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ABSTRACT OF THE THESIS 
 

EVALUATION OF SOME STATISTICAL METHODS FOR 
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Microarray platforms have been around for many years and while there is a rise of new 

technologies in laboratories, microarrays are still prevalent. When it comes to the analysis 

of microarray data to identify differentially expressed (DE) genes, many methods have 

been proposed and modified for improvement. However, the most popular methods such 

as Significance Analysis of Microarrays (SAM), samroc, fold change, and rank product 

are far from perfect. When it comes down to choosing which method is most powerful, it 

comes down to the characteristics of the sample and distribution of the gene expressions. 

The most practiced method is usually SAM or samroc but when the data tends to be 

skewed, the power of these methods decreases. With the concept that the median 

becomes a better measure of central tendency than the mean when the data is skewed, the 

tests statistics of the SAM and fold change methods are modified in this thesis. This study 

shows that the median modified fold change method improves the power for many cases 

when identifying DE genes if the data follows a lognormal distribution.       
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CHAPTER I  INTRODUCTION 

Analysis of DNA microarrays has become a popular topic in the past years. Microarray 

technology has allowed researchers to observe thousands of gene expressions all at once. 

Gene expression in cells is of relevance because it allows a way to pinpoint disease 

markers that are related to medical treatments (Troyanskaya et al., 2002). A job that 

many researchers may want to perform would be to identify which genes in a cell are 

differentially expressed. For example, a researcher may need to conduct an experiment to 

discover differentially expressed genes between two experimental conditions. For 

explanation purposes this could be between healthy patients and patients who have a 

condition of interest such as cancer. Microarray analysis will allow the researcher to find 

which genes are expressed differently between these two groups of patients. The 

researchers will then be able to develop a treatment that targets these specific genes and 

create a more effective type of therapy. Further information on microarray technology 

can be found in Majtán et al. (2004).  

Over the years many methods have been studied to perform the analysis of microarray 

data. These methods can be categorized into two types, parametric methods and 

nonparametric methods. Examples of parametric methods are the t-test, Bayes t-test 

(Baldi and Long, 2001), an analysis of variance approach, and the B-statistic method 

(Smyth, 2004). Nonparametric methods, on the other hand, have become very attractive 

in this field of research because of the previous costs of microarray experiments and the 

availability of replicated data has made it difficult to obtain large samples (Zhang, 2007). 

Nonparametric methods include Significance Analysis of Microarrays (SAM) proposed 
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by Tusher et al. (2001), samroc, which uses a very similar test statistic to SAM’s in 

addition to the use of a receiver operating characteristic (ROC) curve (Broberg, 2003), 

the mixture model method (MMM) (Pan, 2003), nonparametric empirical Bayes method 

(Efron et al., 2001), and the Zhao-Pan method (Zhao and Pan, 2003).  

A variety of comparisons between methods have been performed in the past to find which 

method is most reliable in discovering true differentially expressed genes. The main 

purpose in these comparisons is to find the method that correctly identifies the highest 

proportion of the true differentially expressed (DE) genes as DE while maintaining a 

small proportion of equivalently expressed (EE) genes being falsely identified as DE.  

One of the most widely used methods for microarray analysis is the previously mentioned 

SAM (Zhang, 2007). However, SAM is not a completely robust method and some 

shortcomings arise. Many researchers have attempted to modify the method in order to 

make it more reliable. When the number of significant genes is fairly large in a data set, 

the estimated number of significant genes by SAM is affected and the test is less 

powerful. As a solution, Pan et al. (2003) suggested the use of MMM to estimate the 

distribution of the null and test statistic. The MMM allows for identifications of a 

rejection region for any type 1 error rate. In another attempt to fix this bias, Van de Wiel 

(2004) proposes a method using rank scores within SAM. Just by replacing the data with 

rank scores, the tendency of SAM to produce a biased estimate of DE genes is 

eliminated. The results are only valid though when the number of samples, N, is not “too 

small”. On the basis of the test statistic used in SAM, Broberg (2003) created the samroc 

method. Broberg found that when the number of DE genes is large, then the samroc 
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method is likely to work better than SAM. However, in most of the tests performed, the 

two methods worked just as well as each other when samroc did not outperform SAM.   

Breitling et al. (2004) adopted another approach to identify differentially expressed genes 

called rank product in an attempt to exceed SAM. The results showed that, while being a 

simpler method than SAM, rank product outperformed SAM in identifying DE genes, 

even with very small data sets. It is also seen that the rank product method performed 

very similarly to fold change. Fold change (FC) is a popular method often used because 

of its simplicity and easy understanding (Tarca, 2008). There are some concerns with the 

fold change method that will be mentioned later in Chapter 2.  

Comparisons across methods are interesting because each method usually results in 

outcomes without much agreement. In Jeffery et al. (2006) it is found that only 8 to 21% 

of the genes are commonly identified between the ten different methods being compared 

including SAM, samroc, fold change, and rank product. The study shows that many 

factors such as number of genes and number of samples influences which method will 

obtain the best result. It is concluded that rank product works well under settings with 

low number of samples and the ROC curve performed well under data sets with large 

sample sizes. The conclusion by Kim et al. (2006) is similar to that of Jeffery et al. 

(2006), noting that the sample size, distribution, and equal variance assumptions of each 

test greatly impact which test performs better. Our study shows that samroc performed 

best under the normal distribution and equal variance setting, as well as slightly 

exceeding SAM in both large and small sample cases. However, SAM outperformed 

samroc when the data follows a lognormal distribution.   
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Despite the advancement of next generation sequencing (NGS) as an alternative to 

microarrays, research in analysis of microarrays is still very relevant. Researchers in labs 

are more comfortable and confident with using microarrays as the technology has been 

around for a long time and it is less complicated than NGS (Baker, 2013). Figuring out 

the most efficient method to identify differentially expressed genes under particular data 

settings can help master the data analysis step in microarray research.  

