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Nanocrystalline and bulk samples of “Fe”-doped CuO were prepared by coprecipitation and ceramic methods. Structural and
compositional analyses were performed using X-ray diffraction, SEM, and EDAX. Traces of secondary phases such as CuFe2O4,
Fe3O4, and α-Fe2O3 having peaks very close to that of the host CuO were identified from the Rietveld profile analysis and the SAED
pattern of bulk and nanocrystalline Cu0.98Fe0.02O samples. Vibrating Sample Magnetometer (VSM) measurements show hysteresis
at 300 K for all the samples. The ferrimagnetic Neel transition temperature (TN) was found to be around 465◦C irrespective of the
content of “Fe”, which is close to the TN value of cubic CuFe2O4. High-pressure X-Ray diffraction studies were performed on 2%
“Fe”-doped bulk CuO using synchrotron radiation. From the absence of any strong new peaks at high pressure, it is evident that
the secondary phases if present could be less than the level of detection. Cu2O, which is diamagnetic by nature, was also doped with
1% of “Fe” and was found to show paramagnetic behavior in contrast to the “Fe” doped CuO. Hence the possibility of intrinsic
magnetization of “Fe”-doped CuO apart from the secondary phases is discussed based on the magnetization and charge state of
“Fe” and the host into which it is substituted.

1. Introduction

Oxides such as ZnO, TiO2, and SnO2 are currently explored
as host materials for preparing Diluted Magnetic Semi-
conductors (DMSs) [1–7]. Among these, diamagnetic ZnO
(n-type) doped with “3d” transition metal ions is presently
explored in detail ([8–13] and references there in). Wide
controversies exist in literature reports in explaining the
observed results, and the role of preparation methods in
deciding the property. CuO (Tenorite), a p-type semiconduc-
tor with a band gap of 1.2 eV, is an essential component in a
variety of oxide superconductors and is also known for its
catalytic and gas sensing properties [14–16]. CuO also being
nontoxic and abundant, an attempt has been made to unravel
its properties by doping with “Fe” and to find its potential
for application in SPINTRONICS. “Cu” has three oxidation
states, Cu+, Cu2+, and Cu3+, because of which both hole
doping and electron doping are possible. “Fe” doping into

CuO has been attempted by researchers [17–21] by different
preparation methods and was found to have no definite
evidence for “Fe” replacing the “Cu” site in CuO, as the two
components are immiscible. Smith et al. have reported that
introducing Fe2O3 into CuO by ceramic method is tough and
phase segregation results above 0.3% of “Fe” in CuO [17].
Few reports exist on CuO doped with “Mn” [22] and “Fe”
[23, 24] from DMS point of view. On the other hand, Cu2O
(cuprite), also an eco-friendly p-type semiconductor with
a direct band gap value of 2 eV [25], is useful as an energy
converter for solar cell applications [26] and as humidity and
gas sensor material [27, 28]. Reports also exist on magnetic
properties of “Mn-”, “Co-” and “Fe-” doped Cu2O [25, 29,
30]. Comparison of “Fe-doped Cu2O” with “Fe-doped CuO”
may throw some light on the understanding of the intrinsic
magnetic contribution of the later.

In this work, paramagnetic CuO (antiferromagnetic
below 230 K) doped with varying concentration of “Fe”
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was characterized in detail for its structural, compositional,
and magnetization behavior by X-Ray diffraction (XRD),
Rietveld analysis, Scanning electron microscopy (SEM),
Energy Dispersive X-Ray analysis (EDAX), Transmission
Electron Microscopy (TEM), Vibrating Sample Magnetome-
ter (VSM), Thermogravimetric analyzer (TGA), Mössbauer
spectroscopy, and XRD at high-pressures using syn-
chrotron radiation. Presence of other related phases like
CuFe2O4/Fe3O4 and Fe2O3, having coincidence with many
of the major peak positions of CuO, was not categorized
before through the powder X-ray diffraction in detail.
Their presence is only discussed based on the Mössbauer
spectra [20, 21, 23]. We performed a detailed powder X-
ray diffraction study using Rietveld refinement procedure
and cross checked the presence of CuFe2O4 from the Neel
temperature (TN) measurement using a TGA with a small
applied field. High-pressure studies were carried out to
identify the presence of any possible secondary phases. We
have also discussed the effect of secondary phases in CuO
and also compared with 1% and 2% “Fe”-doped Cu2O. The
possibility of intrinsic magnetization of “Fe”-doped CuO
[24] apart from the ferrite phases is discussed based on the
magnetization measurements and the charge state of “Fe” in
the host into which it is substituted.

2. Sample Preparation
and Experimental Details

Nanocrystalline samples of Cu(1−x)FexO (x = 0.01, 0.02,
0.03, 0.04, and 0.05) were prepared from the stoichiometric
solutions of copper nitrate and iron nitrate in deionized
water by coprecipitation method after refluxing for 20
hour, 30 hour, 40 hour and 50 hour. Precipitation was
done using aqueous NH4OH and peptized with deionized
water to remove by-products. The filtrates were then dried,
powdered and annealed at various temperatures. Nanocrys-
talline CuFe2O4 and bulk Cu(1−x)FexO (x = 0.01, 0.02, 0.03,
0.04, 0.05 and 0.07) were also prepared for comparing
the properties. For the preparation of bulk samples, sto-
ichiometric mixtures of oxides were ground in isopropyl
alcohol medium, pelleted and sintered at 900◦C/12h in
air.

Chemical coprecipitation method with subsequent re-
duction of the precipitates was employed to prepare the
samples of Cu2O : Fe (1% and 2%). Copper sulphate and
ferric nitrate solutions for the required stoichiometry were
prepared with de-ionized water. Aqueous NH4OH (0.15 M)
solution was added to the solution with constant stirring.
After stirring for 15 minutes, 1.2 M NaOH solution was
added in drops to the solution, to form light green precipi-
tates. Further, 2 mL of 10 M N2H4 was added, continued by 5
hour stirring to reduce the sample to form “Fe”-doped Cu2O
[30] and Cu2O [31].

