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ABSTRACT OF THE DISSERTATION

TEMPORAL MINING FOR DISTRIBUTED SYSTEMS

by

Yexi Jiang

Florida International University, 2015

Miami, Florida

Professor Tao Li, Major Professor

Many systems and applications are continuously producing events. These events

are used to record the status of the system and trace the behaviors of the systems. By

examining these events, system administrators can check the potential problems of

these systems. If the temporal dynamics of the systems are further investigated, the

underlying patterns can be discovered. The uncovered knowledge can be leveraged to

predict the future system behaviors or to mitigate the potential risks of the systems.

Moreover, the system administrators can utilize the temporal patterns to set up event

management rules to make the system more intelligent.

With the popularity of data mining techniques in recent years, these events grad-

ually become more and more useful. Despite the recent advances of the data mining

techniques, the application to system event mining is still in a rudimentary stage.

Most of works are still focusing on episodes mining or frequent pattern discovering.

These methods are unable to provide a brief yet comprehensible summary to reveal

the valuable information from the high level perspective. Moreover, these methods

provide little actionable knowledge to help the system administrators to better man-

age the systems. To better make use of the recorded events, more practical techniques

are required.

From the perspective of data mining, three correlated directions are considered to

be helpful for system management: (1) Provide concise yet comprehensive summaries

about the running status of the systems; (2) Make the systems more intelligence and
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autonomous; (3) Effectively detect the abnormal behaviors of the systems. Due to

the richness of the event logs, all these directions can be solved in the data-driven

manner. And in this way, the robustness of the systems can be enhanced and the

goal of autonomous management can be approached.

This dissertation mainly focuses on the foregoing directions that leverage tem-

poral mining techniques to facilitate system management. More specifically, three

concrete topics will be discussed, including event, resource demand prediction, and

streaming anomaly detection. Besides the theoretic contributions, the experimental

evaluation will also be presented to demonstrate the effectiveness and efficacy of the

corresponding solutions.
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CHAPTER 1

Introduction

1.1 Background

Many systems and applications are continuously generating temporal events (se-

quences of events with associated timestamps), from events such as low level resource

utilization trace events, devices operation events, OS operation events, HTTP re-

quest events, and network traffic events, to high level events such as database queries

events, UI click events, user behavior events, and virtual machine demand request

events. These recorded events are used to capture the system status and to trace the

behaviors of the systems over time. By examining these events, system administrators

can check the potential problems of the systems. If the temporal dynamics of these

events are further investigated, the discovered temporal patterns can be leveraged to

predict the future behavior or to mitigate the potential risks of the systems. More-

over, the temporal patterns can be utilized by the system administrators to set up

event/incident management rules to make the system more intelligent, and therefore

makes autonomous management of large scale distributed systems possible.

Since decades ago, a large portion of the systems have been equipped with mature

logging module [RT74, Joh89, ALGJ99, Bro99], But embarrassedly, for a very long

time, the recorded events were put aside and thus largely underutilized. In early years,

if the events need to be investigated (e.g., system continuously work abnormal), people

used to analyze the logs manually by using commands such as head, tail, grep, cut,

and sed, etc. To make the analysis easier, in the 1980s, people developed simple

script language awk [AKW79] to facilitate the complex log analysis. Soon after, the

high level dynamic programming language Perl [CWO+12] has been proposed and

it gradually became the mainstream analysis tool for advanced text/log processing,

due to its powerful regular expression support.
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All these aforementioned methods can be regarded as the rule-based event analysis,

in which the analysts define a set of match rules to find the potential problems.

They are effective in the early years because, at that time, the amount of events is

small and their relationships are relatively simple. However, due to the fast evolving

of computing systems, the size of generated event logs grows exponentially every

year and the dependencies between the events become increasingly complicated. In

nowadays, even the software on personal computer can have thousands of distinct

event types. For example, it is known that a PC with Windows XP can easily generate

more than 10000 messages with more than 6000 distinct event types [Eve14]. Similar

number of messages can be generated by Windows 7. The situation is even more

severe for the state-of-the-art distributed systems as they are designed to be more

complicated. As reported by Google’s researchers [XHF+10], a moderate system in

Google would generate over 1 billion event messages each day, with a size about 400

GB uncompressed. These events record the running status of the system involving

more than 20000 distinct event types. Since the human analyst can easily been

overwhelmed when facing such a large number of events with complex correlations,

manual way for event analysis is no longer practical. To catch up the pace of event

generating, the automatic way is required.

In recent years, the booming of data mining [WF05,HKP06] and machine learn-

ing [Mit97,Bis06] has drawn many attentions from the system management commu-

nity. People began to leverage advanced data mining and machine learning techniques

to facilitate the event analysis as well as the system management. In general, several

aspects of system management can be benefited if data mining and machine learning

techniques are used:

• Event log analysis: Event logs analysis is a major part of system administra-

tors’ work. By investigating the daily generated logs, the potential risks of the

systems, if any, can be timely figured out. Once the threats have been identified

2



and eliminated, the systems can be kept in normal conditions and the downtime

can be reduced. To facilitate manual event log investigation, a lot of conve-

nient tools/services have been proposed, such as Windows Event Viewer [Vie],

FirstApp System Tracker [App], Splunk Event Log Viewer [Spl, Car12], and

Loggly Log Management Tool [Log], etc. They reduce the administrators’ daily

work by presenting user-friendly GUIs that facilitate the viewing of the event

logs. In current stage, these tools only provide basic statistic tools and still

require system administrators to find the potential risks/problems manually. It

is believed that by incorporating advanced data mining and machine learning

techniques, these tools can be enhanced and they can provide administrators

more informative comments about the running status of the monitored systems.

• System Tuning and Maintenance: In early years, the systems are tuned

and maintained manually by experienced system administrators. They need to

periodically investigate the running status of the systems to make sure that all

the servers are working properly. The workload is affordable when the num-

ber of managed servers is small. However, with the increasing demand for

computing in recent years, today’s IT infrastructure can easily scale up to hun-

dreds even thousands of servers. In the information era, even a small sized

institution would require at least a hundred of severs, which needs a team of

system administrators for routine maintenance. To reduce the ever-increasing

burden for system administrators, IT service giant IBM proposed the concept

of Autonomic Computing [Hor01,KC03,GC03] in the early 2000s. Autonomic

computing represents the inevitable evolution of IT automation. Its goal is to

enable the systems automatically manage themselves according to the adminis-

trators’ goals. By adopting autonomic computing, systems can be self-adapted

in most of the time and the human intervention is needed only in rare situa-

tion, resulting significant efficiency improvement for system administrators. In

3



principal, to fulfill autonomic computing, advanced data mining and machine

learning techniques are required.

• System anomaly detection: Detecting the abnormal behavior of the system

is one of the most critical tasks for system management. To maximize the up-

time of systems, administrators need to continuously monitor the running status

of the systems to ensure that the systems are in normal condition. As event

logs are too large to examine line by line manually, administrators typically

create ad hoc scripts to search for keywords such as “critical”, “fatal”, or

“error”, but this has been shown to be far from enough for problem determina-

tion [OS07,JHP+09,Xu10]. Rule-based solution is useful when the internal logic

of the systems is simple [Pre03], but the knowledge requirement for setting rules

increases vastly as the systems are getting more and more complex. To truly

conduct the intelligent anomaly detection, advanced data mining and machine

learning techniques are necessary to enable the self-learning and self-diagnosis

of the systems.

To enhance the aforementioned aspects of system management via data mining

and machine learning, the following techniques can be leveraged:

• Frequent pattern mining: In data mining community, frequent pattern

mining [HCXY07] has been studied for decades. This research direction was

first proposed by Agrawal [AIS93] to address the problem of discovering the

frequently appeared itemsets in transactional dataset. After that, abundant

literatures [HPY00, HPMA+00, PHM+00, PPC+01, YH02, GHP+03, HPYM04]

have been dedicated to this research area and tremendous progress has been

made. These works focused on proposing solutions on various kinds of ex-

tensions and applications. In its application in the domain of system man-

agement, frequent pattern mining are mainly used to find the frequently co-
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occurred events from the logs, including web log mining [CMS97, ZL01, IV06]

and access pattern mining [PHMAZ00,ZHF06,PG07]. To reduce the number of

discovered patterns, usually maximal patterns [GZ01, BCF+05] or closed pat-

terns [Vaa04,ZH05,LOP06] are mined instead of the exhaustive patterns.

• Sequential pattern mining: Similar to frequent pattern mining, sequential

pattern mining [ZB03,ME10] also focuses on finding frequently appeared tempo-

ral patterns. Instead of finding such patterns from a large number of transaction

itemsets, sequential pattern mining algorithms are used to discover the patterns

from a single but very long event sequence. Compared with frequent pattern

mining, sequential pattern is a more natural way to express the occurrence of

the events in a system. In recent years, a lot of works have been proposed

to conduct system analysis using sequential pattern mining techniques [JD02,

LKL07,SG08,HC08]. Also, to reduce the number of mined patterns, the meth-

ods of discovering closed sequential patterns [WH04, ZLC10, TC12] are stud-

ied. Moreover, variations like partial episodes mining [LB00,LBV01,DP07] and

constraint-based episodes mining [PHW02,MR04,PMSR09] are also been pro-

posed to address the problems with special requirements.

• Time series prediction: The problem of time series prediction, a.k.a. time se-

ries forecasting, has been studied by people from different research areas [Aka69,

PR81,PP88,Har90,Bro04,BJR13] for decades. Due to its inherent difficulty, this

problem is still challenging and new approaches are proposed each year. From

the modeling perspective, a lot of models have been proposed to address the

prediction problem, including kalman filter [Har90,JU97,LGS+08], autoregres-

sive model [Aka69,LR85,Ing03], regression model [Ped97,Lew00,PIL06], neural

network [TdAF91,KR94,KB96,FC98,CYD06], support vector machine [SS09],

and genetic algorithm [KH00, ZTL+04], etc. Also, a couple of learning meth-

ods have been leveraged to learn the parameters of the model, including least
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square [VGSB+01,Abd03,Zha04], gradient descent [Fri01,DJCR01], simulated

annealing [Ing93, PH05, PH06], and randomized algorithm [DGHS95, Sch98],

etc. In the domain of system management, time series prediction techniques

are mainly used to predict the future behavior of the systems. The predic-

tion results can be leveraged to adjust the systems for better reaction of future

demands.

• Outlier detection: Outlier detection is one of the most attractive research

areas in data mining and machine learning [CBK07,CBK09]. Many approaches

have been proposed in recent years [AY01, HHWB02, AP02, PKGF03, LK05],

these methods leveraged various kinds of information, such as attribute values,

data distribution, and context information, to identify the outliers in a data-

driven perspective. In general, three types of outliers have been studied: 1)

point outlier, which is defined as the instance whose attribute values are differ-

ent from the values of the normal ones; 2) contextual outlier, which is defined as

the instance whose attribute values are abnormal given a specific context; and

3) collective outlier, which is defined a subset of instances altogether are consid-

ered as abnormal. There are also a lot of efforts on applying outlier detection to

systems management, including the areas of intrusion detection [BCH+01,GTD-

VMFV09], malware detection [YWLY07,YWL+08,YLJW10], and system mon-

itoring based anomaly detection [LX01,MTDB04],

1.2 Contribution

In this dissertation, we would address the research challenges that covers the afore-

mentioned directions. Concretely, we would focus on designing and developing data-

driven solutions to help system administrators better manage the systems, including

(1) event summarization algorithms to help people better understand the underlying
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system event relationships; (2) robust temporal prediction algorithms to help plan

the resource capacity by predicting the future demands; and (3) machine learning

approaches to help identify the potential system anomaly in real time. In particular,

we make the following contributions in this dissertation.

1.2.1 Effective Algorithm and Framework for Event Summa-

rization

The first contribution is generally focusing on the direction of leveraging data mining

and database techniques to deign an effective algorithm for event summarization.

The proposed algorithm is able to summarize an event sequence using inter-arrival

histograms by capturing the temporal relationship among events. Specifically, the

contributions for this area are:

• We propose a systematic and generic framework for natural event summariza-

tion using inter-arrival histograms. Through natural event summarization, an

event sequence is decomposed into many disjoint subsets and well-fitted models

(such as periodic patterns and correlation patterns) are used to describe each

subset. Inter-arrival histograms demonstrate clear event patterns and capture

temporal dynamics of events.

• We formulate the event summarization problem as finding the optimal combina-

tion of event patterns using MDL principle [Grü07]. The usage of MDL principle

automatically balances the complexity and the accuracy of summarization and

makes our framework parameter free.

• We present the encoding scheme for histograms and cast the summarization

problem as seeking a shortest path from the histogram graph.
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• We propose a boundary pruning algorithm that greatly accelerates the event

summarization process by taking advantage of the multi-resolution property of

wavelet transformation.

1.2.2 A Comprehensive Framework for Making the Cloud

More Intelligent

The second contribution is a novel and comprehensive framework to model and pre-

dict the future demands and capacity of the cloud systems. By making use of the

techniques of data mining and machine learning, this framework is able to make the

cloud platform more efficient in terms of service fulfillment time and resource usage.

Specifically, the contributions for this direction is summarized as follows:

• We formulate both the problem of instant Virtual Machine (VM) provisioning as

the time series problem. And we introduce an asymmetric and heterogeneous

measurement called Cloud Prediction Cost in the context of cloud service to

evaluate the quality of our prediction results.

• We design an integrated system that predicts the future demands by combining

the prediction power of a set of state-of-the-art algorithms. Our system is able to

predict the future demand of each VM type. Especially, based on the temporal

dynamics of the VM type importance, our system is able to dynamically take

different pre-provisioning strategies.

• We conduct a series of simulation experiments on real dataset to demonstrate

the effectiveness of our system.
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1.2.3 Online Anomaly Detection Solution on Distributed Sys-

tems

The third contribution is a framework to discover a new type of anomaly called con-

textual collective anomaly over a collection of data streams in real time. A primary

advantage of this solution is that it can be seamlessly integrated with real time mon-

itoring systems to timely and accurately identify the anomalies. Also, the proposed

framework is designed in a way with a low computational intensity, and is able to

handle large scale data streams. Concretely, the contributions can be described as

follows:

• We provide the definition of contextual collection anomaly and propose an incre-

mental algorithm to discover this type of anomalies in real time. The proposed

algorithm combines the contextual as well as the historical information to ef-

fectively identify the anomalies.

• We propose a flexible three-stage framework to discover such anomalies from

multiple data streams. This framework is designed to be distributed and can

be used to handle large scale data by scaling out the computing resources.

Moreover, each component in the framework is pluggable and can be replaced

if a better solution is proposed in the future.

• We empirically demonstrate the effectiveness and efficiency of our solution

through the real world scenario experiments.

1.3 Chapter Summary

In spite of the fact that system events are useful information for system inspection,

management, and diagnosis, they has not been made good use by the system admin-

istrators today. In this dissertation, we would discuss the usage of event log in three
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application domains in system management, and we also present several approaches

that use the events to facilitate the system administrators.

To facilitate the reading and understanding, we hereby give an outline of the ma-

terials presented in this dissertation. In the next chapter, we would firstly state the

problems we would address in this work. In Chapter 3, we will study the problem

of leverage data mining techniques, especially the temporal mining techniques, to

conduct the summarization task for a given piece of system events. Then in Chap-

ter 4, we will focus on how to leverage time series prediction techniques to make the

cloud platform more effective. More specifically, we mainly discuss two closely related

problem – cloud capacity planning and VM provisioning prediction. Afterwards, in

Chapter 5, we will focus on the problem of how to timely and accurately identify

the anomalies among a set of event streams. In this chapter, we would propose a

comprehensive framework that leverages advanced data mining and machine learn-

ing techniques to identify the contextual collective anomalies among multiple event

streams in real time. Finally, we will conclude my research in Chapter 6.
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CHAPTER 2

Related Work

In this chapter, we would highlight the research efforts that are related to the

three directions that will be addressed in this dissertation. In particular, Section 2.1

presents the existing works on event summarization and the relevant techniques that

are used in this problem; Section 2.2 reviews the exising work of system oriented data

mining and system behavior modeling; Section 2.3 describes the existing approaches

of stream anomaly detection.

2.1 Related Work of Event Summarization

In this section, three related areas that are related to our proposed solution will be

discussed: 1) The existing works of event summarization, which is directly related

to the problem we intend to solve. 2) The existing application of MDL principle in

data mining, which is a very useful principle to guide the model selection during our

summarization process. and 3) The existing applications of wavelet transformation

in data mining, which is an elegant multi-resolution analysis tool and we use it to

accelerate the summarization process.

2.1.1 Event Summarization Algorithms

Event summarization is a relative new research area that combines the area of data

mining and computer systems. It can be deemed as an extension of frequent itemset

mining [AMS+96,CSD98] and frequent episodes mining [CS02b,LSU05,MH01,MS01].

These frequent pattern mining techniques can reveal some interesting patterns by

identifying the correlations of discrete events and are the building blocks of event

summarizations. Event summarization has already attracted a lot of research at-

tentions in recent years [KT08,KT09, PPLW07,WWLW10]. Peng et al. [PPLW07]
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proposed an approach to find the patterns in the event logs by first measuring the

events inter-arrivals patterns, and then the statistical test is leveraged to identify

whether the pairwise temporal correlations do exist. By assembling the correlated

event pairs, a correlation graph can be generated to represent the relationship of the

events. Different from the work of [PPLW07], Kiernan et al. [KT08,KT09] proposed a

summarization method by segmenting the event sequences according to the frequency

changing of the events. They leveraged the MDL principle to encode the frequency of

the events locally and globally. Based on the encoding scheme, they designed a dy-

namic programming based algorithm to discover the best representation of the event

sequences from the perspective of frequency changing. Based on the work of Kiernan

et al., Wang et al. [WWLW10] further improved the summary by proposing a Hidden

Markov Model to describe the transition of states among sequence segments.

It can be seen that several summarization models have been proposed, but these

models are either too general or too hard to be understood by data mining outsider.

Therefore, none of the results provided by these work are helpful enough for the

system administrators.

2.1.2 Minimum Description Length Applications in Data Min-

ing

Minimum Description Length Principle (MDL) [Grü07] is a general method for in-

ductive inference. It is effective for generalization, data compression, and de-noising.

In data mining community, it has been successfully used for temporal pattern min-

ing [CSD98], clustering [WK90], graph mining [CH94], trajectory outlier detection [LHL08]

and social network analysis [XTL+10]. Although MDL has been used in event sum-

marization for encoding the event segments [KT08,WWLW10], our method is the
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first one that uses MDL to encode the inter-arrival histogram and to identify the set

of disjoint histograms for summarization.

2.1.3 Wavelet Transformation Applications in Data Mining

Wavelet transformation is a useful tool for dividing up data, functions, or operators

into different frequency components and then studies each component with a resolu-

tion matched to its scale [D+92, LLZO02]. This technique has been widely used in

many data mining tasks such as clustering [SCZ98], similarity search [PM02], and

visualization [MWBF98]. The most relevant application to event summarization is

wavelet-based time-series analysis [CF99,PM02] where wavelet tools are used to mea-

sure the similarity of time-series in a global perspective. Different from the existing

works, in the proposed work, wavelet transformation is used as a subroutine to find

the possible boundaries of the patterns hidden in an event sequence, and its multi-

resolution property is leveraged to improve the efficiency of our approach.

2.2 Related Work of Cloud Demand Prediction

There are mainly three areas related to this research topic: 1) System oriented data

mining; 2) System behavior modeling and prediction; 3) Virtual environment man-

agement. In the following, we will discuss these related works in detail.

2.2.1 System Oriented Data Mining

The increasing complexity and scale of modern computing systems make the ana-

lytic difficulty far beyond the capability of human being. The emergence of sys-

tem auxiliary technologies liberates the heavy burden of system administrators by

leveraging the state-of-the-art data mining technologies. There are mainly two cat-
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egories of system auxiliary technologies: the system analytical techniques and the

system autonomous techniques. A couple of efforts have been paid towards these

areas. For the first type, [PLM05, LPP+10, LLMP05] utilize text mining to find

out the category of events and then exploit visualization techniques to show the re-

sults. [KT09,WWLW10, PPLW07] utilize temporal mining and encoding theory to

discover the event interaction behaviors from systems logs and then summarize them

in a brief way. Xu et al [XHF+09,XHF+09,XHF+08] focuses on proposing anomaly

detection algorithms to detect the system faults by utilizing the system source code

and logs. These above methods are all off-line algorithms and are unable to tell the

system to take reactions on-the-fly. For the second type, [PMSR09] uses motif mining

to model and optimizes the performance of data center chillers. [GRGM09] proposes

a signature-driven approach for load balance in the cloud environment with the help

of utilization data. In this thesis, our proposed solution can be categorized as an

system autonomous technique. Different from the existing works, we tackle the ca-

pacity planning and instant VM provisioning problems from the angle of entire cloud

system.

2.2.2 System Behavior Modeling and Prediction

In operating system, caching is one of the common techniques used to improve the sys-

tem performance through forecasting. Partitioned Context Modeling (PCM) [KL99]

and Extended Partitioned Context Modeling (EPCM) [KL01] are two statistical based

caching algorithms, which model the file accesses patterns to reliably predict upcom-

ing requests. These two methods have shown much better performance over the

traditional caching algorithms like Least Recent Used (LRU), Least Frequent Used

(LFU) and their extensions. While in the area of modern large-scale system behavior

prediction, there is only little related works. Different from the traditional shared
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memory scenario, the virtual machines in the cloud environment can not be shared

and reused due to the security issue. Therefore, there should be multiple copies of

virtual machines prepared for multiple requests. The work of [GGW10] also studies

the cloud resource prediction problem. But it only focuses on predicting the VM re-

source (CPU, memory, etc) for individual VMs. For my work, rather than predicting

the resource usage within VMs, I aim to predict the capacity and VMs demands for

the whole cloud.

2.2.3 Virtual Environment Management

Virtual environment management technologies are mainly based on control theory,

where the actions are adjusted according to the previous status of the systems. Auto-

scaling proposed by Amazon [MLH10] is the customer side auto-scaling management

component, which allow customers to set up their own rules to manage the capacity

of their virtual resources. This method focuses on the customer side post-processing

of capacity tuning rather than the provider side. In [MSB10], the resources alloca-

tion problem is modeled as a stochastic optimization problem with the objective of

minimizing the number of servers as well as the SLA penalty. [MLS10] proposes a

technique to enable the auto-scaling of visualized data center management servers.

All these works are focusing on the resource allocation and scheduling with a fixed

amount of resources, while in this thesis, the proposed method aims at estimating the

total amount of resources for the whole cloud environment.

2.3 Related Works of Stream Anomaly Detection

Although anomaly detection has been studied by researchers for years [HA04,CBK09].

To the best of our knowledge, our proposed method is the first one that focused on

mining contextual collective anomalies among multiple streams in real time. In this
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section, we briefly review two closely related areas: mining outliers from data streams

and mining outliers from trajectories.

