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GLOSSARY' OF ABBREVIATIONS

Hozzle throat or total slot inlet area, (ftz)'

~gravitational constant, (lbm-ft/(lbf—Secz))

height. of a slot, (ft)

peripheral, radial and axial directions, respective1y
ratio of specific heats‘

number of increments on flow field in peripheral,.
radial and axial direction, respectively, as illustrated
in Figure b6 |

mass flow rate into slots (lbm/sec)

nozzle throat or slot inleét Mach number

Eiﬂwz/ﬁi = Hechanical Reynolds number

pressure, (F/Lz)

EY(E@ZR ) = dimensionless pressure

nozzle inlet stagnation pressure, (psf)

slot inlet pressure (psf)

volume flow rate into slots, (cu-ft/sec)

T/R = dimensionless radial length coordinate

radius of wheel frdm center fo the base of a slot (ft)
universal gas constant, (ft-1bf/(°R lbm-mole))

radial and axial space-cdordinates, respectively, (L)

§E/QR.= dimensionless peripheral velocity component

Vr/Qh = dimensionless radial velocity component

il

FZ/QW dimensionless ‘axial velocity component
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.?i,?B,F-I radial, per1phera1 and axial velocity components,

respectively, (L/T)

o nozzle inlet sfagnation temperature, (°R)
W width of a slot, (ft) |
z z/w =-diménsiﬁn1ess.axial length coordinafe
- Ar h/M‘=gd@mensionlgss radial space increment .
AG - é/L'= diménsionless periphefal space'increment_
Az z/N_-_dimensionless aiial spaée;increments
Avg,Av_,Av, .dimgnsidnléés_inéfemenyéi changes- of peripheral,
' radial and axial velocity components between-
adjacent peripheral planes
Ap dlmen51on1ess incremental change of pressure across:
adjacent perlpheral planes
T ‘giscosity of fluid, (FT/L )
ﬁi slot inlet viscosity, (1bm-sec/ft2)
ﬁ_ H]ﬁi = dimensionless viscosity
Q angular velocity of wheel, (1/T)
p p/p; = diménsionléss'density.'
P density. of fluid, (M/Ls).
[ nozzle inletVstagﬂatibnfdeﬂsit&;-(15mftu-ft)
Ei slot inlet density, (1bm/cu-ft) |
B peripheral space coordinate [radian#)
8 B8/0 =-dimension1ess.peripheral coordinate -
0 angle between nozzle exit and dlffuser inlet w1th

respect to center of wheel, (radians)




SUMMARY

Using a test rig, previously-cqnstruéfed in the School
of Mechanical Engineering, whith modeled a viscoﬁs~flow
cbmpressor, Snit Dusadeénoad wrote a Master's Degrée Thesis
on the "Characteristits-o} a. Viscous Flow COmﬁresspr,"
September, 1970, Later a p#tent application on the "Tufbine-
'Compressbr;" was -filed by Aschiate Profeésor Gene T. Colwell
and‘Pfofessor Thomas W;iJackson, and U, S, Letters Patent _
No. 3,751,908-wa5-issued to the inventors on August 14, 1973,
At about.the'same time another Master's Degree Thesis was
presented by John S. Caldwell on "The Efficiency of a Viscous
Flow Compressor,"_June, 1973.j _ “

The present fhési§ analyzes the steady-state, adiabatic,
incompressible laminar flow of a fluid through compressor
side channels of a viscous type gas turbine by solving, on a
digital computer, the simplified fhree dimenéional Navier-
Stokes‘equationsuof'a'flow fiéld;i_Sﬁmpiification'df the
general set qf~§quations_was'aqhieved by a dimensiqnaf
analysis of the prob1emf;_The=ordér of magnitude difference
between the Hength dimensions made'it possible'to feduce the
cdmplex Navier-Stokes equations into forms which could be
stﬁdied. The flow field was divided into a three dimensional
grid system. The simplified momentum and continuity equations

were applied at interior nodes of this grid system., The
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non-linear partial differential equations were reduced to a
set of algebraic linear equatibhs-by means of an indirect
finite difference method. " A suitéble subroutine was,
selected from the digital'computargéﬁlibrary-to solve-thié
set of equations in the most efficient manner. The mathe-
matical model coupled with boundafyzand_initial conditions-
made it-poséible to march the solution through the flow field
until the exit section was: reached.

The results obtained display7velocity and pressure
profiles for various operati#mg conditions and geometric
parameters. The effect of the centrifugal force field on
the flow and the similarities between this problem and
Couette flow are among the interesting results. Head rise
versus flow rate curves haﬁe_been plotted to enlighten the
reader about thé performance characteristics of this unique

turbomachinery.




CHAPTER I.
INTRODUCTION

1-1. The Viscous Drag Turbine

A turbine-compressor combustion engine of .simple
; _

construction with possible increased efficiency was- designed

by Dr. Gene T, Colwell and.Dr. Thomas W, Jackson and a
patent was issued'for this invén%ioh}(keference_l). Also, a
Trig was constructgd_in hke'Scﬁgolqu'Mgchanical Enginéering
of Georgia Institute-o£ TechnOiqu;_-This Tig enabied -
experimental research on the compressor side of the design, .
The results of these experiments were presented in references
5 and 6. |
Momentum transfer between axially or radially moving

fluid stream and solid surfaces is,reasonably-weli understood.

- in conventional turbomachinery. The machine under study in

this investigatibn; however, utilizes circumferentially
moving fluid streams in grooves rddially cut into the
circquerencé of a rotating.wheel;' The fluid medium is
introduced through a nozzle Cast into the-hoﬁsing."The'walls

of each slot drag'the fluid unfil.it isgstfipped-from the

wheel by seals which fit closely into the slots. The slots

.are shown in Figures 1 and 2. If the inlet velocity of the

flow is less than the wheel tip speed, pressure builds up:on

E)
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Figﬁre~jh Ureel~3eal Assembly

Figure 1. Wheel-Seal Assembly
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Filgure~2. Viscous Drag Turbine

Figure 2. Viscous Drag Turbine




the compréssor-side. On the other hand, higher infake
velocities by momentum exchange processes within the fluid
drag the wheel and develop torque. Thus thé same wheel is
used as a compressor and turbine.

