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ABSTRACT OF THE THESIS

AN EXPERIMENTAL STUDY OF MICRO-END-MILLING OPERATIONS

by

Tug Tacku Arkan

Florida International University, 1998

Miami, Florida

Professor Ibrahim Tansel, Major Professor

Cutting tools less than 2mm diameter can be considered as micro-tool. Micro-

tools are used in variety of applications where precision and accuracy are indispensable.

In micro-machining operations, a small amount of material is removed and very small

cutting forces are created. The small cross sectional area of the micro-tools drastically

reduces their strength and makes their useful life short and unpredictable; so cutting

parameters should be selected carefully to avoid premature tool breakage. The main

objective of this study is to develop new techniques to select the optimal cutting

conditions with minimum number of experiments and to evaluate the tool wear in

machining operations. Several experimental setups were prepared and used to investigate

the characteristics of cutting force and AE signals during the micro-end-milling of

different materials including steel, aluminum and graphite electrodes. The proposed

optimal cutting condition selection method required fewer experiments than conventional

approaches and avoided premature tool breakage. The developed tool wear monitoring

technique estimated the used tool life with ±10% accuracy from the machining data

collected during the end-milling of non-metal materials.

iv



TABLE OF CONTENTS

CHAPTER PAGE

1. Introduction . . . . 1

II. Theoretical Background . . . . . . 3

IL1. Modeling End-Milling Operations . . . . 3

1L2. Acoustic Emission Generation 6

11.3. Neural Networks . . . . . . 12

11.3.1. Backpropagation Neural Networks . . . . . 14

11.3.2. Probabilistic Neural Networks . . . 15

11.4. Wavelet Transformations . . . . . 17

11.5. Static and Dynamic Characteristics of Micro-Tools . . . 19

11.6. On-line Monitoring of Tool Condition during Cutting Operations . 21

11.6.1. Wear-Cutting Force Relationship in Micro-Machining 22

III. Selection of Cutting Conditions and Monitoring of Tool Wear

For Industrial Applications . . . . . . 25

111.1. A New Method for Machinability Analysis . . . . 25

111.2. Studied Static and Dynamic Behaviors of Micro-Tools . . 28

111.3. Development of an Estimation Method for Tool Wear Monitoring

by using Neural Networks (N2PTI) . . . 29

111.4. Improvement of the Neural Network Based Tool Inspector . 33

V



IV. Experimental Set-Up and Procedures . . . 35

IV. 1. Cutting Force - AE Data Collection for Machinability and

Wear Analysis . . . . 35

- Graphite Electrodes . 37

- Aluminum. . . . . . . 41

- Steel (NAK 55) . . . . . 42

IV.2. Static Test . . . . . . . . 44

IV.3. Dynamic Test . . . . . . . . 46

V. Results and Discussions . . . . . . 48

V.1. Characteristics of Cutting Force at Different Tool Wear Levels . 48

- Graphite Electrodes . . . . . 48

- Aluminum. . . . . . . 63

- Steel (NAK 55) . . . . . . 71

V.2. Performance and Reliability of the N2PTI . . . 79

- Graphite Electrodes . . . . 79

- Aluminum. . . . . . . 94

V.3. Performance of the Improved of the N2PTI . . . 101

- Graphite Electrodes . . . . . 101

- Aluminum. . . . . . 112

V.4. Dynamic Behavior of Micro Tools . . . 121

V.5. Static Behavior of Micro Tools . . . . . 126

VI. Conclusion . . . . . . . . 143

LIST OF REFERENCES . . . . . 147

vi



List of Figures

FIGURE PAGE

Figure 1. Backpropagation type Neural Network . . . 15

Figure 2. PNN type Neural Network . . 16

Figure 3. Proposed Machinability Method . . . . 26

Figure 4. Flow Diagram of the New Machinability Method . 27

Figure 5. Vibration Test with Laser Vibrometer . . 29

Figure 6. Neural Network Training Model . . 31

Figure 7. Operation of N2PTI . . . 32

Figure 8. CNC Fadal Machining Center . . 36

Figure 9. Climb Milling Technique . . 38

Figure 10. Experimental Set-Up for Tool Wear Test on .

POCOEDMC-3 . . . . . . 40

Figure 11. NAK 55 Steel Machining with 0.0625" Diameter End-Mill . 43

Figure 12. Static Behavior Experiment of the Micro-Tools 45

Figure 13. Dynamic Behavior Experiment of the Micro-Tools . . 47

Figure 14. Experimental Setup of the Dynamic Test . . . 47

Figure 15. Thrust Direction Cutting Force on POCOEDM-C3

after 40 Passes . . . . . 50

Figure 16. Feed Direction Cutting Force on POCOEDM-C3

after 40 Passes . . . . . . 50

Figure 17. Slots from Perfect to Worn out Cutting Tool. . . 51

Figure 18.a. X Direction Cutting Force of Perfect Tool (Slot 1) . . 52

Figure 18.b. Y Direction Cutting Force of Perfect Tool (Slot 1) . 52

Figure 19. Slots #1, #2, and #3 . . . . . . 53

Figure 20.a. X Direction Cutting Force of the Tool (Slot 4) . 54

Figure 20.b. Y Direction Cutting Force of the Tool (Slot 4) . . 54

Figure 21. Slots #6, #7, #8 and #9 . . . . 55

Figure 22.a. X Direction Cutting Force of the Tool (Slot 8) . 56

vii



Figure 22.b. Y Direction Cutting Force of the Tool (Slot 8) . 56

Figure 23.a. X Direction Cutting Force Variation with Usage

of the Tool . . . . . . . 58

Figure 23.b. Y Direction Cutting Force Variation with Usage

of the Tool . . . . . . 58

Figure 24.a. Linear Curve Fitting of the Experimental X Direction

Cutting Force . . . . . 59

Figure 24.b. Exponential Curve Fitting of the Experimental X Direction .

Cutting Force . . . . . . 59

Figure 25.a. Linear Curve Fitting of the Experimental Y Direction

Cutting Force . . . . 60

Figure 25.b. Exponential Curve Fitting of the Experimental Y Direction .

Cutting Force . . . . . 60

Figure 26.a. Comparison of the Experimental and the Forecasted.

Data for X Direction Cutting Force (POCOEDMC-3) 61

Figure 26.b. Comparison of the Experimental and the Forecasted.

Data for Y Direction Cutting Force (POCOEDMC-3) . 61

Figure 27. The Relation between X and Y Direction Cutting Force

with respect to Tool Life (POCOEDMC-3) . . 62

Figure 28.a. X Direction Cutting Force Variation with Usage

of the Tool on Aluminum. . . . . 66

Figure 28.b. Y Direction Cutting Force Variation with Usage

of the Tool on Aluminum. . . . . . 66

Figure 29.a. Linear Curve Fitting of the Experimental X Direction

Cutting Force on Aluminum. . . . . . 67

Figure 29.b. Exponential Curve Fitting of the Experimental X Direction .

Cutting Force on Aluminum. . . . . . 67

Figure 30.a. Linear Curve Fitting of the Experimental Y Direction

Cutting Force on Aluminum. . . . . . 68

viii



Figure 30.b. Exponential Curve Fitting of the Experimental Y Direction .

Cutting Force on Aluminum. . . . 68

Figure 31 .a. Comparison of the Experimental and the Forecasted.

Data for X Direction Cutting Force (Aluminum) . . 69

Figure 31 .b. Comparison of the Experimental and the Forecasted.

Data for Y Direction Cutting Force (Aluminum) . 69

Figure 32. The Relation between X and Y Direction Cutting Force

with respect to Tool Life (Aluminum) . . . 70

Figure 33.a. Thrust Direction Cutting Force Variation with Tool .

Usage on NAK 55 Steel . . . . . 73

Figure 33.b. Feed Direction Cutting Force Variation with Tool

Usage on NAK 55 Steel . . . 73

Figure 34.a. X Direction Cutting Force of 1/16" Diameter

Carbide End-Mill (Tool Breakage) . 74

Figure 34.b. Y Direction Cutting Force of 1/16" Diameter

Carbide End-Mill (Tool Breakage) . 74

Figure 35.a. Acoustic Emission Signal of 1/16" Diameter

Carbide End-Mill (Tool Breakage) . . . . 75

Figure 35.b. FFT of the Acoustic Emission Signal of 1/16" Diameter

Carbide End-Mill (Tool Breakage) . . . . 75

Figure 36.a. Linear Curve Fitting of the Experimental X Direction

Cutting Force (NAK 55 Steel) . . . . 77

Figure 36.b. Exponential Curve Fitting of the Experimental X Direction .

Cutting Force (NAK 55 Steel) . . . . 77

Figure 37.a. Linear Curve Fitting of the Experimental Y Direction

Cutting Force (NAK 55 Steel) . . . . 78

Figure 37.b. Exponential Curve Fitting of the Experimental Y Direction .

Cutting Force (NAK 55 Steel) . . . . 78

Figure 38. Tool Usage and Cutting Force Relation-Experimental Results 81

Figure 39.a. Estimated Results of the Training Cases with Analog BP NN 82

ix



Figure 39.b. Estimated Results of the Training Cases with PNN BASIC . 82

Figure 39.c. Estimated Results of the Training Cases with PNN SEPVAR 83

Figure 40.a. Estimated Results of the Test Cases with Analog BP NN 83

Figure 40.b. Estimated Results of the Test Cases with PNN BASIC 84

Figure 40.c. Estimated Results of the Test Cases with PNN SEPVAR . 84

Figure 41.a. Estimation Accuracy Comparison of the 3 NN (Training Data) 86

Figure 41.b. Estimation Accuracy Comparison of the 3 NN (Test Data) . 86

Figure 41.c. Estimation Accuracy Comparison of the 3 NN (All Data) 87

Figure 42. Small Tool Usage and Cutting Force Relation-

Experimental Results . . . . 89

Figure 43.a. Estimated Results of the Training Cases with Analog

BP NN (0.030" Carbide End-Mill) . . 89

Figure 43.b. Estimated Results of the Training Cases with

PNN BASIC (0.030" Carbide End-Mill) . . . 90

Figure 43.c. Estimated Results of the Training Cases with

PNN SEPVAR (0.030" Carbide End-Mill) . . . 90

Figure 44.a. Estimated Results of the Test Cases with Analog

BP NN (0.030" Carbide End-Mill) . . 91

Figure 44.b. Estimated Results of the Test Cases with

PNN BASIC (0.030" Carbide End-Mill) . . . 91

Figure 44.c. Estimated Results of the Test Cases with

PNN SEPVAR (0.030" Carbide End-Mill) . . 92

Figure 45.a. Estimation Accuracy Comparison of the 3 NN (Training Data) 92

Figure 45.b. Estimation Accuracy Comparison of the 3 NN (Test Data) . 93

Figure 45.c. Estimation Accuracy Comparison of the 3 NN (All Data) . 93

Figure 46. Tool Usage and Cutting Force Relation for Aluminum

Experimental Results . . . . . 95

Figure 47.a. Estimated Results of the Training Cases with Analog BP NN 95

Figure 47.b. Estimated Results of the Training Cases with PNN BASIC . 96

Figure 47.c. Estimated Results of the Training Cases with PNN SEPVAR 96

X



Figure 48.a. Estimated Results of the Test Cases with Analog BP NN 97

Figure 48.b. Estimated Results of the Test Cases with PNN BASIC . 97

Figure 48.c. Estimated Results of the Test Cases with PNN SEPVAR . 98

Figure 49.a. Estimation Accuracy Comparison of the 3 NN (Training Data) 99

Figure 49.b. Estimation Accuracy Comparison of the 3 NN (Test Data) . 99

Figure 49.c. Estimation Accuracy Comparison of the 3 NN (All Data) . 100

Figure 50.a. Estimation Accuracy of Analog BP for Training Cases

with Improved N2PTI (Segmental Averaging) 105

Figure 50.b. Estimation Accuracy of Analog BP for Test Cases

with Improved N2PTI (Segmental Averaging) . 105

Figure 51.a. Estimation Accuracy of Analog BP for Training Cases

with Improved N2PTI (Wavelet Transformation) . . 109

Figure 51.b. Estimation Accuracy of Analog BP for Testing Cases.

with Improved N2PTI (Wavelet Transformation) . . 109

Figure 52. Representation of the original cutting force with 10 local

parameters obtained with Segmental Averaging technique . 110

Figure 53. Representation of the original cutting force after

wavelet transformation . . . . . 111

Figure 54. Experimental Cutting Force Data . . . . 111

Figure 55.a. Estimation Accuracy of Analog BP for Training Cases with

Improved N2PTI (Segmental Averaging) [Aluminum] . 116

Figure 55.b. Estimation Accuracy of Analog BP for Test Cases with

Improved N2PTI (Segmental Averaging) [Aluminum] . 116

Figure 56.a. Estimation Accuracy of Analog BP for Training Cases with

Improved N2PTI (Wavelet Transformation) [Aluminum] . 120

Figure 56.b. Estimation Accuracy of Analog BP for Test Cases with

Improved N2PTI (Wavelet Transformation) [Aluminum] . 120

Figure 57.a. 0.0625" Diameter HSS Tool Vibration (Tip was hit). . 123

Figure 57.b. 0.0625" Diameter HSS Tool Vibration (Bottom was hit) . 123

Figure 58.a. 0.020" Diameter HSS Tool Vibration (Tip was hit) . 124

xi



Figure 58.b. 0.020" Diameter HSS Tool Vibration (Bottom was hit) 124

Figure 59. Frequency Response of the 1/16" Diameter Carbide .

End-Mill - ARV Computer Program output . . 125

Figure 60.a. Cutting Edges of the Tool (0.020 HSS) Parallel

to the Workpiece . . . . . 127

Figure 60.b. Cutting Edges of the Tool (0.020 HSS) Vertical

to the Workpiece . . . 127

Figure 60.c. Cutting Edges of the Tool (0.020 HSS) 45 Degree

to the Workpiece . . . . 128

Figure 60.d. Tool breakage (0.020 HSS) . . 128

Figure 61.a. Cutting Edges of the Tool (0.0625 HSS) Parallel

to the Workpiece . . . . . . 129

Figure 61.b. Cutting Edges of the Tool (0.0625 HSS) Vertical

to the Workpiece . . . . . . 129

Figure 61.c. Cutting Edges of the Tool (0.0625 HSS) 45 Degree .

to the Workpiece . . . . . . 130

Figure 61.d. Tool breakage (0.0625 HSS) . . . . . 130

Figure 62.a. Cutting Edges of the Tool (0.020 Carbide) Parallel

to the Workpiece . . . . . . 131

Figure 62.b. Cutting Edges of the Tool (0.020 Carbide) Vertical

to the Workpiece . . . . 131

Figure 62.c. Cutting Edges of the Tool (0.020 Carbide) 45 Degree

to the Workpiece . . . . . 132

Figure 62.d. Tool breakage (0.020 Carbide) . . . . 132

Figure 63.a. Cutting Edges of the Tool (0.0625 Carbide) Parallel .

to the Workpiece . . . . . . 133

Figure 63.b. Cutting Edges of the Tool (0.0625 Carbide) Vertical.

to the Workpiece . . . . . . 133

Figure 63.c. Cutting Edges of the Tool (0.0625 Carbide) 45 Degree

to the Workpiece . . . . . 134

xii



Figure 63.d. Tool breakage (0.0625 Carbide) . . . 134

Figure 64.a. Cutting Edges of the Tool (0.020 HSS) Parallel

to the Steel Workpiece . . . . 135

Figure 64.b. Cutting Edges of the Tool (0.020 HSS) Vertical

to the Steel Workpiece . . 135

Figure 64.c. Cutting Edges of the Tool (0.020 HSS) 45 Degree

to the Steel Workpiece . . . . 136

Figure 64.d. Tool breakage (0.020 HSS) . . . . 136

Figure 65.a. Cutting Edges of the Tool (0.020 Carbide) Parallel

to the Steel Workpiece . . . .137

Figure 65.b. Cutting Edges of the Tool (0.020 Carbide) Vertical

to the Steel Workpiece . . . . 137

Figure 65.c. Cutting Edges of the Tool (0.020 Carbide) 45 Degree

to the Steel Workpiece . . . . 138

Figure 65.d. Tool breakage (0.020 Carbide) . . . . 138

Figure 66.a. Cutting Edges of the Tool (0.0625 HSS) Parallel

to the Steel Workpiece . . . . . 139

Figure 66.b. Cutting Edges of the Tool (0.0625 HSS) Vertical

to the Steel Workpiece . . . . . 139

Figure 66.c. Cutting Edges of the Tool (0.0625 HSS) 45 Degree .

to the Steel Workpiece . . . . . 140

Figure 67.a. Cutting Edges of the Tool (0.0625 Carbide) Parallel .

to the Steel Workpiece . . 141

Figure 67.b. Cutting Edges of the Tool (0.0625 Carbide) Vertical.

to the Steel Workpiece . . . . 141

Figure 67.c. Cutting Edges of the Tool (0.0625 Carbide) 45 Degree

to the Steel Workpiece . . . . 142

Figure 67.d. Tool breakage (0.0625 Carbide) . . . . 142

xiii



List of Tables

TABLE PAGE

Table 1 Different Approaches in the Study of the AE for Tool Wear. 8

Table 2 Tool Wear Sensing Methods 24

Table 3 Test Conditions for POCO-3 Machinability 39

Table 4 Test Conditions in POCOEDMC-3: Tool Wear Experiments 40

Table 5 Test Conditions for Aluminum Machinability 41

Table 6 Test Conditions for NAK 55 Steel Machinability 43

Table 7 Results of the Proposed Machinability Method 49

Table 8 Optimal Cutting Conditions obtained for Aluminum

with New Machinability Method 63

Table 9 Cutting Force Variation - Tool Life Results in Tool .

Wear Experiment (Aluminum) 64

Table 10 Optimal Cutting Conditions obtained for NAK 55 Steel

with New Machinability Method 71

Table 11 Cutting Force Variation - Tool Life Results in Tool .

Wear Experiment (NAK 55 Steel) 76

Table 12 Cutting Force Variation - Tool Life Results in Tool.