With the emerging requirements of mining data streams, several techniques have

been proposed to handle the data incrementally [ZS02,JPLC12a,JPLC12b,TTD+08,

JPLC11]. Pokrajac et al. [PLL07] modified the static Local Outlier Factor (LOF) [BKNS00]

method as an incremental algorithm, and then applied it to find data instance anoma-

lies from the data stream. Takeuchi and Yamanishi [TY06] trained a probabilistic

model with an online discounting learning algorithm, and then use the training model

to identify the data instance anomalies. Angiulli and Fassetti [AF07] proposed a

distance-based outlier detection algorithm to find the data instance anomalies over

the data stream. However, all the aforementioned works focused on the anomaly

detection of a single stream, while our work is designed to discover the contextual

collective anomalies over multiple data streams.

A lot of works have been conducted on trajectory outlier detection. One of the

representative work on trajectory outlier detection is conducted by Lee et al. [LHL08].

They proposed a partition-and-detection framework to identify the anomaly sub-

trajectory via the distance-based measurement. Liang et al. [TTJ+08] improved the

efficiency of Lee’s work by only computing the distances among the sub-trajectories

in the same grid. As the aforementioned two algorithms require to access the entire

dataset, they cannot be adapted to trajectory streams. To address the limitation,

Bu et al. [BCFL09] proposed a novel framework to detect anomalies over continuous

trajectory streams. They built local clusters for trajectories and leveraged efficient

pruning strategies as well as indexing to reduce the computational cost. However,

their approach identified anomalies based on the local-continuity property of the

trajectory, while our method does not make such an assumption. Our approach is

close to the work of Ge et al. [GXZ+10], where they proposed an incremental approach

to maintain the top-K evolving trajectories for traffic monitoring. However, their
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approach mainly focused on the geo-spatial data instances and ignored the temporal

correlations, while our approach explicitly considers the temporal information of the

data instances.
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CHAPTER 3

Temporal Mining for Event Summarization

In this chapter, we would mainly focus on the problem of providing effective event

summarization methodologies to facilitate the system inspection and analysis for the

system administrators. Part of the content in this section has been published during

my Ph.D study, including the problem formulation and the propsed solutions.

The outline of this chapter is as follows: The motivation and the research objec-

tive of this problem will be introduced in Section 3.1. In Section 3.2, a novel event

summarization algorithm will be presented and the corresponding experimental eval-

uation will be presented. Then in Section 3.3, a multiresolution event summarization

framework will be introduced and evaluated. Finally, a short chapter summary about

this problem and the propose solutions will be given in Section 3.4.

3.1 Motivation

Given the event logs, event mining is a useful way to understand the behaviors of

the computer systems. In previous years, most existing event mining research efforts

focused on episodes mining or frequent pattern discovering.

These simply output a number of patterns that are independent to each other, so

they are unable to provide a brief and comprehensive event summary revealing the

big picture that the dataset embodies.

Instead of discovering frequent patterns, recent works on event mining have been

focused on event summarization, namely how to concisely summarize temporal events [KT08,

KT09,WWLW10]. Current state-of-art event summarization techniques are based on

sequence segmentation. These methods first split the event sequences into disjoint

segments and then the patterns are generated and summarized to describe events in

each segment. Kiernan and Terzi [KT08,KT09] model the set segmentation problem

as an optimization problem that balances between the shortness of the local models
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for each segment (i.e., the summary) and the accuracy of data description. Their

method reveals the local patterns of the sequence but does not provide the inter-

segment relationships. Based on their work, Wang et al. [WWLW10] provide a more

sophisticated method that not only describes the patterns in each segment but also

learns a Hidden Markov Model (HMM) to characterize the global relationships among

the segments.

3.1.1 The Need for A More Intuitive Event Summarization

Although there are a number of existing solutions for event summarization, but some

important aspects of the events still cannot be demonstrated in the summarization

results. The following motivating example reflects such shortages.

Example 1. Figure 3.1 shows an event sequence containing 4 event types, where event

type A denotes “an event created by an anti-virus process”, event type B denotes “the

firewall asks for the access privilege”, event type C denotes “a port was listed as an

exception”, event type D denotes “the firewall operation mode has been changed”. The

approach presented in [WWLW10] segments the sequence into 4 segments based on

the frequency changes of the events. For each segment, the approach further clusters

the event types according to the frequency of each event type. Finally, an HMM is

used to describe the transactions between intervals.

The result generated by [WWLW10] partially solves the problem of frequent pat-

tern mining solutions by providing a comprehensive summary for the input sequence.

However in principle, this method is a frequency-based method and such category of

methods have several limitations:

• The frequency-based summarization methods only focus on the frequency changes

of event types across adjacent segments and ignore the temporal information
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Figure 3.1: A motivating example for event summarization

among event types within a segment. As a result, the generated summary fails

to capture the temporal dynamics of event patterns. It is known that due to

the dynamic workload of the systems, the frequency of event occurrences cannot

reveal too much information about their running status. It is trivial to know

that the frequency of a certain event types would be high when the workload

of the system is high, and vice versa.

• The frequency-based summarization methods generate the same number of

event patterns with the same boundaries for all event types. The unified pat-

tern boundary requirement is impractical since different event types can have

different underlying generating mechanisms. Consider in a distributed system,

event may come from thousands of hosts that are not related to each other,

forcing global segmentation means a simple event episode can be split to many

segments because other events do not occur uniformly during the period; this

yields a large number of small segments that may unnecessarily inflate the event

summary.

• The generated summary is represented in form of abstruse mathematical model.

Such kind of summary is acceptable for people with strong math background

20



but is not simple enough to be used by all system administrators. Without

clear understanding of the summary, system administrators can hardly extract

useful information from the summary and take proper actions accordingly.

3.1.2 The Need for a General Event Summarization Frame-

work

As previously mentioned, several research efforts have been working on providing var-

ious summarization methods. Each of these works define its own way of summarizing

representation. On the other hand, there are some efforts [PTG+03] working on pro-

viding various techniques for presenting event summarization results. From all these

explorations, it is not difficulty to conclude that event summarization is not a problem

that can be handled by a single model or algorithm. For different purposed or for

different users, there are a large number of ways for event summarization, and also

many parameters to tune. To obtain an event summary from different perspectives,

an system administrator has to re-preprocess the data and change the program time

after time. This is a drain of administrators’ productivity.

This predicament is very similar to that, in the 1970’s, every data-intensive task

has to write a redundant program for data manipulation. The appearance of ER

model and SQL finally addressed the data representation and query problem and

significantly reduced the complexity of data-driven systems. Following the history

path of DBMS and query languages, it is not difficult to show that event summa-

rization (as well as event analysis) also need a general and unified data model and a

corresponding query language.

The data model and query language should be flexible enough so that the real life

scenarios can be efficiently and adequately handled. The followings are some typical

scenarios that an event analyst should encounter.
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Scenario 1. An analyst obtains a system log of the whole year, but he only wants to

view the summary of the events that are recorded between the latest 30 days. Moreover,

he wants to see the summary without the trivial event firewall scan. Also, he wants

to see the summarization with the hourly granularity.

Scenario 2. After viewing summarization results, the analyst suspects that one par-

ticular time period of events be- haves abnormally, so he wants to conduct anomaly

detection just for that period to find out more details.

Scenario 3. The system has generated a new set of security log for the current week.

The analyst wants to merge the new log into the repository and also to summarize the

merged log with the daily granularity.

To handle the work in the first scenario using existing event summarization meth-

ods, we need to perform the five tasks: (1) Extract the events occurred during the

specified time range; (2) Remove the irrelevant event types; (3) Aggregate the events

by hour; and (4) Feed the pre-processed events to existing event summarization meth-

ods to obtain the summary.

Similarly, about the same amount of works are needed for the second and third

scenarios. In the above scenarios, each of the steps requires a separate program to

conduct. In usually case, programs need to be created from the scratch to cater the

highly customized needs. Also note that, if parameter tuning is needed, a typical

summarization task requires hundreds of such iterations. Therefore, a practical event

summarization is highly inconvenient and time-consuming.

Similar to Online Analytical Processing (OLAP) as an exploration process for

transactional data, event summarization is also a trial-and-error process for temporal

event data. As event summarization requires repetitive exploration of the events

from different views, It is not difficult to see the necessity of having an integrated

framework to enable users to easily, interactively, and selectively extract, summarize,

22



and analyze the temporal event data. Event summarization should be the first step

of any other mining tasks, and its goal is to enable the analysts to quickly gain the

general idea of events.

3.2 Natural Event Summarization

3.2.1 Approach Overview

In this section, we will introduce a novel approach called natural event summarization

(NES). NES utilizes inter-arrival histograms to capture the temporal relationships

among same type and different types of event instances, then it finds a set of dis-

joint histograms to summarize the input event sequence based on the MDL principle.

Finally, a graph based model called Event Relationship Network (ERN ) [TRH01] is

constructed to represent the summary.

Inter-arrival histograms allows different event types to have different segmentation

boundaries. Moreover, inter-arrival histograms provide a conductive way to describe

two main types of event patterns: the periodic patterns and the correlation patterns.

These patterns capture the temporal dynamics of event sequences and can be used

to generate the summaries.

Figure 3.2: Output summary of the proposed approach.
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Many action rules can be derived almost directly from the generated summary.

Figure 3.2 shows the output summary generated by our natural event summarization

for Example 1. In the example event sequence, event with type C, D always appear

after B for a short delay in both the second and fourth segments. Similarly, events

with type C, D always appear after B for a long delay in both the first and third

segments. Therefore, two correlation patterns: B → C, and B → D exist. The

change of periods implies that ill-configuration of the firewall may exist. For events

with type A, they appear regularly throughout the whole sequence, so all the instances

with event type A should belong to only one segment. As event type A is the anti-virus

monitoring process event, its stable period can indicate that the anti-virus process

works normally.

The framework of natural event summarization is shown in Figure 3.3. Our frame-

work is based on inter-arrival histograms which capture the distribution of time in-

tervals between events. These histograms provide a concise way to describe periodic

patterns (of the same event type) and correlation patterns (of different event types).

In this preliminary work, we only focus on summarizing on the aspect of temporal

patterns of the events, since such information tells most of the story of the running

status of the system.

The event summarization problem is formulated as finding a set of disjoint inter-

arrival histograms, each representing a certain periodic pattern or correlation pattern,

to approximate the original input sequence using MDL. MDL is an elegant theory to

naturally balance the accurateness and the conciseness of the summarization infor-

mation. Although MDL has been used in previous event summarization methods

for encoding the event segments, it is used here fore encoding the inter-arrival his-

tograms and for identifying the set of disjoint histograms for summarization. The

problem of finding a set of disjoint histograms can be solved optimally in polyno-

mial time by seeking a shortest path from the histogram graph that represents the
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Figure 3.3: The framework of natural event summarization

temporal relations among histograms. To improve the efficiency of event summariza-

tion, I also explore an efficient alternative by using the multi-resolution property of

wavelet transformation to reduce the size of the histogram graph. The final summary

of our natural event summarization can be described as an easy-to-understand event

relationship network (ERN ) where many actionable rules are readily available.

3.2.2 Definitions and Problem Formulation

In this section, we will first give the definitions that will be used to solve this problem

will be given first. Then this problem will be formulated.

Interval Histograms

An event sequence D comprises of a series of event instances in the form of (e, t)

ordered by their timestamps: D = (< t1, e1 >, · · · , < tn, en >), where ti is a times-

tamp and ei is the type of the event. Each instance belongs to one of the m types

E = {e1, · · · , em}. We first describe the inter-arrival histograms used in our frame-

work to represent the inter-arrival distribution of time interval between events.
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Given two event types x and y, let S be the subsequence of D that only con-

tains events of types x and y. Suppose S is split into k disjoint segments S =

(S1, S2, ...Si, ..., Sk). I use an interval histogram (or inter-arrival histogram) hxy(Si)

to capture the distribution of time interval between events of type x and type y in Si.

Specifically, the bin hxy(Si)[b] is the total number of intervals whose length is b. Let

next(t, y) denote the timestamp of the first type y event that occurs after t in Si.

Definition 3.2.1. Inter-arrival histogram:

hxy(Si)[b] = |{i|ei = x, next(ti, y)− ti = b}|.

where ti denotes the timestamp of ei.

If x 6= y, then the inter-arrival histograms capture the time intervals for the events

of different types; for the case of x = y, they capture the time intervals of events of

the same type. Given an interval histogram, we can use a standard histogram to

approximate it. The standard histogram is formally defined with definition 3.2.2.

Definition 3.2.2. Standard Histogram: Standard histogram is a special kind of

interval histogram with one or two non-empty bin and all these non-empty bins have

the same value #intervals

nnon
, where #intervals indicates the number of intervals and nnon

indicates the number of non-empty bins. We use h̄xy(Si) to denote the corresponding

standard histogram of hxy(Si).

Note that the two types of event relationships: periodic patterns and correlation

patters can be easily described using standard histograms. The periodic patterns and

correlation patters is formally defined in definition 3.2.3.

Definition 3.2.3. Periodic pattern and Correlation pattern: A pattern is a

5-tuple (ts, te, x, y, P ), where (1) ts and te denotes the start position and end position

of the event sequence described by the pattern respectively. (2) x and y denote the
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types of events involved in the pattern, (3) P contains the periodic parameters. The

pattern can contain 1 or 2 period parameters, which indicate the inter-arrival value

between event x and y. Moreover, if x = y, this pattern is a periodic pattern,

otherwise, it is a correlation pattern.

Example 2 provides a detailed illustration to show how to utilize standard his-

togram and periodic/correlation patterns to summarize a given event sequence.

Example 2. Given an event sequence D, the timestamps for ea, eb and the related

subsequences are listed in Table 3.1 (S for event type a, b is the same as D). There

is only one segment in S and there exists a periodic pattern for ea and a correlation

pattern between ea and eb. The segment are described by inter-arrival histograms

haa(S) and hab(S) in Figure 3.4 and are approximated by two standard histograms in

Figure 3.5.

Figure 3.4: (a) Inter-arrival histogram haa(S); (b) Inter-arrival histogram hab(S).

Table 3.1: Occurrence of two events

Event type Occurrence timestamp
a 5,11,16,21,26,30,35,41,46,51,61,66,71,76,81,86,92,97,102,107
b 6,12,17,22,28,31,36,43,47,52,63,67,72,77,82,87,93,99,103,108
S for haa(S) The same as a
S for hab(S) 5,6,11,12,16,17,...,102,103,107,108
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Figure 3.5: (a) Standard histogram that best approximate haa(S); (b) Standard his-
togram that best approximate hab(S).

It is obvious that the histograms demonstrate clear patterns. However, the total

number of different histograms can be large for datasets with many events. The

2 histograms shown in Figure 3.4 and their corresponding standard histograms in

Figure 3.5 are just one of many possible histogram combinations that depict the

event relationships/patterns hidden in Example 2. For example, two histograms can

be used to respectively depict the first and the second half of ea. Hence one challenge

is how to find the most suitable combination of histograms to describe the event

sequence. In our framework, MDL principle is leveraged to find out the best set of

disjoint segments and the corresponding standard histograms to summarize the event

sequence.

3.2.3 Summarization using MDL

In this section, we propose an information theoretic method to describe the histogram,

i.e., encoding the histogram in bits. Marsland et al. [MTT08] proposed an encoding

scheme for histograms with fixed number of bins and fixed number of bin elements

(the total value of all bins). However, for the histograms used in event summarization,

neither the number of bins and the number of bin elements is fixed beforehand. To the
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best of our knowledge, there is no encoding scheme that can be directly used in our

scenario. Based on such situation, we first describe the scheme for encoding standard

histograms (e.g., periodic patterns and correlation patterns). Then given an inter-

arrival histogram, we show how it can be approximated using standard histograms.

Finally, we formulate the event summarization problem. It should also be pointed

out that, although MDL has been used in event summarization for encoding the event

segments in a few works [KT08,WWLW10], our work is the first one that uses MDL

to encode the inter-arrival histograms and to identify the set of disjoint histograms

for summarization.

Encoding Standard Histograms

Given an event subsequence S of event types x and y with disjoint segments S =

(S1, S2, ...Si, ..., Sk), to encode a standard histogram h̄xy(Si), the following four com-

ponents need to be encoded. These components are necessary and enough to describe

the histogram.

Event type depicted by the histogram. Each histogram should be associated

with one (for periodical patterns) or two (for correlation patterns) event types de-

pending on the type of the relationship it depicts. Given the set of event types E , it

is sufficient to use L(m) = log |E| bits to represent each event type.

Boundaries of Si. The relationship depicted by an interval histogram has two

boundaries indicating the start and end positions of the corresponding segment. Each

boundary requires L(b) = log |S| bits to encode its information.

Information of non-empty bins in the histogram. This piece of information

can be encoded using

L(bin) = log δ + log imax + log |S|+
nnon∑

i=1

log imax +
nnon∑

i=1

log |Si|.
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The coding length consists of five terms. The first term uses log δ bits to encode

the largest interval imax in Si, where δ denotes the allowed largest interval. In our

framework it is set as the number of seconds in one day. The second term uses log imax

bits to encode the number of non-empty bins nnon. The third term uses log |S| bits

to encode the length of Si. The fourth and fifth terms encode all the indices (1 to

imax) and the number of elements contained in the nnon bins respectively.

Putting them all together, the bits needed for encoding a standard histogram

h̄xy(Si) is

L(h̄xy(Si)) = L(m) + L(b) + L(bin). (3.1)

Encoding Interval Histograms

Given an inter-arrival histogram hxy(Si), a quantitative criteria is needed to measure

how well it can be represented by event patterns, or equivalently, how well it can be

approximated by standard histograms.

Histogram distance. Histogram distance describes how much information is needed

to depict the necessary bin element movements defined in [CS02a] to transform h̄(Si)

into h(Si) (To make notations uncluttered, we drop the subscripts xy and they should

be clear from the context.). The code length of the distance can be calculated as:

L(h[Si]|h̄[Si]) =
∑

i∈Non

|bei − bsi| log imax, (3.2)

where Non is the union of the index sets of non-empty bins in both histograms, bei and

bsi denote the number of elements in bin i in histogram h[Si] and h̄[Si] respectively.

For each element at bin i, a new bin index can be assigned to indicate where it should

be moved. Equation 3.2 measures the bits of information needed by summing up the

elements in unmatched bins.
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In summary, the amount of information required to describe an inter-arrival his-

togram h(Si) using an event pattern h̄(Si) equals to the summation of the code length

for h̄(Si) and the distance between h(Si) and h̄(Si). Since there may be multiple stan-

dard histograms, we define the code length for an interval histogram h(Si) as follows:

L(h(Si)) = argminh̄(Si)∈H̄(Si)L(h̄(Si) + L(h(Si)|h̄(Si)), (3.3)

where H̄(Si) is the set of all possible standard histograms on Si.

Problem Formulation

Given an event sequence D, for each subsequence S containing event types x and y,

the minimum coding length L(S) for S is defined as

L(S) = argmin{S1,S2,...,Sk}

∑

i

L(h(Si)). (3.4)

Since the boundaries for different subsequences are independent, then the mini-

mum description length for the input event sequence D is

L(D) =
∑

S∈D

L(S). (3.5)

Hence the event summarization problem is to find the best set of segments {S1, S2, ..., Sk}

as well as the best approximated standard histograms to achieve the minimum descrip-

tion length.

3.2.4 The NES Algorithm

In this section, a heuristic algorithm that can find the best set of segments of S in

polynomial time is first introduced. Then the method of generating ERN using the

event patterns is presented in detail.
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Finding the best segmentation

The problem of finding the best set of segments can be easily reduced to the problem

of finding a shortest path from the generated histogram graph G. The histogram

graph G is generated as follows:

1. Given S, let nxy be the number of inter-arrivals between event x and y (x, y can

be the same type) in S, generate nxy vertices and label them with the positions

of each x (1 to nxy).

2. Add edge(a, b) from vertex v[a] to vertex v[b] for each vertex pair v[a], v[b],

where 1 ≤ a < b ≤ nxy. Assign the weight of each edge(a, b) as L(h(Si)),

where Si starts at position a and ends at b. Note that to compute L(h(Si)),

we need to find the best standard histogram h̄(Si) for h(Si) in the sense that

L(h(Si)) is minimized (as shown in Eq.(3.3). This can be done using a greedy

strategy. Given h(Si), we can sort the bins in decreasing order based on their

values. Then iteratively perform the following two steps: (1) generating h̄(Si)

using the top i bins, and (2) computing L(h(Si)). (3) increase i by 1. The

iteration continues till L(h(Si)) begins to increases. The h̄(Si) corresponding to

the minimum description length L(h(Si)) is often referred as the best standard

histogram for h(Si).

L(h[S3])

L(h[S2])
L(h[S4])

0 1 … …2 nab 1 nab
L(h[S1])

L(h[S ])

L(h[S6])L(h[S5])

L(h[S8])

L(h[S7])

Figure 3.6: An example histogram graph

After generating the histogram graph, we can use the classical shortest path algo-

rithm (e.g., Dijkstra algorithm) to output the vertices on the shortest path from v[1]
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to v[nxy]. Figure 3.6 shows an example histogram graph and Algorithm 1 illustrates

the summarization process of our natural event summarization framework (NES for

short). In line 4, the algorithm generates a set of event subsequences from D, there

are m subsequences for the same event type (i.e., x = y) and m2 −m subsequences

for different event types (i.e., x 6= y). Line 6 generates the directed acyclic his-

togram graph for each subsequence S and uses Dijkstra algorithm to find the shortest

path P = (v[i1], v[i2], ..., v[ip]). The best segmentation solution contains the segments

< v[i1], v[i2] >,< v[i2], v[i3] >, ..., < v[ip − 1], v[ip] >. Line 8 and 9 represent each

segment using the best fitted event patterns (i.e., the best standard histograms), and

put them into the set R.

Algorithm 1 The NES Algorithm

1. input: event sequence D.
2. output: all relationships R.
3. Identify m from S, relationship set R ← ∅;
4. Separate D into a set of S;
5. for all S do
6. Generate directed graph G;
7. Use Dijkstra(G) to find shortest path P ;
8. Generate relationships R from P ;
9. R ← R⋃

R;
10. end for
11. return R;

For each histogram graph G, the time complexity of Dijkstra algorithm is O(|E|+

|V | log |V |) = O(|S|2). Therefore, the total running time of Algorithm 1 is O((m +

m(m− 1))|S|2) = O(|D|2).

Generating summarization graph

Although the set of event patterns can be described in text, we show that they can

be used to construct an intuitive event relationship network (ERN ) [PTG+03] which

produces a concise yet expressive representation of the event summary. ERN is a

graph model that represents the relationship between event types. The procedure for
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building ERN is straightforward: it first generates the vertices for each event type

involved in any event patterns, and then adds edges for event patterns and stores

necessary information (e.g., segmentation, periods and time intervals) onto the edges.

A

B

D E

C

F G

c2 c3
c1

c4 c5

p1

p2

Figure 3.7: An example ERN graph.

