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SUMMARY 

The overall objectives of this dissertation are two-fold. First, 

to provide a general thermo-fluid dynamic formulation of separated two-

phase flow, and second, to use this formulation for analyzing various 

dynamic aspects of the film flow regime. Consequently, the thesis is 

divided into two parts. 

In Part I, the conservation equations which are expressed both 

in terms of the two-fluid model and of the diffusional, i.e., drift, model 

are derived. These equations, derived from the space averaging procedure, 

take into account the effects of surface phenomena such as surface ten­

sion and surface shear and of surface processes such as momentum, heat 

and mass transfer at the interface. Finally these conservation equa­

tions are used to establish the similarity groups appropriate to separated 

flows. 

In Part II, the two-fluid model formulation of Part I, is used to 

develop a stability theory of separated plane flows. The analysis takes 

into account the effects of surface tension and liquid viscosity, of 

mass and heat transfer at the interface as well as the dynamic effects 

of the vapor on the liquid film. The most unstable growth factor, de­

rived from the analysis, is used to calculate the onset of liquid entrain-

ment and of flow plugging. The results show that evaporation has a 

destabilizing effect on liquid films whereas it stabilizes vapor films, 

i.e., it has a destabilizing effect on the Kelvin-Helmholtz instability 
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whereas it has a stabilizing effect on the Rayleigh-Taylor instability. 

A comparison of predicted results with available experimental data shows 

a satisfactory agreement. 



PART I 

THERMO-FLUID DYNAMIC FORMULATION 

OF SEPARATED TWO-PHASE FLOW 
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CHAPTER I 

INTRODUCTION 

1.1 Significance of the Problem 

The simultaneous flow of two or three phases and/or of several 

components occurs in a large number of engineering systems as well as 

in many natural phenomena. Some examples are listed below. 

a) Energetics: Power and Propulsion Systems and Components 

Boiling water and pressurized water nuclear reactors, liquid 

metal fast breeder reactors, Rankine cycle liquid metal space power 

plants, MHD generators, liquid propellant rockets (cooling, heat ex­

changer and combustor), metalized solid propellant rockets, heat pipes, 

boilers and condensers for power stations, two-phase propulsors for under 

water and surface applications, drag-reduction devices, etc. 

b) Process Systems and Components 

Extraction and distillation units, spray and cooling towers, 

fluidized beds, evaporators, desalination systems, emulsifiers, air-

solid separators, steam-water separators, cyclones, cryogenic heat ex­

changers and pumps, electronic cooling systems, ejectors, atomizers, 

dryers, absorbers, combustion devices and chemical reactors, etc. 

c) Transport Systems and Devices 

Pneumatic conveyors; air-lift pumps; cavitating pumps and hydro­

foils; pumps and piping for transport of oil and gas mixtures, of slurries 

and/or of fibers; hydraulic conveyors of wheat, pulvarized coal, ores 

and other solids; highway traffic flow and control; etc. 



d) Environmental Control Systems and Devices 

Pollutant separators and purifiers, sewage treatment plants (flow, 

fermentation and settling), air pollution control devices, refrigerators, 

coolers, dust collectors, life support equipment for space application, 

etc. 

e) Information Systems and Devices 

Superfluidity of liquid helium, conducting and/or charged liquid 

films, liquid crystals, etc. 

f) Biological Systems and Devices 

Flow of blood; distribution of fish eggs by current; transport, 

chemical reaction and diffusion through capillary networks, etc. 

g) Geo-Meteorological Phenomena 

Sedimentation, i.e., transport of river sediments; soil erosion 

and transport by wind, sea and rivers; snow drifts; sand dune formation; 

nucleation and motion of rain drops inside clouds; icing phenomena in 

the atmosphere; etc. 

It can be concluded from the foregoing that the simultaneous flow 

of two phases or of two or more immiscible liquids characterizes the 

operation of many important engineering systems of interest to various 

branches of technology and science. 

1.2 Topographical, Structural Classifications 

At first glance it might appear that the various systems, com­

ponents and phenomena listed above have very little in common. Actually, 

the contrary is true. If we recall that the singular characteristic of 

two phase or of two immiscible mixtures is the presence of one or several 



interfaces, between the phases or components, it can be noticed that 

many of the systems listed above have a common structure, i.e., a common 

topography of the interface. Furthermore, whereas single phase flows can 

be classified according to the geometry of the flow in laminar, transi­

tional and turbulent flow, the flow of two phases or of a mixture of 

immiscible liquids can be classified according to the geometry of the 

interface into three classes, i.e., in separated flows, transitional or 

mixed flows and dispersed flows. These three classes of structured flows 

are shown in Figure 1. 

Depending upon the type of the interface, the class of stratified 

flows can be divided into plane flows and quasi-axisymmetric flows each 

of which can be subdivided into two regimes. Thus, the plane flow includes 

film and stratified flows, whereas the quasi-axisyrnmetric flow consists 

of the annular and the jet flow regimes. The various arrangements, i.e., 

configurations of the two phases and of the immiscible liquids, are 

shown in Figure 1, 

The class of dispersed flows can also be divided into several 

types. Thus, depending upon the geometry of the interface, one can con­

sider spherical, elliptical, granular particles, etc. However, it is 

more convenient to subdivide the class of dispersed flows by considering 

the phase of the dispersion. Accordingly, we can distinguish three 

regimes: bubbly, droplet or mist and particulate solid flow. In each 

regime the geometry of the dispersion can be spherical, spheroidal, 

elliptical etc. The various configurations between the phases and mix­

ture components are shown in Figure 1. 

