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INTRODUCTION 

Status and history of the Ridge-Slough Mosaic 

The Florida Everglades is a large subtropical wetland with diverse hydrologic, edaphic, 

and vegetative characteristics. Historically, a significant portion of this system was a slow 

moving river originating from the Kissimmee River floodplain, flowing into the vast but shallow 

Lake Okeechobee, and draining south-southwest over extensive peatlands into Florida Bay 

(McVoy 2011). Human-induced alterations to the hydrologic regime, including reduction, 

stabilization, and impoundment of water flow through diversion and compartmentalization of 

water via canals and levees have degraded pre-drainage vegetation patterns and 

microtopographic structure (Davis and Ogden 1994, Ogden 2005, McVoy 2011). 

The Everglades peatland emerged 5,000 years ago with the stabilization of sea level at 

approximately current elevations (Loveless 1959, Gleason and Stone 1994). This, combined with 

subtropical rainfalls, allowed a vast mass of water to slowly flow over a limestone bedrock 

platform 160 km long and 50 km wide at a near uniform descent totaling about 6 m, ultimately 

reaching Florida Bay (Stephens 1956, Gleason and Stone 1994, McVoy 2011). Vegetation 

quickly colonized the area, and peat, in the absence of adequate respiration, accumulated on the 

limestone bedrock to a depth of 3-3.7 m (Gleason and Stone 1994, McVoy et al. 2011). The 

“River of Grass” referenced by Douglas (1947) alludes to the dually intertwined processes of the 

historic riverine nature of the Everglades and the vast sawgrass (Cladium jamaicense) 

communities that have dominated the landscape for about the last 1,000 years (Bernhardt and 

Willard 2009).  

McVoy et al. (2011) identify eight major historic landscapes that comprised the greater 

Everglades: Custard Apple Swamp, Sawgrass Plains, Ridge and Slough, Peat Transverse Glades, 

Rockland Marl Marsh, Marl Transverse Glades, Perrine Marl Marsh, and the Ochopee Marl 

Marsh. Of these, the Ridge and Slough (c. 6,000 km
2
) encompassed slightly over 50% of the 

total extent (c.11,000 km
2
). Prior to hydrologic modification, this landscape provided biotic 

communities with distinct elevational niches that were organized in a characteristic pattern 

parallel to flow (Figure 1). Ridges, comprised almost totally of dense stands of sawgrass, were 

located in areas of higher topographic relief (and therefore lower water depths), whereas sloughs 

containing white water lily (Nymphaea odorata), other macrophytes, and periphyton were at 

lower elevation and therefore deeper water (Loveless 1959, Ogden 2005, McVoy 2011). A third 

community, the wet prairie, was comprised of Eleocharis cellulosa (spikerush), Panicum 

hemitomon (maidencane), and Rhynchospora tracyi (beakrush), and usually occupied the 

physical zone between the boundary of ridges and sloughs, in areas of intermediate water depths 

(Loveless 1959, Ogden 2005). The Ridge and Slough landscape was interspersed with high 

elevation tree islands which   support hardwood communities, and portion of which remain fully 

emergent throughout the year (Loveless 1959, Sklar and van der Valk 2002, van der Valk and 

Warner 2009). 

As in all wetlands, the hydrologic regime is a critical factor influencing the distribution 

and composition of vegetation in the greater Everglades (Gunderson 1994, Ross et al. 2003, 

Armentano et al. 2006, Zweig and Kitchens 2008, Todd et al. 2010).  Local variation in 

hydrologic conditions resulting from microtopographic differentiation is essential for the 

maintenance of the distinct vegetation community boundaries that were a feature of the pre-

drainage Ridge and Slough landscape (Loveless 1959, Ogden 2005, McVoy 2011).  In the 

current managed Everglades system, the pre-drainage, patterned mosaic of sawgrass ridges, 



sloughs and tree islands (Fig. 1) has been substantially altered or reduced largely as a result of 

human alterations to historic ecological and hydrological processes (Larsen et al. 2011).  

 

 

 

  

Fig. 1 – Aerial images and historic distribution of the ridge-slough landscape. (Left) 

Linear, flow-parallel orientation of ridges and sloughs under conserved conditions.  

(Right) Distribution of ridge and slough and other landscape types prior to major 

hydrologic alteration. 

 



The Ridge and Slough community has undergone dramatic structural, compositional and 

functional changes since anthropogenic modification of the hydrologic regime began in the early 

20th century (Davis and Ogden 1994, Team 2003, Ogden 2005, Larsen et al. 2011, McVoy 

2011). Average water levels across the Ridge and Slough landscape are estimated to be 30-45 cm 

lower between the pre-modification era and 1955, but have since rebounded slightly through 

concentrated restoration efforts (McVoy 2011).  Nonetheless, sloughs in many areas of the 

Everglades frequently “dry-down” by the end of the dry season, but in the pre-modified 

landscape it is believed that sloughs dried very rarely, supported by an estimation of average 

depth at 90 cm (McVoy 2011). These changing hydrologic regimes result from some 

combination of altered water flows and loss of microtopographic structure.  

Lower hydroperiods have severely restricted the range and abundance of many slough 

species, including the historically ubiquitous white water lily, and even more drastically 

restricted spatterdock (Nuphar advena), a species adapted to the deepest water (McVoy 2011). 

Similarly, hydrologic modification has led to an expansion among species better adapted to low 

water, such as sawgrass and southern cattail (Urban et al. 1993, Davis and Ogden 1994, 

Gunderson 2001, McVoy 2011). Woody vegetation may have been uncommon in the ridge 

community prior to hydrologic modification (Loveless 1959, McVoy 2011), but wax myrtle 

(Myrica cerifcra) and coastal plain willow (Salix caroliniana) now frequently inhabit ridges in 

drained areas (McVoy 2011). Ross et al. (2003) found that subtle but significant differences in 

hydroperiod define the boundaries between ridge, slough, and wet prairie communities in Shark 

Slough, ENP, but these boundaries are eroding with hydrologic modification. Similarly, working 

in a marl prairie environment in Taylor Slough, ENP, Armentano et al. (2006) found that 

changes in the hydrologic regime over periods as brief as three years had induced concurrent 

changes in vegetation composition and community patterning. Zweig and Kitchens (2008, 2009) 

found vegetation communities in southern Water Conservation Area 3A (WCA 3A) are 

influenced by both current and historic hydrologic conditions, and vegetation responses to 

hydrologic modification varied among species. Loss of historically distinct vegetation 

communities thus appears to be a characteristic of ridges and sloughs to hydrologic modification. 

Hydrologic modification also has consequences for the landscape-scale structure of the 

ridge-slough mosaic (Fig. 2). Where hydroperiods have been reduced, ridges have invaded marsh 

areas (Team 2003, Ogden 2005), and much of the slough component of the landscape, 

particularly in the Everglades National Park, has been usurped by both wet prairie and ridge 

(Davis and Ogden 1994, Olmsted and Armentano 1997, Richards et al. 2011). Areas of reduced 

flow have lost the elongated ridge-slough topography, while areas with excessively long flooding 

duration have experienced a decline in the prevalence of ridges and tree islands (Sklar et al. 

2004, Ogden 2005).  Remaining ridges have lost rigidity, structure, and directionality (or 

anisotropy; Wu et al. 2006, Larsen et al. 2007, Watts et al. 2010), and elevation differences 

between ridges and sloughs have become less distinct (Fig. 3; Watts et al. 2010, McVoy 2011). 

However, while many characteristics of degrading Everglades landscapes are known, to date no 

system-wide and systematic studies have addressed their spatial distribution, hydrologic 

constraints, and covariation.      

 

Self-organization of the Ridge and Slough Landscape 

The characteristic ridge and slough mosaic has been theorized to be a self-organized 

landscape maintained by autogenic processes that balance ridge expansion and slough 

persistence. 



 

 

  

Fig. 2 – Present configuration of the greater Everglades, and associated changes in ridge-

slough structure.  (Left) The contemporary Everglades is subdivided into distinct 

management basins subject to varied uses and management objectives.  These basins are 

bounded and separated by hydrologic engineering structures including canals and levees.  

(Right, top) Where hydrologic modification has reduced water levels and hydroperiod, 

historic ridge-slough landscapes have lost topographic structure and become dominated 

by sawgrass (Cladium jamicense).  (Right bottom) Where impoundment has raised water 

levels and lengthened hydroperiods, ridges senesce and the landscape takes on a 

characteristic 'moth-eaten' pattern. 

 



 

 

  

Figure 3 - Examples of conserved (top) and degraded (bottom) microtopographic 

structure.  Conserved landscapes are characterized by high topographic heterogeneity and 

bi-modal elevation distributions.  Degraded landscapes have lost these characteristics.  

From Watts et al. 2010. Shadings indicate vegetation communities, and arrows indicate 

their median elevation.  Solid line indicates best fit model of density vs. elevation.  

Dashed line indicates probability of inundation over preceding 10 years at each elevation. 

 



(Larsen et al. 2007, Givnish et al. 2008, Larsen and Harvey 2010, Watts et al. 2010, Cohen et al. 

2011). Decoupling of soil elevations from underlying bedrock topography in areas of relatively 

conserved landscape pattern suggests that historic microtopography and landscape structure have 

arisen largely from internal feedbacks between vegetation, hydrology, and soil elevations. 

Whether local geologic features have acted as nucleation sites for ridge initiation remains 

unresolved.  In either case, pressure exerted by the hydrologic regime has been theorized to 

promote the stable existence of the ridge and slough communities (Givnish et al. 2008, Watts et 

al. 2010, Cohen et al. 2011). Plant production provides raw material for the development of peat, 

and may increase as soil elevation allows for high productivity of recalcitrant organic matter by 

sawgrass.  Peat depth is maintained by decomposition of biomass, and the loss of peat through 

aerobic respiration (Craft et al. 1995, Borkhataria et al. 2011). Ridges accumulate biomass faster 

than sloughs, but shallower water depths promote more rapid decomposition that roughly 

balances higher gross peat production (Larsen and Harvey 2010, Cohen et al. 2011). The 

production-respiration equilibrium is regulated within both community types at nearly equal 

rates over long time periods, keeping ridges and sloughs from forming mountains and valleys. 

Community shifts in microtopographic range when the hydrologic regime changes may help 

maintain vegetation zonation, and thus potentially feed back on microtopographic structure (SCT 

2003, Larsen and Harvey 2010, Cohen et al. 2011, D'Odorico et al. 2011). 

Regular self-organized spatial patterning of ecological systems results from spatially-

dependent feedbacks whose strength and sign vary with distance (Rietkerk and Van de Koppel 

2008).  While strong local feedbacks can generate discrete patches on the landscape (Silliman et 

al. 2005, D'Odorico et al. 2011), regular patterning of such mosaics is generated by distal 

negative feedbacks, by which the presence of organisms at one location inhibits their 

establishment or persistence at some distance (van de Koppel et al. 2005).  In some cases, 

organisms concentrate a limiting resource such as water or soil nutrients (Rietkerk et al. 2002, 

Rietkerk et al. 2004b, Ludwig et al. 2005, Eppinga et al. 2009), facilitating local expansion while 

limiting suitability of locations outside of occupied patches.  In others, plants or animals may 

locally mitigate a stressor such as temperature, salinity, or shear stress but exacerbate the stressor 

outside the area of biotic influence (Bader et al. 2007, Weerman et al. 2010).  The diversity of 

potential distal feedbacks in any given ecosystem requires the development of distinctive 

predictions that discriminate among plausible mechanisms (Eppinga et al. 2010).     

When distal negative feedbacks are coupled to strong local positive feedbacks, spatial patterning 

can exhibit global bi-stability (Fig. 4), meaning that alternative equilibria may exist at the scale 

of entire landscapes. In such cases, either regular patterning or unstructured, homogenous states 

may exist under the same set of environmental conditions.    As a result, transitions between 

patterned and homogenous states may be sudden, and trajectories of recovery may exhibit 

hysteresis (meaning that transitions in one direction occur at a different threshold condition than 

transitions in the other direction (Rietkerk et al. 2004a).  While some researchers have argued 

that regular spatial patterning always exhibits global bi-stability across some range of conditions 

(Rietkerk et al. 2004a), others have illustrated that regular patterning can arise via stochastic 

processes that do not produce such landscape-scale transitions (D'Odorico et al. 2007).  

Nonetheless, the potential for hysteretic responses of patterning to environmental drivers 

presents a challenge to their conservation and restoration (van de Koppel et al. 2002, Suding et 

al. 2004, Suding and Hobbs 2009), particularly since the loss of patterning can have important 

implications for ecosystem function (Rietkerk et al. 2004a, D'Odorico et al. 2006) and habitat 

value (Ogden 2005).   



  

Figure 4. Feedback processes that generate regular pattern and landscape-scale 

alternative stable states, as is hypothesized to occur in the Everglades Ridge and Slough. 

(a and b) Biota can, in some cases, create positive local feedbacks via resource increases 

and stress decreases, but as a consequence reduce the suitability of habitat at greater 

distances. (c) In response to varied resource inputs (or stressors), patterned landscapes 

may undergo catastrophic transitions to a homogenous state. Across some range of 

conditions, both the patterned and homogenous states may be stable, in which case the 

degraded condition may resist restoration. (a) and (b) from Rietkerk and van de Koppel 

2008; (c) From Rietkerk et al. 2004. 



The emergence of flow-parallel patterning in the Everglades suggests that the spatial 

feedbacks that create pattern must act anisotropically (i.e., differently with direction), and that  

water flow is an important component of those feedbacks.  However, the specific mechanisms 

that create flow-parallel ridges remain unresolved, as multiple plausible mechanisms have been 

suggested, including sediment entrainment and deposition (Larsen et al. 2007, Larsen and 

Harvey 2010), transpiration-driven nutrient concentration (Ross et al. 2006, Cheng et al. 2011), 

and hydrologic competence (Givnish et al. 2008, Watts et al. 2010, Cohen et al. 2011, Heffernan 

et al. in revision).  While the relative importance of and interactions between these mechanisms 

remains an active area of research, observations of pattern loss in response to hydrologic 

management, nutrient enrichment, and other disturbances points to the disruption of those 

feedbacks as a primary cause of landscape degradation (Sklar et al. 2004). 

The coupling of microtopography, hydrology, vegetation composition and productivity, 

and their responses to hydrologic modification and other disturbance can create challenges in 

disentangling causal relationships and diagnosing trajectories of change.  One objective of this 

monitoring study is to assess whether microtopographic structure, vegetation community 

composition, or relationships between these variables serve as leading indicators of pending 

change in other landscape characteristics. While it is known that altered microtopography affects 

vegetation structure sometime after hydrologic modification (Ross et al. 2003, Givnish et al. 

2008, Zweig and Kitchens 2008, Zweig and Kitchens 2009), vegetation changes may also 

influence microtopography (Cohen et al. 2011, Larsen et al. 2011).  Watts et al. (2010) 

hypothesize that topographic changes are more rapid than those of vegetation structure. They 

argue that drainage and stabilization of the Everglades hydrologic regime leads to more rapid 

peat loss through aerobic bacterial respiration in higher elevation ridges compared to sloughs, 

flattening landscape scale topography. Simultaneously, but over much longer timeframes, 

drained and stabilized hydrologic regimes facilitate ridge expansion through the more drained 

sloughs, resulting in vegetation structure homogeneity (Larsen and Harvey 2010). Then, after 

some time period, both topography and vegetation structure equilibrate to a relatively 

homogenous landscape. Nonetheless, the relative timescales of changing vegetation and 

topographic structure are not well understood.   

Simultaneous assessment of microtopographic structure and vegetation community 

composition provide one means to assess the relative time scales over which these characteristics 

respond to hydrologic modification (Fig. 5), i.e., whether landform or vegetation is more 

resistant to change in water regime.  If vegetation change precedes topographic change, then we 

should observe a subset of sampled landscapes in which vegetation community composition is 

relatively conserved, but topographic structure is degraded.  If topographic change precedes 

vegetation change, we will observe only the converse configuration.   
 

 

 



 
 

 

  
Figure 5. Possible pathways of microtopographic and vegetative degradation in the ridge-

slough landscape.  In one scenario (uppermost arrow) topographic structure is reduced 

after modification of the hydrologic regime, followed by a lagged response from the 

vegetation structure; alternatively (lowermost arrow) vegetation patterning may degrade 

initially in response to modification of the hydrologic regime, followed by a lagged 

response of topographic patterning; finally (middle arrow) microtopographic flattening 

and vegetation homogenization may occur, but both lag behind modification of the 

hydrologic regime. Depending on which pattern accurately describes pathways of ridge-

slough degradation, either vegetation or microtopography may serve as a leading 

indicator of change in the other characteristic. Pathways of degradation may differ 

depending on the nature of hydrologic alteration and other disturbances. 