2.1. X-Ray Diffraction Results. Nanocrystalline Cu0.95Fe0.05O
samples were annealed at 500◦C, 700◦C, 900◦C/2h, and also
at 900◦C/12h in air. X-Ray diffraction measurements were
done using CuKα radiation in the range 10◦–80◦ with a step
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Figure 1: XRD patterns of 50-hour refluxed nanocrystalline
Cu0.95Fe0.05O annealed at different temperatures.

size of 0.04◦ (Rich Seifert 2000, transmission geometry).
All the peaks could be indexed to the monoclinic structure
of CuO. Representative XRD patterns of 50 hours refluxed
Cu0.95Fe0.05O sample annealed at different temperatures
are shown in Figure 1. The samples annealed at 700◦C/2h
presented Fe2O3 peaks of small intensity around 31◦ and
33◦. However, after annealing the samples at 900◦C those
peaks vanished and only lines of CuO phase were evident.
Hence all the nanocrystalline Cu(1−x)FexO (x = 0.01, 0.02,
0.03, 0.04, and 0.05) samples and Cu0.95Fe0.05O samples
refluxed for 20 hour, 30 hour, 40 hour, and 50 hour were
annealed at 900◦C/2h. Based on these results the samples
were first considered as single phase and the magnetization
and other measurements were performed. However, most of
the reflections of monoclinic CuO (Monoclinic, JCPDS # 65-
2309) match with those of ferrimagnetic CuFe2O4 (Cubic,
JCPDS file No. 77-0010), Fe3O4 (Cubic, JCPDS file No. 85-
1436), and paramagnetic Fe2O3 (Rhombohedral, JCPDS file
No. 80-2377). Some of the peaks of CuFe2O4/Fe3O4 and
Fe2O3 having same hkl planes and position very close to
that of the host CuO are tabulated in Table 1. This overlap
of reflections presented the problem of identifying hidden
impurity phases.

2.2. Rietveld Analysis. XRD measurement with a step size of
0.01◦ with an exposure time of 8 seconds was performed
on the as-mixed powders of CuO : Fe2O3 (2%) and on the
same mixtures but sintered at 900◦C/12h in air. Interestingly,
from the close scan XRD spectrum, the subtle merged peaks
belonging to the ferrimagnetic cubic CuFe2O4 phase were
identified. The full-scale view of the close scan XRD pattern
of as-mixed CuO : Fe2O3 (2%) presents peaks of CuO and
Fe2O3. On sintering at 900◦C/12h in air, all the lines of Fe2O3

vanished indicating the substitution of “Fe” into the copper
site and the CuO main phase lines were alone evident. The
phase quantification by Rietveld refinement using a program
called MAUD [32], which combines the Rietveld method and
a Fourier transform analysis, also indicated the existence of
0.2% of CuFe2O4 in the samples. The results of refinement
are given in Table 2. The observed pattern matches with that
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Table 1: Peak position, intensity, and hkl values of possible secondary phases in Fe-doped CuO from XRD pattern.

CuO CuFe2O4 Fe3O4 Fe2O3

2θ Int 2θ Int hkl 2θ Int hkl 2θ Int

35.663 999 35.543 999 311 35.443 999 3 1 1 35.631 719

46.401 14 47.299 009 331 47.162 007 3 3 1 — —

53.615 71 53.596 076 422 53.438 088 4 2 2 54.066 427

56.863 06 57.135 259 511 56.964 281 5 1 1 — —

65.989 96 65.974 010 531 65.770 009 5 3 1 66.030 003

75.235 35 75.244 027 622 75.002 030 6 2 2 75.456 059

87.103 09 87.051 022 642 86.754 030 6 4 2 — —

90.064 15 89.964 081 731 89.650 102 7 3 1 — —

Table 2: Structural and compositional parameters of bulk as-mixed
and sintered CuO : Fe2O3 (2%) along with possible secondary
phases from Rietveld Refinement of the X-ray data.

CuO : Fe2O3 (2%)

Phase As-mixed
Sintered
(900◦C/12h in air)

CuO a = 4.694 Å a = 4.688 Å

Monoclinic
(C2/C)

b = 3.433 Å b = 3.425 Å

c = 5.144 Å c = 5.134 Å

β = 99.43 β = 99.47

% of CuO = 97.3% % of CuO = 99.8%

Fe2O3 a = 5.034 Å
—

Trigonal (R3C)
c = 13.802 Å

% of Fe2O3 = 2.7%

CuFe2O4 —
a = 8.388 Å

Cubic (Fd3m)
% of
CuFe2O4 = 0.2%

Overall R factor 8.038 1.760

Overall
goodness of the
fit (σ)

1.223 2.643

of the monoclinic CuO phase there by indicating that the
dopants were incorporated into the CuO matrix. The profile
analysis and the difference pattern of as-mixed and sintered
CuO : Fe2O3 (2%) along with the vertical lines indicating
the peak position of the CuO main phase and the CuFe2O4

impurity phase are shown in Figure 2. The square root of
intensity is plotted so as to clearly depict the closeness of the
peaks and also to show the presence of less intense impurity
peaks.

2.3. SEM and EDAX Results. SEM measurements were per-
formed on nanocrystalline Cu0.95Fe0.05O samples obtained
after refluxing for 40 hour. The image corresponding to
the as-prepared sample shows particles with rod-like and
disc-shaped morphologies (Figure 3), and their thickness
increases when annealed at 500◦C/2h in air; however it

was less than a micrometer. The thickness and length of
the rod shaped particles alone were measured. A Gaussian
fit was given and the average value of thickness was
found to be 78 nm with an average length of 0.366 μm.
As the temperature was raised to 700◦C/2h, the rod-like
morphology vanishes and the particles grow in size. At
900◦C/2h the particle morphology transforms to platelets
due to temperature-induced agglomeration and growth (not
shown here). Compositional analysis by EDAX confirmed
the desired composition of “Fe” in the entire batch of samples
(not presented here). The nominal variation in composition
is due to the random alloying of the magnetic dopants.