Figure 3.7 shows an example ERN graph. It contains two periodic patterns:

A
p1−→ A, B

p2−→ B and five correlation patterns: A
c1−→ B, C

c2−→ D, C
c3−→ E, E

c4−→ F ,

E
c5−→ G. For simplicity, the ranges of segments are ignored.

3.2.5 Efficiency Improvement

The NES algorithm described in Section 3.2.4 finds the best segmentation by check-

ing all positions in S, which is computational intensive. In fact, given an event

subsequence S, boundaries should only locate at positions where inter-arrival times

change rapidly, because segmentation at smooth places would waste encoding bits.

Based on this observation, we propose an effective pruning algorithm which is able to

prune a large part of boundaries that are unlikely to be the boundaries of segments.

This algorithm greatly accelerates the summarization process by reducing the size

of the histogram graph. By utilizing the multi-resolution analysis (MRA) of wavelet

transformation, the pruning can be done in linear time in the worst case.
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Preprocessing

For ease of pruning, some preprocessing steps are needed. Given an event subsequence

S, we pre-process it as follows:

1. Obtaining inter-arrival sequences : Given S = (< e, t1 >, · · · , < e, t|S| >), trans-

form it into inter-arrival sequence V = (t2 − t1, t3 − t2, · · · , t|S| − t|S|−1);

2. Padding : Append 0’s to the tail of sequence until the length of interval sequence

equals to a power of 2;

3. Transforming : Use Haar [Haa10] wavelet as the wavelet function and apply fast

wavelet transformation (FWT) on V to obtain the transformation result W .

The resulting W contains the wavelet coefficients of the inter-arrival sequence,

which is the input of our pruning algorithm.

Pruning unlikely Boundaries

Due to the multi-resolution analysis (MRA) property of wavelet transformation, the

deviation of inter-arrivals in V can be viewed from W at different resolutions. As

wavelet transformation contains the information of both frequency domain and time

domain, for each W [i], we can quickly locate the corresponding segment in V . For

example, if |V | = 1024, the elementsW [1] andW [2] contain the averaging information

and the diff information of the highest resolution (in this example, resolution 1024)

of original series respectively. The elements W [3] and W [4] contain the information

of V at resolution 512. Specifically, W [3] corresponds to the first half of V and W [4]

corresponds to the second half of V .

Taking advantage of such a property, the pruning algorithm is able to identify the

inter-arrival deviation in a top-down way. The basic idea of algorithm is as follows:

it checks the element W [i], starting from i = 2, which contains the deviation of

inter-arrival for the whole sequence V . There are three possible cases:
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Case I: If W [i] is small, it indicates that the corresponding subsequence in V for W [i]

is smooth enough and segmentation is not needed. In this case, the algorithm

records the boundaries of the segment and then stops.

Case II: If W [i] is large, it indicates that the deviation of inter-arrivals in the corre-

sponding subsequence in V is too large. In this case, the subsequence needs to

be split into two halves and the algorithm needs to perform recursively.

Case III: If W [i] records the deviation of inter-arrivals at the lowest resolution, the algo-

rithm just records the start and end boundaries and returns.

Algorithm 2 Algorithm of BoundaryPruning

1. input: W, level, i.
2. output: Boundary set B after pruning.
3. Set B ← ∅;
4. threshold← W [1]

2log |W |−level ;
5. spectrum← W [i];
6. if spectrum < threshold or reaches to the lowest resolution then
7. Add corresponding boundaries to B;
8. else
9. i1 = 2i− 1, i2 = 2i;
10. B1 ← BoundaryPruning(W, level − 1, i1);
11. B2 ← BoundaryPruning(W, level − 1, i2);
12. B ← B ∪B1 ∪ B2

13. end if
14. return B;

Algorithm 2 provides the pseudo-code for BoundaryPruning. The parameter level

(initialized as log |W |) denotes the current level of resolution that the algorithm

checks, and i denotes the current position in transformed result W (i.e. W [i]) to be

checked. The algorithm calculates the corresponding threshold as W [1]

2log |W |−level , which

reflects the average deviation of inter-arrival at resolution 2level and changes dynam-

ically according to the level.

Example 3 illustrate how the pruning algorithm works with a toy dataset.
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Example 3. An input inter-arrival sequence V is shown in Figure 3.8. The algo-

rithm starts from the highest resolution. It finds that W [2] = 3 is too large, so the

whole inter-arrival sequence cannot be segmented with only one segment. At a lower

resolution, the algorithm finds that W [4] is small enough, so the corresponding sub-

sequence < 2, 1, 2, 1, 2, 1, 3, 1 > can be considered as one segment. For the element

W [3] = −2 representing the first half of V , it is still too large and the corresponding

subsequence < 1, 1, 1, 1, 1, 3, 1, 1 > cannot be considered as only one segment. Hence

the algorithm drills down to a lower resolution to do the same check task. Finally,

the algorithm divides V into 5 segments, and 6 boundaries are recorded and the re-

maining 11 boundaries are pruned. Figure 3.9 shows the effect of BoundaryPruning

in reducing the size of the histogram graph.

Vei = <1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1>

2 2 4 2 3 3 3 4 0 0 2 0 1 1 1 2

4 6 6 7 0 2 0 1

10 13 2 1 Wavelet space10 13 2 1 Wavelet space

23 3

Figure 3.8: Segments information in wavelet spectrum sequence.

… …

Figure 3.9: Before pruning, the histogram graph contains 17 vertices and 136 edges,
after pruning, the histogram graph contains only 6 vertices and 14 edges.

The pruning algorithm only scans W once. In general cases, the algorithm does

not need to check all the elements in W . If the inter-arrival sequence is smooth
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enough, the algorithm would stop checking at a high resolution. Only in the worst

case, the algorithm has to check every elements in W . Since |W | = |V | = |S| − 1, the

algorithm runs in o(|S|) for the average case and O(|S|) in the worst case.

3.2.6 Experimental Evaluation

In order to investigate the effectiveness and efficacy of the proposed approach, we

design two sets of experiments to evaluate our algorithm on both synthetic and real

datasets. There are two reasons that we conduct the evaluation with synthetic data:

1. There is no ground-truth summarization result for real world data, thus there

is no way to evaluate the summarization result if we directly run the algorithm

on real world data.

2. The real world event sequence is generated automatically by the operating sys-

tem, there is no way to precisely control the size of the dataset. We cannot just

pick a subset of the real world sequence with a fixed size, since it may destroy

a lot of hidden patterns.

With synthetic data, we can freely set the parameters of dataset such as the

number of patterns of each type, the location of each patterns, the level of noise, and

the size of dataset. Since we know the ground-truth of the synthetic data, we are able

to investigate the capabilities as well as limitations of our algorithm by comparing its

output with the ground-truth.

Our task for synthetic data experiments is to answer the following questions: (1)

Can our event summarization framework indeed discover the hidden relationships

from the event sequence and effectively summarize them? (2) Is our framework ef-

ficient in handling event summarization task? (3) Is the approximation algorithm

precise enough that covers most of the relationships comparing with the optimal

counterpart?
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Table 3.2: Parameters and their meanings
Parameter Description

n Number of events in sequence.
m Number of event types.
np Number of periodic patterns.
nc Number of correlation patterns.

rnoise Degree of noise.
l Number of events in one pattern.

For the real world data experiments, there are two questions: (1) Can the pro-

posed algorithm find out any useful patterns from the real world data? (2) Is the

summarization result more meaningful and friendly than the counterparts?

Experimental Setup

All the datasets are pre-processed by transforming all event instances into a predefined

format inst =< event type, date, time, source, category, event ID >. Since different

event types generated by different programs may share the same event ID in some

systems like Windows series OS, it is not enough to distinguish the events just by

their ID. We map each distinct tuple < event type, source, category, event ID > as

unique event type e.

Experiments on Synthetic Data

We generate several groups of synthetic datasets to evaluate our approach, each group

consists a set of datasets generated by changing a particular parameter and fixing the

remains. The meaning of each parameter is listed in Table 3.2. For each dataset,

a number of relationships/patterns are intentionally planted and the noise is added

according to the by noise level 3 to simulate the real scenario.

3The noise levels are set as the probability of inter-arrival deviation, e.g, if noise level
is 0.2, then with the probability of 20% the inter-arrival time will be shifted by a random
value.
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We use NES-Prune to represent summarization with BoundaryPruning, NES to

represent summarization without BoundaryPruning.

Accuracy of the approaches. The first goal of experiments on synthetic data is

to check whether our approach can really discover the correct hidden patterns from the

data. 5 datasets are generated by fixing n = 15000, m = 150, np = 50, nc = 50, l = 100

and the noise levels are set from 0.1 to 0.5 with an increment of 0.1. For each dataset,

50 periodic and 50 correlation patterns are generated respectively with distinct period

parameters and event types. Then order these patterns are randomly ordered to build

the synthetic dataset. Table 3.3 shows the results of how many planted patterns are

found via NES and NES-Prune respectively. In this table, NESp and NESc denote

the proportion of planted periodic and correlation patterns found by NES, NESPp

and NESPc denote those found by NES-Prune.

Table 3.3: Accuracy for synthetic datasets, n = 15000, m = 150, np = 50, nc = 50, l =
100

No. NESp NESc NESPp NESPc

1 48/50 48/50 48/50 48/50
2 48/50 48/50 46/50 48/50
3 46/50 48/50 46/50 48/50
4 41/50 45/50 40/50 45/50
5 10/50 11/50 9/50 11/50

From the result, we observe that both NES and NES-Prune can discover most of

the relationships. We only count the relationships with the exact same event type,

the exact periodical parameters and more than 95% overlap with the ground-truth

patterns we plant in, so the criterion is quite demanding.

Compression ratio. We evaluate the quality of event summarization by com-

pression ratio CR with the formula used in [KT09]: CR(A) = L(A)
L(direct)

, where A is

an algorithm, L(A) denote the code length achieved by A, and L(direct) denote the

code length of directly encoding the event sequence.
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Figure 3.10: CR vs. noise, with parameters

Figure 3.10 shows the compression ratio of our two algorithms as a function of

noiselevel. For this experiment, we use the same datasets of the accuracy exper-

iments. As expected, CR increases as the noiselevel increases. It is reasonable

because more extra bits are required to describe the noise.

The proportion of planted patterns in the datasets is another factor that affects

CR. We define the proportion of patterns as |Patterns|
|S|

, where |Patterns| denotes the

number of events belonging to the injected patterns. The experiment is conducted on

6 datasets by fixing n = 5000, m = 50, l = 100, noiselevel = 0.1 and the proportion

of patters ranges from 10% to 60% with an increment of 10%. Figure 3.11 shows

that CR decreases as the pattern proportion increases. The result is straightforward

because as the proportion of patterns increases, more events can be well fitted by

event patterns, which results in shorter description length for the event sequence.

It should be pointed out that NES summarizes an event sequence from different

aspects simultaneously using event patterns for the goal of providing natural, inter-

pretable and comprehensive summaries. It is quite possible that some events may
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Figure 3.11: CR vs. proportion of pattern

belong to multiple correlation patterns and their coding length might be counted

multiple times. So CR might not be the criterion to measure the quantity of summa-

rization for the proposed approach. This phenomenon also explains why NES leads

to longer code lengths than NES-Prune.

Performance and scalability. We generate 8 datasets by fixing m = 100, nc =

0, noiselevel = 0.1 to evaluate the scalability of our approach. The length of event

sequence for the datasets ranges from 2500 to 20000 with an increment of 2500, and

np is set proportional to the length of sequence. Figure 3.12 shows the scalability

results. As expected, NES-Prune runs much faster than NES and it shows better

scalability, since BoundaryPruning prunes a large number of boundary candidates.

The number of event type m is an important factor that affects the running time,

we conduct evaluation on 6 synthetic datasets by fixing n = 4096, nc = 0, noise level =

0.1 and m from 4 to 128 with an increment of a power of 2. Figure 3.13 shows that as

m increases, the running time of NES decreases but the running time of NES-Prune

increases. This is because the running time of NES procedure is O(|D|2) = O(m2|S|2).
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Figure 3.12: Scalability of NES and NES-Prune

Since S ≫ m in general cases, for NES, the running time is dominated by |S|. By

fixing n, the average length of S decreases as m increases, therefore the running time

of NES decreases. For NES-Prune, as the input is pruned, the average length of S

does not affect running time. Hence, the running time is dominated by m and would

increase as m increases,

The proportion of patterns is another important factor that affects the running

time. we generate 8 datasets by fixing n = 5000, m = 50, l = 100, noiselevel = 0.1

and set the proportion of patterns from 10% to 80%. As Figure 3.14 shows, the

increase of the proportion of patterns would decrease the running time of NES-Prune,

but the running time of NES is independent of the proportion of patterns. This

is because as the proportion of patterns increases, more boundaries are removed

using BoundaryPruning. And without BoundaryPruning, the size of input for NES

is independent of the proportion of patterns.
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Figure 3.13: Running time vs. number of event type

Experiments on Real Data

In order to explore whether the proposed framework can really help system adminis-

trators, we test it with real log datasets recorded in Windows event viewer.

The real datasets consist of application log, security log and system log. The

detailed information of the three datasets with their running times and compression

ratios are listed in Table 3.4.

Our methods show a significant improvement over previous approaches. The al-

gorithm proposed by Kiernan et al. [KT09] needs more than a thousand seconds to

find the optimal summarization solution while our proposed method requires need

10% of the time. Due to inherent difficulty of event summarization, our methods are

still not efficient enough. Further improvement in efficiency is needed and this is one

of our future works.

Note that our proposed algorithm utilize MDL to summarize the event sequence

on the aspect of period pattern and correlation pattern, we successfully compressed
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Figure 3.14: Running time vs. Proportion of Patterns

the event sequence to a few percentage of the original amount of data storage space

without the losing critical temporal information.

Table 3.4: Experiments with real datasets
application security system

Period 09/10-02/11 11/10-12/10 09/10-02/11
Time range (secs) 12,005,616 2,073,055 12,000,559
Event instances 5634 21850 3935
Event types 100 17 50

Running Time (secs)
NES 173 3102 108
NES-Prune 22 56 4

Compression Ratio CR(A)
NES 0.0597 0.0312 0.0454
NES-Prune 0.0531 0.0216 0.0464

Our proposed algorithm finds and summarizes a lot of interesting event relation-

ships. For example in system log, we find event < 35,W32T ime > occurs every

3600 seconds. This event type is a well known periodic event that synchronizes the

computer time with the remote server. We also find that there exist correlation
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Figure 3.15: ERN for security log

relationships among the event types < 6005, eventlog >, < 6006, eventlog >, and

< 6009, eventlog >. The description on EventID.NET1 verifies that such results are

meaningful. Moreover, we find several important relationships from security log and

application log. Figure 3.15 shows the whole ERN graph for the security log which

includes 15 vertices and 36 edges. In this figure, the labels of vertices denote the event

types and the labels on edges denote the relationships in form of C[param1, param2],

where C or P denotes the type of relationship and param1, param2 denote the time

interval parameter of the relationship.

1http://www.eventid.net
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Table 3.5: Cliques of event relationships and their interpretations
Size Event Types Interpretation (After matching clique back to original ERN )

6
(851, security), (860, security)
(852, security), (850, security)
(853, security), (857, security)

This clique is related to the firewall actions. At first, event 860 (The windows
firewall has switched the active policy profile) is triggered, then the other
five types are triggered by 860.

4
(576, security) , (540, security)
(538, security), (858, security)

This clique is related to the operation of network accessing. At first, event
76 (Special privileges assigned to new logon) is triggered, then event 540
(Logon successful) is triggered, and then event type 538 (User logoff) and 858
(Unknown) happens afterward.

2 (592, security), (593, security)
This clique is related to the creation and destroy of process. Event type 593
(A new process has been created) and type 593 (A process has exited) occur
alternatively.

1 (861, security)

This clique is related to the actions of firewall. Event type 861 ( The windows
firewall has detected an application listening for incoming traffic) appears
periodically. This is because the anti-virus scanner installed on this machine
continuously monitors the ports.

3.3 Multi-resolution Event Summarization Framework

To facilitate event summarization, an extensible event summarization framework

called META is proposed. META satisfies all the requirements of a generic event

summarization framework as mentioned in the motivation (See Chapter 3.1.2). It is

able to provide multi-resolution summarization as well as facilitate a set of commonly

used summarization tasks. The motivation of presenting META is to fill the miss-

ing component of the event summarization tasks and make it a complete knowledge

discovery process.

META is designed with the following principles: (1) The framework should be flex-

ible enough to handle the daily event summarization scenarios; and (2) The framework

should ease the concrete event summarization implementation as much as possible.

Figure 3.16 shows the corresponding workflows of using META to handle each

of the scenarios mentioned in the motivation (See Chapter 3.1.2). The involved

summarization operations include ad-hoc summarization, events storing, recovering,

updating, and merging. For each of the operations, the analyst only needs to write

and run a short piece of script.

From the technical perspective, META leverages a multi-resolution data model

called summarization forest to efficiently store the events data. Summarization forest
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Figure 3.16: Event summarization scenarios and corresponding workflows

is designed to store and represent the events in multi-resolution view with specific

precision. On top of summarization forest, a query language including a set of basic

operations is designed to facilitate the summarization tasks. Moreover, by encapsu-

lating the operations, five commonly used event summarization tasks are introduced

to further reduce the work for the event analysts. To better explain how META fa-

cilitates event summarization, the following chapters would drill down to its details.

3.3.1 The Multi-Resolution Data Model

An event sequence can be represented in the form of event record sequence D = (<

t1, e1 >,< t2, e2 >, ..., < tn, en >), where ti is the time when an event occurs and ei

denotes the event instance with an associated ‘type’. Each event instance belongs to

one of the m types E = {e1, ..., em}. Note that the ‘type’ is a generic terminology.

Any combination of the features of an event can be used as the ‘type’, e.g. the event
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category and event name in combination can be used as the event type. In this

section, we first describe how to use an event vector, an intermediate data structure,

to represent the event sequence. Then we introduce summarization forest (SF), the

data model to store event sequences with multiple resolutions.

Vector Representation of Event Occurrences

Given an event sequence D with m event types and time range [ts, te], we decompose

D into m subsequences D = (De1 , ..., Dem), each contains the instances of one event

type. Afterwards, we convert each Di into an event vector Vi, where the indexes

indicate the time and the values indicate the number of event occurrences. During

conversion, we constrain the length of each vector to be 2l, l ∈ Z+, where l is the

smallest value that satisfies 2l ≥ te − ts. In the vector, the first te − ts entries would

record the actual occurrences of the event instances, and the remaining entries are

filled with 0’s. Example 4 provides a simple illustration on how we convert the event

sequence.

Example 4. The left figure in Figure 3.17 gives an event sequence containing 3 event

types within time range [t1, t12]. The right figure shows the conversion result of the

given event sequence. Note that the original event sequence is decomposed into 3

subsequences. Each subsequence representing one event type is converted to a vector

with length 16. The numbers in bold indicate the actual occurrences of the events, and

the remaining numbers are filled with 0’s.

C C C C C C

B B

ty
p
e

A:1110001110000000

B 0000001000010000B B

A A A A A A

1 2 3 4 5 6 7 8 9 10 11 12 t

B:0000001000010000

C:0011100111000000

Figure 3.17: Convert the original event sequence to the vectors
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Vectors intuitively describe the occurrences of events, but this kind of represen-

tation is neither storage efficient (as it requires O(|E|n)) nor analysis efficient (as it

does not support multi-resolution analysis). Firstly, directly storing these vectors re-

quires O(|E|n) space, which is even more than the original event sequence. Secondly,

the format of vector is not suitable for event summarization and multi-resolution

analysis. It cannot enable analysts to efficiently retrieve and view the occurrences of

events at an arbitrary granularity. To facilitate the storage and analysis, we propose

summarization tree to model the event occurrences of a single type. Furthermore, we

propose summarization forest to model the event occurrences of the whole event log.

Summarization Tree

The summarization tree is used to store the event occurrences for a single event type.

It is capable of providing both frequency and locality of occurrences simultaneously.

Moreover, it satisfies the multi-resolution analysis (MRA) [Mal89] requirements by

representing the event occurrences with various subspaces. This property enables the

analysts to choose a proper subspace to view the data at a corresponding granularity.

The summarization tree is formally defined below.

Definition 3.3.1. A summarization tree (ST) is a balanced tree where all nodes

store the temporal information about the occurrences of events. The tree has the

following properties:

1. Each summarization tree has two types of nodes: summary node and description

nodes.

2. The root is a summary node, and it has only one child. The root stores the total

occurrences of the events throughout the event sequence.

3. All the other nodes are description nodes. They either have two children or have

no child. These nodes store the frequency difference between adjacent chunks
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(the frequency of the first chunk subtracted by the frequency of its following

chunk) of sequence described by lower level nodes.

4. The height of the summarization tree is the number of levels of the description

tree. The height of a node in tree is counted from bottom to top, starting from 0.

The nodes at height i store the frequency differences that can be used to obtain

the temporal information of granularity i. 1.

Considering event type A in Example 4, Figure 3.18 shows its vector and the

corresponding summarization tree. As illustrated, the summarization tree stores the

sum of the occurrences frequency (6 occurrences) at the root node, and the frequency

differences (within the dashed box) in the description nodes at various granularities.

Note that at the same level of the tree, the description nodes store the differences

between adjacent sequence chunks at the same granularity. The larger the depth,

the more detailed differences they store. For example, at granularity 1, every two

adjacent time slots in the original event sequence are grouped into one chunk, and

the grouped event sequence is ‘21021000’. Correspondingly, in the summarization

tree, the frequency differences of each adjacent time slot (0,−1, 0, 0, −1, 0, 0, 0) are

recorded at the leaf level. Similarly, the frequency differences at various granularities

are recorded in the description nodes at the corresponding levels.

It is clear that the space complexity of the summarization tree is O(|T |), where

|T | = n and n is the length of the vector. From the storage perspective, directly stor-

ing the tree has no benefits for space saving. Basically, there are two ways to reduce

the space complexity of summarization tree: detail pruning and sparsity storage.

1According to the property of MRA, the time precision of nodes decreases exponentially
as the index of their granularity increases. For example, if the precision of the original
data is 1 second, the corresponding tree nodes at granularity i represent the data every 2i

seconds.
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Figure 3.18: Relationship between vector and ST

Detail Pruning In practice, analysts only care about the high-level overview of

the event occurrences. Consequently, there is no need to store all the details of the

event sequences. As the summarization tree describes the event occurrences in a top-

down manner — a coarse-to-fine strategy, we can save the storage by removing the

lower levels of the description nodes. The pruned tree still contains enough details

for analysis, and an analyst who analyzes a long-term event log would not care about

the event occurrences at the second precision. Due to the hierarchical structure of the

tree, we can reduce the storage space exponentially. Lemma 3.3.2 shows how much

space can be reduced through pruning. For example, the original tree has a height of

14 levels and 8192 (or 213) nodes. If we prune the tree by removing the last 6 levels,

the size of tree will become 1
26
|T | = 128, which is only about 1.5% of the original

size. The pruned tree is still able to describe the event occurrences with 1-minute

granularity.

