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Abstract 25 

 The frequency of extreme environmental events is predicted to increase in the future.  26 

Understanding the short- and long-term impacts of these extreme events on large-bodied 27 

predators will provide insight into the spatial and temporal scales at which acute environmental 28 

disturbances in top-down processes may persist within and across ecosystems.  Here, we use 29 

long-term studies of movements and age structure of an estuarine top predator - juvenile bull 30 

sharks - to identify the effects of an extreme ‘cold snap’ from 2-13 Jan 2010 over short (weeks) 31 

to intermediate (months) time scales.  Juvenile bull sharks are typically year-round residents of 32 

the Shark River Estuary until they reach 3-5 years of age.  However, acoustic telemetry revealed 33 

that almost all sharks either permanently left the system or died during the cold snap.  For 116 34 

days after the cold snap, no sharks were detected in the system with telemetry, or were captured 35 

during longline sampling.  Once sharks returned, both the size structure and abundance of the 36 

individuals present in the nursery had changed considerably.  During 2010, individual longlines 37 

were 70% less likely to capture any sharks, and catch rates on successful longlines were 40% 38 

lower than during 2006-2009.  Also, all sharks caught after the cold snap were young-of-the-year 39 

or neonates, suggesting that the majority of sharks in the estuary were new recruits and several 40 

cohorts had been largely lost from the nursery.  The longer-term impacts of this change in bull 41 

shark abundance to the trophic dynamics of the estuary, and the importance of episodic 42 

disturbances to bull shark population dynamics will require continued monitoring, but are of 43 

considerable interest due to the ecological roles of bull sharks within coastal estuaries and 44 

oceans.  45 

 46 
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Introduction 50 

Many ecosystems experience predictable disturbances in their physical environment, and 51 

these shifts in conditions can be important in structuring and/or restructuring communities (e.g. 52 

Doan 2004, Tabacchi et al. 2009, Tyler 2010).  Less attention has been given to the impacts of 53 

unpredictable extreme environmental events on ecosystem dynamics (Turner 2010).  However, 54 

these acute events may also be important in shaping communities, and their effects can be 55 

widespread and long-lasting (e.g. Mulholland et al. 2009, Byrnes et al. 2011, Foster et al. 2011).  56 

Gaining an understanding of extreme weather events is important because their frequency is 57 

expected to increase in the future (Easterling et al. 2000, Meehl et al. 2000, IPCC 2007). 58 

Acute changes in environmental conditions generally require a rapid behavioral response 59 

from animals, and in the case of extreme events, individuals may not have previously 60 

encountered such conditions and populations may not have adapted to cope with them 61 

physiologically.  Thus, rapid and extreme changes can lead to both short- and long-term 62 

alterations in the size and structure of populations (e.g. Gabbert et al. 1999, Chan et al. 2005, 63 

Daufresne et al. 2007).  These shifts in population density and structure can lead to considerable 64 

shifts in the habitat use, trophic and social interactions, and resource use of both individuals and 65 

populations after extreme events (e.g. Frederick & Loftus 1993, Frederiksen et al. 2008, Lea et 66 

al. 2009).  In turn, these changes in populations and behaviors can be transmitted through 67 

communities and ultimately affect ecosystem stability (e.g. Bennets et al. 2002, Thibault & 68 

Brown 2008, Mantzouni & MacKenzie 2010). 69 

Bull sharks (Carcharhinus leucas; Müller & Henle 1839) are a widely distributed, coastal 70 

predator found in tropical, subtropical, and temperate ecosystems worldwide (Compagno 1984).  71 

Because bull sharks are highly efficient osmoregulators, they can travel between fresh and 72 
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marine waters, and respond to sudden changes in salinity with minimal metabolic costs 73 

(Anderson et al. 2006).  Subadult and mature individuals typically reside in coastal waters, while 74 

juveniles use coastal estuaries as nurseries during early years (Heithaus et al. 2007, Wiley & 75 

Simpfendorfer 2007, Castro 2011).  Within estuaries, juvenile bull sharks experience 76 

environmental variability, including acute and seasonal shifts in local salinities and temperatures 77 

(e.g. Simpfendorfer et al. 2005, Steiner et al. 2007, Wiley & Simpfendorfer 2007).  This 78 

variability in the physical environment can lead to seasonal and intermittent patterns in shark 79 

occurrence within nurseries (e.g. Heupel & Simpfendorfer 2008, Yeiser et al. 2008, Heupel et al. 80 

2010).  However, seasonal variability in temperature and/or salinity does not cause all 81 

populations to leave the confines of their respective nurseries (e.g. Heithaus et al. 2009), and 82 

whether acute changes in water temperature may cause large changes in behavior or survivorship 83 

are unknown.  Understanding the impacts of acute events on bull sharks in nurseries is important, 84 

however, because of their possible roles in linking coastal and estuarine food webs (Matich et al. 85 

2011), and their position as an upper trophic level predator in these habitats.   86 

South Florida, USA experiences predictable seasonal changes in air temperature that 87 

contribute to annual shifts in the community composition of aquatic and terrestrial ecosystems 88 

(e.g. McIvor et al. 1994, Ruetz et al. 2005, Rehage & Loftus 2007).  These changes are typically 89 

moderate and gradual (Duever et al. 1994), but from 2-13 Jan 2010, South Florida experienced a 90 

dramatic and extended drop in air temperature (mean low air temperature = 6.1°C ± 0.7 SD; 91 

NOAA 2010) that led to an extreme mortality event of both terrestrial and aquatic species on a 92 

scale not recorded in Everglades National Park for more than 50 years (Rehage et al. 2010).  93 

Here, we take advantage of an ongoing long-term study conducted before, during, and after this 94 
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event, to investigate the effects of this extreme cold event on the behavior and age structure of 95 

bull sharks that typically exhibit year-round residency within a South Florida coastal estuary. 96 

