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ABSTRACT OF THE DISSERTATION

ROLE OF CARBON NANOTUBE DISPERSION IN FRACTURE TOUGHENING OF

PLASMA SPRAYED ALUMINUM OXIDE - CARBON NANOTUBE

NANOCOMPOSITE COATING

by

Kantesh Balani

Florida International University, 2007

Miami, Florida

Professor Arvind Agarwal, Major Professor

Aluminum oxide (A12 0 3 , or alumina) is a conventional ceramic known for

applications such as wear resistant coatings, thermal liners, heaters, crucibles, dielectric

systems, etc. However applications of A120 3 are limited owing to its inherent brittleness.

Due to its excellent mechanical properties and bending strength, carbon nanotubes (CNT)

is an ideal reinforcement for A12 0 3 matrix to improve its fracture toughness.

The role of CNT dispersion in the fracture toughening of the plasma sprayed

A120 3-CNT nanocomposite coating is discussed in the current work. Pretreatment of

powder feedstock is required for dispersing CNTs in the matrix. Four coatings namely

spray dried A120 3 (A-SD), A120 3 blended with 4wt.% CNT (A4C-B), composite spray

dried A120 3-4wt.% CNT (A4C-SD) and composite spray dried A120 3-8wt.% CNT (A8C-

SD), are synthesized by plasma spraying. Owing to extreme temperatures and velocities

involved in the plasma spraying of ceramics, retention of CNTs in the resulting coatings

necessitates optimizing plasma processing parameters using an inflight particle diagnostic

sensor. A bimodal microstructure was obtained in the matrix that consists of fully melted
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and resolidified structure and solid state sintered structure. CNTs are retained both in the

fully melted region and solid-state sintered regions of processed coatings.

Fracture toughness of A-SD, A4C-B, A4C-SD and A8C-SD coatings was 3.22,

3.86, 4.60 and 5.04 MPa m1 respectively. This affirms the improvement of fracture

toughness from 20 % (in A4C-B coating) to 43% (in A4C-SD coating) when compared to

the A-SD coating because of the CNT dispersion. Fracture toughness improvement from

43 % (in A4C-SD) to 57% (in A8C-SD) coating is evinced because of the CNT content.

Reinforcement by CNTs is described by its bridging, anchoring, hook formation, impact

alignment, fusion with splat, and mesh formation.

The A12 0 3/CNT interface is critical in assisting the stress transfer and utilizing

excellent mechanical properties of CNTs. Mathematical and computational modeling

using ab-initio principle is applied to understand the wetting behavior at the A12 0 3/CNT

interface. Contrasting storage modulus was obtained by nanoindentation (~ 210, 250,

250-350 and 325-420 GPa in A-SD, A4C-B, A4C-SD, and A8C-SD coatings

respectively) depicting the toughening associated with CNT content and dispersion.
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1. INTRODUCTION

The goal of the proposed research is to improve fracture toughness of

nanocrystalline aluminum oxide by addition and dispersion of multiwalled carbon

nanotube (CNT) reinforcements using plasma spray technique. Fig 1.1 summarizes the

overall research plan.

Role of CNT Dispersion in Fracture Toughening of Plasma-Sprayed
Aluminum Oxide - Carbon Nanotube Nanocomposite Coating

Powder Treatment

(Spray Drying, Blending)

Process Parameter Optimization

(In-flight Particle Diagnostic)

Plasma Spraying of Ceramic Nanocomposites

1. Achieving CNT Dispersion in the Fabricated Coating

2. Retaining Undamaged CNTs in the Fabricated Coating

3. Controlled Bimodal Matrix Microstructure

4. Nanocrystalline Structure for Enhanced Fracture Resistance

Microstructural Characterization Phase Characterization
- Bimodal Microstructure, Porosity - XRD Analysis, Crystallite Size

- CNT Bridging, Mesh Formation - Raman Characterization
- Wettability Studies - TEM, Phase Precipitation

Thermodynamic Prediction (Thermodynamics)

- FactSage Thermochemisty Software

Quantitative Microscopy - ImagePro Software

Mechanical Testing (Mechanical Properties)
- Fracture Toughness and Nanoindentation

Computational Molecular Analysis (Interface
Wettability and Reaction) - SIESTA 1.3

Enhanced Fracture Toughness of Plasma Sprayed A1 20 3-CNT Nanocomposite

Fig. 1.1: Summary of the work plan
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Aluminum oxide (commercial name alumina, chemical formula A12O3) is viewed

as an ideal material for high temperatures application. However, the extremely brittle

nature of A12O 3 ceramic limits its applications [1-14]. Hence there is a need to toughen

A12 0 3 for its use in structural applications. Due to their excellent mechanical properties,

carbon nanotubes (CNT) has been identified as an ideal reinforcement to toughen the

ceramics, including A120 3 [9, 15-31]. Thermal spray processing of ceramic has

accomplished superior coatings with improved mechanical properties such as indentation

crack resistance, spallation resistance and enhanced fracture toughness [3, 32-36].

Therefore, the plasma spraying technique has been adopted in synthesizing A12 0 3-CNT

nanocomposite coating with enhanced fracture toughness. But processing and synthesis

of CNT reinforced ceramic nanocomposite coating involves several challenges as

summarized below:

1.1. Challenges in Fabricating CNT Reinforced Ceramic Nanocomposites

1.1.1. Dispersion of CNTs in the Ceramic Matrix

CNTs have a strong tendency to agglomerate owing to the high surface-

area/volume ratio. Dispersion of CNTs offer advantages of excellent mechanical

properties since individual CNTs possess such as very high Young's modulus (~ 1 TPa),

and fracture strength (- 50 GPa) in enhancing the fracture toughness of ceramic

nanocomposites [11, 22, 25, 37, 38]. Owing to layer by layer deposition in the plasma

spraying, CNT homogeneity in the coatings can be achieved by dispersion of CNTs in the

powder feedstock and subsequent coating process. Hence, powder feedstock pretreatment

becomes a requirement for dispersing CNTs in the A12 0 3 matrix. In the present study, the
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challenge of dispersing CNTs has been addressed by spray drying of composite ceramic

and CNT powder. Consequently, plasma spraying should be optimized in order to retain

CNTs in the sprayed coatings.

1.1.2. Retention of Undamaged CNTs in Plasma Sprayed Deposit

Particles passing through thermal plasma plume experience very high

temperatures in excess of 10,000 Kelvin [1, 39-41]. In addition, the exiting powder

particles attain high velocity from sonic to supersonic regime [1, 39, 41]. Hence retention

of undamaged CNTs at such extreme temperatures and impact is quite a challenging

problem. Though earlier works have demonstrated successful retention of CNTs in the

plasma sprayed metal matrix nanocomposite, ceramic matrix requires enhanced enthalpy

plasma parameters which might damage CNTs during processing [42-44]. This challenge

has been met by monitoring and controlling plasma parameters of processing via in-flight

diagnostics. Owing to rapid solidification behavior of the plasma spraying and short

flight time, undamaged CNTs can be retained in the nanocomposite coating.

1.1.3. Grain Growth du ring Consolidation of Nanocrystalline Ceramic Matrix:

Nanostructure enhances the strength and fracture toughness of the material.

However, conventional consolidation techniques result in the grain growth of the nano

particles [2, 5, 8-10, 17, 21-31, 45-52]. Hence, retention of nanocrystalline structure after

consolidation remains a hurdle to overcome. This has been achieved by controlled

melting/heating of powder particles that require suitable processing protocol and
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optimized consolidation mechanism towards retaining nanostructure. High cooling rates

which are inherent to the plasma spraying also aids in retention of nanostructure.

1.2. Research Objectives

The overall objective of current research is to elicit the role of CNT dispersion in

the fracture toughening of plasma-sprayed aluminum oxide - carbon nanotube ceramic

nanocomposite coating.

The specific research objectives of this work can be summarized as:

" Incorporation and retention of CNT to improve toughness of Al 20 3-CNT

nanocomposite structure via plasma spray forming.

" Dispersion of undamaged CNT in the A120 3 matrix.

" Retention/refinement of nanostructure in A120 3 matrix towards improving fracture

toughness.

" Evaluation of bulk mechanical properties such as fracture toughness and elastic

modulus of plasma sprayed coating.

" In-depth analysis of interfacial phenomenon and wetting characteristics between

A120 3 matrix and CNT reinforcement using experimental technique and molecular

modeling of interface via SIESTA 1.3 simulation software.

This dissertation is systematically structured in separate chapters to thoroughly

present the background, execution of ideas, assembling of results, scientific interpretation

and future scope of the work. Chapter 2 describes the systematic progression of work

done by various researchers in extending the scientific knowledge. Adoption of various
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techniques and ideas for achieving enhanced fracture toughness is reviewed in this

chapter. Chapter 3 describes the methodologies of experiments and analysis adopted in

the current work. The heart of the dissertation is the results and discussion, chapter 4,

where the toughening enhancement of A120 3 by CNTs is presented and discussed in

detail. Conclusions of the research are stated in chapter 5 summarizing the key findings

and important feats. Chapter 6 states the recommendation for future work, which seem

potential measures in continued improvement of the current research.
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2. LITERATURE REVIEW

2.1. Need of Developing Tough Structural Ceramics

Whether it be structural ceramics or ultra high temperature ceramics for reentry

space vehicles, the very competence of ceramics requires: high refractoriness, chemical

inertness, resistance to wear, good oxidation resistance, low coefficient of thermal

expansion, high thermal conductivity, and good creep properties [1]. But, inherent

brittleness of ceramics have created a need for enhancing the fracture toughness and

flexural bend strength of the ceramics [1, 3, 4, 12, 49, 53, 54]. The structural ceramics

can be broadly classified into non-oxide and oxide ceramics.

2.1.1. Non-Oxide Ceramics

Non-oxide ceramics constitute the borides, carbides, nitrides, and silicides.

Ultrahigh temperature ceramics such as HfC, TaC, ZrB 2, BN, HfN, TiN/TiB 2 and their

composites have been used for rocket science and engineering applications that require

structural integrity at temperature > 2100 K [55]. Toughening in the non-oxide ceramics

has been achieved by grain refinement, densification by HIPping (hot-isostatic pressing)

and crack-healing agents (such as glassy phase, or presence of microporosity) [8, 48]. A

summary of strengthening and toughening mechanisms in non-oxide structural ceramics

is presented in Table 2.1. It can be observed that most of the research work and
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commercial development of the non-oxide ceramics has been limited to SiC and Si 3N 4

[45, 48, 50, 56].

Table 2.1: Fracture toughening of non-oxide structural ceramics

Composition Toughening Fracture Other features/ Reference
Mechanism Toughness Comments

Liquid phase /2 Fine equiaxed
SiAlON-SiC sintering 6.0 MPa m grains and dense [45]

structure

Smaller rare Composition and
SiC +AlN+ earth cations 6.5 MPa m1/2 microstructure of 56]
Rare earths resulting clean sintering additives

boundaries affect toughness

WC- 0.5 wt Abnormal grain 7.34 MPa m1/2 Toughening by
% Co - 0.25 growth crack-cutting [5]

wt % VC reinforcement elongated grains

Si 3N4/SiC Inter and intra 1/2 Hardness
(5 wt% Y2 0 3  SiC nano 5.8 MPa m increased with [50]
with upto 13 inclusions (at 8 wt. % SiC) increase in SiC

wt.% SiC) content

Flexural strength
~a655 MPa and

ZrB2 -MoSi 2  Uniform and fine ~ 2.6 MPa mi 2  500 MPa at 1200 [10]
microstructure and 1500 0C

respectively.
Presence of

micro cracks,
carbon fiber

C/SiC pullout, Flexural strength [57 58]
homogeneity and ~ 124-287 MPa '

non-
decomposition of

matrix

Composite of Si 3N 4 with inter and intra SiC inclusions in wood-cutting ceramics

provided enhancement of mechanical properties (fracture toughness increase from 5.1 to

5.8 MPa m12 and microhardness increase from 16 GPa to 19 GPa) [50]. In addition,
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pressing and sintering techniques (thermal/pressureless/ liquid-phase) to manipulate

microstructure in ZrB2 -MoSi 2, SiC, SiAlON-SiC ceramics have proved to be significant

in enunciating toughening of ceramic composites [10, 45, 56]. The role of utilizing

abnormal grain growth in WC, and development of tough ternary carbide phase ceramics

were next big feats in the field of non-oxide ceramic [2, 5, 8, 10, 45-50]. C/SiC

composites fabricated by chemical vapor deposition/infiltration and sol-gel technique

have emerged for applications such as aircraft brakes, and re-entry shields, rocket nozzles

etc [57, 58].

Figure 2.1 demonstrates change of fracture toughness during sintering with

addition of rare earth oxides in SiC matrix [56]. Clean interphase boundaries without

amorphous inter granular phase, as observed in Fig. 2.2, is resulted by the addition of

smaller rare-earth cations [56]. Composition and microstructure of the sintering additives

strongly aid the toughening and strengthening of SiC ceramics. Figure 2.3a features

increase of hardness of Si 3N 4/SiC nanocomposite with increase in SiC content [50]. Apart

from increasing SiC content, microstructure refinement hinders dislocation movement

within Si3N 4 matrix to enhance hardness. Liquid phase sintering resulted percolation of

SiC nano inclusions in the intergranular regions enhancing the fracture toughness, Fig.

2.3b.
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Fig. 2.2: HRTEM micrographs revealing clean interfaces without the amorphous inter

granular phase in SiC-AIN-Sc 2O3 : (a) SiC-SiC boundary and (b) SiC-junction phase

boundary [56].
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Fig. 2.3: Comparison of a) nano- and macro-hardness and b) fracture toughness of

Si 3N4/SiC nanocomposites [50].

Figure 2.4 shows Vicker indentation generating radial crack in cobalt bonded

WC. Vicker-crack generate due to residual stress relief upon unloading and the balancing

relation of stress intensity ahead of crack tip with the crack-termination can indirectly

help evaluating the fracture toughness of the material. When the Young's modulus for

ceramics is known (taken as 390 GPa for bulk A120 3), indentation fracture toughness (K)

can be calculated by the semi-empirical formula given by Antis, equation 2.1 [59]:

K = x - Equation 2.1

where x=0.0 16 is material independent constant, E is the Young's modulus, Hv is the

Vicker's hardness, P is the applied load and c is the crack length.
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Fig. 2.4: Vicker Indentation on WC ceramic depicting origination of radial cracks [5].

Oxide ceramics and their toughening mechanism are reviewed in the next section.

2.1.2. Oxide Ceramics

Among ceramics, the oxides are most useful and common owing to ease of

fabrication and stability at high temperatures than nitrides, carbides, sulfides and borides

[60, 61]. Oxide ceramics, such as A12 0 3, ZrO2, TiO 2, Cr 2O3, SiO 2, and Y20 3 offer

advanced technological applications owing to high hardness, resistance to corrosion, and

high refractoriness apart from high wear-, fretting-, cavitation- and erosion-resistance,

and high dynamic modulus [3, 13, 33, 34, 62]. Though non-oxide ceramics display

unique properties as potential candidates for extreme environments, they often require a

protective oxide layer to create diffusion barrier for oxidation protection [60, 63, 64].
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Oxidation resistance becomes a natural requirement for the materials operating at

elevated temperature in air. Aptly oxide ceramics emerge as oxidation-resistant structural

materials [60, 64, 65]. High temperature applications introduce large volumetric phase

transformations leading to the structural instability. And, inherent brittleness of the

ceramic oxides makes them more susceptible to thermal shock failures. Thereby,

toughening of the oxide ceramics becomes a prerequisite in their structural applications.

Conventionally, fracture toughening enhancement in oxides has been achieved

through phase transformation or by introducing controlled/graded microstructure [18, 66-

68]. Incorporation of secondary phases in restricting crack propagation and

nanocrystalline structure in enhancing grain sliding has also been prominent in improving

the fracture toughness of ceramic nanocomposites [6, 36, 69, 70]. Table 2.2 features

fracture toughening mechanisms in oxide ceramics.

Specific examples of Y-ZrO2 and TiO 2 are considered to elicit toughening

mechanisms in oxide ceramics. Initial particle size of Y-ZrO2 was ~50-200 nm, whereas

addition of fine TiO 2 was selected in range of 100-300 nm. Fig. 2.5a shows pressed and

sintered (at 14000C for 4h) Y-ZrO2 composite [66]. Due to agglomeration tendency of

TiO2 particles, addition of 10 vol.% TiO 2, Fig. 2.5b, resulted increase in inhomogeneity

and porosity of the nanocomposite. Increase in fracture toughness with addition of 10 vol.
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%TiO 2 was attributed to nucleation of Y-ZrO2-ZrTiO4 with more pronounced

transformation toughening when compared to without the TiO 2 addition [66].

Table 2.2: Fracture toughness and toughening mechanisms for oxide ceramics

Ceramic Toughening Fracture Other features/
Oxide Mechanism Toughness Comments

YSZ (Yttria Transformation Additional
stabilized toughening 4.5 MPa m1 2  toughening by [66]
tetragonal (tetragonal to
zirconia) monoclinic ZrO2)

Isotropic crack
Crack arrest by propagation, and

Nano-TiO 2  nanostructured ~ 27 MPa m/ 2  distribution of [6]
zones agglomerated

nanoparticles

Restricting Upto 2.96 MPa Microcrack
SiO 2  cristobalite by m1/2 at 1400 °C deflection and [71]

AlN particles divergence

Low temperature
Restraining the diffusional creep,

MgAl 20 4  grain growth by 7.79 MPa m1 2  thermally [69]
nano A120 3  activated

deformation

Addition of

Transformation li2 secondary
ZrO 2  10.1 MPa m toughening by [67]

toughening WC, crack

deflection
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Fig. 2.5: SEM micrographs of the thermally etched surfaces of the Y-ZrO2-ZrTiO 4

composites sintered at 1400°C with a) 0 vol.%, and b) 10 vol.% TiO 2 [66].

Fig. 2.6 shows hardness and crack propagation resistance of HVOF (high velocity

oxy-fuel sprayed) and APS (air plasma sprayed) TiO 2 coatings. Though hardness of all

three processed coatings (viz. air plasma and HVOF sprayed TiO 2, and HVOF sprayed

nano TiO 2) is similar, nano TiO 2 demonstrated extremely high fracture toughness when

compared to conventional processing, Fig. 2.6 (also see Table 2.2) [6]. Enhanced fracture

toughening was attributed to arrest of cracks by nano-structured zones as observed in Fig.

2.7 [6]. Nanozones impede the crack path and restrict the crack extension by absorbing

the crack-propagation energy and arresting the crack to result enhanced fracture

toughness.
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Fig. 2.6: Vickers hardness and crack propagation resistance for coatings made from

nanostructured and conventional TiO 2 feedstock sprayed via HVOF and APS [6].

Fig. 2.7: Vickers indentation impression (1 kgf) in the cross-section of the HVOF-

sprayed nanostructured TiO 2 coating (a) and the indentation crack tip being arrested by a

zone of nanostructured particles (b) [6].
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2.2. Nature and Properties of Aluminum Oxide

A120 3 is white and odorless oxide ceramic (also known as alumina or aluminum

oxide), with a hexagonal crystal structure shown in Fig. 2.8. In nature, A120 3 is the

hardest mineral after diamond with a hardness of 18-20 GPa. Due to its high hardness and

refractory nature, A120 3 is widely used as thermal liners, thermal barrier installations,

high temperature insulating systems, crucibles, ceramic boards and brackets, heaters, etc.

Crystal structure, physical, thermal, and mechanical properties of A120 3 are presented in

Table 2.3.

Oxygen

Aluminum

b

Fig. 2.8: Crystal Structure of Al 20 3 (a = b = 4.7564 A, c = 12.9894 A, and a =3 = 90°, 7

= 1200).
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Table 2.3: Crystal Structure, physical, thermal and mechanical properties of A12O 3

Properties of A12 0 3  Description Details
1. Crystal Structure Hexagonal lattice parameters a = b =

4.7564 A, c = 12.9894 A,
and a = P = 90°, y = 1200

2. Physical Properties Melting Point 2327 K
Density 3.99 kg/m3
Molar Volume 25.554 cm 3/mol
Molecular Weight 101.96 g/mol

3. Thermal Properties Coeff. Of Therm. Expansion 6.76 x 106 K-
Specific Heat 78.7 J/mol/K
Thermal Conductivity 36.16 W/m/K

4. Mechanical Properties Young's Modulus 389.5 GPa
Poisson's Ratio 0.22
Hardness 18-20 GPa
Fracture Toughness

- Monolithic ~ 3.2 MPa mi 2

- Plasma Sprayed ~ 2.0 MPa m2

Aluminum oxide has several polymorphs. Among many polymorphs of aluminum

oxide, a-A120 3 (with space group R 3 c) is the most thermodynamically stable form. Other

metastable phases can be classified into: (i) face-centered closed (fcc) packing as: cubic

(y,rt), monoclinic (0), tetragonal/orthorhombic (6), (ii) hexagonal closed packing (hcp) as

rhombohedral (a), orthorhombic (x), and hexagonal (X). Other monoclinic phases are

identified as 0', 0", and k [14].

Though atomic stacking for oxygen ion is similar in amorphous and y- A120 3,

transformation from y- to a-A120 3 is primarily associated to rearrangement of oxygen

sublattice as shown in Fig. 2.9. Difference in the activation energy of amorphous- y

transition (4.5 eV) compared to the activation energy of y4 a transformation (5.2 eV)

suggests that the mechanism of atomic rearrangements controlling these
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transformations is not the same [14]. No experimental confirmations are available till

date to clearly explain direct y--> a transformation mechanism. But following orientation

relationships are presented between y and a A120 3 : <001> Y//<0001>a, {440}y //{303 0}a,

and {310},Y //{ 2 110}a determined from electron diffraction [14].

Transformation concepts are important in understanding the grain growth and

phase evolution of A12O 3 during processing. These aspects become highly important

especially in rapid processing techniques that can form metastable phases, such as

thermal spraying, rapid melt quenching, vapor deposition, laser processing, etc [72-74].

Correspondingly, understanding of solid-state transformations associated with A12 0 3

processing become beneficial in attaining required properties via optimizing the

microstructure.

2.3. Ceramics Processing via Thermal Spraying

Thermal spraying was practiced since early 1900s where flame was utilized as

heat source for melting the material [41]. Since the development of plasma spray torch by

Thermal Dynamic Corp. in 1957, plasma spraying has established itself in depositing

thick ceramic coatings (>50 m). High velocity oxy-fuel (HVOF) spraying, vacuum

plasma spraying (VPS), detonation-gun (D-gun) spraying and cold spraying are other

processes in the family of thermal spray HVOF utilizes high velocity of carrier gas (3-5
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mach) and uses combustion as source of thermal energy. Deposition of coatings in

HVOF and D-gun is achieved through plastic deformation with secondary assistance

from thermal energy. Hence microstructure is usually observed with minimal porosity

(and high density) in HVOF and D-gun sprayed coatings. Deposition of coating in cold

spray is achieved primarily through plastic deformation. Hence, cold spray process is

limited to deposition of soft metallic coatings. Plasma spraying utilizes thermal energy as

the primary source to melt the powders and deposit consolidated coatings. Thermal

spraying has evolved as effective processing tool to synthesize ceramic coatings with

improved properties such as fracture toughness, indentation crack resistance, spallation

resistance against bend and cup test, adhesion strength, abrasive wear resistance and

sliding wear resistance [75-84] . Table 2.4 shows a list of ceramics processed by thermal

spray processes. Conventional thermal spray processes such as wire arc spraying and

flame oxy-fuel spraying, etc are not considered here.

Since plasma spraying of A12 0 3 based coatings is the focus of current research,

HVOF, VPS and D-gun processing of ceramics is not discussed here. Owing to ease of

attaining high temperatures in plasma plume (excess of 10000 K) and being able to melt

any known material, processing of ceramics has made plasma spraying the first choice

[101]. Its ease of use and low cost associated with spraying has helped its wide

commercialization. Plasma spraying has emerged as material processing techniques in
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spite of its inception of specifically depositing coatings [41]. Plasma spraying involves

several processing parameters such as plasma power, primary and secondary gases types

and their flow rates, powder feedstock (size, shape and morphology), feed rate of powder

Table 2.4: Fabrication of ceramics by thermal spraying

Ceramics Thermal Spraying Processing References
Non-Oxides

MoSi 2-Si 3N4  VPS [85]

TiC-Ni HVOF [86]

TaC VPS [87]

SiC/ ZrB2  Controlled APS [88]

WC APS [89]

Oxides

A120 3  APS [90]

A120 3/SiC HVOF, APS [91]

Mo-MoO 2  APS [92]

ZrO2-A120 3  APS [93]

A120 3-TiO2 APS [94]

TiO 2  HVOF, VPS [6, 95-97]

ZrO2  APS [98]

A120 3-Ni HVOF [12]

HAP*- ZrO2  HVOF [99]

HAP*-CNT APS [54]

HAP* VPS, D-Gun [100]

VPS: Vacuum Plasma Spraying, APS: Air/Atmospheric Plasma Spraying,
HVOF: High Velocity Oxy Fuel, D-Gun: Detonation-Gun

HAP*: Hydroxyapatite
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(and its flowability), external cooling, coating/formed shape thickness and many more

[41, 101]. In addition secondary parameters such as thermal conductivity of powder

particles, application of external cooling, power fluctuations, inconsistent flow of

powders due to gravity, etc also add to the complexity of process. Following section

discusses plasma spraying in detail.

2.3.1. Plasma Spraying

Plasma is the fourth state of matter, namely ionized gas. An arc is struck between

tungsten cathode and copper anode to generate plasma, where the temperature reaches in

excess of 10,000 K. Plasma spraying involves feeding powder particles in the plasma

stream with pressurized gases creating velocities upto Mach 1-3 [102-104]. A schematic

of plasma spraying process is presented in Fig. 2.10. Powders experience differential heat

(temperature) and velocity owing to their location, size and morphology. Molten/semi-

molten particles exiting from the plasma plume get resolidified and impact on the

substrate to form a coating. Successive deposition lead to increasing thickness of the

layer, which can be subsequently obtained as a free standing structure in case the

substrate is separated from the deposit [87].

22



Tudr engn ahd usre

Plasma gases in Tungsten cathodeport
Gas injector

Splat

A2e .... O O a

Cooling water in V * . *

Cathode holder Copper anode liten/semimolten
Cooling water out particles

Fig. 2.10: Schematic of plasma spraying process.

2.3.1.1. Plasma Sprayed Nanocrystalline Ceramic Coatings

Plasma spraying has been utilized by several researchers to synthesize

nanocrystalline ceramic coatings [33, 73, 75]. With stringent material requirements,

ceramic nanocomposites (such as WC-Co, Mo-Si-B, Hydroxyapatite, FeAl, Y2O3-ZrO2,

ZrO2-Al 2O3, Al2 O3-TiO 2, etc) have been plasma sprayed for improved friction, wear,

biocompatibility, oxidation resistance etc. [36, 73, 81, 90, 105-110]. Nanostructured

coatings also provide a solution to improving the fracture toughness of the ceramics.

Grain size refinement provides the required strength and improved toughness due to Hall-

Petch relationship [51, 52].

Synthesis of nanocrystalline ceramic coating by plasma spraying is associated

with two major challenges: (i) grain growth and (ii) lack of flowability of nanosize
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powders. Plasma spraying involves rapid cooling rates (~ 10 6K/s) and formation of fine

grain size is inherent to the process [43]. Additional cooling can further prevent grain

growth during plasma spraying. However, low mass of nanoparticles and subsequent

inability to be carried in gas stream for deposition onto substrate is a major challenge.