The discharge mechanism from thé turbiﬁetis'identical
to that of the compressor side. While one side of the seals
~guide the fluid into the slots the other;éide-scrapes'it out .
of the grooves into a diffuser section. Flows with higher
inlet velocities than wheel tip speeds are possible if
compressed air'is.mixéd in a combustion chamber with a
stpiChiometric_fuel mixture, ignited and then discharged into
the turbine side through a suitableﬁnozzle. Feasible effi- =
ciencyes are expected when the flow is turbulent within the
wheel. Tip speeds exceeding tﬁﬁ speed of sound for thé
intake fluid conditions afe'used with sonic limitations of
flow to compress the medium more effectiﬁeiy. At stoichi-
ometric temperatureslthe_speed of sound iS'gfeater-than the
tip speed values and the fluid when fed back into- the turbine
side is able to expand freely. |

An advantage of-thisgdesign.is'the altefnaﬁe ¢ooling
and heéfing of the siot wélls in the compressor and turbine.
sides of the wheél. This eliminates -the need fdr'conventibnal
blade cooling. Generally it is not desirable, fromlan
efficiency standpoint, to heat during compregsion and or cool
during expansion.’ However, the heét transfer in this case

allows operation of the device at very high turbine inlet




temperatures without internal blade cooling. In addition,
the heat transfer has a regenefative-effect-oh-the cycle,
Thus the overall effect of the heat transfer is. an increase:

in cycle performance,

| 1-2, Statement of ‘the Problem

The goal of this project is to compute fluid velocity

and pressure profiles in the slots of the viscous type gas

- -turbine engine as described above. A laminar, steady, and

incompressible sdiutidh of fﬁejihféé:&iﬁensional Navier-
Stokes equationsﬁﬁiiijbe obtained for various geometries

and operating conditions on the compressor side. .In all real
operating cases for the turbine under study, the flow will

be turbulent. However, it is necessary to first study the.
laminar flow in this unique geometfy.

Simplification of the general set of equations will
be achieved by a dimensional analysis- of the problem. The
order of magnitude difference between the length dimensions
will make it possible to reduce the complex Navier-Stokes
equations into forms which can be studied. The flow field
will be divided into a three dimensional grid system. The

simplified momen tum and continuity equations will be applied

- at interior wmodes of this grid system. The non-linear

partial differential equations will be reduced to a set. of:
algebraic linear equations by means of indirect finite

difference method. The mathematical model coupled with




boundary and initial conditiens will make it possible to march
the solution through the flow field until'the’ekit-section
is reached. Computations will be carried out in a digital

computer.

o 1-3. Literature Survey.

The idea of utilizing fluid particles to drag surfaces
by.viscous action was introduced by Nikolai7Tesla [2] in the
early part of the cehtury. However, due to the low effi-
ciencies-at'the~rotationa1 speeds use&,the study of flows
around rotating disks was considered tb be an academic
exercise until fecently;

The feasibility of ﬁsiﬁg multiple-disk turbines in
special applications was recognized by researchers at the
Arizona State University. A thesis presented by Gordon [3]
and later a paper by Rice [4] indicate that such machinery
through less efficient than conventional turbomachinery'shows
reasonably gooduefficiency.values for small sizes. Since
multiple-disk turbines rely on wall sheér stresses to convert
fluid power into mechanical torque, their performance igt;,
independent of size whereas in conventional turbomachinery
_ viscdus dissipation thaf increases By dééreasing sizeJis‘
conéidefed'tb'pq a loss. ; |

Li{ératufé~§p-périﬁheral ?isébus5drag COMpPTessors
becéme available after 1970 through the efforts of Dr. Gene T.-

Colwell at Géorgia Tech.- Dusadeenoad [5] investigated the




adiabatic compression efficiené?fand he?drflow'Charécter—
istics of such machinery opefatiﬁg in the turbulent regime.
He also presentéd a one dimensional'anﬁiysis bflthe flow,

For the fprcé_balance on an elemental contrel volume he made
use of smooth pipe friction factor to apprbxiﬁaté’the-wall
shear stresses. The exit pressure was the-dépéndenf parameter
of his-set-ofjéqUafioﬂs. A-thesis.presented by Caldwell,[ﬁ]
displayed- the imﬁortahce of effective-sealing on efficiency.
His experiments were also conducted in tﬁrbuient-regime;

Boyd and Rice:[7] have considered the laminar flow of
an incompressible'ﬁéwtOﬁian fiui&; rédially;inwardfbetween
parailel co-rotating,disks. The-fhfough-flow.was_supported,'
by an.eXtérnaily applied preséuré différencé between the

outer periphery and a circular fluid exhaust hole at an inner
radius. A §uf£iciéntly complete problem statement ﬁas,
formulated from the Navier-Stokes equations. Their problem
had three parameters, a Reynolds number, a flow-rate parameter,
and a peripheral tangential velecity component ﬁarameter.-

In the present analysis extensive use has been made of
the wofk of'Sﬁhlichtingﬁisl for the defining equations and
the work of Batchelor [9] for information on- dimensional |
analyéis and the work of Shapiro [10] for isentropic flow
formulas. Material presented by Roache [11] and Forsythe and
Wasow [12] was utilized for applications of-finife-difference.
methods to partial differential equations. At FORTRAN IV

programming phase of the problem Cracken {13] was utilized as




a frequent reference. A special problem presented by
Cantrell [14] at the Georgia Institute,of.Taﬁhnology,contained
valuable information which made certain assuﬁptions‘possible

in this analysis.




CHAPTER I1
THEORETICAL DEVELOPMENT

2-1, Defining Equations

> The governing set of equations for a fluid flowing
thrbugh-the compressor-turbine should be in cylindrical
coordinates for ease%in'cqmpu%éiidns{ -The one dimensional
analysis. of laminar flow by Cantrell [13] through the same
geoﬁet;y suégésts that the flow field is incompressible and
isOtﬂéﬁﬁal. ‘Undervthese Conditions steady state Navier--

Stokes equations in cylindrical coordinates are:

r-momentum equation,

oV Vi 9 Vo

_ v, = _
BT, T+ 8T8y, 0. B2 2aw)
© 9T T 36 T ' 32 9T aT T 3T
+ 1—-—2-3 Fr- 2.8V6+ 3'VT]"
%7 39 %7 38 s 2
Z
B-momentumzequation,
- Wy V, 0V, VY Ve " :
P, 2+ 2B, T8,y _B. 1R, g 2avy)
aT T 30 T 3z T 370 . oFT o7
2 382 . T 9% '352'




z-momentum equation,

v . av_ . LAV T 5T
(v, — ' 5 3B, =1 -
p(vr i +—E i + "\}-z _____z_) = - _a§+ u[z‘\ _E— (r _-_i)
oT r 98- 3z 9. .”r ar aT
. .3.2\7 _325'
r g3
T 3F 892

The flow has to satisfy the equation for conservation
of mass in cylindrical coordinatés er-an-incompressible

fluid at steady state.

(F 7)) +

il
Rl e
| =
far]
\-_J_
+
]
]
o

T

The . above foﬁf equafions will be accompanied by
boundary conditions that describe the geometry under study.
The geometry is illustrated ih“Figure 4, A characteristic
of the geometry which reduces the poésible number of unknowns
and_computatiohal-time islthe axial symmetry across the
centerline of a slot. Also the flow along each slot wiiﬂ?;_
be assumed to-be idéhtical so that total flow'through the

field is simply. a sum of flows through the individual slots.




