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SUMMARY

The overall objectives of this dissertation are two-fold. First,
to provide a general thermo-fluid dynamic formulation of separated two-
phase flow, and second, to use this formulation for analyzing various
dynamic aspects of the film flow regime. Consequently, the thesis is
divided into two parts.

In Part I, the conservation equations which are expressed both
in terms of the two-fluid model and of the diffusional, i.e., drift, model
are derived, These equations, derived from the space averaging procedure,
take into account the effects of surface phenomena such as surface ten-
sion and surface shear and of surface processes such as momentum, heat
and mass transfer at the interface. Finally these conservation equa=-
tions are used to establish the similarity groups appropriate to separated
flows.

In Part II, the two-fluid model formulation of Part I, is used to
develop a stability theory of separated plane flows. The analysis takes
into account the effects of surface tension and liquid viscosity, of
mass and heat transfer at the interface as well as the dynamic effects
of the vapor on the liquid film. The most unstable growth factor, de=-
rived from the analysis, is used to calculate the onset of liquid entrain-
ment and of flow plugging. The results show that evaporation has a
destabilizing effect on liquid films whereas it stabilizes vapor films,

i.e,, it has a destabilizing effect on the Kelvin-Helmholtz instability
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whereas it has a stabilizing effect on the Rayleigh-Taylor instability.
A comparison of predicted results with available experimental data shows

a satisfactory agreement.
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THERMO-FLUID DYNAMIC FORMULATION

OF SEPARATED TWO-PHASE FLOW



I

CHAPTER 1

INTRODUCTION

1,1 Significance of the Problem

The simultaneous flow of two or three phases and/or of several
components occurs in a large number of engineering systems as well as
in many natural phenomena. Some examples are listed below.

a) Enerpgetics: Power and Propulsion Systems and Components

Boiling water and pressurized water nuclear reactors, liquid
metal fast breeder reactors, Rankine cycle liquid metal space power
plants, MHD generators, liquid propellant rockets (cooling, heat ex-
changer and combustor), metalized solid propellant rockets, heat pipes,
boilers and condensers for power stations, two=-phase propulsors for under
water and surface applications, drag=-reduction devices, etc.

b) Process Systems and Components

Extraction and distillation units, spray and cooling towers,
fluidized beds, evaporators, desalination systems, emulsifiers, air-
solid separators, steam-water separators, cyclones, cryogenic heat ex-
changers and pumps, electronic cooling systems, ejectors, atomizers,
dryers, absorbers, combustion devices and chemical reactors, etc.

¢) Transport Systems and Devices

Pneumatic conveyors; air-lift pumps; cavitating pumps and hydro-
foils; pumps and piping for transport of oil and gas mixtures, of slurries
and/or of fibers; hydraulic conveyors of wheat, pulvarized coal, ores

and other solids; highway traffic flow and control; etc,



d) Environmental Control Systems and Devices

Pollutant separators and purifiers, sewage treatment plants (flow,
fermentation and settling), air pollution control devices, refrigerators,
coolers, dust collectors, life support equipment for space application,
etc.

e) Information Systems and Devices

Superfluidity of liquid helium, conducting and/or charged liquid
films, liquid crystals, etc,

f) Biological Systems and Devices

Flow of blood; distribution of fish eggs by current; transport,
chemical reaction and diffusion through capillary networks, etc.

g) Geo=-Meteorological Phenomena

Sedimentation, i.e., transport of river sediments; soil erosion
and transport by wind, sea and rivers; snow drifts; sand dune formation;
nucleation and motion of rain drops inside clouds; icing phenomena in
the atmosphere; etc.

It can be concluded from the foregoing that the simultaneous flow
of two phases or of two or more immiscible liquids characterizes the
operation of many important engineering systems of interest to various

branches of technology and science.

1,2 Topographical, Structural Classifications

At first glance it might appear that the various systems, com-
ponents and phenomena listed above have very little in common, Actually,
the contrary is true., If we recall that the singular characteristic of

two phase or of two immiscible mixtures is the presence of one or several



interfaces, between the phases or components, it can be noticed that

many of the systems listed above have a common structure, i.e., a common
topography of the interface. Furthermore, whereas single phase flows can
be classified according to the geometry of the flow in laminar, transi=-
tional and turbulent flow, the flow of two phases or of a mixture of
immiscible liquids can be classified according to the geometry of the
interface into three classes, i.e., in separated flows, transitional or
mixed flows and dispersed flows. These three classes of structured flows
are shown in Figure 1.

Depending upon the type of the interface, the class of stratified
flows can be divided into plane flows and quasi-axisymmetric flows each
of which can be subdivided into two regimes, Thus, the plane flow includes
film and stratified flows, whereas the quasi-axisymmetric flow consists
of the annular and the jet flow regimes. The various arrangements, i.e.,
configurations of the two phases and of the immiscible liquids, are
shown in Figure 1.

The class of dispersed flows can also be divided into several
types. Thus, depending upon the geometry of the interface, one can con-
sider spherical, elliptical, granular particles, etc. However, it is
more convenient to subdivide the class of dispersed flows by considering
the phase of the dispersion., Accordingly, we can distinguish three
regimes: bubbly, droplet or mist and particulate solid flow. 1In each
regime the geometry of the dispersion can be spherical, spheroidal,
elliptical etc. The various configurations between the phases and mix-
ture components are shown in Figure 1,

Finally, the third class is characterized by the presence of both
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separated and dispersed flows, whence it can be named the class of mixed
flows, However, it could be referred to also as the class of transi-
tional flows since in practice it occurs as a transition from dispersed
to separated flows and vice versa. For example, in a boiling liquid the
slug flow regime occurs as a transition from bubbly to annular flow.
Here too, it is more convenient to subdivide the class of mixed flows
according to the phase of dispersion. Consequently, we can distinguish
five regimes, i.e., slug flow, bubbly-annular flow, droplet-annular flow,
bubbly annular-droplet core flow and film flow with entrainment. The
various configurations between the phases and mixture components are
shown in Figure 1.

The various systems, components, and phenomena listed in the pre-
vious section were grouped according to applications and technologies.
However, in view of the topographical, i.e., structural classification
shown in Figure 1, these systems and components could be grouped accord-
ing to the type of flow, i.e,, flow regime that characterizes their
operation. Consequently, they can be grouped as follows.

A. Separated, Two-Phase (or Component) Systems

a) Gas (or Vapor) Core-Liquid Film, Plane and Axisymmetric Flow

Liquid metal boilers and condensers, evaporators, distillation
units, desalination apparaturs, charged and conducting liquid films, con-
ventional boilers and condensers, beoiling water nuclear reactors, liquid
propellant rockets (film céoling of nozzles), heat pipes, etc,

b) Liquid Jet~Gas (or Vapor) Annulus Flow Regime

Cryogenic heat exchangers, ejectors, atomizers, etc,



B. Mixed Flows

Most of the power and propulsion systems and components such as:
boiling water nuclear reactors, Rankine cycle liquid metal space power
plants, MHD generators, two-phase propulsors, distillation systems, steam=-
water separators, evaporators, condensers, etc,

C. Dispersed Flows

a) Gas-Solid Particles System

Cyclones, separators, combustors, heterogeneous reactors, pneu-
matic conveyors, solid propellant rockets, dust collectors, fluidized
beds, air pollution and fallout separation and control devices, soil
erosion and transport by wind, sand dune formation, icing phenomena in
the atmosphere, snow drifts, etc.

b) Gas-Liquid Droplet System

MHD generators, liquid propellant rocket combustors, wet steam
turbines, two-phase propulsors, wet steam separators, atomizers, dryers,
absorbers, gas coolers, nucleation and motion of rain drops, cryogenic
heat exchangers, etc.

c) Liquid-Liquid Droplet System

Emulsifiers, homogenizers and extraction units, flow of blood,
polymer flow, etc.

d) Liquid-Solid Particle System

Fluidized beds, hydraulic conveyors, ercsion and sediment transport
by rivers and sea, sedimentation, sewage plants, separators, etc.

| e) Liquid-Gas (or Vapor) Bubbly System
Boiling water and pressurized water nuclear reactors, liquid

metal fast breeder reactors, Rankine cycle liquid metal boilers,



conventional boilers and evaporators, absorbers, air lift pumps, cavi-
tating pumps, refrigerators; distillation, flotation and aeration units;
pumps and piping for transport of oil and gas mixtures, electronic cool-
ing system ejectors, etc.

In view of this topographical, i.e., structural classification in
separated, mixed and dispersed flows, it could be expected that many of
the systems enumerated above should exhibit a large number of steady
state and dynamic similarities. This indeed is the case. For example,
it was shown in references [1-7]%* that the theory of kinematic waves,
which was developed by Lighthill and Whitham [8)] to analyze the flow of
cars on roads, can be extended to analyze and predict transient response
of dispersed two=-phase systems with applications to fluidized beds,
boiling water nuclear reactors, and cryogenic heat exchangers.

It is evident that if a firm understanding is attained of the
thermo£luid dynamic characteristics of any of the above two-phase flow
regime, then these results could be applied to predict the operational
performance of systems and components in a variety of technologies,
Indeed, such a general method of analysis has been attained and used in
the field of single phase flows. There, studies of the thermo-fluid
dynamic characteristics of laminar and of turbulent flows have been
first carried out and then, the results have been applied to various
technologies.

However, as it will be seen below, in the field of two-phase flow

*Numbers in brackets refer to reference listed in Bibliography,



the opposite approach has been followed most often. Here, the tendency
has been to analyze the thermal and/or fluid dynamic problems of a
particular system, component or process, say of a nuclear reactor, refrig-
erator, pollutant separator, liquid propellant rocket or open channel
sediment transport. Consequently, a broad understanding of the thermo-
fluid dynamic behavior of two-phase systems has not been attained yet,

nor is a generalized method available at the present time to analyze and
predict the performance of these systems. 1In Chapter II we shall sub-

stantiate this conclusion.

1.3 Requirements

The design of engineering systems and the ability to predict their
performance depend on the availability of experimental data and of con-
ceptual models which can be used to describe a physical process with a
required degree of accuracy.

From a scientific, as well as from a practical point of view, it
is essential that the various characteristics and properties of such con-
ceptual models and processes should be formulated clearly, on a rational
basis, and supported by experimental data. For this purpose specially
designed experiments are required which must be conducted in conjunction
with and in support of analytical investigations.

It is well established in continuum mechanics that the conceptual
models for single phase flow of a gas or of a liquid, are formulated in
terms of field equations which describe the conservation laws of mass,
momentum, energy, charge, etc, These field equations are then comple=
mented by appropriate constitutive equations such as the constitutive

equations of state, stress, chemical reactions, etc., which specify the
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thermodynamic, transport and chemical properties of a given constituent
material, i,e.,, of a specified solid, liquid or gas.

It is to be expected, therefore, that the conceptual models which
describe the steady state and dynamic characteristics of structured multi-
phase or multi-component media should be also formulated in terms of the
appropriate field and constitutive equations} However, the derivation of
such equations for the flow of structured media is considerably more
complicated than for strictly continuous, i.e., homogeneous media, i.e.,
for single phase flow.

In order to appreciate the difficulties in deriving balance equa-
tions for structured, i.e., inhomogeneous media, we recall that in con-
tinuum mechanics the field theories are constructed on integral balances
of mass, momentum and energy. Thus, if the variables in the region of
integration are continuously differentiable and the Jakobian transforma-
tion between material and spatial coordinates exists, then the Euler
type differential balance can be obtained by using the Leibnitz's rule
or more specifically the Reynolds transport theorem which allow us to
interchange differential and integral operations.

In multi-phase or multi-component flows the presence of inter-
facial surfaces introduces great difficulties in the mathematical and
physical formulation of the problem.

From the mathematical point of view, a multi-phase flow can be
considered as a field which is subdivided into single phase regions with
moving boundaries separating the constituent phases, The differential
balance holds for each sub-region, however, it can not be applied to the

set of these sub-regions in the normal sense without violating the above
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conditions of continuity.

From the point of view of physics, the difficulties which are
encountered in deriving the field and constitutive equations appropriate
to multi-phase flow systems stem from the presence of the interface and
the fact that both the steady and dynamic characteristics of multi-phase
flows depend upon the structure of the flow. TFor example, the steady
state and the dynamic characteristics of dispersed two-phase flow systems
depend on the collective dynamics of solid particles, bubbles or droplets
interacting with each other and with the surrounding continuous phase;
whereas, in the case of separated flows these characteristics depend
upon the structure and dynamics of the interface,

In order to determine the collective interaction of particles and
the dynamics of the interface, it is necessary to describe first the local
properties of the flow and then to obtain a macroscopic description by
means of appropriate averaging procedures.

For dispersed flows, for example, it is necessary to determine
the rates of nucleation, evaporation or condensation, motion and dis-
integration of single droplets (bubbles) as well as the collisions and
coalescence processes of several droplets (or bubbles).

For separated flow, the structure and the dynamics of the interface
greatly influence the rates of mass, heat and momentum transfer as well
as the stability of the system. For example, the performance and flow
stability of a condenser for space application depend on the dynamics
of the vapor interface. Similarly, the rate of droplet entrainment from
a liquid film, and therefore, the effectiveness of film cooling, depend

on the stability of the vapor liquid interface.
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It can be concluded from this discussion that in order to derive
the field and constitutive equations appropriate to structured, multi-
phase media it is necessary to describe the local characteristics of
the flow from which the macroscopic properties should be obtained by
means of an appropriate averaging procedure. Tt is evident also that the
design, performance and very often the safe operation of a great number
of important technological systems, which were enumerated in the preceding
sections, depend on the availability of realistic and accurate field and
constitutive equations. It will be seen in Chapter 2, that, for two

phase flow, these equations have not been established yet.

