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Recently, polynomial phase modulation (PPM) was shown to be a power- and bandwidth-efficient modulation format. These
two characteristics are in high demand nowadays specially in mobile applications, where devices with size, weight, and power
(SWaP) constraints are common. In this paper, we propose implementing a full-diversity quasi-orthogonal space-time block code
(QOSTBC) using polynomial phase signals as modulation format. QOSTBCs along with PPM are used in order to improve the
power efficiency of communication systems with four transmit antennas. We obtain the optimal PPM constellations that ensure
full diversity and maximize the QOSTBC’s minimum coding gain distance. Simulation results show that by using QOSTBCs along
with a properly selected PPM constellation, full diversity in flat fading channels and thus low BER at high signal-to-noise ratios
(SNR) can be ensured. More importantly, it is also shown that QOSTBCs using PPM achieve a better error performance than those
using conventional modulation formats.

1. Introduction

Orthogonal space-time block codes (STBCs) have drawn a
great deal of attention from researchers in recent years. Due
to the diversity gain they provide to communication systems,
these codes are used to more effectively exploit the multipath
characteristics of the wireless channel [1]. It has been shown,
however, that orthogonal codes for complex constellations
and more than two transmit antennas cannot achieve full
transmission rate. To address this issue, Jafarkhani in [2],
proposed a code structure in which the columns of the
transmission matrix are divided into groups. While the
columns within a group of columns are not orthogonal to
each other, different groups of columns are orthogonal to
each other. This code structure is known as quasi-orthogonal
STBCs (QOSTBCs) and although such codes guarantee full
transmission rate, they sacrifice full diversity.

In [3] Su and Xia presented quasi-orthogonal STBCs
that attain full rate and full diversity. Such characteristics
can be readily achieved by optimally selecting a constel-
lation rotation angle subject to the maximization of the

metric known as diversity product. Specifically, half of the
symbols transmitted in one signaling interval are chosen
from the unmodified constellation, while the other half are
chosen from the optimally rotated constellation. In [3], the
optimal rotation angle for PSK and QAM constellations
was presented, and it was demonstrated that the QOSTBCs
employing constellation rotation have an improved bit error
rate (BER) performance in comparison with the QOSTBCs
without it.

The codes presented in [3] make use of optimally
rotated PSK and QAM constellations to achieve full diversity;
however, for wireless communication devices with size,
weight, and power (SWaP) constraints one also has to ensure
the most power-efficient modulation format is used. To
address this limitation in single-antenna systems, in [4],
Sinha et al. introduced a modulation format in which the
phase coefficients of polynomial phase functions are used
to carry information. This modulation format, known as
polynomial phase modulation (PPM), was shown to pro-
vide significant improvements in BER performance under
additive white Gaussian noise (AWGN) and Rayleigh fading
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channels compared to PSK constellations. The demodulation
of PPM signals is carried out using the so-called high-order
ambiguity function (HAF) described in [5, 6]. Following the
results in [4] for single input single output (SISO) systems,
Dam et al. in [7] proposed a space-time module structure
for PPM signals. The proposed module structure allows for
the simple design of real orthogonal space-time codes for
more than two transmit antennas because the encoding is
performed on the phase coefficients. Nevertheless, in [7],
it is also shown that the error rate performance of such
structure is worse than conventional modulation formats at
high signal-to-noise ratios (SNR). The reason behind this
decline in performance is that by encoding only the phase
coefficients, the module structure does not ensure that the
transmitted signals will provide full transmit diversity.

In this paper, in contrast with [7], we design full-diversity
PPM systems using QOSTBCs for four transmit antennas by
encoding the transmitted signal. In order to guarantee the
maximum diversity for the proposed systems, the QOSTBC
structure presented by Jafarkhani in [2] is used to encode
optimally rotated PPM constellations. Here, we obtain the
optimal rotation angle for binary PPM signal constellations.
Then, through Monte-Carlo simulations, it is shown that
rotating the constellation by the optimal angle yields an
improved bit error rate (BER) performance compared with
nonrotated PPM constellations. In these simulations, we also
show that the proposed systems perform better in terms of
error rate than conventional systems using PSK modulation.

This paper is organized as follows. In Section 2, the
system and polynomial phase modulation (PPM) signal
model are presented. In Section 3, the Jafarkhani scheme
for quasi-orthogonal space-time codes is described as well
as its condition for full diversity. In Section 4, the optimal
constellations for the proposed modulation format using
different polynomial phase orders are obtained. Simulation
of the error rate performance of a QOSTBC using different
PPM constellations is presented in Section 5. Concluding
remarks are presented in Section 6.

