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ABSTRACT OF THE DISSERTATION 

SEISMIC PERFORMANCE OF HYBRID FIBER REINFORCED POLYMER-

CONCRETE PIER COLUMNS 

by 

Yilei Shi 

Florida International University, 2009 

Miami, Florida 

Professor Amir Mirmiran, Major Professor 

As part of a multi-university research program funded by NSF, a comprehensive 

experimental and analytical study of seismic behavior of hybrid fiber reinforced polymer 

(FRP)-concrete column is presented in this dissertation. Experimental investigation 

includes cyclic tests of six large-scale concrete-filled FRP tube (CFFT) and RC columns 

followed by monotonic flexural tests, a nondestructive evaluation of damage using 

ultrasonic pulse velocity in between the two test sets and tension tests of sixty-five FRP 

coupons. Two analytical models using ANSYS and OpenSees were developed and 

favorably verified against both cyclic and monotonic flexural tests. The results of the two 

methods were compared. A parametric study was also carried out to investigate the effect 

of three main parameters on primary seismic response measures. The responses of typical 

CFFT columns to three representative earthquake records were also investigated. 

The study shows that only specimens with carbon FRP cracked, whereas 

specimens with glass or hybrid FRP did not show any visible cracks throughout cyclic 

tests. Further monotonic flexural tests showed that carbon specimens both experienced 
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flexural cracks in tension and crumpling in compression. Glass or hybrid specimens, on 

the other hand, all showed local buckling of FRP tubes. 

Compared with conventional RC columns, CFFT column possesses higher 

flexural strength and energy dissipation with an extended plastic hinge region. Among all 

CFFT columns, the hybrid lay-up demonstrated the highest flexural strength and initial 

stiffness, mainly because of its high reinforcement index and FRP/concrete stiffness ratio, 

respectively. Moreover, at the same drift ratio, the hybrid lay-up was also considered as 

the best in term of energy dissipation. Specimens with glassfiber tubes, on the other hand, 

exhibited the highest ductility due to better flexibility of glass FRP composites. 

Furthermore, ductility of CFFTs showed a strong correlation with the rupture strain of 

FRP. 

Parametric study further showed that different FRP architecture and rebar types 

may lead to different failure modes for CFFT columns. Transient analysis of strong 

ground motions showed that the column with off-axis nonlinear filament-wound glass 

FRP tube exhibited a superior seismic performance to all other CFFTs. Moreover, higher 

FRP reinforcement ratios may lead to a brittle system failure, while a well-engineered 

FRP reinforcement configuration may significantly enhance the seismic performance of 

CFFT columns. 



 

TABLE OF CONTENTS 

LIST OF TABLES ______________________________________________________ xi 

LIST OF FIGURES ____________________________________________________ xiii 

1        INTRODUCTION _________________________________________________ 1 

1.1 RESEARCH BACKGROUND ____________________________________ 1 
1.2 PROBLEM STATEMENT________________________________________ 2 
1.3 RESEARCH OBJECTIVES _______________________________________ 5 
1.4 RESEARCH APPORACHES______________________________________ 6 

1.4.1 Experimental Studies __________________________________________ 6 
1.4.2 Analytical Studies _____________________________________________ 7 

1.5 DISSERTATION STRUCTURE ___________________________________ 7 

2        LITERATURE REVIEW ____________________________________________ 9 

2.1 OVERVIEW OF CFFT___________________________________________ 9 
2.2 AXIAL COMPRESSION BEHAVIOR OF CFFT_____________________ 10 
2.3 CONSTITUTIVE MODELING OF CFFT___________________________ 12 
2.4 AXIAL-FLEXURAL BEHAVIOR OF CFFT ________________________ 13 
2.5 CYCLIC BEHAVIOR OF CFFT __________________________________ 17 

3        CYCLIC TEST ___________________________________________________ 21 

3.1 TEST MATRIX AND SPECIMEN PREPARATION __________________ 21 
3.1.1 Test Matrix _________________________________________________ 21 
3.1.2 Specimen Preparation _________________________________________ 21 

3.1.2.1 Preparation of FRP Tubes__________________________________ 21 
3.1.2.2 Specimen Reinforcement __________________________________ 22 
3.1.2.3 Column-Footing and Column-Head Connections _______________ 23 
3.1.2.4 Formwork and Concrete Casting ____________________________ 24 
3.1.2.5 Epoxy Injection__________________________________________ 25 

3.2 TEST SETUP AND INSTRUMENTATION_________________________ 26 
3.2.1 Test Setup __________________________________________________ 26 
3.2.2 Instrumentation ______________________________________________ 27 

3.3 TEST PROCEDURE AND OBSERVATIONS _______________________ 28 
3.3.1 Test Procedure ______________________________________________ 28 
3.3.2 Test Observations ____________________________________________ 29 

3.3.2.1 Observed Cracks in FRP Tubes _____________________________ 29 
3.3.2.2 Observed Cracks in Footings _______________________________ 30 
3.3.2.3 Observed Tube-Footing Separation and FRP Tube Slippage_______ 31 
3.3.2.4 Observed Failure Modes___________________________________ 32 

3.4 TEST RESULTS AND DISCUSSIONS ____________________________ 32 
3.4.1 Stability of Axial Load ________________________________________ 32 

 vii



 

3.4.2 Hysteretic Response __________________________________________ 33 
3.4.3 Response Envelope ___________________________________________ 34 
3.4.4 Energy Dissipation ___________________________________________ 35 
3.4.5 Performance Measures of Stiffness, Ductility and Pinching ___________ 35 
3.4.6 Load-Strain Response and Plastic Hinge Length ____________________ 36 
3.4.7 Deflected Shapes and Normalized Moment – Curvature Responses _____ 37 
3.4.8 Tube-Footing Slippage ________________________________________ 38 
3.4.9 Residual Deflections and Residual Loads__________________________ 39 
3.4.10 Combined Shear and Flexural Effects of CFFT Columns _____________ 40 

3.5 CONCLUSIONS_______________________________________________ 40 

4        MONOTONIC FLEXURAL TEST ___________________________________ 88 

4.1 INTRODUCTION _____________________________________________ 88 
4.2 SPECIMEN CONDITIONS ______________________________________ 88 
4.3 TEST SETUP AND INSTRUMENTATION_________________________ 89 

4.3.1 Test Setup __________________________________________________ 89 
4.3.2 Instrumentation ______________________________________________ 89 

4.4 TEST PROCEDURE AND OBSERVATIONS _______________________ 90 
4.4.1 Test Procedure ______________________________________________ 90 
4.4.2 Test Observations ____________________________________________ 91 

4.4.2.1 Specimen RC ___________________________________________ 91 
4.4.2.2 Specimen Y_____________________________________________ 91 
4.4.2.3 Specimen G_____________________________________________ 91 
4.4.2.4 Specimen H_____________________________________________ 92 
4.4.2.5 Specimen SC____________________________________________ 92 
4.4.2.6 Specimen LC____________________________________________ 93 

4.5 TEST RESULTS AND DISCUSSIONS ____________________________ 93 
4.5.1 Moment and Shear at Peak Loads________________________________ 93 
4.5.2 Normalized Moment–Deflection Responses _______________________ 94 
4.5.3 Maximum Normalized Moment _________________________________ 95 
4.5.4 Energy Dissipation ___________________________________________ 95 
4.5.5 Normalized Initial Stiffness ____________________________________ 96 
4.5.6 Ductility ___________________________________________________ 97 
4.5.7 Normalized Moment–Strain Responses ___________________________ 97 
4.5.8 Normalized Moment–Curvature Responses ________________________ 98 
4.5.9 Normalized Moment and Reinforcement Index Relationship __________ 98 
4.5.10 Influence of Shear Span Ratio and Reinforcement Index on Flexural and 
Shear Behavior ___________________________________________________ 100 

4.6 CONCLUSIONS______________________________________________ 102 

5        COUPON TEST _________________________________________________ 135 

5.1 TEST MATRIX AND SPECIMEN PREPARATION _________________ 135 
5.1.1 Test Matrix ________________________________________________ 135 

 viii



 

5.1.2 Specimen Preparation ________________________________________ 136 
5.2 TEST SETUP AND INSTRUMENTATION________________________ 136 

5.2.1 Test Setup _________________________________________________ 136 
5.2.2 Instrumentation _____________________________________________ 136 

5.3 TEST PROCEDURE AND OBSERVATIONS ______________________ 137 
5.3.1 Test Procedure _____________________________________________ 137 
5.3.2 Test Observations ___________________________________________ 137 

5.4 TEST RESULTS AND DISCUSSIONS ___________________________ 139 
5.4.1 Stress-Strain Behavior _______________________________________ 139 
5.4.2 Comparison of Mechanical Properties with Manufacturer Data _______ 141 

5.4.2.1 Manufacturer Data ______________________________________ 141 
5.4.2.2 GH and GL Coupons ____________________________________ 141 
5.4.2.3 HC and HG Coupons ____________________________________ 143 
5.4.2.4 HH and HL Coupons ____________________________________ 143 

5.4.3 Comparison with Large-Scale Specimens ________________________ 144 
5.5 CONCLUSIONS______________________________________________ 145 

6        NONDESTRUCTIVE DAMAGE ASSESSMENT ______________________ 175 

6.1 INTRODUCTION ____________________________________________ 175 
6.2 EXPERIMENTAL WORK______________________________________ 175 

6.2.1 Test Setup and Instrumentation ________________________________ 175 
6.2.2 Test Procedure and Observations _______________________________ 177 
6.2.3 Test Results and Discussion ___________________________________ 177 

6.2.3.1 Velocities in Different Directions for Each Specimen ___________ 177 
6.2.3.2 Velocities in Different Specimens for Specific Sensing Directions _ 180 
6.2.3.3 Relationships of Average Velocity with Strength Index and FRP 
Rupture Strain __________________________________________________ 181 

6.3 CONCLUSIONS______________________________________________ 182 

7        ANALYTICAL MODELING ______________________________________ 209 

7.1 INTRODUCTION ____________________________________________ 209 
7.2 Hysteretic Modeling using OpenSees______________________________ 210 

7.2.1 Element Descriptions ________________________________________ 210 
7.2.2 Concrete Material Modeling___________________________________ 210 
7.2.3 Steel Material Modeling ______________________________________ 211 
7.2.4 FRP Material Modeling ______________________________________ 212 
7.2.5 Structural Modeling _________________________________________ 212 

7.3 Hysteretic Modeling using ANSYS _______________________________ 213 
7.3.1 Extended Equivalent I-Section with Virtual Materials_______________ 213 
7.3.2 Element Descriptions ________________________________________ 214 
7.3.3 Virtual Material Modeling ____________________________________ 215 
7.3.4 Structural Modeling _________________________________________ 216 

7.4 Model Validation _____________________________________________ 216 

 ix



 

 x

7.5 PARAMETRIC STUDY _______________________________________ 218 
7.5.1 Parameters_________________________________________________ 218 
7.5.2 Response Measures__________________________________________ 219 
7.5.3 Parameter Impact on Response Measure _________________________ 221 
7.5.4 Re-evaluation of Total Reinforcement Index versus Normalized Moment 222 

7.6 PERFORMANCE UNDER STRONG GROUND MOTIONS __________ 222 

8        CONCLUSIONS AND FUTURE RESEARCH ________________________ 285 

8.1 SUMMARY _________________________________________________ 285 
8.2 CONCLUSIONS______________________________________________ 286 
8.3 FUTURE RESEARCH _________________________________________ 288 

LIST OF REFERENCES _______________________________________________ 289 

 



 

LIST OF TABLES 

Table 3.1 Test Matrix........................................................................................................ 43 

Table 3.2 Properties of FRP Tube or Laminates............................................................... 43 

Table 3.3 Properties of Sikadur 35 and Sikadur 300 ........................................................ 44 

Table 3.4 Statistical Variables for the Applied Axial Forces ........................................... 44 

Table 3.5 Comparison of System Performance Measures ................................................ 45 

Table 3.6 Performance Measures of Stiffness, Ductility and Pinching of CFFT Specimens
.................................................................................................................................. 46 

Table 3.7 Comparison of Plastic Hinge Lengths .............................................................. 47 

Table 4.1 Specimen Conditions after Cyclic Tests......................................................... 104 

Table 4.2 Loading Patterns for Test Specimens ............................................................. 104 

Table 4.3 Comparison of Monotonic and Cyclic Tests Moments .................................. 105 

Table 4.4 Comparison of Normalized Initial Stiffness from Monotonic and Cyclic Tests
................................................................................................................................. 106 

Table 4.5 Comparison of Ductility of CFFT Specimens from Monotonic and Cyclic Tests
................................................................................................................................. 106 

Table 4.6 FRP and Steel Strength and Stiffness Indices with Maximum Normalized 
Moments and Shear Forces..................................................................................... 107 

Table 4.7 Comparison of Reinforcement Indices and Normalized Moments of Specimens 
H and SC with Beams B6* and S-5** .................................................................... 108 

Table 5.1 Test Matrix of Coupon Specimens ................................................................. 147 

Table 5.2 Tensile Test Failure Codes (ASTM D 3039).................................................. 148 

Table 5.3 Stress-Strain Data of CH Coupons ................................................................. 148 

Table 5.4 Stress-Strain Data of CL Coupons.................................................................. 149 

Table 5.5 Stress-Strain Data of GH Coupons ................................................................. 150 

Table 5.6 Stress-Strain Data of GL Coupons.................................................................. 151 

Table 5.7 Stress-Strain Data of HC Coupons ................................................................. 152 

Table 5.8 Stress-Strain Data of HG Coupons ................................................................. 152 

Table 5.9 Stress-Strain Data of HH Coupons ................................................................. 153 

Table 5.10 Stress-Strain Data of HL Coupons................................................................ 153 

Table 5.11 Manufacturer Data for Tensile Properties of FRP Materials........................ 154 

Table 5.12 Manufacturer Data for Resins....................................................................... 154 

 xi



 

 xii

Table 5.13 Comparison with Manufacturer Data for GH Coupons................................ 155 

Table 5.14 Comparison with Manufacturer Data for GL Coupons ................................ 155 

Table 5.15 Comparison with Manufacturer Data for HC Coupons ................................ 156 

Table 5.16 Comparison with Manufacturer Data for HG Coupons................................ 156 

Table 5.17 Comparison with Manufacturer Data for HH Coupons................................ 156 

Table 5.18 Comparison with Manufacturer Data for HL Coupons ................................ 157 

Table 5.19 Comparison of Ultimate Tensile Strains....................................................... 157 

Table 5.20 Manufacturer Data for Compressive Properties of FRP Materials............... 158 

Table 5.21 Manufacturer Data for Ultimate Compressive Strains of HL....................... 158 

Table 5.22 Comparison of Ultimate Compressive Strains.............................................. 159 

Table 7.1 Parameter Matrix ............................................................................................ 226 

 



 

LIST OF FIGURES 

Figure 3.1 Sonotubes and Filament-Wound FRP Tube .................................................... 48 

Figure 3.2 Preparation of Carbon FRP Tube in the Laboratory ....................................... 48 

Figure 3.3 Cured Laboratory-Made FRP Tubes: (a) GFRP Tube for Specimen G, (b) 
CFRP Tube for Specimen SC, and (c) CFRP Tube for Specimen LC and Hybrid 
CFRP/GFRP Tube for Specimen H .......................................................................... 48 

Figure 3.4 Column Reinforcement of Specimen RC Embedded into the Footing ........... 49 

Figure 3.5 Column Reinforcement of Specimen LC ........................................................ 49 

Figure 3.6 Column Reinforcement Details for Specimen RC and CFFT Specimens....... 50 

Figure 3.7 Embedment of FRP Tube and Column Reinforcement into the Footing of 
Specimen Y............................................................................................................... 51 

Figure 3.8 Overall Embedment into the Column Heads and Footings of Specimens G, Y 
and RC ...................................................................................................................... 51 

Figure 3.9 Formworks of Specimens H and SC ............................................................... 52 

Figure 3.10 Template and Formwork for Specimen LC................................................... 52 

Figure 3.11 Casting of Concrete ....................................................................................... 53 

Figure 3.12 Specimens H and SC Right after Concrete Casting ...................................... 53 

Figure 3.13 Five Short Column Specimens after De-Molding ......................................... 54 

Figure 3.14 Specimen LC and Pedestal after De-Molding ............................................... 54 

Figure 3.15 Small Pockets of Concrete Void along the Top of Specimen RC................. 55 

Figure 3.16 Epoxy Injection Port...................................................................................... 55 

Figure 3.17 Port Layout for Epoxy Injection.................................................................... 55 

Figure 3.18 Epoxy Injection Process ................................................................................ 56 

Figure 3.19 Specimen after Epoxy Injection .................................................................... 56 

Figure 3.20 Test Setup for Specimen RC ......................................................................... 57 

Figure 3.21 Test Setup for Specimen Y............................................................................ 57 

Figure 3.22 Test Setup for Specimen G............................................................................ 58 

Figure 3.23 Test Setup for Specimen H............................................................................ 58 

Figure 3.24 Test Setup for Specimen SC.......................................................................... 59 

Figure 3.25 Test Setup for Specimen LC.......................................................................... 59 

Figure 3.26 Post-Tensioning of Specimen G to Simulate Axial Force............................. 60 

Figure 3.27 Instrumentation Plan: (a) Short Specimens and (b) Specimen LC................ 61 

 xiii



 

Figure 3.28 Instrumentation Legend................................................................................. 62 

Figure 3.29 Loading Regime of Cyclic Tests ................................................................... 62 

Figure 3.30 Bottom Fiber Crack in Specimen SC ............................................................ 63 

Figure 3.31 Top Fiber Crack in Specimen SC.................................................................. 63 

Figure 3.32 Bottom Fiber Crack in Specimen LC ............................................................ 64 

Figure 3.33 Top Fiber Crack in Specimen LC.................................................................. 64 

Figure 3.34 Footing Cracks in Specimen Y...................................................................... 65 

Figure 3.35 Footing Cracks in Specimen G...................................................................... 65 

Figure 3.36 Concrete Spalling in Footing of Specimen H................................................ 66 

Figure 3.37 Footing Cracks in Specimen H...................................................................... 66 

Figure 3.38 Separation between FRP Tube and RC Footing in Specimen Y................... 67 

Figure 3.39 Splitting of Concrete Footing in Specimen H ............................................... 67 

Figure 3.40 Tube Embedment Intact for Specimen G until =3 ...................................... 68 

Figure 3.41 Tube Slippage in Specimen G ....................................................................... 68 

Figure 3.42 Specimen RC at  of 10 without Axial Load ................................................ 69 

Figure 3.43 Specimen Y at  of 8..................................................................................... 69 

Figure 3.44 Specimen G at  of 10................................................................................... 70 

Figure 3.45 Specimen H at  of 6..................................................................................... 70 

Figure 3.46 Specimen SC at  of 5................................................................................... 71 

Figure 3.47 Specimen LC at  of 6................................................................................... 71 

Figure 3.48 Axial Load Fluctuations for Specimen LC.................................................... 72 

Figure 3.49 Hysteretic Normalized Moment – Deflection Response of Specimen RC.... 72 

Figure 3.50 Hysteretic Normalized Moment – Deflection Response of Specimen Y ...... 73 

Figure 3.51 Hysteretic Normalized Moment – Deflection Response of Specimen G ...... 73 

Figure 3.52 Hysteretic Normalized Moment – Deflection Response of Specimen H ...... 74 

Figure 3.53 Hysteretic Normalized Moment – Deflection Response of Specimen SC.... 74 

Figure 3.54 Hysteretic Normalized Moment – Deflection Response of Specimen LC.... 75 

Figure 3.55 Normalized Moment – Drift Ratio Envelope Curves of All Specimens ....... 75 

Figure 3.56 Normalized Cumulative Dissipated Energy versus Drift Ratio .................... 76 

Figure 3.57 Longitudinal Rebar Strain Profile of Specimen Y During Push ................... 76 

Figure 3.58 Longitudinal Rebar Strain Profile of Specimen G During Push ................... 77 

 xiv



 

Figure 3.59 Longitudinal Rebar Strain Profile of Specimen H During Pull..................... 77 

Figure 3.60 Longitudinal Rebar Strain Profile of Specimen SC During Pull................... 78 

Figure 3.61 Longitudinal Rebar Strain Profile of Specimen LC During Pull .................. 78 

Figure 3.62 Plastic Hinge Length versus Normalized Moments ...................................... 79 

Figure 3.63 Deflected Shapes of Specimen RC at Various Ductility Levels ................... 79 

Figure 3.64 Deflected Shapes of Specimen Y at Various Ductility Levels...................... 80 

Figure 3.65 Deflected Shapes of Specimen G at Various Ductility Levels...................... 80 

Figure 3.66 Deflected Shapes of Specimen H at Various Ductility Levels...................... 81 

Figure 3.67 Deflected Shapes of Specimen SC at Various Ductility Levels.................... 81 

Figure 3.68 Deflected Shapes of Specimen LC at Various Ductility Levels.................... 82 

Figure 3.69 Normalized Moment – Curvature Responses................................................ 82 

Figure 3.70 Tube-Footing Slippage in Specimen Y ......................................................... 83 

Figure 3.71 Tube-Footing Slippage in Specimen G ......................................................... 83 

Figure 3.72 Tube-Footing Slippage in Specimen H ......................................................... 84 

Figure 3.73 Tube-Footing Slippage in Specimen SC ....................................................... 84 

Figure 3.74 Tube-Footing Slippage in Specimen LC ....................................................... 85 

Figure 3.75 Comparison of Tube-Footing Slippages on Top for Specimens SC, H, Y, and 
LC ............................................................................................................................. 85 

Figure 3.76 Comparison of Tube-Footing Net Slippages on Top for Specimens SC, H, Y, 
and LC....................................................................................................................... 86 

Figure 3.77 Average Absolute Residual Drift Ratios of CFFT Specimens at Zero Loads86 

Figure 3.78 Percentage of Total Residual Normalized Moment at Zero Deflection to 
Total Maximum Normalized Moment at Each Ductility Factor for CFFT Specimens
................................................................................................................................... 87 

Figure 4.1 Monotonic Test Setup for Specimen RC....................................................... 109 

Figure 4.2 Monotonic Test Setup for Specimen Y ......................................................... 109 

Figure 4.3 Monotonic Test Setup for Specimen G ......................................................... 110 

Figure 4.4 Monotonic Test set-up for Specimen H......................................................... 110 

Figure 4.5 Monotonic Test set-up for Specimen SC....................................................... 111 

Figure 4.6 Monotonic Test set-up for Specimen LC ...................................................... 111 

Figure 4.7 Instrumentation Plan Type I .......................................................................... 112 

Figure 4.8 Instrumentation Plan Type II (for Specimens RC and G) ............................. 112 

Figure 4.9 Instrumentation List for Monotonic Tests..................................................... 113 

 xv



 

Figure 4.10 Flexural Cracks of Specimen RC at Mid-Span ........................................... 113 

Figure 4.11 Shear Cracks of Specimen RC in Shear-Flexural Region Close to Column 
Head ........................................................................................................................ 114 

Figure 4.12 East View of Final Cracking Pattern Close to Footing in Specimen RC .... 114 

Figure 4.13 West View of Final Cracking Pattern Close to Footing in Specimen RC... 115 

Figure 4.14 Crushing of Specimen Y at the Top (East View) ........................................ 115 

Figure 4.15 Crushing of Specimen Y at the Top (West View)....................................... 116 

Figure 4.16 Cracking Pattern of Specimen G (East View)............................................. 116 

Figure 4.17 Cracking Pattern of Specimen G (West View)............................................ 117 

Figure 4.18 Close up View of Specimen G (West View)............................................... 117 

Figure 4.19 Overall View of Specimen G (West View)................................................. 118 

Figure 4.20 Direct Loading on Specimen H Using Neoprene Pads ............................... 118 

Figure 4.21 Crumpling Crack in Specimen H at the Top (East View) ........................... 119 

Figure 4.22 Crumpling Crack in Specimen H at the Top (West View).......................... 119 

Figure 4.23 Close up of Crumpling Crack at the Top of Specimen H............................ 120 

Figure 4.24 Flexural Crack in Specimen SC (West View)............................................. 120 

Figure 4.25 Crumpling Crack in Specimen SC (West View)......................................... 121 

Figure 4.26 Flexural Crack in Specimen LC (East View) .............................................. 121 

Figure 4.27 Flexural Crack Extended to Mid-Span in Specimen LC (West View) ....... 122 

Figure 4.28 Top Crumpling Crack in Specimen LC (East View)................................... 122 

Figure 4.29 Top Crumpling Crack in Specimen LC (West View) ................................. 123 

Figure 4.30 Final Crack Pattern in Specimen LC (East View)....................................... 123 

Figure 4.31 Final Unzipping Crack in Specimen LC (West View)................................ 124 

Figure 4.32 Normalized Mid-Span Moment – Deflection Response of Specimen RC.. 124 

Figure 4.33 Normalized Mid-Span Moment – Deflection Response of Specimen Y .... 125 

Figure 4.34 Normalized Mid-Span Moment – Deflection Response of Specimen G .... 125 

Figure 4.35 Normalized Mid-Span Moment – Deflection Response of Specimen H .... 126 

Figure 4.36 Normalized Mid-Span Moment – Deflection Response of Specimen SC .. 126 

Figure 4.37 Normalized Mid-Span Moment – Deflection Response of Specimen LC .. 127 

Figure 4.38 Normalized Mid-Span Moment – Deflection Responses of All Specimens127 

Figure 4.39 Normalized Cumulative Dissipated Energy – Deflection Responses ......... 128 

Figure 4.40 Normalized Initial Stiffness versus Stiffness Ratio (FRP/Concrete) .......... 128 

 xvi



 

Figure 4.41 CFFT Ductility versus FRP Ultimate Tensile Strain................................... 129 

Figure 4.42 Normalized Mid-Span Moment – Strain Response of Specimen RC ......... 129 

Figure 4.43 Normalized Mid-Span Moment – Strain Response of Specimen Y............ 130 

Figure 4.44 Normalized Mid-Span Moment – Strain Response of Specimen G............ 130 

Figure 4.45 Normalized Mid-Span Moment – Strain Response of Specimen H............ 131 

Figure 4.46 Normalized Mid-Span Moment – Strain Response of Specimen SC.......... 131 

Figure 4.47 Normalized Mid-Span Moment – Strain Response of Specimen LC.......... 132 

Figure 4.48 Normalized Mid-Span Moment – Strain Responses of All Specimens ...... 132 

Figure 4.49 Normalized Moment – Curvature Responses.............................................. 133 

Figure 4.50 Maximum Normalized Moments versus Reinforcement Strength Indices . 134 

Figure 4.51 Normalized Shear Forces versus FRP Hoop Strength Index....................... 134 

Figure 5.1 Typical Coupon Test Setup ........................................................................... 160 

Figure 5.2 Coupon Instrumentation and Data Acquisition System ................................ 160 

Figure 5.3 Failure Mode of CH-I-1: LGM...................................................................... 161 

Figure 5.4 Failure Mode of CH-I-2: LWV ..................................................................... 161 

Figure 5.5 Failure Mode of CH-I-3: LWV ..................................................................... 161 

Figure 5.6 Failure Mode of CH-I-4: LWV ..................................................................... 161 

Figure 5.7 Failure Mode of CH-I-5: LWB...................................................................... 161 

Figure 5.8 Failure Mode of CH-II-2: LWB .................................................................... 161 

Figure 5.9 Failure Mode of CH-II-3: LVV..................................................................... 162 

Figure 5.10 Failure Mode of CH-II-4: LVV................................................................... 162 

Figure 5.11 Failure Mode of CH-II-5: OIB .................................................................... 162 

Figure 5.12 Failure Mode of CH-II-6: LWT .................................................................. 162 

Figure 5.13 Failure Mode of CH-II-7: LGM .................................................................. 162 

Figure 5.14 Failure Mode of CH-II-8: OGM.................................................................. 162 

Figure 5.15 Failure Mode of CL-I-1: LWB.................................................................... 163 

Figure 5.16 Failure Mode of CL-I-2: LAB..................................................................... 163 

Figure 5.17 Failure Mode of CL-I-3: LIB ...................................................................... 163 

Figure 5.18 Failure Mode of CL-I-4: LIB ...................................................................... 163 

Figure 5.19 Failure Mode of CL-I-5: LWT .................................................................... 163 

Figure 5.20 Failure Mode of CL-II-1: LAB.................................................................... 163 

Figure 5.21 Failure Mode of CL-II-2: LGM................................................................... 164 

 xvii



 

Figure 5.22 Failure Mode of CL-II-3: LAB.................................................................... 164 

Figure 5.23 Failure Mode of CL-II-4: LAB.................................................................... 164 

Figure 5.24 Failure Mode of CL-II-5: LAT.................................................................... 164 

Figure 5.25 Failure Mode of GH-I-1: LGM ................................................................... 164 

Figure 5.26 Failure Mode of GH-I-2: LGM ................................................................... 164 

Figure 5.27 Failure Mode of GH-I-3: OWT ................................................................... 165 

Figure 5.28 Failure Mode of GH-III-1: LGM................................................................. 165 

Figure 5.29 Failure Mode of GH-III-2: LWT................................................................. 165 

Figure 5.30 Failure Mode of GH-III-3: LWT................................................................. 165 

Figure 5.31 Failure Mode of GH-III-4: LAB.................................................................. 165 

Figure 5.32 Failure Mode of GH-III-5: OAT ................................................................. 165 

Figure 5.33 Failure Mode of GL-I-1: AAT .................................................................... 166 

Figure 5.34 Failure Mode of GL-I-2: OAB .................................................................... 166 

Figure 5.35 Failure Mode of GL-I-3: LAB..................................................................... 166 

Figure 5.36 Failure Mode of GL-I-1’: LAT.................................................................... 166 

Figure 5.37 Failure Mode of GL-I-2’: LAB ................................................................... 166 

Figure 5.38 Failure Mode of GL-I-3’: LAB ................................................................... 166 

Figure 5.39 Failure Mode of GL-I-4’: LGM .................................................................. 167 

Figure 5.40 Failure Mode of GL-I-5’: LAT.................................................................... 167 

Figure 5.41 Failure Mode of GL-III-1: LGM ................................................................. 167 

Figure 5.42 Failure Mode of GL-III-2: LGM ................................................................. 167 

Figure 5.43 Failure Mode of GL-III-3: LIT.................................................................... 167 

Figure 5.44 Failure Mode of GL-III-1’: LGM................................................................ 167 

Figure 5.45 Failure Mode of GL-III-3’: LAB................................................................. 168 

Figure 5.46 Failure Mode of GL-III-5’: LAB................................................................. 168 

Figure 5.47 Failure Mode of HC-I-1: LGM.................................................................... 168 

Figure 5.48 Failure Mode of HC-I-2: SGM.................................................................... 168 

Figure 5.49 Failure Mode of HC-I-3: SGM.................................................................... 168 

Figure 5.50 Failure Mode of HC-I-4: SGM.................................................................... 168 

Figure 5.51 Failure Mode of HC-I-5: SGM.................................................................... 169 

Figure 5.52 Failure Mode of HG-I-1: SGM.................................................................... 169 

Figure 5.53 Failure Mode of HG-I-2: SGM.................................................................... 169 

 xviii



 

Figure 5.54 Failure Mode of HG-I-3: SGM.................................................................... 169 

Figure 5.55 Failure Mode of HG-I-4: SGM.................................................................... 169 

Figure 5.56 Failure Mode of HG-I-5: SGM.................................................................... 169 

Figure 5.57 Failure Mode of HH-V-1: LAT................................................................... 170 

Figure 5.58 Failure Mode of HH-V-2: LAT................................................................... 170 

Figure 5.59 Failure Mode of HH-V-3: LAT................................................................... 170 

Figure 5.60 Failure Mode of HH-V-4: LGM.................................................................. 170 

Figure 5.61 Failure Mode of HL-V-1: LGM .................................................................. 170 

Figure 5.62 Failure Mode of HL-V-2: LWB .................................................................. 170 

Figure 5.63 Failure Mode of HL-V-3: LWB .................................................................. 171 

Figure 5.64 Failure Mode of HL-V-4: LGM .................................................................. 171 

Figure 5.65 Tensile Stress-Strain Responses of CH Coupons........................................ 171 

Figure 5.66 Tensile Stress-Strain Responses of CL Coupons ........................................ 172 

Figure 5.67 Tensile Stress-Strain Responses of GH Coupons........................................ 172 

Figure 5.68 Tensile Stress-Strain Responses of GL Coupons ........................................ 173 

Figure 5.69 Tensile Stress-Strain Responses of HH Coupons........................................ 173 

Figure 5.70 Tensile Stress-Strain Responses of HL Coupons ........................................ 174 

Figure 6.1 Block Diagram of Ultrasonic Equipment ...................................................... 184 

Figure 6.2 Two B225 Pulse and Receiver Transducers.................................................. 184 

Figure 6.3 Test Set-up and Instrumentation.................................................................... 185 

Figure 6.4 Velocity Measurements in the B, L, R and T Directions for Each Specimen188 

Figure 6.5 Velocity Measurements in the H, LR, RL and V Directions for Each Specimen
................................................................................................................................. 191 

Figure 6.6 Average Velocity Measurements in the Two Direction Groups for Each 
Specimen................................................................................................................. 194 

Figure 6.7 Velocity Measurements in the L, R and V Directions for Each Specimen ... 197 