1.4 Purpose and Qutline of the Dissertation

1.4.1 Overall Objectives

The overall objectives of this dissertation are two-fold, First,
to provide a general thermo-fluid dynamic formulation of separated two-
phase flow, and second, to use this formulation for analyzing various
dynamic aspects of the annular and film flow regimes. Consequently,
the thesis is divided into two parts,

In Part I, the conservation equations which are expressed both
in terms of the two-fluid model and of the diffusional, i.e., drift
model are derived. These equations, derived from the appropriate averag-
ing procedure, take into account the effects of surface phenomena such
as surface tension and surface shear and of surface processes such as
momentum, heat and mass transfer at the interface, Finally, these con~
servation equations are used to establish the similarity groups appropri-
ate to separated flows,

In Part II, the two-fluid model formulation of Part I, is used to
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develop a stability theory of separated plane flows. The analysis takes
into account the effects of surface tension and liquid viscosity, of

mass and heat transfer at the interface as well as the dynamic effects of
the vapor on the liquid film. The most unstable growth factor, derived
from the analysis, is used to calculate the onset of liquid entrainment
and of flow plugging. The results show that evaporation has a destabi-
lizing effect on liquid films whereas it stabilizes wvapor films, i.e., it
has a stabilizing effect on Rayleigh-Taylor instability, A comparison

of predicted results with available experimental data shows a satisfactory
agreement.

1.4.2 OQutline of Part I

An evaluation of the presently available conservation equations
for two-phase flow is presented in Chapter 2. It is shown there that:
1) the momentum and energy equations proposed by various authors are
incorrect and in disagreement with each other and 2) the set of govern-
ing equations for the mixture used by various authors is incomplete and
incorrect when applied to two-phase mixtures in thermal non-equilibrium.

The two-fluid and the drift models are discussed in Chapter 3,
which deals with basic definitions and relations such as the averaging
procedure, concentration, velocity fields and the fundamental identity.

The local field and constitutive equations together with the
appropriate boundary conditions are given in Chapter 4, These equations
are used then to derive the averaged general balance equations for each
phase as well as for the mixture,

Chapter 5 deals with the continuity equations of the two phases

and of the mixture, For the drift model, the continuity equation of the
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vapor 1s expressed in the form of both the diffusion and the void propaga-
tion equations. The appropriate similarity groups are obtained from these
two equations by expressing them in a non-dimensional form.

The averaged momentum equations of each phase and of the mixture
are derived in Chapter 6 together with the appropriate scaling parameters.
The derivation of the averaged total energy equations for the

individual phases as well as for the mixture is presented in Chapter 7,
together with equations for the internal and mechanical energies and the
enthalpy.
Finally, in Chapter 8, the entropy equations are derived based on
the two-fluid and the drift, i.e., diffusional models.

1.4.3 Outline of Part II

Previous investigations concerned with the stability of plane
flows are reviewed in Chapter 10, It is noted there that with the ex-
ception of two references, the effects of heat and mass transfer at the
interface are not taken into account in formulations presently available.

In Chapter 11, the stability theory is formulated based on the
linearized form of the two-fluid model, A stability criterion is derived
which is used to determine the break-up conditions of liquid film flow,

Chapter 12 considers the stability of falling liquid films. It
presents stability criteria which were derived for both adiabatic and
diabatic films.

Finally, Chapter 13 deals with the effects of heat and mass transfer
on the flow stability of two inviscid fluids. The stability criterion
shows that evaporation has a destabilizing effect on liquid films whereas

it has a stabilizing effect on Rayleigh-Taylor instability.



CHAPTER II

PREVIOUS WORK

2,1 Introduction

In view of the importance of the two-phase flow system, there
have been numerous publications concerning the general area of two-phase
flow. Although the first known work in this area was published in 1830,
a recent literature survey by Gouse [9] shows that the number of publica-
tions for all gas-liquid flow studies excluding atomization and cavita-
tion has increased exponentially after 1940.

In the review that follows only studies which deal directly with
different formulations and approaches are discussed. The reader is
referred to the recent reviews by Scott [10], Dukler and Wicks [11] and
particularly in film flow by Fulford [12] and the three major books by
Tong [13], Brodkey [14] and Wallis [15] for discussions and analyses of
the proposed correlations as well as for a list of references,

As a consequence of the topographical characteristics of two-
phase flow two approaches have been used in deriving the set of con-

servation equations for the mixture., One was based on the model of inter-

acting continua, whereas the other was based on the separated flow model,

Although the first approach is appropriate to dispersed flows, it will be
reviewed briefly here for the sake of completeness and to note that

interface phenomena were not taken into account in these formulations,
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2.2 Dispersed Flows-Interacting Continua

Many authors treated the dispersed two-phase flow mixture as
continuum whose thermodynamic and transport properties depend upon the
thermodynamic and transport properties of each phase as well as upon the
local concentration. In effect, the continuum hypothesis implies im=
plicitely that each 2oint in the mixture flow field is occupied simul-
taneously by several different particles. The mixture is then represented
as a superposition of continucus media, each of which follows its own
individual motion as well as the mixture as a whole,

The simplest formulation based on the continuum assumption is the

homogeneous model where it is postulated that both phases move with the

same velocity, i.,e., that the relative velocity between these phases is
zero, Since the interaction between the two phases depends upon the
relative velocity, it is obvious that these interactions can not be taken
into account by this model. It is not surprising therefore, that for
applications to two-phase flow systems, the homogeneous model is of
limited value., Consequently, we shall not discuss it further, although
we note that because of its simplicity, this model has been widely used
in the literature as discussed by the numerous references listed in
references [13-15] among others.

A more realistic formulation for dispersed flows is provided the

model of interacting=continua since it takes into account the effect of

relative velocity and, therefore, the interaction between the two phases.
This approach has been the basis for the formulation of the problems
involving (solid or liquid), mixture, Panton [16], and Van Deemter and

Der Laan [17] for the thermomechanical formulation of the diffusion
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processes, Truesdell [18], Bowen [19] and Miller [20], and the formula-

tions of Delhaye [24, 25], Teletov [26, 27 ], Frankl [28] and Diunin [29]
which were based on time and space averaging procedures,

The mechanical theory of diffusion, which was put forth by Maxwell
and Stefan, was Improved by Truesdell [18] (see also Truesdell and Toupin
[22, sections 158, 159, 215, 243] and Truesdell [23, pp. 81-981]). The
diffusional model used by the author is based on three '"metaphysical"
principles concerning 1) the mixture properties, 2) interfacial trans=
port and 3) the motion of the mixture as a single body. Using these
principles, Truesdell postulated equations of balance of mass, momentum
and energy for each constituent and derived the necessary and sufficient
conditions so that the balance of mass, momentum and energy for the
mixture can be satisfied, Later, in an effort to unite the purely
mechanical and thermodynamical theories of diffusion, Truesdell's formu-
lation has been generalized in various ways by the authors of references
(19 and 207. However, their equations of balance of mass and linear
momentum are essentielly the same as Truesdell's. The only difference
appears in the formulation of the entropy equation. We note that these
analyses do not take into account the effect of the interfacial source.
In fact, the surface tension does not appear in any of these formulations,
We note also that the time and space averaging procedures appropriate to
mixtures were not considered in references [18-20].

A local averaging procedure was introduced by Van Deemter and
Der Laan, reference [17], who averaged the field equations over a small
volume element. However, the equations derived in this reference are

of a purely phenomenological nature. The kinetics of particles motion
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and the nature of fluid particle interaction were introduced formally as

a stress tensor and a drag force., It is evident that further evaluation
of these functions should be based on a theory of particle kinetics. 1In
application of Van Deemter's equations to the fluidized beds problem
Carrier [21] and Zuber [1] provided the physical insight to the phenomeno-
logical coefficients by introducing the single particle dynamic equations.

A time-space averaging procedure was used by the authors of
references [16, 24-29] who focused their attention to a given volume
element which is occupied alternately by one of the two phases. Conse-
quently, in order teo define the local occurrence of a particular phase it
was necessary to consider statistical averages.

Among the numerous and very important contributions made by Soviet
researchers toward establishing the field equations for two-phase mixtures,
we shall note only those of Teletov [26, 27], Frankl |28] and Diunin [29],
In these formulations a four-dimensional space time cylinder was con-
sidered, and the flow properties were averaged over space and time, One
important aspect of the work of Teletov, Frankl and Diunin is the fact
that they were apparently the first to a) investigate various methods
for obtaining the appropriate expressions for time and space averages
and b) express the field equations in terms of these averages,

Panton in reference [16], formulated the mixture equation by
integrating the time averaged local conservation equations over a small
volume element and then limiting the volume element to zero size which
implies implicitly the concept of continuum for each phase as well as
for the mixture.

In references [24, 25], Delhaye used a statistical averaging
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approach to formulate the bubbly flow regime in order to bring a non-
continuum two phase flow field into the continuum framework in terms of
statistically averaged equations. In his work the formulation was done
in terms of two continuity equations, i.e., one for gas phase and one for
the mixture, two momentum equations, i.e., one for each phase, and one
energy equation for the mixture, where gas phase was assumed to be in
thermal equilibrium in itself, i.e., no temperature variations in the
vapor phase,.

We note in closing that the effects of surface phenomena and pro-
cesses were ignored in most of these references and furthermore, when

they were considered, they were not taken properly into account.

2.3 Separated Flow Models

The numerous znalyses based on the separated flow model can be
divided into two groups. 1In the first group are analyses formulated by
considering one dimensional slip flow, whereas in the second one are
those which are based on the area-averaged field equations. Of the
numerous publications we shall review in what follows only those which
are indicative of the various approaches that have been used. We shall
also note the gignificant differences which exist between the resulting
equations.

2.3.1 Slip Flow Model Field Equations

Analysis belonging to this group considered the flow of the

individual phases to be one-dimensional and the interface between them

to be smooth, The assumption commonly made was that the pressure is con-
stant at a given cross-sectional area of the pipe, and both fluids were

assumed to be incompressible. To be more specific, according to this
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model the two phases or constituents are completely separated by the
interfaces, and the variations in the cross-sectional planes are com-
pletely ignored as are the effects of the interface, i.e., of surface
tension, surface shear and of heat and mass transfer at the interface,
Evidently this model does not permit any variations in velocity, density,
and properties within the cross-sectional areas of individual phases

(such as would be przsent, for example, with a parabolic velocity profile),.
The effect of zero velocity at the wall is assumed to extent over an
extremely small portions of the fluid and is neglected. One can see that
in the laminar flow regime error caused by this assumption will be large,

In order to make a comparison between the conservation equations
based on the slip flow model, proposed by various researches we shall
denote by p, Vv, P and W, the density, the velocity, the pressure and the
flow rate of the fluid whereas the subscripts 1 and 2, will be used to
differentiate the phases or constituents. The volumetric concentration
of the second phase will be noted by o.

Martinelli and Nelson [30] derived the slip flow model mixture
momentum equation., In their analysis momentum balances were made by
considering each phase separately as a control volume in the differential
element, For steady flow in a vertical pipe, they are given by Equations

(2.1) and (2,2) for phase 1 and 2, respectively

d — 4P _JdF _ aWe
ax LWAU.A__A* a % - % A‘eig*v‘da& (2t

d » d8 _AE dWs .
A (WoVi)=—As = Tan =Paad * W oo §2

where Al and AZ are the cross-sectional area of phase 1 and 2, respec-

tively. F; and Fy were defined as the net forces expanded by phase 1
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and 2, respectively, in overcoming frictional resistances,

We note that these forces, i.e., F1 and FZ’ which were not de-
fined explicitly include the wall friction as well as the interfacial
forces exerted from one phase upon the other. We note also that in de-
rivating Equations (2.1) and (2.2) the pressure over cross-sectional
planes is assumed to be constant. Furthermore, no interfacial effects
other than the interfacial mass transport which appears as the last
term in Equations (2.1) and (2.2) was included.

The mixture momentum equation was obtained by adding Equations

(2.1) and (2.2) and using the mass balance
JW‘*-AWL:U (2.3)

The mixture momentum balance thus hecame
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Although no detailed analysis has been made on the nature of the
frictional forces Fl and FZ’ (2.4) has been used for most if not all
correlations of two-phase frictional pressure drop. For example, in the
absence of gravity terms Martinelli and Nelson integrated Equation (2.4)
along the tube length obtaining thereby the total static pressure drop
in terms of frictional and acceleration multipliers which had to be

determined from experimental correlations.

Since the authors of reference [30] assumed that the pressures of
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the two phase are ecual, then in the absence of gravitational forces, i.e.,
horizontal flow, Equation (2.1) together with Equation (2.2) assert that
the sum of the frictional pressure drop and momentum drop for each phase
should be equal, In flows with vaporization, the momentum pressure drop
of the vapor phase is apt to be appreciable, whereas the momentum pre-
sure drop of the liquid phase is generally small. Thus, the criteria
of equal pressure drops which is used in this model becomes questionable.
Following the same method, i.e., by making momentum balances over
the individual phases, Kutaleladze [31] modified the Martinelli-Nelson's
mixture momentum equation in order to include the time dependent effects,
The final result of his analysis was given by the following mixture

momentum equation

. d Y, W AV N0, (2.6)
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In an analysis similar to reference [30], Brodkey [14] proposed
steady state individual phase momentum equations for an annular two-

phase flow as follows:

d ( W, v A 4P t Ay t ~ AL A, 6 E v AW, 27
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whereas for the mixture, the same equation as Kutaleladze's was obtained

if
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Later, these momentum equations were rederived by many other in=
vestigators. For example, by taking momentum balances over each phase
of a steady annular flow in a vertical, constant area tube, Levy [ 32 ]
and Isbin, Moen and Mosher [33 ] derived the equations for each phase;

they are given by

x X x lyte
L4 (A x alP 4P voJd
s = vVl =-2v _ _ a (2.11)
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where ﬂﬁ) and QE) were characterized as the frictional pressure

d®’1TP dx 2TP

drops in phase 1 and 2, respectively due to the wall friction only.
However, these interpretations were not correct because these terms in-
cluded also the intexfacial effects in general.

The addition of Equations (2.10) and (2.11) yields the mixture

momentum equation
» L - aP\ _ =
f;[u-ﬂ) eV +xe,Wa 3——5- <3 ;.;)TP [Ll o) e, + n(em]a (2.12)

The term %%)TP represents the two-phase frictional pressure drop and is

equal to

é_f) == (el _A_‘“) v o AP (2.13)
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Recently in 1969 Wallis (15] proposed one-dimensional momentum
equations, In his analysis Wallis expressed the momentum equation for

phase 1 by
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whereas the momentum equation for the second phase by
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where FWl and sz are the drag forces from the duct walls on the first
and second phases per unit volume of the flow, respectively.

F12 = -F,, are the drag forces between faces, T is the ratio which
is charged to second phase due to phase change per unit volume of the

duct..

