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SUMMARY

.This investigatiou preSeﬁts a differential-imtegraT:analysis
of thermally induced instabilities in two*phasé flow systems. The
differential method was applied to study the.physical behaﬁior of
the éystem and was limited to.thé evaluation of the'toﬁal pressure

drop of the system. The graphical representation of the results

50 obtained showed that at high frequencies the pressure drop

variations become very large. As this is not in agreement with

the derived equations of stéte,.the présent investigation was limited -
to the study of low frequency instabilities. '

The simplifying integral method was used éxclusively in the

For the first phase and.the velocity profile in the second phase
exact sclutions, previousiy derived by other ihvéstigators, were
applied, in order ﬁo‘avﬁid_additiona1 inaccuracie§. The_ovefall
density vériatioﬁs in ﬁhe two-phase region were évaluated in two
different ways: by meéﬁé-of energy and consfitutive equatiocn ang-

directly through the continuity équation. From the resuitS, obtained

by thése two methods, a very sisaple expression fﬁr the density was
found. | |

| -Ihe préssure drop variations were determined by simply aﬁéraging.
the_momentum equation and intfoducing in this expression the velocity

distribution and the equation for the density.




When- the corresponding formulas for the single and the two-

' phase region were added, cverall pressure drop variations of the -

entire;syétem folloﬁed an& fhﬁ characteristic équation was determined;
Then;-using a simple'stability critefia, a.stébili;y.plane was set

up to éhow_the effecté-whiéh various pafameters have on flow
stability. A compaxison with'p:evious work allowed a careful

judgement of the integral method presented in this analysis.




CHAFTER I

THTRODUCTION |

l.I.Signifiggggg of the Problem
The .problem 6f’instabilities in tﬁo-ﬁhase fibw-systems became
releyéﬁf in the 1ast few &eéadéé wiﬁh thé advent'of ﬁew technologie#,
iike_for example,_nuclea; and chemical_reaqtors, and sea watef desalina;
tion proéesses. $ince then this.prohlém hés increaéingly dccupied.thé

attention and interest of scientists and research engineers in the

- -areas of heat transfer, fluid dynamics, and control systems.

Initially a great number of purely experimental investigations

were carried out with thE'purbose of studying these flow and prassure

. oscillations. The results revealed that,'for'specific operational

conditions_of thé syétem,'considérable'temperature and pressﬁfe varia-
ﬁions appeareﬁ. It is understahdable.that such oscillations are conSidered_
undésirable and harmful. For example, in nuclear or chemical reactofs
large variations in.témpefature and pressure céh SEriouély endanger the
safety Qf'fﬁe'rgaCtion ptoceés and’may.even lead to the rupt@re_of thé
entire operating system;

As it is expected that the application of two-phase flow systems

in engineering will increase in the future, the idea of studying in

detail through experimental and theoretical analysis the physical nature

of flow instabiliries should be of considerable use. .Moreover, in order :

to avoid these insteshilities and guarantee reliable operating conditions,




fundamental studies on the dependence of these detrimental_oséiilétions
Ot the'syétem parameter$ aﬁpeér'to be of eminent'iﬁportance.'

The pafficular-objecﬁive of this work'iSIto-presént a theoretical
iﬁvestigation of the measured and chserved oscillations in numerdus.
experimental aﬁaiYsis, In addition by uéing a:simplifying’integral _
method, this wofk éttempts to approximéte.the dependeﬁcé Qf.thése
oscillgtions.on the system paréméters as well as to pfoverthe validity

of the integral method itself.

. 1.2¢Previoué Work
1.2.1. Exgerimentél Studies |
| In fhe pasf;.aS'mentioned,:a'gréat_deal of largely expériﬁent;l

‘work héé been performed in the area of two-phase flow instabilities. In
his theoreticél aﬁalysis; which was the basic reférence for the present
work, Zuber (1) gives a very detailed enumeration of the resgarch made so
far, iﬁdicating also the'most interesting results.£he different authbrs,
oBtained;

" In general the'ektensive_egperimental investigatidns showed that
mainly tﬁo typés_of oscillations seem to lead to_ﬁajor flow instabilitiés:
acoustical and-cﬂugging'oscillatiﬁns. Hines and Wolf (2)'describe.the
first one audible as a élear and steady scream of high frequency (3000 -
?EOOO'Hg) énd_the.second one as an oscillation with a lower_frequeﬁcy'
{600 -_2400 Hz) éudiblé és a pulsating noise. | |
| Corﬁelius_ahd Parkef (3,4) speéify the depéndencé of these tﬁo
prevaleﬁt dséillations on the temperéﬁure: tha fféguency of the écoustiqal

oscillations decreases, whereas for chugging oscillations it increases
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with temperature.

Scientists and research engineers who have been working on this

very complex problem of instabilities in two-phase flows generally

-admit that the incipience of flow and pressure oscillations.occur

because of the large variations of the thermcdynamic and transport

properties of the fluid in the super- and subcritical thermodynamic

region. Therefore several of their reports include interesting efforts

to find qualitétive explanations of the phenomena generating instabilities.

So for example, Fifstenberg {5) makes the heat transfer coefficient
dependen?e on the various flow regimes responsible fo; the oséillations.
Thurston (6)_and Shitzman (7,8) note that the 1arge-§ariations_of the
specific heat at the "pseudocritical® or the "transpoéed" critical
temperatures.(notb:'these are at supercfitical pfeséures, tﬁe tempera-
tﬁres for which cerﬁaih tﬁermodynamic properties reach a maximum) lead
io the appearance éf'critical flow conditions. =Hines_and Wolf (2)
coﬁsider the strong temperature dependence of the'viscosity at- super-
critical teﬁpergtures to be the.reason for the oscillatioms occurring.
Cornelius anvaérker (3) argue that acoustical és;well'as chugging

oscillations have their origin in the pressure dependent heat transfer

‘rate. In addition to these observations, other investigators cite

several more physical phenomena for these undesirable flow .conditions
(9, 10).

1.2.2. Theoretical Investigations

Because of its complexity, relatively little analytical work has

been done”toidate on the problem of instabilities in two-phase flow

systems. In the following only the more important iﬁvestigations will

e ——— b




be brieflyfdliscussed.

“Although the mainlpurpose of.thié_analysis ié to investigate
dxﬁamic or oscillatory ingtabilities, a briaf reference ﬁill.be made
.to the eériy studies of Ledimegp (11}, who fiost tréated .static or
.eﬁéursive instabilities,..These aré'bnly'ﬁogsible at relafively.low.
flow ratés”ahd_lbw preésdre levels. The criterion which he formulated
is that a:system Oﬁerates at unstéblé éonditions'if_the:steady;state
pressure drop curve as'a.funcﬁion;of thé flow rate_has a nega;ive
glope (daP/2G <O ). For such conditions a sudden change in flow
pattern and flow rate would.. always lead to conditions where 2a%/36>0
and'a return to the_’oi‘ig_inal state isl'impos'sible. This _ins.tabiiity
is thetefore éalled aperiodic or excursive. Figure 1 shows qﬁalita-.
tively the flow rate'dpmain.in which sfabie.operation is not possible.

Later on Ledinegg (12) and Profos (13,'14,”15) analyzed the
ﬁransient behavior of once-through boilers for higher flbw ratgs.
Theﬁe investigations desbfibe sevéral physical pﬁenomena rather well;
however they do ndt consider dynamic instabilities. It should also
be menfioned that bﬁth authors introduce graﬁhical methods in their
mathematical procedures, which ﬁakes understanding the problem rather
&ifficuit . | |

Early in the sikties, Waliis and Heaslaey (13) publishéd a
mathematical analysis, which since thén HaS'been repéaéedly used.as:
a reference in subséquent reports. |

About ﬁhe'samé time.Quahdt (17) presentea an analytiéai salution-
_ of the.ﬁroblem'By utilizing the_techniqﬁe of émall pgrtufbations. This

method again is exélusively mathematical, but does not present a
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itself is rather complicated.

'physical_discuSSidn of the problem. Moreover, the mathematical procedure

-4 i B N B

Recently Mayinger_(18}:méﬂe”éﬂét§dy on;instabilities in two-phase

flow systems.  His aunalysis is busically a soiution of the fundamental -

differential mass, momentum, and energy equations by converting these
into difference equations and solving them numerically'by computers.
A very extensive analytical and experimerital solution of the

problem has been presented by Yadigaroglou and Bergles-(19)p The .

report investigates in detail the influence of several phenomena. In

thé.éingle phdase region, for example, the'dynamics of ‘the heated wall,
variahle heat transfer, and the depenﬂence of the boiling boundary ﬁn
the breésure wefe considered, 1In the two-phase fegion-éccount is taken
of the variations of saturation temperature an& other pfoperties With_
ﬁressure in space, by_ﬂaking nge of a.reference'pfessufe profile. |
?urthermore én enthaipy trajectory model was introduced, to predict

the preséure_drop in ﬁhe two~phase region with oScillatiﬁg flow. At

the end of their analysis, the authors present stability maps. and the

~ theoretically predicted stability threshold, which exhibits also a-

correct behavior.
Finally, Ishii znd Zuber (20) made extensive studies in this

area. In the two-phase flow région the analysis takes into account

 the effects of the relative velocity of the two phases by formulating

the problem in terms of the.center of mass of . the mixture. It thus

eliminates confusing theoriés based on différent expressions for

“the velocity "slip" ratio, which were introduced by various authors

‘previously. -The set of four partial differential equations




(continuity, momentum, and.ene;gy for the.mixture and continuity fof_
the vapor) was integrated for tﬂe ;ase-of ﬁhermodynamic equilibriqﬁ,
from which they obtain a characteristic equation for the system.

The inveétigations preseit a_detai}ed diécussion of appropriate
scaling criteria, which the autﬁors apply in the evaluation of the
characteristic equation. TIts solution is a stability pléne, which
shows the effects the various parameters (such as mass flow rate,
subcoﬁling, powér'input, etc.) have én'flowIStabiliﬁy. The theore-

tically obtained results are in remarkably gbod agreement with

‘experimental  data, which makes this énalysis cne of the most signi-

ficant in this area. Exltensive use of this reference will be made

in the present report.

1.3. Purpose and Qutline of the Analysis
.Most_of the'theoretical studies, which were briefly discussed so
far in the previous section have in common that the'mathematiﬁal treat~
menﬁ is very lengtﬁy. ' The main purﬁose of this analysié will be to
study the usefulness of the integral method in the investigation of

two-phase flow ingtabilities. The integral approach has found wide

application in the area of momentum, heat, and mass transfer. its

main advantage is that it shortens considefably the computational

procedures. On the other side it requires a deep understanding of

the physical phenomena in the system.. Therefore, this work will also

present a thorough study of the differential meﬁhbd, which will be

_mainiy based on previous investigations of Serov, Smirnov, Teletov

and Boure (21, 22, 23, 24, 25, 26, 27). These authors formulate the

—-—— ;. 1 LA TP ST B




probleﬁ as_followsﬁ the tﬁ0mpha5e flow system consists of two regions,
a single phase and a two-pﬁase flow region, both'divided by a boiling
boupdary. For each reglon a constitutive equation and thé three field
equations describing the coﬁsérvatiqn of mass, momentum, and energy
are éstablished. In orderlto decouplé the momentum eduation ffom tﬁe

energy and the continuity equation, the density of the medium is

. assumed only to be a fUngfion of the'enthalpfj-

The report will mainly follow thé-mathematical.ﬁﬁtline of Zuber
(15. Its most significant1contribﬁtions will be the graphical interpre~
tationé of the_traﬁéfer functionS, é'simplified mathematical procedure
in evaluating an expression for thé:density perturﬁation as ‘a function

of space and time, and the application of an integral method to shorten

. the entire theoretical analysis.

The investigation can be summarized as fdllbws: the present
Chapter I is an extensive introduction to the problem. In Chapter o

the system, its thermodynamic behavior, its kinematics and dynamics and

_ the method of solution will be discussed. Chaptefé_III and IV will be

* devoted to the.exact solution of the.problem-and'in.Chapter V the

integral method will be treated. In Chapter VI the stability ahalysis
will be performed and the repoft'will conclude with an outline of the

results. in Chapter VII.




CHAPTER "II

WEoiay eri 4 L p wit nat 9

INSTABILITIES IN TWO-PHASE FLOW SYSTEMS--CFNERAL CONSIDERATIONS

2.1}'The Sﬁstem and,Itg-Thermodygamic Behavior

As the extensive literature im this field shows, the thermo-hydro-

dynami;s in two*phase:flow systems are of a very complex naturg.. There-
fore, to make a stability analysis accessible, a simplification of the
systém by introducing'én ;ppropriate model appears to be a nécessity.
A.mpdei that takes into account all possiblé effects;very éasily cén
result to be m«.ath.ematicall.y Iineé';tricable. 07 the other hand, a too-
simplified formulation can endanger the accur#cy of thg'analysis itself
and consequeﬁtly limit its applicabiliﬁy.

The present work will uée, as was stated'inJChaptef I, the same
modgl Serov and Teletov (22, 25) apply in.their investigatiqns. The _
tﬁbépﬁase.floﬁ system will be therefore simplified in the following-wayﬁ

{1} It will oPeréte at constaut pressure as ﬁell in the super- |
cri#ical as in ihe sﬁbéritiéal region.

(2) Heat addition will be constant along the duct. This implies
tﬁat the product of the varyiﬁg heat tranéfer coefficient h and the
teinpe'rature difference a’r =-TM\LL - _f;aum will also -'femain constant..

(3) There will be no radial temperéture_disﬁributiohs. This
presuppdées73efy high heat conduétivity ana éonstant tempefature for

every cross sectional area.
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“(4) Boiiing wili étaft al: éhe 50 called boiling.boundary at which
the medium will always héve'saturafioﬁ'c9n iti0ns; This'bouﬁdafy
o . _ :
represents a separation:of_kﬁejfﬁoﬁﬁhnse reg#ﬁﬁ from the single-phase
region. Both will be trﬁaﬁed_séﬁaiﬁtely;
{5) In the two¥ﬁhase region;'thé vépdr and'fhe liquid phasge will
move with no relétive felocify.to each otﬁer.
(6) The fluid will have to pass two flow restrictiomns, one iocated

at the entrance, the other at the exit. It will be one. of the purposes

of the analysis to determine the dependence of the operational conditions

of tﬁe system on these two flow reétfictions. Figure 2 shows the system
Schemafically. | |

Once we have set up-thé model, the thermodynamic process can be
described'ﬁery easily in a:temperature'épecific volume plane for sub-
and supercritical ﬁrgséures-' As the present anainis is mainly
:afiented towards'its'applicaﬁility in relation with boiling water
reacﬁors; the diégram'in Figure 3 is given for watér;

At subcritibal pressures the Ffluid behaves as follows: it enters
the duct with velocity u, .at () and remains in thglliquid phase ﬁntil
it reaches the saturétion line at @) ,.whereﬁy its temperature iﬁcreases
.considerably at constant specific volume. At (2 a phase change occurs.
Now thé.temperature is_coqstant but the sﬁecific volume increases.
Therefore for the foliowing discussions in_the next chépters, we will

especially bear in mind that the bolling bbundary, whic¢h was introduced

in our model, represents the transition from the heavy to the light phase -

~and that this transitioen point corresponds to the saturation enthalpy.




¥

Figure 2. 'The:_ System

Figure 3. Tempnraturc., Spec:.flc. Volume~-Diagram for Water w1th .