Figure 6.8 Velocity Measurements in the B, H and T Directions for Each Specimen ... 200 

Figure 6.9 Velocity Measurements in the B, L, R and T Directions for All Specimens 203 

Figure 6.10 Velocity Measurements in the H, LR, RL and V Directions for All 
Specimens ............................................................................................................... 206 

Figure 6.11 Average Velocity Measurements in Various Directions for All Specimens207 

Figure 6.12 Average Velocity Measurements versus Strength Index............................. 207 

Figure 6.13 Average Velocity Measurements versus FRP Rupture Strain..................... 208 

 xix



 

Figure 7.1 Typical Hysteretic Stress-Strain Curve of Concrete Model .......................... 227 

Figure 7.2 Stress-Strain Relationship of MMFX and Grade 60 Steel (Sumpter et al. 2009)
................................................................................................................................. 227 

Figure 7.3 Typical Hysteretic Stress-Strain Response of Steel Reinforcement.............. 228 

Figure 7.4 Typical Hysteretic Stress-Strain Response of FRP Tube for Column Y....... 228 

Figure 7.5 Analytical Model for CFFT and RC Columns .............................................. 229 

Figure 7.6 Illustration of the Extended Equivalent Section Concept.............................. 230 

Figure 7.7 Transformation from Moment-Curvature Response to Stress-Strain Input .. 231 

Figure 7.8 BEAM188 Geometry (ANSYS 11.0, 2007).................................................. 231 

Figure 7.9 Geometry of I-Shape Cross Section (ANSYS 11.0, 2007) ........................... 232 

Figure 7.10 Geometry of MASS21 Element (ANSYS 11.0, 2007)................................ 232 

Figure 7.11 Nonlinear Plastic Material Model with Multilinear Kinematic Hardening 
(ANSYS 11.0, 2007)............................................................................................... 233 

Figure 7.12 Simplified Column Model for ANSYS ....................................................... 233 

Figure 7.13 Moment-Deflection Hysteretic Simulation of Specimen RC...................... 234 

Figure 7.14 Moment-Deflection Hysteretic Simulation of Specimen Y ........................ 234 

Figure 7.15 Moment-Deflection Hysteretic Simulation of Specimen G ........................ 235 

Figure 7.16 Moment-Deflection Hysteretic Simulation of Specimen H ........................ 235 

Figure 7.17 Moment-Deflection Hysteretic Simulation of Specimen SC ...................... 236 

Figure 7.18 Moment-Deflection Hysteretic Simulation of Specimen LC ...................... 236 

Figure 7.19 Moment-Deflection Push-Over Simulation of Specimen RC ..................... 237 

Figure 7.20 Moment-Deflection Push-Over Simulation of Specimen Y........................ 237 

Figure 7.21 Moment-Deflection Push-Over Simulation of Specimen G........................ 238 

Figure 7.22 Moment-Deflection Push-Over Simulation of Specimen H........................ 238 

Figure 7.23 Moment-Deflection Push-Over Simulation of Specimen SC...................... 239 

Figure 7.24 Moment-Deflection Push-Over Simulation of Specimen LC ..................... 239 

Figure 7.25 Monotonic Flexural Simulation of Specimen RC by OpenSees ................. 240 

Figure 7.26 Monotonic Flexural Simulation of Specimen Y by OpenSees.................... 240 

Figure 7.27 Monotonic Flexural Simulation of Specimen G by OpenSees.................... 241 

Figure 7.28 Monotonic Flexural Simulation of Specimen H by OpenSees.................... 241 

Figure 7.29 Monotonic Flexural Simulation of Specimen SC by OpenSees.................. 242 

Figure 7.30 Monotonic Flexural Simulation of Specimen LC by OpenSees ................. 242 

 xx



 

Figure 7.31 Effect of Steel Reinforcement on Hysteretic Response of Column Y ........ 243 

Figure 7.32 Effect of L/Do Ratio on Hysteretic Response of Column Y........................ 243 

Figure 7.33 Effect of FRP Tube Thickness on Hysteretic Response of Column Y........ 244 

Figure 7.34 Effect of Steel Reinforcement on Response Envelope of Column Y.......... 244 

Figure 7.35 Effect of L/Do Ratio on Response Envelope of Column Y ......................... 245 

Figure 7.36 Effect of FRP Tube Thickness on Response Envelope of Column Y......... 245 

Figure 7.37 Effect of Steel Reinforcement on Normalized Cumulative Dissipated Energy 
of Column Y ........................................................................................................... 246 

Figure 7.38 Effect of L/Do Ratio on Normalized Cumulative Dissipated Energy of 
Column Y................................................................................................................ 246 

Figure 7.39 Effect of FRP Tube Thickness on Normalized Cumulative Dissipated Energy 
of Column Y ........................................................................................................... 247 

Figure 7.40 Effect of Steel Reinforcement on Hysteretic Response of Column G ........ 247 

Figure 7.41 Effect of L/Do Ratio on Hysteretic Response of Column G........................ 248 

Figure 7.42 Effect of FRP Tube Thickness on Hysteretic Response of Column G........ 248 

Figure 7.43 Effect of Steel Reinforcement on Response Envelope of Column G.......... 249 

Figure 7.44 Effect of L/Do Ratio on Response Envelope of Column G ......................... 249 

Figure 7.45 Effect of FRP Tube Thickness on Response Envelope of Column G......... 250 

Figure 7.46 Effect of Steel Reinforcement on Normalized Cumulative Dissipated Energy 
of Column G ........................................................................................................... 250 

Figure 7.47 Effect of L/Do Ratio on Normalized Cumulative Dissipated Energy of 
Column G................................................................................................................ 251 

Figure 7.48 Effect of FRP Tube Thickness on Normalized Cumulative Dissipated Energy 
of Column G ........................................................................................................... 251 

Figure 7.49 Effect of Steel Reinforcement on Hysteretic Response of Column H ........ 252 

Figure 7.50 Effect of L/Do Ratio on Hysteretic Response of Column H........................ 252 

Figure 7.51 Effect of FRP Tube Thickness on Hysteretic Response of Column H........ 253 

Figure 7.52 Effect of Steel Reinforcement on Response Envelope of Column H.......... 253 

Figure 7.53 Effect of L/Do Ratio on Response Envelope of Column H ......................... 254 

Figure 7.54 Effect of FRP Tube Thickness on Response Envelope of Column H......... 254 

Figure 7.55 Effect of Steel Reinforcement on Normalized Cumulative Dissipated Energy 
of Column H ........................................................................................................... 255 

Figure 7.56 Effect of L/Do Ratio on Normalized Cumulative Dissipated Energy of 
Column H................................................................................................................ 255 

 xxi



 

Figure 7.57 Effect of FRP Tube Thickness on Normalized Cumulative Dissipated Energy 
of Column H ........................................................................................................... 256 

Figure 7.58 Effect of Steel Reinforcement on Hysteretic Response of Column C......... 256 

Figure 7.59 Effect of L/Do Ratio on Hysteretic Response of Column C ........................ 257 

Figure 7.60 Effect of FRP Tube Thickness on Hysteretic Response of Column C........ 257 

Figure 7.61 Effect of Steel Reinforcement on Response Envelope of Column C.......... 258 

Figure 7.62 Effect of L/Do Ratio on Response Envelope of Column C ......................... 258 

Figure 7.63 Effect of FRP Tube Thickness on Response Envelope of Column C ......... 259 

Figure 7.64 Effect of Steel Reinforcement on Normalized Cumulative Dissipated Energy 
of Column C............................................................................................................ 259 

Figure 7.65 Effect of L/Do Ratio on Normalized Cumulative Dissipated Energy of 
Column C................................................................................................................ 260 

Figure 7.66 Effect of FRP Tube Thickness on Normalized Cumulative Dissipated Energy 
of Column C............................................................................................................ 260 

Figure 7.67 Effect of Steel Reinforcement Strength Index on Maximum Total Normalized 
Moment ................................................................................................................... 261 

Figure 7.68 Effect of L/Do Ratio on Maximum Total Normalized Moment .................. 261 

Figure 7.69 Effect of FRP Strength Index on Maximum Total Normalized Moment.... 262 

Figure 7.70 Effect of Steel Reinforcement Strength Index on Maximum Drift Ratio ... 262 

Figure 7.71 Effect of L/Do Ratio on Maximum Drift Ratio............................................ 263 

Figure 7.72 Effect of FRP Strength Index on Maximum Drift Ratio ............................. 263 

Figure 7.73 Effect of Steel Reinforcement Strength Index on Maximum Normalized 
Cumulative Dissipated Energy ............................................................................... 264 

Figure 7.74 Effect of L/Do Ratio on Maximum Normalized Cumulative Dissipated 
Energy ..................................................................................................................... 264 

Figure 7.75 Effect of FRP Strength Index on Maximum Normalized Cumulative 
Dissipated Energy ................................................................................................... 265 

Figure 7.76 Effect of Total Reinforcement Index on Maximum Total Normalized 
Moment of Column Y............................................................................................. 265 

Figure 7.77 Effect of Total Reinforcement Index on Maximum Total Normalized 
Moment of Column G............................................................................................. 266 

Figure 7.78 Effect of Total Reinforcement Index on Maximum Total Normalized 
Moment of Column H............................................................................................. 266 

Figure 7.79 Effect of Total Reinforcement Index on Maximum Total Normalized 
Moment of Column C ............................................................................................. 267 

 xxii



 

Figure 7.80 Total Reinforcement Index versus Maximum Total Normalized Moment . 267 

Figure 7.81 Tabas Earthquake Ground Acceleration Time History ............................... 268 

Figure 7.82 Sylmar Earthquake Ground Acceleration Time History ............................. 268 

Figure 7.83 Llollelo Earthquake Ground Acceleration Time History ............................ 269 

Figure 7.84 Column Base Shear Force Response Time Histories of Columns Y and G for 
Tabas Earthquake.................................................................................................... 269 

Figure 7.85 Column Base Shear Force Response Time Histories of Columns G and H for 
Tabas Earthquake.................................................................................................... 270 

Figure 7.86 Column Base Shear Force Response Time Histories of Columns Y and C for 
Tabas Earthquake.................................................................................................... 270 

Figure 7.87 Column Base Shear Force Response Time Histories of All Columns for 
Tabas Earthquake.................................................................................................... 271 

Figure 7.88 Column Displacement Response Time Histories of Columns Y and G for 
Tabas Earthquake.................................................................................................... 271 

Figure 7.89 Column Displacement Response Time Histories of Columns G and H for 
Tabas Earthquake.................................................................................................... 272 

Figure 7.90 Column Displacement Response Time Histories of Columns Y and C for 
Tabas Earthquake.................................................................................................... 272 

Figure 7.91 Column Displacement Response Time Histories of All Columns for Tabas 
Earthquake .............................................................................................................. 273 

Figure 7.92 Column Base Shear Force Response Time Histories of Columns Y and G for 
Sylmar Earthquake.................................................................................................. 273 

Figure 7.93 Column Base Shear Force Response Time Histories of Columns G, H, and C 
for Sylmar Earthquake ............................................................................................ 274 

Figure 7.94 Column Base Shear Force Response Time Histories of All Columns for 
Sylmar Earthquake.................................................................................................. 274 

Figure 7.95 Column Displacement Response Time Histories of Columns Y and G for 
Sylmar Earthquake.................................................................................................. 275 

Figure 7.96 Column Displacement Response Time Histories of Columns G, H, and C for 
Sylmar Earthquake.................................................................................................. 275 

Figure 7.97 Column Displacement Response Time Histories of All Columns for Sylmar 
Earthquake .............................................................................................................. 276 

Figure 7.98 Column Base Shear Force Response Time Histories of Columns Y and G for 
Llollelo Earthquake................................................................................................. 276 

Figure 7.99 Column Base Shear Force Response Time Histories of Columns G and H for 
Llollelo Earthquake................................................................................................. 277 

 xxiii



 

 xxiv

Figure 7.100 Column Base Shear Force Response Time Histories of Columns Y and C 
for Llollelo Earthquake ........................................................................................... 277 

Figure 7.101 Column Base Shear Force Response Time Histories of All Columns for 
Llollelo Earthquake................................................................................................. 278 

Figure 7.102 Column Displacement Response Time Histories of Columns Y and G for 
Llollelo Earthquake................................................................................................. 278 

Figure 7.103 Column Displacement Response Time Histories of Columns G and H for 
Llollelo Earthquake................................................................................................. 279 

Figure 7.104 Column Displacement Response Time Histories of Columns Y and C for 
Llollelo Earthquake................................................................................................. 279 

Figure 7.105 Column Displacement Response Time Histories of All Columns for Llollelo 
Earthquake .............................................................................................................. 280 

Figure 7.106 Column Base Shear Force Response Time Histories of Column Y for All 
Earthquakes............................................................................................................. 280 

Figure 7.107 Column Base Shear Force Response Time Histories of Column G for All 
Earthquakes............................................................................................................. 281 

Figure 7.108 Column Base Shear Force Response Time Histories of Column H for All 
Earthquakes............................................................................................................. 281 

Figure 7.109 Column Base Shear Force Response Time Histories of Column C for All 
Earthquakes............................................................................................................. 282 

Figure 7.110 Column Displacement Response Time Histories of Column Y for All 
Earthquakes............................................................................................................. 282 

Figure 7.111 Column Displacement Response Time Histories of Column G for All 
Earthquakes............................................................................................................. 283 

Figure 7.112 Column Displacement Response Time Histories of Column H for All 
Earthquakes............................................................................................................. 283 

Figure 7.113 Column Displacement Response Time Histories of Column C for All 
Earthquakes............................................................................................................. 284 

 



 

CHAPTER 1 INTRODUCTION 

1.1 RESEARCH BACKGROUND 

Since their early use in defense industry in the 1940’s, applications of fiber 

reinforced polymer (FRP) composites have been extended to other industries, including 

aerospace, marine, automobiles, electrical transmission, oil and gas, and most recently, 

civil infrastructure. Rehabilitation of existing bridges constitutes the largest usage of FRP 

in infrastructure, while concrete-filled FRP tube (CFFT) may be the most promising 

application of FRP in new bridge construction. 

The concept of CFFT was in fact an extension of concrete-filled steel tube 

(CFST). The merits of CFST lie in the full section confinement for concrete core 

provided by the steel tube and that, in return, concrete core prevents buckling of the tube. 

This enhances stiffness, strength, ductility and stability of the system. However, high 

modulus of elasticity of steel may cause its premature buckling, since a large portion of 

axial loads is sustained by the tube. Moreover, due to a higher Poisson’s ratio of steel 

relative to concrete at the early stages of loading, the initial separation of the two 

materials may delay the activation of confinement mechanism. Finally and most 

obviously, maintenance of steel tube against corrosion in harsh environments could be 

expensive (Mirmiran et al. 1997a). 

These problems may be eliminated by replacing steel with FRP composites. CFFT 

features better corrosion resistance with higher strength-to-weight and stiffness-to-weight 

ratios than conventional reinforced concrete (RC) columns. As a stay-in-place formwork 

and protective jacket for concrete, FRP tube helps speed up the construction, eliminates 
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the installation and removal of traditional formwork, and reduces maintenance 

requirements for steel protection by extending the service life of the column. Moreover, 

FRP tube provides better confinement of concrete core, and enhances its ductility. In 

seismic regions, if designed properly, concrete core can remain contained within the tube 

throughout the ground shake, which is essential in surviving a large earthquake. 

In recent years, the American Concrete Institute (ACI) Committee 440 has 

published design guidelines for internal FRP reinforcement (440.1R-06), externally 

bonded FRP reinforcement for strengthening (440.2R-08), prestressed FRP reinforcement 

(440.4R-04), and test methods for FRP products (440.3R-04). However, no guideline 

exists for structurally integrated stay-in-place FRP formwork. The principal reason lies in 

the limited experimental database in this field, which makes it difficult to develop design 

and construction guidelines and specifications for the proposed structural system. 

1.2 PROBLEM STATEMENT 

Significant advances have been made during the last decade in the field of CFFTs. 

However, there still remain several issues, among which, seismic performance of hybrid 

FRP-concrete columns deserves further consideration. Similar approach could be taken 

for blast and other man-made hazards. 

Previous studies have demonstrated both feasibility and advantages of CFFT for 

seismic applications at the member level (Shao et al. 2005b) and the connection level 

(Zhu et al. 2006a). Despite better understanding of cyclic behavior of CFFTs, engineers 

may still hesitate in applying CFFTs for life safety purposes. Since FRP materials 

enhance design optimization through controlling of FRP laminate architecture, it may be 
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questioned as to which FRP composite is the most appropriate for CFFTs in seismic 

prone regions. In particular, the following two issues must be addressed: 

Issue 1: In choosing the proper fiber, some studies consider the fact that carbon 

FRP (CFRP) possesses a higher strength than glass FRP (GFRP), while others prefer 

GFRP for its better flexibility, which may translate into higher ductility. It has also been 

suggested that a hybrid lay-up with CFRP in the axial direction and GFRP in the hoop 

direction may combine the advantages of both materials. Thus, the question is which FRP 

lay-up provides the best seismic performance for CFFT columns. 

Issue 2: Earlier beam-column static tests showed that it would be better to design 

FRP-concrete as an over-reinforced section for its lower deflection (Mirmiran et al. 

2000b). However, recent cyclic tests at the member level (Shao et al. 2005b) indicate a 

brittle failure for over-reinforced members, and a ductile failure for under-reinforced 

members. More recent cyclic tests at the connection level (Zhu et al. 2006a) did not 

consider the issue of FRP reinforcement ratio or index. Hence, the question is what FRP 

reinforcement ratio or index provides the optimum performance for CFFT columns in 

seismic regions. 

Shao and Mirmiran (2005) carried out four-point bending tests of six CFFT 

specimens as simple-span beam-columns under constant axial loading and pseudo-static 

reverse cyclic lateral loading. The tests focused on the cyclic behavior influenced by pure 

flexure and axial load in the critical section within the constant moment region. Zhu et al. 

(2006a) tested three CFFT and one RC cantilever columns under constant axial loading 

and pseudo-static reverse cyclic lateral loading. The tests revealed cyclic behavior at the 

column base under the influences of both shear and flexure. The shear span-to-depth 
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ratios of the specimens for the above two test series were 3.3 and 7.5, respectively. 

Hence, it is imperative to further compare the combined shear and moment effects on 

CFFTs with short and long shear spans, as identified in the following issue: 

Issue 3: The question is how different CFFT columns perform with short and long 

shear spans under combined moment and shear effects. 

Another major question for engineers is the concern about non-ductile shear 

failure of short CFFT bridge substructures. A recent study by Ahmad et al. (2008a) 

reported that even with a shear span-to-depth ratio of 0.9, deep CFFT specimens would 

not fail in shear. Those specimens, however, were neither reinforced with mild steel nor 

were they equipped with end restraints that would arrest slippage of FRP tube. On the 

other hand, Fam and Cole (2007) reported shear failure in the form of diagonal tension in 

both FRP tube and concrete core when testing CFFT beams with steel reinforcement 

under three-point bending at a shear span-to-depth ratio of 1.0. This directs us to the 

following issue: 

Issue 4: The question is how to design CFFT columns to avoid non-ductile shear 

failure. 

Once the above four issues are addressed, it is indispensable for a direct 

comparison of the proposed system with conventional RC system at structural level, if the 

proposed system is going to be viable for bridge applications in earthquake-prone zones, 

and this relates to the following two issues: 

Issue 5: Although CFFT pier frames have been tested by Zhu et al. (2004) under 

gravity loads, pushover or cyclic tests on such bents have never been carried out before. 
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The design implications at the connections as well as the pier cap beam have not been 

addressed either. 

Issue 6: To date, a holistic system-wide performance assessment of CFFT bridge 

substructure has not been done, except for an analytical simulation (Zhu et al. 2006c). 

Unless a shake table study on multi-span bridge with such substructure is made, system-

wide performance under ground acceleration may not be as clear and convincing for 

bridge designers. 

The first four issues will shape this dissertation, and the last two issues would be 

addressed by other members of the research team, who study FRP-concrete pier columns, 

FRP-concrete pier frames and shake table test ands on large-scale bridge model. This 

study is part of a multi-university research cooperation funded by National Science 

Foundation (NSF) Network for Earthquake Engineering Simulation Research (NEESR) 

program, which is led by University of Nevada at Reno, and includes Florida 

International University (FIU), University of California at Berkeley, University of 

California at San Diego, and Stanford University. 

1.3 RESEARCH OBJECTIVES 

To address the above stated issues, the following objectives are established for 

this proposed experimental and analytical study: 

1) To compare seismic behavior of CFFT columns with different FRP lay-ups 

using glass and carbon fibers through large-scale cyclic tests; 

2) To develop rational for optimization of FRP reinforcement ratio for seismic 

design of CFFT columns; 
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3) To compare seismic behavior of CFFT columns with short and long shear 

spans under combined moment and shear effects; and 

4) To compare the flexural and shear behavior of CFFT columns with 

conventional RC columns. 

1.4 RESEARCH APPORACHES 

1.4.1 Experimental Studies 

The substructure prototypes of a highway bridge were 1/4 scaled down as 

cantilever CFFT columns with two different shear spans. Four different types of FRP 

tubes were used as the stay-in-place structural formwork for the beam-column specimens. 

A reinforced concrete (RC) control specimen was also considered as a reference. Cyclic 

tests were carried out first to evaluate seismic performance of CFFT and RC specimens at 

column base with different FRP architecture and shear spans. Monotonic flexural tests of 

these same specimens were further conducted in three or four-point bending to 

investigate the shear and flexural behavior of the proposed system. Tensile coupon tests 

were also performed on FRP laminates to obtain their material properties. 

Performance measures included: strength, energy dissipation, initial stiffness, 

ductility, pinching, plastic hinge length and residual deflection. Shear span-to-depth 

ratios of the follow-up monotonic tests were maintained between 1.0 to 1.6 for short 

beams and about 2.5 for the long beam. 

Between the two sets of cyclic and monotonic flexural tests, all tested specimens 

were also evaluated using an ultrasonic pulse velocity system to assess the state of 

internal concrete core. 
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1.4.2 Analytical Studies 

Analytical tools for hysteretic modeling of CFFT columns were developed to 

trace the push-over and hysteretic moment-curvature and load-deflection of a cantilever 

CFFT or RC column subjected to a constant axial loading and a reverse cyclic lateral 

loading. Analysis included ANSYS, a general purpose finite element program, and 

OpenSees (Open System for Earthquake Engineering Simulation); the latter has been 

developed by UC Berkeley. The results from these two analytical methods were 

compared. 

After the analytical models were validated against test data, a comprehensive 

parametric study was carried out for FRP reinforcement index of different FRP laminate 

architectures, shear span-to-depth ratio, and reinforcement index of both mild and 

microcomposite multistructural formable (MMFX) steel, in order to develop rational for 

an optimized total reinforcement index (FRP and Steel). The responses of typical CFFT 

columns to three representative earthquake records are also investigated. 

1.5 DISSERTATION STRUCTURE 

This dissertation consists of eight chapters. Chapter 1, this chapter, discusses 

research background, problem statement, research objectives, research approaches and 

structure of the dissertation. A synthesized literature review of CFFT members under 

axial compression, axial-flexural and cyclic loading, with an overview of CFFT, is 

presented in Chapter 2. Chapters 3 and 4 describe cyclic and monotonic flexural tests, 

respectively, while Chapters 5 and 6 introduce the coupon tests and nondestructive 

damage evaluation, respectively. Chapter 7 depicts analytical modeling, parametric study 
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and transient analysis. Finally, Chapter 8 provides a summary and conclusion for the 

entire research and recommendations for future work in this field. 

 



 

CHAPTER 2 LITERATURE REVIEW 

2.1 OVERVIEW OF CFFT 

Concrete-filled fiber reinforced polymer (FRP) tubes (CFFTs) were initially 

proposed as alternative to conventional reinforced concrete (RC) bridge substructure in 

corrosive environments of Florida (Mirmiran and Shahawy 1995). Systematic studies 

have since demonstrated the feasibility and merits of CFFTs with or without internal mild 

steel reinforcement. Behavior of CFFTs has been investigated under different loading 

conditions; including uniaxial compression (Mirmiran et al. 1997a, Fam et al. 2001a), 

axial-flexural (Mirmiran et al. 1999a, 2000b; Fam et al. 2002), deep beam shear (Ahmad 

et al. 2008a), reverse cyclic (Shao et al. 2005b, Zhu et al. 2006a) and fatigue loading 

(Ahmad et al. 2008b, Helmi et al. 2006, 2008), as well as long-term creep and shrinkage 

(Naguib et al. 2002), transient loading of impact (Zheng 2007), and other conditions such 

as freeze and thaw (Fam et al. 2008a). 

Variety of parameters have been considered for CFFTs, in terms of internal steel 

or FRP reinforcement ratio (or index), internal FRP or steel tubes, partial filling of 

concrete, fiber architecture, shear span, slenderness ratio, shape and bond effect, level of 

axial load, prestressing (or lack thereof), concrete compressive strength, and type of 

connection (Cole et al. 2006; Fam et al. 2001a, 2001b, 2002, 2003b, 2007; Mandal et al. 

2005, 2006; Mirmiran et al. 1998b, 1999a, 2000b, 2001a; Shao et al. 2005a, 2005b; Zhu 

et al. 2005, 2006a, 2006b). Field experiments and applications of CFFTs as bridge girders 

(Seible et al. 1999), and piers and piles (Fam et al. 2003, Mirmiran and Shahawy 2003) 

have also established their construction feasibility quite convincingly. Limited studies on 
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acoustic emission (Mirmiran et al. 1999b, 2000c) and ultrasonic pulse velocity (Mirmiran 

et al. 2001b) for damage assessment have confirmed their potential for structural health 

monitoring of CFFT columns. 

2.2 AXIAL COMPRESSION BEHAVIOR OF CFFT 

The load-carrying mechanism of CFFT is not much different from a spirally 

reinforced concrete column or a CFST. As axial deformation increases, concrete tends to 

dilate laterally and presses onto its confining device. Subsequently, the confining device 

restrains the expansion of concrete core, thereby delaying its cracking and eventual 

failure. While the lateral confining system remains in hoop tension, concrete core 

undergoes a triaxial-state of stress, which is known to increase its strength and ductility. 

The eventual failure is generally triggered by rupture of the confining device, especially 

in continuous sleeves such as those in CFFT and CFST. However, confining pressure in 

CFFT is variable, and is a function of the interaction between the expanding concrete 

core and the FRP tube with its linear characteristics (i.e., passive confinement), which is 

different from steel-confined concrete, where the confining pressure is stable once the 

steel yields (Mirmiran et al. 1997b). 

Earlier studies of CFFT were initially directed to developing a new confinement 

model from uniaxial compression tests of FRP-encased concrete cylinders, finding that 

available confinement models for conventional reinforced concrete columns overestimate 

the strength of FRP-encased concrete, mainly because they ignore the stiffness of the 

restraining mechanism (Mirmiran et al. 1997a, 1997b; Samaan et al. 1998). The new 
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models were then expanded to consider the shape, length and bond effects (Mirmiran et 

al. 1998b). 

Studies on uniaxial compression behavior of CFFT were extended by Fam et al. 

New parameters were introduced for central holes with or without an inner GFRP tube, 

laminate structure and interface roughness to simulate practical applications and loading 

conditions (Fam et al. 2001a). A parametric study indicated that increasing the central 

hole size would reduce the confinement effect, while increasing the stiffness of the tube 

would improve the confinement, and finally, direct loading of the FRP tube would 

significantly reduce the confinement (Fam et al. 2001b). 

For FRP tubes to be utilized as piles driven under impact loading, potential 

instability and dynamic buckling may pose serious problems. Hence, filament-wound E-

glass fiber tubes were tested in uniaxial compression to study their slenderness limit. A 

new equation was proposed for the slenderness limit of hybrid columns based on a 

maximum of 5% strength reduction (Mirmiran et al. 2001a). Armed with the acquired 

knowledge, field experiments on the performance of composite tubes under pile driving 

impact were conducted, which proved feasibility of the system for bridge substructure 

(Mirmiran et al. 2002). Field application of CFFT as bridge piles was then reported as 

precast piles for Route 40 Bridge in Virginia (Fam et al. 2003a). 

Zhu et al. (2005) continued axial compression studies on CFFT including the 

effect of size, end load-bearing conditions, and internal steel or FRP reinforcement of 

CFFT columns. Meanwhile, Mandal et al. (2005) studied influence of concrete strength 

on confinement effectiveness for both concrete-filled FRP tubes and FRP-wrapped 
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concrete cylinders. For high strength concrete, it was reported that enhancement in 

strength is very limited, with hardly any improvement in ductility. 

Fewer studies were conducted for rectangular CFFT axial compression members 

than for circular CFFT columns because of less effective confinement, apart from an 

early research (Mirmiran et al. 1998b). Most recently, however, Ozbakkaloglu et al. 

(2008a) reported experimental studies on the influence of critical confinement parameters 

on the confinement effectiveness of square and rectangular FRP tubes. Moreover, a new 

type of rectangular FRP tube with internal FRP cross-ties or with internal FRP panel was 

reported to improve the inherently low confinement effectiveness of rectangular tubes 

(Ozbakkaloglu et al. 2008b). 

2.3 CONSTITUTIVE MODELING OF CFFT 

Different analytical models have been developed to predict the stress-strain 

response of confined concrete using FRP tubes. Some models are based on dilation 

relationship of confined concrete (Samaan et al. 1998, Davol et al. 2001), modified 

Ahmad and Shah’s model (Saafi et al. 1999) or modified Mander’s model (Mander et al. 

1988) using different relationships between lateral and axial strains (Spoelstra et al. 1999, 

Fam et al. 2001b). Naguib et al. (2002) showed the significance of strain rate on the level 

of confinement, which could potentially affect the comparison of various confinement 

tests. Several researchers have used plasticity models such as Drucker-Prager in finite 

element analysis to predict the behavior of FRP-confined concrete (Mirmiran et al. 

2000a). Published comparative studies and surveys of some of the confinement models 

can be found in Lam et al. (2002), De Lorenzis et al. (2003), and Teng et al. (2004). 
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2.4 AXIAL-FLEXURAL BEHAVIOR OF CFFT 

Mirmiran et al. (1997-2002) investigated the static beam-column behavior for 

both short and slender columns with custom-made interior shear ribs to reduce the 

slippage between the tube and the core. Strength enhancement was confirmed, and the 

failure of CFFT was noted as ductile with much advance warning (Mirmiran et al. 1998a, 

1999a). Investigations were then turned to off-the-shelf products considering the cost-

effectiveness issue, still without conventional reinforcement inside the tubes. Mirmiran et 

al. (2000b) showed the feasibility of CFFT as an alternative to prestressed concrete. The 

detailed failure modes of specimens from the latter two studies are discussed below. 

Mirmiran et al. (1999a) tested a total of five 178×178×1,320 mm (7×7×52 in.) 

rectangular specimens at various combinations of axial and transverse loads to develop a 

full moment-thrust interaction diagram for hybrid FRP-concrete columns. Specimen B 

with pure bending developed a major tension crack of FRP tube at peak load. Specimens 

BC1 and BC2 with axial loads developed tension cracks at about 75% and 85% of the 

peak lateral loads, respectively. The cracks gradually increased in intensity and depth, 

resulting in a tension and compression failure, respectively. Specimen BC3 with the 

highest axial load failed in compression as the tube cracked at about 90% of the peak 

lateral load. 

Mirmiran et al. (2000b) performed beam-column tests on a total of sixteen 2.75 m 

(108 in.) long specimens demonstrating the feasibility of off-the-shelf FRP products. 

Type I specimens as over-reinforced members failed in compression with crumpling and 

wrinkling of the tube near the mid-span region, and in some cases, longitudinal split 

rupture of the tube near the support. Type II specimens as under-reinforced members 
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generally failed by tube fracture along its main winding angle. At lower levels of axial 

load, failure of Type II specimens was generally controlled by tension, while under larger 

axial loads, concrete crushed in compression. 

Other studies were conducted by Davol et al. (2001), including four-point bending 

tests of two large-scale carbon FRP shells with 343 mm (13.5 in.) inside diameter filled 

with concrete without any axial load. Both specimens failed in local buckling on the 

compression side of the CFRP shell. 

Pure flexural and axial-flexural loading tests have also been conducted by Fam et 

al. (2002-2008). Experimental evidence indicated an insignificant effect of concrete 

confinement on flexural strength; however, ductility was improved (Fam et al. 2002). 

Later research findings showed that the interaction diagrams were significantly affected 

by both the laminate structure and reinforcement ratio of the FRP tube. The contribution 

of confinement to the overall axial strength of CFFT seemed to be significant only for 

thin-walled tubes (Fam et al. 2003b). Following the studies on circular concrete-filled 

FRP tubes, the behavior of rectangular filament-wound GFRP tubes was explored (Fam 

et al. 2005a, 2005b). The detailed failure modes of specimens from the two studies by 

Fam and his co-workers are discussed below. 

A total of twenty beams were tested in four-point bending by Fam et al. (2002). 