2. System and Signal Model

For a system with N transmit and M receive antennas, the
received signal rk,m at time instant k and antenna m is given
by

rk,m =
N∑

n=1

hn,mCk,n + ηk,m, (1)

where 1 ≤ k ≤ T and each coefficient of the T × N trans-
mission matrix C is denoted as Ck,n. The coefficients hn,m are
independent identically distributed (i.i.d) complex Gaussian
random variables which represent the components of an N ×
M quasistatic flat fading wireless channel. Finally, ηk,m are the
components of a T × M matrix of independent samples of
a zero mean complex Gaussian random variable.

In this paper, a wireless communication system with four
transmit antennas and one receive antenna is considered
for simplicity; however, the system can be easily extended
to more than one receive antenna. The modulation format

used here is known as polynomial phase modulation and the
modulated signal s(t) for a symbol period T0 is

s(t) = A exp
(
j
(
ωct + ϕ(t)

))
, (2)

where A is the signal amplitude and is assumed to be unity,
0 ≤ t ≤ T0, and

ϕ(t) = aL

(
t

T0

)L
+ aL−1

(
t

T0

)L−1

+ · · · + a1

(
t

T0

)
+ a0

(3)

is the time-varying phase whose phase coefficients are chosen
as ai ∈ {±π/2}. Therefore, depending on the transmitted
symbol, a specific combination of phase coefficients is
selected. For instance, given a linear-binary PPM signal,
if the symbol to be transmitted is 01, the selected phase
coefficients are a(1 ) = −π/2, a0 = π/2. It is important to
note that if a higher transmission rate is required, higher
polynomial phase orders could be employed. The system
block diagram is illustrated in Figure 1. In the diagram,
it is shown that the input binary stream is mapped onto
a sequence of PPM symbols. Each set of four symbols
(s1, s2, s3, s4) is then transformed by the T × N transmission
matrix C. At the receiver end, the signal is decoded through
pairwise maximum likelihood (ML) decoding to recover the
original bit stream.

3. STBC from Quasi-Orthogonal Design

Since full transmission rate cannot be accomplished with
complex orthogonal STBCs when more than two transmit
antennas are used, the quasi-orthogonal STBC proposed by
Jafarkhani in [2] is employed.

For two transmit antennas, Alamouti [1] proposed the
following full rate orthogonal STBC for complex signal con-
stellations,

G(s1, s2) =
⎛
⎝

s1 s2

−s∗2 s∗1

⎞
⎠. (4)

Then, for four transmit antennas Jafarkhani expanded
the Alamouti scheme to

C =
⎛
⎝

G(s1, s2) G(s3, s4)

−G∗(s3, s4) G∗(s1, s2)

⎞
⎠. (5)

From (4) and (5), it follows that

C =

⎛
⎜⎜⎜⎜⎜⎝

s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3

−s∗3 −s∗4 s∗1 s∗2
s4 −s3 −s2 s1

⎞
⎟⎟⎟⎟⎟⎠
. (6)

The block code shown in (6) clearly achieves full rate as
one symbol is transmitted per time interval. Nevertheless,
due to the relaxation of the code orthogonality requirement,
decoding complexity increases with respect to that of
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Figure 1: System block diagram.

orthogonal codes because only pairwise decoding is possible.
Specifically, decoding QOSTBC encoded signals is reduced
to minimizing the cost functions over all possible pairs of
symbols [2]:

f14(s1, s4) =
(
|s1|2 + |s4|2

)
⎛
⎝

4∑

n=1

|hn|2
⎞
⎠

+ 2�
{(−h1r

∗
1 − h∗2 r2 − h∗3 r3 − h4r

∗
4

)
s1

+
(−h4r∗1 + h∗3 r2 + h∗2 r3 − h1r∗4

)
s4
}

+ 4�
{
h1h∗4 − h∗2 h3

}
�
{
s1s∗4

}
,

f23(s2, s3) =
(
|s2|2 + |s3|2

)
⎛
⎝

4∑

n=1

|hn|2
⎞
⎠

+ 2�
{(−h2r

∗
1 + h∗1 r2 − h∗4 r3 + h3r

∗
4

)
s2

+
(−h3r∗1 − h∗4 r2 + h∗1 r3 + h2r∗4

)
s3
}

+ 4�
{
h2h∗3 − h∗1 h4

}
�
{
s2s∗3

}
.

(7)

In the proposed QOSTBC PPM system, the binary infor-
mation is recovered using a maximum likelihood algorithm
that estimates the polynomial phase signal parameters of the
symbols estimated through (7).

Aside from the decoding complexity, another important
limitation of quasi-orthogonal STBCs is their lower BER
performance at high SNRs compared to orthogonal STBCs.
The reason for this is that QOSTBCs, if generated from
only one constellation, do not comply with the full diversity
requirement described in the following manner.

