi et al., 2009).  In zebrafish, although both the 1Aa and 1Ab receptors 

co-localized in several brain regions, 1Ab, but not 1Aa, was present as an autoreceptor in 

the caudal zone of the periventricular hypothalamus (Hc), and as both autoreceptor and 

postsynaptic receptor in the ventral nucleus of the ventral telencephalic area (Vv) and the 

ventral zone of the periventricular hypothalamus (Hv) (Norton et al., 2008).  The 

anatomical segregation of 1Aa and 1Ab distribution in the zebrafish brain could reflect 

functional segregation for 5HT1AR in teleost brains. 

  In addition to anatomical and functional divergence of the the autoreceptor and 

postsynaptic receptor classes, the 5HT1AR is coupled to different G proteins depending 

on where in the brain it is expressed (Albert and Tiberi, 2001; Hensler, 2003).  This 

regional specificity confers additional plasticity to the 5HT1AR because the type of G 

protein determines the intracellular signaling pathway activated or inhibited by the 

ligand.  In addition, the receptor is susceptible to desensitization via phosphorylation by 

various kinases (Nebigil et al., 1995; Raymond, 1991; Raymond and Olsen, 1994).  

Several phosphorylation sites at the receptor’s i2 and i3 have been shown to interfere 

with 5HT1AR coupling to specific G proteins (Albert and Tiberi, 2001).  Protein kinase C 

inhibits 5HT1AR activation of phospholipase C (PLC), but has no effect on the receptor’s 

inhibition of adenylyl cyclase, whereas PKA enhances the effects of PKC 

phosphorylation (Albert and Tiberi, 2001).  I found PKC target residues in the i2 and i3 

and a PKA target residue in the i3 of B. gauderio 5HT1AR.  Furthermore, one of the PKC 

sites, Thr127, is only found in B. gauderio 5HT1A.  Therefore, B. gauderio 5HT1AR may 
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display more plasticity on its regulatory mechanisms than observed from mammalian 

5HT1AR. 

Human 5HT1AR has two putative calmodulin (CaM) binding sites on the i3 

(Turner et al., 2004) a 1-8-14 motif located at aa 185-199 in the i3C region and a 1-12 

motif located at aa 84-107 in the i3N region, also present in B. gauderio.  In humans, the 

CaM binding sites overlap various PKC target sites (Turner et al., 2004).  In B. gauderio, 

putative CaM binding sites likewise overlap putative PKC target sites located at Thr98, 

Thr102, Thr127 and Ser186 in the i3 region (Table 3 and Figure 2).  CaM binding 

antagonizes PKC phosphorylation at the receptor’s i3, and is an essential step for receptor 

internalization and activation of the extracellular-signal regulated kinase (ERK)/MAPK 

pathway (Turner et al., 2004).  Therefore, CaM binding prevents PKC-driven receptor 

desensitization and commits the receptor to the endocytic-ERK/MAPK activation 

pathway (Turner et al., 2004).  PKC phosphorylation prevents CaM binding and receptor 

endocytosis (Turner et al., 2004) and inhibits 5HT1AR activation of phospholipase C 

(PLC), but does not prevent 5HT1AR inhibition of adenylyl cyclase (Lembo and Albert, 

1995).  Presumably, B. gauderio’s 5HT1AR is also subjected to the antagonistic 

regulatory effects of CaM and PKC. 

Activation of the 5HT1AR in the hypothalamus activates release of the 

melanocortin ACTH (Serres et al., 2000).  In B. gauderio, the enhanced EODs observed 

during social interactions can be replicated by activation of the central serotonergic 

system and by the direct application of melanocortins to the electric organ (Markham et 

al., 2009; Markham and Stoddard, 2005).  In addition, during intense social competition 

conditions, B. gauderio males display higher levels of circulating GCs (Salazar and 
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Stoddard, 2009).  Increasing levels of GCs decrease 5HT1AR mRNA (Kroeze and Roth, 

1998), via the repressive action at GRE sites in the promoter region of 5HT1AR (Ou et al., 

2001; Wissink et al., 2000).  I found a putative GRE site on the promoter region of 

zebrafish 1Ab gene in chromosome 21 but not in the promoter region of the zebrafish 