The hollow filament-wound GFRP tube, beam 2(a), failed by crushing of the tube in 

compression near the loading point after considerable ovalization, while the concrete-

filled tube, beam 2(b), failed by tensile rupture of the fibers. The hollow pultruded tube, 

beam 3(a), failed by local crushing and lateral splitting of the tube at the loading point, 

while the concrete-filled tube, beam 3(b), failed in horizontal shear by splitting of the 
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tube due to the lack of strength in the hoop direction. Beams 4–8 as well as beams 10(I 

and II) also failure by tensile rupture of the fibers. Beam 9 is the only one that had 

compression failure of the tube by cracking of the matrix and buckling of fibers due to 

the absence of fibers in the hoop direction to confine the main fibers oriented at ±30°. 

Beams 11(I and II)–13(I and II) all failed by tensile rupture of the fibers in the ±34° 

direction. 

Test results of concrete-filled FRP tubes subjected to combined axial compressive 

loads and bending moments were reported by Fam et al. (2003b). The experimental 

program included ten specimens subjected to eccentric axial loads, two (2) specimens 

under concentric axial loads, and two (2) others in pure bending. Specimens B1-I and B1-

II failed by rupture of the fibers on the tension side within the constant moment region in 

a similar fashion to the eccentrically loaded columns that failed in tension. Specimens 

BC1-I, BC2-I, BC3-I, BC1-II, and BC2-II all failed in tension by rupture of the fibers, 

similar to Specimens B1-I and B1-II; while Specimens BC5-I, BC3-II, BC4-II, and BC5-

II failed in compression by crushing of the fibers on the compression side. Specimen 

BC4-I had a balanced failure including rupture of fibers on the tension side, almost 

simultaneously with crushing of the fibers on the compression side. 

None of the above studies included conventional mild steel reinforcement in 

CFFT, until recent studies on cyclic behavior of CFFT showed moderate amount of mild 

steel reinforcement in CFFT would significantly improve ductility (Shao et al. 2005b). 

Recently, the effects of shear span length and internal reinforcement on strength 

of rectangular and circular CFFT beams were investigated (Cole et al. 2006, Fam et al. 

2007). Fam et al. also studied prestressed CFFT beams (2006). Most recently, a spun-cast 
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manufacturing method for CFFT was introduced (Fam et al. 2008b), as discussed further 

below. 

Cole et al. (2006) reported flexural tests of seven specimens reinforced with either 

steel, GFRP, or CFRP rebars of various sizes. It was shown that beams with mild steel 

rebars were quite superior to those with FRP rebars, which lacked ductility. In FRP-

reinforced CFFTs, FRP rebars failed almost simultaneously with the FRP tube. It was 

also shown that laminate structure of the tube affected the behavior, only after yielding of 

the steel bars. Steel reinforcement ratio significantly affected stiffness and strength of the 

specimens, whereas concrete compressive strength had an insignificant effect on the 

overall performance. 

Fam et al. (2007) studied bending and shear behavior of GFRP tubes versus 

conventional steel spiral reinforcement in CFFTs. In particular, two of the specimens 

were prestressed. It was reported that unlike spiral reinforcement, GFRP tubes confined 

larger concrete areas, and also contributed as longitudinal reinforcement, leading to 

increases in flexural and shear strengths, by up to 113% and 69%, respectively. 

Furthermore, a unique observation that had not been reported in the literature before for 

concrete-filled FRP tubes was that one of the specimens had a shear-bond failure through 

diagonal tension. The shear failure took place through both the concrete core and GFRP 

tube. 

Most recently, a new type of hybrid FRP-concrete-steel member was proposed 

consisting of an inner steel tube, an outer FRP tube, and a concrete infill between the two 

tubes (Teng et al. 2007). A series of four-point bending tests were conducted on 

specimens with a hybrid section in which the inner steel tube was shifted towards the 
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tension side to demonstrate the application of the hybrid section in a beam. These beams 

were found to show a very ductile behavior. The results also showed that the GFRP tube 

in such beams enhances the structural behavior by providing both confinements to the 

concrete infill and additional shear resistance. However, significant slippage between the 

concrete infill and the two tubes, particularly the steel tube, and associated load 

fluctuations were also reported (Yu et al. 2006). 

2.5 CYCLIC BEHAVIOR OF CFFT 

Seible et al. (1996) were the first to explore the cyclic behavior of CFFT with or 

without internal mild steel starter bars, and with or without embedment in the footing. 

They concluded that FRP alone would not be feasible for use in seismic regions, and that 

internal steel reinforcement would be necessary to develop plastic hinge in a column or 

pile. 

In China, Fan et al. (2000) and Zhuo et al. (2001) studied the seismic performance 

of RC columns confined by glass or carbon FRP tubes (GFRP or CFRP) as cantilever 

columns under both pseudo-static cyclic loading and shake table ground motion. Test 

results indicated that the FRP tube did not increase column strength, but greatly enhanced 

its hysteretic response up to a displacement ductility of 10. Taking advantage of the off-

axis behavior of FRP, Yuan et al. (2002) proposed concrete-filled GFRP tube with ±45° 

fiber orientation and without any internal steel reinforcement. They reported that the FRP 

tube enhanced the strength of concrete by 2.5 times. Coupon tests of FRP tube itself also 

indicated a bilinear response with a distinct yield point. In Japan, Yamakawa et al. (2001) 
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reported similar observations on the seismic performance of square RC columns that 

were confined with aramid FRP (AFRP) tubes. 

In the US, Shao et al. (2005b) conducted cyclic tests on six CFFT specimens as 

simple-span beam-columns under constant axial loading and quasi-static reverse lateral 

loading in four-point bending. Three of the tubes were made using centrifuge (spin) 

casting with 12.7 mm (0.5 in.) thickness and the majority of the fibers in the longitudinal 

direction, whereas the other three were filament wound with 5 mm (0.2 in.) thickness and 

±55° fiber orientation. One specimen for each type of tube had no internal reinforcement, 

whereas the other two incorporated approximately 1.7% and 2.5% steel reinforcement 

ratios, respectively. The two types of tubes represented two different failure modes; a 

brittle compression failure for the thick tubes with the majority of the fibers in the 

longitudinal direction, and a ductile tension failure for the thin tubes with off-axis fibers. 

The study showed that CFFT could be designed with ductility behavior comparable to 

that of RC members. Significant ductility could stem from the fiber architecture and 

inter-laminar shear in the FRP tube. Moderate amount of internal steel reinforcement in 

the range of 1-2% would further improve the cyclic behavior of CFFT, especially in 

specimens with under-reinforced tubes. 

In addition to the six beam-column tests, a total of 24 FRP-confined concrete stub 

specimens were tested in uniaxial compression under different levels of loading and 

unloading, with different fiber type, wrap thickness, and loading patterns. Based on a 

regression analysis of test results, a constitutive model was developed that included 

cyclic rules for loading and unloading, plastic strains, and stiffness and strength 

degradations (Shao et al. 2006). 
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Shao et al. (2004 and 2005a) developed a two-dimensional three-noded combined 

element along with constitutive models for cyclic loading of FRP and concrete. A study 

was carried out to evaluate the effect of CFFT parameters on its hysteretic response, and 

to compare the response with reinforced concrete (RC) and concrete-filled steel tubes 

(CFST). The study showed the feasibility of designing CFFT columns with comparable 

hysteretic performance to RC columns. However, hysteretic response of CFFT columns 

could not measure up to their CFST counterparts, unless their superior durability was 

considered in the selection process (Shao et al. 2004, 2005a). 

Most recently, Zhu et al. (2006a) investigated construction feasibility and seismic 

performance of structural joints for CFFT as bridge substructure. Based on the common 

practices of the precast industry and previous research on CFFT, the test matrix included 

a control RC column and three CFFT columns made of the same concrete and FRP tube 

including a cast-in-place CFFT column with embedded starter bars, a precast CFFT 

column with grouted starter bars, and a precast CFFT column with unbonded post-

tensioned rods. All proposed joints proved feasible in construction, and showed robust 

performance under cyclic loading. The CFFT columns, with FRP tube secured properly 

in the footing, exhibited significant improvement over traditional RC columns in terms of 

both ultimate strength and ductility. 

Modeling of CFFT either as cast-in-place reinforced or precast post-tensioned 

column was carried out by Zhu et al. (2006b), who verified both cyclic tests by Shao et al. 

(2005b) and Zhu et al. (2006a). Moreover, seismic performances of CFFT versus RC 

columns were compared under three different ground acceleration records. The study 

showed that internal steel reinforcement and a minimum thickness of FRP tube were 
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necessary to provide adequate ductility and system integrity in seismic applications. A 

bridge case study was also conducted to simulate the holistic behavior of the proposed 

system. They showed that since FRP had a lower rupture strain than steel spiral and 

because of its linear elastic response, CFFT section showed less ductility than RC section. 

However, at the member level, CFFT column distinctly outperformed its RC counterpart 

with almost twice the base shear capacity and over three times the lateral drift capacity. 

Earthquake simulation showed that CFFT substructure suffered moderate damage, while 

maintaining structural integrity, as compared to the RC substructure with severe and 

irreparable damages (Zhu et al. 2006c). 

Ozbakkaloglu et al. (2006, 2007) investigated seismic behavior of circular and 

square columns with either high-strength concrete (HSC) or normal-strength concrete 

(NSC) confined by FRP tubes. The results indicated that inelastic deformability of HSC 

and NSC columns could be improved significantly by using FRP tubes, beyond the 

performance level usually expected of comparable columns confined with conventional 

steel reinforcement. The results further indicated that the confinement effectiveness of 

square columns was significantly affected by the corner radius of the tubes. Additionally, 

the confinement efficiency could be improved with the use of FRP cross-ties introduced 

in the study. 

The present study extends the earlier work in several areas, including (a) effect of 

fiber type and architecture on seismic behavior of CFFT, (b) optimization of FRP tube, (c) 

effect of shear span on seismic response of CFFT, and (d) combined effect of shear and 

flexural loading on the cyclic response of CFFT. 



 

CHAPTER 3 CYCLIC TEST 

3.1 TEST MATRIX AND SPECIMEN PREPARATION 

3.1.1 Test Matrix 

Test matrix included one control RC and five CFFT columns with different FRP 

tubes as stay-in-place structural formwork, as shown in Table 3.1. Except for the long 

column with CFRP tube (Specimen LC) that had a 2,210 mm (87 in.) length, all other 

specimens had the same length of 1,295 mm (51 in.). The specimens were cast in two 

batches with 28-day concrete compressive strengths of 44.8 and 33.1 MPa (6.5 and 4.8 

ksi), as shown in Table 3.1. 

3.1.2 Specimen Preparation 

3.1.2.1 Preparation of FRP Tubes 

The formwork for Specimen RC was a 310 mm (12.2 in.) diameter sonotube, 

while CFFT columns used FRP tubes as the stay-in-place structural formwork. Specimen 

Y had an off-the-shelf FRP tube made by filament winding of 17 layers of ±55° E-glass 

fibers and epoxy resin, with an inside diameter of 312 mm (12.3 in.) and a wall thickness 

of 6 mm (0.22 in.). Figure 3.1 shows the filament-wound FRP tube for Specimen Y and 

the sonotubes. 

The other four FRP tubes were made in the laboratory by wrapping resin-

impregnated FRP fabrics around sonotubes of the same diameter as that used for 

Specimen RC. Sikadur 300 epoxy made by Sika Corporation of Lyndhurst, NJ, was used 

as the resin for all FRP tubes made in the lab. The sonotubes were first cut longitudinally 
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and were then taped back tightly to make a stiff formwork for FRP wrapping, while 

allowing easy removal of the sonotubes after curing of FRP tube. The sonotube was then 

covered with a layer of wax paper, so that the FRP tubes could be easily detached from 

the sonotubes later. Figure 3.2 illustrates the preparation of one carbon FRP tube. 

Specimen G was made of three layers of bi-directional (0°/90°) GFRP sheets, 

while Specimens SC and LC were both made of two layers of bi-directional (0°/90°) 

CFRP sheets. The bi-directional glass and carbon fabrics were P3W-GE041 and P3W-

C1059, respectively, from 3TEX, Inc. of Cary, NC. Specimen H was made of two layers 

of unidirectional CFRP sheets in the longitudinal direction alternately wrapped with three 

layers of unidirectional GFRP sheets in the hoop direction. The unidirectional carbon and 

glass fiber sheets were SikaWrap Hex 103C and SikaWrap Hex 100G, respectively, made 

by Sika Corp. The four laboratory-made FRP tubes consisted of 152 mm (6 in.) overlaps 

of fabrics in the hoop direction and 305 mm (12 in.) overlap in the longitudinal direction. 

Table 3.2 lists the properties of FRP tubes from manufacturer data for Specimen Y, or 

from coupon tests following ASTM D 3039 (2006) for other specimens, as will be 

discussed in Chapter 5. Figure 3.3 (a) through (c) show the cured FRP tubes. 

3.1.2.2 Specimen Reinforcement 

All six columns had the same longitudinal mild steel reinforcement of sixteen 9.5 

mm (No. 3) steel bars of Grade 414 MPa along their entire lengths, with 610 mm (24 in.) 

and 305 mm (12 in.) embedment into the footing and column head, respectively. The 

reinforcement ratio was 1.5% for Specimen RC, 1.4% for Specimens Y, SC and LC, and 

1.3% for Specimens G and H. Specimen RC also included a 5.3 mm (0.21 in.) diameter 
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steel wire spiral reinforcement of Grade 414 MPa with 279 mm (11 in.) outside diameter 

at a pitch of 32 mm (1.25 in.). The CFFT specimens had no transverse steel 

reinforcement, except for very few hoops of 5.3 mm diameter steel wires placed with an 

outside diameter of 279 mm (11 in.) and a spacing of 305 mm  (12 in.) only to hold the 

longitudinal steel cage together during casting of concrete. A clear cover of 12.7 mm (0.5 

in.) was maintained for steel bars in all specimens. Figure 3.4 shows the column 

reinforcement of Specimen RC embedded into the footing. Figure 3.5 shows the column 

reinforcement for Specimen LC. Figure 3.6 shows the reinforcement details for the RC 

and CFFT columns. 

3.1.2.3 Column-Footing and Column-Head Connections 

The footings of all six specimens had the same dimensions and internal steel 

reinforcement. Similarly, the column heads of all six specimens had the same dimensions 

and internal reinforcement. The FRP tubes were all embedded 305 mm (12 in.) and 152 

mm (6 in.), or approximately 1Do and 0.5Do, respectively, into the footings and column 

heads, where Do is the outside diameter of the FRP tubes. A few small holes and slots 

were cut out from the embedded portions of FRP tubes to facilitate the reinforcement and 

PVC ducts in the footings and column heads. Figure 3.7 shows the embedment of FRP 

tube and column reinforcement into the footing of Specimen Y. Figure 3.8 shows the 

overall embedment into the heads and footings of Specimens Y, G and RC for the first 

concrete batch. 
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3.1.2.4 Formwork and Concrete Casting 

Reinforcement and formwork for footings and column heads followed a 

horizontal testing plan. Figure 3.9 shows the formworks for Specimens SC and H. A 

pedestal was designed to accommodate the height of the reaction frame with the actuator, 

and to also span over the tie-down pattern in the strong floor. To facilitate application of 

axial loads on the columns, PVC ducts with 44 mm (1.75 in.) outside diameter were 

embedded into the footings and column heads on each side of the columns. PVC ducts 

were also placed at tie-down locations in the footings and the column heads. Special 

templates were developed to ensure that the holes set in the footings would fit the tie-

down pattern of the strong floor, and that the holes in the column heads would fit the 

actuator. Figure 3.10 shows the template and the formwork for Specimen LC. 

In light of the horizontal testing configuration, the ready-mix concrete was 

ordered with a slump of 254 mm (10 in.), equivalent of a pump mix, to ensure proper 

placement of concrete throughout the length of the columns. Concrete was cast in two 

batches on August 18, 2006 and September 1, 2006. Both batches had good workability. 

As stated earlier, the 28-day compressive strengths for the two batches were measured as 

44.8 MPa (6.5 ksi) and 33.1 MPa (4.8 ksi), respectively, while the target strength for the 

two batches was 34.5 MPa (5 ksi). Figure 3.11 shows the casting of concrete. After 

casting concrete, the specimens were covered by plastic sheets, and were cured by 

watering each day for seven days in the normal room temperature at 21°C (70°F). Figure 

3.12 shows Specimens H and SC right after concrete casting. De-molding of the 

specimens took place after one week from casting of concrete. Figure 3.13 shows the five 
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short column specimens after de-molding, while Figure 3.14 shows Specimen LC and the 

pedestal after de-molding. 

3.1.2.5 Epoxy Injection 

After removal of the sonotube from Specimen RC, some pockets of concrete void 

between the sonotube and the top of RC section were observed (Figure 3.15), which were 

deemed of no significance for RC column. This was a result of horizontal casting plan. 

Using a coin tapping procedure, it was verified that similar pockets of voids existed 

between FRP tubes and the top of concrete section in the CFFT columns. This was 

expected to potentially affect structural integrity of CFFT and cause local buckling of the 

tubes. Therefore, epoxy injection was used for the CFFT columns, as described below. 

The process of epoxy injection in this project followed a standard industry 

practice of epoxy injection for concrete repair. Sikadur 35 (Hi-Mod LV LPL) from Sika 

Corporation was used as the epoxy resin. Table 3.3 lists the mechanical properties of 

Sikadur 35, the injection epoxy, as well as Sikadur 300, the resin for the laboratory-made 

FRP tubes. Other major components included ports (Figure 3.16), caps, a nozzle and a 

caulking gun. First, a series of 3 mm (1/8 in.) diameter holes were drilled on top of CFFT 

sections at 152 mm (6 in.) spacing along the column length. Then, the ports were 

mounted and sealed onto the holes (Figure 3.17). The epoxy was then injected into the 

CFFT columns through the ports one by one from one end to the other. The process of 

moving forward was to seal the injecting port with a cap and continue onward to the next 

uncapped port as long as epoxy flew out of the next uncapped port. The ports were 

knocked off after three days to allow for curing of epoxy. Figure 3.18 shows the epoxy 
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injection process and Figure 3.19 shows one of the specimens after epoxy injection with 

the ports capped. 

3.2 TEST SETUP AND INSTRUMENTATION 

3.2.1 Test Setup 

Each specimen was placed on top of the pedestal, through which its footing was 

tied down to the strong floor using eight threaded rods. Another four threaded rods tied 

the footing with the pedestal in the middle. All threaded rods were hand-tightened to a 

tie-down force of about 44.5 kN (10 kips), as measured by a load cell. A 1,045 kN (235 

kips) capacity hydraulic actuator hung from a steel reaction frame was attached to the 

specimen using four threaded rods through the column head. 

To simulate the gravity load on the columns, the specimens were externally post-

tensioned to 89 kN (20 kips), corresponding to approximately 0.03fc’Ag, where fc’ is the 

unconfined compressive strength of concrete core, and Ag is the gross cross sectional area 

of the column. Using two 25.4 mm (1 in.) threaded rods through the column head and the 

footing, post-tensioning was carried out with two inter-connected hydraulic jacks 

controlled by a single hand pump. The axial load was maintained during the testing using 

a pressure relief valve. All threaded rods were 25.4 mm (1 in.) diameter Grade B-7 with 

yield strength of 724 MPa (105 ksi). Figure 3.20 through Figure 3.25 show the test set-up 

for the six specimens. Figure 3.26 shows the post-tensioning of the specimens to simulate 

axial force. 
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3.2.2 Instrumentation 

Each specimen was instrumented with six string potentiometers, four linear 

potentiometers, four Ω gauges, twelve strain gauges and two load cells. In addition, load 

and displacement output from the actuator controller was monitored using a high-speed 

data acquisition system, for a total of 30 simultaneous readings at a frequency of 1 Hz. 

Two 305 mm (12 in.) range string potentiometers were attached to the bottom and 

the west side of the column head to monitor its displacements. Three 152 mm (6 in.) 

string potentiometers were placed at quarter points along the column to measure 

deflections relative to mid-height of the section on its west side. One additional string pot 

was set at quarter span on the east side of the section near column head to compare the 

displacements of the two sides, and to detect any potential to regional deformation. 

Slippage of FRP tube from column footing and column head at both top and 

bottom of the section were monitored using four 38 mm (1.5 in.) range potentiometers. 

Each column was also instrumented with two pairs of 50 mm (2 in.) Ω gauges mounted at 

the column base as well as at the first quarter point from the footing along the column on 

both top and bottom in the loading plane to measure strain profiles at different sections. 

The CFFT columns were additionally instrumented with twelve 20 mm (0.79 in.) long 

surface mounted strain gauges (PFL-30-11-5L of Tokyo Sokki Kenkyujo Co., Ltd.); three 

pairs at quarter spans on both top and bottom surfaces of the column in the loading plane, 

and two pairs within the first quarter span of the column near the footing. Two additional 

strain gauges were attached in the hoop direction on opposite sides of the column next to 

the footing in the loading plane. 

 27



 

One load cell was placed in line with each of the two hydraulic jacks to monitor 

any fluctuation in axial load during the test. After it was verified that the axial forces in 

the two jacks were quite similar and stable in subsequent tests, one of the two load cells 

was placed in line with one of the anchoring rods to monitor the tie-down forces for 

Specimens SC and H, for safety reasons. Figure 3.27 (a) and (b) show the instrumentation 

plans for short specimens and the long specimen, respectively, with the legend and 

instrumentation list shown in Figure 3.28. 

3.3 TEST PROCEDURE AND OBSERVATIONS 

3.3.1 Test Procedure 

Each specimen was first subjected to the external post-tensioning force to 

simulate the dead load on the structure. Subsequently, a reverse cyclic load was applied 

in displacement control in a number of incremental steps. Column drift was applied in 

terms of displacement ductility µ, defined as the ratio of the imposed displacement to a 

reference displacement. The reference displacement corresponded to the first yielding of 

the internal steel reinforcement in the control RC column, which was calculated to be 

12.7 mm (0.5 in.) for the short specimens and 25.4 mm (1 in.) for the long specimen, 

based on a nonlinear sectional analysis using Response-2000 

(http://www.ecf.utoronto.ca/~bentz/home.shtml) and a member-level push-over 

simulation using OpenSees 2.0 (http://opensees.berkeley.edu/). 

At each level of ductility, two full cycles of reverse lateral loading were applied. 

The loading rate was kept constant at 0.2 mm/s (0.5 in. /min). Figure 3.29 depicts the 

cyclic loading regime, where Push and Pull stand for actuator forcing the specimen 
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downward (negative) and upward (positive), respectively. All specimens were tested up 

to µ = 6, except for Specimen SC which failed at µ = 5. Afterwards, the axial loading was 

released for safety reasons; and some of the specimens were loaded monotonically up to a 

higher displacement ductility factor at the same loading rate as that used for cyclic 

loading, but only in one direction, push or pull. 

3.3.2 Test Observations 

3.3.2.1 Observed Cracks in FRP Tubes 

In Specimens SC and LC, the FRP tubes cracked in flexure with a loud sound as 

well as a noticeable sudden load drop. However, the cracks were only limited to one at 

the top and one at the bottom at the column base and the specimens still had considerable 

residual capacity after FRP cracking. On the other hand, Specimens Y, G and H remained 

intact without any noticeable matrix cracking. This remained the case even during 

subsequent monotonic testing for Specimens Y and G beyond ductility factor µ of 6. 

In Specimen SC, top and bottom fibers cracked in tension at the first and second 

cycles, respectively, of ductility factor of 3. During loading cycles at  of 4, the bottom 

crack extended to the mid-height of the section, as shown in Figure 3.30. The top cracks, 

however, were much smaller, as shown in Figure 3.31. In Specimen LC, a sudden 

cracking sound was first heard while being pushed down at  of 2, followed by another 

cracking sound while being pulled up at the first peak of  of 3. The top fiber cracks 

could only be discerned at  of 4, and the bottom fiber cracks were later noticed at  of 5. 

The cracks, however, were limited to the outer layer of the tube, and did not expose 

concrete until  of 6. While being pulled back, the cracked fibers crushed in compression. 
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However, the bottom inner layer of FRP did not crack until the end of the test. Figure 

3.32 and Figure 3.33 show bottom and top fiber cracks in Specimen LC, respectively. 

3.3.2.2 Observed Cracks in Footings 

The footing of Specimen RC exhibited no cracks throughout the test proving that 

the footing design was adequate for reinforced concrete members. Nonetheless, footings 

of all five CFFT columns extensively cracked during the tests. One or two cracks first 

appeared at the top and bottom at  of 2. The cracks then gradually formed a radial 

pattern around the edges of CFFT columns at later stages of loading. The footings for five 

CFFT columns may be differentiated into two groups: Specimens Y, G and H, in which 

the FRP tubes did not show any cracking; and Specimens SC and LC, in both of which 

FRP tubes cracked. 

Cracks in footings of Specimens Y and G developed and progressively grew quite 

evenly during the tests, corresponding to a smooth hysteretic response seen in these 

columns. Figure 3.34 and Figure 3.35 show the footing cracks in Specimens Y and G, 

respectively. In the footing of Specimen H, a chunk of concrete split from the footing 

adjacent to the FRP tube, which fell off at  of 5 (Figure 3.36). Figure 3.37 shows the 

footing cracks in Specimen H. 

The footing in Specimen SC stopped cracking after  of 3, after both layers of 

FRP tube had cracked at top and bottom, and the load had dropped. On the other hand, 

the footing in Specimen LC continued to crack until  of 5, since the inside layer of FRP 

tube had not completely cracked, as discussed earlier. Cracking of FRP tubes in 

Specimens LC and SC generally resulted in less cracking in the footing, as well as less 
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slippage for the FRP tube, as compared with the other three CFFT specimens, as will be 

discussed later in this chapter. 

Generally, the footings provided adequate anchorage for the CFFT columns with 

the given tube embedment. The cracks in the footings did not affect the structural 

behavior of the CFFT columns, but may have limited their potential capacity, especially 

in Specimens G, Y, and H. Therefore, design of connections must be taken into detailed 

consideration for structurally integrated stay-in-place FRP formwork. 

3.3.2.3 Observed Tube-Footing Separation and FRP Tube Slippage 

A slight separation between the tube and the footing was developed in Specimen 

Y during the test, as shown in Figure 3.38. The separation mostly recovered with the 

return of the specimen to its original position at the end of each loading cycle. Despite its 

limited slippage and separation from the footing, the embedded tube effectively 

participated as a structural component and as longitudinal reinforcement for concrete, and 

not simply as a confining device. This was also verified for Specimen H, where a chunk 

of concrete spalled off from the footing adjacent to the tube, as shown in Figure 3.39. 

For Specimen G, the separation was quite noticeable at different stages along the 

test. Figure 3.40 shows the original tube-footing joint until  of 3, while Figure 3.41 

shows the tube slippage relative to the footing, which could be clearly identified from the 

original marks on the tube.  

The separation between FRP tube and RC footing, which was typically visible 

only at higher displacements, did not cause any disturbance in the load transfer 
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mechanism between the column and the footing, since no sign of stress relief in the FRP 

tube was evident from strain measurements, as will be discussed later in this chapter. 

3.3.2.4 Observed Failure Modes 

Despite its initial inadvertent and rapid pre-loading beyond the yielding stage, 

Specimen RC demonstrated cracking and failure mode typical of conventional reinforced 

concrete columns. The spiral steel appeared intact after removal of the spalled concrete.  

Figure 3.42 shows Specimen RC at  of 10 after removing axial loads for safety reasons. 

In Specimens SC and LC, the FRP tubes cracked in the hoop direction with a loud sound 

as well as a noticeable sudden load drop. However, cracks were only limited to one at the 

top and one at the bottom at the column base, and the specimens still showed 

considerable residual strength after FRP cracking. On the other hand, Specimens Y, G 

and H remained intact without any noticeable matrix cracking. This remained the case 

even during subsequent monotonic testing for Specimens Y and G up to µ = 8 and 10, 

respectively. Figure 3.43 through Figure 3.47 capture the images of the different CFFT 

specimens at their respective maximum displacements. 

3.4 TEST RESULTS AND DISCUSSIONS 

3.4.1 Stability of Axial Load 

Given the inter-dependence of axial load and lateral displacement, the axial force 

was monitored throughout the tests. The axial load slightly fluctuated during the cyclic 

loading. However, the post-tensioning mechanism was used to effectively control this 

fluctuation during the experiments. The control included a single handle pressure relief 
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valve to reduce the axial force, and the hand pump to increase it, as needed. Figure 3.48 

shows a typical axial load fluctuation during the test of Specimen LC, with the readings 

of the two load cells, one for each threaded rod; and the total axial force. The standard 

deviation for this experiment was less than 2.56%, confirming the stability of axial force. 

Table 3.4 lists the mean and standard deviation of the axial force in all specimens. 

The statistical variables are based on the sum of the two load cell readings in Specimens 

RC, Y, G, and LC, and the output from one load cell reading in the tests of Specimens H 

and SC.  The average of the means of the six tests is 90.03 kN (20.24 kips), which is only 

1.01% from the target value of 88.96 kN (20 kips). The average standard deviation is 

2.54 kN (0.57 kips), or 2.85% of the target axial load. The statistical data confirms the 

high accuracy of the applied axial load in these tests. 

3.4.2 Hysteretic Response 

Figure 3.49 through Figure 3.54 show the normalized moment – deflection 

hysteretic responses of all specimens. Moments are normalized to remove the effects of 

different concrete compressive strengths and core diameters, as M/f’cD
3, where M is the 

moment at the column base; and D is concrete core diameter or the internal diameter of 

the FRP tube. The total moment term includes both the primary (lateral) and the 

secondary (P-) effects. The deflection is shown both as the column head displacement  

and the drift ratio /L, where L is the shear span. The hysteretic loops in the figures are 

marked for each ductility factor . 

Specimen RC was inadvertently and rapidly pre-loaded in push well beyond its 

yielding stage, and thus showed a damaged hysteretic response in that direction. However, 
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its response in the pull direction correlated favorably with the OpenSees analytical 

simulation as will be discussed in Chapter 7. Thus, the experimental data in pull direction 

will be considered as a valid reference for the CFFT specimens. Specimen RC had a 

slight load drop at  of 5 in pull direction. 

The most significant feature of Specimen Y was that its flexural strength 

continued to increase throughout the cyclic test in both directions, and at a higher rate 

than Specimen G, the other GFRP specimen. The hysteretic response of Specimen G 

showed that its flexural strength continued to increase until  = 4, after which it kept 

almost constant. Specimen H experienced 10-11% load drops at  = 3 in both directions. 

No FRP cracks were detected during the test; although the load drop clearly indicated the 

development of such cracks. The hysteretic response of Specimen SC showed that its 

flexural strength dropped by 13% at  = 4, after the tube cracked. The load drop was not 

as significant on the push side, since cracks on top of the tube were not as extensive as 

those in the bottom. In Specimen LC, load drops were also associated with cracking of 

FRP tube; however, the overall capacity did not decrease. 

3.4.3 Response Envelope 

Figure 3.55 compares the normalized moment – drift ratio envelope curves for all 

specimens. The data is calculated based on the maximum/minimum normalized moments 

and the drift ratio of the first cycle for each level of ductility displacement. A quantitative 

comparison of the performance measures for different specimens is also presented in 

Table 3.5. Only data in pull direction is presented for Specimen RC with an assumed 

loading start from zero. 
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It is clearly shown that all CFFT specimens had higher flexural strength than 

Specimen RC. Specimen H demonstrated the highest flexural strength and initial 

stiffness, whereas Specimens Y and G exhibited better ductility. Specimen LC did not 

exhibit a symmetric response in the push and pull directions. However, the average 

absolute total maximum normalized moments of both directions for Specimens SC and 

LC were almost identical, as expected from the identical fiber architecture of the two 

FRP tubes. 

3.4.4 Energy Dissipation 

Figure 3.56 shows the normalized cumulative dissipated energy of all specimens 

versus their drift ratio in the pull direction. The energy is calculated based on the 

maximum normalized moment and drift ratio of the first cycle for each level of ductility 

displacement. It is clear that all CFFT specimens had higher energy dissipation than 

Specimen RC. Moreover, at the same drift ratio, Specimen H distinguishes itself with the 

highest cumulative energy and dissipation rate, i.e., slope of the curve. Specimen G, the 

second highest curve, performed better than Specimen Y, the other fiberglass tube, in 

terms of both dissipated energy and dissipation rate. Higher performance of Specimen LC 

is due to its longer flexural span, rather than its sectional curvature. 

3.4.5 Performance Measures of Stiffness, Ductility and Pinching 

Table 3.6 compares performance measures of stiffness, ductility and pinching for 

CFFT specimens. The normalized initial stiffness of all specimens is based on the initial 

elastic slopes of the hysteretic normalized moment – drift ratio responses. The R2, 

coefficient of determination, was derived from the linear regression analysis of the slope 
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in the elastic range. Clearly, Specimen H had the highest normalized initial stiffness, 

followed by Specimen SC and the two fiberglass Specimens Y and G. Lower stiffness of 

Specimen LC is due to its longer shear span. 

Ductility of a structural member is defined as its ability to sustain inelastic 

deformation prior to failure, without substantial loss of strength. A yield-based ductility 

index is defined as the ultimate deflection over its corresponding yield value. The yield 

deflection is defined as that of an equivalent elasto-plastic system with the same elastic 

stiffness and ultimate load as those of the real system. Table 3.6 lists the ductility of all 

specimens based on their drift ratios. The yield drift ratio was obtained using the ultimate 

normalized moment divided by the normalized initial stiffness. Except for Specimen Y, 

the data was obtained in the push direction. It is clear that fiberglass specimens had 

higher ductility than carbon and hybrid CFFTs. Specimen LC showed higher ductility 

than Specimen SC, because of its longer shear span. 