Wear Experiment (POCOEDMC-3) 80

Table 13 Comparison of the Experimental Data and NN

Estimation Data for POCOEDMC-3 85

Table 14 Characteristics of the 3 Different NN used For N2PTI 88

Table 15 Comparison of the Experimental Data and NN

Estimation Data for Aluminum 98

Table 16 Characteristics of the 3 Different NN used For N2PTI (Al) 100

Table 17 Characteristics of the 3 Different NN used For Improved

N2PTI (POCOEDMC-3) [Local Averaging] 102

Table 18 Estimation for the Training Data for POCOEDMC-3

[Local Averaging] 103

xiv



Table 19 Estimation for the Test Data for POCOEDMC-3

[Local Averaging] 104

Table 20 Characteristics of the 3 Different Neural Network used

for Improved N2PTI (Wavelet Transformation) 106

Table 21 Estimation for the Training Data for POCOEDMC-3

[Wavelet Transformation] 107

Table 22 Estimation for the Test Data for POCOEDMC-3

[Wavelet Transformation] 108

Table 23 Characteristics of the 3 Different NN used For Improved

N2PTI (Aluminum) [Local Averaging] 113

Table 24 Estimation for the Training Data for Aluminum

[Local Averaging] 114

Table 25 Estimation for the Test Data for Aluminum

[Local Averaging] 115

Table 26 Characteristics of the 3 Different Neural Network used

for Improved N2PTI (Wavelet Transformation) 117

Table 27 Estimation for the Training Data for Aluminum

[Wavelet Transformation] 118

Table 28 Estimation for the Test Data for Aluminum

[Wavelet Transformation] 119

Table 29 Performance of the N2PTI - POCOEDMC-3 145

Table 30 Performance of the N2PTI - Aluminum 146

xv



Chapter I

Introduction

Cutting tool less than 2mm diameter can be considered as micro-tool. Micro-tools

are used in variety of applications where precision and accuracy are indispensable. Today

many products use complex parts. Even the manufacturers of common consumer

products aim to miniaturize their products to increase their profit margin and market

share. Micro-tools have been finding many new applications in these market conditions.

Conventional cutting tools have been used in metal cutting operations for a longtime and

machine operators know their behavior on different workpieces as steel, aluminum, and

some non-metals. In addition, databases are available to find the optimum cutting

conditions easily. The small cross sectional area of the micro-tools drastically reduces their

strength and makes their useful life short and unpredictable. Also very limited machinability

data is available on micro-tools.

Due to the facts stated above, the need of on-line or off-line monitoring of micro-

tools during micro machining operations is indispensable for better product quality with

less work time, less expense. To maximize the productivity and product quality, best

cutting conditions have to be selected and used in the micro-machining operations.

Different parameters can be monitored during machining operations to obtain the

optimum conditions. Cutting forces can be measured during cutting operations and can be

used by using various techniques to estimate and prevent premature tool breakage. Tool

life (wear) and cutting forces relationships can be analyzed by using acoustic emission

(AE) techniques.
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In conventional machining operations, machinability of a material is evaluated

based on the following three factors:

1. Surface finish and integrity

2. Tool life

3. Force and power requirements

Thus good machinability indicates good surface finish and integrity, long tool life and

low force and power requirements. However, in micro machining, the main goal is to

avoid premature breakage.

The objectives of this study are the following:

1. To develop a new experimental procedure to select the optimal cutting

conditions for machining of different materials including metals (steel,

aluminum) and non-metals (electric discharge machining electrodes)

experimentally.

2. To investigate the relationship between the wear of carbide tools and cutting

force.

3. To evaluate feasibility of computational tools (neural networks), to estimate

tool wear from the characteristics of experimental cutting force data.

4. To propose a new method to estimate tool wear in industrial applications. The

method is developed to require a low cost hardware, to use a reliable and

simple computer program.

2



Chapter II

Theoretical Background

The modeling end-milling operations, cutting forces, acoustic emission (AE)

generation, neural networks (Backpropagation, PNN), wavelet transformations and

dynamic response of structures will be briefly introduced in this section.

11.1. Modeling End-Milling Operations

Several researchers [1, 2, 3] have developed deterministic models for the simulation

of cutting forces in end milling. An accurate model of cutting forces in milling is

indispensable in the machinability analysis and the prediction of tool life. In milling, a

cutting edge will create two components of force while cutting. These are called as

tangential and radial forces. Tlusty and MacNeil [1], modeled the dynamics of cutting

forces in end milling, for a steady state cutting, at a constant depth of cut and width. In this

model, the instantaneous cutting force at cutting angle is assumed to be proportional to the

chip thickness. The instantaneous tangential cutting force in end milling can be

approximated by:

FT =kbh (2.1)

Where, b is the axial depth of cut; k is the cutting force coefficient that depends on the

material of the workpiece, geometry of the tool and average chip thickness; h is the

instantaneous chip thickness at angle , as shown below:

3



h = St sin 0 (2.2)

where, St is the feed rate per tooth.

In this model, the radial component of cutting force is assumed to be 30% of the tangential

component:

FR = 0.3 F (2.3)

The total resultant cutting force is assumed to be the equivalent of the sum of the

components over the differential rotation angles, d.

dFT = K S sin # (2.4)

dFR = 0.3 K St sin # (2.5)

where, dy is the differential cutting edge.

The differential components of the cutting force on two fixed perpendicular directions are:

dF = dFT cos # - dFR sin 0 (2.6)

dF= dFT sin #- dFR cos (2.7)

For the case of non-helical teeth, the cutting forces may be represented by:

4



FX = - FT (cos 0+0.3sin q) (2.8)

FY = - FT (- sin 0+0.3cos #) (2.9)

where Fi is the tangential force.

Tlusty and Ismail [4] improved this model to study chatter in end milling. This model

allowed for tool deflection in both the x and y directions. The tangential cutting force in

equation 2.1 is modified to include the displacement,

FT =Kb(h-Z+Zmin) (2.10)

Where, Z is the displacement of the tool normal to the machined surface. Z min lowest

undulation left behind in the preceding cuts at angle, #. The Fx and Fy components of the

cutting force excite vibrations in the X and Y directions.

Models of cutting forces, which include the influence of cutter offset (run-out) on the

cutting force [5, 6] have also been developed. The effects of cutter offset can be included

by adding a term when determining the normal z displacement, which adjusts for the

eccentricity,

Z = x sin O+ ycos#+bte (2.11)

5



where tec adjusts for the eccentricity. For a four flute end mill, the first and third, and the

second and fourth flute values of ec average one. For a six flute end mill, the first and

fourth, second and fifth, and third and sixth flute values of tec average one.

11.2. Acoustic Emission Generation

During the machining operations, a series of spherical elastic stress waves are

generated by the rapid release of strain energy within the material. These waves travel until

they reach the surface of the material, where they can be detected with piezoelectric

transducers in intimate contact with the body and transformed into an electrical signal for

processing and analysis purposes. This release of strain energy can be due to a material

undergoing deformation, fracture or a combination of both factors.

The sources of acoustic emission during peripheral milling [7], are the following:

1. Plastic deformation in the shear zone near the cutting edges of the cutting teeth.

2. Rubbing between the rake faces of the cutting teeth and chips.

3. Rubbing between the flank faces of the cutting teeth and the workpiece.

4. Rubbing between the flank faces of the end teeth of the cutter and the machined

workpiece surface.

6. Chip breakage (less important).

5. Entanglement (less important).

During a cutting operation [8], dislocation in primary shear zone and the sliding friction in

the secondary shear zone primarily generate acoustic emission. As the cutting tool wears,
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additional frictional action between the tool flank and the workpiece also creates acoustic

emission. The portion of AE that is attributed to friction on the wear land becomes more

important when flank / workpiece contact area increases as a result of tool wear. Acoustic

emission generated from shearing and friction exhibit different signal characteristics since

the mechanisms by which AE is produced in these occasions are fundamentally different. As

a result, the signal characteristics of AE are expected to change when tool wear-land

progresses.

The relationship between the AE signal and tool wear is not as direct or as simple

as the relationship between the cutting force and cutting edge condition (tool wear). The

major advantage of using AE to monitor tool wear is that the frequency range of the AE

signal is much higher than that of the machine vibrations and environmental noises.

Therefore, a relatively, uncontaminated signal can be easily obtained by the use of a high-

pass filter. AE can be measured by simply mounting a piezoelectric transducer on tool

holder. In addition, the characteristics of the AE signal are independent of cutting direction.

However, due to its high frequency nature and the sensitivity to micro-structural behavior of

material, acoustic emission signals often have to be treated with additional signal processing

schemes so that the most useful information can be extracted.

Many studies have been carried out to study the acoustic emission during metal

cutting and different ways to process the signals have been experimented. Table 1 illustrates

these different approaches.



Table 1. Different approaches in the study of the acoustic emission for Tool Wear Analysis

Document Process Signal processing method
e

a
Ir

Zheng, L., Luo, Z. B., Wu, Y., et All processes Signal amplified band-pass 1
al., "Research and Development on filtered between 1000 kHz
Synthetic Cutting Tool Monitoring and 1 MHz. Ring count,
with AE Signal," Transactions of envelope, spectral and 9
NAMRI/SME, 1990. [9] correlation analyses were

used. 0

- Koning, W., Kutzner K., Shehl, U., Drilling Band-pass filtered signal, 1
"Tool Monitoring of Small Drills rectified, and low pass

With Acoustic Emission," filtered. The original high
International Journal of Machine frequency is converted to 9
Tools Manufacture Vol. 32, No. 4, low frequency. RMS
pp. 487-493, Pergamon Press, analyzed 2
Great Britain, 1992. [10]

- Vajpayee S., Sampath, A., Turning Transducer with resonance 1
"Acoustic Emission as an Indirect of 200 kHz, signal
Parameter for Tools Monitoring," amplified and filtered at
Proceedings of Manufacturing 100kHz high-pass, 2MHz 8
International '88, Symposium on low-pass and a pulse
Product and Process Design, Vol. counter. 8
1, Atlanta, Georgia, 1988. [11] Count and count rate

analyzed.

- Liu M., Liang, S. Y., "Analytical Peripheral milling An analytical model 1
Modeling of Acoustic Emission for relating the acoustic
Monitoring of Peripheral Milling emission energy content to
Process," International Journal of the cutting parameters is 9
Machine Tools Manufacture, Vol. developed.
31, No. 4, pp. 589-606, Pergamon
Press. 1991. [12]
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" Liu, M., Liang, S. Y., "Monitoring Peripheral milling Bridgeport vertical milling I
of Peripheral Milling Using machine. A wide band (0.1-
Acoustic Emission," Transactions 1.0 MHz) transducer

of NA.MRI/SME, 1990. [13] followed by an amplifier. 9
TMS was analyzed.

I0

- Klaiber, J. R., Dornfeld, D. A., Liu, Diamond turning Signal amplified and sent to 1
J. J., "Acoustic Emission Feedback RMS voltage filter. RMS
for Diamond Turning," analyzed.
Transactions of NAMRI/SME, a
1990. [14]

i0

- Liu, J. J., Dornfeld, D. A., Micro-machining A piezoelectric transducer 1
"Monitoring of Micro-machining simulated by end with resonance frequencies
Process Using Acoustic Emission," milling with very at 125 kHz and 375 kHz
Transactions of NAMRI/SME. small feed and was used. The signal was 9
Vol. XX, 1992. [15] high spindle pre-amplified high-pass

speed filtered at 50 kHz, then 2
amplified, stored and
finally digitized at 2 MHz
sampling rate. Analyzed
with power spectrum
estimation, zero crossing
rate, and kurtosis of the
signal.

- Diniz, A. E., Liu, J. J., Dornfeld, Turning Signal pre-amplified, high- 1
D. A., "Correlating Tool Life, (finishing) passed, amplified, recorded
Tool, Wear and Surface Roughness digitized and band-passed
by Monitoring Acoustic Emission at 50-500 kHz and at 200- 9
in Finish Turning," Wear No. 152, 300kHz, RMS. Analyzed
pp. 395-407, 1992. [16] the frequency spectrum. 2

- Hutton, D. V., "A Non-contact Rotating tools Proposes a chamber, 1
Acoustic Emission Sensing System surrounding the spindle
For Rotating-Cutter Machining filled with a liquid, which
Process," Experimental links the spindle with the 9
Techniques, Nov/Dec, 1991. [17] acoustic emission sensor

- Osuri, R. H., Chatterjee, S-, End Milling Bridgeport vertical milling 1
Chandrashekhar S. "On-Line

CondtionMontorig o Toos jmachine. The signal was
Condition Monitoring of Tools amplified, high passed at 20
Wear in End Milling Using kHz and recorded. RMS 9
Acoustic Emission," International analyzed.
Journal of Research, Vol. 29, No. 1
7, pp. 1339-1353, 1991. [18]
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Rangwala, S., Dornfeld, D., "A Orthogonal metal The signal was amplified 1
Study of Acoustic Emission cutting and recorded. The RMS
Generated During Orthogonal was analyzed.
Metal Cutting - 1:Energy 9
Analysis," International Journal of
Mechanical Science Vol. 33, No. 6
pp. 471-487, Pergamon Press,
Great Britain, 1991. [19]

Tansel, IN., Bao, W.Y., Medardo, End - Milling The tool breakage 1
E.T., Arkan, T.T, " Detection of mechanism of micro-end
Tool Breakage in Micro-End- mills, wear-induced stress,
Milling Operations by Monitoring is explained by evaluating 9
Acoustic Emission," Technical the thrust direction cutting
Conference Paper, NAMRI, SME force characteristics.
[28]

- Rangwala, S., Dornfeld, D., "A Orthogonal The signal was amplified 1
Study of Acoustic Emission cutting and recorded, low-pass
Generated During Orthogonal filtered and sampled at 5 9
Metal Cutting - 2:Spectral MHz. Was analyzed the 9
Analysis," International Journal of RMS distribution in the
Mechanical Sciences, Vol. 33, No. s
6, pp. 489-499, Great Britain 1991. signal power spectrum

[20]

- Liang, S. Y., Dornfeld, D. A., Turning Signal amplified, high- 1
"Tool Wear Detection Using Time passed at 50 kHz, sent to a
Series Analysis of Acoustic RMS meter, modulated to 9
Emission," Journal of Engineering remove the D.C. 8
for Industry, Vol. 111, pp. 199- component and digitized at
205, August 1989. [21] 5 kHz.

AR time-series modeling of
the acoustic emission RMS

signal has been

implemented.

- Carolan, TA., Hand, D.P., Barton Milling It describes the use of a 1
J.S., "Assessment of Tool Wear in robust fiber optic
Milling Using Acoustic Emission interferometer for the in-
Detected by a Fiber-Optic process measurement of AE 9
Interferometer," Journal of during face milling of steel
Manufacturing Science and to provide tool wear 6
Engineering, 1996, Vol. 118, information via analysis of
Transaction of the ASME [31] the rms. AE signal _
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Principe, J.C., Yoon, T., "A New Milling A novel signal processing 1
Algorithm for the Detection of system is presented for the
Tool Breakage in Milling," Int. detection of tool breakage
Journal of Machine Tools & using the displacement 9
Manufacturing, Vol. 31 No. 4 pp. signal (RORPA). The
443-454, Great Britain, 1991 [32] algorithm extracts 1

information from

consecutive revolutions to
decrease dependencies on
runout conditions and ideal
noise by creating a more

_ robust signal.

- Emel, E., Kannatey-Asibu, E. Jr., Turning Three force components 1
"Acoustic Emission and Sensor measured with a
Fusion for Monitoring the Cutting dynamometer, amplified,
Process," International Journal of digitized at 2kHz and low- 8
Mechanical Sciences, Vol. 31, No. pass filtered at 1kHz. The
11/12, pp. 795-809, Great Britain, AE and the force signal are
1989. [22] used to monitor the cutting

process.
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11.3. Neural Networks

A directed graph is a geometrical object consisting of a set of points (called nodes

or neurons) along with a set of directed line segments (called links) between them. A

neural network is a parallel-distributed information processing structure in the form of a

directed graph, with the following sub-definitions and restrictions: [33]

1. The nodes of the graph are called processing elements.

2. The links of the graph are called connections. Each connection functions as an

instantaneous unidirectional signal-conduction path.

3. Each processing element can receive any number of incoming connections

(also called input connections).

4. Each processing element can have any number of outgoing connections, but

the signal in all of these must be the same. In effect, each processing element

has a single output connection that can branch of fan out into copies to form

multiple output connections, each of which carries the same identical signal

(the processing element output signal).

5. Processing elements can have local memory.

6. Each processing element possesses a transfer function which can use (and

alter) local memory, can use input signals, and which produces the processing

element's output signal. The only inputs that allowed to the transfer function

are the values stored in the processing element's local memory and the current

values of the input signals in the connections received by the processing

element. The only outputs allowed from the transfer function are values to be
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stored in the processing element's local memory and the processing element's

output.

Transfer functions can operate continuously or episodically. If they operate

episodically, there must be an input called "activate" that causes the

processing element's transfer function to operate on the current input signals

and local memory values and to produce an updated output signal (and

possibly modify local memory values). Continuous processing elements are

always operating. The "activate" input arrives via a connection from a

scheduling processing element that is a part of the network.

7. Input signals to a neural network from outside the network arrive via

connections, which originate the outside world. Outputs from the network to

the outside world are connections that leave the network.

Neural networks can be classified in information domain as:

1. Time independent information (mapping problem)

2. Time dependent information (prediction problem)

3. Self learning information (induction and deduction problem)

4. Others (creation problem)

In this section, Backpropagation (BP) and Probabilistic Neural Networks (PNN) will be

introduced.
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11.3.1. Backpropagation Neural Networks (BP)

The backpropagation is the well known and the most commonly used neural

network. Figure 1 presents the structure of BP. Each link between the neurons represents

a weight and a simple (most commonly sigmoid) function. The user selects the number of

hidden layers and hidden neurons. BP can be used for mapping or characterization. The

backward propagation neural network is a kind of construction model. Construction

methods base on the biology theory. It tries to build a physical brain model to imitate the

think or behavior of a human being. During the training process, the weights of neurons

are adjusted. At the beginning weights are selected randomly.

In this study, "Neurashell" is used. The network has two drawbacks. First the user

should have knowledge and experience to select the number of hidden layers and number

of neurons in each layer. Second, training of the original algorithm is extremely slow. BP

is a very effective method when the characteristics of large number of training data are

represented with a small network.
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Figure 1. Backpropagation type of neural network

I1.3.2. Probabilistic Neural Networks (PNN)

Probabilistic neural networks are based on the distribution theory and Bayes'

theorem. It is a statistical model and it assumes that general information is obeyed a

normal distribution and uses the Bayes' theorem to assume the prior probabilities, PNN

optimizes the distribution model factors (mean and standard deviation) by using judge the

post probabilities. There are two problems in this kind of model. First one is the time

independent information problem and the other is normal distribution. It is difficult

process in small sample information cases and non-normal distribution information cases.