1Aa gene in chromosome 8.  As discussed earlier, the zebrafish 1Ab in the hypothalamus 

displayed two patterns, it localized as an autoreceptor in the Hc and as a heteroreceptor in 

the Hv (Norton et al., 2008).  B. gauderio’s 5HT1AR is more closely related and has the 

highest identity to zebrafish 1Ab.  Therefore, it is possible for B. gauderio 5HT1AR’s 

transcription to be regulated by GCs.  Thus GCs could exert negative feedback on 

5HT1AR expression by downregulating transcription, thereby suppressing aggression 

through action at 5HT1A autoreceptors (de Boer et al., 2000), and reducing electric signal 

magnitude through action at 5HT1A post-synaptic receptors (Allee et al., 2008).  I 

currently do not know whether 5HT1AR is found as an autoreceptor and postsynaptic 

receptor in the hypothalamus of B. gauderio.  Pharmacological study of electric signal 

control in B. gauderio indicated that the EOD waveform is under tonic negative control 

by a postsynaptic 1A receptor (Allee et al., 2008).  I did not find ARE in the promoter 

region of 5HT1AR.  Nevertheless, in B. gauderio females, androgen implants enhanced 

the effect of 5-HT on their EODs (Allee et al., 2009).  Therefore, androgens’ regulation 

of the EOD could take place at downstream targets.  

In several mammals, the location of 5HT1AR mRNA matches the location of its 

binding sites (Barnes and Sharp, 1999).  A study is in progress to localize 5HT1AR 

receptor transcripts in brains of B. gauderio following behavioral interactions to identify 
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the relationship between serotonin receptor expression, social dominance, androgen and 

GC levels. 
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Table 1. List of sequences from the NCBI database used for primer design, multiple 
alignment, and phylogenetic analysis 
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Table 2. Degenerate primers 
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Table 3. Putative phosphorylation sites identified by NetPhosK in the partial sequence for 

B. gauderio’s 5HT1AR. 

 

NP = not present in alignment, alignment gap; NS = no sequence available for this 

region; grey squares = aa does not correspond to a phosphorylation site; squares with 

diagonal line = scores < 0.4. Only putative kinases with scores > 0.75 are shown. 
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Figure 1. Putative 5HT1AR-like PCR products from B. gauderio. Double bands represent 

two potential homologous receptors.  A. PCR products were visualized in 1% agarose 

gel. Lanes: 1. 100bp ladder, 2. Female-1 brain cDNA, 3. Female-1 brain cDNA from 

DNase-treated RNA, 4. Female-2 brain cDNA, 5. Female-2 brain cDNA from DNase-

treated RNA, 6. Male-1 brain cDNA, 7. Male-1 brain cDNA from DNase-treated 

RNA.Table 2. See table 2 for information on degenerate primers used for the 

amplification of target genes.  B. Gel-extracted bands 1 and 2. Lanes: 1. 100bp ladder, 2. 

Female-2 brain cDNA band 1, 3. Female-2 brain cDNA band 2, 4. Female-2 brain cDNA 

band 1 from DNase-treated RNA, 5. Female-2 brain cDNA band 2 from DNase-treated 

RNA, 6. Male-1 brain cDNA band 1, 7. Male-1 brain cDNA band 2, 8. (-) PCR control. 
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Figure 2. Unlike most vertebrates, the teleost fish zebrafish and fugu have two 5HT1AR 

isoforms. Yet, in the majority of teleost fish, including B. gauderio, sequenced for 

5HT1AR, only the b/β isoform has been isolated. Shown is the alignment of 5HT1AR 

deduced aa sequences for B. gauderio, zebrafish, goldfish, barramundi, mozambique 

tilapia, japanese puffer fish, and gulf toadfish (Table 1) using ClustalW.  Grey shaded 

areas = 7TMs, black diamonds = glycosylation sites, arrows = disulfide bond sites, black 

squares = important residues for the receptor’s binding specificity, open rectangles = 

phosphorylation sites identified in the fugu, open triangles = identified phosphorylation 

sites in B. gauderio. 
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Figure 3. B. gauderio 5HT1AR forms a highly-supported clade with zebrafish 1Ab, 

barramundi 1A, mozambique tilapia 1A, and fugu 1Aβ.  Shown is a phylogenetic 

analysis using the Neighbor Joining method of piscine 5HT1ARs, using the same aa 

sequences (Table 1) from the alignment in Figure 2. Only bootstrap values higher than 

50% are reported.  
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Figure 4. Glucocorticosteroids can regulate 5HT1AR expression in teleost fish. Shown is a 

putative GRE upstream of 5HT1AR sequence in zebrafish’s chromosome 21.  Nucleotides 

in bold text are regions for zinc finger binding of dimerized GR. 
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Chapter V 

 

Conclusions 
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Ontogeny of my dissertation research: the functional and mechanistic 

underpinnings of electrocommunication signals 

Before I started my dissertation research, it was known that the EOD waveforms 

of B. gauderio were tremendously plastic.  During the breeding season, B. gauderio’s 

EOD waveforms become sexually-dimorphic, with males having longer and larger EODs.  