X is the quality defined as the ratio of the vapor flow rate to
the total mixture flow rate,.
The mixture momentum equation was obtained by adding equations

(2.14) and (2.15) and resulted in

f: [ (A-x) €, AR U':l = — % ~fU-xe -ce,]g— (2.16)
u:m + Fwa)

The introduction of T into Equations (2.14) and (2.15) is questionable
because there is no justification for this correction factor, Although,
there should be a force due to the phase change, it must be entirely
charged to one of the phases depending on whether we have condensation or
evaporation,

Furthermore, Wallis attempted to determine T| from the mixture



entropy equation under the isentropic flow condition. However, if we

consider the entropy production due to the relative velocity between
phases, we conclude that a two-phase flow can never be isentropic. Thus
for separated flow in particular, i.e., the slip flow model always has
entropy production, and therefore to make an isentropic flow analysis

is incorrect. We note also that only homogeneous flow can be isen-
tropic since the relative velocity is equal to zero. However, in

this case the term

9 (Wh-v) [ G-a) e ¥« e, v ] %

would be always zero, since the relative velocity (v, = Vl) is zero,

2

therefore, there is no need to introduce T into the analysis as Wallis
did.

We shall not list the additional expressions of momentum equations
which have been proposed in the literature as they are too numerous,
Those listed above are indicative of the approaches used and of the
significant differences which exist between them. We note in particular,
that the momentum equation for the individual phase proposed by various
authors, are not in agreement with each other, This statement can be
verified by comparing Equations (2,1) and (2.2) with Equations (2.7) and
(2.8) and/or with Equations (2.10) and (2.11) and/or with Equations (2.14)
and (2,15). These differences stem from the different assumptions and
approaches used by the various authors in order to account for the inter-
actions between the two phases, Since these interaction effects dis-

appear when the momentum equations for the individual phases are added
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it is not surprising that the resulting momentum equations for the mix-
ture are in agreement with each other (compare for example Equations
(2:4) 5 (2.6); (2.12) and (2.16).

Turning our attention now to the energy equations which have been

reported in the literature we observe more arguments and disagreements.
This is natural, however, because if the momentum equations are not in
agreement with each other then the energy equations can not be either.
As it will be seen the basic problem in energy equation formulations
arises from weighing the energy equation for each phase,

Isbin and Su [34] considered the problem of mechanical energy
equation for a two-phase [low system. They wrote the energy equation

for a single-phase, constant density, time independent flow system as

| AP awv aF
e ey e VT ar =0
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where F is the frictional energy loss per unit mass. We note that the
equation, Equation (2.17) is apparently not the mechanical energy equa-
tion but it is merely the momentum equation expressed per unit mass.
Noting that Equation (2.17) is applicable to a two=-phase system
only if no interfacial mass transfer occurs, the authors argued that the
proper way to apply Equation (2.17) to a two-phase flow system is to
weigh the energy equation per pound mass of each phase by the mass of the
phase contained in the differential section ([1 -a) %Ade for the liquid,
apApdx for the vapor phase). With this weighing method, and after sum-
ming the equations, the following mechanical energy equation for the

mixture was obtained.
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Other investigators, however, multiplied Equation (2.17) alter~-
nately by the appropriate mass flow rate (wl and Wz) of each phase.
Using this weighing procedure and after adding the two energy equations,

Vohr [35] proposed the following energy equation for the mixture:
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where uy and u, are the specific internal energy for phase 1l and 2,
respectively.
The mixture mechanical energy equation proposed by Brodkey [14]

and Lamb and White [36], is given by

3
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where @l and 92 are the viscous dissipation terms for phase 1 and 2
respectively,

Comparing Equations (2.18), (2.19) and (2.20), one can see that
they can not be converted to each other i.e., that they are not in agree-
ment with each other. The difference is due to the weighing of the
individual phase equations., The manner in which the contributions of

each phase were weighed in these equations were different in each case.
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Another inconsistency between the equations is due to the interpreta-
tion of the various terms. Finally, the interfacial energy transfer
mechanism was not accounted correctly in these formulations,

2.3.2 Field Equations Based on Area Averages

In derivations belonging to this group, various authors tried to
integrate the single phase differential conservation equations over the
entire cross=-sectional plane of the pipe, Following this method Meyer
[37] proposed a set of equations expressing the one-dimensional mixture
continuity, momentum and energy equations, They are given by the mixture

continuity equation:
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the mixture momentum equation:

_:;.%(G«Tkr) (L G.TAT)-_-_AT%-['C‘,JI-e Avq  (2.22)

¥R etmon} }w tmass)

the mixture energy equation;

- ‘ =] +
%-'E ( e&.ma“'}‘l“‘“) A-‘} * :g-ﬁ‘- (G‘T L(Flaw)AT\ - i:’:i_%-t AT (2.23)
\

where
A ] & £ 2 | .
e, = — ( CRL B RS e - f eldA  (2.24)
mass) Ax A 9.....“;3“1 A<
| t ARy Ly =— v L dA
= 2 € v ’ Aﬁﬂ\ow‘) - e -
egmom) C‘T AT Av GlT AT AT

Gome [evdns  g= ][ g an

-

T At



29

o=, | ¥

It can be seea from Equations (2.21),(2.22) and (2.23) that the
mixture equations have been expressed in terms of flowing quantities, such

as G,, defined as the mass flow rate per unit area of the pipe. Conse-

T
quently, this improper formulation forced Meyer to introduce two mixture
densities from two conservation equations, i.e., an area averaged density
p(mass)’ from the mixture continuity equation, and a momentum averaged

density p(mom)’ from the mixture momentum equation., Also he found it

necessary to define two different mixture enthalpies, i.e., an area

weighted mean enthalpy i and a flow weighted enthalpy 1

(mass)’ (flow) "

Although it does not appear in the above set of equations later in his

paper Meyer had to define one more density p(en)’ i.e., an energy averaged

density from the energy equation defined by

A ;' ow & »
e‘..eﬁ.} = e{_mn:‘,’) __T'EE-L__)— + ( J‘LMO—SS)_ A ) .A—gg“—s-i (2.25)
E] L (mass) a4 (flow)

Thus three mixture densities and two enthalpies were introduced.
In applying Mever's mixture conservation equations to the critical
flow of vapor-liquid mixtures Cruver and Moulton [38] defined one more

density weighted by velocity

L e S A A (2.26)
€ how) Wy Av

As a result of references [37] and [38] four mixture densities were
defined, i.e., area averaged, momentum averaged, energy averaged and

velocity averaged.



30

If we recall here that according to the basic principles of thermo-
dynamic the properties such as density, enthalpy, etc. (see, for example,
reference [22] ) are:

1) additive,

2) invariant under change of motion,
we conclude that the formulations above are incorrect.

It is of interest to note here yet another incorrect definition of
mixture properties which has been widely used in the literature, it is
based on the quality X defined by

W.
W\ * w‘h

X =

(2.27)

where W, and W, are the mass flow rate of the vapor and of the liquid
respectively, Thus for example in reference [15], the mixture entropy

was defined by

Sm= (i-X) s, + X s, (2.28a)
the mixture enthalpy by
b= =Xy Lie X ik, (2.28b)

and mixture density by

1_1-X+X ) e
0 e‘ e, (2.28c)

It will be made clear in Chapter 3, that mixture quantities should
be expressed in terms of static parameters, such as the void fraction or
mass concentration and not in terms of mass flow rates, such as the

quality. To illustrate this point and demonstrate the error which arises
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when Equations (2.28a, b and ¢) are used we pose the following problem:
consider a closed system where no motions take place, i.e., wl = w2 = 0,

what would be the mixture entropy or mixture enthalpy? The answer

according to Equation (2,28) would be undeterminate in view of the defini-

W
1

tion of quality because the quality defined by X 5 ————— = g; Whereas
Wl + Wz 0
the static mass concentration C will have a definite value, This con-
tradiction stems from the improper formulation of two-phase flow properties,
i.e,, when they are not expressed in terms of static parameters.
It should be observed here, that Meyer treated the two-phase flow

field as a single-phase flow where the flow field is continuous, i.e.,

simply connected. However, as it was discussed in Section 1.3, in two-

phase flow the over-all flow field is multiply connected, consequently,
the effects due to the presence of interfaces should be taken into con-
sideration in a proper integration process. An analysis which does not
take into account the effects of the interface in formulating the problem
is incorrect because it does not account, properly, for the limits of
integration,

In the literature dealing with fluid dynamics of single phase
flows in particular with lubricating films, open channel flows etc.,
the method ef deriving the two-dimensional momentum and energy equation
by area-averaging the local field equations, is well established,
Similarly, the "jump'" conditions at the interface, i.e., the limits of
integration to be used in the averaging procedure are well known., In
the literature dealing with two-phase flow this method of area-averaging
has been used by Linehan [39] and Delhaye [24, 25, 40] together with the

(]

"jump'" conditions at the interface in order to derive the one and two=-



dimensional field equations. In reference [39], Linehan used the thin
film approximation to derive the field equations, however, in the '"jump'
conditions, he neglected the effects of surface tension and surface shear.
These two effects were taken into account, however, by Delhaye, who derived
the continuity momentum and energy equations by using the "jump' condi-
tions proposed by Slattery reference [41],

We note that in these references a clear distinction between the
two-fluid and the diffusional models has not been made, Furthermore,
none of these references presents thermodynamic relations and equations
which take into account the interface phenomena. Thus, the two-phase flow
equations presently available, do not reduce to the well known equations
of thermodynamics derived by Gibbs. Finally, similarity criteria for

separated two-phase flows, have not been established yet.

2.4 Traditional Formulations

Thus far in this Chapter, we have discussed the various approaches
which have been used in deriving the conservation equations for two=-
phase flows. Now, we shall review briefly how these equations have been
used to formulate and analyze two-phase flow problems.

It was pointed out by the authors of reference [42], that with
exception of reference [40], it has been traditionally a common procedure
to formulate a two-phase flow problem by means of three field equations
and three constitutive equations (see for example the formulatioms of
references [13, 15, 37, 38, 43 among others]). The three field equations
were those for the mixture, i.,e., the mixture continuity equation, the
mixture momentum equation and the mixture energy equation (which usually

did not include the mechanical and potential energy terms). The three
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constitutive equaticns which were used were the empirical correlations
for the void fractien, i.e., vapor volumetric concentration, for the
two-phase friction factor and the two-phase heat transfer coefficient.
It was noted in reference [42], that these six equations result in ten
dependent variables consequently, the traditional formulations were
incomplete in the mathematical sense, Thus, additional assumption had
to be introduced leading to additional differences and disagreements
between the various analyses.

In the chapter that follows we shall discuss in more detail the
two-fluid and the diZfusional models in fluid dynamics. Here we note,
that formulations of two-phase flows systems expressed in terms of the
three field equations for the mixture, are similar to well established
formulations of chemically reacting binary systems based on the diffu-
sional model. Tn view of this similarity it was stressed in references
[6, 42], that any analysis of two-phase flows, based on the diffusional
model, must include one additional field equation, i.,e., the continuity
equation for one of the two phases. It was shown in reference (42], that
the significance of onitting the second continuity equation in tradi-
tional formulations of two-phase flow systems, was that the effects of
thermal non-equilibrium could not be accounted for. Above, the three
conservation equation for the mixture, can not account for the effect of
thermal non-equilibrium.

Finally, it was noted in references [6, 42], that although the
traditional formulations of two-phase flow were based on the three con=-
servation equations for the mixture, these equations were not expressed

in terms of the center of mass of the mixture (see for example Equations
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(2.4, 2.6, 2.12, 2,16, 2,18, 2,19, 2,20)). This circumstance had two
important consequences, First, as noted in references [6, 42], the con-
ventional formulations are inadequate to analyze the dynamic behavior

of two-phase flow systems. Second, the thermodynamic properties of the
mixture were not defined properly. In fact, as we have discussed already
in the preceding section, various authors were forced to introduce four
definitions for the density of the mixture, three definitions for the
enthalpy of the mixture, ete, Such a sorry state of this branch of thermo-
fluid dynamics is rather surprising since it was discussed by Prigogine
and Mazur [44] that if a diffusional model is used to describe the be-
havior of a mixture of gases then the field equations must be expressed
in terms of the center of mass of the mixture. If this is not done, then

one can not express properly the thermodynamic equations and relations.

2.5 Conclusions

The preceding review of the literature concerned with the conserva=-
tion equations for separated two-phase flows indicates that:

1) The momentum equations for the individual phases which were
derived by considering the slip flow model are in disagreement with
each other.

2) Similarly, the energy equations are in disagreement with
each other.

3) The conservation equations for the mixture based on the slip
flow model are not in agreement with each other.

4) With the exception of the work of Delhaye, interfacial
phenomena and processes have not been taken into account in analyses of

diabatic separated two-phase flows.



5) The thermodynamic properties of the mixture have not been
defined properly because the field equations for the mixture were not ex-
pressed in terms of the center of mass of the mixture, Therefore, four
definitions of mixture density, three definitions of mixture enthalpy,
etc,, have been introduced in analyses of separated two-phase flow systems.

6) The conservation equation for the mixture which have been used
in the literature are inadequate for analyses of dynamic aspects because
they have not been expressed in terms of the center of mass of the mixture.

7) Most formalations and analyses of two-phase flow systems
presently available are based on an incomplete set of field equations.

In particular, they are expressed only in terms of the continuity, momen-
tum and energy equations for the mixture. They omit the second con-
tinuity equation for one of the two phases. Therefore, these formula-
tions can not take into account the effects of thermal non-equilibrium,

8) A distinction has not been made in the literature between
formulations based on the two-fluid model and the diffusional model,

9) Similarity criteria appropriate to separated two=-phase flows
have not been established yet,

The analysis that follows is directed at removing these difficul-

ties thereby improving the present state of knowledge.
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CHAPTER IIL

MODELS, BASIC DEFINITIONS AND RELATIONS

3.1 Two=Fluid and Diffusion (Drift) Models

3.1.1 Analvytical Methods and Models

It was discussed in Section 1.2 and illustrated in Figure 1 that
the most important characteristic of two-phase flow systems is the pres-
ence and the effect of interface between the phases. The topography of
the interface serves not only to divide structured flows into three
classes, i.e., separated, mixed and dispersed flows, but it gives also
rise to processes and problems specific to each class. Furthermore, this
topography compels the application of a different method of analysis to
each class, This differentiation of analytical methods stems from the
fact that a two-phase region is not simply connected, i.e., the variables
in the region of integration are not continuously differentiable, 1In
fact, a two-phase region can be considered as a field which is subdivided
into simply connected, i.e., single phase regions with moving boundaries
separating the constituent phases.