Figure 2 represents the structure of a PNN. For each training case, one neuron is assigned

to the pattern layer. Pattern layer neurons create an output according to the distance

between the input and the training case they represent. There is one summation neuron
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for each class. In this type of neural networks, training is very fast compared to BP,

however, the size of the network could be too large, if there are too many training cases.

In PNN, for each training case, one neuron is assigned to the pattern layer. Pattern layer

neurons create an output according to the distance between the input and the training case

they represent. There is one summation neuron for each class.

There are two kinds of PNN used in this study PNN Basic and PNN SEPVAR

[25]. The PNN Basic is the simplest probabilistic neural network. One sigma is used to

cover all variables. Training is the fastest of all PNN models, but quality is usually

lowest. The PNN Sepvar uses a separate sigma for each variable. During the training

phase, this model is identical to the Basic (single sigma model).

LAXW

0PATIHN

Ox+ Y+ 
+ Z

Figure 2. PNN type of neural network
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11.4. Wavelet Transformations

The wavelet transformation analysis is based on particular curves called wavelets.

In the recent years, new families of orthonormal basis functions have been discovered

that lead to transformations, which can translate a time-domain function into a

representation that is localized not only in frequency, but in time as well (39).

There are two basic functions that form the core of the wavelet transformation. The

scaling function 0(t), (also called dilation function or fundamental recursion) and the basic

(or primary wavelet) fij(t) shown below:

fi(t) Za,<D(2t - j) (2.12)
jEZ

Ti, ;(t) - (-1)a }l (2t + j) (2.13)
jcZ

Where the parameter j controls the compression-expansion in time scale and

amplitude, and k controls the translation of the function in time. The set of fundamental

functions defined by 0(t) and V j(t) is a system of scaled and translated wavelets.

This orthonormal basis of functions, called wavelets, can be combined to represent

any given signalf(t) by translating and scaling a custom designed mother wave (40, 41).

The originalf(t) function can be calculated according to the following expression:

f~t) = $c(n)(~(t)+ Yd(i, j)Tj(t) (2.14)
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Where the coefficients c(n) and d(ij) can be calculated by using the following expressions

c(n)= f f(t)( (t)dt
(2.15)

d(i, j)= f(t)(t)dt

Here the c(n) are the approximation coefficients. They represent the approximation of the

original signal f(t), with a resolution of one point per every 2" points of the original signal.

The d(ij) coefficients are called the detail coefficients of the wavelet transform. They

represent details of the original signal at different levels of resolution.

It can be said that, the wavelet transformation is the process of determining the

values of the c(n) and d(i j) coefficients, for a given ft) and a chosen wavelet system (39)

1992).
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1L5. Static and Dynamic Characteristics of Micro-Tools

The relationship between the cutting force and tool displacement can be represented

with a simple coefficient (static) or a transfer function (dynamic) depending on the

considered frequency range. This relationship is important to evaluate the accuracy of

cutting and tool breakage probability. The static relationship can be obtained easily by

using least squares method. Frequency and time-domain techniques can be used effectively

to obtain the dynamic characteristics. Frequency-domain techniques may perfect their

frequency response estimation by averaging the spectrums of incoming data many times if

the data set is long enough (5,000 or more). Frequency-domain identification techniques

have been widely used today for the experimental investigation of the dynamic

characteristics of planes, buildings, machine tools, and many other systems thanks to

dedicated Fast Fourier Transformation (FFT) hardware of the real-time analyzers.

However, the resolution and accuracy of frequency-domain methods are limited if the data

sequence is short (less than 500 points). For short data sequences time-domain methods

work effectively without lowering resolution, having leakage-related errors, and having

noise-related fluctuations. It is possible to estimate the dynamic characteristics from the

estimated parameters of these methods. Autoregressive Vector (ARV) models have been

used on simulated and experimental data.

The Recursive Multichannel Maximum Entropy Method (RMMEM) is a fast ARV

model estimation technique and has been used for the estimation of the frequency response

of the metal cutting process, structural dynamics, and unified transfer functions (which

represent both cutting and structural dynamics) of machining operations. The RMMEM

starts from a first-order model and estimates the parameters of all the ARV models up to
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desired highest order. The main advantages of the RMIMEM are its computational speed

and acceptable accuracy (less than 10% frequency response estimation error for a 3-

degrees-of-freedom [DOF] system).

The Autoregressive model of a one-output system is written as:

n

y(i) = Y y(i-k), (2.16)
k_,1

where the y(i) is the output of a system, and n is the order of the Autoregressive (AR)

model. Burg has proposed the Maximum Entropy Method (MEM) for the estimation of the

4k AR parameters by minimizing the forward and backward prediction errors.

For multi-input systems, Autoregressive Vector (ARV) models can be used to identify

multi- input and multi-output systems. The ARV model of a system with one output and

several inputs can be written as:

n

P_(i bu(i-k), (2.17)
k=1

where,

_ [y(i), x1(i), x2(i), ....... Xm(i)]T

Ck : parameters, (m+1) * (m+1) matrix

y(i) : output

xi(i), x 2 (i), ....... xm(i) : 1 st, 2nd ... mth inputs

m : number of inputs

n : order of the model
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Or for a one-input/one-output system, the same model can be written as:

y(i) #kI 0k 412 y(1 - k )

xi\I) =Y #k21 V'k22 x1(i -k) (2.18)
k=]

If the input [x1(i)] and the output [y(i)] of a system are known, the 4 parameter matrices

can be estimated for various approaches.

The RMMEM was used to obtain the frequency response (dynamic behavior) of micro-

tools in this study.

1L6. On-line Monitoring of Tool Condition during Cutting Operations

Tool condition monitoring is based on tool wear measuring during cutting

operation. Tool wear measuring techniques fall into two categories: direct and indirect.

The direct method which is also called off-line monitoring involves optical measurement

of wear, such as by periodically observing changes in tool profile. This is the most

common and reliable technique and is done using a microscope. This procedure,

however, requires that cutting operation be stopped which is not suitable for industrial

applications. Indirect methods, which are also called on-line methods, to measure the

wear involve the correlation of wear with process variables such as forces, AE, power,

temperature rise, surface finish, and vibrations. Since the direct observation methods

interrupt the machining operation, increase the cost; implementing on-line methods for
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monitoring the tool wear, is more attractive. [37]. Table 2 listed below summarizes the

general techniques used for tool condition monitoring for machining operations.

11.6.1. Wear - Cutting Force Relationship in Micro-Machining Operations

[Tool Breakage Mechanism and Wear Induced Stress (WIS) Relation]

Conventional tools wear out gradually and the quality of surface finish

deteriorates. It is beneficial to estimate wear and to change these tools before the surface

quality and accuracy become unacceptable. On the other hand, the life of micro-tools is

very short and unpredictable. Touching them with a prop similar to conventional tool

inspection methods cannot be used to inspect the condition of these tiny tools. In previous

studies, chip clogging was observed as the main cause of tool breakage in micro-drilling

operations for some materials [36]. Tool breakage mechanism can be investigated during

machining of different workpiece materials by evaluating the cutting force data.

Various changes occur on cutting tool, while they are used for machining operations.

Some of these changes are loss of tool material, deposition of small workpiece particles

on tool surfaces and change of tool geometry with deflection. Microscopic damages at the

cutting edges, gradually developing dullness, filling of the empty spaces around the

cutting edges with deposition of small particles can be also be considered as wear. The

relation between these changes (wear) and the related stress variation at the tool shaft was

called Wear Induced Stress (WIS). The WIS causes tool failure as a result of excessive

stress beyond the strength of shaft or fatigue depending on the magnitude of the cutting

force.
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If a chip clogging occurs, cutting forces and stresses increase beyond the endurance limit

of the tool and breakage will occur in a few rotations. In such a case, a sharp increase is

expected at the cutting force. Tool wear does not have any influence on the breakage

mechanism. Breakage is very unpredictable and fast. It is almost impossible to predict

chip clogging ahead of time.

WIS causes fatigue-related breakage if the cutting force and stress (at the tool

shaft) increase for a while as a result of tool wear, but they stay at a constant level. The

stress is below the endurance limit of the shaft, but it is above the normal level. The tool

will not be broken immediately. It will be deflected in the opposite direction to the feed

while it is rotating. This means that the stress and strain distribution will be periodically

change at the tool shaft and create fatigue. The increase of cutting force in the feed

direction beyond the normal force range will indicate the existence of WIS. The tool will

eventually break with fatigue.

The breakage happens very quickly if the wear related problems are extensive and the

cutting force continuously increases beyond the strength of the tool. For example, if the

cutting edges of the tool are partially damaged or deposition of workpiece particles filled

the tiny groves (or build-up edge is created), metal removal rate decreases. In this case,

the cutting edges cannot remove enough material to open satisfactory space for the

central section (shaft) of the tool. The workpiece starts to push the shaft of the tool

against the workpiece and it deflects. The workpiece will push the tool a little more at

each rotation and a linear increase is expected at the absolute value of the static part of

the feed direction force until the tool breaks. The main reason of breakage in this case is

the excessive stress beyond the endurance limit of the tool. [26, 27, 28, 29]
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Table 2. Tool wear-sensing methods

Procedure Measurement Transducer

Optical [7, 32] Shape or position of TV camera, optical
cutting edge transducer

Direct

Wear particles and Particle size and Spectrophotometer,
radioactivity concentration scintillator

Tool/work junction Changes of junction Voltmeter
resistance resistance

Workpiece size Dimension of Micrometer, optical,
workpiece pneumatic, ultrasonic,

electromagnetic
transducers

Tool/work distance Distance of workpiece Micrometer,
and tool or tool holder pneumatic gauge,

displacement
transducer

Cutting force [1, 6] Changes of cutting Dynamometer, strain
force gauges

Acoustic emission [20] Stress wave energy AE transducer

Indirect Sound Acoustic waves Microphone

Light reflection Reflection by cutting Phototransistor
edge

Vibration [34] Vibration of tools Accelerometer
and/or tool posts

Temperature [35] Variation of cutting Thermocouple,
temperature on tool pyrometer

Power input [36] Power or current Ampere meter,
consumption of spindle dynamometer
or feed motor

Roughness of machined Changes in surface Mechanical stylus,
surface roughness of workpiece optical transducer
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Chapter III

Selection of Cutting Conditions and Monitoring of Tool Wear for

Industrial Applications

In this chapter, a new machinability test and wear estimation methods are

proposed for micro-tools. This new analysis technique requires less experiment and it is

accurate.

Il 1. A New Method for Machinability Analysis

In conventional milling operations, the main goal is to reduce the cost, to improve

the quality and to increase the productivity. Various databases, machinability handbooks

and experienced operators are available to select optimal tool conditions in conventional

cutting operations with bigger then % inch diameter tools. In the case of micro

machining, the main goal is to prevent the premature tool breakage. The life of micro

tools is very unpredictable. Since the machinability handbooks are prepared with other

goals, they cannot be used directly for micro-machining applications.

A new method is proposed to select optimal conditions to machine graphite electrodes used

in electric discharge machining, special injection molding steel and aluminum workpieces,

with High Speed Steel (HSS) and Carbide cutting tools from 0.020 - 0.0625 inches

diameter. The architecture and process flow diagram of the proposed method is presented

in Figure 3 and 4. Experiments were repeated until the most aggressive cutting conditions,

which have static cutting force below the critical values observed with static test. Then tool

life is evaluated with a new micro-tool.
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Figure 3. Proposed Machinability Method
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Figure 4. Flow Diagram of the New Machinability Method
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111.2. Studied Static and Dynamic Behaviors of Micro-Tools

The new machinability method required the testing of the static maximum

allowable bending force. For this reasons a series of experiments were performed. HSS

and Carbide end-mills were deflected with a bending force to obtain the stiffness of the

tools. All workpiece-tools combinations were tested to evaluate the effect of workpiece

hardness on tool deflection. High-Speed Steel and Carbide tools have very different

material proprieties and stiffness. The main goal of the static test realized was to obtain

the allowable maximum bending force, which can be applied to the tool.

A series of impact tests also were conducted to study the dynamic behavior of the

tools. The goal was to find the natural frequency of the micro-tools. The results obtained

from the static and dynamic behavior of the tools were used for the developed new

machinability method. Static and dynamic experiments were performed on a Bridgeport

Milling Machine. Tool was not rotating in these experiments. Figure 5 presents the

experimental setup.
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Figure 5. Laser Vibrometer and the Impact Hammer during the Dynamic Behavior

Study Experiment

111.3. Development of an Estimation Method for Tool Wear Monitoring

[Estimation of Wear by Using Neural Networks (N 2PTI)]

Micro-end mills with less than 2-mm diameter have a short and unpredictable tool

life [30]. However, it is possible to use these tools for hours when non-metal materials

such as plastics and electrodes are machined by using conservative cutting conditions.

After a long machining operation, micro-tools wear out, lose material, and their

dimensions change. The quality of the surface finish deteriorates, burr is created, and the

dimensional accuracy of the manufactured parts is ruined when the tool is very badly

worn out. The Neural Network based Periodic Tool Inspector (N2PTI) is introduced in

this section. The N2PTI requires the tool to cut a test piece, which is attached to a
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dynamometer. The variation of the feed and thrust direction cutting force is measured

while the test piece is cut. Neural networks estimate the tool's wear from these two

inputs. (Figure 6) The performances of three different networks are discussed in this

section.

The N2PTI was developed with the following goals:

" To have the cutting force signal of micro machining with an acceptable S/N ratio.

Typically the cutting forces are very small when the electrodes and plastic materials are

cut. The inertia forces are almost equal or larger than the cutting forces. The Signal-to-

Noise (S/N) ratio of the cutting force readings is very low. The material of the test

piece and the cutting conditions can be selected to have the cutting forces at least two

or three times larger than the inertia forces.

" To have a low cost, reliable system convenient for industrial applications: The

characteristics of the cutting forces continuously change during the machining of a

workpiece if the metal removal rate and machining parameters change. The N2PTI uses

a test piece and cuts the material exactly at the same cutting conditions. In this test, the

characteristics of the cutting forces are only affected by the tool wear. The encoding

and interpretation of the signal becomes much simpler and the cost of the system is

reduced.
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Figure 6. Neural Network Training Model

The operation of the N 2PTI is outlined in Figure 7. The N 2PTI evaluates the tool wear

with periodic intervals. The workpiece is attached to the table of the milling machine. A

test piece is installed on a dynamometer, which is attached to the table next to workpiece.

The user prepares the part program to cut the workpiece and periodically move the tool to

the test piece to cut a slot on it. The feed and thrust direction cutting forces are measured

while the test piece is cut. The difference of the measured average maximum and

minimum cutting forces are given to the neural network. In the rest of the study this

difference will be called variation. The neural network is run first during the training, and

later in the testing mode. During the training mode two inputs (feed and thrust direction

cutting force variation) and one output (the tool life) are given to the network. The

network establishes a model between the inputs and the outputs. In the testing mode only
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two inputs are given to the network. The network estimates the tool life by inspecting the

variation of the feed and thrust direction cutting force variations.

Move the tool to the Move back to

desired position the workpiece

x NO N2PTI
fS

Move to the test

YES part and cut a slot

Decide if the
Measure the

inspection
cutting forces

should be done

Estimate the tool
Cut the desired path

wear
on the workpiece

Figure 7. Operation of N 2PTI
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111.4. Improvement of the Neural Network based Periodic Tool Inspector

Neural Network Based Tool Inspector was designed to work with the amplitude

of the cutting forces. The network was trained with the amplitude of the cutting forces in

X (Thrust) and Y (Feed) directions. The N 2PTI could work for only at the specific spindle

speed, feed rate and depth of cut. To improve the capability of the N2PTI, a new approach

is proposed. The new approach estimates the tool wear by evaluating the relationship

between the X and Y direction cutting forces and eliminates the dependence of the method

to constant depth of cut. The new procedure can work with two different techniques to

select the parameters for the neural network training:

Segmental Averaging:

The new procedure first finds the maximum cutting force for each period which

corresponds to one revolution. The data is averaged for a certain number of points (up to

the spindle speed and sampling frequency of the digital oscilloscope) between the

maximum value of the first period and the one in the second period. After the averaging,

10 local parameters are obtained to represent the cutting forces in each direction. The

parameters are normalized, by dividing them by the maximum parameter. After

normalization, all the parameters are between 1 and 0.

Wavelet Transformation:

To obtain the local parameters that will represent the data profile better, wavelet

transformation is also used. Data is given to wavelet and 64 coefficients are chosen for

transformation. Data can only be given as number of 2" to wavelet. 2048 and 1024 data

points are used for the analysis. After wavelet transformation, 64 coefficients, which

represent best the original signal, are obtained and the inverse wavelet transformation is
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taken. Cutting force data is filtered of noise after wavelet transformation. One period is

presented with 8 local parameters. The parameters are normalized by dividing them by

the maximum parameter.

The parameters obtained with wavelet transformation are more precise than local

avearging to represent the original collected cutting force data
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Chapter IV

Experimental Set-Up and Procedures

IV. 1. Cutting force - AE Data Collection for Machinability and Tool Wear
Analysis

The experiments were conducted on a Fadal 3-axis CNC Machining Center.

(Figure 8) This milling machine had a maximum 50,000-rpm spindle speed. The micro-

tools used during the work had 1/16, 1/32 and 0.020 inches diameter. High Speed Steel

(HSS) and Carbide tools were used. Three different workpiece materials were cut:

1. Graphite Electrodes used in electric discharge machining (POCO-3,

POCOEDMC-3)

2. Aluminum

3. Steel (NAK55 molding steel)

The tool path generation code was generated by using SmartCAM. (Production Milling

Version 10)

First phase of the experiments was the machinability analysis of the workpiece

materials with the developed machinability test technique. Optimal cutting conditions for

each tool-workpiece combination were selected with the machinability study. Second

phase of the experiments was the tool wear monitoring, This phase was conducted on the

specific workpieces, which were found abrasive by the first phase or reported by the

users.
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Figure 8. Experimental Setup

Cutting force data was collected with a Kistler 9257B dynamometer and Kistler three

channel charge amplifier. Real time cutting force signal was digitized and recorded with a

Nicolet Integra model four channel 1 MS/s 12-bit digitizer and a Nicolet 310 two channels

oscilloscope. Low Frequency Acoustic emission signal was collected with an AL sensor

attached to the dynamometer and recorded with the same oscilloscope.