The observation of two different particle morphologies,
rod-like and platelet-like may be an indication of existence
of two different phases. Rod- and platelet-like morphology
may be the undoped CuO and CuFe2O4 phases, respectively.
This argument is supported by the magnetization results
which are discussed in the following sections. The samples
annealed at lower temperature are found to have param-
agnetic component [24] without saturation superimposed
with the hysteresis behavior (bottom inset of Figure 10).
This is because the temperature is not sufficient for the
CuFe2O4 to crystallize out. Hence, after annealing at 900◦C
in air, the magnetization curve becomes smooth and the
corresponding SEM micrograph presented only platelet-like
particles (not presented here).

2.4. TEM Results. The selected area electron diffraction
(SAED) on bulk Cu0.95Fe0.05O (900◦C/12h) was performed
by selecting samples from three different locations in a JEOL
EX2000. The TEM micrograph and SAED pattern (inset) is
shown in Figure 4. All the dhkl values corresponding to the
streaky spot pattern were calculated and compared with the
dhkl values of the host CuO (JCPDS 65-2309), and possible
secondary phases such as cubic CuFe2O4 (JCPDS 77-0010),
cubic Fe3O4 (JCPDS 85-1436), and rhombohedral α-Fe2O3

(JCPDS 80-2377). The dhkl and corresponding hkl values
of Cu0.95Fe0.05O and possible secondary phases are listed
in Table 3. This is also confirmed from SAED patterns for
samples taken from three different locations (not shown
here). From the above result, it is seen that Cu0.95Fe0.05O
sample has the secondary phases of CuFe2O4/Fe3O4 and
α-Fe2O3.
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Figure 2: Rietveld refinement of the XRD patterns of as-mixed CuO : Fe2O3 (2%) (a) and that sintered at 900◦C/12h in air (b). The open
circles indicate the observed pattern, and the overlying continuous line represents the calculated pattern. The vertical lines indicate the peak
position of the respective phases. The bottom continuous line of each pattern represents the difference between the observed and calculated
(Obs-Cal) patterns.

Table 3: dhkl and hkl values of bulk Cu0.95Fe0.05O shown in comparison with possible secondary phases to indicate the closeness of the dhkl

values.

dhkl (Å) of
Cu0.95Fe0.05O
from SAED

Monoclinic CuO Cubic CuFe2O4 Cubic Fe3O4 Rhombohedral

JCPDS 65-2309 JCPDS 77-0010 JCPDS 85-1436 α-Fe2O3 JCPDS 80-2377

dhkl (Å) hkl dhkl (Å) hkl dhkl (Å) hkl dhkl (Å) hkl

2.823 2.742 1 1 0 2.959 2 2 0 2.967 2 2 0 2.699 1 0 4∗

2.430 2.515 −1 1 1∗ 2.523 3 1 1∗ 2.530 3 1 1∗ 2.517 1 1 0

2.240 2.315 1 1 1 — — — — 2.206 1 1 3

1.929 1.955 −1 1 2 1.920 3 3 1 1.925 3 3 1 1.841 0 2 4

1.666 1.708 0 2 0 1.610 5 1 1 1.615 5 1 1 1.694 1 1 6

1.485 1.575 2 0 2 1.479 4 4 0 1.483 4 4 0 1.486 2 1 4

1.333 1.371 2 2 0 1.323 6 2 0 1.325 6 2 0 1.349 2 0 8

1.220 1.298 3 1 1 1.208 4 4 4 1.211 4 4 4 1.258 2 2 0

1.109 1.117 −4 0 2 1.118 6 4 2 1.121 6 4 2 1.103 2 2 6

1.015 1.014 2 2 3 1.089 7 3 1 1.092 7 3 1 — —

0.944 0.941 −1 3 3 — — — — — —

0.909 0.915 −3 3 1 — — — — — —

0.887 0.888 −3 3 2 — — — — — —

0.849 0.851 5 1 1 — — — — — —

0.797 0.798 5 1 2 — — — — — —
∗Indicates the respective 100% peak.

The TEM micrograph of nanocrystalline Cu0.95Fe0.05O
(900◦C/2h) shown in Figure 5 has agglomerates of smaller
particles due to annealing of the sample. The SAED pattern
(inset of Figure 5) shows well-defined spots indicating
formation of highly crystalline particles on annealing. The
dhkl and hkl values are tabulated in Table 4. All the dhkl values
match with those of the parent CuO except for the 3.310 Å
dhkl, which has good coincidence with that of (012) plane
of α-Fe2O3. Hence the nanocrystalline Cu0.95Fe0.05O sample

also has the possible secondary phases as observed in the
SAED of bulk Cu0.95Fe0.05O. The equation representing the
sample formation with possible secondary phases is given as
follows:

CuO + Fe2O3
900◦C/12h−−−−−−→

Δ
Cu(1−x)FexO + CuFe2O4(cubic)

+ Fe2O3 (Rhombohedral) + CuO.
(1)
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Table 4: dhkl and hkl values of nanocrystalline Cu0.95Fe0.05O shown in comparison with possible secondary phases to indicate the closely
situated dhkl planes.

