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GLOSSARY1 OF ABBREVIATIONS 

2 A. iiozzle throat or total slot inlet area, (ft ) 

7 
g gravitational constant,, (lbm-ft/(Ibf-sec )) 

h height of a slot, (ft) 

i,j,k peripheral, radial and axial directions, respectively 

k ratio of, specific heats 

L,M,N number of increments on flow field in peripheral, 
radial and axial direction, respectively, as illustrated 
in Figure 6 

m mass flow rate into slots (lbm/sec) 

M.T nozzle throat or slot inlet Mach number No 
? — 

Nn p.ftw /y. = mechanical Reynolds number 
Re 1 1 ' ' 

_ ? 
p pressure, (F/L^) 

— — 2 2 p p/(p^ R ) = dimensionless pressure 
p nozzle inlet stagnation pressure, (psf) 

p\ slot inlet pressure (psf) 

Q volume flow rate into slots, (cu-ft/sec) 

r r"/R= dimensionless radial length coordinate 

R radius of wheel from center to the base of a slot (ft) 

R universal gas constant., (ft-lbf/(°R lbm-mole)) 

F,z" radial and axial space coordinates, respectively, (L) 

vo vfl/iT2R = dimensionless peripheral velocity component 

v v /fth = dimensionless radial velocity component 

v v /^w = dimensionless axial velocity component 
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v , vfl,v radial, peripheral and axial velocity components, 
r z respectively, (L/T) 

T nozzle inlet stagnation temperature, (°R) 

w width of a slot, (ft) 

z z"/w = dimensionless axial length coordinate 

Ar h/M = d-imensionless radial space increment 

A9 0/L = dimensionless peripheral space increment 

Az z/N - dimensionless axial space increments 

Avg,Av ,AV dimensionless incremental changes of peripheral, 
radial and axial velocity components between 
adjacent peripheral planes 

Ap dimensionless incremental change of pressure across 
adjacent peripheral planes 

y" viscosity of fluid, (FT/L2) 

— 2 
y. slot inlet viscosity, (lbm-sec/ft ) 
y yT/iJ- = dimensionless v i scos i ty 

^ angular velocity of wheel, (1/T) 

p 'Q/'Q- = dimensionless density 

p density of fluid, (M/L:>) 

~p nozzle inlet stagnation density, (lbm/cu-ft) 

p̂- slot inlet density, (lbm/cu-ft) 

F peripheral space coordinate (radians) 

0 F/0 = dimensionless peripheral coordinate 

0 angle between nozzle exit and diffuser inlet with 
respect to center of wheel, (radians) 
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SUMMARY. 

Using a test rig, previously constructed in the School 

of Mechanical Engineering, which modeled a viscous flow 

compressor, Snit Dusadeenoad wrote a Master's Degree Thesis 

on the "Characteristics of a,Viscous Flow Compressor," 

September, 1970. Later a patent application on the "Turbine-

Compressor," was filed by Associate Professor Gene T. Colwell 

and Professor Thomas W. Jackson, and U. S. Letters Patent 

No. 3,751,908 was issued to the inventors on August 14, 1973. 

At about the same time another Master's Degree Thesis was 

presented by John S. Caldwell on "The Efficiency of a Viscous 

Flow Compressor," June, 1973. 

The present thesis analyzes the steady-state, adiabatic, 

incompressible laminar flow of a fluid through compressor 

side channels of a viscous type gas turbine by solving, on a 

digital computer, the simplified three dimensional Navier-

Stokes equations of a flow field. Spmplification of the 

general set of equations was achieved by a dimensional 

analysis of the problem. The order of magnitude difference 

between the length dimensions made it possible to reduce the 

complex Navier-Stokes equations into forms which could be 

studied. The flow field was divided into a three dimensional 

grid system. The simplified momentum and continuity equations 

were applied at interior nodes of this grid system. The 
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non-linear partial differential equations were reduced to a 

set of algebraic linear equations -by means of an indirect 

finite difference method. A suitable subroutine was 

selected from the digital computer^!;^library to solve this 

set of equations in the most efficient manner. The mathe

matical model coupled with boundary and initial conditions 

made it possible to march the solution through the flow field 

until the exit section was reached. 

The results obtained display velocity and pressure 

profiles for various operating conditions and geometric 

parameters. The effect of the centrifugal force field on 

the flow and the similarities between this problem and 

Couette flow are among the interesting results. Head rise 

versus flow rate curves ha.Are been plotted to enlighten the 

reader about the performance characteristics of this unique 

turbomachinery. 



CHAPTER I 

INTRODUCTION 

1-1. The Viscous Drag Turbine 

A turbine-compressor combustion engine of simple 
. . . / 

construction with possible increased efficiency was designed 

by Dr. Gene T.Colwell and Dr., Thomas W. Jackson and a 

patent was issued for this invention (Reference 1). Also, a 

rig was constructed in tehee School of Mechanical Engineering 

of Georgia Institute of Technology* This rig enabled 

experimental research on the compressor side of the design. 

The results of these experiments were presented in references 

5 and 6. 

Momentum transfer between axially or radially moving 

fluid stream and solid surfaces is reasonably well understood 

in conventional turbomachinery„ The machine under study in 

this investigation, however, utilizes cireumferentially 

moving fluid streams in grooves radially cut into the 

circumference of a rotating wheel. The fluid medium is 

introduced through a nozzle cast into the housing. The walls 

of each slot drag the fluid until it is stripped from the 

wheel by seals which fit closely into the slots. The slots 

are shown in Figures 1 and 2. If the inlet velocity of the 

flow is less than the wheel tip speed, pressure builds up on 

_ - . " i * - ' V : i ' . • -.:•'.. . ' ' " ' ' ' • • ' ' 
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the compressor side. On the other hand, higher intake 

velocities by momentum exchange processes within the fluid 

drag the wheel and develop torque. Thus the same wheel is 

used as a compressor and turbine. 

The discharge mechanism from the turbine is identical 

to that of the compressor side. While one side of the seals 

guide the fluid into the slots the other side scrapes it out , 

of the grooves into a cliffuser section. Flows with higher 

inlet velocities than wheel tip speeds are possible if 

compressed air is mixed in a combustion chamber with a 

stoichiometric fuel mixture, ignited and then discharged into 

the turbine side through a suitablehnozzle. Feasible effi

ciencies are expected when the flow is turbulent within the 

wheel. Tip speeds exceeding time speed of sound for the 

intake fluid conditions are used with sonic limitations of 

flow to compress the medium more effectively. At stoichi

ometric temperatures the speed of sound is greater than the 

tip speed values and the fluid when fed back into the turbine 

side is able to expand freely. 

An advantage of this design is the alternate cooling 

and heating of the slot walls in the compressor and turbine 

sides of the wheel. This eliminates the need for conventional 

blade cooling. Generally it is not desirable, from an 

efficiency standpoint, to heat during compression and or cool 

during expansion. However, the heat transfer in this case 

allows operation of the device at very high turbine inlet 
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temperatures without internal blade cooling. In addition, 

the heat transfer has a regenerative effect on the cycle. 