Finally, the third class is characterized by the presence of both 
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separated and dispersed flows, whence it can be named the class of mixed 

flows. However, it could be referred to also as the class of transi­

tional flows since in practice it occurs as a transition from dispersed 

to separated flows and vice versa. For example, in a boiling liquid the 

slug flow regime occurs as a transition from bubbly to annular flow. 

Here too, it is more convenient to subdivide the class of mixed flows 

according to the phase of dispersion. Consequently, we can distinguish 

five regimes, i.e., slug flow, bubbly-annular flow, droplet-annular flow, 

bubbly annular-droplet core flow and film flow with entrainment. The 

various configurations between the phases and mixture components are 

shown in Figure 1. 

The various systems, components, and phenomena listed in the pre­

vious section were grouped according to applications and technologies. 

However, in view of the topographical, i.e., structural classification 

shown in Figure 1, these systems and components could be grouped accord­

ing to the type of flow, i.e., flow regime that characterizes their 

operation. Consequently, they can be grouped as follows. 

A. Separated, Two-Phase (or Component) Systems 

a) Gas (or Vapor) Core-Liquid Film, Plane and Axisymmetric Flow 

Liquid metal boilers and condensers, evaporators, distillation 

units, desalination apparaturs, charged and conducting liquid films, con­

ventional boilers and condensers, boiling water nuclear reactors, liquid 

propellant rockets (film cooling of nozzles), heat pipes, etc. 

b) Liquid Jet-Gas (or Vapor) Annulus Flow Regime 

Cryogenic heat exchangers, ejectors, atomizers, etc. 
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B. Mixed Flows 

Most of the power and propulsion systems and components such as: 

boiling water nuclear reactors, Rankine cycle liquid metal space power 

plants, MHD generators, two-phase propulsors, distillation systems, steam-

water separators, evaporators, condensers, etc. 

C. Dispersed Flows 

a) Gas-Solid Particles System 

Cyclones, separators, combustors, heterogeneous reactors, pneu­

matic conveyors, solid propellant rockets, dust collectors, fluidized 

beds, air pollution and fallout separation and control devices, soil 

erosion and transport by wind, sand dune formation, icing phenomena in 

the atmosphere, snow drifts, etc. 

b) Gas-Liquid Droplet System 

MHD generators, liquid propellant rocket combustors, wet steam 

turbines, two-phase propulsors, wet steam separators, atomizers, dryers, 

absorbers, gas coolers, nucleation and motion of rain drops, cryogenic 

heat exchangers, etc. 

c) Liquid-Liquid Droplet System 

Emulsifiers, homogenizers and extraction units, flow of blood, 

polymer flow, etc. 

d) Liquid-Solid Particle System 

Fluidized beds, hydraulic conveyors, erosion and sediment transport 

by rivers and sea, sedimentation, sewage plants, separators, etc. 

e) Liquid-Gas (or Vapor) Bubbly System 

Boiling water and pressurized water nuclear reactors, liquid 

metal fast breeder reactors, Rankine cycle liquid metal boilers, 
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tating pumps, refrigerators; distillation, flotation and aeration units; 

pumps and piping for transport of oil and gas mixtures, electronic cool­

ing system ejectors, etc. 

In view of this topographical, i.e., structural classification in 

separated, mixed and dispersed flows, it could be expected that many of 

the systems enumerated above should exhibit a large number of steady 

state and dynamic similarities. This indeed is the case. For example, 

it was shown in references [1-7]* that the theory of kinematic waves, 

which was developed by Lighthill and Whitham [8] to analyze the flow of 

cars on roads, can be extended to analyze and predict transient response 

of dispersed two-phase systems with applications to fluidized beds, 

boiling water nuclear reactors, and cryogenic heat exchangers. 

It is evident that if a firm understanding is attained of the 

thermo-fluid dynamic characteristics of any of the above two-phase flow 

regime, then these results could be applied to predict the operational 

performance of systems and components in a variety of technologies. 

Indeed, such a general method of analysis has been attained and used in 

the field of single phase flows. There, studies of the thermo-fluid 

dynamic characteristics of laminar and of turbulent flows have been 

first carried out and then, the results have been applied to various 

technologies. 

However, as it will be seen below, in the field of two-phase flow 

^Numbers in brackets refer to reference listed in Bibliography, 



the opposite approach has been followed most often. Here, the tendency 

has been to analyze the thermal and/or fluid dynamic problems of a 

particular system, component or process, say of a nuclear reactor, refrig­

erator, pollutant separator, liquid propellant rocket or open channel 

sediment transport. Consequently, a broad understanding of the thermo-

fluid dynamic behavior of two-phase systems has not been attained yet, 

nor is a generalized method available at the present time to analyze and 

predict the performance of these systems. In Chapter II we shall sub­

stantiate this conclusion. 

1.3 Requirements 

The design of engineering systems and the ability to predict their 

performance depend on the availability of experimental data and of con­

ceptual models which can be used to describe a physical process with a 

required degree of accuracy. 

From a scientific, as well as from a practical point of view, it 

is essential that the various characteristics and properties of such con­

ceptual models and processes should be formulated clearly, on a rational 

basis, and supported by experimental data. For this purpose specially 

designed experiments are required which must be conducted in conjunction 

with and in support of analytical investigations. 

It is well established in continuum mechanics that the conceptual 

models for single phase flow of a gas or of a liquid, are formulated in 

terms of field equations which describe the conservation laws of mass, 

momentum, energy, charge, etc. These field equations are then comple­

mented by appropriate constitutive equations such as the constitutive 

equations of state, stress, chemical reactions, etc., which specify the 



thermodynamic, transport and chemical properties of a given constituent 

material, i.e., of a specified solid, liquid or gas. 

