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ABSTRACT OF THE DISSERTATION

LEARNING DATA-DRIVEN MODELS OF NON-VERBAL BEHAVIORS FOR

BUILDING RAPPORT USING AN INTELLIGENT VIRTUAL AGENT

by

Reza Amini

Florida International University, 2015

Miami, Florida

Professor Christine Lisetti, Major Professor

There is a growing societal need to address the increasing prevalence of behavioral

health issues, such as obesity, alcohol or drug use, and general lack of treatment

adherence for a variety of health problems. Excessive alcohol use is the third leading

preventable cause of death in the United States, and is responsible for a wide range

of health and social problems. On the positive side though, these behavioral health

issues can often be prevented with relatively simple lifestyle changes, such as learning

how to reduce alcohol consumption. Medicine has therefore started to move toward

finding ways of preventively promoting wellness, rather than solely treating already

established illness.

Evidence-based patient-centered Brief Motivational Interviewing (BMI) interven-

tions have been found particularly effective in helping people find intrinsic motivation

to change problem behaviors after short counseling sessions, and to maintain healthy

lifestyles over the long-term. Lack of locally available personnel well-trained in BMI,

however, often limits access to successful interventions for people in need. To fill

this accessibility gap, Computer-Based Interventions (CBIs) have started to emerge.

Success of the CBIs, however, critically relies on insuring engagement and retention

of CBI users so that they remain motivated to use these systems and come back to

use them over the long term as necessary.

vi



Because of their text-only interfaces, current CBIs can therefore only express lim-

ited empathy and rapport, which are the most important factors of health interven-

tions. Fortunately, in the last decade, computer science research has progressed in the

design of simulated human characters with anthropomorphic communicative abilities.

Virtual characters interact using humans’ innate communication modalities, such as

facial expressions, body language, speech, and natural language understanding.

To facilitate successful communication and social interaction between artificial

agents and human partners, it is essential that aspects of human social behavior, es-

pecially empathy and rapport, be considered when designing human-computer inter-

faces. Hence, the goal of the present dissertation is to provide a computational model

of rapport to enhance an artificial agent’s social behavior, and to provide an experi-

mental tool for the psychological theories shaping the model. Parts of this thesis were

already published in [LYL+12, AYL12, AL13, ALYR13, LAYR13, YALR13, ALY14].
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CHAPTER 1

Introduction

There is a growing societal need to address the increasing prevalence of behavioral

health issues, such as obesity, alcohol or drug use, and general lack of treatment

adherence for a variety of health problems. The statistics, worldwide and in the USA,

are daunting. Excessive alcohol use is the third leading preventable cause of death in

the United States [Nat11] (with 79,000 deaths annually), and is responsible for a wide

range of health and social problems (e.g., risky sexual behavior, domestic violence,

loss of job). Alcoholism is estimated to affect 10-20% of US males, and 5-10% females

sometime in their lifetimes. Similar risks exist with other forms of substance abuse.

In 2010, the World Health Organization (WHO) reported that obesity – worldwide

– has more than doubled since 1980. In 2011, 1.5 billion adults in the world were

overweight, of which 500 million were obese, and 43 million children under the age

of five were overweight [WHO11]. In the USA alone, obesity affects 33.8% of adults,

17% (or 12.5 million) of children and teens, and it has tripled in one generation.

These behavioral issues place people at risk of serious diseases; e.g., obesity can lead

to diabetes, alcoholism to cirrhosis, physical inactivity to heart disease.

On the positive side though, these behavioral health issues (and associated possi-

ble diseases) can often be prevented with relatively simple lifestyle changes, such as

losing weight with a diet and/or physical exercise, or learning how to reduce alcohol

consumption. Medicine has therefore started to move toward finding ways of preven-

tively promoting wellness rather than solely treating already established illness. In

order to address this new focus on wellbeing, health promotion interventions aimed

at helping people to change lifestyle have been designed and deployed successfully in

the past few years.
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Evidence-based patient-centered Brief Motivational Interviewing (BMI) interven-

tions have been found particularly effective in helping people find intrinsic motivation

to change problem behaviors (e.g., excessive drinking and overeating) after short coun-

seling sessions, and to maintain healthy lifestyles over the long-term [ER01, DDR01].

A methodological review of clinical trials of 361 treatments showed that out of 87

treatment methods, the top two ranked treatment styles were: 1) Brief Interventions

and 2) Motivational enhancement therapies [MW02]. It is reported that 5 minutes of

advice and discussion about behavioral problems (e.g., alcohol or drug use) following

a screening can be as effective as more extended counseling, and that a single session

can be as effective as multiple sessions [BG92].

Lack of locally available personnel well-trained in BMI, however, often limits ac-

cess to successful interventions for people in need. Yet, the current epidemic nature

of these problems calls for drastic measures to rapidly increase access to effective

behavior change interventions for diverse populations. To fill this accessibility gap,

evidence has accumulated about the general efficacy of Computer-Based Interventions

(CBIs) [Hes97, BTB+08, Ski94, Cun99, PSSJC08].

Success of the CBIs, however, critically relies on insuring engagement and reten-

tion of CBI users so that they remain motivated to use these systems and come back

to use them over the long term as necessary (e.g., for booster sessions, follow-ups,

and lifestyle maintenance sessions). Whereas current BMI interventions delivered by

computers have been found effective, high drop-out rates due to their users’ low level

of engagement during the interaction limit their long-term adoption and potential

impact [PSSJC08, Ver10].

One crucial aspect positively affecting the health outcomes of BMIs (and most

counseling techniques for that matter), involves the ability of the therapist to es-

tablish rapport and to express empathy [MR02]. Empathy can involve cognitive at-
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tributes or affective attributes, which can also be combined during full-blown empathy

[GM85]. Cognitive attributes of empathy involve cognitive reasoning used to under-

stand another person’s experience and to communicate that understanding [Hoj07]

(or putting oneself in someone else’s shoes). Emotional or affective attributes of em-

pathy, on the other hand, involve physiological arousal and spontaneous affective

expressive responses to someone else’s display of emotions [Wis87] (e.g., people often

unconsciously mimic someone else’s perceived expressions of distress or joy). Some-

one can have a reflex-like affective physiological reaction to someone else’s experience

(without cognitively understanding it), or a cognitive understanding of that person’s

situation (without physically expressing it), or both.

Because of their text-based only interfaces, current CBIs can therefore only ex-

press limited rapport and empathy (mostly reflected in the choice of textual wording

of the intervention). Fortunately, in the last decade, at the same time as CBIs are

being developed and studied in healthcare, computer science research has progressed

in the design of simulated human characters and avatars with anthropomorphic com-

municative abilities [CSPC00]. Expressive virtual characters and avatars are emerg-

ing technologies in multi-modal interfaces [ML09, UPI08, Hel04] that have become

increasingly interesting user interfaces for a wide range of applications, such as tu-

toring systems [MEM12], health behavior change systems [LYL+12, SBS11], training

interfaces [HFG03], and health applications [BPJ09].

Virtual characters who specifically focus on dialog-based interactions are called

Embodied Conversational Agents (ECAs), also known as Intelligent Virtual Agents

(IVA). ECAs are digital systems created with an anthropomorphic embodiment (be

it graphical or robotic), and are capable of having a conversation (albeit still limited)

with a human counterpart, using some artificial intelligence broadly referred to as an

“agent”. With their anthropomorphic features and capabilities, they interact using
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humans’ innate communication modalities, such as facial expressions, body language,

speech, and natural language understanding, and can also contribute to bridging

the digital divide for low reading and low health literacy populations, as well as for

technophobic individuals [NK11, BPJ09].

In this dissertation, I posit that using well-designed rapport-enabled and empathic

virtual characters for the delivery of BMIs has the potential to increase users’ engage-

ment and users’ motivation to continue to interact with them.

In Human-Computer Interaction (HCI), the presence of contingent non-verbal

feedback is shown to have two different types of effects: Subjective and Behavioral.

Subjective effects include: (1) greater feelings of self-efficacy [KGWW08a]; (2) less

tension [WG10] and less embarrassment [KGWW08b]; (3) greater feelings of rapport

[WG10]; (4) greater sense of mutual awareness [PKG09]; and (5) greater feelings of

trustworthiness about the agent [KGWW08b]. Behavioral effects include: (1) more

disclosure of information including longer interaction times and more words elicited

[GOL06, GWGF07, PKG09, WG10]; (2) more fluent speech [GOL06, GWGF07,

PKG09, WG10]; (3) more mutual gaze [WG10]; and (4) fewer negative facial ex-

pressions [WG09].

Rapport plays a major role in human-human and human-computer social interac-

tions and motivational behaviors. As described in Chapter 2, research has shown that

creating rapport and empathizing with the users can improve a virtual character’s

user acceptance and engagement. To facilitate successful communication and social

interaction between artificial agents and human partners, it is essential that aspects

of human social behavior, especially empathy and rapport, be considered when de-

signing human-computer interfaces. Hence, the goal of the present thesis is to provide
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a computational model of rapport to enhance an artificial agent’s social behavior, and

to provide an experimental tool for the psychological theories shaping the model.

1.1 Statement of the Problem

In human face-to-face communication, non-verbal behaviors, such as gaze, facial ex-

pressions, gestures, and body postures, improve the effectiveness of the communica-

tion and help create a smooth relationship between the interlocutors. In HCI, also,

a key issue to create ECAs with believable non-verbal behavior involves the creation

of models that can accurately reflect human-human communicative clues. Moreover,

due to the major role of the rapport in human-human and human-computer social

interactions and motivational behaviors, rapport can improve the virtual character’s

user acceptance and engagement. Most of the current approaches, so far, use rule-

based systems, in which rules are created by ECA designers from their literature

research in social sciences. Whereas some of these rule-based systems have been suc-

cessful in creating a sense of rapport, they are limited to the designer’s expertise and

how well the designer has designed these rules.

In this dissertation, I will address the limitations of rule-based approaches to

modeling non-verbal rapport patterns. I modeled multimodal non-verbal rapport

signals displayed by humans in the following steps: (1) annotate and extract both

verbal information (from the lexical and syntactical structure of the surface text) and

non-verbal information from a video corpora of counseling sessions; (2) model different

non-verbal behaviors (e.g., facial expressions, head gestures, and hand gestures) of the

counselor using machine learning techniques; (3) integrate the combination of these

non-verbal behavior models to animate the rapport messages of a virtual character

during the assessment portion of a virtual counseling intervention for behavior change;

(4) build my system with the content of an existing computerized evidence-based
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behavior change intervention, and (5) evaluate the impact of the virtual character’s

rapport in terms of user’s acceptance and perceived sense of rapport.

Dissertation statement: Enjoyable communication with virtual characters can

be achieved when characters are animated using a model of non-verbal rapport-building

communication.

1.2 Specific Research Questions and Objectives

My main dissertation thesis can be addressed by answering the following research

questions:

1. Can I extract information from the lexical and syntactical structure of the sur-

face text to support the automatic generation of believable non-verbal behav-

iors?

2. Can I extract information from counseling video corpora to support the auto-

matic generation of believable non-verbal behaviors?

3. Given a set of non-verbal behavior models (e.g., head nod model, head move-

ment model, hand gesture model, and smile model), can I model non-verbal

rapport for a virtual character using a combination of these non-verbal behav-

ior models?

(a) In order to improve the facial expressiveness of a virtual character, can I

map all the possible facial muscle movements of the human face in terms

Action Units (AUs) of the Facial Action Coding System (FACS) [EF78,

ELF83, EFH02] to the virtual character’s face, as a standard method for

facial expression generation at the facial muscle-level, and reversely for

facial expression recognition?
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(b) In order to improve the expressiveness of a virtual character, can I map

the head movements (e.g., turn left and turn up) and gestures (e.g., head

node and head shake) of a virtual character to the AUs corresponding to

these in the FACS?

To answer the research questions, the following project objectives are realized:

Objective 1: In this project, I explore different techniques for modeling non-verbal

behaviors of a human. The overall goal is to explore the possibilities of using

machine learning techniques to move away from hand-crafted rule-based

models employed in most of the current health-related dialogue systems

(Discussed in Section 2), toward modeling human’s non-verbal behaviors

based on the data derived from the video and text corpora of human-

human communication.

Objective 2: In order to improve the head movement and facial expressiveness of

the virtual character, I generate a software, which maps all the possible neck and

facial muscle movements of the human face in terms AUs of the FACS to the virtual

character’s head and face. Then, I study the accuracy and expressiveness of this

mapping through different experiments.

Objective 3: Given the individual non-verbal models of a human, I study the

possibility of combining these individual models to generate an integrated non-verbal

rapport communication model. Therefore, I apply the generated non-verbal rapport-

building communication model to a virtual character (e.g., in a virtual health coun-

seling context), and study the improvements in the user acceptance of the character

(e.g., perceived rapport, believability, likability, enjoyability, and usefulness) and per-

ceived character features (e.g., animacy and perceived intelligence).

Some of the main challenges of this project are:
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• Annotating and extracting verbal information from the lexical and syntactical

structure of the surface text, and non-verbal information from a video corpora

of real human-human counseling sessions.

• Using machine learning techniques to model the non-verbal behaviors using the

data gathered from the annotated videos and surface text, and evaluating the

objective performance of the models.

• Applying the combination of the non-verbal models to the virtual character and

evaluate the subjective performance of the combination.

1.3 Outline of the Dissertation

• Chapter 2: this chapter reviews the literature and discusses the relevant back-

ground of the (1) psychological aspects needed to understand the theoretical

concepts underlying the computational modeling of rapport; (2) previous re-

search on computational modeling of rapport and empathy; (3) previous works

on automatic gesture generation; and (4) related research on facial expression

generation.

• Chapter 3: this chapter describes my approaches for facial expression gener-

ation (called HapFACS) and gesture generation (called HapGest) on Haptek

characters.

• Chapter 4: this chapter describes the On-Demand Virtual Counselor (ODVIC),

which I implemented as the framework for applying the non-verbal behavior

models. This framework is used for evaluating whether simple rapport-building

and empathizing techniques, such as facial expression adaption, can improve

the user experience with an interactive system.
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• Chapter 5: this chapter covers my approach for modeling non-verbal behaviors

and rapport using machine learning.

• Chapter 6: this chapter summarizes and concludes my contributions in this

thesis. The chapter ends with future directions for research.
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CHAPTER 2

Literature Review

In my survey of the literature, I first explain some of the concepts related to human

communication of rapport and empathy, then I discuss some of the latest approaches

taken to model these concepts computationally.

2.1 Rapport

In a conversation, the feeling of flow and connection is formally known as rapport.

Also, rapport is mostly correlated with non-verbal behaviors during the face-to-face

interactions. Research shows that non-verbal behaviors are more indicative of rapport

than verbal signals in human-human interactions [Gra99].

According to Tickle-Degnen and Rosenthal [TDR90], the three essential compo-

nents of rapport are mutual attentiveness (e.g., mutual gaze, mutual interest, and fo-

cus during interaction), positivity (e.g., head nods, smiles, friendliness, and warmth)

and coordination (e.g., postural mirroring, synchronized movements, balance, and

harmony). In this dissertation I use the Tickle-Degnen and Rosenthal theory of rap-

port.

Knowing the definition of rapport, we need to know how people perceive and

express rapport. Grahe [Gra99] tested the hypothesis that rapport can be perceived

through visual channels. Grahe stimulated five display conditions: transcript, audio,

video, video+transcript, and video+audio. Results show that perceivers with access

to non-verbal visual information were the most accurate perceivers of rapport and

the transcript condition produced the least accurate judgments.

In a human-human interaction, listeners frequently nod and use para-verbals, such

as “uh-huh” and “mm-hmm”, when someone is speaking. Such behaviors are called

back-channel continuers, which are considered by a speaker as signals that the com-
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munication is working and that she/he should continue speaking. Nods, postural

mirroring, and mirroring of head gestures (e.g., gaze shifts) are a few examples of

back-channel continuers [CB99]. Moreover, different dis-fluency signals, such as rep-

etition, spurious words, pauses and filled pauses (e.g., ehm, um, un), show that the

speaker is experiencing processing problems or high cognitive load [CW98], to which

the listener responds with a “take your time” feedback [WT00], posture shift, gaze

shift or frown [HMG10b].

Furthermore, Tickle-Degnen and Rosenthal [TDR90] believe that positive emo-

tions are also a part of the fundamental non-verbal behavior structure of rapport.

The most universal and powerful expressions of positive emotions are head nods,

positive facial expressions (e.g., happiness, surprised), smile and eye contact. Eye

contact is indicative of positive feelings, yet in personal and competitive conditions it

may indicate aggressiveness [TDR90]. Similarly, smiling may be a positive expression

of warmth or a negative expression of anxiety [EFA80]. Therefore, the use of non-

verbal acts must be viewed as context-dependent. During non-helping interactions,

positive relationships exist between participants’ evaluative impressions and their

partners’ forward trunk lean, smiling, nodding, direct body orientation, uncrossed

arms, directed gaze, and posture mirroring. During helping interactions (e.g., health

interventions, tutoring), posture mirroring seems to have the most effect [TDR90].

An important aspect to be considered in developing rapport-enabled systems is to

be able to measure the perceived rapport by the users. According to Tickle-Degnen

and Rosenthal [TDR90], non-verbal behaviors are measured in two ways: molecu-

lar and molar. The molecular measures consist of counts or durations of specific

behaviors, such as head nodding or eye contact. Molecular level would be appropri-

ate for measuring the attention and positivity components. The molar measures are

defined in terms of the psychological impression, gestalt image, or perceived function
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they create. Molar level would be more appropriate for measuring the coordination

component.

Subject’s rapport can also be assessed through subjective measures, such as social

presence, helpfulness, distraction and naturalness [BH02], or behavioral measures,

such as the speak length (as a measure of engagement), fluency of speech (e.g., number

of repeated words, broken words, and filled pauses per minute), intimacy of disclosure,

facial expressions produced, and amount of mutual gaze [GKW10].

2.1.1 Modalities of Communicating Rapport

The value of rapport comes not only from understanding others’ feelings, but also

from what we express as rapport reaction. The ability to understand other people’s

emotions from external signals, such as facial expressions, voice, and bodily gestures,

is a core ingredient for communicating rapport and empathy [EF74, ZWRE92, EF74,

BFS87, Fes87]. In comparison with the verbal modalities, non-verbal modalities might

be more trustworthy because it’s easier to shut off the words than it is the face, eyes, or

body [Fus02]. An other important characteristic of the non-verbal modalities is that

they accompany verbal information without disrupting the natural flow of speech.

Also, Noller [Nol85] argues that constructs containing affect are communicated more

quickly via non-verbal behaviors.

Although some researchers [KCC96] may believe that the amount of information

that conversational gestures convey is very small relative to the information conveyed

by speech, gestures tell us about the concepts underlying our communicative inten-

tions that we want to express verbally. So, they enhance the communicativeness of

speech, not by conveying information, but by helping the speaker formulate her/his

speech to convey more adequate information [KCC96].
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Non-verbal means of communicating rapport are facial expression, motor mimicry,

head gestures, head movements, hand gestures, lean direction, eye gaze, and vocal

features. Facial expressions and body/hand gestures are the most important modali-

ties in human behavioral judgments [AR92]. Different modalities can cause different

impressions, for instance, posture sharing indicates group rapport, body positioning

shows liking and understanding, and behavioral mimicry (mirroring) creates rapport

and increases liking [LJC03].

Furthermore, each modality can indicate one feature of the emotion better than

other modalities [Fus02], for example, vocal modalities are better in indicating the in-

tensity; facial modalities better show valence (i.e., positive vs. negative) information;

and body gestures are good for action readiness. Expressing rapport in one modality

can ease its expression in another, in the same way that gesturing can facilitate verbal

encoding of messages [Fus02].

2.2 Empathy

Rapport and empathy are so similar and inter-connected as being interpreted the

same sometimes. However, whereas rapport is referred to the behaviors that convey

the feeling of flow and connection in a conversation, empathy conveys more cognition

and understanding.

Empathy is an ambiguous concept, which was, to the best of my knowledge, first

discussed by Robert Vischer in 1873. He used the German word Einfiühlung to

describe an observer’s feelings elicited by works of art [Hun67, Jac92]. Then later

in 1909, psychologist Edward Bradner Titchener introduced the new English word

“empathy” as the translation of Einfiühlung [Hoj07]. Empathizing is the ability to

detect what others feel and to experience that emotion ourselves. The human ability

to recognize others’ emotional states from external signals, such as facial expressions
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and bodily gestures, is a core ingredient of an empathic communication [EF74, BFS87,

Fes87, ZWRE92].

Empathy plays a major role in human social interaction, such as motivating, coop-

erative behavior, and moral acts (e.g., helping, caring, and justice) [Hof00]. Empathy

is interpreted as a cognitive attribute, an emotional (affective) attribute, or a

combination of both, where cognition is the mental activities involved in acquiring

and processing information for better understanding. Cognitive processing involves

reasoning and appraisal, whereas emotional processing involves arousal and spon-

taneous affective responses. When we talk about cognition here, it should not be

confused with the human’s cognition processes.

Psychologists [Dav83, Cli02, LMMR97] believe that empathy has four components:

(1) the Perspective Taking sub-scale (i.e., tendency to adopt the views of others

spontaneously); (2) the Empathic Concern sub-scale (i.e., tendency to experience the

others’ feelings and to feel sympathy and compassion for unfortunate people); (3) the

Fantasy sub-scale (i.e., tendency to imagine oneself in a fictional situation); and (4)

the Personal Distress sub-scale (i.e., tendency to experience others’ distress).

At the same time, empathy is known as the most important tool of promoting

positive outcomes in psychotherapy [BM91] and it is the cause of improvement in 25%-

100% of patients [MR02, Rog59]. Communication without empathy does not deliver

the desired results [Stu06, Stu08]. Heimgärtner et al. [HTW11] believe that since

a successful communication depends crucially on the empathizing capability of the

people involved [Den87], in addition to the human-human interaction, empathy is an

essential prerequisite for successful inter-cultural communication between human and

computer. It promotes successful inter-cultural usability and good user experience.

Although empathy is a complex phenomenon with no unique definition, there

seems to exist a general agreement among psychologists that empathy can be cat-
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egorized under five categories: motor empathy (or mimicry), emotional (affective)

empathy, cognitive empathy, verbal empathy, and different combinations of these

empathy types.

2.2.1 Motor (Parallel) Empathy

Motor or parallel empathy (sometimes referred to as mimicry or mirroring), is often

considered as a kind of primitive empathy [BBLM86, BBLM87, CB99, WKP+03].

Mimicry is an innate part of the human-human interaction [CML05], which improves

relationships [Van03] with unconscious mirroring of the others’ non-verbal behaviors.

The mirrored motor behaviors are not necessarily emotional behaviors. Motor

empathy occurs when someone mirrors (mimics) the observed motor behaviors of

someone else, such as speech patterns (e.g., accent, rates, rhythm, tone), gestures,

head movements, hand gestures, postures, facial expressions, emotions, mannerisms,

and idiosyncratic movements [HCR94].

Bavelas et al. [BBLM86] observed that non-verbal mirroring occurs too rapidly for

much prior cognitive processing. Consistently, Chartrand and Bargh [CB99] hypoth-

esized that perception of another’s non-verbal behavior primes a perception-behavior

link that is unconscious and automatic.

Mimicry is highly related to the brain’s mirror neurons, that are the brain cells

that enable us to “mirror” others’ behaviors. Mirror neurons are activated when

someone performs a motor behavior and observes someone else mimicking the same

motor behavior (i.e., observing an on-going mirroring behavior, activates the mir-

ror neurons and increases the tendency to mimic that perceived behavior) [CID+03,

Gal03, Hoj07, Sch11, ST11]. Chartrand and Bargh [CB99] believe that perception

of another person’s behavior can automatically increase the imitating probability of

the perceived behavior. They described this phenomenon as the “chameleon effect”.
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Mimicking facial expressions can also actually result in adopting the emotions and

moods of others [HCR94], that approves Zajonc’s research results, which shows that

imitating an emotional facial expression can alter the emotional state of a person to

the imitated emotion [ZMI89].

Non-verbal mirroring, when not exaggerated to the point of mocking, positively

influences the interlocutors in different ways: (1) facilitates communication and may

increase the mirrored person’s attention [LB76]; (2) creates liking, rapport, and affil-

iation [LB76, Laf79, Laf82, Wal95, CB99, LJC03] (e.g., in health interventions, coun-

selors mimic their clients’ behaviors to create rapport and affiliation and receive more

information from them consequently [MT83]); (3) increases the persuasiveness level of

a speaker, and the mirrored people feel more confident to talk [Laf79, LB76, Van03];

(4) results in perception of a pleasant and natural conversation, positively influencing

the emotional state of the mirrored person [VbHKK04, WMS+87]; and (5) plays a

major role in empathy perception by the person being mirrored [SbJS03].

The Perception-Action Model (PAM) of empathy [Pre07] is developed based on the

motor empathy. According to the PAM, empathy is defined as “a shared emotional

experience occurring when one person (i.e., subject) comes to feel a similar emotion

to another (i.e., object) as a result of perceiving the other’s state. This process results

from the fact that when a person (subject) pays attention to the emotional states of

another person (object), subject automatically feels and expresses the same emotions

as of the object [Pre07].

2.2.2 Emotional (Affective) Empathy

Contrary to motor empathy, in which motor behaviors are mirrored (whether they are

emotional or not), in emotional empathy, one responds specifically to the emotional

states of others.
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Wispé [Wis87] defines empathy as “an observer reacting emotionally because he

perceives that another is experiencing, or about to experience, an emotion”. The

emotional empathy are can be a reaction to an emotional display of the other, or a

response to any other emotional stimuli, such as a verbal phrase.

It should be noted that the term sympathy is also used to refer to what we just de-

scribed above as emotional empathy. Psychologists believe that empathy is associated

more with cognition and understanding, whereas sympathy is associated more with

emotions [Hoj07, GM86]. Between sympathy and empathy, there is “compassion”,

which has both cognition and emotion equally.

2.2.3 Cognitive Empathy

Cognitive empathy (theory of mind) is the communication of the cognitive under-

standing of the other’s emotions. Hojat [Hoj07] defines empathy as “a cognitive

(rather than an emotional) attribute that involves an understanding (rather than

feeling) of experiences, concerns and perspectives of the person”, combined with the

communication of this understanding. This empathy type, in which one represents

the internal mental state of another, is the ability to represent the perceived thoughts,

desires, beliefs, intentions, and knowledge of the others [Fri03, Les87, PW78].

2.2.4 Verbal Empathy

Verbal empathy is the verbal reactions to someone’s verbal statements [Bla05]. When

hearing about one’s situation, one can simulate the other’s state internally (i.e., role

taking) and react to it verbally, which does not necessarily need a cognition behind

that, and can be a simple verbal comment or reflection.
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The following statements represent some simple approaches to the verbal expres-

sion of empathy [MSB93, ER01, NM09]: validation (e.g., I understand this is a diffi-

cult problem); self-disclosure (e.g., I’ve been in this situation before, ...); rephras-

ing (e.g., Let’s see if I understood correctly, ...); sympathy (e.g., It is so sad to be

in such a situation); metaphorical (e.g., I remember the day that I was ...); using

a small talk to build trust and relationship (e.g., A beautiful weather works like an

energy drink for me!); being polite and friendly with acknowledging opinions (e.g.,

Thanks for sharing this information with me); offering means to enable the users

to correct the character’s judgments (e.g., You seem to be sad, right?); expression of

empathic understanding (e.g., I understand your feelings in such a difficult situa-

tion); avoiding judgments and comparison; giving the speaker enough time

to speak; focusing on the speaker without distraction [Gor85]; and reflective

listening, in which the listener confirms his/her perceptions of the utterance with

reflecting it back to the speaker (e.g., speaker’s speech content, feeling, meaning, or

summary) [Rog59, KL85] (e.g., – Speaker: I have one drink a day. – Listener: So,

you have seven drinks per week).

2.2.5 Compound Empathy

Compound empathy is a combination of two or more of the above empathy types. For

example, Goldstein [GM85] and Feshbach [Fes87] define empathy as the combination

of the affective responses and cognitive understanding, while Blair [Bla05] define it

as an overlap of the cognitive, motor, and emotional empathy. Blair believes that,

motor and emotional empathy are mostly automatic and may occur simultaneously,

especially in terms of facial expressions. Goldstein [GM85] defines empathy as a social

requirement involving perspective taking, understanding of non-verbal signals, being
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sensitive to the other’s affective state changes, and communication of a feeling of

caring.

2.3 Computational Modeling of Rapport and Empathy

Humans continuously perceive others’ situation, modify their own affective state, and

express a response (whether empathic or not). Interactive virtual agents can do the

same, however, the virtual agents need to decide how to empathize given what they

perceive, i.e., they need a computational model of rapport and empathy.

In different research projects, input features to the rapport and empathy models

might be selected based on different modulation theories. For example, De-Vignemont

[dVS06] believes that empathy is modulated through different factors, such as (1) rela-

tion between the interlocutors (i.e., affective link, familiarity, similarity, and commu-

nicative intentions), (2) situation context (i.e., appraisal of the situation), (3) features

of the empathizer (e.g., mood arousal, personality, gender, age, and emotional regula-

tion capacities), and (4) features of observed emotion (i.e., valence, intensity, saliency,

and primary vs. secondary emotion). Emotions might be categorized into primary

emotions and secondary (intermediate) [Dam94]. Typical primary emotions refer to

emotions which are supposed to be innate. These include joy, sadness, anger, fear,

disgust and surprise. Secondary emotions arise from higher cognitive processes, based

on an ability to evaluate expectations over outcomes (e.g., hope, relief). They can be

represented by mixtures of the primary emotions.

Based on Ortony et al. [OCC88], often called OCC, the intensity of an empathic

emotion is prone to modulation through factors, such as: desirability-for-self (i.e.,

degree to which the desirable/undesirable event for the other is desirable/undesirable

for the empathizer), desirability-for-other (i.e., degree to which the event is presumed

to be desirable/undesirable for the other person), deservingness (i.e., degree to which
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the other person deserves/not deserves the event), and liking (i.e, degree to which the

other person is liked/disliked).

Table 2.1 shows some of the most recent research in rapport and empathy model-

ing. Items in Table 2.1 are ordered in terms of the type of the models. In the following

sub-sections we study each research in more details. For each modeling approach, we

indicate different aspects of the modeling process in the table:

• Type of interface agent embodiment, including 2D or 3D characters, and robots.

• Input: agent’s perception and recognition from the user, including facial ex-

pressions, which may or may not be based on FACS [EF78, ELF83, EFH02],

user self-report, voice, head movement, gaze direction, body gesture, user’s

pleasure/arousal/dominance, user’s characteristics, game/system/environment

parameters, physiological signals, menu-based inputs, user performance, and

user’s text input.

• Output: agent’s capabilities to express itself, including facial expressions, voice,

head movement, gaze direction, body gesture, breathing behavior, and text

output.

• Decision making methods, emotion theories, and intervention approaches: in-

cluding Wizard of Oz (WOZ) experiments, hand-crafted rules, different machine

learning techniques, Belief-Desire-Intention (BDI); OCC, PAM, and Pleasure-

Arousal-Dominance (PAD), role taking, and Motivational Interviewing (MI).

• Chronology of various projects, i.e., the hierarchy of building the projects on

top of previous projects.

20



Table 2.1: Synthesis of the state of the art.
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2.3.1 Modeling Rapport

As discussed in Section 2.1, empathy and rapport are very interconnected. For ex-

ample, they have mimicry as a common core component. In a research by Gratch

et al. [GWO07], rapport is explored as a feeling of connectedness raised from posi-

tive feedbacks between the interlocutors associated with their emotional states. They

perform a story telling experiment, during which the virtual agent provides feedback

with non-verbal signals, such as nodding, and postural mirroring. The agent (called

Rapport Agent) produces the feedback without understanding the meaning of the

monologs. They use a set of fixed hand-crafted rules to map speakers’ head gestures

(nods, shakes, rolls), posture shifts (lean left or right), gaze direction (straight, up,

down, left, right), speech acoustic features (pitch, intensity, range) to the agent’s

behaviors. Silence of the speaker is mapped to the agent’s gaze up/straight. Agent

nods in the cases of speaker’s raised loudness, back-channel, and asking question.

Speaker posture shifts, gaze aways, and nods (or shakes) are mimicked by the agent.

Therefore, as a part of their rapport modeling, they also model motor empathy.

In an experiment setup shown in Figure 2.1, they designed a human-human and

a human-computer interaction. In the human-human interaction experiment, par-

ticipants were grouped into pairs and assigned to the roles of speaker and listener

randomly. The speaker watches a video clip and then retells the story to the listener.

In the human-computer interaction experiment, participant sits in front of a computer

monitor seeing a virtual agent representing the human listener (the human listener

also sits in front of a TV and listens to the speaker). Participants are randomly

divided into three groups, each of which interacts with one of the three virtual agent

configurations: (1) “good virtual listener”, which gazes at the speaker and shows

attentive listening with head nods, smiling, posture mimicry and posture shifts; (2)

“not responsive listener”, which gazes at the speaker and blinks randomly, but does
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Figure 2.1: Experiment setup used in [GWO07, WG09].

not provide attentive listening; and (3) “ignoring listener”, which does not maintain

gaze with the speaker and does not not provide attentive listening (See Figure 2.1).

Results show that, the total time to tell the story and the count of the words

used to retell the story in the first condition is longer than a face-to-face condition.

Therefore, a simple virtual character with positive listening feedback (rapport and

motor empathy) can be more engaging than a face-to-face human listener. Authors

[GWO07] suggest that, such rapport-enabled and empathic agents can improve the

computer-mediated systems used in the learning and health interventions to have

socially desirable outcomes. They believe that rapport and motor empathy can lead

to effective communications, better learning outcomes, and improved acceptance of

medical advice in Human-Computer Interaction (HCI).

Among the visual channels, facial expressions are the most important in the human

judgment of behavioral cues [AR92]. Human observers seem to be mostly accurate

in their judgments when looking at the face. This fact indicates that people rely on

the facial expressions to recognize someone’s behavioral changes. Thus, human affect

analysis would better to include facial expressions as a modality [CMK+06].

Wang and Gratch [WG09] extended the previous research [GM04, GWO07] by

adding facial expression recognition with the focus on the positivity component of

rapport [TDR90]. During a similar experiment performed by Gratch et al. [GWO07],

the virtual agent recognizes and analyzes the participants facial expressions (using
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CERT toolkit [BLL+04] and a SVM classifier), speech (back-channels, dis-fluencies,

questions, and loudness), head motions (head nods, shakes), gaze shifts, and body

posture shifts in real-time and provides non-verbal feedbacks to the speaker. The

feedback includes back-channel continuers (nods), postural mirroring, and mimicry

of certain head gestures (e.g., gaze shifts and head nods). Obviously, similar to their

previous research, motor empathy is included in their rapport model. They debriefed

the participant s via a questionnaire about the content of the video and the story

retelling.

Results show that (1) negative facial expressions, such as disgust, are significant

predictors of the lack of rapport and positive facial expressions are good indicators

of rapport; (2) presence of listener’s nods enhances rapport; and (3) rapport-enabled

and empathic virtual human listeners can be more engaging than human listeners.

Later, Huang et al. [HMG11] enhanced the Rapport Agent and developed the Vir-

tual Rapport 2.0, in which the simple behavior rules are replaced by three probabilistic

Conditional Random Field (CRF) models of the backchannel prediction, end-of-turn

(turn-taking opportunity), and affective feedback (smile), based on the data driven

from a video corpora. The CRF models predict when to give feedback and how to

give such feedback. The input features used in modeling are silence, head nod, eye

gaze and smile, where the non-verbal output features (i.e., generated feedback) are

smile and head nod. Figure 2.2 shows the system architecture of the Rapport Agent

2.0.

The Rapport Agent 2.0 is tested in an interview setting, in which the agent in-

terviews the human interviewees while creating rapport with them. Results show

that, the mutual attention, coordination, positive emotion communication

(i.e., affective response), rapport, naturalness, and backchannel prediction of

the Rapport Agent are improved in Rapport Agent 2.0. However, the agent is still
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Figure 2.2: System architecture of the Rapport Agent 2.0 [HMG11].

limited in different aspects: (1) only head nod, smile, and turn-taking are modeled,

(2) the dialog content is not used at all, and the character expresses non-verbal feed-

backs without having any ideas about the content of the dialog, (3) few interactive

input features are taken into account, and (4) non-verbal behaviors are only modeled

for the listener role, but character needs to be able to express gestures while speaking

as well. These limitations are addressed, in this dissertation, by extending the model

learning process to other behaviors in both listener and speaker roles and by using

new input features extracted from the dialog (e.g., part of speech, dialog acts).

2.3.2 Modeling Motor Empathy (Mimicry)

While rapport is mostly modeled using different non-verbal behaviors, different em-

pathy types are also modeled non-verbally, such as the motor empathy (mimicry). In

the Human-Robot Interaction (HRI) field, Gonsier et al. [GSM+11] found that not

only a robot can empathize with the users, but also that a robot’s behavior influences

the extent of the human’s empathy toward the robot. Their robot generated similar-

ity (of personal attitudes) with the user by mirroring the user’s facial expressions, so
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that their shared emotional state triggers the mirror neuron system of the user and

thus evokes user’s empathy for the robot. They proposed a system, which recognizes

the user’s facial expressions through camera, calculates the corresponding emotional

facial expression according to the FACS, and reacts with the same emotional facial

expressions on the robotic head called EDDIE (shown in Figure 2.3). EDDIE can

display 13 Emotional FACS (EmFACS) action units (AU) [FE83], and it can recog-

nize 7 AUs (i.e., outer brow raiser, brow lowerer, upper lid raiser, lid tightener, lip

corner depressor, yaw drop, and eyes closed).

Figure 2.3: Game experiment in [GSM+11].

In a game scenario experiment (called Akinator), shown in Figure 2.3, EDDIE re-

acts to the human’s facial expressions either by ignoring them or by mirroring them.

After the game, the Bartneck’s “five key concepts in HRI” questionnaire [BKC08]

is used to evaluate the robot’s anthropomorphism, animacy, likability, perceived in-

telligence, and perceived safety. Furthermore, the user acceptance of the system

was evaluated according to the Heerink’s measure [HKEW09] using five constructs:

turst, perceived sociability, social presence, perceived enjoyment, and intention to use.

Users’ responses (55 subjects) to the questionnaire showed that users’ empathy is

induced toward the mirroring robot, and that the mirroring improves the
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HRI regarding the Bartneck’s five key concepts by 48%, as well as the user’s ac-

ceptance of the robot.

In another HRI research, Riek and Robinson [RR08] used a robot with a chim-

panzee head (named Virgil), shown in Figure 2.4, to model motor empathy by mim-

icking the subjects’ facial expression during a story telling session. The robot has

degrees of freedom (DOFs) for eye movements, eyebrows, lower jaw, upper lip, and

head, from which only the mouth open/close and head nods are used. Virgil uses its

mouth open/close and head nods as output modalities. The robot’s facial expression

recognition and expression are controlled manually in a Wizard-Of-Oz (WOZ) setup.

The robot’s expressions are evaluated in two experimental conditions: (1) random

expressions, and (2) mimicry, in which it mimics the open/close mouth expressions

and performs head nods. Results show that, subjects in the facial-mimicking group

rate their interaction with Virgil as more satisfactory than those in the random

expression group. However, subjects reported that it is difficult to feel strongly en-

gaged with the robot due to the fact that it did not speak nor acknowledged their

statements, which shows the importance of having verbal modality in the output.

Figure 2.4: Story telling experiment setup used in [RR08].

Therefore, as shown in the mimicry related research, a simple one-to-one mapping

of the non-verbal behaviors of the user to the same non-verbal behaviors of the char-

acter improves the empathizing ability of the character, the user acceptance, and the
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user satisfaction. I used this research results in implementing a rule-based empathy

model (discussed in Chapter 4 and used head movement mimicry for enhancing the

user’s experience with the character.

2.3.3 Modeling Emotional (Affective) Empathy

In addition to just mimicking the users’ non-verbal behaviors, characters can recog-

nize the emotional non-verbal behaviors, such as emotional facial expressions, and

respond adequately to them (i.e., affective empathy). Affective virtual agents can

help motivating users, supporting them through stressful tasks, and increasing their

abilities to recognize and regulate emotions [GM04].

In a story telling scenario, Hegel et al. [HSW+06] uses an anthropomorphic robot

(called BARTHOD Jr.), which recognizes the user’s emotional states from speech and

then mirrors this state with a corresponding emotional facial expression. The speech

recognizer takes speech features, such as pitch, energy, MFCCs, frequency, duration,

and pauses, as input and classifies them into 6 emotional states namely happiness,

fear, surprise, anger, sadness, and thinking using a Näıve Bayes model. The robot

can move its jaw, mouth, eyes, eyebrows, and eye lids. They model the emotional

empathy by mirroring the emotional states of the user and show that comparing to

a robot with no emotional reactions, an emotional robot is perceived as being able

to react more adequately to emotional aspects of a situation and to recognize the

emotions better. Figure 2.5 shows the experiment setup used in this research. One

limitation of this research is that emotion detection accuracy from vocal features is

not the same for all emotions. So, to improve the accuracy of emotion detection other

modalities can be added.
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Figure 2.5: Story telling experiment setup in [HSW+06].

2.3.4 Modeling Cognitive Empathy

While motor empathy enables the character to mimic the non-verbal behaviors of

the user, and emotional empathy involves recognizing the affective states of the user

in providing the best non-verbal feedback to the user, cognitive empathy enables

the communication of the character’s cognitive understanding of the user’s emotions.

This understanding can be derived using different input features such as user self

reports, environment parameters, physiological signals, and facial expressions. For

example, Prendinger and Ishizuka [PI05] designed an animated embodied agent, en-

abled with cognitive empathy, that helps the users to set a virtual job interview.

They use a 2D character created by the Microsoft Agent, which is capable of inter-

acting verbally. This application gathers physiological data (skin conductance, heart

rate, and electromyography) of the user in real-time, as well as user self-reports about

her/his valence and arousal, and interprets the data as emotions in 2D emotion model

[Lan95]. A decision making system using Bayesian networks classifies these inputs

to 3 user affective states (relaxed, joyful, and frustrated). Then, the character re-

sponds verbally to the user knowing his/her affective state. They concluded that

an empathic agent can reduce user’s level of stress or frustration, and undo
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Figure 2.6: Job interview experiment setup used in [PI05].

negative emotions using empathic feedback. Figure 2.6 shows a snapshot of their

experiment.