 

 



Monitoring rationale and goals 

The Water Resources Development Act (WRDA) of 2000 authorized the Comprehensive 

Everglades Restoration Plan (CERP) as a framework for modifications and operational changes 

to the Central and Southern Florida Project needed to restore the South Florida ecosystem. 

Provisions within WRDA 2000 provide for specific authorization for an adaptive assessment and 

monitoring program. A CERP Monitoring and Assessment Plan (MAP; RECOVER 2004, 2006) 

has been developed as the primary tool to assess the system-wide performance of the CERP by 

the Restoration Coordination and Verification (RECOVER) program. The MAP presents the 

monitoring and supporting research needed to measure the responses of the South Florida 

ecosystem to CERP implementation. Investigators are encouraged to refer to this document for 

details on the methods and procedures outlined below. These documents can be accessed from 

the following web sites: http://www.evergladesplan.org/pm/recover/recover_map.aspx  and  

http://www.evergladesplan.org/pm/recover/recover_map_part2.aspx. 

The MAP also presents system-wide performance measures representative of the natural 

and human systems found in South Florida that will be evaluated to help determine CERP 

success. These system-wide performance measures address the responses of the South Florida 

ecosystem that the CERP is explicitly designed to improve, correct, or otherwise directly affect. 

A separate document, the Development and Application of Comprehensive Everglades 

Restoration Plan System-wide Performance Measures (RECOVER 2007), has been prepared by 

RECOVER and provides the scientific, technical, and legal basis for the performance measures. 

This document and performance measure documentation sheets can be downloaded from:  

http://www.evergladesplan.org/pm/recover/eval_team_perf_measures.aspx.  

The general goals of restoration are to stem, and possibly reverse, degradation of the 

ridge-slough-tree island landscape by redirecting flows now released unused to coastal waters 

across the surface of this landscape (USACE and SFWMD 1999). The CERP MAP, Parts 1 and 

2, presented the overarching monitoring framework for guiding restoration efforts throughout the 

entire process (RECOVER 2004, 2006). This requires not only a comprehensive assessment of 

the current state of the ecosystem and assessment of restoration endpoints (targets), but also 

ongoing monitoring and evaluation throughout the process that will aid the implementing 

agencies in optimizing operational procedures and project designs. The work described below 

represents the first system-wide landscape monitoring project. This monitoring effort supports 

the Greater Everglades Wetlands module of the MAP and is directly linked to the monitoring or 

research component identified in that module as number 3.1.3.6.  

This monitoring project seeks to provide information necessary for the evaluation of the 

efficacy of the Comprehensive Everglades Restoration Program (CERP), as delineated in the 

Water Resources Development Act (WRDA) of 2000.  The work described provides indices of 

system-wide applicability of performance measures related to the response of the ridge-slough 

mosaic, tree islands, and other landscape features of the central Everglades to the restoration of 

historic hydrologic conditions, with the goal of informing the adaptive management of 

Everglades restoration as outlined in the CERP Monitoring and Assessment Plan (RECOVER 

2004).  

The primary objective of this monitoring project is to assess the condition of landscapes 

within the Greater Everglades Wetlands ecosystem. This effort focuses on the condition of 

wetlands (including tree islands) within the historic distribution of the ridge and slough 

landscape and provides a baseline to detect changes/trends in the patterns and vegetation 

communities of these systems as a result of water management operations, restoration initiatives 

http://www.evergladesplan.org/pm/recover/recover_map.aspx
http://www.evergladesplan.org/pm/recover/recover_map_part2.aspx
http://www.evergladesplan.org/pm/recover/eval_team_perf_measures.aspx


and episodic events such as droughts, fire and hurricanes. The secondary objective is to integrate 

knowledge regarding landscape patterning, soil dynamics and community structure and 

composition with hydrologic data provided by Everglades Depth Estimation Network (EDEN) 

and other sources. Particular attention is paid to how these dynamics might: 1) be affected by 

restoration and 2) relate to CERP hypotheses from the MAP.   

The specific objectives of this work are: 

1) To determine extant reference conditions for each of the performance measures described 

below (including variability of those measures in time and space). 

2) To establish the present status of landscape performance measures throughout the central 

Everglades, particularly in areas of historic ridge-slough landscape patterning, identify spatial 

and temporal trends of those performance measures, and quantify their relationships to the 

present hydrologic regime. 

3) To detect unanticipated changes in ecosystem structure and processes that result from 

hydrologic management or manipulation, CERP restoration activities, or climatic variation 

4) To provide data in support of scientific studies of inter-relationships among vegetation, 

microtopography, and hydrologic regime that may provide insight into the causes of 

unanticipated ecosystem responses. 

The monitoring work is designed to address the needs identified in the Greater Everglades 

wetlands performance measures: (1) Wetland Landscape Patterns – Ridge-Slough Community 

Sustainability; and (2) Wetland Landscape Patterns - Marl Prairie Cape Sable Sparrow Habitat. 

The program specifically addresses the Greater Everglades Wetland Landscape and Plant 

Community Dynamics hypotheses: (1) ridge and slough microtopography in relation to organic 

soil accretion and loss; (2) ridge and slough landscape pattern in relation to microtopography; 

and (3) plant community dynamics along elevation gradients as water depths and thus 

hydroperiods change (RECOVER 2006).  

 

  



Overview of approaches 

Monitoring efforts for 2010-12 consisted of three core components: (1) mapping 

vegetation features from aerial photographs, (2) aerial surveys for classification of tree island 

type, and (3) ground surveys of water depth and plant community structure (in both tree islands 

and surrounding marsh), which were used to quantify aspects of the hydrologic regime, 

determine relationships between vegetation structure and water depth, quantify the distribution 

and spatial structure of peat elevations, and ground-truth broader-scale maps based on remote 

sensing and aerial surveys.  These activities were linked both logistically and analytically (Figure 

6). For example, vegetation mapping from photographs were supported by aerial marsh 

reconnaissance that was supplemented by tree island characterization activities.  Mapping 

accuracy can be determined from vegetation observations made during surface pattern sampling.  

Perhaps most importantly, analysis of pattern based on multiple variables (vegetation and soil 

micro-topography) at multiple scales (aerial photos, helicopter reconnaissance, ground surveys) 

will maximize the likelihood of change detection, allow inference about interrelationships among 

stressors and response variables, and present an integrated picture of the pre-restoration structure 

of the Greater Everglades Wetland Ecosystem.  The ability to compare multiple measures of 

landscape condition may provide a more robust understanding of spatial patterns and temporal 

trajectories of landscape degradation,    

This study takes advantage of a previously established framework for representative 

sampling of the entire Everglades landscape. This Generalized Random-Tessellation Stratified 

sampling network (GRTS; Phillipi 2007) divides the Everglades landscape into a grid of 2x5 km 

landscape blocks (primary sampling units [PSUs]), with the 5 km edge of each PSU aligned 

parallel to the historic water flow. A spatially-stratified random sample of 80 PSUs were selected 

for sampling over a 5 year period (n=16 per year), and each year a subset of these were drawn to 

achieve a spatially balanced sample of the modern Everglades compartments (Everglades 

National Park (ENP), Water Conservation Area 3A North (WCA 3A N), Water Conservation 

Area 3A South (WCA 3A S), Water Conservation Area 3B, Water Conservation Area 2, and the 

Loxahatchee National Wildlife Refuge (LNWR); Figure 7). Mechanistic analyses for this study 

focus on 27 PSUs (from sampling years 1 and 2) found within the historic distribution of the 

Ridge and Slough landscape (McVoy et al. 2011). These PSU’s represent the full range of 

contemporary hydrologic regimes, and their vegetative and microtopographic structure range 

from well-conserved to severely degraded (Wu et al. 2006, Watts et al. 2010, Nungesser 2011). 

 

This Year 2 Summary Report includes results of mapping, marsh landscape structure, and 

tree island structure through the first two full years of sampling.  Marsh data collected in the first 

year of sampling are incorporated in a separate Year 1 Data Report.   

  



 

  

Fig. 6 - Relationships among direct measurements to be collected, metrics derived from 

those measurements, and assessment outcomes. 

 



 

 

  
Fig. 7. Map of all PSUs for landscape sampling (from Phillipi 2007). Colors indicate 

years for sampling of individual PSUs. A selection of tree islands were sampled in solid 

landscape blocks in Years 1 and 2.  



MAPPING OF MARSH AND TREE ISLAND VEGETATION 

 

Developing tools for remote detection of ecological condition is of obvious utility for large area 

surveillance of restoration progress.  Some research has already been done to discern landscape 

pattern metrics that may be of use in long term monitoring efforts (Wu et al. 2006), and one 

objective of this component of monitoring is to evaluate these existing metrics.  A second 

objective is to develop landscape metrics that are predicated more on the mechanisms of 

landscape pattern maintenance (i.e., flow and longitudinal slough connectivity).  A third 

objective is to compare field metrics of ridge-slough landscape condition with those obtained 

from imagery to determine patterns of association and critical transition thresholds that may be 

useful for restoration assessment.  

 

The narrow objective of the vegetation mapping component of this project is to map and 

characterize the vegetation in each PSU using the classification scheme developed for CERP 

vegetation mapping.  However, the incorporation of a mapping component in the Ridge – 

Slough-tree island mosaic project facilitates achievement of a broader goal: the development of a 

better understanding of the relationships between hydrology and other drivers of vegetation 

pattern.  It does so by allowing hypotheses about these relationships to be addressed at an 

intermediate scale – much coarser than the plot data collected in the land surface elevation 

component of this project, and considerably finer than the vegetation mapping component for the 

entire Everglades (MAP Section 3.1.3.4).     

 

Vegetation maps of each PSU have been produced, with a minimum mapping unit of 200m
2
 for 

non-woody vegetation and 36 m
2
 for tree islands (See Appendix II).  The mapping effort or area 

mapped within each PSU varied by year. PSU mapped during the first year were mapped to their 

full 2 km x 5 km extent while those mapped  in the 2nd year were limited to a central 2 km x 2 

km portion within each PSU (see Figure 9 for locations of PSU’s sampled in Years 1 and 2). The 

base map of these vegetation maps consisted of either color infrared CERP aerial imagery from 

2003 or 2009, for PSU 4 and 5 and PSU 0 and 14, respectively, or NAIP 2010 color infrared 

aerial imagery for the other 28 PSU. Features within each PSU were classified according to the 

classification system developed by a consortium of south Florida vegetation scientists (Rutchey 

et al. 2006).  Most community types have been distinguished to Level 3 of this classification 

system 

 

Each tree island within a given PSU has been mapped and characterized.  Tree island >36 m
2 

in 

size within each PSU were identified and digitized.  Based on helicopter aerial surveys, each tree 

island was classified into one of the following seven types: 

 

1. Hardwood hammocks (forests or woodlands with >50% relative cover of upland & 

transitional tree species)  

2. Bayhead (closed crown forest with >50% relative cover of swamp and transitional 

tree species)  

3. Bayhead Swamp (open woodland community with >50% relative cover of swamp 

and transitional tree species) 



4. Willow head or strand 

5. Cypress dome or strand 

6. Exotic-dominated tree island 

 

In subsequent analysis, maps of each PSU will be used to determine the 5 indices utilized by Wu 

et al (2006) to evaluate the integrity of ridge-slough patterning: Lacunarity index (LI), Average 

Length of Straight Flow (ALS), Average Width of Slough (ASW), Percentage of Ridge Area 

(PRA), and Average Length-Width Ratio (ALW).    Responsiveness of map-derived indices of 

vegetation pattern degradation will be compared to statistical descriptors of peat surface 

patterning and multivariate descriptors of hydrologic regime (see below) in order to determine 

the circumstances under which each approach provides a more robust and sensitive indication of 

landscape integrity. 

 

 

SAMPLING AND ANALYSIS OF MARSH VEGETATION 

 

Field measurement of soil elevation and vegetation composition 

The approach adopted in this monitoring component is strongly informed by recent 

studies of  relationships between hydrologic regime and peat surface structure in eight landscape 

blocks (structurally similar to current PSUs) stretching from WCA 3AN to ENP and 

encompassing historic ridge and slough landscapes currently subject to drained, inundated, and 

stabilized hydrologic regimes (Watts et al. 2010).  The central finding of these efforts is that the 

frequency distribution and spatial structure of peat surface elevations provides a directionally-

sensitive indicator of ridge-slough landscape response to hydrologic regime, in that each of these 

metrics responds differently to inundation, drainage, and flow stabilization.  Importantly, metrics 

based on peat surfaces appear to diverge in some cases from metrics of the landscape structure of 

vegetation in identifying conserved and degraded patterning.  The present analysis adds 

measures of vegetation community distinctiveness and fidelity to elevation as core metrics. 

Geostatistical measures of plant community dissimilarity and microtopographic variation will 

provide additional measures of landscape structure, but are not included in this analysis. 

 

 Wherever possible, field sampling of the ridge-slough landscape was done via airboat, 

during periods when sufficient water was present to obtain a reliable measure of water depth at 

all locations.  As such, no dry weather sampling was conducted.  For PSUs situated in 

Everglades National Park, sites were accessed by airboat or helicopter, as allowed by permitting 

and budgetary constraints.  

  

 Prior to the sampling of each PSU, the 2 x 5 km area was subdivided in 80 equal area 

zones (250 m x 500 m) and a sampling cluster was located at a random location within each 

(Figure 8).  At each cluster, samples were then collected at the center and at two randomly 

selected distances between 3 and 35 m in two cardinal directions, east and north.  Sampling at 

each location commenced with setting a 1-m
2
 quadrat on the ground, centered on the target point, 

to delineate the sampling boundary.  Within each quadrat, water depth was measured using a 



meter stick with a 10-cm diameter hard plastic foot anchored to one end; the foot ensures that 

water depth is measured to the soil surface.  Field training of sampling personnel ensured that a 

standardized amount of pressure was applied to the foot such that the measurement of water 

depth was uniform across time and space.  Water depths were measured with a precision of 0.5 

cm.  In addition, we determined depth to bedrock at each node.   

 

 Vegetation characterization within each quadrat consisted of identifying all taxa present 

to species level, estimating cover of each using a Braun-Blanquet scale (1 – 1-5%, 2 – 5-25%, 3 

– 25-50%, 4 – 50-75%, 5 – 75-95%, and 6 – 95-100%).  Based on these vegetation 

measurements, the vegetation within a 25 m radius of each sampling location was assigned to a 

community category (ridge, slough, tree island, wet prairie, cattail).  In some PSUs, species 

cover was estimated as percentage cover of the plot area at either 1%, 5% or at 10% intervals; 

values from Braun-Blanquet scales were converted to these values for data analysis. Where 

quadrats span a transition from one community type to another, we assigned points to mixed 

categories (e.g., ridge/wet prairie).  
  

    

Fig. 8 – Locations of sampling clusters (red dots) within 2x5 km primary sampling units 

(PSUs); the location of clusters within each 500 x 500 m zone is assigned randomly.  At 

each cluster, 3 sampling locations (green dots) are visited; sites are situated at the center 

of each cluster, and at a random distance between 3 and 35 m in the direction of the PSU 

azimuth and in the orthogonal  direction.  Measurements at each site include location, 

vegetation community composition and water depth.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 9. Map of the greater Everglades landscape showing the 27 study sites sampled 

within the historic ridge-slough landscape during years 1 and 2 of this project. Each site 

contains up to 240 sampling points in a spatially-stratified design. Year 1 PSU’s are in 

red, Year 2 PSU’s are in blue.  

 



Table 1. Characteristics of PSUs sampled to date.