 97 

Methods 98 

Study location 99 

The Shark River Estuary of Everglades National Park, Florida, USA (Fig. 1) is primarily 100 

a braided stream system lined by mangroves that extends from the Gulf of Mexico to freshwater 101 

vegetated marshes ~30 km upstream (Childers 2006).  Juvenile bull sharks use the estuary as a 102 

nursery year-round, and reside in the ecosystem for their first 3-5 years of life (Wiley & 103 

Simpfendorfer 2007, Heithaus et al. 2009).  For the purpose of this study, the area was divided 104 

into four different sampling regions based on spatial variability in salinity documented during 105 

long-term sampling. The Downriver (DR) region includes the coastal waters of Ponce de Leon 106 

Bay and relatively deep (3-5 m) and wide (50-400 m) channels extending up to 5 km upstream, 107 

with an annual salinity range of 16-39 parts per thousand (ppt) (mean = 29 ppt ± 4.9 SD).  The 108 

Shark River (SR) region includes relatively deep (3-7 m) channels 6-14 km upstream, and 109 

salinity varies seasonally from 1-34 ppt (mean = 14 ppt ± 8.9 SD).  Tarpon Bay (TB) is a 110 

relatively shallow bay (1-3 m deep) with several smaller bays 15-19 km upstream, and salinity 111 

ranges from 0.3-25 ppt annually (mean = 5 ppt ± 6.0 SD).  And finally, the Upriver (UR) region 112 

includes relatively narrow channels 2-4 m deep, which are 20-27 km upstream, that temporally 113 

vary in salinity from 0.2-21 parts per thousand (ppt) (mean = 3 ppt ± 4.6 SD) (Fig. 1). 114 

 115 

Field sampling 116 
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Spatial and temporal variability in water temperature were measured using Hobo Pro v2 117 

data loggers (Onset, Cape Cod, MA) deployed at 13 locations throughout the system (Fig. 1) 118 

from Jul 2007 - Jan 2011.  Water temperature was measured by loggers every 10-15 minutes 119 

throughout the study, and data were downloaded every 3-4 months.  Throughout the study, water 120 

temperatures also were measured during all sampling events using a YSI 85 handheld water 121 

quality meter (YSI Incorporated, Yellow Springs, OH).  Because of the superior spatial and 122 

temporal resolution of data from Hobo data loggers, we used only these data in analyses from Jul 123 

2007 - Jan 2011. 124 

Spatial and temporal variability in bull shark abundance was quantified from 2006-2010 125 

using ~500 m longlines fitted with 40-55 14/0 or 15/0 Mustad tuna circle hooks.  Hooks were 126 

baited with mullet (Mugil sp.) and attached to ~2 m of 400 kg monofilament line (see Heithaus et 127 

al. 2009 for details of sampling equipment).  Longline sampling took place in all four regions 128 

(DR, SR, TB, and UR) quarterly for the duration of the study (Table 1, Appendix 1).  In 2008, 129 

however, sampling only took place during Jan and Oct-Dec.  We therefore excluded data from 130 

2008 in our analyses of bull shark relative abundance.  Captured sharks (n = 121 from 2006-2007 131 

and 2009-2010) were tagged, measured, and sexed alongside the sampling vessel, or within a 132 

water-filled, aerated cooler on board.  Shark stretched total length was measured over the top of 133 

the body to the nearest centimeter, the presence or absence of an umbilical scar on the ventral 134 

side of the body was recorded, and sharks were externally tagged using a plastic roto tag affixed 135 

through the first dorsal fin prior to being released.   136 

Passive acoustic tracking was used to quantify the movement patterns of individual bull 137 

sharks.  From Dec 2007 - Dec 2009 sharks caught in excellent condition (swimming strongly 138 

upon capture) ranging from 67-149 cm total length (n = 40 individuals with active transmitters at 139 
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the time of full acoustic array establishment; see below; Appendix 2) were surgically fitted with 140 

a Vemco V16-4H transmitter (Vemco, Halifax, NS).  Transmitters were set to emit a unique 141 

series of pulses for each shark at a random interval between 30-90 sec (mean emission interval = 142 

60 sec; mean battery life = 2 yr).  Movements of acoustically tagged sharks were tracked within 143 

an array of 43 Vemco VR2 and VR2W acoustic receivers (Fig. 1), that was fully established by 144 

October 2008.  In most areas, acoustic receivers were deployed in pairs, such that the location 145 

and direction of movement for each acoustically tagged shark could be monitored continuously 146 

throughout most of the study system.  Due to the complexity of the channels at the mouth of the 147 

estuary this could not be achieved in the DR region.  However, based on the detection ranges of 148 

the acoustic receivers (in situ measurements revealed mean detection ranges were ~500 m; see 149 

Rosenblatt & Heithaus 2011 for detection ranges of individual receivers), and their locations at 150 

the estuary mouth, sharks entering the Gulf of Mexico would have been detected by at least one 151 

of the receivers as they exited the Shark River Estuary.  Between the DR and SR regions, there 152 

are several exit points from the estuary that lead into Whitewater Bay, but there are no 153 

connecting bodies of water that allow for sharks to travel between the Gulf of Mexico and 154 

Whitewater Bay (i.e. the only exit points from the system are at the mouths of the Shark and 155 

Harney Rivers, where acoustic receivers were in place; Fig. 1).  Each receiver was attached to a 156 

PVC pipe set in a 10 kg cement anchor.  Data from receivers were downloaded every 3-4 months 157 

for the duration of the study, and batteries were replaced as needed.  158 

 159 

Data analysis 160 

Passive acoustic telemetry was used to assess the effects of the cold snap on bull shark 161 

behavior and survival.  Data downloaded from acoustic receivers were converted to times of 162 
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entry into and exit from the sampling regions (DR, SR, TB, and UR; Fig. 1) using a custom 163 

computer program (GATOR; Andrew Fritz, FritzTech, Houston, TX).  Logistic regression was 164 

used to test the effects of sampling month, year, region and their interactions on 1) the 165 

probability of detecting all sharks with active transmitters within the system, and 2) the 166 

probability of detecting at least one shark with an active transmitter within the system.  After 167 

analyses of full models with all factors and interactions, interactions with P >0.10 were 168 

sequentially removed from models.  All main factors (month, year, and region) were included in 169 

final models regardless of p-values.  Logistic regression was used to test the probability that each 170 

shark had left the system (i.e. emigrated) or was ‘lost’ in the system (i.e. last detected by an 171 

acoustic receiver within the array that was not adjacent to an exit point of the estuary) each 172 

month from Nov 2008 - Jan 2010. 173 

Longline catch data were analyzed to assess changes in bull shark abundance, distribution 174 

and size/age structure relative to the cold snap.  Due to the large number of zeros in the data, we 175 

used a conditional approach (e.g. Fletcher et al. 2005, Serafy et al. 2007) to quantify the change 176 

in shark abundance and distribution in relation to the cold snap.  First, we used logistic 177 

regression to test the effects of sampling month, year, region, and their interactions on the 178 

probability of catching at least one juvenile bull shark on a particular longline set (“occurrence”).  179 