dhkl (Å) of
Cu0.95Fe0.05O
from SAED

Monoclinic CuO Cubic CuFe2O4 Cubic Fe3O4 Rhombohedral

JCPDS 65-2309 JCPDS 77-0010 JCPDS 85-1436 α-Fe2O3 JCPDS 80-2377

dhkl (Å) hkl dhkl (Å) hkl dhkl (Å) hkl dhkl (Å) hkl

3.310 — — — — — — 3.682 0 1 2

2.685 2.515 −1 1 1∗ 2.523 3 1 1∗ 2.530 3 1 1∗ 2.699 1 0 4∗

2.341 2.315 1 1 1 2.416 2 2 2 2.422 2 2 2 2.517 1 1 0

2.086 1.955 −1 1 2 2.092 4 0 0 2.098 4 0 0 2.078 2 0 2

1.891 1.859 −2 0 2 1.920 3 3 1 1.713 4 2 2 1.841 0 2 4

1.684 1.708 0 2 0 1.708 4 2 2 1.615 5 1 1 1.694 1 1 6

1.616 1.617 0 2 1 1.610 5 1 1 1.483 4 4 0 1.602 1 2 2

1.514 1.501 −1 1 3 1.479 4 4 0 1.418 5 3 1 1.486 2 1 4

1.368 1.375 1 1 3 1.414 5 3 1 1.327 6 2 0 1.349 2 0 8

1.217 1.257 −2 2 2 1.208 4 4 4 1.279 5 3 3 1.213 2 2 3

1.053 1.070 1 3 1 1.089 7 3 1 1.092 7 3 1 1.103 2 2 6

0.917 0.951 −3 3 1 — — — — — —

0.748 — — — — — — — —

0.636 — — — — — — — —
∗Indicates the respective 100% peak.

1 μm

Figure 3: SEM micrograph of 40-hour refluxed nanocrystalline
Cu0.95Fe0.05O showing the mixture of rod-like and platelet-like
particles.

20
n

m

Figure 4: TEM micrograph and SAED pattern of bulk Cu0.95Fe0.05O
(900◦C/12h).

20
0

n
m

Figure 5: TEM micrograph and SAED pattern of nanocrystalline
Cu0.95Fe0.05O (900◦C/2h).

2.5. High-Pressure X-Ray Diffraction Using Synchrotron Radi-
ation. Pressure is a fundamental thermodynamic degree
of freedom available for basic investigations as well as
for processing of materials. The effects of pressure are
a result of changes in the band structure and of the energy
content of a material produced by the reduction of inter
atomic spacing. The study of the behavior of materials
at high-pressures has been useful in the observation of
new features of the physical and chemical properties. In
order to produce appreciable effects on the properties of
condensed phases, high-pressures of the order of hundreds
or thousands of bars are required. Synchrotron radiation is
a photon light source generated by high-energy electrons
that are centripetally accelerated to relativistic velocities in
the magnetic fields of a storage ring and are emitted in
a narrow cone tangent to the orbit. Synchrotron radiation,
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Figure 6: The XRD pattern of the 2% Fe-doped bulk CuO sample
at different pressures using synchrotron radiation of wavelength
0.4564 Å.

because of unique properties like high brightness, wide
energy spectrum, high degree of polarization, and high
collimation has allowed extensive investigation of a variety
of materials. The remarkable qualities of diamond such as
high yield strength and transparency to radiation over a wide
range of wavelengths have made it an obvious choice for
the anvil materials making it possible to conduct high-
pressure X-ray diffraction measurements on materials at few
hundreds of giga Pascal (GPa) using synchrotron radiation.
Presence of secondary phases can be evidenced from the
high-pressure X-ray diffraction measurements due to the
fact that the elastic properties of CuO, Fe, and CuFe2O4

are different. Hence, we are motivated to study the sample
at high-pressures to identify the presence of any hidden
secondary phases.

High-Pressure XRD measurements were conducted in
angle dispersive geometry using Mao-Bell type Diamond
Anvil Cell. Experiment was performed using the synchrotron
source at beamline 16IDB, High-Pressure Collaboration
Access Team (HPCAT), Advanced photon source, Chicago,
with a wavelength of 0.4564 Å. Bulk CuO : Fe (2%) powder
was loaded along with a few grains of platinum which
acts as a pressure standard [33]. A stainless steel gasket of
50 μm thickness indented using diamond anvils of culet size
300 μm, wherein a 100 μm hole drilled serves as the sample
chamber. The size of the incident beam was 10× 10μm2 and
the diffracted beam was recorded on a Mar 3450 image plate.
The diffraction measurements were carried out from 0.5 GPa
to 44 GPa at room temperature and are shown in Figure 6.
Each pattern was fitted and refined to monoclinic structure
of CuO with space group C21/c using the software GSAS [34]
with EXPGUI [35]. Though no structural transitions had
been reported up to 100 GPa in monoclinic CuO [36–40],
the study helps in identifying the hidden phases based on the
variation in compressibility.

In the case of 2% Fe-doped CuO, application of
pressure causes a shift in the diffraction peaks towards
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higher angle indicating reduction in cell volume. Rel-
ative variation of refined lattice parameters as a func-
tion of pressure is shown in Figure 7. The overall trend
on application of pressure on the “b” and “c” lattice
parameters is to decrease them with increasing pres-
sure and that “a” increases gradually (Figure 7). The
cell volume obtained from the refinement is found to
decrease with pressure (Figure 8) and no abrupt change is
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observed indicating absence of structural transition. Liter-
ature reports indicate absence of structural transition from
high-pressure electrical resistivity measurements in mon-
oclinic CuO up to 100 GPa [36, 40].

Upon increasing the pressure, at 3.98 GPa, a peak clearly
separates out from the (200) plane. Hence, when CuO gets
compressed and shifts towards higher angle, an unknown
peak becomes evident. With further increasing pressure,
we observed that the (−111) peak of monoclinic CuO
shifts towards higher angle and tends to overlap with the
unknown peak. As the pressure is further increased, the
intensity of the unknown peak gradually decreases and
completely vanishes at 26.02 GPa before overlapping with the
(−111) plane of CuO. Similar behavior has been observed
in pure CuO itself (the results will be published elsewhere).
Reimann and Syassen [41] observed changes in the Raman
modes of pure CuO in high-pressure Raman measurements
up to 34 GPa which they explain as the changes in the
internal structure parameter. Reimann and Syassen also
report Malinowski to observe a structural anomaly in his
X-ray diffraction measurement around 10 Gpa (referred as
private communication in back reference of [41]). High-
pressure neutron diffraction studies by Ehrenberg et al. [38]
suggest Jahn Teller type structural distortion seen below
8 GPa in pure CuO. Hence, appearance and suppression
of an additional peak in the high-pressure XRD of 2%
Fe-doped CuO sample is also characteristic of pure CuO. The
phase transformation is similar to Jahn Teller-like distortion
which occurs at high-pressure related to the variation of the
bond angle with pressure. In addition to this observation, the
absence of any other additional peaks evidences absence of
secondary phases of them to be present below the limit of
detection. The conclusion was drawn based on the variation
of the bulk modulus of CuO and various secondary phases.