Table 3.6 also lists pinching factors for all CFFT specimens. Pinching factor is 

defined as the ratio of the width of the hysteretic loop at its widest point to that at the 

origin. It is noted that fiberglass and hybrid lay-up may lead to higher pinching effect 

than those with carbon tubes. 

3.4.6 Load-Strain Response and Plastic Hinge Length 

Figure 3.57 through Figure 3.61 show strain profiles for the steel bars along 

individual CFFT specimens during the push cycles at different ductility factors. The 

readings are marked as SG and Ω for the type of gauge, and Top and Bottom for the 

bar/gauge location. The figure also depicts the plastic hinge length based on the 0.002 
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yielding strain of mild steel. Table 3.7 lists the plastic hinge lengths (Lp) for all CFFT 

specimens, which were calculated as percentages of each column length (Lc) and also 

compared with outside diameters (Do) of each column. Figure 3.62 shows the plastic 

hinge lengths (Lp) as a fraction of column length (Lc) or outside diameters (Do) of each 

column. The plastic hinge lengths were from the maximum values of Table 3.7 for all 

short CFFT specimens. The graphs are plotted as a function of the absolute average of 

maximum normalized moment from both directions. For Specimen RC, only data from 

the bottom strain gauge in the pull direction was used. 

All CFFTs exhibited longer plastic hinge than Specimen RC, validating the 

findings of earlier studies (Zhu et al. 2006a&b). Specimen H had the least plastic hinge 

length among the four short CFFT specimens, perhaps due to its higher flexural strength, 

as will be discussed later. Since Specimen LC required larger deflection to initiate steel 

yielding, it had a shorter plastic hinge zone than the short CFFTs. Figure 3.62 also shows 

the plastic hinge length to be inversely proportional to the flexural strength. 

3.4.7 Deflected Shapes and Normalized Moment – Curvature Responses 

Figure 3.63 through Figure 3.68 show the deflected shapes of all specimens at 

various ductility levels. In each figure, deflections and drift ratios are shown relative to 

the distance from the footing for the entire range of displacement ductility . The 

deflected shapes of all CFFT columns are generally linear even at highest levels of 

displacement ductility, primarily because of limited number of measurements taken along 

the length of the columns. 
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Figure 3.69 compares the normalized moment – curvature responses of all 

specimens from cyclic tests, except for Specimen RC, which was obtained from the 

OpenSees push-over analysis as presented later in Chapter 7. Specimens H and RC had 

the highest and lowest capacities, respectively, at each curvature. It should be noted that 

the maximum curvatures for CFFTs do not constitute failure, but rather the last available 

strain gauge data. 

3.4.8 Tube-Footing Slippage 

Readings from the top and bottom potentiometers at the column-head joints 

confirmed that there was no slippage between the tube and the column head in any of the 

CFFT specimens. Figure 3.70 through Figure 3.74 show normalized moment – slippage 

of Specimens Y and H at column base, where Top/Bottom denotes location of 

potentiometer, and Compression/Tension indicates the state of strain. 

In Specimen G (Figure 3.71), due to the potentiometer malfunction, slippage was 

not recorded when potentiometers were in tension and was only partially recorded when 

potentiometers were in compression. Therefore, only data for  of 5 and 6 could be 

recovered for the top potentiometer, and for  of 2–10 for the bottom potentiometer. In 

Specimen H (Figure 3.72), a chunk of concrete in the footing spalled off adjacent to the 

tube, as discussed earlier (Figure 3.39), again leading to a gap in subsequent slippage data 

in the figure. In Specimens SC (Figure 3.67) and LC (Figure 3.68), the potentiometers 

placed at the bottom of FRP tube and RC footing suddenly fell down after cracking of the 

tube, and therefore, no data was recorded after  of 3. 
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From the figures, it is apparent that at each level of ductility factor, the slippage in 

the second cycle was larger than that in the first cycle under the same column head 

displacement. It is also noted that the slippage was larger in tension than that in 

compression, except for Specimen SC, where the top potentiometer on the compression 

side showed larger slippage than that in tension. This may be attributed to cracks in the 

FRP tube. Generally, this is consistent with overall responses of strain profiles where 

tensile strains were larger than compressive strains along the same section. 

Figure 3.75 compares the tube-footing slippage on the top for Specimens SC, H, 

Y, and LC. Specimen Y seemingly has the largest slippage amongst the CFFT columns, 

perhaps because of its smooth surface. However, the slippage is not significantly different 

among the various CFFTs. Figure 3.76 shows the tube-footing net slippage on the top for 

Specimens SC, H, Y, and LC, eliminating the elongation or shortening component from 

the center of potentiometer to the footing edge. The figure shows the same pattern as that 

of Figure 3.75, confirming the insignificant effect of the straining component on the 

overall slippage. 

3.4.9 Residual Deflections and Residual Loads 

Figure 3.77 compares the average absolute residual drift ratios at zero loading in 

both directions of push and pull for CFFT specimens at each ductility factor. It is noted 

that fiberglass specimens (i.e., Y and G) exhibited the smallest residual drift, an 

important feature in seismic application when considering possible repair. Specimens 

made with carbon fibers (i.e., LC and SC), on the other hand, had largest residual drift. 

The residual drift for Specimen H lies in between the two groups. 
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Figure 3.78 compares the percentages of total residual normalized moment at zero 

deflection relative to total maximum normalized moment at each ductility factor for 

CFFT Specimens. In this figure, it is observed that the trend at higher level of ductility 

factor is quite similar to that in Figure 3.77, with Specimen H in between the fiberglass 

and carbon tubes. 

3.4.10 Combined Shear and Flexural Effects of CFFT Columns 

Specimens SC and LC were similar in all respects, except for their shear span-to-

depth ratios of 4.61 and 7.57, respectively. Although Specimen LC had higher 

deformation capacity than Specimen SC, they had identical flexural failure modes with 

very similar flexural strength. Zhuo et al. (2005) reported that fiberglass CFFTs fail in 

flexure under both cyclic and shake table tests, even at a shear span-to-depth ratio of 2.5, 

whereas RC control specimens would exhibit shear-flexural failure. Therefore, it may be 

concluded that under combined shear and flexural effects with shear span-to-depth ratios 

typical of bridge substructure, flexure remains the dominant mode of failure for CFFT 

columns, if properly designed. 

3.5 CONCLUSIONS 

To investigate the seismic performance of CFFT columns as bridge substructure, 

cyclic tests were conducted on five CFFT specimens and one control RC specimen. The 

five CFFTs had different fiber type and architecture and shear span-to-depth ratios. 

Performance measures included: strength, energy dissipation, initial stiffness, ductility, 

pinching, plastic hinge length and residual deflection. The following conclusions may be 

drawn from this experimental study: 
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1. The footings in all CFFTs exhibited significant cracking, contrary to the footing 

in Specimen RC, which experienced no cracking. Only specimens with carbon 

FRP cracked, while specimens with glass or hybrid FRP did not show any visible 

cracks throughout cyclic tests. 

2. All CFFTs showed higher flexural strength and energy dissipation than the RC 

column. Hybrid lay-up led to the highest flexural strength, initial stiffness and 

energy dissipation. 

3. Specimens with GFRP tubes exhibited higher ductility than those with carbon and 

hybrid tubes. Meanwhile, fiberglass and hybrid lay-up may lead to higher 

pinching effect than those with carbon tubes. 

4. All CFFT specimens developed a longer plastic hinge zone than Specimen RC. 

Moreover, the plastic hinge length was inversely proportional to the flexural 

strength. 

5. Slippage was larger in tension than in compression, similar to the sectional strain 

response. Specimen Y had the largest slippage amongst all specimens because of 

its smooth surface. However, slippage was not significantly different among the 

various CFFT specimens. 

6. GFRP specimens exhibited the smallest residual deflections and loads, an 

important feature in seismic applications when considering possible repair. CFRP 

tubes led to the largest residual deflections and loads, while hybrid lay-up lied in 

between the two groups. 
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7. Under combined shear and flexural effects with shear span-to-depth ratios of 

typical bridge substructures, it is expected that CFFT columns will have flexure 

dominant failure. 



 

Table 3.1 Test Matrix 

Specimen 
Column 
Length 

mm (in.) 

Shear Span 
in Cyclic 

Test 
mm (in.) 

Concrete 
Core 

Diameter 
mm (in.) 

Tube 
Thickness 
mm (in.) 

Column 
Outside 

Diameter 
mm (in.) 

Con-
crete 
Batch 

f’c  
MPa 
(ksi) 

Longitudinal FRP Transverse FRP 

RC N/A N/A 
309.9 

(12.20) 
None 

Y 
311.86 

(12.278) 
5.5 

(0.2160) 
322.8 

(12.71) 
17 Layers of ±55° E-Glass 

G 
7.3 

(0.2878) 
332.1 

(13.0756) 

1 
44.8 
(6.5) 

3 Layers of Bi-Directional E-Glass 

H 
6.7 

(0.2635) 
330.9 

(13.0270) 
2 Layers of Uni-

Directional Carbon 
3 Layers of Uni-

Directional E-Glass 
SC 

1,295 (51) 1,524 (60) 

LC 2,210 (87) 2,438 (96) 

317.50 
(12.5) 

2.2 
(0.0884) 

322.0 
(12.6767) 

2 
33.1 
(4.8) 

2 Layers of Bi-Directional Carbon 43 
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Table 3.2 Properties of FRP Tube or Laminates 

Specimen 
Manufacturer 

Product Number 
Data Source 

Tensile 
Strength 

MPa (ksi) 

Tensile 
Modulus 

GPa (msi) 

Hoop 
Strength 

MPa (ksi) 

Hoop 
Modulus 

GPa (msi) 

Flexural 
Strength 

MPa (ksi) 

Flexural 
Modulus 

GPa (msi) 

Y 
Smith Fiberglass / 
Red Thread II Pipe 

Manufacturer 
71.0 

(10.3) 
12.55 
(1.82) 

234.4 
(34.0) 

N/A 
158.6 
(23.0) 

15.03 
(2.18) 

G 
3TEX / 

P3W-GE041 
193.7 
(28.1) 

15.9 
(2.3) 

208.2 
(30.2) 

15.9 
(2.3) 

H 
Sika Corp. / 

Hex 103C / 100G 
249.6 
(36.2) 

33.8 
(4.9) 

268.9 
(39.0) 

17.2 
(2.5) 

SC, LC 
3TEX / 

P3W-C1059 

Coupon Tests 
Based on 
ASTM D 

3039 117.9 
(17.1) 

17.9 
(2.6) 

364.1 
(52.8) 

35.9 
(5.2) 

N/A 

 

 



 

Table 3.3 Properties of Sikadur 35 and Sikadur 300 

Product Usage 
Tensile 
Strength 

MPa (ksi) 

Tensile 
Modulus 

GPa (msi) 

Tensile 
Elongation at 

Break 

Compressive 
Strength 

MPa (ksi) 

Compressive 
Modulus 

GPa (msi) 

Flexural 
Strength 

MPa (ksi) 

Flexural 
Modulus 

GPa (msi) 

Sikadur 35 
Epoxy 

Injection 
51.8 
(7.5) 

N/A 4.8% 
81.3 

(11.8) 
1.86 

(0.27) 
N/A N/A 

Sikadur 300 
Impregnating 

Resin 
55.0 
(8.0) 

1.72 
(0.25) 

3.0% N/A N/A 
79.0 

(11.5) 
3.45 

(0.50) 
 

Table 3.4 Statistical Variables for the Applied Axial Forces 

44 
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Specimen 
Load Cell 
Readings 

Mean 
kN (kips) 

Deviation of 
Mean from 
Target* (%) 

Standard 
Deviation 
kN (kips) 

Standard 
Deviation / 
Target* (%) 

RC 2 
88.78 

(19.96) 
-0.2% 

3.74 
(0.84) 

4.20% 

Y 2 
90.43 

(20.33) 
1.65% 

2.15 
(0.48) 

2.42% 

G 2 
89.85 

(20.20) 
1.00% 

2.51 
(0.57) 

2.83% 

H 1 
90.43 

(20.33) 
1.65% 

1.70 
(0.38) 

1.91% 

SC 1 
90.38 

(20.32) 
1.60% 

2.78 
(0.63) 

3.13% 

LC 2 
90.16 

(20.27) 
1.35% 

2.24 
(0.50) 

2.52% 

Average 
90.03 

(20.24) 
1.01% 

2.54 
(0.57) 

2.85% 

   * Target axial load = 88.96 kN (20 kips) 

 

 



 

Table 3.5 Comparison of System Performance Measures 

Items Unit 
Specimen 

RC 
Specimen 

Y 
Specimen 

G 
Specimen 

H 
Specimen 

SC 
Specimen 

LC 
Maximum 

Normalized 
Moment in 

Pull 

- 0.0834 0.0996 0.1195 0.1457 0.1002 0.1214 

Maximum 
Normalized 
Moment in 

Push 

- - -0.0861 -0.0896 -0.1289 -0.0806 -0.0680 

Average 
Absolute 

Maximum 
Normalized 
Moments 

- 0.0834 0.0928 0.1046 0.1373 0.0904 0.0947 

Maximum 
Deflection in 

Pull 

mm 
(in.) 

78.94 
(3.11) 

100.80 
(3.97) 

74.86 
(2.95) 

73.37 
(2.89) 

61.92 
(2.44) 

152.52 
(6.00) 

Maximum 
Deflection in 

Push 

mm 
(in.) 

- 
-72.82 
(-2.87) 

-123.75 
(-4.87) 

-73.77 
(-2.90) 

-60.84 
(-2.40) 

-148.91 
(-5.86) 

Maximum 
Drift Ratio in 

Pull 
% 5.18 6.61 4.91 4.81 4.06 6.26 

Maximum 
Drift Ratio in 

Push 
% - -4.78 -8.12 -4.84 -3.99 -6.11 

Damage Level - 
Severe 

Damage 
No Visible Damage Minor Damage 

Failure Mode - 
Concrete 
Spalling 

No Visible FRP Cracking 
Flexural Cracking of 

FRP Tubes 
Note: positive data were obtained from pull direction and negative data were obtained from push direction. 
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Table 3.6 Performance Measures of Stiffness, Ductility and Pinching of CFFT Specimens 

Specimen Y G H SC LC 

Normalized 
Initial Stiffness 

0.065 0.060 0.096 0.073 0.055 

R2 0.840 0.920 0.878 0.854 0.903 

Normalized 
Ultimate 
Moment* 

0.100 -0.090 -0.129 -0.081 -0.068 

Yield Drift 
Ratio* 

(%) 
1.530 -1.491 -1.343 -1.103 -1.232 

Ultimate Drift 
Ratio* 

(%) 
6.614 -8.120 -4.841 -3.992 -6.107 

Ductility  4.32 5.45 3.61 3.62 4.96 

Pinching Factor 2.50 2.00 2.20 1.63 1.89 

* Positive and negative data represent pull and push directions, respectively. 
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Table 3.7 Comparison of Plastic Hinge Lengths 

Plastic Hinge Length 

Push Pull Specimen 

Top Tensile 
Region 

Bottom 
Compressive 

Region 

Top Compressive 
Region 

Bottom Tensile 
Region 

Lp/Lc - - - 22% 
RC 

Lp/Do - - - 0.92 

Lp/Lc 53% 23% 23% 49% 
Y 

Lp/Do 2.13 0.92 0.92 1.97 

Lp/Lc 54% 21% 29% 32% 
G 

Lp/Do 2.11 0.82 1.13 1.25 

Lp/Lc 28% 13% 17% 21% 
H 

Lp/Do 1.10 0.51 0.67 0.82 

Lp/Lc 30% 20% 16% 57% 
SC 

Lp/Do 1.21 0.80 0.64 2.29 

Lp/Lc 8% 3% 17% - 
LC 

Lp/Do 0.55 0.21 1.17 - 
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Figure 3.1 Sonotubes and Filament-
Wound FRP Tube 

Figure 3.2 Preparation of Carbon FRP 
Tube in the Laboratory 

 

(a) (b) 
 

 

(c) 

Figure 3.3 Cured Laboratory-Made FRP Tubes: (a) GFRP Tube for Specimen G, (b) 

CFRP Tube for Specimen SC, and (c) CFRP Tube for Specimen LC and Hybrid 

CFRP/GFRP Tube for Specimen H 
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Figure 3.4 Column Reinforcement of Specimen RC Embedded into the Footing 
 

 

Figure 3.5 Column Reinforcement of Specimen LC 
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Head Head

FRP Tube 
RC Column 

Footing Footing 

Figure 3.6 Column Reinforcement Details for Specimen RC and CFFT Specimens 
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Figure 3.7 Embedment of FRP Tube and Column Reinforcement into the Footing of 
Specimen Y 

 

 

Figure 3.8 Overall Embedment into the Column Heads and Footings of Specimens G, 
Y and RC 
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Figure 3.9 Formworks of Specimens H and SC  
 

 

Figure 3.10 Template and Formwork for Specimen LC 
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Figure 3.11 Casting of Concrete 
 

 

Figure 3.12 Specimens H and SC Right after Concrete Casting  
 

 53



 

 

Figure 3.13 Five Short Column Specimens after De-Molding 
 

 

Figure 3.14 Specimen LC and Pedestal after De-Molding  
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Figure 3.15 Small Pockets of Concrete 
Void along the Top of Specimen RC  

Figure 3.16 Epoxy Injection Port 

 

Figure 3.17 Port Layout for Epoxy Injection 
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Figure 3.18 Epoxy Injection Process 
 

 

Figure 3.19 Specimen after Epoxy Injection 
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Figure 3.20 Test Setup for Specimen RC 
 

 

Figure 3.21 Test Setup for Specimen Y 
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Figure 3.22 Test Setup for Specimen G 
 

 

Figure 3.23 Test Setup for Specimen H 
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Figure 3.24 Test Setup for Specimen SC 
 

 

Figure 3.25 Test Setup for Specimen LC 
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Figure 3.26 Post-Tensioning of Specimen G to Simulate Axial Force 
 

(a) 
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(b)  

Figure 3.27 Instrumentation Plan: (a) Short Specimens and (b) Specimen LC 
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Figure 3.28 Instrumentation Legend 
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Figure 3.29 Loading Regime of Cyclic Tests 
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Figure 3.30 Bottom Fiber Crack in Specimen SC 
 

 

Figure 3.31 Top Fiber Crack in Specimen SC 
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Figure 3.32 Bottom Fiber Crack in Specimen LC 
 

 

Figure 3.33 Top Fiber Crack in Specimen LC 
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Figure 3.34 Footing Cracks in Specimen Y 
 

 

Figure 3.35 Footing Cracks in Specimen G 
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Figure 3.36 Concrete Spalling in Footing of Specimen H 
 

 

Figure 3.37 Footing Cracks in Specimen H 
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Figure 3.38 Separation between FRP Tube and RC Footing in Specimen Y 
 

 

Figure 3.39 Splitting of Concrete Footing in Specimen H 
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Figure 3.40 Tube Embedment Intact for Specimen G until =3 
 

 

Figure 3.41 Tube Slippage in Specimen G 
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Figure 3.42 Specimen RC at  of 10 without Axial Load 
 

 

Figure 3.43 Specimen Y at  of 8 
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Figure 3.44 Specimen G at  of 10 
 

 

Figure 3.45 Specimen H at  of 6 
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Figure 3.46 Specimen SC at  of 5 
 

 

Figure 3.47 Specimen LC at  of 6 
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Figure 3.48 Axial Load Fluctuations for Specimen LC 
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Figure 3.49 Hysteretic Normalized Moment – Deflection Response of Specimen RC 
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Figure 3.50 Hysteretic Normalized Moment – Deflection Response of Specimen Y 
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Figure 3.51 Hysteretic Normalized Moment – Deflection Response of Specimen G 
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Figure 3.52 Hysteretic Normalized Moment – Deflection Response of Specimen H 
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Figure 3.53 Hysteretic Normalized Moment – Deflection Response of Specimen SC 
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Figure 3.54 Hysteretic Normalized Moment – Deflection Response of Specimen LC 
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Figure 3.55 Normalized Moment – Drift Ratio Envelope Curves of All Specime s n
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Figure 3.56 Normalized Cumulative Dissipated Energy versus Drift Ratio 
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Figure 3.57 Longitudinal Rebar Strain Profile of Specimen Y During Push 
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Figure 3.58 Longitudinal Rebar Strain Profile of Specimen G During Push 
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Figure 3.59 Longitudinal Rebar Strain Profile of Specimen H During Pull 
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Figure 3.60 Longitudinal Rebar Strain Profile of Specimen SC During Pull 
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Figure 3.61 Longitudinal Rebar Strain Profile of Specimen LC During Pull 
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Figure 3.62 Plastic Hinge Length versus Normalized Moments 
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Figure 3.63 Deflected Shapes of Specimen RC at Various Ductility Levels 
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Figure 3.64 Deflected Shapes of Specimen Y at Various Ductility Levels 
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Figure 3.65 Deflected Shapes of Specimen G at Various Ductility Levels 
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Figure 3.66 Deflected Shapes of Specimen H at Various Ductility Levels 
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Figure 3.67 Deflected Shapes of Specimen SC at Various Ductility Levels 
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Figure 3.68 Deflected Shapes of Specimen LC at Various Ductility Levels 
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Figure 3.69 Normalized Moment – Curvature Responses 
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Figure 3.70 Tube-Footing Slippage in Specimen Y 
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Figure 3.71 Tube-Footing Slippage in Specimen G 
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Figure 3.72 Tube-Footing Slippage in Specimen H 
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Figure 3.73 Tube-Footing Slippage in Specimen SC 
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Figure 3.74 Tube-Footing Slippage in Specimen LC 
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Figure 3.77 Average Absolute Residual Drift Ratios of CFFT Specimens at Zero Loads 
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Figure 3.78 Percentage of Total Residual Normalized Moment at Zero Deflection to 
Total Maximum Normalized Moment at Each Ductility Factor for CFFT Specimens 

 



 

CHAPTER 4 MONOTONIC FLEXURAL TEST 

4.1 INTRODUCTION 

Because cyclic tests aimed at investigating the behavior of column-footing 

connections, the specimens made with glass FRP tubes neither showed any visible crack, 

nor did they reach their ultimate capacity. Even carbon FRP tubes showed visible cracks 

only at column base. Therefore, a series of follow-up four-point monotonic bending tests 

of these specimens was carried out to shed further light on their flexural strength. 

4.2 SPECIMEN CONDITIONS 

After the cyclic tests, Specimens Y, G and H had remained intact without any 

visible matrix crack, while Specimens LC and SC showed visible cracks in the FRP tubes. 

Nonetheless, the cracks were limited to the column base. Specimen RC suffered severe 

damage at column-footing connection region, with concrete spalling off, but no fracture 

of spiral or longitudinal steel. Moreover, no crack was detected in the mid-span in any of 

the columns after cyclic tests. 

All specimens had residual displacements after cyclic tests. Specimens H, SC and 

LC had very small downward residual displacements in the range of 3-4 mm (0.10-0.15 

in., 0.2% of respective column lengths) at column heads, while Specimen Y had an 

upward residual displacement of 28 mm (1.10 in., 2% of column length) at column head. 

In these cases, the bending test setups were not influenced by the residual displacements. 

On the other hand, Specimens G and RC had downward residual displacements of 90 and 

129 mm (3.54 and 5.09 in., 7% and 10% of respective column lengths) at column heads, 

respectively. Therefore, a different instrumentation plan was developed for these two 
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specimens. Table 4.1 shows the specimen conditions after cyclic tests. Types I and II 

instrumentation plans will be described in Section 4.3.2. 

4.3 TEST SETUP AND INSTRUMENTATION 

4.3.1 Test Setup 

The specimens were placed on two concrete pedestals with the head and footing 

acting as supports, resting on neoprene pads. The clear span in monotonic tests was 2,210 

mm (87 in.) for Specimen LC and 1,295 mm (51 in.) for all other short specimens. 

A 1,045 kN (235 kips) capacity hydraulic actuator hung from a steel reaction 

frame was used to apply the load on the specimens with two steel saddles as loading 

points, and a steel spreader plate that was attached to the actuator using threaded rods. 

Neoprene pads were also placed at loading points. Specimen H was loaded without the 

steel saddles, because top of the beam was not as round as the other specimens. No axial 

load was applied to any of the specimens. Figure 4.1 through Figure 4.6 show the test 

setups for the six specimens. Different loading patterns were used based on the specimen 

condition after previous cyclic tests. Table 4.2 shows the detailed loading patterns for 

each specimen. 

4.3.2 Instrumentation 

Each specimen was instrumented with six string potentiometers, two strain gauges 

and two inclinometers. In addition, the load and displacement outputs from the actuator 

controller were monitored using a high-speed data acquisition system, for a total of 

twelve readings at a frequency of 1 Hz. 
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Two of the 152 mm (6 in.) range string potentiometers were attached at both ends 

of each specimen to monitor support displacements. Three similar string potentiometers 

were placed at quarter spans to measure deflections at mid-height of the section on one 

side. For Specimens Y, H, SC and LC, an additional string potentiometer was set at mid-

span on the opposite side of the section to compare the displacements on the two sides. 

This instrumentation plan for string potentiometers is denoted as Type I in Table 4.1. For 

Specimens RC and G, there were large downward residual displacements after cyclic 

tests, which made it difficult to support the column heads. Hence, the additional string 

potentiometer was placed at the far end of the column head to monitor its total rigid body 

movement. This instrumentation plan is denoted as Type II in Table 4.1. Each specimen 

was also instrumented with two 20 mm (0.8 in.) strain gauges (PFL-30-11-5L of Tokyo 

Sokki Kenkyujo Co., Ltd.) at the top and bottom at mid-span. Two inclinometers were 

placed to monitor the end rotations. Figure 4.7 shows Type I instrumentation plan, 

whereas Figure 4.8 shows Type II instrumentation plan. Figure 4.9 includes the 

instrumentation list for the monotonic tests. 

4.4 TEST PROCEDURE AND OBSERVATIONS 

4.4.1 Test Procedure 

Each specimen was subjected to a monotonic load applied in displacement control 

at a rate of 0.02 mm/s (0.05 in. /min). At times, loading was temporarily stopped to 

monitor crack growth. 
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4.4.2 Test Observations 

4.4.2.1 Specimen RC 

Specimen RC was loaded in four-point bending with the loading center exactly at 

its mid-span. The first small cracking sound was heard at about 36% of the peak load 

with a tensile strain of 0.0022 at mid-span. Following flexural cracks, shear cracks 

developed within the shear span. The specimen eventually failed near the footing support 

mainly due to the severe damage from the cyclic test. Figure 4.10 and Figure 4.11 show 

the flexural cracks at mid-span and the cracks in the shear-flexural region, respectively. 

Figure 4.12 and Figure 4.13 show the final cracking pattern near the column footing. 

4.4.2.2 Specimen Y 

Specimen Y was loaded in three-point bending with slightly offset loading. The 

first small cracking sound was heard at about 78% of the peak load with a compressive 

strain of 0.0073 and a tensile strain of 0.0025 both at mid-span. A sudden FRP crushing 

burst occurred at the peak load near one of the loading points. Figure 4.14 and Figure 

4.15 show the bursting cracks at the top from the east and west sides of the section, 

respectively. The burst in the FRP tube split the matrix into powders, while several pieces 

on the surface of FRP spalled off. 

4.4.2.3 Specimen G 

Specimen G was loaded in four-point bending with the loading center 13 mm off 

the mid-span toward the column head. The first small cracking sound was heard at about 

66% of the peak load with the tensile strain of 0.00475 at mid-span. After the test, two 
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crumpling cracks were found near the loading points. The cracking patterns are shown in 

Figure 4.16 and Figure 4.17. Figure 4.18 and Figure 4.19 show the close up and overall 

views of the specimen, respectively.  

4.4.2.4 Specimen H 

Specimen H was loaded in four-point bending with the loading center 38 mm (1.5 

in.) off the mid-span toward the column head. Figure 4.20 shows the direct loading of 

Specimen H using neoprene pads without steel saddles. The first small cracking sound 

was heard without any load drop at about 67% of the peak load with the compressive and 

tensile strains at the mid-span both at about 0.0025. At about 83% of the peak load, 

another cracking noise was heard and a slight load drop was noticed. Upon removal of 

neoprene pads, two crumpling cracks were noticed near the loading points, as shown in 

Figure 4.21 and Figure 4.22. Figure 4.23 provides a close up of the cracks at the top of 

the specimen. 

4.4.2.5 Specimen SC 

Specimen SC was loaded in four-point bending with the loading center 38 mm 

(1.5 in.) off the mid-span toward the column head. The first cracking sound was heard at 

about 80% of the peak load with the tensile strain of 0.0047 at mid-span. The load 

continued to increase with cracking sounds heard throughout the test. The FRP tube 

ruptured, with the only flexural crack formed at the peak load exactly at mid-span with a 

loud bursting sound (Figure 4.24). The load dropped 80% immediately after the peak 

load. The only crumpling crack was then noticed at the top near the mid-span. Figure 

4.25 captures both the flexural crack at the bottom and the crumpling crack at the top. 
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4.4.2.6 Specimen LC 

Specimen LC was loaded in four-point bending centered exactly at its mid span. 

The FRP tube ruptured with only a single flexural crack forming within the shear span at 

the peak load accompanied by a loud sound and a significant load drop. The crack may 

be attributed to the FRP sheet wrinkling during the tube fabrication, as shown in Figure 

4.26. After the peak load, the crack extended to the mid-span, as shown in Figure 4.27. 

Approaching the end of the test, the crack extended to the top in the form of crushing or 

crumpling, as shown in Figure 4.28 through Figure 4.31. 

4.5 TEST RESULTS AND DISCUSSIONS 

4.5.1 Moment and Shear at Peak Loads 

As reported in Section 4.3.1, flexural loading pattern was different for each 

specimen due to their different conditions after cyclic tests. Since mid-span 

displacements were monitored for all specimens, it is necessary to compare mid-span 

moments for cross referencing. Also for comparison with cyclic tests results, maximum 

moments of each specimen must be derived. Hence, a structural engineering software 

RISA-2D 8.1 was applied for structural analysis purposes, the results of which were 

validated with hand calculation. The negative overhang moments generated by the two 

end blocks (head and footing) were also considered in the calculation, however. Beam 

self-weight was not accounted for. The two point loads were entered as distributed loads 

each with 100 mm (4 in.) width. The maximum values of shear and moment at peak load 

along each specimen, as well as mid-span moment, are all recorded in Table 4.3. 
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4.5.2 Normalized Moment–Deflection Responses 

Figure 4.32 through Figure 4.37 show the normalized moment–deflection 

responses. The deflection is shown both as the mid-span displacement  and the 

normalized displacement /L, where L is the clear span. 

For specimens with instrumentation Type I (Specimens Y, H, SC and LC), the 

mid-span deflections were calculated as the average of mid-span displacements of two 

string potentiometers minus the average of the two end support displacements. As 

described in Section 4.3.2, specimens with instrumentation Type II (Specimens RC and G) 

had two potentiometers monitoring the total rigid body movement of the column head 

due to the large residual displacements after cyclic tests. Results of the column head 

displacements showed that the supports for both specimens were quite efficient, and that 

the clear spans were maintained well at the inner edge of the column head. Hence, the 

displacement calculations followed the same procedure as that of specimens with Type I 

instrumentation. 

All CFFT specimens showed bi-linear behavior with transition zones at about 

65% of the respective peak loads for Specimens H, SC and LC; and about 50% of the 

peak load for Specimen Y. Specimen RC was severely damaged during the cyclic test, 

and thus it did not show any yielding plateau. Specimen Y exhibited a significant strain 

hardening behavior, while Specimen G showed a distinct yielding plateau. For Specimen 

LC (Figure 4.37), the first major load drop was associated with the flexural crack, 

followed by a series of slight load drops, corresponding to the development of flexural 
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cracks at mid-span, as described in Section 4.4.2.6. The overall load capacity, however, 

generally did not decrease until the end of the test. 

Figure 4.38 shows the mid-span normalized moment and deflection responses for 

all specimens. Specimens LC and SC followed the same general response until cracking. 

When compared with Specimens SC and LC, Specimen Y had a similar bilinear 

response, somewhat different from the envelope curves of the cyclic tests. Specimen G 

showed the largest yielding moment and deflection capacity among all short CFFT 

specimens. Specimen H showed the largest flexural strength, albeit only 3% higher than 

that of Specimen G. 

4.5.3 Maximum Normalized Moment 

Table 4.3 compares the maximum moments from cyclic and monotonic tests for 

all specimens. Specimen RC was severely damaged in the cyclic tests, while all CFFT 

specimens had larger monotonic flexural capacity, indicating that only a fraction of their 

strengths were utilized in the cyclic tests. Specimen Y had the highest reserved strength 

among all CFFT specimens. In the table, “T” and “C” denote tension and crumpling 

compression cracks, respectively. It was noticed that cracks in the monotonic tests were 

not necessarily near the maximum moment sections. Moreover, for Specimens RC, G, H, 

SC and LC, the mid-span moments are only within 2.5% of the maximum moments at 

peak loads. For Specimen Y, the difference is about 10%.  