2 Isobars and Condensation and Saturation L:mes
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At supercritical pressures, as Figure 3 shows, such a transition

from the liquid to the gas phase cannot be clearly defined, bécause_at

‘these pressures as well as at the critical one, the interface, the heat

of vaporization and the surface energy all vanish. At present there
is no general agreement where and how the phase transitions occur. In

analogy to the suberitical pressure raunge, where various thermodynamic

- properties, such as the specific heat, the compressibility, ete.,

change discontinuously or reach a maximum value at the saturation line,
numerous authors consider its extension into the supercritical region to

be the line for all pbints, where the thermodynamic properties listed

.below reach a maximum, for example:

3P , 2.4

2.2
Sy - O
Pl = s ! . - .
o1 P - - _ .2_3

Of course there are many otﬁer criteria-. Unfortunately each of
thesellie on different lines. Bﬁt_aésuming that their'course.in the
supercritical-thermodynaﬁic-regidn does not differ.very much from each
other;'we wiil phopsg the third condition to be répresentative_for the

saturation line. With other words, we say, that the so called "phase

N
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transition” occurs-'whén 332\?/;572)?3 O E Therefore the thermodynamic
process in Figure B'is as féllows:.we imagine the fluia to enter.at
pc;int @ .  Between @ _a'nd'@“f} it will accumulate thermal energy until -
in accoréance_to'our pregid@g_ébservatipnq it reaches fhe "satﬁrat;on
line".aqd_a phése cﬁénge'sﬁartsn ”At'point 3} the fluid is é mixture
of "liquid" and "vapor.”

As a éonclusion to our thermcdynemic observations, it should be
emphésized tﬁat énly'the establishment of the model wmade aldEScriﬁtion

of the process in a thermodynamic diagram possible.

2.2. Kinematics of the System

In the folldwing_the'kinematigs of the simplified model shall be

discussed in some detail. Figure 4 shows the density as a function of
enthalpy, time and position. The continuous lines describe gqualitatively

‘the real conditions in a two-phase flow systeu. 'It'can beé seen.that thél

curveg are for 'sma;l.l enthalpy values straight .line_.s parallel to the

corresponding abszissa. As the fluid.gets at suberitical pressures

¢lose to the saturation-iine or at supercrifical_pressures close to

the line for w‘hicﬁ Bzﬁ/éTz)Pm © , the density decreases steadilj..
Finally its functional dependence on the eﬁthalﬁy;_tima or position

becomes of’hyperboiid character.

| If we introduce again in accordance to”the'assﬁmptidﬁs of our

model, the simplifications into the graphs of Figure 4, the density

‘distributions experience two important alterations:

(1) The actual density distribution consisting of three different

regions (constant, transition and hyperbolic) has been replaced by a

U

B o S S I BT e
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a)' constant dansity distribution
2} frawsitiensl density distribution
3} buyyparbotic denaity distribution

= ' e
{ i i

|@——&(f3-~—w|' | 3

Figure 4. Density as a Function of Enthalpy, Time and Position -
"Two-Region" Approximation Showing the Time Lag and
the Space Lag
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two region approximatioﬁ.'

(2) The two-region density p'rtsfi'l.é' consists of one sfraight Iine_'
and a hyperbolic functicn and hes a discontinuity at their intersection.

~ The behavior of a particle from the time it enters the heated

Se&tidn.will‘be'therefore as follows: in the first_pdrtion.of the
system, although its temperature increases ccnsiderably, the density.
will remain'constant. When the particle reaches saturation conditions,
a ﬁhase chaﬁge will occur and from tﬁen-on its'dénéity"will decrease'l
eﬁponenfially with_timg.- ¢he motion of the pafticle for stgady state
csnditions through the two-phase flow system depénds'therefore onftwo
charaeteristic valﬁes:

(1) The time elapsed between the injection of the "heavy'

particle in the heated duct ‘and its transformation to the 'light”

fluid, which will be denoted as the time lag Ty -
(2) The slope of the linear functional reiationship between
velocity and position in the two-phase region. As wili_be seen in

Chapter IV, the slope, which will be called in analogy £rom combustion

theory reaction frequency, depends only on the system parameters.

For the case that the flow pfacess through the duct is also time

dependent, the space lag A(t) , which indicates the location in the

duct, where the transformation from the "heavy" to the "light" fluid

takes place, will also have to be given.

- 2.3. Dynamics of the System

According to control theory, the dynamics of a system are best

examined by observing the response of the'system to a given inlet

L | VUV




perturbation of the inlet velocity, for example, a sinusoidal function.

‘second phase, as well as variable heat transfer coefficients and flow

‘regime changes may also contribute to the formation-of such mechanisms.,

- ‘perturbation the pressure variation decreases or viceversa. In this

16

As in the results thet Crocdo and Cheng (Z8) obtained from extensive

studies in the field of coabustion, here we also shall distinguish two

. A
Ty i

different modés of respoﬁﬁétﬁ£aﬁﬁpéaffﬁééﬁ&ﬁlpLﬁ and pfganized or
coordinated QScii%ations.'

Random fluétuatibns will always'éppéar ip a system whenever the;e
is no coérdinatibn or depeﬂdeﬁte.aﬁﬁng the @ifferent pfopefties of.
ﬁarameters. | |

Organized oseiilations of a system will be present if there
exists a mechanism for intgrmittent.storage.and release-of.some parti-
culaf form of energY-. Such a mechaniém for example are the osﬁillations
of pressure, which wiil affect the éaturation ﬁempefaturelthereby |
inducing oscillations.in the'rateé.of evapofation.  Tﬁese5 in turn, .
may induce flow osciliatibns. Variations.of'thg boiling boundary'as'a.

I

function of the inlet flow, density, and veloclty oscillations in the

Considering the inlet velocity to be the input of our system and the

ﬁréssure &rop along the duct to be.the response, the previously described
mechanisms will &etermine as well the amplitudé as the phése laglof éhe o
reésponse ﬁith fespecf to the inlet perturbation. Figure 5 shows how
ﬁwo sinusoidal moveménts'can be'related-time-ﬁise to each other.

It ié evident:thét_under certain operational.coﬁdiﬁions tﬂe timing

between inlet and outlet could be such that for increasing'velocity

case, regenerative feedback is present. The response will perform
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Figure 5. Time Lag Between the Variatlons of Inlet Velocity
and Exit Pressure Drop

Jm&.
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Figure 6. Phase lLag ¢ Between the Variations of Imlet Velocity and
o - Exit Pressure Drop in the Complex Plane and the '
Stability Boundary ' ' '
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undamped oscillatioﬁs, ﬁecauée énergy is supﬁlied to the s?stem at the
propet fréquency and.pthe rélation in order to qvercﬁme the'lossés due
to vérious damping effects, as for examplé friction.

If the phasé lag be;weeﬁ input and dutput-is equal to 1 the
system will be certainly'ﬁnStable; Because the grédients of both
oscillations will always have opposifte signs. ' In practice sﬁail
deviations from these opefational.conditions can fairly well imagined
also to be qnstable. Therefore the following_more'rigofous stability.
criterion“will be used' in thié énaiysis: system instgbility.ﬁill'aiwayﬁ
be.presgnt, whenever opposite signs of the gradients of inlet perturﬁa-;
tion and outlet response predominate 0§ex'a-wholé period. -Forlsﬁability

therefore the phase lag ¢ between output and input has to be

1

R x : | . . 2.4
a_<cbc& . .

In a complex plane, plotting the inlet on the real axis, the
output will have to be on the right hand side of the imaginary axis.

Figure 6 shows this graphically.

Before we proéeed to present'the method of selution, let us point

'out;qde very important'feature'of our analysis: in the first three
sections of this chapter, we presented a modél and its pperatiénal
behaviof, which will be used in this analysis to stﬁdy the pertaining_
probiem.' Hére we assumed that fof uaperturbed flow conditions, the
two-phase flow is at a certain position alSd timg independent. In
réalit& it is knowﬁ-that in floﬁ boiling several'physicél effects’

exist that are highly time dependent. Among these we can cite -
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nucleatiOn,.fbrmation.and detaéhment of bubBles;.the'behaviof_df'the
different flow regimes and mainly Eheir.traﬁsitions to each other,
variations of pressure with flow conditicns an& finally changes of
the heat trﬁngfer coeffiéient, In.other wurds our system was.
considered on the whole to be tiﬁé indepéndenf,jbut several proper-
ties like demsity, pressure, enﬁhalpy and velocity profiles were
ﬁarying @ith time locally without.inflﬁencing the overwhole behavior
of the system; These local variations can also have an osdillatory.
character. TheyfreprESent.again potential organized oscillations ahd

therefore under certain operational conditions they might influence

decisively the dynamic response of the system. By introducing a

simplifying model, we will have to keep in mind that all these small

scale effects will not be taken care of in our ansalysis.

2.4. Method of Solution

9.4.1 The Differential Method

'The_simplified'system'introduced.in sections 1, 2 and 3 of this .

chapter can actually be subdivided in two subsystems with & woving

boundary. -Thgffirst subsystem will be:the 1iqui& phase and the second

~one the two phase region. To analyze the dynamic behavior of the

whole system, or more specifically the functional relationship between

pressure drop and inlet velocity perturbation, the three general field-

equations and corfespdnding constitutive equations will be applied to
each subsystem. Therefofe the method of solution can be outlined
as follows (see Figure 7):

The'inlet.velOGity'of the subsystem C) ,.ﬁhich represents the
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"heavy" fluid region, will be perturbed. As the denéity is constant,

the velocity can be obtained immediately out of the continuity equation.

By integrating the energy equation in whicﬁ-ﬁhe ﬁelocity haé to be
introduced, we'qbtain the'boiling-boﬁndary‘ﬁ({) ; which at the same
fime”fepresents the bbundary of éhelfirst subsystem. Therefore we
¢an say that ouf of the first subsystem_we'ob;ained two responses:
the_vglocity,of_the iiquid'qnd Eﬁe moveﬁéﬁt of the bbiling boundary;
'These'fﬁ%QOQtputs will be the input of the second subsystem, for which
we will have to assign an'apﬁrép;iake}ekpfeééiéh'for the equation of
state, depending whether the system is supﬁosed to work at sub~ or
supercritical'conditions, By solving éimultaneously the continuity and
.eﬁergy equation, we get the velocitj distribution. Introducing this
expression back into the continuity equation and taking.iﬁto éccouﬁt
fbr.the moving boiling boundary Q\Ct) » the density variations along

the duct will be obtained. With the velocity asnd density in both sub-

systems known, the momentum equation will be evaluated to get an expression

for the pfessure_drop variations. The exact solution of this problem
_was.treated extensively by Serov, Teletov, Boure, Zuber and Ishii and
Zuber. The preseﬁt wdfk_thérefore oniy offers a qualitatiﬁe analysis.
The reason_why sﬁch an exteﬁéive theoretical invesfigation was per?
formed was to study physical phenomeﬂa, which will permit a détailed
analysis of'advantéges and disadvantages of tﬁe integral method.

2.4.2. The Integral Method

" Integral methods of analysis have found ample applications in
the mechanics of continua. In heat transfer and fluid mechanics a

great variety of'probiems appeared, where the use of the differential
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equations of change delivered very complicated solutions. By integrating
these equations over a finite volume of the system, thereby-obtaining
overall balances of mass , momentum and evergy, 1nf0rmat10n on the

gradlents inside the system is 1ost and only relatlons between the

proPertles.at the 1n1et and'outlet can be glven.. But stlll in numerous

cases, the power and simplicity of the integral method has been proven
In fluid dynamics for example satisfactory results can be obtained in
the evaluation ﬁf the local friction coefficient for the flat plate in
an incohpreséible floﬁ assuming in the bouﬁdary'layer.a third order
velocityEdistributionIthat satisfies the boundary éonditi0ns-

In quf probiem'of'two-phase'fléw-iﬁstabilities, the integral -

~method will be used exélusively in the treatment of the energy and

moment um equations of the second phase. The évaluation of the first

phase and the velocity profile in the second phase will be performed

_by using the exact solutlone obtained by Serov, Teletov, ‘Boure,

. Zuber and Ishii and Zuber {22, 25, 26, 1 20), in order to optlmlze'

the approxlmatlon of the integral method

2.4.3. Stgpilitv Analysis

' To avoid extensive computation procedures a simplified stability
criterion, first used in the analysis of Ishii and Zuber (20), will be

applied. After non-dimensionalizing the cobtained stébility equation;

a stability plane will be set up, to show the effects, which various

parametefs ({such as ﬁasé flow rate, subcooling, power input, etec.) have

on flow stablllty. Finally a comparlson with prev1ous work, mainly the
' theoretlcal analysis of Ishii and Zuber (20 and exper1menta1 data, will

allow a careful Jucgement-of the integral method, presented in this analysis. -
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* CHAPTER IIT
" DYNAMICS OF THE SINGLE-PHASE REGION -

3.1. The Governing Fouations

The single-phase region will be defined as the channel length

' extending from the inlet plenum to the boiling boundary, at which the

mixed mean enthalpy is at satdration. Any occﬁrrence of subcooled
boiling in ﬁhis region will be neglected and it will be aséumed that
the f£luid in this region is inﬁompressible. The problem ﬁill be
formulated in terms'of_thfee field conéervétion equations and a
constitutive eqﬁatién of state. For a_one%dimansibnal situatioﬁ,

the single-phase region is described in terms of the continﬁity-equation

>Q Pty -
— g — = O : .

tbe'energy equation

o P

At 3 e A - S 3.2

and the momentum equation

Adu £

2
— QU
3 2D 3.3




24

Assuming the density to be independent of the temperature and
the process to be isobaric, the therﬁal constitutive equation of state

becomes simply

3.4

3.2, The Equation of Continuity and the Divergenbe of the Velbcitv

"Introducing equation.3;4.into-the cOntinuify'équation, we get

33

. Therefore'the.divergence of the velocity is equal to zéro. By

integrating equation 3.5 we obtain an expression for the velocity

 distribution, which is only a function of time

To analyze the stability problem a small time dependent velocity
pe_rturba_tion éu, will be_sﬁperimposéd on the steady state inlet
Velodity ﬁ, . The welocity distriﬁutipn in the liquid phase thus

becomes

Q.(f)='5,'.+ du, | " .3.7

Q.l._‘_ o) . - - . | ._3.5 '.

3.6

I
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The velocity variation 6ui wili be given in exponential form
bu = g5t | 3.8

where s is a complex number.

3.3, The Fnergy Eguation

3.3.1. Determination of the Boiling Boundary

- To obtain the position of the boiling boundary,'we integrate the

enexrgy equation

2, oy d.as
at B A - 3.9

The solution of the first-order partial differential equation
can be obtained by the method of characteristics. In this case the

general solution of equation 3,9_19

iﬁl = F;(‘f|)

where
| e (it,3) = C,  ond ¢ (it2)=0C

are solutions of any-two indepeﬂdent differential equations'which imply

the relationships

e T S R IT TSR

3.10

3.11
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3.12

Taking alfernately the first and the second'equation, the first

and the third equation, we obtain the fbllowiug set

ds _ |, (&) o - B
d-t = U‘ g _ | | _ | 3.13
and
di _ 98 . | S
CdE Qhs I - 3.4

Equation 3.13 1s an ordimary differentlal_equatxoh.of the first

order. The Integration of this.equation, considering the-gppropriate

boundary cenditions, will givé.the position z of azpafticle as a

function of time. iherefore equation 3.13 deScfibes.the kinémétics

of the fluid @n-thé_single-phase regidn. | |
Equation 3.14 is also an ordinary'firstlorder dif%erential_

equation and is dépéndent on such parameteré'as heat additionm, densiﬁj'

of the 1iquid'ahd geometry 6f-thé's&stem.‘.1ts integrationIwill_descfibe

how the'enthélpy varies with time and is'théreforé simply gn énergy

Balance; in ﬁhich'fﬁe'constitutive éqﬁation has already been taken

into account. To 301§e équatioﬁ 3.14 the boﬁndary.conditiOns will

have to be;specified. Hereto we réconsider tﬁejprocess in'a T~s

diagram {temperature-entropy) of Figure_8;  The fiuld enters at .

|

. - B



scturation line

isobaric line

.-condansoafion line

IFigure 8.