  
Classification  Location 

PSU 

Cycle 

(Year) Dates Sampled Area
†
 

Historic 

Ridge-Slough 

 
Centroid 

Easting (UTM) 

Centroid Northing 

(UTM) 

Azimuth 

(Degrees) 

UTM 

Zone 

0 1 3/20, 3/22, 3/27/2012 ENP Y  532345.51 2842696.30 19 17 

1 1 9/18/2009 WCA1 Y  566677.85 2942982.08 341 17 

2 1 11/9, 11/23, 11/24/2009 WCA3AS Y  525056.59 2861614.12 349 17 

3 1 9/4/2009 WCA3AN Y  532505.33 2910966.94 354 17 

4 1 7/28,7/29/2009 WCA3AS Y  530756.35 2872127.60 344 17 

5 1 NA* WCA2 Y  566325.52 2914610.64 354 17 

6 1 10/24,10/28/2009 ENP Y  519649.37 2814585.30 39 17 

7 1 12/8/2009 WCA3AN Y  526262.38 2891226.13 345 17 

8 1 11/30, 12/12, 12/16/2011 ENP N  537019.49 2821237.51 30 17 

9 1 8/17, 8/18/2009 WCA2 Y  557549.62 2919280.24 352 17 

10 1 4/19, 5/4, 5/5/2012 ENP N  518729.07 2846327.59 339 17 

11 1 8/5, 8/6, 8/11/2010 WCA3AN Y  546603.34 2893273.01 342 17 

81 1 12/13, 12/14, 12/16, 12/17/2010 WCA3B Y  544130.08 2853456.03 360 17 

13 1 8/24, 8/27, 9/3/2010 WCA3AN Y  553652.16 2879348.07 344 17 

14 1 9/9, 9/14, 10/7/2011 ENP N  520452.78 2800699.28 348 17 

15 1 6/17, 6/18, 7/30/2010 WCA3AN Y  544263.57 2888174.08 340 17 

16 2 12/19/2011, 1/4, 1/6/2012 ENP N  534551.56 2821237.18 31 17 

17 2 2/2/2010 WCA1 Y  575467.53 2927079.79 350 17 

18 2 5/18,5/25, 6/5, 6/7/2010 ENP Y  523582.48 2837739.76 25 17 

19 2 9/30, 10/8, 10/12/2010 WCA3AN Y  532020.89 2901747.79 350 17 

20 2 9/30, 10/3/2011 WCA3B Y  541840.16 2858248.34 353 17 

21 2 3/3/2010 WCA2 Y  560020.33 2904486.44 348 17 

22 2 11/4, 11/9/2011 ENP Y  510586.67 2822844.43 346 17 

23 2 9/23, 9/26, 9/28/2011 WCA3AS Y  527209.63 2876687.70 342 17 

24 2 2/28, 3/1, 3/6/2012 ENP Y  543033.61 2843539.09 13 17 

25 2 2/3/2010 WCA1 Y  556804.01 2940955.57 342 17 

26 2 9/10, 9/17, 9/23/2010 WCA3AS Y  519957.43 2866106.03 346 17 

27 2 10/12, 10/21/2011 WCA3AN Y  540532.06 2911393.98 356 17 

28 2 11/19, 12/2, 12/13/2010 WCA3B Y  547035.43 2863766.37 350 17 

29 2 9/16/2011 WCA3AN Y  552008.07 2903701.35 349 17 

30 2 9/6, 9/7, 11/16, 11/23, 11/28/2011 ENP Y 
 

525597.48 2882440.91 30 17 

31 2 8/19, 8/22, 9/2/2011 WCA3AS Y  535763.28 2882440.91 340 17 

* Extremely high cattail density made all sampling points within PSU 5 inaccessible by airboat - no sampling of this area has been conducted 
†
 ENP = Everglades National Park, WCA1 = Loxahatchee National Wildlife Refuge (Water Conservation Area 1), WCA 2 =  Water Conservation Area 2, WCA3AN,S 

=  Water Conservation Area 3A North and South,  WCA3B =   Water Conservation Area 3B 
 



 

Site/Point Hydrology 

Synoptic water depths can be useful for evaluating the distribution of soil elevations over 

a particular PSU, but it does not allow comparison across PSUs (because observations are done 

under different hydrologic conditions) and it does not provide a full hydrologic context for each 

PSU.  To establish site hydrologic conditions, we coupled our synoptic measurements of water 

depths to the US Geological Survey’s Everglades Depth Estimation Network (EDEN) based on 

the geographic location of each point.  EDEN collects water stage data daily from 253 stations, 

and interpolates water levels across the entire Everglades landscape at daily time steps at a grid 

size of ca. 400 m
2
. For each sampling point, we established a hydrologic history spanning from 

the day of sampling back to 1991, the earliest current hindcast date, by benchmarking measured 

water depth and EDEN-estimated water elevation at the centerpoint of each PSU (Fig. 9).  

Because PSUs were not spatially situated to maximize proximity to sites where water level is 

directly recorded, we relied on spatially-interpolated EDEN water surfaces to estimate water 

depths on the day of sampling and to reconstruct point-scale hydrologic history. We evaluated 

the assumption of negligible water slope by examining relationships between UTM coordinates 

(easting, northing) and water elevation.  For PSUs with significant relationships between water 

elevation and coordinates, we divided PSUs into 4 north-south bands and benchmarked points 

within each band to water elevations at the centerpoint of that band.   

To determine the particular conditions at a site requires first that soil elevation be 

determined from EDEN estimates of water elevation on the day of sampling and water depths 

(Fig. 10).  From these hydrologic histories, we calculated mean water depth and inundation 

frequency at each point over the preceding 0.25, 0.5, 1, 2, 5, 10 and ca. 20 years (i.e. the 

complete hydrologic record). Because of strong correlation among these measures within PSUs, 

we use measures derived from the full hydrologic record as predictors of vegetative and 

microtopographic condition.  Additional hydrologic metrics originally proposed include other 

attributes of point- and PSU- scale hydrologic regime: maximum annual water depth (point 

scale), water level variability (PSU scale); water level rates of change (PSU scales), and timing 

of water level maxima and minima (PSU scale). This full suite of hydrologic metrics for each 

PSU will ultimately be considered in point- and PSU scale analyses of hydrologic condition, but 

have not been incorporated into analyses presented here.  

  



 

  

Fig. 10 – Determination of soil surface elevation from measurements of water depth 

(dashed lines) and water elevation (from EDEN) on the same day as water depths were 

measured.  Hydrographs can be constructed from this soil elevation estimate and the 

time-series of water elevations (distribution at right).  Time series of stage can be used to 

report hydroperiod, mean depth, water level variability, exposure 

frequency/duration/depth, etc.  

 



Data Analysis - Microtopography 

To assess microtopographic variation and hydrologic regime, we generated summary 

statistics of soil elevation and water level, including mean, standard deviation, skew and kurtosis 

(which describes the degree of shouldering in a distribution and can be used to diagnose bi-

modality).  Standard deviation of water level describes the temporal variability of water level, 

while standard deviation of water depth (or soil elevation) describes the magnitude of spatial 

variation in microtopography. To test for bimodality in the peat elevation distributions, we used 

the R package 'mclust' to assess goodness-of-fit between the observed histogram of peat 

elevations and 1) a single normal and 2) a mixture of two normal distributions: 

Ps = N (i, i)         (1) 

Pm = q · N (1, 1) + (1 - q) · N (2, 2)     (2) 

where q represents the probability of falling within the first normal distribution, and N is a 

normal distribution with mean μi and standard deviation σi.  We also determined whether models 

based on mixtures of larger number of normal distributions better fit the data; in the few cases 

where models with 3 or more modes had better goodness-of-fit, we report that finding but use the 

better of models 1 and 2 in subsequent data analysis. Model goodness of fit was compared using 

Bayes’ information criterion (BIC).  The best-fit model was considered to have the lowest BIC 

score. To evaluate how microtopographic structure responds to hydrologic regime, we examined 

the relationship between mean annual water depth and the elevation difference between modes of 

bimodal distributions, where present.    To assess whether the persistence of microtopographic 

pattern might exhibit global bi-stability (Fig. 4), we generated histograms of PSU-scale elevation 

variance, and tested for bi-modality across PSUs in the same manner as tests of elevation bi-

modality within PSUs. 
 

Data Analysis - Vegetation structure 

In areas with relatively well maintained hydrologic regimes, vegetation communities are 

separated by clear topographic boundaries, and species preferentially inhabit distinct hydrologic 

niches. As the hydrologic regime degrades, this patterning is lost. If the topographic responses to 

changes in the hydrologic regime are the dominant environmental driver that maintains 

community distinctness, the similarity of communities within PSUs should be greater under 

either impounded or drained conditions than in relatively conserved landscapes. 

 

To assess how the distinctiveness of vegetation communities changes in response to 

hydrologic and topographic change, we assessed the dissimilarity among vegetation community 

composition as the distance (in multivariate space) between artificially-imposed vegetation 

clusters.  In this analysis, individual sampling points from all PSUs were ordinated using a 

Kruskal's non-metric multidimensional scaling (NMDS) ordination plot, in which more 

dissimilar sites align further apart in the NMDS plot with the objective of minimizing “stress” in 

the data.  This single global NMDS ordination plot enabled us to 1) obtain a global estimate of 

the clustering of sampling points containing a set of species among all PSUs; and 2) standardize 

the among-PSU data.  Five dimensions (axes) for the global NMDS ordination plot were decided 

on before further analysis, based on a scree plot of stress scores against the number of 

dimensions, where the appropriate number of dimensions balances simplicity and ecological 

relevance (a satisfactory amount of total variation in the raw data explained).  Each individual 

PSU was then isolated from the global NMDS ordination plot, and coerced into two distinct 

clusters using k-means clustering. The sum of squares distance between the two cluster centers 



(BSS) based on their Voronoi sets was calculated for each PSU to obtain a test statistic that we 

used as a description of vegetation community distinctiveness. A higher BSS value (greater 

distance between the two clusters) means a more distinct vegetation community structure (Figure 

11a). Conversely, more overlapping clusters (smaller BSS) indicates less distinctiveness between 

sites, and a more degraded landscape structure (Figure 11b). Because of the artificiality of 

segregating such data into two distinct clusters, rather than allowing for multiple clusters, we 

empirically assessed the extent to which this approach described the distinctiveness of ridge-

slough communities, as described below. 

 

We used three approaches to assess how well the clustering in the NMDS ordination plot 

described differentiation of ridge and slough communities.  First, we analyzed the distribution of 

sawgrass (C. jamaicense) in the two clusters.  We chose sawgrass because: a) it is 

overwhelmingly dominant in ridges, which are the most spatially extensive community type; b) it 

is found throughout the entire Ridge and Slough landscape; and c) it has a broad fundamental 

hydrologic niche, but finds optimal conditions within a narrower range. We calculated mean 

relative sawgrass abundance in points in each of the two clusters within each PSU, and examined 

how sorting of sawgrass varied among PSUs. Second, we analyzed the covariation among 

characteristic species of each community in NMDS space.  We plotted the 22 most abundant 

species in two-dimensional ordination space, and categorized them based on the a priori 

vegetation community in which they were most abundant.  If our ordination and clustering 

approach captures ridge-slough community structure, then species within each a priori 

community should be closely associated in NMDS space. Third, we assessed distribution of 

sample points along individual axes from the global NMDS for an illustrative subset of PSUs 

that included three well-conserved landscape blocks from central WCA3AS, and degraded 

landscapes characterized by different hydrologic alterations.  If our ordination approach and 

measurement of community distinctness effectively differentiates ridges and sloughs, then 

conserved landscapes should exhibit distinct modes along one or more NMDS axes, and these 

modes should correspond to k-means clusters.  Overall, variation in cluster distance 

corresponded to the degree of clustering: vegetation in conserved landscapes was well-described 

as two distinct clusters.  

 

We used regression analysis between long-term mean water depth and community 

distinctiveness for each PSU to assess how hydrologic regime influenced vegetation community 

distinctiveness.  To assess whether the vegetation community distinctiveness might exhibit 

global bi-stability (Fig. 4), we generated histograms of cluster distances, and tested for bi-

modality across PSUs in the same manner as tests of elevation bi-modality within PSUs. 

 

In addition to separate measures of microtopographic structure and vegetation community 

distinctiveness, we also evaluated landscape structure based on three measures of the co-

variation between elevation and vegetation community composition.  First, we used bivariate 

regression analysis to assess the strength of the relationship between sawgrass abundance and 

elevation within each PSU.  Second, again for each PSU, we used a Mantel test to determine the 

relationship between matrices of between-site dissimilarities in elevation and in community 

composition.  The resulting test statistic r is a multivariate analog of Pearson's correlation 

coefficient.  Finally, we evaluated the difference in elevation between points assigned to the two 

clusters in our k-means analysis.  This suite of measures provides a more integrated view of 



vegetative and microtopographic structure of ridge-slough landscapes, and differ in the effort 

required for data collection and analysis.  To assess whether elevation-vegetation relationships 

within PSUs supported the occurrence of global bi-stability (Fig. 4), we generated histograms of 

all three measures of elevation PSU-scale elevation variance, and tested for bi-modality across 

PSUs in the same manner as tests of elevation bi-modality within PSUs. 

 

We assessed the geographic variation in community distinctiveness (as measured by  

cluster distance, microtopographic heterogeneity (as measured by  standard deviation of 

elevation), and elevation-vegetation association (as measured by sawgrass-elevation correlation,  

Mantel r, and elevation differences between vegetation clusters) to determine whether these 

characteristics co-varied across the greater Everglades.  Maps of sampled PSUs were used to 

depict the condition of each PSU based on these measures.  Because these measures have 

different units and different structures of variability across each PSU, scaling of condition is not 

uniform across different metrics, and we were not able to explicitly assess the relative degree of 

degradation by comparison of different metrics.  However, spatial covariation among these 

measures provided some information about the extent of agreement among them.   

 

We used Pearson's correlation coefficient to assess covariation among measures of ridge-

slough landscape condition in a non-spatial context.  If microtopography and vegetation structure 

(and their association within PSUs) covary strongly, then measures of these characteristics 

provide little independent information.  However, weaker correlations between these measures 

would indicate that microtopography and vegetation structure vary somewhat independently.  In 

that case, independent measures of these characteristics are important for assessment of ridge-

slough condition.  Moreover, the covariation of vegetation structure and microtopography across 

PSUs may provide some insight into the trajectories of landscape degradation.  To assess the 

relative timescales of vegetation and topographic change in response to modification of the 

hydrologic regime, we compared the changes in the distinctness of the vegetation communities 

and loss of peat elevation structure within each PSU.  We sorted PSUs into four quadrants 

delineated by the distinct modes observed in the distribution of each variable.  In this design, if 

vegetation changes first, co-occurrence of intact topography (bimodal elevations) and reduced 

community distinctness should be observed . However, if topography changes first, then the 

reverse pattern should occur (Figure 5). We tested this prediction by assigning for each PSU a 

single test statistic value for vegetation community distinctiveness (question 1, above) and 

another for microtopography distinctiveness, defined by the standard deviation of soil elevation. 

We then assigned each PSU to a quadrant, and compared these quadrants based on a variety of 

measures including hydrologic regime, vegetation community abundances, and vegetation-

elevation correlations. 

 

Software 

All analyses and visualizations were performed in the open source statistical program R. 

The global NMDS plot was created using the metaMDS function in the vegan package (Oksanen 

et al. 2012). The default convergence criteria in monoMDS – the engine used by metaMDS 

which induces random starts – was too slack to find a convergent solution. The slack was 

tightened by using “sfgrmin = 1e-7”. The dissimilarity matrix for the NMDS was calculated 

using the vegdist function in vegan using the metric Jaccard index which was preferentially 

chosen over the popular semi-metric Bray-Curtis index.  k-means clusters were created using the 



R base package stats (R Core Team 2012). Maps were created using the base R plotting 

functions. All other figures were created using ggplot2 and combined by using lattice.  

   

Figure 11. PSU 23 (a) and PSU 9 (b) species data ordinated by NMDS and clustered by 

k-means. In a), PSU 23 clusters are relatively far apart, indicating a significant separation 

of sites composed of species that occupy specific hydrologic niches; a relatively well 

preserved PSU. In b), PSU 9 clusters are closer, indicating a loss of distinctiveness in the 

vegetation community structure; a relatively degraded PSU.  

 



Pending analyses 

 

To date, we have not assessed geostatistical measures of soil elevation, including semi-

variance parameters (nugget and sill variance), anisotropy, or spatial auto correlation; derived 

metrics of landscape pattern from vegetation maps; or assessed marsh vegetation structure in a 

spatially-explicit manner.  These analyses, based on data from Year 1-3 PSUs, will be included 

in the Year 3 Report. 

 

Results 

 

Microtopographic and hydrologic patterns 

 

Microtopographic patterns varied substantially across our broad landscape sample (Table 

2; Figures 12,13).  Absolute mean elevations varied from 7 to 440 cm above sea level, and mean 

water level varied from 30 to 448 cm asl, both varying predominantly along the dominant north-

south landscape slope from Lake Okeechobee to Florida Bay.  Long-term mean water depths 

(spatially averaged over all points within each PSU) varied from -12 cm to 72 cm, with the 

lowest water depths found in units within the marl prairies of ENP.  Temporal variability of 

water level also differed among PSUs, with the standard deviation of water elevation ranging 

from 15.3 to 34.4 cm.  Within PSUs, water level and hydroperiod calculated over different 

temporal windows covaried strongly; as a result, shorter windows provide little additional 

information over long-term averages. 

 

The magnitude and structure of microtopographic relief also varied considerably among 

PSUs (Table 2). Standard deviations of elevation ranged from 2.3 to 13.2 cm, with most values 

falling between 6 and 11 cm. The magnitude of topographic relief was generally highest in 

central portions of WCA3AS, but was also high in individual PSUs within WCA1, WCA2, 

WCA3N, and ENP (Figure 14). Landscape-scale variation in elevation was bi-modally 

distributed, with modes centered on 6-7 cm and ca. 12 cm (Figure 15). The skewness of 

elevations ranged from -0.92 to 1.47, with most values between -0.5 and 0.5.  Kurtosis varied 

from -1.29 to 3.85, with most values slightly positive.  Contrary to previous findings (Watts et al. 