In theory, the problem could be formulated in terms of field equa-
tions applicable to each continuous subregion with matching boundary
conditions at the moving interface. Such a formulation would result in
a multiboundary problem with the position and the condition at the boundary
being unknown. It is evident that unless the topography of the interface
is simple, as it is for example in separated flows of Figure 1, such

an approach would encounter unsurmountable mathematical difficulties.
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Consequently, different methods of analysis must be applied to the
different classes of structured flows,
For separated two-phase flows, the problem can be formulated by

considering two-continua coupled by the appropriate "jump'" conditions

at the boundary, i.e., at the interface. It is evident that these '"'jump"
conditions will play a most important role in such a formulation,
However, for cispersed flows in order to eliminate the mathematical
difficulties caused by the discontinuities of the variables, it is useful
to transform the entire field teo a continuum. This can be accomplished
by a time averaging procedure or by means of Boltzman's equation applied
to the dispersed phase. 1In two-phase flow systems the velocities of the
two phases are never equal, i.e,, there is always a relative velocity
-
Vs between the phases. Consequently, there is always a dynamic inter-
action between the phases. For this reason a two-phase flow problem
should be formulated always in terms of two velocity fields.
However, depending on the magnitude of the difference between
these two velocities as well as the difference between the two densities,

both separated flows and dispersed flows can be formulated in terms of

a two-fluid model and of a diffusion model, both of which have specific

advantages as well as disadvantages which are discussed below.

3.1.2 The Two=Fluid Model

The two-fluid model is formulated by considering each phase
separately, Therefore, the formulation is expressed in terms of two sets
(one for each phase) of conservation equations, i.e., in terms of six
field equations: two continuity equations, two momentum equations and two

energy equations,
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In effect, the two-fluid model follows the model proposed by
Landau [45], for analyzing the superfluidity of helium II. 1In a dis-
cussion of this phenomenon Prigogine and Mazur noted in reference [ 44]
that the two-fluid model will yield satisfactory results whenever the
two components of a mixture are weakly coupled so that the equilization
of velocities does not take place, This can be expected whenever there
is a large difference between the densities and velocities of the two
components.

In two-phase flow it can be expected, therefore, that the two-
fluid model will be applicable to separated flows. Furthermore, this
model will be most useful in problems concerned with the dynamics of
the interface and othsr interactions between the two phases, Since a
formulation based on this model is represented in terms of two equations
aof continuity, two momentum equations and two energy equations, an
analysis based on thig model may encounter mathematical difficulties.
The model is therefore not well suited for analyses of system dynamics.
Neither can it be used effectively to determine the mixture properties
(in particular the entropy) and the similarity groups.

3.1.3 The Diffusion or Drift Model

In contrast to the two-fluid model, the diffusion model is form-
ulated by considering the entire mixture. Therefore, the formulation is
expressed in terms of four field equations: three for the mixture (con-
tinuity, momentum and energy) plus the diffusion (or void propagation
equation references [4, 6, 7]) for one of the phases,

It is evident that the diffusional model follows the approach used

to analyze the dynamic bdehavior of a mixture of gases or of miscible



liquids reference [49]., It is applicable whenever the two components of
the mixture are closely coupled, i.e., whenever they interact so that
the difference between the velocities and other properties of the two
components are small.

In two-phase flow it can be expected therefore, the diffusional
model will be applicable to dispersed flows and in particular to the
bubbly and slug flow regimes,

In the diffusion model the interactions between the phases are
specified by appropriate constitutive equations; for example, an appro-

priate diffusion or drift velocity is specified for a particular flow

regime, reference [6!. This drift velocity in turn specifies a drift
stress in the momentum equation for the mixture as well as an energy
transport term by drift in the energy equation for the mixture (refer-
ence [6]).

When expressed in terms of the center of mass of the mixture, the
diffusion model is most useful for analyses of system dynamics as shown
in references [6, 7]. Furthermore, as the results of this investigation
show, the diffusion or drift model can be used effectively for deter-
mining the set of similarity groups appropriate to two-phase flow systems,

We note that since the diffusion model is expressed in terms of
the conservation equations for the mixture, it is of utmost importance
to correctly define the properties of the mixture,

Since both the two-fluid and the diffusion models have their own
specifiec advantages, diéadvantages and applications, both will be used
in formulating the thermo-fluid dynamic equations for separated two-phase

flows.



3.2 Physical Model

The general separated two-phase flow system we shall investigate
in the following sections is illustrated in Figure 2, where the two-

phases® are distinguished by subscript 1 and 2%%,
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Figure 2. The General Separated Flow Model

“Since the mathematical description of the two-phase one-com-
ponent, two-phase two-component or single-phase two-component flows are
identical, we shall use the expression two-phase flow throughout the
development of the field and constitutive equations.

*%It is a usual practice in the literature to identify the heavy
phase by subseript 1, whereas the lighter phase by subsecript 2,
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Phases identified by L and 2 are flowing separately in a duct in
the main flow direction which is taken to be X, A mass transfer at the
external boundaries ﬁKt’ leaves the K-th phase through the porous wall,
and a mass flux ﬁKi leaves it at the interface. Here K takes on the
value 1 and 2 identifying phase 1 and 2, respectively.

We shall frequently refer to Figure 2 and the notation employed
on it, therefore it becomes necessary to define rigorously a few terms
appearing on it,

AKE is the external surface of the K~th phase contact with the
external i.e,, fixed boundaries,

Ai is the interfacial, i.e., contact area between two-phases.

Ao is the internal cross-sectional area of the K-th phase per-
pendicular to the main flow direction,

Ap. 1s the total cross-sectional area of the duct bounded by solid
boundaries. ATC is not necessarily constant, From Figure 2 it is

evident that

2
At. = % Ave

g is the intersection curve of AKc and AKe‘

Ei is the intersection curve of AK: and Ai‘

%Ki is the unit normal vector at the internal surfaces bounding the
K~th phase and directed always outward from the K-th phase,

ﬁke is the unit normal vector at the external surfaces bounding

the K-th phase and directed outward from the same phase.

3.3 Integral Relations

It was seen in the preceding chapter that the conservation equations
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for two phase flow were usually derived in the literature by applying
the conservation concept to a control volume. These equations were used
in turn to define terms which represent various effects, interactions or
mixture properties, These definitions were based most often on spurious
arguments rather than on fundamental principles. It was seen how this
procedure lead to incorrect definitions of mixture properties and other
two phase flow parameters,

In order to obtain a rational formulation it is necessary to re-
turn to the basic laws of dynamics and thermodynamics and to make clear
the various fundamental aspects of the phenomenon through consistent
definitions of averages, variables and mixture properties., Indeed, the
formulation must be turned around: the basic parameters which characterize
two-phase flow should be first properly defined, and then, after correctly
averaging the field equations, the variables which appear in these equa-
tions must be defined explicitly in terms of these basic parameters,

We stress again, that the proper definition of mixture properties
is of particular importance to the diffusion model because, as discussed
above, this model is formulated in terms of the three conservation equa-
tions for the mixture and the diffusion equation.

In view of the foregoing we shall start by considering the averag-
ing procedure and the definition of mixture properties appropriate to
separated two phase flow,

3.3.1 Averages

In order to derive the field and constitutive equations appro-
priate to structured, multi-phase media it is necessary to describe the

local macroscopic properties by means of an appropriate averaging



procedure, TIn separated flows, the two phases can be considered as two
continua connected by an interface across which the properties change
discontinuously. The appropriate averaging procedure consists there-
fore of area-averaging the two, local continua and coupling them by
means of the appropriate “jump' condition at the gas-liquid interface,
This approach used in references [24, 25, 39] is well known approach
used in deriving the hydraulic equations for open channel flow, the
Reynolds lubrication equation etc.

Let us consider therefore a quantity $K(x,y,z,t)—scalar, vector
or higher order tensor- of the K-th phase, (K = 1,2), and also consider

a volume1}%_enclusing the K-th phase cross-sectional plane. Then we

define the volume-averaged value of the quantity ¢K’ by

&« T (X)) = —l}t—(:) SE—S N SV 3.1)

By expressing the volume as1)i(t) = AK A% and by considering the
(o)
limits of Equation (3.1) as Ax — 0, we obtain the definition of the area-

averaged value of the quantity ¢K, {8

« *K‘» ()Lrﬂ::-.f—- %‘H_Lx,a,%,{;} dA (3.2)
Ko
hkﬂ(x‘\{)

Two observations can be made with respect to Equation (3.2).
First, we note that since the integration is performed over the cross-
sectional plane perpendicular to the main flow direction designated by
x, the resulting area-averaged quantity < ¢K5> must be function of x

and time, t. We note, further, that Equation (3.2) is an averaged quantity



of the K-th phase, cbtained by weighing the quantity by the cross-
sectional area of the K-th phase. Consequently, the averaged value

<<y K?D-applies to the center of area, or more meaningfully it applies

to the center of volume of the K-th phase.

Although the definition given by Equation (3.2) may be useful in
some two-phase flow analyses, sometimes it may be more advantageous to

formulate the problem with respect to center of mass instead of center

of volume, Ultimately, we are led to consider the mass-weighted, area-

averaged value of the quantity &K, defined by

¢ ) Onak) = H e, o dA U L (3.3)

ch’. Akc’

where upon applying the area-averaged values, i,e., Equation (3.2), we

obtain

{hy (i) = «e.,h_\»/ “e, » (3.4)

where< I, > applies to the center of mass of the K-th phase and not to the

K
center of volume. In effect, comparison of the two definitions,<ﬁT¢K>b
and <T¢Kb-reveals that unless <?1pK32> = Pk the area-averaged value

=< ¢K>} , and the mass-weighted area-averaged value<ﬂk:; of the quantity
¢K’ are different, 1In the analysis of incompressible fluids or in those

analyses where the mass density variation over the cross-sectional plane

is negligible, i.e., éfpléift 0 ko only then

SNy = &P (3.5)

3.3.2 The Covariance

The introductiorn of averaged system variables into the non-linear



equation of continuity momentum and energy increases the analytic
problem complexity because the average of a product is not the same as

the product of the averages of the variables such as qk and G- That is

[ ete da
(Yo y = Ak + Lo LRy

([ ey aa
Age

(3.6)

In particular

AL EEN] (3.7)

unless UK is constant over the cross-sectional plane over which averag-
ing is taken.
However, such a relation between the average of a product and the

product of the averages of the variables U

K and wk can be accomplished

by recalling the definition of covariance, see for example reference

(46, pp. 215-222], given by

We note that in Equation (3.8), wK may differ from, or equal to
Pg» as well, 1If they are equal, then Equation (3.7) expresses the average
value of wK(= ©g) squared, i.e., of fﬁK?> , in terms of the square of the
area average value of V, i.e., of {¢K}2' Hence, we recover the difference
between the right and the left hand sides of inequality (3.7).

For a laminar flow of an incompressible fluid in a circular duct

of radius R, for example, one has the parabolic velocity distribution
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AP
apL

V)= L CEY]

In this particular example,

LUW = <V _L( AP )" R*
A NawL

whereas

'8
«v» = 4vry= 4 (8P ) RY— 4 <
P\ awL 3

Difference between them indicates that the covariance

Cov(v.v) = <V <= ‘{i <O

can be important as much as 33 percent of <v>2. In turbulent flow,
however, it is expected that Cov (v-v) would not be as important as

is in laminar flow because in turbulent flow velocity profile is almost
flat,

3.3.3. Integral Transformations

In derivations that follow we shall integrate the basic con-
servation equations in the local forms over the respective cross-
sectional planes AKc’ (K =1,2). It is necessary, therefore, to con-
sider certain integral transformation theorems which will be encountered

frequently.



The Divergence Theorem Over Surfaces. Let us consider a volume

element1jt of the K-th phase contained within two parallel planes AKc, and
X
AKC' infinitely close together, with distance AX, perpendicular to
X HAx
X - axis. According to Figure 2, the volume element cuts the internal
and external boundaries with the surfaces designated by AKi and AKe’
respectively.

The divergence theorem over the volume element[?% is

ﬁj v-?,, dV = SS T dA (3.9)
Vi Aw

Here, FK is a first or higher order tensorial quantity associated with

N
the K-th phase. g 15 the unit normal vector directed outward from the
surface, AK. Finally, AK is the total area enclosing the volume element

Q&Z According toc Figure 2 it is evident that

A= Auc|, + A r Ape * At (3.10)

X+ A

In view of Equation (3.10), the right hand side of Equation

(3.9) may be expanded to yield

SSS V- A= ” ?;-?\KAA-\-”?,-%KAA+E SS?‘QKAA. (3.11)

-’U—K Ak.c_,\l hk_‘_ *l’h’- ﬂ:e-;l.- “KQ

where the summation is taken over the internal boundary, i.e., inter-
facial area which is identified by the subscript i, and the external
boundary, i.e., solid boundaries which is identified by subscript e.

Area elements at the boundaries can be expressed by
A A -1 )
dA = (nu'n”\ A.Ikéx. (3.12)

. A .
whetre £ is the wetted perimeter, and HKY the unit normal vector to the
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perimeter located in the cross-secticnal plane, AK } :
¢
x

I[f the surface were given by

3=5Lx,%,£\ (3.13)

then the area elemert would be expressed by

U

dA = [ e (%%T*r .:!;’_;‘;)1} dxdy (3.14)

Finally, from Figure 2 it is easy to see that

A
|

Using Equations (3.12) and (3.15) in Equation (3.11), we obtain

Xrdx
f fJ V'?u. dA dx = {I Fu‘?\u dA ""f[ Fu."‘;}kéh‘* (3.16)
* Ay

Ak‘txf&& k‘“‘u

®vdix
Z { f(?u.'ﬁnk.) (ﬁk'akg)ﬁ'c\‘féx

E:e..’. x 1[

This equation can be simplified in the following manner. The

S ?\K\ = L (3.15)

x4 A x X

volume integral on the left side and the last surface integral on the
right side are first sstimated by the mean-value theorem for integrals.