Temperature, Entropy-Diagram with T Isobar and
Condensation and Saturation Lines.
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point @) with.tﬁe enthalﬁy value 1, and reaches the saturation line
at.point.(:). s whére_#ha enthaipy is E _aﬁcording.to saturation
;onditions}

By integrating eﬁuation 3.14 we obtain the time T, , which
the parficle (independent of it§ velocitylcr pdsition!) will need to
_accumﬁlaté thé neceséary amount of thermal eﬁergy'to feach boiling ér

saturation conditions. Therefore the boundary conditions for equation

3.14 are
ot t=0 o ] = i'
_@“d ot _."—"*"'5'.9 (=4 - 3.5

Rewriting, integrating and considering the boundary conditioms

just formulated, equation 3.14 becomes

3.16

ar

- 3.17
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Once we know the time a particle remains in the liquid phase, by

integrating equation 3.13, we get the position of the beiling boundary

o

or the length of the single-phase region
(dg = Su.m dt + C
or

5 ?= ij|t _%_EEE -+ C: o

The boundary conditions
3:_@ Cwhen t= -4

G.nCl _3=?\' - when | t=T

3.18

3.19

3.20

3.21

indicate the time t = 'C"'_Tb at uwhich a speéific particle that for

t=T becomes saturated, entered the duct. . Thus equation 3.21. implies

for the constant € that

5(&-1.)

&) h= Gs (t"'ti;-} + 'E;g“"g_ + C

or solving for C

5(t-1,)

| C = —.G-,(j:-'x:l.:,) - _§_e__$____

3.22

3.23
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At t= ¢ ;3 =A  and 'equationl.3.].9 becomes therefore

-5%,

- Do - e o -531: _
A= W, ok g e o 3.24

In this equation T is a variable and therefore will be replaced-'

in the following again by t . If we consider the space lag A as
a sum of a '.ste.ady-_state space lag 2 and a time-dependent space lag

ﬁ(t) . this means
A= 2+ 82 - 3.25

we obtain finally an éxpression for the oscillatory movement of the

boiling boundary

_ =STy | '
&\ = l__se_..._ Su,
' 3.26

Ref_efring the obtained solution, the following point shall be

clearly emphasz'.z-e'd:' the integration of equation 3.13 was not performed

- with respect to a fixed time value, but to a time difference T, -

Thus equation 3.26 is valid for every particle, which 'spends the. time

tb in the liquid phase.
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3.3.2. The Dynamie¢ Behavior of the Boiling Houndary

- Equation 3.26 gi\.res the relation betwgen input (=entranée
velocity) and output (Tmoving boiling bnundafy). The term in brackets
is the transfer function. If wé asSume.the inlet perturbation 5ul
to bé as undamped oscillation and S=ice ., the equation for &\

becomes hé‘rewith

(733 3.27
' Separating the inlet perturbation ‘5"‘”1 into a real and an
imaginary component
. root ' { + igincot
&u‘ = =8 ='g | Coo ot + 18in& 3.28

and performiﬁg the same operation on equation 3.27 (whereby the imaginary
part will describe the actual flcw conditions, because for time’ t=0 .
6&1,‘ ha.s also to be'zerO)_, we can write the relation between input and

output as follows:

&a ...- C‘)-cb - .9. t_-% ’mmt—...r.h
This equation allows two interesting conélusions:
- {1) The sbsolute value of the boiling boundary perturbation is.

inversely proportional to the frequency &3 .

Jp—
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(2) For the case that
Cf'-:"i:b.: Aer - . o . 3.30

the boiling boundafy w'ill. no'.t nove at Iall.
| ..];.n the foilowing. the sdepel-ndenc-'e. of 5‘?\ ‘on the fre.quencyo:s and
the subcooling T, will be discussed. Figure 9 is an Armand_diagrarﬁ
which shows the phése lag and the amplitude.of & with respect to
the inle.t perturbation <5u| for varying .f.r'equency <o . but cons'taﬁt
subcooling T . TFor a fime t=o0 .,_ 5&1.‘ appears on the real axis. The
diagram shows 's_even':al features: | |
(a) Large _ainplitudeé. of &A .al‘“e'c'm'ly possible at low frequencies..
This can be a.ssuméd Ito'b_u.e one of the reasons, for the appearance .of
"chugging oscil'lations.'f':. o | |
{b) For frequencies, which saf:iSfy the conditiong of equétion .3;30,-
A is equal to 'ze.r'b. This reéult will be mainly interesting for further
observations in the twb-j[;h.ase region..
(¢) The phas'e. lag between. éui and &% varies from =T to O .

(d) The amplifudé of &A 1is linear dependent on the time lag T,
| &A1 ~ Ty 1 dull 3
{(e) The limiting case >0 follows-from.

-le { SAL - 2 .LQ__.S_ 52;1&’%{_.5;“& +695%]
e wmo @ 2 LT =R

_- =T | &l o o

— __ll!..-'._.:.... R S
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Figure 9, The Boiling Boundafy as a Function of the Inlet
Velocity Perturbation for Varying Frequenc1ES and
Constant Subcooling
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Figure I10. .Th-e Boiling Bounclar'y as a Functibn of the Inlet
- Velocity Perturbation fer Varying Subcooling and
Constant Frequencies
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éimilgr oﬁservations cén be“made;t; anélyze the dependence §f¢52:
on fhe_time 1ag LR at consﬁaht frequénciéé. Figure 10 shows again._
an Armand-diagram,Jout of wﬁich we observe |

{(a) For a_time lag T that éatisfies equation 3.30, the rééppnse
will be equal to-zerg.. | o

(b) The': phas’é iag of | 6%_ with respect to 51.'.;' varies betwéen
=~¥F and © . | ‘

(¢} The .amp]__litude.of & is iﬁver.sgiy proportiona'_l to the

frequency &

_l&u,| . f
&S - 3.33

&AL ~
. For a better understanding of the behavior of the single-phase
region, let us consider the casé_that the inletfperturbatibn is a step
function...Figure 11 shows the enthalpy distribution (curve a) béfore

the pérturbation. Curve b represents steady state conditions after the

. perturbation occurred.  For a given subcooling the time required to

reach saturation conditions is given by equation 3.17. The length of

the single phase region for an inlet velocity”iﬁr is first

A, = __...q': 3.34
and for new.stéady state conditions
A, = 3.35

&

b
1

i
-
|

1

f
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.Figure II. Enthalpy Distributions in the Single—Phase'Region _
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where @,< G, is the inlet velocity after the perturbation. Therefore

the moment the inlet veloeity varies, the boiling bdundary starts moving

(for extensive studies see Ledimegg (12) ) with constant velocity

at T,

3.36

It must be emphasized that there is no dead time or time delay
between the occurrerice of the perturbation and the moving incipience
of the boiling boundary. DBut of course there is a time delay between

the two steady state positions.

3.4. The Momentum Egquation

After the preceding thorough study of the behavior of the boiling
boundary and the velocity distribution, the differential momentum

equation will be integrated. The boundary conditions are
:P=‘Pl Qi. 3!"-0

PR a 3eA® sy

The integration will be performed along the fiow-direction, taking

into account that the density in the single-phase region 1s assumed to be

constant

© 3.38
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In view of equation 3.5, 3.7 and 3.25 the pressure drop becomes

R-% - Q%[“"“'“"—b(“gé"‘) + g %(.'*5“*"](3"*_5’0 s

Lineariéing and retaining only the first power, we get

+ 3"5" + Qf%ﬁ 'G..z £ o .- | 3;40
'fhé-inlet pressgre drqp iﬁ accordance with Zuber (1) is
'- 'P; -?,= | k; _Q\cu‘z' | : . - ._ . "
which upﬁn 1inearization can be expresséd as
D-P = kO + KidGbw R

 With equation 3.40 we can write the total pressure drop in the

3ing1é°phaée region
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+ fo 5\5 &u, 4 'é% Q{_&a‘aégl -+ QF%&).

: { 2 :' ' e

If we define now the steady state values of the pressure drop due
to body forces (gravity) by

oty = 9%

3.44

due to friction by
) f =
= e L 3.45
AT]; 2D Q.F i B
and due to the inlet orifice by
431%91 = ‘(;Q#EJ‘

3.46

equatibnl3.43 becomes
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. '.+ i c\zﬁ% + a&'@iz} éui + S z&'fb{ +. 5&?2 } é}
| G (23 %)
3.47

Here again we consider the total pressure drop across the liquid

phase as a sum of a steady state and a time dependent presSure_drop
ATz = a8, +8aR, 3.48

For the time dependent part we get

&@ { ¢ } 5_ . {a@m +éa§’:z}6u|

: aal - o

{E)A'ﬁ‘, 40, }59\' N 3.49

A -\

Again the transfer function appears in brackets if we express

éf%as a function of S,

'E)u, Zlu. Z')’J\ ac\

- [oes "ler “hEN e
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”.This equation can”eésily render & graphlcal representsation. In

an Armand diagram for

t = ST etk n= ©,6,2 . 3.51
“the first term.appéars on the féai axié,_the second is imaginary aﬁd
the.third:term differs in its struﬁture from the transfer function of
the Boiling:boundary'only by a constant. The geometrical addition of
thESEIéomponeﬁts-determiﬁes'the magnitude and phase lag of éS;ﬁPlg

with respect to ésuq . .quever'tﬁe plot of the transfer function ﬁill.u
_ vary copsiderabiy if the ﬁoefficiénts, iikg.density Q? or fricfion
"factof { » are changed. |

Figure 12 shows the operational conditions for

} dor, da¥. } {bﬁ’b; 20t ¥ (I -&e
2%, * ou, e | 2% * DA Re

3.52

. With words this inequality_aayé that the value on the left'hénd

side is bigger than the term in brackets times the real part of the

boiling boundary transfer function on the righé hand side. 'In this : |

case the phase lag between the response t&ﬂﬁ%z_and the inlet &Sy
is never bigger than E% and the system is, accdrding to section 2.3
in Chapter 11, stable.

'__. — T ; o ; i R e ) -]u
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In the following we will showunder which conditions the single-
phase region becomes unstable. Hereto we reverse in equation 3.53 the

sign

- od, >0, /N X T\ s 3.53

and analyze whether such a situation can arise under extreme operational
conditions. Therefore to make the inequality és'big-as possible, we set

k; =0 or a.c'?m. = O . Furthermore we let the_pefturbation frequency

be

S o 2N - - 3,54

in order to use the maximum for the real part of thie boiling bouﬁdafy

transfer function

aw " 3.55
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Ll+- =
3.56
the equation
gD
a 3 ?'_‘3“ - ! 3,57

fo

Figure 13'$h0wé"tﬁé'tfénsfefzfﬁ;ction'for.which this inequality is
fulfilled. In this case the phase lag bel_:wee.:n éd?c,z and- é:'.u..‘ can
very well bé equal to W creating thefefore-unétable flo@ conditions.

Out of the present.observations the following conblusions can be
ﬁade: | |

(a) The.dperational conditions of the systeﬁ are stabilized by
incréa&ing the inlet flﬁw festriction ﬁ(i . |

(b) For sufficient high x;'ralues of thé parameteré .on the right
haﬁd side in the ineduaiity equation 3.52,‘the pressure perturbations
can also become for small frequencies large. Thié is élso-easily
understaﬁdablef 1f the flow restrictions atlfhe entrance beéome too
1arge; then.the pfessure'?ariations are also considerable and the
system no Ionger operateé ati constant préssufa. |

(c) For.small friction factor ¥ s small eﬁtrance veiocitj G+-,
but large system diameter_])., éccording to equation 3.57, the

single-phase flow region can become unstable.




In Figure 12 and Figure 13 we set

4t

3.58
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 CHAPTER IV

DYNAMICS OF THE TWO-PHASE REGION

"4.1. The Governing Equgtions

In.tﬁis thapter the three field.equations'dgsttibing the.conser-
vation of mass, momeﬁtﬁm and energy aﬁd'an appropriate constitutive
equation will permit.the calculation of the pressure dtop 1n the two-
phase region under time dependent conditions.. Iogether.with the results
obtained in the siﬁgle-phase fegion, they will make a qualitétive
analysis of the'pertaining problem possible;'

Fdr a 6ne-d1mensiénal formulatioa, the continﬁity, engrgy'and

momentum equations are given respectively by

22 , .2 L o2 _o a1
» T Y% T 0% |

2, .2 L 98 s
>t 33 9 A '

R A VN VT SO S »
27~ ot 9“”{*‘3?"’*’ 9” 7

Furthermore we need an equation of state. Again we assume an

isobaric process. Thereby we decouple the momentum equation from the

e e i
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energy and the continuity eduétion;' The densgity is then only a function

‘of the enthalpy and can be written in the form

Qe = (i) | o 4.4

As will be shown in the next section of this chapter, such a

simplification of the problem limits considerably the range of perturba-

tion frequencies. Moreover the two-phase flow.will be homogeneous,
ekcluding'herewith the posaibility of relative velocities between the
phases.

The investigatioms of the two-phase flow region will start with

. a discussion of the equation of state and its dePEﬁdence on i{he pressure

level. Afterwards from continuity and energy equations, the velocity
profile will be determined. Introducing this expression‘back'into
the continuity equation, the density as a function of time and position

will be derived.

4.2, The.quggion'of State.
Before we derivé an appropriate equation of state for sub- and
suﬁercritical pressures, we will anélyze the limiting effect.of assuning
isobaric flow conditions on the range of perturbation frequencies. |

For a one component, homogenecus medium the thermal equation of

state

d.Q = —2’4%) dT + %g) d¥ 4.5

L S




47

can also be written in the form

deQ 'm_”{gd.“;‘-'ﬂ_ M_éqsp

= 4.6
Q _
with the isobaric expansivity
. N | .
b5 5 &
P
and the isothermal'comprQSSibility
P 2R o
d = — ..___.) 4.8
< |
Introducing in equation 4.6 the caloric equation of state
i az)' - az-)- ._
A =25} dT + 22 JP 4.9

in the form




and rearranging gives

| - | di_ 1 |
g s

In terms of substantial derivatives we get

D __ b
S ot 3

Introducing

7|
,
e
o
/g

) - 2679

Equation 4.12 becomes

48

4.10

4.11

4.12




E;'; -P:“—-'-»%- ni,-e--'—-—&-(ié“i'..)}i?-.
ey 3 { ch, FA 'I)‘t_

With & as the ratic of the specific heats

we chtain

Y

L = §ol = g
BT

where Qg is the _velacity_ of sound defined by

49

4.14

4.15

4.16

4,17

4.18
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."Equation-4.17 iﬁ 4.14 gives

Dt & t
4,19
For a perfect gaé'and in the supercritical region
o - | o
poee 40
Therefore we finally obtain
I DG @A D & Dy
=< T == — 5o . | 4.21
Q bt éf. Dt o ] D . 4.

) 'Out'of this equation the following conclusiouns can be made: for

small pressure variations with respect to time the density can be

‘considered to be a function of the enthalpy alone. .But hereto the

véloﬁity of souﬁd g has also be éssume high_valueé. Thergfore

thé-ﬁreseﬁt anaiysis will be limited tb thé investigation ofiiow

frequency instabilities in two-phase flow systems, fpr which the
véloﬁity of'sbund is comparafively'high. |

For the derivation of an appropriate equation of state, the same

approach Zuber (1) formulated, will be used. At subcritical pressures

the equation of state ¢an be obtained from basic considerations on

two phase mixtures in thermodynamics. There the quélity is defined
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as the ratio of the vapor phase to the total mass. In terms of the

mass flow rates of the wvapor phase G% and of the liquid phase G{; s

the quality o , for the case cf no relative velocity between the

- phases, is

Xe =23 o
| 'G-F_“* GS | B - 4.22

We also know that the specific volume and the enthalpy for such

two phase mixtures are given by

’\S‘I'-':(‘“"’ ")U.F + X'Ug - _— 4,23

‘and

1= (=Yg 4+ Xig o

where \}g_ s LF and "33 " L3 are the specific volume and the ’enthalpy
of the liquid aﬁd of the vapor respectively. 'By_'eliminating the

quality X ffom eqﬁation 4.23 and equation 4.24, we obtain the equation

of state for a systelﬁ working at subcritical pressures

- . A"O - -

Cw(E) = Y+ 2R (- 0y)

S t .

| 425"

o e ———— -t : R !

