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ĵ  heated region non-boiling length 

/a viscosity 

g heated perimeter 

^ density 
• N 

AP density difference between two phases 

X time variable 

TL^T^ residence time in the liquid region 

<fi angle between inlet velocity perturbation and 
pressure response 

tfo frequen 

XX reactio 

Subscript 

e exit 

f liquid 

g vapor 

i inlet 

m mixture 

I inlet 



XI 

Nomenclature Continued 

Subscript 

2 saturation 

3 exit 

12 subcooled region 

23 two-phase region 

Symbols and Operators 

* dimensionless 

6A perturbed part of variable A 

fa steady state part of variable A 



SUMMARY' 

This investigation presents a differential-integral analysis 

of thermally induced instabilities in two-phase flow systems. The 

differential method was applied to study the physical behavior of 

the system and was limited to the evaluation of the total pressure 

drop of the system. The graphical representation of the results 

so obtained showed that at high frequencies the. pressure drop 

variations become very large. As this is not in agreement with 

the derived equations of state, the present investigation was limited 

to the study of low frequency instabilities. 

The simplifying integral method was used exclusively in the 

treatment of the energy and momentum equation of the second phase. 

For the first phase and the velocity profile in the second phase 

exact solutions, previously derived by other investigators, were 

applied, in order to avoid additional inaccuracies. The overall 

density variations in the two-phase region were evaluated in two 

different ways: by means of energy and constitutive equation and 

directly through the continuity equation. From the results, obtained 

by these, two methods, a very simple expression for the density was 

found. 

The pressure drop variations were determined by simply averagin 

the momentum equation and introducing in this expression the velocity 

distribution and the equation for the density. 



When the corresponding formulas for the single and the two-

phase region were added, overal.]. pressure drop variations of the 

entire system followed and the characteristic equation was determined 

Then, using a simple stability criteria, a stability plane was set 

up to show the effects which various parameters have on flow 

stability.. A comparison, with previous work allowed a careful 

judgement of the integral method presented in this analysis. 



CHAPTER I 

INTRODUCTION 

1.1» Significance of the Problem 

The problem of instabilities in two-phase flow systems became 

relevant in the last few decades with the advent of new technologies, 

like for example, nuclear and chemical reactors, and sea water desalina

tion processes. Since then this problem has increasingly occupied the 

attention and Interest of scientists and research engineers in the 

areas of heat transfer, fluid dynamics, and control systems. 

Initially a great number of purely experimental investigations 

were carried out with the purpose of studying these flow and pressure 

oscillations. The results revealed that, for specific operational 

conditions of the system., considerable temperature and pressure varia

tions appeared. It is understandable that such oscillations are considere 

undesirable and harmful. For example, in nuclear or chemical reactors 

large variations in temperature and pressure can seriously endanger the 

safety of the reaction process and may even lead to the rupture of the 

entire operating system. 

As it is expected that the application of two-phase flow systems 

in engineering will increase in the future, the idea of studying in 

detail through experimental and theoretical analysis the physical nature 

of flow instabilities should be of considerable use. Moreover, in order 

to avoid these instabilities and guarantee reliable operating conditions, 
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fundamental studies on the dependence of these detrimental oscillations 

on the system parameters appear'to be of eminent importance. 

The particular objective of this work is to present a theoretical 

investigation of the measured arid observed oscillations in numerous 

experimental analysis. In addition by using a simplifying integral 

method, this work attempts to approximate the dependence of these 

oscillations on the system parameters as well as to prove the validity 

of the integral method itself. 

1.2* Previous Work 

1.2*1. Experlmental Sttidj.es 

In the past, as mentioned, a great deal of largely experimental 

work has been performed in the area of two-phase flow instabilities. In 

his theoretical analysis, which was the basic reference for the present 

work, Zuber (1) gives a very detailed enumeration of the research made so 

far, indicating also the most interesting results the different authors 

obtained„ 

. In general the extensive experimental investigations showed that 

mainly two types of oscillations seem to lead to major flow instabilities: 

acoustical and chugging oscillations. Hines and Wolf (2) describe the 

first one audible as a clear and steady scream of high frequency (3000 -

75000 Hz) and the second one as an oscillation with a lower frequency 

(600 - 24-00 Hz) audible as a pulsating noise. 

Cornelius and Parker (3,4) specify the dependence of these two 

prevalent oscillations on the temperature: the frequency of the acoustical 

oscillations decreases, whereas for chugging oscillations it increases 

Sttidj.es
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with temperature. 

Scientists and research engineers who have been working on this 

very complex problem of instabilities in two-phase flows generally 

admit that the incipience of flow and pressure oscillations occur 

because of the large variations of the thermodynamic and transport 

properties of the fluid in the super- and subcritical thermodynamic 

region. Therefore several of their reports include interesting efforts 

to find qualitative explanations of the phenomena generating instabilities. 

So for example, Firstenberg (5) makes the heat transfer coefficient 

dependence on the various flow regimes responsible for the oscillations. 

Thurston (6) and Shitzman (7,8) note that the large variations of the 

specific heat at the "pseudocritical" or the "transposed" critical 

temperatures (note: these are at supercritical pressures, the tempera

tures for which certain thermodynamic properties reach a maximum) lead 

to the appearance of critical flow conditions. Hines and Wolf (2) 

consider the strong temperature dependence of the viscosity at super

critical temperatures to be the reason for the oscillations occurring. 

Cornelius and Parker (3) argue that; acoustical as well as chugging 

oscillations have their origin in the pressure dependent heat transfer 

rate. In addition to these observations, other investigators cite 

several more physical phenomena for these undesirable flow conditions 

(9, 10). 

1*2.2. Theoretical Investigations 

Because of its complexity, relatively little analytical work has 

been done to date on the problem of instabilities in two-phase flow 

systems. In the following only the more important investigations will 



be briefly discussed. 

Although the main purpose of this analysis is to investigate 

dynamic or oscillatory instabilities, a brief reference will be made 

to the early studies of Ledine.gg. (11), >ho fiorst treated static or 

excursive instabilities. These are only possible at relatively low 

flow rates and low pressure levels. The criterion which he formulated 

is that a system operates at unstable conditions if the steady-state 

pressure drop curve as a function of the flow rate has a negative 

slope (£>&P/2>6 < O ). For such conditions a sudden change in flow 

pattern and flow rate would always lead to conditions where h£&/&&>® 

and a return to the original state is impossible. This instability 

is therefore called aperiodic or excursive. Figure 1 shows qualita

tively the flow rate domain in which stable operation is not possible. 

Later on Ledinegg (12) and Profos (1.3, 14, 15) analyzed the 

transient behavior of once-through boilers for higher flow rates. 

These investigations describe several physical phenomena rather well; 

however they do not consider dynamic instabilities. It should also 

be mentioned that both authors introduce graphical methods in their 

mathematical procedures, which makes understanding the problem rather 

difficult. 

Early in the sixties, Wallis and Heasley (13) published a 

mathematical analysis, which since then has been repeatedly used as 

a reference in subsequent reports. 

About the same time Quandt (17) presented an analytical solution 

of the problem by utilizing the technique of small perturbations. This 

method again is exclusively mathematical, but does not present a 
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physical discussion of the problem. Moreover, the mathematical procedure 

itself is rather complicated. 

Recently Mayinge?; (13) ..ma de, a .. study on instabilities in two-phase 

flow systems. His analysis i-i basically a. solution of the fundamental 

differential mass, momentum, and energy equations by converting these 

into difference equations and solving them numerically by computers. 

A very extensive analytical and experimental solution of the 

problem has been presented by Yadigaroglou and Bergles (19). The 

report investigates in detail the influence of several phenomena. In 

the single phase region, for example, the dynamics of the heated wall, 

variable, heat transfer, and the dependence of the boiling boundary on 

the pressure were considered. In the two-phase region account is taken 

of the variations of saturation temperature and other properties with 

pressure in space, by making use of a reference pressure profile. 

Furthermore an enthalpy trajectory model was introduced, to predict 

the pressure drop in the two-phase region with oscillating flow. At 

the end of their analysis, the authors present stability maps and the 

theoretically .predicted stability threshold, which exhibits also a 

correct behavior. 

Finally, Ishii and Zuber (20) made extensive studies in this 

area. In the two-phase flow region the analysis takes into account 

the effects of the relative velocity of the two phases by formulating 

the problem in terms of the center of mass of the mixture. It thus 

eliminates confusing theories based on different expressions for 

the velocity "slip" ratio, which were introduced by various authors 

previously. The set of four partial differential equations 



(continuity, momentum, and energy for the mixture and continuity for 

the vapor) was integrated for the case of thermodynamic equilibrium, 

from which they obtain a characteristic equation for the system. 

The investigations present a detailed discussion of appropriate 

scaling criteria, which the authors apply in the evaluation of the 

characteristic equation. Its solution is a stability plane, which 

shows the effects the various parameters (such as mass flow rate, 

subcooling, power input, etc.) have on flow stability. The theore

tically obtained results are in remarkably good agreement with 

experimental data, which makes this analysis one of the most signi

ficant in this area. Extensive use of this reference will be made 

in the present report. 

1.3. Purpose and Outline of the Analysis 

Most of the theoretical studies, which were briefly discussed so 

far in the previous section have, in common that the mathematical treat

ment is very lengthy. The main purpose of this analysis will be to 

study the usefulness of the integral method.in the investigation of 

two-phase flow instabilities. The integral approach has found wide 

application in the area of momentum., heat, and mass transfer. Its 

main advantage is that it shortens considerably the computational 

procedures. On the other side it requires a deep understanding of 

the physical phenomena in the system. Therefore, this work will also 

present a thorough study of the differential method, which will be 

mainly based on previous investigations of Serov, Smirnov, Teletov 

and Boure (21, 22, 23, 24, 25, 26, 27). These authors formulate the 
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problem as follows: the two-phase flow system consists of two regions, 

a single phase and a two-phase flow region, both divided by a boiling 

boundary. For each region a. constitutive equation and the three field 

equations describing the conservation, of mass, momentum, and energy 

are established. In order to decouple the momentum equation from the 

energy and the continuity equation, the density of the medium is 

assumed only to be a function of the enthalpy. 

The report will mainly follow the mathematical outline of Zuber 

(1). Its most significant contributions will be the graphical interpre

tations of the transfer functions, a simplified mathematical procedure 

in evaluating an expression for the density perturbation as a function 

of space and time, and the application of an integral method to shorten 

the entire theoretical analysis. 

The investigation can be summarized as follows: the present 

Chapter I is an extensive introduction to the problem. In Chapter II 

the system, its thermodynamic behavior, its kinematics and dynamics and 

the method of solution will be discussed. Chapters III and IV will be 

devoted to the-exact solution of the problem and in Chapter V the 

integral method will be treated. In Chapter VI the stability analysis 

will be performed and the report will conclude with an outline of the 

results in Chapter VII. 
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CHAPTER II • 

INSTABILITIES IN TWO-PHASE FLOW SYSTEMS— GENERAL CONSIDERATIONS 

2.1. The System and ,Its Thermodynamic Behavior 

As the extensive literature in this field shows, the thermo-hydro-

dynamies' in two-phase flow systems are of a very complex nature. There

fore, to make a stability analysis accessible, a simplification of the 

system by introducing an appropriate model appears to be a necessity. 

A model that takes into account all possible effects;very easily can 

result to be mathematically inextricable. On the other hand, a too-

simplified formulation can endanger the accuracy of the analysis itself 

and consequently limit its applicability. 

The present work will use, as was stated in Chapter I, the same 

model Serov and Teletov (22, 25) apply in their investigations. The 

two-phase flow system will be therefore simplified in the following way: 

(1) It will operate at constant pressure as well in the super

critical as in the subcritical region. 

(2) Heat addition will be constant along the duct. This implies 

that the product of the varying heat transfer coefficient h and the 

temperature difference &"\ = 'WAU "*' \j<auna> will also remain constant. 

(3) There will be no radial temperature distributions. This 

presupposes very high heat conductivity and constant temperature for 

every cross sectional area. 
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(4) Boiling will start at: the so called boiling boundary at which 

the medium will always have saturation conditions. This boundary 

represents a separation of the. two-•phase 'region from the single-phase 

region. Both will be treated separately. 

(5)'In the two-phase region, the vapor and the liquid phase will 

move with no relative velocity to each other. 

(6) The fluid will have to pass two flow restrictions, one located 

at the entrance, the other at -the exit. It will be one of the purposes 

of the analysis to determine the dependence of the operational conditions 

of the system on these two flow restrictions. Figure 2 shows the system 

schematically. 

Once we have set up the model* the thermodynamic process can be 

described ̂ rery easily in a temperature-specific volume plane for sub-

and supercritical pressures. As the present analysis is mainly 

oriented towards its applicability in relation with boiling water 

reactors, the diagram in Figure 3 is given for water. 

At subcritical pressures the fluid behaves as follows: it enters 

the duct with velocity u, at ® and remains in the liquid phase until 

it reaches the saturation line at (2) , whereby its temperature increases 

considerably at constant specific volume. At (2) a phase change occurs. 

Now the temperature is constant but the specific volume increases. 

Therefore for the following discussions in the next chapters, we will 

especially bear in mind that the boiling boundary, which was introduced 

in our model, represents the transition from the heavy to the light phase 

and that this transition point corresponds to the saturation enthalpy. 



Figure 2. The System 

de n &catt on I J na 

1 — 
S.43J O.O^ 3 

Figure 3. Temperature, Specific Volume-Diagram for Water with 
2 Isobars and Condensation and Saturation Lines 
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At supercritical pressures, as Figure 3 shows, such a transition 

from the liquid to the gas phase cannot be clearly defined, because at 

these pressures as x̂ ell as at the critical one, the interface, the heat 

of vaporization and the surface energy all vanish. At present there 

is no general agreement where and how the phase transitions occur. In 

analogy to the subcritic&l pressure range, where various thermodynamic 

properties^ such as the specific heat, the compressibility, etc, 

change discontinuously or reach a maximum value at the saturation line, 

numerous authors consider its extension into the supercritical region to 

be the line for all points, where the thermodynamic properties listed 

below reach a maximum, for example: 

J^f-V' = O 
h? j T 2.1 

£>cf 

^ » Jr 

aTVp 

2.2 

s O 
2.3 

Of course there are many other criteria. Unfortunately each of 

these lie on different lines. But assuming that their course in the 

supercritical thermodynamic region does not differ very much from each 

other, we will choose the third condition to be representative for the 

saturation line. With other words, we say, that the so called "phase 
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transition" occurs when Otr/cM 1 = O . Therefore the thermodynamic 

f 

process in Figure 3 is as follows: we imagine the fluid to enter at 

point (T) . Between (Jj and (Zj it will accumulate thermal energy until 

in accordance to our previous observations it reaches the "saturation 

line and a phase change starts. At point (3,i the fluid is a mixture 

of "liquid" and "vapor." 