It is to be expected, therefore, that the conceptual models which 

describe the steady state and dynamic characteristics of structured multi­

phase or multi-component media should be also formulated in terms of the 

appropriate field and constitutive equations. However, the derivation of 

such equations for the flow of structured media is considerably more 

complicated than for strictly continuous, i.e., homogeneous media, i.e., 

for single phase flow. 

In order to appreciate the difficulties in deriving balance equa­

tions for structured, i.e., inhomogeneous media, we recall that in con­

tinuum mechanics the field theories are constructed on integral balances 

of mass, momentum and energy. Thus, if the variables in the region of 

integration are continuously differentiable and the Jakobian transforma­

tion between material and spatial coordinates exists, then the Euler 

type differential balance can be obtained by using the Leibnitz's rule 

or more specifically the Reynolds transport theorem which allow us to 

interchange differential and integral operations. 

In multi-phase or multi-component flows the presence of inter-

facial surfaces introduces great difficulties in the mathematical and 

physical formulation of the problem. 

From the mathematical point of view, a multi-phase flow can be 

considered as a field which is subdivided into single phase regions with 

moving boundaries separating the constituent phases. The differential 

balance holds for each sub-region, however, it can not be applied to the 

set of these sub-regions in the normal sense without violating the above 



conditions of continuity. 

From the point of view of physics, the difficulties which are 

encountered in deriving the field and constitutive equations appropriate 

to multi-phase flow systems stem from the presence of the interface and 

the fact that both the steady and dynamic characteristics of multi-phase 

flows depend upon the structure of the flow. For example, the steady 

state and the dynamic characteristics of dispersed two-phase flow systems 

depend on the collective dynamics of solid particles, bubbles or droplets 

interacting with each other and with the surrounding continuous phase; 

whereas, in the case of separated flows these characteristics depend 

upon the structure and dynamics of the interface, 

In order to determine the collective interaction of particles and 

the dynamics of the interface, it is necessary to describe first the local 

properties of the flow and then to obtain a macroscopic description by 

means of appropriate averaging procedures. 

For dispersed flows, for example, it is necessary to determine 

the rates of nucleation, evaporation or condensation, motion and dis­

integration of single droplets (bubbles) as well as the collisions and 

coalescence processes of several droplets (or bubbles). 

For separated flow, the structure and the dynamics of the interface 

greatly influence the rates of mass, heat and momentum transfer as well 

as the stability of the system. For example, the performance and flow 

stability of a condenser for space application depend on the dynamics 

of the vapor interface. Similarly, the rate of droplet entrainment from 

a liquid film, and therefore, the effectiveness of film cooling, depend 

on the stability of the vapor liquid interface. 



It can be concluded from this discussion that in order to derive 

the field and constitutive equations appropriate to structured, multi­

phase media it is necessary to describe the local characteristics of 

the flow from which the macroscopic properties should be obtained by 

means of an appropriate averaging procedure. It is evident also that the 

design, performance and very often the safe operation of a great number 

of important technological systems, which were enumerated in the preceding 

sections, depend on the availability of realistic and accurate field and 

constitutive equations. It will be seen in Chapter 2, that, for two 

phase flow, these equations have not been established yet. 

1.4 Purpose and Outline of the Dissertation 

1.4.1 Overall Objectives 

The overall objectives of this dissertation are two-fold. First, 

to provide a general thermo-fluid dynamic formulation of separated two-

phase flow, and second, to use this formulation for analyzing various 

dynamic aspects of the annular and film flow regimes. Consequently, 

the thesis is divided into two parts. 

In Part I, the conservation equations which are expressed both 

in terms of the two-fluid model and of the diffusional, i.e., drift 

model are derived. These equations, derived from the appropriate averag­

ing procedure, take into account the effects of surface phenomena such 

as surface tension and surface shear and of surface processes such as 

momentum, heat and mass transfer at the interface. Finally, these con­

servation equations are used to establish the similarity groups appropri­

ate to separated flows. 

In Part II, the two-fluid model formulation of Part I, is used to 



develop a stability theory of separated plane flows. The analysis takes 

into account the effects of surface tension and liquid viscosity, of 

mass and heat transfer at the interface as well as the dynamic effects of 

the vapor on the liquid film. The most unstable growth factor, derived 

from the analysis, is used to calculate the onset of liquid entrainment 

and of flow plugging. The results show that evaporation has a destabi­

lizing effect on liquid films whereas it stabilizes vapor films, i.e., it 

has a stabilizing effect on Rayleigh-Taylor instability. A comparison 

of predicted results with available experimental data shows a satisfactory 

agreement. 

1.4.2 Outline of Part I 

An evaluation of the presently available conservation equations 

for two-phase flow is presented in Chapter 2. It is shown there that: 

1) the momentum and energy equations proposed by various authors are 

incorrect and in disagreement with each other and 2) the set of govern­

ing equations for the mixture used by various authors is incomplete and 

incorrect when applied to two-phase mixtures in thermal non-equilibrium. 

The two-fluid and the drift models are discussed in Chapter 3, 

which deals with basic definitions and relations such as the averaging 

procedure, concentration, velocity fields and the fundamental identity. 

The local field and constitutive equations together with the 

appropriate boundary conditions are given in Chapter 4. These equations 

are used then to derive the averaged general balance equations for each 

phase as well as for the mixture. 

Chapter 5 deals with the continuity equations of the two phases 

and of the mixture. For the drift model, the continuity equation of the 



vapor is expressed in the form of both the d i f fu s ion and the void propaga­

t i o n e q u a t i o n s . The app rop r i a t e s i m i l a r i t y groups are obtained from these 

two equat ions by express ing them in a non-dimensional form. 