Thus the overall effect of the heat transfer is an increase 

in cycle performance. 

1-2. Statement of the Problem 

The goal of this project is to compute fluid velocity 

and pressure profiles in the slots of the viscous type gas 

turbine engine as described above. A laminar, steady, and 

incompressible solution of the three dimensional Navier-

Stokes equationswmill be obtained for various geometries 

and operating conditions on the compressor side. In all real 

operating cases for the turbine under study, the flow will 

be turbulent. However, it is necessary to first study the 

laminar flow in this unique geometry. 

Simplification of the general set of equations will 

be achieved by a dimensional analysis of the problem. The 

order of magnitude difference between the length dimensions 

will make it possible to reduce the complex Navier-Stokes 

equations into forms which can be studied. The flow field 

will be divided into a three dimensional grid system. The 

simplified momentum and continuity equations will be applied 

at interior modes of this grid system. The non-linear 

partial differential equations will be reduced to a set of 

algebraic linear equations by means of indirect finite 

difference method. The mathematical model coupled with 
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boundary and initial conditions will make it possible to march 

the solution through the flow field until the exit section 

is reached. Computations will be carried out in a digital 

computer. 

1- 5 . Literature Survey 

The idea of utilizing fluid particles to drag surfaces 

by viscous action was introduced by Nikolai Tesla [2] in the 

early part of the century. However, due to the low effi

ciencies at the rotational speeds used the study of flows 

around rotating disks was considered to be an academic 

exercise until recently. 

The feasibility of using multiple-disk turbines in 

special applications was recognized by researchers at the 

Arizona State University. A thesis presented by Gordon [3] 

and later a paper by Rice [4] indicate that such machinery 

through less efficient, than conventional turbomachinery shows 

reasonably good efficiency values for small sizes. Since 

multiple-disk turbines rely on wall shear stresses to convert 

fluid power into mechanical torque, their performance is 

independent of size whereas in conventional turbomachinery 

viscous dissipation that increases by decreasing size is 

considered to be a loss. 

Literature on peripheral viscous drag compressors 

became available after 1970 through the efforts of Dr. Gene T. 

Colwell at Georgia Tech. Dusadeenoad, [5] investigated the 
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adiabatic compression efficiency and head-flow character

istics of such machinery operating in the turbulent regime. 

He also presented a one dimensional analysis of the flow. 

For the force balance on an elemental control volume he made 

use of smooth pipe friction factor to approximate the wall 

shear stresses. The exit pressure was the dependent parameter 

of his set of equations. A thesis presented by Caldwell [6] 

displayed the importance of effective sealing on efficiency. 

His experiments were also conducted in turbulent regime. 

Boyd and Rice [7] have considered the laminar flow of 

an incompressible Newtonian fluid, radially inward between 

parallel co-rotating, disks. The through-flow was supported 

by an externally applied pressure difference between the 

outer periphery and a circular fluid exhaust hole at an inner 

radius. A sufficiently complete problem statement was 

formulated from the Navier-Stokes equations. Their problem 

had three parameters, a Reynolds number, a flow-rate parameter, 

and a peripheral tangential velocity component parameter. 

In the present analysis extensive use has been made of 

the work of Schlichtingg[8] for the defining equations and 

the work of Batchelor [9] for information on dimensional 

analysis and the work of Shapiro [10] for isentropic flow 

formulas. Material presented by Roache [11] and Forsythe and 

Wasow [12] was utilized for applications of finite difference 

methods to partial differential equations. At FORTRAN IV 

programming phase of the problem Cracken [13] was utilized as 
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a frequent reference. A special problem presented by 

Cantrell [14] at the Georgia Institute of Technology contained 

valuable information which made certain assumptions possible 

in this analysis. 



CHAPTER II 

THEORETICAL DEVELOPMENT 

2-1. Defining Equations 

x The governing set of equations for a fluid flowing 

through the compressor-turbine should be in cylindrical 

coordinates for ease in computations. The one dimensional 

analysis of laminar flow by Cantrell [13] through the same 

geometry suggests that, the flow field is incompressible and 

isothermal. Under these conditions steady state Navier-

Stokes equations in cylindrical coordinates are: 

r-momentum equation, 

8v v^ 8v v<- l)v „— „ n 
P(v, - ^ + -± -± - -S- • .v, -I) - - JE • U[-i(I -JL(fvJ) 

r 8r r 80 r" z d'z Sir 3r r ar r 

! 32»r ^ 3* ^v _ 
-2" "-2 -2 — 2J ' 
r 36 r 36 • T 

9-momentum, equation, 
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z-momentum equation, 

dv v. av 3v 
— f— Z ^ 0 Z . — Z 
p(v ^ ^ •+-—- — - + v .—— 

1 9r r c)9 9z~ 

) = -
- l a av7 

9-z- r 9r 9r 

2— 2— . 9 V 9 v 
+ 4- __2 + _ z ] . 
F2 9F2 9z2 

The flow has to satisfy the equation for conservation 

of mass in cylindrical coordinates for an incompressible 

fluid at steady state. 

1 9 1 3vfl a v 7 

z ( 4 c*vr))
 + -- (-4) + -4 

r 9r r 90 9z 

= 0. 

The above four equations will be accompanied by 

boundary conditions that describe the geometry under study. 

The geometry is illustrated in Figure 4. A characteristic 

of the geometry which reduces the possible number of unknowns 

and.computational time is the axial symmetry across the 

centerline of a slot. Also the flow along each slot will! ; 

be assumed to be identical so that total flow through the 

field is simply a sum of flows through the individual slots. 

Planes B 
Plane A 

Plane C 

Figure 3. Slot Nomenclature 
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Fibow: Flow 

F i g u r e 4* The C o o r d i n a t e System-

Figure-; 4 . '•. The Coordinate System 
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According to the figure above the boundary conditions 

are: 

v ' = Skr on p l a n e s B and 'C 
9 r • r 

vfl = 0 on p l a n e A 

v = 0 on planes A, B, C and centerline 

v = 0 on planes A, B, C 

9v„ 

9z 

9v 

— L = 0 due to symmetry 

9z 

3v 

— L = 0 due to symmetry 

z 
= 0 on planes B dz 

vQ = v. , v = 0 , v = 0 at inlet 
0 • • in' z ' r • 

That this set of equations is enough to define the 

problem completely will be shown later on when finite 

difference forms of equations are developed. 