Next, we used a general linear model to determine how these factors and possible interactions 180 

influenced the number of sharks caught on longlines when they were present (“concentration”).  181 

We pooled months into four sampling periods: Jan-Mar, Apr-Jun, Jul-Sep, and Oct-Dec for each 182 

year.  Concentration data were transformed using Box-Cox transformations.  All interactions 183 

with P >0.10 were sequentially removed from models, but main factors were included in final 184 
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models regardless of significance level.  Post hoc Tukey’s test was used to test for significant 185 

differences across treatments. 186 

To determine the effects of the cold snap on the size structure of the bull shark nursery, 187 

we used a Kruskal-Wallis one-way analysis of variance to investigate whether the sizes of sharks 188 

caught from May-Dec varied across sampling years.  Sharks caught from Jan-Apr for all years 189 

were not included in body size analyses because no sharks were caught from Jan-Apr in 2010 190 

(sharks were captured during these months in other years; Table 1, Appendix 1), and including 191 

sharks from these months in other years could have confounded our ability to investigate changes 192 

in size structure between previous years and that present in 2010 after the cold snap.  In addition, 193 

logistic regression was used to examine the effects of capture year on the probability of capturing 194 

sharks with umbilical scars (i.e. neonates <2 months old; Compagno 1984) and of the probability 195 

of capturing sharks <90 cm total length (i.e. young of the year; Branstetter & Stiles 1987, Neer et 196 

al. 2005).  All statistical analyses were conducted in JMP 6.0.0. 197 

 198 

Results 199 

Environmental Conditions 200 

Prior to the cold snap, water temperatures in the estuary ranged from 14.2 °C (6 Feb 201 

2009) to 33.1 °C (15 Jul 2009), with the coldest temperatures occurring from Jan-Mar (mean = 202 

22.0 °C ± 3.0 SD), and the warmest temperatures occurring from Jul-Sep (mean = 30.6 °C ± 1.2 203 

SD) (Fig. 2).  Water temperatures in the Shark River Estuary during the cold snap were 204 

considerably lower (mean = 12.9 °C ± 2.8 SD, 4-15 Jan 2010) than any other time period during 205 

the study (Figs. 2 & 3), and mean daily water temperatures dropped as low as 9.1 °C at the peak 206 
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of the event (12 Jan 2010 at DR).  Mean daily air temperature lows in the Florida Everglades 207 

were below 10°C from 1-14 Jan 2010 (Flamingo Ranger Station NOAA).   208 

 209 

Effects on Bull Sharks 210 

From 2006-2009, we captured 112 juvenile bull sharks (66-200 cm TL; 57 females and 211 

55 males; Table 1).  After 20 Dec 2009, no sharks were caught until 22 May 2010, and only nine 212 

sharks were caught from 22 May 2010 to 16 Dec 2010 despite sampling effort similar to 213 

previous years (68-86 cm TL; 2 females, 8 males, one individual escaped before its sex was 214 

determined; Table 1, Appendix 1).  During sampling in Jan 2010, two bull sharks (~100 cm TL) 215 

were found dead within the confines of the estuary, presumably from temperature-induced 216 

mortality - these were the only sharks found dead during the study (2006-2011).   217 

From Oct 2008 - Dec 2009, 40 bull sharks (67-149 cm TL; 21 females and 19 males, 218 

Appendix 2) with surgically implanted acoustic transmitters were active in the tracking array.  Of 219 

these, 14 individuals were present during the cold snap (2-25 Jan 2010) and had transmitters that 220 

were implanted at least 18 days before the event.  Six of the 14 individuals present during the 221 

cold snap (43%) were ‘lost’ within the confines of the system during the cold snap (see Fig. 1 for 222 

the last detection locations of these individuals), suggesting they probably died in the system. 223 

The other eight individuals left the system (i.e. were last detected in the DR region) during the 224 

cold snap.  The proportion of acoustically tagged sharks that were lost (43%) and that left the 225 

system (57%) were considerably greater than any other month during the study (F46,211 = 3.56, p 226 

<0.01; F46,211 = 2.72, p <0.01, respectively; Fig. 4).  The 26 acoustically tagged individuals not 227 

present during the cold snap either 1) left prior to the cold snap - permanently emigrating to other 228 

estuaries or coastal waters (n = 17), 2) had acoustic transmitter malfunctions (e.g. battery failure) 229 
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immediately after release (n = 5), 3) likely died due to stress incurred during surgery (n = 2), or 230 

4) disappeared inside the array because of natural or anthropogenic mortality (e.g. fishing, boat 231 

traffic, other research projects; n = 2; Appendix 2).  The acoustically tagged sharks lost during 232 

the cold snap (n = 6) were last detected by the receivers within the southeast part of the Shark 233 

River region (Fig. 1) where it is highly unlikely that they could have left the system or entered 234 

Whitewater Bay without being detected by at least one of the two receivers farther downstream 235 

in the SR region.  The region where acoustically tagged sharks were last detected during the cold 236 

snap (i.e. DR or SR) was not influenced by shark total length (t = 1.13, p = 0.28, df = 12).  No 237 

acoustically tagged sharks were detected on acoustic receivers after the cold snap until 24 Jun 238 