The experimental setups and procedures followed for 3 different workpiece materials are

presented in the following sections:
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Graphite Electrodes (POCO-3, POCOEDMC-3):

- Machinability:

First phase of the experiments was the machinability analysis of copper

implemented electrode graphite (POCO-3). This electrode is used widely in electric

discharge machining operations. Electric Discharge Machining (EDM) is a process that

utilizes electrical discharges or sparks, to machine any electrically conductive workpiece

material, including carbide, high alloy steels and hardened metals of many types. So

POCO-3 is very suitable and highly desirable electrode graphite for EDM. During

electric discharge machining very high voltages are created between the workpiece and

the electrode itself. The electrode is moved toward the workpiece within an ionizing fluid

allowing a discharge to occur when the gap is sufficiently small. The discharge, with the

aid of dielectric fluid, melts and removes metal from the workpiece. During each energy

discharge stock is removed from the end and sides of the electrode as well as from the

workpiece. Under normal operating conditions the stock removed from the workpiece

exceeds that removed from the electrode, but the ratio of wear is different for each

material. By knowing the wear ratios, it is possible to manufacture electrodes to the exact

size and quantity required for a particular job. Preparation of electrodes for EDM is a

very time consuming and difficult machining process due to the complexity of molds and

required precision.

POCO-3 is very abrasive and very conductive copper implemented carbon

graphite. The machinability analysis of POCO-3 was conducted with HSS end-mills with

0.0625 and 0.020 inch diameter. The workpiece (3 x 4 x 1 inches) dimensions was

clamped on the dynamometer. The dynamometer was hold by a vise that is bolted on the
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linear table of the milling machine. Dynamometer was connected to the charge amplifier,

which amplifies the cutting force signal. BNC cables connected the amplifier to digital

oscilloscope. Thrust (X) and feed (Y) direction forces were recorded. Climb milling

operation was performed. (Figure 9) 50 % overlapping was used in face milling of the

graphite. Test conditions were listed in Table 3. Optimal cutting conditions were found

after a series of experiments and used it the rest of the study.

- Tool Wear:

Second phase of the experiments with electrode was conducted on POCO EDMC-

3. Since POCO EDMC-3 is much more abrasive than POCO-3, it was used for wear

analysis.

Workpiece moves
with the same vector 0 Tool turns clockwise (CW)
direction of the tool

Figure 9. Climb Milling
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Table 3. Test Conditions for POCO-3 Machinability

Tool type HSS 2 Flutes End-Mill HSS 2 Flutes End-Mill

Tool diameter 0.0625 inch 0.020 inch

Spindle speed 15,000 rpm 15,000 rpm

Feed rate 30, 65, 100 ipm 20, 70, 120 ipm

Depth of cut 0.0625, 0.1, 0.15 inch 0.01, 0.03, 0.05 inch

Workpiece POCO - 3 POCO - 3

The main purpose of this second phase work was to measure the tool wear while POCO

EDMC-3 was machined. The graphite workpiece was climb milled with certain amount

of passes on the face of the POCO EDMC-3 and then a slot was cut on the aluminum

workpiece to record the cutting force of the tool. This process was repeated periodically

until the tool got worn out. The overlapping on the graphite machining was 50 %. 0.0625

and 0.030 inches diameter Carbide two flute end-mills were used. The experiment was

done with a brand new tool. Different cutting parameters were used on the abrasive

POCO EDMC-3 and aluminum test piece. The dimensions of the POCO EDMC-3

workpiece was (3.75 x 8 x 1). The dimensions of the aluminum test piece was (0.5 x 4 x

0.2). The experimental setup is presented in Figure 10. Numerical control tool path

generation of the experiment for the CNC machining center was prepared with

SmartCAM (Production Milling Version 10). The cutting parameters were listed for two

different diameters sized carbide end-mill in Table 4.
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Table 4. Test Conditions in POCO EDMC-3 - Tool Wear Experiments

Tool type Carbide 2 Flutes End-Mill Carbide 2 Flutes End-Mill

Tool diameter 0.0625 inch 0.030 inch

Spindle speed 15,000 rpm 15,000 rpm

Feed rate 5 ipm (electrode) 5, 7 ipm (Electrode)

2.5 ipm (Aluminum) 1.25, 2.5 (Aluminum)

Depth of cut 0.015 inch 0.015 (Electrode)

(Both same) 0.0075 (Aluminum)

Workpiece POCO EDMC - 3 POCO EDMC - 3

Aluminum Aluminum

Digital Oscilloscope

End-Mill

'' ' 11Aluminum
POCO
EDMC-3

Charge Amplifier

Dynamometer Microcomputer

Figure 10. The diagram of the experimental set-up for Tool Wear on POCO EDMC-3
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Aluminum:

The aluminum workpiece machinability and tool wear experiments were realized

within the same data collecting instruments but with different cutting tools and cutting

parameters. Cutting force data on aluminum workpiece was larger than the electrode

graphite and easier to monitor. For the first stage on these experiments, different cutting

conditions were chosen and applied within the face milling of aluminum workpiece.

Optimal cutting conditions were obtained and several experiments were repeated to

analyze the machinability of aluminum with carbide 0.0625 and 0.03125 inches diameter

two flute micro-end-mills. The workpiece dimensions were (3 x 4 x 1 inches). The tests

were performed, by using 50 % overlapping end milling. Climb milling was used.

The cutting parameters used in the experiments for machinability of the aluminum

workpiece is presented in Table 5.

Table 5. Test Conditions in Aluminum Machinability Experiments

Tool type Carbide 2 Flutes End-Mill Carbide 2 Flutes End-Mill

Tool diameter 0.0625 inch 0.03125 inch

Spindle speed 15,000-32,000-50,00 rpm 15,000-32,000-50,00 rpm

Feed rate 15, 22.5, 30, 32, 48, 50, 9, 18, 27, 30, 60, 90 ipm

64, 75, 100 ipm

Depth of cut 0.015, 0.020 0.030 inch 0.015, 0.020, 0.030 inch

Workpiece Aluminum Aluminum
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Steel (NAK 55):

NAK 55 is specially developed with variety of heat treatment (age hardened, not

quenched and tempered) techniques for injection molding processes. It has an excellent

uniformity of hardness throughout even heavy sections. Internal stresses are minimized.

The chemistry of NAK 55 was specially formulated to produce the most desired features

in mold steel. It is working perfectly with machining process and EDM. [International

Mold Steel, Inc. 1997 Product Catalogue]

The experiment was conducted with the same experimental setup presented above

except a new digital four-channel digitizer (Figure 11). Addition to the cutting force data

in feed and thrust direction (2-channel record) acoustic emission signal of the cut was

also collected and recorded. (1-chnanel) The steel NAK 55 workpiece (4 x 3 x 1 inches)

was clamped to the dynamometer and the acoustic emission sensor was magnetically

attached to the dynamometer to ensure the closest contact. The experiment was

performed with a variety of cutting parameters to find out the optimal cutting conditions

as spindle speed, feed rate and depth of cut for this specific workpiece NAK 55. 50 %

overlapping, climb end milling operations were performed to monitor the force variation

at different stages of the tool life. Table 6 presents the cutting conditions.
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Table 6. Test Conditions in NAK 55 Steel Machinability Experiments

Tool type Carbide 2 Flutes End-Mill Carbide 2 Flutes End-Mill

Tool diameter 0.0625 inch 0.0300 inch

Spindle speed 15,000; 30,000; 45000 15,000; 30,000; 45000

Feed rate 1.25, 2.5, 5, 7.5 1.25, 2.5, 5

Depth of cut d/2, 3d/4, d, 1.5d d/2, 3d/4, d, 1.5d

Workpiece NAK 55 steel NAK 55 steel

Figure 11. NAK55 Steel Workpiece Machining with 0.0625" Diameter End-Mill

43



IV.2. Static test

The same kind of micro tools used in the machinability experiments were used in

static test. High speed steel (HSS) and carbide 0.0625, 0.03125, 0.020 inches diameter

two flutes end-mills were analyzed under the static loading conditions. The tool was

attached to a Bridgeport Milling machine with an end-mill holder. The workpiece was

clamped to the dynamometer. The dynamometer was tightened to a vise that is fixed on

the X-Y table of the milling machine. A linear displacement sensor was clamped on the

vise with respect to the tool holder. The sensor supposed to measure the linear table

displacement during the experiment. The sensor with its signal conditioner was connected

to a Nicolet 310 digital oscilloscope. The dynamometer was connected to a charge

amplifier and to the oscilloscope also. Figure 12 presents the experimental setup. Force

and displacement data were collected and recorded.

Table was fed manually within the thrust direction (X direction) against the micro-

tool applying a bending force to the tool itself. Tool was deflecting towards the same

direction of the loading. Bending forces and linear displacements respectively were

collected continuously until the tool broke down. Experiment was conducted with static

conditions, spindle of the milling machine was off Thrust direction bending force was

recorded within the linear small displacement in X direction.

Experiments were repeated with different static bending moment loading to

measure the stiffness of the micro-end-mill. The collected data were analyzed and

manipulated to find out the stiffness coefficient of HSS and Carbide micro-tool for the
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specified diameter and type. The bending moment loading limits of the tools also were

measured with extreme loading conditions.

Head of the Milling Machine

0

Workpiece

Micro-tool

Dynamometer

Table of Milling Machine

Eddy current based
proximity sensor

Amplifiers

Digital Oscilloscope

Figure 12. Static experiment of the Micro-Tool
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IV.3. Dynamic test

In order to find out the dynamic behavior of micro-tools, some experiments were

conducted. HSS and Carbide 0.0625, 0.02135 and 0.020 inches diameter two flute micro

end-mills were used. End-mills were connected to a Bridgeport Milling machine with a

tool holder. The experimental setup is presented in Figure 13 and 14. A Polyter OFV

2500 Laser Vibrometer controller and OFV 350 Sensor Head were used to measure the

vibration of the tools. As an exciter, a miniature impact-hammer used. A digital Nicolet

310 oscilloscope was used to collect and record data. Digitizer was pre-triggered to catch

the input impact and the dynamic response of the tool at the same time.

The tip and the bottom of the micro end-mill were hit with the impact hammer to

analyze the dynamic response. When the tool was excited, it was vibrating and the

vibration was measured with a vibrometer. The vibrometer was directing a laser beam to

the tip of the end-mill. Once the tip was hit with the impact hammer, the impact was

digitized and recorded to the oscilloscope. The response of the tool to this excitation was

a typical dynamic vibration signal. Input and output signals were recorded as 4,000 data

points.

The data was studied and graphs were prepared. The dynamic characteristics of

the end-mills were calculated from the variation of the output signal amplitude versus

time. The natural-angular frequency and the damping factor of the tools were calculated

analytically and numerically. Transfer function of the system was established with the aid

of a computer program.
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Digital Oscilloscope
Micro-end-mill in

tool holder

Laser Vibrometer
Impact

-- j hammer

Laser Beam

Figure 13. Dynamic Experiment of Micro-Tools

Figure 14. Experimental setup of Dynamic Test
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Chapter V

Results and Discussions

In this section, the performance of the new machinability test method,

characteristics of the cutting force at different tool wear levels, the accuracy of the

developed neural network based tool wear estimators are discussed.

V.1. Characteristics of Cutting Force at Different Tool Wear Levels

Graphite Electrodes (POCO3, POCOEDMC-3):

A series of experiments were conducted to study the tool wear related cutting force

variation during the end milling of graphite electrodes. POCO 3 and POCO EDMC-3

workpieces were used. POCOEDMC-3 was reported to be more abrasive by the users. At

the first stage of the study, the optimal cutting conditions were experimentally found by

using the developed procedure. Later, these cutting conditions were used to study tool

wear. Table 7 shows a summary of the proposed machinability method results with 0.0625-

inch diameter carbide end-mill for POCOEDMC-3. 15,000-rpm spindle speed, 5 ipm feed

rate and 0.015 inches depth of cut, were used in the experiments.

Figure 15 and 16 shows the thrust and feed direction cutting force after 120 inches

of tool life when POCOEDMC-3 is cut with a carbide micro-tool. This is just one pass

before the second slot cut on the aluminum test piece. The small magnitude of cutting force

and the external noise from the machine itself make the data very difficult to interpret.
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Table 7. Results of the Proposed Machinability Method for POCOEDMC-3

Experiment Cutting Maximum Cutting Acceptability
Conditions Forces

1 15,000 rpm X - 40 N
15 ipm Y- 25 N Tool is broken

0.030" doc
2 15,000 rpm X - 31 N not acceptable

0.03 doc Y- 19 N Tool Survived

4 15, 000 rpm Tool is OK
5 ipm X -20 N Conditions are

0.015 doc -12N optimal
5 15,000 rpm X - 25 N Tool is OK

7.5 ipm
0.015 doc Y- 16 N conditions are severe

To overcome this problem, and to be able to monitor the tool wear during the machining of

non-metals, an aluminum piece was used to inspect cutting force variation at different

stages of tool wear. A slot was cut on the aluminum test piece. The machining operation

continued on the non-metal workpiece. Periodically, aluminum test piece was cut at the

same cutting conditions and cutting data was collected. The magnitude of the X and Y

direction cutting forces had the tendency to increase as the tool began to wear out. Even

without monitoring of the cutting force, tool wear could be estimated from the burr on the

aluminum test piece. After the third and fourth slots on the test piece burr appeared and

increased with tool wear. The carbide end-mill with 1/16 inches diameter gave more

consistent results than 0.030 ones. The amplitude of the cutting force increased when the

tool wears out.

The pictures of the slots are presented in Figure 17, 19 and 21. The variation of the cutting

force at different stages of the tool wear is presented in Figure 18, 20 and 22.
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X Direction Cutting Force on Graphite Electrode
(Pass 40, before Slot 1 on the Aluminum test piece)
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Figure 15. Thrust Direction Cutting Force on POCOEDMC-3 after 40 Pass

Y Direction Cutting Force on Graphite Electrode
(Pass 40, before Slot 1 on Aluminum test piece)
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Figure 16. Feed Direction Cutting Force on POCOEDMC-3 after 40 Passes
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Figure 17. THE SLOTS FROM PERFECT TO WORN OUT TOOL
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Cutting Force (X-Direction) with 0.0625" dia.
Carbide End-Mill on ALUMINUM (Slot 1)
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Figure 18.a. THRUST DIRECTION CUTTING FORCE OF PERFECT TOOL (SLOT 1)

Cutting Force (Y-Direction) with 0.0625" dia.
Carbide End-Mill on ALUMINUM (Slot 1)
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Figure 18.b. FEED DIRECTION CUTTING FORCE OF PERFECT TOOL (SLOT 1)
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Figure 19. PICTURE OF THE SLOTS #1, #2, #3
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Cutting Force (X-Direction) with 0.0625" dia.
Carbide End-Mill on ALUMINUM (Slot 4)
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Figure 20.a. THRUST DIRECTION CUTTING FORCE OF TOOL (SLOT 4)

Cutting Force (Y-Direction) with 0.0625" dia.
Carbide End-Mill on ALUMINUM (Slot 4)
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Figure 20.b. FEED DIRECTION CUTTING FORCE OF TOOL (SLOT 4)
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Figure 21. PICTURE OF THE SLOTS #6, #7, #8. #9
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Cutting Force (X-Direction) with 0.0625" dia.
Carbide End-Mill on ALUMINUM (Slot 8)
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Figure 22.a. THRUST DIRECTION CUTTING FORCE OF TOOL (SLOT 8)

Cutiing Force (Y-Direction) with 0.0625" dia.
Carbide End-Mill on ALUMINUM (Slot 8)
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Figure 22.b. FEED DIRECTION CUTTING FORCE OF TOOL (SLOT 8)
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The amplitudes of the Thrust and Feed direction cutting force variation of the 1/16

inches diameter carbide end-mill are represented in Figure 23.a. and 23.b. This cutting

forces belong to ten slots cut on the aluminum test piece during the wear test of

POCOEDMC-3. Cutting forces had the tendency to increase with the usage of the tool.

Linear and exponential models were fitted to the data. The results were presented in Figure

24.a., 24.b., 25.a., and 25.b. The result of the study showed that linear curve fitted better

than the exponential curve.

The following equation was used to represent the wear and cutting force relationship.

y =a+bx (5.1)

a nad b were calculated from the following equations:

a [Y]-b[X] (5.2)

and

b= xy(x)(1y) (53)
b n- x x

2 _(Y)
2

where y = wear, x = magnitude of cutting force.

The results of the curve fitting study are presented in Figure 26.a. and 26.b.
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Tool Wear Testing (Cutting Force in Thrust Direction)
0.0625" dia. Carbide tool, 15,000rpm spindle speed, 0.015" doc
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Figure 23.a. Thrust Direction Cutting Force Variation with the Usage of the End-Mill

Tool Wear Testing (Cutting Force in Feed Direction)
0.0625" dia. Carbide tool, 15,000rpm spindle speed, 0.015" doc
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Figure 23.b. Feed Direction Cutting Force Variation with the Usage of the End-Mill

58



Thrust Direction Cutting Force Variation
POCOEDMC-3 Wear Analysis

(Linear Curve Fitting)
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Figure 24.a. Linear Curve Fitting to the Experimental Thrust Direction Cutting Force
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Figure 24.b. Exponential Curve Fitting to the Experimental Thrust Direction Cutting

Force
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Feed Direction Cutting Force Variation
POCOEDMC-3 Wear Analysis

(Linear Curve Fitting)
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Figure 25.a. Linear Curve Fitting to the Experimental Feed Direction Cutting Force
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Figure 25.b. Exponential Curve Fitting to the Experimental Feed Direction Cutting Force

60



Comparison of the Experimental vs.
the Linear Forecasted

Thurst Direction Cutting Force Data
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Figure 26.a. Comparison of the Experimental and the Forecasted Data for Thrust Direction

Cutting Force (POCOEDMC-3 Workpiece)
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Figure 26.b. Comparison of the Experimental and the Forecasted Data for Feed Direction

Cutting Force (POCOEDMC-3 Workpiece)
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The relation between the Thrust (X) and Feed (Y) Direction Cutting Force with respect to

the tool life during the machining of POCOEDMC-3 is presented in Figure 27.