The (−111) peak which was the maximum intensity peak
at 0.5 GPa loses its intensity gradually with increasing pres-
sure, and at the same time, the (200) peak gain intensity. This
may be due to the pressure-induced preferred orientation.
This small internal structural distortion [37, 38, 41] is found
to be reversible upon releasing the pressure. However, there is
a slight shift towards higher angle in the peak positions along
with broadening, also, after releasing the pressure, the (200)
plane becomes the peak with maximum intensity instead
of (−111) plane which may be due to the pressure-induced
lattice strain and preferred orientation. However, pressure-
induced substitution of a fraction of “Fe” at the “Cu” site
might have also resulted which can be understood in more
detail from high-pressure neutron diffraction measurement
which is more sensitive to the magnetic moment of the
elements in the sample when performed in the similar
pressure range. The PV-equation of state fitted using the
third-order Birch-Murnaghan equation of state (BM-eos) is
given by

P = 3K0

2
∗
[(

V0

V

)7/3

−
(
V0

V

)5/3
]

∗
[

1 +
3
4
∗ (K ′0 − 4

)∗
((

V0

V

)2/3

− 1

)]
,

(2)

where K0 is bulk modulus, K ′0 is derivative of bulk modulus
with pressure, V0 is zero pressure volume, and V is volume
at pressure P. The value of K ′0 set to 4 shown in Figure 8
indicates a steady decrease in volume on increasing the
pressure with no abrupt change indicating absence of phase
transition. Hence, absence of secondary phases is evident
from the high pressure XRD data and even if present, it is
well below the level of detection.

2.6. TGA Results. To identify the effect of “Fe%” doping
on the TN of the samples, the TGA measurements were
performed with a small applied field (≈20 Oe) to determine
the TN as a function of temperature. The measurement
was performed in N2 atmosphere with a heating rate of
10◦C/min up to 600◦C. For the 50 hour refluxed nanocrys-
talline Cu0.95Fe0.05O sample, the TN was found to increase
with decreasing crystallite size (Figure 9). The increase in
magnetization prior to TN in the TGA curves observed
for Cu0.95Fe0.05O is due to Hopkinson effect which is also
reported in the case of NiFe2O4 [42]. The bulk Cu0.95Fe0.05O
had a TN of 458◦C, whereas a TN of 479◦C (900◦C/12h)
for the 49 nm sample and that of 486◦C (900◦C/2h) for the
25 nm sample were observed. Thus the decrease in crystallite
size increases the TN . However, this variation of TN may be
due to the size effect of the copper ferrite phase that has
formed within the sample. To avoid the effect of particle size
on TN , we studied the bulk samples prepared by ceramic
method to trace the original trend of variation of TN with
“Fe” concentration in CuO. The TN observed for “Fe”-
doped CuO bulk samples is shown in Table 5. There was no
noticeable trend in the variation of TN . The TN remained
around 460◦C irrespective of the “Fe%”, indicating that
one major secondary phase had formed within the sample.
This TN value has good coincidence with the TN of cubic
CuFe2O4, which is 465◦C [43], whereas the TN of cubic
Fe3O4 is 585◦C. This observation is a clear experimental
evidence that the observed hysteresis behaviour is from the
phase-segregated CuFe2O4. This confirms that the “Fe” does
not get substituted into the substitutional site of CuO even
for 1% of “Fe” in CuO to effect any change in the property
of CuO; rather it favors the formation of cubic CuFe2O4

as segregates within the sample whereas Park et al. [24] do
not report any ferrite impurity phase; they instead discuss
intrinsic ferromagnetic behaviour in 2% “57Fe”-doped CuO
mediated by carriers localized around the oxygen vacancies
studied by Mössbauer measurements.

For “Fe”-doped bulk CuO, the TN is found to be around
460◦C. The TN of Fe3O4 is 585◦C and is higher than the
TN observed for bulk Cu0.95Fe0.05O whereas the TN of cubic
CuFe2O4 is 465◦C [43]. The TN of bulk CuO doped with Fe
to various extents was very close to that of cubic CuFe2O4.
Hence no appreciable variation inTN was found with varying
“Fe” concentration. Hence, even the 1% and 2% “Fe”-doped
CuO is inevitably found to possess copper ferrite phase.
CuFe2O4 when quenched or rapidly cooled (from above
760◦C), takes cubic structure with a = 8.37 Å. If cooled
slowly, it attains tetragonal phase with a = 8.22 Å and c =
8.70 Å [43]. Since all the samples were furnace cooled from
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Table 5: Neel transition temperature of bulk CuO with “Fe” doped
to various extent and pure CuFe2O4.

% of “Fe” in CuO
Neel transition
temperature (TN ) ◦C

Cu0.99Fe0.01O 463

Cu0.98Fe0.02O 464

Cu0.97Fe0.03O 456

Cu0.96Fe0.04O 480

Cu0.95Fe0.05O 458

Cu0.90Fe0.10O 481

CuFe2O4 483

above 900◦C, the cubic phase of CuFe2O4 is predominantly
observed. Hence the observed magnetic property for these
samples is not fully intrinsic in nature; instead they have a
major contribution from the cubic CuFe2O4phase leading
to a “pinned type” composite magnetic material. Similar
observation of contribution from NiFe2O4 phase has also
been reported in the case of Fe-doped NiO by Douvalis et
al. from Mössbauer measurements [44].