As a conclusion to our thermodynamic observations, it should be 

emphasized that only the establishment of the model made a description 

of the process in a thermodynamic diagram possible. 

.2.2. Kinematics of the System 

In the following the kinematics of the simplified model shall be 

discussed in some detail. Figure 4 shows the density as a function of 

enthalpy, time and position. The continuous lines describe qualitatively 

the real conditions in a two-phase flow system. It can be seen;that the 

curves are for small enthalpy values straight lines parallel to the 

corresponding abszissa. As the fluid gets at subcritical pressures 

close to the saturation line or at supercritical pressures close to 

the line for which cb'cr/eM )%» O , the density decreases steadily. 

Finally its functional dependence on the enthalpy, time or position 

becomes of hyperbolic character. 

If we introduce again in accordance to the assumptions of our 

model, the simplifications into the graphs of Figure 4, the density 

distributions experience two important alterations: 

(1) The actual density distribution consisting of three different 

regions (constant, transition and hyperbolic) has been replaced by a 
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Figure 4. Density as a Function of Enthalpy, Time and Position 
"Two-Region" Approximation Showing the Time Lag and 
the Space Lag 



15 

two region approximation. 

(2) The two-region, density profile consists of one straight line 

and a hyperbolic function and has a discontinuity at their intersection. 

The behavior of a particle from the time it enters the heated 

section will be therefore as follows: in the first portion of the 

system, although its temperature increases considerably, the density 

will remain constant. When the particle, reaches saturation conditions, 

a phase change will occur and from then on its density will decrease 

exponentially with time. The motion of the particle for steady state 

conditions through the two-phase flow system depends therefore on two 

characteristic values: 

(1) The time elapsed between the injection of the "heavy" 

particle in the heated duct and its transformation to the "light" 

fluid, which will be denoted as the time lag X^ • 

(2) The slope of the linear functional relationship between 

velocity and position in the two-phase region. As will be seen in 

Chapter IV, the slope, which will be called in analogy from combustion 

theory reaction frequency., depends only on the system parameters. 

For the case that: the flow process through the duct is also time 

dependent, the space lag A^i) , which indicates the location in the 

duct, where the transformation from the "heavy" to the "light" fluid 

takes place, will also have to be given. 

2.3. Dynamies of the System 

According to control theory, the dynamics of a system are best 

examined by observing the response of the system to a given inlet 
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perturbation of the inlet velocity, for example, a sinusoidal function. 

As in the results that Croeeo and Cheng (28) obtained from extensive 

studies in the field of coit'uuot ion, h<ire wr also shall distinguish two 

different modes of respoc?;-: rarjjii E lacLji.'ti uis and organized or 

coordinated oscillations. 

Random fluctuations will always appear in a system whenever there 

is no coordination or dependence among the different properties or 

parameters. 

Organized oscillations of a system will be present if there 

exists a mechanism for intermittent storage, and release of some parti

cular form of energy. Such a mechanism for example are the oscillations 

of pressure, which will affect the saturation temperature thereby 

inducing oscillations in the rates of evaporation. These, in turn, 

may induce flow oscillations. Variations of the boiling boundary as a 

function of the inlet flow, density, and velocity oscillations in the 

second phase, as well as variable heat transfer coefficients and flow 

regime changes may also contribute to the formation of such mechanisms. 

Considering the inlet velocity to be the input of our system and the 

pressure drop along the duct to be the response, the previously described 

mechanisms will determine as well the amplitude as the phase lag of the 

response with respect to the inlet perturbation. Figure 5 shows how 

two sinusoidal movements can be related time-wise to each other. 

It is evident that under certain operational conditions the timing 

between inlet and outlet could be such that for increasing velocity 

perturbation the pressure variation decreases or viceversa. In this 

case, regenerative feedback is present. The response will perform 
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Figure 5. Time Lag Between the Variations of Inlet Velocity 
and Exit Pressure Drop 

stcshiSatyi hatjric§&sriy 

Figure 6. Phase Lag <J> Between the Variations of Inlet Velocity and 
Exit Pressure Drop in the Complex Plane and the 
Stability Boundary 

i __ 
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undamped oscillations, because energy is supplied to the system at the 

proper frequency and phase relation in order to overcome the losses due 

to various damping effects, as.for example friction. 

If the phase lag between input and output is equal to TT the 

system will be certainly unstable, because the gradients of both 

oscillations will always have opposite signs. In practice small 

deviations from these operational conditions can fairly well imagined 

also to be unstable. Therefore the following more rigorous stability 

criterion will be used in this analysis: system instability will always 

be present, whenever opposite signs of the gradients of inlet perturba

tion and outlet response predominate over a whole period. For stability 

therefore the phase lag <£> between output and input has to be 

- f <4>*Z- 2.4 

In a complex plane, plotting the inlet on the real axis, the 

output will have to be on the right hand side of the imaginary axis. 

Figure 6 shows this graphically. 

Before we proceed to present the method of solution, let us point 

out one very important feature of our analysis: in the first three 

sections of this chapter, we presented a model and its operational 

behavior, which will be used in this analysis to study the pertaining 

problem. Here we assumed that for unperturbed flow conditions, the 

two-phase flow is at a certain position also time independent. In 

reality it is known that in flow boiling several physical effects 

exist that are highly time dependent. Among these we can cite 



19 

nucleation, formation and detachment of bubbles, the behavior of the 

different flow regimes and mainly their transitions to each other, 

variations of pressure with flow conditions and finally changes of 

the heat transfer coefficient. In other words our system was 

considered on the whole to be time independent, but several proper

ties like density, pressure, enthalpy and velocity profiles were 

varying with time locally without influencing the overwhole behavior 

of the system. These local variations can also have an oscillatory 

character. They represent again potential organized oscillations and 

therefore under certain operational conditions they might influence 

decisively the dynamic response of the system. By introducing a 

simplifying model, we will have to keep in mind that all these small 

scale effects will not be taken care of in our analysis. 

2.4. Method of Solution 

2.4.1 The Differential Method 

The simplified system introduced in sections 1, 2 and 3 of this 

chapter can actually be subdivided in two subsystems with a moving 

boundary. The first subsystem will be the liquid phase and the second 

one the two phase region. To analyze the dynamic behavior of the 

whole system, or more specifically the functional relationship between 

pressure drop and inlet velocity perturbation, the three general field 

equations and corresponding constitutive equations will be applied to 

each subsystem. Therefore the method of solution can be outlined 

as follows (see Figure 7): 

The inlet velocity of the subsystem (7) , which represents the 
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Block Diagram of the System and its Two Component Subsystems 
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"heavy" fluid region, will be perturbed. As the density is constant, 

the velocity can be obtained immediately out of the continuity equation. 

By integrating the energy equation in which the velocity has to be 

introduced, we obtain the boiling boundary 'A(t) , which at the same 

time represents the boundary of the first subsystem. Therefore we 

can say that out of the first'subsystem .we obtained two responses: 

the velocityaof the liquid and the movement of the boiling boundary. 

These twoWbutputs will be the. input of the second subsystem, for which 

we will have to assign an appropriate expression for the equation of 

state, depending whether the system is supposed to work at sub- or 

supercritical conditions. By solving simultaneously the continuity and 

energy equation, we get the velocity distribution. Introducing this 

expression back into the continuity equation and taking into account 

for the moving boiling boundary X̂(t") , the density variations along 

the duct will be obtained. With the velocity and density in both sub

systems known, the momentum equation will be evaluated to get an expression 

for the pressure drop variations. The exact solution of this problem 

was treated extensively by Serov, Teletov, Bbure, Zuber and Ishii and 

Zuber. The present work therefore only offers a qualitative analysis. 

The reason why such an extensive theoretical investigation was per

formed was to study physical phenomena, which will permit a detailed 

analysis of advantages and disadvantages of the integral method. 

2.4-2. The Integral Method 

Integral methods of analysis have found ample applications in 

the mechanics of continua. In heat transfer and fluid mechanics a 

great variety of problems appeared, where the use of the differential 
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equations of change delivered very complicated solutions. By integrating 

these equations over a finite volume of the system, thereby obtaining 

overall balances of mass, momentum and energy,' information on the 

gradients inside the system is lost and only relations between the 

properties at the inlet and outlet can be given. But still in numerous 

cases, the power and simplicity of the integral method has been proven. 

In fluid dynamics for example, satisfactory results can be obtained in 

the evaluation of the local friction coefficient for the flat plate in 

an incompressible flow assuming in the boundary layer a third order 

velocity distribution that satisfies the boundary conditions. 

In our problem of two-phase flow instabilities, the integral 

method will be used exclusively in the treatment of the energy and 

momentum equations of the second phase. The evaluation of the first 

phase and the velocity profile in the second phase will be performed 

by using the exact solutions, obtained by Serov:, Teletov, Boure, 

Zuber and Ishii and Zuber (22, 25, 26, 1, 20), in order to Optimize 

the approximation of the integral method. 

2.4.3. Stability Analysis 

To avoid extensive computation procedures a simplified stability 

criterion, first used in the analysis of Ishii and Zuber (20), will be 

applied. After non-dimensionalizing the obtained stability equation, 

a stability plane will be set up, to show the effects, which various 

parameters (such as mass flow rate, subcooling, power input, etc.) have 

on flow stability. Finally a comparison with previous work, mainly the 

theoretical analysis of Ishii and Zubei: (20) and experimental data, will 

allow a careful judgement of the integral method, presented in this analysis. 
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CHAPTER III 

DYNAMICS OF THE SINGLE-PHASE REGION 

3.1. The Governing Equations 

The single-phase region will be defined as the channel length 

extending from the inlet plenum to the boiling boundary, at which the 

mixed mean enthalpy is at saturation. Any occurrence of subcooled 

boiling in this region will be neglected and it will be assumed that 

the fluid in this region is incompressible. The problem will be 

formulated in terms of three field conservation equations and a 

constitutive equation of state. For a one-dimensional situation, 

the single-phase region is described in terms of the continuity equation 

J>S_- . ... &* ±„ hu- n 
+ U 4- Q ;= U r> i 

»t &5 >*, 

the energy equation 

M * % ' * 9 \ 3.2 

and the momentum equation 
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Assuming the density to be independent of the temperature and 

the process to be isobaric:; the thermal constitutive equation of state 

becomes simply 

<? •* ^ * const 3>4 

3.2. The Equation of Continuity and the Divergence of the Velocity 

Introducing equation 3.4 into the continuity equation, we get 

&iX 0 .3.5 

^3 -

Therefore the divergence of the velocity is equal to zero. By-

integrating equation 3.5 we obtain an expression for the velocity 

distribution, which is only a function of time 

UL •« LiCi) 3"6 

To analyze the stability problem a small time dependent velocity 

perturbation €>U, will be superimposed on the steady state inlet 

velocity U, . The velocity distribution in the liquid phase thus 

becomes 

U,(t) s G,'-+ £>U. 3.7 
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The velocity variation QUi will be given in exponential form 

f fit 

ou, ^ ee 3.8 

where s is a complex number. 

3.3. The Ener gy E qu a t i on 

3.3.1. Determination of the Boiling Boundary 

To obtain the position of the boiling boundary, we integrate the 

energy equation 

' : 1L + u(t) | i = 3JL 
b-t <% ^ A c 3.9 

The solution of the first-order partial differential equation 

can be obtained by the method of characteristics. In this case the 

general solution of equation 3.9 is 

*f = ^Cv»,) 3.10 

where 

Y i C i i ' t . j ) - C, <^d Y / 1 ' 1 ^ -
 c-» 3.11 

are solutions of any two independent differential equations which imply 

the relationships 
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3 
uCt) ĉ  

3.12 

Taking alternately the first and the second equation, the first 

and the third equation, 'we obtain the following set 

% = U,Ct> 3.13 
dt 

and 

dt "' ^ A 0 3.14 

Equation 3.13 is an ordinary differential equation of the first 

order. The integration of this equation, considering the appropriate 

boundary conditions, will give the position z of a particle as a 

function of time. Therefore equation 3.13 describes the kinematics 

of the fluid in the single-phase region. 

Equation 3.14 is also an ordinary first order differential 

equation and is dependent on such parameters as heat addition, density 

of the liquid and geometry of the system. Its integration will describe 

how the enthalpy varies with time and is therefore simply an energy 

balance, in which the constitutive equation has already been taken 

into account. To solve equation 3.14 the boundary conditions will 

have to be specified. Hereto we reconsider the process in a T-s 

diagram (temperature-entropy) of Figure 8. The fluid enters at 
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ne 

Figure 8„ Temperature, Entropy-Diagram with I Isobar and 
Condensation and Saturation Lines 
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point Q) with the enthalpy value lf and reaches the saturation line 

at point (2) , where the enthalpy is l̂  according to saturation 

conditions. 

By integrating equation 3.14 we obtain the time Tfe, , which 

the particle (independent of its velocity or position!) will need to 

accumulate the necessary amount of thermal energy to reach boiling or 

saturation conditions. Therefore the boundary conditions for equation 

3.14 are 

at • t = o T * i 

and o± k,- t^ • I a l 2 " 3 15 

Rewriting, integrating and considering the boundary conditions 

just formulated, equation 3.14 becomes 

_ S±^ [ 
< ] § J 

I, 
1 3.16 

or 

a & 

3.17 
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Once we know the tirae a particle remains in the liquid phase, by 

integrating equation 3.13, we get the position of the boiling boundary 

or the length of the single-phase region 

; j = t u8(t) dt : + C 3.18 

or 

n,t + — + c 3.-i9 

The boundary cond i t i ons 

3 ^ 6 Cohen- t « X - T j , 3.20 

and 3 = "̂  4>hen t - T 3.21 

indicate the time X = T - 1!̂  at which a specific particle that for 

t = X becomes saturated, entered the duct. Thus equation 3.21 implies 

for the constant C that 

£(T-T0 
= u l ( x - T b ) + ^ T — -+ C 

or solving for C 

sCc--0 
= -Ui(x-Tb> - ae 

*>' '< 3.23 
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At T= X ,3 - "<̂  and equation 3.19 becomes therefore 

Ik ^ ;5|Tb 4-
e * * • • « 

—- ee s 
3.24 

In this equation X is a variable and therefore will be replaced 

in the following again by t . If we consider the space lag % as 

a sum of a steady-state space lag "X and a time-dependent space lag 

X̂(,tl) , this means 

\ « 5 4- 6Pv 3.25 

we obtain finally an expression for the oscillatory movement of the 

boiling boundary 

S\ = 
- S X L 

s 
<Su, 

3.26 

Referring the obtained solution, the following point shall be 

clearly emphasized: the integration of equation 3.13 was not performed 

with respect to a fixed time value, but to a time difference TL • 

Thus equation 3.26 is valid for every particle, which spends the time 

*-L in the liquid phase. 
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3.3.2. The Dynamic Behavior of the Boilingr._Bpimdary. 