In both sexes, the EOD also changes from day to night following a circadian rhythm 

(Franchina & Stoddard 1998; Stoddard et al. 2007).  These circadian modulations are also 

sexually-dimorphic, with male EODs undergoing larger circadian changes (Stoddard et 

al. 2007).  Investigating this level of plasticity has been the basis of many studies, 

particularly understanding the adaptive significance of these changes and the 

physiological mechanisms underlying the ability to rapidly modulate the EOD.   

Franchina et al. (2001) also discovered that the EOD waveform of B. gauderio 

could be affected by social stimulation or social deprivation.  Specifically, isolated males 

displayed smaller EOD amplitudes and durations and their EOD circadian change was 

suppressed when compared to the EODs of males sampled directly from the breeding 

pools.  The introduction of a social companion into the tank of an isolated male restored 

the reduced EOD waveform to normal levels, and male companions typically had a 

stronger and faster restorative effect (Franchina et al. 2001).  These results were the first 

to suggest that the sexual dimorphic EOD waveform and the enhanced EOD circadian 

rhythm of male B. gauderio play a role in male-male social interactions. Alternative 

explanations of these results are also possible, however.  An isolated male could be 

enhancing its EOD waveform more when presented with another male simply because 
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the male EOD is larger than a female and thus a stronger stimulus, or to make his EOD 

more conspicuous than that of a competing male to attract potential mates.  

My dissertation research has attempted to advance our knowledge on the 

functional role of the EOD plasticity observed in male B. gauderio and the physiological 

mechanisms that regulate the enhanced male EOD.  To evaluate whether social 

competition drives the EOD changes observed after an isolated male was paired with a 

social male, in Chapter II, I manipulated the number of males in a breeding group that 

also contained females and juveniles to create conditions that exemplified low (fewer 

males in a group) and high (more males in a group) levels of competition.  Not only were 

these conditions more natural than simply pairing two males in a tank, the design of this 

study allowed me to show that EOD changes observed after an isolated male was paired 

with a social companion were part of a continuum of social responsiveness.  Isolated 

males enhanced their EODs once they were moved into social groups with low 

competition, but enhanced their EODs even more if placed in social groups with high 

competition.  As such, Chapter II of my dissertation research has revealed that social 

competition drives some of the plasticity observed in the electrocommunication signals of 

male B. gauderio, specifically the enhancement of the EOD amplitude.   

In this study, I measured circulating plasma levels of androgens and cortisol in 

male and female B. gauderio for the first time, and demonstrated that changes in the EOD 

of males due to changes in their social environment were paralleled by changes in the 

levels of androgens and cortisol.  This study complements other studies in weakly electric 

fish showing that steroid hormones can act directly act the electrocytes, thus changing the 

EOD waveform (Bass & Volman 1987; Bass & Zakon 2005).  While I was conducting 
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this dissertation research, additional studies from Dr. Stoddard’s research group 

demonstrated that androgens masculinize the EODs of B. gauderio females (Allee et al. 

2009), and that activation of the hypothalamic-pituitary-interrenal (HPI) axis at various 

levels mimicked the EOD enhancement that males displayed when paired with another 

male (Markham et al. 2009).  Of particular relevance, melanocortins were found to act 

directly on the electrocytes to mediate the enhanced male EOD (Markham & Stoddard 

2005).  Although the connection between the EOD enhancement and androgens is now 

much clearer, considerable work needs to be done to determine the connection between 

cortisol and EOD changes observed in males.  In addition, the results from my study also 

revealed that EOD changes observed during these social manipulations were sensitive to 

a male’s past social experience. This is a fascinating finding that begs for further 

investigation.  It will be interesting to determine if this result is consistent under other 

social conditions and to investigate the adaptive significance of social history in this 

species. 