The focus of the present study is a comparison of the top performing and popular 

methods SAM, samroc, rank product, and fold change along with modified versions of 

the SAM method and the fold change rule. As it is evident in Kim et al. (2006) and 

Jeffery et al. (2006), sample size and distributional assumption of the data largely 

impacts the decision of which is the superior method to choose when identifying 

differentially expressed genes. The aim of this thesis was found after evaluating previous 

research and understanding the biggest drawbacks in this area. Several settings of 

normally distributed data, lognormal cases, and various sample sizes will be tested under 

each of the methods. For the first time, a modification that uses median in place of the 

mean in the test statistics of SAM and the fold change rule will be made in this thesis. 

The modifications follow from the concept that the median is a better measure of central 

tendency than the mean when describing skewed data. The expectation is that using the 

median will better represent the average gene expressions when the microarray data 

follows a skewed distribution. The modification to fold change will be shown to improve 

results in identifying differentially expressed genes under skewed data settings. A table of 
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cutoff values for fold change and its modified version is also included in the present 

study.  

This thesis is organized as follows. In Chapter 2, the statistical techniques are given. A 

simulation study under the different settings of distribution and sample size is performed 

on each of the methods in Chapter 3. Chapter 4 will include the application and analysis 

of the methods to the widely reviewed leukemia dataset from Golub et al. (1999). Finally, 

conclusions will be made along with a statement of some concerns and future possible 

research in Chapter 5.  
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CHAPTER II  STATISTICAL METHODS 

This section will consist of a review of several favored statistical methods for identifying 

differentially expressed genes in microarray datasets. The performance of the methods on 

data that follow a normal distribution and a lognormal distribution are of interest. Let the 

ith gene expression level of the jth sample under condition 1 be represented by Xij  and the 

ith gene expression level of the kth sample under condition 2 be represented by Yik, where 

j=1,…,J, k=1,…,K, which represents replicates under condition 1 and 2 respectively. The 

gene number is represented by i, where i=1,…,n. For this study n=5000 genes. The 

number of genes, n, was chosen to be 5000 based on the work of Schwender et al. (2003) 

and Zhang’s (2007) research.     

SAM 

The test statistic in SAM is very similar to the test statistic from the simple t-test. The 

difference lies on the introduction of a small constant, s0, in the denominator. The test 

statistic for SAM is as follows: 

  d(i) =
X i −Y i
s(i) + s0

,            (2.1) 

where Xi is the expression of the ith gene under experimental condition 1 and Yi is the 

expression of the ith gene under experimental condition 2 (i =1,…,n). Further, X iand Y i  

are the mean expression levels under conditions 1 and 2 respectively for gene i. 

The “gene-specific scatter” or standard deviation s(i) is defined: 
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s(i) =
1/J +1/K

J + K − 2
• (Xij − X i)

2

j =1

J

 + (Yik −Y i)
2

k=1

K


 
 
 

  






,       (2.2) 

where J is the number of replicates in experimental condition 1 and K is the number of 

replicates in experimental condition 2 (Zhang, 2007).  

The constant, s0, is added in order to correct the issue that the traditional t-test faces. The 

problem with the t-test occurs when genes have low expression levels and yield a small 

sample variance. The combination of those two factors lead to producing a large test 

statistic making it very likely that the gene will be identified as DE. The value of s0 

represents a percentile of the standard deviation values of all the genes. The method to 

compute this value can be found on Page 30 of the SAM user guide (Chu et al., 2002).  

In order to find which genes are DE, SAM calls an algorithm to create the null scores by 

pooling the data together across the two treatments per gene B times, where B is the total 

number of permutations. For each permutation, SAM finds the null statistic by using the 

same formula as the original test statistic, resulting in a total of B null statistics for each 

gene. The mean of the null statistic is then found for each gene and plotted against the 

ordered test statistic. The absolute differences between the two values are then found and 

compared against a cutoff value to determine whether or not there is a significant 

difference (Tusher et al., 2001). The cutoff value can be obtained by following the 

method explained on Page 29 of the SAM user guide (Chu et al., 2002).  
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Samroc 

Broberg’s (2003) approach to identifying lists of significant genes while minimizing the 

rate of false positives and false negatives consists of ranking genes in order of likelihood 

of being differentially expressed. The test statistic is similar to that of SAM, however the 

constant s0, is chosen in a different manner (Kim et al. 2006). The test statistic looks like 

such: 

d(i)samroc =
X i −Y i
s(i) + s0

 .         (2.3) 

Plotting the number of false negatives against the number of false positives as a 

proportion of the total number of genes for various cutoff values creates the ROC curve. 

This can be seen in Figure 1. By using every combination of s0 and significance level α to 

obtain the false positive and false negative proportions, the final value of s0 is chosen 

from the combination that produced the shortest distance, c, to the origin, where there 

would be no false negatives or false positives in Figure 1.  

 

Figure 1.   Example of an ROC curve. Graph obtained from Broberg (2003). 
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The choice of the particular combination allows the selection of s0 to minimize (2.4) 

where the sum of FN and FP are the proportion of incorrectly identified genes (Broberg 

2003). 

With the data arranged with the rows representing each gene and the columns 

representing different samples, samroc uses repeated permutations of the columns in 

order to simulate the null distribution such as in SAM. The test statistic is calculated for 

each arrangement and compared to the original observed test statistic to find the p-value, 

the probability of obtaining a value as or more extreme (Broberg, 2003).   

pi =
# d( j)*b : d( j)*b ≥ d(i){ }

B • M
,        (2.4) 

where d(i) is the observed test statistic for the ith gene, B is the number of permutations, 

M is the number of genes, and d(j)*b is the value of the null statistic for the jth gene and bth 

permutation. Values of pi that exceed the selected significance level, α, are considered 

differentially expressed.  