Figw:

i, Figura 4, The Cooidimate System

Figure:4. The Coordinate System
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According to the figure above the boundary conditions

are: |
Ve =;m¥i on planes B and C
Vé =0 on blane_A
?é =0 on.planes A, B, C and centerline .
?} =0 on planes A, B, C
¥y . :
——:]k = ¢ due to symmetry
9z ' '
3?} :
—+—4k = 0 due to symmetry
9z _
W, .
——= =0 on planes B
Vg T Vige VY, = 0, V. = 0. at-1n1et

That this set of equations is enough to défine the
problem completely will be shown later on when finite

difference forms of equations are developed,

'2-2. Dimensional Analysis.

The variables involved are non-dimensionalized by
characteristic quantities such that the resulting quotients

are of order one.. To facilitate the order of magnitude

analysis, the depth of slot to wheel radius ratio; h/R,.and_'

width of slot to wheel radius- ratio, wfR, are.assumed'to be

At TN

I b ALY T N R g L
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much less than one. For detailed developments of non--
dimensional Navier-Stokes equations .and the equation of
continuity see Appendix A. The resulting equations® are as

follows:

Continuity,

17" "9 oz,
R AR T 3z 0
r~momentum equation,
2 2
r or R NRe _327 ’
g-momentum equation,
1V a#e Vg 1 ap 1, 2
9 56 " Vz 3z "o T8 " (NRe)( 322) ; and
Z-momentum equation,
9P -
BZ Ol

Boundary conditions are:

v, =0 | on plane A,

vV, =T on plane B,
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ve = 1 on plane C,
v, =0 on planes A, B, C and centefline,
v, = 0 on planes A, B and C,
oV '
i%% = 0 on centerline,
avz
—7 = 0. - on plane B, and
3 )
Bvr : _ :
-5 = 0 on centerline.

The nonfdimensionai momentum equations when analyzed
term by term yield relevant information about the flow. The
radial momentum equation sets,g_balance betweén radial
pressure gradients and centrifugal forces plus an order of
magnitude smaller radial viscous force term retained for
mathematical compatibility., If the inertial terms on the
left hand side of the §-momentum equation are reorganized by
utilizing the continuity equatioh, the result is,

2 : ' n2

4, av 3 (viv,) T R 3%v
1 Ve ®Yz2) _ 1 8p . 2 B
* 5 190 N ( ) -

e_ raf 3z Re 5z

The physical intérpfetation is that the change in
8 -momentum cafried peripherall?_plus that ;arried axially is
equél td'the.peripherai pressure gradient pluS'the viscous
force gradient in the same direction. Note that, ﬁhen-the
flow is fully developed, this equation defineslthe familiar
Couette_flow problem., The axial momentum equation shows:

that the axial pressure gradient.in the flow is negligible,
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resembling the well-known flat-plate boundary layer
approximation. - SR '-_5@ | |
The'inletzéonditimns arejspecified as zero approach
velocify into’ the nozzle aﬁd slﬂg-t}pe flow into fhe grooves. .
The nozzle thtoat.area is set equal to thé”tdfdl crbésf
sectional slot area. When the Mach number at the nozzle
throat or at the inlet to the grooves, the aféa, and nozzle
inlet étagnation.conditions.are-sﬁecified, the mass flow
rate, slot inlet static pressure, and density can be
computed along with volpme flow rate as an end product by
the following formulas obtained from Reference 9. An
illustration of the development of meridmnial velocity pro-
files starting from nozzle inlét section until the diffuser

exit is given on Figuzre 5,

N
- k-1
Bi = Po/ (1 + 75~ My,)
- _ - k-1 ,,2 -1
Pj = p0/(1 =7 MNO)
Q = W/,




Nozzle . L . Diffuser

(SRR

¥
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At the exit of the slots it is necessary-to»pefform
an averaging.process by double integration over the area to
determine the:peripheral veiocity component. Exit préssure
should be subjected to an averaging process over a line
since it is only dependent on radial directions across a
radial plane. |

In the diffuser section the mean values will be used
in similar equations to those thaf govern the flow through

the nozzle to determine final exit pressure.

2-3. Application of'Numerical Techniques.

There are various methods to solve_the above described
sets of equations and related boundary and initial conditions.
As suggested in Reference 7, a means of linearizing them into
a form suitable to digital computer treafment was pursued.

Due to the tangential symmetry in Reference 7 it was possible
to omit tangential derivatives from the set of governing
equations. In the present analyéis the flow.field develops
in the;tangential.direction so tangential derivatives are
essential. Compared to the parabolic inlet flow conditions
of'Reference'7.this analysis.assumes slug-type inlet flow
conditions. 'Alsd;,Réference 7 uses a non-uniform érid
spacing in radial direction whereas this étUdy;considers

- uniform grid spacing at inlet énd_fully developed flow
sections to be sufficiently accurate. |

The slot in which the fluid flows was divided into
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L-segments in the peripheral direction from nozzle to
diffuser, M-radial stations from the base of a slot to the
shroud, and N-sections from the center of a slet to the
moving wall on either side of it. A complete illustration
of the lattice is shown in Figufe 6.

Initially, defining equations are approximated by a
- finite difference scheme.such that all vafiables assume
their Values ét*the néxtlﬁérinEral.station. Tangential
derivatives utilize backward difference schemes whereas all
others are approximated by cén;erad difference méthods;' A

sample derivation for the §-momentum equation is given in

Appendix E. In light.of these measures the equations became:

Equation of continuity,

vg(i+1,3,k) -vg(i,j,k) v, (i+1,3,k+1)-v_(i*1,j,k-1)

040 M TRz 03
r-momgntum equation,
5 (W@(%Tl,j,kﬁ)z =_-.p(i+1;jf%i;p(i+l’j;lj_*.
(%)tﬁl )(Vr(i+1,j,k+1)—2vr(z+1,j,k)fvr(i+1,j{k—l]); ona
' Re (az) |




~
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8-momentum equation,

vg(i+1,5.5) v+, i) vg(i,j.k)

+
: CI} |
T j | _
, .
(i+1,],k+1)-vg(i+l,j,k-1)

vz(1+1’J’k) '_ ZAZ

f

v§11+1,j,k+1);2v@(i+1,j,k)+v@(i+1.j,k—1)
; ‘ . § _ \ ]

PGE*1,5)p(,g) , 1
rjeae NRe (Bz)z

Boundary conditions,are:

vg(i+1,M,k) = 0
ve(i+1,j;Nj =T _

v, (i+1,3,1) = v (i+1,5,N) = v (i+1,1,k) = v (i*1,M,k) = ©
vo(i+1,§,N) = v_(i+1,1,k) = v_(i+1,M,k) = 0