  In Chapter III, I evaluated the role of the male’s EOD enhancement from the 

perspective of its information content.  If indeed, as my previous study showed, the 

enhanced male EOD was responsive to changes in the number of male competitors, I 

hypothesized that information about a male’s attributes as a competitor could be encoded 

in the EOD waveform parameters that change as a function of the changing social 

environment.  Body size seemed the obvious candidate since is the best predictor of 

strength and fighting ability.  Males might minimize expensive physical confrontation if 

they could use the size of another male’s EOD to decide whether or not to challenge him 

or engage in direct physical aggression.   
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The results of this chapter demonstrated that while body size is the best 

determinant of dominance in male B. gauderio, EOD amplitude can only reliably predict 

body condition, a composite of length and weight, for fish in good body condition.  As 

such, EOD amplitude can act as an honest signal of a male’s resource holding potential 

(RHP) under some circumstances.  I also examined what behaviors and sequences of 

behaviors predicted dominance, as defined by the ability of a fish to dominate physical 

interactions by exclusively performing offensive behaviors. My results showed that larger 

males always won contests with smaller males.  When I placed two males in a tank 

simultaneously and allowed them to interact physically, the larger male consistently bit 

and chased the smaller male, causing the smaller male to retreat by swimming away from 

his attacker.  In addition, I determined that the dominant fish could be identified within 

the first 10 minutes of the interaction as the first male to perform a bite, a forward chase, 

or a reverse chase.  This information is valuable for examining the relationship between 

social dominance and levels of steroid hormones and the activity of the serotonergic 

system.  For instance, future studies could use this experimental approach to design 

studies to test for differences in circulating levels of androgens and cortisol between 

dominant and subordinate B. gauderio males or to test for the effects of inhibiting the 

activity of these steroid hormones and serotonin on dominance status (i.e., display of 

offensive behaviors within the first 10 min of male-male interactions). 

One of the limitations of my current experimental system, when investigating the 

relationship between social dominance and the electrocommunication system of 

B.gauderio, is my inability to record the EOD waveform changes of both the resident and 

intruder males simultaneously.  Overcoming the methodological hurdles of measuring 
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two fish simultaneously while also knowing which signal comes from which fish, is not 

trivial.  To determine whether being a resident or an intruder had an effect on the EOD 

changes observed after two males of different body sizes are paired, I conducted a small 

experiment where I recorded the EOD waveforms of six pairs of  males 24h before and 

24h after they were paired, with no physical contact, in separate EOD machine tanks.  

Then, I re-paired them and once again recorded their EOD waveforms before and after 

the re-pairing, but I reversed their prior roles as resident and intruder (Figure 1).  I was 

particularly interested to see if perceived ownership of a territory (the recording tank) 

affected day-night changes in EOD parameters.  I used the nonparametric Wilcoxon 

signed-rank test to compare the percent differences in the EOD between individual 

residents and their corresponding intruders and within individuals as they changed roles 

from being residents to being intruders.  Interestingly, resident males tended, albeit non-

significantly, to either increase their EOD amplitude or keep it unchanged and decrease 

their EOD τP2, while intruder males followed the opposite trend, thus decreasing their 

EOD amplitude and increasing their EOD τP2 (Figure 1A).  I also compared individual 

males as they went from being residents in their tank to being intruders in the other 

male’s tank.  Although I found no significant differences between the resident role versus 

the intruder role across day and night EOD amplitude and night EOD τP2 (Figure 1B), I 

did find a significant difference between the resident role and the intruder role in their 

relative change in day τP2 (Figure 1B).  As residents, males tended to increase EOD 

amplitude and decrease τP2, but as intruders they reversed this pattern, decreasing 

amplitude and increasing τP2 (Figure 1B).  Although these findings suggest that residency 

affects changes in male B. gauderio’s EOD waveforms due to social and territorial 
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asymmetries in male-male interaction, the sample size was very small and the trends are 

not statistically significant.  Future studies should evaluate this relationship in more detail 

with a larger sample size. 

In B. gauderio males, the enhanced EODs observed during social interactions can 

be replicated by activation of the central serotonergic system and by the direct application 

of melanocortins to the electric organ (Allee et al. 2008; Markham et al. 2009; Markham 

& Stoddard 2005; Stoddard et al. 2003).  Specifically, activation of the serotonin receptor 

1A (5HT1AR) reduces the EOD waveform, while activation of the serotonin receptor 2A 

(5HT2AR) enhances the EOD waveform to levels observed after male-interaction or 

serotonin treatment (Allee et al. 2008).  These findings suggest that the 5HT1AR and 