Fold Change 

According to McCarthy and Smyth (2009), the earliest publications in analyzing 

microarray data to identify differentially expressed genes used the fold change rule. The 

fold change rule is defined as follows (Kim et al., 2006): 

FCi =
max(X i,Y i)

min(X i,Y i)
,         (2.5) 
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where X i and Y i  are the mean expression levels under conditions 1 and 2 respectively for 

gene i. The typical accepted cutoff value for the fold change rule is FCi > 2 (McCarthy 

and Smyth, 2009). McCarthy and Smyth also mention that a disadvantage of the fold 

change rule is that it does not take variability into consideration. Since it does not account 

for variability, it makes it difficult to make sense of a set cutoff value. The shortfalls of 

the fold change rule led to the development of more sophisticated tests such as SAM, 

however they also have their flaws and do not have the intuitive appeal which the fold 

change rule has (Breitling et al., 2004).     

Rank Product 

The rank product method was created with overcoming the problems of fold change in 

mind, while being statistically rigorous and simple at the same time (Breitling et al., 

2004). After the rank product method gained popularity as a method to detect 

differentially expressed genes in microarray data, Koziol (2010) extended the process to a 

two sample setting. Koziol defines the test statistic as follows:  

RPi = Rij
j =1

j

∏


 
  



 
  

1/ J

÷ Rik
k =1

K

∏
 

 
 

 

 
 

1/ K

,       (2.6) 

where J is the number of replicates in experimental condition 1, K is the number of 

replicates in experimental condition 2, and the rank is taken among the expressions in a 

single sample, across the n genes, for each sample. Rij represents those ranks assigned to 

the ith gene under condition 1 and Rik will be those ranks assigned to the ith gene under 
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condition 2. Further, the monotone log transformation is taken on the test statistic to 

obtain a better approximation of the null distribution and the resulting statistic is: 

log(RPi) = (1/J) log(Rij )
j =1

J

 − (1/K) log(Rik )
k =1

K

 ,                              (2.7) 

According to Koziol (2010), “the exact distribution of log(RPi) can be tedious” so a 

normal approximation of the distribution should be adequate, especially for large 

samples. If there is skewness in the data, then this approximation may not be adequate.  

SAM Using Median 

It has been shown that microarray data is consistent and well approximated by the 

lognormal distribution (Hoyle et al., 2002). The lognormal distribution is known to be a 

skewed distribution and the best measure of central tendency for this type of distribution 

is the median (Hozo et al., 2005, Manikandan, 2011). Behind this reasoning, the 

following modifications to improve the accuracy of SAM to correctly identify 

differentially expressed genes are proposed in this project. 

The first modification will consist of a test statistic as such: 

dM 1(i) =
˜ X i − ˜ Y i

˜ s (i) + s0

,         (2.8) 

Instead of using the average expression levels of the ith gene under condition 1 and 2, X i

and Y i , when calculating the test statistic, the median expression levels for the ith gene, 

˜ X i and ˜ Y i under each condition is used. 
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˜ X i = median(Xi1,Xi2,..., XiJ )        (2.9) 

˜ Y i = median(Yi1,Yi2,...,YiK )      (2.10) 

The same substitution of the median for the mean will be done when calculating the 

standard deviation.  

˜ s (i) =
1/J +1/K

J + K − 2
• (Xij − ˜ X i)

2 + (Yik − ˜ Y i)
2

k =1

K


j =1

J


 
 
 

  






.                             (2.11) 

The second modified test statistic will be as follows: 

dM 2(i) =
X i −Y i
˜ s (i) + s0

,       (2.12) 

where the numerator stays as the difference in mean expression levels, however the 

denominator is using the modified standard deviation with the median (2.11). 

Median Fold Change 

With the prevailing use among biologists as seen in Sikora-Wohlfeld et al. (2013) 

because of its attractive nature and simplicity, the following modification is made to the 

fold change rule:   

FCM i =
max( ˜ X i, ˜ Y i)

min( ˜ X i, ˜ Y i)
.         (2.13) 

The mean expression level, X i, under condition 1 and the mean expression level, Y i , 

under condition 2 from the fold change formula FCi (2.5) is changed to the median 
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expression level under each condition respectively for the ith gene. Use the definitions 

(2.9) and (2.10) for ˜ X i and ˜ Y i 

The modification of replacing the mean with the median expression level of the ith gene 

will better identify differentially expressed genes when the microarray data is following a 

skewed distribution such as lognormal as seen in the results in the following chapter.  

The cutoff values for both, the original fold change rule in Chapter 2.3 and the modified 

fold change seen here, can also be found in the Appendix and Chapter 3.2 respectively. 

The cutoff values are selected in order to obtain a probability of rejecting the null 

hypothesis when it is true, type 1 error rate, of 0.05. For the purpose of this study, the 

type 1 error rate represents the probability of declaring a gene DE when it is truly not.    
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CHAPTER III SIMULATION STUDY  

Since a theoretical comparison among the test statistics is not possible, a simulation study 

has been conducted to compare the performance of the test statistics in this chapter. In 

this section, the performance of SAM, samroc, fold change, rank product and the 

proposed modifications of SAM and fold change using median are compared by applying 

the methods to simulated gene expression data sets. The methods are compared under two 

cases: the data is simulated to follow a normal distribution and the data is simulated to 

follow a lognormal distribution. For both cases, simulations of several combinations of 

sample sizes have been done. For the lognormal case, the data was simulated to have 

three different levels of skewness, slight, moderate, and high.  

Simulation Techniques 

The simulation is performed by generating 5000 genes where 500 of them are knowingly 

differentially expressed. A matrix, W, is generated of size (5000 x (J+K)), J is the 

number of samples from condition 1 and K represents the number of samples from 

condition 2. As stated earlier, each data point in the matrix represents a gene expression, 

Xij and Yik. The ith gene expression level under condition 1 is represented by Xij  and the ith 

gene expression level under condition 2 is represented by Yik. Matrix W will be designed 

as such: 

W =

X11 ... X1,J −1 X1J Y11 Y1,K −1 Y1K

X21 ... X2,J −1 X2J Y21 Y2,K −1 Y2K

... ... ... ... ... ... ... ...