3vg (i+1,3,1)-4v (i*1,3,2)+v,(i+1,5,3) = 0
sz(i+l,j,N]—4vz(i+1,j,Nifj+vz(i+1,j,N—2) = 0

7v_(1+1,3,1)-8v_(i+1,5,2)+v_(i+1,3,3) = 0

The z-momentum equafiongéiéeaﬁiijéghincorporated into
the above equations by setting pressure variablés independent
of axial gradients. The fact that the above equatibns.are'
still non-linear means that they are very difficult to solve
directly. To overcome this problem a new set.of variables -

are introduced: .
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MW(3,K) = v (i+1,5,K)-v (1,i,K)
av, (§,k) = v, (i+1,5,k)-v, (1,5 ,K)
w_(§,K) = vr(i+1,j,k)—vr(i,j,k)'
Ap(j) = p(i*l,j)-p(i,j).

Substituting the variables into the equations and
neglecting any term that contaias products of the variables
which are small, i.e. the following set of equations and

boundary conditions:

Equation of continuity,

g——EgJﬁv (J,k) -Av, (§,k-1)+av (j,k+1)=v (1,J,k 1)-v,(1,j,k+1);
r-momentum equation,

2, RA 1 ) 2
_ (;;)( z)( 3(1,J,k))Ave(J,k) - (ﬁgzxzjg#rtj’k_lj + (ﬁﬁgﬁf)

RAZ

avr(j,ka---(ﬁiézgohvr(j;k+1)+gc2%;ac Yop(j+1) g

RAzZ RAz

() B2y ap (5-1) - (——)[Rﬁz)(V”(l,J x))* g(fzf)c

(P(i,j+1)fP(i.j'l))+(NElEE)(Vr(isj>k+1)'2Vr(i:j,k)+VT(i)j:k‘l))Q
e .
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and

g-momentum equation,

o J :

2(N az

- 7z 14v, (J.k)+[o 5 v, (1,3 A - Az]w (3,k+1) +

[0:5(vg(i,],k+1)-vg(i,j,k- 1)J]Av (,K)+gl5735 82 18p(5) =
j

(NR 770 (Vg (1,3,k+1)-2v,(1,5,k)+vg(1,j,k-1)) -

0.5 v, (i,j,k) (vy(i,i,k+1)-v,(i,i,k-1)).

Boundary- conditions are

&Ve(j ’N) ='_'I'- ;ve (i,J ,N)

]

AV (M, k) = 0

v, (5,1) = av,(3,N) = av, (M,K) = av_(1,k) = 0
4v_ (3 ,N) =-§v¥(M,kJ = av_(1,k) = 0

30V, (3,1) -48V4 (35,2487, (3,30 = =37 (1,3, 1)+4v4 (3,3,2) -V (1,3,3)

AV, (3 ,N-2)-44v, (5 ,N-1) = -v_(i,j,N-2)+4v,(i,j,N-1)

L S £

— e {




22

7av (5,1) -8, (3,2)% v, (3,3) = “7vp (4] ,1)+8v_ (1,3,2)-v,(i,3,3).

Equations of .continuity and ﬁomentum are applied to
the internalhnodés on a peripheral plane. Boundary conditions
are defined at lattice points on the boundaries. Since
shroud-andibase-of'the groove pressures are unknown, the
radial gradient is expanded in a fdrwafdfdifference'or-a
backward difference method in the radial direction depending
upon whether the node is on an axial plane next. to the base
of the'grqove.or on the 1ast=0neIBefore_the shroud, respec-
tively. |

Aftér this special treatment the number of unknowns
on any particular peripheral plane is 3(M-2}(N-1). Owing
to symmetry and known values of certain variables on the.
solid boundaries and centerline; the number of unknowns.
has been substantially decreased.

Upon careful investigation of the equatidns and -
boundary conditions it is evident they constitute a set of |
linear algebrait equations that can be fitted into the format

below:
- {a} ) = e

where matfix A contains the coefficients of the variableS'
involved, X is a vector composed Of.3(M52)(N“1) unknown Ax..

variables and C is a constant vector that includes all =
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elements that are on the right of the equality sign of the
equations.

The reason why the elements in vectors A and C are known
is that fhey are composed of quantities that are either
geometric parametEIS, system characteristics, and/or vari-
ables calculated or known from previous computations or by
initial conditions.

Among the various methods of solution of a linear
system of equations, Gaussian elimination is particularly
sﬁitable in thé present case because matrix A is sparse;
that is, the-rowsjand-the:columns have considerable amounts
of_zero elements: This type of solution format was available
in the Georgia Institute of Technology Computer Center. |
Library in subroutine form.

The principle .of solution is to reduce matrix A into a
trianguiar system by a series of divisibns.and subtractions..

The set of equations are originally in the fdvrm below,

n
0

2%y et 21,n-1"n-1 * 21,n"n 1

211%1 7 212%

L]
[S8]
[

el
[

+

W
58]
[t ]

~
o

+
+

"

>

=
[

=

i
=]

1
[
+
it
™
=
gl
=
[}

.
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The first equation is.initialiy divided by agq
(assuming that all-# 0) and the result is used to eliminate
Xy from all succeeding equations, Next, the modified
secondlequation is divided by the coefficient of-x2 in that
equation and:the\resultnis used to eliminate X, from the
succeeding equatihns, and so forth. After this elimination
process has bheen effecteﬁ.n-fimes, the reéﬁltant set, which
is equivalent'to-the original oﬁq éxcept.for the effect of-

any round-offs committed, is of the form

X, + al! ,x, + ... +# a! x = ¢]
1 1,272 1,n"n 1
X, *+ ... + al x = ¢!
2 2,n°n - ©2
x + al b - T
n-1 n-1,n"n “n-1
¥
x. =c!'
n .

where-ai i ci_designate specific numerical values. The
>
solution is completed by working backwards from the last
equation, to obtain successively x , Xo_qoeess Xqo
Solving the linear system of equatinns with the
method cited above yields the unknown A-variables. A-variables,

by definition, are differences in magnitude of velocity

components or pressure between consecutive peripheral planes
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such that the value on the firét plane is always known by
inlet conditions or previous similar calculations. Thus,
A-variables yiéld, indifectly,_velocity compohents'and-
pressures bn-eéch node of a peripheral plane.