Flowability of such fine powders during plasma spraying is limited owing to high

surface/volume ratio. In order to reduce interparticle friction and enhance flowability,

nanoparticles must be constituted into spherical micron sized agglomerates via powder

treatment. Thereby, spray drying as necessary powder pretreatment in atomizing

nanoparticles as spherical micron sized agglomerates becomes a requirement. Also, the

limitation of flowing nanoparticles can be obviated by passing powders as liquid powder

feed. Liquid evaporates and leaves the nanoparticles as coating on the substrate. Reduced

deposition rates associated with solution precursor plasma spraying makes the process

less attractive. Current research has adopted spray drying for achieving good flowability

of nanoparticles, which is explained in the following section.

2.3.1.2. Spray Drying of Ceramic Nanopowders

Spray drying is a process utilizing spraying of fluid powder-feed (powder

dispersed in solvent- (generally alcohol) or water-based suspensions), and consequent

drying (with nitrogen or air) to result spherical agglomerated mass of dry powder [111].
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Organic binder is added to keep the solid particles combined with one another.

Characteristics of the spray-dried powder are influenced by: type of atomizer,

composition and viscosity of suspension, feed rate, drying temperature and atomizing

pressure. Spray-dried powders possess high flowability and thereby its coherent flow

results high densities and precise thickness in the plasma sprayed structures [112, 113].

Spray drying is a complex process involving (i) droplet formation, (ii) evaporation

and ballooning, (iii) droplet explosion, and (iv) particle formation, Fig. 2.11 [111]. When

suspension is pumped into the atomizing chamber, it fragments into small droplets by

compressed feed gas. Consequent evaporation of solvent causes shrinkage of the droplet

in the second stage. During the process, liquid takes along solid particles from core to the

outside of the droplet creating a void when evaporation rate inside the droplet exceeds the

diffusion rate through the droplet. When pressure exceeds a certain limit, thickness of

droplet is not sufficient to hold the ballooning by expansion of gases in its core, causing

explosion in some cases. Final stage is recognized by shrinkage from surface tension until

it completely dries. Spray dried powders are spherical and free flowing, which are

consequently sieved to the ideal powder particle size range of 15-60 pm required for

plasma spraying. High quality thermal spraying of micro and nanostructured coatings

such as WC-Co, TaC, and A12O 3-TiO 2 are described in literature [33, 87, 98, 114].
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Plasma spraying of spray-dried powders may reduce interlamellar boundaries/cracks and

may give increased thermal corrosion and wear resistance [115-117].

drying gas

j ~ Particle c'Irmation

3< Lxplosion

Ballooning
solid moving

' Droplct formatior

^ T
feedingi gas Suspension

Fig. 2.11: Spray drying of ceramics [111].
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Plasma sprayed coatings nano-ZrO2 exhibited excellent dynamic modulus (- 170

GPa) and enhanced damping capacity as observed in Fig. 2.12 [13]. TEM micrograph of

nano ZrO2 coating in Fig. 2.13 revealed fine grains in the order of 70-100 nm. Improved

damping capacity was attributed to enhanced grain-boundary relaxations.
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Fig. 2.12: Damping capacity vs dynamic modulus map of various thermally sprayed

samples [13].
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Fig. 2.13: TEM micrograph of plasma sprayed nano-ZrO 2 coating layer [13].

Another study by Goberman and Dell focused on plasma spraying of nano A120 3-

13 wt% TiO 2 [73, 94]. Secondary electron micrograph (Fig. 2.14a) and backscattered

electron micrograph (Fig. 2.14b) elicited bimodal microstructure in nano A120 3-13 wt%

TiO 2 coatings. Presence of bimodal microstructure assisted toughening of the coatings. In

order to define the processing parameter, a critical plasma spray parameter (CPSP) was

defined, as equation 2.2, for the plasma spraying with keeping powder feed rate, gun

speed, carrier gas flow rate, spray distance and flow ratio of Ar to H2 as constant [73]:
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(a)
{*

2 pm

Fig. 2.14: a) Secondary and b) Backscattered electron micrographs of plasma sprayed

nano-A1203-13wt.%TiO2 with additives. (a) Regions of splats (region A) and small

particulates (region C), and (b) The backscattered electron image illustrates that the

embedded particles appear darker than in the matrix [94].
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CPSP = voltage x current / primary gas (Ar) flow rate Equation 2.2

CPSP was related directly to plasma torch/particle temperature. It was evident that

metastable phases were inherent in thermal spray processes owing to non-equilibrium

nature of fabrication technique [73, 94, 118-120]. Generation of metastable

nanocrystalline y-A120 3 phase was observed to vary with varying CPSP, Fig. 2.15 [94].

7-A 120 3 (400)

(x-Al2 (3 )

CPS P=4 1(

CPS P= 3()0

CPSP=300

42 43 44 45 46 47
T wo-T het a (Degrees)

Fig. 2.15: X-ray diffraction patterns from (113) c-A120 3 and (400) y-A12 0 3 peaks for

reconstituted A12 0 3-13wt.%TiO 2 with (modified) additives. The relative integrated

intensity of these peaks are observed to vary as a function of CPSP [94].
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2.4. Toughening of Aluminum Oxide

Toughening of A120 3 is worked upon by using secondary phases as additives,

consolidating nanocrystalline A120 3 powder particles via pressing and sintering, and

reinforcing with particulates, fibers or whiskers [35, 121-136]. Following example elicit

specific examples of toughened A120 3 ceramic.

Ultrafine grained (1-50 nm) bulk A120 3 ceramic was pressed at 1120 MPa and

sintered at 1150 0 C to evince enhanced resistance to mechanical and thermal shock [121].

Moreover, metastable phases of A120 3 such as gamma and theta nucleate as secondary

precipitates and assist in precipitation strengthening of A120 3 ceramic[122-124]. Li et al

demonstrated that nano a-A120 3 can be obtained using two-step sintering, Fig. 2.16 [121].

Along with sintering additives, sintering time and temperature have a strong effect on the

generated microstructure making sintering an exciting technique to alter the

microstructure and attain enhanced structural properties in nanoceramics [125, 126].

Since fracture toughness of A12 0 3 is lower than stress required to initiate plastic

deformation, role of additives in enhancing the energy absorption (by generating banded

structure, Fig. 2.17) becomes more prominent [127, 128]. Table 2.5 lists role of various

additives in enhancing the fracture toughness of A12 0 3 ceramic composites. Though

introduction of fibers, particulates and whiskers was highly initiated, the recent trend is

using CNTs as an effective reinforcement, and is discussed in detail in the next section.
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Fig. 2.16: The relative density of the A120 3 nanoceramics pressed at 1120 MPa and

sintered at different temperatures for 5 h as a function of mean particle size of the starting

a - A120 3 nanopowders [121].

Fig. 2.17: TEM micrograph of an A12 03 -1 mol% TiO 2-1 mol% MgO solid solution

sintered at 1500°C for 5 h in air [127].

32



Table 2.5: Role of additives in enhancing fracture toughness of A12O 3

Ceramic/Metal Additive (P/F/W)* Fracture Toughness Toughening Mechanism Reference

A12 03  Yttria Stabilized 8.9 MP l2  Ferroelastic domain switching and [125]
Zirconia (P) 8.9__ _____ transformation toughening

A120 3  SiC (W) 3.8 MPa.m"2  Crack healing by SiC whisker [35]

MgAl 2O4  A12O 3 (P) 2.5-5.82 MPa.m/ 2  Grain boundary sliding and creep [129]
diffusion

Yttrium Aluminum 1/2 YAG inclusion leading to residual
A12O 3  Ga t (P) 4.54 MPa.m stress. Reduction of grain and flaw [34]

size.

A12O 3  MgSiO 3  3.3 MPa.m/ 2  Stepped and micro-faceted [130]
cleavage

A12O 3  Monoclinic Zirconia 11.8 MPa.m/ 2  Phase transformation toughening [131]

A12 0 3  CeO 2 (P) 4.7 MPa.m"2  Particulate toughening [132]
Ni A12O 3 (F) 10-35 MPa. m 2  Metallic Bridging layer [133]

High stress triaxiality between

Al, Al-Cu A1203 (P) 6.5-30 MPa. m1 2  narrowly spaced ceramic particles, [134, 135]
ductile matrix, and high Young's

modulus

Al A123 (F) -4.8 MPa. m i 2  Plastic deformation of the metal, [136]
testing at 1200 °C [136]

* P: Powder, F: Fiber, W: Whisker
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2.5. Carbon Nanotubes as Reinforcement for Nanocomposite for Improving

Mechanical Properties

Nanocomposite is a novel class of materials that combines two or more materials,

physically and/or chemically distinct, in creating a resultant material in which size of one

of the phases is less than 100 nanometer [137]. The advantage of using nanocomposites is

achieving the best qualities of the constituted material and often some, which are even

superior to those of constituent materials possess.

Carbon nanotube (CNT) is a new class of material that has superior mechanical

properties with theoretical tensile strength of 200 GPa and Young's modulus reaching ~1

TPa [11, 22, 25, 37, 38]. CNTs have also displayed superplasticity despite their sp 2

bonding [138]. Superplastic deformation of upto 280 % in Fig. 2.18, hints CNT as an

ideal reinforcement for toughening ceramics. Such high deformation is attributed to kink

nucleation and movement apart from atomic movement to heal vacancies [138]. These

properties of CNTs make them suitable candidate for as reinforcement for creating

nanocomposites with improved mechanical properties.

Wavelike distortions were observed in repeated bending of the CNTs with local

strains of upto 16% without failure, Fig. 2.19 [139]. The bending modulus of CNTs

decreased with the increasing diameter of CNTs. Sustained integrity at large strain with

no sign of brittleness, plasticity or atomic arrangement inferred good resilience [140].

Hence CNTs serve as potential reinforcements for improving ductility in the ceramic

nanocomposites. In addition, excellent mechanical properties of CNTs do not restrict

their participation in enhancing the strength of polymer-CNT and metal-CNT

nanocomposites as discussed in the consequent sections.
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Fig. 2.18: Insitu tensile elongation of individual single walled carbon nanotubes

viewed under HRTEM. Tensile elongation under a-d) constant bias of 2.3 V, and e-g)

without bias. Vertical arrows show the kinks and horizontal arrows represent the kink

movement direction in carbon nanotubes [138].

2.5.1. CNT Reinforced Polymer Matrix Nanocomposites

Most of the research on CNT reinforced nanocomposites has been carried out on

polymer matrix. CNT reinforcement in matrices such as UHMWPE (ultra high molecular

weight polyethylene), PMMA (polymethylmethacrylate), PS (polystyrene), PAN

(polyacrylonitrile), PMEMA (Methyl-ethyl methacrylate copolymer), etc have been

utilized [38, 141-146]. The main purpose of adding CNTs in polymer matrix had been to

improve the elastic modulus and tensile strength via effective load transfer between

polymer and CNT. Table 2.6 summarizes CNT reinforced polymer nanocomposites and
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improvement in mechanical properties [142-146]. CNT dispersion, polymer-CNT

bonding, and CNT pullout are dictated as the main reasons of strengthening the

nanocomposite. Chemical interaction at the CNT-polymer interface are critical and affect

the toughening of polymer-CNT nanocomposite.

t

Fig. 2.19: TEM image of bent CNT with A and B) radius of curvature ~ 40 nm, and C)

amplitude of ripples increase at the outer layer [140].

Polymer-CNT reinforcement has shown enhanced role of CNT in load transfer, as seen in

Fig. 2.20 via CNT pulling and bridging [141]. Modulus and strength improvements of
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Table 2.6: CNT-reinforced polymer nanocomposites

CNT Microstructural
Polymer Mechanical Property Reference

Loading Features

CNT pullout. Increase in Young's

Intimate CNT modulus by 200%

contact with (upto 10.9 MPa).
Epoxy 0.5 wt. % matactile Tensile strength [142]matrix. Ductile increase by 140 %

deformation in (upto 0.44 GPa) (softer
fractured surface.

epoxy matrix)

Enhancement of

Well dispersed Young's Modulus

Polypropylene 1 wt. % CNTs. Good (from 5.2 to 8.0 GPa) [143]
wettng oservd. and tensile strengthwetting observed, increased from 7.9 to

9.8 GPa.

Lack of chemical No improvement in
interaction Young's Modulus.

PMMA (poly between PMMA Considerable
methyl 4 wt.% and CNT. Weaker improvement in [144]

methacrylate) interfacial impact resistance
adhesion resulted (from 40 to 160
higher toughness. KJ/m 2)

CNT aggregation
limited reaching Elastic Modulus

theoretical increase by 75 % (- 7
Epoxy 5 wt.% predicted values. GPa) and hardness [145]

CNT bundles increase by 30 %
easily slide pass (~0.42 GPa)

one another.

42 % increase in

Good CNT elastic modulus (from
Goytree wod C d 1.19 to 1.69 GPa) and [146]

Polystyrene 1 wt. % dispersion. Good -25% increase in
nterfacial bonding break stress (from

12.8 to 16 MPa)
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upto 200% and toughness improvements of upto 150 % have been reported in epoxy-

CNT nanocomposites [141]. Since matrix provides a secondary role in bearing the stress,

stress transfer to the reinforcing CNT fiber is highly critical [147, 148]. Importance of

CNT incorporation as a dispersed phase is impressed upon by various research works,

with dispersion being achieved by sol-gel technique, surface activation, inorganic

coating, heterocoagulation, ball milling, solvent incorporation, etc [28, 149-155].

Fig. 2.20: CNT ropes are observed bridging a fatigue fracture surface in an epoxy matrix

[141].

Though literature has continually reported enhancement of tensile strength and

modulus experimentally, these values are far below the theoretical predictions. The

difference between experimental observations and theoretical predictions has been
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attributed to poor dispersion of CNT in the matrix and lack of understanding in

engineering CNT/matrix interface [38, 141, 144]. Next class of nanocomposite is CNT

reinforced metal-matrix composite as explained in section 2.5.2.

2.5.2. CNT Reinforced Metal Matrix Nanocomposites

Comparatively limited research has been performed on metal matrix-CNT

nanocomposites [156-158]. Basic challenge arising in the metal-CNT nanocomposite is

associated with damage to CNTs at high temperature processing, as required for metal

processing [43, 44, 118]. Secondary challenge includes low interfacial bonding strength

between CNT and metal interface [156-158].

CNT addition in Al and Ti matrix has shown improvement in elastic modulus and

hardness [43]. Spark plasma sintered and isostatically pressed Cu-CNT nanocomposites

depicted enhanced wear resistance upto three times whereas hardness increased two times

[159, 160]. A summary of improvement in mechanical properties of metal-CNT

nanocomposites is presented in Table 2.7.

CNT dispersion in the metal matrix is critical to impart stress transfer towards

improving strength, and elastic modulus [164]. Dangling CNTs in the fractured surface of

the plasma sprayed Al-Si/CNT nanocomposite is presented in Fig. 2.21a [44] indicating

strong anchoring by CNTs. Smooth CNT surface indicated no physical damage during

plasma spraying. Survival of CNTs was possible because of rapid kinetics inherent to the

plasma spray processing. Laha et la has investigated CNT/metal interface in Al-Si/CNT

system [43, 44, 118]. It was concluded that a thin layer of SiC on CNT is formed (Fig.

2.21b) suggesting interfacial reaction which improved interface wettability required for
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Table 2.7: Mechanical property enhancement in metal-CNT nanocomposite

CNT
Metal content Microstructure Property Reference

Severe plastic deformation Increase in indentation

Cu 1 vol. % (Equi channel angular load by upto 20 %[5]pressing). Homogeneous (from 56 to 75 kgf for [156]
deformation 300 pm deformation.

Extruded. Addition of Improvement in yield
CNTs enhanced the strength from 31 to 36

Sn-Ag-Cu 0.07 wetting behavior. Large MPa, microhardness [157]
wifferemultidirection increase from 16.3 to
induced m17.0 Hv

thermal stress.

Hot pressed. Dispersion Hardness increase

Ti 20 vol. strengthening, refinement frand Young's Modulus [158]
of grain size, and TiC increase from 120 to

formation 198 GPa.

Hot pressed. Uniform
CNT dispersion in Mg Young's modulus

Mg 2 wt. % matrix. Improved improvement by 9% [161]
interface bonding and (from 35.3 to 38.6
effective load transfer. GPa)

Upto 98 % dense.

Pressing and sintering.
Uniform distribution of
CNTs. Agglomeration 9% increase in bend

Ag 8 vol. % observed for higher CNT strength (from 427 to [162]
content (>10%). CNT 465 MPa)

pullout, CNT bridging,
and CNT alignment.

CNT retention after Elastic modulus

Al-Si 10 wt.% plasma spraying. SC increased from 79 to [43, 44,
114.5 GPa. UTS of~ 163]

layer over CNT surface 234 MPa
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effective load transfer between metal/CNT interface. CNT reinforced ceramic

nanocomposites are discussed in the next section.

.t-AI-Si matrix x 1 .

MWCNT

SiC layer

Fig. 2.21: Retention and CNT pullout is observed in the high magnification SEM image

of fractured surface of Al-CNT composite [44].

2.5.3. CNT Reinforced Ceramic Nanocomposites:

Incorporation of fibers and CNTs in the ceramic matrix has shown promising

results in improving the fracture toughness of ceramic matrix. [9, 17, 21-31]. Toughening

behavior of CNT reinforced matrix is mainly linked to CNT crack bridging, CNT

dispersion and crack deflection [17, 165, 166]. It has been theoretically dictated that

spherical particles do not contribute to toughness of ceramic composites [18]. Hence

research directed to using non-spherical particles/fibers/nanotubes in enhancing the

fracture toughness of ceramic nanocomposites is well justified. Temporal evolution of

CNT reinforced ceramics by various processing techniques is presented in Table 2.8.
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Hot pressing of Fe-A120 3-CNT composite depicted continuous network of CNTs

between grains, a pronounced effect of CNT straightening before fracture was expected

to show enhanced fracture toughening [9]. Study on Si 3N 4 -A120 3-Y 20 3 - CNT

nanocomposite showed improvement in modulus of elasticity by 15%, whereas bending

strength increased by 37% [21]. Peigney et al studied hot pressing of MgAl20 4 -CNT

composite with improper CNT dispersion and reinforcement effect was not to the order

that was expected out of the system [31]. Ning et al stressed on the requirement of

improvement in CNT dispersion to enhance the strengthening by CNTs [28].

Mechanical aspects of load transfer at CNT-matrix interface have been relatively

poorly studied in these studies without detailed experimental evidence. Computational

tools have been utilized in grasping a better idea of interfacial mechanism in

CNT/ceramic system [17, 147, 165, 181-183]. Table 2.9 is extracted from Table 2.8 as a

subset presenting details of investigations on some of the CNT- ceramic composite

system. Table 2.9 explains the processes involving high temperature sintering

consolidation of various ceramic nanocomposites. Different degree of strengthening and

fracture toughening were elicited such as poor cohesion between matrix and CNTs,

straightening of CNTs and improved CNT dispersion. Since the direct attention is given

to the A120 3-CNT nanocomposites in the current work, detailed review on this system

follows in the consequent section.

2.6. Aluminum Oxide-CNT Nanocomposite

Aluminum oxide-CNT nanocomposites for improved fracture toughness have

been the focus of recent investigations [31, 37, 184]. Hot pressing, spark plasma
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Table 2.8: Evolution and development of CNT-reinforced ceramics by various processing techniques

Jul. Oct. Aug. Aug. May Dec 2002 Feb. May Oct Dec Feb. Jul. e.20 Jam. Mar. Jl205 Oct Jn 20 Mar. 2006 Ag 06 Jn1998 1999 2000 2001 2002 _____ 2003 2003 2003 2003 2004 2004 200 200 uL00 2005 J2.206Ag.206 7n
Ma Peigney, Siege 1ni 1671 Fan Maensin
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____ 26] J~1. RPI(l6] 137]. HnayY(10 hn
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extrusion FAO 3 China

_____ 
ne0 ___ ____ ___ 
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sintering, sol-gel synthesis, surfactant assisted processing, Catalytic CVD, hot

isostatic pressing, molecular level mixing, spray pyrolysis, high temperature

extrusion, liquid precursor spraying, colloidal processing, etc, have been used to

fabricate A12O 3-CNT nanocomposite [16, 17, 37, 128, 154, 155, 166-168, 171, 172,

177, 178, 180]. Siegel et al were the pioneers in processing A12O 3-CNT

nanocomposite and utilized hot pressing as consolidation technique [16].

Improvement of upto 24% in fracture toughness was achieved in A12O 3-CNT

nanocomposite [16]. Zhan et al. adopted spark plasma sintering and evinced

tremendous improvement in the electrical conductivity (from 1012 to 1050 S/m) and

fracture toughness (by three times) of A12O 3-CNT nanocomposite [185]. Wang et al

adopted the similar methodology as that of Zhan et al., but did not observe the

similar enhancement in fracture toughness [172]. Damage tolerance of A12 0 3-CNT

nanocomposite led to absence of Vicker indentation cracks [172]. Disparity of

results were attributed to dissimilar densities and residual compressive stresses in

the A12O 3-CNT nanocomposite [186]. Mo et al observed toughening of A12 0 3-CNT

nanocomposite by crack bridging [176]. An outlook and description of A12O 3-CNT

nanocomposite by various researchers is presented in Table 2.10.

Effort of CNT dispersion by colloidal processing and consolidation by hot

pressing was studied by Sun et al [11]. CNT pullout was observed in the fractured

surface of the A12O 3-CNT composite, Fig. 2.22. Hot pressed A12 0 3-CNT

nanocomposite displayed 10% improvement (from 496 to 554 MPa) in the bend
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Table 2.9: Description of ceramic-CNT nanocomposites research

Peigney Balazsi Peigney Ning
(Univsite Paul-Sabatier, (Hungarian Academy of Sciences, (Univsite Paul- (Chinese Academy of Sciences,

France) [91 Hungary) [211 France) 131 China) [281

Ceramic Fe- A12 0 3  Si3N4 90%- A120 3 4%-Y 20 3-6 % Mg A120 4  SiO2

Arc Discharge (SWNT + catalytic decomposition SWNT (CCVD):
CNT MWNT) 1.5-15 nm. Mostly 2-3 of acetylene on aluminum oxide Catayltic pyrolysis of hydrocarbon

walls CNT (Grown in-situ) supported Co/Fe catalyst In-situ

Mixing! Ball-milled in ethanol (several hours), CNT dispersed in alcohol, +
n Hot Pressing (1475C) in vacuum B l tanocaser Hot Pressing ultrasonification. Gel was washed

Method (Thermal treatment optimization) Pressing: 220 MPa, Sinter 1700 C (1475°C) dried and calcined (500°C). Sinter
(1300°C, 25 MPa) in N2 atmosphere

Measurement Surface Area to calculate CNT Modulus of Elasticity, Bending conductivity Surfactants role in aiding CNT/Si0 2
content Strength studies composite fabrication

Fracture 1.8xl.8xl6 mm specimen Not done Not done 3x4x35 mm
Toughness (Sample: 3.5x5x50 mm) 5 vol% CNT + Surf. 146 % impr.

Deterioration of carbon fibers (ref. continuous
Sample) was observed 15-37% network of CNT Better dispersion of CNT has more

1050°C, 6 min thermal treatment improvement in mech between oxide interfaces- can strongly absorb crack
Key Results found optimum cohesion Preenten. properties. grains energy

between CNT and matrix is poor. temperature sute dis ppearance of Straightening of -enhanced bending strength and

MWNTCNT before fracture toughness
fracture

Quality and Quantity defined by Better to shorten sintering time and Increased electrical How interface acts as booster
Other author for defining CNT pressure. conductiity with interface chemistry: future

45



Table 2.10: Description of A12 0 3 -CNT nanocomposites research

Amiya Siegel Padture, Tanaka Mo
(UC Davis) [1861 (RPI, New York) [16] (U.Connecticut, CT) (KAIST, Korea) [176](NIMS, Japan) [172]

A1,0 3 Powder / (80%a + 2 0%y) A12O 3  Baikowski Intl (80%a + 2 0%y)
Vendor / 300 nm (4Onm Crystallite) and Nanophase Tech (39 nm 30m( m Al-tri-sec-butoxide

Morphology 20 nm: Irregular average diameter) 300 nm (4Onm Crystallite) and 20
nm: Irregular

SWNT/ Vendor Carbon Nanotechnology MWNT: Electric Discharge Carbon Nanotechnology (Same MWNT:10-30 nm; 10-50pm
(HIPco process) method/ Oxidation -640°C as Zhan) CVD:aluminum oxide supported

Ethanol + ultrasonic CNT dispersed in Ethanol + Aluminum
Mixing/ Ethanol + ultrasonic agitation g Methanol + ultrasonic agitation / oxide sol (Yolda's Process) Hydrolysis

Processing Method Ball Milling (ZrO2 ball/ 24h)/ agitation, dried and crushed! Ball Milling (ZrO2 ball/ 24h)/ and Peptization of Al-hydroxide
SPS Pressed at T: 1300'C, SPS (AIOOH). SPS (1650°C, 5min); sintered

l h, 60 MPa) at 1000C, 6h
Electrical Al 20 3: 10 ~'0 - 10- 10 vol. % Al20 3 + 4 vol. % CNT A1203: 3.898 g/cc Drying 350°C, 6h; calcination 1250°C,Coductivity gc

(S/m)/Density SWNT: 1510 S/m : Best Wear Resistance 10 vol. % SWNT: 3.568 g/cc lh

(g/cc)

Strength/Fr. A1203 :3.33 A1203 : 3.4 A1203 : 3.22 A1203: 1.0 (Normalized)
Tough. (MPa m"2 ) 10 vol % SWNT: 9.7 10 vol% MWNT: 4.2 (5 kg) 10 vol.% SWNT: 3.32 1.5 vol% MWNT : 1.1

No Vicker cracking 24% Increase in Fr.
Highest Indentation toughness Toughness (A12O 3 + 10 vol -Enhanced contact damage toughening of CNT reinforced aluminum

Key Results at A12O 3 / 10 vol. % CNT % MWNT) resistance oxide
Significant inc. in Electrical Damage delocalization (well crack bridging effect of CNT

conductivity dispersed MWNT)

Other Did not present toughening No discussion on interfacial Clear explanation for the result is Does not includes discussion on the
mechanism properties missing bonding of CNT with matrix
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strength [11]. Only marginal improvement from 3.9 to 4.0 MPa m1"2 was observed in the

fracture toughness of the nanocomposite [11]. Marginal improvement in the toughness is

attributed to damage of CNTs at high temperature processing as intimated by Peigney et

al [9]. In addition, low relative density (- 85-95 %) possibly reduced the facture

toughness of hot-pressed nanocomposites.

High temperature extrusion (1500 0 C at 43 MPa) elicited retention of undamaged

CNTs in the CNT-Fe-A120 3 and CNT-Fe/Co-MgAl 2O 4 composite, respectively (Fig.

2.23a and b) [9]. This effort was directed for adjusting the electrical conductivity value in

the composite [9]. Higher electrical conductivity (~ 20 S/m) was observed along

extrusion direction, whereas it dropped to 0.6 S/m along transverse direction. Alignment

of CNTs was responsible towards imparting such a difference in the electrical

conductivity [9]. Presence of CNTs also assisted in restricting grain growth and serving

as lubricating agent during hot extrusion. No mechanical property data was discussed in

the paper, but retention of undamaged CNTs and CNT alignment via extrusion insinuates

possible anisotropic property enhancement [9].