X4999,1 ... X4999,J −1 X4999,J Y4999,1 Y4999,K −1 Y4999,K

X5000,1 ... X5000,J −1 X5000,J Y5000,1 Y 5000,K −1 Y5000,K

 

 

 
 
 
 
 
 












.       (3.1) 
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The comparison between SAM, samroc, fold change, rank product, and the proposed 

modifications using median are performed under cases of randomly generated data from 

the normal distribution and lognormal distribution. For the cases under the normal 

distribution, the data follows the model: 

Xij = zij +
δ ij if 1≤ i ≤ 250

θ ij if 251 ≤ i ≤ 500

0 otherwise

 

 
 

 
 

, for j =1,...,J          (3.2)   

Yik ~ N(0,1) for k =1,...,K             (3.3) 

where zij ~ N(0,1), δ ij ~ N(1.5,1), and θ ij ~ N(−1.5,1). 

For the cases under the lognormal distribution different levels of skewness are 

considered: slightly, moderately, and highly skewed. The levels of skewness will be 

implemented by setting σ =1, 1.2, 1.5 respectively.   

           (3.4) 

Yik ~ ln N(0,1) for k =1,...,K           (3.5) 

where ηij ~ ln N(1.5,σ ),  φij ~ ln N(−1.5,σ), and . 

The choice of the sample sizes under condition 1 and 2, values of J and K, were chosen in 

order to cover a variety of situations that an experimenter may face when using real data 

and to be consistent with previous studies on microarray data. Sample sizes of (4,4) and  
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(10,26) were chosen as in Kim et al. (2006) and Zhang’s (2007) study where the latter is 

also the sample size of the Leukemia data from Baldi and Long (2001). The sample size 

(8,8) was also chosen since it is of same size as the apolipoprotein AI (Apo AI) dataset 

from Callow et al. (2000) that has been analyzed in Chapter 4. For a thorough analysis 

covering more possibilities, sample sizes on a scale of 5 from 10 to 25 were also chosen 

for J and K. All of the sample sizes can be seen in Table 2. For the purpose of this study, 

the process of simulating a data set and running the methods under each setting was 500 

times, while the previously mentioned studies of Zhang (2007) and Schwender et al. 

(2003) used 100 simulations for such comparisons.    

Results and Discussion 

An advantage of simulating microarray data is that the exact genes that are differentially 

expressed are known. After each method is performed on the simulated data sets, the total 

number of genes that were correctly identified as DE, true positives (TP), and the total 

number of genes that were incorrectly identified as DE, false positives (FP), were 

recorded. With the number of TP and FP known, then the type 1 error rate and the power 

were calculated to perform the comparison of methods. The null hypothesis for 

microarray analysis is that the ith gene under condition 1 is the same as under condition 2 

i.e., it is not DE, versus the alternative where the ith gene under condition 1 is 

significantly different from the ith gene under condition 2 i.e., the ith gene is DE. The 

hypotheses are important to note in order to find the type 1 error rate, the probability of 

rejecting the null hypothesis given that it is in fact true, and the power, the probability of 

correctly rejecting a false null hypothesis. In terms of the microarray analysis done here 
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the type 1 error rate reduces to the number of genes incorrectly identified as differentially 

expressed, FP, divided by the total number of equivalently expressed genes, 4500, and 

power reduces to the number of correctly identified differentially expressed genes, TP, 

divided by the total number of actual differentially expressed genes, 500. 

                                

P(type 1 Error) = P(reject null ∩ null is true)

P(null is true)

= FP 5000

4500 5000
= FP

4500

                  (3.6) 

                                           

Power = P(reject null ∩null is false)

P(null is false)

= TP 5000

500 5000
= TP

500

                  (3.7) 

To compare across each of the methods properly, it is important that the type 1 error rate 

is approximately 0.05 or less. A type 1 error rate of more than 0.05 would not be 

desirable to most investigators.  

A smaller set of 20 simulations was done to begin to examine the power and type 1 error 

rate for the two modified methods of SAM and the modified fold change. The 

preliminary results were also used to gauge an estimate of the proper cutoff values for 

fold change in order to obtain the desired type 1 error rate. The preliminary results 

revealed that both modified SAM methods using median did not improve the current 

SAM method. Table 1 shows the power and estimated probability of type 1 error for 

small sample size (4,4) and large sample size (10,26) under a lognormal distribution. The 

original SAM method maintained a higher power than both modified versions over all the 
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tested sample sizes. The results for only the simulations under the lognormal distribution 

are shown since the modification using median is intended to improve results when the 

microarray data is skewed. However, the difference in performance under data that is 

normally distributed is similar, with SAM outperforming the modified versions as 

expected. 

Table 1. Power and P(type 1 error) for SAM and modified SAM. For simulated 
data under lognormal distribution and standard deviation of 1  

Sample Size (4,4) (10,26) 
 Power P(type 1) Power P(type 1) 

SAM 0.0642 0.0020 0.5674 0.0174 

SAM 
Modification 

1 
0.0438 0.0015 0.4606 0.0431 

SAM 
Modification 

2 
0.0494 0.0018 0.5122 0.0139 

 

After obtaining the preliminary results and obtaining a point of reference for proper 

cutoff values for the fold change methods, the full simulations, as previously explained, 

were performed without continuing further with the modified SAM methods. Shown in 

Figure 2, the simulations carried out with the data following a lognormal distribution 

displayed that the modified fold change with median, original fold change, and rank 

product performed better than the SAM and samroc methods across all sample sizes.  
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distribution are given in Table 2. Levels of skewness are indicated by L=slightly skewed, M=moderately skewed, and H=highly skewed. 
Table 2. Power and P(type 1 error) for simulations under lognormal distribution 
(J,K) 
and 

Skew Power P(type 1 error) 
SAM sam-

roc 
FC Med. 