RN S




-Differentiatiang this equation we get the gradient of change

A ‘£‘?%3:3_

For supercritical pressures the fdeal gas equation was assumed

4

52

.26

to be the constitutive equation of state in the light fluid. Deriving

in this equation the spacific volume with respect to temperature

do =R dT
P

~and using the corresponding total differential for the enthalpy

‘we get by combining both'equations

rr—— IR s————
—

With the bouhdary condition

1]
-

O = Oy ot

4o

4.

4

we obtain by integrating equatioﬁ-ﬁ.zg the equation of state for the

Might"fluid region

28

29

.30
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v(i) = \3;'+_'¢1*;"-2_-_(7-¥iz)' . o
p | 4.31

' A comparison of equation 4.25 and equation 4.31 shows us that
both equations of state are of the same form. Therefore we can replace:

them by.one equétioﬁ, which is valid as well at subérifical as at
supercritical pressures
. ' dy (- - IR |
w(ii) = 0; +(-—.—,- (I-—ag) . L - 4.32

The distinction of both pressure levels will be kept in mind by

considering equation 4.26 and equation &.29.

4.3. The Equation of Continuity and_ the Divergence of the Velocity
The wvelocity profile:in the two-phase mixture will be obtained
again by integrating the divergence 6f the velocity. Therefore we

rewrite the continuity equation in the form

& .-_"_..,_!.-.. 28 3Q

2z . ° 5t_ oz) 4.33

. To integrate this equation, we reconsider'equatiOn 4.4, which

" ‘states that the density is assumed to be only a fungtion-of'the enthalpy.

" The right hand_sidé of equation 4.33 then becomes

5




2 e Lde( 2, W3]
2t 3z . di < a3 )
’

St

4.34

-'Intruduqing the energy equation equation 4.2 in equation &.34&

we get

Do . de _ it de q§
>t T 33 TQ di A,

‘Herewith we reconsider again the divergence of the .velocity

§§§  E o = d‘% 'q'gf'.'

23 & di A

4,35

4.36

In analogy from chemidal reaction'systems; we define the right

hand side of equatien 4.36 to be the reaction frequency

4.37
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and we get

o o 4.38

This equation states that the divergence of the velocity in the

two-phase reglion ié equal to the volumetric rate of formation of the 
"light" fluid per unit volume.

A comparison_of eqhatioﬂ 4.3? Qith equatibn_4.26 aﬁd equation
4.29 gives thétSl will be for)sﬁb-fénd_supercritical pressures a -
n;:onstant_- The infégratiéh of fa_qulatl:lt;i::ri.f&.:}S i.s_t.he'refo.re independent

of the pressure level. With the boundary condition

st

u = 'G, + Du, - _U; + Ee ot 3= A(2) | 4.3-'9.

we get for the velocity distribution in the two-phase region

: _ Cwy st et _<
uj(sfﬂ._: Q, +Q(3-_‘k)+&e-. -_Q-‘%_.Cl—e r"‘) .4.4_0

Equation 4.40 can be written in two.different ways and each of
them will allow us interesting conmclusions:
~The first one expresses the velocity ng(S,t)  as the sum of &

éteady state and a perturbed function

Ug (3, = G o(z-7) + 8u, ~23% 41

R L o

i

ST T

S ——
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where

BZCS)-. = o, +_-Q(3> "-'5\) . - 443

is only a function of position kS ', and

is only a function of time. Thus the inlet perturbation propagates with

infinite velocity and_is'independent of position 3 . But at the same
timg equation 4.44:Say§?that:the systém reacts immediately to any
"input' perturbation. ﬁith other word33thé h&drodynamic conditions -
at a fixed position- & at the end of the duct will immediately.be
.affe.ct'el:d, ‘the moment a perturbation JSul occuré ét_ the entrancé.
Figure 14 shows the dependence of. é’;uqa({"-) on 50«, as a funcﬁion
of the frequeﬁéy.iﬁ an Armand diagram. B |

The second form of writing equation.4.40 rgpresenté the most
gengral ex§r¢551011, b_ecause it gives. ug (5,{.) as a function of 3

and two time-dependent terms

Ug(_g,'t)iz u,(t) + 'Q(S“ z)\('t)) ) o pas -

it
o

S
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__'fﬁe velocity distribution given in_suéﬁ é'form.says.that the
velocify'pfcfile_aldng the duct.will always consist of two straight
lines. The 'ffirs_t.one a parallel to the abszissa until 'A(t) ., which
means that the velpcity in the liquid phaée is independent of positioﬁ,
and the second one starts at 1\(t) . is comnected to the-fir#t one

and has a slope equal to £2 (see Figure 15). Thus, if the-perturba-'

* tion funckion is an oscillatory movement, then the two straight lines

as well as the posi;ibn'of ﬁ(f) will perform oseillations as is
inqicéte& in Figure 16.

For a bettér'underStanding.of the pHySics of the SySteﬁ,.iet us
perform a stepfuncéion perturbation: at tiﬁe ¥  the inlet velocity 
G, phanges ste§wisé';nd as was described'in_Cﬁapter ITT at the saﬁe'

time t the boiling boundary will start moving with const_ant. velocity

~ towards its new steady state value. But the veiocity profile in the

two-phase region will move parallel to itself and always linked to

9&(‘&) towards a new stéady-state pbéition. Figure 17 describes this_

process for the case that -Gz y W,

4.4. The Density Distribution

Td compute the density perturbation in the two-ﬁhase reéibn,-two
poééibiiities-éxist; |

1) To use the energy equatidn.in order to get the enthalpy-_
pét;u¥bation”énd to intrdduée this expression into.the ééuation.of
state.from which the density perturbation can be obtained. Tﬁis method
has the adv#ﬁtage of providing information referfing the enthalﬁy

distribution in the two-phase region.

i) R Y N SO
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Figure 17. Behaviour of the Velocity Profile for an Inlet
' Step Funcition Perturbation. ' .
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(2) To use the coﬁtinuity equation directly. In this case we
would nqt need thg eﬁergy equatibn and thersfore we also would not
gét the enthélpy'ﬁertﬂrhation.-
| In this anal.ys_i's tiu‘.—: second pﬁssib’ility w..ill be chosen in order
to get a solution with.the_smallés; amount: of approximations and.ﬁo
maké the.computationél:prpcess as short as possible.

If we introduce equation 4.38 into eguation 4.1 and rearrange,

. we get

28 4 u2e = - QL S 4.6
a2t | 2&5 o .
This equation was first formulated by'Serov'(Zl)f It is a first

order partial différential equation. The solution once mOEE'can'be

- obtained by means of characteristics:

Bt

where

xp'('i,"i',s) = C,. "and- | \{:ZC:; ..".':3) =C’-?- 4,48

are solutions of any two independent differential equatioms, which. imply

. the relationships:

gt = & _de | e

1 S I PR S
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Out of this equation, we obtain the following two equations

Egé- = Ll(t]. . : ' . : 4;50-
dt . :
aﬁd
2N -0 _ -
dt N | 4t

Heré aiso ih agreement with the correspoﬁding equations of
Chapter FII similar observations can_bé made. Equation 4.50 describes
the kinématic.behaﬁiof.of & particle'iﬁ the two-phase fegian”(note the.
differéﬁcé in3the egpress;oﬁs for the velocityfj.’ Equation 4.51 is
agéin an energy balanﬁe, in which the'constitutive equation has already
beén taken into account.

First we solve equation 4.50 to get an expfeSSién, thch_gives
us thé poéition of a particle in the two-pﬁase region as a'function of

time. Thus
93 L@ =+ 0(x-2) - 452
dt | EERSTRL -
or rewfiting
ds

2 —'Qs = G;_.Q.?\-_ -+ éu.l -9&x 4,53

 This is & first order differential equation of the type
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Qi + iz - h(8)
dt | L

4 «54

and its general solution is

o wdt| @t
3= eS{G’ . Sh(i)eg Codt + G |
o 4.55

Applying the general solution to the given velocity diétribut_i.on,

we. get

_ | : } : . . (s_.g_)t t_"s ]
_.C—l- = = 4.56

3¢ TS s

‘To evaluate the constant C, , we consider the boundary condition,

‘which will be given in terms of time differences. At time t= T (T is

. a variable), the part.ic'le. is at position ke =k, and at° t= T -—_T;K.

it just entered the t'w_o-'phase' region. Therefore
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t = X 3= k
and t = T-T - - &= AT~ o)
= A+ 69\6:"1:.2«) . 4.57
Eq.u-_ation 4.5_6. thus becomes
- -.Q(T- 'Eza) -2t tz“) PR
re + é}\ (.{.- K) : + Y - -5\} "-Q("-"- T}
S-2)(T- T st . -
ce “ls-gwoe | _ ST, {a‘ 5l 2t
(s-2) N - ' 2
(s-odTt |
_£e [ 5 - .Q«&-.Qeg{" o _ .
(s-2) [ & ' : ' ~ 4.58
: -Q"C
I dividing the equation by & - we obtain -
| _. OT Lot (s -)ew Scc‘r“")mi’ﬁ( | -s%,
: re =+ ea(t-T)e =4 [_“_t _-g]e e e [s-pipe
ST e S (s-@) [ s ]
o cr <t _ | . -
o=k o M _A_Ee -Q+.Qe - =
a 2 -2} | s : e
| ] ‘ oo e
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The position I for a given time difference T, can be

written as a sum of & time independent &and time dependent part

.Km K + Ak 4.60.

~ Frem equation 4.59 the Steady state equation can be obtained

as foliows

. 4.61

4,62
fof

~(5-0)0,

Y- e _ ” - (5~ Tpy _ _
OK = NS 6“‘3 te - o | ‘5’9\ . 4.63

This equation indicates the deviation in position from & for

a particle, which spent a given time.TiK- in the two-phase region.

'Subtracting equation 4.61 from equation 4.59 we get an expression

R
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During this time the.particle-aCEumuiated therﬁal.énergy in'proportiqn
- to thezadded héat. This thérﬁélhenergy caused ‘a rhase change as the
medium is at saturatioﬁ conditions and therefore a decrease of the
,densityf Qut of the péftiél differentiéi-equgtion equﬁtion 4 .46,

we obtained

4 .64

dt
With the bouﬁdary conditioﬁ
= T-Tp  3=3(T-T) Q=g 485
and integrating equation 4.64, we get
d .
_ _._._QQ = | dt
2 : : ' 3
: 4 .66
: Q? . T-T, ) B -
or
- -2k -
. g\)t; = Q{.e o 4,67

This equation represents the density-bf a particle, which spent

the time Tx  in the two-phase flow region. The general solution
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for the density as a function of time is

o ot |
Q=Q{Q S | - 4.68

An '-expre.ssion for the agﬁsi_ty pérturhatioﬁ as a function of 5
anch!_.'.’t ) can be found out of Figuré 18 as .follows: if we recall that
'e-quation'ﬁ..-GS giv‘_es' us the deivati.oﬁ for a constant-density position
from st-eady'state.conditions, tﬁen at certain time t , the demsity

at K +8X is egual to the _density' at K for steady state conditions

O = i _ ' 4.69
Sz =% 3 o o
- At K= E-t--:SK_ for steady state conditions the density is

A2 = - = — 4.70

‘This density value also can be expressed as a sum of a time

independent and a time dependent term .

Cxu= .QK.-e- SO - BN

'-I‘herefoi'e at time T ‘wé-'get the density perturbation By

subtracting equation 4.70 from equation 4.69 '
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Uglz.t)

—&

. Figure I8. Evaluation of the_Deﬁsity_Perturbation out of a
Steady State and a Time Dependent Velgcity Profile
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Lk B . "l:f‘. .
éQ(K “C) - Qe | -
Pl T Op+nsk - 4.72

- Upon expansion and linearization, this equation becomes

@(KT)-Q{“QSK L am

or uéing equation 4.63

(-0,
3 o | - e “ . -($-Q)'QJ<
Selkx) = g “'gf' (65—9) éuj cSl

K

To make this eqUation independent of the time Ipe ~and therefore
to express the density pert—urbétioﬂoniy as a function of K and T

we repiace the exponential terms by

-5 Q-5
o ()2 o
é(s-.ﬂ)'fm Y
_ o] G 45
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and rewrite herewith equation 4.74 replacing back T = t and k=3

o | | f-j?] 8-
é (Z)‘t) _ i-"Q_ {|- lal} 6 a)*-_i‘g 525}
N - "N .agz_ l (s-2) u‘:jmb Lal ) aae

This is the final expression- for the dénsity perturbation in. the

two-phase regioﬁ. The equation makes the following observations

possible:
(a)'The amblitude of the densitylpertufbatidn decreases inversely
 proportional to the square of the velocity,
(b) The phase lag between the velocity perturbatlon 5&&, and the
 density perturbatlon-depends on the position 3 and on the time the
particle spent in_thg’two*phase_floﬁ regioh. 1 ﬁe-exprés# aé.a'

function of the inlet perturbation ‘SLH ; equation 4.76 becomes

-

- 4.77
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In this equation the éxpréssioﬁ in Bfackéts giﬁes us the phase
lag between 53U1 and _é%@, - If the perturbaéion frequeﬁcy'oo ié
small, then the phasé-lag of'tﬁe respons; as a function of positien 3
will also remain small. _Buﬁ if the freﬁﬁency A is large, the phase
lag ali along the duct w111 a1é6=be-coﬁsiderable and we observé the
presence of density waves. figﬁfé 19 ard Figure 20 describe qualita-
;iveiy both cases in.an.Armand di#gram{_‘lhese density waves can also

be presented along the duct. Figure 21 shows thé case of low ffequencies_

. and Figure 22 of high frequencies.

In Figure 19 and Figure 21 we see that depending on the time the
situation can arise that nearly at all positions & along the duct the

density value is above or under the corresponding steady state density

distribution, causing big momentum variations. This effect will be

emphasized by the fact that for small perturbation'frequenéies the

boiling boundary reacts heavily, causing therefore additipnélly big

- momentum changes in the single-phase fegion.. Although they are a

ﬁfecondition for incipieﬁt instability, they are ndt sufficient. As
was discussed in Chéﬁfe£ II, it will depend mainly on the timing bgtwéen
velocity_berturbation and pressure drop whether sustained or amplifieﬂ
oscillations ocecur. j |

For high frgquéncies (Figure 20 and Figufe.22), the density -
diétributiOn will oscillate around the steady state curve, thus
gqmpensating any mbméntﬁﬁ change.

Tﬁe phySiCallébéervations so_far.describéd iﬁ this.sectioﬁ excluded-
thé influence .of the velocity distributiﬁns on thé system stability.'

Of course it is not easy to predict how much they contribute to the

i
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-Figufe 19, Density Dibtributlon in a ComDIex Plane for Small
Frequencies at a Specific Time
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 Figure 20. Density Distribution in a Complex Plane for Large
' Frequencies at a Specific Time
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_observed flow instabilities. However Yadigaroglu and Bergles (19)

report in their analysis that ﬂnétable flow oscillations were observed

to have a period of appreximately tﬁicé]the-transient time of the

medium at steady state uonditions.  As this is very much in agreement

with the mathematically obtained reéults, the assumptions that
instabilities at low frequcucies are mainly due to the behavior of
the density variations scems very reasonable.