Equation 3.26 gives the relation between input (=entrance 

velocity) and output (-moving boiling boundary). The term in brackets 

is the transfer function. If we assume the inlet perturbation oi|( 

to be as undamped oscillation and Sslto ., the equation for <SA 

becomes herewith 

3.27 
S% = - i £ * _ I - e ' ^ 

6s \ 

Separating the inlet perturbation <&u.( into a real and an 

imaginary component 

and performing the same operation on equation 3.27 (whereby the imaginary 

part will describe the actual flow conditions, because for time t = 0 , 

<5u, has also to be zero), we can write the relation between input and 

output as follows: 

£u . = £ e l d ° « *e I co&cvi + .i.s"na>t 3 . 2 8 

SX « iL Sin .5*3* I ;5ln6.(t - 3k) + CoSC»'(t- -k)| 
CO Qi I 04 J 

3.29 

This equation allows two interesting conclusions: 

(1) The absolute value of the boiling boundary perturbation is 

inversely proportional to the frequency && . 
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(2) For the case that 

£OT b ~ ot?T 3.30 

the boiling boundary will not move at all. 

In the following the dependence of <S'X on the frequency^ and 

the subcooling 11 will be discussed. Figure 9 is an Armand diagram 

which shows the phase lag and the amplitude of <StX with respect to 

the inlet perturbation •C-Uj for varying frequency £0 but constant 

subcooling ^ . For a time t = O. , Su.t appears on the real axis. The 

diagram shows several features: 

(a) Large amplitudes of SX are only possible at low frequencies. 

This can be assumed to be one of the reasons; for the appearance of 

"chugging oscillations." 

(b) For frequencies, which satisfy the conditions of equation 3.30, 

<Ŝ > is equal to zero. This result will be mainly interesting for further 

observations in the two-phase region. 

(c) The phase lag between <&u, and &%. varies from -TJ to O . 

(d) The amplitude of Sf\ is linear dependent on the time lag T^ : 

\S\\ -~'Tbl Su,.!'- 3.31 

(e) The l i m i t i n g case <5o->0 fol lows from 

•fcm I 6-X\ m . & m A i *n'£3> l.lsin^t + cc*<£?k\ 
4 0 * ^ 4 I.- . • <5o--*>Q &> t s3 ^ ) 

« T ^ | & u , | - 3.32 

tLi_L. 



Figure 9. The Boiling Boundary as a Function of the Inlet 
Velocity Perturbation for Varying Frequencies and 
Constant Subcooling 

Figure 10. The Boiling Boundary as a Function of the Inlet 
Velocity Perturbation for Varying Subcooling and 
Constant Frequencies 
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Similar observations can be made to analyze the dependence of 3& 

on the time lag T^ at constant frequencies. Figure 10 shows again 

an Armand diagram, out of which we observe 

(a) For a time lag T^ that satisfies equation 3.30, the response 

will be equal to zero. 

(b) The phase lag of <&% with respect to <5u. varies between 

•»TT and © ".' 

(c) The amplitude of S'X is inversely proportional to the 

frequency Co . 

| 6 X I ~ • — . 3.33 

For a better understanding of the behavior of the single-phase 

region, let us consider the case that the inlet perturbation is a step 

function. Figure 11 shows the enthalpy distribution (curve a) before 

the perturbation. Curve b represents steady state conditions after the 

perturbation occurred. For a given subcooling the time required to 

reach saturation conditions is given by equation 3.17. The length of 

the single phase region for an inlet velocity U, is first 

*, = -~?- 3.34 

and for new steady state conditions 

U, 
* 3.35 
Tfe 
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r<s<o,s«s if u* € U„ 

Figure II. Enthalpy Distributions in the Single-Phase Region 
Before and After a Velocity Step Function Perturbation 
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where Uz< u, is the inlet velocity after the perturbation. Therefore 

the moment the inlet velocity varies, the boiling boundary starts moving 

(for extensive studies see Ledinegg (12) ) with constant velocity 

_ . .^ ^ _ 

It must be emphasized that there is no dead time or time delay 

between the occurrence of the perturbation and the moving incipience 

of the boiling boundary. But of course there is a time delay between 

the two steady state positions. 

3.4. The Momentum Equation 

After the preceding thorough study of the behavior of the boiling 

boundary and the velocity distribution, the differential momentum 

equation will be integrated. The boundary conditions are 

r*'» r, oX x « O oi 3 

?. « V a:t 3 - :v(-t) 3.37 

The integration will be performed along the flow direction, taking 

into account that the density in the single-phase region is assumed to be 

constant 

&— . V 

9 o ° 
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In view of equation 3.5, 3.7 and 3.25 the pressure drop becomes 

P - ? 1 I T2 

\ ' ' -f r • 
»i JL O -JU „_L_ t LJ. ^ i t ^ i ) , + o + d , (Gl+'<Sulf 1 0 4 6 ^ 

<Vt * ^ 5 J 
3.39 

Linearizing and retaining only the first power, we get 

?i " ^ = % ? * • +^«?fCC + ^ ' A S S U , + JL9f4u,5£u, 

+ 9 ^ 6 ^ .+ 9f_Lci*<5a 
3.40 

The inlet pressure drop in accordance with Zuber (1) is 

^ « ki V * 3.41 

which upon linearization can be expressed as 

1 s kt9fGf > kt^da.iu, 3.42 

With equation 3.40 we can write the total pressure drop in the 

single-phase region 



? • - ? 
o 2. V3 A -jr 

2D 
•<^ u, -4 k - o u, 

4* P / ^ ^ i u , 4' ~^- O ci'u.^iu. -+- Pr 

T ' 2D vf l • + 
< S ^ 

X -2. 
4. O _ U}v<A 4 k: 

12b 
c i 9 f

a a i & ^ i 

If we define now the steady state values of the pressure 

to body forces (gravity) by 

A ?bf - • 3 ^ * 

due to friction by 

N ' f - ~.2 

^ s= JL ^au, 2 zx> H 

and due to the inlet orifice by 

o\ = k| ̂  u( 
z 

equation 3.43 becomes 
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? -? 
O 2. 

^ Aro, + ^ k + *n 4 laSl-^i 
<- M- J dt 

iu, 
^A?ul £ + { ̂ L + &$* 
O U I -' t M h'\ 

6A 

3.47 

Here again we consider the total pressure drop across the liquid 

phase as a sum of a steady state and a time dependent pressure drop 

A 1̂ 2 * A'^ + 6 A ^ 2 3.48 

For the time dependent part we get 

s^-M-t+ {#+^},^ 
i 2 A £>'A J 

3.49 

Again the transfer function appears in brackets if we express 

^ a s a function of .6u, 

°2~ 
yr ̂  , f &5?0, . ^>Mz 1 , foP*, b£Ly 

o, ̂  s -4- < ~~~ -?• TTZ"' r + —— + —:~ 

- ^ N 

- e &u>, 
3.50 
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This equation can easily render a graphical representation. In 

an Armand diagram for 

t . -s JSLHL n coVth n s o . i . 2 . 3.51 
6 0 

the first term appears on the real axis, the second is imaginary and 

the third term differs in its structure from the transfer function of 

the boiling boundary only by a constant. The geometrical addition of 

these components determines the magnitude and phase lag of ^ ^ £ 

with respect to <&LLX . However the plot of the transfer function will 

vary considerably if the coefficients, like density^ or friction 
T 

f a c t o r T , a re changed. 

F igu re 12 shows the o p e r a t i o n a l c o n d i t i o n s for 

-ST^N 

2>u.j 2 ) ^ J ' I 2>^ Zfr J . ~\ & 

3.52 

With words this inequality says that the value on the left hand 

side is bigger than the term in brackets times the real part of the 

boiling boundary transfer function on the right hand side. In this 

case the phase lag between the response ^k^b^ and the inlet <£>u.t 

is never bigger than .-7- and the system is, according to section 2.3 

in Chapter II, stable. 
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Figure 12. Pressure. Drop Variations for Large Inlet Flow 
Restrictions k, 

Figure 13. Pressure Drop Variations for Small Inlet Flow 
Restrictions k. 
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In the following we will show "under which conditions the single-

phase region becomes unstable. Hereto we reverse in equation 3.53 the 

sign 

f ) h&?»k 4. ̂ * \ V^ /»' - & t 
( 2>A £ * J • ' \ S / 

^At^j £>-fiK2 
—- 4- --------- T \ _. , 

££lv £>u^ J * I. £>'X 2>'A j \ £ / 3153 

and analyze whether such a situation can arise under extreme operational 

conditions. Therefore to make the inequality as big as possible, we set 

i<- ~ O or -cf̂ j "- O . Furthermore we let the perturbation frequency 

be 

s) .— 
O »« 

CC> £& - 3.54 

in order to use the maximum for the real part of the boiling boundary 

transfer function 

•STJj 

RjLzEl) „*± 
^ s ! Snr 3.55 

Simplifying the inequality equation 3.53, we get with 
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tk 
3. 56 

the equation 

J. a t> 
^ 3TT -'I f „2 ^ ^ i l 3 # 5 7 

t Uf 

Figure 13 shows the transfer function for which this inequality is 

fulfilled. In this case the phase lag between OAi^z and oU-j can 

very well be equal to TT creating therefore unstable flow conditions. 

Out of the present observations the following conclusions can be 

made: 

(a) The operational conditions of the system are stabilized by 

increasing the inlet flow restriction K£ . 

(b) For sufficient high values of the parameters on the right 

hand side in the inequality equation 3.52, the pressure perturbations 

can also become for small frequencies large. This is also easily 

understandable. If the flow restrictions at the entrance become too 

large, then the pressure variations are also considerable and the 

system no longer operates at: constant pressure. 

(c) For small friction factor r , small entrance velocity Ur , 

but large system diameter X) , according to equation 3.57, the 

single-phase flow region can become unstable. 



In Figure 12 and Figure 13 we set 
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a = 
bate 

&LU 
• » $ -

bt&iz 

^ Co 

> — i ^^ 'W -.*• .^4fc 
*~ 1 e > ^ ^ 

- e. 

3.58 
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CHAPTER IV 

DYNAMICS OF THE TWO-PHASE REGION 

4.1. The Governing Equations 

In this chapter the three field equations describing the conser

vation of mass, momentum and energy and an appropriate constitutive 

equation will permit the calculation of the pressure drop in the two-

phase region under time dependent conditions. Together with the results 

obtained in the single-phase region, they will make a qualitative 

analysis of the pertaining problem possible. 

For a one-dimensional formulation, the continuity, energy and 

momentum equations are given respectively by 

h* + u*3- + Q ^ - '/N 4-X 

bt ^3 ^ ^ 

h]'+U.*L .= ±11' 4.2 
bt ^3 9 At 

2 ? ^u- bu. • . -f • 2- / o 

^3 X bt s b$ ZX 25 < 

Furthermore we need an equation of state. Again we assume an 

isobaric process. Thereby we decouple the momentum equation from the 
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energy and the continuity equation. The density is then only a function 

of the enthalpy and can be written in the form 

9 =-<?(0 4.4 

As will be shown in the next section, of this chapter, such a 

simplification of the problem limits considerably the range of perturba

tion frequencies. Moreover the two-phase flow will be homogeneous, 

excluding herewith the possibility of relative velocities between the 

phases. 

The investigations of the two-phase flow region will start with 

a discussion of the equation of state and its dependence on the pressure 

level. Afterwards from continuity and energy equations, the velocity 

profile will be determined. Introducing this expression back into 

the continuity equation, the density as a function of time and position 

will be derived. 

4.2. The Equation of State 

Before we derive an appropriate equation of state for sub- and 

supercritical pressures, we will analyze the limiting effect of assuming 

isdbaric flow conditions on the range of perturbation frequencies. 

For a one component.* homogeneous medium the thermal equation of 

state 

ds - H ) d T + 41) ^ hrL *P , T 
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can also be written in the form 

d ^ •-* _p>dT + : ^ d 9 
P 

4.6 

with the isobaric .expansivity 

f J_^2A 
•9 2»TJ 

r 

4.7 

and the isothermal compressibility 

J 4S_ 
9 #?. 

4.8 

Introducing in equation 4.6 the caloric equation of state 

; = ^ clT + - - | n ' d ? 4.9 

in the form 



• r 3&L 

and rearranging gives 

^9 _ fc^i 4- [ D< + JL-^-\ 
I cr I cp » ; T 

In terms of substantial derivatives we get 

48 

4.10 

4.11 

1 £><? 

- £ • 
T 

Dl 
Dt 

^'.\ 1 3*P 
oc + -4— - — — 

dp .SP/rj l>t 
4.12 

Introducing 

2>? 
L̂  . J_( . -.TjO' 

4.13 

Equation 4.12 becomes 



9 fc* c ^ -S>t I ^ cj> 

With o as the ratio of the specific heats 

and the adiabatic compressibility 

we obtain 

a±" - ^ 
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4.14 

4.15 

4.16 

where Q.̂  is the velocity of sound defined by 

bA* 4.18 
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Equation 4.17 in 4.14 gives 

For a perfect gas and in the supercritical region 

1 

4.19 

4.20 

Therefore we finally obtain 

"D><9 _ (L k l .̂  $': i fe 
9 bt d̂  i * . ' o | 9 £>t- 4-21 

Out of this equation the. following conclusions can be made: for 

small pressure variations with respect: to time the density can be 

considered to be a function of the enthalpy alone. But hereto the 

velocity of sound Q<̂  has also be assume high values. Therefore 

the present analysis will be limited to the investigation of low 

frequency instabilities in two-phase flow s}rstems, for which the 

velocity of sound is comparatively high. 