FC 
Rank 
Prod. 

SAM sam-
roc 

FC Med. 
FC 

Rank 
Prod. 

(4,4) 
L 

0.0613 0.3986 0.4395 0.4445 0.4677 0.0022 0.0448 0.0427 0.0409 0.0809 

M 0.0338 0.3790 0.4538 0.4742 0.4528 0.0014 0.0433 0.0440 0.0478 0.0791 

H 0.018 0.3599 0.4638 0.4790 0.4318 0.0010 0.0413 0.0438 0.0474 0.0768 

(8,8) 
L 

0.3594 0.6436 0.7109 0.7235 0.6725 0.0116 0.0473 0.0472 0.0470 0.0807 

M 0.2415 0.5840 0.6854 0.7072 0.6415 0.0080 0.0452 0.0481 0.0480 0.0790 

H 0.1224 0.5245 0.6468 0.6818 0.5965 0.0041 0.0417 0.0476 0.0480 0.0772 

(8,15) 
L 

0.4194 0.7142 0.8144 0.8182 0.7677 0.0132 0.0492 0.0496 0.0492 0.0745 

M 0.3806 0.6500 0.7767 0.7907 0.7280 0.0118 0.0477 0.0500 0.0494 0.0728 

H 0.3229 0.5843 0.7154 0.7521 0.6649 0.0098 0.0444 0.0497 0.0490 0.0703 

(8,20) 
L 

0.4305 0.7243 0.8409 0.8579 0.8091 0.0134 0.0499 0.0472 0.0481 0.0716 

M 0.4137 0.6596 0.8005 0.8225 0.7616 0.0125 0.0483 0.0475 0.0482 0.0691 

H 0.3864 0.5935 0.7327 0.7820 0.6932 0.0114 0.0462 0.0473 0.0485 0.0667 

(8,25) 
L 

0.4369 0.7208 0.8638 0.8730 0.8383 0.0135 0.0498 0.0496 0.0489 0.0687 

M 0.4341 0.6653 0.8248 0.8408 0.7874 0.0131 0.0489 0.0496 0.0490 0.0663 

H 0.4236 0.5999 0.7543 0.7961 0.7116 0.0126 0.0471 0.0498 0.0491 0.0637 
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(12,8) 
L 

0.5427 0.7418 0.7979 0.8108 0.7452 0.0174 0.0481 0.0490 0.0493 0.0813 

M 0.3970 0.6644 0.7409 0.7845 0.7080 0.0126 0.0456 0.0410 0.0485 0.0795 

H 0.2371 0.5836 0.6944 0.7531 0.6531 0.0074 0.0427 0.0475 0.0484 0.0774 

(10,15) 
L 

0.5984 0.7959 0.8588 0.8601 0.8132 0.0187 0.0488 0.0490 0.0480 0.0773 

M 0.4731 0.7204 0.8154 0.8284 0.7703 0.0144 0.0473 0.0489 0.0469 0.0754 

H 0.3608 0.6320 0.7427 0.7928 0.7028 0.0106 0.0443 0.0488 0.0470 0.0732 

(10,20) 
L 

0.5895 0.8107 0.8905 0.8973 0.8559 0.0181 0.0496 0.0499 0.0468 0.0744 

M 0.4880 0.7440 0.8498 0.8713 0.8099 0.0146 0.0482 0.0497 0.0491 0.0722 

H 0.4168 0.6474 0.7674 0.8290 0.7354 0.0121 0.0454 0.0498 0.0487 0.0699 

(10,26) 
L 

0.5567 0.8149 0.9068 0.9149 0.8860 0.0168 0.0499 0.0486 0.0486 0.0722 

M 0.4855 0.7487 0.8648 0.8861 0.8378 0.0145 0.0491 0.0484 0.0485 0.0699 

H 0.4476 0.6574 0.7806 0.8432 0.7560 0.0132 0.0470 0.0488 0.0489 0.0673 

(15,15) 
L 

0.8165 0.8931 0.9176 0.9106 0.8735 0.0261 0.0489 0.0485 0.0482 0.0821 

M 0.6801 0.8087 0.8747 0.8889 0.8318 0.0210 0.0470 0.0485 0.0483 0.0805 

H 0.4591 0.6829 0.7765 0.8544 0.7588 0.0136 0.0434 0.0483 0.0480 0.0789 

(15,20) 
L 

0.8581 0.9160 0.9461 0.9471 0.9169 0.0267 0.0485 0.0496 0.0496 0.0794 

M 0.7353 0.8465 0.9063 0.9261 0.8758 0.0226 0.0482 0.0497 0.0496 0.0778 

H 0.5245 0.7177 0.8052 0.8913 0.7973 0.0153 0.0449 0.0495 0.0496 0.0762 

(15,25) 
L 

0.8775 0.9242 0.9596 0.9585 0.9433 0.0272 0.0492 0.0481 0.0485 0.0777 
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M 0.7625 0.8622 0.9219 0.9390 0.9039 0.0230 0.0481 0.0482 0.0485 0.0755 

H 0.5577 0.7374 0.8211 0.9036 0.8243 0.0162 0.0462 0.0485 0.0487 0.0738 

(20,20) 
L 

0.9223 0.9537 0.9692 0.9735 0.9423 0.0289 0.0485 0.0495 0.0473 0.0829 

M 0.8192 0.8876 0.9327 0.9592 0.9073 0.0250 0.0475 0.0495 0.0473 0.0815 

H 0.5906 0.7447 0.8247 0.9350 0.8312 0.0172 0.0445 0.0497 0.0471 0.0800 

(20,25) 
L 

0.9416 0.9634 0.9796 0.9827 0.9656 0.0295 0.0483 0.0500 0.0493 0.0812 

M 0.8542 0.9098 0.9491 0.9715 0.9346 0.0260 0.0478 0.0499 0.0495 0.0797 

H 0.6364 0.7702 0.8422 0.9488 0.8602 0.0184 0.0457 0.0497 0.0495 0.0780 

(25,25) 
L 

0.9657 0.9784 0.9882 0.9890 0.9770 0.0303 0.0486 0.0500 0.0488 0.0844 

M 0.8903 0.9319 0.9624 0.9810 0.9507 0.0268 0.0476 0.0500 0.0488 0.0829 

H 0.6616 0.7857 0.8550 0.9644 0.8841 0.0187 0.0453 0.0499 0.0487 0.0815 

 