The averaged momentum equations of each phase and of the mixture 

are derived in Chapter 6 together with the appropriate scaling parameters. 

The derivation of the averaged total energy equations for the 

individual phases as well as for the mixture is presented in Chapter 7, 

together with equations for the internal and mechanical energies and the 

enthalpy. 

Finally, in Chapter 8, the entropy equations are derived based on 

the two-fluid and the drift, i.e., diffusional models. 

1.4.3 Outline of Part II 

Previous investigations concerned with the stability of plane 

flows are reviewed in Chapter 10. It is noted there that with the ex­

ception of two references, the effects of heat and mass transfer at the 

interface are not taken into account in formulations presently available. 

In Chapter 11, the stability theory is formulated based on the 

linearized form of the two-fluid model. A stability criterion is derived 

which is used to determine the break-up conditions of liquid film flow. 

Chapter 12 considers the stability of falling liquid films. It 

presents stability criteria which were derived for both adiabatic and 

diabatic films. 

Finally, Chapter 13 deals with the effects of heat and mass transfer 

on the flow stability of two inviscid fluids. The stability criterion 

shows that evaporation has a destabilizing effect on liquid films whereas 

it has a stabilizing effect on Rayleigh-Taylor instability. 
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CHAPTER II 

PREVIOUS WORK 

2.1 Introduction 

In view of the importance of the two-phase flow system, there 

have been numerous publications concerning the general area of two-phase 

flow. Although the first known work in this area was published in 1830, 

a recent literature survey by Gouse [9] shows that the number of publica­

tions for all gas-liquid flow studies excluding atomization and cavita­

tion has increased exponentially after 1940. 

In the review that follows only studies which deal directly with 

different formulations and approaches are discussed. The reader is 

referred to the recent reviews by Scott [10], Dukler and Wicks [11] and 

particularly in film flow by Fulford [12] and the three major books by 

Tong [13], Brodkey [14] and Wallis [15] for discussions and analyses of 

the proposed correlations as well as for a list of references, 

As a consequence of the topographical characteristics of two-

phase flow two approaches have been used in deriving the set of con­

servation equations for the mixture. One was based on the model of inter­

acting continua, whereas the other was based on the separated flow model. 

Although the first approach is appropriate to dispersed flows, it will be 

reviewed briefly here for the sake of completeness and to note that 

interface phenomena were not taken into account in these formulations. 
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2.2 Dispersed Flows-Interacting Continua 

Many authors treated the dispersed two-phase flow mixture as 

continuum whose thermodynamic and transport properties depend upon the 

thermodynamic and transport properties of each phase as well as upon the 

local concentration. In effect, the continuum hypothesis implies im-

plicitely that each point in the mixture flow field is occupied simul-

taneously by several different particles. The mixture is then represented 

as a superposition of continuous media, each of which follows its own 

individual motion as well as the mixture as a whole. 

The simplest formulation based on the continuum assumption is the 

homogeneous model where it is postulated that both phases move with the 

same velocity, i.e., that the relative velocity between these phases is 

zero. Since the interaction between the two phases depends upon the 

relative velocity, it is obvious that these interactions can not be taken 

into account by this model. It is not surprising therefore, that for 

applications to two-phase flow systems, the homogeneous model is of 

limited value. Consequently, we shall not discuss it further, although 

we note that because of its simplicity, this model has been widely used 

in the literature as discussed by the numerous references listed in 

references [13-15] among others. 

A more realistic formulation for dispersed flows is provided the 

model of interacting-continua since it takes into account the effect of 

relative velocity and, therefore, the interaction between the two phases. 

This approach has been the basis for the formulation of the problems 

involving (solid or liquid), mixture, Panton [16], and Van Deemter and 

Der Laan [17] for the thermomechanical formulation of the diffusion 



processes, Truesdell [18], Bowen [19] and Miiller [20], and the formula­

tions of Delhaye [24, 25], Teletov [26, 27], Frankl [28] and Diunin [29] 

which were based on time and space averaging procedures. 

The mechanical theory of diffusion, which was put forth by Maxwell 

and Stefan, was improved by Truesdell [18] (see also Truesdell and Toupin 

[22, sections 158, 159, 215, 243] and Truesdell [23, pp. 81-98]). The 

diffusional model used by the author is based on three "metaphysical" 

principles concerning 1) the mixture properties, 2) interfacial trans­

port and 3) the motion of the mixture as a single body. Using these 

principles, Truesdell postulated equations of balance of mass, momentum 

and energy for each constituent and derived the necessary and sufficient 

conditions so that the balance of mass, momentum and energy for the 

mixture can be satisfied. Later, in an effort to unite the purely 

mechanical and thermodynamica1 theories of diffusion, Truesdell's formu­

lation has been generalized in various ways by the authors of references 

[19 and 20]. However, their equations of balance of mass and linear 

momentum are essentially the same as Truesdell's. The only difference 

appears in the formulation of the entropy equation. We note that these 

analyses do not take into account the effect of the interfacial source. 

In fact, the surface tension does not appear in any of these formulations. 

We note also that the time and space averaging procedures appropriate to 

mixtures were not considered in references [18-20]. 

A local averaging procedure was introduced by Van Deemter and 

Der Laan, reference [17], who averaged the field equations over a small 

volume element. However, the equations derived in this reference are 

of a purely phenomeno Logical nature. The kinetics of particles motion 
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and the nature of fluid particle interaction were introduced formally as 

a stress tensor and a drag force. It is evident that further evaluation 

of these functions should be based on a theory of particle kinetics. In 

application of Van Deemter's equations to the fluidized beds problem 

Carrier [21] and Zuber [1] provided the physical insight to the phenomeno-

logical coefficients by introducing the single particle dynamic equations. 