With many publications in processing nanocrystalline aluminum oxide, Zhan et

al, and Duan et al demonstrated improved fracture toughness, of upto three times than

that of aluminum oxide, using spark plasma sintering consolidation of CNT-A120 3

composite, Fig 2.24 [125, 166, 171, 186-191]. However, the primary interest of Zhan et
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Fig. 2.22: SEM of the fractured surface of A120 3-CNT composite sintered at 1450 0C

showing CNT pullout [11].

al was also concentrated on enhancing electrical properties using CNTs in the aluminum

oxide matrix [166]. Electrical conductivity enhancement from 1010 S/m to 3345 S/m was

observed in 15 vol. % CNT-A120 3 nanocomposite. This conductivity increase was

because of CNT addition, and formation of CNT-ropes along grain boundaries creating

network of electrically conductive paths [166]. Dispersion of CNTs along A12 0 3 grains is

shown in Fig. 2.25 [166]. Later, Wang et al repeated the methodology of the Zhan et al

and showed that toughness of CNT-A120 3 matrix was not improved [172]. The
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Fig. 2.23: SEM images of fracture profiles of the CNT--Fe-A12O3 (a) and CNT-Fe/Co-

MgA1204 (b) composites prepared by extrusion at 1500°C. Note the alignment of the

CNTs [9].
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discrepancy in data was because Zhan et al had used indentation methods to calculate

fracture toughness, whereas the A12 0 3-CNT composite shows contact-damage resistance,

which was tracked through Hertzian indentation [172]. This unusual mechanical behavior

was attributed to shear-deformable nature of CNTs in redistributing stress field upon

indentation. Also, different densification achieved by Zhan (> 99%) and Wang (~ 95%)

induced discrepancy [185]. Generation of crack was limited by high porosity in Wang's

" (- -SWCNA1203

---- MWCN filled A1203
[Siegel et al.]

_- 8 -- i-situ SW(N-Fe-A1203
~[Pei ney= et al.]

-- In-situ SWCN-Fe-A1203
[Flahaut et al.]

-J

()
0 5 10 15 20 25

Carbon nanotubes volume content (%)

Fig. 2.24: Fracture toughness versus carbon nanotube volume content in aluminum oxide

based composites as reported in literature[166]. (SWCNT: Single walled CNT).
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Fig. 2.25: TEM Micrographs of 5.7 vol.% SWCN/ A1203 nanocomposite. (a) Bright-field

TEM image and (b) high-resolution TEM image of specimens in the fully dense 5.7

vol.% SWCN/A1203 nanocomposite. The arrows indicate the SWCN phase [166].

(SWCNT: Single walled CNT).
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work, since indentation initiated collapse of crack before the induction of plastic

deformation in the material. On the other hand, Vicker indentation cracks were clearly

observed in Zhan's paper. Moreover, high residual compressive stress (2.0 GPa) in the

alumina matrix, crack bridging, fiber pull-out and crack deflection were responisible for

improved fracture toughness of spark plasma sintered CNT-A120 3 nanocomposite.

Surface assisted processing of CNTs followed by hot pressing (25 MPa at 1300

OC) helped increasing the bending strength (from 51.5 to 97.0 MPa) and fracture

toughness (from 1.0 to 2.46 MPa m 2 ) of SiO 2 ceramic [28]. CVD processing of CNT-

A120 3 composite was elucidated by Xia et al along with computational modeling of CNT-

A120 3 interface demonstrating CNT pullout, Fig. 2.26a, and crack deflection at CNT-

A120 3 interface, Fig. 2.26b [17, 178]. Defects, residual stresses, alignment of crack path,

and deflection of CNTs were stressed upon by researchers towards estimating the fracture

toughness of the composite [17].

High aspect ratio of CNT diameter caused severe agglomeration. Hence a new

technique for CNT dispersion was required. Catalytic CVD method was adopted by Rul

et al for dispersing CNTs in MgAl 20 4 matrix [29]. Insitu CCVD synthesis followed by

hot pressing at 1300 0C (43 MPa in vacuum of 10-4 torr) retained the CNT distribution in

the nanocomposite. CNTs inhibited grain growth and improved the electrical

conductivity by seven orders of magnitude (from 10b0 to 4 x 10- S/cm) [29]. Variety of
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(a)

(b)
Fig. 2.26: a) SEM photograph of a fracture surface of the 20 pm-thick sample

demonstrating CNT pullout, longitudinal delamination, and residual holes; (b) crack

deflection at CNT along interface [17].
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samples were produced, out of which the nomenclature of the samples CMH, C5, C10,

CM2, and CM12 is presented in Table 2.11 A very well distributed network of CNTs was

observed in the composite powders. Increased CNT content resulted restricted full

densification, which was attributed to grain growth inhibition by CNTs. Fine grained

matrix and widely interconnected CNT network was depicted in the fractured surface of

nanocomposite. Fractured surface illustrated straightening of CNTs before breaking

during the fracture, Fig. 2.27, which might show enhanced fracture toughness because of

CNT pullout and CNT bridging [29].

Spray pyrolysis emerged as in-situ technique for fabrication of aluminum oxide-

CNT composites [179]. Here crack deflection and nanotube debonding served as site for

fracture energy dissipation [179]. Molecular level mixing utilized functionalization of

CNTs reacting with metal ions in solution [177]. Hardness of the A12 0 3 -CNT

nanocomposite improved from 1500 Hv to 1700 Hv. Addition and dispersion of

functionalized CNTs was responsible for strengthening and toughening enhancement of

upto 25% and 15% respectively for CNT-A120 3 nanocomposite [177]. CNT pullout and

CNT bridging was also observed in the fractured surface with most of CNTs residing at

grain boundary. Hence, CNT reinforced the matrix via load sharing and bridging

mechanism [177]. Chemical bonding was observed between CNT and amorphous A120 3

matrix, which imparted such increase in mechanical properties.
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Table 2.11: Nomenclature for powders and hot-pressed MgAl2O 4 samples

TCo Mo Density Conductivity
Sample (wt.%) (wt.%) Preparation Mode cone %) (S/cm)

(wt.% ()
CMH 20 10 Powder (Urea) 0 97.3 1010

C5 1 0 Powder (Urea) 0.55 100 0.0072

ClO 20 0 Gelcasting Foam (Urea) 3.70 92.7 0.530

CM2 20 10 Powder (Urea) 5.10 83.8 1.00

CM12 10 5 Gelcasting Foam (with 12.20 68.0 8.53
Citric Acid)

Sol-gel technique was utilized to counteract the van der Waals attractive force

between CNTs in the gel network. Sol-gel techniques depicted homogeneous dispersion

in the aluminum oxide matrix without agglomeration, Fig. 2.28 [176]. The process was

followed by spark plasma sintering to consolidate the A12O 3-CNT composite. Strong

CNT bonding with matrix as CNT pullout was observed in the fractured surface

indicating significant stress transfer from matrix to CNT. Enhanced density (> 99.5 %),

significant load transfer between matrix to CNTs, and bridging effect of CNTs during

crack propagation were reasoned for enhanced fracture toughness (by 10% for 1.5 vol. %

CNT) of the A12O 3-CNT nanocomposite [176].
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Fig. 2.27: High resolution SEM images of the fracture surface of the hot-pressed

composites: (a) Sample without CNT showing mainly transgranular fracture. (b)-(e)

Samples C5, ClO, CM2 and CM5, respectively, showing CNT emerging out of the

surface fracture. Cl 0 and CM2 show restricted grain-growth effect (and intergranular

fracture). (f) Sample CM 12 showing many CNT emerging out of large pores and

straightened before breaking during the fracture [29].
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Fig. 2.28: The micrographs of carbon nanotube reinforced aluminum oxide composite

powders. (a) The optical micrographs of dried gel and (b) the SEM micrographs of

calcinated carbon nanotube/aluminum oxide composite powders [176].
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2.7. What's Missing and What's the Challenge?

A review of the A12 0 3-CNT nanocomposite in the previous section leads to

following conclusions:

. Improvement in the fracture toughness has been achieved by addition of

CNTs to the A12 0 3 matrix.

" Uniform dispersion of CNTs in the A120 3 matrix still remains a challenge.

" A120 3-CNT nanocomposite processing/consolidation techniques are

limited to solid state processing (e.g. HIP, sintering, spark plasma

sintering, and extrusion).

* The interface between A120 3/CNT is relatively less understood. A few

works are limited to computational studies without sufficient experimental

evidence.

Based on observations and limitations from other researchers' work, the present

work addresses those specific challenges by synthesizing A120 3-CNT nanocomposite

coating by plasma spraying. In addition to the above listed challenges, this work also

focus on the specific challenges which are unique to plasma spraying of A120 3-CNT

system. Some of these challenges are listed below:

" Improved CNT Dispersion: Achieving CNT dispersion in the powder makes

powder treatment becomes a necessity in exercising them as required feedstock.
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" Dispersed CNTs allow interfacial interactions and load-transfers towards attaining

best properties in ceramic nanocomposites. Consequently, layered deposition

typical in plasma spraying will further improve CNT dispersion in the processed

coating. Hence plasma spraying of pretreated (spray-dried) powder feedstock is

incorporated in the current research to obtain coatings with improved fracture

toughness.

" Bimodal Matrix Structure: Presence of second phases act as strengthening

medium, thereby bimodal phase/grain generation can further enhance the fracture

toughness of the nanocomposite. Consequently, controlling the bimodal

microstructure becomes an immense challenge to overcome. Bimodal grain/phase

can be obtained by imminent control of plasma processing parameters to result

surface melting followed by resolidification and consolidation of core by solid

state sintering. Further, extreme temperature (> 10000 K) and impact (- 1-3 Mach

velocity) associated with the plasma spraying creates an additional challenge of

retaining CNTs in the processed coating [ 1, 39-41 ].

" A12 0 3/CNT interface: Most of the ceramic-CNT processes involve "solid state

processing" wherein aluminum oxide and CNT are both in solid state. But plasma

spraying involves alumina in molten state, so wetting between alumina and CNT

becomes highly important. This very novel concept of wettability of A12 0 3/CNT
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interface is to be conceptualized, but currently there is no work dictating the

interfacial mechanism occurring at the AlO 3 -CNT interface. And limited

research on the aluminum oxide-graphite interface elicits non-wetting of the

interface [90, 192-197]. Hence aspects like wettability, interfacial bonding, load

transfer mechanism, etc. remain unanswered. Herein, ab-initio computer modeling

of A12O 3-CNT interface has been incorporated towards eliciting interactive

response at the A12 0 3/CNT interface.

Figure 2.29 summarizes the A12O 3/CNT nanocomposite research efforts

by various groups, their conclusions and remaining challenges.
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Mo Seigel Balasi a
[173]

[171] [159] [146,164,169]

Microstructure Fracture Toughening Others:

- Nanostructured - CNT Pullout - Mechanical/

- Bimodal Grains - Crack Bridging Electrical
- CNT Reinforcement - Crack Deflection - CNT Modification

-
What's Missing ... ????

1. Improved CNT dispersion in the processed -

nanocomposite

2. Creation of bimodal microstructure via controlled

plasma processing

3. Wettability between A120 3 and CNT and its role in
creating interfaces

Conquering the Challenges

1. Pretreatment of powder feedstock by spray drying and consequent layered

buildup of coatings to impart uniform CNT dispersion.

2. Monitoring of plasma parameters via inflight particle diagnostics.

3. Developing theoretical model in estimating surface tension and capillarity

(to evaluate wettability) associated with observed microstructure.

4. Computational modeling to elicit A120 3/CNT interface.

5. Estimation of CNT dispersion via modulus mapping.

Fig. 2.29: A bird's view of A120 3/CNT nanocomposite research efforts by various

groups, their conclusions and remaining challenges.
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3. EXPERIMENTAL PROCEDURE

The aim of the current work is to fabricate A12 0 3-CNT nanocomposite coating via

plasma spraying with uniform dispersion of CNTs in the matrix for enhanced fracture

toughness. Various methodologies of powder treatment are adopted for dispersion of

CNTs in the powder feedstock.

3.1. Pretreatment of Powder Feedstock

Since nano size of the powders tend to clog the nozzle during plasma spraying,

as-received nano A120 3 and CNTs have been pretreated to result powder feedstock ideal

for plasma spraying. Powder feedstock treatments prior to plasma spraying is explained

in this section.

3.1.1. As Received Al20 3 Powder and CNTs

Nano a-A120 3 powder (99.8 % pure, 150 nm particle size, and 40 nm crystallite

size) was obtained from Inframat Corporation, Farmington, CT. Smooth and irregular

faceted morphology of the as-received A120 3 powder is presented in Fig. 3.1. Owing to

increased surface area of the faceted nano particles, increased friction causes clogging of

the nozzle during plasma spraying. Hence to reduce the clogging tendency of fine

particles, powder treatment becomes necessary to reduce the contact area by

consolidating them as spherical agglomerates.

Multiwall carbon nanotubes (95%+ purity, OD 40-70 nm, 0.5-2.0 pm in length)

were obtained from Nanostructured and Amorphous Materials Inc., Houston, TX. CNT
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diameter of about 70 nm is observed in the TEM image, Fig. 3.2, with a wall thickness of

-25-30 nm. In order to tap superior mechanical properties of CNTs, it becomes

imperative to uniformly disperse CNTs in the matrix. But strong agglomerating tendency

of CNTs require special treatments such as functionalization, molecular level dispersion,

ultrasonication etc.

Fig. 3.1: As-received A120 3 powder particles.

3.1.2. Spray Drying of As-received A 2 3 Powder (A-SD):

Commercial spray drying process was utilized to obtain spherical agglomerates of

A120 3 particles (or mixture of A12 0 3 and CNTs). Nanosize powder particles are

dispersed in an aqueous organic binder to form slurry. The slurry is passed through an

atomizing orifice, which mechanically binds the fine particles as spherical agglomerates.

Resulting spherical agglomerates cause reduced interparticle friction, improved
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flowability and avoid clogging of powders in the nozzle during plasma spraying. Sieved

spherical agglomerates in the size range of 15-60 pm were obtained that are ideal for

plasma spraying. Three powder treatment methodologies have been adopted to prepare

the powder feedstock for consequent plasma spraying.

Fig. 3.2: TEM of Multiwalled CNTs.

Pure a-A1203 (99.8%) was spray dried to obtain spherical agglomerates for

powder feedstock (referred to as A-SD). Fig. 3.3a shows the typical size range of 15-60

m spherical agglomerates, and an enlarged image, Fig. 3.3b elicits the mechanically

bounded porous cake of fine powders.
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Fig. 3.3: a) Spray Dried A120 3 powder, and b) Enlarged SEM image showing spray-

dried agglomerated mass of fine powders.

3.1.3. Blending of Spray Dried Al1Q 3 with 4 wt.% CNT (A4C-B):

Spray dried A120 3 agglomerates were blended with 4 wt.% CNT in ajar mill (US

Stoneware, East Palestine, OH) for 24 hrs to obtain dispersion of CNTs in A120 3 matrix

(referred to as A4C-B powder). Schematic and SEM morphology of as-received A120 3,

spray-dried A120 3 agglomerate and resulting blended AC-B powder has been shown in

Fig. 3.4. CNTs are observed to disperse onto (i) surface of agglomerate spray dried A120 3

powder and (ii) dome-cavity regions of spray dried powder.

3.1.4. Spray Drying of Composite A12Q3 and CNT:

Further refinement of CNT dispersion to what obtained in A4C-B powder can be

achieved by spray drying of composite A120 3 and CNT powder in a single step. Two

powder compositions, namely A120 3- with 4 wt. % CNT and 8 wt. % CNT were used for

composite spray drying:
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Nano A120 3  Spray Dried A1203

/r

spray 24 h Blending rte
drying with CNTs

Dome Cavity CNTs

i Dome Cavity

CNTs
Fig. 3.4: Process schematic and SEM

images of a) nano A120 3, b) spray dried

A120 3 (A-SD) agglomerates, and c) spray

dried A120 3 blended with 4 wt. % CNT for

24 h to result nanocomposite A4C-B

powder feedstock.

A OQ powder and 4 wt. % CNTs (A4C-SD):

Spray drying of composite A120 3 powder and 4 wt.% CNTs (referred to as A4C-

SD) produced spherical agglomerates of 15-60 Om, Fig. 3.5a. In contrast to surface

distribution of blended powder (Fig. 3.4), CNTs are also dispersed both at the powder
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agglomerate surface and the inside of the powder. No agglomeration of CNTs was

observed along the powder surface, Fig. 3.5b. CNTs were also distributed uniformly

inside the powder agglomerate, as seen in the fractured powder Fig. 3.5c.

Alz4 powder and 8 wt. % CNTs (A8C-SD):

Spray dried composite A120 3 and 8 wt.% CNTs (A8C-SD) powder agglomerates show

spherical morphology with size range of 15-60 Om, Fig. 3.6. Alike A4C-SD powder,

uniform CNT dispersion is achieved in the powder agglomerate. Increase in the CNT

content of the spray dried powder (from 4 wt. % to 8 wt. %) is an extra parameter to

analyze effect of CNT content in improving the fracture toughness of the plasma sprayed

structure (apart from its different dispersion powder treatment when compared to A4C-B

powder). Fracture surface of A8C-SD powder, Fig. 3.7, illustrates the non-agglomeration

tendency of the spray-dried powder inside the powder agglomerate. This becomes

significant since CNTs are dispersed non-preferentially everywhere uniformly in the

powder agglomerate.

3.2. Plasma Spraying of A120 3-CNT Nanocomposite Coating

Atmospheric plasma spraying, Fig. 3.8, of various powders is done using SG

100* plasma gun (Praxair Surface Technologies, Indianapolis, IN). Overall features of

plasma spraying are listed in Table 3.1. Plasma processing parameters were optimized in

terms of coating microstructure (partially melted, fully melted, and porosity), CNT

distribution and fracture toughness. A representative set of plasma processing parameters

is listed in Table 3.2. Consequently, A-SD, A4C-B, A4C-SD, A8C-SD powders were
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Fig. 3.5: SEM image of A4C-SD powder showing a) powder agglomerates, b)

dispersion of individual CNTs, and c) fractured surface showing inside of the powder.
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Fig. 3.6: Spray dried A8C-SD powder showing a) spherical agglomerates, and b) uniform

CNT dispersion on surface.
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Fig. 3.7: Fracture surface of A8C-SD powder indicating uniform CNT dispersion in the

core of the powder agglomerate.

Powder feeder
Tungsten
cathode inert

gas

+ - +Arc

Copper anode Ps G
lasma Plume

Nanocomposite Ceramic

at High Velocity

AISI 1020 Steel Substrate

Fig. 3.8: Schematic of plasma spraying process.
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Table 3.1: Features of plasma spraying

Features of Plasma Spraying Description of the Feature

Plasma arc with gun voltage and current 35 V
Heat__ sourceand 800 A, respectively

Spray gun SG-100* plasma gun, Praxair Surface
Technologies, Indianapolis, IN

Particle velocity 75-750 m/s [198-201]
Temperature 10,000-15,000 K [198, 200-202]

Primary gas: Ar
Gases used Secondary gas: He

Carrier gas: Ar

Table 3.2: Representative processing parameters for plasma spraying

Volts Current Power Feed Primary Secondary arrier
Plasma Spraying Rate Gas Gas(V) (Amp) (kW) Rt rm l Gas (slm*) Slm*s)(rpm) (sm)(l

A1203 with CNT 3-06-7018.5- 2.5- Ar HeAr
A2oa nT 35-40 600-780 .323 30 (32.1 He (59.5) (19.8-

21.7)

*slm: standard liters per minute

plasma sprayed onto AISI 1020 steel substrate (100 x 20 x 3 mm 3 coupon) for detailed

evaluation. A typical plasma sprayed coating is presented in Fig. 3.9.

Control of plasma parameters can be attained by inflight monitoring of powder

particles in plasma plume using AccuraSpray (Tecnar Automation Ltde, QC, Canada),

Fig. 3.10. This allows extra leverage in understanding the relation of plasma parameters

responsible for generating resulting coating and microstructure. Optical fiber measures

the particle velocity and temperature by controlled distance traveled by particle and the

differential wavelength emission respectively. Particle velocity is indicative of degree of

flattening of particles whereas particle temperature suggests its heated/melted state.
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Degree of melting and flattening of particles directly constitute the microstructure of the

coating that affects its properties.

Fig. 3.9: Typical plasma sprayed coating showing uniform coating thickness.

A~C

Fig. 3.10: AccuraSpray: Inflight particle diagnostic sensor: (a) Controller with

display monitor, (b) the sensor head, and (c) a screenshot showing temperature,

velocity and plume profile.
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The particle velocity is measured based on a time of flight technique. The sensor

head images two optical fibers in space. As the particles pass through these images

incandescent light is gathered and transmitted to photo multiplier tubes that generate an

electronic pulse that corresponds to the particle passing through the fiber images, Fig.

3.11. The figure below shows a representation of the two pulses generated as the particle

passes in front of the first and second fiber. A trigger level is set on the slope of each

pulse to start and stop a timing clock. The velocity, v, is given by,

v = D Equation 3.1
t2 - ti

where D is the physical spacing of the two fibers imaged at the measurement volume and

t2-t is the measured time it takes for the particle to fly past the two fibers.

Voltage

Trigger------- -- -----

I ITime

ti t2

Fig. 3.11: Detection of particle velocity from the time traveled within fixed distance

between two optical fibers.
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The basic premise behind all radiation thermometry is Plank's Law, which

describes the emissive power of a radiating body as a function of wavelength, emissivity

and temperature. Dual-wavelength (ratio or two color) pyrometry involves the

measurement of the spectral energy in two different wavelength bands. Using Wien's

approximation to Planck's law the ratio of radiant energy, R, in two different wavelength

bands, k1 and k2, is given by:

I-R- (2'7 R exp [K ]Equation 3.2
12A2 C( A2,1) A2

where T is the surface temperature of the radiating body, C2 is a constant (= 1.4388

cm.K), and E(X,T) is the spectral emissivity. AccuraSpray utilizes a CCD camera in

capturing the plume intensity of plasma plume.

And solving for T gives:

In !$2,T j2 '(12)

1 -T '(2,) Equation 3.3
T 1 1

C2 - ~ -

Temperature and velocity of the powder particles is major factor in deciding the

development of microstructure in a coating. Density, degree of melting, cooling rate,

degree of impact, etc are deciding factors in deposition of a coating. Hence access to the

inflight particle diagnostic data is beneficial in relating the microstructure in terms of

experienced thermal history.
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3.3. Microstructural and Phase Characterization

3.3.1. Optical Microscopy and Quantitative Analysis of CNT Dispersion

Quantitative and morphological analysis of plasma sprayed coatings is performed

using an optical microscope (Versamet 3, Buehler Ltd, IL, USA) with an attached CCD

camera (Leica DFC 320). CNT dispersion in the powder feedstock was measured using

Image-Pro ® Plus, Version 5.1 imaging software (2004 Media Cybernetics Inc.) on SEM

images. Development of microstructures in terms of fully melted, partially melted and

porosity in the plasma sprayed coatings were quantified using imaging software. Partially

melted region is recognized with solid state sintering of the particles showing

necking/sintering at the particle interface. Fully melted region is characterized by melting

and resolidification of the powder particles. Porosity is the region of voids (inter-splat,

intra-splat or unfilled regions). Quantification of such features helps in assimilating the

role of regions in enhancing the fracture toughness and optimizing the plasma processing

parameters.

SEM images were used in analyzing CNT dispersion through Image-Pro imaging

software. Quantitative image analysis illuminates the nature of CNT dispersion in the

various treated powders. Angular alignment of CNTs in the dome cavity or surface-

dispersion of CNTs in the powder agglomerate allows significant inference to the powder

behavior during plasma spraying and consequent coating microstructure. Moreover,

uniform CNT dispersion also becomes obvious through the quantitative analysis

depicting uniform spreading of CNTs homogeneously in the matrix.

75



3.3.2. Phase Analysis in Powder Feedstock and Plasma Sprayed Coatings

Phase analysis of the powders and coatings was carried out using a Siemens 500D

X-ray Diffractometer (XRD) with CuK, radiation (of 1.54 A) operating at 40 kV and 20

mA. A graphic software DIFFRACPI" EVA (Version Rev 0, Bruker axs, Madison, WI,

USA) was used to analyze the XRD spectra. Crystallite size (t) measurement was carried

out using Scherrer equation, equation 3.4. Standard NIST Si powder sample was

employed to determine the instrumental broadening and the calibration of the XRD

patterns of powder samples using Gaussian profile.

_ .9A
t = Equation 3.4

Bcos0

where X is the incident wavelength, and 0 is the Bragg angle, and

B= Bz - B2 , where Bm and BS are full width half maximum (FWHM) broadening of

specimen and standard sample respectively.

3.3.3. Confirmation of CNT Retention by Raman Spectroscopy

Micro-Raman spectroscopy of the powder feedstock and plasma sprayed

nanocomposites was carried out to validate the carbon nanotube structure. Ti-sapphire

crystal target with a laser wavelength of 785 nm was used for this purpose. The laser was

produced using a laser source from Spectra Physics (Model 3900S, California, USA) and

the detector was from Kaiser Optical Systems, Inc. (Michigan, USA).
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3.3.4. Microstructural Characterization of A1,O 3 -CNT Nanocomposite

Coating morphology and CNT dispersion in the powders and plasma sprayed

deposits was investigated using FESEM JEOL JSM 6330 F scanning electron

microscope. Samples were metallographically polished to 0.5 m using diamond slurry

for preparing sample surface. No sample preparation was done for imaging powders and

fractured coating surfaces. These were consequently gold coated (using Pelco SC-7 Auto

Gold Sputter coater) for 30 seconds to allow earthing of electronic charge. SEM was

operated at 15 kV and 12 A for microstructure observation. Elemental analysis of the

composite was determined by performing energy dispersive spectroscopy (EDS)

integrated with the FESEM.

Transmission electron microscope (TEM) was used to analyze the CNT

distribution and observe A12 0 3-CNT interface in the plasma sprayed coatings. Two

different types of TEMs were used in characterizing the coatings, viz. (i) Philips PW

6061 TEM system (model CM 200, Eindhoven, Netherlands), and (ii) FEI Technai F30

high-resolution transmission electron microscope operated at 300 kV. Samples for TEM

observation were fabricated by two methods: (i) crushing and dispersion in ethanol

followed by ultrasonification (Branson 2510, Danbury, CT), and (ii) metallographic

thinning, dimpling (Gatan, Inc. Model 656 Mk3, California, USA) and ion milling (Gatan

Precision Ion Polishing, Model 691, California, USA).
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3.4. Mechanical Testing

3.4.1. Vicker Indentation Toughness

Zhongguo HXD-100 TMC Shanghai Taiming Optical Instruments microhardness

tester (200g load and 15s dwell time) was used for estimating hardness and fracture

toughness of the plasma sprayed samples using indentation technique. Student t-test was

utilized, with better than 95 % confidence level, towards comparing the statistical

difference between the fracture toughness values for eight indentations on each sample.

Fracture toughness was calculated from the Anti's semi-empirical relationship based on

radial crack generation during Vicker indentation [203].

3.4.2. Nanoindentation

The elastic modulus values of the as-sprayed nanocomposites in modulus

mapping mode were evaluated by the nanoindentation technique. Indentation experiments

were conducted using Hysitron Tribolndenter® (Hystrion Inc., Minneapolis, MN).

Three-sided Berkovich diamond indenter was used for indentation. The load and

displacement data obtained from the tests were analyzed using the methods reported by

Oliver and Pharr [204]. The initial calibration of the instrument was done using a

standard aluminum and fused silica sample provided by Hysitron.

Modulus mapping is performed using dynamic mechanical analysis approach of

applying cyclic stress in compression. Quasi-static load is applied to the probe tip with

smaller dynamic load (at a predescribed frequency (200 Hz). Dynamic load is then

analyzed to measure amplitude and phase shift of the original signal. The equation of

motion for sinusoidal force (Fo) is given as:
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F sin(wt) = mxi + Cx + /x Equation 3.5

where m is the mass of sensor, k is the stiffness, and C is the damping of the

system. And displacement response is given as:

x = X sin(cot - 0) Equation 3.6

Solution to the differential equations are:

X = F , Equation 3.7

(k-mw2) 2 +(Cw) 2

and

0 = tan' 2 Equation 3.8
k -mw

rearranging the equations, k and C can be calculates by:

k= F 1 + mw 2  Equation 3.9
X 1+tan 2 O

and

F02

C t 2= -2  1 Equation 3.10
1+ tan2 0

During instrument set up, stiffness, damping and mass of sensor are evaluated by

frequency sweep of sensor in air. Stiffness and damping of the instrument can be directly

subtracted to obtain actual stiffness and damping of the tested sample. Correspondingly,

storage modulus (E') and loss modulus (E") can be calculated as following:

E' = k Equation 3.11
2 A7
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E" = Equation 3.12
2A

where Ac is contact area, which is dependent on the contact depth. Contact depth

of the indenter is described through tip area function during instrument calibration.