2010), kurtosis was not diagnostic of elevation bi-modality within PSUs. 

 

Of the 27 PSUs sampled to date that fall within the historic distribution of the ridge and 

slough, 16 had elevation distributions that were better fit by a mixture of 2 normal distributions 

than by a single normal distribution (Table 2).  These bimodal distributions were restricted to 

PSUs with long-term mean water depths of ca. 20-50 cm; differences in the elevation of these 

modes ranged from 9 to 20 cm, and increased with long-term mean water depth (Figure 16).  

Differences between elevation modes were slightly lower than those measured by Watts et al. 

(2010) at comparable long-term mean water depths.  One anomalous PSU (PSU 3 in WC3AN) 

exhibited bimodal elevation distributions but with minimal separation between means. Two other 

PSUs with high cattail abundance (Table 3) also exhibited high elevation variance and bi-modal 

distributions. PSUs outside of the historic ridge slough landscape, predominantly those within 

the marl prairie habitat of ENP, generally had unimodal elevation distributions with minimal 

variance; confidence in these distributions is lower because data were collected during relatively 



dry periods when vehicle access permitted sampling, but when a large proportion of points were 

above the water surface.   

 

Among PSUs with bi-modal elevation distributions, the difference in elevation between 

ridges and sloughs was closely correlated with the standard deviation of elevation; PSUs with 

unimodal elevation distributions generally occupied a lower and smaller range of elevation 

variance (Figure 17).



Table 2. Hydrologic and microtopographic characteristics of year 1 and 2 PSUs. Additional hydrologic descriptors at the point scale are included in 

data reports for each PSU.

    Water Elevation Statistics   Elevation Cluster Analysis 

  

Water Elevation Peat Surface  

 

Mode 1 

 

Mode 2 

 

PSU   

Mean        

(cm asl) 

§St. Dev. 

(cm) 

Mean Water 

Depth (cm) 

†St. Dev. 

(cm) Kurtosis Skew   

Depth        

(cm) 

†St. Dev. 

(cm) 

††Mode 

Weight (q)   

Depth        

(cm asl) 

†St. Dev. 

 (cm) 

††Mode 

Weight (q) 

*Best 

Model 

0 

 

180.0 24.8 30.80 7.31 -0.32 0.80 

 

25.45 2.35 0.52 
 

39.38 6.28 0.48 2V 

1 

 

448.4 15.3 8.18 5.98 -0.25 -0.16 

 

8.18 5.97 1.00 
 

- - - 1X 

2 

 

254.4 24.5 50.11 10.65 -0.27 -0.48 

 

36.12 7.42 0.23 
 

54.23 7.42 0.77 2E 

3   305.0 25.9 -4.61 3.63 -1.07 -0.19   -6.28 2.88 0.71   -0.50 0.95 0.29 2V 

4 

 

261.9 26.3 40.77 11.89 -1.03 0.16 

 

32.64 6.63 0.59 
 

52.66 6.63 0.41 2E 

5 

 

ND ND ND ND ND ND 

 

ND ND ND 

 

ND ND ND ND 

6 

 

33.5 22.2 27.31 6.49 3.56 0.65 

 

27.31 6.47 1.00 
 

- - - 1X (7V) 

7   287.6 22.2 33.05 6.46 0.97 0.05   33.05 6.44 1.00   - - - 1X 

8 

 

113.0 34.4 -8.24 12.64 0.08 0.87 

 

-16.37 5.25 0.55 
 

1.64 11.83 0.45 2V 

9 

 

357.7 26.1 28.34 4.94 0.85 0.35 

 

28.34 4.93 1.00 
 

- - - 1X 

10 

 

195.1 28.2 23.97 2.28 0.13 0.80 

 

23.97 2.24 1.00 
 

- - - 1X (3V) 

11   271.6 32.1 53.36 6.89 1.20 -0.07   53.36 6.87 1.00   - - - 1X 

81 

 

177.8 21.5 31.85 5.73 1.04 -0.44 

 

31.85 5.72 1.00 
 

- - - 1X 

13 

 

190.9 15.5 52.73 8.32 0.02 -0.40 

 

52.73 8.30 1.00 
 

- - - 1X 

14 

 

0.1 19.8 -3.36 5.26 0.65 0.59 

 

-3.36 5.25 1.00 
 

- - - 1X (5V) 

15   272.1 31.2 71.57 8.76 0.09 0.02 

 

71.57 8.74 1.00   - - - 1X 

16 

 

112.9 34.7 -12.41 7.48 1.56 1.40 

 

-18.45 0.50 0.38 
 

-8.65 7.22 0.62 2V (3V) 

17 

 

448.2 19.6 27.65 13.09 3.01 1.11 

 

20.68 5.33 0.50 
 

34.48 14.68 0.50 2V 

18 

 

152.9 24.5 29.74 7.09 -1.25 -0.01 

 

23.97 3.48 0.53 
 

36.26 3.48 0.47 2E 

19   289.1 22.7 20.70 8.34 -0.45 0.30   15.26 4.98 0.60   28.86 4.98 0.40 2E 

20 

 

184.7 15.8 31.17 5.10 -0.19 -0.64 

 

23.90 3.41 0.21 
 

33.14 3.41 0.79 2E (9V) 

21 

 

329.2 28.8 39.52 11.56 -0.11 0.85 

 

31.18 4.17 0.48 
 

47.35 10.72 0.52 2V 

22 

 

31.5 17.8 20.02 7.02 -0.25 0.08 

 

20.02 6.99 1.00 
 

- - - 1X (13V) 

23   265.3 21.8 30.89 10.34 -1.20 0.33   23.99 5.27 0.62   42.30 5.27 0.38 2E (3E) 

24 

 

157.5 20.4 34.18 6.22 -0.06 -0.51 

 

34.18 6.20 1.00 
 

- - - 1X 

25 

 

449.9 15.4 6.53 6.63 2.27 0.57 

 

6.36 4.31 0.66 
 

6.86 9.66 0.34 2V (8V) 

26 

 

261.7 23.2 41.47 10.85 -0.79 0.01 

 

33.53 6.00 0.56 
 

51.70 6.00 0.44 2E 

27   283.1 29.6 18.95 13.73 -1.27 0.12   3.09 2.66 0.33   26.75 9.55 0.67 2V (4E) 

28 

 

187.3 17.3 32.15 5.31 0.10 -0.35 

 

32.15 5.29 1.00 
 

- - - 1X 

29 

 

302.0 30.9 -8.30 3.02 1.24 -0.88 

 

-8.30 3.00 1.00 
 

- - - 1X 

30 

 

123.8 21.1 23.11 8.85 -0.35 0.03 

 

23.11 8.83 1.00 
 

- - - 1X 

31   268.6 26.9 38.12 6.69 -0.25 0.27   38.12 6.67 1.00   - - - 1X 
§Standard Deviation of water elevation describes the temporal variability of water level at the center point of each PSU. 
†Standard Deviation of water depth describes the spatial variability of soil elevation across all points sampled within each PSU. 

†† Mode weight describes the proportion of data that occur within each mode, allowing for imbalance in mode prevalence 

* Best fit model selected based on Bayes' Information Criterion; number refers to the number of modes, E and V denote whether variances of the two modes are equal (E) or unequal (V).  

Where the best fit model included more than 2 modes, data presented are from the best fit model among 1 and 2 mode models.  



 

  
Figure 12. Elevation distributions of Year 1 PSUs.  Bimodality and high variability in 

elevation (e.g. PSU 4) are characteristics of conserved conditions, while low variability 

and unimodality (e.g. PSU 11) are characteristic of degraded conditions. Mean annual 

water depth (our measure of relative elevation) is calculated from water depth on the day 

of sampling, and benchmarked to long-term average water level at the centerpoint of 

each PSU. Summary statistics and bimodality analysis for each PSU are presented in 

Table 2. 

 



 

  Figure 13. Elevation distributions of Year 2 PSUs.  Bimodality and high variability in 

elevation (e.g. PSU 26) are characteristics of conserved conditions, while low variability 

and unimodality (e.g. PSU 28) are characteristic of degraded conditions. Mean annual 

water depth (our measure of relative elevation) is calculated from water depth on the day 

of sampling, and benchmarked to long-term average water level at the centerpoint of 

each PSU. Summary statistics and bimodality analysis for each PSU are presented in 

Table 2. 

 



 

 

  

Figure 14. Spatial patterns of elevation variance across the historic ridge-slough 

landscape.  Colors indicate the amount of microtopographic relief (measured as the 

standard devation of elevation within each PSU).   
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  Figure 15. Frequency of elevation variation across PSUs. The bi-modal pattern observed 

in these data is consistent with current hypotheses about bistability of homogeneous and 

patterned configurations of the ridge-slough landscape. Data include PSUs sampled by 

Watts et al. (2010) but not any duplicate measurements of individual PSUs.  Data from 

PSUs outside the historic ridge and slough are not included. 



Long-term Mean Water Depth (cm)

-20 0 20 40 60 80

D
if
fe

re
n
c
e
 b

e
tw

e
e
n
 e

le
v
a
ti
o
n
 m

o
d
e
s
 (

c
m

)

0

5

10

15

20

25

30

Year 1 and 2 PSUs

Data from Watts et al. 2010

  

 

Figure 16. Relationship between hydrologic conditions and elevation mode separation 

across PSUs.  Mean annual water depth is calculated as the difference between the 

temporal mean of water level since 1991 and the mean elevation of sampled points 

within each PSU.  Elevation mode differences are based on cluster analysis results 

presented in Table 2.  Points with zero difference between elevation modes are those 

whose elevation distributions were best fit by a single normal distribution.  Data include 

PSUs sampled by Watts et al. (2010) but not any duplicate measurements of individual 

PSUs.  Data from PSUs outside the historic ridge and slough are not included. The 

anomalous observation from PSU 27 was excluded based on severe recent fire history 

and incursion by cattail. 
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Figure 17. Covariation between two measures of landscape-scale microtopographic 

structure: the standard deviation of soil surface elevation within a PSU, and the 

difference between the means of elevation modes in the same PSU, as estimated from 

mixed distribution modeling.    Points with zero difference between elevation modes 

represent PSUs whose elevation distributions were best described by a single normal 

distribution. 

 



Vegetation community composition and structure 

 

The composition of vegetation communities varied considerably across sampled PSUs 

(Table 3).  Overall, 4,859 points were sampled; the 2,570 ridge, 1,036 slough, and 593 wet 

prairie community samples were most abundant. Species were largely limited to their a priori 

defined communities (Table 4): sawgrass (Cladium jamaicense) was most abundant in ridges and 

then in the mixed ridge communities; Eleocharis spp. were most abundant in wet prairies and 

slough-wet prairie mix; Utricularia spp. and white waterlily were most abundant in sloughs and 

mixed slough communities; and Typha domingensis was almost entirely contained within the 

cattail community. Periphyton was more evenly distributed, occupying all community types in 

abundance except in the driest (tree island and mixed tree island) and likely most eutrophic 

(cattail) communities.  

 

Across the Everglades landscape, field-assigned vegetation communities followed 

expected patterns, with tree islands, ridges, wet prairies, and sloughs occupying increasingly 

deep locations (Table 4).  However, these patterns exhibited considerable variation among water 

management basins (Table 5). Across PSUs, the proportion of ridges, sloughs and wet prairies 

(based on field assigned categories) was weakly correlated with long-term mean water depth 

(Figure 18). Sloughs and wet prairies were most abundant in PSUs with long-term mean water 

depth between 25 and 60 cm, but both community types had low abundances in some PSUs 

within this range. 

 

The contemporary hydrologic regime varied among all Everglades areas (Table 2). WCA 

3A N had the highest 20 year mean water depth, but also the largest variance across all three 

major vegetation communities, indicating perhaps that it is hydrologically the most diverse area. 

LNWR had the lowest water depth over this period across all major vegetation communities. No 

wet prairie communities were observed at all in WCA 2, and only one in LNWR, and wet 

prairies were more common than sloughs in ENP. WCA 3A S and WCA 3A N had the most 

balanced community types in respect to the global system in Table 1. Within each Everglades 

area, the 20 year mean water depth decreased from sloughs to wet prairies (except in WCA 2 

where they were absent), to ridges. However, the hydrologic conditions that characterized each 

community differed considerably among Everglades areas. For example, the 157 sloughs in 

LNWR were at a lower water depth than the 2,240 ridges in all other Everglades areas. 

 

Non-metric multidimensional scaling ordinated species in a manner consistent with 

previous studies of vegetation communities in the Everglades (Fig. 19).  Sawgrass and other 

species common on ridges and tree islands were clearly separated from slough species along axis 

1, while wet prairie species were intermediate along this axis, and somewhat differentiated along 

axis 2.  The abundance of individual indicator taxa, were correlated with PSU-scale long term 

mean water depth (Fig. 20).  These relationships, though weak, aligned with expected patterns:  

Cladium abundance was negatively correlated with water depth, while Utricularia and 

Nymphaea increased.  Eleocharis abundance peaked at intermediate water depth. 

 

The global k-means clustering analysis strongly aligned with mean water depth over 20 

years (Table 6). 81.3% of a priori defined ridge communities were located in cluster 1, with only 

2.51% of sloughs. Wet prairie communities were predominantly located in cluster 2 (87.9%), 



suggesting greater similarity between sloughs and wet prairies than between either of these 

communities and ridges.  Mixed communities were usually located between their constituent 

parts, for example, slough/wet prairie communities were situated between the slough and the wet 

prairie communities in terms of both water depth and how they aligned by cluster. However, this 

was not the case for the ridge/slough mixed community. The odds ratio for the three community 

types in each cluster (Table 7) reveals that a priori defined ridges were 169.1 times more likely to 

be in cluster 1 than sloughs based on the global k-means cluster analysis, and that wet prairies 

were more closely aligned to sloughs than ridges (5.37 versus 31.51). 

 

Within individual PSUs, sawgrass abundance was clearly differentiated between clusters 

(Figure 21). However, the effect was most apparent in the most conserved PSUs (i.e., those with 

relatively high community distinctiveness) with very low sawgrass abundance (<10%) in the 

lower cluster and moderately high abundances in the upper cluster (>55%) for all conserved 

PSUs. In degraded PSUs, the segregation of sawgrass was still noticeable, but the abundance of 

sawgrass within the clusters, and the differentiation between clusters in terms of sawgrass cover, 

was more varied.  

 

Distributions of observations along NMDS axes from selected PSUs indicated that  

cluster distance was an effective proxy for the distinctness of ridge and slough communities 

distinctness (Fig. 22).  In PSUs within central WCA3AS, local plant assemblages were strongly 

separated, with most observations occurring at the extremes of NMDS axis 1, in particular, 

which is the axis that most clearly differentiates ridge and slough communities.  In PSUs with 

more extreme hydrologic regimes, observations tended toward intermediate values along the 

same axis, suggesting a blending of communities.



 

Table 3. Vegetation characteristics of PSUs sampled to date.

    Field-Assigned Communities    Species Mean Relative Cover (%) 

PSU   

Ridge 

(%) 

Wet 

Prairie (%) 

Slough 

(%) 

Mixed/Edge 

(%)   

Typha 

spp. 

Cladium 

jamaicense 

Nymphaea 

odorata 

Eleocharis 

spp. Periphyton 

Utricularia 

Spp. 