Prendinger and Becker-Asano [PBA06] extended the empathy model in the previ-

ous research [PI05] and applied it to a card game. They used a 3D lifelike character

(called MAX) implemented in Poser, which provides empathic feedback in multi-

ple modalities, such as facial expressions, affective verbal expressions, body gestures,

eye blinking, head nodes and breathing behavior. In this research, they use the 2D

emotion model for recognition of the user emotions from ElectroMyoGraphy (EMG),

skin conductance (SC), game situational context/parameters, and self-report of va-

lence and arousal. The PAD (3D) emotion model is used for the emotional feedback

expressions. The user’s affective states are categorized into 3 categories of joyful,

fearful, and sad. Then, based on the user’s affective state, four types of agents are

compared: (1) non-emotional (i.e., agent does not display any emotional behavior);

(2) self-centered (i.e., agent only appraises its own game play, e.g., by displaying joy

when it is able to move cards); (3) negative empathy (i.e., agent is self-centered, plus,

it appraises the user’s play and responds to the user in a negative way, e.g., happy

about the user’s distress); and (4) positive empathy (i.e., agent is self-centered, plus,

it appraises the user’s play and responds to the user in a positive way, e.g., sorry for

the user’s distress). The third and forth conditions model the cognitive empathy.
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Figure 2.7: Gaming experiment setup used in [PBA06, BBA07].

Results show that, agent behavior should be adequate with respect to the con-

text. For example, within a competitive game scenario, showing positive emotions is

more arousing or stressful than displaying negative emotions. Figure 2.7 shows their

experiment setup.

Empathy is a social requirement involving perspective taking (role-taking),

the understanding of non-verbal cues, sensitivity to the other’s affective state and

communication of caring [GM85]. Pereira et al. [PLM+11] believe that, in human-

robot interaction, the more robots can socially interact with humans, the more people

accept it. Therefore, they implemented a scenario, in which a social robot (iCat

[vBY05]) watches, reacts empathetically, and comments a chess match played by two

human players. The robot puts itself into the user’s situation (i.e., role-taking) to

determine her affective state and decide about the empathic response. Figure 2.8

shows the experiment setup used in this research.

The robot’s affective state depends on the state of the game in the perspective of

the robot’s companion. Two sets of utterances are considered for each affective state of

the iCat: (1) empathic, which is used when the iCat is commenting its companion’s

moves. Empathic utterances often contain references to the possible companion’s
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Figure 2.8: Gaming experiment setup used in [PLM+11].

emotions, and try to encourage the companion (e.g., “you’re doing great, carry on!”);

and (2) neutral: used when the iCat is commenting its opponent’s moves.

They measure the participant’s friendship toward the iCat using the Mendelson’s

friendship questionnaires [MA99] involving six functions: (1) stimulating companion-

ship (i.e., doing enjoyable/exciting things together); (2) help (i.e., providing guid-

ance); (3) intimacy (i.e., being sensitive to the other’s needs/states and being open to

honest expressions of thoughts, feelings and personal information); (4) reliable alliance

(i.e., remaining available and loyal); (5) self-validation (i.e., reassuring, encouraging,

and otherwise helping the other maintain a positive self-image); (6) emotional security

(i.e., providing comfort and confidence in novel or threatening situations). Results

show that, with the exception of the help dimension, all other dimensions were rated

higher in the empathic condition than the neutral condition.

According to Polajnar et al. [PDP11], in the same way that the emotional intel-

ligence and the empathy improve the effectiveness of human teamwork, the empathy

has a significant role in developing robust artificial agents for tasks requiring prac-

tical reasoning. Having the same belief, Boukricha and Wachsmuth [BW11, Bou13]

enabled a virtual human (called EMMA) to emphasize with another virtual human

(called MAX) in a museum guide context. They follow Davis’s [Dav94] empathy
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Figure 2.9: Internal emotion mimicry in [BW11].

model. Davis believes that between assessment and outcome, there is another step

called intra-personal, in which cognitive and affective responses are produced in the

observer but not showed to the other. Boukricha and Wachsmuth model the cognitive

empathy in three steps: (1) empathy mechanism; (2) empathy modulation; and (3)

expression of empathy. The empathy mechanism module accepts the emotional facial

expressions as its input, then internally simulates and imitates them to come up with

an internal emotional feedback that represents the empathic emotion in PAD space.

This output is passed to the empathy modulation to be modulated through factors,

such as agent’s mood and relationship to the other (e.g., familiarity and liking). In

the expression step, the modulated empathic emotion activates multiple expression

modalities, such as facial expression, verbal expression, eye blinking, and breathing

behavior. Figure 2.9, shows the mimicry of emotions in this research.

As shown in the cognitive empathy related research, involving more understand-

ing, in the empathy communication in comparison to the affective and motor empa-

thy, reduces the stress, frustration level, and negative emotions; also it increases the

companionship, intimacy, alliance, self-validation, and emotional security.
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2.3.5 Modeling Verbal Empathy

While the above discussed empathy models used mostly the non-verbal behaviors

to communicate empathy, in this section, I discuss a few of the related research

which focus on communicating empathy through the verbal channel. The earliest

computer application, which was trying to communicate with its users in a natural

way using the Reflective Listening (discussed in Section 2.2.4) was developed by

Joseph Weizenbaum at MIT in 1966 [Jos66] and called Eliza. The communication

with Eliza is completely textual. The earliest Eliza was representing a psychotherapist

who used the Reflective Listening techniques for engaging the clients (i.e., psychiatric

patients). Eliza conveyed the sense of being intelligent and sometimes emotionally

supportive [Tur95] to the users by parsing the user’s sentences, performing word

matching algorithms, and reflecting back to the user. Although Eliza was a great

achievement in 1960’s, it was highly limited in the dialog abilities and modalities

(text).

More recently, again at MIT, the MIT FitTrack [BP05] was developed, which

used an ECA to investigate the ability of an avatar-based system to establish and

maintain a long-term working alliance with the users in a behavior-change context.

It used a 2D lifelike character (called Laura) created with LiteBody. They model

verbal empathy and rapport by applying different models of personal relationship,

such as social dialogs, empathic dialogs, humor, continuity behaviors, politeness,

and non-verbal behaviors (high/low immediacy). Figure 2.10 shows a snapshot of

the FitTrack. A client-server design is used to enable users interact with FitTrack

on their home computers on a daily basis during a one-month intervention, with

each interaction taking ten minutes. They use self-report techniques to measure the

users’ performance including Working Alliance Inventory (WAI) questionnaire, which

measures the therapist-patient trust. Results show that compared to an equivalent
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Figure 2.10: A snapshot of the FitTrack [BP05].

Figure 2.11: Health application setup used in [BPJ09].

agent without any deliberate social-emotional or relationship-building skills, their

agent was more respected, liked, and trusted, even after four weeks of interaction.

The FitTrack system is used to develop the Virtual Hospital Discharge Nurse

[BPJ09] to explain written hospital discharge instructions to the patients with low

health literacy. It is made available to the patients on their hospital beds to help

to review the material before discharging from the hospital. It also notifies the un-

resolved issues for the human nurse to be clarified for the patient. Results indicate

that hospital patients with low health literacy found the system easy to use, reported

satisfaction, and said they preferred receiving the discharge information from the

agent over a human nurse. Figure 2.11 shows the experiment setup in this research.
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Recently, Motivational Interviewing (MI) [MR02] has been identified as particu-

larly useful for health dialog systems [Lis08, LW08a, LYL+12] because it intends to

increase the likelihood of making change in unhealthy lifestyles through support and

motivation. MI is a face-to-face patient-centered counseling style, which respects the

patient’s pace during the interaction toward the behavior change. It involves a brief

assessment followed by an empathic feedback about the assessment.

Schulman et al. [SBS11] designed a conversational agent (designed with Lite-

Body) as a virtual counselor for health behavior change. They enabled the character

to provide empathic verbal statements and techniques drawn from the MI to enhance

client motivation and confidence to change. To model and implement these tech-

niques, they use the Dtask dialog manager based on a domain-specific taxonomy of

dialog acts. They perform a preliminary experiment, in which the virtual counselor

gives counseling to two groups of people in exercising and diet contexts. Then, users

are asked to rate the counselor’s MI spirit, empathy, and their satisfaction. Results

show that, only following the MI spirit satisfied the users and cause them to rate the

empathy and MI spirit positively.

Magerko et al. [MDI+11] presents a 2D virtual coach agent, called Dr. Vicky, and

training environment (called the Virtual BNI Trainer) for learning how to correctly

talk with medical patients who have substance abuse issues. They designed a menu-

based dialog interaction and engage the users in the conversations according to the

Brief Negotiated Interview (BNI) techniques. This system follows four main steps

during the interactions: (1) raise the subject: including introduction, and asking if

the patient would mind talking about the substance use; (2) provide empathic verbal

feedback; (3) enhance motivation: including asking the patient to rate his/her readi-

ness to change in scale of 1-10 and respond accordingly verbally; and (4) negotiate

and advice. A snapshot of the Dr. Vicky is shown in Figure 2.12.
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Figure 2.12: Virtual coach setup used in [MDI+11].

Nguyen and Masthoff [NM09] used a 3D human-like Haptek avatar in a web

credibility judgment test. In that application the agent empathizes using verbal

phrases. Figure 2.13 shows a snapshot of this system. Nguyen and Masthoff used

different validated [BS07, BP05, KMR02] approaches to the verbal expression of

empathic understanding in interaction based on MI, sociology, and communication

theories to increase the believability and build trust in the users. Some examples of

these techniques are provided in Section 2.2.4. Results show that users have a positive

attitude to the empathizing avatar. Also, they concluded that systems represented

by a human-like representations are expected to behave more like humans and to be

empathic.

As shown above, although the verbal channel solely seems very limited in de-

livering empathic signals, research shows that enabling a character with the verbal

empathizing abilities improves the users’ respect, likability, trust, satisfaction, and

attitude toward the character.

2.3.6 Modeling Compound Empathy

Given the positive effects of each individual empathy type on users of empathic virtual

characters, some research projects model different combinations of the empathy types
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Figure 2.13: Web credibility experiment setup used in [NM09].

for a virtual character and study their effects on the users. Below, I discuss the design

of some of these studies and their effect on the users.

Boukricha and Becker-Asano [BBA07] extended the empathy model proposed

by Prendinger and Becker-Asano [PBA06] with an intelligent empathy model com-

prised of two components: a Belief-Desire-Intention (BDI) based cognitive component

(which models the cognitive empathy) and an affective component (which models the

emotional empathy). The cognitive component understands how emotions occur in

human users, and the affective component simulates the emotion dynamics of the

agent the same as the human user. In this research, a 3D character (called MAX)

generates a hypothesis about the emotional state of the user by appraising user’s

situation in a card game environment, and displays his affective state by appropri-

ate emotional facial expressions namely happy, sad, board, depressed, concentrated,

surprised, angry, annoyed, and fearful (modeled in PAD emotion model). They con-

ducted the same 4-condition experiments as in [PBA06] and confirmed the results
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of the previous research. Also, they showed that the valence of the human player’s

emotion is congruent with the valence of the expressed emotion by the agent. Figure

2.7 shows the game environment of their experiment.

Becker-Asano and Wachsmuth [BAW09] used the same system as in their two pre-

vious research [PBA06, BBA07]. In this research a BDI reasoner (1) reasons about

the current game state of the agent and the human player, and (2) recognizes the

possible emotional state of the human player based on OCC emotion structure. They

extended the previous research by adding secondary emotions to the agent’s responses.

This system is called WASABI (Affect Simulation for Agents with Believable Inter-

activity). In an experiment with the same card game scenario, the agent responds in

2 different ways to the human’s appraised emotions: (1) the agent expresses primary

emotions (i.e., happy, bored, surprised, concentrated, depressed, angry, annoyed, sad,

fearful) by facial expressions based on PAD; the agent acknowledges the human’s

actions verbally and appraises them negatively; the agent appraises his own progress

positively; and the agent feels dominant when it is his turn, and when correcting

the human’s mistakes; (2) the agent expresses the secondary emotions (namely hope,

fears-confirmed, relief) verbally, in addition to the primary emotions. Figure 2.14

shows the information flow in their system.

Since secondary emotions need more cognition abilities than primary emotions,

they are called “adult” emotions. Therefore, Becker-Asano and Wachsmuth hypothe-

size that players who played with an agent who expresses both primary and secondary

emotions should perceive the agent older than the one that expresses only primary

emotions. This hypothesis is supported by their results.

Rodriques and Mascarenhas [RM09] model the cognitive and motor empathy be-

tween the synthetic characters. They use the empathy modulation factors proposed

by De-Vignemont and Singer [dVS06] discussed in Section 2.3 (specifically similarity,
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Figure 2.14: Sequence diagram of the information flow in [BAW09].

affective link, personality, and mood) and Perception-Action Model (PAM) [Pre07]

of empathy (see Section 2.2.1). Rodrigues and Mascarenhas model empathy in two

steps: (1) Empathic appraisal, which takes place when an agent perceives a new event

that raises an emotional cue in another agent. The emotional cue can be facial ex-

pression, body posture or voice tone. The empathic agent recognizes the emotional

cue by an emotion recognizer and candidates some emotions as the other agent’s pos-

sible emotion. Also, by appraising the other agent’s situation via self-projection (i.e.,

role taking), it elicits another list of candidate emotions. The two lists are compared

and the strongest emotion is selected as the perceived emotion of the other agent;

(2) Empathic response, in which the intensity of the emotion is determined using the

fore-mentioned modulation factors. Then, based on the perceived emotion and its

intensity, an empathic action is selected to be expressed.

In an experiment, two versions of an educational system (called FearNot!) is

tested, one with empathic characters, another with non-empathic characters. The

interaction between the characters is video recorded and shown to the subjects. The
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Figure 2.15: Empathy model and test environment of used in [RM09].

subjects are asked to rate the characters’ likability, relation between the characters in

terms of like/dislike, perceived emotions felt by the characters, and their friendship.

Results show that, users were capable to perceive the empathic responses elicited by

the model. The empathy model and the experiment environment of this research is

shown in Figure 2.15.

McQuiggan et al. [MRP08] proposed a framework (called CARE) for modeling

a combination of the affective and cognitive empathy. CARE has two modes: (1)

empathy model induction, which acquires the training data and learns the empathy

models from the training users in a game environment; and (2) runtime operation,

in which the induced model is used to select between the affective and the cognitive

empathy.

In the training session, they used the game situation data, the affective states

(namely anger, anxiety, boredom, confusion, delight, excitement, fear, flow, frustra-

tion, and sadness), the physiological responses (heart rate and galvanic skin response

(GSR)), the characteristics (age, gender, user’s empathic nature measured by Inter-

personal Reactivity Index [Dav83], and the user’s goal orientation measured by Elliot

and McGregor’s goal inventory [EM01]) as the input vector. In the model induction

mode, they modeled the empathy in three states: (1) antecedent, in which the user’s
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affective and situational data is captured; (2) assessment, in which the data is pro-

cessed and an empathic outcome is selected; and (3) empathic outcome, in which

one of the cognitive or affective empathy is expressed. When the affective empathy

is selected, the user’s affective state is replicated by the agents. When the cognitive

empathy is selected, the agent shows a higher level of cognition of the game situ-

ations and the agent’s empathic reaction is not necessarily the same as the user’s

affective state. For modeling, they used Näıve Bayes, decision tree, and SVM clas-

sification methods. During the interaction, after each empathic feedback message

they evaluate the agent’s empathy through user’s self-report. A snapshot of the game

environment used in their experiment is shown in Figure 2.16.

Figure 2.16: Environment setup used in [MRP08].

Ochs et al. [OSP10] proposed a BDI-like model of emotions (namely satisfac-

tion, sadness, frustration, irritation, and anger) based on empirical and theoretical

analyses of the users’ conditions of emotions elicitation. Using the emotion model,

they guess the most probable user emotion every time an event happens. Then they

mimic the same emotion with the corresponding emotional facial expressions of a 3D

character (developed in Orange Labs). Therefore, they modeled a combination of

the emotional and cognitive empathy. They performed an experiment in three con-

ditions of empathic, non-emotional, and non-congruent emotional (i.e., the character
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expresses an emotion with the opposite valence to the user’s emotion). Results show

that (1) the empathic character is perceived more jovial, expressive, and cheerful

than non-emotional version; (2) the non-congruent version is perceived less pleasant,

compassionate, expressive, jovial, and cheerful than the empathic version; (3) the non-

congruent virtual agent is perceived more irritating, strange, cold, and stressful than

the empathic version; (4) the non-congruent agent’s facial expressions are less ap-

preciated than non-emotional and empathic versions; while (5) the empathic agent’s

facial expressions are perceived more natural, and less perturbing and exaggerated

than the incongruent agent.

Moridis et al. [MEM12] implemented a virtual tutoring system, in which a 3D

character provides emotional and cognitive empathy with the students during a prob-

lem solving experiment. The virtual tutor recognizes the emotional facial expressions

of the student (namely happy, sad, and fear) using the FaceReader1 software. At the

same time, two experts recognize user’s facial emotions manually (i.e., Wizard-Of-Oz)

and if all three recognizers agree on an emotion, the empathy model is triggered so

the character empathizes with the student. In this research, three empathy models

are compared: (1) ECA displays neutral facial expression and vocal tone; (2) ECA

displays emotional empathy with replicating the user’s affective states using facial

expressions and vocal tone; or (3) ECA displays cognitive empathy by encouraging

behaviors in face and voice tone. So, if the user is sad or feared, ECA first displays

the same emotion, then happy. If the user is happy, ECA first displays the same

emotion, then neutral. Figure 2.17 shows the 3D character used in this research.

Results show that, the emotional empathy reinforces the student’s emotion. In the

emotional empathy case, students empathized back to the agent by expressing the

1http://www.noldus.com/human-behavior-research/products/facereader
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same emotions again. Also, when the ECA performs a combination of emotional and

cognitive empathy, it induced fear emotion to neutral.

Figure 2.17: The 3D character used in [MEM12].

The above studies showed that combining different individual empathy types and

applying that to virtual characters affects positively on the users’ affective states,

likability of the character, perceived emotions from the character, expressiveness of

the character, perceived pleasure from the character, and stress reduction.

2.4 Automatic Gesture/Expression Generation

Two main strategies are reported in the literature for automating the gesture gener-

ation:

1. rule-based approach, in which the recorded human behaviors are analyzed

manually, from which rules are hand-crafted for gesture selection [CVB01, LMR06,

NPI07a, BPI07, LM12]. For example, the facial displays for the Greta agent

[DCP02] were selected using manually hand-crafted rules technique, in which

rules to map from emotional states to facial displays were derived from the liter-

ature on facial expressions of emotion. Similarly, Cassell et al. [Cas01] selected

gestures and facial expressions based on the rules derived from North Ameri-

can non-verbal behavior studies. In this type of modeling, behavior models are

generated based on average behaviors of a range of people.
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2. machine learning approaches, in which recorded human behaviors and surface-

texts are annotated (manually or automatically), from which models of dif-

ferent gestures/expressions are inducted [LM09, LPNM09, FO08]. Such sys-

tems are able to produce more naturalistic output than a rule-based system

[FO08, LPNM09], and can also easily model a single individual. Cassell et al.

[CNB+01], for example, used this technique to choose posture shifts for the

REA agent based on the annotated behaviors of speakers. More recently, Kipp

[Kip05] used a similar technique to generate agent gestures based on annotated

videos of speakers.

A multi-modal corpus is used in both strategies, which is an annotated collection

of coordinated content on communication channels, such as transcript, speech, gaze,

hand gesture, and body language. The multi-modal corpus is generally based on

recorded human behaviors. The pragmatic context, under which each item of the

corpus was created, must be known, i.e., the corpus must include all contextual

information that the generator might use to choose among alternatives in a given

situation. Also, the content of different channels must be linked to each other so that

the generator can produce properly coordinated output.

In the next two sections, I will review some of the latest related works, in which

the above approaches are applied.

2.4.1 Rule-Based Approaches

Cassell et al. [CVB01] developed the Behavior Expression Animation Toolkit (BEAT),

which allows animators to input typed text wished to be spoken by a virtual char-

acter, and to obtain as output appropriate non-verbal behaviors synchronized with

the speech. Since many of the state of the art in automatic gesture generation have

implemented their systems based on the BEAT, we discuss the BEAT in details.
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BEAT uses linguistic and contextual information contained in the text to control

the movements of the hands, arms, face, and voice intonation. Modeling is performed

by rules derived from the research in non-verbal conversational behaviors. For ex-

ample, speakers express gestures along with the words. Also, listeners nod when the

speaker’s gaze shifts. BEAT is written in Java and is based on an input-to-output

pipeline approach with XML as the primary data structure. The system is real-time

(i.e., time to produce an utterance is less than the natural pause between speaker

turns, 500 - 1000 ms). An overview of the BEAT is shown in Figure 2.18.

Figure 2.18: The BEAT architecture [CVB01].

The main processing modules of the BEAT project are as follow:

Knowledge Base: (1) adds the basic knowledge about the world to what we

can understand from the text itself, and therefore allows (2) inferring from the text,

and consequently (3) specifying the gestures representing it, and the times when

emphasis is needed. Common gestures include the beat (i.e., a formless flick of the

hand), deictic (i.e., pointing gesture), contrast, and iconic gesture (represents some

object or action). These gestures are added to the database by the animator.

Language Tagging: the largest language unit is the utterance (i.e., an entire

paragraph of input), which is broken into clauses (each of which represents a propo-
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sition). Clauses are further divided into the theme (i.e., part that creates a coherent

link with a preceding clause) and rheme (i.e., part that contributes some new infor-

mation to the discussion) [Hal77]. Identifying the rheme is important since gestural

activity is usually found within the rheme of an utterance [DRSV02]. The language

tagging module uses the location of verb phrases within a clause and information

about which words have been seen before in previous clauses to assign information

structure. The next smallest unit is the word phrase, which either describes an action

(i.e., verb phrase) or an object (i.e., noun phrase). The language module uses action

and object databases. If an exact match of the verbs and objects are not found,

an embedded word ontology module (WordNet [MBF+90]) is used to create a set of

hypernyms (i.e., a related, but a more generic or broader term). The tagger uses the

EngLite parser from Conexor2 to supply word categories and lemmas for each word.

The module also keeps track of all previously mentioned words and marks each new

noun, verb, adverb or adjective as new if it has not been seen before. This “word

newness” helps to determine which words should be emphasized by intonation, eye-

brow motion or hand gesture. Also, if two words are in contrast with each other, that

pair is tagged with the contrast tag.

Behavior Suggestion: operates on XML trees produced by the Language Tag-

ging module by augmenting them with suggestions for appropriate non-verbal behav-

ior. Any non-verbal behavior that is possibly appropriate is suggested independent of

any other. The resulting generated behaviors will be filtered down in the next stage

of processing to the final set to be animated.

Gesture Generator Set: a set of behavior generators are included in this mod-

ule:

2www.conexor.fi
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1. Beat Gesture Generator: beats are default gestures that are used when no

information is available to generate a more specific gesture. Research shows that

beats occur in 50% of the gestures observed in most contexts [McN92]. Thus,

beats are given the lowest priority, so they will only be selected in absence of

other gestures. The beats occur mostly when the speaker is introducing new

material to the listener (rheme).

2. Surprising Feature Iconic Gesture Generator: determines if any of the

objects identified by the Tagger within the rheme have unusual features, and

for each generates an iconic (representational) gesture.

3. Action Iconic Gesture Generator: determines if there are any actions (verb

phrase roots) occurring within the rheme, for which gestural descriptions are

available in the action knowledge base. For each such action, an iconic gesture

is suggested.

4. Contrast Gesture Generator: if there are exactly two objects being con-

trasted, special contrast gesture is suggested. Otherwise beats are suggested for

contrast items.

5. Eyebrow Flash Generator: eyebrow raises can indicate new material [PBS96].

This generator suggests eyebrow raises when the character is introducing objects

within the rheme.

6. Gaze Generator: Cassell et al. [CTP99] studied the relationship between eye

gaze, theme/rheme, and turn-taking, and defined a few rule for controlling the

gaze behavior of a conversational character (e.g., at beginning of the utterance

gaze away from user).

7. Intonation Generator: assigns accents and boundary tones based on a theme-

rheme analysis described by Prevost and Steedman [PS94] (e.g., high intonation

on new objects).
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Behavior Selection: analyzes the tree of gesture suggestions and filters them

down to the set that will actually be used in the animation. In general, filters can

reflect the personalities, affective state and energy level of characters by regulating

how much non-verbal behavior they exhibit. For example, a Priority Threshold Filter

removes all behavior suggestions whose priority falls below a user-specified threshold.

Behavior Scheduling and Animation: in general, there are two ways to

achieve synchronization between a character animation and a the character’s speech

(either through a TTS engine or from recorded audio samples): (1) estimate word

and phoneme timings and construct an animation schedule prior to execution; (2)

assume the availability of real-time events from a TTS engine and compile a set of

event-triggered rules to govern the generation of the non-verbal behavior. Both of

these approaches are used in BEAT. BEAT was implemented on an example news

reporter character shown in Figure 2.19. However, the system was not evaluated in

the sense of user acceptance and naturalness of the character.

Figure 2.19: Example BEAT application snapshot [CVB01].

More recently, Lee et al. [LMR06] used the BEAT toolkit to develop a rule-

based non-verbal behavior generator that analyzes the surface text as well as the

turn-taking and affective state of the ECA. They studied the uses of non-verbal

behaviors in video clips of people conversing, and annotated the utterance dialog
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acts (affirmation, negation, contrast, intensification, inclusivity, obligation, listing,

assumption, possibility, response request, and word search).

based on the video analyses, they hand-crafted some rules, each of which associates

a set of words with the non-verbal behaviors that are usually expressed along with

them, and some priorities for each rule, which resolve conflicts between rules that

could co-occur (numbers indicate the priority):

1. “Interjection: Head nod, shake, or tilt co-occurring with these words: yes, no,

well.

1. Negation: Head shakes and brow frown throughout the whole sentence or phrase

when these words occur: no, not, nothing, can’t, cannot.

2. Affirmation: Head nods and brow raise throughout the whole sentence or phrase

when these words occur: yes, yeah, I do, I am, we have, we do, you have, true,

OK.

3. Assumption/Possibility : Head nods throughout the sentence or phrase and brow

frown when these words occur: I guess, I suppose, I think, maybe, perhaps,

could, probably.

3. Obligation: Head nod when these words occur: have to, need to, ought to.

4. Contrast : Head lateral movement to the side and brow raise when these words

occur: but, however.

4. Inclusivity : Lateral head sweep when these words occur: everything, all, whole,

several, plenty, full.

4. Intensification: Head nod and brow frown when these words occur: really, very,

quite, completely, wonderful, great, absolutely, gorgeous, huge, fantastic, so,

amazing, just, quite, important.
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4. Listing : Head lateral movement to the sides before and after the word ‘and’

when saying: X and Y.

4. Response request : Head moved to the side and brow raise when saying: you

know.

4. Word search: Head tilt, brow raise, and gaze away when these words occur:

um, uh, well.”

If there are two rules that overlap with each other, the one with a higher pri-

ority will be selected. They use Function Markup Language (FML) and Behavior

Markup Language (BML) as part of the input and output messages. FML specifies

the communicative and expressive intent of the agent (e.g., affect, coping, emphasis,

turn). BML describes the verbal and non-verbal behaviors an agent executes (e.g.,

head, face, gaze, body, gesture, speech, lips, animation). The system architecture is

presented in Figure 2.20.

Figure 2.20: The system architecture and interface snapshot in [LMR06].

As shown in Figure 2.20, the module is incorporated into the SASO and Smart-

Body character system as an example application, however, the user acceptance and

naturalness of the gestures are not evaluated. Moreover, the system is limited in the

sense that the features used in FML (e.g., affect) are hard-coded by the animator at

the run-time and there is no realtime recognition, which limits the interacting ability

of the character.
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In a research by Neviarouskaya et al. [NPI07b], they extended the research done

by Lee et al. [LMR06] and Cassell et al. [CVB01] with recognition and interpretation

of affect communicated through text messaging. They developed an Affect Anal-

ysis Model to handle “not only correctly written text, but also informal messages

written in abbreviated or expressive manner.” They proposed a rule-based approach

which processes each sentence in different stages including word/phrase/sentence-level

analyses. For affect categorization, the authors used not only affective words from

WordNet-Affect [SV04], but also an affective lexicon derived from the evaluation of

the semantic similarity between generic terms and affective concepts. They used a

subset of emotional states defined by Izard [Iza77]: anger, disgust, fear, guilt, interest,

joy, sadness (distress), shame, and surprise. The communicative function categories

they used are greeting, thanks, posing a question, congratulation, and farewell.

They added the following information to the database: (1) words referring directly

to emotions, mood, traits, cognitive states, behavior, attitude, sensations, (2) words

that can express human affective states (e.g., beautiful, violate), (3) words showing

dialog acts (functions), (4) interjections (e.g., wow, yay) that show an unexpected

emotion, (5) 112 modifiers (e.g., very, extremely) that show the emotion strength.

e.g., adverbs have an impact on neighboring verbs, adjectives [BIC+07], adverbs.

As shown in the system architecture presented in Figure 2.21, in the first stage,

the sentence is tested for occurrences of emoticons, abbreviations, acronyms, inter-

jections, “?” and “!” marks, repeated punctuation and capital letters. If found, no

further analysis of affect in text is performed, but, if there are multiple emoticons or

abbreviations in the sentence, the dominant emotion is selected based on these rules:

“(1) when emotion categories of the detected emoticons (or abbreviations) are the

same, the higher intensity value is taken for this emotion; (2) when they are different,

the category (and intensity) of the emoticon occurring last is dominant.” If there are
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no emotion-relevant emoticons in a sentence, the sentence is sent to the parser with

the emoticons and abbreviations removed from the text; and non-emotional abbre-

viations and acronyms replaced by their complete form (e.g., “I’m [am] stressed bc

[because] I have frequent headaches”).

Figure 2.21: The system architecture and interface snapshot in [NPI07b].

The second stage is devoted to syntactical structure analysis using the Connexor

Machinese Syntax parser3, which analyzes the sentences, including word base forms,

parts of speech, dependency functions, syntactic function tags, and morphological

tags. In the third stage, for each word in the database, the affective features of a

word are represented as a vector of emotional state intensities e = [anger, disgust,

sadness, fear, guilt, interest, joy, shame, surprise]. In the fourth stage, phrase-level

analysis is performed based on some predefined rules. The purpose of this stage is to

detect emotions involved in phrases, and then in subject, verb, and object formations.

During this stage, rules are applied and each formation is represented as a unified

vector showing its emotion. In the fifth stage, the overall emotion of a sentence and its

intensity are estimated. The emotional vector of sentences (or clauses) are generated

from subject, verb, and object formation vectors using some pre-defined rules.

3 http://www.connexor.com/
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In an evaluation experiment, in 79.4% of all sentences, the emotion category ob-

tained by proposed algorithm matches with at least one of three human raters’ an-

notation. In 70%, system output agrees with at least two annotators.

Breitfuss et al. [BPI07] introduce a system that automatically adds non-verbal

behavior to a given dialog script between two virtual embodied agents. It transforms

a dialog in text format into an agent behavior script enriched by eye gaze and head

nod. The resulting annotated dialog script is then transformed into the Multi-modal

Presentation Markup Language for 3D agents (MPML3D) [NPAI06], which controls

the multi-modal behavior of human-like agents. An important feature of their system

is that they generate the behavior not only for the speaker agent but also for the

listener agent. This system consists of three modules: (1) Language Tagging module,

which takes the input dialog text and uses the language module from the BEAT

toolkit [CVB01] to annotate linguistic and contextual information, and to suggest

appropriate non-verbal behaviors, (2) Non-Verbal Behavior Generation module, which

adds eye gaze and head nod to the annotated input sentence, and (3) Transformation

to MPML3D module, which produces an MPML3D file to control the behavior of the

3D agents. In order to avoid conflicts between certain gaze behaviors, like looking in

two different directions at the same time, they assigned priorities to the behaviors.

Gazing behaviors follow the same rules as in BEAT. In this system, a head nod is a

basic gesture type for the listener. It is the gesture with the lowest priority and is

used when no other, more specific gesture can be suggested.

Foster and Oberlander [FO08] presented a system that uses corpus-based selection

strategies to automate the animation of the head and eyebrow movement of an ECA

called RUTH [DRSV02]. Although their approach is data-driven, they do not use

machine learning for modeling, but count the frequencies of behavior occurrences

and either choose the behavior with the highest frequency or use a weighted choice.
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The syntactic and pragmatic information they used include: (1) the user-preference

evaluation of the object being described (positive or negative); (2) whether the fact

being presented was previously mentioned in the discourse or is new information; (3)

whether the fact is explicitly compared or contrasted with a feature of the previous tile

design; (4) whether the node is in the first or second clause of a two-clause sentence;

(5) the surface string, with words replaced by semantic classes or stems drawn from

the grammar ; (6) and any pitch accents specified by the text planner. They annotated

the speaker’s facial displays in each video to an XML document, considering five types

of motion: eyebrow raising/lowering; eye narrowing; head nodding; head leans and

turns.

They found the nodding and brow raising the most frequent and effective contex-

tual features. In negative contexts, eyebrow raising, eye narrowing, and left leaning

were more frequent; in positive contexts, right turns and brow raises had higher fre-

quencies. In the first half of two-clause sentences, brow lowering and upward nodding

were more frequent, while downward nodding and right turns were more frequent in

the second clause. Output expressions are selected in one of two ways: taking the

highest-probability option or making a weighted choice. As an example of the two

generation strategies, consider a hypothetical context, in which the speaker made no

motion 80% of the time, a nod 10% of the time, and a brow raise the other 10% of the

time. In this context, the majority generation strategy would choose the majority op-

tion of no motion 100% of the time, while the weighted strategy would choose nothing

with probability 0.8, a nod with probability 0.1, and a brow raise with probability

0.1. Figure 2.22 shows the expressions on the virtual character they used.

They compared the outputs produced by above two strategies in terms of precision,

recall, F-measure, and accuracy. Results showed that the majority strategy scored

higher on all measures, while the human subjects tended to prefer the output of the
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Figure 2.22: Output expression in [FO08].

weighted strategy. This shows that the subjects would prefer generated output that

reproduced more of the variation in the corpus, regardless of the corpus-similarity

scores.

More recently, Li and Mao [LM12] proposed a computational framework that en-

ables virtual agents to convey different emotional expressions to users through eye

movements. They propose a rule-based approach to generate emotional eye move-

ments based on the Geneva Emotion Wheel [Sch05] shown in Figure 2.23. Results

show a high rate of recognition of the agent intended emotion. The Geneva Emotion

Wheel (GEW) is a theoretically derived and empirically tested instrument to measure

emotional reactions to objects, events, and situations [Sch05]. As shown in Figure

2.23, emotions are symmetrically arranged in a wheel shape with the axes being de-

fined by two major appraisal dimensions: high/low appraisal and positive/negative

appraisal.

The overall framework of this research is illustrated in Figure 2.24. The emotional

eye movement synthesis is mainly composed in two phases: First, the Cohn-Kanade

AU-Coded facial expression database is analyzed to derive Facial Animation Param-

eters (FAPs) values. The FAPs are defined to allow the definition of a facial shape

and its animation for reproducing expressions, emotions, and speech pronunciation
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(a) GEW primary and secondary emotins.

(b) Appraisal dimensions.

Figure 2.23: Geneva Emotion Wheel and appraisal dimensions used in [LM12].

[Ost98]. Second, for pupil size, blink rate and saccade, an eye tracker is used to

capture and analyze real-time eye movement data, and derive FAPs values from raw

eye-track data. The resulting FAPs values are used to realize the desired emotion

by cheek, nose, eyebrow, eyelid and eyeball animation associated with the eye move-

ment. Also, hand-crafted rules are employed to generate emotional eye movement

for primary and intermediate (secondary) emotions of the virtual agent based on the

GEW model.
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Figure 2.24: Overall framework proposed by [LM12].

Rules are extracted based on experiments with a pictorial stimuli (International

Affective Picture System (IAPS) [LBC97]) accompanied by an audio stimuli (Inter-

national Affective Digitized Sounds (IADS) [BL07]) in three emotion categories of

neutral, negative arousing (negative valence), and positive arousing, on male and

female subjects. Some of the rules include:

• Pupil size is larger in positive and negative state than in neutral state.

• The larger the valence is, whether positive or negative, the larger the pupil size

is.

• The pupil size is larger for females than for male subjects during neutral stimuli.

• Blink rate decreases in positive and negative state compared to neutral state.

• Blink rate is slower during the negative and positive than during the neutral

stimuli.

• Diagonal saccade movements occur more in negative emotions than in positive

ones.

• Up, down, left, and right saccade happen more in positive emotions than in

negatives.

• In neutral state, the gaze target is usually fixed to the straight direction.
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2.4.2 Machine Learning Approaches

One major drawback of the previous rule-base systems is that the rules have to

be hand-crafted, therefore, the person who creates the rules should have a broad

knowledge of the modeling aspect. However, as more and more input features are

added, it becomes harder to determine the effects of each feature on the overall

outcome. To address this limitation Lee et al. [LM09] used a machine learning

technique, Hidden Markov Model (HMM) [Rab89], to create a head nod model from

annotated video corpora of face-to-face human interactions, based on the syntactical

features of the dialog surface text. HMM is a statistical model that is used for learning

data-driven models, in which a sequence of observations is available. For this work,

the input is a sequence of feature combinations (vectors) representing each word. The

sequential property of this problem is the reason of using HMMs to predict head nods.

Lee et al. [LM09] used the system proposed in [LMR06, NPI07b, NPI07a] and

focus on the first step of the head movement generation process, which is predicting

when the speaker should use head nods. The stages of the learning process are shown

in Figure 2.25.

Figure 2.25: The stages of the learning process proposed by [LM09].

As shown in Figure 2.26, for data construction, they used the speaker’s surface

text, the utterance dialog acts, and the observed head movements (nod, shake, nod-

shake, other, and none) during the utterance. They also obtained the part of speech

tags, phrase boundaries (e.g., start/end of verb phrases and noun phrases), and key
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lexical entities (i.e., keywords shown to be associated with head nods) by sending the

utterances through a natural language parser (Charniak Parser [Cha00]). The number

of features is reduced by counting the frequency of head nods that occurred with

each feature and selecting a subset of features that have the highest co-occurrence

frequency. The list of final features selected for training is: sentence start, noun-

phrase start, verb-phrase start, and key lexical entities. After aligning each word

of the utterances with the selected features, each sequence of three words are put

together to form a set of trigrams. These trigrams compose the dataset. For each

trigram, using the majority vote method, they determine the head gesture. For

example, if two or three out of three words co-occurred with a nod, the trigram

was classified as a nod, and the same for other head movements. To determine the

classification category of each trigram, two HMMs are trained: a ‘Nod’ and a ‘Not

Nod’ HMMs (i.e., other head movements than nod). The output of an HMM is a

probability that a sample is classified as a specific head gesture.

Figure 2.26: Data construction process in [LM09].

They show that the head nod model predicts head nods with accuracy of 0.8528,

precision of 0.8249, recall of 0.8957, and F1-measure of 0.8588. This work can be
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extended by learning the patterns of other non-verbal behaviors. Also, conducting

evaluations with human subjects helps investigating if the head movements generated

by the model are perceived to be natural. Moreover, adding some interactive features

of the user (e.g., facial expressions) to the modeling process increases the naturalness

and believability of the system.

Lee et al. [LPNM09] expanded the head nod model they proposed earlier [LM09]

by using affective information during the learning process to build a domain-independent

model of speaker’s head movements, which predicts the speaker’s head nods. They

investigate the use of affective information during the learning of speaker head nod

models. They perform this by using the detected emotion label of each word in the

surface text as well as the emotion label over the whole sentence during training pro-

cess. The Affect Analysis Model (AAM) presented in [NPI07b] was the rule-based

system aimed for the recognition of ten emotions from text (i.e., anger, disgust, fear,

guilt, interest, joy, sadness, shame, surprise, and neutral).

They trained the models with three different conditions: (1) using no affective

information, (2) using emotion label of each word, and (3) using emotion label of the

whole sentence. Results show that using affective information, especially in sentence

level, improves the prediction metrics compared to using no affective information. Ac-

curacy increased to 0.8957, precision increased to 0.8909, recall increased to 0.9018,

and F1-measure increase to 0.8963. This research suggests using sentence-level affec-

tive features of the surface text in automatic modeling the non-verbal gestures.

Finally, a different hybrid approach is suggested in [Kip06], which uses both hand

crafted rules and machine learning to generate the gestures. Author uses pre-defined

rules to add some default gestures to the character based on textual features of the

script. Then, machine learning is used to create more rules. Nearest neighbor cluster-

ing algorithm was used to cluster similar patterns to the rules already available in the
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system, and find new rules. Output models are grouped into four channels of facial

expression, gaze, manual gesture, and head movement. This approach was applied

to the COHIBIT system (a mixed-reality museum exhibit), in which text is sent to

two virtual characters to be uttered. Evaluation results show precision of 0.338 and

recall of 0.136 for the male character and precision of 0.326 and recall of 0.321 for the

female character.

Comparing the above manually generated rule-based systems and automatically

inducted models, the machine-learning approaches have several advantages over the

rule-based ones: (1) the process is automated; (2) having a good understanding of the

phenomena is still important, however with this approach, it is no longer necessary

for the author of the model to have a complete knowledge of the complex mapping

between the various features and behaviors; and last but not least (3) it is flexible

and can be customized to learn non-verbal behaviors in a specific context, culture,

age, personality, etc. [KTB+08].