Relation between the Thrust and Feed Direction Cutting
Force with respect to the Tool Life
(1/16" dia. Carbide End-Mill, POCOEDMC-3)

9.000

8 000

Thurst / Feed * 6-7
4.000 - -

3.000 04-s
--. 0 3-4

2.000 0 3
1.000 ~ ®1-2

1 2D

Thrust Direction Cutting 7
Force 9 Tool Life

Figure 27. The relation between the Thrust and Feed Direction Cutting Force with respect

to the tool life (POCOEDMC-3)
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Aluminum:

The machinability and tool wear experiments were performed on aluminum

workpiece. Although machining of aluminum is easier than the other harder metal with

conventional cutting tools, fuzzy behavior and premature tool breakage are commonly

encountered. The value of the cutting force was larger than the forces encountered during

the machining of electrode graphite and easier to monitor. At the first stage on these

experiments, different cutting conditions were applied to identify the optimal cutting

conditions.

The selected optimal cutting conditions are presented in Table 8.

Table 8. Optimal cutting conditions obtained for Aluminum with

Proposed Machinability Method

Tool Diameter 1/32" Carbide End-Mill

Depth of Cut 0.015 inches

Spindle Speed 45,000 rpm

Feed Rate 5 ipm

Tool Life obtained 156 inches

The tool wear experiments were conducted with the cutting conditions stated above. The

thrust and feed direction cutting force variation with tool usage for the 1/32 inches diameter

carbide end-mill was shown in Table 9.
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Table 9. Cutting Forces -Tool Life Results in Tool (1/32" Carbide End-Mill)

Wear Experiment (Aluminum Workpiece)

Cutting Force in Thrust Dir. (N) Feed Rate Cutting Force in Feed Dir. (N) Feed Rate
5 ipm 5 ipm

Tool Life (inch) Force Tool Life (inch) Force
30 6.6 30 9.78
45 7.1 45 10.11
60 10.42 60 14.62
62 8.56 62 11.23
75 10.11 75 12.5
90 12.23 90 13.47

105 16.86 105 16.78
107 14.78 107 14.96
120 16.74 120 16.41
135 18.35 135 18.54
156 20.13 156 21.75

Thrust and Feed direction cutting force variation of the 1/32 inches diameter

carbide end-mill are represented in Figure 28.a. and 28.b. As it can be seen from the

graphs that cutting forces are increasing with a certain of amount usage of the tool. Within

this trend, some of the cutting force data were larger than the usual ones. This phenomenon

is not related with the tool wear; the reason for this instantaneous increase in the data is the

chip of the aluminum workpiece stocked to the cutting edges of the tool. Aluminum is a

soft material and chips are created during the machining. Cutting tool used for the

experiment was carbide steel. During the test, for certain passes of the tool on the

workpiece, the aluminum temperature increased and the chips got melted and stocked to

the teeth of the end-mill. For most of the data, chips were released after certain amount of

tool usage after the specified pass. So for these reasons, when the cutting forces are

monitored larger than the usual ones, the data record was repeated after a while. The linear

increment trend can be seen if these abnormalities were ignored.
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Data was also studied with curve fitting analysis technique to evaluate the trend of the

increase in cutting forces. Linear and exponential models were fitted to the data. The results

were presented below in Figure 29.a., 29.b., 30.a., and 30.b. The interpolation method was

used for the curve fitting. The result of the study showed that linear curve fitted better than

the exponential curve. After the observation of the study, a linear forecasting analysis is

conducted to interpret the cutting force data. Forecasting method used is based on the linear

interpolation of the collected data. The equations 5.1 to 5.3 were used for forecasting. The

results are shown in Figure 31.
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Thrust Direction Cutting Force Variation - Tool Life
(Aluminum Workpiece - 1/32" Diameter Carbide End-Mill)
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Figure 28 a. Thrust Direction Cutting Force Variation with Tool Usage on Aluminum

Feed Direction Cutting Force Variation - Tool Life
(Aluminum Workpiece - 1/32" Diameter Carbide End-Mill)
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Figure 28.b. Feed Direction Cutting Force Variation with Tool Usage on Aluminum
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Thrust Direction Cutting Force Variation
Aluminum Workpiece Wear Analysis

(Linear Curve Fitting)
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Figure 29.a. Linear Curve Fitting to the Experimental Thrust Direction Cutting Force

(Aluminum Workpiece)

Thrust Direction Cutting Force Variation
Aluminum Workpiece Wear Analysis

(Exponential Curve Fitting)
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Figure 29.b. Exponential Curve Fitting to the Experimental Thrust Direction Cutting Force

(Aluminum Workpiece)
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Feed Direction Cutting Force Variation
Aluminum Workpiece Wear Analysis

(Linear Curve Fitting)
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Figure 30.a. Linear Curve Fitting to the Experimental Feed Direction Cutting Force

(Aluminum Workpiece)
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Figure 30.b. Exponential Curve Fitting to the Experimental Feed Direction Cutting Force

(Aluminum Workpiece)
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Comparison of the Experimental vs.
the Linear Forecasted

Thrust Direction Cutting Force Data
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Figure 31 a. Comparison of the Experimental and the Forecasted Data for Thrust Direction

Cutting Force (Aluminum Workpiece)
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Figure 31.b. Comparison of the Experimental and the Forecasted Data for Feed Direction

Cutting Force (Aluminum Workpiece)
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The relation between the Thrust (X) and Feed (1) Direction Cutting Force with respect to

the tool life in the machining of Aluminum workpiece is presented in Figure 32.

Relation between the Thrust and Feed Direction Cutting
Force with respect to the Tool Life
(1/32" dia. Carbide End-Mill, Aluminum)

16.000

14.000

12.00014-16

S12-14
10.000 010-12

_ - _- JH 8-10
Thrust / Feed 8.000 - -8

flG-8,

6.000 --- 1 4-6 |
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Thrust Direction Tool Life
Cutting Force 1

Figure 32. The relation between the Thrust and Feed Direction Cutting Force with respect

to the tool life (Aluminum)

70



Steel (NAK 55):

The machinability of NAK 55 was studied. Carbide tools with 0.0625 and 0.030

inches diameter and two flutes were used. Addition to the cutting force data in feed and

thrust direction (2-channel record) acoustic emission signal of the cut was also collected

and recorded. (1-chnanel) The steel NAK 55 workpiece which has (4 x 3 x 1 inches)

dimensions, was clamped to the dynamometer and the acoustic emission sensor was

magnetically attached to the dynamometer to ensure the closest contact. The experiment

was performed with a variety of cutting parameters to find out the best cutting conditions as

spindle speed, feed rate and depth of cut for this specific workpiece NAK 55. The cut was

face climb milling of the workpiece. The overlap was 50%. The proposed machinability

method was used and the optimum cutting conditions were obtained for NAK 55 Steel

workpiece. (Table 10).

Table 10. Optimal cutting conditions obtained for NAK 55 with Proposed

Machinability Method

Tool Diameter 1/16" Carbide End-Mill

Depth of Cut 3d/4

Spindle Speed 15,000 rpm

Feed Rate 2.5 ipm

Tool Life obtained 250 inches
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For 0.0625 inches diameter carbide end-mill, 15,000-rpm spindle speed, 2.5 ipm feed rate

and 3d/4 depth of cut were chosen as optimized conditions and tool wear analysis was

conducted with these conditions. 250 inches tool life was obtained with the optimized

cutting conditions.

Cutting force variation during the micro end milling of NAK 55 did not have the

same trend that graphite electrodes had. The cutting force in X and Y directions slightly

fluctuated but did not increase with the usage of the tool. These results are presented in

Figure 33. Table 11 presents the cutting force variation with the usage of the tool. The

thrust and feed direction cutting force during the tool breakage pass on the workpiece are

presented in Figure 34. Cutting forces were larger for a certain amount of tool life at the

beginning of the experiment and later tool became dull and cutting force slightly decreased.

The overall analysis of the data showed that the characteristics of the cutting force of the

cutting tool did not change. The reason for this phenomenon is that the tool material and

the workpiece material have similar material characteristics. Tool and workpiece have

closer hardness and tool probably wears out the tool gradually. Tool breakage happens

when an excessive bending force applied to the tool. Also the low-frequency acoustic

emission signal of the machining process and its frequency domain representation were

shown in Figure 35. Cutting Forces and Acoustic Emission data during the experiments had

a constant trend to be stable, but when the excessive bending force passed the limits of the

tool, the breakage occurred.
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X Direction Cutting Force - Tool Life
(NAK 55 Steel - 0.0625" dia. Carbide End-Mill)
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Figure 33.a. Thrust Direction Cutting Force Variation with Tool Usage on NAK 55 Steel

Y Direction Cutting Force - Tool Life
(NAK 55 Steel - 0.0625" dia. Carbide End-Mill)

60 - -- -- - -

40 - -- - - _ - - _

10
50-

3 15 30 45 60 105 120 135 150 210 225 235 240

Tool Life (inch)

Figure 33.b. Feed Direction Cutting Force Variation with Tool Usage on NAK 55 Steel

73



Thrust Direction Cutting Force (TOOL BREAKAGE)
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Figure 34.a. Thrust Direction Cutting Force of 1/16" Diameter Carbide End-Mill

(Tool Breakage)
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Figure 34.b Feed Direction Cutting Force of 1/16" Diameter Carbide End-Mill

(Tool Breakage)
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AE Signal (TOOL BREAKAGE)
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Figure 35.a. Acoustic Emission Signal of 1/16" Diameter Carbide End-Mill

(Tool Breakage)
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Figure 35.b. FFT of the Acoustic Emission Signal for 1/16" Diameter Carbide End-Mill

(Tool Breakage)

75



Table 11. Cutting Forces -Tool Life Results in Tool Wear Experiment (NAK 55 Steel)

Cutting Force in Thrust Dir. (N) Feed Rate Cutting Force in Feed Dir. (N) Feed Rate
2.5 ipm 2.5 ipm

Tool Life (inch) Force Tool Life (inch) Force
3 37.05 3 19.35

15 43.1 15 26.85

30 28.25 30 27.7

45 26.65 45 25.2
60 25.8 60 27.25

105 30.5 105 29.5
120 32.75 120 28.95
135 29.6 135 27
150 37.15 150 28.25
210 29.85 210 23.4
225 37.15 225 31.5
235 43.24 225 42
240 65 240 53.35

NAK 55 Steel workpiece cutting force data was also studied with curve fitting

analysis technique to evaluate the trend of the increase in cutting forces. Linear and

exponential curve fitting techniques were applied to the data. The results are presented in

Figure 36.a., 36.b., 37.a., and 37.b. The result of the study showed that linear curve fitted

better than the exponential curve. An approximate interpolated cutting force variation

equation is obtained from this analysis.

Also, the experiment was repeated with 0.030 inches diameter carbide end-mill.

The trend of the cutting force was the same.
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Thurst Direction Cutting Force Variation
NAK-55 Steel Wear Analysis

(Linear Curve Fitting)
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Figure 36.a. Linear Curve Fitting to the Experimental Thrust Direction Cutting Force

(NAK 55 Steel)
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Figure 36.b. Exponential Curve Fitting to the Experimental Thrust Direction Cutting Force

(NAK 55 Steel)
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Feed Direction Cutting Force Variation
NAK-55 Steel Wear Analysis

(Linear Curve Fitting)
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Figure 37.a. Linear Curve Fitting to the Experimental Feed Direction Cutting Force

(NAK 55 Steel)
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Figure 37.b. Exponential Curve Fitting to the Experimental Feed Direction Cutting Force

(NAK 55 Steel)
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V.2. Performance and Reliability of the Neural Network Based Periodic

Tool Inspector (N2PTI)

The Neural Network based Periodic Tool Inspector (N 2PTI) was introduced to

estimate the tool wear in end-milling operations. The proposed method is used to estimate

the tool life during the micro end milling of graphite electrodes (POCOEDMC-3),

aluminum and steel (NAK 55). The results are presented in the following sections.

Graphite Electrodes (POCOEDMC-3):

The N2PTI requires the tool to cut a test piece, which is attached to a dynamometer.

The variation of the feed and thrust direction cutting force is measured while the secondary

part is cut. Neural networks estimate the tool's wear from these two inputs. Three different

networks are used in this study: Backpropagation NN (ANALOG), Probabilistic NN

(BASIC, SEPVAR).

The main workpiece, a POCO-EDM-C3 electrode, and an aluminum test piece are

attached on a 9257B three-component Kistler dynamometer. The dynamometer is

connected to a charge amplifier. The feed and thrust direction forces were digitized, by

using a Nicolet 310 digital oscilloscope. Experimental setup, which was used to collect the

training data, was presented in Figure 10.

A 1/16" carbide tool was used to collect the experimental data. The spindle speed was

15,000 rpm. The tool was worn by cutting POCO EDM-C3 electrode material with a 20

inch/min feed rate and 0.030 inch depth of cut. To test the tool condition, an aluminum

test piece was cut at 15,000 rpm with a 5 inch/min feed rate and a 0.015-inch depth of

cut. Experimental results are listed in Table 12.
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The experimentally observed cutting force variation readings are presented in

Figure 38 by using bubble diagrams. The size of the bubble corresponds to the tool life.

The observed thrust and feed direction force variations are shown on the X and Y axes,

respectively. The diagram showed that both of the cutting force variations increased

while the tool wore out.

Table 12. Cutting Forces -Tool Life Results in Tool Wear Experiment (0.0625")

Cutting Force in Thrust Dir. (N) Feed Rate Cutting Force in Feed Dir. (N) Feed Rate
5 ipm 5 ipm

Tool Life (inch) Force Tool Life (inch) Force
150 8.6 150 8.5
300 9.05 300 9.325
450 10.725 450 14.475
600 18.95 600 15.225
750 24.5 750 17.05
900 27.15 900 17.725
1050 30.75 1050 18.1
1200 33.3 1200 19.2
1350 35.5 1350 22
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TOOL USAGE - CUTTING FORCE RELATIONSHIP
(0.0625" dia Carbide End Mill - POCO EDM-C3 Workpiece)
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Figure 38. Tool Usage and Cutting Force Relation - Experimental Test Results

Five cases were given to three different neural networks for training. One of the

networks was a backpropagation type neural network and the other two were

Probabilistic Neural Networks (PNN). The BASIC PNN used single sigma for both

inputs. The SEPVAR used different sigma for each input. After the training, the neural

networks estimated the tool life of the training data (Figure 39) and four other cases they

have never seen before (Figure 40). The estimated results are presented in Table 13.
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TOOL USAGE - CUTTING FORCE RELATIONSHIP
(0.0625" dia Carbide End Mill - POCO EDM-C3 Workpiece)
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Figure 39.a. Estimated Results of the Training Cases with Analog BP NN
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(0.0625" dia Carbide End Mill - POCO EDM-C3 Workpiece)

[Estimations for training cases]

25

20- 0
C 20 1147.0956

1038.8513
15 386.0638 878.1269

U. OBASIC PNN

a 10
* 301.3526

- 5

U

0
0 5 10 15 20 25 30 35 40

Cutting Force in Thrust Direction (N)

Figure 39.b. Estimated Results of the Training Cases with PNN BASIC
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TOOL USAGE - CUTTING FORCE RELATIONSHIP
(0.0625" dia Carbide End Mill - POCO EDM-C3 Workpiece)
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Figure 39.c. Estimated Results of the Training Cases with PNN SEPVAR

TOOL USAGE - CUTTING FORCE RELATIONSHIP
(0.0625" dia Carbide End Mill - POCO EDM-C3 Workpiece)
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Figure 40.a. Estimated Results of the Test Cases with Analog BP NN
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TOOL USAGE - CUTTING FORCE RELATIONSHIP
(0.0625" dia Carbide End Mill - POCO EDM-C3 Workpiece)
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Figure 40.b. Estimated Results of the Test Cases with PNN BASIC
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Figure 40.c. Estimated Results of the Test Cases with PNN SEPVAR
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Table 13. Comparison of the Experimental Data and Neural Network Estimation Data

X Direction Y Direction Experimental Analog BP Basic PNN Sepvar PNN

Force Force Tool Life Estimation Estimation Estimation

8.6 8.5 150 146.845 301.3526 150.0698
9.05 9.325 300 193.192 312.8789 150.791
10.725 14.475 450 406.898 386.0638 449.9302
18.95 15.225 600 545.888 645.3932 749.3131
24.5 17.05 750 757.077 878.1269 750.2033
27.15 17.725 900 876.623 957.7835 830.2736
30.75 18.1 1050 1001.48 1038.8513 1050
33.3 19.2 1200 1142.73 1092.7248 1124.8389
35.5 22 1350 1341.33 1147.0956 1349.7967

The performances of all the networks were very similar. All of them estimated the

test cases with acceptable accuracy. The training process of the PNN is almost

completely automated and takes much a shorter time than backpropagation.

Backpropagation can create much more compact neural networks than PNN and

generalizes the given information much more effectively. The performance of the used

neural networks and the experimental data was compared and plotted together for training

and test cases. (Figure 41)
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ESTIMATION ACCURACY OF DIFFERENT NETWORKS
(0.0625" Carbide End-Mill Tool Usage Estimation)
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Figure 41.a. Estimation Accuracy Comparison of the Three Different Neural Network

with Training Case Cutting Force Data
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Figure 41.b. Estimation Accuracy Comparison of the Three Different Neural Network

with Test Case Cutting Force Data
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ESTIMATION ACCURACY OF DIFFERENT NETWORKS
(0.0625" Carbide End-Mill Tool Usage Estimation)
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Figure 41.c. Estimation Accuracy of the Three NN for the Tool Life

It is found that the backpropagation much more reliable in other studies when a small

number of training cases were available. In this study two hidden nodes were used for the

backpropagation neural network.

The proposed tool wear estimation method is primarily for the machining of non-

metals. Although the proposed approach is almost inevitable during the machining of

non-metals on conventional machine tools when the machine vibrations create inertia

forces larger than the cutting force signals, it can be used for metals to simplify the

classification of the force measurements.

The main advantages of the N2PTI are the simplicity of the data processing and

classification. Because the cutting condition is the same, the only factor, which affects

the cutting force, is the tool wear. There is no force variation related to a change of the
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chip geometry and cutting conditions. The simplicity makes the system very reliable and

reduces the cost.