The present discussions on the density in the-two—phaée region
will be concluded with an alternative derivation of eqﬁation 4.74 and
equation 4.:76. If‘we'sat, as was done by Zuber (1), Ishii and Zuber (20)
and Boure (26,'2?),_ﬁhe boundary?and:initi&l_Conditions to be

e, =0 ok t=T, _ _ _ 4.78
STE If'lesﬁ%

i-h=0 ..'..6-"3' 3= 9&("5} A+ze 4.79

and apply them to equation 4.56 and equation 4.57 we obtain

»n(’c Tz){ 3(3, ._..9.__ &{q&)} '[gﬂ(t “2)] { ;_a'_..'s_% &3&)} .80

This equation can be expressed as
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Here we write

| {-—.ﬁz(t-'&)}% - {
e | =

.“é . \ |  . | s.'
2l {5&}{ .,;.__ég_}“
) Tl 5 )
' ' 4.82
and equétiﬁn 4.él.becomes_a£ter rgarranging
E 5’(5\.- Se } {“ - & .'(4;‘-)} -
{% + o U Q) __s-‘-_g‘_-“ﬂ 3o
- | | 4.83

| _5"‘9*- g A3)

R ]

linearizing this equation We:finally get for the demnsity perturbation

R
Q  LOG@)s-2 | G, ” B

4.84

' The equality df this result, extensively derived by Zuber 1),
Ishii and Z_ub_ef (20) and Boure (26, 27), with eiquétion 4.76 can easily.

-~ be werified.:
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4.5. Steadz_ﬁtatelﬂalatibgs_in'the Twe~Phase Region
As was done by Zubar (1), the womentum equation will be
expressed in terms of several staady state relations for the velocity

and density in the two-phase region.

The gyeragé'valocitv'is defined by

(AP
CLLS*: e u,g(s) dz
B 4.85
Using équgtion'4;¢3'we'obtain
| | oo R0e-2) Ty, |
_— 4 > = O, 4 = = 4.86
SR R |
The log mean.velocitv is defined by
u&m_z LLS-...Ul = ..Q.(‘e:?\) '
fn 22 en Y2 .
g, Q, . h.87

If we introduce the log mean density in the "light® £luid region

4,88




we get herewith the meaun vaelocity

76

P A o |
M T Q;, - o © 4.89
L5 4 : . ) .
Additionaliy we define an average density by
| &5
S o
< Qﬁ).g I BR) dg

A4 | 4.90

From equation 4.62 and equation 4.67 and setting there K =%

the steady state dénsity. distribution is

Q) &,

——
-

Q{ . l 'G' _}_Q(S-_i) _ o 4.91

Herewitli we obtain in equation 4.78

(Q8>-_ _o.(e.-i)e a,

Finally with equation 4.79 we define a mean density

<ug> | o 4
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4.6, The Momentum Equation

With the steady state relations introduced in section &.5 and
velocity ahd_density'profiles in the two-phase region known; the

differential pressure drop equation can casily be integrated straight

forward. This waé ektensively done by Zuber (1). Here only an
outline of his results will be given.

With the boundary conditions specified by:
P=8 ot z=l e

the integrated momentum equation becomes

"5d‘° S- (o2t reuse +‘a<’+£§ﬁu}s

Y a(t) | ) 4.95

- Equation 4.95 will be evaluated term by term:’

4.6.). The Inertia Term

The inertia term in the momentum equation is given by

4.96

I ST 1 et SO S




18

Simplifying and linearizing the integral becomes

¢ .
A Y- |
ATy = g < -'-g,;ﬂ—) 3 4,97
At |
aﬁ&.after'performing the infegration, we get
. . - [ ’lj — ’ . o
- : =7 iy Q{n £ U:;) . . :

In view of the definition for the average dénsity and of the
equation for the velocity perturbation équation-4.&4,the-inertia term

can be expressed as

4.99

N T

4.6.2. The Convective Acceleration Term .

The convective acceleration term in equation 4.95 is given by

o% = § qustay
| AQY) s 7
4,100
T R v A T e N A T ettt

[ —
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Simplifying and linearizing, the integi‘al becomes -

S [Q‘*z(S\ +‘QE‘“3(‘°)+U3(5)5?] 4101

A

&P, =

: I-tS'i'ntegrat_io_n gives

t il —o'®

A‘Po‘g Gol(e-2) - Gaoce < +
ol 5t -7,
Qe ge” STEIRE

+Ge T2 St s-2+ge
U, S 52 s

o

- G St "5‘19 k_s___) 's('ﬂ“’tr) “z |

al ' 4.102 -

We obtain the steady state acceleration pressure drop by

'1etting. E=0

E’ ..# “ 2. (2-3) 4,103

Inserting this expression into equation 4.102 the convective

acceleration term becomesg
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4.104

“4.6.3. The Grivitational Term

The gravitational term in the momeéntum equation is given by

. " | 05&)%? > o 4.105

- 8implifying,; the integral becomes

¢ | -
a7y = {93 + g5¢) 4

/  4.106
AE) o

and its integration giveé

——
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Q . I. - ."%Tt-fgl.—'é% _

e, -
Q¢ ¢ sto $-g f-ﬁe 2 ﬂ(ﬁ‘m?xf -3(5-7,)
- +%<e ﬁ) )'3 E Py = -.5.___;2' --l. e _3 80«‘
- 4.107

Again if we let £ =0 , we obtain the steady state gravitational

pressure drop

a%y = (- <oy

4,108

Herewith equation 4.107 becomes

Q® . . Ay Oew o oy g
“ b?} Aﬁj | _ k?— u, _61 * S-52 Uy, S '

_Q_ .:ﬁ.—mrl ésctg ) é
5-—51 0

4.109
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- 4.6;4. The Frictional Fressune Drop -

The frictional term in the momentum equation 1s given by

&g" ”'S t A dS 4o
(4') - | _

Simplifying and linearizing the integfal bacomes

A

5 § fog “;‘&ﬁﬁ@’&“@&’*“a@’éﬂ o

s\L-a

and its integrgtidn gives

(9- ’0 [ Q(E~ '\)

an “DF t E
_ (ﬁ ?\) -_sz.+saeqc°+ £ -F(E )\) St < _*:L-vﬁe‘%
AT %4 et T Tm G
o iR +Q@..ﬂ]- G

Ee

._._s..'g. an M 'F-[ b .& - - 4.112

A
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Out of this equation we obtain the steady state frictional

pressure drop by letting £=© . Thus

- H.-":. ot
A AR Y- m D,

2D & ) Ot “‘3 S 413

" Equation 4.112'in_térms_of the expressicn equation_4.113 becomes
ﬁ?z.'b = A?s, 3 — &:-.P._... l 6% =+ CQ 22 é) '
> - (Q :x)(ua) o <.'u3> o

o o og, L 2 ﬁb”‘f(‘%—t)gu

S-2 <ug § = 4,114

| 4.6.5. The-Exit Pféssure Diop
Tﬁe.effect of the exit.pressure dxop wiliabg inc1u6ed in the
momentum équatibn equatiou-4.95.  Defining By - a.coefficient, which
accounts for all the.éiit pressure losses, we formulate the exit pressure

" drop as follows

ey 0, Uy .
5. = Alay = K@Uz o aas
R



S-.fi
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Siﬁﬁlifying and linearizing we get '
' | - b, (D - .
d - .
o oo-sCmet) o
-—=- Qe 2 Bu |
€2 4.116
For £€=¢ , the steady state exit pressure drop becomes
_ _ o~ _ 4017
A%w = ke, G Uy _ : _
Consequently.equatinn 4,116 caﬁ be expressed as
A? = A('P +&-é_:‘)§[> ..1._"%__,_%_..‘?‘?’_""..&
3“' . :"J‘-} u uﬁ s"g —
3 _ Uz
0. A, (T T,) S
- < - e e, :
s-L G, - o - 4.118

4.6.6. The Integrated Momentum Equation

The sum of equation 4.99, 4.104, 4.109, 4.114 and 4.118 gives

the total pressure drop across the two-phase flow region
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{‘qu?q = ﬁ\a + ﬁ-&-’mg 5 .f’;"{?,, 4 ﬁ%;_}-
+{(2-R)cgp) o2

e Taen T, Gpory

| {zﬁ. oy Tew , &P Ty }& .

o | 7% ot A% A ~2(G-T
S L@, o, , G, ) } v 4.119

In this equation the steady state preséu:e_drop is

LT = &?Q- * &?bﬁ + 8By 4+ o, - 4.120

Subtracting equétioﬁ 4,120 from equation 4:119 the pfessure

drop perturbation is
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$aP,, = { (e-3)< %93 Sy
o clt
a5, AP, Uem AV G,
{(9.-3%) N (9.—--5? o, {€-7) <"'*J>

+{""—;—-——m + 8% 4 g A————?’“} éua-i-
U.e_w\ £ | u.‘z

=2 JZ‘?; PN N
i Ui .<U3> Uy uﬁ

—

oI RV . & AT | —s{T- |
- { : _:Gb + _mg'*. 23 4 ;’.\-I- }Q (Tg -C) 'é)U.
_ U, (" H Ly u, - )

4.121
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'4.6.7. Pressure Drop Variarions of the Entire System

" Adding equation 3.49 and equation 4.121 we get'the pressure droPI

perturbations of the entire'sysfem :

E

N

e (o] 228« f(omeep) 23

+ { 26Foi | D6Pa }&J‘ L
DU ou, ] '

i

Aq?a. A"TP a, bﬁ?;,; Sate | ga
(L-M E-o% G, (M) “ 3 aﬁ}é’?‘

{gai ?}g +
Uy, - <ua> uﬁ

_ o {E‘éx - A‘ﬂq R 2! ‘3"1;)6
S (g, A Y '
' 4.122

. This equation is very complicated. Tts solution could be obtained
by means of computers, but this gbes beyond the scope of this analysis.

A very detailed investigation'was performed by Zuber (1). The present
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analysié will be{limited_to the discussion of physical phenomena, to
facilitate in the folioﬁiﬁg éhéﬁfer fhe apﬁlication of the integral
: ﬁethod; Several interesting qualitative observations can be made on
this result, |
A great deal of experimeﬁtél and theoretical wofk has shown -
that two-phase flow systems become unstable in the low frequency_
rénge. In equation:4.122 for such a situation the phase lag between
Aaf,, - and éu; wt:;uld be at .l_east larger than & and for: the
most critical conditions even equal to W . Such instabilities have
been called in the literature "chugging oscill_ationé." But beside

them, numerous experiméntal investigations have yielded that at high

'frequencies the system can also become unstable. These detrimental
highér ﬁéde oscillations have been denqminated_hacousticaln or - ﬂ
"screaming' instabilities. |
| .In section 4.2 of this chapfer we p;nved.tﬁat the preégnt
analysis is oﬁly valid in the low frequency range, if wé assune

~ isobaric flow conditions. However in the fo110wing,'we will ignore

this restriction to study qualitatively the high frequency domain: 

. In Chapter III we found that for

Cod b OG _ ] EAY O : 4,123

Moreover if <> —w= 0o

o-s -  san
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Finally, because of equation 4.123 if GS becomes large

éua(t) —wan-éu, | 4.125

If we apply these observations to equation 4.122 and rearrange,

the equation reduces to

o {bz;»; , 2E . O amn
. 21-‘1 ‘ b'lli <L-L5> _ U’-&

_Q(e,.. ) <¢33>} S, + {Q;\ + (Q—"fi) <Q3>} s 8u,

-5 - |
+0e T"(Q——')&)’(Q3> &u, 4,126

Here again similar to Figure 12, the final result can be represented
in an Armand diagram. The inlet velocity will be plotted on the real
axis.

The first term in equation 4.126 is positive if

28y 2 | 2%, IR, ARy o0 R)coe>
2G, 2, - Ugwa <u3'> ' Uy 3 RS

- 3 o

If we congider the second term, which is purely imaginary and
_ proportional to the freduency QO o, to_predominate in comparison with

the oﬁher two terms, equation 4.126 becomes simply
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4.128

Figure 23 shows that for high frequencies the ph#se lag beﬁween
6A?oq and éu.l is -g— » and the systefn is, according to the
stability criterion formulated in Chapter 1L, still stable. But experi-
mental research hés lead to the conclusion that for stability the
timing betﬁeen the inlet perturbatior; and the reéponse is no longer
of importance. Therefore it is belie?ed that in the high frequency
domain inétabilitieé occur much more because.of large pressufe
variations. These are necessary to account for the inertia forces,
which increasg directly proportional with the frequency 4 . We-
conclude that the present observatiogé are not allowed according to .
equation 4.21. But still they were made to analyze the course_of the

transfer function for increasing frequencies.
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-

Figure 23, Total Pressure Variations for Higher Frequenc.ie‘s
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CHAPTER V

ANALYSIS OF TWO PHASE F1OW INSTABILITIES

BY MEANS OF AN INTEGRAL METHOD

5.1. Genexral Considerations

As wa§ .desc-ribed in Chapter Il, the main purposé of the integral
method is to simplify the calculation procedure of a theoretical analysis
if it becomes too tgdious.without sacrificing-to a certain accuracy of
the resultsf

| The previous two chapters showed that thé complexiff of thg '
pertaining problem in this analyéis evidently justifies the application
of such an approximate method. It is now the questibn'in which way
shall the mathematical analysis be simflified.

The treatment of the single phase region, which was presented .
in Chapter III, did not represent major difficulties. In Chapter IV
fhe same can ﬁe said referring the evaluétion of the velocity.disfribu-
tion in the two phase region. However, here considerably more effort
was necessary to find an expression for the density vapiationé and
afterwards in_inﬁegrating the momentum equation. To examine best
the influence of the integral approach and to minimize the inaccura-
cles, which inevitably appearlby‘using simpIifyiﬁg techniques, it
seemé'réasonéble to limit its applibafioﬁ'to'the evaluation of density

and ﬁressure &rop fluctuations in the "light" £luid.
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The densiﬁy vériations can be.evaluated in two ways: by means of
energy and c&nstitufive équatioﬁ or through the_céntinuity equation.

Both methods will be treated here to find a general and méiniy simple
expression for its further use in this analysis. .

The pressure drop variations wiil be determined by siniply averaging
the momentum equation and introducing in this expression the velocity
distribution derived.in Chapter IV and the equation for the densif;
obtainéd by means of the integral method.

Adding the corresponding formulas fdr the single and the two-pﬁase
region, the overall préssure drop of the entire system will follow and
the characteristic équatioﬁ will be sﬁeciffed.' Herewith, Using a simple
stability criteria, a sﬁability plane will be set up to show the effects,
which various parameters (suéh as mass flow.raté, subcooling, power
input; etc.) have on flow stability. Finally a compafison with previous
work, mainly the théorefical analysis of Ishil and Zuber and experimental
data, will allow a careful judgement of the integral method presented

- in this analysis.

5.2. The Integrated Density Variations in the Two Phase Region

5.2.1. Integral Approach Methods

There are basically two different procedures to derive the overall
or Integrated density changes as a function of time in the two-phase
region.

One possibilify-is to integrate first the energy equation with

respect'tdlﬁosifiohftb determine the enthalpy variation, which after-

wards through the constitutive equation gives us the density perturbation.
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" The sécond way will Se to integrate directly the continuity
equation. This procedure is a much shorter one and therefore itlis
eﬁpected to offer better results.

The present analysis will follow both methods in detail tﬁ find
out how generally the intégral method works on such a stability problem,
ahd_to determine out of both a representative expression for the
overall density variation in the two-phase region.

5.2.2. Overall Density Variations bv Means of Energy and Constitutive
. Equation

1f we introduce the general constitutive equation 4.23 and the
expression for the velocity distribution equation 4.33 into the energy

equation 4.2, we get

| '2? [ Bg(s) + éugm]-g’- = [3'; (2"’) G-i )] i 5.1

Taking the enthalpy iz at the transition point for reference

and in view of the definition of the reaction frequency, we rewrite

s

equation 5.1 as

.5(?-— V) a(l-‘z] £ ' - »
T -+ | [ (3) + 60-3(*—)] 3 = g.F—Ac + .Q.(l—lz) 5.2'

e A
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Its integration with respect to.3 from A to Q gives-

2 ¢ ¢ ¢ e
Ca-gd S— 43 g 0. ¢ (g Lol
+ dy 4+ | Dugt) "‘d dy +0\(i~i,)
) "5 g ) (Fog
S A .
5.3
In tﬁis equation_we analjze each term:
First integral on the left hand side of equation 5.3: using
Leibniz's ruie, the integral becomes |
¢ | ¢ |
[Za Sl P 1} = — ) i
S % )
A A 5.4

This eduation exprasses ph}sically the tiﬁe dependence of all the
thermal energy storéd in the two phase region with respect to the
enthalpy levei iz . The dependence can be fixed by aséuming
abpropriate enthalpy profiles. Hére three of them shall be discussgd:
| (1) The roﬁghest approximation would be to take an average enthalpy
_va-lue élo_ng the duct and to comsider only I;he length ( £-2 ) to be a

function of time. 1In this case equation 5.4 becomes

- Lol .....'__ _;-3"' ;z' da o
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(2) A much better and physically more understandable approxima-
tion can be reached, if we assume for the enthalpy distribution the

steady state solution

I ....;Z QFUA (3”'&) 5.6

Introducing equation 5.6 into equation 5.4, integrating'with

respect to"3 and differentiating with respect to time, we get

¢ - -
3C-1) € /. d&A
Rimulg, o A2 (5-g) 822 |

§ at 3 _@{U{AC Y < 5..?'