In the related research of the machine learning approach to automate gesture

generation, there are still some limitations that I aimed to address in this dissertation,

such as: (1) they either model the non-verbal behaviors of the characters in a speaker

or listener role, while both roles are needed in order to create a believable flow of

conversation; (2) mostly, they use either the textual features or the visual features

of the conversation in order to decide about the best non-verbal behaviors of the

character, while a combination of these features can give more information about

the context and the user’s state; and (3) they model very few non-verbal behaviors

including smile, head nod, and eye gaze, which are not enough for creating a natural

conversation.
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2.5 Facial Expression Generation

2.5.1 Facial Action Coding System (FACS)

The Facial Action Coding System (FACS) [EF78, EFH02] is a widely used facial cod-

ing system for discussing and measuring all visible facial movements. FACS describes

facial activities in terms of muscle Action Units (AU), each of which is associated

with the underlying muscles that cause the movement. FACS helps to understand

all possible physical movements of the human face. AUs are grouped based on their

location on the face and the type of facial action involved. The “upper-face” AUs

include the eyebrows, forehead, and eyelids muscles; the “lower-face” AUs include

muscles around the mouth and lips, and the “head and eye movement” AUs include

the neck muscles, which move the head and the eye muscles, which move the gaze

direction.

AUs act as multi-level switches, which can create custom expressions depending

on which AUs are activated/deactivated at a certain time. Since not all expressions

require the farthest reach of a muscle, intensity levels are used to create subtle move-

ments of the face. Intensities are annotated from “0” to “E”, where “0” is the neutral

face without any activated AUs, “A” is the weakest trace of the AU, and “E” is the

maximum intensity.

The muscle groups underlying all facial movements form 30 AUs for facial expres-

sions, 14 AUs for head and gaze directions, and 2 AUs for head movements. Figure

2.27 shows facial muscles and their associated AU numbers.

Specific AUs in both sections can also be activated unilaterally to generate asym-

metric expressions. Although a hard topic to master, trained FACS coders are known

to identify movements of the human face so well as to recognize which AUs are acti-

vated at a certain frame (or point in time) of an expression, including the intensities
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Figure 2.27: Sample AUs of the FACS.

of each AU. A FACS “score” of an expression consists of the list of AUs that produce

it, accompanied with their corresponding intensities.

Emotional FACS (EmFACS) [FE83] is an extension of FACS, focused primarily on

facial expression of the emotions. EmFACS provides subsets of AUs used to generate

the six universal emotions identified by Ekman [ELF83], namely, fear, anger, surprise,

disgust, sadness, and happiness, although, other emotional facial expressions, such as

contempt, pride, and embarrassment, can also be depicted by combinations of FACS

action units. Ekman and Friesen [FE83] studied people’s emotions around the world

and found that people have an innate ability to generate and understand that set of

facial expressions among all human cultures.

Expressive emotions that can captivate an audience are sought out by animators

who want to create virtual characters, by psychologists who wish to understand a

potential patient’s emotional distresses, and by affective computing researchers who
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aim at generating believable virtual characters who can assist or entertain human

beings. This has increased the importance of the universally accepted facial express-

sions, because well-rigged characters can be used to express the facial actions based

on FACS to express cross-culturally readable expressions.

Although FACS is a widely accepted standard, it has a steep learning curve.

Therefore, for researchers who are interested in controlling facial expressions, there is

a need of easy-to-use learning tools.

An alternative to the FACS is the Facial Animation Parameters (FAPs) defined

in the ISO MPEG-4 standard [Ost98, BCL00, Ost02] based on the Facial Definition

Parameters (FDPs), that allow the definition of a facial shape and its expressions

including emotional faces and speech pronunciation. FDPs represent 88 key points in

a human face that are used to customize a model to a face and animation (i.e., FAPs

that describe motion).

The FAPs are based on the study of minimal facial muscle actions that can rep-

resent a complete set of basic facial expressions. FAPs are expressed in terms of

the Facial Animation Parameter Units (FAPUs), which correspond to fractions of

distances between some key facial features. These units allow interpretation of the

FAPs on any facial model.

2.5.2 Facial Expression Datasets

Researchers interested in human facial expressions - either the ones interested in

correlating facial movements to the expression of emotions [EF78, EFH02, ELF83,

EF74, Sch01], or the ones considering facial displays as social signals of intent [Cho91,

Fri94] - typically base their research on large databases of human facial expression

images and/or videos.
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Facial databases are usually coded in a variety of meaningful ways, and used in

a variety of disciplines, such as psychology or physiology, with research on facial

expression recognition, facial expression generation, or emotion theories.

Several databases of human facial expressions have been developed. These databases

provide standard sets of facial expression images and videos, including different emo-

tional facial expressions and faces with specific activated AUs. For example, Karolin-

ska Directed Emotional Faces [LFO98] is a set of 4,900 pictures of human facial ex-

pressions of emotions portrayed by 70 non-FACS certified individuals, each displaying

7 different emotional expressions (neutral, happy, angry, afraid, disgusted, sad, and

surprised), each expression being photographed from 5 different angles.

Pictures of Facial Affect4 is another dataset consisting of 110 black and white

photographs of FACS-based facial expressions.

UC Davis Set of Emotion Expressions [TRS09b] includes images of anger, embar-

rassment, fear, disgust, happiness, pride, sadness, shame, and surprise expressions

portrayed based on FACS by 4 FACS-certified individuals – 2 females (1 Caucasian

American, 1 African) and 2 males (1 Caucasian American, 1 African).

Montreal Set of Facial Displays of Emotion5 consists of emotional facial expressions

portrayed by men and women of European, Asian, and African descent. The set

contains expressions of happiness, sadness, anger, fear, disgust, and embarrassment

in 5 levels of intensity as well as a neutral expression for each actor. Expressions were

FCAS coded to assure identical expressions across actors.

Amsterdam Dynamic Facial Expression Set [VHFD11] is a set of 648 videos of nine

emotional expressions: anger, disgust, fear, joy, sadness, surprise, contempt, pride and

4www.paulekman.com/product/pictures-of-facial-affect-pofa

5www.er.uqam.ca/nobel/r24700/Labo/Labo/MSEFE.html

66



embarrassment. Expressions are displayed by 22 non-FACS-certified North-European

and Mediterranean models (10 females, 12 males).

SmartKom video database [SST02] consists of 448 multi-modal recordings of 224

persons showing joy, gratification, anger, irritation, helplessness, pondering, reflect-

ing, surprise, and neutral expressions.

Belfast Naturalistic video database6 contains 298 audio-visual clips from 125

speakers (31 males and 94 females) and the annotations of their affective facial ex-

pressions provided by 7 experts.

CK+ dataset [LCK+10] contains (1) video recordings of the facial behavior of

210 adults (18 to 50 years of age; 69% females; 81% Euro-Americans, 13% Afro-

Americans, and 6% other groups). Individuals performed a series of 23 facial displays

including single AUs and combinations of AUs; (2) FACS coding of the peak frames

of 593 posed sequences; (3) image data from the pool of 593 sequences that had a

nominal emotion label from the 7 basic emotion categories (i.e., anger, contempt,

disgust, fear, happy, sadness and surprise).

MMI Facial Expression Database [VP10] consists of over 2900 videos and images

of 75 subjects. The AUs presence (i.e., neutral, onset, apex or offset) is FACS coded

in videos, and partially for the images.

Although these databases have been used successfully for facial expression recogni-

tion and synthesis, they have common limitations, such as: (1) only a limited number

of facial movements are provided; (2) all the possible intensities of different expres-

sions are not provided; (3) all combinations of AUs activation with different intensities

are not provided for each face (i.e., it is difficult for a human actor to generate all

combinations of different AUs); (4) because it is difficult for human posers to display

exactly the same AU activation intensity, datasets are not always consistent across

6http://sspnet.eu/2010/02/belfast-naturalistic/
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subjects [KTRS12, SE07]; (5) most of the provided emotional expressions are static

(images), which can limit their usefulness to study gradual changes of facial muscle

movements; and/or (6) although a few databases provide images and videos of indi-

vidual AUs and of combination of AUs, most of the databases provide data on six to

nine human facial expressions of emotions only.

In this dissertation, I posit that realistic facial expressions generated and validated

based on FACS, can provide valuable additional data on facial expression generation

and a platform for researchers to experience with. HapFACS (discussed in Section

3.1) aims at addressing some limitations of the current datasets by increasing the

number of facial movements that can be activated and manipulated according to

FACS on a 3D virtual character’s face. HapFACS can act as an infinite database

of expressions, and can be used to create any possible combination of facial muscle

movements on different virtual character models. HapFACS enables researchers to

create both custom images and videos of facial expressions.

2.5.3 Virtual Character Animation

FACS is currently being used extensively in virtual characters that need to portray

facial expressions. For example, Smartbody [TRM+08, Sha11], the virtual character

animation system developed by researchers at the Institute for Creative Technologies

(ICT), provides important aspects of realistic character modeling, such as locomo-

tion, facial animation (11 AUs), speech synthesis, reaching/grabbing, and various

automated non-verbal behaviors. SmartBody is a very powerful, but heavy-weight,

software requiring programming experience and extensive effort to be integrated with

researchers’ systems and applications.
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FACSGen [KTRS12] is a software developed on top of the FaceGen7 virtual char-

acter software and it simulates 35 AUs. Whereas FaceGen faces are quite realistic and

well rendered, some aspects of the FACSGen software can limit its extended use for

the type of research we mentioned above: (1) it only implements 35 out of 46 AUs (30

facial AUs, 14 eye and head direction AUs, and 2 head movements); (2) it cannot acti-

vate the bilateral AUs asymmetrically; (3) characters do not have lip-synchronization

abilities (which limits its appeal for researchers interested in speaking characters); (4)

strong graphics expertise is needed to combine FaceGen faces with a character’s body,

to embed the character in another software, and to add lip-synchronization abilities;

and (5) the system is not freely available to the research community.

In a research by Helmut and Leon [Beu11], the authors implemented 13 AUs on

faces with soft-looking skins, which can simulate wrinkles on skin. They generated

the AU expressions by using manually generated morphs for a virtual character. Al-

though they do not provide any evaluations for the accuracy of the generated AUs,

resulting expressions seem promising. However, in addition to the similar limitations

enumerated for the FACSGen, Helmut and Leon’s product neither supports embed-

ding the character in other applications, nor exporting the generated facial expressions

as images or videos.

Villagrasa and Sanchez [VS09] presented a 3D facial animation system named

FACe!, which is able to generate different facial expressions throughout punctual and

combined activation of AUs. The FACe! system is implemented on the 3DStudio

Max platform. The resulting virtual model is able to activate single or combined

AUs, express emotions, and display phonemes on lips. The AUs are generated using

manually generated morphs and rigs for the virtual character. The FACe! simulates

a total of 66 movements and AUs, which can be activated both unilaterally and

7http://www.facegen.com/
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bilaterally. It also can express four emotions namely, happy, fear, sad, and anger.

However, making changes to their character’s skin, age, gender, ethnicity, lighting,

and enabling lip-synchronized speech requires graphics expertise that IVA researchers

might want to avoid acquiring. Moreover, it is not freely available to the research

community either.

Alfred [BFA09] is a facial animation system, which uses a slider-based GUI, a

game-pad, and a data glove for user input. Alfred uses the 23 AUs of the FACS for

the description and creation of the facial expressions. The AUs are generated using

manually generated morphs. This character also supports lip synchronization. How-

ever, the AU expression accuracy is not evaluated by certified FACS-coders, and the

technical experience needed to setup the system and integrate it with other applica-

tions deter users from using it.

Wojdel and Rothkrantz [WR05] presented a parametric approach to generation

of FACS-based facial expressions. They used 38 control markers on one side of a

human subject’s face as well as positions of facial features, such as mouth-contour,

eye-contour and eye-brows, and took frontal pictures of the face when single AUs

were activated. The authors found mathematical functions of the marker movements

for each single AU activation, and implemented 32 symmetric AUs. They used fuzzy

logic to generate some rules to enable AU co-occurrence and prevent oppositions in

AU activation (e.g., activating AU 51 and AU 52 at the same time are not anatomi-

cally possible). They evaluated the AU generation accuracy of their system with 25

subjects on Ekman’s 6 universal expressions mentioned above (anger, disgust, fear,

happiness, sadness, surprise) and reported a 64% recognition rate. This software

does not enable the user to activate the bilateral AUs asymmetrically; it do not have

lip-synchronization abilities; integration of the head model to characters in real ap-
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plications needs graphics expertise; and finally, the system is not freely available to

the research community.

Digital Emily [ARL+09] was generated by filming an actress while she spoke and

by capturing the motion of the actress’ facial expressions showing different emotions,

mouth movements, and eye movements. The actress was posed for thirty-three differ-

ent facial expressions based loosely on FACS. Motion capture techniques were used

to map marked point on the actress’s face to the vertices of her face 3D model. A

semi-automatic video-based facial animation system was then used to animate the

3D face rig. However, Digital Emily was rendered offline, involved just the front of

the face, and was never seen in a tight closeup. Although the facial movements are

not generated exactly based on FACS, no evaluation of the accuracy of the facial

expression are provided.

More recently, Alexander et al. generated a new virtual character called Digital Ira

[AFB+13] using a similar approach to the one they used in animating Digital Emily.

Digital Ira is a real-time (Digital Emily was rendered offline), photoreal digital human

character, which can be seen from any viewpoint, in any lighting, and can perform

realistically from video performance capture even in a tight closeup. However, this

virtual character is not available to the research community, also, integration of the

head model to a real application needs graphical expertise.

Greta [PP01, BPN+10] and iFACE [ADJE06] are other virtual characters being

used in facial expression research. These character systems develop, display and

animate facial expressions based on FAPs and MPEG-4 standard [BCL00]. Greta

can also simulate the skin wrinkles. However, since they are not based on FACS, it

does not provide any simulations of the AUs and asymmetric animations.

Therefore, a simple and user-friendly system as well as an easy-to-use program-

ming API that allows easy manipulation of virtual character’s facial expressions based
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on FACS can cover the limitations of the above systems and needs of the research

community.

2.5.4 Haptek Avatar System

The Haptek8 software, developed by Chris Shaw, is a light weight avatar system, which

is a popular software for many research groups currently working on embodied vir-

tual characters [HJR10, AWL11, BT11, BTTS12, BST10, BR11, DMNP10, FMS+12,

IY10, LSN10, NI10, NdRM10, PBCS10, SCB+10, SD12, THSh+11, VF10, CVG+10,

SLN11, CVG+10]. Its popularity among academic groups working on ECAs is due

to the fact that, unlike the high-resolution 3D characters seen in video games and

digital animation movies, which require pre-scripting movements and many expensive

graphic artists and animators to draw and render each facial expression, Haptek offers

low cost programmable 3D-characters that have the best lip synchronization on the

market. In addition, characters portraying features of different ethnicities can easily

be designed.

Haptek has great accessibility, and provides an excellent solution for researchers

who may not necessarily be interested in the most photo-realistic virtual face possi-

ble, but who do want to see the effects of facial movements on an anthropomorphic

face. Haptek characters have three versions of head-only, torso, and full-body, which

provide the ability to use them in a variety of systems or applications, in which

non-verbal gestures, other than facial expressions, are needed as well.

Haptek characters can be integrated easily to applications and enable them to have

a real-time talking character with lip synchronization based on speech synthesizers

or pre-recorded sound files. However, Haptek suffers from not having an accessible

programming API and interface for FACS-based facial expression generation, which

8http://www.haptek.com
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is the crucial part of emulating face-to-face interaction with non-verbal behaviors.

Therefore, a solution is needed, which addresses this issue by providing an API to

control Haptek characters’ facial expressions in real-time, based on FACS, and to

control facial expressions of emotions based on EmFACS [FE83].

2.6 Summary of Literature Review

As I discussed in this chapter, in the state of the art of rapport and empathy model-

ing, generally, non-verbal rapport and empathy are modeled different ways: rapport,

motor empathy (mimicry), emotional (affective) empathy, cognitive empathy, verbal

empathy, and different combinations of these empathy types.

However, there are multiple limitations in these approaches that are addressed in

this dissertation: (1) non-realtime recognition of the affective state of the subjects,

which is addressed using realtime facial/head/body gesture recognizers; (2) not using

the facial expressions as the most important modality in human behavioral judgment

[AR92] in both recognition and expression phases, which is addressed by using highly

expressive characters that are capable of expressing different facial expressions based

on FACS, also as mentioned before, realtime facial expression recognizers are used

to perceive the emotional state of the users; (3) using rapport and empathy in non-

emotional contexts, which is addressed by using the rapport and empathizing ability

in health counseling context, which can be highly emotional for people; (4) unclear

mapping of the subject’s recognized features to the character’s reactions, which is

addressed by creating individual models for each non-verbal behavior; and (5) using

characters with low expressivity, which limits conveying the non-verbal behaviors,

that is addressed by using highly expressive 3D characters.

In the state of the art for character animation, especially in facial expression an-

imation, the need of an accessible and easy-to-use solution is highly sensed, which
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enables us to (1) control characters’ facial expressions in real-time based on a stan-

dard, such as FACS (and EmFACS); and to (2) generate standard, believable, and

reproducible facial expressions (images and videos) on characters of different eth-

nicities, genders, and ages. I addressed this need with implementing the HapFACS

software and API (discussed in Section 3.1).

In the state of the art of automatic gesture generation, generally, two approaches

are taken for modeling the non-verbal gestures and automating the gesture generation:

(1) using hand-crafted rule-based models, and (2) using machine learning techniques.

Hand-crafting the rules requires some social science expertise in human communi-

cation and is a time consuming process to map multiple input features to the output

gestures (time complexity increases exponentially when the number of input features

increases). Machine learning techniques enable us to either generate these rules au-

tomatically, or generate probabilistic models for different gestures which map the

input features to the output gestures. Whereas Machine Learning (ML) techniques

have recently began to address the limitations of early rule-based techniques, current

research using the ML approach has a number of limitations of its own.

Therefore, in this dissertation, I aim to use machine learning to address the fore-

mentioned limitations of the hand-crafted rule-based models, and ro address the

current limitations of the machine learning approaches taken to model non-verbal

behaviors including: (1) not taking into account interactive features, such as user’s

facial expressions, gaze, and head movements, for decision making, which I addressed

by using the outputs of a realtime facial expression recognizer and eye gaze tracker;

(2) modeling very few non-verbal modalities, namely head nod, gaze, and smile,

while other non-verbal are as important and can help generating believable charac-

ters, such as head shake, head nod-shake, body lean (e.g., left/right, forward), eyebrow

movements (e.g., up and down), emotional facial expressions (e.g., happy, sad, sur-

74



prised, angry, and disgust), and hand gestures (e.g., formless-flick, point, contrast,

iconic, close, and open); (3) using either visual or textual features for learning the

non-verbal behaviors, while a combination of both types in used in this dissertation in

order to increase the amount of information perceive from the input data and improve

the performance of the modeled gestures; and finally (4) modeling either speaker or

listener non-verbal gestures, while both roles are important in expressing gestures.

People express different non-verbal behaviors when they are speaking and listening

with different patterns. So, in this dissertation, I addressed this limitation by gener-

ating individual models for speaker and listener roles. For example, I generated head

nod model for the speaker and another head nod model for the listener.
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CHAPTER 3

Haptek Character Animation

3.1 HapFACS

One of the most important media in human social communication is the face [AR92],

and the integration of its signals with other non-verbal and verbal messages is crucial

for successful social exchanges [All02]. However, while much is known about the

appearance and human perception of facial expressions, especially emotional facial

expressions, emotion researchers still have open questions about the dynamics of

human facial expression generation and their perception [Sch01].

There are therefore advantages to have software, such as HapFACS, that can emu-

late facial expression generation via 3D animated characters: 1) to animate intelligent

virtual agents (IVA) that can naturally portray human-like expressions when they in-

teract with humans; and 2) to develop and test emotion theories of (human) dynamic

facial expression generation.

Indeed, IVAs – which simulate humans’ innate communication modalities, such

as facial expressions, body language, speech, and natural language understanding, to

engage their human counterparts – have emerged as a new type of computer interfaces

for a wide range of applications, e.g., interactive learning [SAD+06], e-commerce

[BST10], virtual patients [KPG+07], virtual health coaches [LAYR13], video games

[ADJE06] and virtual worlds [MGR03].

IVAs therefore need to be able to portray appropriate levels of social realism, e.g.,

portray believable facial expressions, and gestures. However, many IVA researchers

interested in modeling social intelligence do not have the graphics expertise for the

difficult task of generating and animating 3D models, in order to showcase the em-

bodiment of their models of social intelligence. Similarly, psychologists working on
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facial expression generation rely on the analysis of large corpora of videos and images

of human expressions, but do not have the means to test their theories in a systematic

fashion.

Because it is difficult to animate 3D characters, many researchers buy and use

third-party software. To date, there are a handful of systems that provide the ability

to manipulate facial expressions on 3D characters in terms of Action Units (see Section

2.5.3), most of them are not freely available to the research community and/or require

computer graphics expertise, with characters often difficult to integrate with one’s

system.

I developed HapFACS, a free software and API, based on the Haptek 3D-character

platform running on the free Haptek Player1, to address the needs of IVA researchers

working on 3D speaking characters, and the needs of psychologists working on facial

expression generation. HapFACS provides the ability to manipulate the activation –

in parallel or sequentially – of combinations of the smallest groups of facial muscles

capable of moving independently (referred to as Action Units), which can help the

development of facial expression generation theories, as well as the creation of believ-

able speaking IVAs. HapFACS has been very well received by affective computing

researchers [LAYR13, HDC15, AN14, ALY14, MNP13, MPNP13, ALYR13].

HapFACS2 is a free stand-alone software and API implemented in the C# lan-

guage. It uses virtual characters rendered in the free HaptekPlayer software, and

simulates FACS AUs on these characters. Currently, HapFACS includes more than

1http://www.haptek.com/

2Affective Social Computing Lab has an agreement with Haptek to be able to distribute
HapFACS source code under a free non-exclusive license only for academic, research or
non-profit centers and only for personal and noncommercial purposes as per the license
terms provided at http://ascl.cis.fiu.edu/hapfacs.html. HapFACS requires Haptek Player
available at www.haptek.com, which is also free for non-commercial use, per its license
agreement.
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165 characters and hair styles, and users can use Haptek PeoplePutty software to

create new characters and import them to HapFACS.

3.1.1 HapFACS Functionalities

HapFACS enables users to: (1) control 49 AUs (12 upper-face, 21 lower-face, and 16

head/eye position) of characters’ faces; (2) activate individual AUs and AU combi-

nations with different intensities; (3) activate AUs bilaterally and unilaterally. Users

can activate 13 AUs unilaterally (namely AU2, AU13, AU14, AU15, AU38, AU39,

AU46, AU61, AU62, AU63, AU64, AU65, AU66); (4) generate EmFACS emotions

with different intensities; (5) generate reproducible, realistic, 3D, static and dynamic

(video) outputs; (6) generate Haptek hyper-texts provided by a C# API to enable

reproduction of the HapFACS facial expressions in other applications with embedded

Haptek avatars3.

For image generation, when a HapFACS user activates an AU with a specific

intensity, its corresponding set of registers is activated with the selected intensities.

In addition, users can select to activate the AU unilaterally for 19 AUs. When the

AUs are activated, users can take and save a photo of the generated face. A snapshot

of the HapFACS software interface is shown in Figure 3.1.

For video generation, users need to provide: the AU, side (i.e., left/right or bilat-

eral), starting intensity, ending intensity, starting time, and ending time of the AU

activation. HapFACS changes the intensity linearly from the start intensity to the

end intensity and generates a video of the resulting expression (non-linear activation

3Features, such as modifiable background, lighting, and skin texture, are provided by
the Haptek API, and HapFACS user-friendly interface enables non-experts to utilize all
these functionalities without having to learn Haptek C++ or JavaScript APIs.
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Figure 3.1: HapFACS interface snapshot.

is planned for a future version). Users can activate different AUs in parallel during

the video generation and select overlapping activation times for the AUs.

In addition, users can generate EmFACS-based emotional facial expressions with

different intensities for 9 emotions: happiness, sadness, surprise, anger, fear, disgust,

contempt, embarrassment, and pride [FE83].

The users can also change the avatar and its hair style from the provided character

and hair styles, or import any other Haptek characters and hair styles by simply copy-

ing them into the corresponding folders in the HapFACS code. HapFACS can import

characters of different ages, ethnicities, and genders generated in the PeoplePutty

software. I have provided introduction and tutorial videos4,5 for the HapFACS, in

which I show all the functionalities of the HapFACS.

4http://youtu.be/aep5PRk2r6U

5http://youtu.be/0y13Xo9-uaI
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3.1.2 Registers, Switches and Action Units

For simulating the AUs on the characters’ faces, I match each AU introduced in the

FACS manual [EFH02] to a combination of the Haptek registers and switches. If we

think of a Haptek character as an object in an object-oriented programming language,

registers would be the character’s (i.e., object’s) properties, which can be adjusted

to change the facial appearance of the character, and switches would be the methods

(or functions) that simulate some gestures on the character (e.g., head nod).

Haptek provides a total of 71 registers for head characters (152 and 136 registers

for torso and full-body characters, respectively). However expertise is needed to learn

how registers work6. Haptek original registers and switches are not based on FACS,

therefore, to generate facial expressions based on the FACS, I followed five steps:

1. I explored all the Haptek facial, head, and eye registers and switches, which

manipulate the facial, head, and eye movements and gestures. Haptek regis-

ters/switches used in my implementation include 6 for head movements, 4 for

eye movements, 8 for upper-face movements, and 21 for lower-face. A complete

list of the Haptek registers is available in Table 3.1. Also, Figure 3.2 shows

different Haptek registers used in HapFACS on a character’s face.

6For users interested in registers involved for each AU, HapFACS source code and
documentation are freely available upon request at http://ascl.cis.fiu.edu.
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Table 3.1: Haptek registers for a full-body character.

Body Parts Affected Haptek Register Function Body Parts Affected Haptek Register Function

Head
HeadSideBend Bend head left/right

Upper face

MidBrowUD Move mid-brow up/down
HeadForward Move head forward/backward RBrowUD Move right brow up/down
HeadTwist Twist head left/right LBrowUD Move left brow up/down

Hand

RWristFlop Flop right wrist REyeBallUD Move right eye ball up/down
RWristWave Wave right wrist REyeBallLR Move right eye ball left/right
LWristFlop Flop left wrist LEyeBallUD Move left eye ball up/down
LWristWave Wave left wrist LEyeBallLR Move left eye ball left/right
RFingerThumbOut Move right thumb out L lidUp Move left eye lid up/down
RFingerThumb Move right thumb R lidup Move right eye lid up/down
RFingerThumbMid Move right thumb from middle l lidL Move left eye lid left/right
RFingerThumbTip Move right thumb from tip R lidL Move right eye lid left/right
RFingerIndexOut Move right index finger out eyesdia Change eye pupil size
RFingerIndex Move right index finger in blink Close/open eyes
RFingerIndexMid Move right index finger in from middle winkL Close/open left eye
RFingerIndexTip Move right index finger in from tip winkR Close/open right eye
RFingerMiddleOut Move right middle finger out trust Close/open eye lids
RFingerMiddle Move right middle finger in distrust Narrow eyes
RFingerMiddleMid Move right middle finger in from middle eyes sad Express sadness with eyes & brows
RFingerMiddleTip Move right middle finger in from tip eyes mad Express anger with eyes & brows
RFingerRingOut Move right ring finger out

Torso, shoulder, & arm

TorsoSideBend Bend torso left/right
RFingerRing Move right ring finger in TorsoBow Bow torso
RFingerRingMid Move right ring finger in from middle TorsoTwist Twist torso left/right
RFingerRingTip Move right ring finger in from tip LumbarSideBend Bend lumbar left/right
RFingerPinkyOut Move right pinky finger out LumbarTwist Twist lumbar left/right
RFingerPinky Move right pinky finger in RClavicalForward Move right arm clavical forward/backward
RFingerPinkyMid Move right pinky finger in from middle RClavicalUp Move right arm clavical up/down
RFingerPinkyTip Move right pinky finger in from tip LClavicalForward Move left arm clavical forward/backward
LFingerThumbOut Move left thumb out LClavicalUp Move left arm clavical up/down
LFingerThumb Move left thumb in RShoForward Move right arm forward/backward
LFingerThumbMid Move left thumb in from middle RShoOut Move right arm right/left
LFingerThumbTip Move left thumb in from tip RShoTwist Twist right arm left and right (out and in)
LFingerIndexOut Move left index finger out LShoForward Move left arm forward/backward
LFingerIndex Move left index finger in LShoOut Move left arm right/left
LFingerIndexMid Move left index finger in from middle LShoTwist Twist left arm left/right
LFingerIndexTip Move left index finger in from tip RElbowBendJoint Bend right elbow up/down
LFingerMiddleOut Move left middle finger out RElbowTwist Twist right elbow
LFingerMiddle Move left middle finger in LElbowBendJoint Bend left elbow up/down
LFingerMiddleMid Move left middle finger in from middle LElbowTwist Twist left elbow
LFingerMiddleTip Move left middle finger in from tip

Neck
NeckSideBend Bend neck left/right

LFingerRingOut Move left ring finger out NeckForward Move neck forward/backward
LFingerRing Move left ring finger in NeckTwist Twist neck left/right
LFingerRingMid Move left ring finger in from middle Morph her e Change morph to male/female
LFingerRingTip Move left ring finger in from tip

Lower face and viseme

NostrilR3tx Move right nostril right/left
LFingerPinkyOut Move left pinky finger out NostrilL3tx Move left nostril right/left
LFingerPinky Move left pinky finger in NostrilR3ty Move right nostril up/down
LFingerPinkyMid Move left pinky finger in from middle NostrilL3ty Move left nostril up/down
LFingerPinkyTip Move left pinky finger in from tip CheekR2sy Move right cheek up/down

Translate and rotate

LocalRotateX Rotate figure around X axis CheekL2sy Move left cheek up/down
LocalRotateY Rotate figure around Y axis smile3 Smile with closed mouth
LocalRotateZ Rotate figure around Z axis smile4 Smile with opened mouth
LocalTranslateX Move figure along X axis smirk Smirk with right side of mouth
LocalTranslateY Move figure along Y axis smirkL Smirk with left side of mouth
LocalTranslateZ Move figure along Z axis smile asymetric Extreme smile
RotateZ Rotate figure around X axis sneer Sneer
RotateY Rotate figure around Y axis underbite Underbite
RotateX Rotate figure around Z axis sidepurse Sidepurse lips to left/right

Leg and foot

RThighForward Move right leg forward kiss Kiss
RThighOut Move right leg out lipcornerL3ty Move left lip corner up/down
RThighTwist Twist right leg from hip lipcornerR3ty Move right lip corner up/down
LThighForward Move left leg forward mouth2ty Move mouth up/down
LThighOut Move left leg out aa ‘a’ viseme
LThighTwist Twist left leg from hip ey ‘ey’ viseme
RKneeBack Bend right knee uh ‘uh’ viseme
RKneeTwist Twist right knee b ‘b’ viseme
LKneeBack Bend left knee ch ‘ch’ viseme
LKneeTwist Twist left knee d ‘d’ viseme
RAnkleFlop Flop right ankle iy ‘iy’ viseme
RAnkleWave Wave right ankle ow ‘ow’ viseme
LAnkleFlop Flop left ankle ih ‘ih’ viseme
LAnkleWave Wave left ankle th ‘th’ viseme
RToeBend Bend right toe s ‘s’ viseme
LToeBend Bend left toe g ‘g’ viseme

emotions
sad closed Express sadness with closed mouth f ‘f’ viseme
mad open Express anger with opened mouth eh ‘eh’ viseme
mad closed Express anger with closed mouth uw ‘uw’ viseme
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2. For each AU, I found a subset of < r, v > tuples, where r is a register/switch

whose activation in a combination simulates the same movements in the face as

an actual AU activation; and v is the maximum intensity value of this specific

register/switch. The HapFACS designer, who is a FACS-certified coder, found

the maximum intensity of the registers experimentally based on the maximum

possible activation of the AUs on a human’s face. For example, for AU4, the

set of tuples used is:

{<MidBrowUD, 2>, <LBrowUD, 0.6>, <RBrowUD, 0.6>, <eyes sad, 1.25>}.

3. The FACS manual [EFH02] introduces 6 intensity levels for each AU: (0) not

active, (A) trace, (B) slight, (C) marked or pronounced, (D) severe or extreme,

and (E) maximum. Assuming that E is activating the AU with 100% intensity,

based on the FACS manual, I assigned 85% to D, 55% to C, 30% to B, 15% to

A, and 0% to 0.

4. For each AU intensity level, I applied the same percentages to the intensity

range of the Haptek registers. Although the intensity values in the FACS are

represented as ranges, in HapFACS I represented them as discrete values based

on our empirical approximations. For example, in AU4, the maximum value of

the MidBrowUD register is 2.00, so its value for different intensities are:

A = 0.15× 2.0 = 0.3, B = 0.6, C = 1.1, D = 1.7, E = 2.

5. In addition to the discrete intensity levels (i.e., 0, A, B, C, D, and E), I enabled

users to change AU intensities continuously from neutral to maximum intensity,

by mapping the [0%, 100%] intensity range to the [0, v] of each register r.

When I combine two or more AUs that share a common register, I accumulate their

shared register intensities. However, I limit the intensity to the maximum limit, so
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Figure 3.2: Haptek facial and head registers.
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that the summation of intensities does not deform the face beyond its physiologically

possible appearance.

Table 3.2 shows the final mapping between the FACS action units and the Haptek

facial variables (registers and switches) including the maximum value of the Haptek

variable to show the highest FACS intensity (i.e., E intensity).

3.1.3 Integration with Other Software

As shown in Figure 3.3 (with circled numbers indicating the order of events), Hap-

FACS users can re-produce expressions generated using HapFACS on any Haptek

characters. When a facial expression animation is generated using HapFACS, a hy-

pertext file with the .hap extension (the animation file type for Haptek characters

including the relevant registers for the animation, its intensities and activation time)

is exported automatically, as well as the video file.

Users only need to load the exported hypertext .hap file in their own Haptek

character, who will then portray the same previously generated expression(s). Ani-

mation files can be loaded to the characters by dragging and dropping the files to the

character, or passing the following hypertext to the Haptek character: \load[file =

[fileName.hap]]7.

When using the HapFACS API for generating facial expressions and animations,

the hypertext to re-produce the expression is returned as a string by the API. The

hypertext can be passed to any Haptek character embedded in a software, in order

to show the same expressions.

In order to embed HapFACS in another application and use the complete set of

HapFACS functionalities, first, users need to embed a Haptek character into their

7I have created introductory and tutorial videos on HapFACS functionalities with
animation demos, available at http://ascl.cis.fiu.edu.
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Table 3.2: Mapping between FACS action units and Haptek facial variables.

AU Haptek registers/switches Max intensity AU Haptek registers/switches Max intensity

1 MidBrowUD -2.50 38

nostrilL3ty 0.30
nostrilR3ty 0.30
nostrilL3tx 0.60
nostrilR3tx -0.60

2 39

nostrilL3ty -0.30
LBrowUD -1.50 nostrilR3ty -0.30
RBrowUD -1.50 nostrilL3tx -0.60

nostrilR3tx 0.60

4

MidBrowUD 2.00

41 trust 1.00
LBrowUD 0.60
RBrowUD 0.60
eyes sad 1.25

5 trust -0.85 42 MidBrowUD 1.50

6

lipcornerL3ty -0.70

43 blink 1.40
lipcornerR3ty -0.70

smile3 0.50
kiss 0.60

7 distrust 1.20 44

MidBrowUD 1.00
LBrowUD -0.80
RBrowUD -0.90
eyes sad 1.40

8 b 0.75 45 blinks CloseEye

9

nostrilL3ty 0.60
nostrilR3ty 0.60 winkleftfast/
nostrilL3tx 0.10 46 blinks winkrightfast
nostrilR3tx -0.10

MidBrowUD 1.00

10

uh -1.10

51 HeadTwist -1.00

ow 0.61
d 1.40
iy -0.50

nostrilL3ty 0.45
nostrilR3ty 0.45
nostrilL3tx 0.30
nostrilR3tx -0.30

11

nostrilL3tx 0.20

52 HeadTwist 0.62
nostrilR3tx -0.20

uh -0.40
d 0.31

12 smile3 0.50 53 HeadForward -0.65

13
lipcornerL3ty 1.30
lipcornerR3ty 1.30 54 HeadForward 0.60

uw -0.25

14
smirk 0.30

5
5

HeadSideBend 0.60
smirkL 0.40

15
lipcornerL3ty -1.30

56 HeadSideBend -0.60
lipcornerR3ty -1.30

16 th 0.20 57
HeadForward -1.00
NeckForward 0.80

17

lipcornerL3ty -0.60
lipcornerR3ty -0.60

aa -0.50 58 HeadForward 1.00
ow -0.40 NeckForward -0.80

mouth2ty 0.20
18 kiss 1.30 M59 gestures nod

20

lipcornerL3ty -0.60
lipcornerR3ty -0.60

b 0.50 M60 gestures shake
ow -1.30

mouth2ty -0.40

22 ch 1.00 61
LEyeBallLR -0.45
REyeBallLR -0.45

23
b 1.00

62
LEyeBallLR 0.45

kiss 0.65 REyeBallLR 0.45

24
b 0.90

63
LEyeBallUD -0.45

kiss 0.25 REyeBallUD -0.45

25 ey 0.80 64
LEyeBallUD 0.40
REyeBallUD 0.40

26 aa 1.10 65
LEyeBallLR 0.45
REyeBallLR -0.45

27
aa 1.30

66
LEyeBallLR -0.45

ey 1.20 REyeBallLR 0.45
28 b 1.30
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Figure 3.3: HapFACS work flow.

Windows Frame or HTML file, then they either: (1) include the Dynamic-Link Li-

brary (DLL) file provided for HapFACS API in their software, and call HapFACS

methods; or (2) modify and include HapFACS C# code in their system.

3.1.4 HapFACS Validation

I performed 8 experiments to validate the HapFACS-generated AUs expressions, emo-

tional facial expressions, and lip-synchronized speaking animations.

One set of experiments in Section 3.1.4 (experiments 1 and 2 described in Sections

3.1.4 and 3.1.4) were conducted with FACS-certified coders, in order to attempt to

objectively assess the validity of action unit activations (singly or in combinations).

FACS-certification is obtained by studying the manual, doing practice coding with

video images, and taking a final test for the certification. Typically, this process takes

50 to 100 hours.

Another set of experiments (experiments 3-8 described in Sections 3.1.4 to 3.1.4)

were conducted with lay participants to evaluate subjective perceptions. This set of
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experiments evaluate participants’ perception of the portrayed expressions in terms

of the 9 EmFACS expressions (plus neutral) [FE83], both statically from still images

and dynamically from videos.

Since I am also interested in providing support to researchers working on speaking

intelligent virtual agents, in Section 3.1.4, I evaluated the characters’ performance

while they speak. Experiment 7 (described in Section 3.1.4) focuses on evaluating

the accuracy of the displayed expressions while the characters speak. Experiment 8

(described in Section 3.1.4) evaluates participants’ perception of the quality of the

characters’ lip-synchronization while they speak.

In experiments 1 and 2, I will use accuracy, precision, recall, and F1-measure as

the evaluation metrics. I define these terms as follow:

Accuracy =
tp + tn

tp + tn + fp + fn
(3.1)

Precision =
tp

tp + fp
(3.2)

Recall =
tp

tp + fn
(3.3)

F1–Measure = 2× Precision×Recall
Precision+Recall

(3.4)

where tp, fp, tn, and fn are defined as follow:

• true positive (tp): number of AUs correctly coded as present in a given combi-

nation.

• false positive (fp): number of AUs incorrectly coded as present in a given com-

bination.
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• true negative (tn): number of AUs correctly coded as absent in a given combi-

nation.

• false negative (fn): number of AUs incorrectly coded as absent in a given com-

bination.

In short, accuracy is the ratio of the correct codings, including (1) the AUs that

are correctly coded as present in the video and (2) the AUs correctly coded as absent

in the video. Precision is the percentage of correctly recognized AUs in the video

over the total number recognized AUs in that video. Recall is the ratio of correctly

recognized AUs in the video over the total number of AUs actually present in that

video. Finally, F1-Measure is the harmonic mean of precision and recall, and is a

measure of the coding accuracy. These measures are float numbers between 0 to 1.

The higher they are, the better is the performance.

FACS-Certified Coders Evaluations

Participants: To perform this category of experiments, I asked three FACS-certified

coders (36 years old White female; 26 years old Hispanic female; and 31 years old

White male) to rate our individual and combinations of AUs.

Stimuli and Design: For each of the 49 individual AUs, and each of the 54

AU combinations (most common combinations indicated in the FACS manual) one

3-second video was generated. Each of the videos were performed by one of the 8

created character models (2 white males, 2 black males, 2 white females, and 2 black

females) shown in Figure 3.4.

Almost equal number of videos were created using each model. Each video dis-

played a linear change of the AU intensity starting from 0% (i.e., 0 intensity in the

FACS manual) to 100% (i.e, E intensity in the FACS manual) in 1 second (i.e., onset

duration = 1000 ms), constant at peak for 1 second (i.e., apex duration = 1000 ms),
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(a) Happiness (b) Disgust (c) Fear (d) Pride

(e) Sadness (f) Embarrassment (g) Surprise (h) Anger

Figure 3.4: Models used for evaluation.
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and lowered from peak to 0% intensity in 1 second. All videos have a frame rate of

30 frames/sec and a constant size of 485× 480 pixels.

Videos of the individual AUs were also accompanied by three still 485× 480 pixel

images of the AU in 3 different intensities (30%, 60%, 90%) performed by the same

model as in the video to help the coders see the changes in the face in different

intensities.

Videos of AU combinations were accompanied by one still 485× 480 pixel image

of the same AU combination in 70% intensity performed by the same model as in the

video to help the coders see the activated combination in a single frame.

Procedure: Videos and images were both named randomly to prevent subjects’

tagging bias. Videos were hosted on YouTube8, and images were hosted on the survey

website. In Experiment 1, I asked the FACS-certified coders to identify which AU was

activated in each video (each accompanied with 3 images). In Experiment 2, FACS-

certified coders were asked to identify all active AUs in each combination video. The

coders were not asked to rate the intensity, because it is shown that judgments over

the intensity show poor inter-rater agreement [SCW01].

Experiment 1: Validation of Individual AUs In this experiment, I examined

the accuracy of the AUs generated by HapFACS in terms of AUs described in the

FACS manual [EFH02].