0 

 

57.9% 18.4% 7.9% 2.6% 

 

0.0 53.2 0.0 14.0 20.8 4.4 

1 

 

48.1% 0.6% 39.5% 1.2% 

 

0.3 38.1 7.2 26.2 0.0 13.5 

2 

 

34.6% 0.0% 57.2% 4.4% 

 

0.8 27.1 10.7 0.4 30.3 22.7 

3 

 

100.0% 0.0% 0.0% 0.0% 

 

0.0 37.2 0.0 1.5 1.9 1.3 

4 

 

44.4% 7.0% 47.7% 0.0% 

 

0.4 37.3 28.4 4.4 1.7 15.5 

5 

 

ND ND ND ND 

 

ND ND ND ND ND ND 

6 

 

38.2% 35.9% 0.0% 15.3% 

 

0.2 39.5 0.0 13.2 40.4 3.7 

7 

 

55.7% 0.0% 44.3% 0.0% 

 

0.3 37.5 7.9 10.6 21.2 6.7 

8 

 

16.28% 28.68% 1.55% 

  

0.0 33.9 0.0 1.4 47.0 1.4 

9 

 

92.0% 0.0% 8.0% 0.0% 

 

0.5 52.5 1.4 0.3 0.0 0.1 

10 

 

85.93% 8.89% 0.00% 

  

0.0 42.9 0.0 0.3 46.4 0.0 

11 

 

31.6% 33.3% 35.1% 0.0% 

 

7.2 22.1 31.5 1.6 9.6 18.9 

81 

 

49.8% 9.7% 5.1% 25.3% 

 

3.4 52.6 1.5 4.0 16.4 13.2 

13 

 

70.0% 24.8% 3.3% 1.9% 

 

2.0 72.1 3.0 0.2 16.4 3.6 

14 

 

6.12% 34.01% 0.00% 

  

0.0 30.1 0.0 0.5 64.8 0.1 

15 

 

38.7% 3.4% 56.3% 1.3% 

 

2.5 17.1 11.5 0.0 39.5 29.1 

16 

 

11.11% 45.19% 0.00% 

  

0.0 52.5 0.0 1.6 41.7 0.8 

17 

 

44.6% 0.0% 38.3% 3.1% 

 

1.6 40.8 9.0 13.4 0.4 18.9 

18 

 

32.1% 50.0% 0.0% 0.0% 

 

0.0 31.4 0.0 13.0 39.0 0.2 

19 

 

31.4% 15.2% 7.6% 22.9% 

 

22.6 35.7 2.0 3.8 17.8 2.6 

20 

 

92.0% 3.6% 0.9% 3.6% 

 

0.0 29.7 1.0 3.1 61.1 0.4 

21 

 

54.3% 0.0% 42.5% 3.2% 

 

1.0 45.7 0.1 15.7 35.2 2.0 

22 

 

39.3% 45.2% 0.0% 3.0% 

 

0.0 41.2 0.0 15.5 26.4 1.7 

23 

 

44.7% 10.1% 28.7% 9.3% 

 

0.3 42.8 10.3 9.3 13.7 8.3 

24 

 

71.0% 13.7% 3.1% 2.3% 

 

0.0 58.0 0.0 2.0 31.9 2.9 

25 

 

86.9% 0.0% 9.9% 2.1% 

 

2.6 78.4 0.1 1.1 0.5 2.4 

26 

 

25.8% 9.6% 45.0% 15.4% 

 

0.7 27.6 9.5 3.3 20.0 25.0 

27 

 

34.1% 0.0% 0.7% 37.0% 

 

18.6 56.6 0.2 0.0 3.1 0.3 

28 

 

68.0% 6.1% 11.3% 12.6% 

 

0.0 58.4 2.2 3.1 18.3 14.5 

29 

 

66.7% 3.8% 6.4% 19.2% 

 

0.0 82.9 0.0 2.0 8.2 0.8 

30 

 

56.9% 34.4% 1.0% 4.3% 

 

0.0 55.0 0.5 13.8 14.7 2.7 

31   43.6% 20.0% 18.7% 13.8%   0.0 50.0 10.7 6.1 14.9 5.2 



Table 4. Frequency and hydrologic condition of field-assigned vegetation community types, and 

the abundance of diagnostic taxa within each community type.  Ambiguous sampling locations 

were in some cases assigned as mixed categories (i.e. slough/wet prairie). Species covers are 

given as mean relative abundance (in percent) within each category type. Correspondence 

between field assigned data and measured species composition indicates that these categories are 

reasonable proxies for vegetation community composition. 

 

 

Table 5. Abundance and hydrologic characteristics of vegetation community types in different 

hydrologic management basins within the historic ridge and slough. Means and standard 

deviations are calculated across all points within each area. Vegetation communities are based on 

field assigned categories. 
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Figure 18. Relative abundance of vegetation communities (based on field-assigned 

categories) within PSUs as a function of PSU-scale long-term mean water depth. 

 



 

Table 6. Hydrologic characteristics (mean water depth [MWD; cm] and hydroperiod [HP as 

inundation frequency]) of field assigned community communities data and correspondence 

between field assigned community categories and distribution between two clusters following 

NMDS ordination based on complete species composition data.   

 

 

 

Table 7. Odds ratios for assignment of sampling locations to NMDS clusters based on field-

assigned community types.  Odds ratios list the relative likelihood of locations identified with 

each category in the field would be assigned to Cluster 1 (see Table 6 above).



  

Figure 19. Distribution of the 22 most abundant ridge-slough plant species in ordination 

space.  Note coherent clustering of species by community type.  

 



 

 

  Figure 20. Mean abundance within PSUs of common ridge, slough, and wet prairie 

species as a function of long-term mean water depth at PSU scale.  These data include 

PSUs outside the historic range of the ridge-slough landscape (i.e. marl prairie areas). 

 



 

 

  

Figure 21. Differentiation of ordination clusters as measured by relative sawgrass 

abundance.  Green symbols represent PSUs with distinct communities characteristic of 

conserved landscape conditions. Red symbols represent PSUs with relatively indistinct 

communities characteristic of degraded conditions.  Closed symbols indicate sawgrass 

abundance in each of the two vegetation community clusters defined within each PSU. 

Open symmbols indicate mean sawgrass abundance across all points within each PSU. 

 



  

Figure 22. Examples of distribution of sample points in ordination space.  In conserved PSUs 

(4,17,23), vegetation clusters (red and blue bars) are clearly differentiated, and most sample 

points occur at the extremes of ordination axes (particularly axis 1).  In degraded landscapes, 

clusters are less clearly differentiated, less equally represented, and more commonly occur at 

intermediate values along ordination axes.  These patterns support the inference that shifts in 

the mean value, rather than changes in variance, account for differences in community cluster 

separation, and that decreases in community cluster distance capture decreasing distinctiveness 

of vegetation communities. 

 



Community distinctiveness followed similar geographic patterns to those observed for 

microtopographic variability (Fig. 23). Only a small fraction of the historic ridge-slough 

landscape  – namely central WCA 3A S – is in a relatively conserved condition reminiscent of 

the pre-drainage conditions as measured by community distinctiveness. Large sections of ENP, 

WCA 3B, WCA 3A N, and to a lesser extent WCA 2 and LNWR, are in a more degraded state as 

defined by this community distinctiveness metric. We note that the scaling of these measures of 

landscape integrity do not yet allow for direct comparisons of condition as measured by elevation 

variance and community distinctiveness. 

 

Distance between clusters representing distinctiveness of communities within a landscape 

was weakly positively correlated with long-term mean water depth (Figure 24). The slope of this 

relationship was strongly influenced by the three PSUs (PSU 11, PSU 13 and PSU 15) with low 

community distinctness at the highest 20 year mean water depths. PSUs  in ENP, WCA 3A S and 

WCA 3B clustered relatively closely on both the community distinctiveness and the mean water 

depth axes; WCA 3A N PSUs were notably all indistinct but had very high 20 year mean water 

depth variability. Three PSUs that contained more than 5% cattail as a percentage of the total 

vegetation cover (PSU 11 at 6.29%; PSU 27 at 16.00%; and PSU 19 at 20.57%) had high cluster 

distances and therefore community distinctiveness (66.38, 126.2, and 153.1 respectively). 

Variation among PSUs in community distinctiveness followed a shallow bimodal shape (Figure 

25) with a long tail represented by the three most conserved PSUs (PSU 17, PSU 23 and PSU 4). 

 

Measures of local relationships between elevation and community composition 

corresponded to PSUs with strong community distinctiveness.  PSUs with high distinctiveness 

also had higher separation of those communities in water depth; these PSUs also exhibited 

stronger correlations between point-scale water depth and sawgrass abundance and between local 

water depth and vegetation community composition (as measured by Mantel's r).  The strongest 

vegetation-elevation relationships were observed at intermediate water depths, generally between 

30 and 50 cm (Fig. 26).  Spatial distribution of the vegetation-elevation association followed 

similar patterns to those observed for microtopographic variability and vegetation community 

distinctness (Figure 27-29). 

 

Across PSUs, community distinctiveness increased with microtopographic variation (as 

measured by water depth standard deviation; Figure 30). Everglades areas generally clustered in 

discrete ranges of microtopographic variability and community distinctiveness.  PSUs within 

WCA 3A S generally had both high topographic variability and distinct communities, whereas 

PSUs within ENP, LNWR, WCA 3B, and WCA 2 largely (but not exclusively) exhibited less 

topographic variability and reduced community distinctiveness.  

 

The bimodality of both community distinctiveness (Figure 25) and topographic standard 

deviation (Fig 15) provide one way to partition PSUs into quadrants corresponding to positions 

along trajectories of degradation (Figs. 5, 30).  Among PSUs sampled to date, the largest 

proportion had degraded conditions as measured by both elevation standard deviation and 

community distinctness.  Seven PSUs, mostly in WCA3AS, had distinct communities and high 

elevation variance.  Five PSUs exhibited distinct communities but low elevation variance, 

whereas no PSUs exhibited the opposite pattern.  



 

 

 

  

Figure 23. Spatial patterns of vegetation community distinctness across the historic ridge-

slough landscape.  Colors indicate the separation of vegetation communities (as 

measured by the distance between midpoints of clusters in NMDS ordination space).  

 



 

  

Figure 24. Relationship between hydrologic regime and vegetation community 

distinctiveness across PSUs within the historic ridge and slough. Symbols represent 

PSUs in different hydrologic management basins.  Differences in community distinctness 

among PSUs with similar contemporary hydrologic regimes (e.g., ENP and WCA3B vs. 

WCA3S) may indicate that antecedent hydrologic regime and other past disturbances 

may continue to shape existing landscape structure. Line indicates best-fit regression on 

all data.  

 



 

 

 

Figure 25. Frequency of community distinctiveness variation across PSUs. Black line 

indicates the best-fit model of frequency distribution.  Red line is the boundary between 

distinctive communities characteristic of conserved landscapes and indistinct 

communities characteristic of degraded conditions, and is used to partition PSU condition 

in Figure 31.  The bi-modal pattern observed in these data is consistent with current 

hypotheses about the self-organized character of the ridge-slough landscape.  

 



Table 8. Measures of covaration among elevation, hydrologic regime, and vegetation community structure. 

* Elevation mode analysis was not performed on PSUs outside the historic distribution of the ridge-slough landscape. 

    Community Elevation Distributions   
Community Distinctness 

  
Elevation-Composition Relationships 

  

Cluster 1 
 

Cluster 2 
  

PSU   MWD  StDev Kurtosis Skew %   MWD  StDev Kurtosis Skew %   

Cluster 

Distance 

Cluster Distance 

(no peri)   

k-means WD 

difference (cm) 

Mantel'

s r 

r2 Cladium-

WD 

0 

 

38.63 5.66 -0.18 0.15 32.46 

 

27.04 4.48 3.15 1.61 67.54 

 

86.4 104.5 
 11.6 0.52 0.52 

1 

 

11.82 4.82 0.39 -0.36 48.15 

 

4.80 4.89 -0.04 -0.23 51.85 

 

137.4 130.1 
 7.0 0.33 0.27 

2 

 

53.95 8.87 0.47 -0.62 67.30 

 

42.20 9.64 -0.86 -0.20 32.70 

 

134.4 220.5 
 11.8 0.30 0.29 

3   -4.53 3.78 -1.68 -0.01 41.25   -4.66 3.56 -0.65 -0.34 58.75   21.0 32.4   0.1 0.15 0.05 

4 

 

46.20 11.06 -0.94 -0.32 56.54 

 

33.70 8.85 0.02 0.55 43.46 

 

284.4 327.8 
 12.5 0.29 0.25 

5 

 

ND ND ND ND ND 

 

ND ND ND ND ND 

 

ND ND 
 

ND ND ND 

6 

 

28.36 5.63 -0.35 -0.08 40.46 

 

26.59 6.96 4.87 1.02 59.54 

 

29.7 55.0 
 1.8 0.09 0.01 

7   36.14 4.53 1.40 0.36 58.05   28.78 6.32 4.24 1.06 41.95   158.4 228.8   7.4 0.33 0.44 

8* 

 

- - - - - 

 

- - - - - 

 

- -  - 0.24 0.01 

9 

 

28.82 5.17 1.64 0.49 53.50 

 

27.77 4.63 -1.05 0.04 46.50 

 

91.7 96.5 
 1.0 0.01 0.00 

10* 

 

- - - - - 

 

- - - - - 

 

- -  - -0.09 0.02 

11   53.93 5.98 1.96 -0.51 68.89   52.09 8.48 0.40 0.50 31.11   66.4 85.1   1.8 0.08 0.05 

81 

 

32.68 6.83 -0.39 -0.06 35.02 

 

31.40 5.01 2.22 -1.16 64.98 

 

86.3 126.1 
 1.3 0.22 0.03 

13 

 

54.00 7.46 0.44 -0.26 57.14 

 

51.04 9.12 -0.62 -0.33 42.86 

 

72.1 60.5 
 3.0 0.01 0.00 

14* 

 

- - - - - 

 

- - - - - 

 

- -  - 0.13 0.04 

15   71.93 10.19 -0.04 0.10 28.57   71.43 8.15 -0.15 -0.08 71.43   59.1 126.2   0.5 0.07 0.03 

16* 

 

- - - - - 

 

- - - - - 

 

- -  - 0.08 0.00 

17 

 

36.92 13.85 2.93 0.54 43.01 

 

20.65 6.54 1.92 -0.20 56.99 

 

227.8 241.2 
 16.3 0.51 0.25 

18 

 

31.26 7.00 -1.34 -0.20 65.09 

 

26.92 6.45 -0.93 0.26 34.91 

 

51.2 73.9 
 4.3 0.08 0.06 

19   24.63 8.10 -0.08 -0.27 54.29   16.02 5.85 1.39 0.75 45.71   153.1 231.2   8.6 0.33 0.30 

20 

 

32.09 4.20 -0.37 -0.38 89.33 

 

23.48 5.60 -0.53 1.00 10.67 

 

33.1 62.0 
 8.6 0.35 0.30 

21 

 

47.34 10.99 -0.56 0.20 48.39 

 

32.19 5.91 6.08 1.78 51.61 

 

169.2 484.1 
 15.2 0.44 0.45 

22 

 

22.00 7.68 -0.11 -0.44 43.70 

 

18.48 6.07 0.14 0.45 56.30 

 

79.2 117.5 
 3.5 0.11 0.03 

23   39.30 7.60 -0.67 -0.52 48.52   22.96 4.87 0.05 0.61 51.48   252.4 312.9   16.3 0.68 0.61 

24 

 

36.24 4.85 -0.19 -0.43 38.17 

 

32.91 6.65 -0.36 -0.31 61.83 

 

42.4 45.4 
 3.3 0.10 0.03 

25 

 

6.60 5.78 3.61 0.43 86.91 

 

6.06 10.84 -0.84 0.65 13.09 

 

75.6 103.4 
 0.5 0.21 0.00 

26 

 

47.41 9.26 0.07 -0.66 58.75 

 

33.02 6.48 2.19 -0.06 41.25 

 

180.2 231.4 
 14.4 0.45 0.32 

27   36.13 5.08 0.25 -0.97 23.19   13.76 11.01 -0.73 0.41 76.81   126.2 146.2   22.4 0.45 0.37 

28 

 

33.86 4.68 -0.51 -0.08 40.69 

 

30.98 5.41 0.02 -0.37 59.31 

 

97.5 124.9 
 2.9 0.02 0.03 

29 

 

-8.15 2.81 -0.23 -0.44 87.18 

 

-9.29 4.20 0.56 -1.32 12.82 

 

39.9 46.7 
 1.1 -0.01 0.01 

30 

 

28.17 8.56 -0.30 -0.26 38.76 

 

19.90 7.44 -0.57 -0.19 61.24 

 

163.1 184.7 
 8.3 0.26 0.05 

31   41.44 5.61 0.51 0.41 42.22   35.69 6.38 -0.21 0.55 57.78   156.4 182.4   5.7 0.15 0.07 



 

 

 

  

Figure 26. Relationships between  long-

term mean water depth (calculated at 

PSU scale) and 3 measures of the 

strength of elevation-vegetation 

associations (correlation between 

sawgrass abundance and elevation (top); 

Mantel's correlation coefficient [r], 

which is the multivariate equivalent of 

Pearson's correlation coefficient 

(middle); and the elevation difference 

between the two ordination clusters).  

Symbols represent PSUs in different 

hydrologic management basins. 



  

Figure 27. Spatial patterns of elevation-vegetation associations (as measured by the 

correlation between relative abundance of sawgrass and local elevation).  Colors indicate 

the strength of association between elevation and vegetation community structure. 

Hatching indicates PSUs that were not sampled (PSU 5 in WCA 2) or that were excluded 

from the analysis because they lie outside the historic distribution of the ridge-slough 

landscape (PSUs 8, 10, 14,16 in ENP).  



  

Figure 28. Spatial patterns of elevation-vegetation associations (as measured by Mantel's 

correlation coefficient [r], which is the multivariate equivalent of pearson's correlation 

coefficient).  Colors indicate the strength of association between elevation and vegetation 

community structure. Hatching indicates PSUs that were not sampled (PSU 5 in WCA 2) 

or that were excluded from the analysis because they lie outside the historic distribution 

of the ridge-slough landscape (PSUs 8, 10, 14,16 in ENP).  