4.5.4 Energy Dissipation 

Figure 4.39 shows the normalized cumulative dissipated energy versus their 

normalized mid-span deflection in monotonic tests. Comparing with the total normalized 
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cumulative dissipated energy versus their drift ratio responses in cyclic tests (Figure 

3.57), it is clear that in both figures, Specimens H distinguishes itself with the highest 

cumulative dissipated energy at the same drift ratio. Specimen G, the second highest 

curve, performed better than Specimen Y, the other fiberglass tube, both in terms of 

dissipated energy and dissipation rate. Corresponding to their similar behaviors of load-

deflection responses, Specimens LC, SC and Y also had similar energy dissipation trends 

expect at larger deflections in monotonic tests, where Specimen Y showed better energy 

dissipation than Specimen LC. 

4.5.5 Normalized Initial Stiffness 

Table 4.4 compares the normalized initial stiffness of CFFT specimens from 

monotonic and cyclic tests, based on the initial elastic slopes of normalized moment – 

deflection response curves. The R2, coefficient of determination, was derived from the 

linear regression analysis in the elastic region. The ratios between the two test sets as well 

as theoretical elastic stiffness ratios are also listed. Moreover, the theoretical ratios are 

shown as percentages over the experimental ratios, which may indicate the potential 

damage of each CFFT specimen after cyclic tests. It is noted that all short CFFT 

specimens (Y, G, H and SC) had a stiffness loss of about 33%, whereas the stiffness loss 

in Specimen LC was only 8%. Figure 4.40 shows the relationship of normalized initial 

stiffness with FRP/concrete stiffness ratio for both cyclic and monotonic tests of short 

CFFT specimens. Specimen H had higher normalized initial stiffness primarily due to its 

higher FRP/concrete stiffness ratio. 
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4.5.6 Ductility 

Table 4.5 compares the ductility of CFFT specimens from monotonic and cyclic 

tests, along with their respective calculation steps. In monotonic tests, Specimen LC had 

the highest ductility since the test carried on after a major crack, and maintained a 

substantial capacity. Ductility of Specimen H is in between specimens with GFRP tubes 

(Specimens G and Y) and CFRP tube (Specimen SC). In cyclic tests, the actual ductility 

values for Specimens Y and G are expected to be higher than those listed, because neither 

specimen failed in the cyclic tests. 

Figure 4.41 shows the relationship between ductility and the longitudinal FRP 

tensile strains for short CFFT specimens from both cyclic and monotonic tests. It is 

evident that ductility has a strong linear and somewhat similar correlation with rupture 

strain of FRP tube in both sets of tests. 

4.5.7 Normalized Moment–Strain Responses 

Figure 4.42 through Figure 4.47 show the normalized mid-span moment – FRP 

strain responses for each specimen. The mid-span strain readings were from the top and 

bottom gauges mounted on the FRP tubes or on the surface of the RC beam, with 

negative readings indicating compression. Figure 4.48 shows the normalized mid-span 

moment – FRP strain responses for all specimens. All specimens demonstrated a bi-linear 

response, with the two fiberglass specimens (Y and G) having similar initial slope and 

transition zone. The second slope of Specimen G, however, was larger than that of 

Specimen Y. Specimen H had almost the same initial slope as those of Specimens SC and 

LC. Specimen Y reached the highest compressive strain, while Specimen G developed 
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the highest tensile strain. It is also evident that load-strain responses generally followed 

the same pattern as the load-deflection responses in all specimens. 

The strains in the transition zones of Specimens SC and LC were almost identical, 

with 0.003 in tension and 0.0015 in compression. Moreover, final compressive strains for 

both specimens were similar at around 0.0042. In general, tensile strain was larger than 

compressive strain, which explains why both specimens had tension failures. For 

Specimen Y, however, the compressive strains were larger than tensile strains, leading to 

its compressive burst failure. 

4.5.8 Normalized Moment–Curvature Responses 

Figure 4.49 shows normalized mid-span moment – curvature responses for all 

specimens from the monotonic tests, except for Specimen G, which instead features the 

envelope of its cyclic test results at column base in the push direction (Shi 2009), shown 

in dashed lines. Cyclic test results of Specimen Y in the push direction are also shown in 

dashed lines. The two data sets of Specimen Y were quite similar, thus confirming the 

validity of comparing cyclic tests results of Specimen G with the monotonic test data 

from the others. Specimen H showed the highest flexural strength at the same curvature 

level because of its high stiffness, while the other four CFFT specimens demonstrated 

similar sectional curvature responses. 

4.5.9 Normalized Moment and Reinforcement Index Relationship  

Table 4.6 lists the strength and stiffness indices for FRP and mild steel 

reinforcement, using both confined and unconfined concrete compressive strengths, along 
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with the maximum normalized moments and shear forces from monotonic tests. FRP 

strength indices based on the unconfined and confined concrete compressive strengths, 

respectively, are defined as: 

cu ff '/                   

(1) 

cuuc ff '/                      

(2) 

where fu is ultimate tensile strength of FRP, f’cu is compressive strength of confined 

concrete, and FRP reinforcement ratio, , is defined as: 

oDt /4                  

(3) 

where t is the FRP tube thickness and Do is the outside diameter of the specimen. FRP 

stiffness index is defined as: 

cFRP EE /'                   

(4) 

where EFRP and Ec are moduli of elasticity of FRP and concrete, respectively. 

Mild steel strength indices based on unconfined concrete compressive strength 

(s) and confined concrete compressive strength (cs), may be derived from Equations 

(1) and (2), respectively, should ultimate strength of steel be used for fu. Compressive 

strength for confined concrete core, f’cu, is calculated based on Samaan (1998) model for 

FRP-confined concrete and Kent-Park model, as modified by Scott (1982) for spiral 

steel-confined concrete. 
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Figure 4.50 (a) and (b) show the relationship of normalized moment with strength 

indices of CFFT specimens using the unconfined and confined concrete compressive 

strengths, respectively. The normalized moment increases with the reinforcement index 

based on the unconfined concrete compressive strength. There seems to be an optimum 

reinforcement index for achieving the design moment. On the other hand, for confined 

strength of concrete, there is a descending branch between Specimens Y, G and H at 

higher reinforcement indices. This further indicates the existence of an optimum 

reinforcement index without over-confining the concrete. 

4.5.10 Influence of Shear Span Ratio and Reinforcement Index on Flexural and 

Shear Behavior 

Specimens Y, G, H and SC were tested with short shear span-to-depth ratios in 

the range of 1.0 to 1.6, whereas Specimen LC was tested at a ratio of 2.5. Specimens LC 

and SC exhibited identical tension failures, while Specimens Y, G and H all experienced 

local buckling failure. None of the specimens failed in shear. Moreover, since tube-

concrete slippage in these specimens was prevented with both ends embedded in concrete 

blocks and with additional dowel steel, the results fully extend and validate the findings 

of an earlier study by Ahmad et al. (2008a). 

In a previous study, however, Fam et al. (2007) indicated that a diagonal tension 

failure may occur for a CFFT beam with internal steel reinforcement. Their Specimen B6 

had a total reinforcement (FRP and mild steel) index of 0.86 with a shear span-to-depth 

ratio of 1.0. On the other hand, one of the CFFT short and deep beams tested by Ahmad 

et al. (2008a), Specimen S-5, also had a shear span-to-depth ratio of 1.0 and a high FRP 
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reinforcement index of 1.97. Although the specimen was loaded up to only 80% of its 

predicted capacity due to the limitation of the test frame, some diagonal shear cracks 

were developed in concrete core. Nonetheless, the high FRP reinforcement assisted shear 

capacity of Specimen S-5 in the study by Ahmad et al. (2008a). 

Table 4.7 compares the reinforcement index and normalized moment and shear 

force of Specimens SC and H with those of Beams B6 (Fam et al. 2007) and S-5 (Ahmad 

et al. 2008a). It is noted that Specimens B6 and H were highly comparable in all their 

properties except for the longitudinal FRP stiffness indices. Although the longitudinal 

FRP and mild steel configurations were different, the total reinforcement indices were 

highly close to each other leading to very similar flexural strengths. The ultimate shear 

capacity of Specimen B6, however, was substantially larger than that of Specimen H. 

This was attributed not only to the relatively higher hoop strength index of Specimen B6, 

but also to its shorter shear span-to-depth ratio. Figure 4.51 captures the above 

discussion, relating the normalized shear forces with the hoop strength indices of five 

CFFT specimens of present study and Specimen B6 from Fam et al. (2007) with their 

respective failure modes. 

Specimens SC and B6 had almost the same shear span-to-depth ratio of 1.0, but 

failed in flexure and shear, respectively. This may be attributed to the fact that Specimen 

SC had more transverse FRP than Specimen B6, when comparing the ratio of hoop over 

longitudinal strength indices. Therefore, one may consider an optimal balanced design 

between flexural and shear FRP reinforcement to avoid a non-ductile shear failure, 

without over-confining the section in the hoop direction. 

 101



 

4.6 CONCLUSIONS 

A series of monotonic bending tests were conducted on the one RC and five 

CFFT specimens that were previously subjected to reverse cyclic tests. Following 

conclusions may be drawn from this study: 

1. Specimens SC and LC both experienced flexural failures by FRP rupture in 

tension and crumpling in compression. Specimens Y, G and H all had FRP local 

buckling failure. Specimen Y exhibited an FRP burst crushing, while FRP tubes 

in Specimens G and H had crumpling cracks. 

2. CFFT specimens all showed a bi-linear response. Of the two fiberglass specimens, 

Specimen Y with filament-wound FRP tube exhibited a rather significant strain 

hardening behavior, whereas Specimen G with hand lay-up FRP tube had a 

distinct yielding plateau. 

3. Specimen H with its hybrid glass/carbon lay-up demonstrated the highest flexural 

strength mainly because of its high reinforcement index. It also had the highest 

initial stiffness due to its high FRP/concrete stiffness ratio. 

4. At the same drift ratio, Specimen H was considered as the best in both terms of 

energy dissipation. 

5. Specimens with glassfiber tubes (Y and G) exhibited the highest ductility due to 

higher flexibility of GFRP composites. Furthermore, ductility of CFFTs had a 

strong correlation with the rupture strain of FRP. 

6. Specimen H showed the highest flexural strength at the same curvature level 

because of its high stiffness, while the other four CFFT specimens demonstrated 

about the same level of moment-curvature responses. 
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7. Flexural strength increases with the reinforcement index based on unconfined 

concrete compressive strength, but depicts a descending branch when considering 

the confined concrete compressive strength. Hence, one can optimize 

reinforcement index for achieving a design moment without over-confining in the 

hoop direction. 

8. With proper FRP architecture, shear failure is not expected to be critical for CFFT 

specimens at short shear span-to-depth ratios as low as 1.0, with or without steel 

reinforcement and end restraints. 

 



 

Table 4.1 Specimen Conditions after Cyclic Tests 

Specimen 
Column Base 

Condition after 
Cyclic Tests 

Footing 
Condition after 

Cyclic Tests 

Column 
Condition at 

Mid-Span after 
Cyclic Tests 

Residual 
Displacement 
after Cyclic 

Tests * 
mm (in.) 

Instrumentation 
Plan Type of 
Monotonic 

Tests 

RC 
Concrete 
Cracks at 

Column Base 

No Visible 
Cracks 

-129 (-5.09) II 

Y 28 (1.10) I 

G -90 (-3.54) II 

H 

No Visible 
Cracks 

-3 (-0.11) 

SC -3 (-0.10) 

LC 

FRP Cracks at 
Column Base 
(One at Top 
and One at 

Bottom) 

Extensive 
Concrete 
Cracks 

Intact 

-4 (-0.15) 

I 

* Negative signs indicate downward displacements. 

 

Table 4.2 Loading Patterns for Test Specimens 

Specimen 
a 

mm 
(in.) 

b 
mm 
(in.) 

c 
mm 
(in.) 

Shear 
Span-to-
Depth 

Ratio(s) 

Illustration 

RC 
356 

(14.0) 
381 

(15.0) 
356 

(14.0) 
1.15 

Y 
419 

(16.5) 
0 

673 
(26.5) 

1.30, 2.08 

G 
521 

(20.5) 
25 

(1.0) 
546 

(21.5) 
1.57, 1.64 

H 
432 

(17.0) 
152 
(6.0) 

508 
(20.0) 

1.30, 1.54 

SC 
311 

(12.3) 
394 

(15.5) 
387 

(15.2) 
0.97, 1.21 

LC 
800 

(31.5) 
406 

(16.0) 
800 

(31.5) 
2.48 
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Table 4.3 Comparison of Monotonic and Cyclic Tests Moments  

Test Sets Specimen RC Y G H SC LC 
Maximum 

Normalized 
Moment (Pull) 

0.0834 0.0996 0.1195 0.1457 0.1002 0.1214 

Maximum 
Normalized 

Moment (Push) 

0.0413 
Damaged 

0.0861 0.0896 0.1289 0.0806 0.0680 Cyclic 

Average 
Normalized 

Moment 
0.0834* 0.0929 0.1046 0.1373 0.0904 0.0947 

Maximum 
Normalized 

Moment 

0.0441 
Damaged 

0.1443 0.1497 0.1543 0.1011 0.0990 

Distance from 
Head Support 

mm (in.) 

459 
(18.06) 

540 
(21.25) 

648 
(25.50) 

688 
(27.10) 

810 
(31.88) 

898 
(35.34) 

Cracks 
Measured from 
Column Head 

mm (in.) 

Multiple 
Location 

699~737 
(27.5~ 
29.0) 

[C]*** 

483 
(19.0) 

[C] 
660 

(26.0) 
[C] 

597 
(23.5) 

[C] 
699 

(27.5) 
[C] 

648 
(25.5) 
[T]** 
483 

(19.0) 
[C] 

1,626 
(64.0) 

[T] 
1,092 
(43.0) 

[C] 

Monotonic 

Mid-Span 
Normalized 

Moment 
(Percentage of 

Maximum 
Normalized 
Monotonic 
Moment) 

0.0431 
(97.73%) 

0.1301 
(90.16%) 

0.1497 
(100%) 

0.1539 
(99.74%) 

0.0997 
(98.62%) 

0.0981 
(99.09%) 

Ratio of Maximum Normalized 
Moments 

(Cyclic / Monotonic) 
141% 64% 70% 89% 89% 96% 

* Data is only accounted for the pull direction, due to initial damage from unintended overload in the push 
direction. 
** T: Tension Cracks 
*** C: Crumpling Cracks 



 

Table 4.4 Comparison of Normalized Initial Stiffness from Monotonic and Cyclic Tests 

Test Sets Specimen Y G H SC LC 
Normalized 

Initial Stiffness 
0.0651 0.0601 0.0960 0.0731 0.0552 

Cyclic 
R2 0.8399 0.9203 0.8783 0.8544 0.9030 

Normalized 
Initial Stiffness 

0.1646 0.1680 0.2663 0.1808 0.1923 
Monotonic 

R2 0.9989 0.9989 0.9996 0.9975 0.9856 

Normalized Initial Stiffness 
Ratio 

(Cyclic / Monotonic) 
0.3955 0.3577 0.3605 0.4043 0.2871 

Theoretical Elastic Stiffness 
Ratio 

(Cyclic / Monotonic) 
0.2418 0.2310 0.2428 0.2493 0.2641 

Theoretical Stiffness Ratio / 
Experimental Stiffness Ratio 

(%) 
61.1% 64.6% 67.4% 61.7% 92.0% 

 

Table 4.5 Comparison of Ductility of CFFT Specimens from Monotonic and Cyclic Tests 

Test Sets Item Specimen Y G H SC LC 

(a) 
Normalized 

Maximum Moment 
0.0996 -0.0896 -0.1289 -0.0806 -0.0680 

(b) 
Normalized Initial 

Stiffness 
0.0651 0.0601 0.0960 0.0731 0.0552 

(c)= 
(a)/(b) 

Yield Deflection 
Ratio 

1.5300 -1.4908 -1.3427 -1.1026 -1.2319 

(d) 
Maximum 

Deflection Ratio 
6.6140 -8.1203 -4.8409 -3.9920 -6.1070 

Cyclic 

(e)= 
(d)/(c) 

Ductility 4.32 5.45 3.61 3.62 4.96 

(f) 
Normalized 

Maximum Moment 
0.1443 0.1497 0.1539 0.0997 0.0981 

(g) 
Normalized Initial 

Stiffness 
0.1646 0.1680 0.2663 0.1808 0.1923 

(h)= 
(f)/(g) 

Yield Deflection 
Ratio 

0.8767 0.8911 0.5779 0.5514 0.5101 

(i) 
Maximum 

Deflection Ratio 
2.6353 2.8715 1.2601 1.0163 2.3684 

Monotonic 

(j)= 
(i)/(h) 

Ductility 3.01 3.22 2.18 1.84 4.64 

Cyclic/ 
Monotonic 

(k)= 
(e)/(j) 

Ductility Ratio 
(Cyclic/ 

Monotonic) 
1.44 1.69 1.66 1.93 1.07 

Note: Positive and negative data represent pull and push directions, respectively. 
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Table 4.6 FRP and Steel Strength and Stiffness Indices with Maximum Normalized Moments and Shear Forces 

FRP Strength Indices 
 (c) 

FRP Stiffness Indices 
' 

Steel Strength Indices 
s (cs) 

Specimen f’cu/f’c 
Longitudinal Hoop Longitudinal Hoop Longitudinal Hoop 

Maximum 
Normalized 

Moment 
M/f’cD

3 
(M/f’cuD

3) 

Maximum 
Normalized 

Shear 
V/f’cD

2 

RC 1.09 - - - - 
0.2085 

(0.1919) 
0.1081 

(0.0990) 
0.0834 

(0.0764) 
0.0375 

Y 1.59 
0.2405* 
(0.1513) 

0.3556 
(0.2237) 

0.0351** N/A 
0.1921 

(0.1208) 
0.1443 

(0.0908) 
0.0880 

G 1.66 
0.3813 

(0.2304) 
0.4088 

(0.2470) 
0.0471 0.0475 

0.1815 
(0.1097) 

0.1497 
(0.0905) 

0.0762 

H 
2.00 

0.6097 
(0.3052) 

0.6579 
(0.3294) 

0.1004 0.0512 
0.2476 

(0.1240) 
0.1543 

(0.0773) 
0.0925 

SC 
0.1011 

(0.0642) 
0.0834 

LC 
1.57 

0.0993 
(0.0631) 

0.3066 
(0.1948) 

0.0185 0.0367 
0.2615 

(0.1661) 

0 

0.0990 
(0.0629) 

0.0386 
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* Using flexure strength and modulus instead of tensile strength and modulus because of the specific fiber architecture. 

 



 

Table 4.7 Comparison of Reinforcement Indices and Normalized Moments of Specimens H and SC with Beams B6* and S-5** 
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FRP 
Strength 
Indices 
 

 

FRP 
Stiffness 
Indices 
' 

 

Steel 
Strength 
Indices 
s 

Total 
Strength 
Indices 
 + s 

 
Specimen 

(Shear 
Span-to-
Depth 
Ratios) Longitudinal Hoop Longitudinal Hoop Longitudinal Longitudinal Hoop 

Maximum 
Normalized 

Moment 
M/f’cD

3 

Maximum 
Normalized 

Shear 
V/f’cD

2 

SC 
(0.97, 1.21) 

0.0993 0.3066 0.0185 0.0367 0.2615 0.3608 0.3066 0.1011 0.0834 

H 
(1.30, 1.54) 

0.6097 0.6579 0.1004 0.0512 0.2476 0.8573 0.6579 0.1543 0.0925 

B6* 
(1.0) 

0.3027 0.6789 0.0275 0.0453 0.5584 0.8611 0.6789 0.1547 0.1540 

S-5** 
(1.0) 

1.9700 N/A 0.1273 N/A 0 1.9700 N/A 0.2230*** 0.3917*** 

* Data from Fam et al. (2007).  
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** Data from Ahmad et al. (2008a). 
*** Data reported as 80% of ultimate capacity (Ahmad et al. 2008a). 
 

 



 

 

Figure 4.1 Monotonic Test Setup for Specimen RC 
 

 

Figure 4.2 Monotonic Test Setup for Specimen Y 
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Figure 4.3 Monotonic Test Setup for Specimen G 
 

 

Figure 4.4 Monotonic Test set-up for Specimen H 
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Figure 4.5 Monotonic Test set-up for Specimen SC 
 

 

Figure 4.6 Monotonic Test set-up for Specimen LC 
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(a) Specimens Y, H, and SC 
 

(b) Specimen LC 

Figure 4.7 Instrumentation Plan Type I 

 

 

Figure 4.8 Instrumentation Plan Type II (for Specimens RC and G) 
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Figure 4.9 Instrumentation List for Monotonic Test
 

s 

 

Figure 4.10 Flexural Cracks of Specimen RC at Mid-Span 
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Figure 4.11 Shear Cracks of Specimen RC in Shear-Flexural Region Close to Column 
Head 

 

 

Figure 4.12 East View of Final Cracking Pattern Close to Footing in Specimen RC 
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Figure 4.13 West View of Final Cracking Pattern Close to Footing in Specimen RC 
 

 

Figure 4.14 Crushing of Specimen Y at the Top (East View) 
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Figure 4.15 Crushing of Specimen Y at the Top (West View) 
 

 

Figure 4.16 Cracking Pattern of Specimen G (East View) 
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Figure 4.17 Cracking Pattern of Specimen G (West View) 
 

 

Figure 4.18 Close up View of Specimen G (West View) 
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Figure 4.19 Overall View of Specimen G (West View) 
 

 

Figure 4.20 Direct Loading on Specimen H Using Neoprene Pads 
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Figure 4.21 Crumpling Crack in Specimen H at the Top (East View) 
 

 

Figure 4.22 Crumpling Crack in Specimen H at the Top (West View) 
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Figure 4.23 Close up of Crumpling Crack at the Top of Specimen H 
 

 

Figure 4.24 Flexural Crack in Specimen SC (West View) 
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Figure 4.25 Crumpling Crack in Specimen SC (West View) 
 

 

Figure 4.26 Flexural Crack in Specimen LC (East View) 
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Figure 4.27 Flexural Crack Extended to Mid-Span in Specimen LC (West View) 
 

 

Figure 4.28 Top Crumpling Crack in Specimen LC (East View) 
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Figure 4.29 Top Crumpling Crack in Specimen LC (West View) 
 

 

Figure 4.30 Final Crack Pattern in Specimen LC (East View) 
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Figure 4.31 Final Unzipping Crack in Specimen LC (West View) 
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Figure 4.32 Normalized Mid-Span Moment – Deflection Response of Specimen RC 
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Figure 4.33 Normalized Mid-Span Moment – Deflection Response of Specimen Y 
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Figure 4.34 Normalized Mid-Span Moment – Deflection Response of Specimen G 
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Figure 4.35 Normalized Mid-Span Moment – Deflection Response of Specimen H 
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Figure 4.36 Normalized Mid-Span Moment – Deflection Response of Specimen SC 
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Figure 4.37 Normalized Mid-Span Moment – Deflection Response of Specimen LC 
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 127



 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Normalized Mid-Span Deflection (/L)

N
o

rm
a

liz
ed

 C
um

ul
a

tiv
e

 D
is

si
p

a
te

d
 E

n
e

rg
y

H

G

Y

SC
RC

LC

Figure 4.39 Normalized Cumulative Dissipated Energy – Deflection Responses 
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Figure 4.40 Normalized Initial Stiffness versus Stiffness Ratio (FRP/Concrete) 
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Figure 4.41 CFFT Ductility versus FRP Ultimate Tensile Strain 
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Figure 4.42 Normalized Mid-Span Moment – Strain Response of Specimen RC 
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Figure 4.43 Normalized Mid-Span Moment – Strain Response of Specimen Y 
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Figure 4.44 Normalized Mid-Span Moment – Strain Response of Specimen G 
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Figure 4.45 Normalized Mid-Span Moment – Strain Response of Specimen H 
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Figure 4.46 Normalized Mid-Span Moment – Strain Response of Specimen SC 
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Figure 4.47 Normalized Mid-Span Moment – Strain Response of Specimen LC 
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(a) Based on Unconfined Concrete Compressive Strength 
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(b) Based on Confined Concrete Compressive Strength 
Figure 4.50 Maximum Normalized Moments versus Reinforcement Strength Indices 
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Figure 4.51 Normalized Shear Forces versus FRP Hoop Strength Index 



 

CHAPTER 5 COUPON TEST 

5.1 TEST MATRIX AND SPECIMEN PREPARATION 

5.1.1 Test Matrix 

A total of sixty-five coupons were prepared for tension tests, as shown in Table 

5.1. The first character in specimen name denotes the FRP material: “C” for carbon, “G” 

for glass and “H” for hybrid layups using both carbon and glass. The second character 

stands for the fiber direction: “H” for hoop, “L” for longitudinal, “C” for 0° carbon and 

“G” for 0° glass. The last character indicates ply numbers in Roman numerals. 

Fiber architecture in all cases was maintained according to the forming patterns of 

FRP tubes, where in C and G coupons, hoop direction along the specimen was the warp 

direction in FRP sheet, and the longitudinal direction the fillet direction. In all cases, both 

single-ply and multi-ply coupons were tested. Some of the coupons were mounted with 

strain gauges to obtain stress-strain response curves. 

According to ASTM Standard D 3039 (2006), five coupons were prepared for 

each set of tests. In some cases, up to eight specimens were prepared to achieve 

statistically sound data. HL and HH coupons each were tested with four samples in good 

correlation, while single-ply GH coupons were tested with three specimens in close 

agreement. 

Manufacturer data for the FRP composites used in Specimen Y was detailed and 

reliable, especially because the material had been applied in several earlier projects of the 

research group and was previously compared against laboratory coupon tests. Hence, the 

tests did not include any coupons for Specimen Y. Manufacturer data for P3W-GE041, 
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SikaWrapHex 103C and SikaWrapHex 100G were also available for comparison with 

coupon tests. Manufacturer data was not available for P3W-C1059. 

5.1.2 Specimen Preparation 

All coupons were 50 mm (2 in.) wide and 305 mm (12 in.) long to provide an 

adequate gripping length at each end. The preparation of coupons followed the same 

fabrication procedure as that used for FRP tubes. The single-ply FRP coupons were cut 

from the sheets and impregnated with Sikadur 300 epoxy resin. Multi-ply FRP coupons 

were then stacked accordingly using single-ply coupons. The coupons were cured in 

room temperature of 25°C (77°F) for at least 72 hours. No gripping tabs were prepared 

for the coupons, since initial trials were performed successfully without any such tabs. 

5.2 TEST SETUP AND INSTRUMENTATION 

5.2.1 Test Setup 

Tests were performed using Super “L” Universal Testing Machine (Model 602) of 

Tinius Olsen Testing Machine Co., Inc. The cured coupons were placed between the two 

serrated grips of the testing machine leaving 152 mm (6 in.) of gauge length in the 

middle. A folded strip of medium grade emery cloth was also placed on both sides of the 

coupons within the grip jaws to provide a non-slip surface on the specimen without any 

jaw serration damage. Figure 5.1 shows a typical coupon test setup. 

5.2.2 Instrumentation 

The load from the testing machine was accurately calibrated. A PFL-30-11-5L 

strain gauge made by Tokyo Sokki Kenkyujo Co., Ltd. was mounted in the middle of the 
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gauge length to monitor the strain behavior of the coupons, as indicated in the last 

column of Table 5.1. The data was recorded using Vishay 6000 high-speed data 

acquisition system at a frequency of 1 Hz. Figure 5.2 shows the instrumentation setup. 

5.3 TEST PROCEDURE AND OBSERVATIONS 

5.3.1 Test Procedure 

Coupon tests were conducted following ASTM standard D 3039 (2006). The load 

was applied in displacement control at a rate of 2 mm/min (0.05 in. /min). Width and 

thickness of each coupon were obtained as average of three different measurements 

within the gauge length, and used for stress calculations. 

5.3.2 Test Observations 

Table 5.2 lists failure modes, using the standard codes for tensile test, as described 

by ASTM D 3039. 

For the thirteen CH coupons, the first three out of five single-ply coupons (CH-I-1 

to CH-I-3) and the first five out of eight two-ply coupons (CH-II-1 to CH-II-5) were 

mounted with strain gauges. Figure 5.3 through Figure 5.14 show the failure modes for 

all CH coupons, except for CH-II-1, which was not counted in the stress-strain response 

calculation because of its premature failure. The other coupons all had brittle lateral (or 

highly close to lateral) failures with a sudden rupture noise, albeit at different locations. 

Out of the twelve failures, three were at gauge (G), seven within one width from grips 

(W), one at grip (A) and another inside grips (I). Hence, from the failure mode point of 
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view, the results were acceptable. The difference between the single-ply and two-ply 

coupons was of no significance. 

For the ten CL coupons, only the five two-ply coupons (CL-II-1 to CL-II-5) were 

instrumented with strain gauges. Figure 5.15 through Figure 5.24 show the failure modes 

for all CL coupons. The failure modes were quite identical to CH coupons, with all lateral 

ruptures. Out of the ten lateral failures, one was at gauge (G), two within one width from 

grips (W), five at grips (A), and another two inside grips (I). Although 70% failures were 

at or inside grips, the stress-strain results were quite stable, as will be discussed in 

Section 5.4.1. 

Out of the eight GH coupons, all three single-ply coupons (GH-I-1 to GH-I-3) and 

the first three three-ply coupons (GH-III-1 to GH-III-3) were instrumented with strain 

gauges. Figure 5.25 through Figure 5.32 show the failure modes for all GH coupons. Six 

failures were brittle lateral rupture, and the other two included partial damage at grips. 

Three were at gauge (G), three within one width from grips (W), and the last two at grips 

(A). 

For the sixteen GL coupons, the first three out of eight single-ply coupons (GL-I-

1 to GL-I-3) and all the eight three-ply coupons (GL-III-1 to GL-III-8) were instrumented 

with strain gauges. Figure 5.33 through Figure 5.46 show all failure modes for GL 

coupons, except for GL-III-2’ and GL-III-4’. Fourteen coupons had lateral failures and 

the other two were damaged in angle at grips. Four failures were at gauge (G), ten at grip 

(A), and the last two inside the grips (I). The failure modes were not any different from 

the GH coupons. 
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All five HC and five HG coupons were tested without any strain gauge, because 

abundant manufacturer data was available. The only objective of these coupon tests was 

to compare the ultimate strength with the manufacturer data. Figure 5.47 through Figure 

5.51 show the failure modes for all HC coupons, and Figure 5.52 through Figure 5.56 for 

all HG coupons. Apart from HC-I-1 that showed lateral rupture, all other coupons had 

longitudinal splitting failure (S). The splitting failure of HC coupons was explosive (HC-

I-5, for example), while HG coupons retained a certain level of integrity after failure, 

mainly because the lateral yarns held the debris. Figure 5.61 through Figure 5.64 show 

failure modes for all HH coupons, and Figure 5.57 through Figure 5.60 for all HL 

coupons. All failures were lateral rupture, with one at gauge (G) and three at grips (A) for 

HH coupons, and two at gauge (G) and two within one width from grips (W) for HL 

coupons. 

5.4 TEST RESULTS AND DISCUSSIONS 

5.4.1 Stress-Strain Behavior 

Table 5.3 lists the maximum stress and strain values, and Figure 5.65 shows 

stress-strain responses for CH coupons. The modulus of elasticity E in the table was 

obtained from linear regression analysis of the stress-strain response. The average of the 

multi-ply thickness of coupons was also obtained for comparison with the manufacturer 

data. For single-ply CH coupons, the ultimate strength of CH-I-4 and CH-I-5 were very 

close to the average data. However, CH-II-6 and CH-II-8 did not conform to the average 

data due to their premature failure. It is clear that irrespective of the fiber architecture, the 

stress-strain response is always linear elastic until rupture. 
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Table 5.4 lists the maximum stress and strain values, and Figure 5.66 shows the 

stress-strain responses for CL coupons. It is clear that the value of modulus of elasticity is 

quite consistent for all coupons. Moreover, the ultimate strengths of one-ply and two-ply 

coupons are quite similar. 

Table 5.5 lists the maximum stress and strain values, and Figure 5.67 shows the 

stress-strain responses for GH coupons. The average modulus of elasticity is quite close, 

as shown in the figure. However, the ultimate strengths and strains were not as consistent. 

Table 5.6 lists the maximum stress and strain values, and Figure 5.68 shows 

stress-strain responses for GL coupons. Since GL-I-1 and GL-III-1 through GL-III-3 all 

had premature failure, those data were not included in the calculation of averages. 

Table 5.7 and Table 5.8 lists the maximum stress and strain values for HC and 

HG coupons, respectively. Since none of them included strain gauges, modulus of 

elasticity and ultimate strains were not monitored for their coupons. The ultimate strength 

of HC coupons was highly close to the average, while variation was slightly higher for 

HG coupons. 

Table 5.9 lists the maximum stress and strain values, and Figure 5.69 shows the 

stress-strain responses for HH coupons. The data for HH-V-4 deviated from the average 

for both the modulus of elasticity and the ultimate strain. However, the ultimate strength 

was very close to the average. This phenomenon was quite similar to some of the other 

FRP coupons. Hence, it is of more interest to compare the ultimate strength and modulus 

of elasticity with the manufacturer data. Also, it is noticed that the first three data sets are 

quite close to each other. 
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Table 5.10 lists the maximum stress and strain values, and Figure 5.70 shows the 

stress-strain responses for HL coupons. This set of data was statistically more dispersed, 

as compared with the other FRP coupons. The HL-V-4 stood out with the largest ultimate 

strain and the smallest modulus of elasticity. 