Lemma 3.3.2. Suppose the height of summarization tree is H, if only the nodes with

a height larger than or equal to k are kept, the size of the pruned tree is 2H−k.

Proof. According to the property 3 of the definition of summarization tree, besides

the summarization node, the summarization tree is a perfect binary tree. If only the

nodes with height larger than or equal to k are kept, the size of remaining nodes in
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perfect binary tree part is
∑H−1

i=k 2H−1−i = 2H−k − 1. Therefore, the total size of the

summarization tree after pruning is 2H−k.

Sparsity Storage Another way to reduce the space is to store the non-empty nodes

of the tree only. The majority of the event types rarely appear in the event sequence.

In this case, the corresponding vector will be dominated with 0’s. Accordingly, the

transformed summarization tree will also contain many 0’s. For example, events with

type X only occur twice throughout a 2-hour (7200 second) event sequence. The first

occurrence is the first second, and the second occurrence is the second second. The

number of nodes in the corresponding summarization tree is 8192, but there are only

28 non-zero nodes. Lemma 3.3.3 provides a lower bound on how many zero nodes

exist in a summarization tree.

Lemma 3.3.3. Suppose the occurrence proportion (the probability of occurrences at

any time) of event type X is r = #X

n
, where n is the length of vector that stores the

event occurrences, the proportion of zero nodes at height h is ph = max(1− 2h+1r, 0)

for the corresponding summarization tree.

Proof. We calculate the number of zero nodes from the bottom level to the top level.

It is trivial to know that besides the root level, the number of nodes at height h is

nh = |T |
2h+1 . For each level, the number of zero nodes zh equals to the number of nodes

nh minus the number of non-zero nodes uh.

We start with h = 0 (the leaf level). In the worst case, the event occurrences are

uniformly distributed along the time-line. There are two cases according to r:

1. 0 ≤ r < 1
2
. The event occurs in less than half of the time slots. In such condition,

u0 = min(r|T |, n0), and z0 = n0 − u0 =
|T |
2
− r|T |. So p0 =

z0
n0

= 1− 2r.
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2. 1
2
≤ r ≤ 1. The number of zero nodes at the leaf level can be 0. Since

occurrences are uniformly distributed, it is possible that the event appears at

least once in every two continuous time slots. In this case, p0 = 0.

Therefore, the lower bound probability of the zero nodes at the leaf level is p0 =

max(1 − 2r, 0). When h = 1, in the worst case, the occurrences of non-zero nodes

at the leaf level are still uniformly distributed, so u1 = min(u0, n1). Therefore, z1 =

n1 − u1 = max(n1 − u0, 0) and p1 = max(1− 22r, 0). When h > 1, if the occurrences

of non-zero nodes at a lower level is still uniformly distributed, the number of zero

nodes uh = min(uh−1, nh). Similar to the case of h = 1, zh = nh − uh, and ph =

max(1− 2h+1r, 0).

Based on Lemma 3.3.2 and 3.3.3, we further show the space complexity of a

summarization tree in Theorem 3.3.4.

Theorem 3.3.4. The space complexity of a summarization tree with granularity k

is O( |T |
2k
−∑H

i=k max( |T |
2h
− 2h+1r, 0)), where |T | is the length of the vector, H is the

height of the summarization tree, and r is the occurrence proportion as described in

Lemma 3.3.3.

Proof. The proof is based on Lemma 3.3.2 and Lemma 3.3.3. The number of nodes

with the height (granularity) larger than or equal to k is 2H−k = |T |
2k

according to

Lemma 3.3.2. For each level h ≥ k, the number of zero nodes is nhp = max( |T |
2h
−

2h+1r, 0), and the sum of all nodes with height larger than or equal to k is
∑H

i=k

|T |
2h
−

2h+1r. Therefore, the number of non-zero nodes in the summarization tree is |T |
2k
−

∑H

i=k max( |T |
2h
− 2h+1r, 0).

It is true that the second term will become 0 when r is sufficiently large. However,

based on the empirical study, most of the event types occur rarely, and therefore

0 < r ≪ 1.

54



Summarization Forest

Summarization forest is a data model which contains all the summarization trees. In

one forest, there are |E| summarization trees. Each stores the events of one event

type. Besides trees, the summarization forest also stores the necessary meta-data.

The summarization forest is formally defined in Definition 3.3.5.

Definition 3.3.5. A summarization forest (SF) is a 6-tuple F =< E , T , ts, te, l, r >,

where:

1. E denotes the set of the event types in the event sequence.

2. T denotes the set of summarization trees.

3. ts and te denote the start timestamp and end timestamp of the event sequence

represented by F .

4. l denotes the full size of each ST, including the zero and non-zero nodes. All

the trees have the same full size.

5. r denotes the resolution of each ST. All the trees are in the same resolution.

Note that since the summarization trees are stored in sparsity style, the actual

number of nodes that are stored for each tree can be different and should be much less

than the full size. Given a summarization forest, we can recover the original event

sequences.

3.3.2 Basic Operations

In this section, we propose a set of basic operators which are built on top of the data

model we proposed. These operators form the summarization language, which is the

foundation of the event summarization tasks presented in our framework. The mo-

tivation of proposing a summarization language is to make the event summarization
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flexible and allow the experienced analysts to define the ad-hoc summarization tasks

to meet the potential new needs.

The basic operators are categorized into two families: the data transformation

operators and the data query operators. The operators of the first family focus on

transforming data from one type to another, and they are not directly used for summa-

rization work. The operators of the second family focus on retrieving/manipulating

data in read-only way, and they provide the flexibility of generating the summa-

rization. To make the notations easy to follow, we list all the symbols of all these

operations in Table 3.6. We will introduce their meanings later in this section.

Data Transformation Operators

The data transformation operators includes vectorize, unvectorize, encode, decode,

prune, and concatenate. Their functionalities are listed as follows:

• Vectorize and Unvectorize: Vectorize is used to convert the single event type

subsequence Di into a vector Vi while unvectorize does the reverse work. Both of

them are unary, and represented by symbol ◦ and •, respectively. Semantically,

these two operators are complementary operators, i.e. Di = •(◦(Di)) and Vi =

◦(•(Vi)).

• Encode andDecode: Encode is used to convert the vector Vi into a summariza-

tion tree Ti while decode does the reverse work. Similar to vectorize/unvectorize,

Encode and decode are complementary operators and both of them are unary.

We use symbol ⊳ and ⊲ to denote them respectively.

• Prune: The operator Prune is unary, and it conducts on the summarization

tree. It is used to remove the most detailed information of the events by pruning

the leaves of a summarization tree. Note that this operator is irrecoverable.
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Operation Symbol Description

Vectorize ◦(Di) Vectorize the subsequence Di.
Unvectorize •(Vi) Unvectorize the vector Vi.
Encode ⊳(Vi) Encode Vi into a summarization tree Ti.
Decode ⊲(Ti) Decode Ti back to vector Vi.
Prune ⊖(Ti) Prune the most detailed information of Ti.

Concatenate F1 ⊎ F2 Concatenate two SF F1 and F2.
Project Πe(1),...(F) Extract events of types e(1), ..., e(k) from F .
Select σ[t1,t2](F) Pick the events occurs between time [t1, t2].
Zoom τi(F) Aggregate the events with granularity u.

Describe Υname Use algorithm name for event summarization.

Table 3.6: Notations of basic operations

Once it is used, the target summarization tree will permanently lose the removed

level. We use ⊖ to denote this operator.

• Concatenate: The operator concatenate is a binary operator. It combines two

SFs into a big one and also updates the meta-data. We use ⊎ to denote this

operation. Note that only the SFs with the same resolution can be concatenated.

Data Query Operators

The data query operators include select, project, zoom, and describe. They all take

the summarization forest F as the input. The data query operators are similar to

the Data Manipulation Language (DML) in SQL, which provides query flexibility to

users.

Their functionalities are listed as follows:

• Project: The operator project is similar to the ‘projection’ in relational al-

gebra. It is a unary operator written as Πe(1),e(2),...,e(k)(F). The operation is

defined as picking the summarization trees whose event types are in the subset

of {e(1), ..., e(k)} ⊆ E .

• Select: The operator select is similar to the ‘selection’ in relational algebra. It

is a unary operator written as σ[t1,t2](F).

57



• Zoom: The operator zoom is used to control the resolution of the data. It is a

unary operator written as τu(F), where u is the assigned resolution, the larger,

the coarser.

• Describe: The describe operator indicates which algorithm is used to sum-

marize the events. Its implementation depends on the concrete algorithm

and all the previous event summarization papers can be regarded as propos-

ing a concrete describe operator. For example, [JPL11] summarize the events

with periodic and inter-arrival relationships. The describe operation is writ-

ten as Υname(F), where name is the name of summarization algorithm used

for describing the events. If necessary, the analysts can implement their own

describe algorithms that follow the specification of our framework. In our

implementation, the time complexity of all these operators are lower than

O(|E||T | log |T |) = O(|E|n logn).

Table 3.7 illustrates the time complexity of all the operations and provides short

comments about how they are implemented. The most time-consuming operations

are encode/decode operations. This is because these two operations are based on

wavelet transformation whose lower bound time complexity is proved to be O(n logn),

the inherent characteristic makes it impossible to have more efficient implementation

from the algorithmic perspective. In practice, the operations perform much faster

than the theoretical time complexity. This is because SF is stored in the sparse

format, making the actual size of summarization trees to be far less than |T |. In

SF, the summarization trees of different event types are independent, therefore, the

encode/decode operations can be conducted in parallel.

As for the describe operation, the time complexity is not given since its imple-

mentation is depend on the summarization algorithm designer. META provides a

well designed interface and take the algorithm designer’s implementation as a plug-
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in. This design strategy is similar to the design of SQL, where the interface of the

query function is opened to the function designer.

Operator
Time

Complexity
Comment

Vectorize &
Unvectorize

O(|E||T |) Scan the event log once and transform them
into sparse vector, and vice versa.

Encode &
Decode

O(|E||T | log |T |)
Leverage the wavelet transformation and
inverse wavelet transformation to conduct
the encode/decode operation.

Prune O(log |E||T |)
Directly delete the nodes of trees in SF
located at lower resolution. The threshold
index can be calculated
in constant time.

Concatenate O(|E||T |)

For each tree in first SF, find its counterpart
in the second SF; and sum the value of the
node in first tree with index i +offset and the
value of the node in second tree with index i,
where offset is the start time difference
between the two SFs.

Project O(|E|) Pick the selected trees from the SF by
checking the event type each tree represents.

Select O(|E||T | log |T |)
Extract the data which describes the events
during [t1, t2] from the original summarization
trees; and build a new tree from the
extracted data.

Zoom O(|E||T | log |T |
u

)
Similar to Prune, but avoid destroying the
original data by creating a copy of the needed
tree nodes.

Table 3.7: Time complexity of summarization operations

3.3.3 Event Summarization Tasks

Considering the requirements of the analysts discussed in Introduction, we introduce

five commonly used event summarization tasks: summarization, storing, recovering,

merging, and updating, using the previously defined basic operators as the building

blocks. The intention here is to demonstrate the expressive capability of the basic

operators, instead of giving a thorough coverage of all the possible tasks.
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Summarization Task

Summarization task is the core of event summarization, and all prior works about

event summarization focus on this problem. Based on the defined basic operators,

analysts can summarize the events in a flexible way. In our framework, any summa-

rization task can be described by the following expression:

Υname(σ
∗
[t1,t2]τ

∗
uΠ

∗
E∈P(E)(F)).

The symbol ∗ denotes conducting the operation 0 or more times. With the combi-

nation of operators, the analysts are able to summarize any subset of events in any

resolution during any time range with any summarization algorithm.

One thing should be noted is that the order of the operators can be changed, but

the summarization results of different orders are not guaranteed to be the same. For

example, commonly used implementations [JPL11,KT09] of the describe operator are

based on the minimum description length principle. Such implementations aims to

find models that describe the events with least information. Therefore, the results of

Υname(τu(F)) and τu(Υname(F)) are possibly different.

Storing Task

Storing is an important task. Converting the raw event log time after time is time-

consuming with low management efficiency. This task enables the analysts to convert

the events into a uniform data mode only once and reuse it afterwards. The store

task can be written as:

F =
⋃

ei∈EI

⊖∗(⊳(◦(Di))),

where EI denotes the set of event types that the analysts are interested in, and
⋃

denotes putting all the trees together to form the SF. The analysts are able to pick

any time resolution and any subset of all the event types for storage.
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Recovering Task

Recovering task is the link between the event summarization and other data mining

tasks. After finding the interesting piece of event logs via the summarization results,

the analysts should be able to transform the selected portion of SF back to its original

events, so they can use other data mining techniques for further analysis. The recover

task can be expressed as:

•(⊲(σ∗
[t1,t2](τu(Π

∗
E∈EI

(F))))).

This expression shows that the analysts can selectively recover the piece of events

with any subset of event types, at any time range and any time resolution.

Merging and Updating Tasks

Both merging and updating tasks focus on the maintenance of stored SF, but their

motivations are different.

The merging task is conducted when the analysts obtain the SFs with disjoint

time periods and want to archive them altogether. Suppose F1 and F2 denote two

SFs, where F2 contains more details (contains lower resolution level). The merging

task can be expressed as:

Fnew = F1

⊎
⊖∗(F2).

As shown in the above expression, when we merge two summarization trees with

different resolutions, the SF with higher granularity would be pruned to meet the SF

with lower granularity. Then these two SFs would be merged with the concatenate

operation.

Updating task is conducted when the analysts want to update the existing SF

with a new piece of event log. It can be expressed by basic operators as follows:

Fnew = F
⊎

(
⋃

ei∈EI

⊖∗(⊳(◦(Di)))),
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where the operand of
⋃

is similar to the operand of
⋃

in storing task. Firstly, the

new set of subsequence Di will be vectorized and then encoded into a SF F . Then

the new SF would be merged into the old SF same as the merge task.

3.3.4 Experimental Evaluation

We conduct a series of experiments to evaluate our proposed framework. In this

section, we do not focus on demonstrating the meaningfulness or correctness of the

summarization results, since it should be the work of the concrete summarization al-

gorithm designers. Instead, the main goal of the evaluation is to explore the efficiency

and the effectiveness of the proposed framework, and to show how META makes the

summarization more flexible and convenient. More concretely, our experiments aim

to answer the following questions: (1) What is the cost to store the events in the form

of SF? (2) How efficient is it to retrieve and convert the data from the SF? (3) How

effective and flexible can our framework support the event summarization? and (4)

What about the performance of the updating and merging tasks?

In addition to the evaluation of META, we also give a case study to show how

META facilitates analysts to conduct event summarization tasks. As a showcase, we

leverage the algorithm proposed in [JPL11] as the summarization algorithm, which

summarizes the events from the perspective of inter-arrival temporal relationship.

Storage Cost

To evaluate the storage cost of a SF, we do experiments by using several real event

logs across different OS platforms and domains. These event logs are collected from

customer’s servers by IBM service department and the details of these logs are listed in

Table 3.8 (Available at http://share.olidu.com/events/ ). These datasets are different
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in the aspect of time range, event occurrences, occurrences frequency, distinct event

types, and log record styles.

Name Domain Time Units #Types

secure-secure Security 534,898 14
nokia-netview Network 99,118,589 15
system-win System 41,113,840 64
security-win Security 5,579,292 35

application-win Application 6,980,559 61

Table 3.8: Features of real datasets

Table 3.9 illustrates the occurrence proportion of the events in the real world

datasets used in the experiments. We record the maximum, average, and minimum

occurrence proportion of the event types in each dataset. Among all the datasets, the

most frequent event type has the occurrence proportion 0.022, indicating the event

occurs only 22 out of every 1000 time slots throughout the time range of the event

sequences. The data in this table demonstrates that no event type occurs all the time

(the occurrence proportion r ≪ 1) in real world situation. Therefore, the second term

of the O-notation in Theorem 3.3.4 is comparable to the first term, and it makes the

theorem meaningful.

Maximum Average Minimum

secure-linux 0.005 0.001 3.739× 10−6

nokia-netview 2.185× 10−4 4.064× 10−5 1.009× 10−8

system-win 4.886× 10−4 1.413× 10−4 2.432× 10−8

security-win 0.022 9.381× 10−4 1.792× 10−7

application-win 0.003 5.787× 10−5 1.432× 10−7

Table 3.9: Occurrence proportion in real datasets

In order to measure storage cost, we store the SFs as binary files using object

serialization technology. We use the compression ratio (CR) to quantify the ratio of

SF files comparing with the original log file, i.e., CR = size(file)
size(original file)

. To further save

the storage space, we leverage DEFLATE algorithm [Dav07] to compress the serialized

SF. DEFLATE is a widely used data compression algorithm that is a combination of
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Lempel-Ziv (LZ77) [ZL78] and Huffman coding, and it has been adopted in several

well known software such as 7Zip and WINRAR. Figure 3.19 shows the compression

ratio of all the datasets. It can be observed that all the stored SFs cost less storage

space comparing with the original logs (CR < 1). Moreover, after compressed by

DEFLATE, even the worst compressed SF costs only 32.4% of the space of the original

log file. This fact shows that storing the logs as SFs can save the disk space.
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Figure 3.19: Compression ratio of SF and compressed SF

The storage cost can be further reduced if the low level details are pruned. Fig-

ure 3.20 shows the compression ratio of each SF in different 7 resolutions without

compression. Note that the values in the first row of x-label indicate the level of res-

olution we store the SFs, and the values in the second row indicate the corresponding

approximate time resolution. As depicted in this figure, when the resolution is 13

(hourly resolution), even the most costly SF uses only 5% of space compared with

the corresponding original file.
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Efficiency Evaluation

The efficiency evaluation is conducted in 3-fold. Firstly, we evaluate the performance

of the summarization task by exploring different data query operators permutations.

Moreover, we measure the performance of storing and recovering tasks to evaluate

the time overhead of conducting event summarization within our framework. Fi-

nally, we investigate the performance of merging and updating tasks to evaluate the

maintenance overhead.

We generate 15 synthetic datasets and investigate the performance of our frame-

work on different datasets by changing 3 properties as listed in Table 3.10. The

advantage of using synthetic datasets is that we can evaluate the performance of

our framework with different properties systematically. Since we only investigate the

efficiency, the occurrences of events are randomly generated.

Performance of Summarization Task In this section, we evaluate the perfor-

mance of all data query operators except describe. The reason is that the performance

of describe depends on concrete summarization algorithms.
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property values description

#types 20-100 step 20 The number of event types.
#events 60k-140k step 20k The number of event occurrences.
#ts 10m-50m step 10m The time slots in the time range.

Table 3.10: Properties of synthetic datasets

Similar to Data Manipulate Language in SQL, the performance of the query varies

with different operator permutations. To investigate how the order affects the query

performance, we pick three sets of synthetic datasets to evaluate the time cost of

different project, select and zoom permutations. In each set, we fix two properties

and changes the third one. For project, we pick 10% of the event types from the SF.

For select, we pick 10% of the time range, and zoom out the SF for one resolution.

Table 3.11 shows the running time of all the 6 different permutations in 3 sets of

experiments. Examining the experiment results in different perspectives, we can

obtain following observations:

1. Different operators have different time costs. Table 3.11 shows that

select is the most time-consuming and project is the most time-efficient. In

our experiments, select is 102 ∼ 104 times slower than zoom and project. The

reason is that by taking advantage of the SF, zoom only needs to remove all

the leaves from trees in O(log |T |) time and project only needs to remove the

useless trees in O(|E|) time. However, select is more complicated than the other

two operators. It builds a new SF by extracting events satisfying the select

parameters from the old SF, which takes O(|T | log |T |) time. For example, if

the analysts intend to view only half of the time range of the event sequence,

the other half of the data would be useless and the select operation should build

a new forest from the scratch based on the remaining events.

2. Query performance varies drastically according to different operator

orders. The experiment results show that the fastest query costs only 3% the
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❳
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❳
❳
❳
❳
❳
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❳

Dataset
Order select-project-zoom select-zoom-project project-select-zoom

select zoom proj select zoom proj select zoom proj

100-60k-50m 72.98 0.006 0.001 84.55 0.006 0.001 84.52 0.005 0.001
100-80k-50m 71.63 0.011 0.001 82.65 0.007 0.001 84.73 0.007 0.001
100-100k-50m 80.48 0.009 0.001 77.25 0.008 0.001 77.65 0.009 0.001
100-120k-50m 84.28 0.008 0.001 85.11 0.009 0.001 84.71 0.009 0.001
100-140k-50m 82.16 0.010 0.001 84.73 0.010 0.001 85.13 0.010 0.001

20-100k-50m 16.32 0.005 0.001 16.21 0.005 0.001 15.48 0.005 0.001
40-100k-50m 33.43 0.006 0.001 30.85 0.007 0.001 31.13 0.007 0.001
60-100k-50m 48.37 0.008 0.001 46.31 0.007 0.001 46.53 0.008 0.001
80-100k-50m 64.34 0.008 0.001 62.10 0.008 0.001 62.09 0.007 0.001
100-100k-50m 80.48 0.009 0.001 77.25 0.008 0.001 77.65 0.009 0.001

100-100k-10m 18.36 0.007 0.001 18.97 0.006 0.001 18.13 0.006 0.001
100-100k-20m 36.83 0.006 0.001 36.56 0.007 0.001 36.66 0.007 0.001
100-100k-30m 39.86 0.008 0.001 39.44 0.008 0.001 39.98 0.008 0.001
100-100k-40m 77.29 0.009 0.001 76.71 0.008 0.001 74.61 0.008 0.001
100-100k-50m 80.48 0.009 0.001 77.25 0.008 0.001 77.65 0.009 0.001

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Dataset
Order project-zoom-select zoom-project-select zoom-select-project

select zoom proj select zoom proj select zoom proj

100-60k-50m 2.39 0.02 0.001 2.45 0.02 0.001 2.40 0.02 0.001
100-80k-50m 2.44 0.02 0.001 2.53 0.02 0.001 2.39 0.02 0.001
100-100k-50m 2.39 0.03 0.001 2.41 0.03 0.001 2.41 0.03 0.001
100-120k-50m 2.51 0.03 0.001 2.53 0.03 0.001 2.46 0.03 0.001
100-140k-50m 2.52 0.04 0.001 2.57 0.04 0.001 2.57 0.03 0.001

20-100k-50m 0.55 0.02 0.001 0.55 0.02 0.001 0.51 0.24 0.001
40-100k-50m 0.99 0.02 0.001 0.99 0.02 0.001 0.99 0.02 0.001
60-100k-50m 1.46 0.02 0.001 1.46 0.02 0.001 1.44 0.03 0.001
80-100k-50m 2.12 0.03 0.001 2.04 0.03 0.001 2.04 0.03 0.001
100-100k-50m 2.39 0.03 0.001 2.41 0.03 0.001 2.41 0.03 0.001

100-100k-10m 0.62 0.04 0.001 6.23 0.02 0.001 0.59 0.03 0.001
100-100k-20m 1.16 0.05 0.001 1.19 0.03 0.001 1.29 0.03 0.001
100-100k-30m 1.17 0.03 0.001 1.30 0.03 0.001 1.30 0.03 0.001
100-100k-40m 2.22 0.03 0.001 2.47 0.03 0.001 2.37 0.03 0.001
100-100k-50m 2.39 0.03 0.001 2.41 0.03 0.001 2.41 0.03 0.001

Table 3.11: Running time composition of different query orders (time unit: second)

time of the slowest query on the same dataset. As mentioned before, select

is the slowest operator. The more data it processes, the slower the execution

would be. Therefore, the later the select operation is conducted, the shorter

the query execution time would be.