The disadvantage of the N2PTI is the inability to monitor the tool wear on-line. If the

programmer does not cut the test piece, the tool condition cannot be evaluated. The final

setup used during the training of the neural networks is presented in Table 14.

Table 14. Characteristics of the 3 Different Neural Network used for N2PTI

Neural Network Analog BP Basic PNN Sepvar PNN

Input Nodes 2 2 2

Output Nodes 1 1 1

Training Cases 5 5 5
Test Cases 4 4 4
Training Time 11 seconds 1.54 seconds 1.63 seconds

2 Hidden Nodes 0.0 Sigma Low 0.003 Sigma Low
Nr.et 0.6 Learning Rate 5.0 Sigma High 5.0 Sigma High
Proprieties 0.9 Momentum 5 Sigma Tries 5 Sigma Tries

The same analysis was repeated by using a carbide end-mill with 0.030 inches

diameter. The experimental results are presented in Figure 42. The N2PTI estimated the

tool wear with acceptable accuracy. The measured cutting forces were smaller than the

ones recorded with the bigger tool and some deviation existed. The results are presented in

Figure 43 and 44 and 45.
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TOOL USAGE - CUTTING FORCE RELATION
(0.030" dia Carbide End Mill - POCO EDM-C3 Workpiece)
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Figure 42. 0.030" Tool Usage and Cutting Force Relation - Experimental Test Results
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TOOL USAGE - CUTTING FORCE RELATION
(0.030" dia Carbide End Mill - POCO EDM-C3 Workpiece)
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Figure 43.b. Estimated Results of the Training Cases with PNN BASIC

for 0.030" Tool

TOOL USAGE - CUTTING FORCE RELATION
(0.030" dia Carbide End Mill - POCO EDM-C3 Workpiece)

[Estimations for training cases]

12 -- - -

O17133112 25- 10 925

c 454 608
4)

U 4 0 225.7408

1 2~
0

0 2 4 6 8 10 12

Cutting Force in Thrust Direction (N)

Figure 43.c. Estimated Results of the Training Cases with SEPVAR PNN

for 0.030" Tool
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TOOL USAGE - CUTTING FORCE RELATION
(0.030" dia Carbide End Mill - POCO EDM-C3 Workpiece)
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Figure 44.a. Estimated Results of the Test Cases with Analog BP NN

for 0.030" Tool
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Figure 44.b. Estimated Results of the Test Cases with BASIC PNN

for 0.030" Tool
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TOOL USAGE - CUTTING FORCE RELATION
(0.030" dia Carbide End Mill - POCO EDM-C3 Workpiece)
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Figure 44.c. Estimated Results of the Test Cases with SEPVAR PNN

for 0.030" Tool
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Figure 45.a. Estimation Accuracy Comparison of the Three Different Neural Network

with Test Cases Cutting Force Data (0.030" Tool)
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ESTIMATION ACCURACY OF DIFFERENT NETWORKS
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Figure 45.b. Estimation Accuracy Comparison of the Three Different Neural Network

with Training Cases Cutting Force Data (0030" Tool)
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Figure 45.c. Estimation Accuracy of the Three NN for the 0.030" Tool Life
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Aluminum:

N2PTI was used to monitor the tool wear during the end milling of the aluminum

workpiece. A 1/32" carbide tool was used to collect the experimental data. The spindle

speed was 45,000 rpm. The tool was worn by cutting Aluminum workpiece material with

a 5 inch/min feed rate and 0.015 inch depth of cut.

The experimentally observed cutting force variation readings are presented in

Figure 46 by using bubble diagrams. The size of the bubble corresponds to the tool life.

The observed thrust and feed direction force variations are shown on the X and Y axes,

respectively. The diagram showed that both of the cutting force variations increased while

the tool wore out. Six cases were given to three different neural networks for training. One

of the networks was a backpropagation type neural network and the other two were

Probabilistic Neural Networks (PNN). The BASIC PNN used single sigma for both inputs.

The SEPVAR used different sigma for each input. The final setup used for training is

presented in Table 16. After the training, the neural networks estimated the tool life of the

training data (Figure 47) and five other cases they have never seen before (Figure 48). The

performances of all the networks were very similar. All of them estimated the test cases

with acceptable accuracy. The training process of the PNN is almost completely automated

and takes much a shorter time than backpropagation. Backpropagation can create much

more compact neural networks than PNN and generalizes the given information much

more effectively. The performance of the used neural networks and the experimental data

was compared and plotted together for training and testing cases. (Figure 49)
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TOOL USAGE - CUTTING FORCE RELATIONSHIP
(1/32" dia. Carbide End Mill - Aluminum Workpiece)
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Figure 46. Tool Usage and Cutting Force Relation for Aluminum - Experimental Results

TOOL USAGE - CUTTING FORCE RELATIONSHIP
(1/32" dia. Carbide End Mill - Aluminum Workpiece)
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Figure 47.a. Estimated Results of the Training Cases with Analog BP NN for Aluminum
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TOOL USAGE - CUTTING FORCE RELATIONSHIP
(1/32" dia. Carbide End Mill - Aluminum Workpiece)
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Figure 47.b. Estimated Results of the Training Cases with PNN BASIC for Aluminum
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Figure 47.c. Estimated Results of the Training Cases with PNN SEPVAR for Aluminum
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TOOL USAGE - CUTTING FORCE RELATIONSHIP
(1/32" dia. Carbide End Mill - Aluminum Workpiece)
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Figure 48.a. Estimated Results of the Test Cases with Analog BP NN for Aluminum
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Figure 48.b. Estimated Results of the Test Cases with PNN BASIC for Aluminum
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TOOL USAGE - CUTTING FORCE RELATIONSHIP I

(1/32" dia. Carbide End Mill - Aluminum Workpiece)
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Figure 48.c. Estimated Results of the Test Cases with PNN SEPVAR for Aluminum

Table 15. Comparison of the Experimental Data and Neural Network Estimation Data

X Direction Y Direction Experimental Analog BP Basic PNN Sepvar PNN

Force Force Tool Life Estimation Estimation Estimation

6.6 9.78 30 30.56 33.21 34.21
7.1 10.11 45 53.21 53.99 54.89
10.42 14.62 60 101.32 105 103.85
8.56 11.23 62 59.38 64 63.85
10.11 12.5 75 68.49 77.83 82.39
12.23 13.47 90 91.18 95.38 95
16.86 16.78 105 137.54 141.32 139
14.78 14.96 107 114.32 112.37 114.97
16.74 16.41 120 125.32 131.36 127.22
18.35 18.54 135 146.46 151 154.9
20.13 21.75 156 161.73 164.9 165
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ESTIMATION ACCURACY OF DIFFERENT NETWORKS
(1/32" dia. Carbide End-Mill Tool Life Estimation, Aluminum)
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Figure 49.a. Estimation Accuracy Comparison of the Three Different Neural Network

with Training Case Cutting Force Data
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Figure 49.b. Estimation Accuracy Comparison of the Three Different Neural Network

with Training Case Cutting Force Data
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ESTIMATION ACCURACY OF DIFFERENT NETWORKS
(1/32" dia. Carbide End-Mill Tool Life Estimation, Aluminum)
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Figure 49.c. Estimation Accuracy Comparison of the Three Different Neural Network for

Tool Life

Table 16. Characteristics of the 3 Different Neural Network used for N2PTI (Aluminum)

Neural Network Analog BP Basic PNN Sepvar PNN

Input Nodes 2 2 2
Output Nodes 1 1 1
Training Cases 5 5 5
Test Cases 4 4 4
Training Time 13 seconds 1.91 seconds 1.52 seconds

2 Hidden Nodes 0.0 Sigma Low 0.003 Sigma Low
Ntorke 0.6 Learning Rate 5.0 Sigma High 5.0 Sigma High

0.9 Momentum 5 Sigma Tries 5 Sigma Tries
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V.3. Performance of the Improved N2PTI

Local averaging and wavelet transformation techniques were used to obtain the

training data for the Improved N2PTI. The original cutting force data was studied with

these two techniques and characteristic parameters were found to train the networks.

Graphite Electrodes (POCOEDMC-3):

- Segmental Averaging Technique:

The experimental data was collected, by cutting POCOEDMC-3 graphite

electrode and periodically making test cuts on aluminum with 0.0625 inches diameter

carbide end-mill. The spindle speed for the experiment was 15,000 rpm. Data was

collected with 20 ps sampling. In this case, there are 200 data points in each revolution.

With the local averaging technique, for each case, 20 input values were presented to the

Neural Network training.

The neural network was trained with 20 input nodes and 1 output node. The output node

was tool life obtained during the wear analysis for POCOEDMC-3. The network was

trained on 40 cases and tested on 30 different cases. Backpropagation and Probabilistic

neural networks were used. Analog BP, Basic PNN and Sepvar PNN were trained with

the normalized data. The final settings of the NN are listed in Table 17.
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Table 17. Characteristics of the 3 Different Neural Network used for Improved N2PTI

(Segmental Averaging)

Neural Network Analog BP Basic PNN Sepvar PNN

Input Nodes 20 20 20
Output Nodes 1 1 1
Training Cases 40 40 40
Test Cases 30 30 30
Training Time 121.56 seconds 12.3 seconds 11.4 seconds

10 Hidden Nodes 0.0 Sigma Low 0.003 Sigma Low
Nroiet k 0.6 Learning Rate 5.0 Sigma High 5.0 Sigma High
Proprieties 0.9 Momentum 5 Sigma Tries 5 Sigma Tries

The results obtained after the training is represented below. Table 18 shows the estimated

values for the training cases and Table 19 shows the testing cases.

The best estimations were obtained with Analog BP and results for each case are

presented in Figure 50.

The improved N2PTI gave less accurate estimation than the N2PTI, however the

new approach eliminated the influence of the depth of cut by the normalization of the

data. The estimation results were still in the acceptable range and error of the estimation

is around 10 to 15 % approximately.
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Table 18. Estimation for the Training data (POCOEMDC-3) after the training of 3 NN

(Segmental Averaging Technique)

Real Analog Basic Sepvar Analog Basic Sepvar
Data BP PNN PNN Error % Error % Error %

Case 1 450 478.71 230.12 300.25 6.38 48.86 33.28
Case 2 450 475.54 200.73 304.22 5.68 55.39 32.40
Case 3 450 491.21 220 310.78 9.16 51.11 30.94
Case 4 450 478.23 214.92 313.32 6.27 52.24 30.37
Case 5 450 499.12 245.67 304.57 10.92 45.41 32.32
Case 6 450 474.32 267.75 311 5.40 40.50 30.89
Case 7 450 512.76 289.43 313.43 13.95 35.68 30.35
Case 8 450 501.28 287.84 321.15 11.40 36.04 28.63
Case 9 450 503.89 301.12 319.43 11.98 33.08 29.02
Case 10 450 489.72 299.54 317.43 8.83 33.44 29.46
Case 1 750 812.33 999.76 875 8.31 33.30 16.67
Case 2 750 801.21 998 875.36 6.83 33.07 16.71
Case 3 750 799.18 998.15 879.12 6.56 33.09 17.22
Case 4 750 784.82 995.32 877.34 4.64 32.71 16.98
Case 5 750 802.36 995.46 881.23 6.98 32.73 17.50
Case 6 750 811.2 989.01 885 8.16 31.87 18.00
Case 7 750 803.74 987.32 882.9 7.17 31.64 17.72
Case 8 750 788.33 985.43 884.38 5.11 31.39 17.92
Case 9 750 793.21 982.32 890 5.76 30.98 18.67
Case 10 750 806.85 980.26 885.43 7.58 30.70 18.06
Case 1 1050 905.37 1154.78 1190.54 13.77 9.98 13.38
Case 2 1050 907.89 1155 1196.47 13.53 10.00 13.95
Case 3 1050 905.38 1158.35 1195.32 13.77 10.32 13.84
Case 4 1050 910.77 1159.43 1189.34 13.26 10.42 13.27
Case 5 1050 930.23 1154.32 1199.65 11.41 9.94 14.25
Case 6 1050 927.45 1160 1195.39 11.67 10.48 13.85
Case 7 1050 932.12 1158.93 1200 11.23 10.37 14.29
Case 8 1050 940.16 1161.35 1201.12 10.46 10.60 14.39
Case 9 1050 935.69 1158.11 1194.21 10.89 10.30 13.73
Case 10 1050 927.91 1154.34 1200.43 11.63 9.94 14.33
Case 1 1350 1391.21 1478.95 1423.54 3.05 9.55 5.45
Case 2 1350 1400.12 1480 1434.55 3.71 9.63 6.26
Case 3 1350 1364.32 1487.32 1430.26 1.06 10.17 5.95
Case 4 1350 1373.98 1475.55 1427.59 1.78 9.30 5.75
Case 5 1350 1343.56 1477.53 1435.21 0.48 9.45 6.31
Case 6 1350 1366.37 1485.44 1439 1.21 10.03 6.59
Case 7 1350 1400 1489.59 1428.3 3.70 10.34 5.80
Case 8 1350 1458.74 1490.78 1425 8.05 10.43 5.56
Case 9 1350 1402.21 1492.96 1422 3.87 10.59 5.33
Case 10 1350 1383.73 1489 1423.45 2.50 10.30 5.44
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Table 19. Estimation for the Testing data (POCOEDMC-3) after the training of 3 NN

(Segmental Averaging Technique)

Real Analog Basic Sepvar Analog Basic Sepvar
Data BP PNN PNN Error % Error % Error %

Case 1 600 720.62 890.45 910.15 20.10 48.41 51.69
Case 2 600 719.34 885 900.13 19.89 47.50 50.02
Case 3 600 715.63 887.59 902.44 19.27 47.93 50.41
Case 4 600 713.23 891.26 905 18.87 48.54 50.83
Case 5 600 712.11 895.27 902.89 18.69 49.21 50.48
Case 6 600 711 884.43 899.18 18.50 47.41 49.86
Case 7 600 710.96 883.17 893.24 18.49 47.20 48.87
Case 8 600 709.99 885.38 892.32 18.33 47.56 48.72
Case 9 600 710.55 890 897.93 18.43 48.33 49.66
Case 10 600 711.67 887.77 899 18.61 47.96 49.83
Case 1 900 1055 1234.32 1225.32 17.22 37.15 36.15
Case 2 900 1057.21 1230.11 1229.67 17.47 36.68 36.63
Case 3 900 1048.19 1229.93 1230 16.47 36.66 36.67
Case 4 900 1045.93 1227 1227.88 16.21 36.33 36.43
Case 5 900 1039.19 1229.03 1226.04 15.47 36.56 36.23
Case 6 900 1041 1230 1222 15.67 36.67 35.78
Case 7 900 1037.55 1228.07 1224.06 15.28 36.45 36.01
Case 8 900 1039.93 1229 1223.93 15.55 36.56 35.99
Case 9 900 1042.68 1224.54 1228.67 15.85 36.06 36.52
Case 10 900 1035.12 1125.8 1223.06 15.01 25.09 35.90
Case 1 1200 1368.32 1550.46 1578.75 14.03 29.21 31.56
Case 2 1200 1365 1547 1573.9 13.75 28.92 31.16
Case 3 1200 1367.18 1544.92 1570.34 13.93 28.74 30.86
Case 4 1200 1362.39 1548.39 1569.32 13.53 29.03 30.78
Case 5 1200 1359.41 1547.1 1568.4 13.28 28.93 30.70
Case 6 1200 1370.32 1545 1569 14.19 28.75 30.75
Case 7 1200 1373.95 1543.06 1571.23 14.50 28.59 30.94
Case 8 1200 1364.32 1544.43 1569.03 13.69 28.70 30.75
Case 9 1200 1363.89 1547.9 1573.44 13.66 28.99 31.12
Case 10 1200 1366.77 1546 1568.32 13.90 28.83 30.69
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Estimation Accuracy of Analog BP Neural Network
(0.0625" Carbide End-Mill Tool Life Estimation, POCOEDMC-3)
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Figure 50.a. Estimation Accuracy of Analog BP for Training Cases with Improved N2PTI

(Segmental Averaging)

Estimation Accuracy of Analog BP Neural Network
(0.0625" Carbide End-Mill Tool Life Estimation, POCOEDMC-3)
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Figure 50b. Estimation Accuracy of Analog BP for Test Cases with Improved N2 PTI

(Segmental Averaging)
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Wavelet Transformation Technique:

The spindle speed for the experiment was 15,000 rpm. Data was collected with 20

ps sampling. In this case, there were 200 data points in each revolution. Data was given

to wavelet transformation. 64 coefficients were chosen for the transformation. 2048 data

points were given to wavelet. The 64 coefficients obtained after the wavelet

transformation, 8 coefficients represented each revolution. For each case, 16 input values

were presented to the Neural Network training. (8 for thrust and 8 for feed direction

force)

The neural network was trained with 16 input nodes and 1 output node. The output node

was the tool life obtained during the wear analysis for POCOEDMC-3. The network was

trained on 32 cases and tested on 24 different cases. The use of Backpropagation and

Probabilistic neural networks was evaluated. Analog BP, Basic PNN and Sepvar PNN

were trained with the normalized data. The final settings of the NN are listed in Table 20.

The results obtained after the training is represented below. Table 21 and Table 22

shows the estimated values for the training and testing cases respectively.