5.4.2 Comparison of Mechanical Properties with Manufacturer Data 

5.4.2.1 Manufacturer Data 

Table 5.11 lists manufacturer data of products associated with Specimens Y, G, 

and H, respectively, as well as their associated coupons. Fiber direction indicates the 

orientation from FRP sheet or tube for each specific coupon. For Specimen Y, the 

nominal wall thickness is comprised of 17 layers of ±55° E-Glass FRP composites. For 

Specimens G and H, the thickness provided is for one ply only.  

It should be noted that the mechanical properties of glass FRP composite reported 

by 3TEX are based on Hydrex 100 resin, which is different from Sikadur 300 used in this 

study.  

Table 5.12 compares the mechanical properties of Hydrex 100 and Sikadur 300. 

The former resin is vinyl ester with stronger properties than the latter, which is made of 

epoxy. Both materials, however, are tested using the same method (ASTM Standard D 

638). 

5.4.2.2 GH and GL Coupons 

The left half of Table 5.13 shows the comparison between manufacturer data and 

GH coupon tests. Since coupons for these two sources had different thicknesses, and 
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were made of different resins, the manufacturer data needs to be adjusted for these two 

factors to be comparable with coupon test results, as shown in the right half of the table. 

Adjustment factor, K1, accounts for the influence of thickness on the ultimate 

strength. Adjustment factor, K2, accounts for the resin influence on both the ultimate 

strength and the modulus of elasticity. In other words, modulus of elasticity does not 

change with the thickness, whereas strength of resin does influence the strength of FRP 

composite. Factor K2 is the product of square roots of two ratios of both moduli of 

elasticity and ultimate strengths of the two resins. Ultimate strain was finally estimated 

by the two adjusted results of modulus of elasticity and ultimate strength for the 

manufacturer data. 

The comparisons show that coupon test results were 11.90% larger than the 

adjusted manufacturer data for the modulus of elasticity. For the ultimate strength, they 

were only 0.28% off. Finally, ultimate strain of the coupon tests was 12.63% less than the 

respective manufacturer data. 

Table 5.14 shows the comparison of manufacturer data with GL coupon tests. It 

also shows the adjustment factor calculations in the same fashion as those described for 

GH coupons. The comparison shows that coupon test results were 6.49% larger than the 

adjusted manufacturer data for the modulus of elasticity, but 9.77% lower for the ultimate 

strength and 17.39% lower for the ultimate strain.  

In general, it is evident that the bi-directional GFRP sheet has identical 

mechanical properties in both directions. The coupon test results on modulus of elasticity 

and ultimate strength were quite reliable, as compared with the adjusted manufacturer 
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data. There were moderate differences for the ultimate strains, which will be discussed in 

Section 5.4.3. 

5.4.2.3 HC and HG Coupons 

Table 5.15 and Table 5.16 compare data for HC and HG coupons, respectively. 

Since the same resin was used for both coupon tests and the manufacturer data, only 

thickness difference was considered for all H coupons. The comparisons show that HC 

and HG coupon tests were as close as within 1.01% and 3.20%, respectively, from the 

adjusted manufacturer data for ultimate strengths. This also provides strong confidence in 

direct application of the manufacturer data for modulus of elasticity. 

5.4.2.4 HH and HL Coupons 

Table 5.17 and Table 5.18 compare data for HH and HL coupons. HH coupons 

comprised of three layers of 0° GFRP and two layers of 90° CFRP sheets, while HL 

coupons comprised of two layers of 0° CFRP and three layers of 90° GFRP sheets, as 

reflected in each adjustment calculation. 

When compared with the adjusted manufacturer data, the modulus of elasticity 

and the ultimate strength were 2.25% and 9.89% lower for the HH coupons, respectively. 

The HL coupons had a 4.98% higher modulus of elasticity and a 5.55% lower ultimate 

strength than the manufacturer data. The test results of ultimate strains for HH coupons 

were estimated by the ratio of ultimate strength over modulus of elasticity, and the 

difference with the estimated manufacturer data was 7.47%. The ultimate strain for HL 

coupons was 8.40% less than the estimated manufacturer data. Generally, the modulus of 

elasticity was within 5% and the ultimate strength was within 10% of the manufacturer 
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data for HH and HL series, making this series quite comparable with the manufacture 

data.  

5.4.3 Comparison with Large-Scale Specimens 

Table 5.19 lists the ultimate tensile strains for the cyclic, monotonic and coupon 

tests as well as the manufacturer data. The notes for cyclic tests also identify the location 

of strain gauges within the cross section (i.e., top or bottom), location along the column 

(“0 Height” or “1/8 Height” from the footing along the column) and the time stamp 

during cyclic tests in terms of ductility factor . The remarks for monotonic tests indicate 

whether the ultimate strain readings were at or before failure. 

The data for Specimen Y was not comparable, since cyclic test reading was not at 

the maximum moment region and the strain reading of the monotonic test dropped before 

failure. Specimen G almost achieved the ultimate tensile strain in both cyclic and 

monotonic tests, although it did not experience rupture failure in either test. For 

Specimen H, flexure test data was recorded at failure, but cyclic test data could not be 

considered because it was not from the maximum moment region. Nonetheless, it 

achieved 58.5% of the manufacturer reported ultimate tensile strain for monotonic test. 

Finally, for both Specimens SC and LC, the ultimate tensile strains were quite reasonable, 

when compared with coupon test results, indicating that the two specimens both had 

flexural rupture failures in both cyclic and monotonic tests. 

Table 5.20 lists available compressive properties from the manufacturer data 

according to ASTM Standard D 695 (2002). Table 5.21 shows the calculation procedure 

for ultimate compressive strain in HL coupons following the procedure used for tensile 
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property. The compressive strengths of 90° direction for uni-directional CFRP and GFRP 

composites were considered as zero in the calculation of HL coupons. These two tables 

facilitate the comparison of ultimate compressive strains as summarized in Table 5.22. 

For Specimen Y, monotonic test achieved 40.5% of the manufacturer reported 

ultimate compressive strain before the compressive burst failure, although this value of 

0.0106 was highly significant when comparing with other specimens. Specimen G did not 

yield any comparable information because of strain gauge malfunction at top of the 

section, and due to unavailability of manufacturer data. Specimen H achieved 51.8% of 

the manufacturer reported ultimate compressive strain before failure. Considering almost 

the same level of achieved ultimate tensile strain at failure, it may be concluded that 

Specimen H experienced local bucking failure rather than compressive failure. Finally, 

for Specimens H, SC and LC, the achieved ultimate compressive strains were all at the 

same level of around 0.0045, leading to the conclusion that the three specimens had the 

same local buckling failure in compressive regions of the sections. This may be attributed 

to the fact that the longitudinal fibers for all three specimens were carbon. 

5.5 CONCLUSIONS 

A series of tension coupon tests were conducted to verify the mechanical 

properties of different FRP tubes. The results were compared with available manufacturer 

data and with the results of both monotonic and cyclic tests. Compressive mechanical 

properties from manufacturer data were also compared with both monotonic and cyclic 

test results. Following conclusions could be drawn from this study: 
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1. All FRP coupons exhibited a linear elastic stress-strain response. Most failures 

were lateral brittle ruptures for bi-directional coupons, and longitudinal splitting 

failure for uni-directional coupons. No significant difference in strength was 

noted between single-ply and multi-ply coupons. 

2. The coupon test results were very close to the available manufacturer data when 

adjusted by strength and thickness factors, leading to strong confidence in the 

validity of the coupon tests. 

3. Comparisons of ultimate strains achieved in monotonic tests with available 

manufacturer data confirmed that Specimens H, G, LC, and SC all had local 

buckling failure. 

4. Comparisons of ultimate tensile strains of the three test sets (cyclic, monotonic, 

and coupon tests) showed that Specimen G almost achieved the ultimate tensile 

strength in both cyclic and monotonic tests, although it did not experience rupture 

failure in both tests. 

5. For both Specimens SC and LC, the ultimate tensile strains from both cyclic and 

monotonic tests were quite reasonable when compared with coupon test results, 

indicating that the two specimens both had flexural rupture failures in both cyclic 

and monotonic tests. 

 



 

Table 5.1 Test Matrix of Coupon Specimens 

Specimen 
Name 

Manufacturer Direction Material 
Fiber 

Architecture 
Number 
of Plies 

Number of 
Specimens 

No. of 
Specimens 
with Strain 

Gauges 
CH-I I 5 3 

CH-II 
Hoop 

(Warp) II 8 5 

CL-I I 5 0 

CL-II 

P3W-C1059 
Longitudinal 

(Fillet) II 5 5 

GH-I I 3 3 

GH-III 
Hoop 

(Warp) III 5 3 
GL-I I 8 3 

GL-III 

3TEX Inc. 
Bi-

Directional 

P3W-GE041 
Longitudinal 

(Fillet) III 8 8 

HC-I 
SikaWrapHex 

103C 
0° 5 0 

HG-I 

Uni- 
Directional SikaWrapHex 

100G 
0° 

I 
5 0 

HL-V 
G 90/C 0/G 
90/C 0/G90 

4 4 

HH-V 

Sika Corp. 

Bi- 
Directional 

Hybrid of 
103C and 

100G G 0/C 90/G 
0/C 90/G 0 

V 
4 4 
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Table 5.2 Tensile Test Failure Codes (ASTM D 3039) 

First Character Second Character Third Character 

Failure Type Code Failure Type Code Failure Type Code 

Angled A Inside grip/tab I Bottom B 

edge Delamination D At grip/tab A Top T 

Grip/tap G <1 W from grip/tab W Left L 

Lateral L Gauge G Right R 

Multi-mode M Multiple areas M Middle M 

longitudinal Splitting S Various V Various V 

eXplosive X Unknown U Unknown U 

Other O     

 

Table 5.3 Stress-Strain Data of CH Coupons 

Specimen 
Name 

Width 
mm 
(in.) 

Thickness 
mm 
(in.) 

Area 
mm2 
(in.2) 

E 
GPa 

(Msi) 

Ultimate 
Load 

kN (kips) 

Ultimate 
Strength 

MPa (ksi) 

Ultimate 
Strain 

Failure 
Mode 

CH-I-1 
50.9 

(2.003) 
1.1* 

(0.043) 
55.6 

(0.086) 
35.2 
(5.1) 

21.4 
(4.8) 

385 
(55.8) 

0.0112 LGM 

CH-I-2 
52.8 

(2.079) 
1.1* 

(0.044) 
59.0 

(0.092) 
33.1 
(4.8) 

20.4 
(4.6) 

346 
(50.2) 

0.0108 LWV 

CH-I-3 
49.0 

(1.930) 
1.0* 

(0.040) 
49.8 

(0.077) 
34.5 
(5.0) 

19.2 
(4.3) 

385 
(55.8) 

0.0112 LWV 

CH-I-4 
53.8 

(2.120) 
1.1* 

(0.042) 
57.4 

(0.089) 
20.9 
(4.7) 

363 
(52.7) 

LWV 

CH-I-5 
45.0 

(1.770) 
1.1* 

(0.042) 
48.0 

(0.074) 

N/A 
17.4 
(3.9) 

364 
(52.7) 

N/A 
LWB 

CH-II-2 
51.6 

(2.033) 
2.0** 

(0.079) 
103.6 

(0.161) 
38.6 
(5.6) 

37.0 
(8.3) 

357 
(51.8) 

0.0097 LWB 

CH-II-3 
58.1 

(2.288) 
2.1** 

(0.081) 
119.6 

(0.185) 
36.5 
(5.3) 

42.3 
(9.5) 

353 
(51.3) 

0.0095 LVV 

CH-II-4 
49.8 

(1.960) 
2.2** 

(0.087) 
110.0 

(0.171) 
33.8 
(4.9) 

39.6 
(8.9) 

360 
(52.2) 

0.0108 LVV 

CH-II-5 
52.5 

(2.065) 
2.1** 

(0.081) 
107.9 

(0.167) 
40.0 
(5.8) 

39.0 
(8.8) 

361 
(52.4) 

0.0090 OIB 

CH-II-6 
56.7 

(2.233) 
2.1** 

(0.082) 
118.1 

(0.183) 
29.8 
(6.7) 

252 
(36.6) 

LWT 

CH-II-7 
57.4 

(2.260) 
2.1** 

(0.083) 
121.0 

(0.188) 
42.3 
(9.5) 

350 
(50.7) 

LGM 

CH-II-8 
58.2 

(2.290) 
2.1** 

(0.083) 
122.6 

(0.190) 

N/A 

36.8 
(8.3) 

300 
(43.6) 

N/A 

OGM 

Average of Data with 
Strain Gauges 

  
36.0 
(5.2) 

 
364 

(52.8) 
0.0103  
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* Average Thickness of One-Ply Coupons: 1.1 mm (0.042 in.) 
** Average Thickness of Two-Ply Coupons: 2.1 mm (0.083 in.) 

 

Table 5.4 Stress-Strain Data of CL Coupons 

Specimen 
Name 

Width 
mm 
(in.) 

Thickness 
mm 
(in.) 

Area 
mm2 
(in.2) 

E 
GPa 

(Msi) 

Ultimate 
Load 

kN (kips) 

Ultimate 
Strength 

MPa (ksi) 

Ultimate 
Strain 

Failure 
Mode 

CL-I-1 
40.6 
(1.6) 

1.1* 
(0.045) 

46.5 
(0.072) 

5.0 
(1.1) 

108 
(15.6) 

LWB 

CL-I-2 
40.6 
(1.6) 

1.1* 
(0.044) 

45.4 
(0.070) 

4.5 
(1.0) 

99 
(14.4) 

LAB 

CL-I-3 
45.7 
(1.8) 

1.2* 
(0.046) 

53.4 
(0.083) 

6.7 
(6.7) 

125 
(80.8) 

LIB 

CL-I-4 
40.6 
(1.6) 

1.2* 
(0.046) 

47.5 
(0.074) 

5.5 
(1.2) 

116 
(16.8) 

LIB 

CL-I-5 
43.2 
(1.7) 

1.1* 
(0.044) 

48.3 
(0.075) 

N/A 

5.4 
(1.2) 

112 
(16.2) 

N/A 

LWT 

CL-II-1 
43.2 
(1.7) 

2.3** 
(0.090) 

98.7 
(0.153) 

18.6 
(2.7) 

10.5 
(2.4) 

106 
(15.4) 

0.0057 LAB 

CL-II-2 
45.7 
(1.8) 

2.4** 
(0.095) 

110.3 
(0.171) 

17.9 
(2.6) 

12.8 
(2.9) 

116 
(16.8) 

0.0065 LGM 

CL-II-3 
45.7 
(1.8) 

2.4** 
(0.096) 

111.5 
(0.173) 

17.9 
(2.6) 

14.4 
(3.2) 

129 
(18.8) 

0.0070 LAB 

CL-II-4 
43.2 
(1.7) 

2.4** 
(0.093) 

102.0 
(0.158) 

16.5 
(2.4) 

11.8 
(2.7) 

116 
(16.8) 

0.0069 LAB 

CL-II-5 
43.2 
(1.7) 

2.4** 
(0.095) 

104.2 
(0.162) 

19.3 
(2.8) 

12.8 
(2.9) 

123 
(17.8) 

0.0065 LAT 

Average of Data 
with Strain Gauges 

  
18.1 
(2.6) 

 
118 

(17.1) 
0.0065  

* Average Thickness of One-Ply Coupons: 1.1 mm (0.045 in.) 
** Average Thickness of Two-Ply Coupons: 2.4 mm (0.094 in.) 



 

Table 5.5 Stress-Strain Data of GH Coupons 

Specimen 
Name 

Width 
mm 
(in.) 

Thickness 
mm 
(in.) 

Area 
mm2 
(in.2) 

E 
GPa 

(Msi) 

Ultimate 
Load 

kN (kips) 

Ultimate 
Strength 

MPa (ksi) 

Ultimate 
Strain 

Failure 
Mode 

GH-I-1 
53.3 
(2.1) 

2.7* 
(0.105) 

142.3 
(0.221) 

17.2 
(2.5) 

33.5 
(7.5) 

235 
(34.2) 

0.0135 LGM 

GH-I-2 
53.3 
(2.1) 

2.8* 
(0.109) 

147.7 
(0.229) 

15.2 
(2.2) 

34.7 
(7.8) 

235 
(34.1) 

0.0153 LGM 

GH-I-3 
50.8 
(2.0) 

2.7* 
(0.105) 

135.5 
(0.210) 

15.9 
(2.3) 

24.3 
(5.5) 

180 
(26.0) 

0.0111 OWT 

GH-III-1 
52.5 
(2.1) 

7.3** 
(0.289) 

385.0 
(0.597) 

15.9 
(2.3) 

72.9 
(16.4) 

189 
(27.5) 

0.0117 LGM 

GH-III-2 
52.1 
(2.1) 

7.7** 
(0.305) 

403.4 
(0.625) 

14.5 
(2.1) 

83.3 
(18.7) 

207 
(30.0) 

0.0142 LWT 

GH-III-3 
53.3 
(2.1) 

7.6** 
(0.300) 

406.5 
(0.630) 

15.9 
(2.3) 

82.3 
(18.5) 

202 
(29.4) 

0.0128 LWT 

GH-III-4 
50.8 
(2.0) 

7.1** 
(0.280) 

361.3 
(0.560) 

79.4 
(17.9) 

220 
(31.9) 

LAB 

GH-III-5 
50.8 
(2.0) 

7.2** 
(0.285) 

367.7 
(0.570) 

N/A 
90.3 

(20.3) 
246 

(35.6) 

N/A 
OAT 

Average of Data 
with Strain Gauges 

  
15.7 
(2.3) 

 
208 

(30.2) 
0.0131  

* Average Thickness of One-Ply Coupons: 2.7 mm (0.106 in.) 
** Average Thickness of Three-Ply Coupons: 7.4 mm (0.292 in.) 
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Table 5.6 Stress-Strain Data of GL Coupons 

Specimen 
Name 

Width 
mm 
(in.) 

Thickness 
mm 
(in.) 

Area 
mm2 
(in.2) 

E 
GPa 
(Msi) 

Ultimate 
Load 

kN (kips) 

Ultimate 
Strength 

MPa (ksi) 

Ultimate 
Strain 

Failure 
Mode 

GL-I-1 
45.7 
(1.8) 

2.8* 
(0.112) 

130.1 
(0.202) 

28.3 
(4.1) 

25.0 
(5.6) 

192 
(27.9) 

N/A AAT 

GL-I-2 
43.2 
(1.7) 

3.0* 
(0.119) 

130.5 
(0.202) 

15.2 
(2.2) 

22.1 
(5.0) 

169 
(24.6) 

0.0109 OAB 

GL-I-3 
38.1 
(1.5) 

2.7* 
(0.105) 

101.6 
(0.158) 

17.2 
(2.5) 

23.2 
(5.2) 

228 
(33.1) 

0.0130 LAB 

GL-III-1 
54.5 
(2.1) 

7.0** 
(0.275) 

380.6 
(0.590) 

21.4 
(3.1) 

86.1 
(19.4) 

226 
(32.8) 

LGM  

GL-III-2 
50.1 
(2.0) 

7.0** 
(0.275) 

349.9 
(0.542) 

26.9 
(3.9) 

71.6 
(16.1) 

205 
(29.7) 

LGM  

GL-III-3 
46.3 
(1.8) 

7.1** 
(0.275) 

328.0 
(0.508) 

26.2 
(3.8) 

65.8 
(14.8) 

201 
(29.1) 

LIT  

GL-I-1’ 
42.7 
(1.7) 

2.7* 
(0.105) 

113.8 
(0.176) 

20.9 
(4.7) 

183 
(26.6) 

LAT 

GL-I-2’ 
43.2 
(1.7) 

2.5* 
(0.100) 

109.7 
(0.170) 

20.0 
(4.5) 

182 
(26.5) 

LAB 

GL-I-3’ 
43.7 
(1.7) 

2.7* 
(0.105) 

116.5 
(0.181) 

21.4 
(4.8) 

184 
(26.7) 

LAB 

GL-I-4’ 
43.2 
(1.7) 

2.5* 
(0.100) 

109.7 
(0.170) 

26.7 
(6.0) 

244 
(35.4) 

LGM 

GL-I-5’ 
43.2 
(1.7) 

2.5* 
(0.100) 

109.7 
(0.170) 

N/A 

25.4 
(5.7) 

231 
(33.5) 

N/A 

LAT 

GL-III-1’ 
48.3 
(1.9) 

7.0** 
(0.275) 

337.1 
(0.523) 

14.5 
(2.1) 

63.1 
(14.2) 

187 
(27.2) 

0.0128 LGM 

GL-III-2’ 
45.7 
(1.8) 

7.0** 
(0.275) 

319.4 
(0.495) 

15.2 
(2.2) 

58.1 
(13.1) 

182 
(26.4) 

0.0121 LAT 

GL-III-3’ 
40.6 
(1.6) 

7.6** 
(0.300) 

309.7 
(0.480) 

15.9 
(2.3) 

59.9 
(13.5) 

193 
(28.0) 

0.0118 LAB 

GL-III-4’ 
43.2 
(1.7) 

7.6** 
(0.300) 

329.0 
(0.510) 

15.9 
(2.3) 

65.9 
(14.8) 

200 
(29.1) 

0.0123 LIB 

GL-III-5’ 
43.2 
(1.7) 

7.6** 
(0.300) 

329.0 
(0.510) 

15.9 
(2.3) 

65.2 
(14.7) 

198 
(28.7) 

0.0124 LAB 

Average of Data 
with Strain Gauges 

  
15.6 
(2.3) 

 
194 

(28.1) 
0.0122  

* Average Thickness of One-Ply Coupons: 2.7 mm (0.106 in.) 
** Average Thickness of Three-Ply Coupons: 7.2 mm (0.284 in.) 



 

Table 5.7 Stress-Strain Data of HC Coupons 

Specimen 
Name 

Width 
mm 
(in.) 

Thickness 
mm 
(in.) 

Area 
mm2 
(in.2) 

E 
GPa 
(Msi) 

Ultimate 
Load 

kN (kips) 

Ultimate 
Strength 

MPa (ksi) 

Ultimate 
Strain 

Failure 
Mode 

HC-I-1 
51.4 

(2.025) 
1.9 

(0.074) 
96.0 

(0.149) 
48.2 

(10.8) 
502 

(72.8) 
LGM 

HC-I-2 
51.3 

(2.020) 
1.7 

(0.065) 
84.7 

(0.131) 
42.9 
(9.7) 

507 
(73.5) 

HC-I-3 
51.7 

(2.035) 
1.7 

(0.065) 
85.3 

(0.132) 
43.0 
(9.7) 

504 
(73.1) 

HC-I-4 
54.6 

(2.150) 
1.8 

(0.070) 
97.1 

(0.151) 
49.2 

(11.1) 
507 

(73.6) 

HC-I-5 
52.7 

(2.075) 
1.7 

(0.065) 
87.0 

(0.135) 

N/A 

44.8 
(10.1) 

515 
(74.7) 

N/A 
SGM 

Average  
1.7 

(0.068) 
   

507 
(73.5) 

  

 

Table 5.8 Stress-Strain Data of HG Coupons 

Specimen 
Name 

Width 
mm 
(in.) 

Thickness 
mm 
(in.) 

Area 
mm2 
(in.2) 

E 
GPa 
(Msi) 

Ultimate 
Load 

kN (kips) 

Ultimate 
Strength 

MPa (ksi) 

Ultimate 
Strain 

Failure 
Mode 

HG-I-1 
52.1 

(2.051) 
1.8 

(0.073) 
95.9 

(0.149) 
32.4 
(7.3) 

338 
(49.0) 

HG-I-2 
53.3 

(2.100) 
1.8 

(0.073) 
98.2 

(0.152) 
35.2 
(7.9) 

359 
(52.0) 

HG-I-3 
49.5 

(1.950) 
1.8 

(0.070) 
88.1 

(0.137) 
28.0 
(6.3) 

318 
(46.2) 

HG-I-4 
56.9 

(2.238) 
1.8 

(0.070) 
101.1 

(0.157) 
32.1 
(7.2) 

317 
(46.0) 

HG-I-5 
54.2 

(2.135) 
1.8 

(0.070) 
96.4 

(0.150) 

N/A 

32.7 
(7.4) 

339 
(49.2) 

N/A SGM 

Average  
1.8 

(0.071) 
   

334 
(48.5) 
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Table 5.9 Stress-Strain Data of HH Coupons 

Specimen 
Name 

Width 
mm 
(in.) 

Thickness 
mm 
(in.) 

Area 
mm2 
(in.2) 

E 
GPa 
(Msi) 

Ultimate 
Load 

kN (kips) 

Ultimate 
Strength 

MPa (ksi) 

Ultimate 
Strain 

Failure 
Mode 

HH-V-1 
53.3 

(2.100) 
6.4 

(0.250) 
338.7 

(0.525) 
17.2 
(2.5) 

92.1 
(20.7) 

272 
(39.4) 

0.0102 

HH-V-2 
49.5 

(1.950) 
6.4 

(0.250) 
314.5 

(0.488) 
18.6 
(2.7) 

78.3 
(17.6) 

249 
(36.1) 

0.0096 

HH-V-3 
49.8 

(1.960) 
6.6 

(0.260) 
328.8 

(0.510) 
18.6 
(2.7) 

89.8 
(20.2) 

273 
(39.6) 

0.0101 

LAT 

HH-V-4 
51.3 

(2.020) 
6.6 

(0.260) 
338.8 

(0.525) 
14.5 
(2.1) 

95.6 
(21.5) 

282 
(40.9) 

0.0146 LGM 

Average  
6.5 

(0.255) 
 

17.2 
(2.5) 

 
269 

(39.0) 
0.0111  

 

Table 5.10 Stress-Strain Data of HL Coupons 

Specimen 
Name 

Width 
mm 
(in.) 

Thickness 
mm 
(in.) 

Area 
mm2 
(in.2) 

E 
GPa 

(Msi) 

Ultimate 
Load 

kN (kips) 

Ultimate 
Strength 

MPa (ksi) 

Ultimate 
Strain 

Failure 
Mode 

HL-V-1 
52.0 

(2.047) 
7.1 

(0.278) 
367.1 

(0.569) 
33.1 
(4.8) 

98.7 
(22.2) 

269 
(39.0) 

0.0079 LGM 

HL-V-2 
53.3 

(2.100) 
6.6 

(0.260) 
352.3 

(0.546) 
37.2 
(5.4) 

80.0 
(18.0) 

227 
(32.9) 

0.0061 

HL-V-3 
52.3 

(2.060) 
7.0 

(0.275) 
365.5 

(0.567) 
38.6 
(5.6) 

93.9 
(21.1) 

257 
(37.2) 

0.0068 
LWB 

HL-V-4 
51.8 

(2.040) 
7.0 

(0.275) 
361.9 

(0.561) 
26.2 
(3.8) 

88.6 
(19.9) 

245 
(35.5) 

0.0093 LGM 

Average  
6.9 

(0.272) 
 

33.8 
(4.9) 

 
249 

(36.2) 
0.0075  
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Table 5.11 Manufacturer Data for Tensile Properties of FRP Materials 

FRP 
Product 

Material 
Source 

Associated 
CFFT 

Specimen 

Associated 
Coupons 

Fiber 
Direction 

Modulus 
of 

Elasticity 
GPa 

(Msi) 

Ultimate 
Strength 

MPa 
(ksi) 

Nominal 
Ply 

Thick-
ness 
Mm 
(in.) 

Test 
Method 

Red 
Thread II 

Pipe 

Smith 
Fiber-
glass 

Specimen 
Y 

N/A 

17 
Layers 

of ±55° 
E-Glass 

15.0 
(2.2) 

159 
(23) 

5.5 
(0.216) 

ASTM 
D 2925 

GH Warp 
24.3 
(3.5) 

436 
(63) P3W-

GE041 
3TEX, 

Inc. 
Specimen 

G 
GL Fillet 

25.2 
(3.7) 

436 
(63) 

2.0 
(0.08) 

ASTM 
D 638 

HC, HL 0° 
70.6 

(10.2) 
849 

(123) 
SikaWrap 

Hex 
103C HH 90° 

5.0 
(0.7) 

24 
(3.5) 

HG, HH 0° 
26.1 
(3.8) 

612 
(89) 

SikaWrap 
Hex 

100G 

Sika 
Corp. 

Specimen 
H 

HL 90° 
6.7 

(1.0) 
30 

(4.4) 

1.0 
(0.04) 

ASTM 
D 3039 

 

Table 5.12 Manufacturer Data for Resins 

Product Resin Type Manufacturer 

Modulus 
of 

Elasticity 
GPa 
(Msi) 

Ultimate 
Strength 

MPa 
(ksi) 

Tensile 
Elongation 

at Break 

Test 
Method 

Hydrex 100 Vinyl ester Reichhold Inc. 
3.6 

(0.5) 
79 

(11.5) 
3.4% 

Sikadur 300 Epoxy Sika Corp. 
1.7 

(0.25) 
55 
(8) 

3.0% 

ASTM 
 D 638 
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Table 5.13 Comparison with Manufacturer Data for GH Coupons 

Items 

Modulus 
of 

Elasticity 
GPa 
(Msi) 

Ultimate 
Strength 

MPa 
(ksi) 

Ultimate 
Strain 

Adjustment Factors Calculations 

Coupon 
Tests Results 

15.7 
(2.3) 

208 
(30.2) 

0.0131 Resource 
Thickness 
mm (in.) 

Resin 
E 

GPa 
(Msi) 


MPa 
(ksi) 

Manufacturer 
Data 

24.3 
(3.5) 

436 
(63) 

N/A 
Coupon 

Tests 
7.4 

(0.292) 
Sikadur 

300 
1.7 

(0.25) 
55 
(8) 

Adjusted 
Manufacturer 

Data 

14.1 
=24.3*K2 

(2.0) 

208 
=436*K 
(30.2) 

0.0147 
= 

0.208/14.1 

Manu-
facturer 

6.0=3*2.0 
(0.24) 

Hydrex 
100 

3.6 
(0.5) 

79 
(11.5) 

Difference 11.90% 0.28% -12.63% 

K1=6.0/7.4=0.82 

K2=
79

55

6.3

7.1
 =0.58 

K = K1 * K2 = 0.4754 

 

Table 5.14 Comparison with Manufacturer Data for GL Coupons 

Items 

Modulus 
of 

Elasticity 
GPa 
(Msi) 

Ultimate 
Strength 

MPa 
(ksi) 

Ultimate 
Strain 

Adjustment Factors Calculation 

Coupon 
Tests Results 

15.6 
(2.3) 

194 
(28.1) 

0.0122 Resource 
Thickness 
mm (in.) 

Resin 
E 

GPa 
(Msi) 


MPa 
(ksi) 

Manufacturer 
Data 

25.2 
(3.7) 

436 
(63) 

N/A 
Coupon 

Tests 
7.2 

(0.284) 
Sikadur 

300 
1.7 

(0.25) 
55 
(8) 

Adjusted 
Manufacturer 

Data 

14.6 
=25.2*K2 

(2.1) 

213 
=436*K 
(30.9) 

0.0146 
= 

0.213/14.6 

Manu-
facturer 

6.0=3*2.0 
(0.24) 

Hydrex 
100 

3.6 
(0.5) 

79 
(11.5) 

Difference 6.49% -9.77% -17.39% 

K1=6.0/7.2=0.83 

K2=
79

55

6.3

7.1
 =0.58 

K = K1 * K2 = 0.4889 
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Table 5.15 Comparison with Manufacturer Data for HC Coupons 

Items 
Thickness 
mm (in.) 

Ultimate Strength 
MPa (ksi) 

Coupon Tests 
1.7 

(0.068) 
507 

(73.5) 

Manufacturer Data 
1.0 

(0.04) 
849 

(123) 

Adjustment Factor / Adjusted Data 0.5908=1.0/1.7 
502=849*0.5908 

(72.8) 
Difference N/A 1.01% 

 

Table 5.16 Comparison with Manufacturer Data for HG Coupons 

Items 
Thickness 
mm (in.) 

Ultimate Strength 
MPa (ksi) 

Coupon Tests Results 
1.8 

(0.071) 
334 

(48.5) 

Manufacturer Data 
1.0 

(0.04) 
612 
(89) 

Adjustment Factor / Adjusted Data 0.5634=1.0/1.8 
345=612*0.5634 

(50.0) 
Difference N/A -3.20% 

 

Table 5.17 Comparison with Manufacturer Data for HH Coupons 

Items 
Thickness 
mm (in.) 

Modulus of 
Elasticity 
GPa (Msi) 

Ultimate Strength 
MPa (ksi) 

Ultimate 
Strain 

Coupon Tests 
 Results 

6.5 
(0.255) 

17.2 
(2.5) 

269 
(39.0) 

0.0156 
=0.269/17.2 

SikaWrap Hex 
100G (0°) 

1.0 
(0.04) 

26.1 
(3.8) 

612 
(89) 

SikaWrap Hex 
103C (90°) 

1.0 
(0.04) 

5.0 
(0.7) 

24 
(3.5) 

HH-V 
5.0=5*1.0 

(0.20) 

17.6 
=26.1*0.6+4.9*0.4 

(2.55) 

377 
=612*0.6+24*0.4 

(54.7) 

N/A 

Adjustment Factor / 
Adjusted Data 

0.7843=5.0/6.5 17.6 
296=377*0.7843 

(42.9) 
0.0168 

=0.296/17.6 
Difference N/A -2.25% -9.89% -7.47% 
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Table 5.18 Comparison with Manufacturer Data for HL Coupons 

Items 
Thickness 
mm (in.) 