For the derivation of an appropriate equation of state, the same 

approach Zuber (1) formulated, will be used. At subcritical pressures 

the equation of state can be obtained from basic considerations on 

two phase mixtures in thermodynamics. There the quality is defined 
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as the ratio of the vapor phase to the total mass. In terms of the 

mass flow rates of the vapor phase &o and of the liquid phase Sr , 

the quality .X , for the case of no relative velocity between the 

phases, is 

x = - - ^ 
6|4 6q 4-22 

We also know that the specific volume and the enthalpy for such 

two phase mixtures are given by 

h « ( I - *)\Xf 4- XX>c| 4.23 

and 

[ ==: (|-» X) fj + X| 4.24 

where ^r , Lr and "Vk , La are the specific volume and the enthalpy 

of the liquid and of the vapor respectively. By eliminating the 

quality X from equation 4.23 and equation 4.24, we obtain the equation 

of state for a system working at subcritical pressures 

A^>< 
\»(0 - * f + ^ C i - i 2 ) 

A . 4 ' 2 5 

<2 «f< 
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Differentiating this5 equation we get the gradient of change 

d o \ _ A"0.J:,, 4.26 

a i /p- . A t ^ 

For supercritical pressures the ideal gas equation, was assumed 

to be the constitutive equation of state, in the light fluid. Deriving 

in this equation the specific volume with respect to temperature 

dl> = — - dl 4.27 

P 

and using the corresponding total differential for the enthalpy 

d\ ss C dT 4.28 

we get by combining both equat ions 

diA £ 
d?;? "PCf 

With the boundary condition 

4.29 

^3 =• at • » ~ \ z 4.30 

we obtain by integrating equation 4.29 the equation of state fdr the 

"light"fluid region 
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X,) 

r rep 4.31 

A comparison of equation 4.25 and equation 4.31 shows us that 

both equations of state are of the same form. Therefore we can replace 

them by one equation, which is valid as well at subcritical as at 

supercritical pressures 

*co = ° f +(d?1 ^'"^ 4.32 

The distinction of both pressure levels will be kept in mind by 

considering equation 4-26 and equation 4.29. 

4.3. The Equation of Continuity and the Divergence of the Velocity 

The velocity profile in the two-phase mixture will be obtained 

again by integrating the divergence of the velocity. Therefore we 

rewrite the continuity equation in the form 

a u. 
b 3 9 It" -f U. — — 

"V 

<*3 J 4.33 

To integrate this equation, we reconsider equation 4.4, which 

states that the density is assumed to be only a function of the enthalpy. 

The right hand side of equation 4.33 then becomes 
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bq &Q ck> i h \ hi } 
ht ^z cli k M ^5 J 

4.34 

Introducing the energy equation equation 4.2 in equation 4.34 

we get 

&Q h<? I . dp ^ § 
^ ,̂. ix X. = -—- —-~»- — 

•2>t- a»3- <9 d i 4 C 

4.35 

Herewith we reconsider again the divergence of the velocity 

OU, I dk> S s 
^ 

4.36 

S 

In analogy from chemical reaction systems, we define the right 

hand side of equation 4.36 to be the reaction frequency 

>-^-« 
^ 

di J A 

l(iS - ^2l\ ^ 
c * /? A& 

4.37 
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and we get 

OX 

This equation states that the divergence of the velocity in the 

two-phase region is equal to the volumetric rate of formation of the 

"light" fluid per unit volume. 

A comparison of equation 4.37 with equation 4.26 and equation 

4.29 gives that Q- will be for sub- and supercritical pressures a 

constant. The. integration of equation 4.38 is therefore independent 

of the pressure level. With the boundary condition 

u ~ u, -4- «6uj r= u, -&* £.e~ at ^ --- ^C"t) 4.39 

we get for the velocity distribution in the two-phase region 

<f- s t • " 
uA^t) = u, 4 12(3- 5) + £eT- SL*£- (l -e"^) 4. 40 

Equation 4.40 can be written in two different ways and each of 

them will allow us interesting conclusions: 

The first one expresses the velocity ^ Q C S J O as the sum of a 

steady state and a perturbed function 

Uo (3 ,'0 .= U, + £ ( 5 - ^) + & uj ~ - £ & ^ 4.41 
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u2(5it) « u3/3).+ • 6u3(t) 4 4 2 

where 

LigCj) « u l + .c'(3- a) 4.43 

is only a function of position T , a iid 

<5u^(;t) = <Su^ - S2.&3< 4.44 

is only a function of time. Thus the inlet perturbation propagates with 

infinite velocity and is independent of position ̂  . But at the same 

time equation 4.44 says that the system reacts immediately to any 

"input" perturbation. With other words the hydrodynamic conditions 

at a fixed position C at the end of the duct will immediately be 

<* 
affected, the moment a perturbation <^*i occurs at the entrance. 

Figure 14 shows the dependence of <̂ >U«C"t) on C»U., as a function 

of the frequency in an'Annand diagram. 

The second form of writing equation 4.40 represents the most 

general expression, because it gives Liq(s,'L}' as a function of 3 

and two time-dependent terras 

^ 3 , - t y = u i ( t ) + n C j - ^ ( t ) ) 4.45 



a m 

Figure 14. Velocity Perturbation in the Two-Phase Region as a 
Function of the Inlet Velocity Perturbation 

Figure 15. Velocity Distribution for Steady State Conditions 
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The velocity distribution given in such a form says that the 

velocity profile along the duct will always consist of two straight 

lines. The first one a parallel to the abszissa until , which 

means that the velocity in the liquid phase is independent of position, 

and the second one starts at 'X(̂ t) ,, is connected to the first one 

and has a slope equal to &"£> (see Figure 15). Thus, if the perturba

tion function is an oscillatory movement, then the two straight lines 

as well as the position of A\t) will perform oscillations as is 

indicated in Figure 16. 

For a better understanding of the physics of the system, let us 

perform a stepfunction perturbation: at time t the inlet velocity 

U, changes stepwise and as was described in Chapter III at the same 

time t the boiling boundary will start moving with constant velocity 

towards its new steady state value. But the velocity profile in the 

two-phase region will move parallel to itself and always linked to 

AQ'iJ towards a new steady state position. Figure 17 describes this 

process for the case that U 2 > U-( . 

4.4. The Density Distribution 

To compute the density perturbation in the two-phase region, two 

possibilities exist:: 

(1) To use the energy equation in order to get the enthalpy 

perturbation and to introduce this expression into the equation of 

state from which the density perturbation can be obtained. This method 

has the advantage of providing information referring the enthalpy 

distribution in the two-phase region. 



59 

A(*) 3 

Figure 1.6. Oscillatory Modes of the Velocity Profile for 
a Sinusoidal Input: 

Figure 17. Beihaviour of the Velocity Profile for an Inlet 
Step Function Perturbation-
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(2) To use the continuity equation directly. In this case we 

would not need the energy equation and therefore we also would not 

get the enthalpy perturbation. 

In this analysis the second possibility will be chosen in order 

to get a solution with the smallest amount of approximations and to 

make the computational process as short: as possible. 

If we introduce equation 4.38 into equation 4.1 and rearrange, 

we get 

• — + • u. - 5 . « - 9 n . 4 . 4 6 

bt oz 

This equation, was first formulated by Serov (21). It is a first 

order partial differential equation. The solution once more can be 

obtained by means of characteristics: 

Y2 = K ^ 4.47 

where 

H>0,t,3) - Cr a^d ^A<Z) = C: 4.48 

are solutions of any two independent differential equations, which imply 

the relationships: 

d+ = J i _ , a - ^ § _ 4.49 
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Out of this equation, we obtain the following two equations 

-.2. S3 u(fc). 4.50 

dt 

and 

d9 0 
_ « - ^ 2 . 4 > 5 1 

ci t 

Here also in agreement with the corresponding equations of 

Chapter III similar observations can be made. Equation 4.50 describes 

the kinematic behavior of a particle in the two-phase region (note the 

difference in the expressions for the velocity!). Equation 4.51 is 

again an energy balance, in which the constitutive equation has already 

been taken into account.. 

First we solve equation 4.50 to get an expression, which gives 

us the position of a particle in the two-phase region as a function of 

time. Thus 

•2h. = u ( t ) - u. +&U-A) *•« 
dt 

or rewriting 

dt 6 ' 

This is a first order differential equation of the type 

4.53 
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5*i- + (^ ^ h(i) 
4.54 

and its general solution is 

-$«t)dt 

2> « e 

^(OcSt 

( t ) e d t 4 c» 
4.55 

Applying the general solution to the given velocity distribution, 

we get 

S e + J ^ 
tjfc. 

- * 
-at 
e 

(s-.sOt -£TL 

se S - -S. -4-:Qc 

(S-J&) 
= C. 4.56 

To evaluate the constant C t ., we consider the boundary condition, 

which will be given in terms of time differences. At time t = T ( T is 

a variable), the particle is at position ^ « t< , and at "t — T —. Tj,K 

it just entered the two-phase region. Therefore 



t s "L zz. rS 

an ol-fc - X - T , K s « ^ ( T - T ^ 

= A -f 6 A ( I - T 2 ( < ) 

Equation 4 .56 thus becomes 

- -a&~tzH) 

e ixCt-Oe 
J 2 ( T - r ^ ) 

J± - I -fi(T-" 
Aje ^ 

•a<c. 

£e 
( s - a ) ( T - ^ 

( S - S . ) 

•STL 
S — S2L • f . Q g 

k e -f ~ i - pv e 

YS-JX)T f. -s-c 
£ e ] S - H + ^ e 

-.ex 
dividing the equation by ^ we obtain 

S # W
+ 6 A ( x - T a c ) e ^ + ° t - A 

1 2T,K s f r - ^ f f lSJ «ST^ 

" ' C^-JQ) 

Sic: 

k + i±' - 5 - § £ -
12 (^-i2.) 

£-£-KQe 
s i t 
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The position K for a given time difference T^K can be 

written as a sum of a time independent and time dependent part 

K « k -+• <Sk 4.60 

From equation 4.59 the steady state equation can be obtained 

as follows 

K U, 

si 
'X 

£LT •2K 

k + u "X 
4.61 

or solving for K 

k « :x H- u, 

"zr 
^ • " ^ k 

e - ! 4.62 

Subtracting equation 4.6.1 from equation 4.59 we get an expression 

for 

SK 

-.(S-aiTiiC 
& x-

_ _ _ otu» 4.63 

This equation, indicates the deviation in position from K for 

a particle, which spent a given time ^ in the two-phase region. 
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During this time the particle accumulated thermal energy in proportion 

to the added heat. This thermal energy caused a phase change as the 

medium is at saturation conditions and therefore a decrease of the 

density. Out of the pcirtial differential equation equation 4.46, 

we obtained 

d<? o / <L, 
___.„L. = ,_ QSJ. 4.64 

.•' elt • ::- v 

With the boundary condition 

t - - T - T 2 k ' ' 3 -^Cx-x^V ' 9 = ^ 

and integrating equation 4.64, we get 

<?k T 

do 

or 

O 
—.2. *i'r< 

4.65 

\̂ ,- ̂  4.66 

V K =: 9fe 4.67 

This equation represents the density-of a particle, which spent 

the time T ^ in the two-phase flow region. The general solution 
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for the density as a function of time is 

. -at 
9 = 9 ^ ^ . .' •• 4 , 

An expression for the density perturbation as a function of ^ 

and "t can be found out of Figure 18 as follows: if we recall that 

equation 4.63 gives us the deivatlon for a constant-density position 

from steady state conditions, then at: certain time t , the density 

at k + o k is equal to the density at k for steady state conditions 

LI. 
1^ = O Ji. 4.69 
v k . * uE 

At K = K-+-&K for s teady s t a t e cond i t i ons the d e n s i t y i s 

O = O = o — ^ 1 4 .70 

This density value also can be expressed as a sum of a time 

independent and a time dependent terra 

- 9fc + ' & 9 K 
-*. ^ ^ 4 - 7 1 

Therefore at time T We get the density perturbation by 

subtracting equation 4.70 from equation 4.69 
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A+&X J< K+£k 

Figure 18. Evaluation of the Density Perturbation out of a 
Steady State and a Time Dependent Velocity Profile 



6 Q O < J ) - <?,-rL - 9* -— L —-
'r ur. • • t o 5 + &&K 

Upon expansion and l i n e a r i z a t i o n , t h i s equa t ion becomes 

6 P ( K , T ) * o r i i ^ <Sk: 
U R 

or us ing equa t ion 4 .63 

-»(^S-JDL)TJK 

e , « V^./^^Q 

O-ja) J 4. 

To make this equation independent of the time X ^ and there 

to express the density perturbation only as a function of K and X 

we replace the exponential terms by 

e 

.o.°-.s 

& 

. $ < -

i^l^L 

u, 

pr 
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and rewrite herewith equation 4.74 replacing back T « t and k - 3 

I 'I f «-jJl 

<^M=9£
J u,o. f i 

JH-'S 

I U, 

f
 L£ (W) 

Q-s 

u< 
Otu(i)~f [-4 

0 !• u «J 4.76 

This is the final expression for the density perturbation in the 

two-phase region. The equation makes the following observations 

possible: 

(a) The amplitude of: the density perturbation decreases inversely 

proportional to the square of the velocity. 

(b) The phase lag between the velocity perturbation OU, and the 

density perturbation depends on the position T, and on the time the 

particle spent in the' two-phase flow region.. If we express as a 

function of the inlet perturbation oU, , equation 4.76 becomes 

&<^ 

.0. 
£L-& 

a ^ n ••-fen 
•id T — — I - S t —r.—r-

, u, [[ C&--&) Cs-s) S 

£±-& 
S1k] \ £L 

, .,. + 
Uq 

a. 
. l u „ I 

4.77 



70 

In this equation the expression in brackets gives us the phase 

lag between c^j and <£>̂:», . If the perturbation frequency co is 

smallj then the phase lag of the response as a function of position 3 

will also remain small. But if the frequency <'<$ is large, the phase 

lag all along the duct will also be considerable and we observe the 

presence of density waves- Figure 19 and Figure 20 describe qualita

tively both cases in an Armand diagram. These density waves can also 

be presented along the duct. Figure 21 shows the case of low frequencies 

and Figure 22 of high frequencies. 

In Figure 19 and Figure 21 we see that: depending on the time the 

situation can arise that nearly at all positions "̂  along the duct the 

density value is above or under the corresponding steady state, density 

distribution, causing big momentum variations. This effect will be 

emphasized by the fact that for small perturbation frequencies the 

boiling boundary reacts heavily, causing therefore additionally big 

momentum changes in the single-phase region. Although they are a 

precondition for incipient instability, they are not sufficient. As 

was discussed in Chapter II, it will depend mainly on the timing between 

velocity perturbation and pressure drop whether sustained or amplified 

oscillations occur. 

For high frequencies (Figure 20 and Figure 22), the density 

distribution will oscillate around the steady state curve, thus 

compensating any momentum change. 

The physical observations so far described in this section excluded 

the influence .of the velocity distributions on the system stability. 