Thus

%4+ Ax
I f v-FodAdx= Ax “ V-F. dA (3.17)

h&r. (e ,t) Akc- L"‘-ex‘t)

xrAx
f { (Fe- B) ( ;,'\w.'/\'\\u;)_l S Tdx=Ax f(?u-?\q tﬁu-'ﬁ.‘;)‘a\r (3.18)

: Sp (i) Felak)
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Here, %, and X must lie between x and x + Ax. Next, Equation (3.16) is

divided by Ax and the limit Ax — 0 is taken. During this process X anc

x. Lakes on the values x. Then

L
” T B dA =% “ Fotheda s S [ Guha Gefigas 619
AK:(‘.H Avclxt) beeii 'Sl

An alternative form of Equation (3.17) can be written in view of
Equation (3.12), and of the area averaged variables defined by Equation

(3.2). Hence, the divergence theorem valid for surfaces becomes:

([(vFedn = 2 (AckFe)e S [Rhdh oo

- x
Ay. lei Ny

In which F.-ﬁ = [ was used since, by definition, ﬁK =

A
KK KX 1

The Leibnitz's Theorem Over Surfaces. The generalized Leibnitz's

theorem for a volume elementl?k is

ﬁf it dp. 2 ” AV ” %o (B dh  cam
’l}({) Vo () A lb)

where Vilq the velocity of the surface surrounding the volume elementﬂ)’

Use of Equation (3.8) in (3.21) yields:

X rAx w AX
f J W Jade = if ﬂ maun_” (3, -%) hodA (3.22)

¥t
AK&: (x :t) L Ay (= :‘h‘) kk:.\ X
x+Ax
[ L‘VL “\n +v..él“~ Z f j(up_-fiu) Y d A
AKG\K_‘_&K Eae"' L

On the right-hand side the time derivative is taken inside the
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integration over x and the integral is then estimated by means of the

mean-value theorem for integrals. Thus

, kb Ax
|

2
= H Yo dA dx = Ax = ﬂ Ve dA (3.23)

X Axc Ake (%0,4)
For the last integral in Equation (3.22), Equation (3.18) is used.
After substitution Equations (3.18) and (3.23) in Equation (3.22) the
resulting equation is, then, divided by AX and the limit Ax = 0 is taken.

During this process Xy and xy take on the value x. Thus

“ ib:'“ Ak-—-—% “ TudA —z [ (ﬂ-'«h\hﬁ.&. (3.24)
k X
A Kec (l. l*) y Ai.c. L"'\i) l: e,.'l. ‘Q

which is the desired Leibnitz's theorem valid for surfaces. Finally, in

terms of area averages it can be expressed as:

Ao A
}..:{J.“_ AA:’: _..;;.. (Ak°(<+i4\»\"z 5 (Va.nvj f‘\-" AA (3.25)
3t 3t <k g
Avelxit) =& g
It should be noted that in arriving at this equation it has been

assumed that the external boundary can move with time. 1If it is fixed,

-
i.e., V,= 0, then the Leibnitz's theorem over surfaces becomes:

L

At xt

U Afe JA = X (A, K »)— J (.- Mu) *.k_ﬂ_.e_.,_ (3.26)
A ke (x4 %) 5

3.4 Characteristics of Two-Phase Flow Field

As it was noted in Section 3.1, there are certain parameters
which characterize the two-phase flow field. Therefore, it is necessary

to define these parameters carefully for a separated flow structure



and to discuss their interrelations. In what follows we shall present
these parameters under the following topics:

1. Concentrations in two-phase flow,

2. Mixture properties in two=-phase flow,

3. Velocity fields in two-phase flow,

4, Flux fields in two-phase flow.

3.4.1 Concentrations in Two-Phase Flow

Concentrations can be defined properly only in terms of static
parameters, although one finds in the literature on two-phase flows
definitions of concentrations defined in terms of kinematic*, i.e,,
flowing parameters, In the former case one restrict the attention to a
region in the flow field and then observes the fraction of a static
element of volume (or mass) which is occupied at any instant by a given
phase. Whereas in the latter case, one directs his attention to a sur-
face in the flow field and then measures the fraction of the total flow,
by mass or by volume, across the given surface area which is composed
of two phases.

Usually in the literature, the kinematic and static concentrations
have been used interchangeably or simultaneously without proper defini-

tions. Such a carelessness leads to errors and difficulties which are

*The kinematic parameters, i.e., the "flowing" volumetric concen-
tration £, and the quality X, are defined in Appendix A where we show
their relation to the static parameters, i.e., the volumetric concentra-
tion® and the mass concentration C., The errors which stem from such
improper formulation in terms of the "kinematic" flowing volumetric con-
centration B, and of the flowing mass concentration X, (quality), are
discussed in Appendix A.



discussed further ia Appendix A,

Static Concentrations. As noted above, in order to define properly

static concentrations one directs his attention to a static volume
element, however small, in the mixture. For example, one can select a
volume element in such a way that it may be occupied by both phases in
variable proportions or that it may be occupied alternately by one and
only one phase. In the latter case it would be necessary to use time
averages in order to define the local occurrence of a phase whereas in

the former case, it is possible to define a local area-average.

In view of the geometrical appearance of the separated flow, a
definition of concentration in terms of local occurrences is not meaning-
ful. However, a meaningful definition of concentration can be made by
considering a volume element which includes the total cross-sectional
area of the channel. Following this point of view we can define the

volumetric concentration of phase 2, & i.e., the void fraction as the

*
? 3

volume of phase 2 per unit volume of the mixture. Thus
o8
&y v 1};/ s (3.27)

v

Here,1}} is the volume element of the mixture consisting of two volumes,
Ta'andfug, occupied by phase 1 and 2, respectively,

As noted in previous section we shall use the area averages
rather than the volume averages; therefore, it is necessary to define

the area void fraction. For this purpose, let us consider the volume‘UE

*In the literature the symbol o is used loosely to represent the
volumetric void fracticn as well as the area void fraction., In order to
avoid possible confusicn between these two definitions we distinguished
the former one by subscript ¥ representing the void based on volume.



contained between two parallel planes cutting along two-cross sections

AT 1 and A, infinitesimally close together, distant from Ax,
e Te
x x+Ax

perpendicular to X axis, see Figure 2. Hence from Equation (3.27) it

can be written that

x+Ax

I [ — (x,t) dx

E ]

D(V = xrhx (A0
f A‘\': (x :‘t) Sx

x

in which the integrals can be estimated by means of the mean-value
theorem for integral:, Thus

A?-i: (Ki\-ii\ (3.29}

X 15 (x5, "':‘t) e
ATG (.xo)
where }{.O and g must lie between x and xt+ Ax.

By taking the limit &x — 0, i.e., Xy %9 - ¥, we obtain the area-

averaged void fraction, @, as:

Ax-»0 A1C Ll)

From this equation it is evident that

(- o) [xit] = Are (xt) (3.30b)
Ate (k)

which represents the area concentration of the second phase.

The mass concentration of phase 2, C, is defined as the mass of

phase 2 per unit mass of the mixture. Thus,

Co M “ o
.

—1 ’0’;
o ((eldl}-n-gf e, dV
1% Vi,

(3.31)
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where MT is the total mass of the mixture while MK’ (R = 1,2), is the
mass of the K-th phase in volumeqjg, and pK is the mass density of the
K-th phase.

The derivation of the area mass fraction follows closely the

method used in derivating the area void fraction thus the area-weighed

mass concentration, C, becomes

oL &8, M .
C(x,t) = (3.32a)
(l=02) €XEM + &K E. P

and consequently

(-C)ixt]l= (-¢) €&P (3.32b)
(-) &N + oL &8,

which represents the area-weighted mass concentration of the second
phase.

It should be noted that both @ and C are defined in terms of the
static parameters of the mixture and, therefore, do not depend on the
kinematics of the flow field and constitutive equaticns for the two-
phase system,

Having defined the static concentrations we can define now the

correct mixture density in terms of static parameters, Again, by taking

a volume element and isolating it from the rest of the miture we can

write the instantaneous mixture mass as:

2
Mg = z My (3.33)
K=1{

which can be expanded in terms of volumes and mass densities to

yield



4
., = _.‘_._z s (3.34)
v} k“

where p, is defined as the mixture density.

Using the relation between area and volume void fractions, in the
limit as Ax — 0, the mixture density can be expressed in terms of the

volumetric concentration &, thus
P = (1-oc) L@ W + oL &P, W (3.35)

in which (1 -a)<<p1>> and a<<p ,>> are nothing but partial densities or

2
peculiar densities, used by some authors, of phase 1 and 2, respectively.

Substitution of Equation (3,35) in (3.32), gives compact expres=

sion Tor the mass concentration as:

C= o “e. » /em (3.36a)

(3.36b)

1= C = (-=) «e» e,

Dividing Equation (3.36a) by <<pZD> and (3.36b) by dﬁpiba-and
then adding, we obtain the mixture density expressed in terms of the

mass concentration, C, thus

{ -
2 L e B (3.37)
LI «em “em

3.4.2 Mixture Properties

For analyzing a two-phase flow problem as a mixture, it is essen-
tial to express the results in terms of the center of mass, This is re-
quired, as Prigogine pointed out in connection with the thermodynamics of

gas mixtures, in order to express correctly the properties of the mixture.
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1f this is not done, cne can not express properly the thermodynamic rela=-
tions for the mixture.

For this purpose let Yy, be a mixture quantity associated to a unit
mass of the mixture and g be a quantity related to a unit mass of the
K-th phase. Applying the principle of an additive set of functions to

express the properties, we obtain

[ evar=3 ff anar o
U 4) At

Using the mean-value theorem for integrals and then taking the

limit as Ax — 0, we can express the volume integrals in terms of area

integrals, thus

LE v» e Ko NP
{1 Cu

(3.39a)

Wi 2 (A=)

which can be expressed also in terms of the mass concentrations, C, thus

s R O I « C &Ke. Y (3.39b)
«ew “e,»

Introducing Equation (3.4), we can express the mixture property

Uy, in terms of mass-weighted averages, thus
Vo = (=) EOR 4y & o0 B8 Ly (3.402)
G w5
Yo = QETRRE A EWAEE A (3.40b)

Equation (3.40) expresses any mixture property applied to the

center of gravity in teyms of individual phase properties and of static
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concentrations, By substituting proper identifications for ¥, we obtain
the mixture density, internal energy, enthalpy, entropy, etc., which are

summarized in Table 1.

Table 1. Mixture Properties

Mixture Properties

Density = (i) K » + o «E‘?p

..E:*= (I-C) [ «em+ C [ «e,»

internal | dm=| (=) € &% <un+o¢«em<uﬁ] A
Energy €

Enthalpy > 0 =[ (4- ) «9.55<1-47 + &Py 413\?1 %-
= (1=Cc) 2>+ C <L,y

Entropy 5*‘ - [ (4-:4_) <<.e‘$> LS+ « “Ke,WN (‘51\?] -—e}-—

Ve,

= (1-C) ¢<s» +C <,

=

3.4.3 Velocity Fields in Two-Phase Flow

Since in a two=-phase flow system, the velocities of the two phases
are never equal, a two-phase flow problem always must be formulated in
terms of two velocity fields. However, there are several velocity fields
that are useful in analyzing various aspects of a two=phase flow system.
Depending upon the particular aspect, one can select a frame of reference

and formulate the problem in terms of the velocity fields that are most
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representative of, and appropriate to, the solution of that particular
problem., In the following we shall present these velocity fields which
can be used in a two-phase flow problem analysis.

The flow field in two-phase system can be formulated either by
considering each phease separately or by considering the entire mixture.
In the first case, the velocity fields are expressed in terms of the
velocities of the individual phases. This formulation leads therefore
to the two-fluid model. 1In the second case, the velocity fields are
expressed in terms of the relevant velocities of the mixture (the veloci-
ties of the center of mass and the center of volume) and of the relative,
i.e., diffusional velocities of the two phase with respect to these mix-
ture velocities, Therefore, the latter formulation is more suitable for
application to the diffusional model,

In order to derive the velocities for the individual phases let
;% = G’.K(x,y,z,t) be the local velocity of the K-th phase, then substitut-

ing for in Equation (3.4) we obtain the velocity of the center of mass of

the K-th phase "~TVK>, i.e., mass-weighed, area-averaged velocity of the

K-th phase, thus

(3,} (x,t) = K e_T&» / Koy (k=1,2) (3.41)

In order to derive the expression for the velocity of the mixture
we consider the additivity principle for set of functions which, in the
case of linear momentum states that the total linear momentum of the
mixture in any region is the sum of the linear momenta of the constit=-
uents presently occupying that region. This principle can be formulated

as;
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-
oAU = T A (3.42)
{ﬂe v Z‘ ﬂ{e v

We note that this expression gives rise to the definition of the

—

local mixture velocity L A acting on the center of gravity of the volume

elementq}_. Considering a volume element contained between two parallel
planes ATClx and Aqp | 1Ay, infinitesimally close together, we can express
the mixture velocity in terms of area averages., As before reduce the
volumetric averages to area averages, by considering the limits as

Ax ~—» (), thus

) «Q. V‘» % 62 «e-'l. v‘l»» (3.433)
€ €

U‘m(x,ﬂ = ({=-ot

&0, MM e >
3 C
«e» AR

= ({1~ C) (3.43b)

Introducing the definitions of the mass-weighed average velocity, we can

express the mixture velocity, thus

*

. N -

Vi = (=) Lew TAR “Le.» DA (3.44a)
€ O

= (1=-C) <B> + C <V -

The following observation can be made with respect to Equation
(3.44). We note that Equation (3.44b) is an averaged velocity of the

mixture, obtained by weighing the respective velocities of the two phases

*For the purpose of simplicity we have dropped the symbols (x,t)
representing the dependence of x and t, The dependence on x, t is assumed
to be understood,
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by the weight factors (1-C) and C, which are proportional to the masses
occupied by phase 1 and 2, respectively. Consequently, Equation (3.44)

can be interpreted as the velocity of the center of mass of the mixture.

In multiphase or multi-component systems one is frequently inter-
ested in the velocity of a given phase with respect to the center of
gravity of the mixture. This leads to the definition of the diffusion
velocitxpﬁkm, of the K-th phase with respect to the center of mass,

given by
-1 —y —t
Viwm= &ViY = Vi s K=i,2 (3.45)

By means of Equations (3.44) and (3.45), it can be easily shown

that the diffusion velocities of phase 1 v and phase 2-;2m’ can be

Im?

expressed also by

— S —
Ny = 1€ Vi s 2892 N, (3.46a)
b

b e -

VS‘.M = (1-C)N¢ = KE (A=) Ve (3.46b)
wherehv} is the relative velocity, defined by

=" — =

Ve = (Y= LV0 (3.47)

From Equation (3.46) it can be, further, shown that the following

relations hold:

e, N (3.48)

il

Lm

Ve = Vou =N (3.49)
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It can be secn from Equations (3.46), (3.47) and (3.49) that,
when the effect of the relative velocity is neglected as it is in the

case of homogenous flow model, then

N, e N, (3.50)

and it follows from Equation (3,42) that

<"(f.> = (5,) - (3.51)

thus, the two phases have the same velocity, which is equal to the
valocity of the center of gravity of the mixture.