3.5. Ab-initio Molecular Modeling of A120 3-CNT Interface

SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)

1.3 modeling scales A12 0 3-CNT interface was created with 1 x 1 x 1 crystal lattice of

alpha-alumina interfacing 2 x 2 x 2 crystal layers of graphite. Plane wave basis set was

used for the interfacial system, limiting in z-direction and periodicity in x-y direction

with cell size of 4.928 x 4.928 x 26.4114 A3 and a=90°, 0=90, and y=1200. Standard

Kohn Sham self-consistent density functional was utilized with LCAO (Linear

combination of atomic orbitals) basis set in local density approximations. Spin polarized

Ceperly-Adler scheme (Perdew and Zunger) was used for defining Al, O and C exchange

correlation functional. Improved Troullier Martins pseudo potential generation was

employed to describe nonlocal, and normconserving interaction between core and

valence electrons. First principle pseudopotentials were generated from spin polarized

non relativistic ground state components of Kleinman and Bylander projectors. Al was

defined with ground state 3s2 3p' 3d 0 with cutoff 1.86, 2.25 and 3.07 bohrs respectively

[192]. Oxygen was stated as 2s2 2p4 3d 0 4f" with cutoff 1.15, 1.15, 1.15, and 1.15 bohrs

respectively, whereas Carbon was described through 2s 2 2p 2 ground state with cutoff 1.50

and 1.54 bohrs respectively [192, 205].
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Localized spin density (LSD) Hamiltonian was calculated by matrix

diagonalization to generate self-consistent Kohn Sham solution. Conjugate gradient (CG)

method was used for coordinate optimization with limiting force of 0.05 eV/ A or 50

iterations whichever came first. Maximum displacement during CG optimization run was

limited to 0.2 bohr.
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4. RESULTS AND DISCUSSION

Effect of CNT dispersion in enhancing the fracture toughness of Al20 3-CNT

nanocomposite has been conferred to in this section. Role of powder pretreatment and

optimized plasma spraying parameters in retaining and distributing CNTs are elucidated

with underlying consolidation mechanism. Microstructural effect on mechanical property

is undertaken to confirm the fracture toughness enhancement. Wettability studies and

computational modeling is pursued for understanding the interfacial behavior between

A12 0 3 matrix and CNT reinforcement. Subsequent sections enunciate the overall behavior

of plasma sprayed A120 3-CNT nanocomposite interlinking the CNT dispersion with

generated microstructure and toughening mechanisms.

4.1. Powder Treatment of n-A120 3 as Ideal Feedstock for Plasma Spraying

Nano-A120 3 powder was spray dried to result A-SD powder (explained in section

3.1.2). Though the powder particles are agglomerated as spherical cake in the size range

of 15-60 pm, there is no change in the phase of the treated powder particles, and no

chemical reaction occurred during the spray drying. Identity of initial powder particles is

maintained during the spray drying as confirmed by XRD spectrum, Fig. 4.1 and Raman

Spectrum, Fig. 4.2. This powder (A-SD) is used as a feedstock for optimizing the plasma

spraying parameters.

Spray dried aluminum oxide powder is referred to as A-SD from now onwards,

and details of initial particle size, spray drying treatment, and adopted nomenclature are

presented in Table 4.1.

82



XRD Spectrum of As received and Spray
Dried n-A203 powder
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Nano AJ203 Spray Dried n-A203

Fig. 4.1: XRD spectrum of as-received and spray dried n-A120 3 powder indicating no

phase change and chemical reaction.

Raman Spectrum of Nano A1203
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Fig. 4.2: Raman spectrum showing similar peaks in the as-received and spray dried n-

A120 3 powder.

83



Nano scale surfaces are known to be unstable because of their high surface to

volume ratio, and have strong tendency towards agglomeration [206]. During mechanical

blending of the A-SD and CNT powder mixture, agglomeration and settling of CNTs in

the dome cavity of A-SD powder is observed in the scattergram, Fig. 4.3a, via Image Pro

quantitative analysis. Agglomeration of CNTs in the histogram, Fig. 4.3b, endorses the

higher CNT content in the dome cavity when compared to the CNTs adhering at the

surface of the powder agglomerate. Though CNTs are dispersed in A4C-B powder to

some extent, further improvisation of CNT dispersion can have tremendous impact on

improving mechanical properties of the nanocomposite. This is achieved by composite

spray drying of the n-A120 3 and CNT. Laplace equation (of free energy change with

particle radius) clearly elicits the instability of nanoparticles with the decreasing radius of

particles. But, increasing the surface area by contacting two unstable surfaces reduces the

overall energy of system to a lower value. CNTs, when mixed with nano-A120 3 powder

particles (during composite spray drying), reduce the surface charges by physically

attaching to open surfaces[207]. Because of high surface area of nano-A12O 3 particles,

CNTs do not find difference in associating itself with nano-A120 3 [207]. Surface energy

of CNTs range about 0.2 J/m 2, whereas A12 0 3 particles have surface energy of ~ 1.59

J/m 2 [194]. It has been shown that Al-graphite interface can bring down the energy in the

0.02-0.4 J/m 2 range [194]. Nano-A120 3 powder particles thereby aid dispersion of CNTs

in the solid state mixing of nanocomposite powder [208]. Random surface availability

therefore results in the uniform dispersion of CNTs. Distribution of CNTs in the A4C-SD

and A8C-SD powder feedstock as a function of their aspect ratio is presented in Fig. 4.4

and Fig. 4.5 respectively. Figure 4.4 and Fig. 4.5 show non-preferential distribution of
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Table 4.1: Initial powder size, spray drying treatment and adopted nomenclature

Powder Treatment Powder Plasma Sprayed
Initial Powders -Step 1 Treatment Resulting Powder CNT Dispersion Coating

-Step 2 Nomenclature

Spray Drying of A120 3  - (Al A-D A-SD Coating
(agglomerate -15-60 m) 1agglomerate - (A1203)15-60 im)

Blening ithA4C-B
A1203 (150 rm Spray Drying of A120 3  BlendiN (A120 3 -4wt. % CNT Onto surface and A4C-B Coating

particle size) (agglomerate ~15-60 pm) for 24 h agglomerate dome cavity (A120 3 -4 wt. % CNT)
~-15-60 m)

CNTs Spray Drying of A12O 3  A4C-SD (A12 03 -
(Multi walled, OD and 4wt. %CNT Throughout the A4C-SD Coating
40-70 nm, 0.5-2.0 4 wt.% CNTs agglomerate powder (A120 3 -

m long) (agglomerate -15-60 m) - 15-60 jm) agglomerate 4 wt.% CNT)

Spray Drying of A12O 3  A8C-SD (A120 3 - Throughout the A8C-SD Coating
and 8wt. % CNT

8 wt.% CNTs agglomerate powder (A 20 -

(agglomerate -15-60 pm) ~ 15-60 pm) agglomerate 8 wt.% CNT)
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Fig. 4.3: a) Scattergram and representative micrograph describing CNT dispersion

angle with respect to aspect ratio, and b) Histogram of A4C-B powder depicting

agglomeration of CNTs in the dome cavity of the powder agglomerate.
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Fig. 4.4: a) Scattergram and representative micrograph describing CNT dispersion

angle with respect to aspect ratio, and b) Histogram of A4C-SD powder depicting

dispersion angle with respect to the number of CNTs in the powder agglomerate.
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Fig. 4.5: a) Scattergram and representative micrograph describing CNT

dispersion angle with respect to aspect ratio, and b) Histogram of A8C-SD

powder depicting dispersion angle with respect to the number of CNTs in the

powder agglomerate.
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CNTs throughout the powder agglomerate. Visually no bundles/agglomerates of CNTs

were observed in the spray dried powder validating the non-preferred sticking sites for

CNTs. Fractured A4C-SD and A8C-SD powders displayed excellent CNT dispersion in

the core of spray dried agglomerate. Aspect ratio is helpful in understanding the pinning

effect of CNTs, and corresponding dispersion angle suffices the reinforcement in the

subsequent direction.

An initial signature of Raman spectrum was acquired for the powder feedstock,

Fig. 4.6, to be able to compare the retention of CNT structure in the plasma sprayed

Raman Spectrum of Powders

1

0.9 G-peak

0.8 D-peak

c0.7 A8C-SD
0.6

- 0.4

0. A4C-B
-0.2

0.1 A-SD

0
200 400 600 800 1000 1200 1400 1600 1800

Raman Shift (cm 1)

A-SD - A4C-B A4C-SD A8C-SD

Fig. 4.6: Raman spectrum of the initial powder feedstock (before plasma spraying). D and

G peaks correspond to defect and graphitic structure of CNT.
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coatings. D and G peaks correspond to defect and graphitic peaks of CNT [42,178]. The

presence of G peaks in the plasma sprayed coatings will confirm the presence of CNT

structure. Since high temperature and impact associated with plasma spraying might

damage the CNTs during the processing, an initial Raman spectrum assists in realizing

importance of optimized plasma spray parameters in retaining CNTs in the plasma

sprayed coatings.

4.2. Optimization of Plasma Processing Parameters

First step is to optimize the plasma spraying parameters in order to achieve

uniform coating thickness and required microstructure for improved fracture toughness.

Optimized processing of spray dried composite powder was required to result controlled

melting of the surface and solid state sintering of core, Fig. 4.7.

Spray ' Plasma Deposition
drying spray On substrate ,

-. Reltinq and
resolidification

Blend of Agglomerated Partly melted Sohd state
CNT + Matrix composite powder composite powder sinteinng Deposit

Fig. 4.7: Optimized plasma spraying to result surface melting and resolidification and

core consolidation via solid state sintering.
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Surface melting and resolidification results metallurgical consolidation of splats,

whereas solid state sintering of core retains the nanocrystalline nature of the powder

feedstock. Increasing the power-input (from the optimized condition) will increase the

degree of melting and the nanocrystalline nature of the powder may not be retained in the

processed coating. On the other hand reducing the power input will not result proper

consolidation between splats and the integrity of the coating may not be achieved.

Thereby, plasma-processing parameters are optimized in terms of bimodal microstructure

in the matrix and fracture toughness of resultant coatings. Bimodal microstructure is

characterized through fully melted structure (surface melting and resolidification) and

partially melted structure (solid state sintering of the core), Fig. 4.7. Partially melted/solid

state sintered (PM) grains provide ductility by grain shearing, whereas fully melted (FM)

regions provide strength owing to dense structure.

Spray-dried nano-A120 3 (n-A12 0 3 : ASD powder) was used as the starting powder

to obtain optimized processing conditions. Purpose of using nano A12 0 3 is to take

advantage of nanocrystalline grain with enhanced strength and ductility. Conventional

micro ceramic grains are brittle in nature, whereas nanocrystalline ceramics show grain

boundary shear sliding. Moreover crack propagation is more tortuous in nanocrystalline

material owing to enhanced grain boundary area, which enhances the energy absorption

during impact. Table 4.2 differentiates deformation mechanisms in micro and

nanocrystalline ceramics.
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Table 4.2: Toughening in micro- and nano-crystalline grains

Toughening of Ceramic Conventional Micro Grain Nanocrystalline Grain

Limited Plastic Deformation via Cracking
Deformation

Deformation: Brittle and Shear Sliding along
Mechanism

Grain Boundaries

Crack Path Less Tortuous More Tortuous

4.2.1. Optimization of Plasma Parameters on n-Al20 3 Coating

Overall plasma spraying parameters utilized in the optimization of depositing n-

A120 3 coating are listed in Table 4.3. Processing parameters for plasma spraying of A-SD

powder were selected based on earlier experience and exiting literature [39, 118, 209-

211]. Uniform coating thickness is observed in the plasma sprayed ASD coatings, as

presented in Fig. 4.8. Gas flow rate is expressed in standard liters per minute (slm).

Powder feed rate is expressed in rpm (rounds per minute) of the rotating wheel in the

Praxair (model #1264) powder feeder. The conversion of rpm to the feed rate in g/min

depends on the volume of powder being fed (in c.c.) per minute at specified speed of

feeding wheel (in rpm).

It must be noted that slight tweaking of plasma parameters was required in order

to obtain a uniform coating. Practical difficulties such as non-deposition of coating with

lower plasma power required change in the carrier gas velocity and feed rate as observed

in Table 4.3. Lower carrier gas flow rate increase the residence time of particles in

plasma plume, so higher degree of melting occurs for powder particle. Similarly, lower

feed rate converts to small amount of powder in same plasma plume volume. Thereby

lower feed rate and lower carrier gas flow rate help coating deposition at low power. An
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overall picture of the plasma parameters and the resultant microstructure is presented in

Fig. 4.9.

Coating thicknesses of 300, 500, 400 and 120 m were obtained for the samples

A, B, C and D respectively as shown in Fig. 4.10 a-d. Coatings are denser with increasing

power, whereas lower power processed coatings depict increasing solid-state sintered

region (Fig. 4.9). Image Pro imaging software dictated dense coatings (porosity between

13-18 %) with varying degree of differential structure as explained in the consequent

section.

Powder treatment (spray drying) and control of plasma parameters results in two

distinct regions, viz. partially melted /solid-state sintered (PM), and fully melted and

resolidified (FM) structure in the coating with varying plasma power. This bimodal

structure is attributed to 30-45 percent porosity of spray dried powder feedstock [94]

coupled with optimized plasma parameters. Velocity (v) and temperature (T) are the

controlling parameters deciding the microstructure of the sprayed coatings. Velocity

corresponds to the kinetic energy attained by inflight particle. This in turn decides the

degree of flattening and subsequent densification of the powder particle upon impact. The

degree of melting is decided by the temperature attained by inflight particles. Thus the

interplay of kinetic- (through velocity) and thermal- energy (via temperature) is critical in

the generation of the microstructure. Thereby, inflight sensor monitoring of velocity and

temperature (of the inflight powders) serve as controlling factors in optimizing the

plasma processing parameters.
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Fig. 4.8: Plasma sprayed coatings (from top: Sample A, B, C, and D respectively) on an

AISI 1020 steel coupon of size 100 x 19 x 3.1 mm 3. Coating thickness varies between

120- 500 pm.

94



Table 4.3: Plasma spraying parameters used for spraying A120 3

Parameters Sample A Sample B Sample C Sample D

Current (Amperes) 780 727 642 512

Voltage (Volts) 39.5 38.3 37.3 36.2

Power (kW) 30.81 27.84 23.95 18.53

Primary, Ar (slm*) 32.1 32.1 32.1 32.1

Secondary, He (slm*) 59.5 59.5 59.5 59.5

Carrier, Ar (slm*) 21.7 19.8 19.8 19.8

Feed Rate (rpm) 4.0 4.0 3.0 2.5

Standoff Distance 100 100 100 100
(mm)

Coating Thickness 300 500 400 120
(pm)

*s lm: standard liters per minute

Various plasma parameters required different powder feed and gas flow rates in

order to deposit a coating under different plasma power conditions. Subsequent

development of the bimodal phases is optimized by plasma spraying of spray dried nano

A12 0 3 powder feedstock. Consequently, the generated microstructure is characterized

depending upon the bimodal structure and the mechanical properties (hardness and
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fracture toughness) attained by the plasma sprayed coatings. The role of initial powder

treatment and the subsequent role of plasma parameters are discussed in the current

section.

Effect of Plasma Power on Microstructure
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Fig. 4.9: Plasma spray parameter optimization showing relation of microstructural features

of sprayed coatings with differential plasma parameter settings.
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Fig. 4.10: Plasma sprayed nA1203 coating: a) Sample A, and b) Sample B from A-SD

powder.
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Fig. 4.10: Plasma sprayed nAl 20 3 coating: c) Sample C, and d) Ssample D from A-SD

powder.
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Owing to poor thermal conductivity of porous spray dried agglomerate, partial

melting is sustained in the core whereas fully melted region is obtained on the surface.

The surface-melting of powder particles results fully melted and re-solidified regions

whereas the core of the powder agglomerate gets sintered in solid state. Hence, solid state

sintering of the A12 0 3 nano-particles occurs in the core region without destroying the

nano nature of the starting powders. Thus, the matrix results in bimodal grain structure,

i.e. fully melted and resolidified outer region and partially melted/solid-state sintered core

region. Partially melted/sintered region helps in distributing the shock energy

experienced during an impact, and helps deflecting crack resisting its propagation. Fully

melted regions imparts strength and binding integrity to the composite coating [94, 114].

Increasing power shows increased FM zone, and increased grain size in the PM

region, Fig. 4.11 through Fig. 4.14. Grain size is highest (- 1 m) in the highest plasma

power setting, Fig. 4.11, and decreases to 0.8 m (Fig. 4.12), to 0.5 pm, (Fig. 4.13) and to

0.35 m (Fig. 4.14) in Sample A, B, C and D respectively. Influence of plasma

parameters on microstructural features is quantified in Table 4.4 and Fig. 4.9.

Fracture toughness of the coatings is measured using Anti's equation (eq. 2.1)

from Vicker indentation at 200g with a dwell time of 15 s, Table 4.4 [59]. Radial crack

generate upon unloading, and the crack is restrained when the crack tip stress intensity is

balanced by the fracture toughness of the material to restrict its propagation as shown in

Fig 4.15. Uniform bimodal microstructure distribution and highest fracture toughness

(~3.29 MPa m1) were obtained for sample C (Voltage: 37.3 V, and Current: 642 A).

Hence, processing parameters from sample C were selected as optimized condition to

spray A12 0 3-CNT coatings for improved fracture toughness.
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Fig. 4.11: Plasma sprayed nA120 3 coating (Sample A) showing a) PM, FM and

porosity distribution, and b) solid-state sintering of powders. Note that grain size is

around 1 pm.
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Fig. 4.12: Plasma sprayed nAl 20 3 coating (Sample B) showing a) PM, FM

and porosity distribution, and b) solid-state sintering of powders. Note that

grain size is decreased to around 0.8 pm.
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Fig. 4.14: Plasma sprayed nA1203 coating (Sample D) showing a) PM, FM

and porosity distribution, and b) solid-state sintering of powders. Note that

grain size is ~ 0.35 pm.
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Fig. 4.15: Radial crack generation in plasma sprayed n-A1203 coating via Vicker

indentation.

Table 4.4: Microstructural features and fracture toughness of plasma sprayed nA1203

coatings

Features -> FM Content PM Content Porosity Coating Fracture

Coatings Thickness Toughness 
m MPa In

Sample A 65.3 ±2.9 20.2 ±2.4 14.3 ±1.2 300 1.51-3.55

Sample B 64.5 f2.3 22. 7 ±1.9 13.3 ±0.0 500 1.28-1.36

Sample C 56.5 ±1.8 30.1 f3.8 15.0 f2.5 400 2.53-3.29

Sample D 56.9 f1.6 24.6 ±1.7 17.7 ±1.0 120 1.07-1.66
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4.3. Plasma Spraying of n-A120 3 with Addition of CNTs

A4C-B, A4C-SD, and A8C-SD powders were plasma sprayed with the plasma

parameters listed in Table 4.5. It was observed that plasma parameters optimized for A-

SD coating (Sample C) were not sufficient to deposit a uniform CNT reinforced coating.

Since CNTs are uniformly distributed in spray dried powders, they extract heat from

A120 3 particles due to their high thermal conductivity. Thereby higher power is required

to melt A12 0 3 particles and get uniformly thick coatings. Accuraspray inflight sensor data

clearly elicits such observation and thereby higher power plasma parameters were

utilized in order to accommodate deposition of a uniform coating (Table 4.5).

Comparative inflight particle diagnostic data (temperature and velocity of inflight powder

particles) for all samples is discussed in later section.

Table 4.5: Plasma parameters for spraying A4C-B, A4C-SD and A8C-SD coating

Coatings -> A4C-B Coating A4C-SD Coating A8C-SD CoatingParameters I

Current (Amperes) 630 778 761

Voltage (Volts) 40.8 39.6 42.5

Power (kW) 25.7 30.8 32.3

Primary, Ar (slm) 32.1 32.1 32.1

Secondary, He (slm) 59.5 59.5 59.5

Carrier, Ar (slm) 19.8 19.8 19.8

Feed Rate (rpm) 3.0 3.0 3.0

Standoff Distance (mm) 100 100 100

Coating Thickness (pm) 350 450 500

* slm: standard liters per minute
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In this section, comparable plasma parameters, Table 4.5, are used for studying

the role of CNT dispersion in generating a contrasting microstructure and mechanical

properties. Plasma sprayed A-SD coating under optimized conditions (Sample C with

highest fracture toughness) is taken as a reference for comparing the CNT reinforced

A12O 3 coatings. Steel samples coated with A-SD, A4C-B, A4C-SD and A8C-SD are

presented in Fig 4.16 a-d. A-SD coating is whitish (Fig. 4.16 a), A4C-B coating is grayish

(Fig. 4.16 b), A4C-SD coating is dark-grayish (Fig. 4.16 c), whereas A8C-SD coating is

blackish (Fig. 4.16 d) in color. A-SD coating is white owing to the pure A120 3 coating

(Fig. 4.16a). Black specs and grayish color is observed in A4C-B coating (Fig.

4.16b) owing to agglomeration and dispersion of CNTs respectively. Uniform dark

grayish nature of A4C-SD (Fig. 4.16c) is attributed to the uniform CNT dispersion in the

coating. Uniformly black color of A8C-SD (Fig. 4.16d) is attributed to higher CNT

content and their uniform dispersion. Overall microstructure generated in each CNT

reinforced coating is discussed in following sections.

Table 4.6 shows the inflight particle diagnostic data for various plasma sprayed

coatings. Temperature variation of different powders owing to CNT dispersion is clearly

evinced in Table 4.6. Contrasting difference is attributed to role of high thermal

conductivity of CNTs in the A4C-B powder (CNT agglomeration) and A4C-SD powder

(CNT dispersion).

4.3.1. Plasma Sprayed A4C-B Coating

Fig. 4.17 shows plasma sprayed A4C-B nanocomposite coating on the AISI 1020

steel substrate. Uniform and homogeneous A4C-B nanocomposite coating of~350 pm is
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A4C-B Coating
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Fig. 4.16: Plasma sprayed a) A-SD, b) A4C-B, c) A4C-SD, and d) A8C-SD coating.
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Table 4.6: Inflight particle diagnostic data for various plasma sprayed coatings

Coating Temperature (K) Velocity (m/s) Dwell Time (s) Cooling Rate (K/s)

A-SD Coating 2512 289 3.46 x 10 4  7.26 x 106

A4C-B Coating 2898 271 3.69 x 10 4  7.85 x 106

A4C-SD Coating 2332 244 4.10 x 10 4  5.69 x 106

A8C-SD Coating 2241 232 4.31 x 10 4  5.20 x 106

obtained. The coating is free from cracks and adherent to the substrate. Coating was

removed from the substrate to obtain as a freestanding structure. Density of 3.40 g/cc

(87.2 % dense as compared to theoretical density of 3.90 for A12 0 3-4 wt. % CNT

composite) was obtained through Archimedes water immersion technique.

A4C-B Coating

Substrate

Fig. 4.17: Cross-sectional image of A4C-B coating showing uniform and adherent

coating.
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At higher magnification, differential microstructure with fully melted and

resolidified (FM) and partially-melted and solid state sintered (PM) regions is observed in

Fig. 4.18. This microstructure is similar to that of optimized plasma sprayed A-SD

coating (Fig. 4.13).

PM

FM

Fig. 4.18: Plasma sprayed A4C-B coating showing fully melted (FM) and solid state

sintered (PM) region.

To preserve the advantages of CNT reinforcement, it is necessary for CNTs to

survive their sojourn in the harsh environment of plasma plume. As seen in Fig. 4.19a

and 4.19b, interlinked-CNTs are distributed, undamaged and retained in the plasma

sprayed structure. Survival and distribution of CNTs is attributed to: i) dispersion of

CNTs along the surface and the dome-cavity region of the spray dried A120 3 powder
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Fig. 4.19: Fractured surface image of A4C-B coating depicting a) chain loop formation of

CNTs, and b) fusion of CNTs in A12 0 3.
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(also seen in Fig. 4.3), and ii) controlled plasma processing parameters (2898 K, 271

m/s) to cause partial melting of core. Damage of CNTs from harsh plasma environment is

also shrouded by poor thermal conductivity of powder-agglomerate porosity, and limited

melting of the surface causing the core and tail regions of powder agglomerate to retain

CNTs during successive deposition of splats. Survival of CNTs play an important role

towards resulting microstructural ingenuity owing to their excellent mechanical

properties [26, 31, 212]. CNT chain-loop formation, Fig. 4.19a, acts as anchors for

providing improved fracture toughness. In addition, entangling of CNTs induce torsion,

making torsion stiffness an important concept of providing toughness to the reinforced

nanocomposite [213]. Fusion of CNTs along the A12 0 3 melt, Fig. 4.19b, shows the good

wettability observed in the plasma sprayed nanocomposite coating owing to high plasma

parameters melting the A120 3 surface and trapping the CNTs within.

4.3.2. Plasma Sprayed A4C-SD Coating

A uniform -450 pm thick coating is obtained by plasma spraying A4C-SD

powder, Fig. 4.20. Coating is dense (3.52 g/cc with 90.2 % theoretical density) and

adherent to the substrate. Higher degree of PM region is observed in the plasma sprayed

A4C-SD coating, and is compared and quantified with other coatings in the later section.

Processing of this coating is aimed to correlate the role of CNT dispersion in enhancing

fracture toughening in comparison to A4C-B coating, which also has similar

composition.
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A4C-SD Coating

Substrate

Fig. 4.20: Cross-section of plasma sprayed A4C-SD coating.

It is clearly indicated that the powder particles have undergone reduced

temperature (of 2332 K when compared to 2898 K for A4C-B coating) deposition owing

to its high PM content, Fig. 4.21. Inflight particle temperature data indeed confirms the

role of CNT dispersion in reducing thermal exposure to the powders during plasma

spraying.

CNTs are retained in the plasma sprayed A4C-SD coating, Fig. 4.22a. CNTs

appear thicker (- 100-120 nm) when compared to starting CNTs (40-70 nm) implying

that CNTs are coated with A12 0 3 during processing. Spreading of CNTs throughout the

matrix without agglomeration confirms good dispersion (Fig. 4.22b).
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Fig. 4.21: Plasma sprayed A4C-SD coating depicting enhanced PM content.

CNT dispersion plays an important role in reducing thermal damage and

consequently CNTs are retained in the matrix. CNTs are observed both near the PM and

FM regions, indicating their survival in the plasma plume during their processing.

Survival of CNTs in dispersed condition is critical towards uniform toughening of

ceramic nanocomposite.

Enhanced wettability of CNTs is dictated by Al203 coating on CNT surface

(indicated by increase in the CNT diameter), Fig. 4.22a, with good anchoring with the

splats. On one hand where excellent wettability of CNTs anchors the splats, on the other

hand, dispersed CNTs provide uniform reinforcements. Synergetic effect of dispersed

CNTs depicting good wettability is expected to ensue enhanced fracture toughening of

the A4C-SD coating.
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Most of the ceramic CNT composite processing is performed via solid state

sintering techniques such as spark plasma sintering, hot pressing, extrusion, etc)

consolidation [16, 172, 176, 186]. Absence of molten ceramic in conventional processing

(and in most of advanced techniques) has obviated attention to aspects of CNT surface

coating and anchoring in such structures. Hence wetting of CNT by alumina is a novel

issue by itself that has been discussed later.

4.3.3. Plasma Sprayed A8C-SD Coating

Plasma sprayed A8C-SD shows a uniform and ~500 pm thick coating in Fig.