2-2. Dimensional Analysis 

The variables involved are non-dimensionalized by 

characteristic quantities such that the resulting quotients 

are of order one. To facilitate the order of magnitude 

analysis, the depth of slot to wheel radius ratio, h/R, and 

width of slot to wheel radius ratio, w/R, are assumed"to be 



much less than one. For detailed developments of non-

dimensional Navier-Stokes equations and the equation of 

continuity see Appendix A. The resulting equations are as 

follows: 

Continuity, 

•feiL_i + r -- = • 0 ' 
•& 9 0 ... ' 

a 2, 

r -momen tum e q u a t i o n , 

^ ; - _ IP + fafJ-^-llL • 
r dr Vjp l N - J „ 2 ' 

R e ci z 

0-momentum equation, 

1 v->, av av 1 a ., a 2 v 
i . ©•• SL + v E. == - ± d P + r 1 r 5/1 • and 

e — ^J vz 3z e rae L N D J <• a i] > and 

Re 3 z 

z-momentum equation, 

H-° 

Boundary conditions are: 

vQ = 0 on plane A, 
o 

vQ = r on plane B, 
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on plane C, 

on planes A, B3, C and centerline, 

on planes A, B and C, 

on centerline, 

on plane B, and 

on centerline. 

non-dimensional momentum equations when analyzed 

term by term yield relevant information about the flow. The 

radial momentum equation sets a balance between radial 

pressure gradients and centrifugal forces plus an order of 

magnitude smaller radial viscous force term retained for 

mathematical compatibility. If the inertial terms on the 

left hand side of the 9-momentum equation are reorganized by 

utilizing the continuity equation, the result is, 

i V +
 3^svz> _ i -fe'/, j ^ f AK 

0 r90 9z 0 r 9 0 N^ L . 2J ' 
Re 9 z 

The physical interpretation is•that the change in 

0-momentum carried peripherally plus that carried axially is 

equal to the peripheral pressure gradient plus the viscous 

force gradient in the same direction. Note that, when the 

flow is fully developed, this equation defines the familiar 

Couette flow problem. The axial momentum equation shows 

that the axial pressure gradient in the flow is negligible, 

v. = 1 

v = • 0 

z 
v = 0 

|Je 
9z 
9v z_ 
9z 
9v r 
9z 

= 0 

= 0 

= 0 

The 
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resembling the well-known flat-plate boundary layer 

approximation. , 

The inlet conditions are specified as zero approach 

velocity into the nozzle and slug-type flow into the grooves 

The nozzle throat area is set equal to the total cross-

sectional slot area. When the Mach number at the nozzle 

throat or at the inlet to the grooves, the area, and nozzle 

inlet stagnation conditions are specified, the mass flow 

rate, slot inlet static pressure, and density can be 

computed along with volume flow rate as an end product by 

the following formulas obtained from Reference 9. An 

illustration of the development of meri&nial velocity pro

files starting from nozzle inlet section until the diffuser 

exit is given on Figure 5. 

m = A f S rEfe 
WR

C
 C / r 

m = A . . 1 ^ 1---J — TvrrrTZ-; y k + 1 . . ^ 

(i+iV-toO) 
v 2 not) 

h-h'v + ¥M^k"1 

h • V*1 + ¥ "Nô "1 

Q = m / P i 
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Nozz le 
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il ' i I 

vf 
l Jj 

%1 
-y 

•*? 

7^ 
feH: 

5tt 

d 
Y 

7>-

:v 
W l | 

^ :^. 

7>-

= * V 

Diffuser 

Figure 5. Schematic .Meridonial T e l o c i t y DeYelojDme,iit: 
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At the exit of the slots it is necessary to perform 

an averaging process by double Integration over the area to 

determine the peripheral velocity component. Exit pressure 

should be subjected to an averaging process over a line 

since it is only dependent on radial directions across a 

radial plane. 

In the diffuser section the mean values will be used 

in similar equations to those that govern the flow through 

the nozzle to determine final exit pressure. 

2-5. Application of Numerical Techniques 

There are various methods to solve the above described 

sets of equations and related boundary and initial conditions. 

As suggested in Reference 7, a means of linearizing them into 

a form suitable to digital computer treatment was pursued. 

Due to the tangential symmetry in Reference 7 it was possible 

to omit tangential derivatives from the set of governing 

equations. In the present analysis the flow field develops 

in the tangential direction so tangential derivatives are 

essential. Compared to the parabolic inlet flow conditions 

of Reference 7 this analysis assumes slug-type inlet flow 

conditions. Also, Reference 7 uses a non-uniform grid 

spacing in radial direction whereas this study considers 

uniform grid spacing at inlet and fully developed flow 

sections to be sufficiently accurate. 

The slot in which the fluid flows was divided into 
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L-segments in the peripheral direction from nozzle to 

diffuser, M-radial stations from the base of a slot to the 

shroud, and N-sections from the center of a slot to the 

moving wall on either side of it. A complete illustration 

of the lattice is shown in Figure 6,. 

Initially, defining equations are approximated by a 

finite difference scheme such that all variables assume 

their values at the next peripheral station. Tangential 

derivatives utilize backward difference schemes whereas all 

others are approximated by centered difference methods. A 

sample derivation for the 6-momentum equation is given in 

Appendix E. In light of these measures the equations became 

Equation of continuity, 

^(i+l,j,k)-v^(i,j,k) vz(i+l,j,k+l)-vz(i+l,j,k-l) 
+ JC _—- - o; 6A0 j 2Az 

r-momentum equation, 

. JL fv^fi+l i 10 VZ == P ( i + U + l ) - P C i + l , J - l ) + r . IV |U i , j , K j j 2 A r + 

h -, v ( i + l , j , k + l ) - 2 v r ( i + l , j , k ) + v ( i + l , j , k - l ) 
C | H J T - ) ( — — 7 — )J and 

R N Re ( A z ) 2 



W = 2 , k = 3 k= 

Section B-B 

=N 

Figure 6. Qrientation pf Grid Spacing on the Geometry 
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•momentum e q u a t i o n , 

y | ( i + l , j , k ) V | ( i + 1 „j irk) - v ^ ( i , j ,k) 

¥ 7 — — GOT 
3 

<gr + . 

v , ( i + l , j , k ) 
v | ( i + i , j , k H a ) - v g ( i + i , j , k - i ) 

z*- ^ - " ^ ^r&z 

p ( i + l , j ) - p ( i , j ) + _1_ 3 ( i + l J > ^ l ) - 2 v f t ( i ^ l , J , k ) + v § ( i + l , j , k - l > i 

r .0A9 N "L , . . 2 J 

j Re (Az) 

Boundary c o n d i t i o n s , a r e : 

v @ ( i + l , M , k ) = 0 

v Q ( i + l , j , N ) = r^ 

v z ( i + l , j , l ) = v z ( i + l , j , N ) = . v z ( I + l , l , k ) = v z ( i + l , M , k ) = 0 

v r ( i + l , j , N ) = v r ( i + l , l , k ) == v r ( i + l , M , k ) = 0 

3 v e ( i + l , j , f ) - 4 v Q ( i + l , j , 2 ) + v a ( i + l , j , 3 ) = 0 

3 v z ( i + l , j , N ) - 4 v z ( i + l , j » N - t ) + v z ( i + l , j , N - 2 ) = 0 

7 v r ( i + l , j , l ) - 8 v r ( i + l , j » 2 ) + v r ( i + l , j , . 3 ) = 0 

The z-momentumequation^sri&esuitlis incorporated into 

the above equations by setting pressure variables independent 

of axial gradients, The fact that the above equations are 

still non-linear means that they are very difficult to solve 

directly. To overcome this problem a new set of variables 

are introduced: 
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Av(j,k) = v (i+l,j,k)-v (i,j,k) 

Av (j:,k) = v (i+l,j ,k)-v (I,j ,k) 
Z L Id 

Avr(|,k) = vr(i + l,j ,k)-vr(i,j ,,k) 

Ap(j) = p(i+l,j)-p(i,j). 