The best estimations were obtained with Analog BP. (Figure 51)

Table 20. Characteristics of the 3 Different Neural Network used for Improved N2PTI

(Wavelet Transformation)

Neural Network Analog BP Basic PNN Sepvar PNN

Input Nodes 16 16 16
Output Nodes 1 1 1

Training Cases 32 32 32
Test Cases 24 24 24
Training Time 156.21 seconds 15.35 seconds 14.21 seconds

8 Hidden Nodes 0.0 Sigma Low 0.003 Sigma Low
Network 0.6 Learning Rate 5.0 Sigma High 5.0 Sigma High
Proprieties 0.9 Momentum 5 Sigma Tires 5 Si ma Tires
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Table 21. Estimation for the Training data (POCOEMDC-3) after the training of 3 NN

(Wavelet Transformation Technique)

Real Analog Basic Sepvar Analog Basic Sepvar
Data BP PNN PNN Error % Error % Error %

Case 1 450.00 402.34 640.32 303.43 10.59 42.29 32.57
Case 2 450.00 410.24 650.23 305.43 8.84 44.50 32.13
Case 3 450.00 414.32 653.21 311.23 7.93 45.16 30.84
Case 4 450.00 411.31 673.21 315.78 8.60 49.60 29.83
Case 5 450.00 408.56 655.00 306.74 9.21 45.56 31.84
Case 6 450.00 408.37 651.19 311.23 9.25 44.71 30.84
Case 7 450.00 415.32 645.32 317.54 7.71 43.40 29.44
Case 8 450.00 412.75 641.32 325.32 8.28 42.52 27.71
Case 1 750.00 789.43 523.12 923.43 5.26 30.25 23.12
Case 2 750.00 775.00 527.43 928.54 3.33 29.68 23.81
Case 3 750.00 788.43 531.21 925.00 5.12 29.17 23.33
Case 4 750.00 798.32 521.24 927.18 6.44 30.50 23.62
Case 5 750.00 777.23 517.93 921.23 3.63 30.94 22.83
Case 6 750.00 796.43 515.16 934.61 6.19 31.31 24.61
Case 7 750.00 801.00 519.12 933.38 6.80 30.78 24.45
Case 8 750.00 799.96 511.53 924.18 6.66 31.80 23.22
Case 1 1050.00 1026.53 841.21 1469.29 2.24 19.88 39.93
Case 2 1050.00 1035.43 832.76 1453.21 1.39 20.69 38.40
Case 3 1050.00 1033.00 835.43 1455.00 1.62 20.44 38.57
Case 4 1050.00 1029.43 837.29 1437.54 1.96 20.26 36.91
Case 5 1050.00 1034.29 816.00 1447.31 1.50 22.29 37.84
Case 6 1050.00 1038.42 819.92 1448.92 1.10 21.91 37.99
Case 7 1050.00 1034.32 811.17 1447.21 1.49 22.75 37.83
Case 8 1050.00 1037.75 831.21 1444.32 1.17 20.84 37.55
Case 1 1350.00 1327.43 1768.32 901.43 1.67 30.99 33.23
Case 2 1350.00 1333.00 1775.74 906.53 1.26 31.54 32.85
Case 3 1350.00 1322.99 1750.39 911.21 2.00 29.66 32.50
Case 4 1350.00 1325.83 1758.36 917.54 1.79 30.25 32.03
Case 5 1350.00 1319.54 1755.00 915.00 2.26 30.00 32.22
Case 6 1350.00 1324.39 1753.26 919.31 1.90 29.87 31.90
Case 7 1350.00 1332.11 1751.13 912.32 1.33 29.71 32.42
Case 8 1350.00 1327.51 1746.48 914.36 1.67 29.37 32.27
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Table 22. Estimation for the Testing data (POCOEMDC-3) after the training of 3 NN

(Wavelet Transformation Technique)

Real Analog Basic Sepvar Analog Basic Sepvar
Data BP PNN PNN Error % Error % Error %

Case 1 600 514.32 276.12 321.23 14.28 53.98 46.46
Case 2 600 515 261.16 321.67 14.17 56.47 46.39
Case 3 600 516.87 268.43 322 13.86 55.26 46.33
Case 4 600 526.43 269.39 329.54 12.26 55.10 45.08
Case 5 600 531.23 270 341.21 11.46 55.00 43.13
Case 6 600 525.21 275.25 333.37 12.47 54.13 44.44
Case 7 600 528.42 274.38 341.13 11.93 54.27 43.15
Case 8 600 529.17 273.53 319.39 11.81 54.41 46.77
Case 1 900 1005.78 1234.32 643.78 11.75 37.15 28.47
Case 2 900 1007.85 1233 650.12 11.98 37.00 27.76
Case 3 900 1015.76 1238.43 655 12.86 37.60 27.22
Case 4 900 1017 1242.12 658.91 13.00 38.01 26.79
Case 5 900 1013.13 1239.31 661.23 12.57 37.70 26.53
Case 6 900 1019.43 1235.35 662.49 13.27 37.26 26.39
Case 7 900 1000.94 1237.64 664.43 11.22 37.52 26.17
Case 8 900 1002.38 1241.42 665.02 11.38 37.94 26.11
Case 1 1200 1298.64 1689.31 1678 8.22 40.78 39.83
Case 2 1200 1300.12 1700.12 1673.42 8.34 41.68 39.45
Case 3 1200 1305.43 1696.43 1671.21 8.79 41.37 39.27
Case 4 1200 1304.32 1693.43 1675.32 8.69 41.12 39.61
Case 5 1200 1297.81 1695.01 1676.04 8.15 41.25 39.67
Case 6 1200 1295 1698.83 1678.18 7.92 41.57 39.85
Case 7 1200 1296.64 1689.34 1679.93 8.05 40.78 39.99
Case 8 1200 1298.11 1688.89 1678 8.18 40.74 39.83
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Estimation Accuracy of Analog BP Neural Network
Data was given to wavelet transformation, 8 parameters represent one revolution

(0.0625 Carbide End-Mill Tool Life Estimation, POCOEDMC-3)
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Figure 51.a. Estimation Accuracy of Analog BP for Training Cases with Improved N2PTI

(Wavelet Transformation)

Estimation Accuracy of Analog BP Neural Network
Data was given to wavelet transformation, 8 parameters represent one revolution

(0.0625 Carbide End-Mill Tool Life Estimation, POCOEDMC-3)
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Figure 51.b. Estimation Accuracy of Analog BP for Testing Cases with Improved N2PTI

(Wavelet Transformation)
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" Representation Accuracy Comparison of the Segmental Averaging and Wavelet

Transformation Approaches

Figure 52 shows the 10 local parameters obtained to represent one revolution of the

original cutting force data for a selected case. Figure 53 shows the original signal after

wavelet transformation. Data is filtered of noise and it was represented. The original cutting

force data was shown in Figure 54.

Thrust Direction Cutting Force Profile
Averaging of the data points between the maximum of each revolution

(10 local parameters represent a period)
20

18

162
14 /

m 12 11i I I
10
10 10 local parameters

6

0
v r. ® c .o r N p.. C) v ~ (0 0) c

Figure 52. Representation of the original cutting force with 10 local parameters obtained

with Segmental Averaging technique
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Thrust Direction Cutting Force Profile
Wavelet Transformation apilied to the original data (64 coefficient)

Signal after Inverse Wavelet Transformation
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Figure 53. Representation of the original cutting force after wavelet transformation

Cutting Force (X-Direction) with 0.0625" dia. Carbide
End-Mill on ALUMINUM (Slot 3)
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Figure 54. Experimental Cutting Force Data

111



Aluminum:

- Segmental Averaging Technique:

Improved N2PTI was also used to analyze the tool wear during the micro end-

milling of the aluminum and POCOEDMC-3 workpiece. Normalization of the cutting force

in thrust and feed direction made the N2PTI more powerful. The effect of the depth of cut

was eliminated with the normalization of the data. The spindle speed for the experiment

was 45,000 rpm. Data was collected with 10 ps sampling. In this case, there are 130 data

points in each revolution. For each case, 20 input values were presented to the Neural

Network training.

Neural networks were trained with 20 input and 1 output. The 20 input consisted of 10

data, which were obtained with the averaging of the data points between the maximum of

each period. 10 data point from thrust and 10 data point from feed direction cutting force

were taken. The output node was the tool life obtained. 50 training cases and 40 testing

cases were used. The characteristics of the networks used are listed in Table 23. The

results obtained for the training and testing cases after the training of 3 different neural

networks are presented in Table 24 and 25.

The optimal estimations were obtained with Analog BP and results are presented in

Figure 55.
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Table 23. Characteristics of the 3 Different Neural Network used for Improved N2PTI

(Segmental Averaging)

Neural Network Analog BP Basic PNN Sepvar PNN

Input Nodes 20 20 20
Output Nodes 1 1 1
Training Cases 50 50 50

Test Cases 40 40 40
Training Time 151.52 seconds 17.8 seconds 14.6 seconds

Network 10 Hidden Nodes 0.0 Sigma Low 0.003 Sigma Low
Nroietik 0.6 Learning Rate 5.0 Sigma High 5.0 Sigma High
Proprieties 0.9 Momentum 5 Sigma Tries 5 Sigma Tries
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Table 24. Estimation for the Training data (Aluminum) after the training of 3 NN

(Segmental Averaging)

Real Analog Basic Sepvar Analog Basic Sepvar
Data BP PNN PNN Error % Error % Error %

Case 1 30 35.16 62.89 65.28 17.20 109.63 117.60
Case 2 30 35.51 63 63.23 18.37 110.00 110.77
Case 3 30 34.76 63.44 67.91 15.87 111.47 126.37
Case 4 30 35 65.23 69 16.67 117.43 130.00
Case 5 30 35.26 64.97 72.35 17.53 116.57 141.17
Case 6 30 34.99 66 75 16.63 120.00 150.00
Case 7 30 36.02 67.1 74.4 20.07 123.67 148.00
Case 8 30 35.64 67.14 72.9 18.80 123.80 143.00
Case 9 30 33 62.86 69.52 10.00 109.53 131.73
Case 10 30 35.85 68.01 64.21 19.50 126.70 114.03
Case 1 62 68.16 102.71 96.32 9.94 65.66 55.35
Case 2 62 70.34 105.32 99 13.45 69.87 59.68
Case 3 62 69 104.87 99.45 11.29 69.15 60.40
Case 4 62 71.21 107.42 99.23 14.85 73.26 60.05
Case 5 62 72.34 108.93 96.83 16.68 75.69 56.18
Case 6 62 73.32 105.97 98.5 18.26 70.92 58.87
Case 7 62 69.5 104.86 97 12.10 69.13 56.45
Case 8 62 68.75 103.3 95.34 10.89 66.61 53.77
Case 9 62 71.53 101.21 93 15.37 63.24 50.00
Case 10 62 70 102 94.18 12.90 64.52 51.90
Case 1 90 107.46 115.87 123.05 19.40 28.74 36.72
Case 2 90 107.21 118.43 128.92 19.12 31.59 43.24
Case 3 90 106.43 119.43 125 18.26 32.70 38.89
Case 4 90 105.84 117.75 127.4 17.60 30.83 41.56
Case 5 90 105.87 118 130.34 17.63 31.11 44.82
Case 6 90 106.53 115.78 131.05 18.37 28.64 45.61
Case 7 90 107.5 121.34 129.66 19.44 34.82 44.07
Case 8 90 103.65 120.84 126.43 15.17 34.27 40.48
Case 9 90 104.65 121.5 126.82 16.28 35.00 40.91
Case 10 90 105 119 125.1 16.67 32.22 39.00
Case 1 120 129.54 141.9 152.03 7.95 18.25 26.69
Case 2 120 124.54 145.86 149.54 3.78 21.55 24.62
Case 3 120 123.93 144.44 148.47 3.28 20.37 23.73
Case 4 120 122.3 143.38 145 1.92 19.48 20.83
Case 5 120 124.65 146.95 149.9 3.88 22.46 24.92
Case 6 120 126 145.3 148.36 5.00 21.08 23.63
Case 7 120 127.38 145 145.77 6.15 20.83 21.48
Case 8 120 125.55 143.1 151 4.63 19.25 25.83
Case 9 120 128 142.93 150.04 6.67 19.11 25.03
Case 10 120 125.04 141 150.5 4.20 17.50 25.42
Case 1 156 173.49 185.93 192 11.21 19.19 23.08
Case 2 156 175 191 198.54 12.18 22.44 27.27
Case 3 156 172.12 190.99 199 10.33 22.43 27.56
Case 4 156 169.32 193.26 194.65 8.54 23.88 24.78
Case 5 156 168.39 192.32 195.5 7.94 23.28 25.32
Case 6 156 171.2 189.43 195 9.74 21.43 25.00
Case 7 156 173 188.04 193.28 10.90 20.54 23.90
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Table 25. Estimation for the Testing data (Aluminum) after the training of 3 NN

(Segmental Averaging)

Real Analog Basic Sepvar Analog Basic Sepvar
Data BP PNN PNN Error % Error % Error %

Case 1 45 54.38 68.94 84.53 20.84 53.20 87.84
Case 2 45 55.15 70.34 90.21 22.56 56.31 100.47
Case 3 45 57.28 73 92.54 27.29 62.22 105.64
Case 4 45 58.54 71.24 93.32 30.09 58.31 107.38
Case 5 45 54.05 74.99 91.43 20.11 66.64 103.18
Case 6 45 53.99 74 87.54 19.98 64.44 94.53
Case 7 45 53.95 76.43 88 19.89 69.84 95.56
Case 8 45 55 75.43 83.65 22.22 67.62 85.89
Case 9 45 54.16 68.54 85.55 20.36 52.31 90.11
Case 10 45 53.06 71.05 83.5 17.91 57.89 85.56
Case 1 75 68 120.45 114.3 9.33 60.60 52.40
Case 2 75 65.32 125.04 115 12.91 66.72 53.33
Case 3 75 63.9 127.95 117.74 14.80 70.60 56.99
Case 4 75 65 128.37 118.43 13.33 71.16 57.91
Case 5 75 62.17 126.53 117.94 17.11 68.71 57.25
Case 6 75 60.83 126.2 114.32 18.89 68.27 52.43
Case 7 75 63.73 125.5 116.66 15.03 67.33 55.55
Case 8 75 64.94 122.31 117 13.41 63.08 56.00
Case 9 75 62.18 121.74 115.7 17.09 62.32 54.27
Case 10 75 66 124 113.99 12.00 65.33 51.99
Case 1 107 128 141.2 132.04 19.63 31.96 23.40
Case 2 107 130.26 143 135 21.74 33.64 26.17
Case 3 107 132.85 142.38 132.4 24.16 33.07 23.74
Case 4 107 133.25 145.83 136.32 24.53 36.29 27.40
Case 5 107 131 149.63 137.83 22.43 39.84 28.81
Case 6 107 133.73 148 135.53 24.98 38.32 26.66
Case 7 107 135.2 142.84 132 26.36 33.50 23.36
Case 8 107 133 144.06 134.45 24.30 34.64 25.65
Case 9 107 135.32 143.9 136.78 26.47 34.49 27.83
Case 10 107 132.63 145 135.3 23.95 35.51 26.45
Case 1 135 168.02 175.94 189.33 24.46 30.33 40.24
Case 2 135 165.32 177 191.21 22.46 31.11 41.64
Case 3 135 164.94 181.21 190 22.18 34.23 40.74
Case 4 135 163.26 182.32 187.17 20.93 35.05 38.64
Case 5 135 162.03 183.21 192.32 20.02 35.71 42.46
Case 6 135 165 184 190.86 22.22 36.30 41.38
Case 7 135 167.25 179.14 194 23.89 32.70 43.70
Case 8 135 166.24 179.99 193.32 23.14 33.33 43.20
Case 9 135 164.52 178.23 185.43 21.87 32.02 37.36
Case 10 135 167.17 181.19 188.85 23.83 34.21 39.89
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Estimation Accuracy of Analog BP Neural Network
(1/32" Carbide End-Mill, Aluminum)

[Training cases]
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Figure 55.a. Estimation Accuracy of Analog BP for Training Cases with Improved N2PTI

(Segmental Averaging)

Estimation Accuracy of Analog BP Neural Network
(1/32" Carbide End-Mill, Aluminum)

[Test cases]
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Figure 55.b. Estimation Accuracy of Analog BP for Test Cases with Improved N 2 PTI

(Segmental Averaging)
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" Wavelet Transformation Technique

The spindle speed for the experiment was 45,000 rpm. Data was collected with 10

ps sampling. In this case, there were 130 data points in each revolution. Data was given

to wavelet transformation. 64 coefficients were chosen for the transformation. 1024 data

points were given to wavelet. The 64 coefficients obtained after the wavelet, 8

coefficients represented one revolution. For each case, 16 input values were presented to

the Neural Network training. (8 for thrust and 8 for feed direction force)

The neural network was trained with 16 input nodes and 1 output node. The output node

was the tool life obtained during the wear analysis for POCOEDMC-3. The network was

trained for 40 training and 32 testing cases. Backpropagation and Probabilistic neural

networks were evaluated. Analog BP, Basic PNN and Sepvar PNN were trained with the

normalized data. The final settings of the NN are listed in Table 26.

The results obtained after the training is represented below. Table 27 shows the

estimated values for the training cases and Table 28 shows the testing cases.

The best estimations were obtained with Analog BP and results for each case are

presented in Figure 56.