Given a pair of distinct transmitted codewords

C = C(s1, s2, s̃3, s̃4), C′ = C
(
s′1, s′2, s̃′3, s̃′4

)
, (8)

where s̃3 and s̃4 are rotated versions of s3 and s4, the coding
gain distance (CGD) is defined as

CGD = det
[
D(C,C′)HD(C,C′)

]
, (9)

where D(C,C′) is (C′ − C) and D(·)H is the Hermitian of
D(·). From this, full diversity can be achieved if and only

if the above determinant is not zero. For this condition
to uphold, one should choose symbols s1 and s2 from the
regular constellation and s̃3 and s̃4 from a different one. The
second constellation, in this case, should be chosen such that
the minimum CGD is maximized. For a signal constellation
A, this optimization problem is described in [8] as

CGDmin
(
φ(t)

) = max
(s1,s̃3) /=

(
s′1,s̃′3

)

∣∣∣∣
(
s1 − s′1

)2 −
(
s̃3 − s̃′3

)2
∣∣∣∣

4

,

(10)

where s1 ∈A and s̃3 ∈ e j∅(t)A.
If dmin = min(|s1 − s′1|), then the upper bound of the

minimum CGD can be expressed as [8]

CGDmin
(
φ(t)

) ≤ d8
min. (11)

4. Optimal PPM Constellations

As mentioned in the previous section, full diversity can be
achieved if symbols s̃3 and s̃4 are chosen from a constellation
rotated with respect to the one used for symbols s1 and
s2. The optimization problem is thus to select the proper
rotation angle function, ∅(t), that maximizes the minimum
CGD defined in (10).

Then, for the case of linear binary polynomial phase
modulation, where the phase coefficients are chosen from
ai ∈ {±π/2}, the rotation angle function considered is of
the form

∅(t) = ∅1

(
t
T0

)
+∅0, (12)

where ∅1 and ∅0 are the rotation angles for the first-
order and constant phase coefficients, respectively, and can
be chosen from the range 0 ≤ ∅i ≤ π/2. Since the PPM
signals are dependent on time, it is important to notice that
for the symbol decoding process in (7) and the optimization
problem in (10), the distance, d, between a pair of distinct
continuous-time PPM signals is calculated using

d2 =
∫ T0

0
(sm(t)− sn(t))2dt. (13)

Based on this, the surface plot of the minimum CGD
for linear-binary PPM using different rotation angles was
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Figure 2: CGDmin(φ(t)) for rotations on the constant and first-
order coefficients.

Table 1: Comparison of CGDmin values for PPM and PSK constel-
lations.

Constellation
Linear-binary

PPM
QPSK

Quadratic-
binary
PPM

8-PSK

CGDmin 16 16 0.0100 0.0404

d8
min 16 16 0.0100 0.1178

generated, and it is shown in Figure 2. In this figure, it can
be seen that the rotation angle function that maximizes the
minimum CGD is not unique; however, one can observe that
a valid and convenient choice would be to pick ∅1 = 0
and ∅0 = π/2. As a result, even though the information
bits are being carried on both the linear and constant phase
coefficients, the highest value of CGDmin can be attained by
employing a constellation in which only the constant phase
coefficient is rotated.

Let us now consider the case in which the constellation
consists of binary quadratic PPM signals where, again, the
phase coefficients are selected from ai ∈ {±π/2}. For this
particular instance, we optimize (8) based on the following
quadratic rotation angle function:

∅(t) = ∅2

(
t
T0

)2

+∅1

(
t
T0

)
+∅0. (14)

Using the above function, the optimization problem in
(10) was solved numerically. It was found that by setting
∅2 = 0, ∅1 = 0, and ∅0 = π/2 the upper bound of the
CGDmin was obtained. In consequence, only the constant
phase coefficient of the optimal constellation needs to be
rotated in order to maximize the coding gain distance. This
result is the same as the one obtained for binary linear
PPM, and, as shown in Table 1, both constellations achieve
the CGDmin upper bound described in (11). From this, we
can infer that an optimal rotation angle for binary PPM
constellations of any order is π/2. As a way of validating
these results, in the following section, we evaluate the error
rate for linear and quadratic binary PPM using Monte Carlo
simulations.
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Figure 3: BER for binary linear PPM with QOSTBC for different
rotation angles.

5. Results and Discussion

In the following Monte Carlo simulations, the BER perfor-
mance of PPM using the Jafarkhani [2] QOSTBC for systems
with four antennas at the transmitter and one antenna at the
receiver was studied. For these simulations, we used systems
using binary linear and quadratic PPM constellations. We
also assumed that the coefficients of the Rayleigh flat fading
channel were constant during one block of code transmission
and were known at the receiver. In addition to this, we used
a ML demodulator to estimate the PPM signal parameters,
and the number of samples taken from the signals was 32.