Substituting the variables into the equations and 

neglecting any term that contains products of the variables 

which are small, i.e. the following set of equations and 

boundary conditions: 

Equation of continuity, 

2(0^^)Av0(j,k)-Avz(j,k-l)+Avz(j,k^l)=vz(i,j,k-l)-vz(i,j,k+l); 

r-momentum equation, 

- (^(^(v¥.Ci,j)k))Av9(j,k) - CH-^)AvrU,k-l) • (JJ? ) 
J ~ Ke Ke 

A vr"' k^ " tra) A vr«' k + 1) +^2feH^Ap( j +l)-g 
Re 

r 1 N / - R A Z N A r - -1 •> /- 1> / - R A Z N r r • • l ^ ^ 2 /- 1 ^ , - R A Z N 

ClSrJCTr^PtJ-15 = C F 7 ) C - T - ) ( v @ ( i , j , k ) ) - g ( r o r ) ( n r ) 

CpCiJ + l ) r p C i J - l ) ) + ( j j J ^ ) ( y r ( i , J i k + l ) - 2 v r ( - i , j , k ) + v r C i - , j , k - l ) ) ; 
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and 

9-momentum equation, 

r-%r^-°-s Vi'^JAV^-^KefeV1-*'10 + 

Re , 3 . 

Re R6 

[0.5 (vQ (i, j ,k+l) - v0 (i , j , k-1)) ] Avz (j ,k)
 +g toT̂ fe"] Ap (j ) 

(jr^)(ve(i>j,k+l)-2ve(i,j,k)+v-e(i,.j,k-l)) -
Re 

0.5 vz(i,j,k)(ve(i,j,k+l)-vQ(i,j,k-l)). 

Boundary conditions are 

AvQ(j,N) =.r.-ve(i,j,N) 

AvQ(M,k) = 0 

Avz(j,l) = Avz(j,N) = Avz(M,k) = Avz(l,k) = 0 

Avr(j,N) = Avr(M,k) = Avr(l,k) = 0 

3Ave(j,l)-4AvQ(j,2)+Av0(j,3) = -3ve (i , j ,1)+ 4vQ (i, j , 2)-vQ (i , j ,3) 

Avz(j,N-2)-4Avz(j,N-l) = -vz (i , j ,N-2) + 4vz (i J ,N-1) 
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7 Av r (j , 1) - 8 AVr ( j , 2) + AV r ( j , 3) == - 7v r (i , j., 1) +8v r (i , j , 2) -v r (i , j , 3) . 

Equations of continuity and momentum are applied to 

the internal nodes on a peripheral plane. Boundary conditions 

are defined at lattice points on. the boundaries. Since 

shroud and base of the groove pressures are unknown, the 

radial gradient is expanded in a forward difference or a 

backward difference method in the radial direction depending 

upon whether the node is on an axial plane next to the base 

of the groove or on the last one before the shroud, respec

tively. 

After this special treatment the number of unknowns , 

on any particular peripheral plane is 3(M-2)(N-1). Owing 

to symmetry and known values of certain variables on the 

solid boundaries and centerline, the number of unknowns 

has been substantially decreased. 

Upon careful investigation-of the equations and 

boundary conditions; it is evident they constitute a set of 

linear algebraic equations that can be fitted into the format 

below: 

(A][X] -..[B] 

where matrix A contains the coefficients of the variables 

involved, X is a vector composed of 3(M-2)(N-1) unknown A-

variables and C is a constant vector that includes all 
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elements that are on the right of the equality sign of the 

equations. 

The reason why the elements in vectors A and C are known 

is that they are composed of quantities that are either 

geometric parameters, system characteristics, and/or vari

ables calculated or known from previous computations or by 

initial conditions. 

Among the various methods of solution of a linear 

system of equations, Gaussian elimination is particularly 

suitable in the present case because matrix A is sparse; 

that is, the rows and the columns have considerable amounts 

of zero elements. This type of solution format was available 

in the Georgia Institute of Technology Computer Center 

Library in subroutine form. 

The principle of solution is to reduce matrix A into a 

triangular system by a series of divisions and subtractions. 

The set of equations are originally in the f®Q?m below, 

a -i -i x -i •• di o-^i ... • cL-i -i x i ' a -i x c -* 
11 1 12 2 l,n-.l n-1 l,n n 1 

a21Xl + a22x2 + ••• + a2,n-lXn-l + a2,nxn " c2 

a xn + a .0x0 +...'+ a J " + a x_ = c n 1 n,2 2 n,n-l n-1 n,n n n 
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The first equation is initially divided by a.1 

(assuming that a11 f 0) and the result is used to eliminate 

x., from all succeeding equations. Next, the modified 

second equation is divided by the coefficient of x2 in that 

equation and the result,is used to eliminate x~ from the 

succeeding equations, and so forth., After this elimination 

process has been effected n-times, the resultant set, which 

is equivalent to the original one except for the effect of 

any round-offs committed, is of the form 

xn + a' 9x9 + ... + a.j x„ = c\ 1 1,22 .1, n n 1 

x^ "•" . . . T" a~ x - Co 2 2, n n 2 

x T + a' T x = c' i n-1 n-l,n n n-1 

x = c' n n 

where a! ., c' designate specific numerical values. The 

solution is completed by working backwards from the last 

equation, to obtain successively x , x .,,... , x1 . 

Solving the linear system of equations with the 

method cited above yields the unknown A-variables. A-variables, 

by definition, are differences in magnitude of velocity 

components or pressure between consecutive peripheral planes 
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such that the value on the first plane is always known by 

inlet conditions or previous similar calculations. Thus, 

A-variables yield, indirectly, velocity components and 

pressures on each node of a. peripheral plane. 

For the next set of calculations a similar matrix is 

set up and the coefficients and constant matrix elements are 

calculated with inclusion of new velocity components and 

pressures. This logic is followed until the exit stage is 

reached. The computer logic behind the method of solution 

is presented in Figure 7. 