Results and Discussion: As shown in Table 3.3, 41 out of the 49 simulated AUs

were recognized by all the three coders with 100% recognition rate. The other 8 AUs,

namely AU11 (Nasolabial Deepener), AU13 (Sharp Lip Puller), AU14 (Dimpler),

AU16 (Lower Lip Depressor), AU20 (Lip Stretcher), AU41 (Glabella Lowerer), AU42

(Inner Eyebrow Lowerer), and AU44 (Eyebrow Gatherer), were recognized correctly

8http://www.youtube.com
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by only two of the coders (i.e., 66.67% precision). The main reason for not being

recognized perfectly is that these AUs are very similar to other AUs (listed in Table

3.4) and are mistakenly identified as other AUs. The average recognition rate of

all 49 AUs was 94.6%.

Table 3.3: Individual AU recognition rates in Experiment 1.

Action Unit Accuracy Precision Recall F1-Measure
11, 13, 14, 16,
20, 41, 42, 44

0.99 0.67 0.67 0.67

Other AUs 1.00 1.00 1.00 1.00

The Cronbach α values (intra-class correlation) calculated in Table 3.4 show that,

for all the AUs, intra-class correlation of the recognized AUs are greater than 0.75,

which means that the ratings are statistically reliable. For AUs 4, 12, 24, 25, 38, and

43 the α score is less that one, because they are mistakenly recognized.

Table 3.4: Inter-rater correlation (Cronbach α) for individual AU recognitions.

AU α AUs Mistaken with AU α AUs Mistaken with
4 0.922 - 25 0.750 -
11 0.750 38 38 0.899 -
12 0.922 - 41 0.750 43
13 0.750 14 42 0.750 4
14 0.750 12 43 0.899 -
16 0.750 25 44 0.750 4
20 0.750 24 All Other AUs 1.0 -
24 0.899 -

Experiment 2: Validation of AU Combinations This experiment was designed

to examine the accuracy of AU combinations (documented in FACS as the most

common ones) generated by HapFACS.

Results and Discussion: Table 3.5 shows the accuracy, precision, recall, and

F1-measure, defined in Equations 3.1 to 3.4, of each individual AU recognition in all

the AU combinations. Individual AUs used in the combinations are recognized with
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an average accuracy of 0.96, average precision of 0.81, average recall of 0.83, and

average F1-measure of 0.81.

Table 3.5: Individual AU recognition results in AU combinations of Experiment 2.

Action Unit Accuracy Precision Recall F1-Measure
1 (Inner Brow Raiser) 0.99 1.00 0.95 0.98
2 (Outer Brow Raiser) 0.98 1.00 0.8 0.89
4 (Brow Lowerer) 0.96 0.80 0.8 0.8
5 (Upper Lid Raiser) 0.98 1.00 0.78 0.88
6 (Cheek Raiser) 0.90 0.53 0.94 0.68
7 (Lid Tightener) 0.91 0.52 0.93 0.67
9 (Nose Wrinkler) 0.98 0.71 0.83 0.77
10 (Upper Lip Raiser) 0.90 0.76 0.77 0.76
12 (Lip Corner Puller) 0.90 0.83 0.84 0.83
14 (Dimpler) 0.98 0.90 0.75 0.82
15 (Lip Corner Depressor) 0.96 0.88 0.85 0.87
16 (Lower Lip Depressor) 0.91 0.53 0.6 0.56
17 (Chin Raiser) 0.93 0.83 0.83 0.83
18 (Lip Pucker) 0.99 0.75 1.00 0.86
20 (Lip Stretcher) 0.97 1.00 0.67 0.80
22 (Lip Funneler) 0.99 0.67 1.00 0.80
23 (Lip Tightener) 0.88 0.79 0.61 0.69
24 (Lip Pressor) 0.95 0.56 0.56 0.56
25 (Lips Part) 0.96 0.92 0.96 0.94
26 (Jaw Drop) 0.93 0.62 0.53 0.57
27 (Mouth Stretch) 0.98 0.69 1.00 0.82
43 (Eyes Closed) 0.99 1.00 0.67 0.8
53 (Head Up) 1.00 1.00 1.00 1.00
54 (Head Down) 1.00 1.00 1.00 1.00
62 (Eyes Turn Right) 1.00 1.00 1.00 1.00
64 (Eyes Down) 0.98 1.00 0.33 0.50

Table 3.6 shows the recognition accuracy, precision, recall, and F1-measure for

different combinations. The generated AU combinations are recognized with an aver-

age accuracy of 0.98, average precision of 0.80, average recall of 0.81, and average

F1-measure of 0.80.

Also, the Cronbach α was calculated to evaluate the intra-class correlation in

recognizing the AU combinations. The α value was equal to 0.779, which shows a

high correlation between the coders and reliability of the ratings.
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Table 3.6: AU combination recognition rates. AUs in parentheses show false-positive
recognitions.

HapFACS-Generated AU Combination Recognized AUs by FACS-Certified Coders Accuracy Precision Recall F1-Measure
1 + 2 1 + 2 1.00 1.00 1.00 1.00
1 + 4 1 + 4 1.00 1.00 1.00 1.00
1 + 2 + 4 1 + 2 + 4 0.99 1.00 0.78 0.88
1 + 2 + 5 1 + 2 + 5 1.00 1.00 1.00 1.00
4 + 5 4 + 5 + (41 + 42) 0.98 0.71 0.83 0.77
5 + 7 5 + 7 0.99 1.00 0.83 0.91
6 + 43 6 + 43 0.97 0.63 0.83 0.71
6 + 7 + 12 6 + 7 + 12 0.99 1.00 0.89 0.94
6 + 12 + 15 6 + 12 + 15 + (13 + 14) 0.9 0.78 0.78 0.78
6 + 12 + 15 + 17 6 + 12 + 15 + 17 + (7 + 10) 0.96 0.75 0.75 0.75
6 + 12 + 17 + 23 6 + 12 + 17 + 23 + (7 + 10) 0.97 0.82 0.75 0.78
7 + 12 7 + 12 + (6) 0.99 0.86 1.00 0.92
7 + 43 7 + 43 0.99 1.00 0.83 0.91
9 + 17 9 + 17 + (10 + 13 + 24) 0.98 0.67 1.00 0.80
9 + 16 + 25 9 + 16 + 25 + (22 + 41) 0.98 0.80 0.89 0.84
10 + 14 10 + 14 + (12 + 25) 0.97 0.63 0.83 0.71
10 + 15 10 + 15 + (25) 0.99 0.86 1.00 0.92
10 + 17 10 + 17 + (11 + 24 + 25) 0.97 0.63 0.83 0.71
10 + 12 + 25 10 + 12 + 25 + (6 + 7 + 9) 0.97 0.70 0.78 0.74
10 + 15 + 17 10 + 15 + 17 + (25 + 38) 0.97 0.78 0.78 0.78
10 + 16 + 25 10 + 16 + 25 + (26) 0.97 0.78 0.78 0.78
10 + 17 + 23 10 + 17 + 23 + (9 + 15 + 24) 0.97 0.70 0.78 0.74
10 + 20 + 25 10 + 20 + 25 + (16) 0.98 0.88 0.78 0.82
10 + 23 + 25 10 + 23 + 25 + (11 + 16 + 26) 0.97 0.70 0.78 0.74
10 + 12 + 16 + 25 10 + 12 + 16 + 25 + (6 + 7 + 26) 0.95 0.69 0.75 0.72
12 + 15 12 + 15 + (6 + 17 + 23) 0.97 0.56 0.83 0.67
12 + 17 12 + 17 + (6 + 7 + 23) 0.97 0.63 0.83 0.71
12 + 23 12 + 23 + (6 + 13) 0.98 0.71 0.83 0.77
12 + 24 12 + 24 + (6 + 23) 0.97 0.56 0.83 0.67
12 + 25 + 26 12 + 25 + 26 + (6 + 7 + 10 + 27) 0.95 0.58 0.78 0.67
12 + 25 + 27 12 + 25 + 27 + (7 + 10 + 16) 0.96 0.64 0.78 0.70
12 + 15 + 17 12 + 15 + 17 + (6 + 7) 0.97 0.78 0.78 0.78
12 + 16 + 25 12 + 16 + 25 + (6) 0.98 0.80 0.89 0.84
12 + 17 + 23 12 + 17 + 23 + (7 + 28) 0.97 0.78 0.78 0.78
20 + 23 + 25 20 + 23 + 25 + (12 + 15) 0.97 0.75 0.67 0.71
22 + 23 + 25 22 + 23 + 25 + (16 + 38) 0.97 0.78 0.78 0.78
23 + 25 + 26 23 + 25 + 26 0.98 1.00 0.67 0.80
14 + 17 14 + 17 + (6 + 7 + 12 + 23) 0.97 0.60 1.00 0.75
14 + 23 14 + 23 (12 + 18) 0.97 0.67 0.67 0.67
15 + 17 15 + 17 0.99 1.00 0.83 0.91
15 + 23 15 + 23 + (17) 0.99 0.83 0.83 0.83
17 + 23 17 + 23 + (24) 0.98 0.80 0.67 0.73
17 + 24 17 + 24 + (10) 0.98 0.80 0.67 0.73
18 + 23 18 + 23 + (26) 0.98 0.80 0.67 0.73
20 + 25 + 26 20 + 25 + 26 + (10 + 16) 0.97 0.75 0.67 0.71
20 + 25 + 27 20 + 25 + 27 + (12 + 16) 0.98 0.80 0.89 0.84
4 + 5 + 7 + 24 4 + 5 + 7 + 24 + (23 + 41 + 42) 0.96 0.75 0.75 0.75
10 + 16 + 25 + 26 10 + 16 + 25 + 26 + (15 + 27) 0.95 0.73 0.67 0.70
14 + 54 + 62 + 64 14 + 54 + 62 + 64 + (12) 0.97 0.89 0.67 0.76
1 + 2 + 4 + 5 + 20 + 25 + 26 1 + 2 + 4 + 5 + 20 + 25 + 26 + (13 + 16) 0.94 0.83 0.71 0.77
6 + 12 6 + 12 1.00 1.00 1.00 1.00
12 + 53 + 64 12 + 53 + 64 0.99 1.00 0.78 0.88
1 + 4 + 15 1 + 4 + 15 + (44) 0.99 0.89 0.89 0.89
1 + 2 + 5 + 25 + 27 1 + 2 + 5 + 25 + 27 0.99 1.00 0.93 0.97
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Validation of Emotion Inferences from EmFACS Stimuli

Stimuli and Design: For each emotion, two videos were generated, one with 50%

intensity and one with 100 % intensity, hence a total of 20 videos were used for this

experiment. Lengthwise, videos were 3 seconds and their size was 485 × 485 pixels.

The videos showed the activation of the emotion from 0% to 100%-intensity (or 50%

for lower intensity version) in one second (i.e., onset duration = 1000 ms), constant

at peak intensity for one second (i.e., apex duration = 1000 ms), and decreasing from

peak to 0% intensity in one second. The same 8 models of Experiment 1 were used

to animate the emotions. For Experiment 4, I converted the videos to gray-scaled to

study the effects of color in recognition rates. Also, for experiment 5, I created 10

still images (one for each emotion) of size 485× 485 pixels, using the same models at

each of the two intensity levels (i.e., 100% and 50%). For Experiment 6, I converted

the images to gray-scale.

The 10 used emotions were neutral, happiness, sadness, surprise, anger, fear,

disgust, contempt, embarrassment, and pride, with the AUs shown in Table 3.7.

Table 3.7: AUs involved in emotional expressions.

Emotion Action Units Emotion Action Units
Happiness 6, 12, 25 Disgust 9, 15, 16
Sadness 1, 4, 15 Contempt 12, 14R
Surprise 1, 2, 5, 26 Embarrassment 12, 52, 62, 64
Anger 5, 7, 9, 10, 15, 17, 42 Pride 12, 53, 58, 64
Fear 1, 2, 4, 5, 20, 26 Neutral 0

Procedure: In Experiments 3, 4, 5, and 6, subjects were asked to choose which

emotion was portrayed by each video, as well as to rate how believable each emotion

was being portrayed by the character on a 5-level Lickert scale (0: not believable

at all, 5: very believable). Participants could select the same emotion for multiple

94



videos, or select ‘None’ if they believed some other emotion (not included in the above

emotions) was portrayed in a video.

Experiment 3: Colored Video Stimuli In order to see how well HapFACS

characters portray EmFACS [FE83] standard emotions, the AUs that are involved

in creating these emotions were manipulated in two different intensities of 50% and

100%.

Participants: I recruited 66 students on Florida International University (FIU)

campus as well as 80 participants on Amazon Mechanical Turk (AMT). Subjects

were compensated with $5 vendor gift cards. I randomly assigned 82 subjects to the

100% intensity experiment and 64 subjects to the 50% intensity experiment. Table

3.8 shows the demographic information of the subjects.

Table 3.8: Subjects’ demographic data in each group of Experiment 3.

Experiment Group Female (Avg. age) Male (Avg. age) White Black Asian Hispanic
100% Intensity 42.7% (31.3) 57.3% (28.3) 57.3% 7.3% 11% 24.4%
50% Intensity 45.3% (32.1) 54.7% (28.1) 54.7% 9.4% 14.1% 21.9%

Results and Discussion: Tables 3.9 and 3.10 show the recognition rates of the

emotions in 100% and 50%-intensity versions respectively. The average recognition

rate for 100% and 50%-intensity videos were 83.8% and 72.3%, respectively. There-

fore, dynamic emotional facial expressions (i.e., videos) of both extreme and subtle

intensities were perceived correctly from the HapFACS animations. Figures 3.5 and

3.6 depict these results in diagrams.

The believability (i.e., how natural and believable is the character when expressing

the emotion) of the characters was reported as 3.8 (standard deviation = 0.97) for the

100%-intensity videos and 3.84 (standard deviation = 0.92) for 50%-intensity videos.

Table 3.11 shows the believability for each individual video.
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Table 3.9: Emotion recognition percentages of the 100%-intensity colored videos.

Recognized Emotions
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Anger 79.3 2.4 6.1 0.0 1.2 1.2 0.0 7.3 0.0 1.2 1.2
Contempt 0 68.3 0.0 3.7 0.0 18.3 2.4 0.0 1.2 2.4 3.7
Disgust 7.3 2.4 75.6 0.0 7.3 0.0 0.0 4.9 0.0 1.2 1.2
Embarrass 0.0 6.1 0.0 75.6 0.0 3.7 1.2 1.2 0.0 3.7 8.5
Fear 0.0 1.2 2.4 6.1 86.6 0.0 0.0 1.2 2.4 0.0 0.0
Happiness 0.0 1.2 0.0 4.9 0.0 91.5 1.2 0.0 1.2 0.0 0.0
Pride 1.2 9.8 1.2 1.2 1.2 2.4 74.4 0.0 2.4 1.2 4.9
Sadness 0.0 1.2 3.7 1.2 0.0 0.0 0.0 87.8 1.2 0.0 4.9
Surprise 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 98.8 0.0 0.0
Neutral 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0

Figure 3.5: Emotion recognition percentages of the 100%-intensity colored videos.
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Table 3.10: Emotion recognition ratings of the 50%-intensity colored videos.

Recognized Emotions
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Anger 54.7 0.0 6.3 0.0 6.3 0.0 3.1 26.6 0.0 1.6 1.6
Contempt 0.0 65.6 0.0 0.0 1.6 6.3 6.3 0.0 0.0 7.8 12.5
Disgust 10.9 4.7 62.5 3.1 0.0 0.0 0.0 7.8 0.0 4.7 6.3
Embarrass 1.6 4.7 0.0 67.2 0.0 4.7 10.9 0.0 0.0 3.1 7.8
Fear 1.6 0.0 9.4 3.1 76.6 1.6 0.0 1.6 1.6 0.0 4.7
Happiness 0.0 4.7 0.0 0.0 0.0 84.4 4.7 0.0 1.6 1.6 3.1
Pride 1.6 7.8 3.1 1.6 4.7 4.7 56.3 0.0 6.3 4.7 9.4
Sadness 0.0 4.7 0.0 4.7 3.1 1.6 1.6 78.1 3.1 1.6 1.6
Surprise 0.0 0.0 0.0 1.6 0.0 1.6 1.6 1.6 92.2 1.6 0.0
Neutral 1.6 3.1 0.0 0.0 0.0 3.1 0.0 3.1 0.0 85.9 3.1

Figure 3.6: Emotion recognition percentages of the 50%-intensity colored videos.
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In order to find out the effects of intensity on emotion recognition and believability,

I performed two ANOVA analyses, for 100% and 50% intensity videos. Each AVONA

analysis was a 10× 2 (i.e., Emotion × Intensity) analysis (df = 1). Results revealed

no significant effect of intensity on emotion recognitions (p > 0.05) or believability

(p > 0.05).

Cronbach α values (intra-class correlation) were computed for each of the expres-

sions, using participants’ ratings as columns (items) and the 10 videos as rows (cases).

Results shown in table 3.11 indicate that for all expressions α > 0.7, which means

the faces were rated reliably.

Table 3.11: Believability (sd = std. deviation) and Cronbach α for Experiment 3.

100%-Intensity Group 50%-Intensity Group

Emotion
Measure

Believability (sd) Cronbach α Believability (sd) Cronbach α

Anger 3.9 (0.97) 0.992 3.84 (0.86) 0.966
Contempt 3.5 (1.00) 0.989 4.22 (0.7) 0.982
Disgust 3.83 (0.93) 0.990 3.38 (1.05) 0.975
Embarrassment 3.72 (0.93) 0.992 3.88 (0.77) 0.982
Fear 3.73 (0.9) 0.995 3.78 (0.79) 0.988
Happiness 3.1 (1.10) 0.997 3.52 (1.11) 0.994
Pride 3.7 (0.86) 0.990 3.66 (0.98) 0.965
Sadness 3.7 (0.93) 0.997 3.88 (0.98) 0.989
Surprise 4.13 (0.77) 1.00 4.27 (0.7) 0.997
Neutral 4.3 (0.82) 1.00 4.02 (0.77) 0.995

In order to make sure that there is no major difference between the annotations

of the AMT subjects and the FIU student subjects, I performed two T-tests between

these two populations for each individual emotion (one for the 50% intensity and one

for the 100% intensity). The goal is to know if I can combine all the AMT and local

users in our analyses. Having the null hypothesis as “two ratings are coming from

the same population”, the T-test results show that with α = 0.05, df = 20, for all

emotions, the t value obtained is less than the critical value of 2.085. Therefor, I fail

to reject the null hypothesis, or in other words, I cannot say that the two samples
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are coming from two different populations. Based on the T-test results, in all the

validation experiments, I combined the AMT and FIU subjects.

Experiment 4: Gray-Scaled Video Stimuli This experiment aims to determine

if the color of each video brings any changes over the emotion recognition of the

participants. Similar to Experiment 3, AUs involved in facial expressions of emotions

were manipulated in two different intensities of 50% and 100%.

Participants: I recruited 80 AMT subjects to recognize the emotion portrayed

in each video. Forty subjects performed the 100%-intensity experiment and 40 sub-

jects performed the 50%-intensity experiment. Table 3.12 shows the demographic

information of the subjects.

Table 3.12: Subjects’ demographic data in each group of Experiment 4.

Experiment Group) Female (Avg. age) Male (Avg. age) White Black Asian Hispanic
100% Intensity 60% (35.7) 40% (32.2) 77.5% 2.5% 10% 10%
50% Intensity 55% (32.7) 45% (30.8) 90% 2.5% 5% 2.5%

Results and Discussion: Tables 3.13 and 3.14 show the recognition rate of the

emotions in 100% and 50%-intensity respectively. The average recognition rate for

100% and 50%-intensity videos were 80.3% and 71.8% respectively. Figures 3.7 and

3.8 depict these results in diagrams. Therefore, the colorfulness of the videos do not

bias the subjects’ emotion recognition.

Believability of the characters in 100%-intensity videos was reported as 3.7 (sd =

0.96) and in 50%-intensity videos reported as 3.7 (sd = 0.91). Table 3.15 shows the

believability for each individual video. In order to find out the effects of intensity on

emotion recognition and believability, I performed two ANOVA analyses, for 100%

and 50% intensity videos. Each AVONA analysis was a 10 × 2 (i.e., Emotion ×

Intensity) analysis (df = 1). Results revealed no significant effect of intensity on

emotion recognitions (p > 0.05) or believability (p > 0.05).
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Table 3.13: Emotion recognition ratings of the 100%-intensity gray-scaled videos.

Recognized Emotions
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Anger 72.5 5.0 5.0 2.5 0.0 2.5 0.0 7.5 2.5 0.0 2.5
Contempt 0.0 65.0 0.0 0.0 0.0 17.5 15.0 0.0 2.5 0.0 0.0
Disgust 2.5 2.5 72.5 2.5 2.5 2.5 2.5 2.5 2.5 5.0 2.5
Embarrass 0.0 2.5 0.0 80 2.5 7.5 0.0 0.0 2.5 5.0 0.0
Fear 2.5 0.0 2.5 5 82.5 0.0 0.0 0.0 7.5 0.0 0.0
Happiness 0.0 0.0 0.0 2.5 0.0 95 0.0 0.0 2.5 0.0 0.0
Pride 0.0 0.0 0.0 0.0 0.0 15 62.5 0.0 10 5 0.0
Sadness 2.5 0.0 5.0 2.5 0.0 2.5 2.5 80 2.5 2.5 0.0
Surprise 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.0 92.5 0.0 0.0
Neutral 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0

Figure 3.7: Emotion recognition percentages of the 100%-intensity gray-scaled videos.

100



Table 3.14: Emotion recognition ratings of the 50%-intensity gray-scaled videos.

Recognized Emotions
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Anger 60 0.0 0.0 0.0 10.0 2.5 7.5 7.5 0.0 7.5 5.0
Contempt 0.0 57.5 0.0 0.0 0.0 10.0 10.0 0.0 10.0 5.0 7.5
Disgust 2.5 0.0 67.5 0.0 2.5 0.0 2.5 2.5 0.0 5.0 17.5
Embarrass 0.0 7.5 2.5 75.0 2.5 5.0 0.0 0.0 0.0 0.0 7.5
Fear 7.5 0.0 0.0 0.0 72.5 0.0 2.5 0.0 7.5 5.0 5.0
Happiness 0.0 7.5 0.0 2.5 0.0 85.0 0.0 0.0 0.0 2.5 2.5
Pride 0.0 0.0 0.0 0.0 0.0 7.5 45.0 2.5 2.5 20.0 10.0
Sadness 2.5 0.0 0.0 0.0 7.5 0.0 0.0 77.5 0.0 5.0 7.5
Surprise 0.0 0.0 0.0 0.0 7.5 5.0 0.0 0.0 82.5 2.5 2.5
Neutral 0.0 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 95.0 2.5

Figure 3.8: Emotion recognition percentages of the 50%-intensity gray-scaled videos.

101



Cronbach α values (intra-class correlation) were computed for each of the expres-

sions, using participants’ ratings as columns (items) and the 10 videos as rows (cases).

Results shown in table 3.15 indicate that for all expressions α > 0.7, which means

the faces were rated reliably.

Table 3.15: Believability (sd = std. deviation) and Cronbach α for Experiment 4.

100%-Intensity Group 50%-Intensity Group

Emotion
Measure

Believability (sd) Cronbach α Believability (sd) Cronbach α

Anger 3.6 (0.93) 0.982 3.7 (0.79) 0.97
Contempt 3.9 (0.89) 0.978 3.8 (0.87) 0.967
Disgust 3.5 (0.96) 0.943 3.4 (0.87) 0.985
Embarrassment 3.4 (0.98) 0.986 3.8 (0.78) 0.989
Fear 3.6 (0.84) 0.989 3.7 (0.86) 0.972
Happiness 3.4 (1.22) 0.987 3.3 (1.1) 0.981
Pride 3.5 (0.82) 0.975 3.5 (1.0) 0.928
Sadness 3.8 (0.78) 0.988 3.6 (1.0) 0.986
Surprise 3.8 (1.1) 0.986 3.9 (0.76) 0.986
Neutral 4.2 (0.79) 0.995 4.0 (0.8) 0.984

Experiment 5: Colored Image Stimuli This experiment was designed to test

how well emotions were portrayed by HapFACS in static colored images.

Participants: I recruited 66 FIU students, and 80 AMT workers for this ex-

periment. I randomly assigned 70 subjects to the 100% intensity experiment and 76

subjects to the 50% intensity experiment. Table 3.16 shows the demographic infor-

mation of the subjects.

Table 3.16: Subjects’ demographic data in each group of Experiment 5.

Experiment Group Female (Avg. age) Male (Avg. age) White Black Asian Hispanic
100% Int. 42.9% (33.5) 57.1% (27.7) 52.9% 8.6% 15.7% 22.9%
50% Int. 43.4% (30.6) 56.6% (28) 61.8% 6.6% 10.5% 21.1%

Results and Discussion: Tables 3.17 and 3.18 show the recognition rate of the

emotions in 100% and 50%-intensity respectively. The average recognition rate for

100% and 50%-intensity images were 82.1% and 72.5% respectively. Figures 3.9 and
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3.10 depict these results in diagrams. Therefore, static emotional facial expressions

of both extreme and subtle intensities were perceived correctly from the HapFACS

images.

Table 3.17: Emotion recognition ratings of the 100%-intensity colored images.

Recognized Emotions
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Anger 82.9 1.4 2.9 0.0 2.9 0.0 0.0 7.1 0.0 1.4 1.4
Contempt 0.0 65.7 0.0 5.7 0.0 15.7 8.6 0.0 1.4 0.0 2.9
Disgust 10.0 2.9 78.6 0.0 2.9 0.0 0.0 5.7 0.0 0.0 0.0
Embarrass 0.0 7.1 0.0 77.1 0.0 5.7 0.0 0.0 0.0 2.9 7.1
Fear 0.0 0.0 4.3 0.0 82.9 0.0 0.0 5.7 4.3 0.0 2.9
Happiness 0.0 4.3 0.0 2.9 0.0 91.4 0.0 0.0 1.4 0.0 0.0
Pride 0.0 5.7 0.0 0.0 1.4 2.9 70.0 0.0 2.9 7.1 10.0
Sadness 1.4 0.0 2.9 0.0 4.3 0.0 0.0 88.6 0.0 1.4 1.4
Surprise 0.0 0.0 0.0 1.4 4.3 1.4 0.0 0.0 91.4 1.4 0.0
Neutral 0.0 1.4 0.0 0.0 1.4 0.0 1.4 0.0 0.0 92.9 2.9

Figure 3.9: Emotion recognition percentages of the 100%-intensity colored images.
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Table 3.18: Emotion recognition ratings of the 50%-intensity colored images.

Recognized Emotions
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Anger 68.4 1.3 11.8 0.0 2.6 0.0 2.6 2.6 0.0 6.6 3.9
Contempt 0.0 56.6 0.0 2.6 0.0 11.8 7.9 0.0 1.3 13.2 6.6
Disgust 6.6 2.6 64.5 2.6 5.3 0.0 0.0 0.0 3.9 5.3 9.2
Embarrass 0.0 3.9 0.0 63.2 0.0 7.9 0.0 0.0 0.0 15.8 9.2
Fear 0.0 0.0 1.3 5.3 72.4 0.0 0.0 10.5 3.9 0.0 6.6
Happiness 0.0 7.9 1.3 1.3 0.0 81.6 1.3 0.0 1.3 1.3 3.9
Pride 1.3 0.0 0.0 3.9 2.6 0.0 53.9 0.0 3.9 18.4 15.8
Sadness 2.6 0.0 1.3 3.9 1.3 0.0 0.0 86.8 0.0 0.0 3.9
Surprise 0.0 1.3 0.0 2.6 5.3 1.3 0.0 0.0 89.5 0.0 0.0
Neutral 1.3 0.0 0.0 3.9 2.6 1.3 0.0 1.3 0.0 88.2 1.3

Figure 3.10: Emotion recognition percentages of the 50%-intensity colored images.
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The believability of the characters in 100%-intensity images was reported as 3.9

(stdev = 0.80) and in 50%-intensity images reported as 3.7 (stdev = 0.91). Table 3.19

shows the believability for each individual image. In order to find out the effects of

intensity on emotion recognition and believability, I performed two ANOVA analyses,

for 100% and 50% intensity images. Each AVONA analysis was a 10×2 (i.e., Emotion

× Intensity) analysis (df = 1). Results revealed no significant effect of intensity

on emotion recognitions (p > 0.05). However, a significant effect of intensity on

believability (F = 9.55, p < 0.05) was found. The increased intensity may increase

the salience of the emotion in images, which causes an increase in believability, which

explains the effect of intensity on believability in images. I did not have the similar

effect of intensity on believability in video expressions, which can be because videos

are more expressive than images, therefore, dynamic feature of the videos dominates

the intensity.

Cronbach α values (intra-class correlation) were computed for each of the expres-

sions, using participants’ ratings as columns (items) and the 10 videos as rows (cases).

Results shown in table 3.19 indicate that for all expressions α > 0.7, which means

the faces were rated reliably.

Table 3.19: Believability (sd = std. deviation) and Cronbach α for Experiment 5.

100%-Intensity Group 50%-Intensity Group

Emotion
Measure

Believability (sd) Cronbach α Believability (sd) Cronbach α

Anger 4.3 (0.84) 0.993 3.8 (0.85) 0.984
Contempt 4.1 (0.64) 0.981 3.8 (0.78) 0.972
Disgust 4 (0.76) 0.990 3.3 (0.89) 0.982
Embarrassment 3.7 (0.94) 0.991 3.8 (0.84) 0.982
Fear 3.9 (0.79) 0.993 3.5 (0.89) 0.989
Happiness 3.9 (0.79) 0.997 3.5 (0.99) 0.993
Pride 3.4 (0.79) 0.986 3.5 (0.97) 0.974
Sadness 4.1 (0.89) 0.996 3.8 (0.9) 0.996
Surprise 3.9 (0.92) 0.997 3.7 (0.91) 0.996
Neutral 4.1 (0.80) 0.998 3.7 (0.91) 0.996
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Experiment 6: Gray-Scaled Image Stimuli Similar to Experiment 5, this ex-

periment was designed to evaluate the correctness of the emotions portrayed by Hap-

FACS in still black and white pictures, which was done mainly to find out if colorful-

ness influences the subjects’ responses.

Participants: The total of 80 AMT workers were recruited to partake in this

survey, and each were asked to select the emotion being shown in each image. Forty

subjects were randomly assigned to the 100%-intensity experiment and the other 40

were assigned to the 50%-intensity experiment. Table 3.20 shows the demographic

information of the subjects.

Table 3.20: Subjects’ demographic data in each group of Experiment 6.

Experiment Group Female (Avg. age) Male (Avg. age) White Black Asian Hispanic
100% Intensity 57.5% (33.7) 42.5% (31.6) 82.5% 7.5% 7.5% 2.5%
50% Intensity 62.5% (34.7) 37.5% (32.1) 81.3% 0% 9.4% 9.4%

Results and Discussion: Tables 3.21 and 3.22 show the recognition rates of the

emotions in 100% and 50%-intensity images respectively. The average recognition rate

for 100% and 50%-intensity images were 82.5% and 77.8% respectively. Figures

3.11 and 3.12 depict these results in diagrams. Results show that the quality and

colorfulness of the images do not bias the subjects’ emotion recognition.

Table 3.21: Emotion recognition ratings of the 100% intensity gray-scaled images.

Recognized Emotions
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Anger 75.0 0.0 7.5 0.0 2.5 0.0 0.0 10.0 0.0 0.0 5.0
Contempt 0.0 62.5 0.0 0.0 0.0 25.0 5.0 0.0 0.0 7.5 0.0
Disgust 10.0 7.5 75.0 0.0 2.5 0.0 0.0 2.5 0.0 0.0 2.5
Embarrass 0.0 5.0 0.0 80.0 0.0 0.0 2.5 0.0 0.0 10.0 2.5
Fear 0.0 0.0 0.0 0.0 87.5 0.0 0.0 5.0 7.5 0.0 0.0
Happiness 0.0 0.0 0.0 0.0 0.0 92.5 0.0 0.0 7.5 0.0 0.0
Pride 0.0 0.0 0.0 0.0 0.0 5.0 67.5 0.0 5.0 20.0 2.5
Sadness 5 0.0 2.5 0.0 0.0 0.0 0.0 90.0 2.5 0.0 0.0
Surprise 0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 97.5 0.0 0.0
Neutral 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.5 2.5
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Figure 3.11: Emotion recognition percentages of the 100%-intensity gray-scaled im-
ages.

Table 3.22: Emotion recognition ratings of the 50% intensity gray-scaled images.

Recognized Emotions
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Anger 67.5 0.0 0.0 0.0 0.0 0.0 0.0 12.5 0.0 7.5 12.5
Contempt 0.0 55.0 0.0 7.5 0.0 7.5 0.0 0.0 2.5 17.5 10.0
Disgust 2.5 0.0 65.0 0.0 0.0 0.0 0.0 2.5 0.0 12.5 17.5
Embarrass 0.0 5.0 0.0 80.0 0.0 0.0 2.5 0.0 0.0 10.0 2.5
Fear 0.0 0.0 0.0 0.0 82.5 2.5 0.0 2.5 2.5 7.5 2.5
Happiness 0.0 5.0 0.0 0.0 0.0 90.0 0.0 0.0 0.0 0.0 5.0
Pride 0.0 0.0 0.0 0.0 0.0 0.0 62.5 0.0 0.0 25.0 12.5
Sadness 2.5 0.0 0.0 0.0 2.5 0.0 0.0 87.5 2.5 2.5 2.5
Surprise 0.0 2.5 0.0 2.5 5.0 2.5 0.0 0.0 87.5 0.0 0.0
Neutral 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0
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Figure 3.12: Emotion recognition percentages of the 50%-intensity gray-scaled images.
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The believability of the characters in 100%-intensity images was reported as 3.8

(stdev = 0.86) and in 50%-intensity images reported as 3.6 (stdev = 0.81). Table 3.23

shows the believability for each individual image. In order to find out the effects of

intensity on emotion recognition and believability, I performed two ANOVA analyses,

for 100% and 50% intensity images. Each AVONA analysis was a 10×2 (i.e., Emotion

× Intensity) analysis (df = 1). Results revealed no significant effect of intensity

on emotion recognitions (p > 0.05). However, a significant effect of intensity on

believability (F = 5.88, p < 0.05) was found, which confirms results of Experiment 5.

Table 3.23: Believability (sd = std. deviation) and Cronbach α for Experiment 6.

100%-Intensity Group 50%-Intensity Group

Emotion
Measure

Believability (sd) Cronbach α Believability (sd) Cronbach α

Anger 4.0 (0.68) 0.987 3.7 (0.73) 0.979
Contempt 3.9 (0.89) 0.977 3.5 (0.77) 0.959
Disgust 3.4 (0.98) 0.986 3.8 (0.96) 0.978
Embarrassment 3.9 (0.72) 0.994 3.5 (0.9) 0.802
Fear 3.8 (0.83) 0.994 3.7 (0.74) 0.974
Happiness 3.7 (0.78) 0.991 3.4 (0.92) 0.941
Pride 3.6 (1.0) 0.983 3.5 (0.8) 0.753
Sadness 3.9 (0.83) 0.992 3.8 (0.75) 0.943
Surprise 3.9 (0.92) 0.993 3.7 (0.72) 0.969
Neutral 3.8 (0.84) 0.991 3.7 (0.73) 0.916

Cronbach α values (intra-class correlation) were computed for each of the expres-

sions, using participants’ ratings as columns (items) and the 10 videos as rows (cases).

Results shown in Table 3.23 indicate that for all expressions α > 0.7, which means

the faces were rated reliably.

Evaluating Speaking Characters

Experiment 7: Validation of Emotional Speech For IVA researchers interested

in speaking characters, I validated how well HapFACS simulated characters can show

emotions while they speak.
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Participants: I recruited 20 FIU students and 40 AMT workers as participants

for this experiment. Table 3.24 shows the demographic information of the subjects.

Table 3.24: Subjects’ demographics in Experiment 7.

Female (Avg. age) Male (Avg. age) White Black Asian Hispanic Caucasian
61.7% (30.7) 38.3% (28.6) 63.3% 6.7% 8.3% 20% 1.7%

Stimuli and Design: Ten videos were generated (8.3 seconds long in average)

with random sentences. The emotions portrayed in the videos were the ones shown

in Table 3.7 with 100% intensity. The same 8 models of Experiment 1 were used to

portray each video. In all videos, a neutral voice and utterance was used, in order to

focus the study on emotional facial expressions (rather than voice or utterance).

Procedure: Each subject was asked to recognize the expressed emotion while

the character was speaking. Also, participants were asked to rate the believability of

the character while speaking on a 5-level Likert scale (0: not believable at all, 5: very

believable).

Results and Discussion: Table 3.25 shows the emotion recognition rates in

speaking characters with the average recognition rate of 74.3%. Figure 3.13 depicts

these results in a diagram.

Table 3.25: Emotion recognition ratings of the videos in Experiment 7.

Recognized Emotions
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Anger 66.7 0.0 5.0 0.0 3.3 0.0 0.0 16.7 0.0 5.0 3.3
Contempt 0.0 45.0 0.0 5.0 0.0 23.3 13.3 0.0 0.0 6.7 6.7
Disgust 11.7 3.3 80.0 0.0 1.7 0.0 1.7 1.7 0.0 0.0 0.0
Embarrass 0.0 6.7 1.7 70.0 0.0 5.0 0.0 3.3 0.0 6.7 6.7
Fear 3.3 1.7 1.7 1.7 76.7 0.0 0.0 15.0 0.0 0.0 0.0
Happiness 0.0 6.7 0.0 0.0 0.0 85.0 0.0 1.7 0.0 3.3 3.3
Pride 0.0 1.7 0.0 1.7 0.0 1.7 48.3 0.0 25.0 1.7 3.3
Sadness 1.7 1.7 3.3 0.0 0.0 0.0 1.7 88.3 0.0 0.0 3.3
Surprise 0.0 0.0 0.0 0.0 1.7 0.0 6.7 0.0 90.0 0.0 1.7
Neutral 0.0 1.7 0.0 1.7 0.0 0.0 0.0 0.0 0.0 93.3 3.3
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Figure 3.13: Validation of speaking characters showing emotional faces.

111



While the character is speaking and expressing an emotion, many of the lower-face

AUs are activated for speaking. For emotions that are expressed only with lower-face

AUs, such as contempt, speaking can lower the recognition rates. Also, as confirmed

by other studies [LDB+10, vdSHFD11], recognition rates for contempt, sadness, dis-

gust, and fear may be lower than happiness, surprise, and anger. Reasons for that

could be that (1) they are less universally recognized expressions across cultures

[EF86, RE95], or/and (2) they are subject to dialect-like variations in muscle activa-

tions [EBLvH07]. Taken together, the low recognition rates on these emotions may be

a general feature of the emotion expressions, and not of the presented images/videos.

In average, the believability of the characters in the speaking videos was rated

as 3.3 (stdev = 1.01). Table 3.26 shows the believability for each individual video.

Cronbach α values (intra-class correlation) were computed for each of the expressions,

using participants’ ratings as columns (items) and the 10 videos as rows (cases).

Results shown in Table 3.26 indicate that the faces were reliably rated.

Table 3.26: Believability (sd = std. deviation) and Cronbach α for Experiment 7.

Emotion
Measure

Believability (sd) Cronbach α

Anger 3.3 (0.91) 0.979
Contempt 3.4 (0.91) 0.944
Disgust 2.9 (0.95) 0.989
Embarrassment 3.3 (0.94) 0.983
Fear 3.2 (1.08) 0.987
Happiness 3.6 (0.98) 0.994
Pride 3.2 (1.16) 0.949
Sadness 3.2 (0.95) 0.996
Surprise 3.1 (1.07) 0.996
Neutral 3.6 (0.98) 0.998

Experiment 8: Validation of Lip-Synchronization The purpose of this experi-

ment was to test how well HapFACS characters are able to speak words and sentences

in a lip-synchronized manner.
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participants: I recruited 18 FIU students and 40 AMT subjects for this experi-

ment. Table 3.27 shows the demographic information of the subjects.

Table 3.27: Subjects’ demographics in Experiment 8.

Female (Avg. age) Male (Avg. age) White Black Asian Hispanic
60.3% (33.45) 39.7% (29.9) 72.4% 6.9% 3.4% 17.2%

Stimuli and Design: The same 8 models of Experiment 1 were used to generate

the videos, in each of which a random sentence was pronounced. A neutral face was

used within all the videos. The videos were of size 485 × 485 pixels, and on average

each one is 5 seconds long.

Procedure: Each subject was asked to rate how well the character’s lips were

synchronized with the words it spoke in the video (i.e., how well were the visemes

timed and aligned with the phonemes) in a 5-level Likert scale (0: lips are not syn-

chronized at all, 5: lips are completely synchronized). Also, participants were asked

to rate the believability of the character while speaking in a 5-level Likert scale (0:

not believable at all, 5: very believable).

Results and Discussion: Results show that, subjects reported the lip-synchronization

of the characters as 3.28 (stdev = 1.1) accurate with a believability of 3.11 (stdev

= 1.1). These results show that the lip-synchronization performance and character-

believability while speaking are rated positively, which adds to the abilities of the

characters.

Cronbach α values (intra-class correlation) were computed for each of the videos,

using participants’ ratings as columns (items) and the 5 videos as rows (cases): α =

0.928.
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HapFACS and FACSGen

I compared HapFACS with FACSGen, which is the most similar software to HapFACS

[KTRS12]. Although FACSGen characters do not have lip-synchronization nor bodies

(i.e., only heads) and therefore currently have limited appeal for researchers interested

in speaking IVAs, FACSGen is powerful to generate realistic 3D faces. As discussed

earlier, we matched our experiment settings (including stimuli and process) to those

performed with FACSGen, in order to be able to compare it with HapFACS.

Results: HapFACS expresses 49 individual AUs with average recognition rate

of 94.6%, whereas FACSGen expresses 35 individual AUs with average recognition

rate of 98.6%. HapFACS is evaluated as 98% accurate in expressing 54 AU combi-

nations while FACSGen is evaluated as 80.1% accurate in expressing the same 54

combinations.

Table 3.28 compares the recognition rates and expression believability of HapFACS

and FACSGen for static emotional expressions.

Table 3.28: Comparison between recognition rates and believability of the static
emotional expressions generated in FACSGen and HapFACS. FACSGen believability
rates are scaled from 7 to 5-scale for comparison.