2.7. Magnetization Results. The magnetization measure-
ments were performed in a Vibrating Sample Magnetometer
(VSM) (EG and G Princeton Applied Research VSM 4500)
at 300 K. The Cu0.95Fe0.05O samples show clear hysteresis
behaviour at room temperature (Figure 10) whereas Borzi
et al. had observed paramagnetic behaviour from the
Mössbauer measurements for “Fe”-doped CuO, at room
temperature [23]. Park et al. [24] have reported ferromag-
netic hysteresis behavior for annealing above 500◦C; however
they explain it as intrinsic behavior due to indirect coupling
among the Fe3+ ions via a localized carrier at oxygen vacancy.
Treatment at 500◦C is not sufficient to completely crystallize
out CuFe2O4. We could also observe a paramagnetic-like
behaviour for the samples annealed at 500◦C/2h from VSM
(bottom inset of Figure 10) and the loops did not saturate
but were found to show hysteresis at room temperature
when annealed at 900◦C/2h. Hence, after annealing at 900◦C
in air, the magnetization curve becomes smooth and the
corresponding SEM micrograph also presented only platelet-
like particles (not shown here). The Mmax values were found
to increase with increasing refluxing hour (top inset of
Figure 10) and also found to increase with increasing “Fe%”
in nanocrystalline CuO samples refluxed for 50 hour and
annealed at 900◦C/2h in air (Figure 11). Inset of Figure 11
shows the comparison of the magnetization data of all the
samples with pure copper ferrite; note the large difference
in magnetization. This may be presumably due to increasing
volume fraction of CuFe2O4 within the samples. The non-
saturation of loops may be due to the following reasons:
(a) presence of clusters of undoped paramagnetic CuO (at
300 K), and (b) incomplete formation of ferrite secondary
phases, which are responsible for the observed dominant
magnetic behaviour.

In our case of “Fe”-doped CuO, ferrimagnetic correla-
tions among “Fe2+” atoms substituting the “Cu” site may lead
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Figure 9: TGA results of samples: (A) bulk Cu0.95Fe0.05O, TN =
458◦C, (B) nanocrystalline Cu0.95Fe0.05O annealed at 900◦C /12h,
TN = 479◦C, (C) nanocrystalline Cu0.95Fe0.05O annealed at 900◦C
/2h, TN = 486◦C.
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to an ordered spin configuration enhancing the magnetic
susceptibility. But this effect is masked by the dominant
ferromagnetic signal from the CuFe2O4 phase, at 300 K.
Though the observed magnetic behavior at 300 K is dom-
inated by the CuFe2O4 phase, other plausible contribution
comes from the “Fe2+” substituted in “Cu” site of CuO.
The dominant ferromagnetic signal from CuFe2O4 masks
magnetic contribution from “Fe2+” substituted in CuO and
pertains from reaching a conclusive hypothesis. One has to
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do more work to explain from the standpoint of “Fe2+”
substituting the “Cu” site by delineating the contribution
from the segregated CuFe2O4 phase.

The magnetization measurements on bulk 1% and
2% Fe- doped CuO performed at 77 K showed distorted
hysteresis loops (Figure 12). This is because the measurement
temperature is well below the Neel temperature (TN) of
CuO. The noncollinear spin arrangement due to partial Fe
substitution at the Cu site now weakens and the spin align-
ment tend towards (perfect anticollinear) antiferromagnetic
arrangement. The distorted hysteresis (Figure 12) showed a
loop shift away from the M = 0 (inset of Figure 12) which
is known as exchange bias [45]. Exchange bias is commonly
observed in a mixture of antiferromagnetic (AFM) and
ferromagnetic (FM) type compounds [46]. Susceptibility
studies also show three dimensional AFM behavior below
212 K [47].

The 1% “Fe”-doped CuO showing ferrimagnetic behav-
ior at 300 K is found to present distorted signal at 77 K.
At 77 K, CuO is antiferromagnetic; hence the spins tend
towards anticollinear arrangement leading to decrease in
magnetization. However, if reasonable quantity of CuFe2O4

is present, then, an increase in magnetization at 77 K
should have been observed, but, to the contrary it deteri-
orates. At 77 K, the sample becomes an antiferromagnetic-
ferrimagnetic composite mixture, whereas at 300 K, it is
a paramagnetic-ferrimagnetic mixture. At 77 K, the loss of
hysteresis behavior could be explained based on the anti-
ferromagnetic transition occurring in CuO in which spins
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in the anticollinear arrangement dominate by distorting the
ferrimagnetic arrangement of CuFe2O4.

3. Results and Discussion

Based on the above given experimental observations, for-
mation of cubic CuFe2O4 is confirmed. However one could
not discard the candidature of CuO to be an efficient
material from applications point of view. This is because,
even if CuFe2O4 phase persists in CuO, the material can
be utilized for the fabrication of magnetic tunnel junction
(MTJ-) like structures and also there may be an intrinsic
magnetic behaviour due to “Fe” substitution in the “Cu” site.
The magnetization measurements on CuO, with CuFe2O4

as an impurity, show large variation in Mmax and HC

as observed from the magnetization experiments which
are essential criteria for an MTJ. There are a reasonable
number of literature reports on MTJs composed of partly
or all oxide layers. MTJs using Al2O3 barrier and an Fe-
oxide layer converted to ferromagnetic Fe3O4 by anneal-
ing have been demonstrated [48]. Heterostructures MTJ
device using Ti(1−x)CoxO(2−δ) DMS as the spin injection
electrode has also been demonstrated [49]. All oxide MTJ’s
such as Fe3O4/MgO/Fe3O4, Fe3O4/CoCr2O4/La0.7Sr0.3MnO3

(LSMO) have also been reported [50–53]. In the case of all
oxide Fe3O4/Mg2TiO4 (MTO)/LSMO structure, Alldredge
et al. [54] reported minimal mismatch due to similar
spinel structure at the Fe3O4/MTO interface. They have
also reported coercive fields of about 200 and 600 Oe for
the LSMO and Fe3O4 layers, respectively. Diode effect has
been observed in all oxide Sr2FeMoO6/SrTiO3/CoFe2O4 MTJ
by Fix et al. [55]. The coercive field of the two magnetic
electrodes in an MTJ should be well separated and the
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magnetization reversal of these layers should be abrupt.
Hence without attaining single phase one may try to use this
material for multilayer switching applications considering it
as a composite material of “pinned” type magnetization; the
discussion in this point of view is given in this section.