The axial and radial variations of the peripheral 

velocity are averaged by using Simpson's one-third rule for 

double integration to get the mean exit velocity. Subsequent 

checks of the accuracy of the computations are made by 

calculating the mass flow rate which should, ideally, be 

conserved. If the increments in the radial direction are 

chosen to be equal, the average exit pressure can be computed 

by a simple arithmetic mean. 
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Figure 7. Computer Block Flow Diagram 
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CHAPTER III 

RESULTS 

3-1. Range of Parameters 

To obtain meaningful results from the set of equations 

and boundary conditions discussed in the previous section, 

the flow regime must necessarily be of a laminar nature. If 

the Reynolds number based on the relative fluid velocity and 

hydraulic radius is less than 2000 it may be assumed that the 

flow is laminar on grounds that the flow field is similar 

to that in non-circular pipes. Since incompressible and 

isothermal flow conditions were assumed, by setting density 

and viscosity equal to constant values, the constraint on 

Reynold's number as stated above, results in important 

relations between wheel angular velocity, fluid absolute 

velocity, wheel radius, and slot width. 

t m - v ( i , j , k ) ) D 
Re = — J i — S L . £i < 2000 

1± 

and , 

H ^2n+2vr — . 
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with conditions, 

p == 0.07 5 lb:m/cu.ft 

y ==0.0000:12 lbm/ft.sec, 

w = 0.05 inch 

their, 

then, 

v (lsj ,k) 

vQ(l,j,k) 0 -L6 ' 
Q < •-S-JJ + ^ - and £>R > v (l.j.k) 

Parameters of prime •inijpprtan.ee are the mechanical 
\ \ \ • | 

Reynolds number, inlet velocity, and slot height to wheel 
i i '. \ ': 

diameter ratio since they appear as coefficients in the 

defining equations or as inlieti conditions. To be able to 

obtain meaningful head rise versus flow rate curves for 

compressor operation, either mechanical Reynolds number or 

slot height to wheel diameter ratio has to be kept constant 

and the other varied. For this purpose the scheme as shown 

in Table 2 has been used. 

3-2 . Evaluation of Outputs 
; ' i 

It is easier to derive Meaningful conclusions from 

the dimensional results if they are plotted on graphs. 

�inijpprtan.ee


Table 1. Possible Limits of Inlet Velocity Under 
Various Operating Conditions 

R w 

(inch) 

ft(rpm) R w 

(inch) 1000 1500 2000 

3.5 0.05 Not possible 7 •< v. < 46 
in-

27 < v. < 62 
in 

3.5 0.08 7 < v. <'31 
in 18 < v. < 46 in 37 < v. < 62 

in 

5.0 0.05 5 < v. < 44 
in 

27 < v. < 65 
in 

49 < v. < 88 
in 

5.0 0.08 20 < v. < 44 m 41 < v. < 65 m 63 < v. < 88 in 

Table 2. Data Layout for Fifteen Runs 

n 
(rpm) 

w 

(inch) 

R 

(inches) 

h 

(inch) 

ve(l,j,k) (ft/sec) 
n 

(rpm) 

w 

(inch) 

R 

(inches) 

h 

(inch) a 
3- k c 

1000 0.05 5.0 0.5 10 25 40 

1500 0.05 5.0 0.5 30 43 60 

2000 0.05 5.0 0.5 55 65 75 

1500 0.05 3.5 0.5 15 25 40 

1500 0.05 7.0 0.5 60 70 80 
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Figures 8 and 9 display the development of tangential 

velocity profiles from the inlet section up to the fully 

developed section for runs with the same inlet velocities 

but different tip speeds. Figures 9 and 10 illustrate the 

development of tangential velocity profiles of cases with 

same tip speeds but different inlet velocities. The computer 

program was designed such that when the increment between 

tangential velocities on adjacent peripheral planes decreased 

to a limiting value, a trigger mechanism is activated to 

kick the peripheral mesh size to smaller values. This marks 

the beginning of fully developed region. Figures 8, 9, and 

10 show that as the relative fluid velocity between wheel 

tip speed and inlet velocity is increased, it takes longer 

for the fluid flow to become fully developed. The steeper 

tangential velocity gradients on the moving walls in t 

Figures 8 and 10 compared to Figure 9 mean that the fluid 

flow is sheared more at higher relative velocities. The 

backffow in Figure 10 at 3.5 degrees away from the inlet has 

an interesting influence on the pressure gradient at the 

same section. This phenomenon will be discussed later. 

Figure 11 displays a centerline tangential velocity 

distribution along the radius at various distances from the 

inlet. The end points of the profiles have been marked with 

dashed lines since the boundary conditions on the shroud and 

on the base of the groove have not been included into the 

calculations. This is understandable because radial shearing 



r = 3.7 in 0.05 in h = 0.5 in Q = 1500 rpm 

v. = 24.84 f t / sec N_ = 17.04 R = 3.5 ins in Re 
0 =150° p. = 0.07498 lbm/cu.ft p . = 2119 lb f / sq . f t in r m n 

D - e= 2( 

Q- 6= 16.981 

A - e= 46.54° 
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Figure 8. Tangential Velocity Profile Development 
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Figure 9. Tangential Velocity Profile Development 
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0 0.00625 0.Q125 0.01875 0.025 
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V = 0.05 in h = 0.5 in 0, = 1000 rpm 

v±n= 10.16 f t / sec NRe = 11.36 R = 5 ins 

0 = 150° ^ n = 0.075 lbm/cu.ft p. = 2120 lb f / sq . f t 

5.5 

5.4* 

5.3 • 

5.2 -

5.1 i 

5.0 

-10 

-* 1° 

= 2° 

= 3° 

= 4° 

= 5° 

= 19.86' 

1 ^ ^ = l ^ k - A 

A> VJIn. 

1Q 42 45 

v0 ( f t / sec) 

igure 11 . C e n t e r l i n e P e r i p h e r a l A/'elocity Development 
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of the aforementioned boundaries has been determined to be 

an order of magnitude less than the tangential shearing of 

the flow so it is not neeessary to incorporate these boundary 

conditions into the calculations. The radial gradient 

observed in the velocity profiles is due to the different 

wall speeds for each radial station. Also, the difference 

in radial gradient between 19.86 degrees and one degree is 

caused by the stronger retardation of flow. This is because 

at larger radii the centrifugal force fields develop higher 

pressure forces. One of the important results is the absence 

of any extraordinary curvature or development of the 

profiles. This verifies that the contribution of the term 

2 2 (h/R)(1/ftL )(9 v /3z ) is negligible. The term was retained K.e r ^ 

in the calculations for mathematical compatibility. 

Figures 12, 13, and 14 have been presented to give 

the reader a complete picture of the velocity components for 

the same run. Large positive (moving from centerline 

towards the wall) axial velocity components feed the boundary 

layer forming on the wall until the fully developed stage 

is reached. The negative axial velocity components that are 

observed initially close to the c:enterline swing to positive 

values as soon as the boundary layer limits reach these 

stations. Although the radial velocity components do not 

exist in the continuity equation, the coupled nature of the 

sets of equations relate it to other velocity components. 