3. Query performance is insensitive to #events. According to the exper-

iment results conducted on the datasets with the same #types and #ts (1st

group), the query performance appears to be stable when #events increases.

67



On the contrary, the experiment results on the datasets with the same #events

and #ts (2nd group) show that the query time varies linearly. Also, the re-

sults are similar for the datasets with the same #types and #events but with

different #ts (3rd group).

Based on the above observations, to avoid unnecessary time cost, a good query

statement should postpone select as much as possible. In our prototype, we conduct

simple query optimization by reordering the operators.
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Figure 3.21: Datasets with different #events

Framework Time Overhead The tasks of storing and recovering are not directly

related to event summarization, and they are considered as overhead for summa-

rization. We conduct experiments on the same sets of datasets that are used in

Section 3.3.4. For each datasets sets, we investigate the time cost of storing and re-

covering by revealing the running time of involved operators: vectorize, encode, prune

for storing task and decode, unvectorize for recovering task.

Figures 3.21, 3.22, and 3.23 show the experiment results of the time overhead,

where the first bar of each dataset indicates the overhead of storing task and the
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Figure 3.22: Datasets with different #types

second bar indicates the overhead of recovering task. From the experiment results,

we obtain two following observations. Firstly, all the experiments cost tens of seconds

to finish the tasks. Due to the rare usage of these two tasks, the overhead is acceptable.

Secondly, the time overhead of these two tasks are insensitive to #events but sensitive

to #types and #ts. As we drill down to the operator level, we find that most of the

increased running time comes from the encode operator in storing task and decode

operator in recovering task. In our implementation, both of these two operations have

the same time complexity O(|E||T | log |T |). The running time would increase if either

|E| or |T | increases. Also, the distribution of event occurrences is another factor to

affect the running time.

Performance of SF Maintenance In this section, we investigate the performance

of maintenance tasks on two aspects: how the characteristics of events and how the

resolution of data affects the performance. Similar to previous experiments, the per-

formances of both tasks using the same three groups of datasets are evaluated. For

each group, the first dataset is converted into a SF, and other datasets are incre-
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Figure 3.23: Datasets with different #ts

mentally updated and merged. Moreover, updating or merging tasks are evaluated

by storing the SFs with 7 different resolutions. Figure 3.25 and 3.24 illustrate the

results for merging and updating task. The time cost of the merging task is sensitive

to the resolution but the updating task is not. In a high resolution, the merging task

is more efficient than the updating task. The reason is that the updating task uses

the time-consuming operator encode but the merging task does not.

An Illustrative Case Study

To demonstrate howMETA facilitates summarization, we list 3 tasks (1st row) as well

as the corresponding statement (2nd row) in Figure 3.26 to show how the analysts

work on security-win dataset. We also attach corresponding summarization results

(3rd row) by implementing the describe operator according to [JPL11] 2.

As shown in Figure 3.26, the analysts only need to write one or two commands

for each task. All the details are handled by the framework. Besides convenience,

META also improves the reusability of data due to the SF’s natural property. Once

2source code is available at http://users.cs.fiu.edu/ yjian004/#codes
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Figure 3.24: Updating task

the security-win log is stored in SF, it is directly available for all the 3 tasks, and

there is no need to generate or maintain any intermediate data.

Without META, the analysts need to write programs on their own to conduct the

data transformation and extraction. Taking task 2 for instance, the analysts should

write several programs to transform the events in hourly resolution, to pick out the

records related to the event types 538, 540, 576, 858, 861, and to extract the records

occurring between 11/01/2011 and 1/29/2011. The analysts would do similar tedious

work when facing the other two tasks.

3.4 Chapter Summary

In this chapter, we have discussed the solutions to facilitate event summarization,

including a novel event summarization algorithm and a general summarization frame-

work.

In terms of event summarization algorithm, a method called Natural Event Sum-

marization has been proposed. NES summarizes the event sequences from the per-
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Figure 3.26: Summarize with META

spective of depicting the event patterns by capturing the temporal relationships

among same-type and different-type of events. It is able to find the best set of

disjoint histograms to summarize the input event sequence based on MDL. Moreover,

to improve the efficiency, a heuristic boundary pruning algorithm has been proposed
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to prune the unlikely boundaries and reduce the size of the histogram graph. Finally,

ERN is used to present the final event summary in a more interpretable way.

In terms of event summarization framework, a general multi-resolution framework

called META has been proposed. In META, the events are stored in the form of sum-

marization forest. Moreover, a set of atomic operations on top of the data model and

a set of summarization tasks has been proposed to ease the work of the analysts. To

demonstrate the effectiveness of META, experimental evaluation has been conducted

and the results are positive.
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CHAPTER 4

Temporal Mining for Cloud Demand Prediction

In this chapter, we will focus on the problem of leveraging temporal mining tech-

niques to facilitate the operation and management of cloud services and systems. The

application of temporal mining techniques to the domain of cloud services is able to

increase the user satisfaction and help the service providers to better manage their

systems. Concretely, we will focus on a specific problem – cloud system demand

prediction, aiming to make the cloud systems to be more self-adaptive.

In this chapter, part of the content in this section has been published during

my Ph.D study, including the problem formulation and the propsed solutions. The

outline of this chapter is as follows: The motivation and challenges of this topic will

be presented in Section 4.1; In Section 4.2, the cloud demand prediction problem will

be formulated as a time series prediction problem; After that, the detailed solution

of this problem will be introduced in Section 4.3 and 4.4 respectively; Finally, the

conclusion will be given in Section 4.6.

4.1 Motivation and Challenges

Cloud service gradually becomes the ubiquitous choice for modern IT-solution in busi-

ness activities. The paradigms such as Infrastructure as a Service (IaaS), Platform

as a Service (Paas), and Software as a Service (SaaS) are able to provide different

styles of services to cater the taste of service customers with different requirements

and needs. Among these paradigms, IaaS is the most fundamental service which is

both elastic and economical. Iaas enables the cloud service customers to dynamically

request proper amount of virtual resources (in terms of virtual machines) according

to their actual business requirements.

Due to the pay-as-you-go promises made by the cloud service providers, the re-

source utilization becomes more flexible than the traditional fixed price charging
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style. As the resource capacity planning burden has been shifted to the cloud service

providers, then need to carefully prepare the available resources to both satisfy the

service customers’ needs and reduce the unnecessary resource waste. Under such cir-

cumstance, the techniques for the problems effective cloud capacity management and

instant on-demand VM provisioning are crucial for these cloud services providers. In

the next part, we will explain how difficult the above two problems are, and then we

will introduce the corresponding solutions for them in details.

4.1.1 Challenges for Cloud Capacity Management

Resource capacity planning in traditional IT services is straightforward. This is be-

cause once a customer requires a service, the service terminate time is known to the

service provider. In such scenario, the service vendors can simply upgrade the date

centers by continuously scaling up the infrastructure to cater the increasing demands.

Capacity planning for cloud services is different and cannot be considered as a

trivial task. Due to the demand fluctuates, the available resources in the cloud are

difficult to be always fully utilized.

When the capacity of the cloud is overestimated by the service provider, the extra

prepared but unused resources would be wasted. In nowadays, even a small portion

of such overestimation would result in a large amount of waste. Due to the increasing

scales of cloud infrastructure, the issue of energy consumption of cloud computing

has gradually drawn more and more attention. As is reported, The US Environment

Protection Agency (EPA) estimates that the energy usage at cloud data centers is

successively doubling every five years. In the year of 2011, the annual electricity

cost at these data centers would be approximately $7.4 billion [PMSR09]. It is also

reported that the direct monthly energy cost for data centers makes up more than

23% of the total amortized costs. If the indirect energy costs such as the power supply
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infrastructure and cooling infrastructure are included, the energy consumption related

to cloud computing would make up 42% of the total cost of the cloud systems [Ham09].

Moreover, unused physical resources not only cause the energy waste, but also result

in more early purchase costs and environment pollution. As the price of the same

equipment is always decreasing, later the equipment is purchased, lower its price

would be. Furthermore, the overestimated of resources would cause extra associated

cost such as network, labor, and maintenance, all of which are proportional to the

scale of the infrastructure and therefore is non-trivial [GHM+09]. On the other hand,

the underestimated of the cloud capacity would degrade the user satisfaction as it

would cause resource shortage, which will further result in revenue loss. As non-

trivial waiting time is needed for the on-demand request, the cloud has to postpone

serving new customers if the actual demand is higher than the existing capacity.

Once the shortage is severe, event existing customers would be affected, resulting in

defeating the promise that application in cloud can scaling-up whenever the workload

increases.

4.1.2 Challenges for On-demand Virtual Machine Provision-

ing

The volatility of cloud service makes the VM provisioning and de-provisioning occur

frequently. It is true that state-of-the-art VM provisioning technology is able to pro-

vision a VM within a couple of minutes. Such time delay is affordable for normal

services but would be fatal to the time-sensitive services which require real time scal-

ing. However, from the infrastructure perspective, there is little hope that potential

new cloud-specific devices can immediately and significantly reduce the provisioning

time. It is true that the streamlining VM technology [LMT+04] allows the cloud

service users to preview and use the VM before it is entirely prepared, but such tech-
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nique still not be able to allow the users to use the demanded VM before an enough

portion of it is ready.

From the perspective of business operation, a simple yet effective solution to reduce

the provisioning time is to ask all the users to provide their schedule of using VM

ahead of time. However, the idea is not likely to be used for many practical reasons:

• The promise of cloud service is to provide the virtual resources whenever the

users need it. Such requirement would contradict the motivation of cloud com-

puting because they constrain the behaviors of the users. Also, it is not likely

that the users would like to provide their schedule ahead of time.

• The service customers themselves might not be able to set a schedule describing

how many resources they exactly need in the future. It is because the demand

is associated with the actual business activity in the future.

• As contract is not necessary for cloud services, the constituents of customers

are always changing. New customers can join in and old customers can leave at

any time.

• Even if the service customers are willing to provide their schedules. The actual

schedules may change at any time and the existing schedule would be out of

date.

Due to these business constraints and technology limitations, it is conceivable

that resolving the problem of effective cloud resource provisioning is inherent difficult.

Similar to the cloud capacity planning scenario, different types of VMmis-provisioning

would cause different consequences. If a service customer sends a request for a certain

type of VM and there is no prepared VM that matches this request, the cloud needs

to provision the VM on-the-fly, which is time-consuming. In such situation, the

Service Level Agreement (SLA) would be violated and the penalty would be very

high. Usually, the penalty is in form of money and can be as high as several thousand
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dollars. On the other hand, if the prepared VM is not consumed in the end, the

associated resources are wasted. Moreover, the wasted VMs would indirectly occupy

the resources that can be allocated to other useful VMs. If the mis-provisioning is

severe, although the workload of the cloud is high, its effective utility is low.

For the remaining of this chapter, we would investigate this problem from the

angle of time series prediction so that the demand can be predicted and the resources

can be prepared in advance.

4.2 Problem Formulation

In principle, both the problems of effective cloud capacity management and instant

on-demand VM provisioning are about preparing the virtual resources properly. They

both aim to ensure that the prepared resources can match the real demand in the

near future.

To uniformly formulate these two problems, we use the number of VM unit to

quantify the amount of resources that is needed in a time slot (We will discuss how

we choose the proper time slot in later sections.). The VM unit is defined as the basic

and smallest unit of virtual resource, which is associated with a set of certain amount

of physical resources such as CPU time, main memory, storage space, electricity etc.

In real cloud systems, any virtual resource a customer can apply should be a multiple

of the VM unit. For example, IBM’s cloud product SCE defines one 64-bit VM unit

as one 1.25 GHz virtual CPU with 2G main memory and 60G of storage space. The

customer can request VMs with different multiples of the basic VM unit, such as

Copper, Bronze, Silver, Gold, and Platinum. For the remaining of this thesis, the

amount of needed resources is quantified by the number of VM units by default.
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Let vt (the number of VM unit) be the actually required virtual resource at a

future time t, and v̂t be the corresponding prepared resources at time t, the goal of

effective capacity planning and instant provisioning is to prepare the needed resources

at each time slot t, such that:

E =
∑

t

f(vt, v̂t) (4.1)

is minimized. In Equation (4.1), f(·, ·) represents an arbitrary cost function that is

used to quantify the prediction error. A good resource predictor should be able to

reduce the error as much as possible.

Specifically, in the context of cloud capacity planning, v semantically denotes

the quantified amount of physical machines, associated available cooling systems,

corresponding power supplies, and the number of system operators working for the

cloud. In the context of instant VM provisioning, v represents the number of VM

instances with a certain type that should be prepared before the customers actually

send the requests. As we focus on the IaaS paradigm resource provisioning in this

thesis, each VM is associated with a certain operating system or middle-ware, i.e.

Linux Red Hat Enterprise 5.5, Windows Server 2003, etc.

4.3 Cloud Demand Prediction System Framework

According to the problem description mentioned above, a natural solution for the

formulated problem is to leverage the state-of-the-art time series prediction techniques

to predict the future resource needed. However, based on our empirical study about

the available Smart Cloud Enterprise log data, the following difficulties are found to

make the task non-trivial:
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1. The resource demands are highly unstable. This is caused by two charac-

teristics of cloud services: the unstable customer constituents and the freestyle

of resource acquisition/releasing. In the presence of dynamic varying customer

group, both the temporal characteristics of the cloud capacity and the required

VMs for each type may contain random factors that can mislead the prediction

algorithms. Figure 4.1 shows the change of the customer number over time

1. This figure implies that the number of customers is continually increasing.

Therefore, even the old customer keep their request behavior, the overall request

demands still change over time. This phenomena would cause the distributions

of the resource demands to be unstable. Figure 4.2 illustrates the request his-

tory of three frequent requested customers. As is shown, these time series share

no common pattern from each other.

2. To enable instant provisioning, we need to predict the demand of

each VM type separately, and then prepare them accordingly. Since

each type of VM has different characteristics in terms of demand amount, VM

life-time, degrees of emergence, and physical resource requirements, their cor-

responding time series (See Figure 4.3) also show different temporal properties

such as scale, degree of sharpness, length of cycle, degree of fluctuation, etc.

As the data is divided into multiple chunks, it is more difficult to conduct the

prediction with less data.

To properly address the above difficulties, we design and implement a real time

prediction system that enables the automatic cloud management. At the core of the

proposed system, we propose the ensemble time series predictor that combines the

prediction power of a set of state-of-art prediction techniques. Besides combining

individual predictors, we also consider the temporal correlations to ameliorate the

1For confidential issue of the data provider, we remove y-axis in all the time series.
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Figure 4.1: The dynamics of customers
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Figure 4.2: Time series of resource demands grouped by customer. The three time
series show the demand of three frequent requesting customers. (The scales of all the
time series are not normalized for ease of visualization.)

prediction. Figure 4.4 illustrate the framework of our system. As is depicted, our

system works as an associated system for the cloud. It mainly contains following

modules:

1. Data Preprocessing Module. This module conducts the data preprocessing works

such as data cleaning, data transformation, and feature extraction. It is respon-

sible for: (1) filtering out the unnecessary and unimportant information from

the raw data; and (2) extracting the high-level characteristics of the filtered

data and transform them into time series.
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Figure 4.3: Time series of resource demands grouped by VM types. The three time
series show the demand of three frequent requested VM types. (The scales of all the
time series are not normalized for ease of visualization. For confidential issue, the
value on y-axis are removed.)
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Figure 4.4: Cloud provisioning prediction system framework

2. Model Generation Module. This module is responsible for building the models of

separate predictors. It periodically selects and trains the most suitable models

of each predictor based on the latest requests. Once the work is finished, the
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new parameters of the trained models are stored into a particular file and the

demand prediction module is notified.

3. Ensemble Prediction and Adjustment Module. Once the individual prediction

models are built, they are used to predict the future demands separately. Af-

terwards, an ensemble mechanism is used to obtain the final prediction results,

and then the results are sent to the configuration module. Finally, if necessary,

the temporal correlations are considered to help adjust the prediction result.

4. Configuration Module. This module is responsible to configure the cloud based

on the prediction results. It knows all the running status of the cloud, including

the amount of available computing resources, the workload of cooling system,

the power supply etc and will dynamically adjust the cloud capacity based on

the current status and the prediction results.

4.4 Cloud Demand Prediction Approach

In this section, we will first propose a novel measure to quantify the prediction

result error. Then we introduce the approaches we used to predict the capacity and

the VM provisioning demand, respectively.

4.4.1 Prediction Result Evaluation Criteria

Traditional regression cost measure such as mean average error (MAE), least square

error (LSE), and mean absolute percentage error (MAPE) are all symmetric mea-

sures [Cha03]. These measures are not perfectly appropriate to quantify the predic-

tion error in cloud demand prediction scenario. This is because the consequence of
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over-prediction and under-prediction are semantically different, and they result in

heterogeneous costs.

In cloud scenario, if the prepared resources are more than the actual demand,

the service provider will suffer. This is because the idled and wasted resources are

not billable. On the other hand, if the prepared resources are less than the actual

demands, the service quality of the customers would be affected and the SLA would

be violated.

Considering the characteristics of the cloud, we propose a novel cost measure called

Cloud Prediction Cost (CPC) to quantify the quality of prediction results. CPC is

an asymmetric and heterogeneous measure that models the under-prediction and

over-prediction differently: the cost of SLA penalty and the cost of idled resources.

Respectively, we use P (v(t), v̂(t)) and R(v(t), v̂(t)) to quantify their costs. The total

costs can be represented as:

C = βP (v(t), v̂(t)) + (1− β)R(v(t), v̂(t)), (4.2)

where β is the weight to tune the importance between these two types of costs. Take

the capacity prediction scenario for instance, if the workload (the proportion of current

capacity to the maximum capacity) of the cloud is low, the system administrator can

increase β, and thus the cost measure focusing more on the SLA penalty.

CPC is a generic cost measure that can be used for both capacity management and

instant VM provisioning scenarios. Since different cloud has different objectives, the

concrete quantification of the costs may vary accordingly. Basically, the R function

and P function can be defined in any form that satisfy the following two properties:

1. Non-negativity. Both P (v(t), v̂(t)) ≥ 0 and R(v(t), v̂(t)) ≥ 0 should be hold for

arbitrary non-negative v(t) and v̂(t).
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2. Consistency. If v1(t)−v̂1(t) ≥ v2(t)−v̂2(t), then P (v1(t), v̂1(t))−P (v2(t), v̂2(t)) is

either consistently positive or negative. Similarly, if v1(t)− v̂1(t) ≥ v2(t)− v̂2(t),

then R(v1(t), v̂1(t))−R(v2(t)− v̂2(t)) is either consistently positive or negative.

Cost of SLA penalty

The cost of SLA penalty is used to quantify the satisfaction of the customers. This cost

is largely due to the under-estimation of the future resource requests. For simplicity,

we use request fulfillment time (Tavail) to quantify the SLA penalty. On one hand,

when available resources are enough, the new requests can be immediately fulfilled

to the requester. On the other hand, if there is not enough resources, the requester

has to wait for Tdelay until new resources are available and allocated. The waiting

time is undecidable, but typically Tavail ≪ Tdelay since this situation always involves

procedures like garbage collection and resource reallocation.

In our system, we quantify the SLA penalty with P function and its definition

can be seen as Equation 4.3. Based on the definition, the penalty is proportional

to the severity of under-estimation. More sophisticated forms of the P function can

also be used. For example, a common SLA typically specifies a penalty threshold for

resource fulfillment time. The cost of a non-violated request in this case would have

zero value for P function.

P (v(t), v̂(t)) = min(v(t), v̂(t))Tavail

+max(0, v(t) − v̂(t))Tdelay.

(4.3)

Cost of resource waste

This is the non-billable part on the service vendor side. It includes the server aging,

electricity waste and labor cost, etc. Rvm is used to denote the cost of waste caused

by one VM unit. The R function is defined as Equation 4.4.
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R(v(t), v̂(t)) = max(0, v̂(t) − v(t))Rvm. (4.4)

Combining Equation 4.3 and Equation 4.4, the total resource prediction error is

quantified as Equation 4.5.

C = f(v(t), v̂(t)) = βP (v(t), v̂(t)) + (1− β)R(v(t), v̂(t))

=





βv(t)Tavail + (1− β)(v̂(t) − v(t))Rvm, if v̂(t) ≥ v(t)

β(v̂(t)Tavail + (v(t) − v̂(t))Tdelay), if v̂(t) < v(t)

(4.5)

For different clouds, the trade-off between SLA penalty and idled resources can be

different. We use the parameter β to tune the importance between P function and R

function. As mentioned in Section 4.2, we aim to minimize the total cost quantified

by Equation 4.1.

4.4.2 Ensemble Prediction Model

To incorporate the prediction power of individual prediction algorithm, we utilize

ensemble prediction techniques to handle most of the prediction tasks. The ensemble

prediction is motivated by its classification counterpart but it has different property.

In prediction scenario, temporal correlation is contained between records, while in

classification scenario the data is assumed to be i.i.d (independent and identically

distributed) [HTF09]. Moreover, the labels of prediction are continuous, so the scale

of the ensemble results should be well controlled.

In ensemble prediction, we employ five different time series prediction techniques

as shown in Table 4.1. To combine their prediction result, we propose a weighted

linear combination strategy. Suppose the predicted value for predictor p ∈ P at time

t is v̂
(t)
p and its corresponding weight at time t is w

(t)
p , the predicted value for a certain

VM type at time t is
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Method Name Description

Moving Average Naive Predictor
Auto Regression Linear Regression
Artificial Neural Network Non-linear Regression
Support Vector Machine Linear Learner with Non-linear Kernel
Gene Expression Programming Heuristic Algorithm

Table 4.1: Time series prediction techniques used for ensemble

v̂(t) =
∑

p

w(t)
p v̂(t)p , subject to

∑

p

w(t)
p = 1. (4.6)

Initially (t = 0), all the individual predictors have the same contribution to the

prediction result, i.e. w
(0)
p = 1

|P|
. The weight updating strategy for the prediction

based ensemble is also different from the traditional classification based strategy.

In classification scenario, the results can only be “correct” or “incorrect”, and the

ensemble just needs to increase the weights of those correctly classified classifiers for

weight updating. In the prediction scenario, the results are continuous values and

the weights of the predictors would directly affect the ensemble result. Therefore the

updating strategy should be carefully quantified.