(3) The best determination of equation 5.4 will be achieved by
assuming that the enthalpy distribution is always a straight line, in
accordance to the steady state solution, but with the boiling boundary

and the entrance velocity u

y being a function of time. In this case

the steady state solution is -

(- iz =-;—-cl—(-*1-(3“ I’\(t)). - | 5.8

Integrating, writing all the time dependent variables as a sum

of a steady state and a perturbed quantity, éxpanding and linearizing

i
!
|
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we finally get

L | - |
2G-1) o - 98 [(3-0) 982 _ (=% déy,
ot SToT AL el Ty ar

A%t}
5.9

A comparison sﬁdws that equation 5.7 is coﬁtained in equation 5.9.
‘Therefore in our followipg computations equation 5.9 will be used, and
. once an expression for the density variatioﬁs has been found, the
influence of the additional term, which appears by using.eqqation 5.8

as an enthalby profile, will be discussed.

Second integral on the left _hand side of equation 5.3: this

integral can easily be transformed into an enthalpy-dependent expression:

w0 )

Sﬁgmﬁfag - Sug@'a(:—zz)

X

5.10

Introducing the steady state velocity dfstribution, the integral

in this equation can be divided into two parts, of which one can be

evaluated immediately:
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* a

. . s
SG (sﬁég—i-"—:“-) dz = G,(§,-1,) + .Qg(a-sﬂd(:—iz\
o0 2 | -

At | -

| | o - 5.11

Third integral on the left hand side of equation 5.3: as the
velocity perturbation in tlhe two phase-flow region is'iﬁdependent of

s we obtain

v

(. 2(-3) _  X oy
Séua(tl_a:\._ dz = 6ua(t)( ¢ ,)

&)
5.12
First integral on the right hand side of equation 5.3: the
integration gives simply
0 o
. F |
_ 5
ﬂg—gd3 - qﬂ (e-2)
Q{ c 5 : Q.Fc-
| 5.13

‘Second intepral on the right hand side of equation 5.3: using

the steady state equation in the form
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U, e
£ 5.14
we get
S T-’-Tz_ .
a QY
v . f C - -
o g(k'—lzj dES Q “i—“gg-‘ S (' i ) C’(l ﬁz)

A N _ . 5.15
and'intfoducing again the steady state solution fbr‘(f—iz) , wWe
transform this equation into

o{G-w) s = afe-n G-t
ﬁ . .
5.16

Equation 5.9, 5.11, 5.12, 5.13 and 5.16 in equation 5.3 give

the general integrated energy equation

dé’)‘ (e~ 9\3 ddy, €
Q{_U‘A ‘(‘3\ E) 2c, ]+U(e )+(l 12)5\18(4: %‘;(E*‘J\)

5.17
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solving for the enthalpy and rearranging

[ dEN (a—mz’dﬂ'
L8 | @) - AT

RS SN

—

G, + Bugle)
- . 5.18

removing the time dependent function from the denominator into the

denominator and writing for

-1y - 98 LTk {“‘“""5 @ -
¢z SA 2 T €A uﬁ

EN + .._'_ Gy -1, A5 (”3"“') d3u, } 5.20

- — ~3 :
The enthalpy difference ( 12"'?2 ) can be expressed as a sum

of a steady state and a perturbed quantity:

; -1, = ;- tz + 8(7_?2_)
5.21
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in which

< £ -

=, = C-’]_ (Q-—?\ . .'
and

. _ﬂ_g_,_{ u_‘..un -4 .-G, dé?\ U déu.
&G 12)_?{% éua({-.} éﬁ\+gu§ jm &Ifu }

5.23

region. Using the constitutive equation in the form

gi= |+Sl§>f-f~‘:’-'(i-iz) | o
Q(7) 95 5,24

or with equation 5.21

Sty TG 4o X gi-n)
Q{{) Cig C1é' : 5.25

‘and solving this equation for CQ(T) , expanding, linearizing and

writing

Equation 5.23 gives us the enthalpy perturﬁatidn in the two-phase -

— e —————— e
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5.26
we get
| - anc
() o ¥ @&
AL Y - 2 j = &(ig- 1)
A T
: : 5.27
or with equation 5.23
@ - Bh _ - '_ ' ( )z
-~ - Q2 ~U \
S - “g‘!" + Szl 6'43&)4'9-%8;\"“5_;1‘ d-éﬁ_ i Wz —L;_ déu‘
Qe U U | U Gy dt 2dEE dt
5.8
This .equa.tion only as a function of C‘St..l.l and & gives .
- - .I - - - _ S
e, By, Brfhogn  Refdi 1 0Gd) b,
. QI: Uz L _ Ug g dt Qaa‘ﬁé. CH:

'5.29
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Herewith we got a general résultifdr the dénsity perturbation in

the two-phase region. Out of this equatioﬁ we observe that if the

'integral in equation 5.4 would have Been'approached by means of equation

5.6, then only the last term in equation 5.29 would be missing. The

equation in this case would be

R 0, | uz . q, é Ty "‘;Zu-l_g&% LL3 L'-a déa

— - +
— .
5.30
Finally the use of the roughest approximation, assuming an
average enthalpy value along the duct would have given
g, Ga-0y ¢ -394 iy 4+ 12 dEA
g—= — -+ {zgéwr'—:_Jﬂsﬁ—é‘i 2 &
& G G o T T2 at
: 5.31

The expressions for the demsity va:iations in the two-phase.fIGW'
region derived so far, although they are now only a function of time,
appear to be lengthy and unfavorable for a furtler application in the
momentum equation. Thefefore a second integral approach will be

studied in detail with the purpose of getting simpler expressions.
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5.2.3. Overall Density Variations by Means of the Continuity Equation

By integrating the contiduity eqﬁation with respect to 3 we get

¢ ¢
(22 45 4 { atew
A A

ot
5.32
Using Leibniz's rule the time-dependent integral becomes
¢ 0
2 (qdy = |22 g, \__2\_
2t ot dt
2 A
5.33

Equation 5.33 in equation 5.32, integrating and rearranging gives

: e -
- d -
o), - e (u-92) - 2 (eds

5.34

Hefe again, similar to the previous'integ:al approach, the time
dependent integral.cah be evaluated in three different ways:

(1) The assumption of an arithmetic average value for the density
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along the dict
ol SS9y |
: R — 5.35

gives the'simplest expression

5.36

(2) A considerably better approximation can be worked out by

assuming for the density in the integral the steady state distribution

o(z) _ G, |
s G+(z-2) _ - 5.3

Integrating and dividing by the steady state length of the

boiling region, gives us an averaged density for the two-phase region

| Q&Y Q@
Sa = YN n “a?,

5.38
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Integrating between the moving boiling boundary A(t)  and the
exit position A ';g-nd' di’ffe'rentiating"wit_h respect to time, the integral

in equation 5.34 becomes

e |

-, do = _','Q.p“{ T, d&A

ot SQ SR Cn T, ot
ﬁ .

5.39

(3) The most accurate approximation will givé again the most
intricate expression. If in equation 5.38 U, ,U; and A are a

function of time, we get

) -b [9;“; u,-a-.Q@-'O] _ .y, Q;. u, +90-2)
atgenu “btae"\‘u —

T déx L) du,
- (e ]

5.40

'Tﬁis .e.quétion of course is very c0mpli§ated énd. thez;efofe will no
longer be commented upon in the following anélysis- Therefore to compute
the'denSity variations équation 5.39 Will be used as this expression ‘is
physically the most consistent. Substituting equation 5.3§ in eduation

5.34 gives

o ——— Cemrrmaemes. 4k e ei—m L . ol . -t
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5.41

If we divide this equation by the exit velocity, expand and
write all time dependent terms as a sum of a steady state and a time

dependent value, we get -

L =-_-_-1—(|— f>_}:g> (5, + Su, - déﬁ\)+ 205 452
o & a | AT

5,42

Rearrariging this expression and retaining only the first order

terms gives

L A&, (Ea_&_)g%‘_;___,,._g&,,_,( L
Gy Uy Gy B\ G % S dt

5.43

e T T
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" For reasons of completeness thelsblution will be mentioned for
the case that the.arithmetic avérage ﬁéiue giveﬁlﬁy equation 5.35
would have been-used« Introduc1ng equation 5.36° into equatlon 5.34 the

final result for the den51ty in the two-phase flow area would be

R . 4, (E*_}:__‘;"_) Su, + -k Qé?t L ((ff*_@z - l)fiﬁ‘
. : Uz ‘us (43 61%_ dt
5.44

?he two expressions for the overall density variations in the
two phase region obtained in this.chaﬂter again appear to be coﬁplicated
and inapproPriateIfér'further use in the momentum equation. In fhe'
following section an attempt will be made to evaluate the results so
far obtained and to.set up a Simplg equation for the density to facili-

tate the following computational procedures, as this is one of the main

purposes of an integral method.

5.2.4. A Slmpllfled Expression for the Overall Density Variations i
the Two-Phase Region .

‘In the present analysis only the most adequate of the equations
derived in each previous section of this chapter . will be used.

Under the point of view of structural similarity and accuracy

in section 5.2.2 we choose equation 5.29 and in section 5.2.3 equation

5.42, Considering only the time dependenf part, equation 5.29 becomes

il
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- ._-_ | : _ _ : _ o } "
5 _ _':‘3_“'2_1 Su, B—%-_:—Z?L‘L_Qéﬁ.;_ Ha-5, d& | (G3-a) déy,

Q. Uy T L ug dt 2aE Jdt

¥

5 ."45

and equation 5.42

< U, Oy Mz u

These -twp expressions derived by means of two diffefent integral
approachles héve in comparison' with equation 4.68, which was dgr:_l.ved
using a differential method, the peculiarity that-they only spec.il.fy
the overall density variation of the entire two-phase flow region.

Thus, equation 5.45 and equation 5.46 are. ontly a function of time and
Ino-longer of spacelas in equal:.iot_l 4.68. TIts _phas'e-lag is only dependent
on the inlet perturbations tSu-, and -&A  and the corresponding ampli-
tudes. Fﬁrthe.rmére, both of them are 11wers;e1y proportional_ to the -
steady state exit vé.locity ﬁs

_ Thé simplification of these two equations to a single representa-
tiﬁe one will be achieved by comparing the corresponding terms.

The first term is in both cases th‘e_ same. In the following the

- assumption h.?i_.ll be madé thét for steady state conditions the exit

velocity ﬁa 1s considerably larger than the inlet ve_.locit'yG‘ 3

———
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" this means that

Ug >> L4 | 5.47

‘Herewith the coefficient of the first term becomes

s

5.48

The second term only differs in its ampiitude. Figure 24 shows
thé depéndence on the exit steady st;ﬁe velocity. In equation 5.46 its
value becomes very small for higher exit velocities as it is inversely
proportional to the square of ty , but it reﬁains always positive.

In equation 5.45 for C13>fgt%" the amplitude is negative and of the

order of the first term. In making a decision, preference will be given-'

to tﬁe results obtained out of the integfatedrcbntinuity equation and
because of.its smallness there, 1t will'be_ﬁeglected._ We will see later
that this term does not affect at all.the stability criterion which
ﬁili bé'used} |

The tﬁird.term in equation 5.45 has a negative coefficient aﬁd
can be simplified in the same vaf as was done for the first term, but

in this case we emphasize that the approximate value is smaller than

the original

bk |
! Qa _ 5.49

—— e
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i
Ty

Figure 24, The Second Term in Eq.5.45 and Eq.5.46 as -a
Function of the Exit Velocity

Pigure 25, Eq.5.52 as a Function of the Exit Velocity -

el
Ys
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- §imilar observations can be made for equation 5.46. The logarithmic

expression becomes for

Gy—G, U4, Q, | : 5.50

and for Ci_,i- = ob.

-63*-3300 uj,""ui

5.51
Figure 25 shows that for >,
“  fnls ¢
5.52

.. Therefore fqr the. amplitude of the third term, the following

ineqﬁality can be written

: (;a' Cn Bs _ ') S - 5.53

e g e
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Assuming

5.54

the coefficient of the third term becomes equal in both equations

5.45 and 5.46.

P

The fourth term_inuequation 5.45 does not appear in equation

53.46 and will be therefére'negiécted, Herewi#h we finally write

Se =2t (8w, -58)

5.55
With equation 3.25 a further simplification is possible
- '
Wy \ 5.56

As a conclusion to this section, we can say that tﬁe integrél'
method has delivefed us & very simple expression for the overéll
density variafions in the two-phase regiqn}' Because of-its structural
gimilarity with'equétion 4.35 in the fellowing development equation

5.55 will be used.

P
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5.3. The Averaged Momentum Equation

To achieve simplicity in.evaluating the pressure drop variations

of the "light" fluid region, an averaged momentum equation will be used:

A?m = (ﬁ’.— 9\)-‘% (Ql«l-)o_ + Qul-g% -a-Qu,z (! - ‘{"’il\ + E{S (etf)&(&k) +Ca 8(6-5\)
| | | 5.57

-Before we introduce in this equétibn the expressions-for the
velocity and density, é]:} Tthe_ terms will be .1i;néaf'1._'ized'.and expressed
as a sum of steady-state and time-dependent values:!: the change of

the total momentum of the fluid in the'system with respect to time is

dt
5.58

The chdnge of momentum in the two-phase flow region because of

the moving boiling boundary is taken into consideration by .

dx o den -
Adt = 94 _:F at _ 5.59
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The rate of momentum eflux and influx by virtue of the bulk

fluid motion are

2 2 .z : -
QLL! = Qe T U8 + gl Sug
Qt.fl = Q G +éle{up cSU.l
A 5.60

and the force of the gravity on the total mass of fluid is

Sa(t-2). = 3. a(2-2) =5 q& ¢-X) &
ch(_e 2) Qo_cg( ). Qg + g(€-%X) & .
We ﬁili include the effect of the exit pressure drop in the

momentum equation. Defining by ke the coefficient for the exit

‘losses, the exit pressure drop can be expressed as

Z&ﬁ%&+ =.l§=§?él£: : 5 63
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. upon linearization we get

"’e.q = ke (3,0 + BiS0 + &9{5;5“3)

5.64

Adding equation 5.57 and equation 5.63, we obtain the total '

pressure drop across the two-phase region

g 5,65

Substituting equations 5.58, 5.59, 5.60, 5.61, 5.62 and 5.64 in

equation 5.65 gives

a®, = (¢- )[@,,d@: _ée_] b gy, 982

S o B
+Q, U, + 0,5¢ + &qu{_éuj-9{u¥ ‘&E}Ggéu.,'

% [Qa o + Tg . 5 +Qe G éuz](e—m) -—%qaé&

 + @Lﬁ(e-—m -%g o %(e'a)ée |

-I|~ ke [§e &i +. {"J:ée + 0‘29{6{:'6ua]

5.66




117

This equation can also be expressed as

ﬂ?’.q = A{ngi, <+ 6&% ' - . 5.87

with

0% = D, ~ T + &R0l

+€Ju'_'<j(-(’,"—.—'§)' + ke@'Cij o | 5.68

aﬁd rearrangihg |

éaq.)zl déu.

iy

= (e- 2§ Q%x

*lom -
+ER) 2R {5 (14 1e) kD +g(€->~)]<5e
+ {f_‘fg(e— D Qo Ta. + keé}g{_a,;} Su,

{&9.9{ We + ——(E ’\)&.QQQ o %@q&i.f

“'._@a% + ke&%af'ﬂ} 3 - 5.9
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Introducing now the expression obtained in the previous section
for the density perturbation and its first derivative,which we write as

follows

dt Ty : -
| 5.70

Equation 5.68 becomes
$aTy = (E-MFusbl + (5 ;1-(e;’:i§‘§in]'s-a9. |

(e 'A)__

= -95&, -(e Mua_isaa\ -
) o

’ . .. ' . ua
+{c§(¢ +) + L (-RE + q(e- ﬁ)}gi Su
-{Gz('l-a-ke) + = (E x) Ty +2(€"5‘~)}f_ &
oL (DT + k37T 8,

{élilﬁﬁ; § *'——'(Q QJQQSZQ%1LHx 1“-—— Q%L o -

5.71

+ Qatz + kQ&QFG{Q} 59\.