Emotion
HapFACS FACSGen

100% (Bel.) 50% (Bel.) 100% (Bel.) 50% (Bel.)
Angry 75 (4.0) 67.5 (3.7) 87.82 (3.6) 71.79 (3.3)
Contempt 62.5 (3.9) 55 (3.5) 56.41 (3.1) 48.08 (3.1)
Disgust 75 (3.4) 65 (3.8) 68.59 (3.0) 61.54 (2.9)
Embarrassment 80 (3.9) 80 (3.5) 69.23 (3.4) 60.26 (3.1)
Fear 87.5 (3.8) 82.5 (3.7) 72.44 (3.2) 67.31 (3.1)
Happiness 92.5 (3.7) 90 (3.4) 88.46 (3.7) 77.56 (3.4)
Pride 67.5 (3.6) 62.5 (3.5) 74.36 (3.7) 71.79 (3.5)
Sadness 90 (3.9) 87.5 (3.8) 83.97 (3.4) 76.28 (3.3)
Surprise 97.5 (3.9) 87.5 (3.7) 87.82 (3.7) 87.82 (3.5)
Neutral 97.5 (3.8) 100 (3.7) - -
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General Discussion

I studied HapFACS validity for creating AUs defined in FACS, and the emotional

meaning conveyed by HapFACS expressions. Experiment 1 reported validation data

for 49 single AUs. Experiment 2 reported validation data for 54 AU combinations

and validation of individual AUs used in those combinations. All the expressions were

implemented in faces of different sexes and ethnicity.

The recognition rates of the AUs were high and the AUs interacted predictably

in combination with each other (to generate facial expressions of emotions). For all

AUs, validity of the AU appearance was scored satisfactorily by FACS-certified coders.

Based on the reported high recognition rates for combinations and for individual AUs,

obtained with the good intra-rater reliability scores, results suggest that the AUs

synthesized by HapFACS are valid with respect to the FACS.

Overall, when performed with high intensity, surprise, fear, happiness, sadness,

and neutral were the most easily recognizable emotions, whereas contempt and pride

were the most difficult to detect. When performed with low intensity, surprise, hap-

piness, and neutral were the easiest to recognize, while anger, contempt, pride, and

disgust were more difficult to recognize.

Contempt expression is sometimes perceived as pride (or even happiness), which

we hypothesize is due to the subtle asymmetric smile that can be displayed in pride

(but in happiness as well). The low recognition rate of contempt also confirms the

findings by Langner et al. [LDB+10] and Van der Schalk et al. [vdSHFD11], who

discuss the reason as a general feature of the contempt expression, which is not as

expressive nor visual as other expressions.

Experiments 3 to 6 showed that participants recognized the expected affective

meanings conveyed by emotional expressions generated with HapFACS. The reported
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recognition rates were high and comparable to previous research [BH05, GdRLV08,

LDB+10, TRS09b, vdSHFD11].

3.2 HapGest: Haptek Gesture Synchronizer

When I pass a sentence to the Haptek virtual character to be uttered, I expect the

character to (1) speak out the sentence, and (2) perform the appropriate non-verbal

gestures at appropriate times based on the output of the gesture models. However,

the Haptek does not provide any synchronized control on the non-verbal behaviors

of the character while speaking. In other words, Haptek does not enable us to know

when the audio corresponding to a specific text has been reached. Therefore, the

character does not have enough control over the spoken words, in order to express

specific gestures while specific words are being pronounced. I implemented a module

for the Haptek characters, called HapGest, which synchronizes the verbal and non-

verbal expressions and provides the fore-mentioned capability.

For example, let’s say you would like a Haptek character to speak out the sentence

“OK, I understand your situation”. At the same time, you would like the character

to perform a head nod when it is pronouncing the “OK” and perform a hand point

gesture while it is pronouncing the “your” word. As mentioned before, original Haptek

API does not provide us with this ability. HapGest, as I will explain next, (1) works

as a Markup Language, which enables us to include XML tags in the sentence, in

order to indicate where the gestures should be expressed, and (2) interprets the XML

tags and sends appropriate hypertexts to the Haptek character, in order to express

the desired gestures at the right time.

As mentioned before in Section 2.4.1, in general, there are two ways to synchronize

between a character animation and a the character’s speech (either through a TTS

engine or from recorded audio samples): (1) estimate word and phoneme timings and
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construct an animation schedule prior to execution; (2) use real-time events from a

TTS engine and compile a set of event-triggered rules to govern the generation of the

non-verbal behaviors. In HapGest, I used the second approach using the Microsoft

Speech API’s (SAPI) events.

The SAPI has an XML Markup Language, which provides different control han-

dles on its output audio. For example, I can manipulate the output audio’s volume,

speed, rate, and pitch, as well as words’ spelling, emphasis, silence, and pronunciation,

in addition to the voice type, and language. One of the provided controls by SAPI is

throwing events when the TTS reaches a specific word in the sentence. This control

is called bookmarking tag, and performed using the Bookmark tag. The Bookmark

tag inserts an event into the output audio stream. I used this event to signal the ap-

plication when the audio corresponding to a specific word is reached. The Bookmark

tag has one attribute, called Mark, whose value is a string. This value can be used

to differentiate between bookmark events. For example, in the above example sen-

tence, HapGest adds two Bookmark tags to the sentence as follow: “OK <Bookmark

Mark=’head-nod’>, I understand your <Bookmark Mark=’hand-point’> situation.”

As depicted in Figure 3.14, HapGest architecture includes the following three

modules:

Figure 3.14: HapGest architecture.
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1. Bookmarker, receives a sentence (e.g., “Ok, I understand your situation”) and

a list of non-verbal expressions that are supposed to be animated while each

word in the sentence is being pronounced (e.g., head-nod, neutral, neutral, hand-

point, neutral). For each non-neutral non-verbal expression assigned to a word

(by the non-verbal behavior models), the Bookmarker attaches a Bookmark tag

to the word with a Mark value equal to the name of the expression. Therefore,

the output of the Bookmarker is the input sentence with the Bookmark tags

inserted into it. The bookmarked sentence is sent at the same time to the

Microsoft SAPI and the Haptek character. Haptek has an internal Text-To-

Speech (TTS) to speak out the sentence.

2. Microsoft Speech API, receives the bookmarked sentence from the Book-

marker module. Both the Microsoft SAPI and the Haptek TTS process the

bookmarked sentence at the same time. The reason of using a second Microsoft

SAPI instance, while there is an internal one in the Haptek, is that Haptek does

not provide control over its internal SAPI, in order to handle events. I mute

the volume of Microsoft SAPI module, in order to hear only the audio output

from Haptek TTS. Microsoft SAPI module and Haptek TTS start reading the

sentence at the same time. While Haptek TTS is speaking out the words, the

Microsoft SAPI throws appropriate events defined by the Bookmark tags.

3. Event Handler, catches the events thrown by the Microsoft SAPI module

at each Bookmark tag, and handles the events. Therefore, Event Handler (1)

catches each Bookmark event, (2) reads the Mark attribute value of the event,

in order to understand its corresponding expression, (3) generates a Haptek

hypertext to call an appropriate Haptek switch, which expresses the required

expression, and (4) sends the hypertext to the Haptek character to be animated

at the same time that its corresponding word is being pronounced.
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Following the above process, I was able to synchronize the verbal and non-verbal

modalities of the Haptek character. I called this synchronization composite the

HapGest.
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CHAPTER 4

On-Demand Virtual Counselor (ODVIC)

I followed three main reasons for implementing the On-Demand Virtual Counselor

(ODVIC): (1) finding out whether delivering the counseling material via virtual char-

acters can enhance the user acceptance, (2) developing some early insights into the

potential impact of an empathy model on the user’s acceptance of the character with

enabling the virtual character to build rapport with the clients, even with a simple

rule-based approach, and (3) developing a framework and test-bed for evaluating our

empathy model.

I based my intervention content on an existing computer-based and evidenced-

based Adaption of Motivational Interviewing (AMI) intervention named the Drinker’s

Check Up (DCU), which has been implemented as a text-only web-based system1

[MR10, HSD05]. The DCU specifically targets excessive drinking behaviors. It is

claimed that people can reduce their drinking by an average of 50% using this AMI.

The DCU is the most widely used brief AMI, where the client is given feedback, in

an MI “style” based on individual answers from standardized assessment measures

[BAD02].

Because the ODVIC is aimed at being a test-bed to evaluate my non-verbal model

of rapport for generating an expressive character - rather than to test drinking health

outcomes of patients - my system differs from the current text-only web-based DCU

in that (1) although all the five psychometric assessment instruments used in DCU

are implemented, I used only one of them, namely the AUDIT, in the evaluation

process, in order to keep the evaluation time shorter; and (2) a multimodal sensing

and expressing character delivers the assessment instruments.

1http://www.drinkerscheckup.com/
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In the following sections, I will discuss my approach to develop a novel modality

for the computer-delivery of Brief Motivational Interventions (BMIs) for behavior-

change in the form of a personalized On-Demand VIrtual Counselor (ODVIC),

accessed over the internet. ODVIC is a multimodal Embodied Conversational Agent

(ECA) who empathically delivers an evidence-based behavior-change intervention by

adapting, in real-time, its verbal and non-verbal communication messages to those of

the user’s during their interaction. The current focus of this work is on excessive alco-

hol consumption as a target behavior, but the approach is adaptable to other target

behaviors (e.g., overeating, lack of exercise, drug use). As mentioned earlier, I based

my current approach on the successful existing patient-centered brief motivational

intervention called DCU [Mil88, HSD05], whose computer-delivery with a text-only

interface has been found effective to reduce alcohol consumption in problem drinkers.

4.1 Introduction

There is a growing societal need to address the increasing prevalence of behavioral

health issues, such as obesity, alcohol or drug use, and general lack of treatment

adherence for a variety of health problems. The statistics, worldwide and in the

USA, are daunting. Excessive alcohol use is the third leading preventable cause of

death in the United States [Nat11] (with 79,000 deaths annually), and is responsible

for a wide range of health and social problems (e.g., risky sexual behavior, domestic

violence, loss of job). Alcoholism is estimated to affect 10-20% of US males, and

5-10% females sometime in their lifetimes.

Similar risks exist with other forms of substance abuse. In 2010, the World Health

Organization (WHO) reported that obesity - worldwide - has more than doubled since

1980. In 2011, 1.5 billion adults in the world were overweight, of which 500 million

were obese, and 43 million children under the age of five were overweight [WHO11].
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In the USA alone, obesity affects 33.8% of adults, 17% (or 12.5 million) of children

and teens, and it has tripled in one generation. These behavioral issues place people

at risk of serious diseases; e.g., obesity can lead to diabetes, alcoholism to cirrhosis,

physical inactivity to heart disease.

On the positive side though, these behavioral health issues (and associated pos-

sible diseases) can often be prevented with relatively simple lifestyle changes, such

as loosing weight with a diet and/or physical exercise, and learning how to reduce

alcohol consumption. Medicine has therefore started to move toward finding ways

of preventively promoting wellness rather than solely treating already established ill-

ness. In order to address this new focus on wellbeing, health promotion interventions

aimed at helping people to change their lifestyle have been designed and deployed

successfully in the past few years.

Evidence-based patient-centered Brief Motivational Interviewing (BMI) interven-

tions have been found particularly effective in helping people find intrinsic motivation

to change problem behaviors (e.g., excessive drinking and overeating) after short coun-

seling sessions, and to maintain healthy lifestyles over the long-term [ER01, DDR01].

A methodological review of clinical trials of 361 treatments showed that out of 87

treatment methods, the top two ranked treatment styles were: 1) Brief Interventions

and 2) Motivational enhancement therapies [MR02]. It is reported that 5 minutes of

advice and discussion about behavioral problems (e.g., alcohol or drug use) following

a screening can be as effective as more extended counseling, and that a single session

can be as effective as multiple sessions [BG92].

Lack of locally available personnel well-trained in BMI, however, often limits ac-

cess to successful interventions for people in need. Yet, the current epidemic nature

of these problems calls for drastic measures to rapidly increase access to effective

behavior change interventions for diverse populations. To fill this accessibility gap,
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evidence has accumulated about the general efficacy of Computer-Based Interventions

(CBIs) [Hes97, BTB+08, Ski94, Cun99, PSSJC08].

The success of CBIs, however, critically relies on insuring engagement and reten-

tion of CBI users so that they remain motivated to use these systems and come back

to use them over the long term as necessary (e.g., for booster sessions, follow-ups,

and lifestyle maintenance sessions). Whereas current BMI interventions delivered by

computers have been found effective, high drop-out rates due to their users’ low level

of engagement during the interaction limit their long-term adoption and potential

impact [PSSJC08, Ver10].

One crucial aspect positively affecting the health outcomes of BMIs (and most

counseling techniques for that matter), involves the ability of the therapist to establish

rapport and to express empathy [MR02]. As discussed in Section 2.2, Empathy is a

complex phenomenon with different types of definitions. However, there is a general

consensus that empathy can involve cognitive attributes or affective attributes, which

can also be combined during full-blown empathy [GM85].

Because of their text-based only interfaces, current CBIs can therefore only express

limited empathy (mostly reflected in the choice of textual wording of the interven-

tion). Fortunately, in the last decade, at the same time as CBIs are being developed

and studied in healthcare, computer science research has progressed in the design

of simulated human characters and avatars with anthropomorphic communicative

abilities [CSPC00]. Expressive virtual characters have become increasingly common

elements of user interfaces for a wide range of applications, such as interactive learning

environments, e-commerce, digital entertainment, and virtual worlds.

Virtual characters who specifically focus on dialog-based interactions are called

Embodied Conversational Agents (ECAs), also known as Intelligent Virtual Agents

(IVA). ECAs are digital systems created with an anthropomorphic embodiment (be
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it graphical or robotic), and are capable of having a conversation (albeit still limited)

with a human counterpart, using some artificial intelligence broadly referred to as an

“agent”. With their anthropomorphic features and capabilities, they interact using

humans’ innate communication modalities, such as facial expressions, body language,

speech, and natural language understanding, and can also contribute to bridging

the digital divide for low reading and low health literacy populations, as well as for

technophobic individuals [NK11, BPJ09].

Therefore, I posit that (1) using well-designed virtual empathic and rapport-

enabled characters (i.e., ECAs) for the delivery of BMIs has the potential to increase

users’ engagement and users’ motivation to continue to interact with them, and that

as a result (2) users’ increased exposure to engaging evidence-based BMIs will increase

their effectiveness for behavior change.

Figure 4.1: ODVIC Amy in her office.

In the rest of this chapter, I first review the current research on BMIs, I then

discuss my approach to develop a novel modality for the computer-delivery of BMIs

for behavior change in the form of a 3D personalized On-Demand VIrtual Coun-

selor (ODVIC), accessed anytime anywhere over the internet (see Figure 4.1). I then

discuss how I designed the ODVIC to partially simulate both aspects of empathic

communication (affective and cognitive), using a scheme for the agent’s dynamic dis-
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play of facial expressions and verbal reflective listening based on the user’s perceived

expressions and answers.

Without claiming that my virtual character can fully empathize with the user,

which would require the ability to subjectively experience and understand the user’s

feelings, I then show, with results of user studies, that the ODVIC has enough expres-

sive abilities to provide the user with a better experience than when interacting with

the DCU delivered with a text-only interface, or with a non-expressive character.

4.2 Motivational Interviewing (MI) and Brief MI

Motivational Interviewing (MI) has been defined by Miller and Rollnick [MR02] as

a directive client-centered counseling style for eliciting behavior-change by helping

clients to explore and resolve ambivalence. One of MI central goals is to magnify

discrepancies that exist between someone’s goals and current behavior. MI basic tenets

are that (1) if there is no discrepancy, there is no motivation; (2) one way to develop

discrepancy is to become ambivalent; (3) as discrepancy increases, ambivalence first

intensifies; if discrepancy continues to grow, ambivalence can be resolved toward

change.

In the past few years, adaptations of MI have mushroomed with the purpose to

meet the need for motivational interventions within medical and healthcare settings

[BAD02] where sessions can be as short as 20-40 minutes.

Furthermore, whereas initially used with addictive behavior problems, such in-

terventions have been adapted and implemented with great success for a variety

of behaviors, ranging from diabetes self-management [Doh00] to treatment adher-

ence among psychiatric patients [Swa99] to fruit and vegetable intake among African

Americans [Res00], among other target behaviors.
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BMIs combine MI style of communication with the common underlying elements

of effective brief interventions characterized by the acronym FRAMES [Bie93, Mil94]:

Feedback about client’s individual status is personalized, Responsibility for changing

is left with the individual, Advice is provided in a supportive manner, Menus of

different options for changing that respect individual’s readiness to change are offered,

Empathic style of communication is central to the individual-clinician relationship;

and Self-efficacy is nurtured and emphasized.

Because BMIs are highly structured – first, assessment of target behavior patterns,

then normative feedback, then menu of change options depending on client’s readiness

– they lend themselves well to computer-delivery [LW08b], while remaining effective

[Hes97, BTB+08] and well-accepted by people [Ski94, Cun99].

Internet-Delivered Interventions, in particular, present a number of advantages

over traditional modes of delivery [PSSJC08]: they are able to reach a large audience

in a cost effective manner (possibly in remote locations) with 24-hour access; they offer

participants privacy and anonymity (users tend to disclose more information about

risky behaviors to them than to human counselors [SS86]); they can automatically

tailor information derived from individual assessment to an individual’s specific needs

[BSV+96, NBH07]; they can diminish variability between different counselors, which

accounts for 25% to 100% changes in rates of improvement among clients [MR02];

and they demonstrate infinite patience to respect the individual’s readiness to change

(sometimes very slow coming) [PV97]. It is also interesting to note that internet-

delivered interventions for alcohol reduction are particularly useful for people less

likely to access traditional alcohol-related services, such as women and young people

[WKS+10].

The BMI intervention called the Drinker’s Check-Up (DCU) [Mil88] is the focus of

my current work. DCU has been computerized as a menu-based text-only intervention
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delivered over the internet, that specifically targets excessive drinking behaviors and

with which heavy drinkers can reduce their drinking by an average of 50% at 12-

month follow-ups [SH04, HSD05]. My ODVIC delivers the same intervention content

as DCU, with additional empathic messages that I describe in the next sections.

4.3 Health Counselor System Architecture

In an effort to address the limitations of current computer-based interventions, namely

users’ loss of interest over the long term and drop-outs (which are also problematic

in classical face-to-face interventions), my approach is to (1) use ECAs and also

(2) leverage users’ acceptance of ECAs by developing an expressive empathic 3D

animated character. My virtual agent is able to perceive the user’s (i.e., client’s) facial

expressions and text entries as it delivers the adapted content of the DCU [SH04,

HSD05] in an empathetic style. It combines (1) partial non-verbal mimicry (head

nods and facial expressions), essential in building rapport and expressing empathy

[BBLM86], and (2) verbal reflective listening (RL) considered as one of the main

ways of conveying empathy in patient-centered interventions [Rog59].

4.3.1 System Overview

The ODVIC system delivers personalized and tailored behavior-change interventions

via multi-modal verbal and non-verbal channels. The system is developed in the

.NET framework as a three-tier architecture. The system architecture is composed

of the main modules shown in Figure 4.2, which I describe in details in this section.

During the interaction, the user’s utterances are processed by the Dialog Mod-

ule, which directs the MI sessions and elicits information from the user. Non-verbal

Communication Module, captures and processes user’s facial expressions in real-time
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Figure 4.2: System Architecture.

to assess the user’s most probable affective states, then combines with affect related

information elicited from utterances to decide about the counselor’s empathic re-

sponses. In this way, I can convey an ongoing sense of empathy and rapport via

a Multi-modal Avatar-based Interface (using a 3D animated virtual character with

verbal and non-verbal communication). The Score Evaluator performs the required

psychometric analysis based on the information collected by the Dialog Module, and

its results are maintained in a database over multiple sessions to offer a dynamically

tailored intervention in the form of normative feedback or specific behavior change

plans.
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Figure 4.3: Ethnicity and gender concordance.

4.3.2 Avatar-Based Multi-Modal User Interface

The web-based user interface of the system uses an embedded anthropomorphic ECA,

which can deliver verbal communication with automatic lip synchronization, as well

as non-verbal communication cues (e.g., facial expressions, head nods, mutual gaze,

and head movements).

I integrated a set of features that has been considered necessary for health promo-

tion interventions [LYL+12] (using the Haptek avatar system [WS96, SW97, SW00]):

1. A 3D graphical avatar whose appearance is well-accepted by users as docu-

mented in earlier studies [LBAM04, LYL+12].

2. A selection of different avatars with different ethnicities (e.g., skin color, and

facial proportions) in both genders shown in Figure 4.3.

3. A subset of the facial expressions implemented by HapFACS (see Section 3.1).

4. A Text-To-Speech (TTS) engine able to read text in a lip synchronized manner.

5. Lip-synchronized pre-recorded voices for the text provided in the interventions.

4.3.3 Dialog Module

The Dialog Module evaluates and generates dialog utterances using three components:

Utterance Planner, a collection of Psychometric Instruments, and Score Evaluator.
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The interaction of the client with the system is based on a series of dialog sessions,

each of which having a specific assessment goal to identify different aspects of the

user’s drinking behavior problem (if any). Each session is based on a psychometric

instrument.

4.3.4 Psychometric Instruments

I used different well-validated Psychometric Instruments (i.e., questionnaires) used

in the DCU [MR10, HSD05] (which are also commonly used by therapists to assess

an individual’s alcohol use in the assessment sessions [MR02]). These questionnaires

are kept inside a database. Each psychometric instrument contains a set of questions

representing the plan for that assessment session, and a set of response options for

each question.

Although the full-fledged DCU intervention is implemented in my system to de-

liver tailored interventions and behavior-change plans, I focused my testing on the

psychometric analysis portion using one instrument called AUDIT.

Alcohol Use Disorders Identification Test (AUDIT)

AUDIT [BHBSM01] is a 10-item questionnaire that I use to identify people whose

alcohol consumption has become hazardous or harmful to their health. The “amount

and frequency of drinking, alcohol dependence, and problems caused by alcohol” are

queried using this instrument. Questions are scored using a 5-point Likert scale.

The total score is the summation of all the answers’ scores. Table 4.1 shows the

way AUDIT scores are interpreted. The cut-off numbers may be different based on

average body weight, gender, race, and cultural standards.
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Table 4.1: AUDIT score interpretation.

AUDIT Score Interpretation
score < 4 No drinking problems

4 ≤ score ≤ 8 Harmful for ages under 18 and females
score > 8 Alcohol dependence.

8 < score ≤ 15 Should be advised to reduce drinking
16 ≤ score ≤ 19 Should be suggested counseling

score ≥ 20 Should be warranted further diagnose

4.3.5 Utterance Planner

This component of the Dialog Module decides about the next utterance based on the

previous interactions with the client. To measure the client’s score in each context,

there are sets of questions for that context, which are conceptually related with each

other. The utterance planner aims at detecting discrepancies between client’s answers

for questions in the same context.

This module follows a set of well-documented MI techniques known as OARS to

generate the dialogs: Open-ended questions, Affirmations, Reflective listening, and

Summaries. These techniques are applied toward goals concerning specific behaviors

(e.g., excessive alcohol use, drug use, overeating). The engine is not covering the open-

ended questions in the current implementation, instead it uses predefined questions

and answers within each static psychometric instrument. Therefore, in the current

implementation of the Utterance Planner, utterances (i.e., questions) are followed in

a predefined order.

Reflective listening is a client-centered communication strategy involving two key

steps: seeking to understand a speaker’s thoughts or feelings; and conveying the idea

back to the speaker to confirm that the idea has been understood correctly [Rog59].
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4.3.6 Score Evaluator

The Score Evaluator is responsible for processing the psychometric data collected in

the Dialog Module. Based on instructions in each instrument, the Score Evaluator

module calculates the score of the client for a particular measuring instrument. The

result is used to identify specific aspects of the drinking problem, such as the amount

and frequency of drinking, alcohol dependence, and problems caused by alcohol. Also,

the score is used in the Empathy Model (discussed next) to empathize with the user

based on his/her history of answers.

4.3.7 Empathy Model

This Module is responsible for empathizing with the user. In order to adapt the

non-verbal behaviors of the character with the non-verbal behaviors of the user, I

implemented a Face/Head Processing Module, which captures the client’s face/head

images through a camera and recognizes his/her facial expressions and head move-

ments using a face recognition engine (algorithm published in [TW11, WHT10].

Outputs of the Empathy Model include (1) the counselor’s facial expressions, (2)

counselor’s head movement, (3) and counselor’s head gestures. This preliminary

empathy model does not use the textual transcripts, however, in the rapport model

discussed in Chapter 5, the dialog contents are also used as the input, and also, more

gestures and expressions are added to the non-verbal behaviors of the character.

The decisions made by the Empathy Model are sent to the Facial Expression Gen-

erator. This module returns the face, head, and eye AUs to be activated (with their

activation intensities). The AUs and their intensities are then sent to the HapFACS

API, which can map the AUs to the virtual character’s face and head.

Discussing issues about at-risk behaviors, such as heavy drinking, are emotional for

people to talk about (e.g., shame, discouragement, anger, hopefulness, satisfaction,
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and pride). Empathy and positive regard toward the client are therefore critical

therapeutic conditions to create an atmosphere of safety and acceptance, where clients

feel free to explore and change [MR09] at-risk behaviors. As discussed earlier, in MI

and BMI sessions, what is crucial is the ability of the therapist to express accurate

empathy by applying “a skillful reflective listening to clarify and amplify the [user’s]

own experiencing and meaning” [MR02].

The Empathy Model emulates two kinds of empathy: affective empathy and cogni-

tive empathy. Affective empathy refers to the ability to react emotionally when one

perceives that another is experiencing, or about to experience, an emotion [Wis87].

Cognitive empathy involves an understanding (rather than a feeling) of another’s

experiences and concerns, combined with the capacity to communicate that under-

standing [Hoj07].

Whereas my system does not understand the subjective experience of the user’s

emotions, it does perceive the user’s emotions (with computer vision) and reacts

emotionally (with 3D realtime animations) to convey affective empathy and a sense

of rapport.

The Empathy Model captures and processes user’s facial expressions in real-time

to assess the user’s most probable affective states, then combines it with affect re-

lated information elicited from utterances to decide about the counselor’s empathic

responses. It is responsible for simple verbal reflection of user’s answers, and for other

feedbacks, such as facial expressions, and head nods.

This model uses a set of inputs to decide about the counselor’s empathic behaviors:

1. Emotional facial expressions: facial photos are taken using the camera through

the JPEG-Cam Flash/Javascript library, saved as an image file on the server,

and sent to the face recognizer server. The system recognizes the client’s emo-

tional facial expressions and categorizes them into five categories of happy, sad,
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angry, surprised, and neutral. The Face/Head Processing Engine uses the facial

expression recognition algorithm proposed in [TW11, WHT10].

2. Head movements: the Face/Head Processing Engine returns degrees of the three

possible head movements: head yaw (up and down), head pitch (left and right),

and head roll (left and right rolls);

3. Smile: the Face/Head Processing Engine returns the user’s smiling status as

one of its outputs (smile with an open mouth). The smile status is slightly dif-

ferent from happy facial expression. The happiness is recognized from different

movements of the face, such as eyes, cheeks, and lips. But, smile is only the

state of the lips.

4. Counselor’s question valence: the counselor can expect whether her/his question

will be pleasant or unpleasant for the client. So, the counselor simulates the role-

taking mode of empathy and puts herself/himself in the client’s shoes to guess

her/his emotion in response to asking each question. After asking a question, the

client appraises it based on her/his goal and situation, and reacts emotionally

to it. For each Psychometric Instrument, the Empathy Model uses the OCC

[OCC88] cognitive structure of emotion to predict the client’s emotions. Base

on the OCC, one feels joyful if she/he is pleased about a desirable event, and

feels distressed if she/he is displeased about an undesirable event. I manually

assigned a valence value (i.e., pleasurable or unpleasurable) to each question in

the database.

5. Client’s answer to the counselor’s question: for any counselor’s question, the

client provides an answer through a menu-based interface using mouse/keyboard.

The client’s answers are passed to the Score Evaluator module to evaluate

her/his answer’s risk level (and returned as a score).

134



6. History of the client’s previous answers: after receiving each answer from the

client and scoring it using the Score Evaluator, a cumulative score is calculated

for the client based on her/his history of answers until then. This cumulative

score shows the alcohol consumption risk level of the user. Based on the user-

model [YAL12], in different assessment sessions, this score can represent the

strength of the client’s dependence to alcohol, drinking risk factors, motivation

to change, frequency of drinking, and drinking consequences.

Given the above parameters, the empathy model decides which affective/cognitive

empathic responses to express. The Empathy Model contains a rule-based system,

which uses a set of pre-defined rules in a Decision Tree, to decide about the next

counselor’s empathic reaction to the client, both verbally and non-verbally. This

system decides “what facial expression to express”, “when to show head nods”, “what

eyebrow expressions to show”, “when to express subtle/large smile”, and “what verbal

reflections to express”.

For each user’s answer to the questionnaire items, the empathy model returns a

simple verbal feedback from a pool of appropriate verbal feedbacks for that answer

(saved in database). Verbal reflection is commonly used by counselors to create a

stronger connection with the clients and create closeness and rapport. Verbal reflec-

tions can be simple or complex. Simple reflections can be a repetition or rephrasing

of the client’s responses. For example, counselor asks “How often do you have a drink

containing alcohol?”, the client selects the answer “Two to three times a week”, then

the counselor reflects back “So, you drink at least twice a week”.

When the counselor’s question valence is positive or the user’s emotional facial

expression is positive (e.g., happy, surprised), the decision tree tends to express a

positive facial expression and vice versa. Also, lower risk level of the user’s answer

and lower overall score (history of answers) cause more positive expressions, and vice
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versa. For example, if (1) the counselor asks “Does drinking help you to relax?”, which

is a positive valence question, (2) the user expresses a “happy” facial expression, (3)

the user answers “No” (i.e., low risk answer), and (4) user has the AUDIT score of

5, which is a low score, then the decision tree returns a happy face with a large smile

and raised eyebrows. A small sample part of the decision tree (located the cognitive

module) is shown in Figure 4.4.

Figure 4.4: A sample piece of the decision tree used in cognitive module.

Facial Expression Generator

The Facial Expression Generator generates the virtual character’s facial expressions

and head movements based on the Facial Action Coding System (FACS) [EF78], and

Emotional FACS (EmFACS) [FE83] (described in Section 2.5.1).

The Facial Expression Generator module uses HapFACS (described in Section 3.1)

to generate facial expressions based on FACS and EmFACS. It accepts the outputs

of the Empathy Model, and maps them to their appropriate AUs. The AUs are then

passed to the HapFACS API to generate the emotional facial expressions on the

character face.
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In the next section, I describe the evaluation of the system, conducted to compare

three delivery modes, text-only, non-empathic, and empathic character.

4.4 ODVIC Evaluation

Since the performance criteria of the conversational agents, such as virtual health

counselors, is dependent upon the satisfaction of their users, it is necessary to measure

the users’ perception of the agent’s action.

I designed an evaluation scheme to evaluate the user’s acceptance of the vir-

tual counselor and to evaluate the character’s properties (e.g., likability, animacy,

and anthropomorphism). I combined two questionnaires developed by Heernik et al.

[HKEW09] and Bartneck et al. [BKC08] and adapted them to my health counseling

application.

4.5 Hypotheses

I hypothesize that counselors with different delivery modalities (i.e., virtual character

vs. text) and different levels of empathizing abilities (e.g., with or without non-

verbal expressions displayed appropriately at specific times based on the content of

the interaction) will have different effects on the quality of the interaction with users.

I expect the character with empathizing abilities (e.g., appropriate facial expres-

sions, head nod, verbal reflective listening) to have more positive effects than a neu-

tral character and a text-only system, in terms of the users’ acceptance of the system,

among other measures.

Whereas it may seem intuitive that the system with empathizing abilities would

outperform both other systems, studies found that neutral characters and text-only

systems can at times be perceived better than empathic ones with respect to some
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features [BP05], such as the interaction time per day/week and steps followed by

the users (maybe because interaction with the text-only and neutral systems goes on

faster than the empathic one and users can follow more steps in an equal amount

of time). These findings motivated my choice to compare all three versions of the

system: text-only, non-empathic character, and empathic character. And indeed my

results also indicate that perceived ease of use (see Section 4.6.1) and anxiety (see

Section 4.6.1) are not positively affected by the use of the empathic agent.

4.5.1 Procedure

I asked the participants to attend the first session of an interview with the virtual

counselor, which includes the AUDIT [BHBSM01] psychometric instrument, to assess

the client’s dependence to alcohol and frequency of drinking. The clients sat in front

of a computer with a camera connected to it. I gave them oral instructions about the

way the system works. They had access to a computer mouse and keyboard to select

their answers to the counselor’s questions from multiple choice menus. Users had the

option to choose their preferred counselor’s gender and ethnicity among the available

characters (Hispanic, Caucasian, African American), some of which are shown in

Figure 4.3. The default counselor was a Caucasian female (named Amy) who speaks

in English. I have implemented three conditions for the experiment:

1. Text-only Drinker’s Check-Up (DCU): during the session, the exact same con-

tent of the DCU [HSD05] is delivered to the user using text-only web pages.

2. Empathic counselor: during the counseling session, Amy reacts to the client

with verbal and non-verbal empathic reactions. She expresses different emo-

tional facial expressions (happy, sad, concerned, surprised, and neutral); head

gesture (nod); large and subtle smile; head movement mimicry (pitch, yaw,

138



roll); eyebrow movement; mutual gaze; and lip synchronized verbal reflections.

Being polite and getting permission for pursuing the interview is an empathic

technique, so, at the beginning and end of the interview Amy requests for user’s

permission to continue.

An interview session begins with a verbal introduction of the system by Amy.

Following the introduction, Amy asks for permission from the client to go to the

next step. Then, she gives an overview of what will happen during the interview

and asks for permission again to start the interview. During the introduction,

Amy shows a neutral face and does not provide any empathic responses to the

participant. The interview session involves a set of questions about the user’s

drinking behaviors. For each question, the client selects an answer from a list

of 3-5 answers. At the end of the interview, Amy asks for permission to give

a normative feedback about the user’s drinking behavior in her/his age group

and gender. During the interview (excluding the introduction), Amy empathizes

with the client using the Empathy Model (described in Section 4.3.7). After

the feedback, the user is directed automatically to an online questionnaire (see

Section 4.5.2), which debriefs her/him about the performance of the virtual

counselor.

3. Non-empathic (neutral) counselor: Amy shows a neutral facial expression

during the introduction and interview, does not empathize with the user at all,

and ignores the user’s changes of emotional state. At the beginning and end of

the interview Amy does not request for user’s permission to continue.

After getting the approval from the Institutional Review Board (IRB), partici-

pants were recruited from volunteer university students (through fliers and emails)

and Mechanical Turk workers. They were randomly assigned to each of the three ex-

periment conditions. From the total number of 81 users (45 females with average age
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of 24.6 years old and 36 males with average age of 26.3 yeas old), 26 were assigned to

the empathic counselor, 25 to the neutral counselor, and 30 to the text-only version.

From the local subjects (i.e., subjects interviewed in our lab), 32 of them were males

and 19 of them were females. The ethnicity distribution of these participants was as

55% White, 27% Hispanic, 16% African American, and 2% Asian.

In the next section I describe the after-experiment questionnaire used to debrief

the clients about the acceptance and performance of the counselor.

4.5.2 Questionnaire

I designed an online after-experiment questionnaire to evaluate the counselor’s em-

pathy, anthropomorphism, animacy, likability, perceived intelligence, perceived safety,

subjective performance, and user’s acceptance. It is based on a combination of the

model presented by Heerink et al. [HKEW09] and the “Godspeed questionnaire”

[BKC08].

Heerink’s model evaluates the users’ acceptance of assisting social artificial

agents. This model involves different constructs, each of which is represented by

multiple statements. Users reply to these statements on a 5-point Likert scale (-

2 to +2). For positive statements (e.g., “I enjoyed the health counselor talking to

me”), “-2” means “strongly disagree” and “+2” means “strongly agree”. For negative

statements (e.g., “I found the health counselor boring”), “-2” means “strongly agree”

and “+2” means “strongly disagree”. I use the following 10 constructs with the given

definitions:

• Attitude (ATT): positive or negative feelings about the technology. The state-

ments used to evaluate the attitude of the clients toward the virtual counselor

are: (1) I think it’s a good idea to use the counselor; and (2) The counselor

would make my life more interesting.
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• Intention to Use (ITU): outspoken intention to use the system over a longer

period in time. I use the following statement to evaluate the clients’ intention

to use the system: (3) I think I’ll use the system again.

• Perceived Enjoyment (PENJ): feelings of joy or pleasure associated by the user

with the use of the system. The following statements are used in this category:

(4) I enjoyed the counselor talking to me; (5) I enjoyed participating in this

session with the counselor; (6) I found the counselor enjoyable; (7) I found the

counselor fascinating; and (8) I found the counselor boring.

• Perceived Ease of Use (PEOU): degree to which the user believes using the

system would be free of effort. I used five statements to evaluate the clients’

perception about the system’s ease of use: (9) I think I learned quickly how to

use the health counselor; (10) I found the counselor easy to use; (11) I think I

can use the counselor without any help; (12) I think I can use the counselor, if

there is someone around to help me; and (13) I think I can use the counselor,

if I have a good manual.

• Perceived Sociability (PS): perceived ability of the system to perform sociable

behavior. The following statements are used in this category: (14) I consider

the counselor a pleasant conversational partner; (15) I feel the counselor under-

stands me; (16) I think the counselor is nice; and (17) I think the counselor is

empathizing with me.

• Perceived Usefulness (PU): degree to which a person believes using the system

would enhance his or her daily activities. The statements used for evaluating

the perceived usefulness of the virtual counselor are: (18) I think the counselor

is useful to me; and (19) I think the counselor can help me.

• Social Presence (SP): experience of sensing a social entity when interacting

with the system. The four statements used in this category are: (20) When
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interacting with the counselor, I felt like I’m talking to a real person; (21) I

sometimes felt as if the counselor was really looking at me; (22) I can imagine

the counselor to be a living creature; and (23) Sometimes the counselor seems

to have real feelings.

• Trust (TRUST): belief that the system performs with personal integrity and

reliability. I used the following statements to evaluate the clients’ trust toward

the virtual counselor: (24) I would trust the counselor, if it gave me advice; (25)

I would follow the advice the counselor gives me; (26) I feel better interacting

with the virtual counselor than with a human counselor in terms of privacy;

and (27) I disclose more information about my drinking to the virtual counselor

than a human counselor.

• Anxiety (ANX): evoking anxious or emotional reactions when using the system.

The statements used in this category are: (28) I was afraid to make mistakes

during the interview; (29) I was afraid to break something; (30) I found the

counselor scary; and (31) I found the counselor intimidating.

• Social Influence (SI): user’s perception of how people who are important to

him think about him using the system. I used the following statements for

evaluating the social influence of the virtual counselor: (32) It would give a

good impression, if I should use the counselor later; and (33) I am comfortable

to disclose information about my drinking to the counselor.

Bartneck [BKC08] have defined another questionnaire called “Godspeed” includ-

ing five key concepts of HCI: anthropomorphism, animacy, likability, perceived

intelligence, and perceived safety with the following definitions:

• Anthropomorphism (ANT): attribution of a human form, characteristics, or

behavior to non-human concepts, such as robots, computers, and animals. In
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this category, I asked the clients to rate he following statements for evaluat-

ing the anthropomorphism of the virtual counselor: (34) I rate the counselor

as Fake/Natural; (35) I rate the counselor as Machine-like/Human-like; (36)

I rate the counselor as Unconscious/Conscious; (37) I rate the counselor as

Artificial/Lifelike; and (38) I rate the counselor’s moves as Rigid/Elegant.

• Likability (LIKE): degree to which the agent evokes empathic or sympathetic

feelings of the user. To evaluate the likability of the counselor, clients rated the

following statements: (39) I rate my impression as Dislike/Like; (40) I rate the

counselor as Unfriendly/Friendly; (41) I rate the counselor as Unkind/Kind;

(42) I rate the counselor as Unpleasant/Pleasant; and (43) I rate the counselor

as Awful/Nice.

• Animacy (ANIM): degree to which a computer agent is lifelike and can involve

users emotionally. The animacy of the virtual counselor is evaluated by rating

the following statements: (44) I rate the counselor as Dead/Alive; (45) I rate the

counselor as Stagnant/Lively; (46) I rate the counselor as Mechanical/Organic;

(47) I rate the counselor as Inert/Interactive; and (48) I rate the counselor as

Apathetic/Responsive.

• Perceived Intelligence (PI): user’s perception of the intelligence level of the

agent. The statements rated in this category are: (49) I rate the counselor as

Incompetent/Competent; (50) I rate the counselor as Ignorant/Knowledgeable;

(51) I rate the counselor as Irresponsible/Responsible; (52) I rate the counselor

as Unintelligent/Intelligent; and (53) I rate the counselor as Foolish/Moving

Sensible.

• Perceived Safety (PSA): user’s perception of the level of danger, and her/his

level of comfort during the use. I evaluated the perceived safety of the vir-

tual counselor using these statements: (54) During the interaction I was Anx-
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ious/Relaxed; (55) During the interaction I was Agitated/Calm; and (56) Dur-

ing the interaction I was Quiescent/Surprised.

4.6 Results and Discussion

4.6.1 User Acceptance Results

I asked users to answer 56 questions, categorized in 15 classes. Clients answer each

question in a 5-level Likert scale (-2 to +2). So, for each question, a 2 × 5 table is

created which compares two of the experiment conditions (empathic vs. neutral, em-

pathic vs. text, and neutral vs. text). The table rows are the experiment conditions,

and the columns are the Likert scales (i.e., -2, -1, 0, +1, and +2). Clients’ answers

are analyzed using the Mantel-Haenszel-Chi-Square test (degree of freedom df = 1),

which involves (1) assigning scores to the response levels, (2) forming means, and (3)

examining location shifts of the means across the levels of the responses. The main

difference between the regular Chi-Square and the Mantel-Haenszel test is that, in

Chi-Square, clients’ responses are compared with an expectation, while in Mantel-

Haenszel test, there is no specific expectation and we compare the clients’ responses

in two conditions. More details of the Mantel-Haenszel test can be found in [MDK03].