A time-space averaging procedure was used by the authors of 

references [16, 24-29] who focused their attention to a given volume 

element which is occupied alternately by one of the two phases. Conse­

quently, in order to define the local occurrence of a particular phase it 

was necessary to consider statistical averages. 

Among the numerous and very important contributions made by Soviet 

researchers toward establishing the field equations for two-phase mixtures, 

we shall note only those of Teletov [26, 27], Frankl |28j and Diunin [29], 

In these formulations a four-dimensional space time cylinder was con­

sidered, and the flow properties were averaged over space and time. One 

important aspect of the work of Teletov, Frankl and Diunin is the fact 

that they were apparently the first to a) investigate various methods 

for obtaining the appropriate expressions for time and space averages 

and b) express the field equations in terms of these averages. 

Panton in reference L16], formulated the mixture equation by 

integrating the time averaged local conservation equations over a small 

volume element and then limiting the volume element to zero size which 

implies implicitly the concept of continuum for each phase as well as 

for the mixture. 

In references [24, 25], Delhaye used a statistical averaging 



approach to formulate the bubbly flow regime in order to bring a non-

continuum two phase flow field into the continuum framework in terms of 

statistically averaged equations. In his work the formulation was done 

in terms of two continuity equations, i.e., one for gas phase and one for 

the mixture, two momentum equations, i.e., one for each phase, and one 

energy equation for the mixture, where gas phase was assumed to be in 

thermal equilibrium in itself, i.e., no temperature variations in the 

vapor phase. 

We note in closing that the effects of surface phenomena and pro­

cesses were ignored in most of these references and furthermore, when 

they were considered,, they were not taken properly into account. 

2.3 Separated Flow Models 

The numerous analyses based on the separated flow model can be 

divided into two groups. In the first group are analyses formulated by 

considering one dimensional slip flow, whereas in the second one are 

those which are based on the area-averaged field equations. Of the 

numerous publications we shall review in what follows only those which 

are indicative of the various approaches that have been used. We shall 

also note the significant differences which exist between the resulting 

equations. 

2.3.1 Slip Flow Model Field Equations 

Analysis belonging to this group considered the flow of the 

individual phases to be one-dimensional and the interface between them 

to be smooth. The assumption commonly made was that the pressure is con­

stant at a given cross-sectional area of the pipe, and both fluids were 

assumed to be incompressible. To be more specific, according to this 



model the two phases or constituents are completely separated by the 

interfaces, and the variations in the cross-sectional planes are com­

pletely ignored as are the effects of the interface, i.e., of surface 

tension, surface shear and of heat and mass transfer at the interface. 

Evidently this model does not permit any variations in velocity, density, 

and properties within the cross-sectional areas of individual phases 

(such as would be present, for example, with a parabolic velocity profile). 

The effect of zero velocity at the wall is assumed to extent over an 

extremely small portions of the fluid and is neglected. One can see that 

in the laminar flow regime error caused by this assumption will be large. 

In order to make a comparison between the conservation equations 

based on the slip flow model, proposed by various researches we shall 

denote by p, v} p and W, the density, the velocity, the pressure and the 

flow rate of the fluid whereas the subscripts 1 and 2, will be used to 

differentiate the phases or constituents. The volumetric concentration 

of the second phase will be noted by a. 

Martinelli and Nelson [30] derived the slip flow model mixture 

momentum equation. In their analysis momentum balances were made by 

considering each phase separately as a control volume in the differential 

element. For steady flow in a vertical pipe, they are given by Equations 

(2.1) and (2.2) for phase 1 and 2, respectively 

dx. 
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where A and A are the cross-sectional area of phase 1 and 2, respec­

tively. F-i and F^ were defined as the net forces expanded by phase 1 



and 2, respectively, in overcoming frictional resistances, 

We note that these forces, i.e., F and F , which were not de­

fined explicitly include the wall friction as well as the interfacial 

forces exerted from one phase upon the other. We note also that in de-

rivating Equations (2.1) and (2.2) the pressure over cross-sectional 

planes is assumed to be constant. Furthermore, no interfacial effects 

other than the interfacial mass transport which appears as the last 

term in Equations(2,1) and (2.2) was included. 

The mixture momentum equation was obtained by adding Equations 

(2.1) and (2.2) and using the mass balance 

J\Wi + eA\Nx = 0 (2.3) 

The mixture momentum balance thus became 
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Although no detailed analysis has been made on the nature of the 

frictional forces F and F , (2.4) has been used for most if not all 

correlations of two-phase frictional pressure drop. For example, in the 

absence of gravity terms Martinelli and Nelson integrated Equation (2,4) 

along the tube length obtaining thereby the total static pressure drop 

in terms of frictional and acceleration multipliers which had to be 

determined from experimental correlations. 

Since the authors of reference [30] assumed that the pressures of 



the two phase are equal, then in the absence of gravitational forces, i.e., 

horizontal flow, Equation (2.1) together with Equation (2.2) assert that 

the sum of the frictional pressure drop and momentum drop for each phase 

should be equal. In flows with vaporization, the momentum pressure drop 

of the vapor phase is apt to be appreciable, whereas the momentum pre-

sure drop of the liquid phase is generally small. Thus, the criteria 

of equal pressure drops which is used in this model becomes questionable. 