5HT2AR are present in the brain of B. gauderio and that these receptors play a role in the 

regulation of the enhanced EOD displayed by males during male-male interactions. To 

further characterize the mechanisms underlying the relationship between male-male 

interactions and EOD plasticity, I undertook the molecular characterization of the 

serotonin receptors that had been pharmacologically linked to the regulation of the EOD 

waveform.  In chapter IV, I successfully identified the expression of the 5HT1AR, a key 

player in the regulation of aggressive behavior, in the brains of B. gauderio.  The 

sequence of B. gauderio’s 5HT1AR is homologous to the b/β isoform found in other 

teleost fish.  I also identified putative target regulatory regions in the 5HT1AR of B. 

gauderio and other teleost fish, highlighting the presence of additional plasticity at 

5HT1AR in teleost fish.  
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Figure 1.  EOD changes varied with role as resident or intruder.  A.  Resident males 

usually increased EOD amplitude and decreased τP2 while intruder males generally did 

the opposite, decreasing amplitude and increasing τP2 (Wilcoxon signed-ranks test: day 

amplitude z=-1.99, P=0.06, night amplitude z=-1.57, P=0.16, day τP2 z=-1.78, P=0.09, 

night τP2 z=-1.55, P=0.31).  B.  A comparison of individual males as they changed 

roles from being residents in their own tanks to being intruders in the other males’ 

tanks.  Overall, resident males tended to increase their amplitude and decrease their 

τP2, but did just the reverse when they became intruders (Wilcoxon signed-ranks test: 

day amplitude z=-1.36, P=0.22, night amplitude z=-1.36, P=0.22, day τP2 z=-2.20, 

P=0.03, night τP2 z=-0.94, P=0.44).  Resident-intruder pairs are connected with a solid 

line.  Outside of the cluster of data points, we depict the medians (horizontal lines) and 

the 25th and 75th percentiles (low and high boundaries of the vertical lines). 
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Proposed model for the regulation of male EOD plasticity 

Here I propose a model for the regulation of the male EOD plasticity observed in 

the context of social interactions of B.gauderio that I base on my experimental results and 

other related studies.  The model is based on a modified version of the Energetics-

Hormone Vocalization (EHV) model first proposed by Emerson (2001).  Under the EHV 

model, an extension of the Challenge Hypothesis (Wingfield et al. 1990), the energetic 

costs of communication are included to highlight the connection between mating success, 

body condition and steroid hormone regulation (Emerson 2001).  In insects, frogs, birds 

and fish, males invest a tremendous amount of their metabolic energy in the production 

of signals to attract females (Bucher et al. 1982; Eberhardt 1994; Hoback & Wagner 

1997; Kavanagh 1987; Prestwich et al. 1989; Prestwich & Walker 1981; Taigen & Wells 

1985).  In male frogs, for instance, the EHV model predicts changes in corticosterone and 

androgen levels observed during the transition from calling to noncalling.  Increasing 

levels of androgens in noncalling males presumably facilitate vocalization.  These calling 

males are also predicted to display an increase in corticosterone levels to match the 

increase in vocalization output.  Presumably, this increase in corticosterone levels 

releases energy stores that can allow these calling males to sustain the energetic demands 

associated with this behavior.  Accordingly, this surge in glucocorticoids has a negative 

effect on circulating levels of androgens leading to their reduction and the associated 

decline in vocalization, which switches the males back to a noncalling state.   

With the EHV model in mind, I propose that the serotonergic system might act as 

the neuronal connection between androgens and glucocorticoids and their dual-role in 

regulating communication signals.  The Energetics-Steroids-Serotonergic Signaling 
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(ESSS) model draws from previous studies showing that the EOD of male B. gauderio is 

energetically expensive and a condition-dependent trait (Salazar & Stoddard 2008) and 

that the serotonergic system is involved in the regulation of the EOD via the opposing 

actions of a 5HT1A-like receptor (which reduces the EOD) and a 5HT2A-like receptor 

(which enhances the EOD) (Allee et al. 2008).  These findings together with the results 

from Chapter II suggest that if the three manipulations that I applied (isolation, Social 2 

and Social 6) are seen as a continuum (from social suppression to maximum social 

stimulation), I can predict that an isolated male will decrease its EOD circadian 

modulation and androgen levels since the enhanced social EOD is energetically 

expensive to generate and there is no reproductive gain (Figure 2).  Once an isolated male 

transitions to a social environment with plenty of mating opportunities, androgen levels 

and the EOD circadian modulation should increase accordingly.   

Cortisol and EOD amplitude covary positively as the number of competing males 

increases, suggesting that cortisol may be a modulator of the EOD amplitude.  Cortisol 

may support the enhanced EOD by increasing availability of glucose and lipids to support 

energetically costly signaling and swimming behaviors associated with territoriality and 

courtship (Landys et al. 2006; Sapolsky et al. 2000).  As previously mentioned, activating 

the HPI axis enhances the EOD amplitude and τP2 in B. gauderio males (Markham et al. 