4.23. Coating is dense (3.53 g/cc with 94 % theoretical density) and adherent to the

substrate. Magnified SEM image of the coating, Fig. 4.24, elicits similar features as

observed for A4C-SD coating. Comparative solid state sintered region (PM), fully melted

region (FM), and porosity is defined by the microstructural features, as discussed in

section 4.5.1. Enhanced PM content is attributed to uniform CNT distribution and higher

CNT content leading to reduced thermal exposure.

A typical solid state sintered region of A8C-SD coating is shown in Fig. 4.25a.

Reduced thermal exposure (2241 K) to the powders is attributed to increased CNT

content (from 4 wt. % to 8 wt.%), which extracts heat from surrounding A12 0 3 particles.

Consequent consolidation, in turn, entraps dispersed CNTs in the solid state sintered

region, Fig. 4.25a. CNT dispersion is also observed at neck region between two adjoining

splats, resolidified region and surface of A12 0 3 particles, Fig. 4.25b. CNTs remain

undamaged and are uniformly dispersed at various locations such as melted and

resolidified region, high-impact area of adjoining neck region and also at surface.
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Fig. 4.25: Solid state sintered region showing a) CNT retention in the plasma sprayed

A8C-SD coating, and b) CNT distribution at neck, resolidified region and surface of

A120 3 particles.
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Distribution of CNTs in the coatings is affirmed owing to retention of distributed

CNTs as present in the starting A8C-SD powder.

The purpose of plasma spraying A8C-SD coating is to evaluate toughening

properties with an increase in CNT content in comparison to A4C-SD coating. Hence it

will be possible to capture fracture toughening enhancement both because of CNT

dispersion and CNT content.

Density of plasma sprayed coatings (measured from water immersion technique) is

summarized in Fig. 4.26. Minimum density of -87% was achieved for A-SD coating,

whereas addition of CNTs has resulted increased in the density of plasma sprayed

coatings. This is attributed to dispersed CNTs promoting better heat transfer and thereby

resulting enhanced densification. This is confirmed via enhanced PM region with

Density of Plasma Sprayed Coatings
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Plasma Sprayed Coatings

Fig. 4.26: Density of plasma sprayed coatings measured from water immersion technique.
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increase in CNT dispersion and CNT content. In addition, flexing nature of CNTs fill-in

the gaps between n-A120 3 splats and reduce the overall porosity during deposition.

4.4. Retention of CNTs in Plasma Sprayed of A12O 3 - CNT Coatings

Retention of CNT structure in the plasma sprayed coatings is confirmed by the D

(~ 1340 cm 1) and G peaks (between 1500 and 1600 cm 1), Fig. 4.27 which are same as

observed in the initial powder feedstock. D-peak corresponds to disordered graphite,

whereas G-peak corresponds to stretching mode of graphite, a characteristic of

Raman Spectrum of Plasnm Sprayed Coatings
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Fig. 4.27: Raman spectrum of plasma sprayed coatings showing retention of CNT

structure in the plasma sprayed coatings.
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nanotubes. Hence, Raman spectroscopy dictates that optimized plasma spraying

parameters contribute in the retention of undamaged CNTs in the plasma sprayed

coatings. This effect is assisted by enhanced porosity of spray-dried powder, which

blankets the damage to CNTs via its reduced thermal conductivity, and adds in retaining

CNTs even under high power plasma parameters.

4.5. Effect of CNTs in Generating Microstructure and Phases in Plasma Sprayed

Coatings

Bimodal grain size distribution, corresponding inflight particle diagnostic data,

generation of secondary metastable phases is presented in the current section.

Microstructural PM and FM regions observed in the A-SD, A4C-B, A4C-SD, and A8C-

SD coatings are analyzed and influence of inflight particle diagnostic on generating such

a microstructure is discussed. XRD analysis further elucidates the rapid kinetics inherent

to the plasma spray processing.

4.5.1. Role of CNT Dispersion in Creating Bimodal Grain Distribution in Matrix

Distribution of the FM, PM and porosity in the plasma sprayed coatings is analyzed

using ImagePro imaging software and presented in Table 4.7. Such a differential

microstructure is obtained because of different thermal history experienced by powder

particles during their transit through plasma plume.

Porosity measurement by quantitative microscopy considers only the provided

image information, which in some cases might not be true representative. Different

magnification images and selection of area for porosity calculation is user-dependent.
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Hence a more concrete approach of evaluating porosity by water immersion technique is

utilized in the current research. Water immersion technique evaluates both macro and

micro porosity of the plasma sprayed coatings, and, hence, is more reliable.

Table 4.7: Volume percentage of microstructural features of the plasma sprayed coatings

obtained from quantitative microscopy and image analysis

Coating Coating Fully Melted Partially Melted Porosity

Thickness (sm) (FM) (PM) (Image
Analysis)

A-SD Coating 400 80.9% 15.9% 3.2%

A4C-B Coating 350 82.1 % 12.1 % 5.8%

A4C-SD Coating 450 71.4% 24.7% 3.9%

A8C-SD Coating 500 52.6% 46.3% 1.1 %

Inflight particle diagnostic data was presented in Table 4.6. These contrasting

velocities and temperature of inflight particles that form coatings indicate strong

influence of CNT content and distribution in imparting reduced thermal exposure to the

blended and spray dried powder particles. A4C-B coating experienced higher temperature

when compared to A-SD coating, which is attributed to CNT distribution on the surface

and the dome cavity (as explained in section 4.1). Owing to higher thermal conductivity

of CNTs (~3000 W/mK) when compared to A12 0 3 (~ 36 W/mK), high heat is absorbed

on the surface leading to enhanced thermal exposure and higher attained temperatures in

A4C-B coating. Inflight particle diagnostic data, therefore affirms the mechanism of the

heat distribution in the A4C-B coating. But, the reduction of thermal exposure in spray
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dried coatings (A4C-SD and A8C-SD coating) is attributed to uniform CNT dispersion

both on the surface and inside of the powder particles (explained earlier in section 4.1).

Directly stating, now less number of CNTs are present on the surface of spray dried

powder (since content is same and CNTs are distributed uniformly also at inside of

powder), thereby superheating of surface by CNTs is reduced. Additionally, CNT content

in the inside of the powder now 'soaks up' the heat acquired by the surface CNTs

towards reducing the temperature attained by powder particles. Hence, reduced

temperature for A4C-SD coating was observed. Though addition of CNTs (in A8C-SD

powder) marginally should increase the surface temperature, but uniform CNT

distribution inside of the particle increases too, and the rate of soaking in the heat also

increases. And owing to rapid kinetics inherent to the process, short residence times of

4 x 104 s in the plasma plume do not suffice superheating of surface CNTs. This

phenomenon further lowers the temperature acquired by the A8C-SD powder particles in

the plasma plume. This offers two advantages: first that damage to CNTs is reduced due

to reduced thermal exposure, and secondly that solid state sintered region can

successfully retain CNTs.

It becomes clear now that increased temperature observed by A4C-B powder

particles in plasma plume undergo higher degree of heating and induces higher FM

content. Hence, it can be concluded that increasing plasma parameters and CNT content

and dispersion are critical in defining temperature exposure experienced by powder

particles and subsequent partially melted and fully melted structure.
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4.5.2. Generation of Metastable y-A20 3

Owing to rapid kinetics of the plasma spraying (with cooling rates as high as 7.85

x 106 K/s), generation of metastable phases becomes inherent. XRD spectrum of the

coatings is presented in Fig. 4.28. Since CNT peaks are not observed in the presence of

A12 0 3 , only one XRD spectrum for powder feedstock is shown (instead of individual A-

SD, A4C-B, A4C-SD, and A8C-SD powder spectra). Scherrer formula is used to

calculate the crystallite size of the phases (t) present in powder feedstock and plasma

sprayed coatings.

t = Equation 4.1
BcosO

where k is the X-ray wavelength, 0 is the diffraction angle, B is the peak

broadening measured at half of maximum intensity in radians (obtained as jm - BS

where BM is the measured broadening at peak intensity half maximum, and Bs is the peak

intensity half-maximum of the standard). Silicon (Si) from NIST is taken as standard for

calculating peak broadening of machine.

For crystallite size measurement of a-A120 3, FWHM (full width at half

maximum) at most intense peak of 2-theta (- 35 degrees) is considered, whereas for y-

A120 3, FWHM (full width at half maximum) at most intense peak of 2-theta (~ 46

degrees) is measured. Alpha and gamma A12 0 3 content was measured with the ratio of

area of corresponding peaks to the area under cumulative peaks. It must be noted that

starting powder feedstock was 100 % a-A120 3 , hence only the crystallite size is reported

in Table 4.8.
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Fig. 4.28: XRD spectrum of plasma sprayed coatings. Indicated peaks belong to

y-A120 3 whereas all other peaks belong to a-A120 3

Table 4.8: Crystallite size and content of powder and plasma sprayed coatings

Coating
Crystallite Size Powder* C-Aa03  -nA12g3

and Phase -2O A23

Content Size Size Content Size Content
(nm) (nm) (%) (nm) (%)

A-SD 44 55 76.6 22 23.4

A4C-B 46 95 68.4 13 31.6

A4C-SD 45 73 81.7 15 18.3

A8C-SD 43 76 74.9 21 25.1

*Powder is 100% (-A1 20 3.
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Presence of CNTs affects the nucleation of y-A120 3 that occurs from the melting

and rapid solidification of a-A120 3. High thermal conductivity and superheating of CNTs

create favorable sites for nucleation of y-A120 3 . Generation of y-A12 0 3 phase is related to

the CNT dispersion and location in the powder agglomerate. Nucleation of y-A120 3 phase

is dependent on the content, location and dispersion behavior of CNTs.

4.5.2.1. Dependence of y-A12 0 3 on CNTs in the Matrix

CNTs on the surface of the powder particle are responsible for nucleating y-A12 0 3

by absorbing the plasma heat, assisting the melting on surrounding alpha, and leading to

enhanced cooling rates in its vicinity to generate y-A12 0 3 . Owing to their high thermal

conductivity (- 3 x103 W/m/K) when compared to that of A120 3 (~ 36 W/m/K), CNTs

heat up melting the surrounding A120 3, and quickly lose heat to cooler surrounding A12 0 3

in the core (because of optimized surface meting and solid state sintering of core). Rapid

kinetics involved inherently with the processing adds to the y-A120 3 nucleation in the

processed coating. Hence surface CNTs are responsible for enhancing the gamma content

of the plasma spayed structure.

CNTs entrapped in the core absorb the heat from the surface. Since the travel time

of powder particles is in order of ~ 4 x 104 s, CNTs present in the core do not allow

superheating of the CNTs located on the surface. Restriction to reach high temperature

presents two benefits in the processed coatings. First it shrouds the damage to surface

CNTs by restricting the CNT temperatures. This behavior is linked by the inflight particle

diagnostic data observed for the spray dried coatings, where reduced temperature profiles

were observed even for higher plasma parameters (Table 4.7). Secondly, it reduces the
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gamma precipitation on CNTs in core by disallowing high cooling rates as experienced

by surface CNTs in the absence of core CNTs.

Dome cavity CNT agglomeration (as in A4C-B coating) can achieve exceedingly

high temperatures owing to agglomerated mass of CNTs. Reduced resistance path and

high thermal conductivity of CNTs renders high cooling rates to the surrounding A120 3 .

Absence of core-CNTs not only tender comparatively enhanced damage to surface-

CNTs, but also is expected to impart enhanced y-A120 3 precipitation. Though y-A120 3

assists with second phase strengthening, the total potential of CNT-toughening goes

untapped.

Dispersion of CNTs (as in A4C-SD and A8C-SD coatings) allows entrapment of

CNTs both in the molten- and solid state sintered region. CNTs present in the core region

are retained by solid state sintering and retain entrapped in the densified region. Surface

CNTs disperse along intersplat region as successive impact of molten/semi-molten

particles. Therefore, dispersion of CNTs potentially creates more sites for y-A120 3

nucleation. But two factors must be considered before making conclusions. First that

since CNTs act as nucleating sites for y-A120 3, increasing CNT content overall increases

the y-A120 3 content. Secondly that CNTs in the core act as 'heat absorbing' sites to

reduce the surface temperature of the A120 3 , thereby reducing the degree of melting and

kinetics of rapid solidification. Hence precipitation of y-A120 3 is a balance between CNT

dispersion, surface distribution and total CNT content.

It can be reasoned from the observed date, Table 4.8, that addition of CNTs

increased gamma content, but reduces size of gamma crystallite (A4C-B coating when

compared to A-SD coating). This behavior is attributed to distribution of CNTs only on
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the surface. Since CNTs are distributed onto the surface, rapid quenching due to thermal

heat absorption enhances the kinetics increases the nucleation rate, but reduces the

growth rate, thereby reduce the y-Al 20 3 size and increase the y-A120 3 content.

Contrasting feature of CNT dispersion is observed in the spray dried powder,

where reduced y-A120 3 size and content is observed (A4C-SD coating compared to A-SD

coating). Since CNTs are dispersed throughout the powder, superheating of CNTs is

restricted by CNTs present in the core of the powder agglomerate. On one hand, the

overall content of CNTs on the surface of A4C-SD powder is less (when compared to

A4C-B powder because of same CNT content with better dispersion even in the core of

powder), and secondly core CNTs soak up the thermal heat of the surface CNTs. Hence

overall sites for gamma nucleation are reduced and enhanced time for cooling (reduced

cooling rate) allows only minimal precipitation of y-A120 3 .

Now, with the A8C-SD powder, interesting feature of both enhanced y-A120 3 size

and content (when compared to A4C-SD powder) is observed. This is attributed to

similar dispersion as that of A4C-SD powder, but enhanced CNT content on the surface

now leads to more nucleating sites (and increased y-A120 3 content). In addition to

reduced cooling rate (via increased heat absorption by core CNTs), and enhanced chances

of merging the precipitated y-A120 3 crystallites by amplified CNT content shows

increased y-A12 0 3 size.

Generation of metastable phases is inherent in the plasma sprayed structures.

Considering the high energy input of plasma process, the free energy change associated

with a- A120 3 to y- A120 3 phase transformation can be described as [[214]]:
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43
AG,.r AG,01 ± AF.;uia = -7r(Gr-Ga)+ 4nr2 (Fr- F) Equation 4.2

where Ga and G. are free energies, and Fa and Fy are surface energies of a- A120 3 and y-

A120 3 respectively of radius r.

Since y- A12O 3 is a metastable phase, it has critical radius of transformation much

smaller than existing a- Al2O3 phase. Considering the crystallite size of a- A120 3 > 7-

A120 3 phase transformation, the critical radius r, is obtained by equating the differential,

with respect to r, of eq. 4.2 to zero.

_- 2(r -r F)
r =(G y ) Equation 4.3

"(G, -Ga)

Though the y- A12 0 3 crystallites will grow as coarsening progresses, they will

serve as second phase particles and help improving the dispersion strengthening of the

composite. Hence, CNTs become critical in manipulating the bimodal phase distribution

in the plasma sprayed coatings and take advantage of secondary strengthening

mechanisms.

High magnification TEM image of CNT surface, Fig. 4.29a, shows precipitation

of y-A120 3 crystallites. High resolution TEM imaging, Figs. 4.29b and c, show lattice

fringes of the generated precipitate. Lattice spacing of fine crystallite corresponds to 2.19

A, which matches with the interplanar crystal spacing of (023) plane for y-A120 3 phase.

Presence of fine y-A12 0 3 precipitates on CNT surface confirms the proposed mechanism

of y-A120 3 phase generation.
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Fig. 4.29: TEM image showing a) ,y-A1203 precipitation on CNT surface, and High

resolution TEM image showing y-A1203 lattice fringes corresponding to b) (311)

plane (lattice spacing of 2.38 A, and c) (023) plane (lattice spacing of 2.19A).

129



4.6. Role of CNT Dispersion in the Fracture Toughening of Nanocomposite Ceramic

Coatings

Role of CNT dispersion is measured by an increase in the fracture toughness of

the plasma sprayed coatings. Measure of toughening by CNT pull out, crack bridging,

and crack deflection is reflected in the high magnification SEM microscopy of the

coatings. Vicker indentation is utilized for measuring indentation toughness with a load

of 200g with a dwell time of 15 s.

Table 4.9 details the hardness and fracture toughness of the plasma sprayed

coatings. It can be noted that A4C-B there is no significant variation in the hardness value

of the different coatings. Though it might be expected that higher density of coatings

result higher hardness, but it is counter balanced by the reduction of hardness due to

increasing PM content. Hence, overall hardness of the plasma sprayed coatings show

similar hardness values in Vicker indentation.

Table 4.9: Hardness and fracture toughness of plasma sprayed coatings

Coating A-SD A4C-B A4C-SD A8C-SD

Density g/cc
3.47 (87%) 3.40 (87.2%) 3.52 (90.2 %) 3.53 (94%)

(% theoretical)

Hardness (VH) 714.2 f 14.9 709.6 + 8.4 738.7 12.9 712.7 + 2.3

Fracture Toughness
3.22 0.22 3.86 0.16 4.60 0.27 5.04 0.58

(MPa m )

Fracture toughness (K) of the ceramic coatings, Fig. 4.29, is calculated from

Antis Equation as [215]:
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KC = x m3/ 2 Equation 4.4
H c

where P is the applied load, E is the Young's modulus (taken as 390 GPa), H is

the Vickers hardness, c is the radial crack length (measured from center of indent), and x

is the calibration constant (taken as 0.016).

Vicker indentation fracture toughness of coatings is calculated as 3.22 MPa ml1 2

for A-SD coating, whereas it increases to 3.86 MPa m 1 2 for A4C-B coating, an

improvement of 20 %, Fig. 4.30. Enhancement of fracture toughness is solely arising

from the introduction of 4 wt.% CNTs in the matrix. But, A4C-SD coating shows fracture

toughness of 4.60 MPa m 2 (Fig. 4.30), an improvement of 43 % over A-SD coating.

Though CNT contents are same in A4C-B and A4C-SD coating, tremendous

improvement in the fracture toughness is attributed to uniform CNT dispersion in the

A4C-SD coating when compared to A4C-B coating. Further increase in fracture

toughness (5.04 MPa m1) to 56% is achieved for A8C-SD coating, which is attributed to

increase in the CNT content. Student t-test was performed to confirm significant

statistical difference between the mean fracture toughness values with more than 95%

confidence level.

It must be noted that porosity content, porosity size and porosity distribution can

also alter the fracture toughness of the nanocomposites [10, 45, 56]. The dispersion of

CNTs (in A4C-B, A4C-SD and A8C-SD) has shown contrasting change in the thermal

exposure to inflight powders (Table 4.6), which consequently results in the variation in

porosity in the plasma sprayed coatings, as seen in Fig. 4.26. Table 4.5 shows that higher

plasma power of 30.8 kW for A4C-SD and 32.3 kW for A8C-SD was used when
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compared to A4C-B powders (power of 25.7 kW). Higher plasma power results in

enhanced degree of sintering for composite spray dried powders. Hence, higher degree

of consolidation, both between (i) CNTs and A12O 3 interface and ii) A12 0 3- A120 3

interface leads to reduced porosity content in A4C-SD and A8C-SD coatings (when

compared to that of A4C-B coating. Thereby, synergetic densification of coatings (in

addition to CNT addition and dispersion) assisted in enhanced fracture toughening of

plasma sprayed nanocomposite coatings.

6
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A-SD A40-B A4C-SD A8-SD

Plasma Sprayed Coatings

Fig. 4.30: Fracture toughness of plasma sprayed coatings.

To solely estimate the role of porosity in evaluating the fracture toughness of

ceramic nanocomposite coatings, precise control on porosity should be required without

disturbing (i) porosity size, and (ii) porosity distribution. In order to estimate effect of

porosity, processing should prevent CNT damage, retain the grain size, and should not

disturb CNT distribution even after consolidation. This in itself is a big challenge. Post
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spray treatment such as hot-isostatic processing (HIPping) is recommended for future

endeavors to separate the effect of porosity and CNT content on fracture toughness.

Microstructural observation of CNT reinforcement in coatings is explained in the

following section.

4.6.1: Enhancement of Fracture Toughness by CNT Distribution in A4C-B Coating

Long fibrous-CNT rope structures form anchors between the splats of the

aluminum oxide matrix as seen in Fig. 4.31. CNTs are also fused with the molten and

resolidified A120 3 matrix (Fig 4.31). In addition, CNT form hooks and loops with other

CNTs as shown in Fig. 4.32. Looping of CNTs, Fig. 4.31, initiate entangling effect upon

tensile loading and aids in restraining the separation of fused regions. This behavior abets

superior fracture toughness of plasma sprayed nanocomposite coating. Entangling CNT

network has also been observed by other researchers [166].

Tensile stretching of the anchored hook structure, Fig. 4.33, is restrained by high

bending stiffness of CNTs. Bending stiffness (B) of CNTs has been largely accepted as

[216]:

Nt3
B- NEt Equation 4.5

12(1- v 2 )

where t is the thickness of CNT wall and N is the number of walls in CNT. This

clearly implies the direct proportionality of increase in bending stiffness with increasing

number of CNT walls in multiwalled carbon nanotubes. Hence, it is expected that loop

and hook observed in Fig 4.32 will improve the fracture resistance of A4C-B coating.
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Fig 4 31: Fibrous CNT fused onto A120 3 surface anchoring the splats.

Fig. 4.32: Hook and loop formation of CNTs.
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Bending Stiffness

Hook Formation

Fig. 4.33: Hook formation by entanglement of CNTs in A4C-B coating.

CNT alignment along the splat interface is also observed in A4C-B coating (Fig.

4.34) Since the A4C-B powder has CNTs dispersed only on the surface of the powder,

surface melting during plasma spraying gathers most of the CNTs upon the

impact onto the substrate. Surface melting of the powder agglomerate eases the CNT

movement in the semi-molten/molten pool of A120 3 . And upon impact onto substrate,

CNTs align parallel to the substrate in order to absorb the high collision shock.

Consequent impact and deposition of splats entraps CNTs along the intersplat region.

Preferential alignment of CNTs brings about the concept of directional strengthening

towards enhancing the fracture toughness. Energy absorption upon shock via interfacial

sliding also assists in improving the fracture toughness of the coating. Hence, trimodal

microstructure (CNTs, partially-melted (PM), and fully-melted (FM) regions) observed

in the cross-sectional images of the plasma sprayed nanocomposite coating, Fig. 4.34,

rivet fracture toughness enhancement owing to differential phase properties [94].

Interfacial strengthening of the nanocomposite ceramic can be realized in terms of

load transfer between the CNTs and matrix as shown in schematic Fig. 4.35. Based on the
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CNT
Fully Melted Region

Partially Melted Region

Fig. 4.34: Impact alignment of CNTs along the intersplat region in the plasma sprayed A4C-B Coating.
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assumptions of elastic interfacial shear stress between reinforcement and ceramic matrix,

without any sliding [217], modified axial stress (0) and critical shear stress (E) equations

for the parallel aligned MWNT at the interface can be expressed as.

L2__ F r 2('E
= 2 - 2 

[CNT 2 r \ E spa at Equation 4.6
LZ -r z T-LZ E a

rECNT (wnt erface - WCNT)

L = ( Equation 4.7
2(1+vCNT)

CNT

A10 33 matrix

Axial Shear, Fracture Energy

Impact Alignment of CNTs

Fig. 4.35: Increased axial shear and absorption of energy by impact alignment of CNTs

along splat interface.

where r is the radial distance, and L is the length of CNT, w is the displacement

along axial direction, and v is the Poisson's ratio, and E is the Young's modulus

identified with subscripts. Equations 4.6 and 4.7 suggest that parallel alignment of CNTs

increase interfacial area and thereby results improved load transfer at the interface and

reduction in axial stress (6). Splat interface therefore experiences smooth transitioning of

stresses without causing stress concentration. In addition, increased surface area of CNTs
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requires higher critical shear stress (z) to debond and pull out from A120 3 matrix resulting

higher dissipation of fracture energy [217].

Fig. 4.36 shows restraining of the crack damage and consequent crack termination

by CNTs. Hence, on one hand, interfacial alignments of CNTs stick the splats, and on the

other hand, transverse alignment of CNTs prevents the crack progress. Eventually CNT

alignments both along longitudinal and transverse directions contribute to the improved

fracture toughness of the plasma sprayed A4C-B nanocomposite coating.

Crack Restraining

CNTs

Fig. 4.36: Restraining of crack-damage by presence of CNTs transverse to crack

propagation path.
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High magnification SEM image of the A4C-B coating, Fig. 4.37, shows fine (150-

250 nm) A120 3 particles attached onto CNT surface. Also, CNTs form a rope structure by

aligning with each other. Each CNT in the rope gets coated with molten A120 3. Apart

from the melt coating of A120 3 on CNT surface, increase in the CNT diameter (Fig. 4.37)

to form CNT ropes can be attributed to CNT fusion. Ceramic-coated CNTs easily fuse

with the surrounding matrix and show good anchoring with the splats.

Fig. 4.37: SEM image of nano A12 0 3 particles sticking to CNT rope surface in AC-B

coating.
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Fig. 4.38 is a bright field TEM image and shows features similar to Fig 4.37. Fig.

4.38a shows entanglement of CNTs and A120 3 particles hanging on the CNT network.

CNT fusion is also observed in Fig. 4.38b indicating superheating of CNTs to fuse with

other CNTs. However, CNT structure is intact and not damaged due to fusion. It only

forms a CNT network, which will further assist in improving the fracture toughness.

Embedded SAD pattern (in Fig. 4.38b) shows diffraction spots corresponding to a-A120 3

phase, as indexed in Fig. 4.39. This is indicative of signal arising primarily from large

size (~ 95 nm) a-A120 3 crystallites (-68.4%), (also see Table 4.8).

a b .

A1203

NOCN

Fig. 4.38: a) TEM micrograph depicting non-preferred dispersion of A120 3 particles onto

CNT surface, and b) incomplete sintering of A120 3 particles embedded in CNT network

and CNT fusion is observed. SAD pattern is embedded along with.
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Fig. 4.39: SAD ring pattern as indexed for major a-A120 3 phase.

The role of CNT dispersion in enhancing fracture toughness can be understood by

comparing A4C-B coating with A4C-SD coating as content of CNT is same in both

coatings. CNT distribution in A4C-SD is explained in the next section.

4.6.2: Enhancement of Fracture Toughness by CNT Dispersion in A4C-SD Coating

Figure 4.40 shows CNT dispersion in all the regions of fully melted, partially melted

and retained nano A12O 3 regions of A4C-SD coating. Presence of CNTs throughout the

matrix shall provide homogeneous and consistent properties of the coatings. A4C-SD

coating shows additional toughening mechanisms such as CNT pinning of splats, CNT

bridge formation and CNT mesh formation.
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CNTs in PM Region
7w

1, CNTs in FM Region 

Fig. 4.40: CNT retention and dispersion is observed in the PM, FM and nano-Al203

regions.

CNTs are present on the surface, in between the splat regions, and embedded in

the melted region of plasma sprayed A4C-SD coating, Fig. 4.41. CNTs entrapped in the

fully melted region indicate their survival in the plasma plume and consequent retention

in the deposited coating. CNTs in the fully molten region can directly add onto the

excellent mechanical properties. CNTs present on the surface assist shock absorption

during impact and serve as energy absorption regions to result enhanced fracture

toughness. CNTs embedded between the splat regions serve as glue to hold the splats

together and at the same time act as strengthening agents.
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Fig. 4.41: Dispersion of CNTs in FM, PM and splat regions is observed in

A4C-SD coating.

Individual CNTs

v, ,J

Fig. 4.42: Non-agglomeration of CNTs in the nano-A120 3 particle matrix.
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Fig 4.42 shows non-agglomerated CNTs with the nano A120 3 particles. Retention

of nanoparticles in the semi-porous region acts as energy absorption sink in terminating

the crack-propagation.