We make use of the difference between each predicted value v̂
(t)
p and the real value

v(t). In order to update the weights, we calculate the relative error e
(t)
i caused by

predictor i at time t according to

e
(t)
i =

c
(t)
i∑
p c

(t)
p

w
(t)
i , (4.7)

where c
(t)
i (or c

(t)
p ) is the prediction cost of predictor i (or p) computed by the cost

functions such as MAE, LSE, MAPE and CPC.

Note that the relative errors cannot be used as the new weights of the predictors

since they are not normalized. As the final predicted value is the linear combination

of all the results of individual predictors, Equation 4.8 should be used to normalize

the weight.
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w
(t+1)
i =

e
(t)
i∑
p e

(t)
p

. (4.8)

It is easy to prove that the weight of the best predictor at each time is guaranteed

to be increased by this weight update strategy.

4.4.3 Cloud Capacity Prediction

Time Series Selection

Before adopting ensemble prediction for the problem of capacity prediction, we need

to pick a suitable type of time series first. Given the cloud trace data, three types

of time series are available for capacity prediction: The original capacity time series

(See Figure 4.5), the capacity change time series (See Figure 4.6), and the separated

provisioning/de-provisioning time series (See Figure 4.7).
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Figure 4.5: Original capacity time series

It is easy to observe that the capacity of the cloud gradually increases from the

long-term perspective. The non-stationarity property of this time series makes most

of the time series prediction models to be invalid. It is true that we can leverage

ARCH [Eng82] to directly model and predict such non-stationary time series. How-

ever, ARCH is a parametric model that only performs well under stable conditions.

The highly fluctuate request of the cloud service makes the prerequisite of this model
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Figure 4.7: Provisioning/de-provisioning time series

unsatisfied. Furthermore, ARCH is based on symmetric cost functions. This makes

it inappropriate to the cloud scenario.

The capacity change time series is obtained by taking the first derivative of the

original capacity time series. This time series shows a stationary trend, and it is proper

to be modeled by most of the time series prediction models. However, the irregularity

of the trends implies that its temporal pattern is not easy to be discovered.

If we further decompose the capacity change time series into a provisioning com-

ponent and a de-provisioning component, a weekly periodic pattern appears. This

pattern implies that this type of time series is easier than the previous two. In

our system, we utilize this kind of time series for prediction. Generally, the capac-

ity change can be estimated according to the difference between the provisioned and

de-provisioned resources, i.e. ∆ = provt − deprovt, where ∆ denotes the change of
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capacity at each time slot, provt and deprovt denote the quantified provisioned and

de-provisioned resources.

Interpretation of cost functions

Over- and under-estimation have different consequences when estimating the provi-

sioning and de-provisioning of resources. Table 4.2 illustrates the cost matrix for these

two situations. For provisioning prediction, an over-estimation has no negative effect

on the customer and only causes idled resources, but an under-estimation degrades

the service quality. For de-provisioning prediction, the costs are reversed.

Provisioning De-provisioning

Over-estimation resource waste SLA penalty
Under-estimation SLA penalty resource waste

Table 4.2: Cost matrix for capacity estimation

Cost of SLA penalty (P function): In the scenario of capacity prediction,

when there is not enough resource, the requester has to wait until new resources are

available. New resources are supplemented by starting new servers at the back-end

of the cloud. Therefore, Tdelay is used to indicate the waiting time plus the physical

server cold start time plus the VM fulfillment time, i.e. Tdelay = Twait + Tstart + Tvm.

On the other hand, if available resources are enough for current request, the resources

associated to the request can be immediately allocated and the provisioning procedure

can immediately start. In this situation Tavail only include the VM fulfillment time

Tvm. In our system, we define the P function for provisioning prediction syntactically

the same as Equation 4.3. The P function for de-provisioning prediction can be

obtained by switching the variables v(t) and v̂(t).

Cost of resource waste (R function): Syntactically, the R function in the

generic cost function is the same as the one for capacity prediction. Semantically,

Rvm in R function is used to denote the waste of physical server plus the amortized
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waste of cooling system, electricity supply, and human labor, etc. Also, the R function

for de-provisioning prediction can be obtained by exchanging v(t) and v̂(t).

A Better Prediction Approach for De-provisioning

The future de-provisioned VM are bounded by the number of total used VMs in the

cloud. At any time, any customer cannot de-provision more VMs than they requested.

The ensemble technique is workable for de-provisioning prediction, but we have an

alternative way to estimate the de-provisioning in a more intuitive way [JPLC12a].

We will first introduce this method and then show that the new proposed method can

achieve better accuracy than the ensemble prediction approach through experiments

in Section 4.5.

Since we have all the information of the potential de-provisioned VMs, we can

build profiles using the temporal dynamics for the VM image types. Rather than the

observed time series, the temporal characteristics provides more interpretable context

of the de-provisioning that can facilitate the estimation. Our empirical exploration

demonstrate that knowing the current life time of individual VM is helpful for es-

timating the de-provisioning [JPLC12b]. That is, we can infer when a certain VM

would be de-provisioned through the life time distribution of the images. Since the

true distribution of the image life time is not available, we need to estimate it from

the historical data first.

To investigate whether the VM life time depends on the time when it is requested,

we divide the requests into two groups by putting the requests recorded during Mon-

day and Wednesday to the first group and the remains to the second group. Then we

conduct statistical test on these two datasets. The result indicates that we can safely

assume that the VM life time distribution does not depend on the time they are re-

quested. Suppose life(VM) is the current life time of a VM, and ni is the frequency
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of VMs with life time ti. We estimate the empirical cumulative distribution function

(CDF) of the life time with a step-wise function in Equation 4.9.

F̂ (x) = P (life(VM) ≤ x)

=





n1/
∑

i ni, t1 ≤ t < t2,

(n1 + n2)/
∑

i nt1 , t2 ≤ t < t3,

· · ·, · · ·

(
∑n−1

i=1 ni)/
∑

i ni, tn ≤ t.

(4.9)

The output of the estimated CDF denotes the probability of a VM that would

be de-provisioned when its current life time is ti. Utilizing F̂ (x), the de-provisioning

demand can be estimated by

∑

i∈VMactive

F̂ (life(i) ≤ tnow − tstart(i)), (4.10)

where VMactive denotes the set of VMs currently used, tnow denotes the current time

and tstart(i) denotes the provisioned time of VM i.

4.4.4 Virtual Machine Type-aware Provisioning Prediction

In this section, we firstly introduce how we adopt the generic cost function accord-

ing to the instant VM provisioning scenario. Then we introduce how we reuse the

prediction techniques with minor modification to solve the instant VM provisioning

problem.

Interpretation of cost function

The cost function for the instant VM provisioning scenario has the same form with

the generic cost function, but they have different semantics. The P function and R
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function represent the the cost of provisioning delay and the cost of idled VM in the

instant provisioning scenario.

When a request for a particular type of VM arrives, if there is no VM with the

same type prepared in the cloud pool, the cloud has to provision the VM on-the-fly.

We denote the on-the-fly provisioning delay as Tdelay = Tmiss, which is similar to the

“miss” in system cache scenario. On the other hand, if the requested VM has already

prepared in the pool, the cloud can simply transfer its ownership to the customer and

immediately finish the provisioning procedure. In this case, the request is “hit” and

the delay is Tavail = Thit. Typically, Thit ≪ Tmiss. A “hit” request can be handled

in seconds, but the on-the-fly provisioning time for a “miss” request could be up to

minutes for the state-of-art cloud systems. If the requested VM is configured with

complex service components, a missed request would take even longer due to the

software integrity, security checking, and sometimes other manual processes.

When the provisioning of a certain VM type is over-estimated, part of the prepared

VMs would be wasted. The service vendor would be responsible for the cost of this

part of VMs, since they cannot be charged to the customers. Same as in capacity

prediction scenario, the cost of an idled VM can be quantified by the number of VM

units and we can use Rvm to denote its cost. Therefore, the over-predicted cost can be

quantified by the same equation (Equation 4.4) used in capacity prediction scenario.

Prediction of individual VM provisioning

Different from the provisioning and de-provisioning prediction for capacity prediction,

to enable instant VM provisioning, we need to separately handle the VM provisioning

time series of each VM type. As shown in Figure 4.8, the time series of individual

type requests demonstrates high irregularity comparing with the total requests time

series. This phenomenon implies that the auto-correlation of these time series is

more difficult to discover. Therefore, besides the auto-correlation, we also exploit
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the correlation between different VM types to mitigate the risk of serious prediction

deviation. For instance, the requests time series of the same series of VM type, i.e.

Windows Server 2003 and Windows Server 2005, are highly correlated. We called

this procedure Correlation Ensemble.
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Figure 4.8: Total requests time series and individual VM type requests time series

In our system, we utilize the correlation matrix of time series to help post-process

the prediction results. Suppose
∑

(t) is the covariance matrix of VM types at time t,

cov
(t)
ij denotes the covariance between resource types i and its jth correlated resource.

By considering the positive influence of the strongly correlated time series (in our

system, we set correlation as 0.8, based on the empirical study), the prediction value

û
(t)
i of time series i at time t now becomes

û
(t)
i =

∑k

j=1 cov
(t−1)
ij sij v̂

(t)
k∑k

j=1 sijcovij
, (4.11)

where sij = t̄i/t̄j denotes the scale difference between two time series and k is the

number of strongly correlated time series. In our current design, we only considered

the positively correlated time series, the negative influence consideration is one of our

future works.

94



To further mitigate the cost of mis-prediction caused by the inherent prediction

difficulty, we introduce a module called Reservation Controller. Its function is to

reserve the unused VMs and only notifies the cloud to prepare new VMs when all the

reserves of the VM type are used up. Reservation Controller provides a good buffer

mechanism that effectively reduces the waste of VMs. It can be integrated into the

cloud configuration module.

4.5 Experimental Evaluation

To evaluate the effectiveness of our system, we use the real VM trace log of

IBM Smart Cloud Enterprise (SCE) to conduct the experiments. The trace data we

obtained records the VM requests for more than 4 months (from late March 2011 to

July 2011), and it contains tens of thousands of request records with more than 100

different VM types. In this trace data, each request record contains 21 features such

as Customer ID, VM Type, Request Start Time, and Request End Time, etc. The

goal of the experimental evaluation is to answer the following questions:

• Whether our prediction mechanism for capacity planning and instant VM pro-

visioning reliable?

• Whether the measure CPC is practical and flexible?

• To what extent can our system decrease the average request fulfillment time for

both problems?

4.5.1 Experiment Setup and Pre-processing

Data preprocessing is the step before data modeling and prediction. There are two

reasons for data preprocessing of the raw trace data recorded by SCE.

95



1. The raw data contains useless request fields that would not be used during

prediction.

2. The records of the requests are stored in a low-level representations. The re-

quests need to be aggregated into proper granularity first, and then feed to the

algorithm for prediction.

Feature Selection

Not all the 21 features features of a request record are useful. In our current im-

plementation, we only consider the VM Type, which illustrates the type of VM the

customer requests; Request Start Time, which indicates the time that the customer

sends the request; Request End Time, which indicates when the VM is released. Other

features like Customer ID, Customer Priority and Data Center will be considered in

our future work for personalized service quality improvement.
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Figure 4.9: Time series with different granularities. From top to bottom, the time
series are aggregated by week, day, and hour, respectively.

Time Series Aggregation Granularity Selection

All the time series we present in this paper are obtained through aggregating the

raw trace records with a certain granularity. The time series aggregated by different

granularities would have different levels of difficulty for prediction. For example,

96



Figure 4.9 shows the capacity provisioning time series aggregated by week, day, and

hour, respectively.
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Figure 4.10: Request distribution in time-type-request view

This figure shows that the coarser the granularity, the larger the provisioning

amount in each time slot. Therefore, the weekly aggregated time series requires the

cloud to prepare the most VMs for each time slot. Compared with a finer granularity,

a smaller portion of prediction deviation for weekly aggregated time series would

result in a larger waste. Moreover, through exploration, we found the life time of

most of the VMs is shorter than one week. Therefore, the weekly aggregated time

series cannot reflect the real situation.

On the contrary, it is also not suitable to aggregate the records by hour, since the

lifetime of the VMs is not so short. A too fine granularity would make the value on

each timestamp lacks statistical significance. Table 4.3 list the results by measuring

the irregularity of these time series in different perspectives with Coefficient of Vari-

ance (CV), Skewness, and Kurtosis [HTF09]. Higher CV indicates larger volatility,

higher Skewness indicates stronger asymmetry, and higher Kurtosis means more of

the variance is the result of infrequent extreme deviations. In our comparison, the
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Figure 4.11: CDF of VM types

time series aggregated by hour has the largest values in all the three measures, indicat-

ing the hour granularity is not suitable to aggregate the time series. Therefore, based

on above investigation, we aggregate the daily time series in our implementation.

Measure Granularity Week Day Hour

Coefficient of Variance 0.1241 0.4048 0.7182
Skewness -0.5602 -0.2536 2.6765
Kurtosis 2.7595 2.5620 20.5293

Table 4.3: Statistics for time series irregularity

VM Type Selection

VM type selection is only relevant to instant VM provisioning problem. As mentioned

in Section 4.4.4, we need to predict the future demand for each VM type separately.

Figure 4.10 plots the distribution of requests in a time-type-request view. This figure

clearly indicates one obvious characteristics: The distribution of VM request is highly

uneven, and a small number of the VM types dominate the distribution. We also plot

the corresponding cumulative distribution function (CDF) and rank the VM based

98



0 20 40 60 80 100
0

2

4

6

8

10
Ordered by Frequency

Rank

N
or

m
al

iz
ed

 F
re

qu
en

cy

Figure 4.12: Frequency order of VM types

on their requests frequency in Figure 4.11 and Figure 4.12, respectively. The CDF

shows that the VM requests obey the 80/20 rules — more than 80% of the requests

concentrates on less than 20% of the VM types. In the frequency ranking plot, we

observe that there is an inflection point between the 12th and 13th types, which

explicitly divides the types into frequent and infrequent groups. The measures like

CV, Skewness and Kurtosis on time series of these infrequent types also show higher

values than those of frequent types, which demonstrate that the time series of these

infrequent types are not regular enough to be modeled and predicted.

Notwithstanding the inherent prediction difficulty caused by the irregularity, the

future demand of the infrequent VM types can be handled in a more empirical way.

We design the data preprocessing module to periodically checks the change of the

rank, and build prediction modules for the frequent VM types only. For the infrequent

types, the cloud prepare a fixed number of VMs for each type. The fixed number is

set as the moving average of the recent requests of the type. Once the prepared VMs

are used up, the cloud just needs to prepare another batch of VMs.
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4.5.2 Provisioning Prediction Evaluation

To evaluate the performance of provisioning prediction, we compare the accuracy of

our ensemble predictor with the individual predictors mentioned in Table 4.1. In this

experiment, we use CPC as the measure. For parameter setting, we set β = 0.5,

Tdelay = 1200 (the time for on-demand preparation, including server boot up, VM

creation, security checking, patching, and configuration etc.), Tavail = 10 (resource is

available almost instantly), and Rvm = 500 (the cost of wasted resources for one VM

unit).

We partition the time series horizontally into two parts: the records before May

2011, and the records after May 2011. Then we use the data before May 2011 for

training. The precision of these predictors are evaluated on the date of May, June,

and July, respectively.

For each individual predictor, the parameter setting is as follows. Random Guess

simply guesses the future demand by randomly picking a number between 0 and the

maximum demand known so far. We set the sliding-window of MA and the number

of variables in AR as 7, since we have observed a suspected weekly periodical pattern.

For Neural Network, we leverage a 3-layer topology with 1 hidden layer. The neurons

in input layer take the information of the latest 7 days as input variables, and the

number of hidden layer and output layer is set as 7 and 1, respectively. This topology

enables the neural network to capture any combinations of the input variables. As for

SVM, we first leverage the grid search to identify the best parameter combinations

with training dataset, and then we use regression SVM for prediction. For GEP,

we set the population as 40, number of evolution generation as 1000, operator set as

{+,−,×, /,√, sin}. To eliminate the randomness of some predictor (Random Guess,

Artificial Neural Network and Gene Expression Programming), the results are com-

puted by averaging 10 runs of each predictor. Table 4.4 lists the evaluation results
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of all the predictors. The results clearly show that the best predictor is different

for different test datasets. And on average, the ensemble method achieves the best

performance.

Predictor May June July Average

Random Guess 2281555 3507600 3080320 2956491
Moving Average 1295550 1293620 1293620 1294263
Auto Regression 504912 760110 1047275 770765

Artificial Neural Network 980780 1095102 1577127 1217669
Gene Expression Programming 866117 640405 1037705 848075

Support Vector Machine 3746005 2199010 1147240 2364085
Ensemble 538302 626585 1072840 745909

Table 4.4: The cost of different predictors measured by CPC
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Figure 4.13: The effect of tuning β for capacity prediction

Effectiveness of Parameter Tuning

As mentioned before, the parameter β can be used to tune the preference of the

predictor (optimistic vs. pessimistic). A higher β results in less SLA penalty risk

(more time reduction) but increases the chance of resources waste. A lower β can

reduce the idled resources risk but increases the chance of SLA violation.
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Figure 4.13 illustrates how β affects the prediction results. In this figure, the

x-axis denotes the value of β while y-axis denotes the average ratio of VM fulfillment

time reduction (left) and the average cost of idled resource (right) each day quantified

by R function.

As is shown, alone with the increasing of β, both the time reduction ratio and the

cost of idled resource cost increase. This is because when β is small (close to 0), the

R function would have higher impact to the cost function than P function. In this

case, the cloud would prepare relatively less resources to avoid the waste and does

not take too much action to reduce the waiting time. On the contrary, when β is big

(close to 1), the cost function will pay more attention to reduce the VM fulfillment

time. In this case, the cloud would prepare relatively more resources to ensure the

resource supply on the cost of higher chance of resource wasting.

4.5.3 De-provisioning Prediction Evaluation

We try four different methods to predict the de-provisioning demands based on the

information of VM life time. For all these methods, the evaluation is conducted on

the last 60 days of de-provisioning records, and all the other data are used as the

training data. The details of these methods are listed as follows:
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Figure 4.14: Prediction result of de-provisioning time series
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Predictor 1st VM Type 2nd VM Type 3rd VM Type Avg. Top 12
MAE MSE MAPE CPC MAE MSE MAPE CPC MAE MSE MAPE CPC CPC

MA 40.3 2740.23 0.87 437305 51.53 4904.4 1.63 532132.5 7.23 88.5 1.67 76370 152402.29
AR 45.1 4034.57 1.52 300687.5 50.5 3893.63 5.32 391630 5.9 67.5 1.05 83292.5 137046.67
ANN 30.27 1203.07 0.67 388535 20.8 706.4 2.04 247085 4.97 29.57 2.14 37052.5 106113.96
GEP 17.37 1757.5 0.21 154440 54.77 5621.97 6.59 473347.5 4.1 27.63 1.59 33745 112149.79
SVM 68.03 5604.77 0.9 1010422.5 59.5 5578.37 2.89 890447.5 6.2 85.4 0.9 88737.5 234225.83

Ensemble 16.7 1212.1 0.21 158862.5 21.67 1057 2.04 254190 5.03 46.97 1.56 53327.5 88679.79

Table 4.5: The cost of prediction algorithms under different measurements. For the
acronym, MA denotes Moving Average, AR denotes Autoregression, ANN denotes
Artificial Neural Network, GEP denotes Gene Expression Programming, and SVM
denotes Support Vector Machine

1. Dist All : This method leverages all the training data to estimate the global VM

life time distribution by ignoring the VM type. For each day, it estimates the

expected number of VMs that would be de-provisioned based on the probability

of de-provisioning.

2. Dist 60 : This method leverages the latest 60 days of training data to estimate

the global VM life time distribution by ignoring the VM type. For prediction,

it is the same as the first method.

3. Dist Individual : This method first estimates the life time distributions of each

VM type, and then it predicts the expected number of de-provisioning VMs

based on the life time distributions of corresponding types. This method is a

finer granularity version of the first method.

4. Dist Hybrid : This method leverages all the training data to estimate both the

global life time distribution and individual life time distribution. The expected

number of de-provisioned VMs is calculated as αF̂i+(1−α)F̂g, where α equals

to the fraction between the frequency of specified image type and the most

popular image type.

Besides these four methods, we also predict the future de-provisioning with the

ensemble method and their prediction results (6 methods in total) are shown in Fig-

ure 4.14, where the x-axis denotes the time and y-axis denotes the number of de-

provisioned VMs. As is illustrated, all of these methods successfully discover the
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periodic patterns of the de-provisioning trend. However, the ensemble method has

limited ability to fit the scale of the peaks. Among all these methods, the time series

predicted by Dist All fits the real time series the best. Moreover, all these four life

time distribution based methods have approximately the same accuracy and they all

outperform the ensemble prediction method. The reason is that the methods Dist

All, Dist 60, Dist Individual, and Dist Hybrid all estimate the de-provisioning from

the empirical life time distributions, rather than simple inference from the observed

time series.
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Figure 4.15: Errors of different methods (normalized)

We also use CPC to quantify the errors of the ensemble time series prediction

and two best distribution based prediction method: Dist 60 and Dist All. To better

demonstrate the effectiveness of the prediction methods, we also calculate the cost

of two naive method: None and Maximum. The method None takes no action for

capacity planning. All the requests are responded by preparing the resource on-the-

fly. The method Maximum always prepares the maximum capacity for the cloud.

Figure 4.15 shows the evaluation result after normalization. This figure clearly shows

that all the methods that take the pre-action are significantly better than None, which
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does nothing. Moreover, all three sophisticated methods are better than Maximum.

Among all these methods, Dist All makes least error among all the methods.

4.5.4 Type-aware Prediction Evaluation

To evaluate the effectiveness of request prediction for individual VM type, we com-

pare the prediction performance of individual predictors with our ensemble predictor.

Besides CPC, we also use MAP, MSE and MAPE to measure the precision of these

predictors.

For VM type, we pick the top 12 (before the inflection point in Figure 4.12) most

frequent VM types for experiments. All the time series are partitioned into two sets,

the records for the last 30 days are used as the test data, while the remaining are

used as the training data. Similar to the experiment in provisioning evaluation, grid

search is utilized to seek the best parameter combinations for individual predictors.

Table 4.5 shows the precision of all the predictors on all the time series. Due to

the space limit, we only list the details of the top 3 time series (Red Hat Enterprise

Linux 5.5 32-bit, Red Hat Enterprise Linux 5.5 64-bit, and SUSE Linux Enterprise

Server) and the average CPC of all the time series. It can be easily observed that the

best predictor is different for different VM types. For example, GEP performs the

best on the 1st VM type; ANN achieves good results on the 2nd VM type. Moreover,

the winner predictor of one VM type can also perform badly for other VM types. For

example, ANN obtains a poor precision on the 1st VM type.

For our ensemble predictor, although it does not perform the best on any single

VM type, it is very robust as its performance is always close to the winner predictor

on all the types. The average CPC shows that our ensemble predictor has the best

average performance, indicating its self-adaptation capability.
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Figure 4.16: Prediction result of Red Hat Enterprise Linux 5.5 (32-bit)

Figure 4.16, 4.17, and 4.18 display the real time series of the three most frequent

VM types and their corresponding prediction results of all the predictors. In these

figures, ▽ denotes the original time series while △ denotes the predicted time series.