[ SO SRS PP P =

EEail DN
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- The total pressure distrubance of the systém 1s the sum of

equation 3.47 and equation 5.71:
- 65'2,:_', _ Hk‘—@&a‘ +£{5@{&a.5\'} + { (1+ ke)+—-—(g__ —‘)Gé |
| +‘3( e%‘ﬁ)}% + {}:% (ﬁ-‘;‘\)fi“écﬁa. + k@_&?ﬁ;}] 5%

{9{‘3“"’; i) - {&Q‘?ﬁ’“{ *“(Q"Q&-Q?a%

"I_,__-.'z .-__. | ,. RPN
+-—%Q@t+g, -+_...QQ,%_ + ke QQFUL{ .‘.Q}) EA

+{‘9;"‘1£ SR "{ O (1 ko) .’“."z%(e' ),

N Y ' . o2
+ a(ﬂ-— 9\3}3] s &N+ [_ (e-7%) LLQS}_] < &N
- G, o Uy |
' 5.72
This is the final result for the pressure.variations as a

function of the inlet velocity perturbation, and the corresponding

influence coefficients. The equation can also be expressed in

. terms of steady state pressure drops. For the average values in




the momentum equation 5.57 we use the values defined in equation

4.79 and 4.85. Thus with

Go = <LL3>
Ca = <Qa>

.equation 5.72 becomes .

66.%{* s.[ba(?cu +2’ds£_+ Mz A?a:- +(__L_ + \Q)

<u3>-, u{ o, <%‘> 113. | &‘3
+[@~Fa+ _é?."_‘: —Lﬁ—{ 2 E]Séu.‘
Q QT
o] 2o | 24T | g AR (a.o_ | ):‘3
22 22 (e-3) <up (e °
 ATa LA
- - Q0 833 S
(e-a az}
(-2 & &
Uy, TP 4, GG, My
- Lo :_,—;_ s&XA + {-— SUg> ‘ﬁ)a»] 2Z&0
Gy G, L ogd
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5}73

5.74

e e o
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CHAPTER VI
STABILITY ANALYSIS

6.1. General Considerations

As was commented in Chapter I, umnstable cqnditions in the system
will certainly be present if the phase lag.between the-velocity pertur=~
bation and the system pressuré drop is equal to ﬁalf a period of
oscillation. 1In such a situation the gradients of 6u. and of SaP
always have an opposite sign. The present theoretical inves;igation
hpwevef congiders the'intégral effect and therefofe we say that out
of a full period, for at least half pf_it the graﬁient of inlet and
outlet:perturbaﬁions have to ha#e the sameLsign._ In.this case the
phage 1ag.betpeen:both_oSgillatory movémen;s is rgstriﬁted_by equation 2.4.

The stability analysis will be pex¥formed by using ' a very simple'
criterion, first used in tHe analysis of Iéhii and Zuber (20). The.
reéults will be plotted in an appropriate stability piane.\ A
parametric study and comparison with experimental data will conclude :

this analysis.

6.2, A Simplified Stability Analysis-

.To facilitate the further computational process, we write equation

5.72 in terms of abbreviated influence coefficients

S8t = Ay, + Aysdu + Ay E2 + A*Séﬁ.*‘/{gszé) .




In this equation we set
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20, . 2EPn . ©Ts AT (. | g)
L 2 4 M3 AVe S
I 2T, - 1o U, G,-0, M o, O A?Z‘f
@ N 6.2
(<&> * ?)A@ - g A ]
Up TG, <SP Ts i
S S
¢ -~ 20,0 6.3
A3 [bzﬁ’; " YN ACP (&Q | )"_
| N DA (e;-c\) Sl (e-R)/
K=Y e 6.4
_ A?- _ae .‘i‘.?l'?f'_
(e-» Ty
A,*-_-[( R )E-%f%—‘*‘?‘* .93-{%;]
My - U, Ue,.. Q, U~u, Ug Ul
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.A . Cug> 55

If we expreas é»éi? directly as a function of Su, »

equation 6.1 becomes .

| — ST,
$5%,, = [A‘. + sA, _l—-se )A +

-,{-(l —‘és-q‘) A, + S(' ‘_‘—éﬂa) As]

6.7

Here the terms in brackets represents the transfer function.

between the input 50«, _ and the output 64?01_‘_ .+ By rearranging

equation 6.7, we obtain the ratic of the oscillatory movements

&R, T a® e

with

Qs) = A + sA, + ("GHW)A + (1= A,

.+:S_(l- e-q") :4

'_6.9

il
ol
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: This'expréssion is called thg_cﬁaracteristic equatioﬁ of the
system.bgcéuse it determines its behaﬁior toﬁards ;ny perturbation
- mode, depending only on the system parameters. Figure 26 represents
the blbck diagram of the system} For_<§C53 = Q , equation 6.8 shows
that the ratio between input 5‘4. and output 6-6?04 becomes

infinity. . Therefore for a given inlet velbcify variation, the pressure

‘drop remains constant and the system is stable. In an Armand diagram

this situation arises, if the plot of the frequencj goes through the
origin. But this, in accordance to the stability criterion formﬁlated'
at the beginning of this section, means that we ére crossing the
stability boundary. Figure 27 shows qualitatively such a situation-
for the frequency fesponse in a compiex plane. | o

Figure 28 represents a special situation. Here the frequency

piot only touches the stability boundary at the origin. However the
same obseivations are still valid, Egcausé a éhange of the system
barameters would immediately lead to conditions similar to these
&escribed.in Figure 27.

In the-followinglalvery simply cribéﬁiOn’will be derived to find
out thé influénce of {he.systeﬁ ﬁérameters on the staﬁiliﬁy boundary

Q(8)= © . In equation 6.9 we introduce S=i&> and write a

common denominator for the whole expression

o) =.“ Ao +;Aiaz_"_;A%[I;é:wts]‘l'Aqw[‘"é.‘w‘q"] +1A5£[|“;TGSQ]

6.10
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input Qls) output
' Figure 26. Block Diagram of the System |
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Figure 27. Graphical Representation of the Transfer Function
Between Inlet Velocity and Pressure Drop Perturbation

Figure 28, Tangential Course of the Transfer Functiom and its
Dependence on the Parameters o

126




127
Sepérating the real and imaginary components, we get

- : | 2 .
' A[qC\) — AL' LG, + AgSil"\GbT.g. - As& ST

O= +
' L.
: z
+ AL‘,O\)SIHC\)'&L -+ Azsdoz"' A.3 +A3.C@>¢${)‘E‘h -Asﬁ)Gﬁn&)'{;;_
o S 6.11
with
Aqq. = AI + AL’ o

/%ZS = }12.+ )qs

_ | o 6.12

The very extensive analysis of Ishii and Zuber (20) showed that
the higher orders of &> do not influence the course of the stability
boundary significéntlj. Therefore they wili-be'neglected and we obtain

for the real part

: A3 5’udcoj:b + _A_“-.,as - ALt et = O

aﬁd=for the imaginary part

A [ -~ Y -A 354 . | = 0 : '
1, '5.:. , +Aqaa5¢@m'q° | 1

6.13
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Rearranging and using basic relations from-trigonometfy, these

two equations become

] (AH*AQ(O O

chaaa)“” A\%sihggi"i—éorﬁ Ces &
6.15
and
- T, <3
S'V\Q:Q-qo - Az 8in ) + Aqog ua:.-:{-] =0
6.15

We recall that an unstable situation certainly arises if the
phase lag C# between input perturbation and output response becomes
equal to I . Eguation 6.16, the imaginary part of the characteristic

equation, gives us hereto the frequencies

T, = O ‘«Q-.ri' o | B 6.17

and

6.18
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or

BT _ Ay o,

tan .
' AT, <
: 3%k 6.19
With equaiion 6.4 and equation 6.5 it can be shown that
A, | -
Figure-29 shows that for'
L - 6.21
Qa T '

'Equation 6.19 has a solution. Therefore instabilities already

‘appear for

FAYS Sl 6.22

Herewith the integral method ‘and the application of a simpiified

~ stability criteria deliﬁered a tesuit“Which has been repeatedly observed

in experimental research: instagbilities in two-phase flow systems
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@
2

tan

'
e
rid

£ .
]

Figure 29. ’-Graphidal Solution of Eq.6.I19
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preferentially occur at low frequencies. In the literature these
unstable flow conditions are called chugging oscillations.

Equation 6.18 in equation 6.15 gives the stability boundary
In Chapter II we said that for stability the response to a
velocity perturbation, which we plot on the real axis, will have to be

on the right hand side of the Armand diagram. Thus the real part. in

equation 6.15 has tc be positive or in equation 6.23 it means that

AI +QAL|.>O | | 6.24

Equation 6.2 and equation 6.5 in equation 6.24 gives

_YUs ata _ oty Qg R >0
ul u&“ul E{F —'FC'E 23 .

6.25
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or

(k0,2 + a0} + {60k et n)S
+ %(e_a)a§¢ua+ keél?{'ﬁ;} +3 [[Q&-(e-masz}
,{a’;(uke) wE (0T, + 3(@'5’}%] 5 o

6.26

This inequality is independent of the frequency and represents a

relation between the different parameters which characterize the system.

6.3. Similarity Groups Governing the System

.In order to make the results so far obtained independent of a
specific geometry of the system and special operational conditions,
we will set uﬁ in the following a group of dimensionless par ameters.
These will enable us to generaiiée our fufther investigations and to
evaluate the quality of the present work in comparison with previous
theoretical and experimental research.

" Generally in the areas of heat and mass transfer for complete

similatity between two systems beside geometrical also kinematic,
dynamic {(thesé two are mechanical) “and thermal'similarity st be

fulfilled,
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6.3.1. Geometric Similarity

Using -E as a length scale we easily nondimensionalize the

geometry of the syétem

. s | .
3= = D = 2
l b 0 6.27

6.3.2. Dynamic Similarity

! Through a dimensional analysis of the momentum equation the two

main dimensionless groups for dynamic similarity can be obtained

The Reynolds Numbey hJRg

NJ __. Ot U D - .mertia forces
Re (“1: frictional forces 6.28
Tﬁe Froude Number Nz
- . .
N_ = -4 inectia forces
| o %2 2:-;:,\.-'?1’5 fOI_'Ce-S 6.29

6.3.3. Kinematic Similarity °

* A two-phase flow system with heat addition is a coupled thermo-
hydrodynamic ﬁfdblém;‘ As was shown in Chaptef'IIHin our simplified

system the thermal conditions always determine its kinematics..
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Thus kinematic similarity also fulfills thermal similarity. With
the reaction frequency £k , we-easily non~dimensionalize

The Inlet Velocity

-X o
= —f
uf - .9_& . _ C 6.30

and : : . B

The Outlet to.Inlet Velocity Ratio

* Ty + 03 A
CI’ = 'F - Lo [ - —-U—g"- . B
f | of 6.31

Moreover we need two additional parameters to scale the thermal
conditions of the fluid at the inlet and the heat addition to the

system. Hereto we set up an erergy balance

| gl = ai (6 +Go) + Al G _
- 9 - éu J 3 {%- a 6.32

whére <;¥ ‘and 653_ are the mass flow fates of the liqﬁid and the

vapor phase fespectively.  Tﬁerefore the thermal energy added to the
duct élong its iength 2 :causes the ;aturééion of the total mass

flow rate ( G‘F+Gﬁ - ). and the vaporization of l:h.e'm.ass flow rate Gﬁ .
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Rearranging, the following nondimensional equation results

et

A.‘ Gukb

...)(

- : &f{? - Qy{-u.AcA'[{a

6.33

with X  defined by equation 4.22 as the guality of the mixture. It
shall be mentioned that equation 6.33 could already be used to set up-
the required similarity groups. However to introduce the reaction

frequency 2. , we multiply the equation with AQ/QS and obtain

NSQb ='. NF.ch - X(%?)

6.34
Herg we wrote
The Subcooling Number N sub
N ___Als.,;,b Ag
s M . . N ’
Al,';& Q'z. - - 6.35

‘The subcooling number Nm describes the thermodynamic
conditions of the fluid at the entrance of the system.. Therefore it
ségles.the_time, which the __;‘Eluid e_nl:efing the duct needs to reach

satura-ti;on_.pondi tions.

1
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The Phase Change Number N ook
1

' Q£ ¢ '| _
N_Fc!-.-_—q a2 gt L
= A} > Q U _
The phase change number NFGL scales .throug.h the reacti.o.n

' frequency £ the rate of phase change and with Q/ﬂ{; the residence

time of a particle in the duct. Hence it indicates how far the phase
change has progressed in a system.

¢
The Boiling Length A

An energy balance for the lit]uid'phase, solved for A and

scaled with the length € gives the dimensionless boiling length ﬁx

-9\“ = .é:.. - éiSuh'Acef G:E
e alg(l
6.37

This parametér can alsc be obtained 'subdividing equation.6.35 by

equation 6. 36

h - | .
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The Density. Number_ Mo
The density number (or ratio) scales the préssure level of the

system and thus the fluid properties

s - 6.39

In the following section, the similarity-gfoups presented here

will be applied to our simplified stability criterion.

6.4. Dimensionless Stability Criterion

Rearranging, dividing by the steady state mass flux, and intro-
ducing an averaged friction factor for the entire syétem, equation 6.25

becomes

. £ J] | Ny e~

ﬁ{ +.Q(€-—"i)
- - | | (RN |
O +a(X) ._.f@_(e;.m[_%jﬂ(g)]z APl
Y% 2D e I O IR P DRI AY

;-|<e giLiﬁ%@:E) SO : .
Y N |  6.40

Applying the similarity groups obtained in section 6.3, equation

"6.40 can be rewritten as
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Qk; + &}E}‘ + dke > Ct(_t+ke_) +

'F";" (1—9\") Ej&l + (C’x— 1)..@;:_

I d
NETS f o~ - r ol - c*
. U3 ul . t NLAF‘. r
' 6.41
i{efe we set
o \2
(U_g‘*-(.l.)
- }
——— & 7 Np
6.42
The right hand side of this equation is only a function of the
o ¥ :
inlet to outlet velocity ratio (:r . However the phase change

number hdfmi‘ increases linearly with the_éubcooling number MNgup -

The simplification made in equation 6.42 is only valid for small values

of hJSQb - in comparison to hJPch .. Figures 33, 34, 35, and 36"

show that this is also true for most of the experimental data, thus
justifyinglour assumptions,

1
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Figure 30. Stability Plane
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-Sft?bi lity boundary

\

]

increcsing Ney,
=stabilizing

7 | . —
- increasing Npeh = destabilizing NP‘&'

Figure 3I. Influence of the Subcooling Humber and Phase Change
Number on the Stability of the System '
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1) increase of system pressure, inlet velocity, inlat flow restriction
shifls the lins to the right = stabilizes the system

2) Increase of friction factor, outlet flow restriction .shi{-fs the
line fo the left= destabilizes the system

N.sub 4

stability boundary

unsicbla

Figure 32. Influence of Several Operational Parameters on the
' Stability of the System
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W G-
=2 ==F
6.43
NP‘h
neglecting l:he.' gravitational forces
_qu | ~ O »
C"- NFr ]
Ll
and for high Cl' values
— 2 O
* 6.45
G -
Equation 6.41 finally reduces to
b+ Em ok -Q+k)
C -1 < — - -
i .
| 2 a2y (le 6.46.