If we are interested, for example, in determining the response
of the volumetric concentration to changes of pressure, power, etc., it
may be advantageous to formulate the problem in terms of the velocity of

- iy —
the center of volume T; and of the drift velocities vlj and VZ‘ of phase
1

—-
1 and 2 with respect to j.

We define the volumetric flux densities of phase 1 %} and of

phase 2 jg by

-5‘ - 2{‘. Alc- = L’.—u\ 4_\}‘» (3.523)
Te
“ e, dA
Ay
R ({ o % a4 -
}, = Auc A * = ¢ &V,y (3.52b)
Ave
A (ST
‘\16

and the volumetric flux density of the mixture by

-

T= §.+1, (3.53)



or in view of Equation (3.52), by

I: (U-s) KTy + ® LT,) (3.54)

Two observations can be made with respect to Equations (3.52) and
(3.54). First, it should be noted that these equations correspond mathe-

matically to the definitions of the number velocities in the kinetic

theory of gases, We note, further, that Equation (3.54) is an average
velocity of the mixture, obtained by weighing the respective velocities
of the two phases by the weight factors (l-o) and «, which are propor-
tional to the two volumes occupied by the liquid and the vapor phase,

respectively. Consequently, Equation (3.54) can be interpreted either

as the volumetric flux density of the mixture or the velocity of the center

of volume of the mixture.
ln analogy with the kinetic theory of gases and of mixtures, we de-

-

fine the drift velocity VKj’ of the K-th phase with respect to the

center of volume of the mixture by

—

Vigj = <y =) (3.55)

By means of Equations (3.52) through (3.55) it can be shown that
the drift velocities of phase 1 and 2 can be expressed by

—_

V*é = “MV.. (3.56a)
Vaj = (1-:&)3,- (2.56b)
e — —

Vr = VQ& — Vl& (3.57)

It can be seen from Equations (3.56) and (3.57) that, if ?} = 0
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then

= —y

Vu' = V’& =0 (3.58)
and it follows from Equation (3.56) that

By = <V =7 (3.59)

thus, the two phases have the same velocity, which is equal to the
volumetric flux density of the mixture.

It can be seen, further, from Equations (3.51) and (3.59) that

P —
Y 4 (3.60)

L a—

which shows that in case of homogenous flow velocities of the center of
mass and of volume of the mixture are equal.
However, when the effect of relative velocity is taken into account,

then from Equations (3.44) and (3.54) it is easy to derive that

J-Va= -y B8 v ool BEE 0 Glen
Cou Lg% ke

which states that, the center of mass and the center of volume of the
mixture move with different velocities, For example, it can be expected
that in separated flow systems the center of mass will move with a velocity
close to that of the heavy phase (which accounts for most of the mass),
whereas the velocity of the center of volume will move with a velocity
that is closer to that of the vapor (which accounts for most of the
volume) .

It can be expected, further, that this difference between the

velocities of the center of mass and of the volume will effect the dynamic
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characteristics of a two-phase mixture.

Relations Between the Velocity Fields. After having defined

different velocity fields in two-phase flow system, we shall discuss
briefly how these fields can be used in a formulating of a two=-phase
flow problem.

Mathematically speaking, any two of the preceding velocity fields
are adequate for all two-phase flow problems but each has certain advan-
tages, For example, one could formulate the problem in terms of area
averaged velocities, {Jl} and {;2}. As another alternative, however,

one could eliminate i3,>, for example, by means of the relative velocity

—

V. and formulate the problem in terms of {;i> and of-G;, etey

It is advantageous, however, to follow the well-established method
developed in the kinetic theory of gas mixtures, and formulate the
problem in terms of the velocity of the center of mass 3& and of the
velocities relative to this moving frame of reference, i.e., the
diffusion velocities, However, since the expressions for the drift
velocities have been studied and established for different two-phase
flow regimes, references [47 and 48], it may be more advantageous to use
the drift velocities instead of the diffusion velocities.
In Table 2 we summarized the velucit; ficlds for six inde euadeat

=4 -
sets of velocities. 'Two independent velocity fields are <V,> and <vy >

p —

-+ —
in the second column, v and V in the third column, v and V, in the

lm

fourth column, v and_séj in the fifth column, Fl and j, in the sixth

—r

column, H'and_ﬁij in the seventh column andnﬁ'and Vzi in the eighth

column.
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Tahle 2, vVelocities in Terms of Different Velocity Fields
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Velncitles in Terms of Different Velocity Fields (Continued)

Independent Velocity Fields
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3.4,4 Flux Fields

a) With Respect to Fixed Frame of Reference

The mass flow rates for the two phases are

W= [ e wudas Al «ovn

Aic

Wy = U e, audA= Ay e, 0, »

A?.c.

and combining Equation (3.41) with Equation (3.62) we obtain

W= Al «ey <V

Wy = Asc €, »m <V

We define the mass flux of each phase by
G W [ A
Gu= W, [Ag,

Substituting Equation (3.63) in Equation (3.64)

Gi= (1= &) &g w AV
G;a== oL KE,N LV ?

For the mixture we have thus

WT= W|'\'Wg_ ] AT:. e“ VM)‘_
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(3.62a)

(3.62b)

(3.63a)

(3.63b)

(3.64a)

(3.64b)

(3.65a)

(3.65b)

(3.66)



Gr=G v e, = o, N (3.67)

Thus the latter mass flux GT is the sum of the two linear momenta of the
phases,

The volumetric flow rates for the two phases are

(( Iel. le cl A
Q; =D (3.68a)

m e dA

[ evaan

Q, = (3.68b)
[ e.an
A c

which, in view of Equation (3.41) becomes
Q-i-"—' Alc AViY (3.69a)
Ga= A 40,0 (3.69b)
The total flow rate for the mixture is:
Qr= A [ -y <oy e ey y]  3.70)

In view of Equations (3.69) and (3.52), the volumetric flux densi-

ties, which were already defined in relation with the velocity fields,

become

i1x:%— =S (.4—011 <u.l.*\.» (3'713_)
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Qo weves (3.71b)
Ay,

&lu.u-'

Finally, the volumetric flux density of the mixture become

.a‘= _QI = i.‘ﬂr é'_“_ = Q=al) <V, + o6 <Waxd (3.72)

Ar.

b) Volume Flux with Respect to the Center of Volume

As j; and ip represent volumetric fluxes with respect to a fixed
frame of reference, we can define also a volumetric flux with respect
to a moving frame of reference say with a frame which moves with

velocity j: i.e., with the velocity of the center of volume, thus
= 4y~ o Kow1.9 (3.73)

which, in view of Equations (3.71 and 72) and of the relations summarized

in Table 2 becomes

and

ig; — ot v‘l.i = o= t\"'ﬂt) Vr- (3'74}3)

These two volume fluxes have the important property that their

sum is zero which follows directly from Equation (3.74)

i i =0 (879

c) Mass Flux with Respect to the Center of Mass

As Gy and G, represent the mass fluxes with respect also to a
fixed frame of reference, we can define two mass fluxes with respect to

the center of mass, i.e,, with respect to a reference frame moving with
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, thus

B o= B Wi P (3.76)

™m,

However, in view of Equations (3.64 and 3.67) and the relations sum-

marized on Table 2, mass fluxes with respect to the center of mass can

be expressed as:

and

is

equatio
the int

(1-) <

G = U-a) €e» Vi = e (=) Vi =—e.C(1-¢) Ve (3.77a)

Gau= 2 «€y» Vau= By CViu=g, CW-C) V. (3.77b)

It can be seen that the sum of these two mass fluxes is zero, that

C'llM * G‘g_m =0 (3.78)

3.5 Fundamental Identity

It will be seen in what follows that after integrating the field
ns over the cross-sectional plane of each phase we obtain from

egration of the comvective flux terms two area-averaged fluxes

‘Plvi$l>? and G*<p2Vé¢2>> g Note that these two terms are

fluxes with respect to the center of mass of phase 1 and phase 2, respect-

ively.

mixture
vective
and the

respect

The fundamental question which arises when we condsider the

is to determine the relation which exists between the mean con=-
flux vam¢m, with respect to the center of mass of the mixture

area averaged fluxes (1-o) <<piﬁlﬁlﬁband Q<<p2€éﬁz>> with

to the centers of mass of the individual phase,.
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In order to derive this relation, let us consider the mean flux of

-

the mixture ©_V VU

m'm¥m + From the derivations in the previous section it is

obvious that

9_3_ T [(I-— o) «e.»-(?:\q- o &g, M < F,‘»] [L\- o) f‘-§:3 <+.s+«i‘é£1& <“h';] (3.79)
™ ey

By expanding the right side of Equation (3.,79), and then using

the mixture density definition, we obtain

e -’C‘...'*'..‘ = l-x) «g» 43.5- SHED ¥ % KWLV <Y (3.80)
[} — —
T G ) e e [ (¢t~ (<> - <ty) ]

In view of Equations (3.4), (3.8), and (3.47), it can also be expressed by

e.. 3,_'{—,‘-_- (1- ) €& 0, ¥, » + o KO VS - ;_ e lr-a) g, m Ve A¥>-(3,81)

(-00) wp> Cov (Vi) = ot «weam Cov (F501)

where we have defined the difference in mass=-weighted quantitieg A<{> by

AWy = <% > —<*, >y (3.82)

By means of Equation (3.36), it can be shown that the relation
derived above can be alsoc expressed in terms of the mass concentration

C, thus
-
0 . P = (1-0) €, CV %y 4+ C e ¢V —C(i-0) P, Vr A <> - (3.83)

(=C) Pfu Cw(?,-&ﬂ - C e, ewk-‘;;-*q.)

Equation (3.81) or (3.83) is the fundamental identity which is of
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great imporlance because all field equations for two-phase mixture are
based on this identity,

The second term on the right hand side shows the effect of the
relative velocity, can be interpreted easily by using the diffusion
velocities $;m’ (K =1,2). 1In effect it follows from Equations (3.48)
and (3.49) that

(1-C) e < ¥,y +Ce AT, ¥, = o, Vu Y rfU-c)e N dhy 4 C € Vam OO (3.84)

(1-C) euw Cov (F-%¥) x C e, Cov (V,- ¥.)

which states that, the total convective flux per unit area of the total
channel cross-sectional area is equal to the mixture flux with respect
to stationary coordinate system plus the diffusional fluxes with respect
to the center of the gravity of the mixture,

Actually, the ciffusive transport at the velocity'G;m, (K = 1,2),
of the quantities associated with the K-th phase takes intc account the
actions on the mixture if the mixture is conceived as a body in motion
with the velocity 3&.

The result expressed in Equation (3.84) is consistent with the con-
ceptual basis of the kinetic theory of gas mixtures. Finally, the covari-
ance terms shows the effect of the velocity and of the quantity distribu-
tion across the channel cross section.

An alternative expression for the fundamental identity was given
by Truesdell, reference [ 23, pp. 871, in which the material derivative
of the mean value is expressed in terms of the mean value of the material

derivative,
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3.6 Summary

In this chapter we have discussed the general characteristics
and aspects of separated two=-phase flow and furthermore we have pre-
sented the basic relations and parameters relevant to this flow regime,
In particular:

1) The analv:tical methods and models applicable to separated two-
phase flows werc discussed, The formulations based on the two-fluid and
on the diffusion models were described. The characteristic of each
nodel as well as the specifiec advantages of each medel were enumerated.

2) The applicability of a time average and of a space average
was discusserd, For separated flow two expressions for averaged proper-
ties were derived, one based on the area-averaged and the other on the
mass-weighed arca-averaged value,

3) The difference between the concentrations based on static
and on kinematic parameters was noted, It was stressed that only the
first one can be used to describe correctly the mixture properties of
a two-phase system,

4) The importance was stressed of expressing the mixture proper-
ties in terms of the baricenter of the mixture. The relevant thermo-
dynamic properties have been derived and expressed therefore in terms of
the static volume (or mass) concentration and of the baricenter.

5) Various velocity fields which can be used to describe a two-
phase system were presented together with relations that exist between
them. The significance of these fields was discussed also.

f) Expressions for the flux fields associated with these velocity

fields were derived and discussed,



7} The fundamental identity of two-phase flow was derived. It
relates the mean convective flux with respect to the center of mass of
the mixture to the area averaged fluxes with respect to the centers of

mass of the individual phases.

73
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CHAPTER IV

DERIVATION OF AREA AVERAGED GENERAL BALANCE EQUATIONS

4,1 Introduction

It is well known in continuum mechanics reference [22], that the
conservation equations can be derived from the general balance equation.

It was discussed in Section 1,2 and illustrated in Figure 2 that
in the separated two-phase flow, the flow field of each phase is simply
connected, i.e., the variables in each region of integration are con-
tinuously differentiable, It is to be expected, therefore, that in
separated two phase flow, the conservation equations of each phase could
be derived from such a balance equation, provided that we account, proper-
ly, for the interaction between the phases, It is evident that these
interfacial effects expressed by jump conditions, will play a most
important role in such a formulation.

In this chapter we shall list first the local field and constitu-
tive equations for each phase together with the local expression for the
general balance equation. From these and the appropriate "jump" condi-
tions we shall derive the general one-dimensionalized balance equations

appropriate to the two-fluid and to the diffusion models.

4.2 Local Formulation

4.2,1 Field and Constitutive Equations

As usual, each phase flow field is formulated in terms of three

field equations. These three field equations are conservation equations
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for the K-th phase, (K = 1,2)%:

1. The continuity equation

3e - _
5 VB V=0 , K=1,2 (4.1)

where p represents the mass density and V the velocity vector.