When the axial velocities close to the centerline are negative 



r = 3.7 ins w = 0.05 in h = 0.5 in -ft = 1500 rpm 

v. = 14.68 ft/sec N_ = 17.04 R = 3.5 ins xn Re 
0 = 150° m == 0.07499 lbm/cu.ft p. = 2120 lbf/sq.ft 

•»" i n 

A - e = 4( 

Q - 9 = 20.58° 

0.025 

Figure 12. Tangential Velocity Prof i le Development 
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-10 
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r = 3.7 ins w = 0.05 in h. = 0.5 in fi = 1500 rpm 
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4<D 

r -
0.00625 0.J0125 

i 

z i(in) 

0.01875 0.025 

Figure 13. Axial Velocity Prof i le Development 
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Figure 14. Radial Velocity Profile Development 
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in Figure 13 note that radial velocities on Figure 14 main

tain continuity by supplying radial flow into these regions 

of flow. The general tendency of the axial and radial 

velocity components is to approach small values. The values 

verify the initial assumptions concerning the orders of 

magnitude which were made during dimensional analysis. 

As a result of the larger shearing of the fluid flow 

at the inlet section in all three eases plotted in Figure 15 

the pressure gradients are larger at this section. Figure 

16 illustrates the linear development at the fully developed 

section of the flow field. The tangential profile of 

pressures at the inlet section approaches fully developed 

behavior asymptotically. The change in curvature in pressure 

profile is observed on two of the runs in Figure 15. This 

is because of the partial peripheral flow reversal or 

stagnation at the same angular stations (see Figures 10 and 

12) where the inflection in pressure profiles occur. 

In Figures 17 and 18 ssadial pressure gradients at 

exit planes are shown. Figure 17 compares the radial 

gradients of flows with identical wheel tip speeds but 

different inlet velocities. Apparently, the radial pressure 

gradients are weakly influenced by the change in inlet 

velocities. However., as shown in Figure 18, higher tip 

speeds cause larger radial pressure gradients. Therefore, 

centrifugal force field is influenced stronger by increases 

in tip speeds rather than increases in inlet velocities. 
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w = 0.05 in -h = 0 . 5 in fe =0.07499 Ibm/cu . f t p . =2119 l b f / s q . f t 
' i n r m ^ 

• u 

§ 

i f t 
<3 

30. 

25 

; 20 

15 

10 • 

5 -

A - ft = 1000 rpra v . = 24.84 f t / s e c R = 5 i n s 
i n 

O - A = 1500 rplm v . = 14.68 f t / s e c R = 3.5 i n s 
i n 

• - ft = 1000 rpra v . =10>16 f t / s e c R = 5 ins 

2 3 

6 Cdegrees) 

i 

4 5 6 

Figure 15. Head Increase in Inlet Section 
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w = 

70-

60" 

0.05 in h = 0.5 in p. =0.07499 lbm/cu.ft p . =2119 lb f / sq . f t 
in r m ^ 

A - Q - 1000 rpm v. = 24.84 f t / sec R = 5 ins 
*-» r in 
O• - 'G = 1500 rpm v. =14.68 f t / sec R = 3.5 ins 
w in 
n - n = 1000 rpm v. =10 .16 f t / sec R = 5vins. 
U J in 

v 
.w 50 

o o o 

X 
40 

30 -

20 -

10 " 

50 100 150 

0 (degrees) 

Figure 16. Head Increase Along the Periphery 
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Figure 17. Radial Pressure Gradient at Exit Plane 
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Figure 18. Radial Pressure Gradient at Exit Plane 
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Figures 19 and 20 show why varying tip speed is a 

more effective method of governing head rise. The steepness 

of the velocity gradients in Figure 20 imply that more shear 

work is imparted to the fluid particles as speed is increased 

to give them a higher pressure. In Figure 21 pressure 

developments for two different inlet flow rates are shown. 

At higher flow the pressure rise is decreased. The inverse 

proportionality between head rise and flow rate is common to 

all turbomachinery that require work input and is indicated 

by the figure. 

The effects of changing tip speeds by changing either 

angular velocity or wheel radius on the flow are shown in 

Figures 22 and 23. Increasing tip speeds have shifted the 

head rise versus flow rate curves to the right in both cases 

meaning that for larger power inputs into the system higher 

pressure rises are expected for the same volume flow rate. 

However, the parallel nature of the constant wheel tip speed 

lines in Figure 23 is not observed in Figure 22. This can 

be explained as an effect of the change d>f centrifugal force 

fields when the radii are varied. 

In Figure 2:4 the head-flow curve for NR =17.03 and 

h/R = 0.1 is compared with Couette and Poiseuille flow. The 

defining equations are discussed in Appendix D. The striking 

correspondence between the Couette flow and the present 

analysis is illustrated. Perhaps insufficient grid spacing 

across the axis of the wheel led to inaccurate determination 
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velocity gradients across the axis and, consequently, agree

ment. Also the pressure gradients at the inlet section may 

not be large enough to affect the overall results. The 

difference between Poiseuille flow and this effort is 

probably a direct consequence of underestimation of the area 

exposed to shear in the hydraulic diameter. Apparently, 

the use of hydraulic diameter for laminar flow with high h/w 

geometries is misleading. 
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CHAPTER' IV 

CONCLUSIONS AND RECOMMENDATIONS 

The results indicate that the governing equation can 

be treated by the mathematical techniques described in this 

paper to yield satisfactory solutions. The scope of the 

analysis is limited by certain geometrical constraints. If 

length ratios are not within the required orders of magnitude, 

the nature of the flow may change so drastically as to invali

date the set of equations used here. 

A general conclusion is that for steady, incompressi

ble, laminar flow,, the overall compressor performance has 

Couette flow characteristics. This was an expected result 

since after fully developed profiles are established inertial 

force fields diminish and the flow becomes similar to that 

of a Couette flow by the nature of the defining equations. 

Due to rapid boundary layer development in the inlet section 

the higher head rises in the inlet do not have a great effect 

on overall performance. When the relative velocity between 

the fluid and moving walls is increased, boundary layer 

development requires a greater distance. The shearing effect 

of the stationery upper wall and moving lower wall have been 

eliminated as being an order of magnitude less than the shear 

on moving side walls. It is suspected that the stationery 
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upper wall will substantially effect the shearing of the 

fluid in its immediate vicinity. Further studies should be 

conducted to investigate this problem. 

A double integration of peripheral velocity profiles 

at the point where the flow becomes fully developed gives a 

volume flow rate of 6-8 percent less than that at the inlet. 

The large amount of computations necessary to solve for the 

variables at each location in the flow field may lead to 

computer based truncation errors. Also the grid spacing or 

the exclusion of radial velocity gradients from the continuity 

equation on ground that they are small could be sources of 

error in the computed volume flow rate. Reference 7 suggests 

the use of an iterative method for determining the grid 

spacing. This method is based on checks of volume flow rate. 

The computer -'Central Processing Unit" time necessary for 

this method is too costly. 

An alternative method to minimize the effects of 

neglecting higher order A-quantities in the immediate neighbor

hood of the inlet is to improve the grid spacing in all three 

directions. The present grid points were spaced 0.00625 inch 

axially, 0.1 inch radially, and 0.2 degrees tangentially at 

the inlet section. 

It has been observed that the centrifugal force field 

does not effect the system characteristics appreciably. Also 

the efficiency of the compressor for the laminar flow will be 

lower than what has been reported in References 5 arid 6 for 
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experimental turbulent flow regimes. Velocity gradients 

close to the walls are much, less than those under turbulent 

conditions. 