Of course it is not easy to predict how much they contribute to the 



Figure 19. Density Distribution in a Complex Plane for Small 
Frequencies at a Specific Time 

Figure 20. Density Distribution in a Cocaplex Plane for Large 
Frequencies at a Specific Time 



\ T \ p&rturh&d 

Figure 21. Density Distribution for Small Frequencies as a 
Function of Position 

^ £ 

Figure 22. Density Distribution for High Frequencies as a 
Function of Position 
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observed flow instabilities. However Yadigaroglu and Bergles (19) 

report in their analysis that unstable flow oscillations were observed 

to have a period of approximately twice the transient time of the 

medium at steady state conditions.•• As this is very much in agreement 

with the mathematically obtained results, the assumptions that 

instabilities at low frequencies are mainly due to the behavior of 

the. density variations seems very reasonable. 

The present discussions on the density in the two-phase region 

will be concluded with an alternative derivation of equation 4.74 and 

equation 4.76. If we set, as was done by Zuber (1), Ishii and Zuber (20) 

and Boure (26, 27), the boundary and initial conditions to be 

J - 1. ai t ~ T- 4.78 

I - 'L, = O at 3 = M T Z ) s Vh se 
ST,/I 

4.79 

and apply them to equation 4.56 and equation 4.57 we obtain 

-a(t-ii) 

e zfi-sk^ ~ U,+ 
,& 

e 
(t-r2)l 

' ^ ^ V 1 } 4.80 

This equation can be expressed as 

e ^ C s ) - ^ ^ s U -

S 

e ^ V j e ^ *'y 4.81 



Here we wri te 

• a ( t - ^ 
s 

Sl'a 

9f] 
JW} I + -22., 

9 ) 

_s 

and equation 4.81 becomejs after rearranging 

74 

4.82 

._q-

9f 9f 
^ • C S ) 

u, -
£ L ~5:>L» ST,-, 

S-cQ-
@ c!>u 

-£» 6^(^)1 s 

9? J I X l Q<3 

4.83 

linearizing this equation we finally get for the density perturbation 

u, J2 

a lu,(jVJs-^ 
&u<?fe) - S T t t U,. 

u. Zi 

• 

- I 

G< j 
4.84 

The equality of this result, extensively derived by Zuber (1), 

Ishii and Zuber (20) and Boure (26, 27), with equation 4.76 can easily 

be verified. 
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4.5. Steady State Relations in the Two-Phase Region 

As was done by Zuber (1), the momentum equation will be 

expressed in terms of several steady state relations for the velocity 

and density in the two-phase region. 

^ n e average velocity is defined by 

l-\ 

< ULS> 
< £ - fc J 

o 
"%($ °b 

4.85 

Using equation 4.43 we obtain 

< U^> - u + £(*-*> - ̂ L±£i 
^ ' "" J <A .A 

4.86 

The log mean velocity is defined by 

/> G3 /> Cw 
•en -~ cn ——• 

U, Q 4.87 

If we introduce the log mean density in the light fluid region 

• 0 ^ - ^ 1 

^ =s 5- 4.88 

e n ^ 
9, 



we get herewith the B̂§}i.-YJ;-l_°_£.̂iZ 

U - --* 9rQt 
• O 

Additionally'' we define an average density by 

t-V 

< O >.« — — \ 5(0 dr 

o 4. 

From equation 4.62 and equation 4.67 and setting there ^'-5 > 

the steady state density distribution is 

9^> _. G. 
9 f U I + JG(5~A) . 

Herewith we obtain in equation 4.78 

x3 aqL-Hi a, -, 

Finally with equation 4.79 we define a mean density 

w - "<£T 
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4.6. The Momentum Equation 

With the steady state relations introduced in section 4.5 and 

velocity and density profiles in the two-phase region known, the 

differential pressure drop equation can easily be integrated straight 

forward. This was extensively done by Zuber (1)„ Here only an 

outline of his results will be given. 

With the boundary conditions specified by: 

P-P2 oi 3-*(*)' 

•p •« PA at' 3 = t 

t he i n t e g r a t e d momentum equat ion becomes 

r s K, 

Equation 4.95 will be evaluated term by term: 

4.6*1/ The Inertia Term 

The inertia term in the momentum equation is given by 

e 

*£- tafrdi ht 
*(0 

4.94 

4.95 

4.96 
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S imp1i f y ing an d 1inea r i zing t he i n t e gr a1 b ec ome s 

I 

AT-j- -; \ <!5 -J^L^jZ-J Q\7 
isi ° *•" 

0\(t) 

and after performing the integration, we gel: 

&tL. ~ (S-JCL + jae° b ) ~ — £ ^ - ^ &u 
•L .Q. t i 

4.98 

In view of the definition for the average density and of the 

equation for the velocity perturbation equation 4.44, the inertia term 

can be expressed as 

A?x = a ~ 5 ) < < ? 3 > ^ . . - . : 4.99 

4.6.2. The Convective' Acceleration Term 

The convective acceleration term in equation 4.95 is given by 

I 

AVA = \ ^u^- ch, 
ftOO- 6 

4.100 
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Simplifying and linearizing, the integral becomes 

^<x « SX) [ §&%($) ̂ .^iu3ft)+^f3)&?)d3 4.101 

Its integration gives 

A £ = G f l ( t - ^ ) ~ S£L£e 5 t ' l ^L f__ + 

+ Q e * . ^ £ e
s t -Sn^iaeZ" + u, s 

+ Q ^ E A E L . ••s--g--|-g.e' 
O f " 

Ma 

U{ £ -JCl 

Vs-a/ rr 4.102 

We obtain the steady state acceleration pressure drop by 

letting £ ~ ° : 

A ^ '«£ S £L (£ - V) 
°' • ' 4.103 

Inserting this expression into equation 4.102 the convective 

acceleration term becomes 
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'?. = OL *$L -
C£T5)' 

6'A H- A & &<. + 
a ew, 

A ' t l < 
O U f l <J * u. 

4.104 

4.6.3. The Gravitational Term 

The gravitational term in the momentum equation is given by 

A£ ho, 

6 i cU 3 ? "3 
Ov(t) 

4.105 

Simplifying, the integral becomes 

AV Q O + Q 6 

A(t) 
3^Jq3 4.106 

and its integration gives 
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rtha ~ a°f P. .*a 
-Li. y • W£e sti ! 

\ s 

e 
-«tb 

+ ^ ^ * } - ~ ~ fee — — — - - s s — ^ e &u, 

4.107 

Again if we let -£.—0 , we'obtain' the steady state gravitational 

pressure drop 

A ̂ L * • * ( « - *)<<?<*> —— ^»\ 

i ~i 
§ 

4.108 

Herewith equation 4.107 becomes 

O ATb a = A l ? • -
o 

At j~j U e 

^ 

I I Af^s c 
— - 3 - —=r— <£> A -t- -—77 «, ' j O ^ 

- -^ •• At^a. - 5 ^ - " 0 ,g 
5 - J Q . u , ou, 

4.109 
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4 -6 •'4̂ _The_j Frictional Pressure Drop 

The frictional term in the momentum equation is given by 

I 

.O &K,n = • \ -i- ou cN 4.110 

Simplifying and linearizing the integral becomes 

A?-
a3 = 4 U < -

ID J I 
AM 

s 3 
2 ) 

^"gC5)>^W 4 ̂ ^ ^ j ^ 4.111 

and i ts integration gives 

A f 22> =̂  ™ i p f U 
oLt> V f f 

1 A 
- — VV U f • fie — —-

2D 4 i: V S 

- s r 

^ as> M + • £ • • s ~ ^ 23> tfw |d e
 s 

SL - f C ^ ^ , , . -
£-.2. axi f̂u-f u, -*• — ? ; — — £ e 

u, 4.112 
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Out of this equation we obtain the steady state frictional 

pressure drop by letting &L ~ © . Thus 

A 2S = ^ F ^ ?*uf I u' + -*—] - "air ?A< u a > 4.113 

Equation 4.112 in terms of the expression equation 4.113 becomes 

S-.fi. <U>j> J 4S-X1 u, ' 4 1 1 4 

4.6.5* The Exit Pressure Dtop ' 

The effect of the exit pressure drop will be included in the 

momentum equation equation 4.95. Defining by a coefficient, which 

accounts for all the?, exit pressure losses, we formulate the exit pressure 

drop as follows 

% -?< = A? - 9^U3- 4.115 

S-.fi
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Simplifying and l i n e a r i z i n g we get 

*?<iu - K* 6 u . •*> -Q?k„Q 6 u q 4- -sB— kG<3 £u* 
•^ c ^ (- (j s -sz. (] 

6 - . 5 2 . N'1' 

For £. = © 5 the. steady state exit pressure drop becomes 

4.116 

. * % • = * e < ^ 

Consequently equation 4.116 can be expressed as 

* * ' i u = ^ H i * -t- <x — r̂™5, OCua 4- - r ~ T " — — OLUa 

XL AR^ ~ < ^ ~ T , ) X 
~r~"™" —z— & £>tx. 
5 > " " i Z u» 4.118 

4 . 6 . 6 . The "Integrated Momentum, Equation 

The sum of equa t ion 4 . 9 9 , 4 .104 , 4 .109 , 4.114 and 4 .118 g ives 

the t o t a l p r e s s u r e drop across t h e two-phase flow reg ion 
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2 H <£- o a 
,4 

^ > /A 

{ ( t -»V v ]^ 

ait).n ' a-4 ^ *̂  cer?o^; j 

+ 
[ATL ' ^ A ^ , 0 ^ W I £ 
\ ~ ~ " — ™r o i Hi"" o i :' { r— 

1 u-e^ 
O U a + 

<ua> a71 ^ 

-Q- J*?*. - , Z V ^ . 4%5. A%,4 L. + ~£-3- V t bUq -

^ ° 2 > Ms J 

j i^«- 4. £ 
u, u, u-x j * 4 .1 19 

In th i s equation the stead}/- s t a t e pressure drop i s 

&%n = ^ k . •+ /Tt> -4- A^a' +; ^ 4.120 

Subtracting equation 4.120'from equation-4;119 the pressure 

drop perturbation is 
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£&&. 2.1* -
•CX 

*' • •* • d t 

AtL A T L „ Ufcv 

»-*> " Ce-s? a, 
+•' ^ I ^ J k - C M 

/ ^ ik .. v45?> L n A% 
L u c ^ <^!l> Ha- I 3 

, iX. j A?a, ATL, , A+tj 
J=>—iZ, 8 <i . | j . • / ( . v 

d 

,Ai?Vfr ( <S(Jl„-
I U., £Uv% 'Wv u.. 

- -—— -=— + ~=~?H —;— + —~-~ re 6 u . 

4.121 

_£_ 
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4.6.7. Pressure Drop Variations.of the Entire System 

Adding equation 3.49 and equation 4.121 V7e get the pressure drop 

perturbations of the entire system 

+ "^ 
< S ~ ~ S - I l.l_A._ O-i V VJUtf, 

~ -Q- ( ^ ..u A <^ ^ k £i^t I i ^ ' ^ ^ u , 
^--S- ( u, u, u, u, J * 

4.122 

This equation is very complicated. Its solution could be obtained 

by means of computers, but this goes beyond the scope of this analysis. 

A very detailed investigation was performed by Zuber (1). The present 
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analysis will be limited to the discussion of physical phenomena, to 

facilitate in the following chapter the application of the integral 

method. Several interesting qualitative observations can be made on 

this result. 

A great deal of experimental and theoretical work has shown 

that two-phase flow systems become unstable in the low frequency 

range. In equation 4.122 for such a situation the phase lag between 

S't&on and £<-J, would be at least larger than 2 and for the 

most critical conditions even equal to TF . Such instabilities have 

been called in the literature "chugging oscillations." But beside 

them, numerous experimental investigations have yielded that at high 

frequencies the system can also become unstable. These detrimental 

higher mode oscillations have been denominated "acoustical" or 

"screaming" instabilities. 

In section 4.2 of this chapter we proved that the present 

analysis is only valid in the low frequency range, if we assume 

isobaric flow conditions. However in the following, we will ignore 

this restriction to study qualitatively the high frequency domain.-

In Chapter III we found that for 

CU> —&-r o o \£>:\\ — * - O 4.123 

Moreover if oo —»• oo 
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F i n a l l y , because of equat ion 4 .123 i f tk> becomes l a r g e 

6 u o C t ) -—-*-. 6 u t 4.125 

If we apply these observations to equation 4.122 and rearrange, 

the equation reduces to 

\ — — -J" - ° v -+• 

[ 2>UX <3u, ^ U 5 [ ^ u-

-si(e-fc)<?a>| &u, 4- J^;A + (e-*k<?a>} sSu, 

-STfe 
-hjae (e-5y<^ > 6u, 

4.126 

Here again similar to Figure 12, the final result can be represented 

in an Armand diagram. The inlet velocity will be plotted on the real 

axis. 

The first term in equation 4.126 is positive if 

^ + î  + ^_ + &&*. + 2*sk > si(i-\)<99> • 107 
hO, bXx, U e ^ <Ug> U 3

 N 3 4-127 

If we consider the second term, which is purely imaginary and 

proportional to the frequency £0 , to predominate in comparison with 

the other two terms, equation 4.126 becomes simply 
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6A?0£, - {9^ + (£-^:<?3>} *£ ̂ 1 

4.128 

Figure 23 shows that for high frequencies the phase lag between 

C>^T0(^ and OU.j is «~- , and the system is, according to the 

stability criterion formulated in Chapter II, still stable. But experi

mental research has lead to the conclusion that for stability the 

timing betx̂ een the inlet perturbation and the response is no longer 

of importance. Therefore it is believed that in the high frequency 

domain instabilities occur much more because of large pressure 

variations. These are necessary to account for the inertia forces, 

which increase directly proportional with the frequency <X> . We 

conclude that the present observations are not allowed according to 

equation 4.21. But still they were made to analyze the course of the 

transfer function for increasing frequencies. 
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Figure 23. Total Pressure Variations for Higher Frequencies 
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CHAPTER V 

ANALYSIS OF TWO PHASE FLOW INSTABILITIES 

BY MEANS OF AN INTEGRAL METHOD 

•5.1. General Considerations 

As was described in Chapter II, the main purpose of the integral 

method is to simplify the calculation procedure of a theoretical analysi 

if- it becomes too tedious without sacrificing to a certain accuracy of 

the results. 

The previous two chapters showed that the complexity of the 

pertaining problem in this analysis evidently justifies the application 

of such an approximate method. It is now the question in which way 

shall the mathematical analysis be simplified. 

The treatment of the single phase region, which was presented 

in Chapter III, did not represent major difficulties. In Chapter IV 

the same can be said referring the evaluation of the velocity distribu

tion in the two phase region. However, here considerably more effort 

was necessary to find an expression, for the density variations and 

afterwards in integrating the momentum equation. To examine best 

the influence of the integral approach and to minimize the inaccura

cies, which inevitably appear by using simplifying techniques, it 

seems reasonable to limit its application to the evaluation of density 

and pressure drop fluctuations in the "light" fluid. 
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The density variations can be evaluated in two ways: by means of 

energy and constitutive equation or through the continuity equation. 