Fig. 4.43 shows sintered n-Al 2O3 particles attached to extended CNT emanating

from the matrix. A120 3 particles are entrapped by curved CNTs indicating strong

interaction of the surfaces resulting in enhanced wettability. Wetting of surfaces,

therefore, becomes a dominant factor in terms of reinforcing the ceramic nanocomposite.

Fig. 4.43: Engulfing of A120 3 particles by CNTs. A120 3 sintering is also observed in

the SEM image.
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Fig. 4.44 shows a CNT bridge between matrix splats. Thickening of CNT bridge

is caused by the flow of molten A120 3 over CNT surface. Curvature effect at the ends of

CNT is due to the capillary action responsible for covering the CNT along its surface.

Excellent wetting of CNT by molten A120 3 is evident from Fig. 4.44. Though increased

wetting of CNT with molten A120 3 is observed, currently there is no data on the

determination of wetting angle [218] and interaction of A120 3 and CNTs. The existing

literature on A12 0 3-CNT and ceramic-CNT nanocomposite does not refers to wetting

phenomenon as these materials are processed via solid state processes such as sintering,

spark plasma sintering, and HIP [16, 172, 176, 186].

- Splat I

Splat 2

Fig. 4.44: CNT bridge formation between two splats in A4C-SD coating.
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Fig. 4.45 shows an interesting phenomenon of CNT mesh formation in A4C-SD

coating which can be explained in terms of wetting kinetics. Surface tension holds the

molten A120 3 over CNT surface as a coating during plasma spraying. Since increased

contact area leads to reduced surface energy, A120 3 coated CNTs come closer to each

other. As the volume of molten A120 3 over CNTs increases, surface tension is not large

enough to hold the molten liquid in place. Now capillarity has enough time to allow

seeping down of molten surfaces to leave behind a meshed network of CNTs, Fig. 4.45

[197, 219]. These phenomena have been validated by modeling the CNT-A120 3 interface,

which is explained in the later section.

CNT Mesh

Fig. 4.45: CNT mesh formation observed due to capillarity in the plasma

sprayed A4C-SD coating.
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TEM image of plasma sprayed A4C-SD coating, Fig. 4.46a, shows a single

dispersed CNT anchored at A12 0 3 surface. This is in contrast with A4C-B (Fig. 4.38)

coating that shows agglomerated CNTs. Enhanced fracture toughness observed for A4C-

SD coating is attributed to improved dispersion of CNTs in the matrix, along with

enhanced wetting of CNT surface by molten A12 0 3 during plasma spraying. Embedded

SAD pattern depicted presence of two phases, viz. a-A1203 and y-A120 3. An enlarged

image of the SAD pattern is shown in Fig. 4.46b.

Diffraction spots from y-A120 3 are observed as secondary diffraction away from

the primary transmitted beam, Fig. 4.46b. One of the diffraction spots of a-Al203 is

acting as primary beam for diffraction of y-A120 3 crystallites. Presence of dual phases is

indicative of precipitation of fine y-Al 20 3 crystallites (15 nm) in the a-A120 3 matrix

(~73nm).

Vicker indentation radial crack as observed in Fig. 4.47a is restrained by CNT

bridges across the propagating crack in A4C-SD coating [220]. Bridge structure

reinforces the splat separation during crack propagation leading to topsy-turvy crack path.

Hence, higher energy absorption regulates the reduced crack length to reinforce the

integrity of the structure. Herein role of dispersed CNTs in A4C-SD coating (Fig. 4.40

and Fig. 4.41) provides multiple sites of anchoring and bridging the splats (Fig. 4.44).

Solid-state sintered region, Fig. 4.47b, (also Fig. 4.42) fulfils the objective of

terminating the propagating crack by providing the necessary sink for energy relaxation.

Hence, combination of powder treatment to uniformly distribute CNTs, and controlling

the plasma parameters to obtain bimodal microstructure can greatly influence

improvement in the fracture toughness of the plasma sprayed nanocomposite coating.
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wit 2 a-A023 3

Fig.4.46: a) TEM image of dispersed CNT in A 2 3 matrix showing CNT fusion with

A1203. A1203 particle sintering is also observed. Embedded SAD pattern is enlarged,

and b) dual crystalline phases are seen in the diffraction image.
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Vicker Indent La
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Restrainin by CNTs

Crack Termination at Solid-State

Sintered Regionb

Fig. 4.47: Vicker indentation crack in A4C-SD coating depicting: a) radial crack

generation, and b) crack deflection and restraining by CNTs and crack.

termination at solid state sintered region.
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4.6.3: Enhancement of Fracture Toughness by CNT Dispersion in A8C-SD Coating

Plasma sprayed A8C-SD coating shows enhanced CNT content throughout the

matrix, i.e., entrapped in the fully melted region, partially melted region and present with

nano A12O 3 particles (Fig. 4.48). In additions, some agglomerated and undispersed CNT

are also observed indicating that CNT-agglomeration effect is not counteracted because

of increased CNT content. The role of CNT as reinforcing agent is beneficial in

enhancing the toughening of ceramic nanocomposite only in dispersed state. Fig. 4.49

shows clumps of agglomerated CNTs. Agglomeration tendency in the A8C-SD coating is

attributed to excessive CNT content (8 wt%) indicating that the optimized CNT content

in the composite spray dried agglomerate should be between 4 wt.% CNT and 8 wt. %

CNT. Presence of CNTs in the solid state sintered region and presence with nano A120 3

grains, Fig. 4.50, still assists in energy absorption upon impact. But it is possible that

increase of fracture toughness by addition of CNTs is getting neutralized by CNT

agglomeration. This is indicative of further optimization (of uniform CNT dispersion

with maximum CNT content) required for excavating a maxima of fracture toughness in

the provided composition range.

CNT fusion is also observed in the plasma sprayed A8C-SD coating, Fig. 4.51,

resulting in a CNT rope. Though nanotubes are known for offering tensile- and bend-

toughness [221], advantage of nanorope CNTs to serve as strong fortification can be

extracted efficiently in the nanocomposite coating. In addition to the intra-nanotube

sliding potential of graphitic planes in CNTs, superior toughness of CNT-rope in

comparison to carbon fiber of equivalent diameter must be realized owing to higher

torsion stiffness and inter-nanotube sliding-capability of CNT-rope structure.
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Fig. 4.48: CNT distribution in the plasma sprayed A8C-SD coating
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Fig. 4.49: SEM image showing CNT retention and agglomeration in A8C-SD coating.
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CNs on

CNT Network

CNTs n Solid State
Sintered Region

Fig. 4.50: Fracture toughening enhancement via presence of CNTs in solid state

sintered region and its presence with nano A12 0 3 particles. CNT agglomeration as

CNT network is also observed.

CNT 1'usionl

Fig. 4.51: CNT fusion occurring in A8C-SD coating to result a rope structure.
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Schematic of torsional stiffening by rope structure is presented in Fig. 4.52. Shear

modulus of nanoropes may be contrasting to that of individual nanotubes since shear in

between the nanotubes will dominate over graphitic shear modulus [222]. Intertwining of

CNTs induce torsion stiffening upon loading, which improvises the overall toughness of

the nanocomposite, Fig. 4.52. Torsion stiffness (K) of CNT is given as [223]:

l d 2 E r3
K= - = -G(27rh) Equation 4.8

L d 2O L2

where 0 is torsion angle and G is shear modulus of CNT. Strong dependence of torsion

stiffness on CNT-diameter imparts enhanced reinforcing effect to the A120 3 matrix

making torsion stiffness an essential toughening parameter.

CNT

Torsional Stiffness

Fig. 4.52: Schematic of torsional stiffening by CNTs.

TEM of plasma sprayed A8C-SD coating depicts sintering of A120 3 particles in

Fig. 4.53a. Exaggerated fusion of CNTs is observed in Figs. 4.53a and 4.53b. Entrapment

of A120 3 particles by CNTs confirms the CNT dispersion by high surface energy of nano-
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Fig. 4.53: TEM micrograph of A8C-SD coating showing, a) A120 3 sintering with

embedded SAD a-A120 3 pattern, and b) CNT fusion and agglomeration with

embedded SAD pattern of y-A12O 3.
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A12O 3 particles. But, excessive agglomeration of CNTs is attributed to the enhanced CNT

content in the plasma sprayed A8C-SD coating. Light rings pattern in the embedded SAD

image (as two light rings in embedded Figs. 4.53 a and b) correspond to [1010] and

[3030] family of planes of CNT. Embedded SAD diffraction pattern in Fig. 4.53a

corresponds to a-A120 3 (indexed earlier), whereas SAD diffraction pattern in Fig. 4.53b

corresponds to y-A120 3. Diffraction pattern embedded in Fig. 4.53b is indexed in Fig.

4.54, and zone axis of [1I2] is measured.

Zone Axis = [112]

_4* 4

[402]

[311- - 0042]

220] --

Fig. 4.54: SAD Diffraction pattern of y-Al 2O3 indexed as zone axis of[112].

Fracture toughening of the nanocomposite depends on the load transferability

from A12O 3 matrix onto CNTs. CNT/ A120 3 interface is critical for stress transfer.
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Toughening mechanisms provided by excellent- bending stiffness (eq. 4.5), axial and

shear strength (eqs. 4.6 an d 4.7), and torsional stiffness (eq. 4.8) can play a part in the

presence of a strong CNT/ A120 3 interface. Interface is affected by wettability between

the two surfaces. Hence wettability between CNT and A120 3 is an underlying

phenomenon towards understanding of the interface properties.

4.7. Wettability of CNT-A120 3 Interface

Surface tension is defined as the surface force acting along a line per unit length.

Interatomic distances are stretched to balance the extra energy associated with the

unsatisfied surface atoms, Fig. 4.55a. Contact of the surface with another body often

reduces the surface tension and makes the system more stable. Since the nature has

tendency to minimize potential energy, adhesion and cohesion interplay to adjust contact

area/angle and equilibrate at dynamically stable state, Fig. 4.55b. It is clearly evident that

when cohesive force between solid and liquid is stronger than that of liquid and vapor

a) b

plet Droplet

0 > 900 indicating poor 0 < 900 indicating
wettability of droplet good wettability of

onto substrate droplet onto substrate

Fig. 4.55: a) High energy at surface results from unbalanced atoms, and b) Wetting

characteristic of droplet on a substrate.
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wetting occurs. Wetting is required in realizing good bonding between the substrate and

freezing droplet.

It is important to emphasize that high melting points of A120 3 (- 2333 K) and

CNT (- 3773 K) makes it very difficult to partake liquid droplet angle studies in such a

system. Since no theoretical literature is available on such a study, an effort is made to

calculate the freezing dynamics involved in the plasma spraying. Surface tension and

capillarity are taken as reflective measures of understanding wettability between CNT

and A120 3. Pressure jump across a curved surface can be defined by Young-Laplace

Equation:

dA
Ap = 7 .dA Equation 4.9

dV

where y is the surface energy at constant pressure and temperature, given as:

dG
y = Equation 4.10

dA P'1

which can be further simplified as

Ap = Equation 4.11
r

Equations 4.9 through 4.11 clearly indicate the enhanced free energy of nano

particles due to enhanced surface area (at reduced particle radius). CNTs tend to

agglomerate in order to reduce their surface energy. But, this aspect is used to our

advantage by dispersing CNTs in the nano-A12 0 3 matrix, fig. 4.4 and fig. 4.5. Owing to

increased surface energy of nano A120 3 particles [123], strong seeking and adherence to

other surface becomes a requirement to reach stability. Instead of CNT agglomeration,
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now selective agglomeration is negated and surface forces dominate toward uniform

distribution of particles (in the nanometer range).

CNTs and nano A120 3 particles are seen to distribute without biased

agglomeration, Fig. 4.4 and 4.5. The importance of attaching one surface in order to

reduce the surface energy is seen via CNT-rope formation in Fig. 4.51. Non-preferential

attachment of A12 0 3 and CNTs is observed by scattered particles in TEM micrograph,

Fig. 4.38 and 4.53.

Interfacial studies on alumina-CNT are almost non-existent in the literature owing

to increased complexity of ultra high temperatures and solid state processing by other

researchers [193]. Since surface is the sole direct contact with surrounding environment,

capillarity and surface tension are the only direct measures in defining wettability. A

system of A120 3 wetting on CNT is defined through Fig. 4.56. In considering

theoretical/computational modeling, it is assumed that molten A120 3 layers onto CNT

surface by capillary action, where it freezes instantaneously mimicking the dynamic

equilibrium depending on surface tension, 4.57. Rapid kinetics inherent to plasma

spraying (dwell time of ~ 4 x 10 4 s) is fast enough to freeze frozen A120 3 droplet before

it dropped from CNT surface, Fig. 4.57. Effects of gravity are neglected and resulting

microstructures are taken as representative model for surface forces towards defining

wettability. Since constant equilibrium contact angles are not experimentally observed

owing to changing 'true' contact angles, it is a valid assumption to assume dynamic

freezing as a representative model [195].
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Y hm r1 Molten-A1203 Layer

Fig. 4.56: Theoretical representation of the CNT wetting by molten A120 3.

CNT

Fig. 4.57: Rapid kinetics of plasma spraying demonstrating freezing of A1203 droplet

before surface tension is overcome by gravity.
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Capillarity forcef, is defined as [219]:

_ y(cos 1 + cosO2 )-G Equation 4.12
hm

where y is the surface energy (taken as ~1.59 J/m 2 for A12 0 3), and 0 is surface projection

area and h,n is the meniscus height. Higher meniscus infers reduced capillarity, but

increased surface tension leading to enhanced wetting of CNTs by A120 3.

Surface tension Ts is defined as [197]:

T = ly.cos a Equation 4.13

where l is the perimeter contact, and y.cos a is the vertical component of the surface

tension, Fig. 4.56. Surface tension is caused by difference in the magnitude of surface

forces where difference in forces of adhesion and cohesion results wetting/dewetting of

liquid droplets onto substrates.

Theoretical calculations performed on the system are presented in Table 4.10.

CNT diameter is assumed to be 70 nm, approximate angles of contact are calculated from

the experimental results (SEM micrograph, Fig. 4.43), and various meniscus heights are

assumed to theoretically calculate the perimeter contact, and the surface projection area.

Meniscus height, perimeter contact and surface projection area are dominating factors,

which define the capillary force and surface tension occurring at A120 3 coated CNT

interface.

Figure 4.58 describes various interactions in assimilating interfacial capillarity

and surface tension with respect to meniscus height of A12 0 3 over CNT in differential

microstructures. This depends on time and temperature experienced during plasma

spraying. As the meniscus height increases, the surface tension of molten A12 0 3 should
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Table 4.10: Theoretical calculations of capillary force and surface tension on A12O 3-CNT interface (CNT diameter assumed to be

70 nm): (* represents calculated value from observed micrograph, Fig. 4.44)

Meniscus Perimeter Surface Surface
01 02 a Capillary Surface Tension (TS)

Height (hm) degrees degrees degrees contact, Projection Energy,
nm dgesdgesdges 1 nm area (S) nm2  =1.59 J/m2) force (fe) nN nN nm/nm

10 16.39 13.34 64.29 30 40 1.59 12.61 40.4
25 15.36 18.85 25.72 75 90 1.59 11.32 116.3
30 24.20 17.86 0.00 105 110 1.59 9.83 167.0
50 14.04 15.64 -38.57 150 160 1.59 10.09 225.1

70* 14.87 16.32 -90.00 210 195 1.59 8.78 236.2
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Surface forces on CNT-A120 3 interface
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10100
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Meniscus Height (nm)

Surface Tension --- Capillary Force

Fig. 4.58: Surface forces on CNT- A120 3 interface (CNT diameter assumed 70 nm).

suffice its holding against capillarity to seep down. Similarly low meniscus height

insinuates ease of holding down molten A120 3 rather than allowing it to rise as a coating

over CNT. It must be clarified that seeping down of A120 3 can occur even at a later stage

when enough mass of molten A120 3 dragged over CNT cannot be supported by surface

tension. These phenomena can be further split into three stages namely:

i) Stage 1: Surface tension dominated region

ii) Stage 2: Intermixed mode

iii) Stage 3: Capillarity dominated region
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Stage 1 is characterized by occurrence of high surface tension (- 236.2 nN

nm/nm), wherein molten A120 3 freezes onto CNT to form a thick coating, Fig. 4.59. The

process has just enough time to allow quick flow of molten A120 3 over CNTs via

capillary action, and cause consequent freezing of A120 3 as a coating. Though CNTs

assist reduction force seeping down of molten A120 3 by capillary flow, surface tension

force dominates and holds molten A120 3 as a coating (upto 40-50 nm) over CNT. This

bridge-like structure improves the fracture toughness of the nanocomposite by serving as

anchors to the adjoining splats.

A12O3 Coated CNT '
Bridge 

t

Fig. 4.59: Stage 1 showing surface tension dominated bridge structure.
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Intermediate mode (stage 2) is described by entrapment of CNTs along the solid

state sintered A12O 3 regions, where wetting by Al 2O3 is just occurring, and there is just

sufficient time to entrap a few CNTs before they can merge as a mesh. Both capillarity

and surface tension of A12O 3 play a key role in generating the trimodal microstructure,

Fig. 4.60. Trimodal microstructure is highly beneficial in enhancing the fracture

toughness of nanocomposite, i.e., second phase strengthening by nanoparticles and

CNTs, structural strengthening by fully molten regions, energy absorption at partially

molten regions, and ductility enhancement by grain sliding of nano particles.

CNTs in Solid e Sintered
Region

Fig. 4.60: Stage 2 showing CNTs entrapped in A1203.
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Once the molten A120 3 flows onto CNT surface, the surface tension of liquid

attracts the surrounding A12 0 3-coated CNT and merges them together. After enough

Al2O 3-surfaced CNTs are accumulated altogether, it becomes difficult to hold molten

alumina by surface tension alone. Owing to the increased volume of surrounding liquid

(molten A120 3), the capillarity reduces the surface tension by its seeping out molten

A120 3 and leaving CNT structure as a mesh, Fig. 4.61 (stage 3). This mesh has a very thin

layer (few nanometers) of molten A120 3, which in true sense is reinforcement by flow of

A120 3 ceramic into intricate surface of CNT. Thickening and smoothening of CNTs is

visible in Fig. 4.61.

CNT Mesh

Fig. 4.61: Stage 3 showing capillarity dominated CNT-mesh.
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Hence, excellent wettability of A120 3 on CNT surface is observed via formation

of A12 0 3 coated CNT, solid state sintering and CNT mesh formation (Fig. 4.56-4.61).

Rapid solidification kinetics, inherent to plasma spraying, might be reasoned to attribute

enhanced wettability observed in the current work. Nucleation frequency (I ) of A12 0 3

on CNT surface at a temperature (T) can be expressed by eq. 4.14 as [224]:

IV = Kv exp - AG*f(O) Equation 4.14

where K, is kinetic parameter, 0 is the wetting angle, and AG* is the excess free

energy of the critical nucleus, and k is the Boltzmann constant. Since rapid solidification

offers enhanced excess free energy for nucleation, it must be balanced by reduction in the

wetting factor f(0). The wetting factor expression [225] {f(0)=(2+cos 0)(1-cos 0)2/4)

further clarifies reduction of wetting angle (and enhanced wettability). Moreover,

heterogeneous nucleation reduces the excess energy barrier of nucleation [225], allowing

rapid solidification of A120 3 by wetting CNT surface.

Wetting, therefore immediately raises the question of secondary phase generation

at the CNT-A12O 3 interface. In order to understand the fundamental thermodynamic

predictions, FactSage thermochemistry software is used to construct phase diagram of Al-

O-C system (Fig. 4.62). A12O 3 and C emerge as the only stable phases present in the

current systems (A4C-B, A4C-SD, and A8C-SD). Thermodynamics calculations convey

very low activity (~6.8889 x 10-19 at 2200 K) of A14C 3 even near the melting point of

A12 0 3, and on the other hand, CO and CO 2 product gases will tend to destabilize the
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interface. Consequently, there is no stable reaction product of A120 3 reaction with C, eq.

4.15.

2A12 0 3 + 6C -> A14C 3 + 3 CO 2  Equation 4.15

AG = + 700.2 KJ (at 2200 K)

AG = + 558.4 KJ (at 2500 K)

AI - C - O

AactSage'

Al

0

Al-Liquid + A6O3(s4)

0

AlO3(liq) + Al-Liquid

0

-.... -2200 K
- Al-Liquid + Al4C3(s) + 3(s4) 0 2500 K

0; -

0

b 0A14C3(s) + C(s) + A203(s4)o ~Ah03(liq) +AI-Liquid +C(s)

o" 0' Al-Liquid + AlzO 3(s4)

AbOQ(liq) + Al-Liquid
Al-Liquid + C(s) + A60 3(s4) p

C 0,9 0 0.7 06 0.5 0.4 03 0.2 01
mole fraction

Fig. 4.62: Phase stability diagram calculated from FactSage software [226]. Activity of

A1203 = 1, activity of carbon =1, and activity of A14C3(s)= 1.7429 x 10-18.
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Hence, formation of secondary phases such as carbides is not preferred in the Al-

O-C system. In addition, absence of prism planes in CNT also restrict free C bonds being

available for bonding with Al and O. Surface wetting of CNTs by A120 3 is therefore not

influenced by presence of any secondary phases, and can be extracted as direct

interacting interface. After the interface is defined, ab-initio computational modeling can

provide atomic interaction at molecular level. Visualization of interfacial atoms can

evolve understanding of interfacial reactions enhancing the fracture toughness of ceramic

nanocomposite.

4.8. Ab-initio Computational Modeling of CNT-A120 3 Interface

Since capillarity and surface tension are defined by the interfacial reaction of

A12 0 3-CNT, it becomes critical to visualize the molecular phenomenon at such level.

Surface energy of oxygen terminated A120 3 is in the range 4.45 - 10.83 J/m 2 , whereas Al

terminated A120 3 possesses surface energy of 1.59 J/m 2 [196]. Though CNT surface is

much stable with surface energy of 0.2 J/m 2, nano surfaces often are understudied and

depict non-intuitive behavior. Al-graphite can drain the surface energy down in the 0.02-

0.4 J/m 2 range, making a strong possibility of a stable system [194]. Ooi's molecular

modeling of Al-graphite depicted no bonding at the interface [194]. In addition to the

absence of oxygen in the system, representation with specific cross-sectional plane in

demonstrating Al-C interface, overall bonding at the interface was absent.

In the current A12 0 3 -CNT system, stable lxixl a-A1203 (a=4.76 A x b=4.76 A x

c=12.99 A, a=900 , P=90 0, y=1200) crystal is interfaced with 2x2x2 CNT surface (a=2.46

A, b=2.46 A, c=6.71 A, a=900, P=90 0, y=1200), Fig. 4.63. Since Al-terminated A120 3
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shows a more stable interface, Al-terminated A120 3 crystal is considered for modeling the

interface. Schematic of atomic positions of A120 3-CNT system is presented in Fig. 4.63,

which define the system considered for atomistic simulation. Ab-initio SIESTA 1.3

computational modeling details are provided in section 3.6. Conjugate gradient

optimization of atomic positions provides equilibrium positions of the resulting structure.

This consequently provides electronic density surfaces of various layers that can be

plotted to understand the interactions occurring near/at CNT-Al20 3 interface. Planes A,

B, C and D are considered to describe various interactions occurring at various levels of

influence from the interface.

Oxygen

" Aluminum

. Carbon

Plane C ---
(A120 3 Interfacial Plane D

Layer) ~~'(Interface Pseudo Plane)

Plane B

(Graphitic Interface)

Plane A

(Below Interface)

Fig. 4.63: Al 2 03-CNT system defined in ab-initio computational modeling.
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The iso-surface contours for unaffected graphite (0001) layer (plane A) are

presented in Fig. 4.64a. This shows the periodic and regular energy contours between the

carbon atoms. As the interface approaches, the interference from the A12O 3 surface on the

graphite layer is depicted by the distortion of the periodic energy contours, Fig. 4.64b.

Influence from the surface atoms of A12O 3 crystal depicts clustering of electron cloud

between aluminum and carbon along the interface. Oxygen terminated A12O 3 surface

might further destabilize the interface by formation of CO or CO2. Thermodynamics of

the reaction presented as eq. 4.15 clearly obviates the necessity of considering this

reaction.

Ka Plane A Plane B
x

0 11

o tr f s n4sf
Fig./ 4 p lnes,A ~~0 3 48349

Periodic and regular iso-surface Interference by alumina on the
contours of carbon layer J iso-surface contours of carbon

Fig. 4.64: Isosurface contours of graphite layers at a) uninfluenced planes,

and b) near interface plane.

Aluminum terminated A12O 3 crystal illustrates presence of three aluminum atoms

at the interface (Plane C), Fig. 4.65a, which further insinuates the contribution of
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aluminum atoms in distorting the energy contours at the interface (plane D), presented in

Fig. 4.65b. Pseudo bonding over the aluminum atoms (in the Al2 O3 crystal) is implying

pseudo bonding with carbon. Since high polarity indicates strong metallic bonding in

aluminum [194], distorted iso-surface contours confirm the pseudo metallic bond at

A12O 3-CNT interface. On the Al-terminated surface, weak binding energy with silver

Da Plane C b Plane D

10 1 1 A34Cbpe

Y 'L metallic bond

Fig. 4.65: Isosurface of a) aluminum surface-terminated alumina crystal, b)

aluminum-carbon pseudo metallic bond interference at alumina-CNT interface.

(~0.5 eV) and low activation barrier (~0.25 eV) might allow rapid diffusion and bonding

on this surface [227]. Direct evidence from molecular modeling result clearly shows the

possibility of enhanced interfacial bonding between Al and C. Enhanced interfacial

strength of A12O3-CNT system will provide enhanced fracture toughening. It makes sense

because crystal with high surface energy will try to adhere to a new surface in order to

minimize its overall energy.
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Some experimental data already demonstrates the stability of Al-C interface

(energy ~ 0.02-0.4 J/m 2) in comparison to self-existing A120 3 or graphite crystals [194].

It is quite viable that partial bonding at interface interconnects the CNTs by introducing

humps and encouraging strong wettability. Moreover, the unconnected region acts as

energy sink during impact to further enhance the interfacial strength. Though these

molecular simulations consider A12 0 3-graphite interface, this model closely mimics the

surface properties of A12 0 3-CNT interface. This combination of interfacial linking

abridges the gap that had existed in describing the wettability of the CNTs with A120 3.

Consideration of bulk structure, gravity effects, and rapid solidification can further alter

the interpretations from the molecular modeling studies. An exhaustive modeling of this

work is recommended for computational researchers in describing the surface interaction

more effectively.

Interfacial atomic interaction can be scaled through interpretation of load transfer

at interfaces via formulating i) contact points between A120 3 surface coating the CNT

surfaces and ii) A12 0 3 -A12 0 3 splat interface, which completely describes stress transfer

between A12O 3 coated CNTs and A12 0 3 matrix. Since cohesion is stronger in similar

adjoining materials (A12 0 3- A12O 3), the weaker interface (A12 0 3 - CNT interface) is

elucidated herewith. Stress distribution along A12 0 3-CNT interface can be modeled by

considering longitudinal stress of oy occurring within a distance of dx, balanced by

interfacial shearing, v,, as shown in Fig. 4.66 using eq. 4.16 as:

2)rt(o7 + do- ) - 2 JTrt f - 2zr .dx = 0 Equation 4.16

which simplifies to
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dx-= - Equation 4.17

where t is the wall thickness of the CNT.

Wettability influences the transition from interfacial to longitudinal stresses.

Thereby shearing between A12 0 3-CNT interface reinforces energy absorption resulting in

enhanced toughening.

-+do- 1

6f

Fig. 4.66: Interfacial Shear at A120 3-CNT interface.