2, The linesar momentum equation

e, v s ik - _
———-}:Vk* ?.E.-_ Up Vg = 7 Ty * ehﬂéhh s K=1,2 (4.2)
where EK is the stress tensor, EK is the external body force per unit

mass, It is customary to separate the stress tensor, T, into thermo=

dynamic pressure P, and a viscous stress tensor T, according to

Fe=-R I+ T , K= 1,2 4.3)

where 5 is the Kronecker delta,

3. The energy equation

d

o O Cuet Ye) & Top Vi (buw WY = - V- 4 (4.4)

V- (T-) + 60 8-V » K=1,2

where up denotes the specific internal energy and Ek the heat flux.

These three field equations can be summarized in a single equation
known as the general balance or general conservation law, reference [227,
According to this law a quantity {, (representing scalar or higher

order tensorial quantity), is balanced as:

*In the two-phase flow literature it is a common practice to iden-
tify the heavier phase by 1 and the lighter one by 2,



76

— —
oY+ Ve V¥, = V-, + e, %, K= 1,2 (4. 5)

S,
>t

-

where § indicates influx of the quantity 1V, and ¥ the rate of genera-
tion of the quantity per unit mass at each point throughout the field.
In order to obtain three field equations from Equation (4.5),

the proper identifications for V¥, ® and ¥ are summarized in Table 3.

Table 3, Proper Identifications for the Generalized Functions

Notation ¥ it 41
Continuity { 0 0
Momentum -‘\; -?I' _é-
Energy U+ Vl/.’i‘. _é;—?l"rf _é.-_\}

The additional equations used in the formulation are the con-
stitutive equations. These are:

1. The thermal constitutive equation of state

€. = €, (P, ) , K=1,2 (4.6)

where T is the temperature,

2, The caloric constitutive equation of state

Uy = ,U,V_Lek- ,TK\ ;B 1,2 4.7)

3. The mechanical constitutive equation: By assuming the fluids

are Newtonian, one can express the stress tensor as

- (r-2p) V-V B[ YR+ (WR)] L k=12 @B
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where ¥ is the dynamic viscosity, and F’ the dilatational or bulk visco-
sity. The bulk viscosity is identically zero for low density monatomic
gases and is probably not too important in dense gases and liquids, and
therefore, in a great majority of engineering amalysis it is simply
ignored,

4, The energetic constitutive equation: By using the Fourier
law of heat conducticn for isotropic media, one can express the heat

flux vector by

—il-_.—..-\q‘_VTK y K & 1 (4.9)

This system of equations constitues the field and constitutive
equations involving thirty variables in thirty equations. To complete
the system, it is necessary to consider end values, i.e., the initial
and boundary conditions of the flow field.

4.2.2 Boundary Conditions

In two-phase flow systems the boundary conditions must be specified
not only at the external boundaries, i.e,, at the fixed or solid bound-
aries, but also at the internal boundaries, i.e., at the moving boundaries
or interfaces. The external boundary conditions can be specified as in
single phase flow problems, i.e., by specifying the velocity and the heat
flux, etc., at the boundaries.

However, the specification of the boundary conditions at the in=
ternal surfaces, which are moving with time, should be formulated properly.
Particularly, for the separated flow regime, the structure and the dynamics
of the interface greatly influence the rates of mass, heat and momentum

transfer as well as the stability of the system,
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In Appendix B, we discuss the motion of interfaces and the exist-
ing theories which have been constructed to analyze the interfacial
mass,; momentum and energy transports. For a singular surface® with
the distributed source, the general balance equation at the interface
was derived by Slattery [41] and used by Delhaye [40]; it is expressed by

means of Equation (B.10) in Appendix B, i.e., by

2 N i — == =
E Hv.‘{ e, W=V} Y + £|=-V0 (4.10)
=1
where the various variables, which appeared before, have their usual
meanings. The new variables are defined as follows: GK is the unit
normal vector at the interface directed outwardly from the K~-th phase,

—

V; is the interfacial velocity vector defined by Equation (B,7) and Vs
is defined as the divergence operator on the surface in order to differ-
entiate it from the divergence operatorV, in the space. Finally, g

is the surface flux tensor inwardly directed through the interfacial
boundary curve. Values cfg for mass, momentum and energy are discussed
in more detail in Appendix B¥¥,

In order to obtain mass, momentum and energy balances at the

interface from Equation (4.10), the expressions for an&% should be

taken from Table 3 whereas the VS*B term should be taken from Appendix

B. 1If this is done, one finds Equation (B.13) for mass balance

*Singular surface is defined as a surface of a limiting value of
a quantity at a point on a path restricted to one side of the surface
differs from that obtained by approaching this point from the other side
of the surface.

#%We note that if the surface source term 0, is neglected in
Equation (4.10), then this equation reduces to the well known Kotchine's
"jump' conditions given in reference [ 22 ],
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o
z a\‘; e (V- Vi) =0 (4.11)

x
"

Equation (B.25) for momentum balance,

za ﬁkl- [ek (U =V;) N+ P;%-E.J: 277G N, (4.12)
Wl
o @ 1y 3
wlRled s Walen-Fa T

and Equation (B.37) for energy balance,

2

S M [e (Fus) (w2 ) (§ e R V=BT )) = (4.13)

K=
[ (Glhu ‘buz\*r(E:u; F?ﬁl)].ca

The terms appearing in these equations as well as their implica-

tions are discussed in detail in Section B.2.2 of Appendix B.

The field and constitutive equations listed in Section 4.2,1
together with the interfacial balance equations, i.e., Equations (&,11)-
(4.13) complete the formulation in terms of local parameters, of a
separated two-phase flow system. Of course, boundary conditions at the
external surfaces and the initial conditions must be given in order to be

able to solve the problem.

4,3 Averased General Balance Equation for Individual Phases

In the previous paragraph the partial differential equations
which describe the local conservation of mass, linear momentum and
energy were set forth. In order to close this system of field equations
we also listed the necessary constitutive equations. In effect, we
described the field of the K-th phase by the general balance equation,

Equation (4.5), and accounted for the actions of one phase upon the
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other by general balance equation at the interface, Equation (4.10).

These equations are exact and valid throughout the flow fields
of the two phases, however, it is not feasible to seek a detailed solu-
tion for this system of equations. The difficulty stems from the fact
that they involve three space coordinates, a time variable (in problems
involving transients) and a large number of dependent variables, There=-
fore, even for most simple cases, these equations must be solved numeric=
ally.

However, for many engineering applications these equations can
be simplified by meaas of proper averages. The advantage of such an
approach is two-fold, First, the variables appearing in the final equa-
tions will have explicit definitions in terms of averaged values, Con-
sequently, it will be easy to compare predicted results with experi-
mental data (which in two-phase flow are most often presented in terms
of average values), Secondly, by means of space averages it will be
possible to reduce thke number of space variables and to treat the
problem as an one-dimensional flow of problem,

For the purpose of averaging, let us consider the cross sectional
plane AKC, of the K-th phase, (see Figure 2 ), which cuts the inter=-
facial surface along the curve Ei, and the solid boundaries along the

curve gKe' Let us integrate the general balance equation (4.5) over

Age, thus

H % e, ¥, dA y H v-(e;ﬁ,ﬁﬂ%) dA = HQK?K.JA, K = 1,2(4.14)
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The equation is simplified in the following manner. On the left-
hand side the first integral is estimated by means of the Leibnitz's

theorem over surfaces derived in Section 3,3.3, Equation (3.25), thus

H i e ¥ SA = 5{ (Aw. «ezhj») q.z J (V- ﬂg)*‘ {4 15)
Ake T (T

whereas the second integral can be estimated by means of the divergence

theorem over surfacea, Equation (3.20), thus

H V-(e Bttt )dA X

AN

EE: f. ( e‘ Uk'+g‘+ 4’ ) a

[ Akc(«eu_ﬂ'“"‘k»* «49“5))} (4.16)
Age

a.lﬂ..
x |>

Finally, the integral on the right-hand side can be expressed in terms

of area averages, Equation (3.2) as:

ff ek*g AA = AK; {'(EK-;JK% (4.17)

Akc
Inserting Equations (4.14)-(4.17) in Equation (4.13) and re-

arranging we obtain
"{" (Akc L E,_"P,_’»)-i--— (Akc. & elt.* vk.x. )_—""}“' ('AKc. «4:& »)*— (4.18)

Ax. 4@t » ~ Z f Nir [er_(m CAR + ] dA

e_e t ki

We note that for the case when the cross sectional areas of the duct is
constant, then Equation (4.18) reduces to that derived previously by
Delhaye reference [24] . Division of Equation (4,18) by the total cross-

sectional area ATc’ of the channel yields by use of Equation (3.4) the



following equation expressing the general balance equation for the indi-

vidual phases, i.e., for K =1 and K = 2, in terms of mass-weighed averages:

a [ A <N ,) Y Ay ¢ 4,19
— P il "y | | —— LV <> - ( . )
-~ iy Lo > 4 = ( o e <V <"h,,‘>)

—-_ 3 ( Axc «¢h:=>)+ Ace 4 P {¥u> = A [«E.,V’“"u-> ¥+
dx AT‘. AT-; AT"’

(-:..bg‘)s,.‘. LEL» COV(VR‘ "'Pu,\] .3_‘:‘.5.1‘:- - I‘; Z fﬁ,.[ 9«.(-‘]“»"-‘}“*&*
“leesi Sk

oty
dA ) Ax > .
Tl B A R Rt

where the covariance defined by Equation (3.8) has been used in order to
express average of product in terms of product of averages.
Equation (4.19) which is applicable to each phases, i.,e., K = 1,2

represents the one-d mensionalized area-averaged general balance equation

for a quantity V. The various terms which appear in this equation have
the following meaning: The terms on the left side represent, respectively,
the time rate of change of quantity ?K-mass, momentum or energy=per unit
volume of the channel, and the convective flux of the quantity with respect
to the fixed frame of reference. The right side terms are interpreted,
respectively, as the flux of the quantity with respect to the baricenter
of the K-th phase, the generation of the quantity, the effect of area
change of the channel, interaction at the internal and external boundaries,
and finally effect of the distribution of the velocity as well as the
quantity $K‘

The general balance equations for each phase can be obtained from

Equation (4.19) by ascigning to the K the values 1 and 2, Thus by taking
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into account the void fraction definition, Equation (3.30), we obtain
from Equation (4.19) the following averaged general balance equations for

the phase 1, K = 1:

% () «p o <% & .:.'.. =) & Sy <Ny =..§L GW=x) & 2>+ (4.20a)

Got) %@ AH> - Lmx) | «pm 4V C> + cd >+

ce Cooto 0] Hahn LS {6 fecTate T, 14
x -

l___e_'; Iﬂn
_B..[o-nq «p3 Cov (Wa-%)]
3 x

and for the phase 2, K = 2:

Do BT ¥ D s AV ANy =2 D xug S (4.20b)

2% A% Ax

ol 4 9“» £ '*'.;> - X [({E,“h A1 ('*"3‘)1- &d, W 4 e Y Cov Ly, o '3(1)1 t:-im Av- _

e g g Fa-V) Hap v ] 4B _2 [wwen Cortons ¥y

Ax,
E-_' E.L !1‘&

We note that in order to express the averaged general balance equa-
tions in terms of mass concentration C, rather than area concentration &,

one can use the relationship between C and & given by Equation (3.36).

4.4 General Balance Equation for the Mixture

In the previous section we considered each phase, i.e,, fluid
separately, The term, which accounts for the actions of one phase upon
the other, emerged naturally as a result of the proper averaging process.

Besides this "two-fluid'" point of view, we may consider the diffusion

model in which the mixture is regarded as being in motion as a "single"



fluid. 1In order to obtain the general balance equation which governs the
total mixture flow field, we shall add two general balance equations de-

rived for each phase, i.e,, Equations (4.20a and b), thus

?
= [0 wom <> & o <td] 2 [ U-mruem v b (4.21)
g% Ty ]2 % [0 «d 3 v wacdy, »] o] Gomd wep b wwep ]

[_t\-u) RUR WAL TE AT RITR R T | <KDY & Gex) Udp B & o 4B D+

Cﬂ\" L 0.'\'\ ] JQ‘\\“T&- 2 Z g ?\“Q‘[ehn ('G-I."G[)*Kl 1'_‘;““]%-'

D‘E;b K“ IKO
S Cay (V)
x

where the covariance term Cov (v.y) is defined by
Cov (0.¥) = (=) & Cov (1,0 ¥,) + x e, »Con (st (4.22)
Substituting the mixture property definition, Equation (3.40),
the fundamental identity, Equation (3.81) and the general balance equa-

tion at the interface, Equation (4,10) in (4.21) we obtain

A 23
-;_*. ?‘“ h""‘*- %‘- P \.’..,‘,LH" __.% #m:. * e-\ —'—K_Ht tf‘»«e»q P"‘P;f )

[g“'l)'..,‘*,., *uL\-u}ﬁﬂ%igﬁ’b Ve ALY +&, . « Cav LU--'H] ‘”: Ve
-

= *
{ .0 dA | E § - 3
__k_‘,-_ { Vs 2] ;_;.._x.._ g ke[ehﬁ_\r“-\rﬂ’-\'“* q:'“ ::--QNU’ 'P)
e Ii “ w= Ka
where we defined ¢mx as the mixture flux given by
®,, =U=m) Ly %+ o o, (4.24)

We note that since the mixture is conceived as a single fluid in

motion with the velocity LA the diffusive transport V,_ of the quantities

Km

associated with the K-th phase is taken into account in the term

o (=) «?.\)@(tl’,» Vex AC¥> = QO=C) 0 Vi AW« C 0 Vo, AN (4,25a)
q



o (1-00) "‘e“’;«e“” Ve DY = O-o) € Vi O e ie m N o 44T (4. 25h)

A

in which (1-C) pm_{;lnl and € gV,

o Fepresent the diffusion mass fluxes

with respect to the center of gravity of the mixture for phase 1 and 2,
respectively, Therefore, by expressing the mixture general balance
equation with respect to center of mass of the mixture, an additional
term arises in the equation due to the effect of the relative velocity,
between the two phases. As will be seen in the further chapters this
term will give rise o the diffusion mass flux, diffusion momentum flux,
(drift stress), diffusion energy flux in the continuity, momentum and
energy equations, respectively.