Following the same method, i.e., by making momentum balances over 

the individual phases, Kutaleladze [31] modified the Martinelli-Nelson's 

mixture momentum equation in order to include the time dependent effects. 

The final result of his analysis was given by the following mixture 

momentum equation 
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In an analysis similar to reference [30], Brodkey [14] proposed 

steady state individual phase momentum equations for an annular two-

phase flow as follows: 

A ( V ^ V ^ - A ^ - U ^ . h j ^ - f c . e ^ ^ ^ (2.7) 
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whereas for the mixture, the same equation as Kutaleladze's was obtained 
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Later, these momentum equations were rederived by many other in­

vestigators. For example, by taking momentum balances over each phase 

of a steady annular flow in a vertical, constant area tube, Levy [ 32 ] 

and Isbin, Moen and Mosher [33 ] derived the equations for each phase; 

they are given by 

t £ »*« - -if *£)„.- I.I- * iiM.») 

(2.10) 

(2.11) 

dP dP 
where T I ) , - , and ~ ) , were characterized as the frictional pressure 

dx'lTP d'x 2TP 

drops in phase 1 and 2, respectively due to the wall friction only. 

However, these interpretations were not correct because these terms in­

cluded also the interfacial effects in general. 

The addition of Equations (2.10) and (2.11) yields the mixture 

momentum equation 

fJU^)€^^e^]a^-^T-[^)e,^e.]S (2.12) 

dP-The term -r=-) represents the two-phase frictional pressure drop and is 
dx^TP 

equal to 

A* /TP <=±* '4TP Ax. VjLTP 
(2.13) 

Recently in 1969 Wallis [15] proposed one-dimensional momentum 

equations. In his analysis Wallis expressed the momentum equation for 

phase 1 by 
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whereas the momentum equation for the second phase by 

oc ^vu4*± = - ^ 4 ^ - ^ e^q- l¥4a.**wa)-
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(2.15) 

where F and FrT„ are the drag forces from the duct walls on the first 
Wl W2 

and second phases per' unit volume of the flow, respectively. 

F-.„ - "^?i a r e t n e drag forces between faces, Ti is the ratio which 

is charged to second phase due to phase change per unit volume of the 

duct.. 

X is the quality defined as the ratio of the vapor flow rate to 

the total mixture flow rate. 

The mixture momentum equation was obtained by adding equations 

(2.14) and (2.15) and resulted in 

The introduction of T] into Equations (2.14) and (2.15) is questionable 

because there is no justification for this correction factor. Although, 

there should be a force due to the phase change, it must be entirely 

charged to one of the phases depending on whether we have condensation or 

evaporation. 

Furthermore, Wallis attempted to determine T\ from the mixture 



entropy equation under the isentropic flow condition. However, if we 

consider the entropj' production due to the relative velocity between 

phases, we conclude that a two-phase flow can never be isentropic. Thus 

for separated flow In particular, i.e., the slip flow model always has 

entropy production, and therefore to make an isentropic flow analysis 

is incorrect. We note also that only homogeneous flow can be isen­

tropic since the relative velocity is equal to zero. However, in 

this case the term 

*?c\̂ ~\M[u-*o e ^ ^ e j ^ l 4^-

would be always zero, since the relative velocity (v - v ) is zero, 

therefore, there is MO need to introduce V. into the analysis as Wallis 

did. 

We shall not list the additional expressions of momentum equations 

which have been proposed in the literature as they are too numerous. 

Those listed above are indicative of the approaches used and of the 

significant differences which exist between them. We note in particular, 

that the momentum equation for the individual phase proposed by various 

authors, are not in agreement with each other. This statement can be 

verified by comparing Equations (2.1) and (2.2) with Equations (2.7) and 

(2.8) and/or with Equations (2.10) and (2.11) and/or with Equations (2.14; 

and (2.15). These differences stem from the different assumptions and 

approaches used by the various authors in order to account for the inter­

actions between the two phases. Since these interaction effects dis­

appear when the momentum equations for the individual phases are added 
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it is not surprising that the resulting momentum equations for the mix­

ture are in agreement with each other (compare for example Equations 

(2.4), (2.6), (2.12) and (2.16). 

Turning our attention now to the energy equations which have been 

reported in the literature we observe more arguments and disagreements. 

This is natural, however, because if the momentum equations are not in 

agreement with each other then the energy equations can not be either. 

As it will be seen the basic problem in energy equation formulations 

arises from weighing the energy equation for each phase. 

Isbin and Su [34] considered the problem of mechanical energy 

equation for a two-phase, flow system. They wrote the energy equation 

for a single-phase, constant density, time independent flow system as 

where F is the fricttonal energy loss per unit mass. We note that the 

equation, Equation (2,17) is apparently not the mechanical energy equa­

tion but it is merely the momentum equation expressed per unit mass. 

Noting that Equation (2.17) is applicable to a two-phase system 

only if no interfacial mass transfer occurs, the authors argued that the 

proper way to apply Equation (2.17) to a two-phase flow system is to 

weigh the energy equation per pound mass of each phase by the mass of the 

phase contained in the differential section (f 1 -cr) p A dx for the liquid, 

cvpnÂ dx for the vapor phase). With this weighing method, and after sum­

ming the equations, the following mechanical energy equation for the 

mixture was obtained. 
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Other investigators, however, multiplied Equation (2.17) alter­

nately by the appropriate mass flow rate (W, and W„) of each phase. 