I followed two null hypotheses: (1) text-only and avatar-based counselors have

the same effects on the users; and (2) counselors with different levels of rapport

abilities (empathic vs. neutral) have the same effects on the users. A common sig-

nificance threshold value in the chi-square analysis is 5% (i.e., alpha). However,

since I am performing three pairwise comparisons between the three different ex-

perimental conditions, to reduce the chance of false negative error (i.e, error type-

I), I applied a Bonferroni correction on the alpha by dividing the alpha by 3 (i.e.,

α = 5%
3
≈ 1.7%. Therefore, under the assumption of each null-hypothesis, a p value
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of less than 0.017 rejects the null-hypothesis. Also, I compared the mean values of

the same statements in the three experimental conditions to calculate the possible

improvement/deterioration of them upon each other. The improvement/deterioration

is calculated with the following formula:

Improvement (or deterioration) =
(Mean1 −Mean2)

(Likert Max Score− Likert Min Score)

=
(Mean1 −Mean2)

2− (−2)

=
(Mean1 −Mean2)

4

(4.1)

Attitude (ATT)

Since interacting with an interface, which empathizes with the clients, is a new ex-

perience for the users, and provides a novel supportive way of interacting with the

computer, I can expect that the clients show a more positive attitude to use the

empathic counselor than the neutral and the text-only ones.

Results show significant differences in terms of attitude between the empathic

and neutral conditions (χ2 = 5.76, p = 0.016 < 0.017); and between empathic and

text-only conditions (χ2 = 9.21, p = 0.002 < 0.017); but no significant difference

between the neutral and text-only conditions (χ2 = 0.081, p = 0.776 > 0.017). These

results indicate that a neutral avatar cannot improve the attitude to use a text-only

counseling system. On the other hand, when an empathic avatar is used, significant

differences appear. Therefore, the clients expect a human-like system to be empathic.

This result confirms previous research by Nguyen and Masthoff [NM09].

The positive mean values of empathic (mean = 0.78, stdev = 0.9), neutral (mean =

0.31, stdev = 1.05), and text-only (mean = 0.26, stdev = 0.86) versions indicate that

the clients have a positive attitude toward the system and found it a good idea to
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use the virtual health counselor, regardless of the interface modality. However, the

mean value comparison shows that the clients have 11.81% more positive attitude

to use the empathic counselor than the neutral counselor and 13.06% more than the

text-only version.

Intention to Use (ITU)

Results show significant differences in terms of intention to use between the empathic

and neutral conditions (χ2 = 6.41, p = 0.011 < 0.017); and between the empathic

and text-only conditions (χ2 = 16.67, p ≈ 0.000 < 0.017); but no significant difference

between the neutral and text-only conditions (χ2 = 4.60, p = 0.032 > 0.017). These

results support the previous result that the clients expect a human-like system to be

empathic [NM09].

The positive mean values of empathic (mean = 0.80, stdev = 0.89) and neutral

(mean = 0.12, stdev = 0.89) counselors show that the clients have positive intention

to use the avatar-based counselors. This result confirms the results of a previous

research [LYL+12], in which 74% of the clients reported a positive intention to use

the avatar-based system. The negative mean value of text-only version (mean =

−0.45, stdev = 1.02) indicates that the clients have negative intention to use the

text-based system. The mean value comparison shows that the clients have 17.12%

more intention to use the empathic counselor than the neutral counselor and 31.36%

more than the text-only version. Also, they have 14.25% more intention to use the

neutral counselor than the text-only one.

Perceived Enjoyment (PENJ)

Non-verbal mimicry increases rapport ([Laf79, LB76]), facilitates communication and

may increase listeners’ attention [LB76]. So, we can expect that the clients engage
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more with the empathic counselor and find it more enjoyable than the neutral and

the text-only ones.

Approving this hypothesis, results show significant differences in terms of per-

ceived enjoyment between the empathic and neutral conditions (χ2 = 24.40, p ≈

0.000 < 0.017); and between the empathic and text-only conditions (χ2 = 26.73, p ≈

0.000 < 0.017); but no significant difference between the neutral and text-only con-

ditions (χ2 = 0.013, p = 0.91 > 0.017). Again, it shows that the clients expect a

human-like system to be empathic.

The positive mean values of empathic (mean = 0.99, stdev = 0.63), neutral

(mean = 0.31, stdev = 0.97), and text-only (mean = 0.39, stdev = 0.88) versions

indicate that the clients perceived the system positively enjoyable, regardless of the

interface modality. However, the mean value comparison shows that the clients en-

joyed the empathic version 17.11% more than the neutral one, and 15.10% more than

the text-only version. Therefore, the clients enjoy a text-only system more than a

neutral human-like system.

Perceived Ease of Use (PEOU)

Results show no significant differences between any pairs of the experimental condi-

tions: empathic and neutral conditions (χ2 = 0.52, p = 0.471 > 0.017); empathic and

text-only conditions (χ2 = 1.45, p = 0.228 > 0.017); or neutral and text-only condi-

tions (χ2 = 0.07, p = 0.778 > 0.017). This means that there is not enough statstical

evidence to show that the different conditions have significant differences in terms of

ease of use.

The porsitive mean values of empathic (mean = 0.84, stdev = 1.24), neutral

(mean = 0.96, stdev = 1.27), and text-only (mean = 0.82, stdev = 1.24) versions

indicate that the clients perceived all the version easy to use. However, the clients

147



prefer a character to help them during the interaction rather than a pure text-only

intervention. It seems that enabling the character to build rapport with them com-

plicates the use of the system. It is possible that users feel uneasy being watched

or evaluated all the time with an intelligent ECA [CSX04]. Also, users feel that the

counselor understands them (see Section 4.6.1), and they get the impression that a

real person is talking to them, which may make it harder for them to use the system

in presence of the counselor.

Perceived Sociability (PS)

Mimicking the facial expression and empathizing using the facial expressions of a

speaker plays an important role in the perception of empathy [SbJS03]. So, we

can expect that the empathic counselor reacts more appropriately to the clients’

affective states and clients find it more understanding and empathizing than the

neutral counselor and the text-only version.

Results show significant differences between all the three versions pairwise: em-

pathic and neutral conditions (χ2 = 36.57, p ≈ 0.000 < 0.017); empathic and text-

only conditions (χ2 = 17.58, p ≈ 0.000 < 0.017); neutral and text-only conditions

(χ2 = 6.22, p = 0.012 < 0.017).

Statements in the Perceived Sociability category debrief the clients about the

empathizing, understanding, and social abilities of the counselor. Therefore, the

positive mean value of empathic counselor (mean = 0.80, stdev = 0.87) indicates

that the clients perceived it empathizing, understanding, nice and sociable. On the

other hand, negative mean value of the neutral version (mean = −0.07, stdev = 0.97)

and small positive mean value of text-only version (mean = 0.26, stdev = 0.98)

indicate that the clients perceived them respectively 21.68% and 13.56% less sociable

than the empathic version.
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The users perceived the empathic counselor a more pleasant conversational partner

than the neutral one by 19.81% (statement 14). They reported that the empathic

counselor understands the users 20.65% more than the neutral one (statement 15).

The empathic counselor was rated 21.50% nicer than the neutral counselor (statement

16). Most importantly, the empathic counselor was perceived 24.77% more empathic

than the neutral one (statement 17).

Perceived Usefulness (PU)

Results show significant differences between the empathic and neutral conditions

(χ2 = 10.13, p = 0.001 < 0.017); and between the empathic and text-only conditions

(χ2 = 5.88, p = 0.015 < 0.017); but no significant difference between the neutral and

text-only conditions (χ2 = 1.36, p = 0.243 > 0.017).

The positive mean values of empathic (mean = 0.68, stdev = 0.88), neutral

(mean = 0.02, stdev = 1.08), and text-only (mean = 0.24, stdev = 0.97) versions

indicate that the clients perceived the system positively useful regardless of the inter-

face modality. However, the mean value comparison shows that the clients think that

an empathic counselor is the most useful one (16.52% more than neutral and 10.94%

more than text-only), but, if a counselor is not empathic it can be less useful than a

pure text-only intervention system.

Social Presence (SP)

Non-verbal mirroring helps creating a smoother interpersonal interaction between

partners [CB99], so, we can expect that the clients’ engagement with the empathic

system would be more than the neutral and the text-only ones.

Results show significant differences between the empathic and neutral conditions

(χ2 = 25.15, p ≈ 0.000 < 0.017); and between the empathic and text-only conditions
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(χ2 = 46.20, p ≈ 0.000 < 0.017); but no significant difference between the neutral and

text-only conditions (χ2 = 3.26, p = 0.071 > 0.017). The not-significant difference

between neutral and text-only versions and significant differences between the other

two pairs support the same previous results.

The positive mean value of empathic (mean = 0.21, stdev = 1.07) indicates

that the clients sense a social entity when interacting with the empathic counselor.

But, negative mean values of neutral (mean = −0.57, stdev = 0.99), and text-only

(mean = −0.80, stdev = 0.93) versions show that the clients do not have this sense

when interacting with neutral and text-only versions. In terms of social presence, the

empathic counselor makes 19.73% improvement over the neutral version and 25.14%

improvement over the text-only version. On the one hand, negative mean values

of the neutral version mean that the users did not feel that they are talking to a

real person (statement 20), they did not imagine the counselor as a living creature

(statement 22), and they did not feel that the counselor has real feelings (statement

23).

One the other hand, the positive mean values of the empathic version show that

the users perceive the counselor as a real person who is looking at them and has real

feelings. The mean value in statement 22 shows that although the empathic counselor

is perceived more live than the neutral one, it is still not perceived as a living creature.

Trust (TRUST)

Since empathizing with the clients is known as a good way of building trust and

receiving more information from the clients, we can expect that the clients can disclose

more information to the empathic counselor than to the neutral one.

Results show significant differences between the empathic and neutral conditions

(χ2 = 13.01, p ≈ 0.000 < 0.017); and between the empathic and text-only conditions
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(χ2 = 5.7, p = 0.0169 < 0.017); but no significant difference between the neutral and

text-only conditions (χ2 = 2.77, p = 0.096 > 0.017).

Looking at the statements individually, the positive mean values in statement 24

indicate that the users would trust all the empathic (mean = 0.88, stdev = 0.82),

neutral (mean = 0.12, stdev = 0.93), and text-only (mean = 0.27, stdev = 0.99)

counselors, if they give them advice, however, they trust the empathic counselor

19.12% more than the neutral one and 15.18% more than the text-only version. Also,

statement 25 shows that the users would follow the advice of the empathic (mean =

0.68, stdev = 0.84) counselor 6.42% more than the neutral (mean = 0.42, stdev =

0.57) one and 12.45% more than the text-only (mean = 0.18, stdev = 0.97) version.

In terms of privacy, users prefer to interact with a human counselor rather than

a neutral (mean = −0.38, stdev = 1.3) virtual counselor (statement 26). But, they

prefer to interact with an empathic (mean = 0.56, stdev = 1.06) counselor or a text-

only system (mean = 0.12, stdev = 1.15) rather than a human counselor. Empathic

counselor improved the neutral counselor by 23.62%, and improved the text-only

version by 10.97%. As mean values show, users feel 12.65% more privacy when

interacting with a pure text-only system than a neutral counselor.

Statement 27 shows that, in general, users believe that they can disclose more

information to a human counselor than a virtual counselor delivered by a character.

However, the empathic version (mean = −0.13, stdev = 1.27) has 7.45% improvement

over the neutral (mean = −0.42, stdev = 1.21) one. More interestingly, the users

believe that they can disclose more information about their drinking to a text-only

system (mean = 0.1, stdev = 1) than a human.

Over all of the four statements in the Trust category, the empathic (mean =

0.51, stdev = 1.07) and text-only (mean = 0.17, stdev = 1.03) versions have positive

mean values, and the neutral has a negative mean value (mean = −0.07, stdev =
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1.01). Mean value comparisons show that the empathic counselor is 14.31% more

trustful than the neutral one and 8.46% more than the text-only version.

Anxiety (ANX)

Affective virtual agents can support users through stressful tasks [GM04]. Therefore,

my expectation is that the clients who use the empathic counselor feel less anxious

than those who use the neutral version.

Results show no significant differences between any pairs of the experimental con-

ditions: empathic and neutral conditions (χ2 = 0.003, p = 0.954 > 0.017); empathic

and text-only conditions (χ2 = 0.29, p = 0.591 > 0.017); or neutral and text-only

conditions (χ2 = 0.32, p = 0.573 > 0.017). This means that, there is not enough

statistical evidence to show that the modality of delivering the intervention makes

significant differences between the studied situations, in terms of privacy.

The positive mean values of empathic (mean = 1.2, stdev = 0.87), neutral (mean =

1.19, stdev = 1.02), and text-only (mean = 1.26, stdev = 0.76) versions indicate that

none of the three counselor versions evoke anxiety while interacting with the clients

and there are no significant improvements in the mean values. This means that

the delivery modality (text-only vs. character-based) and the empathizing ability

(empathic vs. neutral) did not reduce the anxiety level of the clients during the

interaction, which does not support my expectation in the beginning of this section.

Social Influence (SI)

Results show no significant differences between any pairs of the experimental condi-

tions: empathic and neutral conditions (χ2 = 5.53, p = 0.018 > 0.017); empathic and

text-only conditions (χ2 = 0.79, p = 0.373 > 0.017); or neutral and text-only condi-

tions (χ2 = 2.81, p = 0.0935 > 0.017). These results mean that there is not enough
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statistical evidence to show that modality of delivering the intervention makes signif-

icant changes in the social influence of the system.

However, the positive mean values of empathic (mean = 0.78, stdev = 1.03),

neutral (mean = 0.27, stdev = 1.10), and text-only (mean = 0.61, stdev = 1.04)

versions show positive social influence on the clients regardless of the interaction

modalities. The empathic counselor was reported to have 12.77% more social influence

on the users than the neutral one and 4.35% more than the text-only version.

Figure 4.5 shows the mean value comparison of the three experimental conditions

for the user acceptance features described above.

Figure 4.5: Mean value comparison of experimental conditions for user acceptance
features. Percentages show the empathic character’s improvement over the text-only
system.

4.6.2 Agent Evaluation Results

Anthropomorphism (ANT)

The visual channel facial expressions is deemed to be the most important in the human

judgment of behavioral cues [AR92], because human observers seem to be mostly

accurate in their judgment when looking at the face. This fact indicates that people
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rely on displayed facial expressions to interpret someone’s behavioral disposition.

So, the empathic counselor is expected to be perceived more anthropomorphic and

believable for the users than the neutral one.

Since no virtual character is used in the text-only version, I did not evaluate

anthropomorphism for that version. However, I compared the empathic and neutral

versions that include avatars. Results show that there are significant differences

between the empathic and neutral counselors (χ2 = 27.42, p ≈ 0.000 < 0.017) in

terms of anthropomorphism.

The positive mean value of the empathic version (mean = 0.28, stdev = 1.05) indi-

cates that the counselor was positively perceived anthropomorphic by the clients. On

the other hand, the negative mean value of the neutral version (mean = −0.47, stdev =

1.10) indicates that the neutral version is perceived as not so anthropomorphic and

it is perceived 18.73% less anthropomorphic than the empathic version.

Likability (LIKE)

Lakin et al. [LJC03] believe that mimicking the others’ behavior causes feeling of

closeness, liking, and smoother social interactions. So, we can expect that clients like

the empathic counselor more than the neutral and text-only ones.

Results show significant differences between the empathic and neutral conditions

(χ2 = 21.51, p ≈ 0.000 < 0.017); and between the empathic and text-only conditions

(χ2 = 31.58, p ≈ 0.000 < 0.017); but no significant difference between the neutral and

text-only conditions (χ2 = 0.93, p = 0.334 > 0.017). This indicates that a neutral

avatar does not affect the likability of the system but adding an empathic avatar

affects the likability.

The positive mean values of empathic (mean = 1.29, stdev = 0.64), neutral

(mean = 0.85, stdev = 0.78), and text-only (mean = 0.76, stdev = 0.81) versions
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indicates that the clients liked all versions of the system. However, the empathic

version is 10.85% more likable than the neutral and 13.11% more likable than the

text-only version.

Animacy (ANIM)

Since no virtual character is used in the text-only version, I did not evaluate the ani-

macy for that version. However, I compared the empathic and neutral versions, which

include an avatar. Since the empathic counselor expresses different facial expressions

and verbal reflections, it is expected to have a better animacy than the neutral one.

Results show that there are significant differences between the empathic and neu-

tral counselors (χ2 = 28.59, p ≈ 0.000 < 0.017). The positive mean value of the

empathic version (mean = 0.68, stdev = 0.98) indicates that the counselor was per-

ceived as well animated. On the other hand, the negative mean value of the neutral

version (mean = −0.11, stdev = 1.21) indicates that the neutral version is not per-

ceived so well animated and it is perceived 19.69% less animated than the empathic

version.

Perceived Intelligence (PI)

Because the empathic feedbacks are provided based on the current most probable

affective state of the client and her/his answers, the client may see the empathic

counselor more intelligent than the neutral.

Results show significant differences between the empathic and neutral conditions

(χ2 = 18.76, p ≈ 0.000 < 0.017); and between the neutral and text-only conditions

(χ2 = 13.56, p ≈ 0.000 < 0.017); but no significant difference between the empathic

and text-only conditions (χ2 = 1.24, p = 0.266 > 0.017).
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The positive mean values of the empathic (mean = 0.93, stdev = 0.74), neutral

(mean = 0.42, stdev = 1.04), and text-only (mean = 0.82, stdev = 0.82) versions

indicates that the clients perceived all versions intelligent. However, comparison

shows that, the empathic and text-only version are respectively 12.82% and 10.22%

more intelligent than the neutral version. Therefore, adding a neutral avatar affects

the perceived intelligence negatively, but an empathic avatar affects the perceived

intelligence positively.

Perceived Safety (PSA)

Mimicry has been shown to influence the emotional state of an interaction partner

positively [VbHKK04]. Also, affective virtual agents can increase client’s abilities to

recognize and regulate emotions and help motivating users [GM04]. So, we expect

to see more positive emotions than negative ones during the interaction with the

empathic counselor.

Results show significant differences between the empathic and neutral conditions

(χ2 = 11.44, p ≈ 0.000 < 0.017); and between the empathic and text-only conditions

(χ2 = 10.54, p = 0.001 < 0.017); but no significant difference between the neutral and

text-only conditions (χ2 = 0.02, p = 0.895 > 0.017). This indicates that a neutral

avatar does not affect the level of perceived comfort/danger during the system use,

but an empathic avatar does.

The positive mean values of empathic (mean = 1.39, stdev = 0.95), neutral

(mean = 0.79, stdev = 1.11), and text-only (mean = 0.82, stdev = 1.21) versions

indicate that the clients feel comfortable when using all versions of the system. How-

ever, the empathic version is perceived as 14.79% safer than the neutral one, and

14.21% safer than the text-only version.
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Figure 4.6 shows the mean value comparison of the three experimental conditions

for the character features described above.

Figure 4.6: Mean value comparison of experimental conditions for the character fea-
tures. Percentages show the empathic character’s improvement over the text-only
system.

4.7 Summary

In this chapter I described the design, implementation, and evaluation of an empathic

virtual character who can deliver an evidence-based Brief Motivational Intervention

(BMI) for behavior change on excessive alcohol consumption - namely the Drinker’s

Check-Up (DCU) [HSD05].

Although it may seem obvious that an empathic counselor is always perceived

better than a neutral counselor, my results indicate that it is not the case in all

aspects of the interaction, e.g., in my study, user’s anxiety to use the system was

not improved by the ECA-delivery, nor was ease of use. I did not, however, test

my approach with technophobic populations and it would be interesting to find out

whether ECA research can specifically help such users reduce their anxiety while using

technology.

Users’ overall acceptance of the system over a number of dimensions regarding

the impact of the empathic communication of the character indicates that this novel

157



modality of delivery for behavior-change intervention could have a significant impact

in terms of users’ motivation to continue to use such systems. For example, users

reported 30% more intention to use the DCU intervention delivered by the ODVIC

virtual character over the one delivered by the text-only system.

These results are very promising, particularly since it has been established that,

although computer-based brief motivational behavior-change interventions can truly

help people toward healthy lifestyles, too many people drop-out before benefiting. My

approach may therefore lead to systems that decrease drop-out rates from behavior

change interventions, which is a significant problem with, not only computer-based

interventions, but also with face-to-face interventions [DCS+12, WP93].

Furthermore, because BMIs are adaptable and my system is modular, this ap-

proach can be adapted to target behaviors, such as overeating and lack of exercise,

by adding the interventions to the database of psychometric instruments. We could

therefore contribute to address several epidemic behavioral issues and promote healthy

lifestyles for people in need.

The main result of this early study established that, indeed, a character’s em-

pathic and rapport-building abilities improve human-agent interaction. Results of

the experiments depicted that even with a simple rule-based approach, we can affect

the user acceptance and the character’s perceived features positively.
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CHAPTER 5

Modeling Rapport Using Machine Learning

As discussed in Chapter 4, I implemented a preliminary Empathy Model, which

used a set of pre-defined rules in a decision tree to decide about the next coun-

selor’s empathic reaction to the client. As discussed before, the main goal of that

preliminary implementation was to find out whether empathy and rapport, even with

a simple rule-based approach, can positively affect the user acceptance and the per-

ceived character features. The experiment results (see Section 4.4) clearly confirmed

that, in an emotional context, such as behavior-change health counseling, empathic

communication improves the user acceptance in terms of user’s attitude, intention

to use, perceived enjoyment, perceived sociability, perceived usefulness, social pres-

ence, trust, and social influence. Moreover, results showed that rapport improves the

character’s perceived anthropomorphism, animacy, likability, intelligence, and safety.

The major limitation of that preliminary rule-based model was that social com-

munication and psychology expertise was needed to generate the rules. Especially,

when the number of the input features (i.e., attributes) increases, the time complexity

and the needed expertise are critical, because the number of the rules can increase

exponentially as the number of the input features increases. For example, if we have

10 input features, each of which can take 2 values, up to 210 combinations should

be considered. On the other hand, if we want to generate rapport communication

models for counselors that have specific features, such as specific ethnicities, cultures,

and personalities, we need to have expertise in each field, too. For example, in order

to generate a rule-based virtual rapport-enabled extrovert Chinese health counselor,

we need an expert in Chinese culture who knows the extroversion personality as well.
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Therefore, the approach that I present in this chapter generates models of non-

verbal rapport communication using machine learning techniques from video and text

corpora, in order to address these limitations of the rule-based approaches.

5.1 Overview

I consider modeling different non-verbal behaviors of the health counselor using ma-

chine learning, including head gestures (i.e., nod, shake, lateral sweep, and nod-

shake), head movements (i.e., yaw, roll, pitch, and their combinations), eye gaze (i.e.,

left, right, up, and down), smile (i.e., neutral, subtle smile, and large smile), hand

gestures (i.e., formless flick, pointing, contrast, iconic, closed, and opened), emotional

facial expressions (i.e., neutral, happy, sad, surprised, angry/puzzled, afraid, and dis-

gusted), eyebrow movement (i.e., up and down), and lean (i.e., forward, left, right,

and back).

As shown in Figure 5.1, my approach for developing a rapport enabled virtual

character using machine learning involves the following tasks: (1) providing an an-

notation schema for annotating the video and conversation transcript corpora (dis-

cussed in Section 5.3); (2) annotating the video and text corpora (discussed in

Section 5.4); (3) pre-processing the data (discussed in Section 5.5); (4) align-

ing the data annotated manually and automatically (discussed in Section 5.6); (5)

selecting features that are the most relevant ones for modeling each non-verbal

behavior (discussed in Section 5.7); (6) inducting the models, in which a model

is learned for each non-verbal behavior (discussed in Section 5.8); (7) testing the

individual models (discussed in Section 5.10.1); (8) applying the models in runtime

to the character as a compound non-verbal rapport model; and (9) performing sub-

jective tests through user studies, in order to evaluate the perceived performance of

the rapport-enabled character from users’ point of view (discussed in Section 5.10.2).
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Figure 5.1: The overview of the modeling phases.

This approach is close to the one taken in previous research by Lee et al. [LPNM09,

LM09] in terms of the steps taken to model the non-verbal behaviors. However, it

is different in the following aspects: (1) I use real-time interactive features, such as

the client’s smile, emotional facial expressions, eyebrow movements, head movements,

which are not used in previous research; (2) I model multiple non-verbal behaviors,

whereas in previous research, only head nod and smile were modeled; (3) I model

the non-verbal models of the counselor in both speaker and listener roles, while other

research studies only cover either the speaker or the listener role; and (4) in addition to

objective evaluation of individual models, I applied the models to a real application

and evaluated their impact on the users subjectively in user studies, which is not

performed in previous studies.

5.2 Data Collection

The input to the learning technique includes the data derived from the annotated

video corpora and the data derived from the conversation transcript of Motivational

Interviewing (MI) counseling sessions between real human clients and human coun-

selors.

I video recorded four one-hour sessions of MI sessions. This comprises four hours

of video from clients, and four hours of video from the counselor (the total of eight

hours). These counseling sessions are delivered by Maya Boustani, a PhD student in

the Clinical Science in child and adolescent psychology program at Florida Interna-

tional University (FIU). Maya is an expert in MI. These counseling sessions include
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real face-to-face interactions of Maya with different human clients. The clients include

four female FIU students.

I annotated 40 minutes of the videos, including 20 minutes from counselor and

its corresponding 20 minutes of the client. For each of the non-verbal behaviors, the

dataset includes 5,281 samples. In total, the number of times that each non-verbal

behavior occurred in the dataset is reported in Table 5.1.

Table 5.1: Frequency of the speaker (i.e., counselor) and the listener (i.e., client)
non-verbal behaviors in the dataset.

Gesture
Role

Speaker Listener Total

Neutral head 2,378 1,181 3,559
Head nod 272 1,271 1,543
Head nod-shake 45 3 48
Head shake 106 9 115
Head lateral sweeps 12 4 16
Neutral hand 1,154 2,050 3,204
Hand formless flicks 759 51 810
Hand point 46 4 50
Hand contrast 220 20 240
Iconic hand 324 12 336
Closed hands 155 321 476
Opened hands 155 11 166
Forward head direction 5,281 0 5,281
Forward gaze 861 950 1,811
Left gaze 1,286 1,429 2,715
Right gaze 577 178 755
No smile 2,731 2,363 5,094
Subtle smile 70 91 161
Large smile 12 14 26
Neutral face 2,198 1,858 4,056
Happy face 110 186 296
Surprised face 351 149 500
Puzzled face 75 143 218
Afraid face 9 2 11
Disgusted face 70 130 200
Neutral brows 2,280 1,692 3,972
Down brows 513 768 1,281
Up brows 20 8 28
Neutral body lean 1,766 1,942 3,708
Forward lean 948 514 1462
Left lean 95 9 104
Right lean 5 2 7
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For the gestures that have very few samples, such as different head movements,

large smile, afraid faces, and right leans, there is not enough data to learn a model.

Therefore, more data annotation is needed to collect more data for these gestures.

However, for other gestures, there is enough data to learn models. In the next sections,

I will explain the processes taken to generate these non-verbal behavior models.

5.3 Annotation Schema

I considered two main types of input features in modeling the non-verbal behaviors:

video and text. Accordingly, I have multiple visual and textual features to be an-

notated. I designed an annotation schema including these two feature types. Many

features are taken into consideration in the annotation schema and the annotation

phase, however, in the feature selection phase (described in Section 5.7) the most rel-

evant features to each non-verbal behavior are selected. In the next two sub-sections,

I list all the features and their corresponding values.

5.3.1 Visual Features

The following visual features and values are used for annotation of the videos:

1. Head gestures of the counselor. Values of this feature include: neutral, head

nod (AUM59), head shake (AUM60), head nod-shake, and lateral head sweep.

2. Head movements of the client and the counselor. Values of this feature

include: head yaw (left or AU51, right or AU52), head pitch (up or AU53,

down or AU54), head roll (roll-left or AU55, roll-right or AU56), and all 12

combinations of the above head AUs.
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3. Hand gestures of the counselor. The values I used include: neutral, formless

flick, point, contrast, iconic (represents some object or action), opened, and

closed gestures.

4. Eye gaze of the client and the counselor. The values I used include: forward,

left (AU61), right (AU62), up (AU63), and down (AU64).

5. Smile of the client and the counselor. These values are considered for this

feature: neutral, subtle smile (AU12), and open-mouth large smile (AU12 +

AU25 + AU26).

6. Emotional facial expressions of the client and the counselor. The values

selected for this feature include the Ekman’s standard emotions: neutral, happy

(AU6 + AU12), sad (AU1 + AU4 + AU15), angry/puzzled (AU4 + AU5 +

AU7 + AU23), afraid (AU1 + AU2 + AU4 + AU5 + AU20 + AU26), surprised

(AU1 + AU2 + AU5 + AU26), and disgusted (AU9 + AU15 + AU16).

7. Eyebrow movements of the client and the counselor. The values for this

feature include neutral, up (AU1 + AU2), and down (AU4 + AU42).

8. Lean of the counselor. I used five values for the lean feature: neutral, lean

forward, lean left, lean right, and lean back.

5.3.2 Textual Features

In addition to the visual features listed above, I used different features of the surface

text of the conversation. I used the following list of textual features (and values) for

annotating the utterances of both client and counselor:

1. Part of Speech (POS) tags, which compose a linguistic category of words,

generally defined by the syntactic behavior of the lexical words. I used the list
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of the part of speech tags presented by the Stanford Natural Language Toolkit1

as the possible values for this feature. A list of the POS values is presented in

Table 5.2.

Table 5.2: Part of speech tags of the Stanford Natural Language Toolkit.

Tag Description Example Tag Description Example

CC Coordinating conjunction and PRP$ Possessive pronoun my
CD Cardinal number 15, third RB Adverb usually
DT Determiner the RBR Adverb, comparative better
EX Existential there is there RBS Adverb, superlative best
FW Foreign word d’hoevre RP Particle give up
IN Preposition or subordinating conjunction on, in, of SYM Symbol @, *
JJ Adjective green TO to to
JJR Adjective, comparative greener UH Interjection uhhuhh
JJS Adjective, superlative greenest VB Verb, base form take
LS List item marker 1) VBD Verb, past tense took
MD Modal may, could VBG Verb, gerund or present participle taking
NN Noun, singular or mass table VBN Verb, past participle taken
NNS Noun, plural tables VBP Verb, non-3rd person singular present take
NNP Proper noun, singular Alex VBZ Verb, 3rd person singular present takes
NNPS Proper noun, plural Vikings WDT Wh-determiner which
PDT Predeterminer both WP Wh-pronoun who
POS Possessive ending ’s WP$ Possessive wh-pronoun whose
PRP Personal pronoun I, he, it WRB Wh-adverb where

2. Dialog act, which is a specialized utterance that has a performative func-

tion in language and communication. The list of the values I used for this

feature includes: greeting, question, interjection, negation, affirmation, assump-

tion, obligation, contrast, inclusivity, intensification, response request, and word

search.

3. Phrase boundaries of the utterance. The values I selected for this feature

include: verb-phrase start, verb-phrase end, noun-phrase start, noun-phrase end,

sentence start, and sentence end.

4. Sentence valence of the utterance. Research shows that using the affective

information of the sentences can help in modeling human non-verbal behav-

iors [LPNM09]. Especially, among word-level, phrase-level, and sentence-level

analyses, the sentence-level affective information helps more in predicting the

1http://nlp.stanford.edu/software/
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non-verbal behaviors (such as head nod) [LPNM09]. Following these results, I

used sentence-level valence of the text as another feature in my modeling pro-

cess. I used three values for valence of the sentences: negative, neutral, and

positive.

5. New-word, which is an indicator to find out if a new piece of information is be-

ing transferred between the interlocutors. Therefore, I take the “new word” (or

“word newness”) as another feature in textual features, which shows whether

the word being spoken is a new word or has been used before during the con-

versation. Accordingly, the possible values for this feature are old and new.

5.4 Data Annotation

Data annotation is a time-intensive job (order of a month for annotating 10 minutes

of video) performed both manually by watching the videos and automatically using

different recognizer software tools. For many of the features (explained next), I imple-

mented automatic recognizers and annotators to make the annotation process faster,

however, a few of the features still needed to be annotated manually.

In order to validate the automatic annotations, a human annotator re-annotated

25% of the automatic annotations randomly. In order to evaluate the reliability

of the automatic annotations, I used the Cronbach α and measured the correlation

between the automatic and manual annotations. For all features, the Cronbach α

value was greater than 0.7, which indicates a high correlation between the automatic

and manual annotations, and shows the reliability of the automatic annotations.

Although I was able to annotate many of the features automatically, at the time

of performing this research, there was no available automatic tools to annotate the

rest of the features (namely, head gesture, hand gesture, and lean). Therefore, I

annotated these features manually. For that, I needed a tool that helps me align
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the annotated features with the words in the surface text. I used the Anvil2 [Kip01]

annotation software, which allows us to (1) manually annotate videos, (2) align in-

dividual annotation features, and (3) export the annotations in well-known formats,

such as Microsoft Excel, and Comma-Separated Values (CSV), and Tab-Separated

Values (TSV). Below, I explain the annotation method I used for each individual

feature.

5.4.1 Face, Head Movement, and Eye Gaze Recognizer

I implemented a face recognizer utilizing the InsightSDK3, which is a commercial face

recognizer SDK from the SightCorp4 company. InsightSDK is a C++ SDK, which

can recognize different facial expressions, head movements, and eye gaze directions in

realtime. Figure 5.2 shows a snapshot of the implemented face recognizer.

Figure 5.2: Snapshot of the implemented face recognizer.

2http://www.anvil-software.org/

3http://sightcorp.com/insight/

4http://sightcorp.com/
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My face recognizer takes two types of inputs: (1) video files, and (2) video stream

from camera. Also, it provides two types of outputs: (1) text file, and (2) stream

of recognition results to another application through message passing. For the video

annotation purpose, I passed the video files as the input to the face recognizer, and

received the output as a text file including all the visual annotations. For the runtime

face recognition phase (discussed in Section 5.9), I passed the camera video stream as

the input and sent the recognition results to the non-verbal rapport modeling module.

Figure 5.3 shows the face recognizer design.

Figure 5.3: Face recognizer design.

The visual annotations that are performed using this automatic approach are head

movements, emotional facial expressions, smile, eyebrow movements, and eye gaze.

In addition, the face recognizer also returns other facial movements, namely: vertical

upper/lower lip movements (involved in AU25 and AU26), vertical/horizontal mouth

corner movements (involved in AU10, AU12, AU14, and AU15), vertical eyebrow

movement (involved in AU1, AU2, AU4, and AU42), and vertical cheek movement

(AU6).

SightCorp company reported the recognition accuracy of the InsightSDK as shown

in Table 5.3. To get the best recognition accuracy, the best setup is reported as (1)
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using 640×480 pixel resolution webcam (suggested Logitech HD Pro Webcam C910),

and (2) user distance of approximately 60 cm from the camera. In both annotation

and runtime phases, I zoomed in the videos to get an approximately 60 cm distance

from the camera. Also, I used the same suggested webcam with the same resolution.

Table 5.3: Recognition accuracies reported by SightCorp for the InsightSDK.

Feature Value Accuracy

Facial expression

Neutral 88.2%
Happy 95.2%
Surprised 100%
Angry (puzzled) 98.3%
Disgusted 81.1%
Afraid 94.2%
Sad 95.6%
Average 93.2%

Eye gaze - ∼ 2.1◦

Head movement
Pitch 5.2◦(±4.6◦)
Yaw 6.1◦(±5.79◦)
Roll 3.0◦(±2.82◦)

Head movements are reported as three features of head yaw, pitch, and roll.

Yaw value is between -1 and 1, where -1 shows -40 degrees (left), and +1 shows +40

degrees (right) away from forward direction. Pitch value is between -1 and 1, where -1

indicates -30 degrees (up), and +1 indicates +30 degrees (down) away from forward.

Also, roll value is between -1 and 1, where -1 shows -30 degrees (left), and +1 shows

+30 degrees (right) away from forward direction. In order to take into account the

recognition errors, and also consider a movement freedom range for the person to

move, in all the head movement cases, I consider the values between −0.2 and +0.2

as the indicators of “forward” direction, which means I consider a 16 degree range for

forward direction in head yaw recognition and 12 degree range in head pitch and roll

recognition.

Emotional facial expressions are reported as seven features of neutral, happy,

sad, surprised, angry, disgusted, and afraid. Each feature is represented by a float
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number between 0 to 1. The larger values indicate higher probability of classifying

the facial expression in a specific category. In order to enhance the recognition results

of the emotional facial expressions, I also used a combination of the recognized facial

movements (i.e., AUs). Table 5.4 shows the combinations used to recognize the

emotional facial expressions.

Table 5.4: Feature comparisons used to recognize emotional facial expressions.

Features Happy Sad Surprised Angry Afraid Disgusted
Classified Emotion happy sad surprised Angry Afraid Disgusted
Vertical Upper Lip > 0.1
Vertical Lower Lip > 0.1 > −0.01
Ver. Left/Right Mouth Corner > 0 < −0.1
Hor. Left/Right Mouth Corner > 0 > 0.1
Vertical Cheek Movement 0 ≤ ... ≤ 1.8
Vertical Left/Right Eyebrow < 0.1 < −0.1

Eyebrow movements are reported as one feature with float values between −3

to +3. Negative values indicate eyebrow down movement, positive values indicate up

movement, and zero indicated no eyebrow movement (i.e., neutral). I used a larger

“neutral” range by considering values between -0.1 and 0.5 as neutral.

Smile is reported as horizontal/vertical different mouth movements, which can

be combined to recognize open mouth smile (large smile) and subtle smile. Table 5.5

shows the combination of these features used to recognize large and subtle smile. As

shown in Tables 5.4 and 5.5, the main difference between smile and happy is presence

of AU6 in happiness.

Table 5.5: Feature comparisons used to recognize smile.

Features Large Smile Subtle Smile
Vertical Upper Lip > 0.5 0 ≤ ... < 0.5
Vertical Lower Lip > 0.1 0 ≤ ... < 0.1
Ver. Left/Right Mouth Corner > 0 > 0
Hor. Left/Right Mouth Corner > 0 > 0
Classified Emotion happy happy
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Eye gaze is reported as a point in the 2D plane (origin is on top left corner of

the screen). However, since eye gaze recognition using webcam is not as accurate as

professional eye tracker devices, I was only able to recognize the eye gaze roughly.

In other words, I was able to recognize if the person is gazing toward left, right,

up, or down, which is good enough to recognize if the person is gazing toward or

away from the other interlocutor. The eye gaze recognizer returns an (x, y) tuple,

where for a screen of size 1920 × 1080, values 0 ≤ x ≤ 1920 indicate the left/right

and 0 ≤ y ≤ 1080 indicates the up/down gaze. I consider 900 < x < 1000 and

500 < y < 600 as gaze forward, x > 1000 as gaze left, x < 900 as gaze right, y > 600

as gaze down, and y < 500 as gaze up.

5.4.2 Part of Speech Tagger

I implemented a Part of Speech (POS) tagger utilizing the Stanford Natural Language

Processing (NLP) POS tagger API [TKMS03]. This is an API that reads text in some

language (English, Arabic, Chinese, French, and German) and assigns POS tags (e.g.,

noun, verb, adjective) to each word. The tagger’s accuracy is reported as 97.24% on

the Penn Treeback WSJ [MS94], and in terms of time, it is reported to tag 15000

words per second on an Intel Server in 2008. The dialog act tagger (see Section 5.4.3),

phrase boundary tagger (see Section 5.4.4), and new word tagger (see Section 5.4.6)

use the Stanford NLP parser and POS tagger to perform their functions, therefore, all

of them will have the same accuracy. Stanford NLP software is originally implemented

in Java, but also provided in other programming/scripting languages including C#,

which I used in my implementation.

My POS tagger accepts two types of inputs in English: (1) a text file including the

conversation transcript, and (2) a string including a single utterance. Accordingly,

the POS tagger returns two types of outputs: (1) a text file including all POS tags of
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the input text file, and (2) a string array including the POS tags of the input string.

During the annotation process, I passed the complete utterance of each interlocutor

as a file to the POS tagger and received the annotated utterance as a text file in the

output. During the runtime process (see Section 5.9), I passed each utterance of the

speaker and the listener to the POS tagger and received the tags as string arrays.

Figure 5.4 shows the POS tagger design.

Figure 5.4: POS tagger design.

5.4.3 Dialog Act Tagger

I implemented a Dialog Act tagger using a dictionary of phrases and words that are

most frequently used in different dialog acts and are mostly indicative of special dialog

actions. The following list shows some examples of the words and phrase used for

each of the dialog acts used in my tagger:

• Interjection: all right, of course, well, right, yes, yeah, no, and nope.

• Negation: nothing, cannot, can’t, not, no, none, and nope.

• Affirmation: true, OK, yes, yeah, right, I am, he/she is, you/we are, all right,

I/we have, he/she has, I/we do, and he/she does.

• Assumption: I guess, I suppose, I think, maybe, perhaps, could, probably, and

assume.
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• Obligation: have to, has to, need to, ought to, and should.

• Contrast: but, however, although, though, whereas, and while.

• Inclusivity: every, all, whole, several, plenty, and full.

• Intensification: really, very, quite, completely, wonderful, lot, great, absolutely,

gorgeous,huge, fantastic, amazing, important, ans much.

• Response request: you know.

• Word search: um, uh, well, mm, hmm, like, kind of, and I mean.

• Greeting: hi, hello, how are you, good morning, good afternoon, good evening,

how do you do, what’s up, how is it going, and how are you doing.

• Question: WH questions, and one of the following words in the beginning of

the sentence: do, does, have, has, is, are.

First, I tokenize the input sentence and then, look for the above list of words/phrases

in each sentence. If a word/phrase, which shows a special dialog act, is found in a

sentence the sentence is tagged with that dialog act. A single sentence can be tagged

with more than one dialog act. For example, “Hi, I am very happy today” is tagged

with greeting, affirmation, and intensification.

Similar to the POS tagger, the dialog act tagger accepts two types of inputs: (1)

a text file including the conversation transcript, and (2) a string including a single

utterance. Accordingly, it returns two types of outputs: (1) a text file including the

list of dialog acts included in each single utterance of the input text file, and (2) a

list of the dialog acts included in the input string. During the annotation process, I

used a text file as the input/output, and during the runtime process (see Section 5.9)

I used a single utterance as input and received the list of its dialog acts. Figure 5.5

shows the dialog act tagger design.
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Figure 5.5: Dialog act tagger design.