For the next set of calcﬁiations a similar matrix is
set up.and.the.coefficients-and constant'matrik.elemeﬁts.are
calculated with inclusion of new vélocity components and
pressures. This logic is f6110wed until the exit stage is
reached. The-computer-lpgic.behind the method of solution
is preseﬁted in Figure 7. | _

| The axial and radial variations of the peripheral
welocity are averaged by using Simpson's one-third rule for
double integration to get the mean exit felocity. Subsequent
checks of the accuracy of. the cbmputations are made-by '
calculating the'mdss flow rate which should, ideally, be-;.—q
conserved. If the increments in the.radial direction aréﬁ |
chosen to be equal; the average exit.pressure can be compnted

by a simple arithmetic mean..
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CHAPTER III
RESULTS

3-1. Range-of Parameters

To obtain meaningful results from the set of equations
and boundary conditions discussed in the previous section,
the flow regime must necessarily be of a laminar nature. If
the Reynolds number based on the'relative fluid velocity and
hydraulic radius is less than 2000 it may be assumed that the
flow is laminar on grounds that the flow field is similar
to that in non-circular pipes. Since incompressible and
isothermal flow conditions were assumed, by setting density
and viscosity equal to constant values, the constraint on:
Reynold's number as sgated above. results in important
relations between wheel angular velocity, fluid absolute
velocity, thél’radiUs, and-Slot'widthf " |

If,

_ P(ag-vy(1,3,K0)Dy

Re < 2000

and,
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“with conditions,

P = 0.075 lbm/cu.ft.
¥ =0.0000%2 1bm/ft.sec.
w = 0.05 inch
thew
%ﬁsa, -
SV tdadk)
ve(lsj » k) 0.16

1 < ..._T_——_. + WR‘: " and QR > ve(lsjsk)

1-'i

Parameters of pr1me 1mportance are the mechanical

Reynolds number, inlet veloq*ty, and slot height to- wheel

diameter ratio since they aa,eér as coeff1c1ents in the
defining equations or as'iniéfééonditions.- To be able to
obtain meaningful head riée:we?sus flow rate curves for
compressor operation, eitheﬁ-m%chanicél Reynolds number or
slot height to wheel diameter ?atio has to be kept constant
and the other varied. For ﬁhi% purpose the scheme as shown

in Table Z has been used.

5-2. Evaluation of Outputs
R

It is 'easier to derive meaningful conclusions from

the dimensional results if they are plotted on graphs.
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Table 1. Possible Limits of Inlet Velocity Under
Various Operating Conditions
R W Q{rpm)
[ #3Behes) anel) 1000 1500 2000
3.5 | 0.05 | Not possible| 7 < vy <46 |27 < v, < 62,
st 0.08 7 < Vin < 31 18 < Vin <. 46 3? < Vin < 62
5.0 0.05: 5 < Vin < 44]27 < Vin < 65 149 < Vi < 88
5.0- | 0.08 |20 < ?in_< 14141 < Vin ¢ 65 | 63 < Vin < 88
Table 2. Data Layout for Fifteen Runs
_ ve[l,j,k)(ft/seci
Q w R h
(rpm) (inch) (inches) | (inch) faz ’35 c
1000 0.05 5.0 0.5 10 25 40
1500 0.05 5.0 0.5 30 43 60
2000 0.05 5.0 0.5 55 65 75
1500 0.05 3.5 0.5 15- - 25 40
1500 0.05 7.0 0.5 60 70 80
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Figures 8 and 9 display the deveiopment'of tangential
velocity profiles-frqm the inlet'secfion up to the fully
developed section for runs kith the same inlet velocities
but different tip speeds. Figures 9 and 10 iilusfrate fhe
development of tangential velocity profiles of cases with
same tip speeds but different inlet velocities, The computef.
program was desigﬁed_sucﬁ that when the increment betﬁeen
tangential velbcities on_adjﬁcent_peripherai planes decreased
to a limiting value, a trigger mechanism is activated to

kick the peripheral mesh size to smaller walues.  This marks’

the beginning of fully developed region. Figures 8, 9, and’

10 show that as the relative fluid velocity between wheel
tip spéed'and inlet velocity is increased, it takes longer
for the fluid flow to become fully developed.- The steeper
taﬁgential Velocity_gradients 6n.the moving walls in -
Figures 8 and 10 compared to Figurelg.mean that the fluid
flow is sheared more at higher relative velocities. The
backffow in Figure 10 at 3.5 degrees away from the inlet has
an interesting influence .on the pressure gradient at the
same section. This phenomenbn will be discussed later.
Figure 11 displays a centerline tangential velocity
distribﬁtion along the radius at various distances from thé
inlet. The end points of the-profileS-havefbeen marked ﬁith
dashed lines since the boundary conditions on:the shroud and .
on the base of the groove have not been included'info the

calculations. This is understandable because radial shéaring
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r=3.71ins w=0.054n h=0.51n Q = 1500 rpm

3 50
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I
20 J
10 4
0 . - I. ; X ™ " . T ’ ‘.l
0.00625 0,0125 0.0185 0,925
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Figuré 8. Tangential Veldcity Profile Development
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Figure 9. Tangential Velocity Profile Development
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50*
r=5.21dns w=0,054in h = 0.5 in = 1000 rpm
40 - Vin ='10.16 ft/sec Np =11.36 R =5 ins
. = o o = . o =
0 150_ Py~ 0:075 1bm/cu.ft p; = 2120 1bf/sq. £t
[»]
30 1
-
L] ]
2
+H
E 201
KD
1>
10 -
0
-10 4
0 0.00625 ' 0.0125 0.01875 0,025
z (in.)

Figure 10. Tangential Velocity Profile Development
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Figure 11. Centerline Periﬁheral Velocity Development
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of_the.aforementioned boundaries has been determined to be
an ofder of.magnitude less than the téngenfial,shearing of
the flow so it is not neeessary to incorporate these boundary
cohditions into the calculations. The radial:gfadient
observed in the velocity profiles is due to the different
wall speeds for each radial station. Also, the difference
Cin radial.gradient between 19.86 degrees and one degree is
caused by-the-Strongef retardation of flow. This is because
at larger radii the centrifugal force fields develop higher
pressure forces. One of the important results is thé absence
of any extraordinary curvature or development of the
profiles:. This verifies that the contfibution of the term
[h/R](l/NRe](azvrlazz) is negligible, The term was retgined
in the calculatioﬁs_for mathematical compatibility.

Figures 12, 13, and 14 have been presente& to give
the reader a complete: picture of the veleity_CQmeﬁentszfor
the same- run.. Large positivé (mo?ing:frbm ¢énter1iﬁe |
towards the wall) axial veloéity componenfs feed the boundary
layer forming on the wall uhtil the fully developed.stage'
is reached. The negative axial velocity components that are
observed initially close to the ceaterline swing to positive
values-aécsoon as the boundary layer limits reach these
stations. Although the radial velocity components do not
exist in the continuity equation, the coupled nature of the
séts of equations relate it to other velocity components,

When the axial velocities close to the centerline are negative
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=3.74ins w=0,05in h=0,51in Q = 1500 rpm
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Figure 12. Tangential Velocity Profile Development
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Figure 13. Axial Velociﬂy Profile Development
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Figure 14. Radial Velocity Profile Development
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in Figure-ls.note'that radial veiocities on Figure 14 main-
tain continuity by supplying radial flow into these regions
of flow. The general teﬁdéncy of the axial_and radial
velocity cdmpohents isitp appfoé@h_smail-vaiﬁes. The values.
verify the initial asSumptions conéerning-the ofdeié of
magnitude which were made during dimensional analysis.