The present, analysis can be carried a step further by 

including compressibility effects into the analysis. Also 

further research must be conducted on the problem which 

covers heat transfer into the control volume. Then it would 

be possible to solve the problem using three dimensional 

Navier-Stokes equations in turbulent flow. A possible 

method could be to substitute eddy diffusivity terms into 

the governing equations. 
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APPENDIX A 

DERIVATION OF SIMPLIFIED CONTINUITY AND MOMENTUM 

EQUATIONS BY DIMENSIONAL ANALYSIS 

The governing equations-as listed previously were, 

Continuity: 

Z (4 (r vV)) + 4 (—&) + —f. = o 
r at r 3 6" 9z 

Momentum equations: r-direction, 

3v Vn 3v v 2 3v - , 
P(v\ - ^ + ""I —= - ~ + *z —Z) =: •" ̂  + Vl-z (-"Hi Cr v )] + 

3r r 39 r 3z 3r 3r r 3r 

i *% i 37e , »2V 
IT _? " _7 _ —2-' 
r 36 ru 36 3z 

0-direction, 

3v' v 3v v v av 
p"(v — 1 + -2. — 1 + JUL +—• __1) = 

r af ar ae r z az 

2— — 2— 
i â " •• a i a • i 9 v n ? 8 v ^ 9 v « 
I 3£ • ? [ _ i (1 JL cr v )) + 1 e + 2 _ r + _ ^ 
r ae ar f ar D r ae "r air a"z 



57 

V vn 0 z r 0 
z = 0 z = w r ilh 0 fiR 

z-direction, 

• av v Q av-r av ^- v 
p(v —-•+ — — - + v_ J - - *-*• + ii[- —- (r —-J + 

3r r 80 3z" 3z rr3r 3r 

. .3*v 3 # 
1 z + 4 vz-i 
r 30 3z" 

The variables involved in these equations will be 

non-dimensionalized by dividing through constants that shall 

set the ûiOitij&mts, to an order of magnitude of one. 

r 
r = R 

v — — — 
z p u p 

l l i 

Inserting the a^ove non-dmmensionalized variables in 

place of the dimensional ones yield the following set of 

equations: 

Continuity equation, ,. 

flhR 9 r-r „ ^ + MR 9 v 0 . Rftw ^ dVz _ n 

-R- 37 (r Vr} + "0 ~3¥ + " r Ti" • ° 
z 

Remembering that h/R and w/R are very much less than 

one, the above equation reduces to, 
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l 9ve 9vz 
i — 2 . + r — - = 0 
0 ae 3z 

r^momentum equation, 

7T r ^ v !ll + a?!* li ?v_r n V V + 
pi P L R r 3r R0 r 3 9 R r 

— — 22 
i2wh - 9 V _ pifi R 3p . - , rR«h 3 r l 3 . Ar ^ 
w— Vz ^ ~R— 1r + n^-^3 37 C7 37 ( r v r ) } 

^2 - „ ,2 
tih _ ^ c* v r flR _2J2"- ! l i + «h Vri 

82R2 r 2 ~ 3 0 2 ~ 9R2 r 2
x

T \ " w2 3z2J 

Cancelling and rearranging, 

p ( h v ! ! r + i r e ! l r R V + T: ! ! T J . . R 2 E + 
P^R r 3r 0 r 39 H r z 3zJ E 3r 

2 2 
y rh 3 r l 3 r - V l . h 1 3 v r 1 2 3V0 . hR 3 . V 

7T7T LR 37 c7 37 [ r V J 7ZT "I 772~ ~ e "7 "T0 ~T 7~2-J 

p. Mi\R 0 R r 90 r w 9z 

Selecting the largest components of the three major 

forces involved, i.e. inertial, pressure and viscous forces, 

also defining, 

- r, 2 
•p-ftw NRe " ~ -

y 
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the equation above reduces to, 

2 .2 
R V9 _ R 3p . y r Vr, 

The viscous forces have been retained although they 

are of order of magnitude less than the other two for 

mathematical compatibility. 

6-momentum equation, 

- r^
2hR 8 v e + n2R* v e " a v e " " 'n?hR-vrv6 + n?wR 8 v e , 

Pip(-Tr vr "97 + —p: — "Te + ~nr —7- + ~w- v
z ~97} 

— 2 
p i ^ 2 R 2 1 l £ + 77 l j r IR 2 3 r i 3 r r v ^ + ^R 1 9 y e + 

0R- 7 96 + yiy ["^3 97 C7 97 ( rV } ^ 2 2̂ "^2 + 

* * 2 

fth 2 c^r . OR 9 V9 1 

n D2 "2" " 96 "2' . 2J 

OR r w 9z 

Again, cancelling and reorganizing, 

nf!l v ili + i v_e ! l i + h ^ e _ f v !V _ l 1 32 + 
Pl-R r 3r 0 " r 39 R f z 3zJ 0 r 36 

y r 3 ri _L f r v n + _JL !!li .• Jl _2 !ll + s! i!lii 
p ^ R 2 ^ ( r 3 r C 6 ) } e 2 r 2 362 6 R r 2 3 e w2 3Z2 ' 
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Dropping smaller order terms and identifying ND , 
Ke 

1 v
f i

 3 v
f i

 3 v
f i i i a D u 9 vfl 

^ 0 r 89 z 3zJ 0 r 39 NR ^ 2J 

The above equation suggests that for efficient shearing 

action between the wall and the fluid particles the mechanical 

Reynolds number should not be so high as to minimize the 

contribution of shearing action to the pressure gradient 

in the compressor,. 

z-mdmentum equation, 

n2, 3v n2 D v. 3v n2 2 3v — ,0, hw z fl Rw 9 z fl w z>. _ 
p i p l - R r ~ 3r R0 •" r 3 9 w z 3 z j 

— 2 2 2 2 
p i Q R "3P . - -rORw 1 3 r . r

 8 v z . + fiw 1 8 Vz . ftw 3 vz-, 

-T- at ^ ' ^ r ar C ̂ ) + f f 7 p - 7 ^ 

Again, cancelling and rearranging, 

h 8 V 7 1 Vfl 8 V 7 3 V 7 R 2 3tt * 
o rft v — - + - -H. — 5 . + v —5-) = - ^r H + Pl-R r 3r 0 r 39 z 3z J 2 3z 

w 

2 2 
r w l r 3 . 9 v z ^ . w 1 3 v z . w.R d v

Z l 
[R I Car ( r "a r" + 727 -T T~2 + "li ~J^] 

p-^wR u G R r 3 9 w 

v i 
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Cancelling smaller order terms yields, 

H-» 

Similar procedures are applied to the boundary 

conditions. They have been listed previously. 
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APPENDIX B 

A CHECK ON THE RESULTS USING A COUETTE FLOW ANALOGY 

The moving boundaries of the slot create a Couette 

flow problem as illustrated below: 

0 
K \ \ \ \ X \ \ \ \ \ X X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ± \ \ \ \ \ \ \ X \ \ \ 

//////'?// 7/ /// /TTT?/ ////// //W/ //////. 