In order to evaluate the Dialog Act Tagger, I asked 3 subjects to tag 130 sentences

taken from AUDIT [BHBSM01], DrInC [MT95], SADQ [SMH83], BDP [MM84], and

MAST psychometric instruments. Each sentence was tagged by all three subjects

and the union of the subjects’ tags was used as the set of tags for each sentence.

Then, I tagged the same sentences using the Dialog Act Tagger, and calculated the

performance metrics for it. Results show an accuracy of 0.9581, precision of 0.7119,

recall of 0.9225, and F1-measure of 0.8036.

5.4.4 Phrase Boundary Tagger

I implemented a phrase boundary tagger utilizing the API provided by the Stanford

NLP. I used the natural language parser and the POS tagger included in the NLP

package. Natural language parser is a program that works out the grammatical struc-

ture of sentences, for instance, which groups of words go together (as “phrases”) and

which words are the subject or object of a verb. Stanford NLP parser is a Java im-

plementation of probabilistic natural language parsers (optimized PCFG, lexicalized

dependency parsers, and lexicalized PCFG parser). I used a C# extension of the

original software. As well as providing an English parser, the parser can be adapted
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to work with other languages, such as Chinese, German, Arabic, Italian, Bulgarian,

and Portuguese.

Based on previous studies [LPNM09, LM09], among other phrase boundaries in a

sentence, noun phrase start/end, verb phrase start/end, and sentence start/end are

the most effective ones in non-verbal behavior generation. Therefore, I used the same

feature values for the phrase boundary feature, and accordingly, designed my phrase

boundary tagger to tag them. First, I parse the input sentence and then, pass the

parsed sentence to the POS tagger and create a POS tree for the sentence. Using the

POS tree, I tag the phrase boundaries. If a word is not tagged with any of the above

values, it is tagged with “None” tag.

My phrase boundary tagger accepts two types of inputs: (1) a text file including

the conversation transcript, and (2) a string including a single utterance. Accordingly,

it returns two types of outputs: (1) a text file including the list of phrase boundaries

associated with each word of the input text file, and (2) a list of the phrase boundaries

associated with each word of the input string. During the annotation process, I used

the text file as the input/output, and during the runtime process (see Section 5.9)

I used the single utterance as input and received the list of its phrase boundaries.

Figure 5.6 shows the phrase boundary tagger design.

Figure 5.6: Phrase boundary tagger design.
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5.4.5 Sentence Valence Tagger

I implemented a sentence valence tagger utilizing three sentiment analyses technolo-

gies: (1) SentiWordNet [BES10], (2) Stanford NLP Sentiment Analysis [SPW+13],

and (3) Synesketch5.

SentiWordNet is a lexical resource explicitly devised for supporting sentiment clas-

sification and opinion mining applications. SentiWordNet is the result of automati-

cally annotating all WordNet [Mil95] synsets (i.e., set of synonym words) according to

their degrees of positivity, negativity, and neutrality. It includes the total of 115000

words. In order to predict the valence of a sentence using the SentiWordNet, we can

give positive points for positive words and negative points for negative words and

then sum up these points. I consider valences greater than 0.05 as positive, less than

-0.05 as negative and between -0.05 and 0.05 as neutral, which means that I consider

a 5% threshold for valence tagging error.

Stanford NLP Sentiment Analysis uses a deep learning model, which builds up

a representation of the whole sentence based on the sentence structure. Then, it

computes the sentiment based on how words compose the meaning of longer phrases.

This model is trained based on the Stanford Sentiment Treebank dataset [SPW+13].

Sentiment Treebank includes fine grained sentiment labels for 215,154 phrases in the

parse trees of 11,855 sentences. The Stanford NLP Sentiment Analysis accuracy for

single sentence positive/negative classification is 85.4%. The accuracy of predicting

fine-grained sentiment labels for all phrases is 80.7%. I used this software to classify

each sentence into positive, negative or neutral classes.

Synesketch is a free open-source software for textual emotion recognition and vi-

sualization. Synesketch analyses the emotional content of sentences in terms of emo-

tional types (namely happiness, sadness, anger, fear, disgust, and surprise), weights

5http://synesketch.krcadinac.com/

176



(i.e., emotion intensity), and valence (i.e., neutral, positive, or negative). The recog-

nition technique is grounded on a refined keyword spotting method, which employs

a set of heuristic rules, a WordNet-based word lexicon, and a lexicon of emoticons

(i.e., emotion icon) and common abbreviations. In my valence tagger, I just used the

valence value returned by the Synesketch, which is a float number between -1 and +1.

I consider valences greater than 0.05 as positive, values less than -0.05 as negative,

and values between -0.05 and 0.05 as neutral.

Combining the above three valence recognition approaches, to classify the valence

of a sentence, (1)it is passed to these three sentiment analyzers, (2) each of which

assigns a positive, negative, or zero value to the sentence, and finally, (3) with av-

eraging these points, the sentence valence is calculated. If the final average valence

score is greater than 0.05, the sentence is labeled as positive; if it is less than -0.05,

the sentence is labeled as negative; and otherwise, the sentence is labeled as neutral.

My sentence valence tagger accepts two types of inputs: (1) a text file including

the conversation transcript, and (2) a string including a single utterance. Accordingly,

it returns two types of outputs: (1) a text file including all sentences along with their

valences, and (2) an integer label (i.e., -1, 0, or +1) indicative of the sentence valence

for a single utterance input string. During the annotation process, I used the text file

as the input/output, and during the runtime process (see Section 5.9) I used the single

utterance as input and received its valence. Figure 5.7 shows the phrase boundary

tagger design.

I evaluated the overall performance of the sentence valence detector on 130 sen-

tences from AUDIT [BHBSM01], DrInC [MT95], SADQ [SMH83], BDP [MM84], and

MAST psychometric instruments. I asked three human subjects to classify the va-

lence of each question as negative, neutral, or positive. I used the maximum frequency

of the human taggers’ classifications as the label for each sentence. If all three human
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Figure 5.7: Sentence valence tagger design.

taggers classify a sentence differently, I label that sentence as neutral. Then, I tagged

the same set of sentences using the Sentence Valence Tagger, in order to calculate the

performance of the tagger. Results show an accuracy of 0.7846, precision of 0.6769,

recall of 0.6769, and F1-measure of 0.6769.

5.4.6 New-Word Tagger

I implemented a new-word tagger in C# using dictionaries of words. The new-word

tagger includes two sets of words, one for the client and one for the counselor. When

a sentence is passed to the new-word tagger, it checks the corresponding list for every

single word in the sentence, and tags them as new if they have not been used before

by that person, otherwise words are tagged as old. Every time a word is checked

against a dictionary, it is added to the dictionary for next look ups, if it is a new

word.

Similar to other textual feature taggers, the new-word tagger also accepts two

types of inputs: (1) a text file including the conversation transcript, and (2) a string

including a single utterance. Also, it returns two types of outputs: (1) a text file

including the list of the words and their tags, and (2) a list of the tags for the

words in a string utterance. During the annotation process, I used the text file as
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the input/output, and during the runtime process (see Section 5.9) I used the single

utterance as input. Figure 5.8 shows the new-word tagger design.

Figure 5.8: New-word tagger design.

5.5 Data Pre-Processing

The data annotations have different types including string, integer, and float. In

order to used them in the HMM, I needed to change all the data types into integer.

For features with string values, e.g., POS, I simply represented each string value with

an integer value. For features with float values, e.g., emotional facial expressions,

each float number is the probability of a category, therefore, I selected the highest

probable category and represented that with an integer. For example, emotional facial

expressions of neutral, happy, sad, ..., and disgust are represented by integer numbers

1, 2, 3, ..., and 7.

Afterwards, I put together every three consecutive words (and their correspond-

ing feature vectors) and form a set of trigrams, which is used as my data set to

the HMM. For each trigram, a target gesture is determined by the majority vote

method [LPNM09], i.e., if 2 or 3 out of 3 words co-occur with the target gesture,

the trigram is classified as an instance of the target gesture. For example, let’s say

we have three consecutive feature vectors of {−→a ,
−→
b ,−→c } with the output labels of
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{nod, notNod, nod}. This trigram generates a data sample with input of {−→a ,
−→
b ,−→c }

and output label of {nod}.

5.6 Data Alignment

I aligned each word in the transcript with the vector of visual and textual features

that co-occur with that word. The annotated data set, which is used for the learning

process, is a set of vectors, each of which co-occurs with one word in the transcript.

For the manually annotated features, the alignment process is done by the Anvil

annotation software. For the visual features that are annotated automatically, I

matched and aligned the frame numbers reported by Anvil and the automatic anno-

tator, in order to align the frames and consequently the words to their corresponding

annotations. For the textual features that are annotated automatically, I matched

and aligned the words reported by Anvil with the ones reported by the automatic

annotator.

5.7 Feature Selection

For the particular kind of model I am training (i.e., Hidden Markov Models), adding

another feature means I need more data samples to learn the combinations of all the

features and how they affect the outcome I am trying to classify. With a limited

number of data samples, I want to keep the number of features low by eliminating

uncorrelated features (i.e., features that do not affect the target gestures).

I took a two-phase feature selection approach. In the first phase, for each target

gesture, I reduced the number of features by counting the frequency of the gesture

co-occurrence with each feature value, and selecting a subset of them that have the

highest frequency (i.e., maximum frequency), as recommended in earlier related work
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[LM09, LPNM09]. I called the resulted list of features as Fmf vector. It is important

to know that some feature values may never appear in the data or may appear very

few times, therefore, we can easily remove those feature values from that feature.

Tables 5.6 and 5.7 list the selected features for speaker and listener models

respectively, as well as the counts of the selected features for each modeled gesture

(after the maximum frequency feature selection phase).

In the second phase of the feature selection, which is called model selection (or

cross validation), I took the selected list of features in the first phase (i.e., Fmf ) as

input, and used a 10-fold Cross Validation (CV) phase to select the best features out

of them. For this purpose, I performed a step-wise backward elimination approach.

The data is extracted from recorded videos of human-human interactions. So, it is

possible that in some intervals of the interaction, a specific gesture, say G, is expressed

very rarely (or not expressed at all). Therefore, those intervals are not good sources

for training and cross validation of the G model. In order to prevent this problem, I

selected a different range of the data for training and cross validation. This approach

is called cross validation over multiple splits of data, or multi-fold cross validation.

Figure 5.9 shows the 10-fold cross validation approach.

The following algorithm shows the combination of step-wise backward elimination

with the cross validation over multiple splits of data:

1. Randomly select 20% of the dataset and keep it unseen for model testing (dis-

cussed in Section 5.10.1);

2. From the remaining data, select 10 different splits of data (they have overlaps)

for cross validation, each of which includes 20% of the complete dataset.

3. For each of the 10 data splits, keep the remaining 60% of the data for training

(they have overlaps).
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Table 5.6: Max. frequency features for speaker models (numbers show frequencies).
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Total Occurrence - 272 45 106 70 1286 577 110 351 75 70 20 513 759 46 220 324 155 155 948 95

C
o
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n
se

lo
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New-Word
Old 246 32 87 49 1069 463 78 307 63 59 15 419 628 41 162 256 102 115 682 84
New - 13 19 21 217 114 32 44 12 11 - 94 131 5 58 681 53 40 266 -

POS

DT - - - - 95 - - - - - - - - - - - - - - -
IN - - - - 129 53 - 36 15 7 - 64 81 - 22 29 14 - 100 9
JJ 22 - - - - - - - - 10 - - - - - 22 - - - -
NN - 9 - - 137 50 - 30 - - - - - - - - 16 21 81 -
NNS - - - - - - - - - - - - - - - 19 - - - -
PRP - - 11 15 123 - 20 46 12 - - 57 92 12 - 33 - - 102 9
PRP$ - - - - - - - - - - - - - 3 30 - - - - -

RB 19 - 16 - 111 - 10 - - - - 43 73 - 30 27 - 19 94 13
UH 101 - - - 103 41 10 20 - 6 - 41 - - - - 21 - - -
VB - - 10 - - - - - - - - - 53 - - - - - - -

VBP - - - - - 43 - - - - - - 59 - - 25 - 15 - -

Dialog Act

Aff. 210 35 76 54 999 441 79 248 53 42 13 393 583 42 157 256 122 120 711 92
Assu. - - - - 113 47 - - - - - - - - 30 51 - - - -
Con. 34 - - - 128 87 13 54 - 9 - 48 102 - 23 49 - - - 43
Inc. 147 38 35 33 677 302 57 175 46 41 8 259 384 23 109 177 97 112 555 65

Inten. - - - - 166 62 - - - 16 - 59 128 - - 35 - - - -
Inter. 60 18 83 - 486 258 27 148 25 14 - 209 351 21 100 118 53 74 446 67
Neg. 37 14 83 - 457 242 26 142 25 10 - 202 332 21 97 103 47 73 426 66
RR - - - - 148 61 10 50 - - - 67 111 - 25 - - - - 53
WS 45 15 - 15 563 232 26 164 16 20 5 191 379 - 67 147 42 67 368 53

Ques. - - - - - - - - - - 5 46 - - - - 21 - - -

Phrase Bound.

SS 66 12 29 24 335 170 39 116 16 17 6 130 223 13 53 87 38 40 253 21
NPS 55 13 26 23 338 142 35 105 20 15 9 137 201 15 60 91 36 39 252 22
NPE - - - - 127 50 - - - - - 44 - - - 43 - - - -
VPS 63 11 40 16 312 164 27 86 15 19 4 119 235 9 64 83 35 39 265 21
VPE - - - - 91 - - - - - - - - - - - - - - -

Valence
Neg. 90 39 34 35 773 350 50 223 42 34 9 296 515 25 110 222 55 84 494 67
Neu. 140 - 10 23 215 87 34 53 12 17 - 91 75 7 42 46 55 - - -
Pos. 42 - 62 12 298 140 26 75 21 19 9 126 169 14 68 56 45 63 310 -

Head Gest.
Neu. - - - 55 1066 487 87 289 58 56 16 415 705 33 172 297 112 134 815 90
Nod - - - 11 153 41 18 - 7 14 - 64 - 9 - - 28 - - -

Shake - - - - - - - - 7 - - - - - 44 - - - - -
Head Mov. Fwd. 272 45 106 70 1286 577 110 351 75 70 20 513 759 46 220 324 155 155 948 95

Hand Gest.

Neu. 183 - 26 32 533 237 47 108 40 37 16 265 - - - - - - - 32
Cont. - - 44 - - - - 57 8 - - - - - - - - - - -

FF 37 - 11 10 368 155 12 100 14 14 5 121 - - - - - - - 43
Icon - - - - 128 83 - 52 - - 5 - - - - - - - - -
Close 28 - 12 21 - - 38 - - - - - - - - - - - - -
Open - - 12 - - - - - - - - - - - - - - - - -

Eye Gaze
Fwd 78 13 30 24 - - 38 103 21 17 5 115 236 12 90 113 64 51 464 -
Left 153 13 47 32 - - 50 156 33 37 10 302 368 29 88 128 68 72 - 58

Right 41 19 29 14 - - 22 92 21 16 5 96 155 - 42 83 - - - -

Smile
Neu. 259 42 104 - 1250 561 28 - 75 70 20 488 748 46 216 321 129 151 904 94
Sub. - - - - - - 70 - - - - - - - - - 21 - - -
Big - - - - - - 12 - - - - - - - - - - - - -

Facial Emotion

Neu. 211 24 72 - 1007 421 - - - - 8 362 616 39 148 257 97 122 716 75
Hap. 18 - - 70 - - - - - - - - - - - - 38 - - -
Sur. 21 15 25 - 156 92 - - - - 12 - 100 - 57 52 - - 125 12
Ang. - - - - - - - - - - - 69 - - - - - - - -

Eyebrow Mov.
Neu. 205 35 83 - 974 476 80 303 - 56 - - 633 36 192 276 119 142 837 70
Down 64 10 22 - 302 96 30 36 69 14 - - 121 9 - 43 - - - -

Lean
Neu. 218 24 45 36 966 331 48 214 45 52 18 379 466 37 66 182 - 103 - -
Fwd 49 21 61 33 259 225 61 125 23 18 - 109 250 9 150 138 122 43 - -
Left - - - - - - - - 7 - - - - - - - - - - -

C
li

e
n
t

Head Mov.
Fwd. 151 18 78 54 784 335 84 125 40 32 14 307 515 22 131 164 125 97 625 95
Roll-L 113 27 28 15 479 239 25 218 34 37 6 205 232 20 89 160 - 58 - -

Eye Gaze
Fwd 220 30 76 46 1061 461 72 258 62 45 17 406 633 34 169 246 118 133 703 86
Left 30 15 30 18 190 88 29 87 12 19 - 89 81 12 68 58 32 - - -

Right 22 - - - - 28 - - - - - - - - - - - - - -
Smile Neu. 272 45 106 70 1286 577 110 - 75 70 20 513 759 46 220 324 155 155 948 95

Facial Emotion Neu. 272 45 106 70 1286 577 110 351 75 70 20 513 759 46 220 324 155 155 948 95

Eyebrow Mov.
Neu. 258 45 103 64 1226 552 104 343 67 70 19 493 727 45 212 323 151 141 923 88
Down - - - - - - - - 8 - - - - - - - - - - -
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Table 5.7: Max. frequency features for listener models (numbers show frequencies).
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Model
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Total Occurrence - 1271 91 1429 178 186 149 143 130 768 321 514

C
li
en

t

New-Word
Old 906 67 985 100 116 94 89 65 487 161 -
New 236 - - - 35 - - 35 163 112 -

POS

DT - - - - - - - - - 18 30
IN - - - 10 - - - - 57 20 -
JJ - - - - - - - - - 18 -
NN - - - - - - - - 60 25 35

PRP 135 - 133 17 19 15 22 14 76 38 55
RB 139 - 122 11 - - - - 73 30 -
UH - - 106 - 17 - - 16 - 21 29
VB - - - - - - - - - 19 -

VBP - - - - - - - - 48 28 39

Dialog Act

Aff. 873 64 843 82 125 87 88 64 437 195 271
Assu. - - 170 - - - - - 86 - -
Inc. 872 68 1037 127 128 110 94 95 553 229 338

Inten. 328 - 367 26 - 33 - 36 160 80 74
Inter. 571 - 614 51 76 52 56 43 321 155 245
Neg. 528 - 552 44 63 48 47 39 301 138 220
WS 598 - 724 71 86 77 53 57 332 144 164
Con. - - 355 22 42 33 29 - 200 - -
Obl. - - - - - - - - 81 - -

Phrase Bound.

SS 279 22 278 33 38 31 35 27 142 67 102
NPS 300 27 318 36 45 33 41 28 167 76 112
NPE - - - - - - - - 60 - -
VPS 304 18 315 29 36 36 30 30 166 80 122

Valence
Neg. 663 42 607 62 79 55 82 62 332 215 252
Pos. 410 30 482 45 62 48 37 29 262 - 115

Head Mov.
Fwd. 827 68 979 117 142 77 110 84 522 213 351
Roll-L 342 - 364 53 - 60 - - 189 75 115

Eye Gaze
Fwd 682 34 716 113 75 90 82 54 354 135 234
Left 341 37 441 40 76 - 36 57 251 130 207

Right - - 270 25 35 - - - 163 - -
Smile Neu. 1271 91 1429 178 186 149 143 130 768 321 514

Facial Emotion Neu. 1271 91 1429 178 186 149 143 130 768 321 514

Eyebrow Mov.
Neu. 1167 83 1312 160 165 140 83 122 703 297 476
Down - - - - - - 59 - - - -

C
ou

n
se

lo
r

Head Mov. Fwd. 1271 91 1429 178 186 149 143 130 768 321 514

Hand Gest.
Neu. 1106 68 1285 153 133 120 107 88 630 - 254
Close 159 - - - 49 - 36 41 124 - 234

Head Gest.
Neu. - 42 728 78 87 60 51 48 346 160 261
Nod - 49 695 97 99 87 91 82 420 159 249

Eye Gaze
Fwd 479 33 - - 75 46 76 67 266 222 355
Left 695 50 - - 96 76 60 55 468 92 135

Smile
Neu. 1222 - 1372 169 81 149 143 130 726 293 466
Sub. - - - - 91 - - - - - -

Facial Emotion

Neu. 910 91 1142 121 - - - - 528 178 302
Hap. - - - - - - - - - - 76
Sur. - - - 27 - - - - - - -
Ang. - - - - - - - - 110 36 63

Eyebrow Mov.
Neu. 845 57 954 144 114 129 32 89 - 197 358
Down 420 34 468 34 72 - 110 41 - 124 156

Lean
Neu. 1021 57 1289 151 110 120 80 86 612 87 -
Fwd 249 34 - 24 76 29 63 44 156 234 -
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Figure 5.9: 10-fold cross validation.

4. For gesture G, start with its corresponding Fmf , and eliminate a single feature,

f , from Fmf .

5. For each split of training and cross validation data:

(a) Learn a new model for G using the training data.

(b) Use the cross validation data set to evaluate the derived model.

(c) Save the accuracy, precision, recall, and F1-measure calculated using cross

validation data.

6. Take average over all the 10 measurement sets.

7. If the average measurements are lower than the previous model in which feature

f is not removed yet, it shows that the removed feature, f , is an important

feature and removing that causes information loss. If removing f causes a very

small amount of information loss comparing to other features, we can remove

that feature.
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8. Go to step 4 and repeat for other features in Fmf .

9. Select the model (i.e., set of features) with the lowest cross validation error (i.e.,

greatest average cross validation performance). Call this final feature set as Fcv.

Tables 5.8 and 5.9 show the final list of features selected for each of the modeled

gestures for speaker and listener roles after cross validation (model selection) phase.

5.8 Model Induction

I use a “one-versus-all” approach for modeling each of the gesture classes, i.e., instead

of multi-class classification, I performed a binary classification for each individual

gesture class. A binary classification for gesture G classifies the input data into either

class G or Not-G. This approach enables us to generate an individual model for each

non-verbal behavior.

To determine whether a trigram should be classified as a target gesture G, I trained

a Hidden Markov Model (HMM) [Rab89] for G classification. HMM is a statistical

model that is used for learning patterns where a sequence of observations is given.

In my application, the input is a sequence of feature vectors representing consecutive

words. So, the sequential property of this problem led me to use HMMs to predict

gestures.

The input to the modeling process is a vector of visual and textual features rep-

resenting each spoken word (by client or counselor) during the session. The output

of each gesture model is (1) a category, which represents presence/absence of the tar-

get gesture, and (2) the likelihood of the classification (i.e., classification correctness

probability).

For each target gesture of the counselor, I trained two models, one as a speaker

and one as a listener, because the non-verbal behaviors of a speaker and a listener
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Table 5.8: Final set of features selected for speaker models.
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New-Word
Old - - X - - - - - X X - - X - - X X X X -
New - - X - - - - - X X - - X - - X X X X -

POS

IN - - - - - - - X - - - X X - X X - - - -
JJ - - - - - - - - - - - - - - - X - - - -
NN - X - - - - - - - - - - - - - - - - - -

NNS - - - - - - - - - - - - - - - X - - - -
PRP - - - - - - - - X - - X X X - X - - - -
PRP$ - - - - - - - - - - - - - X - - - - - -

RB - - - - - - - - - - - - X - - X - - - -
UH X - - - X X - X - - - - - - - - - - - -
VB - - - - - - - - - - - - X - - - - - - -

VBP - - - - - - - - - - - - X - - X - - - -

Dialog Act

Aff. X X - X - - X X - - X - X - - X X X X X
Assu. - - - - X X - - - - - - - - - X - - - -
Con. - - - - X X - X - X - - X - - X - - - X
Inc. - X - X X X X X - - X X X - - X X X X X

Inten. - - - - X X - - - - - X X - - X - - - -
Inter. X X X - X X X X X X - X X - X X X X X X
Neg. X X X - X X - X X X - X X - X X - X X X
RR - - - - X X - X - - - X X - X - - - - X
WS - X - - X X - X X X - X X - - X X X X X

Ques. - - - - - - - - - - X - - - - - - - - -

Phrase Bound.

SS X - - X X X - X - - X X - X - X - X - -
NPS - - - X - - - X - - X X - X - X - X - -
NPE - - - - X X - - - - - - - - - - - - - -
VPS - - - X - - - X - - X X - - X X - X - -

Valence
Neg. - X X X - - - X X - X X - X X X - X X X
Neu. - - X X - - X - X - - - - - - - X - - -
Pos. - - X X - - X X X - X - - X - - - X X -

Head Gest.
Neu. - - - X - - X - X - X - X X X X X X - X
Nod - - - X - - X - X - - - - - - - - - - -

Shake - - - - - - - - X - - - - - X - - - - -

Hand Gest.

Neu. X - - X X X X X - X X - - - - - - - - X
Cont. - - X - - - - X - - - - - - - - - - - -

FF - - - - X X - X - X X - - - - - - - - X
Icon - - - - - - - X - - X - - - - - - - - -
Close - - - X - - X - - - - - - - - - - - - -

Eye Gaze
Fwd X - X X - - X - - - - - X X - - - X X -
Left X - X X - - X - - - - - - - - - - X - X

Right X - X X - - X - - - - - - - - - - - - -

Smile
Neu. - X - - - - X - X X - X - - X - X - - -
Sub. - - - - - - X - - - - - - - - - X - - -
Big - - - - - - X - - - - - - - - - - - - -

Facial Emotion

Neu. - X - - - - - - - - X X X - X - X - X -
Hap. - - - X - - - - - - - - - - - - X - - -
Sur. - X X - - - - - - - X - - - X - - - X -
Ang. - - - - - - - - - - - X - - - - - - - -

Eyebrow Mov.
Neu. - - - - - - - - - X - - X - - - X - - -
Down - - - - - - - - X X - - X - - - - - - -

Lean
Neu. - X - X X X - X X X - - - X X X - X - -
Fwd - X - X X X - X X X - - - X X X X X - -
Left - - - - - - - - X - - - - - - - - - - -

C
li

en
t

Head Mov. Fwd. - - - - - - - - - - - - X - - - X - - X

Eye Gaze
Fwd X X - - X X X - X - - X X X X X - X X X
Left X X - - X - - - - - - - - - X - - - - -

Right X - - - - X - - - - - - - - - - - - - -

Eyebrow Mov.
Neu. - - - - - - - - X X X X - - - - - - - -
Down - - - - - - - - X - - - - - - - - - - -
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Table 5.9: Final set of features selected for listener models.

Feature
Model
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New-Word
Old X X - - - - X - - - -
New X - - - - - - - - - -

POS
PRP X - - - X - - - - - -
RB X - - - - - - - - - -
UH - - - - X - - - - - -

Dialog Act

Aff. X X X X X X - X X X X
Assu. - - - - - - - - X - -
Inc. X X X X X X X X X X X

Inten. X - X X - X - - - X -
Inter. X - X X X X X X X X X
Neg. X - X X X X X X X X X
WS X - X X X X X X X X X
Con. - - X X X X X - X - -

Phrase Bound.

SS X - - - - - - - X - -
NPS X - X - - X - - X - -
NPE - - - - - - - - X - -
VPS X - - - - X - - X - -

Valence
Neg. X X X X X X X X X X X
Pos. X X X X X X - - X - X

Head Mov.
Fwd. X - X X X X X - - - -
Roll-L X - - - - - - - - - -

Eye Gaze
Fwd X X X X X - X X - - -
Left X X X X X - X X - - -

Right - - X X X - - - - - -
Smile Neu. - - X X X X X X - X -

Facial Emotion Neu. - X X X X X X X X - X

Eyebrow Mov.
Neu. - - - - X X X - - - -
Down - - - - - - X - - - -

C
ou

n
se

lo
r

Head Mov. Fwd. - - X X X X X X X X X

Hand Gest.
Neu. - X - - X - X X X - X
Close - - - - X - X X X - X

Head Gest.
Neu. - X X X X X X X X X X
Nod - X X X X X X X X X X

Eye Gaze
Fwd X X - - - - X X - - X
Left X X - - - - X X - - X

Smile
Neu. - - - - X X X X - X -
Sub. - - - - X - - - - - -

Facial Emotion
Neu. - - - - - - - - X X X
Hap. - - - - - - - - - - X
Ang. - - - - - - - - X X X

Eyebrow Mov.
Neu. X X X X X X X X - X -
Down - - - - X - X X - X -

Lean
Neu. X X X X X X - X - X -
Fwd X X - - X - - X - X -
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are different. For example the head nod pattern (i.e., model) of a listener and a

speaker are different. I used 60% of the total dataset for the training purpose.

When using HMM, we do not observe the actual sequence of states (i.e., the

gesture). Rather, we can only observe some feature values happened at each state

(i.e., visual and textual features). Formally, an HMM is a Markov model, for which

there is a series of observations x = {x1, x2, ..., xT} drawn from an input alphabet

V = {v1, v2, ..., v|V |}, i.e., xt ∈ V, t = 1..T . Also, there is a series of states y =

{y1, y2, ..., yT} drawn from a state alphabet S = {s1, s2, ..., s|S|}, i.e., yt ∈ S, t = 1..T ,

but the values of the states are unobserved. The transition between states i and j

is represented by the corresponding value in the state transition matrix Aij, where

A ∈ R(|S|+1)×(|S|+1). The value Aij is the probability of transitioning from state i to

state j at any time t.

The probability of an observation is modeled as a function of the hidden state.

We make the observation independence assumption (i.e., current observation is sta-

tistically independent of the previous observations) and define:

P (xt = vk|x1, ..., xT , y1, ..., yT ) = P (xt = vk|yt = sj) = Bjk (5.1)

where matrix B encodes the probability of observing vk given that the state at the

corresponding time was sj.

For example, you can think of the problem of modeling the “head nod” with a

single feature (let’s say part of speech), shown in Figure 5.10. In this example,

S = {nod, notNod}, V = {UH,NN, IN, PRP}.

Assume that our training data includes a single sequence:

x = {UH,UH,PRP, V B,NN}

y = {nod, nod, notNod, notNod, nod}.

We can combine the x and y vectors as a single input vector:
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Figure 5.10: Sample Hidden Markov Model.

{(UH, nod), (UH, nod), (PRP, notNod), (V B, notNod), (NN, nod)}.

Given this data, the following information can be retrieved, which helps us calcu-

lating the Aij and Bjk matrices.

• when we are in nod state, 50% of the times we transit to nod state (i.e., A11 =

0.5) and 50% of the times we transit to not-nod state (i.e., A12 = 0.5).

• when we are in not-nod state, 50% of the times we transit to nod state (i.e.,

A21 = 0.5) and 50% of the times we transit to not-nod state (i.e., A22 = 0.5).

• when we are in nod state, there is a 67% chance to observe a UH (i.e., B11 =

0.67), and 33% chance to observe a NN (i.e., B14 = 0.33).

• when we are in not-nod state, there is a 50% chance to observe a PRP (i.e.,

B12 = 0.50), and 50% chance to observe a VB (i.e., B13 = 0.50).

A =



0 nod not− nod

0 0 0.5 0.5

nod 0 0.5 0.5

not− nod 0 0.5 0.5



B =


UH PRP V B NN

nod 0.67 0 0 0.33

not− nod 0 0.5 0.5 0
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There are three fundamental questions that can be asked from an HMM. Evaluation

problem: what is the probability of an observed sequence, i.e., P (observation sequence|parameters);

Decoding problem: what is the most likely series of states to generate the observations;

and Learning problem: how the values for the HMM’s parameters, A and B, can be

learned given some data? In my application, first I solved the learning problem, in

order to calculate the model parameters A and B, then for each sentence, I solved

the decoding problem, in order to find the most probable sequence of stated (i.e.,

gestures) for the input sequence of observations (i.e., visual and textual features).

Next, I will explain these three HMM problems.

5.8.1 Probability of an Observed Sequence

In an HMM, the data is assumed to be generated by the following process: posit

the existence of a series of states −→y over the length of our time series. This state

sequence is generated by a Markov model parametrized by a state transition matrix

A. At each time step t, an observation xt is selected as a function of the state yt.

Therefore, to get the probability of a sequence of observations, the likelihood of the

data −→x is added up given every possible series of states.

P (−→x ;A,B) =
∑
−→y

P (−→x ,−→y ;A,B)

=
∑
−→y

P (−→x |−→y ;A,B)P (−→y ;A,B)

(5.2)
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Although Equation 5.2 is true for any probability distribution, the HMM assumptions

allow us to simplify the expression further:

P (−→x ;A,B) =
∑
−→y

P (−→x |−→y ;A,B)P (−→y ;A,B)

=
∑
−→y

(
T∏
t=1

P (xt|yt;B))(
T∏
t=1

P (yt|yt−1;A))

=
∑
−→y

(
T∏
t=1

Bytxt)(
T∏
t=1

Ayt−1yt)

(5.3)

The derivation in the second line of Equation 5.3 follows the HMM assumptions: the

output independence assumption (i.e., current observation is statistically independent

of the previous observations), Markov assumption (i.e., the next state depends only

on the current state), and stationary process assumption (i.e., state transition prob-

abilities are independent of the actual time, at which the transitions takes place).

However, the sum is over every possible assignment to −→y , because yt can take one

of |S| possible values at each time step, evaluating this sum directly requires O(|S|T )

operations.

A faster means of computing P (−→x ;A,B) is via a dynamic programming algorithm

called the Forward Procedure. For that, a quantity αi(t) = P (x1, x2, ..., xt, yt =

si;A,B) is defined. Given that we are in state si at time t, αi(t) represents the total

probability of all the observations up through time t (by any state assignment). Given

this quantity, the probability of the full set of observations P (−→x ) is represented as:

P (−→x ;A,B) = P (x1, x2, ..., xT ;A,B)

=

|S|∑
i=1

P (x1, x2, ..., xT , yT = si;A,B)

=

|S|∑
i=1

αi(T )

(5.4)

Algorithm 1 presents an efficient way to compute αi(t). At each time step, only O(|S|)

operations are performed, resulting in a final algorithm complexity of O(|S|.T ) to
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compute the total probability of an observed state sequence P (−→x ;A,B). A similar

algorithm known as the Backward Procedure can be used to compute an analogous

probability βi(t) = P (xT , xT−1, ..., xt+1, yt = si;A,B).

Algorithm 1 Forward Procedure for computing αi(t).

Base case: αi(0) = A0i, i = 1...|S|
Recursion: αj(t) =

∑|S|
i=1 αi(t− 1)AijBjxt , j = 1...|A|, t = 1...T

5.8.2 Maximum Likelihood State Assignment: Viterbi

In this problem, we ask the HMM for the most likely series of states −→y ∈ S|T | given

a series of observations −→x ∈ V |T |. Formally:

arg max−→y
P (−→y |−→x ;A,B) = arg max−→y

P (−→x ,−→y ;A,B)∑
−→y P (−→x ,−→y ;A,B)

= arg max−→y
P (−→x ,−→y ;A,B)

(5.5)

The first simplification follows from Bayes rule. The second simplification follows the

observation that the denominator does not directly depend on −→y . Naively, every

possible assignment to −→y can be tried and the one with the highest joint probability

assigned by our model can be taken. However, this would require O(|S|T ) operations

just to enumerate the set of possible assignments. If the arg max−→y is replaced with

the
∑
−→y , the current task is exactly analogous to the expression, which motivated the

forward procedure. The Viterbi Algorithm is just like the forward procedure except

that instead of tracking the total probability of generating the observations seen so

far, only the maximum probability should be tracked and its corresponding state

sequence should be recorded.
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5.8.3 Parameter Learning for HMMs

The parameter learning problem is that, given a set of observations, what are the

values of the state transition probabilities A and the output emission probabilities B

that make the data most likely? Solving the learning problem for my dataset allows

me to train the HMM before asking for the maximum likelihood state assignment of

a candidate gesture. Since my training examples contain both the inputs and outputs

of a process, supervised training can be performed by equating inputs to observations,

and outputs to states.

For the supervised training, each training example is annotated with the correct

classification. Two sets are defined: {y1, ..., yN} is the set of classes, which is equal to

the HMM state set {s1, ..., sN}; {x1, ..., xM} is the set of words, which is equal to the

HMM observation set {v1, ..., vM}. So, with this model the gesture modeling is framed

as decoding the most probable hidden state sequence of classes given an observation

sequence of words. To determine the model parameters, I used Maximum Likelihood

Estimates (MLE) from a corpus containing sentences tagged with their correct gesture

tags. For the transition matrix:

Aij = P (yi|yj) =
Count(yi, yj)

Count(yi)
(5.6)

where Count(yi, yj) is the number of times yj followed yi in the training data. For

the observation matrix:

Bjk = P (xk|yj) =
Count(xk, yj)

Count(yj)
(5.7)

where Count(xk, yj) is the number of times that when we observe the xk, the gesture

was classified as yj in the training data. And lastly the initial probability distribution

πi is the probability of starting a sequence at state i, where s1 is the starting state:

πi = P (s1 = yi) =
Count(s1 = yi)

Count(s1)
(5.8)
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I used the Accord.NET framework for implementing the HMMs. Accord.NET is

a framework for scientific computing including statistical data processing, machine

learning, pattern recognition, computer vision, computer audition, etc.

5.9 Runtime Operation

Since I would like to model the character’s non-verbal behavior as both speaker and

listener, I provided the ability for the client (i.e., user) to speak out his/her answers to

the virtual counselor, which is a more natural way than typing. I used the Microsoft

Speech Recognizer to recognize the clients’ verbal answers. To increase the accuracy

of the speech recognizer, I limited the recognition vocabulary to specific options for

each question and asked the users to read their choice.

At the runtime, the textual feature recognizers recognize the part of speech, dialog

acts, phrase boundaries, word newness, and valence of the dialog content of the

client and counselor (i.e., virtual character). The textual feature recognizers are

explained earlier in Sections 5.4.2 to 5.4.6. Also, the visual feature recognizer uses the

camera (i.e., webcam) as its input and returns its classifications (i.e., emotional facial

expressions, eyebrow movements, head movements, smile, and gaze) to the rapport

model using message passing. The visual feature recognizer is explained before in

Section 5.4.1.

For each sentence uttered by the speaker (virtual character or user) or listened by

the character, all the above features are recognized and returned to the non-verbal

behavior models (i.e., composite non-verbal rapport model). This set of feature values

are used as the observations of the non-verbal behavior HMMs. The HMMs return

the sequence of non-verbal behaviors to be expressed when this sentence is being

uttered or listened by the character. The outputs of the non-verbal models are passed

to the HapGest module, which resolves the possible conflicts between the gestures
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(using priorities) and synchronizes them with the character’s verbal utterance. In

order to generate the facial expressions, HapGest uses the hypertexts provided by

the HapFACS (described in Section 3.1). Figures 5.11 and 5.12 depict the runtime

process for speaker and listener roles.

Figure 5.11: Runtime process for the virtual character’s speaker role.

Figure 5.12: Runtime process for the virtual character’s listener role.

In the speaker role, utterances come from the database. Utterances are passed

to the textual feature recognizers, and the latest visual features of the user are also

perceived using the camera and the visual feature recognizer. All these feature val-

ues are passed to the speaker inducted models and their outputs are passed to the

HapGest module.
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In the listener role, responses are perceived from the user using microphone (or

mouse, if the speech recognizer cannot recognize the user’s voice). Then similar to the

speaker role, these inputs are passed to the feature recognizers. Feature recognizers

send their outputs to the listener inducted models, which decide about the best

gestures and sent their decision to the HapGest to animate the character.

In an interactive application, time is a major concern in the runtime operation

phase. The processing time of the system should be fast enough so the users do not

feel large delays in the interaction. In my application, modules that are involved in

the runtime process are (1) the textual feature recognizers, (2) the facial/head ex-

pression recognizer, (3) the classification, (4) synchronizing the verbal and non-verbal

modalities by HapGest, and (5) the animation of the character. The fore-mentioned

natural language processing toolkits are able to recognize the features from the text

in the order of hundreds of milliseconds. The Stanford NLP tags more than 15000

words per second. For example, the Stanford NLP returns all the syntactical tags of

the sentence “How often do you have a drink containing alcohol?” in 0.087 seconds.

Also, the InsightSDK facial recognizer is able to recognize the facial expressions in

realtime. The modeling process, which takes a few seconds, is performed offline be-

fore being used for classification. Therefore, the classification process is performed

in realtime too. Synchronizing the verbal and non-verbal modalities can sometime

take a few hundreds of milliseconds if the sentence is too long, because for each word

in the sentence, HapGest may need to handle some events. However, this delay is

not large enough to be recognized by the users. Finally, the Haptek virtual character

system is able to animate the characters in realtime, i.e., the character can animate

the gestures in realtime by receiving the appropriate hypertexts from the HapGest.

Therefore, the overall runtime process, from recognition to animation, takes a time in
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order of hundreds of milliseconds, which does not disturb the natural flow of speech

and can generate natural animations.

5.9.1 Modeling Non-verbal Rapport Communication

Since the non-verbal behaviors are modeled based on the video corpus of the in-

teractions of rapport-building counselors with clients, I used the combination of

the learned non-verbal models to model the counselor’s Rapport communication as

speaker and listener.

As mentioned in Section 2.1, based on Tickle-Degnen and Rosenthal [TDR90],

the three essential components of rapport are mutual attentiveness, positivity, and

coordination. In my rapport model, I (1) modeled the mutual attentiveness and

coordination using the hand gestures, body lean, head gestures, and eye gaze models;

and (2) modeled the positivity using the head nod, smile, emotional facial expressions,

and eyebrow movement models.

My Non-verbal Rapport Communication Model is similar to the Rapport Agent

2.0 [HMG11] in the sense that (1) both of them are modeling the rapport as a three-

component paradigm based on the Tickle-Degnen and Rosenthal [TDR90] theory; (2)

both of them are modeling the attentiveness and coordination using the backchannel

models; and (3) both of them are modeling the positivity using smile and head nods.

However, there are multiple differences between my rapport model and the Rapport

Agent 2.0, including (1) in the Rapport Agent 2.0 only smile and head nod are mod-

eled, whereas in addition to these gestures, I also modeled other head gestures, hand

gestures, eyebrow movements, eye gaze, emotional facial expressions, and body lean.