From top to bottom, the time series are: (1) The real time series; (2) Time series

predicted by MA; (3) Time series predicted by AR; (4) Time series predicted by ANN;

(5) Time series predicted by GEP; (6) Time series predicted by SVM; (7) Time series

predicted by Ensemble.

It is not difficult to observe that in all of these figures, the ensemble predictor

can always identify the best predictor for the time series and quickly converge to it.

Since under-prediction is worse than over-prediction in cloud provision scenario, the

predictor that rarely under-predicts the demands is considered better than the one
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Figure 4.17: Prediction result of Red Hat Enterprise Linux 5.5 (64-bit)

whose outputs are always close to but less than the real demands. It can also be noted

that although MA and SVM do not have the best performance in either of the three

VM types, they can also make contributions to the ensemble predictor according to

their weights.

Detailed Cost

To better investigate the composition of cost, we also calculate the prediction cost

for each component.

Provisioning time reduction: The most important criterion to evaluate the

performance is how much provisioning time can be saved. We calculate the proportion
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Figure 4.18: Prediction result SUSE Linux Enterprise Server

of time reduction obtained by predictors based on (4.12), where the save portion

(psave) is calculated according to Equation 4.12:

psave =

∑
t(max(v(t) − v̂(t), 0)Tmiss + v̂(t)Thit)∑

t v
(t)Tmiss

. (4.12)

Figure 4.19 shows the proportion of time reduction of each predictor. It is good

to observe that most of the predictors can significantly decrease more than 60% of

the provisioning time. However, in the presence of large variations across time series,

the saved time achieved by the predictor is not stable for different VM types. On

average, our ensemble predictor performs the best due to its strong self-adaptation

ability.
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Figure 4.19: Average provisioning time reduction

Idled VMs

The cost of idled resources is another evaluation criterion of the quality of prediction.

It is true that an always over-predicted predictor can save a lot of provisioning time,

but such a predictor would also waste a lot of resources. Figure 4.20 shows the

amount of idled resource caused by each predictor. On average, the best resource

saver is SVM, but its performance in time reduction is the worst. Also note that

GEP achieves a good performance on time reduction, but it wastes the resources

twice as much as our method.

Effectiveness of Reservation Controller

Table 4.6 shows the ratio of provisioning time reduction that can be achieved by

incorporating the Reservation Controller. For all the time series, Reservation Con-

troller further improves the reduction of the average provisioning time from 83.79% to
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Figure 4.20: Average resource waste

94.22%. Moreover, with the assistance of reservation controller, the over-prediction

portion of the VMs prepared before can be used for following days without going

through the provisioning process again.

VM Type 1 2 3 4 5 6

Reduction 97.77% 91.58% 96.81% 96.26% 96.76% 91.67%
VM Type 7 8 9 10 11 12
Reduction 98.17% 94.37% 99.56% 85.35% 84.98% 97.45%

Table 4.6: Provisioning time Reduction by incorporating Reservation Controller

Effect of Sophisticated Cost Functions

As mentioned before, our proposed framework is flexible and can use different cost

functions to guide the prediction process. In this section, we explore how the predic-

tion is influenced by the use of complex cost functions.

For instance, in practice, a fixed amount of resource Rfix, i.e. the standing re-

sources, is always provided for VMs preparation. If the over-predicted value lies below
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such a threshold, the cost of resource is still 0. Equation 4.13 shows the form of this

cost function:

R(v(t), v̂(t)) =





0 if v̂(t) < min(Rfix, v
(t)),

(v̂(t) − Rfix)Rvm if v(t) < Rfix < v̂(t),

(v̂(t) − v(t))Rvm if Rfix ≤ v(t) < v̂(t).

(4.13)

Figure 4.21 shows three predicted demands time series time generated by different

Rfix values. As Rfix increases, the predicted demand tends to be more optimistic than

pessimistic. Experimental results show that the average waiting time can be reduced

by 93.94% when Rfix increases to 200, but the amount of idled resources becomes

huge.
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Figure 4.21: The influence of Rfix on prediction (normalized data)

4.5.5 Comparison of Different Measures

Table 4.7 shows the time reduction and the idled resources of the ensemble predictor

guided by various cost measures. CPC clearly outperforms the other three cost

measures in provisioning time reduction. We also find that CPC has the largest idled

resources. Such a phenomenon can be well interpreted by the basic idea of these

cost measures. MAE, MSE and MAPE are all symmetric cost measurements and
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they guide the ensemble predictor to equally weight the under-predictors and over-

predictors. While CPC gives more penalty to under-predictors than over-predictors,

the ensemble predictor always prefers to giving larger weights to the over-predictor,

which results in more time reduction and also more likely to waste resources. As in

cloud service scenario, customer service quality is much more important, it is worth

reducing the provisioning time on the costs of a reasonable amount of idled resources.

Time Reduction Avg. Time Reduction Avg. Resource Waste

MAE 81.77% 28300
MSE 80.13% 37100
MAPE 79.01% 33133
CPC 83.79% 38533

Table 4.7: Waiting Time Reduction and Resource Waste of Predictor Guided by
Different Cost Measurements

4.5.6 Model Computational Cost

Our proposed method is neither computationally intensive nor storage intensive. In

terms of CPU cost, given the historical requests (about tens of thousands per month),

the training time costs less than 1 minute. Once the training is finished, the prediction

can be conducted constantly (within 1 second).

The consumption of memory cost can also be ignored. This is because the only

thing need to be put in memory is the parameters of these algorithms. For example,

the number of parameters in Neural Network is
∑L

i=1 si−1 ∗ si, where si denotes the

number of neurons in level i. Therefore, the total storage cost of the proposed method

is no more than 1000.

In terms of scalability, the growth of cloud would only increase the value of requests

at each timestamp, it would not increase the scale of the input data of the proposed

algorithm.
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4.6 Chapter Summary

In this chapter, we discussed two data mining based analytical techniques to

improve the cloud service quality. Specifically, we believe that both the capacity

planning and the instant VM provisioning problems can be handled by prediction,

where the first problem can be solved by preparing the available resources beforehand

and the second problem can be solved by pre-provisioning the needed VM instances.

According to the unique characteristic of cloud service, we propose a novel cost-

sensitive measure called CPC to guide the prediction procedure. To demonstrate the

effectiveness of our approach, we implemented a prototype and conduct a series of

simulation experiments based on the trace data of IBM Smart Cloud Enterprise. The

experimental evaluation results demonstrated that our approach is able to effectively

improve the service quality while retaining a low resource cost.
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CHAPTER 5

Temporal Mining for Stream Anomaly Detection

In this chapter, we will address the problem of timely and accurate anomaly

identification problem in a distributed system. During my Ph.D study, part of the

following content has been published.

In the following, the background and motivation of the stream anomaly detection

will be introduced in Section 5.1. In Section 5.2, the stream anomaly detection

problem will be formulated. In Section 5.3, the proposed solution framework and the

detail solution will be presented. Finally, the summary of this chapter will be given

in Section 5.6.

5.1 Background and Motivation

Anomaly detection has always been a critical and challenging problem in many appli-

cations. In the Big Data era, real-time processing is often needed by the applications.

However, existing data processing infrastructures are designed based on inherent non-

stream programing paradigm such as MapReduce [DG08], Bulk Synchronous Parallel

(BSP) [Val90], and their variations. To reduce the processing delay, these applications

have to be migrated to the stream processing engines [ABB+03,CCD+03]. Once the

infrastructures are changed, the new data characteristics and analysis requirements

make existing anomaly detection solutions no longer suitable.

5.1.1 A Motivating Example

Complex Event Processing (CEP) [ADGI08,MZZ12] is one quick solution to address

the stream based anomaly detection issue. By expressing the anomalies detection

rules with corresponding continuous query statements. This rule-based detection

method can be applied to the scenarios where the anomaly can be clearly defined.

114



Besides CEP, several stream based anomaly detection algorithms have also been pro-

posed. They either focus on identifying contextual anomaly over a collection of stable

streams [BCFL09] or collective anomaly from one stream [AF07,PLL07]. These exist-

ing methods are useful in many applications but they are still unable pinpoint certain

types of anomalies. Example 5 gives a simple example of such scenario.

Example 5. Figure 5.1 illustrates the scenario of monitoring a 6-node computer

cluster, where the x-axis denotes the time and the y-axis denotes the CPU utilization.

The cluster has been monitored during time [0, t6]. At time t2, a computing task has

been submitted to the cluster and the cluster finishes this task at time t4. As is shown,

two nodes (marked in dashed line) behave differently from the majority during some

specific time periods. Node 1© has a high CPU utilization during [t1, t2] and a low CPU

utilization during [t3, t4] while node 2© has a medium CPU utilization all the time.

These two nodes with their associated abnormal periods are regarded as anomalies.

Besides these two obvious anomalies, there are a slight delay on node 3© due to the

network delay and a transient fluctuation on node 4© due to some random factors.

However, they are normal phenomena in distributed systems and are not regarded as

anomalies.

Figure 5.1: CPU utilization of a computing cluster

Figure 5.2 plots the ground truth as well as all the anomalies identified by ex-

isting methods including CEP queries with three different rules (Rule-CQ1, 2, and
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Figure 5.2: Identified anomalies in Example 5 (The box lists the IDs of abnormal
streams during specified time period)

3), the collective based anomaly detection [BKNS00], and contextual based anomaly

detection [CBK09].

To detect the anomalies via CEP query, the idea is to capture the events when

the CPU utilizations of nodes are too high or too low. An example query following

the syntax of [ADGI08] can be written as follows:

PATTERN SEQ(Observation o[])

WHERE avg(o[].cpu) oper threshold

(AND|OR avg(o[].cpu) oper threshold)∗

WITHIN {length of sliding window}

where the selection condition in WHERE clause is the conjunction of one or more boolean

expressions, oper is one of {>, <, <>, ==}, and threshold can be replaced by any

valid expression. However, CEP queries are unable to correctly identify the anoma-

lies in Figure 5.1 no matter how the selection conditions are specified. For instance,

setting the condition as avg(o[].cpu)> {threshold} would miss the anomalies dur-

ing [t3, t4] (Rule-CQ1); setting the condition as avg(o[].cpu) < {threshold} would

miss the anomalies during [t1, t2] (Rule-CQ2); and combining the above two expres-

sions with OR (Rule-CQ3) still cannot lead to the correct result. Besides deciding
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the selection condition, how to rule out the situations of slight delays and transient

fluctuations, and how to set the length of the sliding windows are all difficult problems

when writing the continuous queries. The main reason is that the continuous query

statement is not suitable to capture the contextual information where the “normal”

behaviors are also dynamic (the utilizations of normal nodes also change over time in

Figure 5.1).

Compared with CEP based methods, contextual anomaly detection methods achieve

a better accuracy as they utilize the contextual information of all the streams. How-

ever, one limitation of contextual based methods is that they do not leverage the

temporal information of streams and are not suitable for anomaly detection in dy-

namic environments. Therefore, these methods would wrongly identify the slightly

delayed and fluctuated nodes as anomalies.

For the given example, collective anomaly detection methods do not work well

neither. This is because these methods would identify the anomaly of each stream

based on its normal behaviors. Once the current behavior of a stream is different

from its normal behavior (inferenced based on historical data), it is considered as

abnormal. In the example, when the cluster works on the task during [t3, t4], all the

working nodes would be identified as abnormal due to the sudden burst.

5.2 Problem Statement

In this section, the notations and definitions that are relevant to the anomaly detection

problem will be given first. Then, the problem based on the given notations and

definitions will be formally defined.

Definition 5.2.1. Data Stream. A data stream Si is an ordered infinite sequence

of data instances {si1, si2, si3, ...}. Each data instance sit is the observation of data

stream Si at timestamp t.
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The data instances sit in Si can have any number of dimensions, depending on

the concrete applications. For the remaining of this paper, the terms “data instance”

and “observation” would be used interchangeably. To make the notation uncluttered,

we use si in places where the absence of timestamp do not cause the ambiguity.

Definition 5.2.2. Stream Collection. A stream collection S = {S1, S2, ..., Sn}

is a collection of n unordered data streams.

The input of our anomaly detection framework is a stream collection. For instance,

in example 5, the input stream collection is S = { 1©, 2©, 3©, 4©, 5©, 6©}

Definition 5.2.3. Snapshot. A snapshot is a set of key-value pairs S(t) = {Si :

sit|Si ∈ S}, denoting the set of the observations {s1t, s2t, · · · , s|S|t} of the data streams

in stream collection S at time t.

A snapshot captures the configuration of the stream collection for a certain mo-

ment. Taking Figure 5.1 for example, the snapshot at time t5 is S
(t5) = { 1© : 0%, 2© :

50%, 3© : 0%, 4© : 20%, 5© : 0%, 6© : 0%}. For simplicity, we use S(i) to denote the

ith dimension of the observations in a certain snapshot.

Definition 5.2.4. Contextual Collective Anomaly. A contextual collective

stream anomaly is denoted as a tuple < Si, [tb, te], N >, where Si is the ID of a single

data stream from the collection of data streams S, [tb, te] is the associated time period

when Si is observed to constantly deviate from the majority streams in S, and N

indicates the severity of the anomaly.

In Example 5, 3 contextual collective anomalies can be found in total. During time

period [t1, t2], node 1© behaves constantly different from the other nodes, so there

is an anomaly < 1©, [t1, t2], N1 >. The other two contextual collective anomalies,

< 1©, [t3, t4], N2 > and < 2©, [0, t6], N3 >, can also be found with the same reason.
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In Definition 5.2.4, the severity of deviation is measured in a given metric space

M with a distance function f : sit × sku → R. For simplicity, we use Euclidean

Distance as an example throughout this paper.

Problem Definition. The anomaly detection problem in our paper can be de-

scribed below: Given a stream collection S = {S1, S2, ..., Sm}, identify the source of

the contextual collective anomalies Si, the associated time period [ts, te], as well as a

quantification about the confidence of the detection p. Moreover, the detection has to

be conducted on data streams that look-back is not allowed and the anomalies need

to be identified in real time.

Figure 5.3: Distributed real time stream anomaly detection framework

5.3 Framework Overview

In this section, we briefly describe how the aforementioned problem is addressed and

then introduce the proposed distributed real time anomaly detection framework from

a high level perspective.

As previously mentioned, this paper focuses on discovering contextual collective

anomalies over a collection of data streams obtained from a homogeneous distributed

environment. An example of the homogeneous distributed environment is the system

with load balance, which is widely used at the backend by the popular web sites like

Google and Facebook.
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It is known that, in such a kind of environment, the components should behave

similar to each other. Therefore, the snapshots (the current observation) of these

streams should be close to each other at any time. Naturally, we need to identify

the anomalies by investigating both contextual information (the information of the

current snapshot) and collective information (the historical information).

Figure 5.4: The snapshot at a certain
timestamp

Figure 5.5: Random partition of data
instance

Figure 5.3 illustrates our proposed framework for contextual collective anomaly

detection. The anomaly detection is conducted in three stages: the dispatching stage,

the scoring stage, and the alert stage. The functionality of the three stages are briefly

described as follows:

• Dispatching stage: This stage uses dispatchers to receive the observations from

external data sources and then shuffle the observations to different downstream

processing components.

• Scoring stage: This stage quantifies the candidate anomalies first using snapshot

scorer then stream scorer.

The snapshot scorer leverages contextual information to quantify the confi-

dence of anomaly for each data instance at a given snapshot. Taking Figure

5.4 for example, it shows the data distribution by taking the snapshot of the
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2-dimensional data instances of 500 streams at timestamp t. As shown, most of

the data instances are close to each other and located in a dense area. These data

instances are not likely to be identified as anomalies as their instance anomaly

scores are small. On the contrary, a small portion of the data instances (those

points that are far away from the dense region) have larger instance anomaly

scores and are more likely to be abnormal.

A data instance with a high anomaly score does not indisputably indicate its

corresponding stream to be a real anomaly. This is because the transient fluc-

tuation and phase shift are common in real world distributed environment.

To mitigate such effects, the stream scorer is designed to handle the problem.

In particular, the stream scorer combines the information obtained from the

instance scorer and the historical information of each stream to quantify the

anomaly confidence of each stream.

• Alert stage: The alert stage contains the alter trigger. The alert triggers lever-

ages the unsupervised learning methods to identified and then reports the out-

liers.

The advantage of our framework is reflected by the ease of integration, the flexibil-

ity, and the algorithm independence. Firstly, any external data sources can be easily

feed to the framework for anomaly detection. Moreover, the components in every

stage can be scaled-out to increase the processing capability if necessary. The num-

ber of components in each stage can be easily customized according to the data scale

of concrete applications. Furthermore, the algorithms in each stage can be replaced

and upgraded with better alternatives and the replacement would not interfere with

other stages.
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5.4 Stream Anomaly Detection Methodology

5.4.1 Data Receiving and Dispatching

The dispatching stage is an auxiliary stage in our framework. When the data

scale (i.e., the number of distinct data streams) is too large for a single computing

component to process within in a reasonable time delay, the dispatcher would shuffle

the received observations to downstream computing components before the scoring

stage (as shown in Figure 5.5). By leveraging random shuffling algorithm like Fisher-

Yates shuffle [FY+49], dispatching can be conducted in constant time per observation.

After dispatching, each downstream component would conduct scoring independently

and parallel on a sampled stream observations with identical distribution. As the

observations are randomly sampled, the performance of the anomaly detection will

not be affected.

Ideally, the observations coming from the homogeneous data sources have very

similar measurable value (e.g. workload of each server in a load balanced system),

but some unknwon random factors can easily cause the variations of the actual ob-

servations. Therefore in fact, an observation si ∈ R
d is viewed as the ideal case value

sideal with additive Gaussian noise so that si = sideal + ǫ, ǫ ∼ N (µ,Σ). For those

data sources in abnormal conditions, their observations are generated in a slightly dif-

ferent but unknown way. Suppose Ni is the number of observations in partition i, it’s

not difficult to know that, given enough observations, the mean and covariance can

be easily estimated locally using maximum likelihood estimation, i.e. µ̂ML =
∑

i si

Ni

and ĉov(S(x), S(y))ML = 1
n−1

∑n

i=1(si(x)− S̄(x))(si(y)− S̄(y)), where S̄(x) and S̄(y)

respectively denote the sample mean of dimension x and y.
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5.4.2 Snapshot Anomaly Quantification

Quantifying the anomaly in a snapshot is the first task in the scoring stage. For

doing so, we leverage snapshot scorer in this step. This score measures the amount

of deviation of the specified observation sit to the center of all the observations in a

snapshot at timestamp t.

A common solution to quantify the anomaly score of multi-dimension data is to

use Local Outlier Factor (LOF) [BKNS00]. In principle, LOF measures the anomaly

score by making use of the density-based clustering. This method is useful for offline

mining but is not suitable in our scenario due to the following two limitations: (1) LOF

is not aware of the scale inconsistency among different dimensions. For dimensions

with inconsistent scales, LOF would be dominated by the dimensions with large

scales. Taking the system monitoring application for example, the CPU utilization

is represented by the percentage of clock ticks used per second, while the memory

usage is represented by the amount of RAM in KB, MB or GB, for which the later

has a much larger scale. When using LOF, the dimension of memory usage would

dominate the anomaly score. (2) The time of computing LOF score of observations

increases superlinearly (O(dn log |S|) as the number of observations increases. This

time complexity is acceptable for offline detection but is prohibitive for real time

detection.

To address the above two limitations, we propose a simple yet efficient method

to quantify the data instance anomaly scores. The basic idea is that the anomaly

score of an observation is quantified as the amount of uncertainty it brings to the

snapshot S(t). As the observations in a snapshot follows the normal distribution, it

is suitable to use the increase of entropy to measure the anomaly of an observation.

To quantify the anomaly score, two types of variance are needed: the variance and

123



the leave-one-out variance, where the leave-one-out variance is the variance of the

distribution when one specific data instance is not counted.

Algorithm 3 Snapshot Anomaly Quantification

1. INPUT: Snapshot S(t) = (s1, · · · , sn), for si ∈ R
d.

2. OUTPUT: Snapshot anomaly scores N ∈ R
|S|.

3. Create a d× |S| matrix M = (s1, · · · , sn)
4. Conduct 0-1 normalization on rows of M.
5. x = 0d and N = 0d

6. m = (E(S(1)), · · · ,E(S(d))T
7. M = (s1t −m, s2t −m, · · · , sdt −m)
8. for j = 0→ k do
9. xj = ||jth column of M ||22
10. end for
11. for all si ∈ S(t) do
12. Calculate Ni according to Equation (5.1).
13. end for
14. Conduct 0-1 normalization on N .
15. return N

A naive algorithm to quantify the anomaly scores requires quadratic time (O(d|S|+

d|S|2)). By reusing the intermediate results, we propose an improved algorithm

with time complexity linear to the number of streams. The pseudo code of the

proposed algorithm is shown in Algorithm 3. As illustrated, matrix M is used to

store the distances between each dimension of the observations to the corresponding

mean. Making use of M , the leave-one-out variance can be quickly calculated as

σik = nσk−M(i,j)
n−1

, where σk denotes the variance of dimension k and σik denotes the

leave-one-out variance of dimension k by excluding si. As the entropy of normal dis-

tribution is H = 1
2
ln(2πeσ2), the increase of entropy for observation si at dimension

k can be calculated as

dk = H ′
k −Hk =

1

2
ln

σik

σk

=
1

2
ln

(xj −M2
ij)/(n− 1)

xj/n
(5.1)

Summing up all dimensions, the snapshot anomaly score of sit is Nit =
∑

k dk.

Note that the computation implicitly ignores the correlation between dimensions.
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This is because if an observation is an outlier, the correlation effect would only deviate

it further from other observations.

5.4.3 Stream Anomaly Quantification

As a stream is continuously evolving and its observations only reflect the transient

behavior, simply using snapshot anomaly score alone for anomaly detection would re-

sult in a lot of false-positives due to the transient fluctuation and the slight phase

shift phenomeno. To mitigate such situations, it is needed to quantify the sever-

ity of anomaly by using the stream anomaly scores that make use of the historical

information of the stream.

An intuitive way to solve this problem is to calculate the stream anomaly score

from the recent historical instances stored in a sliding window. However, this solution

has two obvious limitations: (1) It is hard to decide the window length. A long sliding

window would miss the real anomaly while a short sliding window cannot rule out the

false-positives. (2) It ignores the impact of observations that are not in the sliding

window. The observation that is just popped out from the sliding window would

immediately and totally lose its impact to the stream.