Modulus of 
Elasticity 
GPa (Msi) 

Ultimate Strength 
MPa (ksi) 

Ultimate 
Strain 

Coupon Tests 
Results 

6.9 
(0.272) 

33.8 
(4.9) 

249 
(36.2) 

0.0075 

SikaWrap Hex 
103C (0°) 

1.0 
(0.04) 

70.6 
(10.2) 

849 
(123.0) 

SikaWrap Hex 
100G (90°) 

1.0 
(0.04) 

6.7 
(1.0) 

30 
(4.4) 

HL-V 
5.0=5*1.0 

(0.20) 

32.2 
=70.6*0.4+6.7*0.6 

(4.7) 

358 
=849*0.4+30*0.6 

(51.9) 

N/A 

Adjustment Factor 
/ Adjusted Data 

0.7353=1.0/6.9 
32.2 
(4.7) 

263 
=358*0.7353 

(38.1) 

0.0082 
=0.263/32.2 

Difference N/A 4.81% -5.55% -8.40% 
 

Table 5.19 Comparison of Ultimate Tensile Strains 

Cyclic Tests Monotonic Tests 
Items 

Strain Remarks Strain Remarks 

Coupon 
Tests 
Strain 

Manufacturer Data 
Strain 

Specimen Y 
(Tension) 

0.0070 
Top  

1/8 Height 
=6 

0.0073 
Before 
Failure 

N/A 0.0106= 0.159/15 

Specimen G 
(Tension) 

0.0112 
Top 

0 Height 
=6 

0.0114 At Failure 0.0122 0.0146 

Specimen H 
(Tension) 

0.0032 
Top 

1/8 Height 
=3 

0.0048 At Failure 0.0075 0.0082 

Specimen SC 
(Tension) 

0.0059 
Bottom 
0 Height 
=3 

0.0048 
Before 
Failure 

Specimen LC 
(Tension) 

0.0030 
Top 

0 Height 
=2 

0.0084 At Failure 

0.0065 N/A 
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Table 5.20 Manufacturer Data for Compressive Properties of FRP Materials 

FRP 
Product 

Source 
Associated 

CFFT 
Specimen 

Fiber Direction 

Modulus 
of 

Elasticity 
GPa 
(Msi) 

Ultimate 
Strength 

MPa 
(ksi) 

Nominal 
Ply 

Thickness 
mm (in.) 

Testing 
Method 

Red 
Thread II 

Pipe 

Smith 
Fiberglass 

Specimen 
Y 

17 Layers of ±
55° E-Glass 

8.7 
(1.3) 

-228 
(-33.1) 

5.5 
(0.216) 

Warp 
-399 

(-57.9) P3W-
GE041 

3TEX, 
Inc. 

Specimen 
G 

Fillet 
N/A 

-316 
(-45.9) 

2.0 
(0.08) 

Hex 
103C 

0° 
67.1 
(9.7) 

-779 
(-113.0) 

Hex 
100G 

Sika Corp. 
Specimen 

H 
0° 

29.7 
(4.3) 

-597 
(-86.6) 

1.0 
(0.04) 

ASTM 
D 695 

 

Table 5.21 Manufacturer Data for Ultimate Compressive Strains of HL 

Items 
Thickness 
mm (in.) 

Modulus of 
Elasticity 
GPa (Msi) 

Ultimate Strength 
MPa (ksi) 

Ultimate Strain 

SikaWrap 
Hex 103C 

(0°) 

1.0 
(0.04) 

67.1 
(9.7) 

-779 
(-113.0) 

HL-V 
5.0=5*1.0 

(0.20) 
26.8=67.1*0.4 

(3.9) 
-312 = -779*0.4 

(-45.2) 

N/A 

Adjustment 
Factor / 

Adjusted Data 
0.7353=5.0/6.9 

26.8 
(3.9) 

-229 
= -312*0.7353 

(-33.2) 

-0.0085 
= -0.229/26.8 

 



 

Table 5.22 Comparison of Ultimate Compressive Strains  

Cyclic Tests Monotonic Tests 
Items 

Strain Remarks Strain Remarks 

Coupon 
Test 

Strain 

Manufacturer 
Data Strain 

Specimen Y 
(Compression) 

-0.0046 
Bottom 

1/8 Height 
=6 

-0.0106 
Before 
Failure 

-0.0262= 
-0.228/8.7 

Specimen G 
(Compression) 

-0.0055 
Bottom 
0 Height 
=10 

N/A N/A N/A 

Specimen H 
(Compression) 

-0.0026 
Top 

1/8 Height 
=5 

-0.0044 
Before 
Failure 

-0.0085 

Specimen SC 
(Compression) 

-0.0053 
Top 

0 Height 
=4 

-0.0042 
Before 
Failure 

Specimen LC 
(Compression) 

-0.0042 
Top 

0 Height 
=4 

-0.0047 At Failure 

N/A 

N/A 
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Figure 5.1 Typical Coupon Test Setup 
 

 

Figure 5.2 Coupon Instrumentation and Data Acquisition System 
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Figure 5.3 Failure Mode of CH-I-1: LGM Figure 5.4 Failure Mode of CH-I-2: LWV 
  

 

Figure 5.5 Failure Mode of CH-I-3: LWV Figure 5.6 Failure Mode of CH-I-4: LWV 
  

  

Figure 5.7 Failure Mode of CH-I-5: LWB Figure 5.8 Failure Mode of CH-II-2: LWB 
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Figure 5.9 Failure Mode of CH-II-3: LVV Figure 5.10 Failure Mode of CH-II-4: LVV 
  

  

Figure 5.11 Failure Mode of CH-II-5: OIB Figure 5.12 Failure Mode of CH-II-6: LWT
  

 

Figure 5.13 Failure Mode of CH-II-7: 
LGM 

Figure 5.14 Failure Mode of CH-II-8: 
OGM 
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Figure 5.15 Failure Mode of CL-I-1: LWB Figure 5.16 Failure Mode of CL-I-2: LAB 
  

  

Figure 5.17 Failure Mode of CL-I-3: LIB Figure 5.18 Failure Mode of CL-I-4: LIB 
  

  

Figure 5.19 Failure Mode of CL-I-5: LWT Figure 5.20 Failure Mode of CL-II-1: LAB 
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Figure 5.21 Failure Mode of CL-II-2: LGM Figure 5.22 Failure Mode of CL-II-3: LAB 
  

  

Figure 5.23 Failure Mode of CL-II-4: LAB Figure 5.24 Failure Mode of CL-II-5: LAT 
  

  

Figure 5.25 Failure Mode of GH-I-1: LGM Figure 5.26 Failure Mode of GH-I-2: LGM 

 164



 

  

Figure 5.27 Failure Mode of GH-I-3: OWT 
Figure 5.28 Failure Mode of GH-III-1: 

LGM 
  

  

Figure 5.29 Failure Mode of GH-III-2: 
LWT 

Figure 5.30 Failure Mode of GH-III-3: 
LWT 

  

  

Figure 5.31 Failure Mode of GH-III-4: 
LAB 

Figure 5.32 Failure Mode of GH-III-5: 
OAT 
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Figure 5.33 Failure Mode of GL-I-1: AAT Figure 5.34 Failure Mode of GL-I-2: OAB 
  

  

Figure 5.35 Failure Mode of GL-I-3: LAB Figure 5.36 Failure Mode of GL-I-1’: LAT 
  

  

Figure 5.37 Failure Mode of GL-I-2’: LAB Figure 5.38 Failure Mode of GL-I-3’: LAB 
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Figure 5.39 Failure Mode of GL-I-4’: 
LGM 

Figure 5.40 Failure Mode of GL-I-5’: LAT 

  

  

Figure 5.41 Failure Mode of GL-III-1: 
LGM 

Figure 5.42 Failure Mode of GL-III-2: 
LGM 

  

  

Figure 5.43 Failure Mode of GL-III-3: LIT 
Figure 5.44 Failure Mode of GL-III-1’: 

LGM 
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Figure 5.45 Failure Mode of GL-III-3’: 
LAB 

Figure 5.46 Failure Mode of GL-III-5’: 
LAB 

  

  

Figure 5.47 Failure Mode of HC-I-1: LGM Figure 5.48 Failure Mode of HC-I-2: SGM 
  

  

Figure 5.49 Failure Mode of HC-I-3: SGM Figure 5.50 Failure Mode of HC-I-4: SGM 
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Figure 5.51 Failure Mode of HC-I-5: SGM Figure 5.52 Failure Mode of HG-I-1: SGM 
  

  

Figure 5.53 Failure Mode of HG-I-2: SGM Figure 5.54 Failure Mode of HG-I-3: SGM 
  

  

Figure 5.55 Failure Mode of HG-I-4: SGM Figure 5.56 Failure Mode of HG-I-5: SGM 
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Figure 5.57 Failure Mode of HH-V-1: LAT Figure 5.58 Failure Mode of HH-V-2: LAT 
  

  

Figure 5.59 Failure Mode of HH-V-3: LAT 
Figure 5.60 Failure Mode of HH-V-4: 

LGM 
  

  

Figure 5.61 Failure Mode of HL-V-1: 
LGM 

Figure 5.62 Failure Mode of HL-V-2: 
LWB 
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Figure 5.63 Failure Mode of HL-V-3: 
LWB 

Figure 5.64 Failure Mode of HL-V-4: 
LGM 
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Figure 5.65 Tensile Stress-Strain Responses of CH Coupons 
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Figure 5.66 Tensile Stress-Strain Responses of CL Coupons 
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Figure 5.67 Tensile Stress-Strain Responses of GH Coupons 
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Figure 5.68 Tensile Stress-Strain Responses of GL Coupons 
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Figure 5.69 Tensile Stress-Strain Responses of HH Coupons 
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Figure 5.70 Tensile Stress-Strain Responses of HL Coupons 
 



 

CHAPTER 6 NONDESTRUCTIVE DAMAGE ASSESSMENT 

6.1 INTRODUCTION 

After the cyclic tests, none of the specimens with glass or hybrid FRP tubes 

showed visible cracks on the surface. As discussed in Chapter 4, additional monotonic 

tests on these specimens were deemed to provide better understanding of their flexural 

strengths. In order to further investigate the damage level of the specimens, 

nondestructive damage assessment using ultrasonic pulse velocity was also considered as 

useful tool prior to the monotonic tests. This chapter presents some of the results using 

ultrasonic tone bursts to investigate internal damage of previously loaded RC and CFFT 

specimens. 

6.2 EXPERIMENTAL WORK 

6.2.1 Test Setup and Instrumentation 

The ultrasonic pulse velocity (UPV) equipment used in this study is a very low 

frequency (VLF) system developed by Digital Wave Corp of Englewood, CO. The VLF 

ultrasound extends the penetration capability of conventional ultrasonic testing, and can 

be used in wood, concrete, composites and rubber. Figure 6.1 shows the block diagram of 

the test equipment. 

The system consists of a synthesized function generator, two broadband 

transducers, two broadband preamplifiers, one ultrasonic tone-burst amplifier, an 8-bit 

analog to digital (A/D) board, and laminated plate wave analyzer (LPWA) data 

acquisition and analysis software. A Stanford Research Systems Model DS345 function 
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generator was used to provide input of any pulse waveform of Gaussian modulated 

cosine, sinusoidal tone burst, swept sine (high or low), single or stepped frequency pulse, 

and single or multiple pulses at each frequency step. The waveforms could be entered 

manually or by downloading from the computer through a serial port by the LPWA 

software. Two broadband B225 transducers were used as pulse and receiver sensors 

(Figure 6.2), which could transmit signals of any frequency between 1kHz to 1.5 MHz. 

The 10 V–10 mV range of output signal from the sensors is enhanced by PA2040 

broadband acoustic emission preamplifiers. The UTA 3000 amplifier produces high-

amplitude tone bursts with a frequency range between 10 kHz and 900 kHz and a total 

gain of 70 dB. A 10-turn potentiometer knob controls the gain. Combined with Digital 

Wave’s B225 sensor, the UTA 3000 makes it possible to send waves through 400 mm of 

concrete. A Sonix STR*825 8-bit A/D board was used to capture the new waveform data, 

to convert it to a digital signal, and to further allow the signal analyzer to store the 

waveform data. The waveform was digitized at a frequency of 6.25 MHz, resulting in 

0.16 s accuracy for travel time measurements, or about 0.25% error in velocity 

calculations. 

The six specimens after the cyclic tests were first marked for UPV transducer 

points along their lengths. For the five short specimens (Specimen RC, Y, G, H and SC), 

eleven sections along column length were identified, whereas in Specimen LC twelve 

sections were established. At each section along the columns, eight sensing directions 

were conducted, denoted as B, L, R, T, H, LR, RL and V, as shown for each figure later 

described in Section 6.2.3. The sensors were held by hand firmly perpendicular to 
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specimen surface with a high viscosity ultrasonic couplant (SLC 70 from GE Inspection 

Technologies). Figure 6.3 shows the typical test setup and instrumentation. 

6.2.2 Test Procedure and Observations 

A five-cycle tone burst waveform with a 100 kHz frequency was used in this 

study. The gain was adjusted on the amplifier to yield a clear signal at the receiving end. 

An initial recording of the signal was made before the start of the test. About 5–10 

recordings were made at each testing direction along the eleven or twelve sections on the 

columns. After the tests, travel time was obtained from recordings of LPWA software. 

Meanwhile, the section perimeters at each section along columns were measured and the 

diameters of the column, or travel distances of the waveform, were derived. Finally, 

travel velocities were compared. 

In the severely damaged region of Specimen RC, signals were hardly 

distinguishable. In the column-footing connection region of Specimens SC and LC, the 

signals in some directions were very weak due to cracking of FRP. Apart from these 

cases in which the data was not obtained, all other testing points provided clear signals, 

albeit with varying strengths. 

6.2.3 Test Results and Discussion 

6.2.3.1 Velocities in Different Directions for Each Specimen 

Figure 6.4 (a) through (f) show the velocities in the peripheral B, L, R and T 

sensing directions for all specimens. Figure 6.5 (a) through (f) show the velocities in the 

diagonal H, LR, RL and V sensing directions for all specimens. It is noted that 
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measurements in the peripheral directions generally had lower dispersion than those in 

the diagonal directions. It is also noted that velocity measurements generally did not vary 

along the columns. This may simply indicate the low resolution of the UPV technique to 

assess damages in the type of specimen and loading configuration of this study. In few of 

the specimens and in some directions, the expected trend of lower velocities near the 

column-footing joint was observed. 

In the peripheral directions, the velocity measurements are quite close to each 

other. This may indicate that generally, damage after the cyclic tests at the top and 

bottom sections must have not been significant to compare well with the B and T 

directions. The only exceptions lie in the T direction along some parts of the columns in 

Specimens SC and LC. Variations in some of the measurements through top layer may be 

attributed to the epoxy injection, although the injection worked rather well for Specimens 

Y, G and H. It is noteworthy that Specimen Y had least variation of measurements in the 

peripheral directions along the column. 

The velocity measurements in the diagonal directions varied in all specimens, 

although the differences were least at column bases in Specimens G and H. This may be 

attributed to full-depth through cracks in concrete core. This was not the case for 

Specimen Y, where velocity measurement in the H direction was significantly higher 

than in the V direction at column base relative to other sections along the column. This 

may be attributed to less full-depth through cracks in Specimen Y. 

Tensile strains in FRP measured during cyclic tests may help explain why 

Specimens Y, G and H all had fluctuating velocities, whereas Specimens SC and LC had 

relatively consistent velocities throughout column lengths. From Table 5.19, maximum 
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FRP tensile strains in the cyclic tests for Specimens G, SC and LC were 0.011, 0.006, and 

0.003, respectively. In Specimens Y and H, maximum strains at column base were not 

available, but expected to be higher than those measured for Specimens SC and LC. The 

higher strains are therefore expected to have helped develop more extensive cracks in 

concrete cores for Specimens Y, G and H, relative to Specimens SC and LC. 

Figure 6.6 (a) through (f) show the average velocity measurements in the 

peripheral and diagonal directions in all specimens. In general, with some exceptions, the 

velocities in the diagonal directions are lower than those in the peripheral directions. This 

is consistent with the expected through cracks within concrete core, rather than close to 

the tubes. 

Figure 6.7 (a) through (f) show the velocity measurements at three vertical slices 

(L, R and V directions) in all specimens. Generally, the velocity measurements in the V 

direction were lower than those in the other two slices, as expected. The only exceptions 

are at few sections in Specimens H and G. Nonetheless, the measurements in the V 

direction at column base were always lower than in the L and R directions even for those 

two specimens. It is also noted that velocities in the L and R directions in all specimens 

were quite close to each other, indicating symmetry in the loading and response. 

Figure 6.8 (a) through (f) show the velocity measurements at the three horizontal 

slices (B, H and T directions) in all specimens. Average velocities in the B and T 

directions were also plotted as dash lines in the figures. In Specimens SC and LC, the 

velocity in the H direction was always lower than the average velocity in the B and T 

directions; similar to what was discussed for Figure 6.6. In Specimens H and Y, velocity 

in the H direction was generally lower than the average velocity in the B and T 
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directions, with a few exceptions near column base region. While in Specimen RC, the 

velocities were almost at the same level in the undamaged region. In Specimen G, 

however, the velocity in the H direction was generally higher than the other two 

directions, except at or near the column base. 

6.2.3.2 Velocities in Different Specimens for Specific Sensing Directions 

Figure 6.9 (a) through (f) show velocity measurements at the peripheral B, L, R 

and T directions for all specimens. Average velocity measurements in the L and R 

directions as well as average of the four directions are also shown in the figures. 

Specimens SC and LC had the highest velocity measurements than their other four 

counterparts. The groups of Specimens Y, G and H had the lowest velocity 

measurements, while Specimen RC lies in between these two groups in the undamaged 

part of the column. 

Specimen SC had higher velocity measurements than Specimen LC in the B 

direction and the average of L and R directions, perhaps because Specimen LC developed 

higher FRP tensile strains than those in Specimen SC. It is also noted that they had 

almost identical responses at column base, when considering average measurements in 

the L and R directions. 

Specimens Y, G and H had almost identical velocity measurements at column 

base in the B direction, while showing a slight difference in the L, R and T directions. 

Figure 6.10 (a) through (f) velocity measurements in the diagonal H, LR, RL and 

V directions for all specimens. Average velocity measurements in the LR and RL 
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directions as well as average of the four directions are also shown in the figures. It 

generally follows the same trend discussed in Figure 6.9, especially at column base. 

Finally, Figure 6.11 shows the average velocity measurements of all directions for 

all specimens. It is evident that the velocity measurements of Specimen SC were the 

highest, followed closely by Specimen LC. Specimens Y, G and H all had lower 

velocities than Specimens SC and LC. Specimen RC lay in between of the two groups 

except for column base which is severely damaged. 

6.2.3.3 Relationships of Average Velocity with Strength Index and FRP Rupture Strain 

Figure 6.12 shows the average velocity measurements of CFFT specimens versus 

their FRP strength indices as well as total strength indices as defined in Chapter 4. Figure 

6.13 shows the average velocity measurements of CFFT specimens versus their FRP 

rupture strains as obtained in Chapter 5. The velocity measurements are averaged along 

the column lengths from the data in Figure 6.11 for each CFFT specimen. The strength 

indices are all based on the unconfined concrete compressive strength. 

From Figure 6.12, it is clearly shown that average velocity measurements of 

CFFT specimens decrease along with the increase of their strength indices. This may 

indicate that the more strength capacity the specimen is, the more damage may develop in 

the specimen. From Figure 6.13, it is also shown that average velocity measurements of 

CFFT specimens generally decrease along with the increase of their FRP rupture strain. 

This may indicate that the more displacement capacity the specimen is, the more damage 

may develop in the specimen. These two figures clearly show that surface damage such 

as FRP cracking do not directly correlate with internal damage in concrete core. 
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Therefore, Specimens Y, G and H with little or no visible FRP crack contain much more 

internal cracks than Specimens SC and LC that had developed FRP cracks. 

6.3 CONCLUSIONS 

A series of nondestructive damage evaluation using ultrasonic tone bursts on 

previously loaded CFFT specimens were carried out. Following conclusions could be 

drawn based on the study: 

1. The velocity measurements generally did not vary along the columns. This may 

simply indicate the low resolution of the UPV technique to assess damages in the 

type of specimen and loading configuration of this study. 

2. The velocity measurements in the diagonal directions at column bases in 

Specimens Y, G and H indicate full-depth through cracks in their concrete core, 

albeit to a lesser extent for Specimen Y. 

3. In general, the velocities in the diagonal directions are lower than those in the 

peripheral directions, as expected. 

4. The average velocity measurements of CFFT specimens decrease along with the 

increase of their strength indices. This may indicate that the more strength 

capacity the specimen is, the more damage may develop in the specimen. 

5. The average velocity measurements of CFFT specimens generally decrease along 

with the increase of their FRP rupture strain. This may indicate that the more 

displacement capacity the specimen has, the more damage may develop in the 

specimen. 
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6. It is shown that surface damage such as FRP cracking do not directly correlate 

with internal damage in concrete core. Therefore, Specimens Y, G and H with 

little or no visible FRP crack contain much more internal cracks than Specimens 

SC and LC that had developed FRP cracks. 

 



 

 

Figure 6.1 Block Diagram of Ultrasonic Equipment 

 

 

Figure 6.2 Two B225 Pulse and Receiver Transducers 
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Figure 6.3 Test Set-up and Instrumentation 
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(d) Specimen H 
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(e) Specimen SC 
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(f) Specimen LC 

Figure 6.4 Velocity Measurements in the B, L, R and T Directions for Each Specimen 
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(b) Specimen Y 
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(d) Specimen H 
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(f) Specimen LC 

Figure 6.5 Velocity Measurements in the H, LR, RL and V Directions for Each Specimen 
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(b) Specimen Y 
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(d) Specimen H 
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(e) Specimen SC 
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(f) Specimen LC 

Figure 6.6 Average Velocity Measurements in the Two Direction Groups for Each 

Specimen 
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(b) Specimen Y 
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(d) Specimen H 
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(f) Specimen LC 

Figure 6.7 Velocity Measurements in the L, R and V Directions for Each Specimen 
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(b) Specimen Y 
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(f) Specimen LC 

Figure 6.8 Velocity Measurements in the B, H and T Directions for Each Specimen 
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(c) Direction R 
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(d) Average of Directions L and R 
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(f) Average of Directions B, L, R and T 

Figure 6.9 Velocity Measurements in the B, L, R and T Directions for All Specimens 
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(a) Direction H 
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(b) Direction LR 
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(c) Direction RL 
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(d) Average of Directions LR and RL 
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Figure 6.10 Velocity Measurements in the H, LR, RL and V Directions for All 

Specimens 
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Figure 6.11 Average Velocity Measurements in Various Directions for All Specimens 
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Figure 6.12 Average Velocity Measurements versus Strength Index 
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Figure 6.13 Average Velocity Measurements versus FRP Rupture Strain 

 



 

CHAPTER 7 ANALYTICAL MODELING 

7.1 INTRODUCTION 

Analytical tools for push-over and hysteretic modeling of CFFT columns were 

developed using ANSYS 11.0 (academic product) (2007), a general purpose finite 

element program, and OpenSees 2.0 (http://opensees.berkeley.edu/); the latter has been 

developed by UC Berkeley for primary usage in earthquake engineering simulation. The 

models were able to trace the monotonic and hysteretic moment-curvature and load-

deflection of a cantilever RC or CFFT column with different FRP fiber architecture 

subjected to a constant axial loading and a monotonic push-over or reverse cyclic lateral 

loading. The results from these two analytical methods were compared. 

Modeling of CFFT columns followed some basic assumptions, as follows: (a) 

plane sections, including concrete and FRP, remain plane and normal to the neutral axial 

after bending, (b) buckling of the tube was neglected assuming perfect concrete fill and 

no stress concentration near loading points, and (c) slippage of FRP tube was neglected 

because of its sufficient embedment in the footing. 

After the analytical models were validated against test data of previous sections, a 

comprehensive parametric study was carried out for different FRP reinforcement index 

and different FRP laminate architecture, shear span-to-depth ratio, and reinforcement 

index of mild or MMFX steel. The responses of typical CFFT columns to three 

representative earthquake records are also investigated. 
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7.2 HYSTERETIC MODELING USING OPENSEES 

7.2.1 Element Descriptions 

Modeling of RC and CFFT columns was performed using the non-linear beam-

column element option of OpenSees 2.0, which is based on the non-iterative (or iterative) 

force formulation, and considers the spread of plasticity along the element. The program 

enables the iterative form of the flexibility formulation, which can improve the rate of 

global convergence at the expense of more local element computations. 

The load-displacement response of the element was calculated based on sectional 

analysis and curvature integration over the element length. The sectional analysis follows 

conventional strip method, discretizing sections into a number of integration strips or 

layers. For each layer, force-deformation relationship is adopted from the constitutive 

material models, as discussed later in this chapter. The material interactions within the 

section (e.g., FRP and/or mild steel confinement effect for concrete core) are considered 

at the materials level rather at the sectional analysis, as also discussed later in this 

chapter. The integration along the element is based on Gauss-Lobatto quadrature rule 

with two integration points at the element ends. 

7.2.2 Concrete Material Modeling 

CONCRETE01 material model of OpenSees was chosen to construct a uniaxial 

Kent-Scott-Park concrete material object (Scott et al. 1982) with no tensile strength and 

degraded linear unloading/reloading stiffness according to the work of Karsan and Jirsa 

(1969). For the CFFT column, the bilinear confinement model of Samaan et al. (1998) 

was used as the envelope curve for the concrete core material, and was provided as input 
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for the CONCRETE01 material model in the program. To account for crushing of 

concrete cover, the strength in the concrete cover is reduced to 0.3f’c, once the 

compressive strain exceeds 0.006. Crushing of concrete core was monitored by the strain 

computed manually by both models. Figure 7.1 shows a typical hysteretic stress-strain 

response output for concrete, with compressive stresses and strains shown as negative. 

7.2.3 Steel Material Modeling 

Both mild and MMFX steel reinforcement was modeled using STEEL01 material 

model of OpenSees. This uniaxial bilinear steel material model has kinematic hardening 

and optional isotropic hardening described by a non-linear evolution equation. As 

presented by Sumpter et al. (2009), the ASTM A1035 steel (an MMFX steel used in their 

study) has a yielding-experienced linear behavior up to a stress level of approximately 

552 MPa (80 ksi), followed by a negligibly small reduction in the elastic modulus up to 

690 MPa (100 ksi), and then nonlinear behavior up to a maximum strength of 1,186 MPa 

(172 ksi) at 5% strain. Figure 7.2 shows the stress-strain relationship of MMFX and G60 

steel (Sumpter et al. 2009). 

In this study, A1035 steel was also applied for MMFX steel, simply denoted as 

G100 with a yielding strength of 690 MPa (100 ksi) with the same elastic modulus of 

mild steel and an ultimate strength of 1,172 MPa (170 ksi), whereas mild steel is denoted 

as G60 with 414 MPa (60 ksi) yielding strength and 621 MPa (90 ksi) ultimate strength. 

Figure 7.3 shows typical hysteretic stress-strain responses of both G60 and G100 steel 

reinforcement. Failure of steel materials in each case was detected by monitoring the 

strains to reach 0.05 throughout the analysis. 

 211



 

7.2.4 FRP Material Modeling 

For Specimen Y, the FRP tube was modeled in the longitudinal direction with the 

following stress-strain relationship, based on manufacturer data and coupon tests (Shao 

2003): 

       05.0)(423,1349.908.3/   ABSABSABS  (7.1) 

The above relationship was cast into a uniaxial tri-linear hysteretic material model 

with degraded unloading stiffness, but without any pinching or damage effect. An 

empirical value of 0.3 was selected for parameter β in the model to simulate the degraded 

unloading stiffness. Failure of the FRP tube was detected by monitoring its strains to 

reach 0.05. Figure 7.4 shows a typical hysteretic stress-strain response output for the FRP 

tube in Specimen Y in the longitudinal direction. The unsymmetrical response came from 

different in-situ stress conditions of FRP tube under cyclic loading, corresponding with 

the unsymmetrical responses of steels in Figure 7.3. 

Based on the linear elastic behavior of coupon tests for Specimens G, H, SC and 

LC as presented in Chapter 5, an elastic uniaxial material model with a minimum and 

maximum strain were applied. The model can automatically indicate the failure of FRP 

materials. The modulus of elasticity and ultimate strain for FRP materials were input 

according to the coupon test results in the longitudinal directions. 

7.2.5 Structural Modeling 

Each column was divided into eight nodes with seven elements for modeling; one 

for each quarter height of the column from column head, and four within the quarter 

height near column footing, i.e., the plastic hinge region (see Figure 7.5). Geometric 
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features of the cross section consisted of a concrete core, steel reinforcement and the 

cover material, i.e., FRP tube or unconfined cover concrete. Each component was 

modeled with a fine mesh to capture stress conditions across the section. The column was 

only fixed at the base, and was constructed as a 2-D problem with three degrees of 

freedom for each node. 

7.3 HYSTERETIC MODELING USING ANSYS 

Zheng (2007) presented a simplified analytical method using ANSYS for hybrid 

FRP-concrete bridge structures under blast loading. It incorporated the concept of 

equivalent section with virtual materials that would generate the same moment-curvature 

as that of the original section. The methodology was favorably validated with a 3-D blast 

simulation using the nonlinear explicit code LS-DYNA 3-D. The simplified analytical 

method transformed a 3-D complex analysis into a 2-D domain with much less number of 

elements and nodes, saving significant computation time and alleviating convergence 

problems. 

This study extends the methodology from the blast resistant evaluation of Zheng 

(2007) into the earthquake engineering simulation, and fully validates the analytical 

method with cyclic experimental results, as shown in the followed sections. 

7.3.1 Extended Equivalent I-Section with Virtual Materials 

The equivalent section proposed by Zheng (2007) transformed the original section 

geometry of a hybrid FRP-concrete column into an I-shaped section, whereby the web 

thickness is considered to be negligible, and the entire section is lumped into two flanges 

with a small finite small thickness, hence limited stress variation within the flange 
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thickness. The section performance is therefore fingerprinted by the stress-strain curve of 

the virtual material defined at the two flanges. 

In this extended study, however, the web thickness was considered for the stress-

stain analysis, with further emphasis on an identical flexural stiffness of the analytical 

model with original structure. This was attributed to a macro-scale strain rate under 

simulation of cyclic and push-over loading. Figure 7.6 illustrates the extended equivalent 

section concept. The stress-strain curve of the virtual material is defined directly from the 

moment-curvature response of the original cross section applying classical engineering 

mechanics of materials. Figure 7.7 shows a typical transformation from (a) moment-

curvature response of the original section into (b) the stress-strain model of the virtual 

material as the input constitutive model for the ANSYS program, as will be discussed 

later in the following sections. 

7.3.2 Element Descriptions 

The columns are modeled using 2-noded 3-D finite strain beam element 

BEAM188 (ANSYS 11.0, 2007). The adopted BEAM188 element has six degrees of 

freedom at each node, including translations in the x, y, and z directions and rotations 

about the x, y, and z axes. The nodal configuration, geometry, and coordinate system of 

BEAM188 element are shown in Figure 7.8. BEAM188 is defined by nodes I and J in the 

global coordinate system. The orientation key point (K), if used, defines a plane (with I 

and J) containing the x and z axes of the element. The beam element is a one-dimensional 

line element in space, which can be used with any cross-section. I-shape cross section 

with a finite flange and web was used in this case, as shown in Figure 7.9. 
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BEAM188 is based on the Timoshenko beam theory, i.e., a first order shear 

deformation theory in which transverse shear strain is assumed to be constant throughout 

the cross-section. In other words, plane sections remain undistorted after deformation. 

This element includes stress stiffness terms, which enable the elements to analyze 

flexural, lateral, and torsional stability problems. It is well-suited for linear, large 

rotation, and/or large strain nonlinear applications. Elasticity, creep, and plasticity models 

are also supported by this element. 

The structural mass of each member is modeled using MASS21 element (ANSYS 

11.0 2007). MASS21 is a single-noded element with up to six degrees of freedom: three 

translations in the nodal x, y, and z directions and three rotations about the nodal x, y, and 

z axes. The mass element includes concentrated mass components (Force*Time2/Length) 

along the element coordinate axes, and rotary inertias (Force*Length*Time2) about the 

element coordinate axes. In this study, one of the end nodes for each column element is 

defined as mass node. The coordinate system for this element is shown in Figure 7.10. 

The lumped mass formulation is used throughout to construct the mass matrix for 

the column's distributed mass and mass moment of inertia. For the purpose of 

comparison, a typical case was analyzed once with the lumped mass formulation and 

once with the consistent mass formulation. Only negligible differences were observed 

between the results of the two formulations. 