Both methods will be treated here to find a general and mainly simple 

expression for its further use in this analysis. 

The pressure drop variations will be determined by simply averaging 

the momentum equation and introducing in this expression the velocity 

distribution derived in Chapter IV and the equation for the density 

obtained by means of the integral method. 

Adding the corresponding formulas for the single and the two-phase 

region, the overall pressure drop of the entire system will follow and 

the characteristic equation will be specified. Herewith, using a simple 

stability criteria, a stability plane will be set up to show the effects, 

which various parameters (such as mass flow rate, subcooling, power 

input, etc.) have on flow stability. Finally a comparison with previous 

work, mainly the theoretical analysis of Ishii and Zuber and experimental 

data, will allow a careful judgement of the integral method presented 

in this analysis. 

5.2. The Integrated Density Variations in the Two Phase Region 

5.2.1. Integral Approach Methods 

There are basically two different procedures to derive the overall 

or integrated density changes as a function of time in the two-phase 

region. 

One possibility is to integrate first the energy equation with 

respect to. position to determine the enthalpy variation, which after

wards through the constitutive equation gives us the density perturbation. 
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The second way will be to integrate directly the continuity 

equation. This procedure is a much shorter one and therefore it is 

expected to offer better results. 

The present analysis will follow both methods in detail to find 

out how generally the integral method works on such a stability problem, 

and to determine out of both a representative expression for the 

overall density variation in the two-phase region. 

5.2.2- Overall Density Variations by Means of Energy and Constitutive 
Equation 

If we introduce the general constitutive equation 4.23 and the 

expression for the velocity distribution equation 4.33 into the energy 

equation 4.2, we get 

M 
5.1 

Taking the enthalpy u at the transition point for reference 

and in view of the definition of the reaction frequency, we rewrite 

equation 5.1 as 

-a 
2>t 

[o^^w)^ ==.a 
<3 % 

A, + 3. 0-Q 
5.2 
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Its integration with respect to 7 from 'X to d gives 

6. <L 

[hO-l) 

\ 

5.3 

In this equation we analyze each term: 

First integral on the left hand side of equation 5.3: using 

Leibniz's rule, the integral becomes 

5.4 

This equation expresses physically the time dependence of all the 

thermal energy stored in the two phase region with respect to the 

enthalpy level 1̂  . The dependence can be fixed by assuming 

appropriate enthalpy profiles. Here three of them shall be discussed: 

(1) The roughest approximation would be to take an average enthalpy 

value along the duct and to consider only the length ( £ — ̂  ) to be a 

function of time. In this case equation 5.4 becomes 

e 
A. if'.-'. \Ar _ _ -'a-1, U dX $0-1 
£t ) ° 1̂ djt 5.5 

X 



(2) A much better and physically more understandable approxima

tion can be reached, if we assume for the enthalpy distribution the 

steady state solution 

' " ;* -fnT^S-*) 5.6 

Introducing equation 5.6 into equation 5.4, integrating with 

respect to zt and differentiating with respect to time, we get 

I st i ?faA * 

(3) The best determination of equation 5.4 will be achieved by 

assuming that the enthalpy distribution is always a straight line, in 

accordance to the steady state solution, but with the boiling boundary 

and the entrance velocity u, being a function of time. In this case 

the steady state solution is 

5.8 

Integrating, writing all the time dependent variables as a sum 

of a steady state and a perturbed quantity,, expanding and linearizing 
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we f ina l ly get 

iO-;j 
at 

•U-^ 
g 

a(tf %V^ 
(S - fc) <*&* _ (£--*)* d^u, 

<$u. 
¥ d* 

5.9 

A comparison shows that equation 5.7 is contained in equation 5.9, 

Therefore in our following computations equation 5.9 will be used, and 

once an expression for the density variations has been found, the 

influence of the additional term, which appears by using equation 5.8 

as an enthalpy profile, will be discussed. 

Second integral on the left hand side of equation 5.3: this 

integral can easily be transformed into an enthalpy-dependent expression: 

G-<?) 

u 
?&) 

a(3^d3 = y^x-.-o 

5.10 

Introducing the steady state velocity distribution, the integral 

in this equation can be divided into two parts, of which one can be 

evaluated immediately: 



*(0~ 5 

5.11 

Third integral on the left hand side of equation 5.3: as the 

velocity perturbation in the two phase-flow region is independent of 

, we obtain 

6u£t)*<t& d3 - s^aKvU 

5.12 

First integral on the right hand side of equation 5.3: the 

integration gives simply 

i 

3±\dx =-34- (e-*) 
a\) * "V 

5.13 

Second integral on the right hand side of equation 5.3: using 

the steady state equation in the form 



O-^^dCs-^ 
•f 

9xa> • -c 

we get 

a((;-;2)d3 = £>§£^0-Ud(;-0 
<X 

<=)& 

and introducing again the steady state solution for Ci' — lz) , we 

transform this equation into 

i-» 

< ^ 0 - O d 3 =.a((e-^ci(T-:2) 

Equation 5.9, 5.11, 5.12, 5.13 and 5.16 in equation 5.3 give 

the general integrated energy equation 

$ 
u,Ac ( 5 . ( ) i £ . fc^^;^*^ 



100 

solving for the enthalpy and rearranging 

y - ' 2 
°t§ 

9( 
A. 

. f, _xd6X , il-tiTd^P 
(g- i) - &a + ̂  [(*- ̂ -ar + -^7 - ^ 

U t 4 £ :W )̂ 

5.18 

removing the time dependent function from the denominator into the 

denominator and writing for 

— ll/, _ U_ 
£ - A - -~̂  —' 

J2. 5.19 

equation 5.18 becomes 

V 
g| § J _ w:1-u( 

<?f Ac a a . 
+ I f \ "5> ^ 6 ^ 

-J- 6:\i-
u.. ~& af "obb Asfcif d t 

5.20 

The enthalpy difference ( K — \ ) can be expressed as a sum 

of a steady state and a perturbed quantity: 

- . z - i - , * ( • - ' * ) 

5.21 



in which 

A PruA>
 } 5.22 

and 

6C-0 =%\- ^h^i^y±^^^^^^ 
^/\.[ -0- uf (1 ' u, ^ < dt ^xfu? dt J 

5.23 

Equation 5.23 gives us the enthalpy perturbation in the two-phase 

region. Using the constitutive equation in the form 

-H. = I Hi- SI ±*-£. C. I - l3) 
9O) ^§ 5.24 

or with equation 5-21 

5.25 

and solving this equation for ^C*j » expanding, linearizing and 

writing 



a I +>SL-±O t- . \ l> JU: 
0, 5.26 

we get 

9C0 U, U. 

u- u 3 

'T€ xr- ^ 
G 3 / 

or with equa t ion 5.23 

5.27 

r: — - • ft —•*• .—-• j i . r> •i—^--i •» u„ u~ d Dt tu d t SL clu'Cg o|t 

5.28 

This equation only as a function of ou,, and 6/\ gives 

2-

-SL - -IL + fra-u, £ u M a j ^ i;>:x u«^iLcl&\ I (&-£,) d£u, 
— __ "T __£ C-JV-C. — — ^ i X - O ^ =•—L ; — — L 

^F •"•» « 3 M 4 Ms eft. -UCLCf. dt 

5.29 
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Herewith we got a general result for the density perturbation in 

the two-phase region. Out 'of this equation we observe that if the 

integral in equation 5.4 would have been approached by means of equation 

5.6, then only the last term in equation 5.29 would be missing. The 

equation in this case would be 

9 u, Us- ut , u,(-c3u U^~U4 cl&A 
___ - -— 4. ______ _>U ~ 5-—__2>A- --5——rr— 
^ u3 n | G| "J d t 

5.30 

Finally the use of the roughest approximation, assuming an 

average enthalpy value along the duct would have given 

_§_ :_ J L ̂  G3"G» £>a- -__-^£-2&A - jk±i__ £____:: 
Uj U^ U^ cd dt 

5.31 

The expressions for the density variations in the two-phase flow 

region derived so far, although they are now only a function of time, 

appear to be lengthy and unfavorable for a further application in the 

momentum equation. Therefore a second integral approach will be 

studied in detail with the purpose of getting simpler expressions. 
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5.2.3. Overall Density Variations by Means of the Continuity Equation 

By integrating the continuity equation with respect to ^ we get 

\^K dr 4- V d(ou) « O 
J 2>-t ° J ^ 

5.32 

Using Leibniz's rule the time-dependent integral becomes 

t e ' 

Zt ) * 6 J •<* * ̂ ' d t 

5.33 

Equation 5.33 in equation 5.32, integrating and rearranging gives 

£ 

H - *«(".-&) -£'?d3 
iX 

5.34 

Here again, similar to the previous integral approach, the time 

dependent integral can be evaluated in three different ways: 

(1) The assumption of an arithmetic average value for the density 
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along the duct 

. . ' . & 5.35 

gives the simplest expression 

I 
b 

2>t J X ° a dt 
5.36 

(2) A considerably be t te r approximation can be worked out by 

assuming for the density in the in tegra l the steady s t a t e d i s t r i bu t i on 

9 ( ^ _ «. 
9^ U,+a(5-^ 5.37 

Integrating and dividing by the steady state length of the 

boiling region, gives us an averaged density for the two-phase region 

9i 

5.38 
^ mi-'*) u, 



106 

Integrating between the moving boiling; boundary ^(.t) and the 

exit position *• and differentiating" with respect to time, the integral 

in equation 5.34 becomes 

A 
hi 

} Q d3 = • li-f-j a jk dSA 
£&-* ) * c:t "dt 

^ 
5.39 

(3) The most accurate approximation will give again the most 

intricate expression. If in equation 5.38 U( ,ti- and X are a 

function of time, we get 

* t ^ ", J M "a ' CrL — 7 7 ~ 

9-i 

u. -fii(e-^ 
u. 
GJM 
dt 

(e- *) d u, 
dt 

5.40 

This equation of course is very complicated and therefore will no 

longer be commented upon in the following analysis. Therefore to compute 

the density variations equation 5.39 will be used as this expression is 

physically the most consistent. Substituting equation 5.39 in equation 

5.34 gives 
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9u) . ^ ( u . ' . ^ y + S E ^ ^ i d ^ 
^ is H^ ' dt J CL-U, a, dt-

5.41 

If we divide this equation b;y the exit velocity, expand and 

write all time dependent terms as a sum of a steady state and a tim* 

dependent value, we get 

* -

a 
I - £l% 

Ua 
(a l + 6 u. 

olt U3-U, ui dt , 

5.42 

Rearranging this expression and retaining only the first order 

terms gives 

<? u 

•f 
U. 

- — - — 1 £>u-i + 
V < J 3 

. + J i L a i ^ + J r J d i _ e ^ - i 
ut u.*Uk-&. u., 

QA Ad<SA 
dt 

5.43 
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For reasons of completeness the solution will be mentioned for 

the case that the arithmetic average value given by equation 5.35 

would have been used. Introducing equation 5.36 into equation 5.34 the 

final result- for the density in the two-phase flow area would be 

5.44 

The two expressions for the overall density variations in the 

two phase region obtained in this chapter again appear to be complicated 

and inappropriate for further use in the momentum equation. In the 

following section an attempt will be made to evaluate the results so 

far obtained and to set up a simple equation for the density to facili

tate the following computational procedures, as this is one of the main 

purposes of an integral method. 

5.2.4. A Simplified Expression for the Overall Density Variations in 
the Two-Phase Region 

In the present analysis only the most adequate of the equations 

derived in each previous section of this chapter.will be used. 

Under the point of view of structural similarity and accuracy 

in section 5-2.2 we choose equation 5-29 and in section 5.2.3 equation 

5.42. Considering only the time dependent part, equation 5.29 becomes 
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^ 2 . = U a"U '~£x ... U*-Qu' c £ y U*-H, d<SA t (u.̂ O,) c)6u, 
9 r u4 4a ^ a t "-^C^Uj dt 

5.45 

and equation 5.42 

is.':. ^ ^ + j ^ ' ^ ^ ^ i C A ^ e ^ ^ ^ l ^ 
u2 C£ HaVQj-u, a, y dt 

5.46 

These two expressions derived by means of two different integral. 

approaches have in comparison with equation 4.68, which was derived 

using a differential method, the peculiarity that they only specify 

the overall density variation of the entire two-phase flow region. 

Thus, equation 5.45 and equation 5.46 are only a function of time and 

no longer of space as in equation 4 68. Its phase lag is only dependent 

on the inlet perturbations oU| and S/X and the corresponding ampli

tudes. Furthermore, both of them are inversely proportional to the 

steady state exit velocity U^ 

The simplification of these two equations to a single representa

tive one will be achieved by comparing the corresponding terms. 

The first term is in both cases the same. In the following the 

assumption will be made that for steady state conditions the exit 

velocity U, is considerably larger than the inlet velocity'CL > 
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this means that 

a 3 , > > U ' 5.47 

Herewith the coefficient of the first term becomes 

U.3 - u» ;̂, I 

ut 0^ 
*" 5.48 

The second term only differs in its amplitude. Figure 24 shows 

the dependence on the exit steady state velocity. In equation 5.46 its 

value becomes very small for higher exit velocities as it is inversely 

proportional to the square of U3 , but it remains always positive. 

In equation 5.45 for U.̂ ><3CIl the amplitude is negative and of the 

order of the first terni. In making a decision, preference will be given 

to the results obtained out of the integrated continuity equation and 

because of its smallness there, it will be neglected. We will see later 

that this term does not affect at all the stability criterion which 

will be used. 