  

Figure 29. Spatial patterns of elevation-vegetation associations (as measured by the 

difference in elevation between points assigned to cluster 1 and cluster 2 in ordination 

space).  Colors indicate the magnitude of elevation differences. Hatching indicates PSUs 

that were not sampled (PSU 5 in WCA 2) or that were excluded from the analysis 

because they lie outside the historic distribution of the ridge-slough landscape (PSUs 8, 

10, 14,16 in ENP).  



 

 

 

  Figure 30. Relationship between microtopographic variability (as measured by standard 

devation of elevation within each PSU) and vegetation community distinctiveness (as 

measured by distance separating clusters in ordinations space). The vertical line separates 

PSUs in the upper and lower mode of elevation variance (Fig. 15), and the horizontal line 

separates PSUs in the upper and lower mode of community distinctiveness (Figure 25). 

Resulting quadrants correspond to hypothesized pathways of degradation (Fig. 5). 

 



Discussion 

The results of this monitoring study support and expand on current understanding of 

landscape pattern in the ridge-slough-tree island mosaic, its responses to hydrologic regime, and 

the spatial distribution of its degradation and persistence. Microtopographic structure and 

vegetation structure exhibited broadly similar geographic patterns (Figs 14, 23); landscapes in 

southern and central WCA3AS had greater topographic variability, and bi-modally distributed 

soil elevations that maintained distinct ridge and slough communities. These features were less 

prevalent in areas that have or are currently experiencing hydrologic alteration.  Bi-modal 

distributions of soil elevation variance (Fig. 15), community distinctiveness (Fig. 25), and the 

strength of elevation-vegetation associations provide tentative support for the hypothesis that the 

historic patterned structure and degraded landscape patterns represent alternative stable states 

(Scheffer and Carpenter 2003).   

Topographic measures of ridge-slough landscape condition 

The microtopographic differentiation of ridges and sloughs is a fundamental feature of 

the historic ridge-slough landscape (SCT 2003, McVoy et al. 2011, USACE and SFWMD 2000).  

This differentiation is widely hypothesized to reflect local feedbacks among elevation, 

hydrologic regime plant community productivity and composition, and peat production and 

decomposition (Larsen et al. 2007, Cohen et al. 2011), although a variety of mechanisms have 

been proposed to account for the spatial patterning of these patch types.  To date, our monitoring 

efforts have focused on two measures of microtopographic differentiation: elevation variance 

and the occurrence of distinct elevation modes.  These measures are related in that the feedbacks 

hypothesized to create distinct elevation modes should also promote greater overall variation in 

elevation.  The empirical relationship between the standard deviation of elevation and the 

difference between elevation modes (Fig. 17) supports this hypothesis, as the greatest elevation 

variance occurred only in PSUs with distinct elevation modes, and specifically among the PSUs 

with the greatest differences between elevation modes.  However, it is also clear that the mere 

occurrence of bi-modality is insufficient to ensure strongly differentiated elevation modes, as 

some PSUs with bi-modal elevation distributions had relatively low overall elevation variance 

(Fig. 17).  

 

The differences between elevation modes we observed in conserved areas are consistent 

with previous measurements in central and southern WCA3AS (Watts et al. 2010).  In this study, 

elevation mode differences ranged from as low as 12 to as high as 24 cm, which is similar to the 

range observed by Watts et al (2010) in a smaller number of landscape blocks.  Historical 

estimates of elevation differences between ridges and sloughs are generally higher, ranging from 

30 to 60 cm, and in some cases as great as 90 cm (McVoy et al. 2011).  A direct comparison of 

these historic and contemporary estimates suggests that considerable deflation of ridge-slough 

topography has occurred even in conserved areas. However, such a direct comparison may be 

inappropriate for several reasons.  First, Kaplan et al. (2012) used a hydrodynamic model to 

assess the influence of spatial orientation of pattern features on hydroperiod, and found that 

maintaining presumed historic hydroperiods over ridges and sloughs separated by 50 cm would 

require twice the water volume thought to pass through the historic Everglades.  This finding 

suggests that the upper range of estimated ridge-slough differences may be implausible on a 

physical basis.  The second reason that direct comparison of historic ridge-slough elevation 

differences and our estimates of elevation mode differences is that these measure subtly different 



things.  Historic ridge-slough measurements such as those reported in McVoy et al. (2011) 

measure elevation differences between the highest point in a ridge and the lowest point in an 

adjacent slough.  Such isolated observations may be biased toward the greatest elevation 

differences, and certainly do not represent a random sampling of locations.  In contrast, the 

elevation mode differences reported here are based on spatially-integrated means of ridges and 

sloughs over entire landscapes, and would not be biased toward higher or lower elevations within 

ridges and sloughs, respectively, or toward locations with particularly distinct elevations.  As 

such, comparison of historic measurements of elevation differences may somewhat overestimate 

the incongruity of these measurements.  However, the relationship between elevation mode 

difference and long-term mean water depth across PSUs (Figure 16) supports the underlying 

hypothesis of McVoy and co-authors that ridge-slough elevation differences are sensitive to 

hydrologic regime, and that elevation differences may have decreased even in relatively 

conserved areas in response to recent anthropogenic hydrologic alteration.    

 

Vegetation structure as a measure of ridge-slough condition 

 

The historic ridge-slough mosaic was characterized by the distinct zonation of plant 

species whose distributions were shaped by abrupt differences in elevation between ridges and 

sloughs (Ogden 2005, McVoy 2011).  The distinct sawgrass-dominated ridges and Nymphea- 

and Utricularia-dominated sloughs observed in conserved landscapes of WCA3AS are 

consistent with these previous findings. While a number of studies have documented shifts in 

community composition in response to changing hydrologic regimes at relatively broad scales 

(Givnish et al. 2008, Zweig and Kitchens 2008, Zweig and Kitchens 2009, Todd et al. 2010, Foti 

et al. 2012, Todd et al. 2012), this study is the first to systematically document those differences 

at the scale of the entire Greater Everglades ecosystem, and to do so based on field observations. 

We found that high mean long-term water levels were associated with relatively low abundance 

of sawgrass, and more strongly with high abundances of Nymphea and Utricularia (Fig. 20).  

Eleocharis cellulosa, a characteristic wet prairie species, was most abundant in PSUs with 

intermediate long-term water depths.  These patterns support the conclusions of a number of 

studies that hydrologic regime shapes plant species composition at broad spatial scales across the 

Greater Everglades ecosystem.  However, considerable variation within and among PSUs in the 

abundance of individual taxa suggest that the simple prevalence of indicator species, at least as 

measured in this study, may be a relatively poor measure of landscape condition. 

 

In addition to these compositional shifts, we observed declines in the distinctness of local 

plant communities.  Previous studies have indicated that hydrologic alteration promotes the 

blending of ridge and slough communities, as well as increased prevalence of species 

characteristic of intermediate elevations (e.g., Eleocharis spp.).  Our landscape-scale assessment 

confirms that in conserved landscape such as those found in central and southern WCA3AS, 

local vegetation communities are highly distinct (Fig. 25, 26).  In areas subject to increased or 

decreased water levels by hydrologic alteration, this distinctness is reduced.   

 

Our approach to measuring community distinctness is a newly developed measure based 

on measurements of distances between two artificially imposed clusters of plant communities in 

ordination space.  To ensure that this measure is a reasonable proxy for the distinctness of ridge 

and slough communities, we assessed the prevalence of sawgrass in each of the two clusters 



within each PSU, and found that in conserved PSUs (those with large distances between 

communities in ordination space), one cluster was always characterized by very high sawgrass 

abundance, and the other characterized by very low sawgrass abundance; in degraded 

landscapes, abundance of sawgrass between the two clusters was more varied (Fig. 21).  More 

sophisticated descriptions of plant communities similarly supported use of cluster distance as a 

measure of community distinctness within PSUs (Fig. 22).  In conserved landscapes, most 

sampled plant communities occupied one or the other extreme of NMDS axis 1, whereas in 

degraded landscapes many local plant assemblages had intermediate values.  These patterns are 

consistent with the positions of sawgrass and characteristic deepwater slough species at opposite 

ends of NMDS axis 1 in our ordination.   

 

Vegetation-elevation relationships as a measure of ridge-slough condition 

 

Conceptual models and empirical observations of the ridge-slough landscape suggest that 

strong relationships between microtopography and vegetation community structure were  

characteristic of the historic and conserved ridge-slough landscape (Larsen et al. 2011, McVoy 

2011).  We used three approaches to characterize how the strength of this association varied 

across the historic ridge-slough landscape (Table 8). The first and simplest of these measures is 

the correlation coefficient between elevation and sawgrass abundance within a PSU.  The second 

of these uses Mantel's r to measure the association between elevation and overall community 

composition.  The third of these measures the difference in mean elevation between points 

assigned to each of the vegetation community clusters that we used to measure community 

distinctness.  As for isolated measures of microtopographic and vegetation community structure, 

vegetation-elevation relationships were strongest in areas of conserved condition, principally in 

central and southern WCA3AS (Figure 29).  Individual PSUs within other Everglades basins also 

exhibited strong associations between elevation and community composition.    

 

Geostatistical and geospatial measures of ridge-slough landscape structure 

 

The historic ridge-slough landscape and current conserved portions are characterized not 

simply by topographic heterogeneity and distinct vegetation communities, but by a characteristic 

flow-parallel patterning of ridges and sloughs.  A variety of metrics have been proposed to 

measure that spatial structure from aerial photographs and other remotely sensed measurements 

(Wu et al. 2006, Foti et al. 2012, Larsen et al. 2012).  These include measurements of ridge 

geometry, slough connectivity, and the relative abundance of these patch types. The maps 

generated as part of this study could provide a more spatially and taxonomically resolved data set 

on which to base such measurements, but current approaches largely assume 2-3 patch types in 

their assessments of spatial pattern (Wu et al. 1997, Wu et al. 2006, Nungesser 2011).  A strength 

of these approaches is that historic aerial imagery is available for some portions of the 

Everglades, allowing for more robust analysis of long-term trends (Nungesser 2011).  However, 

because they use vegetation structure to assess overall landscape condition, these geospatial 

measures cannot evaluate changes to microtopographic structure that may in some cases precede 

degradation of vegetation structure. 

 

Watts et al (2010) present several geostatistical measures of microtopographic structure 

based on field measurements of soil elevation similar to those reported for this study.  One such 



measure is the spatial autocorrelation of elevation, which in patterned landscapes is predicted not 

simply to decrease with distance but to become negative at some distance.  Such patterns are 

thought to reflect the operation of negative feedbacks at distance, which are necessary for the 

formation of regular spatial pattern (Rietkerk and Van de Koppel 2008).  A second measure is 

the degree of spatial structure of elevation based on sill and nugget variance measured by semi-

variance analysis.  This measure describes the extent to which heterogeneity is structured in 

space, as opposed to randomly distributed.  Conserved ridge-slough landscapes would be 

expected to exhibit strong spatial structure (Watts et al. 2010).  A third measure, anisotropy, 

measures the directionality of elevation based on the semi-variance observed for points oriented 

perpendicular or parallel to some axis (in this case, the orientation of historic flow).  Conserved 

ridge-slough landscapes would be expected to exhibit strong anisotropy.  The results of these 

spatial analyses are not yet available for sampled PSUs, but will be included in future reports. 

 

One potential avenue for development of additional measures of ridge slough structure 

would be application of the microtopographic measures developed by Watts et al. (2010) to 

vegetation community composition data.  Such analyses could be based on the abundance of 

single species, such as sawgrass, or based on dissimilarity scores derived from ordination of 

whole plant community data.  Such geostatistical analyses could, in principle, integrate 

microtopographic data with plant community composition, for example by analysis of cross 

correlation between these variables.   

  

Hydrologic conditions supporting persistence of conserved conditions 

 

The current distribution of conserved microtopographic and vegetative conditions 

provides some information about the hydrologic regimes that support the persistence of relatively 

intact ridge-slough landscapes, and the conditions that promote degradation of landscape 

structure.  Conserved microtopographic structure, as inferred from bi-modal elevation 

distributions, was observed in PSUs with long-term mean water depths between 25 and 51 cm.  

The difference between elevation modes was relatively small in most PSUs with long term mean 

water depths less than 35 cm, and a number of PSUs with long-term mean water depths less than 

40 cm did not exhibit bi-modal distributions.  At long-term mean water depths less than 25 and 

greater than 51 cm, we did not observe PSUs with distinct elevation modes (with a single 

exception in PSU 3, where the difference between elevation modes was <5 cm, and given the 

extremely dry conditions, probably represents a statistical artefact rather than a truly bi-modal 

distribution). In a previous study, Watts et al (2010) found bi-modal elevation distributions in 

PSUs with long-term mean water depths that ranged from 18 to 53 cm.  In all, our data suggest 

that the preservation of microtopographic differentiation of ridges and sloughs is best maintained 

by long-term mean water depths between 40 and 50 cm, but that microtopographic structure 

sometimes resists degradation at water levels as low as 25 cm.  

 

Using vegetation community distinctness yields similar estimates of hydrologic regimes 

that support relatively conserved landscape structure.  Communities with distinct clusters in 

ordination space occurred in PSUs with long-term mean water depths ranging from ca. 15 cm to 

ca. 51 cm. The dry extreme of this range represents a single PSU within Loxahatchee National 

Wildlife Refuge, whose vegetation communities are not necessarily comparable to those of other 

areas.  Within the other water conservation areas, we observed conserved vegetation structure at 



long-term mean water levels greater than 20 cm.  As was observed for microtopographic 

structure, the drier end of this range (between 20 and 35 cm) also included PSUs with indistinct 

communities indicative of degraded conditions.  All PSUs with long-term mean water depths 

between 35 and 50 cm had well-differentiated ridge and slough communities.   

 

Previous studies have demonstrated that Everglades plant species respond to diverse 

characteristics of hydrologic regime that are not captured by the relative coarse metric of long-

term mean water depth (Givnish et al. 2008, Zweig and Kitchens 2009).  For example, the 

relative abundance of slough and wet prairie species can shift in response to seasonal and 

interannual variation in water level.  However, given the topographic variation within PSUs, 

measures of local hydrologic regime cannot easily be scaled to broader landscapes.  Moreover, 

the frequency of hydrologic extremes, especially drying, are likely to covary strongly with long-

term mean water level.  Finally, long-term mean water depth provides a relatively simple 

measure of hydrologic regime that may serve as a tractable management target.  While future 

analyses will assess whether other measures of hydrologic regime help explain variation in 

landscape condition, we contend that long-term mean water depth provides the most useful 

measure of hydrologic conditions.  Based on the general agreement between microtopographic 

and vegetation community structure as measures of ridge-slough landscape condition, we 

recommend a range of long-term mean water depths between 35 and 50 cm as supportive 

of relatively intact ridge-slough landscapes.  Inclusion of the full complement of 80 PSUs will 

provide additional information that may further support or refine these estimates. 

 

Spatial distribution of conserved and degraded ridge-slough landscape conditions 

 

The results of this study support previous conclusions (Wu et al. 2006, Nungesser 2011, 

McVoy et al. 2011) that historic ridge-slough landscape conditions are best conserved in central 

WCA3AS.  PSUs in that area (specifically, PSUs 2, 4, 23, 26) are characterized by distinct ridge 

and slough communities that are well sorted along widely separated elevation modes.  

Microtopographic and vegetation structure and their covariation also indicated moderately 

conserved conditions in isolated portions of other water management basins, including 

southeastern WCA1 (17) and southern WCA2 (21). One PSU (27) in northern WCA3AN 

superficially exhibit conserved microtopographic structure and community distinctiveness; 

however, these characteristics appear to reflect a severe recent fire regime and significant 

invasion (and perhaps creation) of deep water areas by dense stands of Typha, rather than the 

persistence of historic ridge slough structure. 

 

Microtopographic and vegetation structure and their covariation were also generally in 

agreement in their identification of highly degraded landscapes.  PSUs throughout WCA 3B 

exhibited degraded conditions by most measures, as did PSUs in northern portions of WCA1, 

WCA2, and most peripheral areas of WCA3AN, WCA3AS and ENP. Because of relatively small 

sample size at the PSU scale, the complete complement of 80 PSUs will be essential for refining 

estimates of the spatial extent of conserved and degraded conditions in these regions. 

 

Microtopographic and vegetative measures of landscape condition were generally in 

agreement, with the largest number of PSUs exhibiting degradation of both characteristics, and a 

smaller group exhibiting conservation of both characteristics.  However, in 5 PSUs, measures of 



topographic and vegetation structure diverged in their assessment of conserved and degraded 

conditions.  Two such PSUs (31 and 7) are in northern WCA3AS, one in WCA1, one in central 

WCA3AN, and one PSU in eastern Shark River Slough within ENP. In all five cases, we 

observed relative distinct vegetation communities occupying landscapes with reduced elevation 

variance; no PSUs sampled to date have indistinct vegetation communities but high 

microtopographic relief.  One important conclusion to be drawn from this pattern is that 

concurrent monitoring of both vegetation and microtopographic structure is essential for a 

comprehensive assessment of ridge-slough condition. Remote assessment of changes in patch 

structure and landscape pattern provides important information about landscape change, but our 

data support and strengthen the inference of Watts et al. (2010) that microtopographic changes 

are leading indicators of change in vegetation composition and structure.  On that basis, we 

conclude that PSUs with degraded topography but intact vegetation are likely to be undergoing 

transitions to fully degraded states. 