As a result of the larger'shearing of the fluid flow
at the inlet section in all three gases plotted in Figure 15
the pressure gradients are larger at this section. Figure
16 illustrates the linear development at the fully developed
section of: the flow field. The tangential profile of

pressures at the inlét section approaches fully developed

behavior asymptotically. The change in curvature in pressure
profile is observed on two of the runs in Figuwe 15. This

is because of the partial peripheral flow reversal or

stagnation at the same angular stations (see Figures 10 and
12) where the inflection in pressure profiles occur.

In Figures 17 and 18 wadial pressure gradients at
exit planes are showmn. Figure 17 compares the radial
gradients of flows with ideﬁtical wheel tip speeds but
different inlet velocities. Apparently, the.fadial preséure
gradienté are weakly influenced by the change in inlet
velocities. However, as shown in Figure 18, higher tip
speeds cause larger radial pressure gradients. Therefore,
centrifugal force field is influenced stronger by increases:

in tip speeds rather than increases in inlet velocities.
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Figure 17. Radial Pressure Gradient at Exit Plane




Ap X 10 (1bf/sq.ft)

2,5

2.0+

=
5]
i

=
[ o]
}

0.5 ~

% =-0.05 in- h = 0.5 in Ein= 0.7489 1bm/cu.ft
@ = 1500 rpm v, = 59.83 ft/sec Ein= 2116 1bf/sq.ft

O-R=7 ins
D-R=51ins

43

0.1 | 0.2

R - T (in)

Figure 18, Radial Pressure:.Gradient at Exit Plane

0.'3




44

Figures 19 and 20 show why wvarying tip'speed-isna_

- more effective method of governing head rise. The steepness

of the velocity gradients in'Figure 20 imply that more shear
work is imparted to the fluid_particies as speed is increased
to give them a higher pressure. - In Figure 21 pressure

developments for two different inlet flow rates are shown.

At higher flow the presSufe_rise is decreased. The inverse

pr0porfiona1ify between head rise and flow rate is common to
all tufbbmachinery that require ﬁork input and is indicated
by the figure. | _ |

‘ The-effects-df-changing tip spéeds by changing either
angular velocity or_wheel radius on the flow are shown in
Figures 22 and 23. Increasing tip speeds have shifted the
head rise versus flow rate curves to the right in both cases
meaning that for larger power anputs into the system higher
pressure rises are expected for the same volume flow rate,
However, the parallel nature of the constant wheel tip speed'
lines in Figureazz is not observed in Figure 22, This can
be explaiﬁed as an effect of the change 6f centrifugal force
fields when the radii are varied. |

In Figure 24-the head-flow curve for Npe = 17.03 and

h/R = 0.1 is compared with Couette and Poiseuille flow. The
defining'equafions are discﬁssed in Appendii-D. The striking
correspondénce between the Couette flow and the present
analysis is illustrated. Pefhaps insufficient,grid spacing

across the axis of the wheel led to inaccurate determination

iy
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velocity-gradiénts across.thé-axis and, consequently, agree-
ment. Also the pregsure:gradienfs at the inlet section may
not be lafge enough-tolaffectxthe overall results. The
difference between Poiseuille flow and-this effort is

probably a direct consequence of underestimation of the area

exposed to shear -in the hydraulic diameter. Apparently,

the use of hydraulic diameter for laminar flow with high h/w

~geometries is misleading.
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CHAPTER. IV
CONCLUSIONS AND RECOMMENDATIONS

The results indicate that the governing equation can
be treated by the mathematical techniques-déscribed in this
paper to yield satisfactory solutions. The scope of the
analysis is limited by certéin_geometrical constraints. If
length ratios are not within the required orders of magnitude,
the nature of the flow may change so dréstically as to invali-
date the set of equatioas used here.

A general conclusion is that for steady, incompressi-
ble, laminar flow, the overall compressor performance has
Couette flow characteristics. This was an expected result
since after fully developed profiles are established inertial
force fields diminish and the flow becomes similar to that
of a Couette flow by the nature of the defining equations.

Due to rapid boundary layer development in the inlet section
the higher head rises in the inlet do not have a great effect
on overall performance. When the relative velocity between
the fluid and moving walls is increased, boundary layer
development requires a greater distance. The shearing effect
of the stationery upper wall and moving lower wall have been
eliminated as being an order of magnitude 1ess_thaﬁ the shear

on moving side walls. It is suspected that the statiomery
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upper wali”ﬁill substantially effect the shearing of the
fluid in its immediate vicinity. Further studies should be
gonducted to-investigate this problem..

A double integration of peripheral velocity profiles
at the point where the flow becomes fully developed gives a
volume flow rate ﬁf 6-8 percent"less-than.that at the inlet.
The large amount of computations necessary to solve for the
variables at each location in the £low field may lead to
computer based truncationlerrorsl- Also the grid spaciﬁg orT
the exclusion of radial velbcity.gradients from fhe continuity
equation on ground that they.are,small could be sources of
error in the computed volume flow'raté.- Reference_?.suggests_
the use of'an.iterative method for determining thé grid
spacing. This.method is based on checks of volume flow rate.
The computer "Central Proceésing Unit* time ﬁecessary-fdr |
this method is too costly.