Dominance of surface tension in conjunction with rapid freezing (section 4.7) can

evolve fascinating toughening junctions, as seen in Fig. 4.67. To reduce its surface

energy, molten A120 3 accumulates coated CNTs as ropes. Incomplete termination of

process can result formation of Y-junction ropes, which act as toughening anchors in the

matrix. Multi directional load bearing capability (shear and axial strength, eqs. 4.6 and

4.17) and flexibility (bending stiffness, eq. 4.5) at other end of the junction-ropes can

improve the fracture toughness of the ceramic nanocomposite.
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Though various mechanisms interplay in deciding the fracture toughness,

representative mechanical properties of generated structure can also be mapped from its

elastic modulus. Next section deals with the use of nanoindentation technique in

evaluating modulus of the plasma sprayed coatings.

Fig. 4.67: Dominance of surface tension in forming CNT Y-junction ropes.

4.9. Nanomechanical Modulus Mapping of Plasma Sprayed Coatings

Nanomechanical dynamic analyzer provides unprecedented characterization of

materials, such as modulus mapping of the plasma sprayed coatings over an area (to

render the stiffness associated with the content and distribution of CNTs). Nanoindenter

tip oscillates with small forces and rasters along the surface to monitors the displacement

and phase lag arising from material's response. Though surface asperities also influence

the modulus of the coating, uniformity of modulus can insinuate the dispersion of CNTs

in the coatings. Surface profile and corresponding modulus mapping is correlated with
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the distribution of modulus values to associate the overall range of modulus pertaining to

the coating. Instead of complex modulus, which involves the loss modulus, storage

modulus is taken as direct representative of the Young's modulus considering the non-

plastic fracturing of ceramics. Area of 4pm x 4 pm is selected for modulus mapping in

order to scan wide enough section in commenting the role of CNT content and dispersion

in contributing enhanced modulus of the plasma sprayed coatings.

4.9.1. Modulus Mapping of A-SD Coating

Surface profile of A-SD coating, Fig. 4.68a, is showing fine surface undulations

and nano scratches. Corresponding modulus mapping, Fig. 4.68b, show uniform structure

with modulus average of approximately around 210 GPa as observed in the color spread.

Blue streaks correspond to the scanning limit of the SPM (Scanning Probe Microscopy)

and edge effects arising from sharp corners. Neglecting those features, distribution of the

modulus along distance, Fig. 4.68c, and histogram of storage modulus, Fig. 4.68d,

provide average storage modulus around 210 GPa. Lower modulus values are typical to

the plasma sprayed coating, which are attributed to layered structure and porosity, which

is inherent to plasma sprayed structure. These modulus values can be taken as base values

for comparison with modulus mapping in presence of CNTs.

4.9.2. Modulus Mapping of A4C-B Coating

Topography of A4C-B coating is observed in Fig. 4.69a, which shows uniform

structure. Modulus mapping of A4C-B coating, Fig. 4.69b, shows storage modulus in the
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range of 200-300 GPa, with some regions reaching values upto 650 GPa, Fig. 4.69c.

Localized high value of modulus is attributed to the presence of CNTs at such locations.

Modulus mapping histogram shows average modulus of ~ 250 GPa, Fig. 4.69d. Shift of

average modulus in A4C-B to higher vale (when compared to A-SD coating) is attributed

to the presence of CNTs in the structure.

4.9.3. Modulus Mapping of A4C-SD Coating

In the uniform area of the topographical image shown in Fig. 4.70a, average

modulus value is ~ 300 GPa in the mapped storage modulus (Fig. 4.70b). Distribution of

modulus along the distance is presented in Fig. 4.70c.Reduced modulus values (<250

GPa) is arising from the valleys present on the surface. Dominating regions of modulus

appear bimodally at 250 GPa and 350 GPa, as presented in the histogram, Fig. 4.70d.

Modulus values average at ~ 300 GPa, which is higher than modulus of A4C-B coatings

(~250 GPa). Increase in the modulus is attributed to uniform CNT dispersion in the

matrix. Bimodal modulus distribution can be attributed to the presence of FM and PM

regions.

Reduced modulus of ~ 250 GPa can be reasoned to presence of high solid state

sintered region where particles are consolidated by surface sintering. Increased modulus

of - 350 GPa can be reasoned to FM region which is densified by surface melting and

resolidification (along with entrapped CNTs). Hence the role of CNT dispersion (in A4C-

SD coating) is lucidly detailed by modulus mapping in comparison to that of A4C-B

coating.
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Fig. 4.68: Plasma sprayed A-SD coating showing, a) Surface topography,

b) Modulus map, c) Line scan distribution of storage modulus with

distance, and d) Histogram of modulus distribution.
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Fig. 4.69: Plasma sprayed A4C-B coating showing, a) Surface topography,

b) Modulus mapping, c) Line scan distribution of storage modulus with

distance, and d) Histogram of modulus distribution.
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Fig. 4.70: Plasma sprayed A4C-SD coating showing, a) Surface topography,

b) Modulus mapping, c) Distribution of storage modulus with distance, and d)

Histogram of modulus distribution.
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4.9.4. Modulus Mapping of A8C-SD Coating

Topography of plasma sprayed A8C-SD coating appears rough, Fig. 4.71a, but

modulus mapping shows enhanced overall modulus, Fig. 4.71b. Dispersion of modulus

line scan, Fig. 4.70c shows modulus in the range of 200 - 500 GPa. Here again, bimodal

modulus peaks are observed at ~325 GPa and ~ 420 GPa in Fig. 4.71d. Increase in the

modulus is attributed to enhanced CNT content in the coating. Dispersion of CNTs in the

solid state sintered region is resulting modulus ~ 325 GPa, whereas CNTs reinforcing the

fully molten region further increase the modulus to ~ 420 GPa. Hence, modulus mapping

vividly differentiates the role of CNT content in enhancing the elastic modulus and

fracture toughness of the A8C-SD coating when compared to A4C-SD coating.

Since storage modulus falls in phase with the materials response, it is the direct

measure in relating the resilience of a material. Stiffness associated with the content and

distribution of CNTs is captured in the nanomechanical dynamic characterization.

Corresponding fracture toughness of the plasma sprayed coatings directly correlate with

the modulus maps. Local area evaluation of modulus in the coatings, therefore, is a direct

measure of increase in fracture toughness. Nanomechanical analysis becomes an

unmatched tool in mapping mechanical properties of the plasma sprayed nanocomposite

coatings. Localized effects of dispersion strengthening by CNT content and CNT

dispersion are clearly visualized through nanomechanical data. Modulus mapping,

therefore, completes the picture of associated fracture toughening via CNT

reinforcement.

180



nm b Storage Modulus (GPa)
24.1

w ~ 12.0
;t -

0.0
Image Scan Size: 4.000 pm

0 100 200 300 400 500

A8C-SD Coating

7 0 0

" * i600 * -

500 . -

= 4 00 ,t *N .*. " * * :... +* M f
S300% ! % $.t fi "f .""w I+f}I

0

0 0.5 1 1.5 2 2.5 3 3.5 4

Distance (microns)

4-

3-

b Mu 0 mpig -- -Line st04. 1 0.5 0L 200 1. 25. 42. 45 . 5 40.

distance, and d) Histogram of modulus distribution.

181



5. CONCLUSIONS

CNT reinforced aluminum oxide nanocomposite coatings have been successfully

synthesized using plasma spray technique. Fracture toughness enhancement of upto 57%

have been attained in the engineered coatings. Role of CNT retention and dispersion is

elucidated towards understanding various toughening mechanisms. A detailed list of

conclusions regarding the powder treatment, microstructural and phase characterization,

A12 0 3/CNT interface, and mechanical properties are presented herewith.

1. Blending of A-SD powder with 4 wt. % CNTs (A4C-B powder) has resulted

dispersion of CNTs on the surface of powder agglomerate, and accumulation of

CNTs in the dome cavity of the powder agglomerate. Composite spray drying of

nano A120 3 and 4 wt. % / 8 wt. % CNTs (A4C-SD and A8C-SD respectively)

have resulted dispersion of CNTs uniformly throughout the powder agglomerate.

CNTs are also dispersed in the core of the powder agglomerate.

2. Plasma spray parameters were effectively controlled using inflight particle sensor.

In combination with pretreatment of the powder and controlled process

parameters, a bimodal microstructure (fully melted and resolidified structure, and

solid state sintered structure) was engineered in A120 3 matrix.
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3. CNTs are successfully retained in the plasma sprayed A4C-B, A4C-SD, and A8C-

SD coatings as confirmed via microstructural characterization and Raman

analysis. Retention of CNTs is attributed to the rapid kinetics (dwell time of ~

4x10-4 s) involved in the plasma spraying.

4. Distribution and content of CNTs in the powder agglomerate have strong effect

on the thermal exposure observed by powder particles in the plasma plume

(measured via inflight particle monitor). A4C-B coating experienced temperatures

of 2898 K (with velocity of 271 m/s), which is higher than that of A-SD coating

(2512 K, 289 m/s). A4C-SD and A8C-SD coatings experienced reduced thermal

exposure (2332 K (244 m/s), and 2241 K (232 m/s) respectively) owing to core-

CNTs serving as 'heat-sinks'.

5. Generation of metastable y-A120 3 phase is dependent on the thermal exposure

experienced by CNTs available on the surface of powder agglomerate. Bimodal

crystallite size (- 20 nm for y-A120 3 and > 40 nm for a -A12O 3) is obtained.

6. Addition of 4 wt.% CNT (in A4C-B coating) showed an improvement of 20 % in

fracture toughness (from 3.22 to 3.86 MPa m1) when compared to AC-SD

coating. But, addition of dispersed 4 wt.% CNTs (A4C-SD) coating showed an

improvement of 43% (to 4.60 MPa m1/2). This evinces enhancement of fracture

toughness just because of CNT dispersion owing to powder treatment. Further,

increasing the CNT content to 8 wt.% (A8C-SD coating), fracture toughness
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increased to 5.04 MPa m1 2 which is indicative of fracture toughness enhancement

(by 57 %) because of increase in CNT content.

7. Toughening features such as impact alignment of CNTs along interface, CNT

hooks, CNT bridge formation, CNT fusion on A12 0 3 surface, and CNT chain loop

formation are observed. Enhancement of toughness is attributed to mechanisms

such as interfacial shear strengthening, high bending stiffness, enhanced energy

absorption, and good torsional stiffness associated with excellent mechanical

properties of CNTs.

8. Improved wetting is observed between molten A12 0 3 and CNT surface.

Phenomenon like CNT bridging, CNT entrapment in the solid-state sintered

region, and CNT mesh formation are dominated by interplay of surface tension

and capillarity. As estimated from theoretical computation modeling, high surface

tension (-236 nN) was pinned for promoting high meniscus height, whereas

increased capillarity (~12.6 nN) was reasoned for CNT meshing.

9. Computational ab-initio modeling was performed to evince electronic charge

density perturbations observed along the A12 0 3-CNT interface. Overlapping of

electron cloud at the A12 0 3-CNT interface in forming pseudo metallic bonding

(charge density > 0.3), which is indicative of adhesion and good wettability at the

interface. Effect of rapid kinetics inherent to the plasma spraying is attributed to

enhanced-wettability associated in the A12O 3-CNT system.
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10. Effect of CNT dispersion in enhancing the elastic modulus is identified using

nanoindentation dynamic modulus mapping. A-SD (- 210 GPa), A4C-B (~ 250

GPa), A4C-SD (-280 GPa) and A8C-SD (-325 GPa and 420 GPa), clearly

indicate increase in the modulus with increasing CNT content and distribution.
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6. RECOMMENDATIONS FOR FUTURE

Every dissertation is a connecting link between new paradigm of science and

engineering tying its free end with the advancement of scientific knowledge. Plasma

spraying of CNT reinforced A120 3 was performed to produce enhanced toughening of the

nanocomposite coatings using pretreatment of powders. Detailed optimization,

microstructural characterization, phase analysis and mechanical property evaluation of

the coatings have elicited toughness improvement of upto 57 % when compared to that of

unreinforced coating. During the completion of the dissertation or a major research

project, it is always the desire to hover on a few more dimensions of research.

Perspectives from different directions and endless discussions on some of the

undiscovered aspects germinate the seeds of further development and are recommended

for future dwelling as follows:

6.1. Optimization of CNT Content in Aluminum Oxide Matrix

Fracture toughness enhancement of 43% (4.60 MPa m 2) was observed in A4C-

SD coating when compared to that of A-SD coating. Agglomeration of CNT in A8C-SD

coating could not be fully avoided even though it displayed fracture toughness

enhancement of 57% (5.04 MPa m1/2). This is indicative of intermediate composition of

CNT (between 4 and 8 wt.% CNTs) in A120 3 matrix where CNTs can be full dispersed

without agglomeration to provide highest toughness. A systematic parametric study could

be performed to optimize CNT content and its uniform dispersion in providing maximum

fracture toughness.
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6.2. Plasma Spraying of Insitu grown CNTs On Al 2O 3 Powder Particles

As observed in the current research that CNT dispersion is critical in imparting

enhanced fracture toughness. Instead of adding CNTs separately in the powder feedstock

via blending and spray drying, CNTs can be grown insitu on A120 3 powders. Advantage

of insitu grown CNTs can provide the required anchoring and dispersion throughout the

matrix in each powder particle. However, a critical control is required on insitu grown

CNT length and their density on each A120 3 powder particle. CNT length should be short

enough to avoid entanglement and subsequent clogging of powders during plasma spray.

On the other hand, CNTs should be long enough to allow inter-splat anchoring.

6.3. Molecular Dynamics Simulation of A120 3/CNT Interface

Energy of formation could be compared for different structures such as A120 3, a-

A120 3/CNT interface and -A 20 3/CNT interface in deriving stable atomic configuration.

Molecular dynamics approach can be applied to calculate force of separating CNTs from

A120 3 surface. Measuring the force of separation points out the work of adhesion required

that would be absorbed by interface before fracture. This can directly indicate the

dependence of interface on the fracture toughness related to the modeled system.

6.4. Hot-Isostatic Pressing of Plasma Sprayed Nanocomposites

Role of secondary densification processing in enhancing the fracture toughness of

the plasma sprayed nanocomposites can throw light on the role of porosity in imparting

toughening behavior. Retention and distribution of CNTs in the hot-isostatically pressed

(HIPped) coatings will elucidate the damage tolerance of CNTs under high temperature
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and pressure. Consequently, balance between the retention of CNTs (and its damage) and

the porosity closure will decide the overall toughening of the nanocomposite. HIP study

will differentiate the role of porosity versus CNT on the fracture toughness of A120 3-

CNT nanocomposite coating.

6.5. Estimating Flexural Strength of Plasma Sprayed A12 0 3 -CNT Nanocomposite

To estimate the flexural strength of the bulk structure, three-point bend test can be

utilized on freestanding samples. But, one of the major challenges is to machine such a

thick and large sample for 3-point test from these brittle materials. Flexural strength

should be evaluated in plasma sprayed and hipped conditions to differentiate the role of

porosity in toughening (and/or strengthening) the ceramic nanocomposite.

6.6. Sliding Wear Evaluation of A120 3 with CNT Addition

One of the major applications of A12 0 3 is as wear resistant coatings. Effect of

CNT content in improving the wear resistance by anchoring the splats should be studied

for its tribological performance. Hence sliding wear resistance of the novel coating with

different CNT reinforcement should be evaluated. In addition, investigation of A120 3-

CNT frictional coefficient and abrasion resistance can explain its usage in thermal liners

and insulating systems.
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APPENDICES
Appendix 1: As-Received CNT Characterization

SEM image of CNTs show an average diameter ranging between 40-70 nm, Fig. Al.

Though CNTs show XRD diffraction peak of 2-theta around 26 degrees, Fig. A2, high

intensity peaks arising from A12O 3 suppress CNT peaks in plasma sprayed

nanocomposite coatings.

Fig. Al: SEM image showing CNT diameter in range of 40-70 nm.
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Fig. A2: XRD spectrum of CNTs showing intense peak at 26 degrees.
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Appendix 2: Modulus Enhancement with CNT Addition (Micromechanics Approach)

Micromechanics illuminate the interaction of matrix and reinforcement to

determine the overall properties of composite depending on the individual properties

constituents [41]. Hence the intention of adding CNT reinforcement in the A12 0 3 matrix

can be insinuated from micromechanics approach. Anisotropy, aspect ratio and

morphology of the reinforcement are also accounted in mechanics model to describe the

resulting properties of resulting combination. When overall response of the composite

can be predicted via constituent relationships, it becomes easier to design the

homogeneous (and generally isotropic) material [42].

Tensile and shear modulus of randomly distributed CNTs in a matrix can be

described by eq. Al and A2 as [43]:

3 5
E= - E + - E22  Equation Al

8 8
1 1

G = - El +- E22  Equation A2
8 4

where longitudinal modulus (E 1 ) is given by eq. A3 as:

E 1 1 = 1+ 2(lCNT / dCNT )7L CNT Em Equation A3
1 - !LVCNT

and transverse modulus (E22) is given by eq. A4 as:

E22 = 1+ 2V'N7' Em Equation A4
1 -rT vCNT

and the other parameters are expressed as:

(ECNT / E)-1
y7 = ( /Em)±(l.J/dN)Equation A5

L fECNT' Em )+ 2(1CNT. l dCNT

17' = (ECNT Em ) 2 Equation A6
E E0+ 2
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Properties of such a composite are same in all the directions. By substituting the

tensile moduli of A12O 3 (taken as 390 GPa, and Poisson's ratio of 0.22), one can calculate

the overall effect of volume fraction of CNTs, and effect of 1/d ratio of CNTs on the

composite stiffness. In addition, upper and lower range limits of Young's modulus of

CNTs, a working range of response can be obtained for composite material. Fig. A3

considered various l/d ratios of the CNTs and E/E (=E,) ratios for various combinations

to state that there was not much effect of l/d ratio of CNT on the effective stiffness. This

can be attributed to very small lengths of CNTs considered (0.5 to 15 microns) and

randomly aligned CNTs display average constant-volume-behavior. Young's modulus of

CNT is considered between 300 GPa (lower curve in Fig. A3) to 1 TPa (Upper curves in

Fig. A3)

Variation of E with fiber vol. fraction

Ematrix = 390 GPa
900 ECNT ~ 300-1000 GPa

800

700 UD=12.5, Ef/Em=0.77'

- UD=12.5, Er=2.56
E600

N UD=50, Er=0.77
S500 UD=50, Er=2.56

400 -K UD=375, Er=0.77

w 300- - -UD=375, Er=2.56

0 0.2 0.4 0.6 0.8 CNT Dia ~ 40 nm

Vol. Fraction of CNT Length = 0.5- 15 im

Fig. A3: Effective stiffness of randomly dispersed CNTs in A12O 3 matrix.
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Young's modulus of CNT (ECNT) is of critical importance since no significant

effect of 1/d ratio plays a part in deciding E11 of composite. But, at the same time, volume

percent of CNT has stronger effect on tensile and shear stiffness of the composite.

Eshelby and Hashin Shtrikman approach do not consider L/D ratio or particulate

geometry. As observed for randomly oriented fibers, that l/d ratio do not impart much

effect on determining the overall stiffness of the composite, this is an acceptable

assumption. In addition linear elastic approach considered in this model is true in our

case owing to brittle nature of the ceramic composites. Tremendous improvement in the

properties of the CNT reinforced composite justifies the strengthening via CNT addition.

Rule of mixture (ROM), eq. A7, considers one-dimensional model to determine

elastic modulus (E) [44].

EC =VCNT ECNT +Vm E, Equation A7

where the VCNT and Vm are the volume fraction of CNT, and matrix respectively, and ECNT

and Em are the Young's modulus of CNTs and matrix respectively.

Eshelby approach considers effective Young's modulus of heterogeneous material

with linearly elastic material response. It assumes randomly distributed spherical particles

in the matrix leading to isotropic nature of properties. Standard bulk, shear and elastic

modulus equations can be used in converting moduli dependencies, i.e, K=E/3(1-21z);

G=E/2(1+v); E=9KG/(3K+G). Bulk and shear modulus are given by eqs. A8 and A9

respectively:

K = Km - K Equation A8
K" 1+v"

KM -KCNT 3(lvM)
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G = 24 - 5) Equation A9
G"' 2(4 - 5v" )

Gm - G(NT 15(1- v ")

where KM, GM are bulk and shear moduli of matrix, v" is matrix's Poisson's ratio, KCNT

GCNT are bulk and shear moduli of CNTs, andf is volume fraction of CNTs.

Hashin-Shtrikman shows narrowed bounds of isotropically heterogeneous

material. Equations describing the bounds are expressed as:

f K-K f

(1-f)(KCNT -K M ) K(NT -K M (1-f)(KCNT KTM) EquationA

(K M + K) (K M + K+)

f G-G M  
_f

f_ - Equation All1
(1 - f)(G(:N' - G M ) GCN' - GM  + (1 - f)(GCNT - GTM )

(G" +G-) (GM +G+)

Condition I: If (GCNTG) (K CNT_KM)> 0

then K~= 4GM/3; K+ = 4 GCNT/ 3

G- = 3Equation A12

2 G" +9K" + 8G"

3
G1 = Equation A13

2 1 10

2 G( ' 9K CN' + 8GCNT

Condition II: If (GCNT-GM) (KCNTKM) <0

then, K = 4 GCNT /3; K+ = 4 GM /3

3
G - = 3Equation A14

1 10

G" 9K(N' +8G M
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G1 = 3 Equation A15
1 10

2 GNT 9K M +8GCNT )
Independency of particle shape in Hashin Shtrikman's approach, provides enough

leverage in calculating the bounds without worrying about the aspect ratio, and the

isotropy of the second phase. Fig. A4 compares the theoretical Young's modulus

calculations by various approaches. Experimental modulus values of A12O 3-CNT coatings

are compared herewith.

Comparison of Various Approaches

w 600-

550

3 500
0A8C-SD
Z 450

_a400

. 350 * A4C-SD * Experimental Modulus

300 (Nanoindentation)

250 * A4C-B
W 200A-SD

200
0 0.1 0.2 0.3 0.4

Fiber Vol. Fraction

-+- Rule of Mixtures -i- Eshelby Approach

-n- Hashin-Shtrikman_lower-bound -u- Hashin-Shtrikmanupper-bound

Fig. A4: Effective Young's modulus calculated by various micromechanics models.

Often plasma sprayed coatings depict reduced modulus owing to presence of

lamellar microstructure and presence of defects (such as porosity, inclusions, etc)

inherent to plasma spraying, as described in section 4.9.1.
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Role of Powder Treatment and CNT Dispersion in the Fracture Toughening of
Plasma-Sprayed Aluminum Oxide - Carbon Nanotube Ceramic Nanocomposite

Kantesh Balani, Srinivasa Rao Bakshi, Yao Chen, Tapas Laha,
Arvind Agarwal*

Mechanical and Materials Engineering Department, EAS 3464, 10555 W. Flagler St.,
Miami, FL-33174, USA

ABSTRACT:

A12 0 3 ceramic reinforced with 4-wt.% multiwalled carbon nanotube (CNT) is plasma

sprayed for improving the fracture toughness of the nanocomposite coating. Two

different methodologies of CNT addition have been adopted in the powder feedstock to

assist CNT dispersion in the nano-A12 0 3 matrix. First, spray-dried nano-A120 3

agglomerates are blended with 4 wt.% CNT as powder-feedstock, which is subsequently

plasma sprayed resulting in the fracture toughness improvement of 19.9%. Secondly,

spray dried composite nano-A120 3 and 4 wt.% CNT powder was used as feedstock for

attaining improved dispersion of CNTs. Plasma sprayed coating of composite spray dried

powder resulted in increase of 42.9 % in the fracture toughness. Coating synthesized

from the blended powder displayed impact alignment of CNTs along splat interface, and

CNTs chain loop structure anchoring the fused A120 3 melt whereas coating synthesized

from composite spray dried powder evinced anchoring of CNTs in the solid state sintered

region and CNT mesh formation. Enhanced fracture toughness is attributed to

significance of CNT dispersion.
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Abstract

Of late, nanotechnology seems to be rapidly thrusting its applications in all aspects of life including engineering and medicine.
Materials science and engineering has experienced a tremendous growth in the field of nanocomposite development with enhanced
chemical, mechanical, and physical properties. A wide array of research has been conducted in the processing of nanocomposites.
Consolidation of these systems from loose particles to bulk free form entities has always been a challenge. To name a few,
traditional consolidation techniques such as cold pressing and sintering at high temperatures, hot pressing, and hot isostatic
pressing have strong limitations of not being able to retain the nanoscale grain size due to the excessive grain growth during
processing. This article reviews in detail the results from numerous studies on various methods for manufacturing nanocomposites
with improved properties and retained nanostructures. Both challenges and recent advances are discussed in detail in this review.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Nanostructures; Processing techniques: Mechanical properties; Processing challenges
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Abstract

Carbon nanotubes (CNT) possess excellent mechanical properties to play the role as reinforcement for imparting strength and
toughness to brittle hydroxyapatite (HA) bioceramic coating. However, lack of processing technique to uniformly distribute multiwalled
CNTs in HA coating and limited studies and sparse knowledge evincing toxicity of CNTs has kept researchers in dispute for long. In the
current work, we have addressed these issues by (i) successfully distributing multiwalled CNT reinforcement in HA coating using plasma
spraying to improve the fracture toughness (by 56%) and enhance crystallinity (by 27%), and (ii) culturing human osteoblast hFOB 1.19
cells onto CNT reinforced HA coating to clicit its biocompatibility with living cells. Unrestricted growth of human osteoblast hFOB 1.19
cells has been observed near CNT regions claiming assistance by CNT surfaces to promote cell growth and proliferation.
@ 2006 Elsevier Ltd. All rights reserved.