2010. 239 

The probability of detecting at least one shark and all sharks on acoustic receivers within 240 

the Shark River Estuary varied with all main factors (region, month, and year) and the interaction 241 

between sampling region and year (Table 2; Fig. 2).  From Nov 2008 - Dec 2009, more sharks 242 

were detected in Tarpon Bay (6.18 sharks/day ± 0.18 SE) than any other region, and the fewest 243 

number of sharks were detected in the Downriver region (0.13 sharks/day ± 0.03 SE).  The Shark 244 

River (2.06 sharks/day ± 0.10 SE) and Upriver (1.39 sharks/day ± 0.10 SE) regions had 245 

intermediate numbers of sharks detected (Fig. 2).  In Jan 2010, the cold snap caused a 246 

considerable shift in detections at all sites.  Detections decreased sharply in TB (1.92 sharks/day 247 

± 0.68 SE) and UR (0.24 sharks/day ± 0.14 SE), but increased in DR (1.88 sharks/day ± 0.36 SE) 248 

before all sharks exited the system or were no longer detected within the system by 26 Jan 2010 249 

(Figs. 2 & 3).  Most acoustically tagged sharks present during the cold snap were no longer 250 

detected after 11 Jan 2010, however three individuals (54801, 54802, 58258), which moved into 251 

DR during the cold snap, remained in the vicinity throughout the cold snap and were detected 252 
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intermittently on DR monitors before disappearing permanently by 26 Jan 2010  (Fig. 3).  All 253 

acoustically tagged individuals that were detected immediately before and during the cold snap 254 

had transmitters that should have been active at the time of the last acoustic monitor download 255 

on 22 Jan 2011.  Only one shark (59903) reappeared in the system after the cold snap on 24 Jun 256 

2010, and remained in the system until it was last detected heading into the DR region (based on 257 

detection sequence in SR) on 29 Aug 2010 (Fig. 2).   258 

Nine juvenile bull sharks were caught on longlines from 22 May 2010 to 16 Dec 2010 259 

(Table 1).  Occurrence and concentration of bull sharks varied across sampling years, and 260 

occurrence varied across regions (Table 2; Fig. 5).  The probability of catching at least one shark 261 

on a longline set (i.e. occurrence) was highest in 2006 and lowest in 2010, and was highest in 262 

Tarpon Bay and lowest Upriver (Fig. 5a).  The number of sharks caught on longlines when 263 

present (i.e. concentration) was highest in 2007 and lowest in 2010, and exhibited minimal 264 

variability across regions (Fig. 5c).  Thus, sharks were encountered less often after the cold snap, 265 

and when they were encountered in 2010, they were in smaller numbers than when encountered 266 

in previous years.  Both occurrence and concentration were least variable across years and 267 

regions from Apr-Sep, and exhibited considerable variability between years and regions from 268 

Oct-Mar (Fig. 5d). 269 

Mortality and abandonment of the system during the cold snap resulted in changes in the 270 

size structure of bull sharks directly following the event.  Bull sharks caught after the cold snap 271 

from May-Dec 2010 were significantly smaller (mean total length = 77 cm ± 1.7 SE) than all 272 

previous sampling years (mean TL = 106 cm ± 4.7 SE) during these months (χ
2
 = 17.33; p <0.01; 273 

Fig. 6a).  The probability of catching a shark less than 90 cm total length, and the probability of 274 

catching a shark with an umbilical scar (neonate) varied significantly across years (F3,38 = 8.28, p 275 
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<0.01; F3,38 = 6.37, p <0.01, respectively).  All of the bull sharks caught in 2010 were young-of-276 

the-year and 67% were neonates, which was higher than other years (of the sharks caught from 277 

2006-2009, 41% were young-of-the-year, and only 11% were neonates, respectively; Fig. 6). 278 

 279 

Discussion 280 

Population-level Effects 281 

Populations often experience daily and seasonal shifts in environmental conditions, and 282 

individuals adjust to these predictable changes by making local or long-distance migrations, 283 

changing their behavior, and/or making metabolic adjustments (e.g. Heupel & Hueter 2001, 284 

Klimley et al. 2002, Swenson et al. 2007, Holdo et al. 2009, Speed et al. 2010).  However, 285 

unpredictable and rapid fluctuations in environmental conditions may occur too quickly for 286 

individuals to appropriately adjust their behavior or respond physiologically in order to meet 287 

metabolic needs and survive (e.g. Aebischer 1986, Schoener et al. 2001).  An inability to adapt to 288 

such events may have important consequences for the structure and function of populations and 289 

ecosystems (e.g. Easterling et al. 2000, Daufresne et al. 2007, Thibault & Brown 2008), and is a 290 

concern for conservation because the frequency of extreme environmental events is predicted to 291 

increase in the future (IPCC 2007).     292 

Extreme cold events have led to fish kills in Florida about every ten years in the last 100 293 

years (Gilmore et al. 1978, Snelson & Bradley 1978 and references within), suggesting the cold 294 

snap in 2010 was not unique.  However, in comparison to previous cold events, the magnitude of 295 

individuals killed as a result of cold temperatures in Jan 2010 was considerably greater.  During 296 

the cold snap of 1976-77 in the Indian River Lagoon, central Florida, USA - the last published 297 

account of an extensive fish kill in Florida attributed to an extended drop in temperature - mean 298 
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water temperatures were 10.8 °C, which is comparable to water temperatures in the Shark River 299 

Estuary in Jan 2010, and resulted in dead individuals from 56 species, including bull sharks (n = 300 

2; Gilmore et al. 1978, Snelson & Bradley 1978).  Yet, the number of fish reported dead in 1977 301 

was several orders of magnitude lower (tens to hundreds), compared to the effects of the cold 302 

snap in Jan 2010 (thousands to tens of thousands of fishes killed; Rehage et al. 2010, personal 303 

observation), suggesting the impacts on survivorship were much greater in general in the Shark 304 

River Estuary during the 2010 event, and the recovery period may be longer. 305 

Before the cold snap, bull shark use of the Shark River Estuary was characterized by 306 

individuals <3 years old being year-round residents (Heithaus et al. 2009, P Matich & MR 307 