An alternative method to minimize the effects of
negletting higher order-A-quantities in the immediate neighbor-
hood.of the inlet is to improve the_grid spacing in all three
directions. The present -grid points ﬁere.spaced 0.00625 inch
‘axially, 0.1 inch radially, and 0.2 degrees tangentially at.
the inlet section. |

It has been observed that the5¢entfifugai fqrcé field
does. not effect-thg syStem characteristics appreciably. Also
the-efficiency of'the_compressor for the laminar flow will be

lower than what haé,Been rep0rfed in References 5 and 6 for .
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experimental turbulent flow regimes. 'Vglocity.gradienté
close to the walls are much less than those.under turbulent
conditions. |

Thé'present analysis can be carried a step further by
including compressibility effects into the analysis. Also
further research must be conducted on the problem which
covers heat transfer into the control vdlume. Then it would
be possible to solve.the problem using fhree dimensional
Navier-Stdkes equations. in turbulent flow. A possible
method could be to substitute eddy diffusivity terms into

~the governing equations.
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APPENDIX A

DERIVATION OF SIMPLIFIED CONTINUITY AND MOMENTUM
EQUATIONS BY DIMENSIGNAL ANALYSIS

The governing equations-as listed previously were,

Continuity:

Hj =

(=2 (T
a7 T

Hp =
P

Momentum equations:. r-direction,

v v, v v oV, - |
v, £+ 2 . 8 .5 O« R, gl 13 (F
AT T 3% T 3% T 3T r aT
2— - 2.
1 B.vr 2 BVB . ] vr]
T2 982 T 9B a7
6-direction,
v v, 8V V.V _ V.
P, —2+ 28, Xl 8.
T 3T 38 T 37
2— — 2—
= 3V 3V 4%
= 1 I 1 IV
T 38 3T T 3T T" 98 T :Y:] 9z
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z-direction,
av ¥, . v, v
R 2+ 2 2§, -
or T 30 © BZ
1 BZV ' gz'ir'
Z ;.8 ﬁ]
;7 352 3z

The Variables-involVedlin-thesé equations will be
non-dimensionalized by dividing thfough constants that shall.
set the GubtEgais: to an order of magnitude of one.

— - v, v
= I = E = Z'.. = I = 6
r=g 8=3 29w YrTm Ve om
vz -EJ- . ﬁ g
V, = &= 0 = — H = — P = —=—=
z T Py Wy p;2°R

Inserting the apjove non-dimensionalized vafiables in
place of the dimensional ones yield the following set of

equations:
" Continuity equation,

' | av v
QhR 3 QR “°8 Riiw Z .
- 3Ff (* V) * =5 53 tT 7 0

-Rememberingvghét_h/R'and?w/R-areivefyimuéh iess;thén:

one, the above equation reduces to,
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. q- OV v
1 8 Z
R A TR
r;momentum equation,
2 3V 2 v.”av 2.2 v, °
(Q h v ‘r ,2hR '8 " r Q7R g .
Py iP r ar- Re- r 2386 R r
QZWh v Bvr) = _
W z . 3z"
Qh 1 ¢
o?R? 12

Cahcelling and_rearrangiﬁg,

2
v ¥V, av v v
h T 1 76 T R "¢ r. . R 3
PRV 3T 5 T 38 " F T 'V, 520 - TR g% *
2 2
4 3V ov 37V
[R 3r (1 ar (rv )) * 2 "% 2r % —% g E% .zr
P QhR r 0“R T° 386 T wo 3z
Hi

Selecting the largest components of the three major
forces involved, i.e.-inertial, pressure and viscous-forCes,

also defining,
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the equation above reduces to,

2 2
v 3 v
_. R 8 _ _R3p "I r
PR T T R3TF NRe ( Bzz)

The viscous forces have been retained although they
are of order of-magnitudé less than the other two for
‘mathematical compatibility.

g-momentum equation,

5.o@R e o®r2 Ve Mo afnr VrVe , afwr | Ve,
iP R r ar OR2 T 39 R T W zZ- 3z
Pio%R2 1 9p . —  @R% 3 1 3 R 197V
- —gR T a6t Wil 33t G317 V)t 77—t
_ R "R r 30
2
. gh zafl+saR3Ve]
R R® ;Z _a ;7 Bz2
Again, cancelling and reorganizing,
vV v, 9V, V.V v
h 8,1 °0°% 9  h're . 6, - . 113
Pl v 37 * 5% 55 "R~ 1t " vz_ 52 5T 36
32v 3V 2 azv

2 g2 3"
[ ( (rv,)) + +. Fo—y
ssz 5— r o 02¢% 5g2  OR 2738 0 (T .02

=1
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Dropping smaller order terms and identifying NRe’

2

V,_ 3V Y : 3V
Lo _9® Oy LlLp, w0
PGT 55 " V2 e T BT e Ny (7

The above equation suggests that for efficient shearing

action between the wall and the fluid particles the mechanical

Reynolds number should not be so high as to minimize the

contribution of shearing action to the pressure gradient

in the compressor.

z-momentum equation,’

- (nzhw v Wy + Qsz,Ig v, + szz v 3Vz) -
iP R-"r 3r Re r 38" W zZ 92
2.2 y 2
Q°R % , g, [GRY 1 3y avz) L oW 1 3%, L d vZ]
W 3z iftRI T oY ar 0’R?% 2 352 Wl 5z
Again, cancelling and rearranging,
h's vV, 3V v 2 ..
h "'z 1 s z "z~ - _ R” 3p ¢
PRV 3r T e Ve e T J2 9z *
2 - 2
u [E 1 (#ﬁ avz)) LW 1 3 v, . WR ¢ vz]
EiQWR R E “ar aT eZR r2 392 w29z
"y
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| Cancelling smaller order terms yields,

p _ o - .
3z 0 : *

Similar procedures are applied to the boundary

conditions- They have been 1iéted previously,
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APPENDIX B
A CHECK QN THE RESULTS USING A COUETTE FLOW ANALOGY

The-moving boundaries -of  the slot create a Couette

flow problem as illustrated below:

: ¥
AR N AT SNV SN AN AV AN AN NS
i

¥ |

1 - _
777777 Pl 77777777 777777777777

uY

Y 7777777

Figure 25;- Couette Flow with Moving Boundaries

The governing equation for this .flow

LeRrIZ-nwru-v

The results of a run with w = 0.05 inch, @ = 1000 rpm

and R = 5 inches have-begn_compgréd,with a Couette flow with
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identical bdundary conditions, At 150 degrees the centerline
velocity (y/w = 0.5) was 15.51 ft/sec on the second radial
station wheré R' = R +-2ﬁr'=_5.2-inches;when Ap was 5.33 psf.
Couette flow with the same ﬁ; aﬁ; Ax, y/w, U and w has a

centerline velocity of 18.1 ft/sec, a slightly higher value,.
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APPENDIX C

SELECTION OF MACH NUMBERS THAT YIELD .
THE DESIRED INLET VELOCITIES

A test computer run was made to see which Mach numbers
gave satisfactory inlet velocities, For this purpose the
Mach number was. varied by 0.001 increments from a value of