 As Table 2 shows, the fold change method and the modified fold change method using 

median were consistently the top two methods across all sample sizes and all skewness 

settings for the lognormal data. The modified version of fold change with median worked 

better than the original fold change for all of the simulated sample sizes, obtaining higher 

levels of power while maintaining a type 1 error rate of 0.05 or smaller. It can also be 

seen in Table 2 that as the level of skewness rises, the modified version of the fold 

change method with median further improves over the original fold change. For each 

sample size simulated, as skewness increases, the difference in power between the 

original fold change and median fold change increases, with the latter having the higher 
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Even though the median fold change method constantly had the better power as the 

sample size increased, it is evident that when there are at least 15 samples of each 

condition and the skewness is not too heavy, all the methods work very similarly, 

producing about the same power and type 1 error rate. The similar performance between 

methods toward the higher number of sample sizes leaves the decision of which method 

to use for analysis of microarray data to the researcher depending on which assumptions 

best match the data and the method of choice. SAM, samroc, and fold change all have the 

assumption that the genes share equal variance while rank product assumption is more 

relaxed allowing the variance to be about equal (Kim et al., 2006, Breitling et al., 2004).   

Using the median fold change method is appealing because of its ease and performance 

compared to the other methods when the data are assumed to follow a lognormal 

distribution however the choice to use it should be determined by what the researcher 

knows about the data. The cutoff values for this test were chosen in order to obtain a type 

1 error rate of no more than 0.05 and are given in Table 3. The researcher will have to 

determine whether or not the cutoff values represent a meaningful difference in the genes 

that are being analyzed.   
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latter. Once both sample sizes are at least 15, the two methods become almost the same 

making the choice between the two irrelevant. Over all the different sample sizes, from 

small to large, equal and unequal, when the variances are assumed to be the same and the 

distribution is following normal, samroc is the better performing method. The increasing 

similarity in samroc and SAM as sample size gets larger can be seen in Table 4. Table 4 

shows the power and type 1 error rate for each method for each sample size used for data 

following a normal distribution.   

Table 4. Power and P(type 1 error) for simulations under normal distribution 

(J,K) 
Power P(type 1 error) 

SAM samroc FC Med. 
FC 

Rank 
Prod. 

SAM samroc FC Med. 
FC 

Rank 
Prod. 

(4,4) 0.2168 0.4381 0.0910 0.0849 0.4360 0.0047 0.0452 0.0493 0.0495 0.0774 

(8,8) 0.5297 0.7246 0.1210 0.1068 0.6084 0.0157 0.0452 0.0494 0.0497 0.0775 

(8,15) 0.7341 0.8319 0.1512 0.1294 0.6788 0.0222 0.0461 0.0504 0.0499 0.0704 

(8,20) 0.7930 0.8648 0.1609 0.1392 0.7101 0.0240 0.0466 0.0498 0.0497 0.0672 

(8,25) 0.8262 0.8821 0.1640 0.1435 0.7317 0.0251 0.0467 0.0497 0.0494 0.0643 

(10,10) 0.6702 0.8115 0.1329 0.1155 0.6683 0.0201 0.0454 0.0494 0.0494 0.0781 

(10,15) 0.7996 0.8762 0.1540 0.1304 0.7220 0.0242 0.0460 0.0497 0.0495 0.0739 

(10,20) 0.8538 0.9061 0.1662 0.1441 0.7558 0.0260 0.0463 0.0499 0.0499 0.0706 

(10,26) 0.8835 0.9239 0.1739 0.1505 0.7802 0.0268 0.0464 0.0500 0.0496 0.0680 

(15,15) 0.8862 0.9337 0.1566 0.1323 0.7802 0.0261 0.0452 0.0492 0.0494 0.0790 

(15,20) 0.9307 0.9583 0.1704 0.1488 0.8214 0.0278 0.0455 0.0494 0.0499 0.0765 
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(15,25) 0.9507 0.9694 0.1837 0.1565 0.8479 0.0287 0.0460 0.0501 0.0500 0.0741 

(20,20) 0.9625 0.9789 0.1732 0.1517 0.8558 0.0286 0.0456 0.0497 0.0498 0.0806 

(20,25) 0.9772 0.9865 0.1868 0.1608 0.8844 0.0295 0.0460 0.0498 0.0497 0.0787 

(25,25) 0.9885 0.9931 0.1890 0.1630 0.9055 0.0296 0.0462 0.0500 0.0499 0.0819 

 

Sample size (10,26) replaced (10,25) since it is the sample size used in the real data set 

analysis and is close enough to the size of which it replaces. A table of the cutoff values 

used to obtain a type 1 error rate of at most 0.05 for the fold change method and its 

modification can be found in the Appendix.   
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CHAPTER IV APPLICATION 

To illustrate the findings of this thesis, two real data sets, the leukemia data set from 

Golub et al. (1999) and the Apo AI data from Callow et al. (2000) are analyzed in this 

chapter.  