Heithaus unpublished data), which may be facilitated by the relatively warm winter water 308 

temperatures (e.g. Garla et al. 2006, Chapman et al. 2009, Cortes et al. 2011).  The absolute 309 

temperatures in Jan 2010, and the duration of the extreme cold event, appear to have exceeded 310 

the thermal tolerance of bull sharks using the Shark River Estuary, and resulted in profound 311 

impacts on abundance and subsequent size/age structure in the nursery. 312 

Acoustically tagged bull sharks displayed uncharacteristic movement patterns during the 313 

cold snap, with mass movements out of Tarpon Bay and into the Downriver region (where, even 314 

in past winters, there had been low detection frequencies), before disappearing into the Gulf of 315 

Mexico.  Mass movements out of estuaries in response to atypical environmental conditions has 316 

been observed in juvenile blacktip sharks (Carcharhinus limbatus) in Terra Ceia Bay, central 317 

Florida, which left the bay in response to the drop in barometric pressure prior to the arrival of a 318 

tropical storm (Heupel et al. 2003).  All individual blacktip sharks returned to Terra Ceia Bay 319 

within two weeks of their departure.  Like blacktips, sea snakes (Laticauda spp.) in Lanyu, 320 

Taiwan vacated their normal coastal habitat in response to changes in barometric pressure prior 321 
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to a typhoon, and returned less than two weeks later after its passage (Liu et al. 2010).  In 322 

addition to the bull sharks that left during and only days after the cold snap (n = 14), three tagged 323 

sharks (75-107 cm TL) left the system a few weeks prior to the event in Dec 2009.  One of these 324 

early-departing individuals was the only acoustically tagged shark to return to the estuary after 325 

the cold snap (in June 2010), and was one of the smallest individuals (75 cm TL) acoustically 326 

tagged at the time of the cold snap.  The departure of sharks just before and during the cold snap 327 

was unusual, because unlike juvenile bull sharks within coastal estuaries in more northern 328 

portions of Florida (e.g. Heupel and Simpfendorfer 2008, Yeiser et al. 2008, Heupel et al. 2010), 329 

bull sharks in this nursery are typically year-round residents and do not seasonally or 330 

intermittently travel into or out of the estuary (Heithaus et al. 2009, P Matich & MR Heithaus 331 

unpublished data).   332 

Despite water temperatures returning to normal (>18 °C) within three weeks of the cold 333 

snap, no acoustically tagged bull sharks returned to the estuary at this time, and only one 334 

individual returned during the study.  Previous tag-recapture studies in Everglades National Park 335 

and along the Florida coast of the Gulf of Mexico revealed that some bull sharks will relocate to 336 

estuaries more than 100 km from initial capture locations (Wiley & Simpfendorfer 2007).  Yet, 337 

the number of sharks making these long migrations (n = 3 of 302; 1%) was small, and tracking 338 

data from the Shark River Estuary suggest such movements are uncommon under normal 339 

conditions.  Therefore, some individuals that left the estuary may have permanently emigrated, 340 

while others may have died. 341 

The behavior resulting from the sudden drop in temperature caused reductions in the 342 

occurrence and concentration of bull sharks in the system by 70% and 40% respectively (i.e. 343 

approximately a 73% reduction in overall catch rates).  This decline in shark abundance may 344 
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have been due to temperature stress, increased predation, and/or permanent relocation.  During 345 

the cold snap, two bull sharks (~100 cm total length) were found dead within the confines of the 346 

estuary, almost certainly from temperature-induced mortality.  Finding even two dead sharks is 347 

notable, however, because sharks are negatively buoyant and sink upon death (Helfman et al. 348 

1997), and the Shark River Estuary is turbid.  Indeed, to our knowledge dead sharks have not 349 

been found in the system previously, despite considerable research effort in the study area.  In 350 

addition, six (43%) of the acoustically tagged bull sharks were last detected by receivers in the 351 

southeastern part of the Shark River sampling region, suggesting they died within the estuary, 352 

but outside of the detection range of any individual receiver.  Prior to the cold snap, only two of 353 

23 (9%) acoustically tagged individuals (82 and 83 cm TL at capture in Jan 2009 and Nov 2008, 354 

respectively) may have died of natural causes (e.g. stress, starvation) in Mar and Apr 2009 in 355 

Tarpon Bay, suggesting the survival rate of juvenile bull sharks is relatively high in the Shark 356 

River Estuary (Heupel & Simpfendorfer 2011).  There are virtually no predators of bull sharks 357 

within the estuary (MR Heithaus & P Matich unpublished data), and because all of the sharks 358 

that died during the cold snap died within days of each other, and movements during detection 359 

did not reveal abnormal movement patterns attributed to predation (i.e. faster rate of movement 360 

of a large predator that had consumed a smaller shark; Heupel & Simpfendorfer 2002), all of 361 

these individuals likely succumbed to the low temperatures.  Temperature-related mortality may 362 

also be responsible for the low rate of return of individuals that left the system - in more northern 363 

estuaries in Florida, bull sharks (Indian River Lagoon) and smalltooth sawfish (Pristis pectinata; 364 

Ten Thousand Islands) also died due to thermal stress attributed to the 2010 cold snap (J Imhoff 365 

personal communication; D Bethea personal communication, respectively; see Fig. 1), 366 

suggesting the effects of the cold snap extended beyond the Shark River Estuary, and sharks that 367 
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emigrated towards or into other estuaries or coastal areas during this time may not have been 368 

able to locate thermal refugia.  However, three sharks did remain in the proximity of the DR 369 

region until Jan 22, 24, and 25 (54801, 58258, and 54802, respectively).  By the dates of their 370 

final detection, water temperatures were comparable to previous years (mean = 20.3 °C from 22-371 

25 Jan 2010 at DR), suggesting that some sharks that did not succumb to temperature stress.   372 

Juvenile bull sharks that left the estuary may also have experienced increased mortality 373 

from predation.  Small sharks in Florida’s coastal waters are at considerable risk of predation 374 

from large predatory sharks (e.g. C. leucas, Negaprion brevirostris; Compagno 1984, Snelson et 375 

al. 1984, Castro 2011, P Matich & MR Heithaus unpublished data).  During typical years, 376 

juvenile bull sharks almost exclusively remained in areas at least 10-15 km upstream from the 377 