0.006 to 0.07. The output is reproduced in the table below.
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Table 3. Inlet Velocities for Given Nozzle
Throat Mach Numbers :
Mach No, | Flow Rate ve(l,j,k) Mach No. | Flow Rate ve(l,j,k)
X103 X103 x10° x103
((1BhFE8c) | (ft/sec) (1bm/sec) | (£t/sec)
6 0.88 6.8 19 2.76 21.5
7 1.03 7.9 20 2.94 22.6
8 1.18 9.0 21 3.09 23.7
9 1,32 10.2 22 3.23 24.8.
10 1.47 11,3 23 3,38 26.0 |
11 1.62 12.4 24 3.53 27.1
12 1.76 13.6 25 3.67 28.2 f
13 9,91 14.7 26 3.82 29.4 !
14 2.06 15.8 27 3.97 30.5
15 2.21 16.9 28 4,11 31.6 |
16 - 2.35 18.1 29 4,26 32.7 ;
17 2,50 19.2 30 4,41 33.9 i
18 2.65 20.3 31 4.56 35.0 |
32 4.70 36.1 52 7.63 58.7 }
33 4.85 37.3 53 7.78 59.8 |
34 5.00 38.4 54 7.93 61.0
35 5.14 39.5 55 8,07 62.1 |
36 5.29 40.6 56 8.22 63.2 i
37 5.44 41.8 57 8.36 64,3 |
38 . 5.58 42.9 58 8.51 65.5 |
39 5.73 44.0 59 8.66 66.6 E
40 5.88 4%.9 60 8.80 67.7
41 6.02 46.3 61 8.95 68.9
42 6.17 47.4 62 9.09 70.0 i
43 6.32 48.5 63 9,24 71.1
44 6.46 49.7 64 9.39 72.2 |
45 6.61 50.8 65 9,53 73.4
46 6.75 51.9 66 9.68 74.5
47 . 6.90 53.1 67 .82 75.6
48 7.05 54,2 68 9,97 76.7
49 7.19 55.3. 69 .. 10,12 - - 77.9
50 - 7.34 - 56.4 70 10,26 79.0 -
51 7.49 . 57.6 "
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APPENDIX D

DEVELOPMENT OF COUETTE FLOW AND POISEUILLE FLOW HEAD

~RESE FLOW RATE EQUATIONS

~Appendix B contains the defining equation for Couette

flow with moving boundaries. If this equation is integrated

over the cross sectional area, a head rise flow rate relation
for Couette flow will be obtained.

a5 2 £ L &-1vPaa + [[,0dn = [f, uda

- hw3g
-3 —=+ Uwh=4Q
12q

oF = “2AX uwh-Q)
hw”g:
c
For Poisenille flow the defining equation of flow

through a tube with boundaries moving at a velocity of U.is;

. _dp 1 22
u = aE.Zf.(R r?) + U

Integrating'ofer_the area of .a circular pipe to get head
rise-flow rate |
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[, uda = [[,-g, & g7 ®RE-rhyaa + [f, uaa

4
Q= - g P+ ou?

8u

If the geometry is not circular, as in this case,

the radius can be substituted by DH/2 where DH is the

hydraulic diameter.. However, si#mce one wall is stationary

the geometry-6f-ééch:slbtgislnotireadiiy-rebresented by the

hydraulic diameter for flow rate calculations. For samplicity

the above equation is mearranged to eliminate hydraulic

diameter dependence.

D, g —
: H ®c-d
V. = s —— + U
in 827 dx

==
]
n
£~
o)
r
<
[}
=
p—
=
"

—— -

W . is inlet ==
here Vin 18 nlet_ﬁ;

velocity

Data presented in Figure 24 was obtained by inserting

identical flow rate values in each of these equations and

computing the head rises.

_}
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APPENDIX E

A SAMPLE DERIVATION OF FINITE DIFFERENCE
FORM OF 8-MOMENTUM EQUATION

Originally, the simplfied g-momentum equation is in a

partial differential equation form:

V. ' 3V ' .
8 8 6 _ _ 1 ap
— *V, 3yt +

o=

All radial and axial derivatives are approximated by
centered-finite-difference method whereas tangential
derivatives use backward-finite difference approximation.
The theory behind this method of approximating derivatives.
is Taylor series expansion of functions, discussed in

References 11 .and 12,

1 Ve 3?9 ligefiiigiikiff;(i+l’j’k)'vgfi’j’k)
© r 36 © ;fi;f : 5

AL o v (it1,5,k+1) v (i+1,5,k-1)
vz a2z = v2(1+'F’J sX) TAZ

Sl %p _ _ 1 1 p(i+l,j)-p(i,j)
Q ' 8] rj AB




69

. azve 1 velit1,i,k#1)-2vy (i+1,5,K)+v, (i+1,5,k-1)
NRe =~ 334 Re (Az)

Substituting the fiﬁite-differente approximations,

the 6-momentum equation takes the following form:

1 ve (i*1,j,k) -Ve (i+1,j,k) 've (i,j » k)

3 : R
3

+v_(i+1,3,k)

ve(i+1?j,k+1);ve(i+l,j,k-l)'=__ 11
28z ] ?}

p(i*1,3) -p(i,j)
A

:1; th(i+1’j’k+1)'2ve(i+i’j»k)'Ve(ifl,j,k-i))
N

+ 7
Re (az)°




10.

11.

12.

13,

- 70

REFERENCES

Turbine-Compressor, G. T. Colwell and T. W. Jackson,
United States Patent No. 3,751,908, August-14, 1973,

Turbine, Nikola Tesla, Official Gazette U, S. Patents
No., 1061206 5/1913,

William Gordon, "An Investigation of a Disk Type -
Compressor," M.S. Thesis, 1962, Arizona State University,
Tempe, Arizona.

W. Rice, "An Analytical ﬁnd\Experimental Investigation
of Multiple-Disk Pumps and Compressors,' Journal of _
Engineering for Power, Vol. 85, July, 1963, pp. 191-198.

S. Dusadeenoad, "Characteristics of a Viscous Flow

Compressor,” M,S. Thesis, Georgia Institute of Technology,

September, 1970.

J. S. Caldwell, "Efficiency of a Viscous Flow Compressor,"
M. S. Thesis, Georgia Institute of Technology, June,
1973,

K. E. Boyd, W. Rice, '"Laminar Inward Flow of an
Incompressible F1u1d Between Rotating Disks, with Full
Peripheral Admission," Journal of Applied Mechanics,
June, 1968, pp. 229-237,

H. Schlichting, Boundary-Layer Theory, Sixth Edition,
McGraw-Hill Company, 1968. _

G. X. Batchelor, An Introduction to Fluid Dynamics,
Cambridge University Press, 1970.

A, H. Shapiro, The Dynamics and Thermodynamics of
Compre$sih1e'F1u1d Flow, The Ronald Press Co., 1953.

P. J. Roache, Computatlonal Fluid Dynamlcs, -‘Hewrmosa.
Publishers, 1972

G. E. Forsythe, W. W. Wasow F1n1te leference Methods
for Partial D1fferent1a1 Equatlons, Wiley, 1960.

D. D, Cracken A Guide to FORTRAN IV Programmlng,
John Wiley and Sons 1972




14,

A. G. Cantrell, "Single Wheel Gas Turbine Computer
Program," Georgia Institute of Technology, 1974.

71