Table 26. Characteristics of the 3 Different Neural Network used for Improved N2PTI

(Wavelet Transformation)

Neural Network Analog BP Basic PNN Sepvar PNN

Input Nodes 16 16 16
Output Nodes 1 1 1

Training Cases 40 40 40

Test Cases 32 32 32
Training Time 173.18 seconds 14.17 seconds 13.96 seconds

Network 8 Hidden Nodes 0.0 Sigma Low 0.003 Sigma Low
0.6 Learning Rate 5.0 Sigma High 5.0 Sigma High

Proprieties 0.9 Momentum 5 Sigma Tires 5 Sigma Tires
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Table 27. Estimation for the Training data (Aluminum) after the training of 3 NN

(Wavelet Transformation)

Real Analog Basic Sepvar Analog Basic Sepvar
Data BP PNN PNN Error % Error % Error %

Case 1 30 32.18 46.32 10.21 7.27 54.40 65.97
Case 2 30 32.94 45.00 11.21 9.80 50.00 62.63
Case 3 30 33.15 46.12 10.86 10.50 53.73 63.80
Case 4 30 32.85 46.78 10.03 9.50 55.93 66.57
Case 5 30 33.03 46.91 10.45 10.10 56.37 65.17
Case 6 30 33.12 48.37 10.57 10.40 61.23 64.77
Case 7 30 34.08 49.99 10.91 13.60 66.63 63.63
Case 8 30 33.13 48.03 10.38 10.43 60.10 65.40
Case 1 62 57.43 87.16 72.24 7.37 40.58 16.52
Case 2 62 55.01 87.93 74.25 11.27 41.82 19.76
Case 3 62 56.74 88.00 74.59 8.48 41.94 20.30
Case 4 62 55.93 88.18 74.42 9.79 42.23 20.04
Case 5 62 55.00 89.16 72.62 11.29 43.81 17.13
Case 6 62 55.21 87.38 73.88 10.95 40.94 19.15
Case 7 62 54.08 84.69 72.75 12.77 36.60 17.34
Case 8 62 54.86 85.55 71.51 11.52 37.98 15.33
Case 1 90 85.13 118.12 99.00 5.41 31.24 10.00
Case 2 90 84.38 119.91 96.69 6.24 33.23 7.43
Case 3 90 84.56 117.83 93.75 6.04 30.92 4.17
Case 4 90 83.91 120.34 95.55 6.77 33.71 6.17
Case 5 90 82.99 121.23 97.76 7.79 34.70 8.62
Case 6 90 83.00 121.00 98.29 7.78 34.44 9.21
Case 7 90 82.84 119.93 97.25 7.96 33.26 8.05
Case 8 90 82.04 120.04 94.82 8.84 33.38 5.36
Case 1 120 127.81 147.81 114.02 6.51 23.18 4.98
Case 2 120 125.93 143.38 112.16 4.94 19.48 6.54
Case 3 120 124.00 146.95 111.35 3.33 22.46 7.21
Case 4 120 126.84 147.93 108.75 5.70 23.28 9.38
Case 5 120 125.95 145.94 112.43 4.96 21.62 6.31
Case 6 120 125.75 151.21 111.27 4.79 26.01 7.28
Case 7 120 124.93 151.99 109.33 4.11 26.66 8.89
Case 8 120 124.78 149.93 113.25 3.98 24.94 5.63
Case 1 156 174.57 201.12 236.16 11.90 28.92 51.38
Case 2 156 174.93 204.43 244.20 12.13 31.04 56.54
Case 3 156 174.00 205.87 244.77 11.54 31.97 56.90
Case 4 156 173.06 207.93 239.42 10.94 33.29 53.47
Case 5 156 173.57 205.74 240.47 11.26 31.88 54.14
Case 6 156 174.01 209.21 239.85 11.54 34.11 53.75
Case 7 156 172.94 203.33 237.73 10.86 30.34 52.39
Case 8 156 172.99 209.42 239.16 10.89 34.24 53.31
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Table 28. Estimation for the Testing data (Aluminum) after the training of 3 NN

(Wavelet Transformation)

Real Analog Basic Sepvar Analog Basic Sepvar
Data BP PNN PNN Error % Error % Error %

Case 1 45 38.12 65.28 78.32 15.29 45.07 74.04
Case 2 45 38.29 63.23 79.92 14.91 40.51 77.60
Case 3 45 37.99 67.91 80.12 15.58 50.91 78.04
Case 4 45 39.94 69.00 83.32 11.24 53.33 85.16
Case 5 45 38.88 72.35 91.43 13.60 60.78 103.18
Case 6 45 37.84 75.00 87.54 15.91 66.67 94.53
Case 7 45 38.00 74.40 88.93 15.56 65.33 97.62
Case 8 45 38.27 72.90 87.43 14.96 62.00 94.29
Case 1 75 87.39 132.04 114.30 16.52 76.05 52.40
Case 2 75 88.00 135.00 114.82 17.33 80.00 53.09
Case 3 75 86.99 132.40 117.74 15.99 76.53 56.99
Case 4 75 86.53 136.32 118.43 15.37 81.76 57.91
Case 5 75 86.17 137.83 117.94 14.89 83.77 57.25
Case 6 75 85.94 135.53 126.22 14.59 80.71 68.29
Case 7 75 83.16 132.00 116.66 10.88 76.00 55.55
Case 8 75 84.00 134.45 118.46 12.00 79.27 57.95
Case 1 107 125.27 141.20 194.34 17.07 31.96 81.63
Case 2 107 126.99 143.00 191.21 18.68 33.64 78.70
Case 3 107 126.75 142.38 190.00 18.46 33.07 77.57
Case 4 107 127.00 145.83 187.17 18.69 36.29 74.93
Case 5 107 126.15 149.63 192.32 17.90 39.84 79.74
Case 6 107 125.94 148.00 190.86 17.70 38.32 78.37
Case 7 107 125.76 142.84 194.00 17.53 33.50 81.31
Case 8 107 126.38 144.06 193.32 18.11 34.64 80.67
Case 1 135 157.19 175.94 268.92 16.44 30.33 99.20
Case 2 135 155.00 177.00 261.39 14.81 31.11 93.62
Case 3 135 156.16 181.21 261.94 15.67 34.23 94.03
Case 4 135 156.00 182.32 259.11 15.56 35.05 91.93
Case 5 135 158.13 183.21 267.81 17.13 35.71 98.38
Case 6 135 156.39 184.00 265.03 15.84 36.30 96.32
Case 7 135 155.99 179.14 266.00 15.55 32.70 97.04
Case 8 135 157.17 179.99 268.18 16.42 33.33 98.65
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Estimation Accuracy of Analog BP Neural Network
Data was given to wavelet transformation, 8 parameters represent one revolution

(1/32 " Carbide End-Mill Tool Life Estimation, Aluminum)
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Figure 56.a. Estimation Accuracy of Analog BP for Training Cases with Improved N2PTI

(Wavelet Transformation)

Estimation Accuracy of Analog BP Neural Network
Data was given to wavelet transformation, 8 parameters represent one revolution

(1/32 " Carbide End-Mill Tool Life Estimation, Aluminum)
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Figure 56.b. Estimation Accuracy of Analog BP for Test Cases with Improved N2PTI

(Wavelet Transformation)
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V.4. Dynamic Behavior of Micro Tools

The tip and the bottom of the micro end-mill were hit with the impact hammer to

analyze the dynamic response. When the tool was excited, it was vibrating and the

vibration was measured with a vibrometer. The vibrometer was directing a laser beam to

the tip of the end-mill. Once the tip was hit with the impact hammer, the impact was

digitized and recorded to the oscilloscope. The response of the tool to this excitation was

a typical dynamic vibration signal. Input and output signals were recorded as 4,000 data

points.

The data was studied and the results are presented in Figure 57 and 58. The dynamic

characteristics of the end-mills were calculated from the variation of the output signal

amplitude versus time. The natural-angular frequency and the damping factor of the tools

were calculated analytically and numerically. Transfer function of the system was

established with the aid of an ARV computer program.

Experiment was realized with two different conditions:

1. Tip of the end-mill is hit to create vibration

2. Bottom of the end-mill is hit to create vibration

Data is analyzed with the equations shown below:

y = y * . e-' (5.4)
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Con = 2. z. fn (5.6)

t = n.1/ f, (5.7)

-= ln(y / y*) / 2.r;.n (5.8)

Where:

y = Amplitude at time t

y* = Amplitude at time to

= Damping factor

Ona = Angular Frequency

fn =Natural Frequency

n = Number of period
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0.0625" dia. High Speed Steel End-Mill
(Tip of the tool is hit)
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Figure 57.a. 0.0625" Diameter HSS End-Mill (Tip of the tool was hit)

0.0625" dia. High Speed Steel End-Mill
(Bottom of the tool is hit)
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Figure 57.b. 0.0625" Diameter HSS End-Mill (Bottom of the tool was hit)

123



0.020" dia. High Speed Steel End-Mill
(Tip of the tool is hit)

0.5

0.4

0.3

0.2

ay 0.1

0

E-0.1

-0.2

-0.3

-0.4

-0.5

Time(sec x 10-)

= 2.55 x 10-3  f~= 8245 Hertz

Figure 58.a. 0.020" Diameter (Tip of the tool was hit)

0.020" dia. High Speed Steel End-Mill
(Bottom of the tool is hit)

0.2-

0.15-

0.1 

-

0.05

0-

-0.05

Time (sec x 10-)

= 2.07 x 10 3  f~= 8470 Hertz

Figure 58.b. 0.020" Diameter (Bottom of the tool was hit)
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Results of these dynamic experiments showed that the natural frequency of the micro-

tools used in the machinability and tool wear test was not critical because they were

much bigger than the spindle frequency.

Experimental data fed to the ARV computer program. The results obtained for the natural

frequency of the 0.0625 inches HSS micro end-mill are represented in Figure 59.

Frequency Response of 1116 inches Diameter Carbide
End-Mill

to an Impact Hammer Excitation
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Figure 59. Frequency Response of the 1/16 inches Diameter Carbide End-Mill --ARV

Computer Program Output Results
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V.5. Static Behavior of Micro Tools

The same kind of micro tools used in the machinability experiments were used in

this test. High speed steel (HSS) and Carbide 0.0625, 0.03125, 0.020 inches diameter two

flutes end-mills were analyzed under the static loading conditions. The tool was attached

to a Bridgeport Milling machine with an end-mill holder. The workpiece was clamped to

the dynamometer. The dynamometer was tightened to a vise that is fixed on the X-Y

table of the milling machine. A linear displacement sensor was clamped on the vise with

respect to the tool holder. The sensor supposed to measure the linear table displacement

during the experiment. The sensor with its signal conditioner was connected to a Nicolet

310 digital oscilloscope. The dynamometer was connected to a charge amplifier and to

the oscilloscope also. Force and displacement data were collected and recorded. The main

purpose of these experiments was to find out the stiffness of the micro-tools and use this

data in cutting force displacement relationship. The new machinability method required

the calculation of the maximum static bending force that can be applied to the tool. The

results obtained for every tool - workpiece combinations are presented in the following

figures.
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0.020" HIGH SPEED STEEL END-MILL STIFFNESS WITH POCO 3
WORKPIECE

TOOL STnFFNESS
(0.020" dia. high speed steel end.mill, cutting edges parallel to POCO 3 workpiece)
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Figure 60.a. Cutting edges of the tool were parallel to the workpiece (slope = 3.44)

TOOL STIFFNESS
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Figure 60.b. Cutting edges of the tool were vertical to the workpiece (slope= 394)
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TOOL S1IFFNESS
(0.020" 1ia. ig speed steel end-nill, cutting edges 45 deg to POCO 3 worpiece)
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Figure 60.c. Cutting edges of the tool were 45 degree to the workpiece (slope = 4.5)

TOOL ST1FFNESS
(0.020" dia high speed steel end-rill, tool breakage with POCO 3 workpiece)
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Figure 60.d. Tool breakage occurred at 14.55 N (slope = 1.3)
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0.0625" HIGH SPEED STEEL END-MILL STIFFNESS WITH POCO3
WORKPIECE

TOOL STIFFNESS
(0.0625" ia. hihi speed steel endnill, cutting edges parallel to POCO 3 workpiece)
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Figure 61.a. Cutting edges of the tool were parallel to the workpiece (slope = 6.20)
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(0.0625" dia. high speed steel end-rill, actting edges vertical to P0003 workpiece)
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Figure 61.b. Cutting edges of the tool were vertical to the workpiece (slope = 395)
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TOOL STIFFNESS
(0.0625" dia. high speed steel end-nrill,ctting edges 45 deg. to POCO 3 workpiece)
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Figure 61.c. Cutting edges of the tool were 45 degree to the workpiece (slope = 6.50)
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Figure 61 .d. Tool breakage occurred at 157.5 N (slope= 6.86)
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0.020" CARBIDE END-MILL STIFFNESS WITH ALUMINUM
WORKPIECE
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Figure 62.a. Cutting edges of the tool were parallel to the workpiece (slope = 8.43)
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Figure 62.b. Cutting edges of the tool were vertical to the workpiece (slope = 8.68)
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Figure 62.c. Cutting edges of the tool were 45 degree to the workpiece (slope =10.04)
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Figure 62.d. Tool breakage occurred at 36.1 N (slope = 9.75)
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0.0625" CARBIDE END-MILL STIFFNESS WITH ALUMINUM
WORKPIECE
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Figure 63.a. Cutting edges of the tool were parallel to the workpiece (slope = 19.6)
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Figure 63.b. Cutting edges of the tool were vertical to the workpiece (slope = 9.79)
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Figure 63.c. Cutting edges of the tool were 45 degree to the workpiece (slope =13.89)
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Figure 63.d. Tool breakage occurred at 122.09 N (slope = 17.83)
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0.020" HIGH SPEED STEEL END-MILL STIFFNESS WITH STEEL
WORKPIECE

TOOL STnFFNESS
(0.020" cia hi speed steel end-mill, cutting edges parallel to STEEL vwrkpiece)
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Figure 64.a. Cutting edges of the tool were parallel to the workpiece (slope = 1.41)
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Figure 64.b. Cutting edges of the tool were vertical to the workpiece (slope = 1.27)
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TOOL STIFFNESS
(0.020" ia hii speed steel end-rill, cutting edges 45 deg. to STEEL mrkpiece)
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Figure 64.c. Cutting edges of the tool were 45 degree to the workpiece (slope = 1.09)
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Figure 64.d. Tool breakage occurred at 16.425 N (slope = 1.69)
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0.020" CARBIDE END-MILL STIFFNESS WITH STEEL
WORKPIECE
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Figure 65.a. Cutting edges of the tool were parallel to the workpiece (slope = 5.30)
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Figure 65.b. Cutting edges of the tool were vertical to the workpiece (slope= 3.91)
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Figure 65.c. Cutting edges of the tool were 45 degree to the workpiece (slope = 6.01)
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Figure 65.d. Tool breakage occurred at 28.9 N (slope = 5.66)
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0.0625" HIGH SPEED STEEL END-MILL STIFFNESS WITH STEEL
WORKPIECE
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Figure 66.a. Cutting edges of the tool were parallel to the workpiece (slope = 10.25)
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Figure 66.b. Cutting edges of the tool were vertical to the workpiece (slope = 375)
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Figure 66.c. Cutting edges of the tool were 45 degree to the workpiece (slope = 7.69)
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0.0625" CARBIDE END-MILL STIFFNESS WITH STEEL
WORKPIECE
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Figure 67.a. Cutting edges of the tool were parallel to the workpiece (slope = 14.40)
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Figure 67.b. Cutting edges of the tool were vertical to the workpiece (slope = 10.39)
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Figure 67.c. Cutting edges of the tool were 45 degree to the workpiece (slope =15.57)
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Figure 67.d. Tool breakage occurred at 219 N (slope = 22.1)
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Chapter VI

Conclusion

Micro machining have been widely used in biomedical, aerospace and consumer

product manufacturing. In this study, the characteristics of cutting forces and micro-tool

structures were studied to develop low cost machinability and tool life evaluation

methods.

The new machinability method is developed to evaluate the optimal cutting

conditions to avoid premature tool breakage during micro end milling. The developed

method repeats the machining tests with different cutting conditions until the targeted

cutting force variation is obtained. The developed machinability method was applied

during the micro machining of graphite electrodes (POCO-3, POCOEDMC-3), aluminum

and steel (NAK 55). The new method required less experiment than the conventional

machinability tests and tool life was at the acceptable levels.

The optimal cutting conditions were used during the evaluation of the tool wear.

Cutting force amplitude variation during the micro machining of the workpiece was

monitored at the different stages of tool life. As the tool wears out, the thrust and feed

direction cutting forces had the tendency to increase. The cutting force amplitude

increased 350% for POCOEDMC-3 after 1350 inches of cutting and 300% for aluminum

after 155 inches of cutting. The recorded data was used to develop a new tool wear

estimation method by using new neural networks. The Neural Network Based Periodic

Tool Inspector (N 2 PTI) estimated the tool wear with an acceptable accuracy for both

POCOEDMC-3 and aluminum workpieces. To select the best paradigm accuracy, 3
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different neural networks [Backpropagation neural network (Analog BP) and

probabilistic neural network (Basic PNN, Sepvar PNN were evaluated.

Analog BP neural network took more time for training, however, the estimations were

more accurate (4 to 5% while PNN had 8 to 9%) than the PNN neural networks. The

proposed N2PTI could only estimate the tool wear, if the spindle speed, feed rate and

depth of cut are constant. To improve the N 2PTI, the effect of the depth of cut was

eliminated by normalizing the thrust and feed direction cutting forces. The normalized

data were used to train Analog BP, Basic and Sepvar PNN. The results were less accurate

than the previous case study without normalization, but still estimations were in an

acceptable error range. (10 to 13% for POCOEMDC-3 and 12-15% for Aluminum)

Elimination of the constant depth of cut requirement allows on-line monitoring of micro

machining of graphite electrodes and aluminum workpieces.

The elasticity and the critical static bending force (which breaks the tool) of

Carbide and HSS end-mills were tested. The deflection and the critical bending force that

breaks the micro end-mill were found. Carbide end-mills showed a brittle behavior. HSS

tools are more ductile and their stiffness was higher. The carbide tools were 2 times more

rigid than HSS tools (k=15.5 versus k=7.5 for 0.0625" tool) Also, carbide tools broke 1.5

times higher forces than the HSS tools. However, the deflection of HSS tools were 3 to 4

times bigger than the carbide tools. (16 inchx10 3 versus 4.45 inchx10 3 for 0.0625" tool)

Dynamic behavior of the micro tools was also studied to measure the natural

frequency and the first natural frequencies were found at 23,000 HZ for 0.0625" HSS

tools and 8,000 HZ for 0.020" HSS tools. The resonance problem was not critical at the

commonly used spindle speeds.
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To represent the characteristics of the cutting forces in more compact way,

segmental averaging and wavelet transformation methods were used. 8 wavelet

coefficients were representing the characteristics of one revolution for each cutting force

more accurately than 10 segmental averages.

The performance of the Improved N2PTI is outlined in Table 29 for POCOEEDMC-3 and

in Table 30 for Aluminum.

The main objective of the study was to develop new methods to improve

productivity and quality in industrial operations. The developed machinability analysis

technique and N2PTI can be easily used in industrial applications. Low hardware cost,

simple and reliable algorithms are the main advantages of the proposed methods in real

life applications.
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Table 29. Performance of the N2PTI - POCOEDMC-3

N 2PTI - POCOEMDC-3 Segmental Averaging Wavelet Transformation

Cases Error % Original Normalized Original Normalized
Data Data Data Data

Average 6.5 7.25 4.5 6.7
Training

Minimum 1.4 2.15 1.1 1.95
(40 cases)

Maximum 12.6 14.3 9.5 13.8

Average 8.75 9.5 6.8 9.25
Testing

Minimum 2.7 3 1.9 2.5
(30 cases)

Maximum 15.5 17.8 11.4 16.9

Table 30. Performance of the N2PTI - Aluminum

N2PTI- Aluminum Segmental Averaging Wavelet Transformation

Cases Error % Original Normalized Original Normalized
Data Data Data Data

Average 8.25 9.82 7.58 8.86

Training
Minimum 1.7 2.25 0.95 1.75

(50 cases)

Maximum 14.6 16.74 11.5 14.63

Average 9,65 10.25 8.64 9.82

Testing

Minimum 3.3 3.78 2.27 3.07
(40 cases)

Maximum 16.65 18.25 15.07 17.95
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