 

Trajectories of and mechanisms of degradation 

 

The spatial feedbacks that create regularly patterned landscapes are also thought to 

produce global bi-stability, meaning that both homogenous and heterogeneous states can occur 

and persist under the same external or environmental conditions.  In the ridge slough landscape, 

a variety of local positive and distal negative feedbacks have been proposed as explanations for 

the regularity of ridge-slough patterns (Larsen and Harvey 2007, 2010; Ross et al. 2006, Cheng 

et al. 2011, Cohen et al. 2011, Heffernan et al. in revision).  Models of both the sediment re-

distribution hypothesis (Larsen and Harvey 2010) and the discharge competence hypothesis 

(Heffernan et al. in revision) suggest the potential for global bi-stability of ridge-slough pattern, 

but in response to different hydrologic variables.  The sediment redistribution hypothesis 

proposes that bistability of conserved and degraded (sawgrass-dominated) conditions should 

occur in response to variation in velocities during periods of high flow, which are controlled by 

landscape slope and by the density of sawgrass ridges.  In contrast, the discharge competence 

hypothesis (Cohen et al. 2011) predicts global bi-stability of conserved and degraded (spatially 

homogenous elevations) conditions in response to variation in water level (Heffernan et al. in 

revision). Both models suggest that restoration of conserved conditions will be difficult to 

reverse once landscape degradation has occurred, but point to dramatically different management 

approaches (maintenance of hydroperiods vs. re-restablishment of peak flows) to preserve extant 

conserved landscapes and to restore degraded ones.  Despite this integrated theoretical and 

applied rationale, no empirical studies have directly assessed the potential for global bi-stability 

in general nor rigorously discriminated between alternative patterning mechanisms.   

 

We propose that the inter-relationships among hydrologic regime, microtopographic 

structure, and vegetation composition and structure presented as part of this study means to 

directly assess the potential for global bi-stability in the Everglades landscape, and to at least 

indirectly evaluate alternative patterning mechanisms.  The bi-modal distribution of soil 

elevation variance and of vegetation community distinctness is consistent with the existence of 

two landscape equilibria: a patterned landscape characterized by well-differentiated ridges and 

sloughs, and a homogenous landscape with reduced topographic variation and poorly-

differentiated vegetation communities.  That conserved conditions were observed only within a 

restricted range of hydrologic conditions provides additional support for the general global bi-



stability hypothesis.  Finally, the occurrence of degraded landscape structure under hydrologic 

conditions that also support relatively conserved conditions is consistent with the existence of 

multiple landscape equilibria.  Degraded landscapes whose contemporary hydrologic regime 

supports bi-modal soil elevations and distinct ridge and slough communities, but where those 

features are not actually observed, are concentrated in Everglades National Park and Water 

Conservation Area 3B; one PSU in northern WCA2 also fits this description.  Current hydrologic 

regimes in these areas are much wetter than relatively recent historic conditions, owing to 

changes in hydrologic management during the last decade of the 20th century (McVoy 2011).  

The drier conditions that predominated during most of the 20th century may have caused 

degradation of landscape structure in these areas, and the absence of recovery of 

microtopographic structure and distinct vegetation communities may reflect the existence of an 

alternative landscape equilibrium.  However, this failure to re-establish historic pattern could 

also reflect other aspects of the disturbance regime that could be inhibiting re-establishment of 

historic landscape, or more simply the slow rate of peat formation and spatial feedbacks.  

Overall, however, our results tentatively support the hypothesis that patterned and homogenous 

landscapes represent alternative equilibria. 
  



 

  

Figure 31. Spatial patterns of ridge-slough landscape condition.  Green indicates PSUs 

with high elevation variance and distinct vegetation communities.  Yellow areas are 

PSUs with distinct vegetation communities but reduced elevation variance.  Red areas 

have indistinct vegetation communities and reduced elevation variance.  Hatching 

indicates PSUs that were not sampled (PSU 5 in WCA 2) or that were excluded from the 

analysis because they lie outside the historic distribution of the ridge-slough landscape 

(PSUs 8, 10, 14,16 in ENP).  



The divergence of microtopographic and vegetative measures of landscape heterogeneity 

suggest that peat degradation, rather than vegetation change, is the initial phase of landscape 

degradation.  In addition to its implications for monitoring of these landscape characteristics, this 

observation provides some indirect support for the discharge competence hypothesis.  

Equilibrium solutions of a model of the discharge competence hypothesis lead to several 

predictions that can be assessed using data from this monitoring study (Heffernan et al. in 

revision).  First, the model predicts that elevation differences between ridges and sloughs should 

increase with increasing landscape-scale water levels, as we have observed in this study.  

Second, the model predicts that under increasingly dry conditions, ridge-slough elevation 

differences should decline smoothly, but that under increasingly wet conditions, elevation 

differences should collapse catastrophically when water depths exceed a threshold.  In this study, 

we observed a number of PSUs that exhibited relatively conserved vegetation structure, but 

dramatically reduced topographic variability; however, we did not observe any PSUs with intact 

microtopography and degraded vegetation (Fig. 29).  This observation is consistent with the 

differential trajectories of change in response to drainage and inundation that are predicted by the 

model of Heffernan et al.; relatively gradual deflation of topography allows vegetation patterning 

to persist, while the rapid collapse of microtopography in response to impoundment disrupts 

vegetation-elevation relationships.  In further support of this interpretation, we note that the 

small number of PSUs with reduced microtopography but distinct vegetation communities 

experience drier conditions than PSUs with degraded microtopographic and vegetative structure.  

Degraded landscapes occur under both extremes of hydrologic conditions, but the transient 

configuration of intact vegetation patterning and deflated microtopographic structure occurs only 

under relatively dry conditions.  While more direct assessments of alternative patterning 

mechanisms are clearly needed, the results of this study appear to be consistent with several 

predictions of the discharge competence hypothesis.   

 

  



Summary of Recommendations for management and restoration 

  The systematic sampling enabled by the GRTS design provides a rigorous grounding for 

a comprehensive assessment of landscape condition using a suite of established and newly 

developed measures. This study confirms previous findings that substantial portions of the ridge-

slough landscape are severely degraded.  Moreover, because historic microtopographic structure 

appears to be even more geographically restricted than vegetation pattern, our results suggest that 

the extent of degraded or degrading conditions may be greater, and the extent of historic 

conditions lesser, than indicated by previous studies.  Continued monitoring and data analysis 

will enable better spatial resolution of these patterns, and the incorporation of additional metrics 

of landscape structure into assessment.   

 

Our data suggest that a relatively restricted range of hydrologic conditions are best suited 

to the persistence of existing areas of conserved pattern.  Specifically, we observed conserved 

microtopographic and vegetation structure under long-term mean water depths of 35-50 cm.  

This range of spatially-averaged hydrologic regimes would be equivalent to maintaining mean 

slough water depths between 50 and 65 cm, if ridge-slough elevation differences are ca. 30 cm. 

This empirically-derived range of hydrologic conditions is comparable to those suggested by the 

RASCAL model (Larsen et al. 2010). Maintaining this relatively narrow range of hydrologic 

conditions across extensive portions of the Water Conservation Areas and Everglades National 

Park will be challenging under current hydrologic management, but restoration of sheet flow 

would enable relatively even distribution of water depths across larger areas.  Whether other 

hydrologic conditions (e.g., magnitude of hydrologic variability, etc.) are also necessary for the 

persistence of conserved conditions remains unclear.   

 

The results of this study suggest that restoration of degraded landscapes within the 

historic ridge and slough region may require active intervention.  Large areas within Everglades 

National Park, and Water Conservation Areas 3A and 3B exhibit degraded conditions, but 

currently experience long-term mean water depths that support relatively conserved landscape 

structure in central WCA3AS and elsewhere.  While this observation has several possible 

explanations, it is consistent with, and provides tentative support for, the hypothesis that 

degraded landscapes represent an alternative equilibrium that will resist restoration that relies 

strictly on re-establishment of historic hydrologic regimes. 

 

 

  



SAMPLING AND ANALYSIS OF TREE ISLAND VEGETATION 

 

1. Background 

 

Tree islands, an integral component of ridge and slough landscape in the Everglades, are 

sensitive to large-scale restoration activities associated with the Comprehensive Everglades 

Restoration Plan (CERP) authorized by the Water Resources Development Act (WRDA). More 

specifically, changes in hydrologic regimes at both local and landscape scale are expected to 

affect plant community structure and function on the tree islands and the surrounding marshes, in 

turn affecting the boundaries between islands and marshes. To strengthen our ability to predict 

the response of tree island plant communities to hydrologic alteration, including shifts in 

boundaries among community types, an improved understanding of existing conditions of 

vegetation composition and environment are needed. In this regard, a study of vegetation 

structure and composition in relation to underlying environmental drivers on a subset of tree 

islands present in selected Primary Sampling Units (PSU) was conducted with funding from the 

US Army Corps of Engineers (USACOE). This section describes the results of the FY-2011 

study conducted on six tree islands in four intensively studied PSUs. Results from several other 

tree islands were previously reported (Heffernan 2009). 

 

 

2. Sampling sites 

 

Tree islands are of different types, such as hardwood hammock, bayhead, bayhead swamp, 

willow head, cypress dome, and exotics-dominated island (Armentano et al. 2002).  The number 

of tree islands belonging to different types varies among PSUs, and not all PSUs have all types 

of islands.  With the objective of studying vegetation along environmental gradients within tree 

islands, extending into the adjacent marsh, one island (>400 m
2
) was randomly selected within 

each of the three most common island types in each intensive PSU.  The cohort of PSUs sampled 

in Year 2 included four units --- PSU’s 20, 21, 22 and 23 --- that met the sampling criteria.  

During the wet season of 2011, we sampled six islands that included representatives of three 

major types – hardwood hammock, bayhead, and willow head (Figure 1). 

 

 

3. Field Sampling 

 

3.1 Vegetation sampling 

 

Once the islands were selected for sampling, the azimuth of the longest axis and the orientation 

of transect that would be laid out in the field were determined from aerial photos.  On each island 

a transect was established perpendicular to the island’s longest axis and from the apparent 

highest point to approximately 8-10 m beyond the edge of the visible forest-marsh interface. The 

GPS coordinates of both terminal ends of the transects were recorded (Table 1).  In the six 

islands studied this year, transect length ranged from 32 to 100 meters.  The hardwood hammock 

in PSU-21 had the longest (100 m) transect, while in the willowhead within PSU-23, transect 

length was only 32 m.  In these six islands, tree island vegetation was sampled within nested 

belt-transects, varying in width from 1 to 5 m of the central line (Figure 2).  Trees of 5-10 cm 



dbh class were sampled within 1 m of the line, trees of 10-25 cm dbh within 2 m of the line, and 

trees >25 cm dbh within 5 m of the line.  For each tree, we recorded species, position along the 

transect line, and diameter in 5-cm dbh classes.  For trees with multiple trunks, we also recorded 

the number of trunks in measured 5-cm dbh classes. 

 

 
 

Figure 1: Location map of tree islands sampled. 

 

 
  



Table 1: Tree Island transects established on six islands in four PSUs. HH = Hardwood hammock, BH = Bayhead, 

and WH = Willowhead.  

 

Sampling 

Date 
PSU 

Tree 

Island 

Type 

Tree Island ID 

Taped 

Transect 

Length 

(m) 

GPS 

Transect 

Azimuth 

GPS Coordinates  

(NAD 1983 UTM Zone 17) 

T_S_ 

Easting 

T_S_ 

Northing 

T_E_ 

Easting  

T_E_ 

Northing 

8/12/2011 PSU021 HH PSU021_HH_01 100 101 560265 2902576 560360 2902595 

8/23/2011 PSU022 HH PSU022_HH_01 54 289 509081 2822915 509132 2822897 

10/28/2011 PSU022 BH PSU022_BH_02 66 325 508373 2821797 508336 2821849 

9/28/2011 PSU023 WH PSU023_WH_02 32 259 526893 2875212 526862 2875206 

9/1/2011 PSU023 BH PSU023_BH_01 45 276 526893 2877761 526848 2877766 

10/7/2011 PSU020 BH PSU_020_BH_01 54 262 542556 2857628 542504 2857621 

 

 

 
 

 

Figure 2: Schematic representation of sampling design used for vegetation sampling on six tree 

islands within four PSUs 



Tree saplings (tree species ≥ 1 and < 5 cm DBH) and understory vegetation, including shrubs 

(woody species > 1 m in height but < 1 cm DBH) and ground layer species (woody and non-

woody vegetation <1m in height), were sampled in a series of 1-m radius circular plots along the 

belt transect.  However, depending on the length of transect, the number of plots and distance 

between adjacent plots varied among islands.  In the hardwood hammocks and bayheads, the 

plots were arrayed at 3 m and 6 m intervals for transects 30 to 60 m, and >60 m, respectively. 

Along the 32 m transect on the willowhead, the plots were arrayed at every 2 m.  In each plot, we 

recorded the number of stems of each species in the sapling and shrub layers, and estimated the 

cover class of each species of ground layer vegetation.  Cover classes used for the ground layer 

vegetation were: 1 (<1%), 2 (1-4%), 3 (4-16%), 4 (16-33%), 5 (33-66%), and 6 (≥66%) (Ross 

and Jones 2004; Sah 2004).  In addition, we recorded density of seedlings (≤1 m tall) of each tree 

species in 3 height categories: <30 cm, 30-60 cm, and 60-100 cm, in 0.57 m radius plot centered 

on the midpoint of the understory vegetation plots. 

 

Canopy openness was measured using a densiometer (Englund et al. 2000) at the understory plot 

centers.  In each plot, two measurements, one each in two cardinal directions, north and south, 

were taken.  

 

 

3.2 Soil depth, ground elevation and hydrology 

 

In each understory vegetation plot, we measured soil depth at 1-3 random locations, and recorded 

relative ground elevation in relation to existing water table.  In plots where water level was 

above the ground surface, we measured water depths at three random points.  However, in the 

plots where water table was at or below the ground level, relative elevations were surveyed using 

an auto level, from the most interior plot (the first plot on the transect) to the first plot with 

standing water.  We then calculated the ground elevation of each plot based on the relative 

elevation and the water surface elevation.  Since nearest stage recorder was located at >1 mile 

distance from the tree islands, we used the EDEN (Everglades Depth Estimation Network) 

estimate of stage elevation (http://sofia.usgs.gov/eden/) as a measure of water surface elevation 

at the end of the belt transect on the date of sampling.  We then calculated the ground elevation. 

Using ground elevation and EDEN time series data for water surface elevation, we calculated 

mean annual water depth and hydroperiod for seven water years prior to the vegetation sampling. 

 

 

4. Analytical methods 

 

Species abundance data were summarized separately for ground layer vegetation and the tree and 

sapling layer. For ground layer vegetation, percent cover of each species present in a plot was 

computed using the mid-point of cover class. For species in tree and sapling layer, the species 

abundance was importance value (IV), calculated as: (relative density + relative basal area)/2. 

Since the trees were sampled in belt transects on each island, density and basal area of each tree 

species were calculated using the 2-, 3- or 6-m segments of the belt, depending on the length of 

the transect, and the interval between understory vegetation plots in each island. Finally, the 

plot*species matrices were prepared for multivariate analysis. 

 

http://sofia.usgs.gov/eden/


4.1 Split moving-Window Boundary Analysis 

 

Species data gathered in the islands were analyzed using split moving-window (SMW) boundary 

analysis, a method widely used to identify boundaries between communities along gradients 

(Cornelius et al. 1991a, 1991b; Boughton et al. 2005; Munoz-Reinoso 2009; Sah et al. 2012). We 

used this method to delineate the vegetation units along a gradient outward from the center of a 

tree island or head of tear-dropped tree island to the adjacent marsh. In the SMW analysis, we 

first introduced a window of even number of plots at the beginning of the transect. The window 

was then divided into two half-windows, and the cover value of each species was averaged over 

the plots within each of them. Bray-Curtis (B-C) dissimilarity was calculated between each pair 

of adjacent half-windows. The window was then moved further along the transect, one plot at a 

time, and the steps were repeated until the end of the transect was reached. Finally, B-C 

dissimilarities were plotted against the location of window mid-point along the transect. The 

peaks in the dissimilarity profile plot were identified as the boundaries between vegetation units.  