The third term in equation 5.45 has a negative coefficient and 

can be simplified in the same way as was done for the first term, but 

in this case we emphasize that the approximate value is smaller than 

the original 



Figure 24. The Second Term in Eq.5.45 and Eq.5.46 as a 
Function of the Exit Velocity 

&-lg § LJ3 

——~'n rT~ 

Figure 25. Eq.5.52 as a Function of the Exit Velocity 
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Similar observations can be made for equation 5.46. The logarithmic 

expression becomes for 

_ll^ JLr ̂ Jk ^ ( 
U3~*u, lis- u, (J, • 5.50 

and for U^ = o& 

QJUK J^'ie^ik*;., O 

Figure 25 shows that for LL^^U., 

tu-u, u, 

5.51 

5.52 

Therefore for the amplitude of the third term, the following 

inequality can be written 

_f±._. £^i±& _ | ) > - _L 5.53 
u 3 V u.,3- u„ u,i / Uj 



Assuming 

u, n a 
U ^ - G , u, 

5.54 

the coefficient of the third terra becomes equal in both equations 

5.45 and 5.46. • 

The fourth term in equation 5.45 does not appear in equation 

5.46 and will be therefore neglected. Herewith we finally write 

£<D =_?£. ( 6u , ~ s6>Xj 
Ui 

5.55 

With equation 3.25 a further simplification is possible 

, 9 f -£"<*> x 
u 3 5.56 

As a conclusion to this section, we can say that the integral 

method has delivered us a very simple expression for the overall 

density variations in the two-phase region. Because of its structural 

similarity with equation 4.35..in the following development equation 

5 . 55 will be used. 
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5.3. The Averaged Momentum Equation 

To achieve simplicity in evaluating the pressure drop variations 

of the "light" fluid region, an averaged momentum equation will be used: 

*?aa (l-i)±(9u)A+9u. _ -f OLA, 

dt x 
e 
— pa 

•f 
l+iE^M^M 
A 

5.57 

Before we introduce in this equation the expressions- for the 

velocity and density, ail the terms will be linearized and expressed 

as a sum of steady-state and time-dependent: values: the change of 

the total momentum of the fluid in the system with respect to time is 

(e-«£G~V-(«-*) 5 'd&oo + Q d&e 

5.58 

The change of momentum in the two-phase flow region because of 

the moving boiling boundary is taken into consideration by 

d% 
u = ?*uf 

d6A 

~dir 5.59 



The rate of momentum eflux and influx by virtue of the bulk 

fluid motion are 

2 

- ?t
Ufc--+ U t ° ? u„ & P •+ d o LL 6 U 

ou I - ^ û ' + ^Sffy & u, 
5.6.0 

The force of the fluid on the system is 

^(<?^L^-^ = X [ ̂ a l + c4&^ +a?atatx£^].(e->0 

^ ? X ^ 5.61 

and the force of the gravity on the total mass of fluid is 

. ^ ( e - * V « 9 * 3 ^ - ^ - ^ 3 * * + *}•(*-*)&<? 
5.62 

We will include the effect, of the exit pressure drop in the 

momentum equation. Defining by t<e the coefficient for the exit 

losses, the exit pressure drop can be expressed as 

o A^u « k.^QU 
2 

"e \ <a e 
5.63 
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upon l inea r i za t ion we get 

A 1 U ^ keG?G
ue^ Qe^?"f ^?{U(6^) 

5.64 

Adding equation 5.57 and equation 5.63, we obtain the total 

pressure drop across the two-phase region 

4?i4 - *$L + ^M, 5.65 

Substituting equations 5.58, 5.59, 5.60, 5.61, 5.62 and 5.64 in 

equation 5.65 gives 

w c!t dt J 
4- p u ^ ^ 

- - a 2 

1 f = „• + IE l^ c ~ + Uo:<s<? ^ ^ " ^ j M - ^ p j v ^ • f ^ 

+ ^ g ( € - ^ - ^ , c | M + <^(t-\)6$> 

+ kc ?e a
& + H l^e 

<5? + c 5? f^<Su^) 
5.66 
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AT^j ,:: £& -4- &£$> 
H 5.67 

with 

*%« = 9t
ul ~ 9 f ^

 + ^ 9 a u - ^ - ^ 

+ ^ ' C e ^ | + k^ e i 
2. 

and rearranging 

5.68 

d&\ 6 A H , . ( t - » 9 a ^ + ( ^ " M ) ^ ) 

+ 9a3 + l V 2 e f C I f f l }S* 5.69 



Introducing now the expression obtained in the previous section 

for the density perturbation and its first: derivative,which we write as 

follows 

iks. _ Si 
• d t u« 

& iu ( ~ s S'X 

5.70 

Equation 5.68 becomes 

£/\%h « m 
Cd-sy^jsiu, .f \^zx{-;(^^fi£LjSSA 

-f 
(e-S} . 

+ 

- < uj (i + O + -~ (*- ft ua + ̂ Ce-*)} JL s<& 

1 (l - ^ c2 ^U-a, + l<e^. ? f Uf J ̂ U, 

- J <2 & a Cl{ + — (JL~ R^ §^<x + JL p U 
[ A T t 2it>- N 2E> VQ-

2. 

5.71 



The total pressure distrubance of the system is the sum of 

equation 3.47 and equation 5.71: 

6 A ? ,, = 
( k i ^ f iA ?^*}+ { < ( ' + ^ +i^- ^< 

+ ̂ ( ^ ' ^ ) } ^ + {^(t-M^cI f l t+ M?fU f } ] 6*1 

4- ^ + C e - 5) ^ + (e~ oO _ 
u u, 

s 
< ^ f 

5 ^>t^ 

4 Hi +?$lk^} -y^fi*^-^*?*-* a. 

£* 

+ 
C-* 4" , „ xx _2 9 ^ - (e-5) ?a.a -J û (i + O +~(e- *)i£ 

0 J aj < s* _(<>-^)u.a?£ 
U , J 

/<S* 

This is the final result for the pressure variations as a 

function of the inlet velocity perturbation, and the corresponding 

influence coefficients. The equation can also be expressed in 

terms of steady state pressure drops. For the average values in 



the momentum equation 5.57 we use the values defined in equation 

4.79 and 4.85. Thus with 

U a - °V 
?a = < V 

5.73 

equat ion 5.72 becomes 

&& O l f 
. + — _ _ -j_ .—— 

^ C l j S>u^ UL, U 3 - U , 
4 - -*• - = - 1 A*R. + 

-f-

•+• 

^—_ + d- A £ + _ v f _ A p 

<u3v. u^aey ^ <o>u3
 baj 

6 u, 

^ 

€>i 
5 + *Sk + £!ia>- " ^ 

• ^ ^ -ttMc 3 U 1 
6 * 1 

££L O A ' ^ £>AT?2 _ _Q A^«. 
^ A ? J 3 -

ATL* 

ft-30 
- ( ^ j Q . ^ i 

" 3 . 

S* 

L_ 1A? Q* ^9a A 1 ^ 
a ' o i — T " ~ — T "" ' I V U s - u , u f c ^ / u, u s - u , 

^ 3 
<Hg> A ^ 

4f U-3 ^ 

5ii -
Uf 5.74 
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CHAPTER VI 

STABILITY ANALYSIS 

6.1. General Considerations 

As was commented in Chapter I, unstable conditions in the system 

will certainly be present if the phase lag between the velocity pertur

bation and the system pressure drop is equal to half a period of 

oscillation. In such a situation the gradients of ou, and of £>AP 

always have an opposite sign. The present theoretical investigation 

however considers the integral effect and therefore we say that out 

of a full period, for at least half of it the gradient of inlet and 

outlet perturbations have to have the same sign. In this case the 

phase lag between both oscillatory movements is restricted by equation 2.4. 

The stability analysis will be performed by using a very simple 

criterion, first used in the analysis of Ishii and Zuber (20). The 

results will be plotted in an appropriate stability plane. A 

parametric study and comparison with experimental data will conclude 

this analysis. 

6.2. A Simplified Stability Analysis 

To facilitate the further computational process, we write equation 

5.72 in terms of abbreviated influence coefficients 

6.1 
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In t h i s equa t ion we se t 

^A?o, _._ <?>A? 
> ^ W , 

-r V£IJ2L + G* A'Pa, , ( I , <2 
<2>Ci, 

+ _I-+^W9. 
"i u3-u, Vup u^y ^ 

+ '.A. + iHa^ ^ + J k _ A<fi~ 
6.2 

* * « ?^ + £4 ' CX < U < 7 > 

f -Q.U ft 
En* 

4. - »*— £ 
SX u 3 u, a 6.3 

baH A?a J[S2 I 

Ce»?0 v<ug> Cc-X). 
A £ 2£ 

AtL * _ *fe 
(e-*; - a a ^ u-

6.4 

V 
T. JO 

A % 

I \ u3 - u t . u e ^ 

O U^ A W _ A i ^ U<x • Q 

a, i^-u, u f u^ue ^ 

6.5 
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A. «. ^ y Z5> ex 

u, U 3 ,£>. 

6.6 

If we express o A ^ directly as a function of ^^, > 

equation 6.1 becomes 

^ ^ o , - A, + * ^ + G -eS» 
£ v+ 

+(,.^)^ + 5 ( . - ^ ; ^ su, 
6.7 

Here the terms in brackets represents the transfer function 

between the input *Su.t and the output 'OArJ.^ . By rearranging 

equation 6.7, we obtain the ratio of the oscillatory movements 

6a, 
&&c+ a<s> 6.8 

with 

Q(&) - \ + «V + (izf^A^O-^A, 

*0-^K 6 . 9 
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This expression is called the characteristic equation of the 

system because it determines its behavior towards any perturbation 

mode, depending only on the system parameters. Figure 26 represents 

the block diagram of the system. For Q(->) « O , equation 6.8 shows 

that the ratio between input Su{ and output &&TOL. becomes 

infinity. Therefore for a given inlet velocity variation, the pressure 

drop remains constant and the system is stable. In an Armand diagram 

this situation arises, if the plot of the frequency goes through the 

origin. But this, in accordance to the stability criterion formulated 

at the beginning of this section, means that we are crossing the 

stability boundary. Figure 27 shows qualitatively such a situation 

for the frequency response in a complex plane. 

Figure 28 represents a special situation. Here the frequency 

plot only touches the stability boundary at the origin. However the 

same observations are still valid, because a change of the system 

parameters would immediately lead to conditions similar to these 

described in Figure 27. 

In the-following a very simply criterion will be derived to find 

out the influence of the. system parameters on the stability boundary 

QC^/ x O . I n equation 6.9 we introduce ^ ^ i^ and write a 

common denominator for the whole expression 

O - A'^ ";A^-'As('-^1^A^(l-e'^]+iA5^[l-e
;^] 

'; CO 

6.10 



f} (gy* 

I f i O u T 
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-o c s o i a j U i 

Figure 26. Block Diagram of the System 

Ul 



Figure 27. Graphical Representation of the Transfer Function 
Between Inlet Velocity and Pressure Drop Perturbation 

' ^chan rcsm&lh&ra 

Figure 28. Tangential Course of the Transfer Function and its 
Dependence on the Parameters 



Separating the r ea l and imaginary components, we get 

A\u^> ~ AuC/oCsaO&r + *4^5ln6^X'u — A s 6,> S r A ^ " ^ 
Q -r _ — . _._ 1: ; — _ _ . _ -f-

10o 

, A i f 6^Sin^0>tb -^ A2560 ~ A.3 + ^-2,05^601^ — A^̂ OC«*»GoTk. 
^ - ; , _ : , _ _ „ : _„.~—•- :: _ 

to 6.11 

with 

AiH « A, + A^ 

A?5 s= A2 + As 
6.12 

The very extensive analysis of Ishii and Zuber (20) showed that 

the higher orders of £0 do not influence the course of the stability 

boundary significantly. Therefore they will be neglected and we obtain 

for the real part 

/I3 5uaA>Tb -f- Aj^Gi — A( 63 O&sGoT^ = O 
6.13 

and for the imaginary part 

A 3 CttC&T^ - A j -f A z + 6 0 5i«n.^0Tio = 0 
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Rearranging and using basic relations from trigonometry, these 

two equations become 

61 c e o - AS s ; ^ _ ̂ A , * * ^ ] + ( ^ + >0 60 - o 

6.15 

and 

£\v\ OSX^ 

a ~3"~ 
— r\i &\*\ — -f- Af, 0^ O o ^ -

<^>"C^ 
= O 

6.15 

We recall that an unstable situation certainly arises if the 

phase lag <P between input perturbation and output response becomes 

equal to JT . Equation 6.16, the imaginarjr part of the characteristic 

equation, gives us hereto the frequencies 

£ o T b = o , <2Tr, i+TT 
6.17 

and 

6.18 
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or 

a... A s t b A 

With equation 6.4 and equation 6.5 it can be shown that 

6.19 

_ At . > | 
A 

Figure 29 shows that for 

C^Tfr , TT 6 .21 

Equation 6.19 has a solution. Therefore instabilities already 

appear for 

^ T b £ ' 1 T 6.22 

Herewith the integral method and the application of a simplified 

stability criteria delivered a result which has been repeatedly observe 

in experimental research: instabilities in two-phase flow systems 
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preferentially occur at low frequencies- In the literature these 

unstable flow conditions are called chugging oscillations. 

Equation 6.18 in equation 6.15 gives the stability boundary 

l'+ + Af+ o 6.23 

In Chapter II we said that for stability the response to a 

velocity perturbation, which we plot on the real axis, will have to be 

on the right hand side of the Armand diagram. Thus the real part in 

equation 6.15 has to be positive or in equation 6.23 it means that 

( + SLA^ > o 6.24 

Equation 6.2 and equation 6.5 in equation 6.24 gives 

^ A ^ , , b&?iz JL Q 3 £&c 

£>u, + •+ 
>IX. u. U

a -G , 
_ _ . + 

V U, t) ^ 

+ ,<u3> Ci fDey z i <^>Ma % • U j - U , T T * 
u, 

Us AICL 
0, G^U,. 

AtiL U q , 

u, Hf Ue 
A tia > O 

6.25 
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or 

I<i9f 5 a f + iB^9A *} + {^0 + 0 - ^ C C - A K + ^ C - X ) ^ 

f 
v \ 

+1-1.(4-^3^.^+ kea^u4j + a ^ . ( ( - ^ a 

^u!(i + keUi(<!.-S)al + 3 a ~^}§] > o 
6.26 

This inequality is independent of the frequency and represents a 

relation between the different parameters which characterize the system. 

6.3. Similarity Groups Governing the System 

In order to make the results so far obtained independent of a 

specific geometry of the system and special operational conditions, 

we will set up in the following a group of dimensionless parameters. 

These will enable us to generalize our further investigations and to 

evaluate the quality of the present work in comparison with previous 

theoretical and experimental research. 

Generally in the areas of heat and mass transfer for complete 

similarity between two systems beside geometrical also kinematic, 

dynamic (these two are mechanical) and thermal similarity must be 

fulfilled. 



6.3.1. Geometric Similarity 

Using -II as a length scale we easily nondimensionalize the 

geometry of the system 

• 3 = 4 - ^ - — 
I I 6.27 

6.3.2. Dynamic Similarity 

Through a dimensional analysis of the momentum equation the two 

main dimensionless groups for dynamic similarity can be obtained 

The Reynolds Number NRS> : 

__ _̂_£ f _ • inert to, forces 

fu-f "frlcfional forces g 

The Froude Number •^tV 

.2. 