Using this weighing procedure and after adding the two energy equations, 

Vohr [35] proposed the following energy equation for the mixture: 

f (t-oo e, v* 4*± + * e% \£ 4^-1 * c*-*) e , 4 ^ * - c * ^ * + (2-w) 
»- dx *i* J* ***• 

[ Ci-*) U-, + «. v%] ^ £ * [ (i-<*) e,u, + ote^w-*] § =° 

where u, and u are the specific internal energy for phase 1 and 2, 

respectively. 

The mixture mechanical energy equation proposed by Brodkey [14 I 

and Lamb and White [36], is given by 

(2.20) jJ. j- o - ) e, 4* + - e> J £ ] * [ u~o »,* ~ * ] £ + 

where 0 and 0 are the viscous dissipation terms for phase 1 and 2 

respectively, 

Comparing Equations (2.18), (2.19) and (2.20), one can see that 

they can not be converted to each other i.e., that they are not in agree­

ment with each other. The difference is due to the weighing of the 

individual phase equations. The manner in which the contributions of 

each phase were weighed in these equations were different in each case, 
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Another inconsistency between the equations is due to the interpreta­

tion of the various terms. Finally, the interfacial energy transfer 

mechanism was not accounted correctly in these formulations. 

2.3.2 Field Equations Based on Area Averages 

In derivations belonging to this group, various authors tried to 

integrate the single phase differential conservation equations over the 

entire cross-sectional plane of the pipe. Following this method Meyer 

[37] proposed a set of equations expressing the one-dimensional mixture 

continuity, momentum and energy equations. They are given by the mixture 

continuity equation: 

^C * > M t i t<^,) .0 (2.21) 

the mixture momentum equation: 

1 ( fcT kr W i. (_L G^AT\-:-AT^-(t.,4S-« A,T9 (2.22) 

the mixture energy equation: 

where 

(2.23) 

^ = TT ( ^ « i , ^ . « ^ [ e £ J * (2-24) 

AT / ^« AT { ^ 
AT AT 
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«*-T. ( 1"JA 
A T 'AT 

It can be seen from Equations (2.21), (2.22) and (2.23) that the 

mixture equations have been expressed in terms of flowing quantities, such 

as G T defined as the mass flow rate per unit area of the pipe. Conse­

quently, this improper formulation forced Meyer to introduce two mixture 

densities from two conservation equations, i.e., an area averaged density 

p, x. from the mixture continuity equation, and a momentum averaged 
(mass)' J H * 6 

density P, x, from the mixture momentum equation. Also he found it 
J (mom) n 

necessary to define two different mixture enthalpies, i.e., an area 

weighted mean enthalpy i, ., and a flow weighted enthalpy 1fc, .. b ^J (mass)' & r j (flow) 

Although it does not appear in the above set of equations later in his 

paper Meyer had to define one more density p. . , i.e., an energy averaged 
^enj 

density from the energy equation defined by 

P - & ^fUwi . / / ; \ <j £^4») (2 25, 
^ C e n ) = e«.«m»1 — * + C ^ c « * * s ) -*• ; — Q Z . 2 5 ) 

C3 i tvnass) • X ^ l > w ) 

Thus three mixture densities and two enthalpies were introduced. 

In applying Meyer's mixture conservation equations to the critical 

flow of vapor-liquid mixtures Cruver and Moulton [38J defined one more 

density weighted by velocity 

*•- =. — L f c U (2.26) 

As a result of references [37] and [38] four mixture densities were 

defined, i.e., area averaged, momentum averaged, energy averaged and 

velocity averaged. 



If we recall here that according to the basic principles of thermo­

dynamic the properties such as density, enthalpy, etc. (see, for example, 

reference [22] ) are: 

1) additive, 

2) invariant under change of motion, 

we conclude that the formulations above are incorrect. 

It is of interest to note here yet another incorrect definition of 

mixture properties which has been widely used in the literature, it is 

based on the quality X defined by 

X ^ (2.27) 

Ntf^W,. 

where W, and W- are the mass flow rate of the vapor and of the liquid 

respectively. Thus for example in reference [15], the mixture entropy 

was defined by 

S*v, = C K-X) Si -t- X S^ (2.28a) 

the mixture en tha lpy by 

i „ = O - X) LK+ Xi% (2.28b) 

and mixture density by 

It will be made clear in Chapter 3, that mixture quantities should 

be expressed in terms of static parameters, such as the void fraction or 

mass concentration and not in terms of mass flow rates, such as the 

quality. To illustrate this point and demonstrate the error which arises 
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when Equations (2.28a, b and c) are used we pose the following problem: 

consider a closed system where no motions take place, i.e., W - foL ~ 0, 

what would be the mixture entropy or mixture enthalpy? The answer 

according to Equation (2.28) would be undetemiinatein view of the defini-

W 1 0 
tion of quality because the quality defined by X = r%—• rT ~ ~-« Whereas 

3 Wj| + W2 0 

the static mass concentration C will have a definite value. This con­

tradiction stems from the improper formulation of two-phase flow properties, 

i.e., when they are not expressed in terms of static parameters. 

It should be observed here, that Meyer treated the two-phase flow 

field as a single-phase flow where the flow field is continuous, i.e., 

simply connected. However, as it was discussed in Section 1.3, in two-

phase flow the over-all flow field is multiply connected, consequently, 

the effects due to the presence of interfaces should be taken into con­

sideration in a proper integration process. An analysis which does not 

take into account the effects of the interface in formulating the problem 

is incorrect because it does not account, properly, for the limits of 

integration. 

In the literature dealing with fluid dynamics of single phase-

flows in particular with lubricating films, open channel flows etc., 

the method of deriving the two-dimensional momentum and energy equation 

by area-averaging the local field equations, is well established. 