 

The SMW boundary analysis is sensitive to scale, and thus we explored different window sizes 

(2, 4, 6, and 8 plots). In our analysis, we used the window size of 4, as the use of windows 

smaller than the size of 4-plots resulted in many peaks representing small-scale variation within 

otherwise homogenous vegetation unit. In contrast, use of the larger windows resulted in fewer 

peaks overshadowing the ecological meaningful variation in species composition. Moreover, 

dissimilarity profile diagrams using larger windows also had ‘blind zone’, i.e. omission of a 

small number of plots equal to or fewer than a half-window size that differs evidently in 

vegetation composition from the neighboring half-window (Int Panis and Verheyen 1995). The 

blind zone was usually present at one or both ends of the transect. Furthermore, the identification 

of boundaries delineating vegetation units along gradients within the transects was primarily 

based on ground layer vegetation. In four of six tree islands sampled this year, the number of tree 

and sapling individuals was sparse, and were not enough to use split moving-window approach. 

On those islands, the boundary analysis was based on only ground layer vegetation. 

 

4.2 Landscape level vegetation-environment relationship 

 

Vegetation units identified along the gradients were grouped using the broader tree island 

vegetation categories: hardwood hammocks, bayheads, bayhead swamps, willow heads, and 

marsh. We examined relationship among hydrologic regimes, soil characteristics, community 

structure (canopy cover), and ground layer vegetation composition across all tree islands at the 

landscape level, using nonmetric multi-dimensional scaling (NMDS) ordination with 

environment vector fitting method (Kantvilas and Minchin 1989; Minchin 1998). We performed 

NMDS on B-C dissimilarities among vegetation units, with species cover data first standardized 

by species’ maximum (Faith et al. 1987). In the vector fitting method, the vector defines the 

direction of the measured environmental attribute in the ordination space that produces the 

maximum correlation between the attribute and the ordination scores of the sampling units (Faith 

and Norris 1989). The statistical significance of the correlations was tested using Monte-Carlo 

permutation test with 10,000 permutations, with values of environmental variables randomly 

shifted among vegetation units. The NMDS ordination and vector fitting procedure were 

performed using the computer program DECODA (Minchin 1998). 

 



5. Results  

   

In all six tree islands, vegetation in both tree and understory strata were arranged along an 

environmental gradient. Ground layer species-based B-C dissimilarity profiles revealed one to 

three distinct boundaries resulting in two to three vegetation units (Figures 3-8). In the Bayhead 

Island in PSU-20, only two communities, bayhead and marsh, were distinguished (Figure 3), 

while distinct peaks separated three identifiable vegetation units in each of other five islands. In 

general, the boundary between woody plant-dominated community (bayhead, bayhead swamp or 

willowhead swamp) and marsh vegetation was well distinguished by a peak represented by the 

maximum B-C dissimilarity between the segments of two half-windows. However, in two of six 

islands, where distinct boundaries were identified in ground layer and tree/sapling layer 

vegetation, the location of boundary separating the woody and marsh vegetation units did not 

overlap.    

 

 
 

Figure 3: Vegetation units identified using split moving window (SMW) boundary analysis 

(window size 4 plots) of understory vegetation in the Bayhead Island in PSU-20  

 

 

In tree and sapling layer species-based dissimilarity profiles, the boundaries between vegetation 

communities were not always distinct. However, in all six islands 100% B-C dissimilarity 

(100%) for contiguous pairs of half-windows toward the outer end of the transect represented a 

rapid turnover of species near the edge of the islands (Results not shown). Among the vegetation 



units that were identified based on understory species-based dissimilarity profiles, the vegetation 

at the high elevation ground, where mean annual water table was more than 20 cm below ground, 

was dominated by hammock species: gumbo limbo (Bursera simaruba), white stopper (Eugenia 

axillaris), live oak (Quercus virginiana), paradise tree (Simaruba glauca), and myrsine (Myrsine 

floridana) (Table 2). In the middle ground, strangler fig (Ficus aurea), wax myrtle (Morella 

cerifera) and red bay (Persia borbonia) were present. Interestingly, in one hardwood hammock 

(in PSU 21), cypress (Taxodium disticum), which is commonly associated with wet areas in the 

Everglades, was present on the highest ground where mean annual water table was >50 cm 

below ground.  In the same island, however, tree and sapling layer vegetation in the rest of the 

transect, was dominated by coastal plain willow (Salix caroliniana). The topography in the 

bayhead islands was undulating, and vegetation on those islands was dominated by flood tolerant 

species: pond apple (Annona glabra), red bay (P. borbonia), sweet bay (Magnolia virginiana), 

dahoon holly (Ilex cassine), and willow. (S. caroliniana). In two of three bayhead islands, there 

were distinct zones of bayhead and bayhead swamps, the later dominated by mostly sapling layer 

vegetation. In both willowhead and willowhead swamp on the Willowhead Island, tree and 

sapling layer vegetation were solely dominated by S. caroliniana. 

 

 

 
 

Figure 4: Vegetation units identified using split moving window (SMW) boundary analysis 

(window size 4 plots) of understory vegetation in the Hardwood Hammock Island in PSU-21.  

  



 
 

Figure 5: Vegetation units identified using split moving window (SMW) boundary analysis 

(window size 4 plots) of understory vegetation in the Bayhead Island in PSU-22. Bray-Curtis 

dissimilarities are scaled between 0 and 1. 

 

 
 

Figure 6: Vegetation units identified using split moving window (SMW) boundary analysis 

(window size 4 plots) of understory vegetation in the Hardwood Hammock Island in PSU-22.   



 
 

Figure 7: Vegetation units identified using split moving window (SMW) boundary analysis 

(window size 4 plots) of understory vegetation in the Bayhead Island in PSU-23.   

 

 
 



Figure 8: Vegetation units identified using split moving window (SMW) boundary analysis 

(window size 4 plots) of understory vegetation in the Willow head Island in PSU-23  
Table 2: Mean importance value (IV) in tree and sapling layer of woody vegetation types identified 

along transects on six tree islands sampled in four PSUs. HH = Hardwood hammock,  BH = 

Bayhead, BHS = Bayhead swamp, WH = Willowhead, and WS = Willowhead swamp. 

 

Species name Species Code 
Vegetation assemblages 

HH BH BHS WH WS 

Annona glabra ANNGLA 

 

10.3    

Bursera simaruba BURSIM 23.9 

 

   

Celtis laevigata CELLAE  2.6    

Chrysobalanus icaco CHRICA  1.3 1.9   

Eugenia axillaris EUGAXI 11.1 

 

   

Ficus aurea FICAUR  2.0    

Ilex cassine ILECAS  9.3 6.8   

Magnolia virginiana MAGVIR  0.7 20.4   

Morella cerifera MYRCER  7.4 3.1   

Myrsine floridana MYRFLO 11.1 1.0 

 

  

Persea borbonia PERBOR 5.6 22.7 19.8   

Pisonia aculeata PISACU 

 

2.6    

Quercus virginiana QUEVIR 11.1 

 

   

Sabal palmetto SABPAL  1.2    

Salix caroliniana SALCAR  13.4 35.4 42.9 80.0 

Simarouba glauca SIMGLA 3.8 

   

 

 

 

Understory vegetation assemblages identified through the SMW analysis showed some level of 

clustering in the NMDS ordination (stress = 0.15), and they were more or less arranged along 

hydrological gradient (Figure 9). Vector fitting of environmental and community characteristic 

variables in ordination space revealed that hydroperiod, mean annual water depth, and canopy 

cover were significantly correlated with sample scores (Table 3), indicating that these 

environmental drivers had a strong influence on the species composition across vegetation 

assemblages. The correlation between soil depth and sample score was marginally significant.  

 

 
Table 3: Mean (± SD) of environmental and community characteristic variables used for vector fitting in 

the non-metric multidimensional scaling (NMDS) ordination. Rmax is the maximum correlation between 

fitted vector and sample coordinates in the ordination for herb layer species cover data for 20 vegetation 

units identified along transects on six tree islands.  

 

Variable Mean (±S.D.) Rmax p-value 

Hydroperiod (days) 236 (± 99) 0.91 <0.001 

Mean Water depth (cm) 9.9 (± 21.5) 0.95 <0.001 

Soil depth (cm) 109 (± 89) 0.55 0.046 

Canopy cover (%) 50.1 (± 42.6) 0.68 0.003 

 

 



 
 

Figure 9: Bi-plots of site and species scores and fitted environmental and community 

characteristic vectors in a non-metric multidimensional scaling (NMDS) ordination ordination of 

20 understory (herb-layer) vegetation assemblages identified on six islands using split moving-

window (SMW) boundary analysis.  

 

 

In general, vegetation units were arranged along hydrology gradient represented by Axis 1. 

However, hardwood hammock, bayhead and bayhead swamp showed a great variation on Axis 2, 

possibly representing regional differences in species composition within these types. Moreover, 

willowhead, willowhead swamp and marsh vegetation units exhibited much overlap in 

hydrologic regime.  

 

In the hardwood hammock islands, understory vegetation on the high ground where water table 

remains below ground during most of years was very sparse, and the understory vegetation 

mostly dominated by tree seedlings (Figure 9). In contrast, in the bayheads of both hammock 



and bayhead islands, the understory vegetation was species rich, and was dominated by ferns 

(Acrostichum danaeifolium, Blechnum serrulatum, and Thelypteris ssp.) and seedlings of water 

tolerant tree species (P. borbonia, M. virginiana, I. cassine). Osmunda regalis was common in 

bayhead and willowhead islands in PSU-23 within WCA-3A. Marsh vegetation near most of 

study islands was dominated by sawgrass, whereas that near the bayhead in PSU-23 within 

WCA-3A was dominated by spikerush (Eleocharis cellulosa) and maidencane (Panicum 

hemitomon). On three islands, understory/herb layer vegetation composition present along the 

hydrologic gradient was also strongly influenced by canopy openness, as was evidenced by the 

highly significant (p-value <0.01) canopy cover vector in ordination space. 

 

 

6. Discussion and Conclusions 

 

Plant communities on Everglades tree islands are arranged along environmental (hydrology and 

edaphic) gradients. Sampling along transects extending from the interior of the islands to the 

surrounding marsh, and use of the SMW boundary analysis method in this study allowed us to 

identify the boundary between vegetation units arranged along the hydrologic gradient in the 

surveyed tree islands. However, the sharpness of the boundary, between vegetation units was not 

the same in all the transects, and in the analysis of both vegetation layers; tree and sapling and 

ground vegetation data. In general, the ground vegetation-based boundary between woody 

plants-dominated community and herbaceous marsh vegetation was well distinguished by the 

peak represented by high B-C dissimilarity between two groups of plots. A similar pattern in the 

tree and sapling layer species-based boundary analysis was not observed in all transects, 

probably due to low tree density and local scale variation in the distribution of tree species on the 

islands. However, in the islands in which the boundary between woody and herbaceous marsh 

vegetation units was identifiable in both tree and ground layer species-based analysis, the 

location of boundaries did not always overlap (Figures 3 and 7). While vegetation layers within 

forests may respond to similar or different environmental gradients, the response of vegetation layers 

to similar gradients may also differ spatially, affecting the correspondence between them (Rogers 

1981; Sagers and Lyon 1997). In this study, discrepancy between two layers in the location of 

boundary may be due to differences between them in resource use pattern. For instance, trees usually 

use rain water during the wet season and the ground water in the dry season (Saha et al. 2010). 

Whether shrubs and herbaceous plant in tree islands exhibit similar pattern in water use, has not yet 

been fully explored. However, in other ecosystems, researchers have shown that understory herbs 

and shrubs are more dependent on rainwater regardless of their topographic position (Sagers and 

Lyon 1997). Similar differences between vegetation layers exist in using light resources. Overstory 

vegetation uses broader range of light, but herb and shrub layer vegetation in the understory 

experiences a relatively narrow range of light (Sagers and Lyon 1997). Also, species in the 

understory layer may differentiate themselves along the light gradient irrespective of the overstory 

species composition. 

 

Variation in vegetation composition along gradients can be gradual or abrupt corresponding to 

the underlying environmental drivers. In the Bayhead Island in PSU-22 and Willowhead Island 

in PSU-23, the boundary between woody-dominated communities and herbaceous vegetation in 

the surrounding marsh was not sharp, but extends over several plots, representing a relatively 

wide transition zone (Hennenber et al. 2005). In this study, we have used SMW method for 

exploratory purpose. A more vigorous analysis that can quantify the width of transition zone, and 



relate them to variation in underlying environmental drivers is possible when data from repeated 

samplings are available.  

 

Besides the local scale variation in vegetation composition on individual islands, a broad scale 

pattern in vegetation composition in the tree islands and their surrounding marshes reflects 

landscape variation in hydrologic conditions and disturbance regimes. For instance, in our 

analysis of vector fitting in the ordination space, the vegetation units were primarily arranged 

along the hydrologic vector (Figure 9). Understory vegetation in the bayheads on Hardwood 

Hammock islands were similar to the vegetation in the Bayhead islands. Similarly, the vegetation 

in the bayhead swamps present in the exterior portion of the Hardwood Hammock and Bayhead 

islands were similar in species composition. Despite a similarity in species composition on the 

bayhead and bayhead swamps across the islands in different water management regions, islands 

similar to the Hardwood Hammock present in PSU-22 within the Everglades National Park were 

not found in any of three intensively studied PSUs in WCA-2A, WCA-3A and WCA-3B. The 

water regimes in these areas are managed differently, resulting in hydrologic conditions 

considerably different from what are present in ENP. In the Water Conservation Areas, 

management-induced hydrologic changes have caused an extensive loss of tree islands (Patterson 

and Finck 1999) and significant alterations in vegetation composition on existing islands (Wetzel 

et al. 2008). In addition, continuing human use of the islands in these areas in recent years might 

have affected vegetation composition on the tree islands. In this study, in the Hardwood 

Hammock in PSU-21 within WCA-2A, the interior part of the island was cleared with only very 

few trees left. Open canopies and frequent disturbances might have also influenced the 

understory vegetation causing small scale variation in species composition (Ruiz et al. 2011), as 

reflected in high dissimilarity in species composition at high ground towards the interior end of 

the transect (Figure 4). In this island, woody vegetation on the rest of the transect resembles that 

of a willowhead suggesting a kind of degradation in island elevation. Marsh vegetation 

surrounding a majority of tree islands surveyed in this study was similar in species composition, 

primarily dominated by sawgrass, which is not only most abundant macrophyte in the Everglades 

but also has the widest amplitude of hydrologic tolerance (Todd et al. 2010). 

 

Several scale dependent ecological processes, including hydrologic variation, nutrient dynamics, 

disturbance, and biological processes are important in determining vegetation pattern within 

individual tree islands as well as at the landscape level (Wetzel et al. 2005; Ross et al. 2006; 

Givnish et al. 2008). Therefore, only a comprehensive synthesis of results from multiple years of 

study of vegetation structure and composition and ecological processes by several researchers 

from different disciplines would help to explain the detail of community pattern and process in 

the Ridge, Slough and Tree islands of the Everglades. However, a well understood pattern of 

community transition along known gradients from within the islands to the marsh will allow 

managers to adjust water management operations to achieve desired vegetation pattern within the 

tree islands and surrounding marshes. While the present study of six islands has reiterated the use 

of SMW analysis method in identifying the boundaries between tree islands and surrounding 

marsh, our results indicate that the effective use of this method to monitor changes in tree island 

morphology throughout the system would require a large number of samples, and more 

importantly intensive sampling along multiple transects within individual islands. Researchers 

have used air-borne imagery to examine the changes in tree island acreage within Water 

Conservation Areas and Everglades National Park (Patterson and Finck 1999; Sklar et al. 2013. 



Ruiz et al. (2013) also have devised an automated method to map marl prairie tree islands using 

air-borne imagery from different time periods that can effectively be used to examine the 

temporal changes in tree island boundaries within the specific landscape. However, the major 

challenge is to use similar method to map diverse communities localized within and around 

islands at the broader scale using more frequently and readily available space-borne imagery. 

Currently, a USACE-funded research project (Cooperative Agreement # W912HZ-09-2-0019) to 

characterize the vegetation composition along the gradients in tree islands in different water 

management areas using both field data and multispectral space-borne Landsat 5 (TM) and 

WorldView-2 Imagery is underway. In that project, a model to characterize the vegetation 

structure and spectral reflectance is being developed using several spectral indices (Crippen 

1990; Motohka et al. 2010) that, after verification at reference sites, can be used to characterize 

and examine vegetation structure in islands over time at the landscape level. Therefore, limited 

ground sampling can be supplemented with a cost-effective means of system-wide monitoring, 

such as use of high resolution air-borne and/or multispectral space-borne imagery to effectively 

monitor temporal changes in tree island boundary as well as community pattern in the islands 

and surrounding marshes. 

 

Appendix I – Marsh and tree island vegetation monitoring field data 

 

[INSERT DATA] or [ATTACH DATA, and modify any references to Appendix I above 

accordingly] 

 

Appendix II – Maps of marsh and tree island vegetation 
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