I - —^f- - Ine<HLtQ "forces 

* " C^ gravity forces 6 < 2 9 

6.3.3. Kinematic Similarity 

: A two-phase flow system with heat addition is a coupled thermo-

hydrodynamic problem. As was shown in Chapter II in our simplified 

system the thermal conditions always determine its kinematics. 
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Thus kinematic similarity also fulfills thermal similarity. With 

the reaction frequency £L , we easily non-dimensionalize 

The Inlet Velocity 

Uf =£t 6.30 

and 

The Outlet to Inlet Velocity Ratio 

- A 
(̂  a- — £ .» | 4" —^ 

6.31 

Moreover we need two additional parameters to scale the thermal 

conditions of the fluid at the inlet and the heat addition to the 

system. Hereto we set up an energy balance 

G| %l - A i ^ C S f + <53) + Ai^-Gg 
6.32 

where vsr and Gu are the mass flow rates of the liquid and the 

vapor phase respectively. Therefore the thermal energy added to the 

duct along its length -c causes the saturation of the total mass 

flow irate ( (5f '"*" ̂ <^ ) and the vaporization of the mass flow rate Gu 
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Rearranging, the following nondimensiohal equation results 

A>5ub> ..„ \ __ w 

6.33 

with X defined by equation 4.22 as the quality of the mixture. It 

shall be mentioned that: equation 6.33 could already be used to set up 

the required similarity groups. However to introduce the reaction 

frequency «£L , we multiply the equation with /^<^/^^ and obtain 

^Sub ,SJpch -M o I 
1 2 ' 6.34 

Here we wrote 

The Subcooling Number sub 

1X1 s ^ -
At4 9| 6.35 

The subcooling number N&uJ:> describes the thermodynamic 

conditions of the fluid at the entrance of the system. Therefore it 

scales the time, which the fluid entering the duct needs to reach 

saturation conditions. 
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Th e Phase Change Number W pch 

r 
~ °l A<g at _ 

* 
\cGf A4a ft?* u* uf 6-36 

The phase change number WpcU scales through the reaction 

frequency £2. the rate of phase change and with w & r the residence 

time of a particle in the duct. Hence it indicates how far the phase 

change has progressed in. a system. 

The Boiling Length 

An energy balance for the liquid phase, solved for A and 

o & 
scaled with the length C gives the dimensionless boiling length "A • 

£ s A ^Uuk'Acfi^ 
t qge 

1 6.37 

This parameter can also be obtained subdividing equation 6.35 by 

equation 6.36 

x « A. =5
 M*̂  

6.38 
Mpch 
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The Density Number 

The density number (or ratio) scales the pressure level of the 

system and thus the fluid, properties 

^ 4 Vf 6.39 

In the following section, the similarity groups presented here 

will be applied to our simplified stability criterion. 

6.4. Diinensionless Stability Criterion 

Rearranging, dividing by the steady state mass flux, and intro

ducing an averaged friction factor for the entire system, equation 6.25 

becomes 

jki + <ai^-e + £k„ + &\ i - *Ct~f}-^ 
3 D ^ I uf+D(€-A> 

| °£^BM + jky-J^^W .ft-3 
[ C ^ 2D u^uf+S2(t-5)] 3.uf[uf+. 

S) 

•fl(t-xg 

ke Hf +J&-XI > o 
U : 6.40 

Applying the similarity groups obtained in section 6.3, equation 

6.40 can be rewritten as 
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«3k.c + c2 ^ + <a ke > C_ (.1 •+ K J + 

/ u 3 + u,\ 

+ ^*0 
U 3 G i 

- • * 

+ CCr-')~J; d 
qr t% c; 

Here we s e t 

- ... \Z 

- fe — KJpch 
oi r U-,, U, 

6.41 

6.42 

The right hand side of this equation is only a function of the 

-^ . However the phase change 

number N p ^ increases linearly with the subcooling number Ĵg.uh • 

The simplification made in equation 6.42 is only valid for small values 

of ^iub i n comparison to W K J , . Figures 33, 34, 35, and 36 

show that this is also true for most of the experimental data, thus 

justifying our assumptions. 
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Consftanf tfuaiity tiinm 

Figure 30. S t a b i l i t y Plane 
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Figure 31. Influence of the Subcooling Number and Phase Change 
Number on the S tab i l i t y of the System 
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Figure 32. Influence of Several Operational Parameters on the 
.Stability of the System 
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Figure 34. Comparison with Solberg's Experiments and the Theory of Ishii and Zuber(20) 
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Figure 35. Comparison with Solberg's Experiments and the Theory of Ishii and Zuber(20) 
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Figure 36. Comparison with FLARE Experiments and the Theory of I sh i i and Zuber(20) 



With 

X C —-'I 

neglecting the gravitational forces 

Ui 

• f 

* 
and for high C^ values 

cr 

Equation 6.41 finally reduces to 

C r - I < 
1 4 1 { ~zW + A k* J 
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6.43 

6.44 

~ ^ ° 6.45 

6.46 

In the following we shall set up a stability plane and perform 

a parametric study of the system based on the results just obtained. 
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6.5. The Stability Plane 

One of the final purposes of this research is to investigate 

the influence of different operational variables on the stability of 

the system. This will be best performed by analyzing the stability 

criterion equation 6.46 in a two dimensional plane. If we fix the 

inlet velocity, system pressure and its geometry, we obtain for the 

coordinates of such a stability plane the subcooling number ^£ Ub 

and the phase change number N pch • The subcooling number 

is always positive but upper bounded by A-tg » corresponding to 

the freezing point 

o 4 wSMk < * k .iS. 
A , f , ^ 

6.47 

Moreover from the condition that boiling takes place in the 

channel, but super-heating of the vapor does not occur, we obtain 

r h ~ ^ < Msub < NpcK 
6.48 

Thus the operational domain in the stability plane is bounded. 

Figure 30 shows these conditions and the relationship between NJSu^ 

and Npch given by equation 6.34 and equation 6.38. 
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6.6. Parametric Analysis of the System 

Equation 6.37 in equation 6,38 gives with equation 6.34 and 

equation 6.45 for stability '; 

C* - I « X e 42. = KjpeV, ~ KJSuJb < _ 

6.49 

This expression combines the inequality obtained in section 6.3 

with the coordinates of the stability plane. If the operational 

variables on the right: hand side of the inequality are independent 

of the phase change number Wpch an^ tQe subcooling number M^,^ , 

then the functional relationship 

N ^ - K'y) 6.50 

is a straight line, which intersects the abszissa for N)Suk = O , thus 

Wpoh = 
iK + jfr+^-o+'O 
1 + i 

6.51 
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and represents the stability boundary of the system. 

A. Influence of .^Sub (Sub coo ling) . We consider a system 

with fixed geometry, Reynolds number ^£,» j inlet and outlet f 1< 

restrictions kj_ and K e , system pressure and also fixed phase 

change number KJpoK « From Figure 31 we see that by increasing 

the subcooling number ^sub ' » t n e point of operation moves away 

from the stability boundary into the stable domain. Therefore the 

system has been hereby stabilized. 

B.Influence of Nl pch (Heat Flux). The same as in A, but 

now with constant subcooling number ^sub , and increasing NJp-h 

shifts the point of operation into the unstable region. 

C. Influence of the System Pressure. An increase of the system 

pressure does not affect noticeably the parameters on the right hand 

side of equation 6.51. But the exit quality X^ decreases, thus 

stabilizing the flow. 

D. Influence of the Inlet Velocity ^f . If in equation 6.51 

the inlet and outlet flow restrictions k* and ke and the friction 

factor fm are independent of the Reynolds number ^ R ^ , then the 

phase change number WpcK will be the only parameter affected by 

inlet velocity variations.. From equation 6.36 we see that for an 

increasing inlet velocity Or , the phase change number KlpcU decreas 

and therefore according to B, the point of operation shifts into 

the stable region. 

E. Influence of the Friction Factor TW\ . An increase of the 

friction factor "hy, means that the expression on the right hand side 
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of equation 6.51 decreases. Herewith the stability boundary shifts 

to the left thereby destabilizing the system. 

F. Influence of the Inlet and Outlet Flow Restrictions ^<l and K> 

Analogous to E.in equation 6.51 it. can easily^be verified that the 

increase of M has a stabilizing effect, whereas the increase of 

k e destabilizes the system. 

6.7. Evalu at ion 6f the ResuIts 

The theoretical investigations, presented so far had the main 

purpose to apply an integral method in the. evaluation of instabilities 

in two-phase flow systems. The results will be compared to the 

experimental data of Levy (29), Solberg (30), Carver (31) and the 

theoretical analysis of Ishii and Zuber (20). These authors, as 

was also done in the present work, particularly examined operational 

flow conditions at high pressures. Thus they assume the mixture to be 

in thermal equilibrium, neglect the pressure drop effects on the fluid 

properties and limit the stability analysis to the low frequency range. 

Moreover the experimental work was done for both circular and annular 

tube geometries and for different diameters. 

Figures 33, 34* 35;> and 36 show that the obtained results are 

in very good agreement with the mentioned literature (20, 29, 30, 31). 

Surprising is the similarity of equation 6.51 
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w i t h the cor responding s o l u t i o n of I s h i i and Zuber 

•3. ( h + ^ + k,} 
Xe~= Mpc^- NJsui> < — ? 

93 ' '-i-i^^} 
6.52 

These equations differ within 6 per cent, whereby equation 6.51 

is shifted to the left and tends to predict a more unstable system than 

the measured data and the theoretical work cited at the beginning of 

this section. Equation 6.51 also does not: account for the large 

stability increase at extemely low subcooling. This effect was not 

noticed by Levy (29), Solberg (30) and Carver (31), but it was 

observed by Yadigarouglu and Bergles (19) and also confirmed by the 

computer solution of Ishii and Zuber (see dotted lines in Figures33, 

34, 35, 36). The actual flow conditions for very small subcooling 

numbers KJ S u^ are still not known exactly because of experimental 

difficulties. It is believed that in this region big changes of the 

phase change number Nlp^h do occur due to subcooled flow boiling. 

In this case the phase change, proceeds further than for thermal 

equilibrium and the value of Kloch increases. 

r 

The inlet and outlet orifice coefficient k^ and ke , were 

not given by the experimental data of (29, 30, 31). The present analysis 

is based on the evaluation of (20), who determined the values from 

steady state pressure drop equations. 
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For the f r i c t i on factor the equation 

4- ._ r* £ . 
1 m ~ v m 'S 

/ 

C^lfh C m == ©l 

was used. The value c2 for C ^ gives a slightly higher pressure drop 

than the Martinelli and Nelson Correlation. For a smooth pipe the 

liquid friction factor Tj- is only a function of the Reynolds 

number ^£a * ' 

As was shown in the present section, the integral method has 

provided a very satisfactory criterion to avoid unstable operation in 

the design of two-phase flow systems. However, it should be remembered 

that the entire analysis was based on linearized field equations. 

Therefore the theoretically predicted stability boundary only consi

ders incipience instability. Whether unstable flow conditions appear 

or not will largely depend on the nonlinearities, which were neglected. 

Nevertheless the agreement between measured and analytically predicted 

stability boundaries is surprising. 

on d 
i c i a ^ -
's - ' 

N 
0.2 

6.53 
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CHAPTER VII 

SUMMARY'AND RECOMMENDATIONS 

The analysis is composed of two main parts. The first one 

presented a differential method based on theoretical investigations 

of Zuber (1) to study the physics of two-phase flow systems. The 

second part treated the problem of instabilities in two-phase flow 

systems by means of an integral method. 

Differential Method 

An extensive study of the single phase region was made. The 

mathematical solution was derived as in (1) using the fundamental 

one-dimensional field equations and the constitutive equation. 

Additionally, the behavior of the boiling boundary as a function 

of frequency and subcooling, and of pressure drop as a function of 

frequency and system parameters was analyzed in detail. The results 

were plotted in graphs to facilitate the physical understanding. Here 

it was found for example that large pressure variations can also occur 

for small frequencies if the inlet flow restriction becomes sufficiently 

high. 

The two-phase region was treated similarly to the first one. 

Moreover the limitation of the analysis to the low frequency range 

was proven. The equations of state for a medium at subcritical and 

supercritical pressures were compared and then generalized to a 

single one. The velocity distribution in the two-phase region was 
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derived connecting the continuity and energy equation. In contrast 

to (1), the density as a function of time and space was obtained by 

reusing the continuity equation. With density and velocity profiles 

known, the pressure perturbation followed out of the momentum 

equation. Again as for phase one, graphical representations were 

set up, which helped to visualize the physical behavior of the system 

towards an inlet velocity perturbation. Finally, a qualitative 

analysis showed that in the high frequency domain instabilities occur 

because of very large pressure variations, which are necessary to 

account for the inertia forces of the fluid. 

Stability Analysis by Means of an Integral Method 

To reduce the number of errors, the application of the simplifyin 

integral method was limited to the evaluation of the density variations 

and the pressure perturbations in the two-phase region. 

The overall density changes were determined by integrating with 

respect to space in two ways: 

(1) Introducing the velocity profile directly into the continuity 

equation, therefore proceeding as was done for the differential method. 

(2) Using energy and constitutive equation in accordance to (1). 

Both solutions were carefully compared and gave a very simple expression 

for the density perturbation in the second region. 

The pressure drop was obtained by averaging the momentum equation 

and introducing here the velocity profile and the simplified expression 

for the density. 

Out of the pressure drop equation for the entire system, a 



characteristic equation was determined. 

As in (20) a simple stability criterion was applied to this 

equation. Neglecting the higher orders of the frequency 60 a sta

bility analysis was easily accessible. The results obtained are 

excellent. Although for very complex systems theoretical investiga

tions have the main purpose to help us in understanding the physics 

and the parametrical'behavior of the system itself, the present 

analysis delivered surprisingly good agreement with experimental 

data and the very extensive theoretical studies in (20). 

Re c ommenda fc-i ons, 

Because of its many applications in modern technology further 

research in this area is absolutely necessary. Based on the model 

used in this work, it is recommended to perform in analogy to this 

investigation similar stability analysis for the case of heat 

addition and subcooling variations. Together with the present one 

a generalized analysis could be made. This means in this case we 

would consider a simultaneous perturbation of several varying para

meters. Writing for the velocity perturbation o u , , the heat 

addition variation oil. and for the subcooling changes OAi^uk 

we would write an expression for the pressure perturbation in the 

form 

6 A ? = Q &U, -*. Q2S'£L- •+ Qa&Al 
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Here <St , Qz 5 and O^ are the corresponding characteristic 

equations, or using the scalar product of two vectors 

6A?« Q - &C 

with 

Q = 

f V 

Q, 
Q2 

*03 

as a "characteristic vector" of the system and 

6'C &S2, 

as the generalized "perturbation vector." 
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