Now we impose the requirement, reference [23] that the mixture
as a whole i,e., as a "single" fluid model does not know whether it is
simple or heterogeneous. To do so, we shall modify the mixture flux
term a%, by introducing the total flux E; defined as

— — - e
F, =k, t0-c) e Ny rCe, Yy, LYY (4.26)
Substituting Equation (4.26) in (4.23) yields the one-dimension-

alized mixture balance equation, thus

SETh Vien o = = 2 * e Y - 4.27
W “+} € Veun = ax.‘.i’ﬂl ( )
[ ewvuntus « Cov(v-4)] 2 WAr 4 ( V.-6 dA _

ol dx d*

2 L

A
_l{_. E J “l‘e'[ ek.e ka.e D‘,_) *Ke "' ¢v.ek T ‘:,_ Cov (¥-)
Te =1 ru

The first term on the right hand side accounts for the effect of

the relative velocity between phases; the second is the source term;
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the third accounts Zor the effect of changes of the cross sectional area
(as in nozzles, etc.); the fourth term accounts for the effect of the
interfacial source, i.e., surface tension; the fifth accounts for the
effect of transport of quantity at solid boundary (as in porous film
cooling); the last term expresses the covariance terms.

If the one~dimensionalized general mixture equation, Equation
(4.27) is compared with that of the single phase equation, we obtain
additional term due to the interfacial source, otherwise the general
balance equation of the mixture will have the same form as that of the
one-dimensional single phase flow in a conduit.

In reference [23] the mixture balance equations were derived from
the continuum point of view. For the reason of comparison we can put
them into our notation and express as a general balance equation as

follows:
a - I g
= Ot + Vo VN =-Y-3_+e, tu (4.28)

Comparison of Equation (4.27) with Equation (4.28) reveals that
Equation (4.28) does not account for the interfacial source which is
taken into account by Equation (4.27). The reason for the disagreement
emanates from the fact that in the derivation of Equation (4.28), the

author postulated the Xotchine's "jump" condition

2
ol - ~ i A
z eu;_ (v\t; *\rl‘-)'“hi.*h"-¢-’-"“u“=° (4.29)
Kad

as a constitutive equation to be satisfied at the interfaces. By com-
paring Equation (4.29) to Equation (4.10) it is seen that Equation

(4.29) does not account for the surface effects.
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4,5 Two-Dimensional Flow Field

It was discussed in Section 1.2 and illustrated on Figure 1, that
the class of separated flows can be divided into plane flows and quasi-

axisymmetric flows, If the flow can be approximated by two-dimensional

field, then the line integrals appearing in the balance equations, i.e.,
Equations (4.20), (4.21) and (4.27), can be estimated immediately. This
will be done for two-dimensional plane and axisymmetric cylindrical

flow systems.

4.5,1 Plane Flow

Two-dimensional plane flow is illustrated in Figure 15 and the
essential geometric relations appropriate to the plane flow are derived
in Appendix C.1. By taking the width as unity, i.e., §i = Ele g §2e = 1;
ATc = H, and substituting Equations (C.1l) and (C.13) in Equations (4.20),
(4.21) and (4.27), we obtain:

Plane flow general belance equation for phase 1,

%I (7 we» <)+ L (e <y <o) = “% (% «a,) + (.50)
. —— Ep. . & "1
n o b <R[ o Fa-Fo e+ F ][ (2)]2

Rne '[ bie (‘-Ea."':;e.\ *nc. +$\al“ ai* M «KE Cov (Vin- '*'.)

Plane flow general balance equation for phase 2,

‘:“*[L“"'” @R, 4] 4 '%;x[ (M=) &, AV <+Q]=_§B.Im--q) &d, >+ (4.31)
- ~ --h-l ] %’ a "‘1
) o 36T € (B T+ B L0e L2V T

:?— LH""[\ «KE,» G"V‘ LU-;&‘*:}
X

Plane flow general balance equation for the mixture,
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—:—; s, Vi -\--aé: P Vs "'l"n:-‘}"& Ton v 8 Yu + (4.32)

- (ve-8) [ux( %)*]": L e[l (B he s BJ-2 Cov(v)

In these equations 7] is the thickness of phase 1, and H is the half
distance between twc parallel plates, see Figure 15,

4.5.2 Annular Flow

Axisymmetric annular flow, i.e., = ﬂDi, illustrated in Figure

51
16 and the essential geometric relations are derived in Appendix C.2,
Substituting Equations (C.22), (C.26) and (C.27) in Equations (4.20),
(4.21) and (4.27), we obtain:

annular flow general balance equation for phase 1,

% U““J«f“b<5'.>+§ L.-x)“gpsw.‘»w‘)a-ﬁ_ (1= %) e > & (4.33)

ax Bic

v pe
G-} @ 4% = G- A WO <Y + € o+ & Cov (V0 ¥,)] %ﬁk -
oy - Y,
‘3} (o) kg, Cov (00 W) = W[ e (Vii- W) v {'*[‘;;1( M)]l ave

Ta

N P A AR | RPN o

annular flow general balance equation for phase 2,

S X we AN & X 4P M4 Vi) == kb Byuup» Y- (4.34)
at ax Bx 2

r .\P . v L\" _,‘, ] A‘kﬂﬁ‘a-.__
u[«g,_»*t x> AW Kb »>w &0 Uov (VN S

]
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|

annular flow mixture general balance equation

“,?'t' en"t’n'ﬁ'% Co U'un.l-'{"m =——:—. *M.+9M‘;.‘w[f“uu,*‘~+ §“‘ - (4.35)
( 1 = Yy
Cov(\l'-ﬂ-)]i‘:\‘}e *;? L?"'e)&H[%‘L“;ﬁ)]l} i
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In these equations Dg is the variable pipe diameter, see Figure 16.

4,7 Summary

1. By considering the flow field of each phase as a continuum,
the"time dependent, separated two-phase flow problem was formulated in
terms of a) the fundamental conservation equations applicable to the
flow field of each phase, b) the constitutive equations describing the
behavior of each constituent, and c¢) of the internal boundary conditions
prescribing the interfacial balance. The difficulty of seeking a solu-
tion of such set of equations was noted and discussed.

2. Using this formulation the mass-weighed area-averaged general
balance equations for each phase were derived. They describe the fields
of each phase in terms of area-averaged variables and take into account
the effects of interactions at the internal boundaries between the
phases and of the transport of the gquantities at the external boundaries,

3. By adding the area-averaged general balance equations for each
phase, the mixture general balance equation was obtained. It was noted
that this equation differs from those available in the literature
(applicable to single phase flow of mixtures) by the presence of an
interfacial source term. It was shown further that expressing the mix-
ture general balance equation with respect to the baricenter of the
mixture gives rise to diffusive fluxes with respect to the baricenter

of the mixture.
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CHAPTER V

CONTINUILITY, DIFFUSION AND VOID PROPAGATION EQUATIONS

5.1 Introduction

It was seen in Chapter 2 that the conventional formulation of a
two-phase flow problem has been expressed in terms of only one continuity
equation., Furthermore, it was discussed briefly in there that a two-
phase flow problem with a phase change should be formulated in terms of
two continuity equations. In order to substantiate this statement let
us look at the well-established field of transport phenomena.

It is well known that in the analyses of multi-component chemically
reacting mixtures, the number of continuity equations, is equal to the
number of components., In addition to these two continuity equations,
two constitutive equations =~ one for the rate of chemical reéction and
the other for the diffusion coefficient = are required to completely de-
fine the kinematic requirements of the reacting systems,

If, instead of a single phase, two component chemically reacting
system, we consider now the present problem, namely a single component,
two-phase flow system in thermodynamic non-equilibrium, we could expect
that a similar number of equations will be required to describe the
kinematic field of the latter system regardless of what model we have
chosen.

In this chapter we shall formulate the kinematic field of a two-

phase flow system in two-fluid and the diffusion models. It will be
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seen that although forms of the field and constitutive equations in both
models are slightly different from each other, the number of the field
and constitutive equations are the same. Finally, from the differential
equations we shall derive the relevant similarity groups which can be

used for purposes of scaling.

5.2 Two=-Fluid Model Formulation

A formulation based on the two-fluid model should be expressed
in terms of two continuity equations for the individual phases. There-
fore, in what follows we shall derive the continuity equation for each
phase and discuss the additional requirements which are necessary in
order to complete the kinematic description of a separated two-phase flow
field,

5.2.1 Phase Continuity Equations

A, Derivation

To obtain the mass weighted area-averaged continuity equations

from the averaged general balance equation, Equation (4.20), we use the
proper identifications for i, Q and a. According to Table 3, for mass
transfer they are given by

¥ = 1, mass per unit mass, (5.1)

i}

= 0, no distributed mass generation

==
|

ol
1

= 0, no mass flux with respect to the baricenter of gravity
of each phase,
Substituting Equation (5.1) in Equations (4.20a and b), we obtain

the mass-weighted area-averaged continuity equations for phase 1,
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and for phase 2,

(o« e,») . % (o «g,» w,,») = ke, ¥4V, 4 LuAr -~ (5.2b)

4
ax
. N Nn,g - € Ao -V A
. E f 20+ € (Vap-%) =2

E:B,L I],!

¥le

The first term on the right hand side accounts for the effect of changes
of ecross sectional area (as in nozzles, etc.), the second term accounts
for the effect of mass injection at the external boundaries (as in
porous film cooling) as well as the mass transfer at the internal sur-
faces (as evaporation or condensation). Defining by hKe’ and hKi’ the
mass flux outward from the K-th phase at the external and internal sur-

faces, respectively, it follows that
. ~ — = ,
Mg = ke €y (Vg = Vi)s K= 1,25 2 = ejigs.3)

Furthermore, defining by FKi’ and FKe’ the mass formation of the K-th
phase per unit volume of the mixture from internal and external surfaces,
respectively, the line integrals appearing in Equation (5.2) can be
interpreted as

~ —_ - ék 3
- I Mg * €, (Ve - Vo) T— =—A—IT- ( Mg S8 he .5

AT&
IKQ TKE

in which K takes the values 1 and 2 whereas £ assumes the values e and

i. The conservation of mass at the interface, i.e,, Equations (4.9)



together with Equation (4.10), requires that

A

2
(5.5)
S aam3

Using Equaticn (5.4), we obtain from Equation (5.2a and b) alter-
native forms of the mass-weighted area-averaged continuity equations
for phase 1 and 2, thus
3 U-a) «e + 2 G- <«g‘»<\r‘*>=_u-u)«elsuv,niﬁmwg [y (5-62)

¥t ¥ %

G:Eﬁ

) b _ d I
_ RN = AL, LY = — e w“»d_: b Ay o z [111(5.61:)

t:ei
which can be expressed in terms of mass concentration C, rather than

void fraction w. To do so, we shall simply use the relation between

o and G, which are given by Equation (3.36)}; thus from Equations (5.5)

and (3.36) we obtain

H C) ea +;.. -Cle,, 4oy ::-u-c}e,,w..)g.‘h AT,_+§ I':E (5.7a)

F
Cee,t

X e ¥ Qe 4, 2oV & u A i 5,7k
}t e*-s-_x. € “Vix 1;_\.‘[&\ T¢_+E_ Al (5.7b)

L=en
In the above set of equations, i.e., Equations (5.6) and (5.7),
we need to discuss only the significance of the source term [}, because
all other terms appearing in these equations are self-explanatory. This
will be done in the section which follows.
B. Discussion

We note here that in a two or three dimensional analysis of
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separated flow regimes such as annular or the jet flow where each phase
can be considered separately, i.e.,, as a single phase flow problem, the
source term Tk, does not appear explicitly in the continuity equation
i.e., Equation (4.1), but will appear as a boundary condition at the
internal and external boundaries. In the one-dimensionalized formula-
tion, however, the source term appears, see Equation (5.7), as a con-
sequence of the boundary conditions and of the area averaging procedure.

By comparing the averaged continuity equations, Equations (5.6a
and b) with one-dimensional continuity equations for a given species
undergoing chemical reaction, reference [50], it can be recognized that
the source term rKi’ corresponds to the rate of production of a K-th
constituent of a single phase multi-component chemically reacting flow.
It is well-known that in analysis of multi-component flow systems, the
source term is specified by an appropriate constitutive equation for
chemical reaction. Consequently, even if the mass injection rKe’ at
the external surfaces is known a priori, in order to specify the

vaporization or condensation rate rl{i’ at the internal surfaces, it will

be still necessary to specify the constitutive equation for net vapori-

zation (or of net condensation), which in thermal non-equilibrium two=
phase systems, depends on the structure of the vapor-liquid interface,
reference [51].

5.2,2 Two-Dimensional Flow

Although above formulation is general and applicable for a
general flow field, it may be of interest to express the formulation
in the practical separated flow problems, i.e., plane and annular flow

regimes,



A. Plane Flow

Plane flow continuity equations can be obtained either from
plane flow general balance equation, i.e., Equations (4.29) and (4.30)
with appropriate identifications for i, @ and @, i.e., Equation (5.1)
or from Equations (5.6a and b) together with the relations derived in
Appendix B. Here we shall obtain them directly from the general balance

equations. Therefora, in view of Equations (4.29), (4.30) and (5.1)

we can express the continuity equations for phase 1 as

3 2"

— M LW + > M LAV = - i:ﬂ‘; I. |+ ( ______‘5"'1 ) 1 - ':ﬂ\e, (5.8a)
A -3 o

o

whereas for phase 2 as

i

27>
% (H=7) «e;.\m%; (H=0) &L AV = = W, [H(_:._E.) } (5.8b)

where we have used Equation (5.3) for ﬁkﬁ

In the presence of long interfacial waves

x
7 & to (5.9)
dx

which in turn implies that
B
Y
(_13 o (5.10)
D
and it can be neglected in Equations (5.8a and b).

B. Annular Flow

Similarly, to obtain the annular flow equations, We shall use
the general balance equations appropriate to two dimensional axially
symmetric flow, i.e., Equations (4.31) and (4.32), together with Equa-

tion (5.1). In this case we find for phase 1
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whereas for phase 2

X o &P »ad KU H AV Y = k@ W v,y 2 G D 4 Ty (5.11b)
>t * > % ax
where
21l
F.;—_-- T 4\ e 1“_(3_ b‘\&) ] (5.12a)
De Tx L
and

e Vm
lle= = 4 n&ue[“-td P};)] (5.12b)

De dax 4
Again if the interfacial waves are long compared with a character-
istic length in longitudional direction then a similar approximation to
Equation (5.10) can be done, thus

(_E’_ beq—:ﬂ)‘- ~ 0 5. 13)

Ix &

5.3 Diffusion Model Formulation

A kinematic formulation based on the diffusion model is represented
in terms of again two continuity equations. However, in analogy with
the chemically reacting binary mixt