7.3.3 Virtual Material Modeling 

The nonlinear plastic material model was applied in this study with multilinear 

kinematic hardening options using the Besseling model (Besseling 1958), also called the 

 215



 

sublayer or overlay model, so that the Bauschinger effect is included. It also uses Rice’s 

model (Rice 1971) where the total plastic strains remain constant by scaling the 

sublayers. The model allows defining up to forty stress-strain curves under different 

temperature gradients, and is compatible with BEAM188 element. Figure 7.11 shows the 

nonlinear plastic material model with multilinear kinematic hardening (ANSYS 11.0, 

2007). 

7.3.4 Structural Modeling 

With the concept of extended equivalent I-shape cross section and virtual 

materials developed in this study, the finite element column model was developed, as 

shown in Figure 7.12. The finite element mesh was established with 31 mass nodes and 

30 finite strain beam elements. The column was only fixed at the base, and was 

constructed as a 2-D problem with three degrees of freedom at each node. 

7.4 MODEL VALIDATION 

Four series of model validation with cyclic tests are provided, including hysteretic 

analysis using OpenSees and ANSYS, as well as push-over analysis using OpenSees and 

ANSYS. In addition, modeling of monotonic tests using OpenSees is presented. 

Figure 7.13 to Figure 7.18 show comparisons of the cyclic test data with the 

OpenSees and ANSYS hysteretic model predictions for each specimen. In each figure, 

the experimental and simulation results are delineated. In general, very good agreement is 

noted in all cases. As stated in Chapter 3, Specimen RC was an inadvertently pre-loaded 

and thus experienced damage in the push direction. The hysteretic models, however, 

clarified that the experimental result in the pull direction is valid. The simulation of all 
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other specimens further confirmed that the experimental result in the pull direction is 

more representative than that in the push direction. 

The stress-strain relationship of each ANSYS material model was transformed 

from moment-curvature response of OpenSees push-over simulation as discussed later. It 

is shown that ANSYS models predicted the envelope curve very closely with the cyclic 

tests and OpenSees simulation. However, they did not perform as well as OpenSees when 

compared with cyclic tests in the loading/unloading paths. This may be attributed to the 

plastic material model of ANSYS. Plastic material model that is suitable for concrete in 

ANSYS is only available for SOLID65 element, which does not lend itself to the virtual 

material concept in this study. However, the ANSYS model performed very well in push-

over simulation as discussed below. 

Figure 7.19 to Figure 7.24 show the push-over simulation of OpenSees and 

ANSYS for the specimens as compared with cyclic test results. In each figure, the 

experimental and simulation results are delineated. Very good agreements between the 

two sets are noted in all specimens. It should be noted that push-over simulation 

essentially matches with the envelope curve of the cyclic simulation, as no damage or 

pinching effects were considered in the hysteretic models. 

Figure 7.25 to Figure 7.30 show the OpenSees modeling of monotonic tests for all 

specimens. In each figure, the experimental and simulation results are delineated. It is 

noted that Specimens Y and LC show very good agreements between simulation and the 

tests, while other cases exhibited some variations, primarily due to the fact that the 

specimens had different levels of damage from cyclic tests before monotonic testing. 
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Generally, OpenSees distinguishes itself in hysteretic modeling, whereas ANSYS 

outperforms in push-over simulation. In all cases, ANSYS requires less effort in reducing 

convergence problems than OpenSees, once provided with a reliable sectional analysis 

for its constitutive virtual material model. 

7.5 PARAMETRIC STUDY 

The OpenSees hysteretic model for CFFT columns developed and verified in 

previous sections was used to carry out a parametric study. The basic model for the 

parametric study was essentially the same as that used for validation of the model against 

experimental work of the present study. 

7.5.1 Parameters 

Based on a comprehensive literature review of parameters for CFFTs, the 

following three main parameters were selected: column span-to-depth ratio (L/Do), 

thickness of the FRP tube, and type and amount of steel reinforcement. To limit the size 

of the case study matrix, only one parameter at a time was considered as variable. For 

each parameter, four values were selected in their practical range, with one value 

identified as the base value, which was kept constant for studying other parameters. 

Table 7.1 shows the parameters and their selected values. The shaded areas in the 

table represent the base value for each parameter. Column Y in the table denotes CFFT 

columns for the parametric study with the filament-wound glass FRP tubes as that used in 

Specimen Y. The thickness parameter of Column Y series is expressed as the outside 

diameter-to-FRP thickness ratio (Do/t) of the column. Column G denotes CFFT columns 

in the parametric study with the fabric-wrapped glass FRP tubes as that used in Specimen 
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G. The definition is the same for Column H with fabric-wrapped hybrid FRP tubes and 

Column C with fabric-wrapped carbon FRP tubes. For CFFT columns with fabric-

wrapped tubes, the thickness parameter is expressed in terms of FRP layers, i.e., 1, 2, 3, 

or 4 plies. 

Based on the discussion in Chapter 4, a span-to-depth ratio (L/Do) of 2.5 was also 

investigated in this study, apart from 5, 7.5, and 10 as identified with flexure-dominant 

behavior. Two rebar types of MMFX and mild steel were considered, each with 1% and 

2% reinforcement ratio. 

7.5.2 Response Measures 

Three response measures were selected to study the effect of different parameters: 

normalized moment-deflection hysteretic response, normalized moment-deflection 

envelope curve, and normalized cumulative dissipated energy. 

Figure 7.31 to Figure 7.33 show the parametric study results for the hysteretic 

normalized moment-deflection of Column Y series. Figure 7.34 to Figure 7.36 show 

normalized moment-deflection envelope curves and Figure 7.37 to Figure 7.39 show the 

cumulative energy capacity for Column Y series. Failure in all cases was determined by 

rupture of FRP tube, after mild steel reached its ultimate strength at 621 MPa (90 ksi), or 

MMFX steel reached its strength at 965 MPa (140 ksi) and a strain of 0.05.  Concrete 

core remained within 50% ~80% of ultimate strain following Samaan’s model (1998). 

Figure 7.40 to Figure 7.42 show the parametric study results for the hysteretic 

normalized moment-deflection of Column G series. Figure 7.43 to Figure 7.45 show 

normalized moment-deflection envelope curves and Figure 7.46 to Figure 7.48 show the 
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cumulative energy capacity for Column G series. Failure was governed by concrete 

crushing as FRP first ruptured at  of 3 or 4, whereas rebar did not reach its ultimate 

strain, especially in those cases with higher steel reinforcement index. Some FRP rupture 

may also lead to failure of rebar rupture at earlier stages with lower steel strength index 

or higher FRP strength index. 

Figure 7.49 to Figure 7.51 show the parametric study results for the hysteretic 

normalized moment-deflection of Column H series. Figure 7.52 to Figure 7.54 show 

normalized moment-deflection envelope curves and Figure 7.55 to Figure 7.57 show the 

cumulative energy capacity for Column H series. In the analysis of these series, FRP tube 

first ruptured at  of 3 or 4. However, rebar and concrete all reached their respective 

ultimate strains, indicating a balanced failure. Lower steel strength index or higher FRP 

strength index may also lead to rebar rupture failure at earlier stages. Moreover, smaller 

amount of FRP may lead to higher deformation capacity at the expense of lower load 

bearing capacity as Column H with 1 ply distinguishes itself in Figure 7.51. 

Figure 7.58 to Figure 7.60 show the parametric study results for the hysteretic 

normalized moment-deflection of Column C series. Figure 7.61 to Figure 7.63 show 

normalized moment-deflection envelope curves and Figure 7.64 to Figure 7.66 show the 

cumulative energy capacity for Column C series. Rupture of FRP did not lead to rebar 

failure at earlier stages in Column C series. Column C with 1 ply almost yielded a 

balanced failure condition of concrete crushing with rebar rupture at an ultimate strain of 

0.05 and  of 8. Furthermore, Figure 7.60 shows that for Column C series, increasing of 

FRP layer does not lead to substantially higher load bearing capacity, whereas it actually 

reduces the deformation capacity. 
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7.5.3 Parameter Impact on Response Measure 

To better understand the impact of each parameter on the response measures of 

columns with different FRP architecture, following analogy was drawn. Figure 7.67 to 

Figure 7.69 show the effects of the three parameters on the maximum normalized 

moment of each column series. It is clearly shown that higher steel reinforcement or FRP 

reinforcement both directly lead to a higher flexural capacity. Effect of flexural span is 

not as significant as steel reinforcement and FRP tube.  

Figure 7.70 to Figure 7.72 show the effects of the three parameters on the 

maximum drift ratio of each column series. In Figure 7.70, Column Y series showed a 

descending relationship in contrast to other columns. This may be attributed to the 

different failure criteria for Column Y, i.e., FRP rupture rather than rebar rupture or 

concrete crushing as in other columns. The most significant factor for the maximum drift 

ratio is the flexural span-to-depth ratio, as indicated in Figure 7.71. 

Figure 7.72 shows that for Column Y series, higher FRP reinforcement index may 

increase the deformation capacity, as also reported by Zhu et al. (2006b). For Columns G, 

H and C series, however, a higher FRP reinforcement index may lead to a lower 

deformation capacity, confirming an earlier study by Shao (2003). The difference in the 

two trends in Figure 7.72 may be attributed to different failure criteria, as discussed for 

Figure 7.70. 

Figure 7.73 to Figure 7.75 show the effects of the three parameters on the 

maximum normalized cumulative dissipated energy of each column series. The increase 

of steel reinforcement and flexural span-to-depth ratio both increase the energy 

dissipation. The different trends for different FRP architecture in Figure 7.75 may be 
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attributed to different failure phenomenon in these columns. Since Column Y series had 

higher deformation capacity with higher FRP strength index, its cumulative energy also 

increases along with the FRP strength index. Columns G, H and C series all demonstrated 

a lower deformation capacity for thicker FRP tube. 

7.5.4 Re-evaluation of Total Reinforcement Index versus Normalized Moment 

In Chapter 4, a direct relationship between total reinforcement index and 

normalized moment was presented from the results of cyclic and monotonic tests. The 

existence of an optimum reinforcement index without over-confining the concrete was 

also pointed out. In this section, both simulation results from parametric study and other 

test results from the literature are synthesized together with the data from Chapter 4, 

unveiling the broad-based relationship between the two parameters. 

Figure 7.76 to Figure 7.79 show the effects of total reinforcement index on 

maximum normalized moment of each column series. A linear relationship may be drawn 

in all cases with high fidelity, especially for higher strength indices, as in Columns Y, G, 

and H series. Furthermore, Figure 7.80 shows a broad-based data range incorporating 

results of parametric study as well as test data from Chapters 3 and 4, and other test 

results from Li (2008), Zhu et al. (2006a), Shao et al (2005b), Fam et al. (2007), and Van 

Den Einde et al. (2007). The figure shows a linear relationship until a total reinforcement 

index of 1.0, after which the correlation is weak. 

7.6 PERFORMANCE UNDER STRONG GROUND MOTIONS 

With the knowledge of cyclic performance of CFFTs under different parameters, 

a set of transient analysis of hybrid FRP-concrete columns under strong ground motions 
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was also carried out using OpenSees. The CFFT columns with different FRP tubes were 

specified as Columns Y, G, H and C, following the same nomenclature as that stated in 

Section 7.5.1. All columns had a 41.37 MPa (6 ksi) unconfined 28-day concrete 

compressive strength, a 610 mm (24 in.) column outside diameter (Do), a 7.5 L/Do ratio, 

1% mild steel Grade 60 reinforcement ratio, and a 10% P/Po ratio, where P is the axial 

load, Po is f’cAg. The Do/t Ratio of Column Y is 50, whereas Columns G, H, and C all 

used 2 layers of FRP fabrics. This arrangement corresponded to total reinforcement 

indices of 0.45, 0.45, 0.67, and 0.23 for Columns Y, G, H, and C, respectively. 

Figure 7.81 to Figure 7.83 show the ground acceleration time histories for the 

three selected earthquake records, respectively from Tabas (Iran 1978), Sylmar 

(California, USA 1971), and Llollelo (Chile 1985). Of the selected quakes, Tabas had the 

highest ground acceleration with an extended period of shake, Sylmar spanned a much 

shorter time period with an abrupt stroke, while Llollelo had an apparent higher 

frequency and higher energy input. 

Responses of the four CFFT columns to the three earthquakes are depicted in 

terms of time histories of column base shear in Figure 7.84 to Figure 7.87 for Tabas, 

Figure 7.92 to Figure 7.94 for Sylmar, and Figure 7.98 to Figure 7.101 for Llollelo 

earthquakes. Time histories of maximum lateral displacement are shown in Figure 7.88 to 

Figure 7.91 for Tabas, Figure 7.95 to Figure 7.97 for Sylmar, Figure 7.102 to Figure 

7.105 for Llollelo earthquakes. 

It is of interest to note that Columns Y and G were designed with the same level 

of FRP reinforcement indices, hence leading to identical initial responses in all three 

earthquakes. However, Column G failed in all three earthquakes due to FRP rupture, 
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whereas Column Y withstood all three strong ground motions without any failure in FRP 

tube, owing to its more flexible off-axis FRP architecture. 

Both Columns G and H failed in all three earthquakes due to FRP rupture. 

However, Column H with a higher reinforcement index generally performed better than 

Column G. Meanwhile, Column C with a lower FRP reinforcement index survived in 

Tabas and Llollelo earthquakes, even with FRP ruptured in these two cases. This 

conformed the earlier findings in the pseudo-static parametric study that higher FRP 

reinforcement index may lead to failure at earlier stages of loading. 

Column Y exhibited a much better performance with higher base shear and lower 

column top displacement than Column C in Tabas earthquake, while they showed almost 

the same level of base shear and top displacement in Llollelo earthquake. This may 

indicate that Column Y sustains stronger ground acceleration than Column C, due to its 

higher, albeit moderate, FRP reinforcement index. 

Figure 7.106 to Figure 7.111 show the comparison of responses to the three 

earthquakes for each CFFT column in terms of time histories of column base shear. 

Figure 7.108 Figure 7.113 show the comparison of responses to the three earthquakes for 

each CFFT column in terms of time histories of maximum lateral displacement. 

It is shown that CFFT columns are more sensitive to Sylmar earthquake, since 

even Column Y had its highest response in terms of base shear and lateral displacement. 

Moreover, Columns G, H, and C all failed immediately at the abrupt stroke and 

developed lower base shear and lateral displacement than those in Tabas earthquake. On 

the other hand, Tabas earthquake caused significantly larger lateral displacements in all 

CFFT columns as compared to the Llollelo earthquake. 
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In general, Column Y with off-axis filament-wound glass FRP tube exhibited a 

superior seismic performance to all other CFFTs. Moreover, higher FRP reinforcement 

ratios may lead to a brittle system failure, while a well-engineered FRP reinforcement 

configuration may significantly enhance the seismic performance of CFFT columns. 



 

Table 7.1 Parameter Matrix 

Parameters Case 1 Case 2 Case 3 Case 4 

Span-to-Depth Ratio (L/Do) 2.5 5 7.5 10 

Steel Reinforcement 1% Grade 60 2% Grade 60 1% Grade 100 2% Grade 100 

Do/t Ratio (Column Y) 25 50 75 100 

FRP Layers (Column G, H, C) 1 Ply 2 Plies 3 Plies 4 Plies 
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Figure 7.1 Typical Hysteretic Stress-Strain Curve of Concrete Model 

 

 

Figure 7.2 Stress-Strain Relationship of MMFX and Grade 60 Steel (Sumpter et al. 2009) 
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Figure 7.3 Typical Hysteretic Stress-Strain Response of Steel Reinforcement 

 

-100

-50

0

50

100

150

200

-0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05

Longitudinal Strain of FRP Tube

L
o

n
g

itu
d

in
a

l S
tr

e
ss

 o
f F

R
P

 T
u

b
e

 (
M

P
a

)

PullPush

 

Figure 7.4 Typical Hysteretic Stress-Strain Response of FRP Tube for Column Y 

 228



 

Q 

Po 

Q 

Po 

3 

1 
2 

4 

5 

6 

7 

8 

2
1

3 

4 

Column 
Elements  

Model 
Nodes  

6 

5 

8 

7 

FRP Tube

Rebar 

RC 

Core Concrete 

CFFT 

 

Figure 7.5 Analytical Model for CFFT and RC Columns 
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Figure 7.6 Illustration of the Extended Equivalent Section Concept 
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(a) Moment-Curvature Response of the Original Section 
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(b) Stress-Strain Input for the Virtual Material Section 

Figure 7.7 Transformation from Moment-Curvature Response to Stress-Strain Input 
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Figure 7.8 BEAM188 Geometry (ANSYS 11.0, 2007) 
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Figure 7.9 Geometry of I-Shape Cross Section (ANSYS 11.0, 2007) 
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Figure 7.10 Geometry of MASS21 Element (ANSYS 11.0, 2007) 
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Figure 7.11 Nonlinear Plastic Material Model with Multilinear Kinematic Hardening 

(ANSYS 11.0, 2007) 
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Figure 7.12 Simplified Column Model for ANSYS 
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Figure 7.13 Moment-Deflection Hysteretic Simulation of Specimen RC 
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Figure 7.14 Moment-Deflection Hysteretic Simulation of Specimen Y 

 

 234



 

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

-100 -75 -50 -25 0 25 50 75 100

Deflection (mm)

T
ot

a
l M

/f
c'D

3

-6.6 -4.9 -3.3 -1.6 0.0 1.6 3.3 4.9 6.6

Drift Ratio (%)

PullPush

 =1

2

3 4 5 6

Test

OpenSees Simulation

ANSYS Simulation

 

Figure 7.15 Moment-Deflection Hysteretic Simulation of Specimen G 
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Figure 7.16 Moment-Deflection Hysteretic Simulation of Specimen H 
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Figure 7.17 Moment-Deflection Hysteretic Simulation of Specimen SC 
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Figure 7.18 Moment-Deflection Hysteretic Simulation of Specimen LC 
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Figure 7.19 Moment-Deflection Push-Over Simulation of Specimen RC 
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Figure 7.20 Moment-Deflection Push-Over Simulation of Specimen Y 
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Figure 7.21 Moment-Deflection Push-Over Simulation of Specimen G 
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Figure 7.22 Moment-Deflection Push-Over Simulation of Specimen H 
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Figure 7.23 Moment-Deflection Push-Over Simulation of Specimen SC 
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Figure 7.24 Moment-Deflection Push-Over Simulation of Specimen LC 
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Figure 7.25 Monotonic Flexural Simulation of Specimen RC by OpenSees 
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Figure 7.26 Monotonic Flexural Simulation of Specimen Y by OpenSees 
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Figure 7.27 Monotonic Flexural Simulation of Specimen G by OpenSees 
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Figure 7.28 Monotonic Flexural Simulation of Specimen H by OpenSees 
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Figure 7.29 Monotonic Flexural Simulation of Specimen SC by OpenSees 
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Figure 7.30 Monotonic Flexural Simulation of Specimen LC by OpenSees 
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Figure 7.31 Effect of Steel Reinforcement on Hysteretic Response of Column Y 
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Figure 7.32 Effect of L/Do Ratio on Hysteretic Response of Column Y 
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Figure 7.33 Effect of FRP Tube Thickness on Hysteretic Response of Column Y 
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Figure 7.34 Effect of Steel Reinforcement on Response Envelope of Column Y 
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Figure 7.35 Effect of L/Do Ratio on Response Envelope of Column Y 
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Figure 7.36 Effect of FRP Tube Thickness on Response Envelope of Column Y 
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Figure 7.37 Effect of Steel Reinforcement on Normalized Cumulative Dissipated Energy 

of Column Y 
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Figure 7.38 Effect of L/Do Ratio on Normalized Cumulative Dissipated Energy of 

Column Y 
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Figure 7.39 Effect of FRP Tube Thickness on Normalized Cumulative Dissipated Energy 

of Column Y 

 

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

-100 -75 -50 -25 0 25 50 75 100

Displacement (mm)

T
o

ta
l M

/f
' cD

3

-6.6 -4.9 -3.3 -1.6 0.0 1.6 3.3 4.9 6.6

Drift Ratio (%)

2% G100

2% G60

1% G60

1% G100

L/Do Steel FRP f'c P/P0

5 2% G60 G 6 ksi 3%

 

Figure 7.40 Effect of Steel Reinforcement on Hysteretic Response of Column G 
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Figure 7.41 Effect of L/Do Ratio on Hysteretic Response of Column G 
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Figure 7.42 Effect of FRP Tube Thickness on Hysteretic Response of Column G 
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Figure 7.43 Effect of Steel Reinforcement on Response Envelope of Column G 
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Figure 7.44 Effect of L/Do Ratio on Response Envelope of Column G 
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Figure 7.45 Effect of FRP Tube Thickness on Response Envelope of Column G 
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Figure 7.46 Effect of Steel Reinforcement on Normalized Cumulative Dissipated Energy 

of Column G 
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Figure 7.47 Effect of L/Do Ratio on Normalized Cumulative Dissipated Energy of 

Column G 
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Figure 7.48 Effect of FRP Tube Thickness on Normalized Cumulative Dissipated Energy 

of Column G 
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Figure 7.49 Effect of Steel Reinforcement on Hysteretic Response of Column H 
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Figure 7.50 Effect of L/Do Ratio on Hysteretic Response of Column H 
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Figure 7.51 Effect of FRP Tube Thickness on Hysteretic Response of Column H 
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Figure 7.52 Effect of Steel Reinforcement on Response Envelope of Column H 
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Figure 7.53 Effect of L/Do Ratio on Response Envelope of Column H 
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Figure 7.54 Effect of FRP Tube Thickness on Response Envelope of Column H 

 254



 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

Drift Ratio (%)

N
o

rm
al

iz
e

d 
C

um
u

la
tiv

e
 D

is
si

p
a

te
d

 E
n

e
rg

y

6

2% G100

2% G60

1% G60

1% G100

L/Do Steel FRP f'c P/P0

5 H 6 ksi 3%

 

Figure 7.55 Effect of Steel Reinforcement on Normalized Cumulative Dissipated Energy 

of Column H 
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Figure 7.56 Effect of L/Do Ratio on Normalized Cumulative Dissipated Energy of 

Column H 
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Figure 7.57 Effect of FRP Tube Thickness on Normalized Cumulative Dissipated Energy 

of Column H 
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Figure 7.58 Effect of Steel Reinforcement on Hysteretic Response of Column C 
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Figure 7.59 Effect of L/Do Ratio on Hysteretic Response of Column C 
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Figure 7.60 Effect of FRP Tube Thickness on Hysteretic Response of Column C 
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Figure 7.61 Effect of Steel Reinforcement on Response Envelope of Column C 
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Figure 7.62 Effect of L/Do Ratio on Response Envelope of Column C 
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Figure 7.63 Effect of FRP Tube Thickness on Response Envelope of Column C 
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Figure 7.64 Effect of Steel Reinforcement on Normalized Cumulative Dissipated Energy 

of Column C 
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Figure 7.65 Effect of L/Do Ratio on Normalized Cumulative Dissipated Energy of 

Column C 
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Figure 7.66 Effect of FRP Tube Thickness on Normalized Cumulative Dissipated Energy 

of Column C 
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Figure 7.67 Effect of Steel Reinforcement Strength Index on Maximum Total Normalized 

Moment 
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Figure 7.68 Effect of L/Do Ratio on Maximum Total Normalized Moment 
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Figure 7.69 Effect of FRP Strength Index on Maximum Total Normalized Moment 
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Figure 7.70 Effect of Steel Reinforcement Strength Index on Maximum Drift Ratio 
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Figure 7.71 Effect of L/Do Ratio on Maximum Drift Ratio 
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Figure 7.72 Effect of FRP Strength Index on Maximum Drift Ratio 

 263



 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Steel Reinforcement Strength Index

M
ax

im
um

 N
or

m
a

liz
ed

 C
um

ul
at

iv
e

 D
is

si
pa

te
d

 E
ne

rg
y

Y

G

H

C

 

Figure 7.73 Effect of Steel Reinforcement Strength Index on Maximum Normalized 

Cumulative Dissipated Energy 
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Figure 7.74 Effect of L/Do Ratio on Maximum Normalized Cumulative Dissipated 

Energy 
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Figure 7.75 Effect of FRP Strength Index on Maximum Normalized Cumulative 

Dissipated Energy 
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Figure 7.76 Effect of Total Reinforcement Index on Maximum Total Normalized 

Moment of Column Y 
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Figure 7.77 Effect of Total Reinforcement Index on Maximum Total Normalized 

Moment of Column G 
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Figure 7.78 Effect of Total Reinforcement Index on Maximum Total Normalized 

Moment of Column H 
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Figure 7.79 Effect of Total Reinforcement Index on Maximum Total Normalized 

Moment of Column C 
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Figure 7.80 Total Reinforcement Index versus Maximum Total Normalized Moment 
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Figure 7.81 Tabas Earthquake Ground Acceleration Time History 

 

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

G
ro

un
d 

A
cc

e
le

ra
tio

n 
(g

)

Sylmar, USA (1971)

 

Figure 7.82 Sylmar Earthquake Ground Acceleration Time History 
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Figure 7.83 Llollelo Earthquake Ground Acceleration Time History 
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Figure 7.84 Column Base Shear Force Response Time Histories of Columns Y and G for 

Tabas Earthquake 
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Figure 7.85 Column Base Shear Force Response Time Histories of Columns G and H for 

Tabas Earthquake 
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Figure 7.86 Column Base Shear Force Response Time Histories of Columns Y and C for 

Tabas Earthquake 
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Figure 7.87 Column Base Shear Force Response Time Histories of All Columns for 

Tabas Earthquake 
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Figure 7.88 Column Displacement Response Time Histories of Columns Y and G for 

Tabas Earthquake 

 271



 

-400

-300

-200

-100

0

100

200

300

400

500

0 2 4 6 8 10 12 14 16 18 20

Time (sec)

C
ol

um
n 

T
op

 R
el

at
iv

e 
D

is
pl

ac
em

en
t 

(m
m

)

G H Tabas, Iran (1978)

FRP Rupture

Column Failure

 

Figure 7.89 Column Displacement Response Time Histories of Columns G and H for 

Tabas Earthquake 
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Figure 7.90 Column Displacement Response Time Histories of Columns Y and C for 

Tabas Earthquake 
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Figure 7.91 Column Displacement Response Time Histories of All Columns for Tabas 

Earthquake 
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Figure 7.92 Column Base Shear Force Response Time Histories of Columns Y and G for 

Sylmar Earthquake 
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Figure 7.93 Column Base Shear Force Response Time Histories of Columns G, H, and C 

for Sylmar Earthquake 
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Figure 7.94 Column Base Shear Force Response Time Histories of All Columns for 

Sylmar Earthquake 
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Figure 7.95 Column Displacement Response Time Histories of Columns Y and G for 

Sylmar Earthquake 
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Figure 7.96 Column Displacement Response Time Histories of Columns G, H, and C for 

Sylmar Earthquake 
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Figure 7.97 Column Displacement Response Time Histories of All Columns for Sylmar 

Earthquake 
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Figure 7.98 Column Base Shear Force Response Time Histories of Columns Y and G for 

Llollelo Earthquake 
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Figure 7.99 Column Base Shear Force Response Time Histories of Columns G and H for 

Llollelo Earthquake 
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Figure 7.100 Column Base Shear Force Response Time Histories of Columns Y and C 

for Llollelo Earthquake 
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Figure 7.101 Column Base Shear Force Response Time Histories of All Columns for 

Llollelo Earthquake 
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Figure 7.102 Column Displacement Response Time Histories of Columns Y and G for 

Llollelo Earthquake 
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Figure 7.103 Column Displacement Response Time Histories of Columns G and H for 

Llollelo Earthquake 
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Figure 7.104 Column Displacement Response Time Histories of Columns Y and C for 

Llollelo Earthquake 
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Figure 7.105 Column Displacement Response Time Histories of All Columns for Llollelo 

Earthquake 
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Figure 7.106 Column Base Shear Force Response Time Histories of Column Y for All 

Earthquakes 
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Figure 7.107 Column Base Shear Force Response Time Histories of Column G for All 

Earthquakes 
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Figure 7.108 Column Base Shear Force Response Time Histories of Column H for All 

Earthquakes 
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Figure 7.109 Column Base Shear Force Response Time Histories of Column C for All 

Earthquakes 
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Figure 7.110 Column Displacement Response Time Histories of Column Y for All 

Earthquakes 
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Figure 7.111 Column Displacement Response Time Histories of Column G for All 

Earthquakes 
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Figure 7.112 Column Displacement Response Time Histories of Column H for All 

Earthquakes 
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Figure 7.113 Column Displacement Response Time Histories of Column C for All 

Earthquakes 



 

CHAPTER 8 CONCLUSIONS AND FUTURE RESEARCH 

8.1 SUMMARY 

As part of a multi-university research program funded by NSF, a comprehensive 

experimental and analytical study of seismic behavior of hybrid FRP-concrete column is 

presented in this dissertation. Experimental investigation includes cyclic tests of six 

large-scale CFFT and RC columns followed by monotonic flexural tests, a nondestructive 

evaluation of damage using ultrasonic pulse velocity in between the two series of tests, 

and tension tests of sixty-five FRP coupons. 

It is shown that only specimens with carbon FRP cracked, whereas specimens 

with glass or hybrid FRP did not show any visible cracks throughout cyclic tests. Further 

monotonic flexural tests showed that carbon fiber specimens experienced flexural cracks 

in tension and crumpling in compression. Glass or hybrid specimens, on the other hand, 

all had FRP local buckling failure. Filament-wound fiberglass specimen exhibited an FRP 

burst crushing, whereas fabric-wrapped glass and hybrid specimens showed crumpling 

cracks. All FRP coupons exhibited a linear elastic stress-strain response. Most failures 

were lateral brittle ruptures for bi-directional coupons, and longitudinal splitting for uni-

directional coupons. 

Two analytical models using ANSYS and OpenSees were developed and 

favorably verified against both cyclic and monotonic flexural tests. The results of the two 

methods were compared. A parametric study was also carried out to investigate the main 

parameters on the seismic performance measures. The responses of typical CFFT 

columns to three representative earthquake records were also investigated. 
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8.2 CONCLUSIONS 

Based on the comprehensive experimental and analytical studies reported in this 

dissertation, following conclusions could be drawn: 

1. Compared with conventional RC column, hybrid FRP-concrete column possesses 

higher flexural strength and energy dissipation with an extended plastic hinge 

region. 

2. Among all CFFT columns, hybrid glass/carbon lay-up demonstrated the highest 

flexural strength mainly because of its high reinforcement index. It also had the 

highest initial stiffness due to its high FRP/concrete stiffness ratio. Moreover, at 

the same drift ratio, the specimen was considered as the best in term of energy 

dissipation. 

3. Specimens with fiberglass tubes exhibited the highest ductility due to higher 

flexibility of glass FRP composites. Furthermore, ductility of CFFTs showed a 

strong correlation with the rupture strain of FRP. On the other hand, fiberglass 

and hybrid lay-up may lead to higher pinching effect than those with carbon 

fibers. 

4. Slippage between FRP tube and concrete core was larger in tension than in 

compression, similar to the sectional strain response. Filament-wound fiberglass 

specimen had the largest slippage amongst all specimens because of its smooth 

surface. However, slippage was not significantly different among the various 

CFFT specimens. 

5. Glass FRP specimens exhibited the smallest residual deflections and loads, an 

important feature in seismic applications when considering possible repair. 
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Carbon FRP tubes, on the other hand, led to the largest residual deflections and 

loads, while hybrid lay-up was in between the two groups. 

6. Under combined shear and flexural effects with shear span-to-depth ratios of 

typical bridge substructures, it is expected that behavior of CFFT columns will 

still be governed by flexure. With proper FRP architecture, shear failure is not 

expected to be critical for CFFT specimens with as short a shear span-to-depth 

ratio as 1.0, with or without steel reinforcement or end restraints. 

7. Cyclic and monotonic flexural tests showed that flexural strength increases with 

the reinforcement index based on unconfined concrete compressive strength, but 

depicts a descending branch when considering the confined concrete compressive 

strength. Hence, one can optimize reinforcement index for achieving a design 

moment without over-confining in the hoop direction. 

8. Further parametric study and comparison with other test results from the literature 

indicated that flexural strength tends to have a linear correlation with total 

reinforcement strength index up to an index of 1.0. 

9. Parametric study showed that different FRP architecture and rebar type may lead 

to different failure modes for CFFT columns. For columns with linear elastic FRP 

composites, FRP ruptures first, followed by rebar rupture and/or concrete 

crushing. For columns with lower steel strength index or higher FRP strength 

index, FRP rupture may lead to rupture of rebar at earlier stages. Moreover, 

smaller amount of FRP may lead to higher deformation capacity at the expense of 

lower load bearing capacity. 
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10. Transient analysis of strong ground motions showed that Column Y with off-axis 

filament-wound glass FRP tube exhibited a superior seismic performance to all 

other CFFTs. Moreover, higher FRP reinforcement ratios may lead to a brittle 

system failure, while a well-engineered FRP reinforcement configuration may 

significantly enhance the seismic performance of CFFT columns. 

8.3 FUTURE RESEARCH 

This study has shown that FRP composites may provide higher strength and 

ductility for use in earthquake engineering applications. An optimized configuration with 

conventional or innovative materials (high performance concrete or steel reinforcement) 

may be worthy of further investigation to improve the seismic performance. Durability is 

another issue to explore. Moreover, fire and blast performance may also attract 

researchers for the hybrid configurations of innovative materials with conventional 

construction. 
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