DR region, probably to avoid larger sharks that live at the mouth of the estuary (Heithaus et al. 378 

2009, P Matich unpublished data).  However, in escaping their rapidly chilling estuarine habitat 379 

during the cold snap, juvenile bull sharks entered high-risk coastal habitats where predation may 380 

have reduced the number of sharks that returned to the estuary afterwards.  It is also possible that 381 

despite temperatures returning to normal relatively quickly, departing bull sharks may have 382 

remained within coastal waters or traveled to other estuaries where they took up residence 383 

(Wiley & Simpfendorfer 2007, Yeiser et al. 2008, Heupel et al. 2010).   384 

 Regardless of whether departing sharks died from temperature stress, were eaten by 385 

predators, or relocated to another estuary, the abundance and size range of juvenile bull sharks 386 

was altered within the Shark River Estuary.  Prior to the event, the size range of bull sharks in 387 

the system was relatively wide (66-200 cm TL).  But for 12 months after the event, all sharks 388 

caught (n = 9) were less than 90 cm TL (68-86 cm TL), and most (n = 6; 67%) had umbilical 389 

scars indicating they were only weeks old.  The variability in the size of captured sharks was 390 
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very small, further suggesting they were from the same cohort, and that virtually all individuals 391 

of several age classes were lost from the nursery.  Although nine individuals is a relatively small 392 

sample, the sampling effort in 2010 was comparable to previous years, and these nine individuals 393 

are reflective of the abundance and sizes of bull sharks in the estuary.  Unless there is 394 

immigration, it will likely take several years for bull shark densities in the Shark River Estuary to 395 

recover and resemble the size structure present before the cold snap.  Indeed, if the largest 396 

individuals in 2010 were 80-90 cm TL (the largest individual caught in 2010 was 86 cm TL), and 397 

exhibited fast growth rates for bull sharks (e.g. 20 cm TL per year; Neer et al. 2005), then these 398 

sharks will attain total lengths similar to the third quartile of sharks found in the estuary before 399 

the cold snap (130 cm TL) in at least 2-3 years.   400 

 401 

Community- and Ecosystem-level Effects 402 

Within Florida, acute cold events of at least eight straight days occur about every five 403 

years in south Florida; there were 12 such events from 1950-2009 (Flamingo Ranger Station).  404 

However, the last recorded occurrence of a cold snap with a duration of 12 days or longer prior 405 

to 2010 was in 1940 (Flamingo Ranger Station, Rehage et al. 2010), and there have been no 406 

published reports of massive fish kills in south Florida since the winter of 1976-77 (Gilmore et 407 

al. 1978, Snelson & Bradley 1978), and even this event was not as extreme as that in 2010.  408 

Considering the rare nature of these extended extreme events (occur every 30-40 years) with the 409 

low proportion of acoustically tagged bull sharks returning to the Shark River Estuary (n = 1; 6% 410 

of tagged individuals), and the probable ages of all bull sharks caught in 2010 (age-class 0), it 411 

suggests there has not been strong selection for the ability to withstand such events within this 412 

nursery.   413 
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The resulting change in bull shark density and sizes could have important consequences.  414 

Prior to the cold snap, bull sharks in the Shark River Estuary showed a relatively high degree of 415 

individual specialization in trophic interactions, with some large and small juveniles exclusively 416 

feeding from marine food webs and others from food webs based in the estuary or upstream 417 

marshes, in spite of being captured in the same location in the estuary (Matich et al. 2011).  This 418 

specialization appeared to be driven by high levels of intraspecific competition (Matich et al. 419 

2011), which combined with the risk of cannibalism and predation might have driven spatial size 420 

structuring of the sharks in the estuary (Simpfendorfer et al. 2005, Heithaus et al. 2009).  As a 421 

result of the cold snap, and subsequent changes in shark abundance and size structure, 422 

intraspecific competition and the risk of cannibalism likely decreased considerably.  Based on 423 

theory and studies of other taxa (e.g. Estes et al. 2003, Svanback & Persson 2004, Keren-Rotem 424 

et al. 2006, Bolnick et al. 2010), this would be predicted to result in an expansion of bull shark 425 

activity areas for small size classes and more generalized diets until the nursery recovers. Lower 426 

competition also could permit more juvenile bull sharks to feed in low-risk (upstream) areas, and 427 

thus avoid the high-food, high-risk areas that include marine-based food webs at the mouth of the 428 

estuary.  Since bull sharks are the only sharks that regularly use estuaries and freshwater areas in 429 

Florida, this shift in habitat use could at least temporarily interrupt the role bull sharks play in 430 

linking marine and freshwater food webs (Matich et al. 2011).  If structural changes like those 431 

that occurred in the Shark River Estuary occurred in other shark populations throughout South 432 

Florida, it could alter the dynamics of coastal ecosystems across a large spatial area for several 433 

years (e.g. Finstad et al. 2009, Holt & Barfield 2009), unless changes in immigration and/or 434 

density-dependent recruitment and survival increase the rate of recovery.  Based on the relatively 435 

low rate of departures of sharks from the Shark River Estuary prior to the cold snap, studies in 436 
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other bull shark nurseries (e.g. Steiner et al. 2007, Heupel & Simpfendorfer 2008, ), and the 437 

presence of almost exclusively new cohorts since the cold snap, it appears that juvenile bull 438 

sharks tend to remain within their natal nurseries, and the rate of immigration into the Shark 439 

River from other nurseries is low and is unlikely to speed the recovery of densities and age 440 

structure. 441 

Our study suggests that rare, but extreme environmental fluctuations can lead to marked 442 

localized changes in population size and structure, even in relatively large-bodied, highly mobile 443 

species.  However, the importance of extreme events to long-term population and ecosystem 444 

dynamics remains unclear.  To understand the long-term effects of these events, we must better 445 

understand how individual shark nurseries contribute to adult populations, the importance of 446 

density-dependence within shark nurseries, and how shark populations affect these estuarine 447 

ecosystems.  448 
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Table 1: Number of longline sets, number of juvenile bull sharks caught on longlines, and 

average water temperatures with standard deviations for each sampling period. 