3.1. Pinned Type Composite Magnetic Material. The VSM
measurements on CuO doped with varying “Fe%” show the
Mmax value to increase. Since CuFe2O4 present in the sample
is mainly responsible for the observed magnetic behavior,
then with increasing “Fe%” in CuO, the volume fraction
of CuFe2O4 has to increase; that is, the samples should
tend towards more soft nature, with high Mmax and low
HC. Instead, we observe a linear increase in Mmax and an
increase in HC with increasing “Fe%” instead of decrease
in HC (Figure 13) for 1, 4, and 7% “Fe”-doped CuO, which
may be due to domain wall pinning effects. The spontaneous
magnetic moment per “Fe” atom in CuO for 1, 4, and 7%
are 0.0057 μB , 0.0168 μB , and 0.0276 μB , respectively. Besides
the enhancement of HC, the squareness ratio, MR/MS also
increases with “Fe%” in CuO. The value of squareness ratio
of 1, 4 and 7% “Fe” doped CuO is 0.249, 0.448, and 0.519,
respectively. This is an indication that the “Fe”-doped CuO
tend towards “hard” nature in spite of the presence of soft
magnetic CuFe2O4.

The HC value of 7% “Fe”-doped bulk CuO (620 Oe) is
three times greater than the value of 1% “Fe”-doped bulk
CuO (202 Oe) (Figure 13 inset) indicating that the layer of
“Fe” composition-varied CuO thin films may show exchange
coupling. High HC CuO layer may be used as a “pinned”
layer in MTJ structures. The HC of bulk and nanocrys-
talline Cu0.95Fe0.05O was found to be 236 Oe and 1225 Oe,
respectively. The HC increased five times in magnitude in
the nanocrystalline sample (Figure 14). The Mmax value of
nanocrystalline CuO : Fe (1% to 5%) is found to increase
with “Fe” concentration (Figure 14 inset). These aspects
could induce exchange coupling which is desirable for device
fabrication if one could stabilize a single phase Cu–Fe–O
solid solution without any ferrite formation by adopting
different preparation techniques or by preparing a sample
with homogenously dispersed CuFe2O4 in CuO.

By comparing the virgin magnetization curve in the hys-
teresis loop, one recognizes two qualitatively different kinds
of behavior: (i) nucleation type and (ii) pinning type [56].
In a nucleation type magnet, the virgin curve is steep and
saturation is reached under fields much lower than the
saturation loop coercive field. Domain walls are present
in the virgin state and the fact that the material can be
easily saturated shows that walls are free to move and do
not experience any important pinning effects. Once the
virgin domain structure has been swept away, the formation
of reversed domains becomes a difficult process, and the
demagnetization curve is characterized by a substantial
coercivity.

In a pinning type magnet, fields of the order of the
saturation loop coercive field are required to saturate the
material even when one starts from the virgin state. This
indicates that domain wall pinning is the main mecha-
nism responsible for coercivity. Domain wall motion is
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Figure 13: Hysteresis loop of 1%, 4%, and 7% “Fe”-doped bulk
CuO at 300 K. Inset shows the large variation in coercivity of 1%
and 7% “Fe”-doped samples.

the dominant mechanism and the loop width is mainly
determined by wall pinning effects [56]. The impediments
to wall motion will determine the coercive field. The
physical picture summarized by the term wall pinning is
one where the impediments to wall motion arise from
some form of structural disorder; dispersed phases with
magnetic properties different from those of the matrix, as
well as nonmagnetic inclusions or cavities, may also be
important sources of pinning. The strength of the pinning
effect may critically depend on the dimensionality of the
pinning sources. The strength, density, and dimensionality
of pinning centers can affect the value of HC . Though the
solubility of “Fe” in CuO is very much limited, a very small
quantity of any immiscible component will always dissolve
in another component, as this increases the configurational
entropy and lowers the free energy of the crystal [57]. Hence,
though the formation of CuFe2O4 is more favorable while
trying to dope “Fe” in CuO, a fraction of “Fe” also enters into
the Cu2+ site as substitutional impurity. Hence contribution
from intrinsic magnetization from the fraction of Cu–Fe–O
substitutional solid solution formed within the sample apart
from the composite like behavior of paramagnetic CuO
dispersed with CuFe2O4 particles cannot be disregarded.
Hence, one has to really ascertain its effect delineating the
major magnetic contribution from the segregated CuFe2O4

phase. The intrinsic magnetic behavior could result from the
spin alignment induced by the fraction of “Fe” substituting
the “Cu” site. One could also argue that as the “Fe%” in
CuO increases, the fraction of “Fe” substituting the cationic
site also increases reasonably. However to cross check this
argument, neutron diffraction measurements at ambient and
at high-pressures are necessary.