Leukemia Data 

The leukemia data consists of 7129 genes and a total of 38 samples, 11 of the samples are 

from acute myeloid leukemia (AML) patients and 27 are from acute lymphoblastic 

leukemia (ALL) patients. For this study, two cases are analyzed for all methods, 

randomly selecting 10 AML samples and 26 ALL samples as in Kim et al. (2006) and 

randomly selecting 4 samples from AML and ALL as in Broberg (2003). As seen in 

Chapter 3 when the data set contained a large number of samples under both conditions 

the choice of method was not so vital. A larger difference in power of the methods was 

expressed when the data had fewer sample sizes.  

To preprocess the data, as in Kim et al. (2006), the median was subtracted from each 

gene expression and then divided by the interquartile range (IQR) per each sample.  

preprocessed Xij =
Xij − median(X j )

IQR j

,         (4.1) 

where j=1,…,J and IQR=upper quartile-lower quartile. The same formula (4.1) is used 

for k=1,…,K as well to find Xik.  

To compare each of the five methods, the same 50 reference genes that were deemed 

significant in Broberg (2003) were used. According to Broberg (2003), biological 
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evidence and a statistical analysis on the full data set led to the belief that these 50 

reference genes are differentially expressed under the comparison of AML and ALL 

patients. All the genes were ranked by the absolute value of their test statistic and the 

largest was given rank=1, second largest was given rank=2, and so on. The average ranks 

of the 50 reference genes were used to compare across the methods and are given in 

Table 5 for both sample size settings. 

 Table 5. Average ranks of the reference genes in the leukemia dataset 

(J,K) SAM samroc Fold Change
Median Fold 

Change 
Rank 

Product 
(4,4) 688.06 614.98 1573.42 1552.54 2926.36 

(10,26) 1056.3 142.22 1323.9 1328.52 2002.28 
 

The lowest average rankings for both sample size settings are given by the samroc and 

SAM methods as shown in Table 5. The samroc method worked extremely well 

compared to the other methods for the large sample setting. The outcome could be 

explained by the results of an F-test to check equal variance, where only 23.7% of the 

genes were found to satisfy this assumption as found by Kim et al. (2006). The violation 

of the equal variance assumption can affect the results of the fold change methods as well 

as SAM and samroc since each assumes equal variance. A Shapiro test for normality of 

the genes was also performed and found that 58.76% of the genes satisfied the normality 

assumption. When considering multiple test error, there may be more genes that were 

rejected as normal and as seen in Chapter 3, the proposed median fold change method 

does not perform as well when the data is normal. Contrary to what was expected, the 

difference in the performance of SAM and samroc was much larger for the large sample 
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size setting than under the small sample size setting. The larger margin of performance 

when the sample size increased could be explained by the random sampling when 

choosing the samples for the (10,26) setting. The simulations from Chapter 3 showed that 

as the sample sizes grew, the methods performed more alike. Fold change, median fold 

change, and SAM however did not show to have such a large difference in performance 

under the large sample size setting. The modified median fold change method produced a 

smaller average rank than the original fold change method under the small sample setting. 

This shows an improvement with the modification made in this project. Further real data 

sets should be tested in order to check this finding but these results are very promising.  

Apo AI Data 

The Apo AI dataset consists of 5548 genes and 16 samples. Out of the 16 samples, 8 

were from control mice and the other 8 samples were from mice with the Apo AI gene 

knocked out. The 8 mice that had the Apo AI gene knocked out will have a very low 

high-density lipoprotein cholesterol level and the delivery of the cholesterol to the liver 

will be affected (Callow et al., 2000). The data were preprocessed in the similar way as 

the leukemia data (4.1), as was done by Kim et al. 2006. The difficulty when attempting 

to analyze this dataset is that there has not been reference genes adopted as biologically 

significant from previous studies as there was with the leukemia data.  

To compare each of the methods, it was intended to select our own reference genes by 

finding the top 5% significant genes identified by each method and then finally selecting 

the common significant genes between the five methods. The same strategy was done by 

Kim et al. (2006) to select reference genes. The average ranks of the reference genes 
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should have been taken and compared as was done with the leukemia data however, no 

common genes were found significant between all five methods. The idea expressed in 

Jeffery et al. (2006) that only a very low percentage of genes will be found significant 

between multiple methods is supported by these results. Table 6 shows the number of 

genes that were commonly found between each pair of the five methods. 

Table 6. Number of common identified significant genes in the Apo AI dataset. 

Methods SAM  

samroc 42 samroc 

Fold Change 0 25 Fold Change 

Median Fold 
Change 

0 35 39 
Median Fold 

Change 
 

Rank Product 33 182 1 3 Rank Product 

  

In addition to Table 6, there are only a few three-way combinations of the methods that 

share common identified differentially expressed genes. Together, SAM, samroc, and 

rank product found 33 common significant genes, samroc, fold change and median fold 

change found 13 in common, and samroc, median fold change, and rank product found 

only 1 gene in common significant. The conflicting result between methods is one of the 

drawbacks of microarray analysis. There is a large inconsistency between the different 

methods to identify which genes are identified as significantly different between two 

groups.  

A Shapiro test was performed to test the normality assumption on the Apo AI data set and 

found that 4450 of the 5548 genes, 80.21% are normally distributed. In reference to the 
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simulations performed in Chapter 3, samroc performed the best when the data followed 

normal, so the number of significant genes in common between the fold change methods 

and samroc can be compared. Even though the modification to the fold change method 

was intended to improve the identification of significant genes when the microarray data 

followed a skewed distribution, Table 6 shows that median fold change has 10 more 

significant genes in common with samroc than the original fold change method does with 

samroc. These results show that the proposed modified version of fold change with the 

median can be an improvement over the original in cases when the data may be 

approximately normal. However, since there were no reference genes truly known to 

significantly have a biological difference between the knockout Apo AI mice and the 

control mice, from this dataset analysis, it is best to note the challenge of identifying truly 

differentially expressed genes when analyzing real data sets. As we can see the choice of 

the method for analysis can make a large difference in which genes are called 

differentially expressed.       
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CHAPTER V  CONCLUSION 

A comparison of the performance of popular testing procedures for identifying 

differentially expressed genes from microarray data such as SAM, samroc, fold change 

and rank product was conducted. On the basis of the assumption that microarray data are 

related to the lognormal distribution from Hoyle et al. (2002) and the familiar idea that 

the median is a better measurement of central tendency than the mean when describing 

skewed data as expressed in Manikandan (2011), modifications were attempted on two 

methods. The test statistics of SAM and fold change were modified, replacing the mean 

gene expression values with the median.  