To well balance the history and the current observation, we use stream anomaly

score Ni to quantify how significant a stream Si behaves differently from the majority

of the streams. To quantify Ni, we exploit the exponential decay function to control

the influence depreciation. Supposing ∆t is the time gap between two adjacent ob-

servations, the influence of an observation sit at timestamp tx+k = tx + k∆t can be

expressed as Nitx(tx+k) = Nitx(tx+k∆t) = Nitxe
−λkt, (λ > 0), where λ is a parameter

to control the decay speed. In the experiment evaluation, we will discuss how this

parameter affects the anomaly detection results.
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To make the notation uncluttered, we use t−i to denote the timestamp that is i∆t

ahead of current timestamp t, i.e. t−i = t − i∆t. Summing up the influences of all

the historical observations, the overall historical influence Iit for current timestamp t

can be expressed as Equation (5.2).

Iit = Nit−1(t) +Nit−2(t) +Nit−3(t) + ...

= Nit−1e
−λ +Nit−2e

−2λ +Nit−3e
−3λ + ...

= e−λ(Nit−1 + e−λ(Nit−2 + e−λ(Nit−3 + ...

= e−λ(Nit−1 + Iit−1).

(5.2)

The stream anomaly score of stream Si is the summation of the data instance anomaly

score of current observation Nit and the overall historical influence, i.e.,

Ni = Nit + Iit. (5.3)

As is shown in Equation (5.2), the overall historical influence can be incremen-

tally updated with cost O(1) for both time and space complexity. Therefore, stream

anomaly scorer can be efficiently computed.

Properties of Stream Anomaly Score

The properties of stream anomaly score make our framework insensitive to the tran-

sient fluctuation and effective to capture the real anomaly.

Comparing to the transient fluctuation, the real anomaly is more durable. Fig-

ure 5.6 shows the situations of a transient fluctuation (in the left subfigure) and a real

anomaly (in the right subfigure). In both situations, the stream behaves normally

before timestamp tx. For the left situation, a transient fluctuation occurs at times-

tamp tx+1, and then the stream returns to normal at timestamp tx+2. For the right

situation, an anomaly begins at timestamp tx+1, lasts for a while till timestamp tx+k,

and then the stream returns to normal afterwards. Based on Figure 5.6, we show two

properties about the stream anomaly score.
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Figure 5.6: Transient fluctuation and anomaly

Property 1. The increase of stream anomaly score caused by transient disturbance

would decrease over time.

Proof. Suppose a transient fluctuation occurs at timestamp tx+1 in stream Si, in the

worst case, the difference between the data instance scores of the stream Si and a

non-fluctuated stream Sj is at most dupper = Nitx+1 −Njtx+1 ≤
√
|d|, where |d| is the

number of dimensions.

Let δ1 = Iitx+1 − Ijtx+1. Before timestamp tx+1, no stream is abnormal, so Iitx+1

and Ijtx+!
are close enough and the expectation E(δ1) = 0. At timestamp tx+1, a

transient fluctuation occurs in stream Si. According to Equation (5.3), the difference

of the stream anomaly scores is

Ni −Nj = (Nitx+1 + Iitx+1)− (Njtx+1 − Ijtx+1)

= Nitx+1 −Njtx+1 + δ1.

(5.4)

At timestamp tx+2, Si turns to be normal again, so Nitx+2 equals to Njtx+2 on

average. Let δ2 = Nitx+2 −Njtx+2, we can also get E(δ2) = 0.

Accordingly, the difference between the corresponding stream anomaly scores at

timestamp x+ 2 becomes

127



N ′
i −N ′

j = (Nitx+2 + Iitx+2)− (Njtx+2 + Iitx+2)

= Iitx+2 − Ijtx+2 + δ2

= e−λ(Nitx+1 + Iitx+1)− e−λ(Njtx+1 + Ijtx+1) + δ2

= e−λ(Nitx+1 −Njtx+1 + δ1) + δ2

< (Nitx+1 −Njtx+1 + δ1) + δ2 = Ni −Nj .

(5.5)

According to Equation (5.5), it is known that at timestamp tx+2, the effect of

fluctuation at timestamp tx+1 decreases.

Property 2. The increase of stream anomaly score caused by anomaly would be

accumulated over time.

Proof. If a stream begins to be abnormal at timestamp tx+1, its data instance scores

would become larger than those of the normal streams during the abnormal period.

Suppose ǫ is the difference of the data instance scores between the abnormal stream

Si and a normal stream Sj, at timestamp tx+1, the difference of the stream anomaly

scores is

∆ = Ni −Nj = Nitx+1 −Njtx+1 + (Iitx+1 − Ijtx+1) = ǫ.

In the above equation, since both streams Si and Sj are normal before timestamp

tx+1, we have δ1 = Iitx+1 − Ijtx+1 and the expectation E(δ1) = 0. At timestamp tx+2,

since the stream Si is still in the abnormal period, the difference of data instance

scores is still larger than or equal to ǫ, and the difference of stream anomaly scores

between these two streams at timestamp tx+2 is

∆′ = N ′
i −N ′

j = Nitx+2 −Nitx+2 + (Iitx+2 − Iitx+2)

≥ ǫ+ e−λ((Nitx+1 + Iitx+1)− (Njtx+1 + Ijtx+1))

= ǫ+ e−λ(Ni −Nj) > ǫ.

(5.6)
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According to Equation (5.6), we can conclude that once a stream becomes abnor-

mal, the difference between its stream anomaly score and those of the normal streams

would increase over time.

Similar properties can also be shown for the situation of slight shifts. A slight shift

can be treated as two transient fluctuations occuring at the beginning and the end

of the shift. In the next section, we will leverage these two properties to effectively

identify the anomalies in the Alert Stage.

5.4.4 Alert Triggering

Most of the stream anomaly detection solutions [GXZ+10] identify the anomalies

by picking the streams with top-k anomaly scores or the ones whose scores exceed a

predefined threshold. However, these two approaches are not practical in real world

applications for the following reasons: (1) Threshold is hard to set. It requires the

users to understand the underlying mechanism of the application to correctly set the

parameter. (2) The number of anomalies are changing all the time. It is possible that

more than k anomaly streams exist at one time, then the top-k approach would miss

these real anomalies.

Figure 5.7: Abnormal streams identification

To eliminate the parameters, we propose an unsupervised method to identify and

quantify the anomalies by leveraging the distribution of the anomaly scores. The first

step is to find the median of the stream anomaly scores (Nmedian). If the distance

between a stream anomaly score and the median score is larger than the distance
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between the median score and the minimal score (Nmin), the corresponding stream

is regarded as abnormal. As shown in Figure 5.7, this method implicitly defines a

dynamic threshold (shown as the dashed line) based on the hypothesis that there is

no anomaly. If there is no anomaly, the skewness of the anomaly score distribution

should be small and the median score should be close to the mean score. If the

hypothesis is true, Nmedian−Nmin should be close to half of the distance between the

minimum score and the maximum score. On the contrary, if a score Ni is larger than

2 × (Nmedian − Nmin), the hypothesis is violated and all the streams with scores at

least Ni are abnormal.

Besides the general case, we also need to handle one special case: a transient fluc-

tuation occurs at the current timestamp. According to Property (1) in Section 5.4.3,

the effect of transient fluctuation is at most dupper = Nitx+1 −Njtx+1 and it will mono-

tonically decrease. Therefore, even a stream whose anomaly score is larger than

2 × (Nmedian − Nmin), it can still be a normal stream if the difference between its

anomaly score and Nmin is smaller than dupper. To prune the false-positive situations

caused by transient fluctuation, the stream is instead identified as abnormal if

Ni > max(2(Nmedian −Nmin), Nmin + dupper). (5.7)

Another thing needs to be noted is that the stream anomaly scores have a upper

bound dupper
1−e−λ . According to the property of convergent sequence, the stream anomaly

scores of all streams would converge to this upper bound. When the values of stream

anomaly scores are close to the upper bound, they tend to be close to each other and

hard to be distinguished. To handle this problem, we reset all the stream anomaly

scores to 0 whenever one of them close to the upper bound.

In terms of the time complexity, the abnormal streams can be found in O(n)

time. Algorithm 4 illustrates the algorithm of stream anomalies identification. The

median of the scores can be found in O(n) in the worst case using the BFPRT al-
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Algorithm 4 Stream Anomaly Identification

1. INPUT: λ, and unordered stream profile list S = {S1, ..., Sn}.
2. mIdx ← ⌈ 2

n
⌉

3. Nmedian ← BFPRT(S, mIdx )
4. Nmin ← min(Si.score|0 ≤ i ≤ mIdx)
5. Nmax ← Nmedian

6. for i ← mIdx to n do
7. if Condition (5.7) is satisfied then
8. Trigger alert for Si with score Ni at current time.
9. if Ni > Nmax then
10. Nmax ← Ni

11. end if
12. end if
13. end for
14. if Nmax is close to the upper bound then
15. Reset all stream anomaly scores.
16. end if

gorithm [BFP+73]. Besides finding the median, this algorithm also partially sorts

the list by moving smaller scores before the median and larger scores after the me-

dian, making it trivial to identify the abnormal streams by only checking the streams

appearing after the median.

5.5 Experimental Evaluation

To investigate the effectiveness and efficiency of our framework, we design several

sets of experiments with two real world data applications: anomaly detection over a

computing cluster and topic anomaly detection on twitter. Taking these two applica-

tions as case studies, we show that our proposed framework can effectively identify

the abnormal behavior of streams. It should be pointed out that our proposed frame-

work can also be applied to many other application areas such as PM2.5 environment

monitoring, healthcare monitoring, and stock market monitoring.
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5.5.1 Real World Scenario — Anomaly Detection of Com-

puting Cluster

System anomaly detection is one of the critical tasks in system management. In

this set of experiments, we show that our proposed framework can effectively and

efficiently discover the abnormal behaviors of the computer nodes with high precision

and low latency.

Experiment Settings

For the experiments, we leverage a distributed system monitoring tool [ZJZ+13] into a

16-node computing cluster. Then we deploy the proposed anomaly detection program

on an external computer to analyze the collected trace data in real time. To well

evaluate our proposed framework, we terminate all the irrelevant processes running

on these nodes. On this nodes, we intentionally inject various types of anomalies and

monitor their running status for 1000 seconds. The source code of injection program

is available at https://github.com/yxjiang/system-noiser. The details of the

injections are listed in Table 5.1.

Table 5.1: List of Injections
No. Time Period Node Description

1 [100, 150] 2 Keep CPU utilization above 95.

2 [300, 400] 3 Keep memory usage at 70%.

3 [350, 400] 3 Keep CPU utilization above 95%.

4 [600, 650] 4 Keep memory usage at 70%.

5 [900, 950] 2,5 Keep CPU utilization above 95%.

6 [800, 850] 1-5,7-16 Keep CPU utilization above 95%.

Through these injections, we can answer the following questions about our frame-

work: (1) Whether our framework can identify the anomalies with different types of

root causes. (2) Whether our framework can identify multiple anomalies occurring

simultaneously.
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Figure 5.8: Injections and the captured alerts

Results Analysis

Figure 5.8 illustrates the results of this experiment by plotting the actual injections

(top 6 sub-figures) as well as the captured alerts (the bottom subplots), where the

x-axis represents the time and the y-axis represents the idled CPU utilization, idle

memory usage or the number of anomalies in each timestamp. We evaluate the

framework from 5 aspects through carefully-designed injections.

1. Single dimension (e.g. idle CPU utilization or idle memory usage) of a single

stream behaves abnormally. This is the simplest type of anomalies. It is gen-

erated by injections No.1 and No.4 in Table 5.1. As shown in Figure 5.8, our

framework effectively identifies these anomalies with the correct time periods.

2. Multiple dimensions (e.g. CPU utilization and memory usage) of a single stream
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behaves abnormally at the same time. This type of anomalies is generated by

injections No.2 and No.3 in Table 5.1, and our framework correctly captures

such anomalies during the time period [300, 400]. One thing should be noted

is that the stream anomaly score of node 3 increases faster during the time

period [350, 400] than the time period [300, 350]. This is because two types of

anomalies (CPU utilization and memory usage) appear simultaneously during

the time period [350, 400].

3. Multiple streams behave abnormally simultaneously. This type of anomalies is

generated by injection No.5. During the injection time period, our framework

correctly identifies both anomalies (on node 2 and node 5).

4. Stable but abnormal streams. This kind of anomaly is indirectly generated by

injection No.6 in Table 5.1. This injection emulates the scenario that all the

nodes but one (i.e., node 6) in a cluster received the command of executing a

task. As is shown, although the CPU utilization of node 6 behaves stable all

the time, it is still considered to be abnormal during the time period [800, 850].

This is because it remains idle when all the other nodes are busy.

5. Transient fluctuation and slight delay would not cause false-positive. As this

experiment is conducted in a distributed environment, delays exist and vary

for different nodes when executing the injections. Despite this intervention,

our framework still does not report transient fluctuations and slight delays as

anomalies.

Based on the evaluation results, we find that our solution is able to correctly

identify all the anomalies in all these 5 different cases.
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Effectiveness Analysis

In this section, we will delve into the details about the effectiveness and efficiency

of our framework. To quantitatively measure the performance, we use F-measure

to measure the accuracy and detection time delay to measure the efficiency. The

precision and recall in computing F-measure are quantified according to the ground

truth shown in Table 5.1. To investigate how λ affects the results, we conducted

experiments with various λ values.
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Figure 5.9: F-measure versus reset
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Figure 5.10: Time delay versus reset
threshold

The experimental results of how λ affects the results accuracy are illustrated in

Figure 5.9. To mitigate the randomness caused by the distributed environment, the

precision, recall, and the F-measure are averaged with 10 runs.

As shown, as λ increases, precision increases but recall decreases. The result shows

that the highest F-measure is 0.9351 while the lowest is 0.9060, which is stable. This

is due to the changing of precision and recall cancels each other and makes F-measure

insensitive to λ.

The reason for the decreasing of recall is as follows: The increase of λ causes the

upper bound of stream anomaly scores to decrease and indirectly increases the reset

frequency. After each reset of stream anomaly scores, some real anomalies would be

skipped and they would reduce the recall. In practice, the low recall does not indicate
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that our method misses the real alerts. Figure 5.11 plots the experiment results with

the worst recall, where the x-axis denotes the time and the y-axis denotes the number

of anomalies. Comparing with the ground truth (the top 6 sub-figures in Figure 5.8),

whenever there is an injection, the alerts are generated. Therefore, all the injections

can be captured.
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Figure 5.11: Generated alerts with the worst recall

In terms of the time delay, our proposed framework is able to identify the anomalies

in real time. As shown in Figure 5.10, the experimental results indicate that the

average time delay in all the experiments are less than 6 seconds. We also notice that

the variance of the time delay is large, this is because the experiments are conducted

in a distributed system, where the environment is highly dynamic. Since the delay

consists of network delay, injection execution delay, and the detection delay, the actual

delay of our detection method should be less than the observed value.

Results Comparison

To demonstrate the superiority of our framework, we also conduct experiments to

identify the anomalies with the same injection settings using the alternative methods

including contextual anomaly detection (CAD) and rule-based continuous query (Rule-

CQ). The contextual anomaly detection is equivalent to the snapshot scoring in our

framework. For the rule-based continuous query, we define three rules to capture three

types of anomalies, including high CPU utilization (rule 1), low CPU utilization (rule

2), and high memory usage anomalies (rule 3), respectively. Different combinations

of the three rules are used in the experiments.
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Figure 5.12: Generated alerts by CAD and Rule-CQ

The generated alerts of these methods are shown in Figure 5.12, where the x-axis

denotes the time and y-axis denotes the number of anomalies. As illustrated, the

contextual anomaly detection method generates a lot of false alerts. This is because

this method is sensitive to the transient fluctuation. Once an observation deviates

from the others at a timestamp, an alert would be triggered. For Rule-CQ method, we

experiment all the combinations and report the results of the two best combinations:

C1 (rule 1 or rule 2) and C2 (rule 2 or rule 3). Similarly, the Rule-CQ method also

generates many false alerts since it is difficult to use rules to cover all the anomaly

situations. Table 5.2 quantitatively shows the precision, recall, and F-measure of the

three methods as well as the results of our method. The low-precision and high-

recall results of CAD and Rule-CQ indicate that all these method are too sensitive

to fluctuations.

Table 5.2: Measures of different methods
❳
❳

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Measure
Method

precision recall F-measure

CAD 0.4207 1.0000 0.5922
C1: Rule 1——3 0.5381 1.0000 0.6997
C2: Rule 2——3 0.0469 1.0000 0.0897

Our method (worst case) 0.9832 0.8400 0.9060
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A real system problem detected

We have identified a real system problem when deployed our framework on two com-

puting clusters in our department. In one of the clusters, we continuously receive

alerts. Logging into the cluster, we find the CPU utilization is high even no tasks are

running. We further identify that the high CPU utilization is caused by several pro-

cesses named hfsd. We reported the anomaly to IT support staffs and they confirmed

that there exist some problems in this cluster. The high CPU utilization is caused

by continuous attempts to connect to a failure node in the network file system. After

fixing this problem, these out-of-expectation but real alerts disappear.

5.5.2 Real Word Scenario 2 — Twitter Topics Anomaly De-

tection

In this section, we conduct experiments on two twitter datasets to perform twitter

topic anomaly detection. The first dataset with 7,858,046 tweets was collected by

using Twitter Streaming API during 03/09/2011-03/23/2011 and the second dataset

with 10,780,000 tweets was collected during 03/23/2012 – 05/28/2012. The first

dataset contains the topics of the countries and the second dataset contains topics

about candidates of the president election. For pre-processing, the first dataset is

aggregated by hour and the second dataset is aggregated by day, and then the change

ratios between contiguous timestamps are calculated and feed to our framework as

streams. Figure 5.13 and Figure 5.14 illustrate the time series of change ratios as well

as the identified anomalies. Also, some of the typical events are marked in both two

figures and are described in Table 5.3 and Table 5.4, respectively.

Take the first dataset for example, five sets of anomalies are detected. The anoma-

lies of set 1 is raised by the topic japan around March 11th 2011, when a 9 magnitude
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Figure 5.13: Country dataset Figure 5.14: Election dataset

Table 5.3: Events in country group
No Event
1 Japan 9.0 magnitude earthquake. Anti-Gaddafi action.
2 Bloody assaults in Libya. Egypt evolution conflict.
3 Egypt constitutional referendum.
4 Japan is too quiet compare with others.
5 International armed conflict in Libya.

earthquake happened near Japan that day. Almost at the same time, the National

Transitional Council flag is flown by anti-Gaddafi fighters in Lybia on 10th March

2011. Observing from the figures, the change ratios of these two topics are higher than

others during this time period. For this time periods, the collective anomaly detection

algorithms generate a large number of false-positives since the change ratios of all the

topics are changing irregular all the time. During time period of March 12th-13th,

2011 (anomaly set 2), the change ratios of topic egypt and libya are high and the

anomalies of set 2 is observed. For comparison, The contextual anomaly detection

algorithms generate a lot of alerts since fluctuations occur frequently during this time

period. According to the news report, several conflicts happened in these two coun-
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Table 5.4: Events in election group
No Event
1 Ron Paul’s campaign became active earlier than others.
2 No alert since all topics burst.
3 Santorum’s active peak lasts longer than others.
4 False positive alerts.
5 Santorum quited the Republican presidential primaries.

tries due to the revolution. Similarly, other anomaly sets are the follow-up conflicts

either happened in Egypt or Libya. All the identified anomalies can be validated by

variable information resources.

5.6 Chapter Summary

In this chapter, we propose a real time anomaly detection framework to identify the

contextual collective anomalies from a collection of streams. Our proposed method

firstly quantifies the snapshot level anomaly of each stream based on the contextual

information. Then the contextual information and the historical information are

used in combination to quantify the anomaly severity of each stream. Based on

the distribution of the stream anomaly scores, an implicit threshold is dynamically

calculated and the alerts are triggered accordingly. To demonstrate the usefulness of

the proposed framework, several sets of experiments are conducted to demonstrate

its effectiveness and efficiency.

140



CHAPTER 6

Conclusion

Distributed systems are the new trends for people to solve the modern computa-

tion problems. As the scale of the systems getting increasingly large, more efforts need

to be paid to facilitate people to investigate and manage them. In this dissertation,

the problems of leveraging temporal data mining techniques for distributed system

management have been discussed. Specifically, three related but orthogonal concrete

problems have been studied: 1) The event summarization problem that facilitate the

system event analysis; 2) The cloud prediction problem that make the cloud systems

more intelligent and enables the autonomous computing; 3) The stream anomaly

detection problem that allow the system to self-diagnosis in real time.

For the issue of facilitating system event analysis, the solution of event summa-

rization has been presented. Specifically, a novel event summarization methodology

called NES which is able to summarize the given event logs with periodical and cor-

relation patterns is proposed. Using NES, event analysts are able to obtain a concise

yet accurate summary which demonstrates the running status of the system. Besides

NES, an integrated framework call META is proposed. META is an event summa-

rization framework that provides various of event operations, include event storage,

event multi-resolution analysis and event summarization. It facilitates the event an-

alysts by enabling them end-to-end solutions when analyzing the event logs. Due

to its flexibility, the existing and future event summarization methods can be easily

plugged into META, and therefore making META more powerful.

For the issue of making the cloud systems autonomy and more intelligent, we pro-

pose the data mining based approach to solve the problems of cloud capcity planning

and instant VM provision. Concretely, we abstract and formulate these two problems

as the time series prediction problem, then we leverage ensemble time series prediction

as well as the VM deprovision probability estimation to predict the demand of VM
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provision/deprovision. The experimental evaluation demonstrates the effectiveness

and efficacy of the proposed solution.

For the issue of the system self-diagnosis, we propose a real-time streaming anomaly

detection algorithm. The proposed algorithm is able to identify a particular anomaly

called contextual-collective anomaly that occurs frequently in load-balanced distributed

systems. Our proposed method conducts the anomaly detection in a 3-step appoach,

and is able to effectively identify most of the anomalies, including the abnomral

stream, the abnormal time range, and the severity, according to the results of exper-

imental evaluation. Most importantly, the proposed method is able to identify the

anomalies in real time.

In summary, this dissertation attempts to leverage temporal data mining tech-

niques to resolve the system autonomy and management issues in different aspects.

As far as we know, this disssertation is the one of the earliest attempts that solves

such issues from the analytic perspective instead from the system perspective.

Based on these initial exploration, we also found several limitation of the proposed

works and there are some promising extensions can be done in the future. The current

methods for event summarization has limitated express power and scalability. For

example, it is unable to express the event relationship if there exists event clique.

Moreover, it is unable to handle huge event logs as it requires superlinear running

time to generate the summarise. In the future, more experessive model and more

effective or parallel summarization algorithm would be proposed. For the issue of

improving cloud system autonomy, current proposed solutions is incapable of handling

sudden demand bursts as the models have limited power to predict such abnormal

situation. In the future, advanced burst detection algorithms can be integrated into

current prediction framework to boost the solution’s stability. In terms of system

self-diagonosis, there are also some limitations on the aspects of diagnosis power and

scalability. The proposed method is effective to discover the anomalies, but it is
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not able to provide an intuitive explaination about the root cause of the anomalies.

Moreover, the design of this method is not scalable enough, so it is prohibitive to

handle a large number of event streams.
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