Modeling these non-verbal behaviors improves the rapport communication and natu-

ralness of the character; (2) in the Rapport Agent 2.0, the dialog content is not used

for modeling the rapport (silence, head nod, eye gaze and smile are used), whereas in
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my method I used the dialog content. This allows us to improve the attentiveness and

coordination components; and (3) in the Rapport Agent 2.0, the dataset used for the

modeling process is derived from videos of actors who role-play in a story telling sce-

nario with a virtual character, which is not necessarily an emotional context, whereas

I used videos of real human-human Motivational Interviewing counseling sessions, in

which more emotional dialogs are exchanged.

5.10 Evaluation and Validation - Hypotheses Testing

I evaluated the individual non-verbal models and the overall rapport model in two

phases: (1) objective evaluation of the non-verbal models, and (2) subjective evalua-

tion of the character naturalness and perceived rapport.

5.10.1 Objective Evaluation of the Non-verbal Models

In order to evaluate the machine learning based approach, I measured the performance

of each individual learned model using 20% of my annotated dataset, called the test

dataset, which was kept unseen during the feature selection and learning phases. I

applied the test data to the learned models and calculated the accuracy (i.e., ratio

of the gestures correctly expressed, precision (i.e., ratio between the number of the

gestures expressed correctly and the total number of the expressed gestures), recall

(i.e., ratio between the number of the gestures expressed correctly and the number

of the gestures in the actual data), and F1-measure (i.e., weighted harmonic mean

of precision and recall) of the learned model. Equations 3.1 to 3.4, in Section 3.1,

provide the mathematical formulas for calculating the above measurements.
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Objective Evaluation Results and Discussion

Tables 5.10 and 5.11 respectively show the evaluation results of the objective measures

for speaker and listener models.

Table 5.10: Objective evaluation results of the speaker models.

Model
Measure

Accuracy Precision Recall F1-Measure

Head Nod 0.703 0.750 0.871 0.803
Head Shake 0.982 0.997 0.984 0.991
Head Nod-Shake 0.890 0.992 0.895 0.939
Subtle Smile 0.768 0.991 0.765 0.851
Gaze Left 0.611 0.603 0.374 0.437
Gaze Right 0.773 0.860 0.882 0.860
Happy 0.876 0.981 0.881 0.925
Surprised 0.759 0.914 0.811 0.855
Angry (Puzzled) 0.836 0.975 0.849 0.904
Disgust 0.885 0.959 0.915 0.934
Eyebrow Up 0.893 0.995 0.897 0.942
Eyebrow Down 0.750 0.787 0.921 0.847
Hand Formless-Flick 0.743 0.905 0.771 0.830
Hand Point 0.904 0.993 0.909 0.948
Hand Contrast 0.827 0.966 0.842 0.895
Hand Iconic 0.771 0.951 0.794 0.864
Hand Closed 0.814 0.934 0.830 0.879
Hand Opened 0.806 0.975 0.822 0.888
Lean Forward 0.619 0.733 0.739 0.692
Lean Left 0.902 1.000 0.902 0.948
Average 0.8056 0.9131 0.8327 0.8616

As stated in Section 2.4.2, there are very few research studies in which machine

learning is used to model the non-verbal behaviors of a human. Also, they modeled

very few non-verbal behaviors. For example, Lee et al. [LM09] modeled head nods

of a human speaker with accuracy of 0.8528, precision of 0.8249, recall of 0.8957, and

F1-measure of 0.8588. Lee et al. [LPNM09] expanded their head nod model later

by using affective information during the learning process, to improve the prediction

metrics compared to accuracy of 0.8957, precision of 0.8909, recall of 0.9018, and
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Table 5.11: Objective evaluation results of the listener models.

Model
Measure

Accuracy Precision Recall F1-Measure

Head Nod 0.759 0.885 0.747 0.808
Subtle Smile 0.846 0.973 0.862 0.912
Gaze Left 0.559 0.533 0.454 0.473
Gaze Right 0.746 0.854 0.848 0.845
Happy 0.827 0.985 0.826 0.891
Surprised 0.813 0.912 0.880 0.894
Angry (Puzzled) 0.738 0.976 0.743 0.841
Disgust 0.763 0.967 0.776 0.852
Eyebrow Down 0.719 0.795 0.844 0.816
Hand Closed 0.845 0.928 0.879 0.902
Lean Forward 0.672 0.767 0.717 0.713
Average 0.7515 0.8694 0.7825 0.8131

F1-measure of 0.8963. My speaker head nod model metrics are comparable to the

model presented by Lee et al. [LM09, LPNM09].

In an other study [Kip06], which uses both hand crafted rules and machine learning

to generate the gestures (facial expression, gaze, and head movement), they reported

the maximum models’ cumulative evaluation metrics as 0.338 precision and 0.321

recall. which are much lower than the evaluation metrics reported in my study.

5.10.2 Subjective Evaluation of the Character

In order to evaluate the perceived rapport of the character by the users and the

perceived naturalness of the character, I applied the models to a virtual health

counselor similar to the one implemented in Chapter 4. I replaced the rule-based

empathy model, shown in Figure 4.2, with the new data-driven rapport model. The

new system architecture and interface are depicted in Figures 5.13 and 5.14. Also,

the class diagram of the implemented system is provided in Figure 5.15. I used

user studies to compare the user acceptance (e.g., perceived rapport, believability,
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likability, enjoyability, usefulness, engagement) and character features (e.g., perceived

intelligence) of (1) the rapport-building counselor, and (2) a neutral counselor (i.e.,

a virtual counselor with neutral facial expressions and no non-verbal gestures). I

hypothesize that the rapport-building virtual counselor is better accepted by the

users and its character features are perceived better than a neutral one.

Figure 5.13: New architecture of the ODVIC.

According to Tickle-Degnen and Rosenthal [TDR90], non-verbal behaviors are

measured in two ways: molecular and molar. Molecular measures are calculated

internally during the interaction of the client with the system and are appropriate

for measuring the user engagement, attention, and positivity components of rapport.

The molecular measures consist of counts/durations of specific behaviors, such as head

nodding and eye contact. Molar measures are defined in terms of the psychological

impression, gestalt image, or perceived function they create, such as negative/positive

facial expressions, social presence, helpfulness, distraction, and naturalness [BH02].

The molar measures are appropriate for measuring the coordination component of

rapport. The molar measures are measured using both internal calculations (e.g.,

clients’ facial expressions) and after-experiment questionnaires (e.g., asking the clients

to provide feedback about the naturalness of the character’s non-verbal behaviors).

I video recorded all of the interactions between the clients and the virtual coun-

selor. After the experiment, two human coders (one FACS-certified and one non-
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Figure 5.14: Snapshot of the virtual counselor.
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Figure 5.15: Class diagram of the ODVIC.
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FACS-certified) manually watched the videos and reported the duration of positive

facial expressions (happy and surprised) and negative facial expressions (angry, afraid,

and disgusted). I compared them for the two experiment conditions as a measure of

the perceived rapport by the users.

In addition, I used a collection of validated questionnaires as follow, in order to

debrief the clients about their interaction experience with the virtual counselor:

1. Heerink’s [HKEW09] questionnaire for evaluating the user acceptance. Items

in this questionnaire are provided in Section 4.5.2.

2. Bartneck’s [BKC08] Godspeed questionnaire for evaluating character features.

Items for this questionnaire are provided in Section 4.5.2.

3. Virtual Experience Test [CGL10], which measures the virtual environment ex-

periences based upon different dimensions of experiential design: sensory, cog-

nitive, and affective:

(a) Sensory (perception of sensory input (visual, aural, haptic, etc): (1) “I

found the virtual character to be of high quality,” (2) “I found the char-

acter’s voice to be of high quality.”

(b) Cognitive (mental engagement with an experience): (1) “I found that the

content in the interaction was helpful in informing me of my current drink-

ing behavior.”

(c) Affective (refers to the user’s emotional state, and the degree to which a

person’s emotions are similar to those in real-world situations): (1) “I had

emotional reactions while interacting with the counselor,” (2) “I think if

I was talking to a real counselor, I would experience the same emotional

reactions,” (3) “I felt that the character conveyed emotions.”
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4. Question provided by Kipp et al. [KKNG06] for evaluating user acceptance:

“The character managed to get my attention”.

5. Social presence assessment [BBBL01], which evaluates rapport and naturalness:

(a) “I perceived that I am in the presence of another person in the room with

me.”

(b) I felt that the character was watching me and was aware of my presence.”

(c) “I perceived the character as being only a computerized image, not as a

real person.”

6. Rapport scale presented in [HMG10a, KWG09, GWGF07], which evaluates dif-

ferent dimensions of rapport:

(a) Positivity and Close Connection: “I felt a close connection between me

and the agent?”

(b) Mutual attentiveness: “The agent appeared to be interested in listening

to me?”

(c) Perceived Rapport: “I felt rapport between the agent and myself?”

(d) Coordination: “I think that the character and I understood each other.”

(e) Perceived (1) Precision: “How often do you think the agent used inap-

propriate gestures (e.g., head, hand, smile, facial expressions, brows, gaze,

body lean)?” and (2) Recall: “How often do you think the agent missed

gesture opportunities?”

(f) Naturalness: “I think the virtual agent’s behavior was natural?”

7. Scales presented by Ruttkay and Pelachaud for evaluating perceived character

features:
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(a) Fidelity/realism: perception of how lifelike or real the ECA and its capa-

bilities appear.

(b) Expressiveness: the diversity and intensity of expressions, such as facial

expressions, gesture, emotions.

(c) Personality: is the ECA dominant or humble?

(d) Coordination of multiple modalities.

8. Engagement evaluation tool suggested by Webster and Ho [WH97]:

(a) Challenge: “The virtual counselor encouraged me to think about my drink-

ing.”

(b) Attention focus: “The character kept me absorbed in the interaction.”

(c) Intrinsic interest: “The character presentation was interesting.”

(d) Overall: “The character presentation was engaging.”

9. Information disclosure (ID): user’s intention to disclose personal information:

(a) “I would feel better interacting with the virtual counselor than a human

counselor in terms of revealing personal information.”

(b) “I was comfortable to disclose information about my drinking.”

(c) “I would disclose more information about my drinking to the virtual coun-

selor than a human.”

10. A specific question suggested in [HMG11] to evaluate the overall naturalness:

“I think the virtual agent’s overall behavior was natural.”

In order to be able to measure and compare the users’ information disclosure, I

used an additional option to the possible answers of each single question during the
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interaction as “I prefer not to answer”. I counted the number of times that users

select this response and compare them in the two evaluation conditions, as a measure

of information disclosure. Therefore, lower number of selecting this option shows

more intention to disclose information to the character.

Experiment Setup

The total of 56 subjects were recruited from the college students through fliers. Sub-

ject included 39 males with an average age of 25.5 years old and 17 females with an

average age of 26.5 years old. Subjects included 21% White, 11% Black, 45% His-

panic, 14% Asian, 5% Caucasian, and 4% Indian ethnicities. The goal of this study

was more focused on evaluating the non-verbal models in terms of perceived rapport,

naturalness, and engagement. Since my goal is not to evaluate the effectiveness of

the system on real problem-drinkers at this stage of the research, I did not perform

clinical studies with real problem-drinkers.

Subjects were randomly assigned to one of the neutral or the rapport-enabled

characters (27 subjects to neutral character and 29 subjects to rapport-enabled one).

I guided the subjects to interact with the virtual character, which was applied to

a virtual counseling framework. In this experiment, the virtual character acted as

a virtual health counselor and steps through a series of assessment questions one

by one. The human subjects were interviewed by the virtual counselor. For the

interaction, I used a combination of the AUDIT assessment instrument provided in

Section 4.3.4 and 5 other questions from the Drinker’s Inventory of Consequences

(DrInC) [MT95] instrument (which assesses the negative consequences of drinking).

The order of virtual character’s questions were predefined based on the assessment

instrument.
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Before the experiment starts, I provided the system introductions for the subjects

and told them that the virtual counselor would ask them several questions about

their drinking behaviors, and their task is to answer as best as they can. I asked

the subjects to answer each question verbally by choosing the best choice from the

provided answers (on the screen). I told the subjects that the virtual counselor listens

to their answers, however, if the subjects ask any questions from the virtual counselor,

it does not provide any answers to their questions. Clients sit in front of the monitor,

from which the virtual counselor interacts with them. A camera is mounted on

top of the monitor for both recognizing the visual features and video recording the

interaction. After the interaction, subjects were redirected to a website, where the

after-experiment questionnaire was implemented. Subjects were asked to assess the

virtual character’s performance and their experience with the character by answering

the questions.

I recorded the users’ facial expressions during the interaction using the same we-

bcam used for facial expression recognition. Two subjects, one FACS-certified coder

and one non-FACS coder, were asked to report the amount of time that users ex-

pressed positive and negative facial expressions. This time is considered as a measure

of users’ perceived rapport.

Subjective Evaluation Results and Discussion

The total of 40 questions (provided above in Section 5.10.2) were asked from the

users. Subjects answered each question in a 5-level Likert scale (-2 to +2). So, for

each question, a 2× 5 table is created which compares the two experiment conditions

(i.e., rapport-enabled vs. neutral). The table rows are the experiment conditions, and

the columns are the Likert scales (i.e., -2, -1, 0, +1, and +2). Users’ responses were

analyzed using the Mantel-Haenszel-Chi-Square statistical method (degree of freedom
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df = 1) [MDK03]. I followed the null-hypothesis of “characters with different levels

of rapport abilities (rapport-enabled vs. neutral) have the same effects on the users”.

Therefore, under the assumption of the null-hypothesis, a Chi-Square p value of less

than 0.05 (df = 1) rejects the null-hypothesis.

As presented in Table 5.12, Chi-Square analyses show that, rapport-building abil-

ity of the character made a significant difference between the neutral and rapport-

enabled characters in all measured aspects, except in perceived ease of use, informa-

tion disclosure, and perceived precision of expressions. In other words, there is not

enough statistical evidence to show that rapport-building ability affects these aspects

significantly.

Also, I compared the mean values of the same statements in the two experimental

conditions to calculate the possible improvement/deterioration of them upon each

other. The improvement/deterioration is calculated using Equation 4.1 provided in

Chapter 4. As indicated in Table 5.12, the rapport-enabled character was perceived

positively in all measured aspects. Although the neutral character was also per-

ceived positively in many of the measured aspects, it was perceived negatively in

terms of intention to use, perceived sociability, social presence, affective ex-

perience, naturalness, rapport, recall of expressions, anthropomorphism, animacy,

and expressiveness. This means that, subjects perceived these aspects of the neutral

character negatively. As shown in Table 5.12, in all of the measured aspects, mean

value comparison indicates an improvement of the rapport-enabled character over the

neutral one.

In the neutral and rapport-enabled conditions, users selected the “I prefer not to

answer” option 9 and 8 times respectively, which does not show a significant difference

between the information disclosure of users in these two conditions. This result
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Table 5.12: Subjective evaluation mean value comparison and Chi-Square test results.

Evaluated Aspect Agent Mean Std. Dev. χ2 p Improvement Hypothesis

Attitude
Neutral 0.22 1.12

27.92 0.0000 26.53% Rejected
Rapport 1.28 0.71

Intention to Use
Neutral -0.15 1.24

16.53 0.0000 34.54% Rejected
Rapport 1.23 0.88

Perceived Enjoyment
Neutral 0.00 1.19

30.82 0.0000 30.42% Rejected
Rapport 1.22 0.78

Perceived Ease of Use
Neutral 1.26 0.58

3.78 0.0518 7.69% Not rejected
Rapport 1.57 0.56

Perceived Sociability
Neutral -0.29 1.12

71.66 0.0000 32.18% Rejected
Rapport 1.00 0.75

Perceived Usefulness
Neutral 0.22 1.10

10.33 0.001 22.78% Rejected
Rapport 1.13 0.80

Social Presence
Neutral -0.38 1.12

45.71 0.0000 30.12% Rejected
Rapport 0.82 0.86

Trust
Neutral 0.31 1.01

17.22 0.0000 18.80% Rejected
Rapport 1.07 0.75

Information Disclosure
Neutral 0.39 1.43

2.33 0.1267 7.35% Not rejected
Rapport 0.69 1.05

Sensory Experience
Neutral 0.28 1.16

16.35 0.0000 19.72% Rejected
Rapport 1.07 0.73

Cognitive Experience
Neutral 0.37 1.19

4.54 0.0331 14.91% Rejected
Rapport 0.97 0.79

Affective Experience
Neutral -0.47 0.92

29.75 0.0000 21.73% Rejected
Rapport 0.40 0.96

Engagement
Neutral 0.35 1.09

32.64 0.0000 18.70% Rejected
Rapport 1.1 0.71

Naturalness
Neutral -0.56 1.16

20.92 0.0000 27.22% Rejected
Rapport 0.53 1.12

Rapport
Neutral -0.38 1.08

58.38 0.0000 28.03% Rejected
Rapport 0.74 0.82

Precision of Expressions
Neutral 0.78 1.23

0.005 0.9432 0.56% Not rejected
Rapport 0.8 1.11

Recall of Expressions
Neutral -1.11 0.83

20.53 0.0000 42.78% Rejected
Rapport 0.60 1.33

Anthropomorphism
Neutral -0.69 1.09

95.99 0.0000 35.06% Rejected
Rapport 0.71 0.87

Likability
Neutral 0.53 0.96

62.95 0.0000 22.17% Rejected
Rapport 1.42 0.69

Animacy
Neutral -0.11 1.21

40.42 0.0000 28.29% Rejected
Rapport 1.02 0.81

Perceived Intelligence
Neutral 0.15 1.19

22.90 0.0000 25.88% Rejected
Rapport 1.18 0.85

Expressiveness
Neutral -0.70 1.33

23.42 0.0000 45.09% Rejected
Rapport 1.10 0.75

Perceived Personality
Neutral 0.26 0.84

4.64 0.0312 13.52% Rejected
Rapport 0.80 0.94
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confirms the results of the Chi-Square test and mean value comparison performed for

Information Disclosure.

Two human subjects reviewed the recorded interaction videos, and reported that

users in the neutral condition had expressed 33 instances of positive facial expressions

(83 seconds in total) and 15 instances of negative facial expressions (47 seconds in

total) all together. Also, in the rapport-enabled condition, they reported 98 instances

of positive facial expressions (total of 458 seconds) and 6 instances of negative facial

expressions (11 seconds in total), which shows that the rapport model was able to

convey the positivity feature of the rapport to the users, therefore, users had more pos-

itive facial expressions during the interaction with rapport-enabled character. Also,

research [GM04, GWO07] shows that, positive facial expressions are indicative of

rapport, while negative facial expressions are indicative of lack of rapport.

As stated above, one of the questions for evaluating the the affective experience of

the users with the characters was “I had emotional reactions while interacting with the

counselor”. I asked the users to list their emotional reactions, if there was any. The

following are the emotional reactions that users mentioned after using the rapport-

enabled character: happiness/joy/pleased (7 times), content (1 time), pleasure for

being understood (2 times), surprised (1 time), sympathy (1 time), curiosity (1 time),

excitement (1 time), calm (2 times), confidence (1 time), and shame (1 time). For

the neutral character condition, users mentioned happiness (1 time), neutral (1 time),

board (1 time), annoyed (2 times), confused (1 time), regret (1 time), guilt (2 times),

sadness (2 times), bad memories (2 times), and defensive (1 time), as their emotional

reactions during the interaction.

I also asked the users to mention some of the inappropriate gestures that they

felt in the characters’ behavior. They reported the constant forward eye gaze of the

211



neutral character as inappropriate, which was addressed by the gaze away models

(i.e., gaze left and right) in the rapport-enabled character.

In Chapter 4, I discussed my approach to enable the character to empathize with

the users using a decision tree (i.e., rule-based). In this chapter, I used data-driven

modeling using machine learning for modeling the rapport. I compared the results

of the user studies performed to evaluate these two studies. The evaluation schema

of the two studies have common measurements including the Heerink’s questionnaire

[HKEW09] and Bartneck’s questionnaire [BKC08], which enabled me to compare the

users’ perceptions of the machine learning approach and the decision tree approach.

In other words, the mean value (and standard deviation) is compared only for those

statements that were common in evaluation of the decision tree and machine learning

approaches. Table 5.13 shows the results of comparing the user response mean values

in each of the categories.

Table 5.13: Comparing evaluations of decision tree and machine learning (ML) ap-
proaches.

Evaluated Aspect Agent Mean Std. Dev. Improvement

Attitude
Dec. tree 0.78 0.9

12.58%
ML 1.28 0.71

Intention to Use
Dec. tree 0.8 0.89

10.83%
ML 1.23 0.88

Perceived Enjoyment
Dec. tree 1.08 0.52

3.42%
ML 1.22 0.78

Perceived Ease of Use
Dec. tree 1.6 0.49

-0.83%
ML 1.57 0.56

Perceived Sociability
Dec. tree 0.8 0.87

5.00%
ML 1.00 0.75

Perceived Usefulness
Dec. tree 0.64 0.89

12.33%
ML 1.13 0.80

Social Presence
Dec. tree 0.35 1.04

11.81%
ML 0.82 0.86

Trust
Dec. tree 0.78 0.83

7.17%
ML 1.07 0.75

Anthropomorphism
Dec. tree 0.28 1.05

10.83%
ML 0.71 0.87

Likability
Dec. tree 1.29 0.64

3.25%
ML 1.42 0.69

Animacy
Dec. tree 0.52 0.98

12.51%
ML 1.02 0.81

Perceived Intelligence
Dec. tree 0.97 0.77

5.58%
ML 1.18 0.85
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Although both objective and subjective results are acceptable, and show improve-

ments over the other approaches of modeling non-verbal behaviors and rapport, there

are still some limitations to be addressed in future studies (discussed in more details

in Section 6.2). Some of the limitation are as follow:

• There are some non-verbal behaviors for which I did not have enough data in

the videos for model generation (i.e., speaker head lateral sweep, speaker large

smile, speaker afraid face, puzzled face, speaker head movements, listener head

lateral sweep, listener head nod-shake, listener head shake, listener large smile,

listener afraid face, listener raised brows, listener opened hands, listener point

hands, listener contrast hands, listener hand formless flicks, listener lean left,

and listener right lean). This limitation can be addressed by annotating more

videos and generating more data to enable us model the missing non-verbal

behaviors.

• Some of the models of non-verbal behaviors have lower objective performance

in comparison to others (e.g., speaker gaze left, speaker/listener lean forward),

which can be improved with more data collection.

• In the data annotation phase, a few of the features were annotated manually

(e.g., body lean, head gesture, hand gesture), which was a time intensive process.

Designing and implementing automatic visual feature recognizers can automate

this phase and reduce the time required to generate the non-verbal models.

• In this research, the focus was on modeling the non-verbal behaviors, therefore,

a simple dialog planner was used, which was selecting the utterances in a pre-

defined order without taking into account the user’s responses as a trigger for

selecting the next utterances. More dynamic dialog planners and spoken dialog

management systems can address this limitation and enable the character to

have a more believable verbal interaction with the users too.
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• The current character system (i.e., Haptek) is a platform dependent (i.e., Win-

dows) application. Therefore, we are limited in using this character on other

platforms. This limitation can be addressed by using character systems that are

less platform dependent or rendering the character using a platform independent

approaches such as WebGL (see detailed discussion in Section 6.2).

5.11 Summary

In this chapter, I studied modeling human non-verbal behaviors from video and con-

versation text corpora, using machine learning. I modeled different non-verbal behav-

iors for both speaker and listener roles of a virtual character, including head gesture

(i.e., nod, shake, and nod-shake), eye gaze (i.e., left, and right), subtle smile, hand

gestures (i.e., formless flick, pointing, contrast, iconic, closed, and opened), emotional

facial expressions (i.e., neutral, happy, sad, surprised, angry/puzzled, and disgusted),

eyebrow movement (i.e., up and down), and lean (i.e., forward and left).

I evaluated each individual non-verbal behavior using objective tests, and also

evaluated their combination, as a rapport model, using subjective tests (i.e., user

studies). Evaluation results show high accuracy of the individual models and also

improvements of a rapport-enabled character over a neutral one. Evaluations com-

pare the neutral and rapport-enabled characters in terms of engagement, naturalness,

rapport, attitude, intention to use, perceived enjoyment, perceived ease of use, per-

ceived sociability, perceived usefulness, social presence, trust, information disclosure,

sensory experience, cognitive experience, affective experience, perceived precision of

expressions, perceived recall of expressions, anthropomorphism, likability, animacy,

perceived intelligence, expressiveness, and perceived personality. Evaluation show

high improvements of the rapport-enabled character over the neutral character. Also,

comparing with the decision tree approach presented in Chapter 4, subjective eval-
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uations show high improvements of the machine learning approach presented in this

chapter.
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CHAPTER 6

Conclusions

This chapter describes the summary of my contributions and possible future re-

search directions.

6.1 Summary

In this dissertation, I mainly focused on the design and development of a data-driven

computational model of non-verbal rapport for virtual characters, using the data

derived from video corpora of human-human interactions. In this approach, I used

machine learning to learn human non-verbal behaviors, and modeled non-verbal rap-

port using the combination of those models.

The following list summarizes the contributions of this research:

1. Extracting information from the lexical and syntactical structure of the surface

text to support the automatic generation of believable non-verbal behaviors

using machine learning techniques.

2. Extracting information from human-human counseling video corpora to sup-

port the automatic generation of believable non-verbal behaviors using machine

learning techniques.

3. Using interactive realtime features, such as facial expressions, head movements,

and gaze directions, for modeling the non-verbal behaviors.

4. Modeling a set of non-verbal behaviors for the virtual character in both speaker

and listener roles. For the speaker role, head gesture (nod, shake, non-shake),

subtle smile, gaze (left and right), facial expression (happy, surprised, an-

gry/puzzled, and disgusted), eyebrow movement (up and down), hand gesture
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(formless-flick, point, contrast, iconic, closed, and open), and body lean (for-

ward and left) are modeled. For listener role, head nod, subtle smile, gaze

(left and right), facial expression (happy, surprised, angry/puzzled, disgusted),

eyebrow down, hand closed gesture, and body lean forward are modeled.

5. Combining a set of non-verbal behavior models (stated above), generated using

machine learning techniques, to model non-verbal rapport communication for a

virtual character.

6. Mapping all the possible facial muscle movements, head movements, and head

gestures of a virtual character to the Action Units (AUs) of the Facial Action

Coding System (FACS).

7. Applying the non-verbal rapport-enabled communication model to a virtual

health counselor to improve the user acceptance of the character and perceived

character features.

My contribution has impacts on two areas of human-computer interaction, and

computer based health intervention systems. In addition, I developed computational

resources to map FACS action units on virtual characters’ faces, in order to generate

standard facial expressions, which impacts on the areas of psychology and emotion

theory research as well.

6.2 Future Directions

As mentioned in Section 3.1, some of the HapFACS action unit expressions still need

improvements (i.e., AUs 11, 13, 14, 16, 20, 41, 42, 44). Also, for further studies, I

suggest to provide non-linear changing of the intensity for video generation, because

AU activation can be non-linear from a geometric point of view. Therefore, future
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versions of HapFACS will improve the expressiveness of the imperfect AUs and will

enable non-linear AU activations.

Moreover, the automatic non-verbal behavior generation can be extended in sev-

eral directions. In order to model new non-verbal behaviors (that are missing in

this dissertation, i.e., speaker head lateral sweep, speaker large smile, speaker afraid

face, puzzled face, speaker head movements, listener head lateral sweep, listener head

nod-shake, listener head shake, listener large smile, listener afraid face, listener raised

brows, listener opened hands, listener point hands, listener contrast hands, listener

hand formless flicks, listener lean left, and listener right lean) and improve the cur-

rently modeled behaviors, more videos can be annotated and more data can be col-

lected. Also, automatic visual feature recognizers can be implemented for annotating

those visual features that were annotated manually in this research. Therefore, the

video annotation phase will be automated completely and the data annotation time

will be reduced significantly.

Recent growth of using the smart phones and other portable smart devices is a mo-

tivation to port the current system to other platforms which increases the availability

and accessibility significantly. New improvements in HTML5 and WebGL technolo-

gies enable us to render 3D virtual characters in web browsers that support HTML5

(including Safari, Chrome, Firefox, and Internet Explorer). Therefore, generating

new characters in WebGL and integrating them with my system (as web services)

enable us to deliver rapport-enabled virtual characters on different platforms. As ex-

plained in Section 3.2, HapGest software is responsible for generating the non-verbal

behaviors and synchronizing them with the verbal behaviors (i.e., words in the sen-

tence). HapGest uses events to perform this function. For animating the WebGL

characters on the browser, a similar event handling process needs to be implemented

for synchronizing the new characters’ verbal and non-verbal behaviors. Therefore, the

218



WebGL character receives a tagged text (from rapport model web-service), in which

words are tagged with appropriate non-verbal behaviors using bookmark events. The

WebGL character uses the Text-To-Speech (TTS) engine to read the sentence and

throw events for each reached bookmark (i.e, non-verbal behavior). Finally, the event

handler animates the character with corresponding non-verbal behaviors.

In this research, the focus was on modeling the non-verbal behaviors, therefore,

I used a simple dialog planner, which was selecting the utterances in a pre-defined

order without taking into account the user’s responses as a trigger for selecting the

next utterance. The future version of the dialog planner can be a spoken dialog

management system, which enables the character to select the best utterances based

on the user’s responses.

Last but not least, the completed web-based virtual health counselor can be used

to deliver health interventions to real problem drinkers (or people who have other un-

healthy life styles), in order to (1) study the system’s effects on their behavior change,

and (2) compare the system’s performance with other web-based interventions such

as Drinker’s Check-Up, based on which the On-Demand Virtual Counselor (ODVIC)

was implemented.
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Crook, Debora Field, and S. Sheffield. ’How Was Your Day ?’ An Af-
fective Companion ECA Prototype. In Proceedings of SIGDIAL 2010:
the 11th Annual Meeting of the Special Interest Group on Discourse
and Dialogue, volume 1, pp 277–280, The University of Tokyo, 2010.
Association for Computational Linguistics.

[CW98] H. H. Clark and T. Wasow. Repeating Words in Spontaneous Speech.
Cognitive Psychology, 37(3):201–42, December 1998.

[Dam94] Antonio R. Damasio. Descartes’ Error: Emotion, Reason, and the
Human Brain, volume 33. Putnam, 1994.

[Dav83] Mark H. Davis. Measuring Individual Differences in Empathy: Evi-
dence for a Multidimensional Approach. Journal of Personality and
Social Psychology, 44(1):113–126, 1983.

[Dav94] Mark H. Davis. Empathy: A Social Psychological Approach. Westview
Press, 1994.

[DCP02] Berardina De Carolis, Valeria Carofiglio, and Catherine Pelachaud.
From Discourse Plans to Believable Behavior Generation. In Proceed-
ings of the 2nd International Conference on Natural Language Gener-
ation (INLG’02), New York, USA, 2002.

227



[DCS+12] Tamara L. Dunn, Leanne M. Casey, Jeanie Sheffield, Peter Newcombe,
and Anne B. Chang. Dropout from Computer-Based Interventions for
Children and Adolescents with Chronic Health Conditions. Journal of
Health Psychology, 17(3):429–42, April 2012.

[DDR01] C. Dunn, L. Deroo, and F.P. Rivara. The Use of Brief Interventions
Adapted from Motivational Interviewing Across Behavioral Domains:
a Systematic Review. Addiction, 96(12):1725–42, 2001.

[Den87] D. C. Dennett. The Intentional Stance. MIT Press, 1987.

[DMNP10] Berardina De Carolis, Irene Mazzotta, Nicole Novielli, and Sebastiano
Pizzutilo. Social Robots and ECAs for Accessing Smart Environments
Services. In Proceedings of the International Conference on Advanced
Visual Interfaces (AVI’10), pp 275–278, New York, New York, USA,
2010. ACM Press.

[Doh00] J. Doherty, Y., Hall, D., James, P.T., Roberts, S.H., & Simpson.
Change Counseling in Diabetes: The Development of a Training Pro-
gramme for the Diabetes Team. Patient Education & Counseling,
40:263–278, 2000.

[DRSV02] D. DeCarlo, C. Revilla, Matthew Stone, and J.J. Venditti. Making
Discourse Visible: Coding and Animating Conversational Facial Dis-
plays. In Proceedings of Computer Animation 2002 (CA’02), volume
2002, pages 11–16. IEEE Computer Society, 2002.

[dVS06] Frederique de Vignemont and Tania Singer. The Empathic Brain: How,
When and Why? Trends in Cognitive Sciences, 10(10):435–41, October
2006.

[EBLvH07] H. A. Elfenbein, M. Beaupre, M. Le vesque, and U. Hess. Toward a
Dialect Theory: Cultural Differences in the Expression and Recognition
of Posed Facial Expressions. Emotion, 7(1):131–146, 2007.

[EF74] Paul Ekman and Wallace V. Freisen. Detecting Deception from the
Body or Face. Journal of Personality and Social Psychology, 29(3):288–
298, 1974.

[EF78] Paul Ekman and Wallace V. Freisen. Facial Action Coding System:
A Technique for the Measurement of Facial Movement. Consulting
Psychologists Press, 1978.

228



[EF86] Paul Ekman and W. V. Friesen. A New Pancultural Facial Expression
of Emotion. Motivation and Emotion, 10(2):159–168, 1986.

[EFA80] Paul Ekman, Wallace V. Freisen, and Sonia Ancoli. Facial Signs of
Emotional Experience., 1980.

[EFH02] Paul Ekman, Wallace V. Freisen, and Joseph C. Hager. Facial Action
Coding System, volume 160. Research Nexus eBook, Salt Lake City,
UT, 2nd edition, 2002.

[ELF83] Paul Ekman, Robert W Levenson, and Wallace V. Freisen. Auto-
nomic Nervous System Activity Distinguishes among Emotions. Sci-
ence, 221(4616):1208–1210, 1983.

[EM01] Andrew J. Elliot and holly A. McGregor. A 2 x 2 Achievement Goal
Framework. Journal of Personality and Social Psychology, 80(3):501–
519, 2001.

[ER01] K. M. Emmons and S. Rollnick. Motivational Interviewing in Health
Care Settings. Opportunities and limitations. American Journal of
Preventive Medicine, 20(1):68–74, January 2001.

[FE83] Wallace V. Friesen and Paul Ekman. EMFACS-7: Emotional Facial Ac-
tion Coding System. Unpublished Manuscript, University of California
at San Francisco, 1983.

[Fes87] Norma Deitch Feshbach. Parental Empathy and Child Adjust-
ment/Maladjustment. In N. Eisenberg and J. Strayer, editors, Empathy
and its Development, Cambridge Studies in Social and Emotional De-
velopment., pages 271–291. New York, NY, US: Cambridge University
Press, 1987.

[FMS+12] Angela N. Fellner, Gerald Matthews, Kevin D. Shockley, Joel S. Warm,
Moshe Zeidner, Lisa Karlov, and Richard D. Roberts. Using Emotional
Cues in a Discrimination Learning Task: Effects of Trait Emotional
Intelligence and Affective State. Journal of Research in Personality,
46(3):239–247, June 2012.

[FO08] Mary Ellen Foster and Jon Oberlander. Corpus-Based Generation of
Head and Eyebrow Motion for an Embodied Conversational Agent.
Language Resources and Evaluation, 41(3-4):305–323, February 2008.

229



[Fri94] A.J. Fridlund. Human Facial Expression: An Evolutionary View. Aca-
demic Press, San Diego, 1994.

[Fri03] U. Frith. Autism: Explaining the Enigma, volume 21 of Cognitive De-
velopment. Blackwells, 2003.

[Fus02] Susan R. Fussell. The Verbal Communication of Emotions: Interdisci-
plinary Perspectives. Lawrence Erlbaum Associates, 2002.

[Gal03] Vittorio Gallese. The Roots of Empathy: The Shared Manifold Hy-
pothesis and the Neural Basis of Intersubjectivity. Psychopathology,
36(4):171–180, 2003.

[GdRLV08] E. Goeleven, R. de Raedt, L. Leyman, and B. Verschuere. The Karolin-
ska Directed Emotional Faces: A Validation Study. Cognition and
Emotion, 22:1094–1118, 2008.

[GKW10] Jonathan Gratch, Sin-hwa Kang, and Ning Wang. Using Social Agents
Explore Theories of Rapport and Emotional Resonance. Technical Re-
port Chap X, University of Southern California, 2010.

[GM85] Arnold P. Goldstein and Gerald Y. Michaels. Empathy: Development,
Training, and Consequences. Hillsdale, N.J. and L. Erlbaum Associates,
1 edition, 1985.

[GM86] Rand J. Gruen and Gerald Mendelsohn. Emotional Responses to Affec-
tive Displays in Others: The Distinction Between Empathy and Sym-
pathy. Journal of Personality and Social Psychology, 51(3):609–614,
1986.

[GM04] Jonathan Gratch and Stacy C. Marsella. A Domain-Independent
Framework for Modeling Emotion. Cognitive Systems Research,
5(4):269–306, 2004.

[GOL06] Jonathan Gratch, Anna Okhmatovskaia, and Francois Lamothe. Vir-
tual Rapport. In Proceedings of the Intelligent Virtual Agents Confer-
ence (IVA), 2006.

[Gor85] Ronald D. Gordon. Empathy: The State of the Art and Science. In
Proceedings of the International Conference of the World Communica-
tion Association, pp 1–16, Baguio, Philippines, 1985.

230



[Gra99] J.E. Grahe. The Importance of Nonverbal Cues in Judging Rapport.
Journal of Nonverbal Behavior, 23(4):253–269, 1999.

[GSM+11] Barbara Gonsior, Stefan Sosnowski, Christoph Mayer, Jiirgen Blume,
B. Radig, D. Wollherr, and K. Kuhnlenz. Improving Aspects of Em-
pathy and Subjective Performance for HRI through Mirroring Facial
Expressions. In Proceedings of the RO-MAN, 20th IEEE International
Symposium on Robot and Human Interactive Communication, pp 350–
356, Atlanta, GA, USA, 2011. IEEE.

[GWGF07] Jonathan Gratch, Ning Wang, Jillian Gerten, and Edward Fast. Cre-
ating Rapport with Virtual Agents. In Proceedings of the Intelligent
Virtual Agents Conference (IVA), 2007.

[GWO07] Jonathan Gratch, Ning Wang, and Anna Okhmatovskaia. Can Virtual
Humans be More Engaging than Real Ones? In Proceedings of the 12th
International Conference on Human-Computer Interaction: Intelligent
Multimodal Interaction Environments, (HCI’07), Chamonix, France,
2007. Springer-Verlag Berlin, Heidelber.

[Hal77] Michael Alexander Kirkwood Halliday. Explorations in the Functions
of Language. Elsevier North-Holland, 1977.

[HCR94] Elaine Hatfield, John T. Cacioppo, and Richard L. Rapson. Emotional
Contagion. Current Directions in Psychological Science, 2(3):96–99,
1994.

[HDC15] M. Sazzad Hussain, Sidney K. D’Mello, and Rafael A. Calvo. Re-
search and Development Tools in Affective Computing. In The Oxford
Handbook of Affective Computing, chapter 25, pages 349–357. Oxford
University Press, 1 edition, 2015.

[Hel04] Mitsuru Ishizuka Helmut Prendinger. Life-Like Characters: Tools, Af-
fective Functions, and Applications. Springer, 2004.

[Hes97] H.D. Hester, R.K., & Delaney. Behavioral Self-Control Program for
Windows: Results of a Controlled Clinical Trial. Journal of Consulting
and Clinical Psychology, 65:685–693, 1997.

[HFG03] Robert C. Hubal, Geoffrey A. Frank, and Curry I. Guinn. Lessons
Learned in Modeling Schizophrenic and Depressed Responsive Virtual

231



Humans for Training. In Proceedings of the 2003 International Con-
ference on Intelligent User Interfaces (IUI’03), pp 85–92, Miami, FL,
US, 2003. ACM.

[HJR10] Adam T. Hirsh, Mark P. Jensen, and Michael E. Robinson. Evaluation
of Nurses’ Self-Insight into Their Pain Assessment and Treatment De-
cisions. The Journal of Pain: Official Journal of the American Pain
Society, 11(5):454–61, May 2010.

[HKEW09] Marcel Heerink, B. Krose, Vanessa Evers, and Bob Wielinga. Measuring
Acceptance of an Assistive Social Robot: A Suggested Toolkit. In The
18th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN’09), pages 528–533. IEEE, 2009.

[HMG10a] Lixing Huang, Louis-philippe Morency, and Jonathan Gratch. Learning
Backchannel Prediction Model from Parasocial Consensus Sampling: A
Subjective Evaluation. In Proceedings of the 10th International Con-
ference on Intelligent Virtual Agents (IVA’10), pp 159–172. Springer-
Verlag Berlin Heidelberg, 2010.

[HMG10b] Lixing Huang, Louis-Philippe Morency, and Jonathan Gratch. Paraso-
cial Consensus Sampling: Combining Multiple Perspectives to Learn
Virtual Human Behavior. In Van Der Hoek, Kaminka, Lesperance,
Luck, and Sen, editors, Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS’10), pp 10–
14, Toronto, Canada, 2010. International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org).

[HMG11] Lixing Huang, Louis-philippe Morency, and Jonathan Gratch. Virtual
Rapport 2.0. In Proceedings of the 11th International Conference on
Intelligent Virtual Agents (IVA’11), pp 68–79, Reykjaavik, Iceland,
2011. Springer-Verlag Berlin, Heidelberg.

[Hof00] Martin L. Hoffman. Empathy and Moral Development: Implications
for Caring and Justice. Cambridge University Press, 2000.

[Hoj07] Mohammadreza Hojat. Empathy in Patient Care: Antecedents, Devel-
opment, Measurement, and Outcomes. New York, NY: Springer, 2007.

[HSD05] Reid K. Hester, Daniel D. Squires, and Harold D. Delaney. The
Drinker’s Check-up: 12-Month Outcomes of a Controlled Clinical Trial

232



of a Stand-Alone Software Program for Problem Drinkers. Journal of
Substance Abuse Treatment, 28(2):159–169, 2005.

[HSW+06] Frank Hegel, Torsten Spexard, Britta Wrede, G. Horstmann, and
T. Vogt. Playing a Different Imitation Game: Interaction with an
Empathic Android Robot. In Proceedings of the 6th IEEE-RAS Inter-
national Conference on Humanoid Robots, pp 56–61. IEEE, 2006.
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