Keywordr: Hydroxyapatite coating; Carbon nanotube (CNT); Plasma spraying; Titanium alloy; Crystallinity; Human osteoblast

1. Introduction required for the increased implant life. In addition,
researchers have used carbon nanotubes (CNT), Ti-alloys,

Hydroxyapatite (HA), Cajo(P0 4)(OH) 2, is an attractive yttria stabilized zirconia (YSZ), Ni3Al, and alumina
biomaterial owing to its close chemical resemblance (Ca/ (A120 1) reinforcements to HA coating [7-9] for improving
P = 1.67) with bone and teeth [1-3]. Osteoblasts proliferate its fracture toughness and wear resistance [1,5,10-13].
onto HA owing to its bioactivity and biocompatibility [3,4] Chen et al. investigated mechanical properties of laser
and therefore HA coatings have long been applied to processed HA-multiwalled CNT coating showing strong
dental implants, bone repair scaffolds, skeletal implants, improvement in the fracture toughness and marginal
and body/bioinsert material [5]. Microstructure, crystal- improvement in the elastic modulus [1,14]. However, laser
linity, and phase composition of HA coating is critical in synthesized coating result in the formation of undesired
deciding its cell response and mechanical performance. TiC phase [1]. The purpose of addition of CNT was to
Plasma sprayed HA coating often result in the generation enhance the mechanical performance of the coating with-
of secondary phases such as tricalcium phosphate (TCP), out deteriorating the biocompatible properties of HA
tetracalcium phosphate (TTCP), calcium oxide (CaO), and [15 17]. On the contrary, CNTs have also been debated
amorphous calcium phosphates (ACPs) [6]. Though HA is as toxic [18] under organic environment [1,19]. Though in a
very stable in the body environment, presence of secondary recent study, osteosarcoma cell growth has been observed
phases causes dissolution leading to degradation of the on functionalized CNT [20], researchers have also depicted
implant in vivo. Hence, higher crystallinity content is micro patterning of CNTs to result directed growth of

osteoblasts [21], or surface modification with DNA- and

'Corresponding author. Tel.: + 1 305 348 1701: fix + 1 305 348 1932. HA-nanostructured films for enhanced detection and

E-mail address: agarwala(rifiu.edu (A. Agarwall. biosensitivity [22]. Haddon et al. has concluded that CNT

0142-9612/S-see front matter Q 2006 Elsevier Ltd. All rights reserved.
doi:10.1016,j.biomaterials.2006.09.013
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Effect of carrier gas on mechanical properties
and fracture behaviour of cold sprayed
aluminium coatings
S. R. Bakshi', T. Laha', K. Balani', A. Agarwal*l and J. Karthikeyan 2

Two different coatings of 1100 aluminium were cold sprayed onto similar substrates, using He and
He-20N2 (vol-%) mixture as carrier gases. Three point bend testing was carried out. The elastic
moduli of the coatings were found to be close to each other and the substrate. The He processed
coating showed higher fracture strength which was attributed to the higher degree of strain
hardening. The He-20N2 processed coating failed at lower stress owing to its strain relaxed
structure. The mode 1 fracture of the coating substrate system was found to be higher for the
helium processed coating. The toughness was correlated to the microstructure. The delaminated
coating showed a higher degree of brittle failure of the interface for the He processed coating.
Keywords: Cold spraying, 1100 amnium, Fracture surface, Fraaure tughness, Three point bend test, Elasic moduas, Brittle fracane, DeasTinabon,
Notch, Porosty, Carrier gas, Splats. Dislocation pie up, Sbgran formation

Introduction of particles, temperature of gas and density of gas and
spraying angle, and various models have been proposed

Cold spraying is a relatively new coating technique for the effect of various parameters.' 14
where metallic powder particles are accelerated to very In the authors' carlier work,'' 6 cold spraying of 1100
high velocities (600 1500 m s-') by a carrier gas (He. Al on 1100 Al substrate was reported. Two different
N 2 ) flowing at very high pressure (up to 3-5 MPa) and carrier gases, namely He and He 20N, (vol.-%), were
impact the substrate through a converging diverging de used to study the effect of carrier gas on the properties
laval nozzle.' The carrier gas is preheated to a of the coating. It was observed that the 100%He
temperature between 300 and 900RC, partly in order to processed coating had higher hardness than the He-
compensate for the cooling produced by expansion of 20N 2 processed coating. TEM analyis revealed disloca-
the gas and to reduce the density which in turn increases tion pile-ups and oxide layers in the He processed
the sonic velocity, but below the melting point of the coating. The He -20N2 processed coating showed
particles. The loss of kinetic energy on impact causes subgrain formation and a relaxed structure." There
plastic deformation of the particles. This process is also was more strain hardening in the He processed coating
known as cold kinetic spraying. The low temperature as compared with He 20N2 processed coatings.
solid state coating process eliminates problems owing to Potentiodynamic polarisation experiments in 0-9 pH
oxidation and defects owing to solidification. The H2S0 4 revealed that the corrosion current density was
disadvantage is that a large amount of carrier gas is higher for the He processed coating than for the He
lost, unless recycled, and that only plastically deform- 20N processed coating indicating superior corrosion
able materials can be deposited. Many materials have resistance of the He-20N_ processed coating.'
been depstitcd till date by cold spraying including pure The purpose of the present work is to study the effect
metals, 6 alloys and composite materials.' The exact of the carier gas on the fracture strength and interfacial

mechanism of the bonding is not fully understood. It is properties of the coating/subsrate and to establish

believed that impact of the particles results in rupture of correlation with the microstructure. Three point bend
oxide layers which provides clean surfaces for bonding. testing of the samples was carried out. The elastic
Bonding has been attributed to adiabatic shear instabil- modulus and fracture properties were studied.
ities at particle/particle and partick/substrate interfaces
owing to impact and has been modelled using finite Experimental
element analysis.'' The parameters affecting the The schematic of the three point bend test is shown in
process and spraying efficiency are particle size, density Fig. 1. A notch was introduced at the midpoint of the

specimen using a diamond saw. The initial crack length
was measured by optical microscopy of the erosa-

Rear St Departmentof lectaic and Mabrials Engineemng, section. Table I tabulates the dimensions of the samples
Fiorida irtiana Lbiisersly. Mami.w FL., USAp
'Director of Research and Developnent. ASS Industries, Barberton, OH, used.
USA For the three point bend test geometry the elastic
correspondingaulhor, emad agarwala6ffu.edu modulus of the coating/substrate system is given by the
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Kantesh Balani, Gabricla Gonzalez, and Arvind Agarwalt

Mechanical and Materials Engineering. Florida International University. Miami, Florida 3314

Robert Hickman and J. Scott O'Dell
Plasma Proceasei Inc.. Huntville. Alabama 35811

Sudipta Seal

Advance Material Process and Analysis Center (AMPAC), Department of Mechanical, Materials and Aerospace
Engineering (M MAE). University of Central Florida, Orlando. Florida 32H16

Iantalum carbide (Ta() is an ultra-high-temperature ceramic terial for next generation thermal heat protection. space air-
for potential applications as protective coating, furnace compo- crafts, automotive wear resistant liners, and propulsion.exposed
nents, propulsion liners for space shuttles and aircraft.s, etc. components, etc
Nicrostructural and mechanical behavior of vacuum plasma- Powder metallurgy and conventional techniques such as hot
sprayed (VPS) TaC has been inestigated in the present study, isostatic pressing, direct metal oxidation, extrusion, and hot
Apart from major TaC phase, microstructural definitions eluci- pressing, have been widely used for the densification and near
dated I a2 C, norstoichiometric TaC, phases (fJ R3x _1.94), net shape (NNS) forming of ceramic materials. Though prom.
partial grain formation, polygonization of grains, and inhomo- ising, these techniques lack the capability to fabricate contoured
geneots (./l'a ratios in the sprayed structure. Near-isotropy in and thin wall structures owing to high melting temperature and
the fracture toughne% ratio (K.dK,,m= 1.1l) is attributed brittleness of the ceramics. Hence, NNS processing of ultra-
to compact coating, fine-closed porosity, and distribution of non- high-temperature ceramics (UHTC as free-standing structures
stoichiometric phases. becomes a problem when following conventional processing

route.'3 Vacuum plasma spray formed tantalum carbide
(TC) provides an alternative to overcome fabrication hurdle

1. Introduction of high melting point materials and their brittleness. Plasma
plume reaches temperatures in excess of 10000 K and impacts

vTHtsRMAL protection systems, no77le throat inserts, and high the powders in molten or semi-molten states generating; typical
j erosion resistant thrusters require ultra-high-temperature mechanically bonded layered structure.'' It is important to

capability of material for withstanding exit gases under propul- emphasize that much of the literature research material for the
sion environment.' ' Candidate materials involve refractory applications of TaC, because of military applications, is spar-
metals, ceramic matrix composites, carbon carbon composites. ingly available,4' 9 In the current work, microstructural charac-
cermets. and intermetallics. but no single material has the de- terization is correlated with the observed mechanical property of
sired combination of physical, mechanical, and structural prop- the vacuum plasma.sprayed (VPS) TaC.
erties. Ceramic oxides are chemically inert. but they are more
brittle and susceptible to thermal shock than non-oxide ceram-
ics.' On the one hand refractory metals excel in high-tempera. 11. Experimental Procedure
ture strength, wear, and erosion resistance, but on other hand Ai-received TaC powder (with composition of 6.24 wt% C.posnsess low oxidation resistance, high density, poor machina- A.e34wte T, and rest wa. ow s in Fig. 1, has faceted mor-bility, and high cost) Ceramic borides possess high melting ph 13w% and resT. shown ing of has faceter
temperature, high hardness, and high thermal and electrical phology and is 1 2 pm in size. Spray drying of these fine powder
conductivity, but oxidation of boride leads to formation of particles resulted in spherical agglomerates of porous cakes

B!0 that has lower boiling point (1lLGYC) leading to large (Fig. 2) between 10 and 45 m, wiich is adequate for plasma
voids in the oxide layer. In summary. increasing order of melting spraying. This spherical morphology and idealized size help
points is: alloys (up to - 5SOOC). silicides (up to 2400"C). reduce interparticle friction enhance tlnvability of powder dur-
oxides (up to ~29tXVC), refractory metals, nitrides, and borides ing plasma spray and thereby improve the density of the sprayed
(up to ~ -35)00C). and carbides (up to ~4tNC)ri Hence, ce-
ramics in groups IV and V such as HfC, VC, NbC. TiC, and Figure 3 shows VIPS-deposited freestanding TaC structure

TaC are the contesting materials as they posses high melting with a diameter of 50 mm. wall thickness of 1 5 mm, and heiht
point (close to 4000 C), high oxidation resistance, excellent ther - of 100 mm. VPS deposition of freestandimg TaC structure on
mal shock resistance, low coefficient of thermal expansion, low graphite substrate was carried out at Plasma Processes Inc.,
vapor pressure at elevated temperatures, and good creep and (Huntsville, AL), using robot controlled Sulzer Metco EPI 14
fatigue properties."

2 Therefore, TaC stands as a candidate ma. kW plasma system (Winterthur, Switzerland). A representative
set of process parameters is presented in Table I.

Image-Pro' Plus. Version 5.1 imaging software (2tM04 Media
S mCyhernetics Inc.. Silver Spring. M ) has been utilized for quan.

titative image analysis of porosity distribution in the VPSTaC.
Scanning electron microscope ((SEM)JEOL ISM 5900LV. To-

yanuenpt No. MAte Recaed August 3.5 201ppiavs N<nemer 1$.2005. kyo, Japan) with integrated energy-dispersive spectroicopy
'A6worm u airnrdeaimi u hdcuvwecd -t'Jlwa lium.ly (EI)S) has been used for electron imaging and quantitative
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NEAR NET SHAPE FABRICATION VIA VACUUM
PLASMA SPRAY FORMING
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ABSTRACT -

Near net shape fabrication substantiates the m anifvstation of final structure near to the desired shape, therefore
can easily cut down the price of finished product contributed by machining. Though conventional powder
metallurgy techniques arc prominent in fabricating near net shape structures with controlled porosity, it still lags
in producing thin walled complex shapes with functionally gratled/ differential structures. Hence, fabrication of
complex near net shapes using Vacuum Plasma Spray (VPS) forming has emerged us innovative rapid
prototyping technique for a variety of :ipplications. In the present work, the nuances of near net shape
fabrication by VPS uxchnique have been explained. Few exauptcs of spray fanned structures such as Itypereutectic
aluminum-silicon, nanostructured aluminum oxide. and intermeallic iron aluminide thin sheet have been discussed.
A detailed case study of VPS formed thin TaC structure for ultrahigh temperature applicUtion has been elucidated
via near net shape ftbrication.

1. NEAR NET SHAPE FABRICATION DC plasma to heat and accelerate powder feedstock

USING VPS FORMING for deposition onto negative shaped substrate/ mandrel
for fabricating positive shape structure, Fig. 1.

Owing to extreme brittle nature, conventional Generally Ar is used as the primary plasma gas with
fabrication techniques find difficult to shape secondary He or H gas for increased heat transfer.
refractory materials and initernetallies into desired Plasma gun can be manipulated by computer control
shapes. Moreover machining techniques incur extreme in six axes of motion. With the cooling rates usually
wastage of material and require dead time for the observed in the range of 103-108K/s, generation of
finishing of the structural component -2 Though few ultrafine grain microstructure and non-equilibrium
processes satisfy the near-net-shape fabrication criteria, phases is not so surprising in the Vacuum Plasma
a serious limitation is posed by the extreme melting Spray (VPS) formed structured -. Both metals and
points of refractory materials. Ultrahigh temperature ceramics have been processed with densities exceeding
material application range between 2500-3300 K and 97% of theoretical densities 26. Plasma gun and the
therefore the selection of crucibles to hold the melt mandrel are computer-controlled in VPS forming,
and help to form the finished product becomes quite hence fabrication of complex structures -can be
difficult. Plasma spraying has been used as a versatile designed accordingly. Deposition rates can go as high
technique for depositing metals, alfoys, polymers and as 20 lb/h (9 kg/h). Near net shapes, spray deposited
ceramics as coatings 3. Temperature in excess of onto preformed mandrel, help reduce the finish
10,000 K are easily reached in the plasma flame, machining of the deposited structure. Removal of
hence cati melt any known material with great ease. mandrel from the deposited structure hold a crit/cal
With an impact velocity of 1-3 Mach, plasma sprayed importance in the near-net fabrication of V'PS lbrmed
structure depict a typical niechanically bonded layered structures. A comparison between VPS forming ard
structure. VPS utilizes HF (high-frequency) started, conventional P/M processing route is schematically
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Molecular modeling of metastable FeB49 phase evolution in laser surface
engineered coating

K. Balani and A. Agarwall)
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(Received 3 August 2005: accepted 17 January 2006; published online 17 February 2006)

Interstitial iron-boide phases have been a subject of research interest for a long time owing to their
useful properties. Metastable FeB4 phase evolved during nonequilibrium laser surface engineering
was investigated along with FeB. Fe2B, and Fe3B phases. Theoretical x-ray diffraction spectrum
derived from numerically constructed FeB4 9 crystal matched with the experimental diffraction
pattern from laser surface engineered boride coating on the steel substrate. Furthermore,
employment of ab intio SIESTA 1.3 molecular modeling for computation of total crystal energy
elucidated instability of the FeBp phase. The generation of thermodynamically nonequilibrium
phase FeBe along with Fe3B phase was further confirmed by selected area diffraction and
high-resolution transmission electron microscopy analyses. 012006 American Institute of Physics.
[DOI: 10.1063/1.2172704]

L INTRODUCTION identified for Fe3B, FeB4 9, and Fezl2Bto3-g phases. The ex-
perimentally obtained XRD pattern was compared with theo-

Lasers have been used for surface modification for im- retically computed XRD pattern (Fig. 1) for confirmation of
provement in material properties such as resistance to wear, the presence of FeB,9 and Fe, 12 Bjo3j 1 phases. FeB49 crystal
friction, erosion, fatigue, corrosion, and high-temperature construction [Fig. 2(a)] and its computed XRD pattern were
oxidation. 1- Laser material processing involves extremely obtained using CAJNE 3.t (Divergents A, Compiegne,
high cooling rate (10(-10' K/s) that results in the genera- France) crystallographic software. The strongest peak corre-
tion of metastable and nonequilibrium phases due to ex- sponding to FeBp appeared to be overlapped by (001) peak
tended solid solubility. It is often observed that these phases of TiB 2. Even though Table I presented lattice parameters of
are unknown to equilibrium phase diagram. various phases in laser synthesized composite coating, the

In our earlier work, we have synthesized TiB2 coating on primary interest of the present study resides with the charmc-
AISI 1010 steel substrate using a 2.5 kW continuous wave terization of metastable FeB hase, which so far is not
neodynium-doped yttrium aluminum garnet (Nd:YAG) reported in the open literature
laser. .2.4 Rapid cooling and solidification during laser pro- Thermodynamic calculations have shown that the free
cessing generated "composite" coating consisting of borides energy of TiB2 is the least and therefore is a most stable
in iron-rich matrix. TiB2 was the major phase along with TiB
and iron borides such as FeB, Fe3B, and FeB4.

In continuation of the above mentioned efforts, in the
present work, phases of iron-boride system (FeB, Fe2B, " (R. 3m3 r
Fe3 B, and FeB4 9 phases) were considered for ab initio total usa Fowr.arss or FeB erystal, wlataas
energy simulation using SESTA 1.3 (Spanish initiative for I XRJ) (Purn fr FeB0 0751511ienrg ga awdl liexagimal lanzce. Iance
electronic simulations with thousands of atoms) molecular corapoedina piana of ppk itenbity se

diffwat asthre" oba w in tirmodeling package. Evolution of rarely reported metastable a R b the kcsuon
FeB49 phase was further validated employing high-resolution of ptais Ianin M ler4
transmission electron microscopy (HRTEM). An effort was
made to compare these phases with theoretically generated
Fe-B phases and correlate the total energy to the relative
stability of the structure. L""

Apart from major TiB2 peaks, experimental x-ray dif- 20 30 40 so oa 70 to
fraction (XRD) spectrum depicted some extra peaks corre- Meamethe AngAe (
sponding to metastable phases. t3 4 These extra peaks were

EiG 1. (Color online) Theoretical x-ray diffnction speaimn of FeBp crys-
tal as eea io Pig. 2(a). A1 the experimental peaks for PeBe phase are

'Author to whomt correqpoadenoe should be addressed; electronic rail: mamched with circles. The peak marked with rectangle overlapped with rna-
agarwala@fiu.edu jar (001) peak of '181.
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Alrtrsct

Cold-spraying of 1100 Al powder particles onto 1100 Al substrate was accomplished using carrier gases 100 vol% He and a
mixture of He-20 vol.% N 2. TEM characterization correlates very well the occurrence of dislocations, presence of oxide, and surface
instability phenomenon with observed mechanical and corrosion properties of the cold-sprayed coating.
Q 2005 Acta Materialia Inc. Published by Elevier Ltd. All rights reserved.

Keywonld: Cold spraying; 1100 Alhminum coating; TEM

1. Introduction were used as carrier gases for depositing 1100 Al onto
1100 Al substrate via the cold spray technique [3]. The

In the 1990s, the cold spraying process emerged in higher sonic velocity and higher degme of tamping in
North America, having been developed in the mid- 100 vol.% He when compared to that of He-20 vol.%

1980s by the Siberian Division of the Russia Academy N 2 carrier gas resulted in denser and harder coatings
at the Institute of Theoretical and Applied Mechanics (3,10. The addition of N 2 , being a diatomic gas, into
(1-3). A high-pressure ("3.5 x 10' N/m 2) supersonic He increased the enthalpy of the carrier gas for better
gas jet is utilized for accelerating fine powder particles heat-transfer with spray particles (11I. However, addi-
to above a critical velocity (~500-1200 m/s), to deposit tion of N2 in He reduced the velocity of sprayed parti-
them as coatings (1-8). The kinetic energy subsequently cles due to the heavier atomic mass resulting in
dispensed during the impact of the powder particle with coatings with reduced density and hardness (3). Also,
the substrate ruptures the surface oxide, plastically 100 vol.% He processed coating displayed inferior corro-
deforms the particle and it approaches the clean surface sion resistance when compared to that of He-20 vol.%
of the substrate, thereby bonding particle as a deposi- N 2 at 0.9 pH using sulfuric acid (H 2SO4) as an electro-
tion coating [9]. lyte [3). Both the cold-sprayed coatings were more

In our earlier work, 100 vol.% helium (He) and a mix- corrosion resistant compared to the 1100 Al substrate.
ture of helium and 20 vol.% nitrogen (He-20 vol.% N 2) In the present study, high magnification scanning

electron microscopy (SEM) and transmission electron

Corresponding author. Tel.: +1 305 348 1701; fax: +1 305 microscopy (TEM) were utilized to elucidate and su
1932. stantiate results and findings of our earlier work [3).

N-aIIoddrev: apwalahiuaedu (A.Apwal). TEM imaging educed dislocation piling, surface

13594462/$ - se front matter e 2005 Arta Maierialia Inc. PublShed by Eisevier Ltd. AB rights reserved.
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Effect of carrier gases on microstructural and electrochemical behavior of
cold-sprayed 1100 aluminum coating
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A hit rac

1100 Aluminum has been cold sprayed onto similar substrate using 100 vl.% tie and mixturC of lIH-20 vol% N2 as carrner tues.
Analysis and charactenzation of sprayed depositiorn under different Jroessing conditions was performed through optical micrography,
sterological analysis, scanning elctrtn microscopy, and microhadneas depth profiles. P tentiodynamic polarization curves and Tafel
extrapolation experiments were carredat 0.9 pH1 value usng ulfunc acid ( 2 SO4 ) as in elutrulyte. Helium processingc onditwn displayed
more clnpad struture and h iger hanlness for the coating when wmpanxd to io-20 vol.% NZ prixe sing. Eloctrochemical stuies &picded
better corrosion esistance of the flo-20 voi.% NZ-procesied watingW; when ormpaiud to coatings procem,,&d with helium alone.
C 2004 EtLcvier RV All riL.S reserved.

Keywrdt. X (C) Coki Spray

1. Introduction No miarostructural evidence has been reported indicating
the melting of the spray particles [6]. The bonding in

Cold spray is a relatively new coating prooess developed particles in this process is attributed to the adiabatic shear
in the mid-190s at the Institute of Theoretical and Applied instabilities at the particle substrate or particle particle
Mechanics of the Siberian Division of the Russian Academy interfaces, caused due to the heavy particle impact [P).
of Science in Novosibirsk [1,2) High-pressure carrier gas The high velocity is developed by compressed gas flow
(-3.5 MPa or 500 psi) is required to impart high kinetic (usually helium, nitrogen, or their mixture) through high
energy to the powder particles and achieve supersonic inlet pressure in a converging diverging de Laval type of
velocities (-500 1200 m/s; [2 7]). After the powder nozzle [4,6]. With increasing velocities, the particles
particles are accelerated to these high velocities, they impact undergo from process of erosion and abrasion to deposition
the substrate causing the thin surface oxide layers to rupture, onto substrate. Hence, critical velocity is a definite require-
plastically deform at surface, come in close proximity of ment for generating sufficient kinetic energy to cause plastic
clean surfaces, thereby reconsolidating the particles bonding deformat on of the surfaces, thereby leading to deposition of
them together. A high degree of plastic deformation occurs spray material on substrate with a strong bonding [6,7].
at the surface regions due to the impact of the accelerated Therefore, velocity of particles, attained prior to impact,
particles onto the substrate. The source of bonding is the holds a very important place in cold spraying. Brittle spray
kinetic energy achieved by the particles under high-pressure materials, such as ceramics, do not undergo the required
accelerating gas, to impinge onto substrate at temperatures plastic deformation to form a good bond with the substrate,
ranging much below the melting point of the spray particles thereby the solution to the above problem is using ductile

matrix or filler materials [9). Hence, the cold-spray process
" Conesponduig sui&m Te,: +1 305 348 1701: fax: +1 305 349 1932. is ideally suited for synthesizing pure metallic coatings. This

F,-mad aerr: agarwalat-fiacdu (A. Aarwal process resembles explosive welding in a manner that the

02574972.S - scc front matter C 2004 Elsci ir B.V All rights rescrved
doi: 10. Il vljsufraat2004.0 0129
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Synthesis of Nanostructured Spherical Aluminum Oxide
Powders by Plasma Engineering

T. LAHA, K. BALANI, A. AGARWAL, S. PATIL, and S. SEAL

Irregularly shaped aluminum oxide particles were plasma atomized resulting in narrow size range dis-
tribution of spherical nanostructured powders. Cooling rates, on the order of 106 to 108 K/s, were
obtained from the different quenching medias, viz. air, water, and liquid nitrogen. Plasma-engineered
powder particles developed nanosize crystallites, while solidification provided insight into the mor-
phological feasibility in refinement of grain size. X-ray diffraction (XRD) methods have been used
to quantify the crystallite size obtained with different quenching media. Raman peak shift validated
the X-ray analysis in anticipating the grain refinement with increasing cooling rates. Salient struc-
tural morphology characteristics and a detailed understanding of spheroidized plasma-sprayed alu-
mina powders were analyzed through scanning electron microscopy (SEM) studies. Formation of
nanograins, novel metastable phases, and amorphous structure were endorsed by transmission elec-
tron microscopy (TEM) investigations.

I. INTRODUCTION plasma spraying has been studied earlier,1 " 91 but the nov-

NANOSTRUC'URED materials exhibit superior prop- elty of this article lies in the idea of using different quench-

erties such as excellent strength, toughness, and hardness, ing media (viz. air, water, and liquid nitrogen) to achieve

as obvious from the presence of refined grains. The nano- nanostructured grains in individual spherical powder parti-

structured coatings/structures experience superior and novel cles through the plasma spraying process. A12 03 (alumina)
properties; thus, the importance of achieving such tremen- powder has been selected for the present study because

dous improvement in performance cannot be neglected by spherical nanostructured alumina powder is an excellent

researchers. Plasma spraying is one of the methods used to starting material for near-net-shape forming, spray powders

form nanocomposite structure, but it must overcome obstruct- for coatings and soft abrasives, surface adsorbents in chem-

ing and difficult processing challenges. 2 -6 1 The first chal- ical industries, biocompatible coatings, and as carriers for

lenge is that the low mass and poor flow characteristics catalyst. 0 This powder is also being used potentially in

restrict the smooth flow of individual nanoparticles in the thermal insulation as well as in inertial confinement fusion

spray nozzle during thermal spraying
21 In addition, nano- of nuclear materials.

sized powders tend to agglomerate and form clogs in the Thermal plasma spraying has been used extensively within

plasma gun nozzle, hindering the smoothness of the flow many industries for a variety of applications because of its

and thereby imparting nonuniform coating. The other chal- versatility to synthesize fine metal, alloy, ceramic, polymer,

lenge is to retain the nanograins in the powder because grains and composite powders. Plasma spheroidizing is a modified

coarsen, experiencing the high temperatures in the plasma form of atomization technique, where the temperature reaches

flame. Several techniques are being developed to get more than 15,000 K in plasma flame with gas velocities reach-
nanocoating/composites by plasma such as employment of ing speeds of I to 3 Mach.ltzlsi Because of the short resi-

dried agglomerates of nanopowders, blending and dence time of the particle in the plasma, impurity limits inspraying of bimodal powders with controlled plasma par- product are generally low. The added beauty of the

meters, explosion of lowse nanoagglomerates in plasma process is the use of inert carrier gases minimizing the chem-

flame, e lto In this study, we are trying to modify the ical reaction of the processed powder, which possesses higher

feedstock powder by two ways simultaneously, viz. spher- surface energy than the starting powder, due to its refied

oidization and nanocrystallization/grain refinement of spray e. Processing of ceramics such as alumina powders

particles. It is anticipated that synthesis of nanostructured becomes much easier since the temperatures achieved i

ceramic spheres by plasma spray technique would result in plasma are much higher than the melting point of any known

development of an ideal free-flowing powder feedstock to material. The surface tension on the molten particles, upon
synthesize nanostructured coatings, and small complex parts disintegration, fragments it into spheroids of fine particles

with improved physical properties. Spheroidization by added with quenching from water, and liquid nitrogen helps
to nucleate and retain the nanocrystalline/grain structure of
the particle. Plasma-spheroidized powder experiences rapid
cooling, resulting in a high nucleation rate for solidified par-T. LAHA and K, BALANI, Graduate Research Assistants, and A. tidles, without any significant time for grain growth.

AGARWAL. Assistant Professor, are with the Department of Mechanical
& Materials Engineering, Florida Intemaionni University, Miami, FL 33174.
Contact e-mail: agarwala@fiu.edu S. PATIL, Graduate Research Assistant,
and S. SEAL. Associate Professor, are with the Department of Mechanical. II- EXPERIMENTAL PROCEDURE
Materials and Aerospace Engineering. University of Central Florida, Orlando,
FL 32186. Commercially available aluminum oxide powder (99.8 pct

Manuscript submitted March 29, 20(14. purity) of irregular shape in the 15- to 45-sm particle size
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Tribological Behavior of Plasma Sprayed Carbon Nanotube Reinforced

Hydroxyapatite-Coating in Physiological Solution

Kantesh Balanil, Yao Chen , Sandip P. Harimkar2, Narendra B. Dahotre2, Arvind

Agarwall*

'Department of Mechanical and Materials Engineering, Florida International University,
Miami, FL 33174, USA

2Department of Materials Science and Engineering, University of Tennessee, Knoxville,
TN 37996, USA

Abstract: Wear behavior of plasma sprayed carbon nanotube (CNT) reinforced

hydroxyapatite (HA) coating is evaluated in the simulated body fluid environment. Apart

from enhancing the fracture toughness and providing biocompatibility, CNT reinforced

HA coating demonstrated superior wear resistance (> 1.5 times) compared to that of

hydroxyapatite coating without CNT. Initiation and propagation of microcracks during

abrasive wear of plasma sprayed hydroxyapatite coatings was suppressed by CNT

reinforcement. Surface characterization and wear studies have shown that in addition to

acting as underprop-lubricant, CNTs provide reinforcement via stretching and splat-

bridging for enhanced abrasion resistance in vitro.
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