In Figure 3, the error rate for a QOSTBC system with
a binary linear PPM constellation using different rotation
angles is shown. There, it can be seen that the system with
a rotation angle of π/2 displays a higher diversity order than
for any other rotation angle. Specifically, we can notice that
the system using the nonrotated constellation has the highest
BER for high values of signal-to-noise ratio (SNR). Next,
in Figure 4, the performance of the proposed full diversity
QOSTBC using linear-binary PPM is compared with that of
a QOSTBC system using QPSK. The error rate in Rayleigh
fading channels is lower for linear PPM than for QPSK
and, as shown in the figure, the proposed system clearly
outperforms the system using QPSK in terms of their error
rate performance. We can see that at an error rate of 10−4,
the SNR gap between both modulation schemes is about 1 dB
making the linear-binary PPM system a more power-efficient
alternative than the QOSTBC using QPSK.

Afterwards, the BER performance of binary quadratic
PPM for different rotation angles was evaluated and pre-
sented in Figure 5. As expected from the discussion in
the previous section, the optimal rotation, π/2, yields the
highest diversity order and thus, the lowest error rate. Lastly,
we compared the proposed full-diversity scheme with one
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Figure 5: BER for QOSTBC using binary quadratic PPM for differ-
ent rotation angles.

employing optimally rotated 8-PSK constellation. Again, we
observe that at an error rate of 10−2, the system using 8-PSK
requires approximately 1.5 dB more power than the proposed
system.

6. Conclusions

In this paper, we proposed to make use of PPM-modulated
signals and QOSTBCs with the aim of improving the BER
performance and, thus, the power efficiency of multiple
antenna systems. However, in order to take advantage of the
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Figure 6: BER for QOSTBC using full-diversity 8-PSK and binary
quadratic PPM.

multipath characteristics of the channel, full diversity must
be ensured. Also, it was noted that the highest diversity order
can only be achieved by selecting half of the symbols from
an optimally rotated constellation. Therefore, the optimal
rotation angles for binary linear and quadratic PPM were
obtained by maximizing the system’s minimum CGD. Here,
we found that binary PPM signals of any order achieve the
maximum diversity when the rotation angle is π/2. Then,
through Monte-Carlo simulations we showed that by using
the optimal rotation angle, high-diversity order and thus an
improved BER performance at high SNRs can be attained.
In addition, it was demonstrated that the proposed full-
diversity PPM-QOSTBC systems outperform systems using
conventional PSK constellations.

References

[1] S. M. Alamouti, “A simple transmit diversity technique for
wireless communications,” IEEE Journal on Selected Areas in
Communications, vol. 16, no. 8, pp. 1451–1458, 1998.

[2] H. Jafarkhani, “A quasi-orthogonal space-time block code,”
IEEE Transactions on Communications, vol. 49, no. 1, pp. 1–4,
2001.

[3] W. Su and X. G. Xia, “Signal constellations for quasi-orthogonal
space-time block codes with full diversity,” IEEE Transactions on
Information Theory, vol. 50, no. 10, pp. 2331–2347, 2004.

[4] R. Sinha, G. E. Atkin, and C. Zhou, “Performance evaluation
of variable-rate polynomial phase modulation,” in Proceedings
of the Military Communications Conference (MILCOM ’07), pp.
1–7, IEEE, Orlando, Fla, USA, October 2007.

[5] S. Barbarossa and A. Scaglione, “Demodulation of CPM signals
using piecewise polynomial-phase modeling,” in Proceedings
of the International Conference on Acoustics, Speech and Signal
Processing, vol. 6, pp. 3281–3284, IEEE, May 1998.

[6] Y. Jianming and G. B. Giannakis, “Product multi-lag high-order
ambiguity function for blind equalization of polynomial phase
signals,” in Proceedings of the IEEE-SP International Symposium



6 ISRN Communications and Networking

on Time-Frequency and Time-Scale Analysis, pp. 529–532, Paris,
France, June 1996.

[7] H. P. Dam, L. Huang, and G. E. Atkin, “Mimo/-space time codes
for Polynomial Phase modulation wireless communications,” in
Proceedings of the Military Communications Conference (MIL-
COM ’09), pp. 1–7, IEEE, Boston, Mass, USA, October 2009.

[8] H. Jafarkhani, Space-Time Coding: Theory and Practice, Cam-
bridge University Press, 2005.



Impact Factor 1.730
28 Days Fast Track Peer Review
All Subject Areas of Science
Submit at http://www.tswj.com

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

The Scientific 
World Journal


	Florida International University
	FIU Digital Commons
	4-28-2011

	Quasi-Orthogonal Space-Time Block Coding Using Polynomial Phase Modulation
	Omar Granados
	Jean Andrian
	Recommended Citation


	tmp.1389898189.pdf.Goy4P