 

 

Longlines (n) Sharks (n) Temperature (°C) 

Jan-Mar 

2006 19 16 23.3 ± 3.5 

2007 7 8 24.5 ± 0.8 

2009 39 12 21.0 ± 3.1 

2010 31 0 17.2 ± 3.9 

Apr-Jun 

2006 18 11 28.2 ± 1.7 

2007 30 5 24.3 ± 1.1 

2009 56 18 28.0 ± 2.2 

2010 33 5 27.6 ± 2.3 

Jul-Sep 

2006 8 4 29.6 ± 1.1 

2007 21 6 30.8 ± 1.4 

2009 39 12 30.7 ± 1.2 

2010 25 2 30.1 ± 1.0 

Oct-Dec 

2006 38 14 25.7 ± 1.8 

2007 4 3 19.8 ± 1.4 

2009 43 3 25.1 ± 2.0 

2010 30 2 23.1 ± 4.9 
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Table 2:  Results from logistic regression investigating the factors influencing bull shark occurrence and concentration (longline 

sampling) and the probability of detecting at least one shark [P(1 shark)] and all sharks [P(all sharks)] on acoustic receivers.  

Significant factors are in bold.  Non-significant interactions (P>0.10) were excluded from final models. 

 

 Region Month Year Region*Month Region*Year Month*Year N Adj. R
2
 

Longlines         

Occurrence 6.83, 3 (<0.01) 2.53, 3 (0.06) 11.45, 3 (<0.01) 0.69, 9 (0.71) 0.60, 9 (0.79) 3.65, 9 (<0.01) 105 0.40 

Concentration 0.52, 3 (0.67) 0.57, 3 (0.64) 5.86, 3 (<0.01) 2.38, 9 (0.04) 0.47, 6 (0.82) 1.27, 8 (0.31) 48 0.40 

         

Acoustic 

tracking         

P (1 shark) 30.40, 3 (<0.01) 2.51, 11 (0.01) 56.60, 2 (<0.01) 0.69, 33 (0.84) 11.71, 6 (<0.01) 0.67, 8 (0.72) 88 0.81 

P (all sharks) 34.50, 3 (<0.01) 2.55, 11 (<0.01) 7.73, 2 (<0.01) 0.72, 33 (0.81) 3.50, 6 (<0.01) 0.89, 8 (0.53) 88 0.71 



33 

 

Figure Legends 

 

Figure 1: Longline and acoustic telemetry sampling regions (DR: Downriver, SR: Shark River, 

TB: Tarpon Bay, and UR: Upriver) within the Shark River Estuary of Florida, USA. Locations of 

acoustic receivers are indicated by white circles, squares, and stars.  Acoustic receivers with 

Hobo temperature loggers are white squares.  White stars are the locations of receivers that last 

detected sharks the six sharks lost within the system during the cold snap (i.e. last detected 

within the SR region).  Note that those locations are in relatively close proximity to receivers 

both upstream and downstream and exiting the system without a detection on another receiver 

would have been unlikely.  Although there appear to be unmonitored exits from the estuary 

(general area indicated by white arrows), sharks moving into this portion of the system cannot 

exit into the Gulf of Mexico without passing by one of the monitored exits (i.e. all exits to the 

Gulf of Mexico are monitored by acoustic receivers).  Locations of the Indian River Lagoon 

(IRL) and Ten Thousand Islands (TTI) are indicated on the inset map. 

 

Figure 2: A) Mean daily system water temperature, and b) regional variation in the probability of 

detecting at least one acoustically tagged bull shark.  Bars indicate the number of sharks with 

transmitters active within the study area.  

 

Figure 3: Acoustic receiver detections of tagged sharks from 1 Nov 2009 until departure from the 

system (black line or dot represents detection in system; * indicates shark last detected within 

Shark River region (i.e. was not detected on any of the most downstream monitors before 

disappearing permanently); # indicates the shark that was detected in the system after 23 Jun 

2010).  Gaps in detections include days in which sharks were in areas within the system but 
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outside the detection range of acoustic receivers.  Mean system water temperature is displayed in 

gray. 

 

Figure 4: Proportion of acoustically tagged sharks that left (i.e. emigrated) from the estuary and 

the proportion of sharks that were ‘lost’ (i.e. last detected by an acoustic receiver within the array 

that was not adjacent to an exit point of the estuary) from Nov 2008 - Jan 2010. 

 

Figure 5: Bull shark occurrence varied across regions (a) and with an interaction of season and 

year (b).  The number of sharks captured on longlines with sharks (concentration) varied across 

years (c) and with an interaction of months and region (d).  Bars are SE and bars with different 

letters are significantly different based on post hoc Tukey’s test.   

 

Figure 6: Annual differences in a) mean bull shark total length in cm, b) mean probability of a 

caught bull sharks being less than 90 cm TL, and c) mean probability of a caught bull shark 

having an umbilical scar, for sharks caught from May 22 - December 16.  Bars are SE and bars 

with different letters are significantly different based on post hoc Tukey’s test. 
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Appendix 1: Table 1: Number of longline sets, number of juvenile bull sharks caught on longlines, and average water temperatures 

with standard deviations for each sampling region for each sampling period.  Note that sample effort was consistently high throughout 

the study in the region with the highest catch rates. 

 
DR Jan-Mar Apr-Jun Jul-Sep Oct-Dec 

Longlines Sharks Temp. Longlines Sharks Temp. Longlines Sharks Temp. Longlines Sharks Temp. 