In the following we shall set up a stability plane and perform

a parametric study of the system based on the results just obtained.

e o e e
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1

o 6.5{ The Stability Plane

One ‘.of -the' _f:_ina'l.-pl_lrposes_: olf t.hi.é. res-..ear"cb_ li._s .f.-o‘l investigate
the influence of diﬁferent qp_erational vari;b],es on tﬁe slts:lt‘bility of
the system. This wil-l' 'b-e I:Jést";b;erformed _'by analyzing the 's_tability'
crite.rion equation 6.46 in -2 two dimensional biane. If we fix the
inlet velocity, system pressure and its geometry, we obtain for the
coordinates of such a stability plane the subcooling numbe.r NSuB
aﬁd the phase change number NP.;I-. . The subcooling number

is always positive but upper bounded by Ais 'y corresponding to

the freezing point

Al Qg
fa 6.47
Moreover from the condition that boiling takes place in the
channel, but super-heating of the vapor does not ocecur, we obtain
22 ¢ N
' : _ 6.48

Thus the operational domain in the stability plane is bounded.
Figure 30 shows these conditions and the relationship between Msub

and Nrc,-h | ~ given by equation 6.34 and equation 6.38.
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6.6. Parametric Analvsis of the System

Equation 6.37 in equation 6.38 giﬁés with equation 6.34 and

equation 6.45 for si:a_bility-

.
C:"l =)<e%‘?; = Nrﬁh__i\]sub< ‘Q{ L Ex k‘a} (+k)
A l-é-z',_-{-:-z_—%‘—..-r-&ke}

This expression combines the inequality obtained in section 6.3

with the coordinates of the stability plane. If the operational
variables on the right hand side of the inequality are independent

of the phase change number Nrch and the subcooling number Nsuh s

then the functional relatiomship

6.50.

is a straight line, which intersects the abszissa for Ng ;. = O , thus

i+ B} Gew
g e v an]

N =
P

6.51

S ; i e e o — e
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and represents the stability boundary of the system.

A.Influence of éMs.i...‘b-- : (S’ubcod.li'ng). We consider a system
with fixed geometry, Reynolds nur_nbef MRQ. ., inlet and__out:l'et f-low
restricfions-‘ﬁ{ and K, , system .pressure and .a]‘..s'o fiked phaée
change number Nl“h Fr.om Figure 31 we seé l_:hat; by increasing
the subcooling number WNgup -‘,':',Ilt'h'e _ﬁ.oint :;f operation moves away
from the stability boundary J’.nto"..l:he _sta.bl_le domaiﬁ. Therefore the

. system has been hereby stabilized.

B.Influence of ™ peh (Heat Flux). The same as in A, but
now with constant subcooling number Mgy, , and increasing Nl:_h

shifts the poinf: of operation into the unstable region.

C. Influence of the System Pressure. An increase of the system
pressure does not affect noticeably the parameters on the right hand
side of equation 6.51. But the exit quality »; decreases, thus

stabilizing the flow.

D. Influence of the Inlet Velocity Ui . If in equation 6.51
the inlet and outlet flow restrici:ions K: and K 'énd the fr:i..c_:ti_.on
factor f are independent of the Reynolds number Ng, , then the
phase change nunber'.Nrd.. will be the only parameter affected by

inlet velocity variations. From equation 6.36 we see that for -an

increasing inlet velocity U‘F , the phase change ‘number Nr;l.. decreases

and therefore according to B, the poinf: of operation shifts into

‘the stable region. -

E. Influence o6f the Friction Factorx 'Fm . An increase of the

friction factor ‘Fm' means that the expression on the right hand side

T ]
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of equation 6.51 dectreases. Herewith the stability boundary shifts

" to the left thereby destabilizing the system.

F. Influencg'ofﬁthé Inlet and Qutlet Flow Restrictions Ki and Ke .

Analogous to E in equation 6.51 it can easily be verified that the
increase of K . hds a stabilizing effect, whereas the increase of

K, destabilizes the system.

6.7. Evaluation of the Results

The.théoretical investigationé.presentéd so far had the main
purpose to apply an integral methdd in the evalﬁatidn of instabilities
in twoffhase flow éystems. The results will be compared to the
experiﬁental data of Levy (29), Solberg (30), Carver (31) and the
theoretical analysis of Ishii and Zuber (20); These authors, as |
was also done in the present'work, particularlj examined Qperational
flow conditions at high pressures. Thus they assume the mixture to be
in thermal equilibfium, neglect the pressﬁre drop effects on the fluid
pfoperties and limit the stability analysis to the low frequency range.
Moreover the e;perimental work was done for both circular and aﬁnular,
tﬁbe geometries and for different diametérs.

_'Figures 33, 34; 35, and 36 show that the cobtained results are
ip ver& good égreement with the mentioned literature (20, 29, 30, 31).

Surprising is the similarity of equation 6.51

3 {ki. +é&'§*+ke} '(';KQ
! +.g{£§ + &ke}

X A2 = NF,J,'_ N, <
g .




151

with the corresponding scolution of Ishii and Zuber

-

6.52

: .These equations differ within Gfpéf cent, whereby equation 6.51
. _is _shifted.to the left andltends. i:o predict a more unstable system than
the measured data ;nd the theoreticél work cited.af'the beginning of
this éection. Equation 6.51 also does not account for-the large
stability increase at extemely low ;ubcooiing. This efféct was not
noticed by Levy (29), Sclberg (30) and Carver (31), but it was
obsefved by Yadigarouglu and Bérgles (19) and aisd confirmed by the
computer solution of Ishii and Zuber (see dotted linés in Figures33,
‘34, 35, 36). .The actual flow conditions for very smail subcooling
numbers NJSug afe still not known exactly bécause of'experimental.
difficulties. It is believed that in this region big changes of the
phase change number Fdfud« do occur due to subcooled flqw boiling.
In this'case.the'phase chénge proceeds further than for thermal
equilibrium énd th§ value of F\lrch - increasesf

| Thé inlet aﬁd outlet orifice coefficient l(i and kg , were
not given by the experimental data of (29, 30, 31). The present analysis
is based on theaevaiuation of (20), who &gtermined-the values from

" steady state pressure drop equations.
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For the friction factor the equation

0.2

Goith - Coe . and f = Ou8e

Ra -
6.53

was used. The value &2 for Cm gives a slightly higher pressure drop

than the Martinelli and Nelson Correlation. For a smooth pipe the

liquid friction factor ;5 is only a function of the Reynolds

number hJeﬁ .

As was showm in the present section, the integral method has
provided a véry gatisfactory criterion to avoid-unstable opefation in
the design.qf two-phase flow systems.r However, it should be remembered
that the entire analysis was based on linearized field equations.
Therefore the theoretically predicted stability boundéry only consi-

ders incipience instability. Whether unstable flow conditions appear

or not will largely depend on the nonlinearities, which were neglected.

Nevertheless the agreement between measured and analytically predicted

stability boundaries is surprising.
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CHAPTER VII
' SUMMARY AND RECOMMENDATIONS

Thg anélysié is Eomposéd of two main'parts: The first one
presented a diﬁferéntial ﬁethqd based on theoreticél investigations
of Zuber (1) to study the;physicS'of two*phaséﬂfiéw syéféms. The
second part.treatéd-fhe problem of_iﬁstahilities in two-phase flow

systems by means of an integral method.

Differentidl Method

An eitensive study of the single phase region was made. - The
mathematical solution was derived as in (1):using the_fun&amental
one-dimensional.field equations and the constitutive equation. -
Additionally, the behafior of the boiling boundary as a function

of frequency and subcooling, and of pressure drop as a function of

frequency and system parameters was analyzed in detail. The results

were plotted in graphs to facilitate the physical undérstanding. Here

it was found for example that large pressure variations can also occur -

for small frequencies if the inlet flow restriction becomes sufficiently

high.

The two-phase region was treated.similafly to the first one.
Moreover the limitation ﬁf the analysis to.the low frequency rénge
Wwas proven. .The.equations of state for a médium at suberitical and
supércritical pressureSjwere'compared and_theﬁ generalized to a

single one. The velocity distribution in the two-phase region was

—
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derived ‘connecting the continulty and energy equation. In contraet

to (1), the density as a function of time and space was obtained by

“reusing the continuity equation. With-density and velocity profiles
" known, the pressure perturbation followed out of the momentum

-equation. -Again as for phase one, graphical representations'were

set up, which helped to v1sualize the phy51ca1 behavlor of the system

'towards an 1n1et velocity perturbation Finally, a qualitative

_analy31s showed that 1n-the high frequency domain instabilitles occur
because of very large pressure variations, which are necessary to

account for the inertia forceés of the: fliid.

. §£§bility_Analysis by Means of an Integral Method

To reduee'the numher of errors, the application of the simplifying
integrallmethod was limited to the evaluation of the density variations
and the pressure perturbations in the two-phase.region.

The oﬁerall dengity changes were determined by integrating with
respect to space in two ways: |

(1) Introducing the uelocity profile directly intolthe‘continuity
equation, therefore proceeding ae_was done for the differential method.

(2) Using energy and constitutive equation in accordance to (1).

Both solutions were carefully compared and gave a very simple expression

for the density perturbation in the second region.

. The pressure drop was obtained by averaging the momentum equation

" and inttoducing here the velocity profile and the simplified expression

for.the deneity.

“Out of the preseure_drop equation for the entire system, a
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characteristic equation was détermined.

As in (20) a simple stability criterion was applied to this
equation. Neglecting the higher orders of the frequency & a sta=~
bility analysis was easily accessible. The results obtained are
excellent. Although for very complex systems theoretical investiga-
tions have the main ﬁurpnse to help us in understanding the physics
and the parametrical’behaviéf of thé system itself, the present

analysis delivered surprisingly good agreement with experimental

data and the very extensive theoretical studies in (20).

Re com.me.ﬁ'd'g t:.ong_

Because of its many applicafioﬁs in modern techmology further
research in this area is ébsolutely necésséry. Based on the model
used in this work, it is recommended to perform in analogy to this
iﬁvestigation similar stability analysis for the case of heat
addition and subcooling variations. Together witﬁ the present one
a generalized analysis could be made. This means in this case we
would consider a simﬁltaneous perturbation of several irarying para~-
meters. Writiﬁg for the velocity perturbation éSLA. s the heat
addition variation &L and for the subcooling changes | 6Ais_,b
we would write an expression for the'pressure perturbation in the

form

6o n Qb0 + G0« Qb
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Here GQ‘ , & , and CQ; are the corresponding characteristic

equations, or using the scalar preduct of two vectors

o 64?& alu -E:

with

amdh Q t
%

as a "characteristic vector" of the .system and

Su,
W = | b2

as the generalized "perturbation vector."




157

BIBLIOGRAPHY

1. Zuber, N., "An Analysis of Thermally Induced Flow Oscilletions
in the Near-Critical and Super~Critical Thermodynamic Reglon,
NASA Report No. 8-11422., 1966.

2. Hines, W. S., and Wolf, H., American Rocket Society Journal,
- v.. 32, p. 361, 1962. . .

3. Corne11u3, A. J., and Parker, J. D., 1965 Heat Transfer and
Fluid thhanlcs Instltute, University of California, Los Angeles,
1565. .

4. Cornellus, A. J., Argonne Natlonal Laboratory, 7032 April 19635.

5. Firstenberg, ., Atomic Energy Cormnlssion_- US, NDA - 2131_ - 12,
June, 1960. :

6. Thurston, R. S;, Los Alamos National'Laboretory - 3070, TID -
4500, 1964. : . :

7. Shitzman, M. E., Teplof121ka Vysoklh Temperatur, V. I., p. 267,
1965.

8. Shitzman, M. E., paper no. 1-59, Second All-Union Conference on
Heat and Mass Transfer, Mingk, 1964 '

9. Semenkover, I. E., Energomashlnostroenie, no. 3, p. 16, 1%64.

10. Krasiakova, L. I., and Glusker, B. N., Energoﬁashinostroenie,
no. 9, p.-18, 1965. :

11. Ledinegg, M., Die Waerme, v. 61, no. 48, p. 891, 1938.

12. Ledlnegg, M., "Das Verhalten von Zwangdurchlaufkesseln bei
Lastsenderungen," Bremstoff -~ Waerme - Kraft 12, Nr. 5, p. 197,
1960.

13. Profos, P., Sulzer Technical Review, no. 1, p. 1, 1947.

14. Profos, P., Energie, no. 6, p..193, 1856.

15. Profos, P.; Die Regelung von Dampfanlagen, Sprlnger Verliag,
: Berlin, 1%62. :




16.

17.

18.

19.

20.

21.

22.

23.

24 .

25.

26.

27.

28.

29,

158

Wallis, G. B., and Heasley, J. H., Journal of Heat Transfer,
ASME Trans. Series C, v. 83, 363 1961,

Quandt, E.R., Analysis and Measurements of Flow Oscillations,”
Chemical Engineering Progress Symposium,  Ser. 57, Ro. 32, 1i1-
126, 1961.

Mayinger, F., and Kastner, W., '"Berechnung von Instabilitaeten
in Zweiphasenstroemungen," Chemie-Ingenieur-Technik, 40.

- Jahrgang, p. 1l185.

Yadigarouglou, G., and Bergles, A. E., "an Experimental and -
Theoretical Study of Density-~-Wave Oscillations 1n Two-Phase
Flow," MIT Report No. DSR 74629 = 3,1969.

Ishii, M., and Zuber? N., "Thermally Induced Flow Instabilities
in Two-Phase Mixtures,' &4th International Heat Transfer Conference,
Paris, 1970.

Serov, E.. Po, and Smirnov, O. K., Teplophyslks Vysorlh Temperature,
v. 2, no. 4, p. 625 1964.

Serov, E. P., "The Operation of Once-Through Boilers in Variable
Regimes,' Trudy, Moscow Energ. Imsi. 11, 1953.

Serov, E. P., "Transient Process in SLeam Generators, ' Teploener=-
getik, wvol. 13, 9, p. 50, 1966.

Serov, E. P., "Analytical Inve;tigations of the Boundary Conditions
for the Formation of Pulsation in Steaming Pipes During Forced
Circulation," High Temperature, vol. 3, p. 545, 1965.

Teletov, C. G., "The Hydrodynamic Equations of Two-Phase Fluids,"

Akademia Nauk §.8.8.R., Doklady, vol. 50, p. 99, 1945.

Boure, J., Report IT No. 55, Centre d'Etudes Nuclealres de Grenoble,
France, 1965.

Boure, J., ''The Oscillatory Behavior of Heated Channels. An
Analysis of Demsity Effects,"” C.E.A.R. 3049, Centre d'Etudes
Nucleaires de Grenoble, France, 1366. .

Crocco, L., and Cheng, 8. I., "Theory of Combustion Instability in
Liquid Propellant Rocket Mo;ors," Pergamon Press, Oxford, 1956.

levy, S., and Beckjord, E. S., "Hydraulic Instability in a Natural

Circulation Loop with Net Steam Generation at 1000 psia,” G.E.A.P.,
3215, General Electric, San Jose, California, July 15, *1959.




159

30. Solberg, K., "Resultats des Essais d'Instabilities sur la
Boucle 'Culine’ et Comparisons avec un Codes de Calcul,"” C.E.N.G.,
Note 225, Centre d'Etudes Nucleaires de Grenoble, France, 1966.

31.  Carver, M. B., "An Analytical Model for the Prediction of
Hydrodynamie¢ Instability in Parallel Heated Channels," A.E.C.L.,

2681, Atomic Energy Canada Limited, 1968.