Figure 25. Couette Flow with Moving Boundaries 

The governing equation for this flow 

_ i 6 I r ( i . x ) w 2 •'.•< u = u 

0—
 fo dx w ŵ . 

2y 

The results of a run with w = 0.05 inch, ti = 1000 rpm 

and R = 5 inches have been compared with a Couette flow with 
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identical boundary conditions. At 150 degrees the centerline 

velocity (y/w = 0.5) was 15.51 ft/sec on the second radial 

station where R' := R + 2Ar =• 5.2 inches when Ap was 5.33 psf. 

Couette flow with the same y,, Ap", Ax, y/w, U and w has a 

centerline velocity of 18.1 ft/sec, a slightly higher value. 
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APPENDIX C 

SELECTION OF-MACH NUMBERS THAT YIELD , 

THE DESIRED INLET VELOCITIES 

A test computer run was made to see which Mach numbers 

gave satisfactory inlet velocities. For this purpose the 

Mach number was varied by 0.001 increments from a value of 

0.006 to 0.07. The output is reproduced in the table below. 



Table 3. Inlet Velocities for Given Nozzle 
Throat Mach. Numbers 

Mach No. Flow Rate ve(l,j,k) Mach No. Flow Rate v0(l,j,k) 

XI03 X103 X1Q3 X10 3 

(lWt/sec.,v , V(lbm/se:e.) (ft/sec) (lbm/sec) (ft/sec) 

6 0.88 6.8 19 2.76 
| 

21.5 
7 1.03 7.9 20 2.94 22.6 
8 1.18 9.0 21 3.09 23.7 
9 1.32 10.2 22 3.23 24.8 

10 1.47 11.3 23 3.38 26.0 j 
11 1.62 12.4 24 3.53 27.1 
12 1.76 13.6 25 3.67 28.2 
13 #.91 14.7 26 3.82 29.4 ! 
14 2.06 15.8 27 3.97 30.5 
15 2.21 16.9 28 4.11 31.6 
16 2.35 18.1 29 4.26 32.7 ; 
17 2.50 19.2 30 4.41 33.9 ! 
18 2.65 20.3 31 4.56 35.0 ! 

32 4.70 36.1 52 7.63 58.7 | 
33 4.85 37.3 53 7.78 59.8 1 
34 5.00 38.4 54 7.93 61.0 
35 5.14 39.5 55 8.07 62.1 
36 5.29 40.6 56 8.22 63.2 | 
37 5.44 41.8 57 8.36 64.3 1 
38 5.58 42.9 58 8.51 65.5 I 
39 5.73 44.0 59 8.66 66.6 ! 
40 5.88 4ft. 9 60 8.80 67.7 ! 
41 6.02 46.3 61 8.95 68.9 
42 6.17 47.4 62 9.09 70.0 
43 6.32 48.5 63 9.24 71.1 
44 6.46 49.7 64 9.39 72.2 
45 6.61 50.8 65 9.53 73.4 
46 6.75 51.9 66 9.68 74.5 
47 6.90 53.1 67 9,82 75.6 
48 7.05 54.2 68 9.97 76.7 ; 

49 7.19 55.3. 69 ;• 10.12 77.9 
50 7.34 56.4 70 10.26 79.0 
51 7.49 57.6 
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APPENDIX D 

DEVELOPMENT OF COUETTE FLOW AND POISEUILLE FLOW HEAD 

RME FLOW RATE EQUATIONS 

Appendix B contains the defining equation for Couette 

flow with moving boundaries. If this equation is integrated 

over the cross sectional area, a head rise flow rate relation 

for Couette flow will be obtained. 

//' -1 g |E Z (£-i)w2dA + f/AUdA = //.. udA JJA 0—
 6 c dx w vw. r JJA J J A 

j — hw g' 

- 3? — ' + U wh - $ 

ip = iiuAx ( U w h.Q } 
hw' g 6c 

For Poiseuille flow the defining equation of flow 

through a tube with boundaries moving at a velocity of U is, 

u - - i p fR2-2^+ u 

4y 

Integrating over the area of a circular pipe to get head 

rise-flow rate 
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J/A udA-.. : / /A-g c g ^ (R2-r2)dA + l!A MA 

A TTR dp . TT ^2 
Q = " - ~ gc 7& + ^ R 

8y 

If the geometry is not circular, as in this case, 

the radius can be substituted by Du/2 where D„ is the 

hydraulic diameter. However, smnce one wall is stationary 

the geometry of each slot is not readily represented by the 

hydraulic diameter for flow rate calculations. For simplicity 

the above equation is rearranged to eliminate hydraulic 

diameter dependence. 

H *c d 
in 

D» gc do 
— -^- + U where v. is inlet 
— dx in 

52y 

Ap = (U - v. ) — t-- Ax 
111 DH

?g H 6c 

velocity 

Data presented in Figure 24 was obtained by inserting 

identical flow rate values in each of these equations and 

computing the head rises. 
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APPENDIX E 

A SAMPLE "DERIVATION OF FINITE DIFFERENCE 

FORM OF 9-MOMENTUM EQUATION 

Originally, the simplfied 6-momentum equation is in a 

partial differential equation form: 

I l£!le + v ! ! l = _.i IP + J_' ifles 
9 r 39 z 3z 9 r39 NDo

 l . 2 J 

Re 3 z 

All radial and axial derivatives are approximated by 

centered-finite-difference method whereas tangential 

derivatives use backward-finite difference approximation. 

The theory behind this method of approximating derivatives 

is Taylor series expansion of functions, discussed in 

References 11 and 12. 

i ve ave _ r : % ̂ *fa il^':^o(i+1 » j ' k )" vo ( i* j *k) 

9" ~r 39 ~ 0 ~ - Y | — — • ^ 

3v v (i+l,j,k+l)-v (i+l,j,k-l) 
vz i f = v2(i+l.j.k)^- ^ 

_ I _l£ = . I ._!. P(i+l>3)-P(i>J) 
9 r2 39 0 r. A9 



! 92ve _ ± veCi+l,j,k+l)-2V0Ci+l,j,k)+v0Ci+l,j,k-l) 
_ (_ _j - — ( . __._ _) 
INRe 9zz NRe (Az)z 

Substituting the finite-difference approximations, 

the 9-momentum equation takes the following form: 

r veCi+l,j,k) v0(i+l,j,k) -v0(i,j ,k) 
0 j7 —W~̂ — +-vz(i+l,j,k) 

v.Q (i+1, j ,k+l) -*vn (i+1, j ,k-l) v v .,..._,_ T ..,.,v . . .,. -\ 
9 v 'J ' J 9 *- 'J ' J_ _ l̂  _l_ P ( I + 1,J)-PCI>J) 

2Az 9 r. A9 
J 

i vA(i+l,j,k+l)-2v(:)(i+l,j,k)-vfiCi + l,j,k-l) 
^ __ 

NRe (Az)" 
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