2006 0 0 NA 0 0 NA 4 1 30.1 ± 0.1 2 0 24.4 ± 0.4 

2007 0 0 NA 9 2 24.5 ± 1.2 3 0 31.6 ± 0.4 1 2 20.8 

2009 9 2 22.6 ± 2.0 7 1 26.0 ± 1.9 8 2 30.5 ± 1.1 4 0 23.6 ± 2.8 

2010 11 0 18.0 ± 2.5 3 0 27.3 ± 3.5 5 0 30.9 ± 1.1 7 0 25.8 ± 2.6 

SR Jan-Mar Apr-Jun Jul-Sep Oct-Dec 

Longlines Sharks Temp. Longlines Sharks Temp. Longlines Sharks Temp. Longlines Sharks Temp. 

2006 6 5 18.9 ± 1.8 7 5 26.6 ± 1.3 2 0 30.1 ± 0.6 8 2 25.8 ± 1.8 

2007 0 0 NA 6 0 24.7 ± 0.5 5 2 31.6 ± 0.6 1 0 21.2 

2009 5 0 22.7 ± 0.7 6 0 27.9 ± 1.7 6 1 30.5 ± 0.4 7 0 24.5 ± 1.9 

2010 8 0 15.3 ± 3.2 6 0 27.8 ± 2.6 9 0 29.7 ± 1.0 5 0 25.1 ± 3.0 

TB Jan-Mar Apr-Jun Jul-Sep Oct-Dec 

Longlines Sharks Temp. Longlines Sharks Temp. Longlines Sharks Temp. Longlines Sharks Temp. 

2006 8 6 25.2 ± 2.1 7 5 29.2 ± 0.5 2 3 28.0 ± 0.0 18 10 25.5 ± 2.2 

2007 4 5 24.6 ± 0.8 8 2 23.7 ± 1.2 5 3 31.3 ± 0.9 2 1 18.5 ± 0.6 

2009 19 10 20.7 ± 3.3 29 13 28.6 ± 1.9 19 9 30.8 ± 1.2 22 3 25.0 ± 3.0 

2010 9 0 20.0 ± 3.9 15 5 27.6 ± 2.2 7 2 30.5 ± 1.1 10 2 22.5 ± 5.5 

UR Jan-Mar Apr-Jun Jul-Sep Oct-Dec 

Longlines Sharks Temp. Longlines Sharks Temp. Longlines Sharks Temp. Longlines Sharks Temp. 

2006 5 5 25.7 ± 0.8 4 1 29.1 ± 0.9 0 0 NA 10 2 25.9 ± 1.1 

2007 3 3 24.4 ± 0.8 7 1 24.4 ± 1.0 8 1 29.8 ± 1.7 0 0 NA 

2009 6 0 18.7 ± 2.2 14 4 27.9 ± 1.7 6 0 31.1 ± 0.5 10 0 26.5 ± 2.9 

2010 3 0 10.6 ± 0.2 9 0 27.7 ± 2.2 4 0 29.3 ± 0.4 8 0 19.8 ± 4.9 
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Appendix 2: Acoustically tagged sharks with dates of capture and last date detected in the array 

of acoustic receivers, cause of tracking termination, sex, and total length in cm.  Individuals with 

identification numbers in bold were present in the Shark River Estuary during the cold snap. 

 

ID Capture date Date of last detection Tracking outcome Sex Total length (cm) 

2064 6 Mar 2009 23 Mar 2009 Transmitter malfunction M 142 

4558 18 Dec 2007 4 Jan 2010 Lost M 90 

4562 7 Nov 2008 9 Jan 2010 Emigrated F 105 

4563 31 Jan 2008 7 Dec 2009 Emigrated F 77 

4564 8 Jan 2008 13 Jul 2009 Emigrated F 107 

49663 10 Oct 2008 4 May 2009 Emigrated M 105 

49664 10 Oct 2008 5 May 2009 Emigrated M 124 

49665 10 Oct 2008 4 Jun 2009 Emigrated F 71 

49667 10 Oct 2008 2 Sep 2009 Emigrated M 110 

49668 10 Oct 2008 9 Aug 2009 Emigrated F 123 

49669 10 Oct 2008 9 Jan 2010 Lost F 131 

49670 7 Nov 2008 14 Apr 2009 Lost F 83 

49671 31 Jan 2009 29 Jul 2009 Emigrated F 116 

49672 11 Jan 2009 26 Aug 2009 Emigrated M 93 

49673 11 Jan 2009 9 Mar 2009 Lost M 82 

54799 14 Mar 2009 8 Aug 2009 Emigrated F 75 

54800 4 Apr 2009 3 Jan 2010 Lost M 110 

54801 15 Feb 2009 22 Jan 2010 Emigrated M 75 

54802 4 Apr 2009 25 Jan 2010 Emigrated M 112 

54803 14 Mar 2009 21 Aug 2009 Emigrated M 75 

54804 14 Mar 2009 13 Dec 2009 Emigrated F 105 

54805 8 May 2009 9 Jan 2010 Emigrated F 129 

54806 5 Apr 2009 4 Jan 2010 Lost F 125 

54807 4 Apr 2009 7 May 2009 Transmitter malfunction F 82 

54808 8 May 2009 Never detected Never detected M 149 

58250 8 May 2009 14 Jun 2009 Emigrated F 86 

58251 30 May 2009 21 Jun 2009 Emigrated M 132 

58252 8 May 2009 7 Jan 2010 Lost M 81 

58253 12 Jun 2009 8 Jan 2010 Lost F 125 

58254 12 Jun 2009 15 Nov 2009 Emigrated M 75 

58255 25 Jul 2009 1 Aug 2009 Died F 77 

58256 24 Jun 2009 18 Dec 2009 Died M 77 

58257 24 Jun 2009 17 Oct 2009 Transmitter malfunction M 69 

58258 4 Aug 2009 24 Jan 2010 Emigrated M 115 

58259 16 Dec 2009 10 Jan 2010 Emigrated F 75 

59901 25 Jul 2009 10 Jan 2010 Emigrated M 79 
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59902 30 Jul 2009 Never detected Never detected F 73 

59903 31 Oct 2009 29 Aug 2010 Emigrated F 75 

59906 24 Oct 2009 10 Jan 2010 Emigrated F 136 

59907 17 Sep 2009 20 Sep 2009 Emigrated F 67 
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