2009; Markham & Stoddard 2005).  Although cortisol could directly drive the 

enhancement of the EOD amplitude, the melanocortins adrenocorticotropic hormone 

(ACTH) and/or alpha-melanocyte-stimulating hormone (α-MSH) can increase both the 

EOD waveform and cortisol levels independently within the same period of time.  
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Therefore, the relationship that I observed between cortisol and EOD amplitude could be 

mediated by the effect of social experience on melanocortins.   

This model also predicts that expression of the 5HT2A-like receptors should be 

suppressed during social isolation while the expression of 5HT1A-like receptors should be 

enhanced.  Increasing androgen levels increases the expression of 5HT2 receptors (Birger 

et al. 2003; Fink et al. 1999; Sumner & Fink 1998; Zhang et al. 1999) and increasing 

glucocorticosteroid levels decreases the expression of 5HT1A receptors but has no effect 

on the expression of 5HT2 receptors (Chalmers et al. 1993; Kuroda et al. 1994).  

Therefore, expression of the 5HT2-like receptors should increase under social 

competition conditions, while the expression of post-synaptic 5HT1A-like receptors 

should decrease (Figure 2).  Finally, when these males transition to a high competition 

environment with relative fewer available mates, androgen levels remain the same but 

cortisol levels increase to support the energetic demands associated with a further 

enhancement of the EOD circadian modulation.  Accordingly, the expression of the 

5HT2-like receptors should further increase while the expression of the 5HT1A-like 

autoreceptors should decrease (Figure 2).  

In this model, I suggest that androgen levels need to increase to a breeding 

baseline and remain there for cortisol to have an effect on EOD amplitude.  Therefore, 

both an increase in androgen and cortisol levels is necessary to enhance the EOD 

amplitude.  Future studies will characterize the expression pattern of the serotonin 

receptors 5HT1AR and 5HT2R in the brains of male and female B. gauderio as they relate 

to plasma steroid levels and social status.  I have already started a study evaluating the 

distribution of the 5HT1AR in the brains of male and female B. gauderio.  I have 
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generated a working riboprobe using the 5HT1AR partial sequence that I cloned (Chapter 

IV). I also measured the circulating levels of androgens and cortisol and videotaped 

staged dyadic agonistic interactions of all the males in this study. This project has three 

objectives: 1) to generate a brain atlas for this gymnotiform fish species, 2) to describe 

sex-specific serotonin receptors distribution, and 3) to determine the relationship between 

levels of steroid hormones, social status and serotonin receptor distribution.  My 

preliminary results show positive binding for my 5HT1AR riboprobe, and so far, I have 

identified expression of 5HT1AR in few brain regions involved in the regulation of 

aggressive behaviors, such as amygdala-like nuclei (i.e., central and ventral subdivisions 

of the ventral telencephalon) and the dorsal raphe nucleus. 

My dissertation research sets the stage for many interesting and challenging future 

research questions to further our understanding on the function and the regulation of 

electrocommunication signal plasticity.  For instance, the proposed ESSS model suggests 

a synergy between androgens and cortisol on the regulation of the EOD amplitude during 

changes in social competition.  In addition, EOD amplitude and τP2 can change 

independently from each other, yet the mechanisms underlying the regulation of one 

parameter versus the other are not known.  From a technical perspective, the development 

of a two-fish EOD Machine recording system and signal playbacks will provide the tools 

to further investigate the function of the EOD amplitude and τP2 during male-male 

interactions as well as during male-female courtship.  It is my goal that my contribution 

to this field will inspire many other graduate students to complete this puzzle. 
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Figure 2.  The Energetics-Steroids-Serotonergic Signaling (ESSS) model based on the 

Challenge Hypothesis (Wingfield et al. 1990) and modified from the Energetics-

Hormone Vocalization (EHV) model (Emerson 2001; Leary et al. 2004).  The ESSS 

model superimposes results from previous studies on the energetic costs of the EOD and 

the EOD regulatory function of the serotonergic system onto the data from my 

dissertation research.  I propose that the opposing actions of two types of serotonin 

receptors explained the directionality of the modulation on the EOD by steroid hormones 

as a function of the organism’s body condition.  VO2 EOD stands for the oxygen 

consumption associated with the generation of the EOD. 
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