The six procedures were applied to simulated datasets under various settings of sample 

sizes to represent real situations when dealing with microarray data and different levels of 

skewness. The test statistic modifications to SAM with median did not result in a higher 

power than the original SAM in the analysis of lognormal data early in this research so 

the testing was continued without the two SAM modifications. The lack of improvement 

could have been because of the choice of the constant s0. The value s0 may need to be 

adjusted in order to correctly minimize the coefficient of variation of the test statistic.  

In the analysis of the simulated lognormal distribution, different levels of skewness were 

considered. Fold change and the modified median fold change were consistently the top 

performing methods for all levels of skewness of the lognormal data. For small sample 

sizes the results had shown that the popular SAM method performed very poorly while 

the proposed median fold change method out performed all other methods throughout the 

tested sample sizes and levels of skewness. The SAM method was the worst performing 
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method for the simulated lognormal data with its power reducing as the data became 

more and more skewed, on the contrary, the modified fold change method improved its 

performance as skewness grew.  

In the analysis of the simulated normally distributed data, samroc was the most powerful 

method consistently across all sample sizes. The difference in performance between 

samroc and SAM however was not much different after both sample sizes were 15 or 

larger. The fold change method and its modified version with median performed rather 

poorly in the analysis of the simulated normal data.  

An analysis on a real microarray datasets was also performed to evaluate how the 

methods and the proposed modification would perform in a real situation. The leukemia 

dataset from Golub et al. (1999) was analyzed with the five remaining methods, SAM, 

samroc, rank product, fold change, and the median fold change method. The samroc 

method performed the best for the large and small sample setting when evaluating the 

average ranks of the 50 reference genes that were declared as biologically significant in 

Broberg (2003). Though the median fold change method did not perform the best, it did 

outperform the original fold change method under the (4,4) sample size and performed 

almost the same for the (10,26) sample size. Kim et al. (2006) found that only a small 

number of the genes in the leukemia data set satisfied the normality assumption, 31.5%, 

by a Kolmogorov-Smirnov test, so it is assumed that this data is not normally distributed 

and only 23.7% of the genes satisfy the equal variance assumption. The violation of the 

assumptions could have affected the performance of the two fold change methods since 

they do assume that variances are equal. The same assumption of equal variance applies 
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to SAM and samroc while the rank product method is more robust and only requires 

about equal variances. Therefore maybe further analysis of other real data sets could give 

us a better idea of the performance of the different methods. 

While the analysis on the Apo AI dataset showed that the median fold change method 

was an improvement to the original fold change, it also gave a nice visualization of how 

the different methods are inconsistent with each other when identifying differentially 

expressed genes. Not many genes were found in common when comparing across 

multiple methods, displaying the difficulty of finding truly differentially expressed genes 

when analyzing microarray data. 

A table with the suggested cutoff values to control for a type 1 error rate of 0.05 or less 

for the fold change and median fold change methods was also provided at the end of 

Chapter 3. These cutoff values can be suggested only as guidelines and need to be 

evaluated by the researcher to determine if they represent an actual biological difference 

in the particular genes being analyzed. The fold change method is appealing because it is 

very simple to use but the fact that the cutoff value does not take into account the 

variability in the data, there is apparent weakness to the method. 

The procedures presented here considered various sample sizes and simulated samples 

modeled after normal distributed data and lognormal distributed data at different levels of 

skewness. Under all the simulations equal variance was simulated between both 

conditions. When dealing with real microarray data there will be many cases where the 

genes for the two conditions being analyzed will not have equal variance. The equal 

variance assumptions of the models presented here will have a meaningful effect on how 



 37

they perform and should be taken into account when choosing which method is best to 

use. Simulations with samples of unequal variances should be carried out to further 

evaluate how the median fold change method performs. Throughout all the simulations 

and the leukemia data analyses, samroc performed quite well and at many times was the 

most powerful. However in the analysis of the lognormal data, rank product was slightly 

better in addition to the fold change methods. Modifying the test statistic of samroc, 

which is closely related to the SAM test statistic, with the median in place of the mean 

may have a positive effect on the performance of samroc when the data is skewed. 

One last thing to consider is the relevance of microarrays and the analysis of microarrays 

today when newer technology is becoming popular. With the advancements and reduced 

costs in next generation sequencing one may ask if there is any reason to use microarrays. 

Generally microarrays are less complicated and easier to work with and prepare than 

NGS (Baker 2013). A point Baker (2013) brings up is that since microarrays have been 

around for a while now, many researchers have become very comfortable with the use of 

microarrays in practice and have gotten used to interpreting their results. From the 

research done here, it can be seen that each method varies widely under different 

situations so the search for the most consistent and best performing method is still sought 

after.  
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Table 2.1     Cutoff values for fold change and median fold change with at most 0.05 
P(type 1 error) under normal distribution  
 
Sample 

Size 
Fold 

Change 
Median Fold 

Change 
(4,4) 6.38 6.38 
(8,8) 6.38 6.38 
(8,15) 6.57 6.53 
(8,20) 6.95 6.90 
(8,25) 7.40 7.20 
(10,10) 6.40 6.40 
(10,15) 6.45 6.45 
(10,20) 6.70 6.65 
(10,26) 6.95 6.90 
(15,15) 6.40 6.40 
(15,20) 6.45 6.45 
(15,25) 6.49 6.49 
(20,20) 6.35 6.35 
(20,25) 6.37 6.37 
(25,25) 6.32 6.32 
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