3.2. Comparison of 1% Fe Doped CuO and Cu2O. The results
of 1% “Fe”-doped Cu2O imply us to elucidate the role of
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substitutional “Fe” in CuO. The non-observation of room
temperature ferromagnetic behaviour in diamagnetic Cu2O
doped with 1% of “Fe” is another indirect support for the
plausible intrinsic magnetization of “Fe”-doped CuO. The
XRD pattern of pure Cu2O (a = 4.253 Å) confirmed the
cubic structure of Cu2O and is shown in comparison with
1% and 2% “Fe”-doped Cu2O in Figure 15. Single phase 1%
“Fe”-doped Cu2O was achieved by optimizing the concen-
tration of N2H4 and the stirring duration. The XRD pattern
of 2% “Fe”-doped Cu2O showed secondary phases of Fe3O4

which is shown in comparison with pure Cu2O in Figure 15.
The compositional analysis by EDAX confirmed the near
stoichiometry of 1% and 2% “Fe”-doped Cu2O as it is
a random alloy. Reproducibility was confirmed by numerous
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Figure 16: Paramagnetic behavior of 1% Fe-doped Cu2O at 300 K.
Inset shows the same for 2% “Fe”-doped Cu2O.

trials because formation of Cu2O by wet chemistry method
fairly has a chance of formation of CuFe2O4 and metallic
“Fe” on over reduction with N2H4. Moreover the as-prepared
samples were crystalline in nature due to preparation by
reducing with N2H4. Hence annealing was not performed for
any of the samples. Moreover, copper (I) oxide, being a meta
stable phase, turns into a stable copper (II) oxide when
heated above 160◦C in air. The magnetization measurements
on 1% “Fe”-doped Cu2O at 300 K showed paramagnetic
behavior (Figure 16) [30]. Pure Cu2O is diamagnetic, but
on doping with “Fe”, the material exhibits paramagnetic
behavior. The low temperature measurements at 77 K show
clear diamagnetic behavior (not shown here) indicating the
non-ferromagnetic role played by impurities present, if any.
The magnetization measurements on 2% “Fe”-doped Cu2O
sample, though having Fe3O4 phase, did not show clear room
temperature ferromagnetism (Inset of Figure 16), whereas
1% and 2% “Fe”-doped CuO presents clear ferromagnetic
hysteresis behavior which suggests possible contribution
from Cu–Fe–O in addition to that from cubic CuFe2O4.
Neutron diffraction measurements at ambient and at high-
pressures are necessary on both the Fe-doped CuO and Cu2O
samples to shed more light in this aspect.

For the formation of AB2O4 spinel structure, A is
required to be a dipositive ion, but in Cu2O, “Cu” is in +1
oxidation state and hence formation of spinel CuFe2O4 is not
favored. Due to the absence of this spinel impurity phase,
“Fe” doped Cu2O does not show a dominant ferromagnetic
property as it is observed in the case of 1% Fe-doped CuO.

The coordination number between Cu and O atoms in
tenorite CuO (2+) and cuprite Cu2O (1+) is believed to play
a crucial role in the observed difference in their magnetic
properties with “Fe” doping. In monoclinic CuO, the Cu
atoms are coordinated to four coplanar oxygen situated at
the corners of an almost rectangular parallelogram [17] with
two more distant apical “O” atoms. A distorted octahedron
is formed because of large Jahn-teller effect. Depending on
the valence state (1+, 2+ or 3+), a “Fe” ion has up to 5, 4
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and “3d” electrons with a total spin of s = 2
1
2

, s = 2 and

s = 1
1
2

, respectively, due to Hund’s rule. A Cu ion has a

total spin of 1/2 and hence “Fe” ions doped into CuO have
extra moments which are coupled to the lattice of Cu spins
via superexchange. CuO at 300 K is paramagnetic and has
one unpaired spin due to the 3d9 electronic configuration.
The fraction of Fe3+ ions substituted at the “Cu” sites in
CuO has 5 unpaired electrons, which might also contribute
to the observed magnetic property of “Fe”-doped CuO by
forcing the “Fe” magnetic dipoles to align ferromagnetically
by interacting with the unpaired spins of the CuO which
is at paramagnetic state at 300 K. Extending the analogy in
CuO : Mn [22], we suppose that a fraction of “d” electron
states are available for hopping between the “Fe” sites
and hence mediating ferromagnetism through the Hund’s
rule coupling. Hence we attribute the observed magnetic
behavior of CuO : Fe to have a dominant hidden intrinsic
nature apart from the segregated CuFe2O4 phase whereas
this is not in the case of Cu2O, where we have Cu+

ions coordinated linearly to two “O” ions, due to its 3d10

configuration. There are no unpaired spins and the spin
value is s = 0. Hence on substituting with 1% Fe, irrespective
of the charge state of “Fe”, the Cu2O matrix could not
mediate a ferromagnetic ordering through the substituted
“Fe” ions. Hence, the spin configuration of the host matrix
into which “Fe” is doped is also responsible for the observed
magnetic behavior.

4. Conclusion

The XRD, TEM, and TGA results imply that the observed
magnetic properties of “Fe”-doped CuO have contribu-
tion from the impurity phases, the nature of variation
of HC and Mmax with increasing “Fe%”, and the role of
substitutional “Fe” and non-observation of ferromagnetic
behavior in “Fe”-doped Cu2O invites exclusive investigation
on CuO. Achieving ferromagnetic behavior from a param-
agnetic/antiferromagnetic host by creating a spin imbalance
seems to be relatively easier and advantageous than achieving
it from diamagnetic oxides like ZnO, TiO2, and so on. The
size dependent magnetic properties of “Fe”-doped CuO with
controlled formation of CuFe2O4 are another interesting
aspect of this material which could be exploited for applica-
tions by suitably varying the size of the particles. The above
said properties could be exploited for device applications
provided if the “Fe” composition in CuO and the preparatory
method and processing conditions are stabilized so as to
result in a good single phase Cu–Fe–O solid solution with
intrinsic magnetization and high reproducibility. Variation
of HC in “Fe”-doped CuO, though CuFe2O4 phases are
present, extends from “soft” magnetic behaviour to “hard”
with variation of “Fe%” in the samples studied. This wide
variation in HC of such a DMS-like composite material could
be thought of for fabricating MTJs with low HC-“free” layer
and high HC-“pinned” layer separated by a thin insulating
layer. The advantage of MTJ’s made up of such all oxide DMS
like layers with high Mmax, TN , and HC over the metallic
Fe/AlOx/NiFe and CoFeB/AlOx/CoFeB type of MTJs is that

these are less complicated and cheap and will have very good
lattice matching and least strain between the “pinned” and
“free” layers.
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