Similarly, the "jump" conditions at the interface, i.e., the limits of 

integration to be used in the averaging procedure are well known. In 

the literature dealing with two-phase flow this method of area-averaging 

has been used by Linelian [39] and Delhaye [24, 25, 40] together with the 

"jump" conditions at the interface in order to derive the one and two-



dimensional field equations. In reference [39], Linehan used the thin 

film approximation to derive the field equations, however, in the "jump" 

conditions, he neglected the effects of surface tension and surface shear. 

These two effects were taken into account, however, by Delhaye, who derived 

the continuity momentum and energy equations by using the "jump" condi­

tions proposed by Slattery reference [41], 

We note, that in these references a clear distinction between the 

two-fluid and the diffusional models has not been made. Furthermore, 

none of these references presents thermodynamic relations and equations 

which take into account the interface phenomena. Thus, the two-phase flew 

equations presently available, do not reduce to the well known equations 

of thermodynamics derived by Gibbs. Finally, similarity criteria for 

separated two-phase flows, have not been established yet. 

2.,4 Traditional Formulations 

Thus far in this Chapter, we have discussed the various approaches 

which have been used in deriving the conservation equations for two-

phase flows. Now, we shall review briefly how these equations have been 

used to formulate and analyze two-phase flow problems. 

It was pointed out by the authors of reference [42], that with 

exception of reference [40], it has been traditionally a common procedure 

to formulate a two-phase flow problem by means of three field equations 

and three constitutive equations (see for example the formulations of 

references [13, 15, 37, 38, 43 among others]). The three field equations 

were those for the mixture, i.e., the mixture continuity equation, the 

mixture momentum equation and the mixture energy equation (which usually 

did not include the mechanical and potential energy terms). The three 



constitutive equations which were used were the empirical correlations 

for the void fraction, i.e., vapor volumetric concentration, for the 

two-phase friction factor and the two-phase heat transfer coefficient. 

It was noted in reference [42], that these six equations result in ten 

dependent variables consequently, the traditional formulations were 

incomplete in the mathematical sense. Thus, additional assumption had 

to be introduced leading to additional differences and disagreements 

between the various analyses. 

In the chapter that follows we shall discuss in more detail the 

two-fluid and the diffusional models In fluid dynamics. Here we note, 

that formulations of two-phase flows systems expressed in terms of the 

three field equations for the mixture, are similar to well established 

formulations of chemically reacting binary systems based on the diffu-

s ional model. In view of this similarity it was stressed in references 

[6, 42], that any analysis of two-phase flows, based on the diffusional 

model, must include one additional field equation, i.e., the continuity 

equation for one of the two phases. It was shown in reference [42], that 

the significance of omitting the second continuity equation in tradi­

tional formulations of two-phase flow systems, was that the effects of 

thermal non-equilibrium could not be accounted for. Above, the three 

conservation equation for the mixture, can not account for the effect of 

thermal non-equilibrium. 

Finally, it was noted in references [6, 42], that although the 

traditional formulations of two-phase flow were based on the three con­

servation equations for the mixture, these equations were not expressed 

in terms of the center of mass of the mixture (see for example Equations 



(2.4, 2.6, 2.12, 2.16, 2.18, 2.19, 2.20)). This circumstance had two 

important consequences. First, as noted in references [6, 42], the con­

ventional formulations are inadequate to analyze the dynamic behavior 

of two-phase flow systems. Second, the thermodynamic properties of the 

mixture were not defined properly. In fact, as we have discussed already 

in the preceding section, various authors were forced to introduce four 

definitions for the density of the mixture, three definitions for the 

enthalpy of the mixture, etc. Such a sorry state of this branch of thermo-

fluid dynamics is rather surprising since it was discussed by Prigogine 

and Mazur [44] that if a diffusional model is used to describe the be­

havior of a mixture of gases then the field equations must be expressed 

in terms of the center of mass of the mixture. If this is not done, then 

one can not express properly the thermodynamic equations and relations. 

2.5 Conclusions 

The preceding review of the literature concerned with the conserva­

tion equations for separated two-phase flows indicates that: 

1) The momentum equations for the individual phases which were 

derived by considering the slip flow model are in disagreement with 

each other. 

2) Similarly, the energy equations are in disagreement with 

each other. 

3) The conservation equations for the mixture based on the slip 

flow model are not in agreement with each other. 

4) With the exception of the work of Delhaye, Inter/facial 

phenomena and processes have not been taken into account in analyses of 

diabatic separated two-phase flows. 



5) The thermodynamic properties of the mixture have not been 

defined properly because the field equations for the mixture were not ex­

pressed in terms of the center of mass of the mixture. Therefore, four 

definitions of mixture density, three definitions of mixture enthalpy, 

etc., have been introduced in analyses of separated two-phase flow systems, 

6) The conservation equation for the mixture which have been used 

in the literature are inadequate for analyses of dynamic aspects because 

they have not been expressed in terms of the center of mass of the mixture. 

7) Most formulations and analyses of two-phase flow systems 

presently available are based on an incomplete set of field equations. 

In particular, they are expressed only in terms of the continuity, momen­

tum and energy equations for the mixture. They omit the second con­

tinuity equation for one of the two phases. Therefore, these formula­

tions can not take into account the effects of thermal non-equilibrium. 

8) A distinction has not been made in the literature between 

formulations based on the two-fluid model and the diffusional model. 

9) Similarity criteria appropriate to separated two-phase flows 

have not been established yet, 

The analysis that follows is directed at removing these difficul­

ties thereby improving the present state of knowledge. 
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CHAPTER III 

MODELS, BASIC DEFINITIONS AND RELATIONS 

3.1 Two-Fluid and Diffusion (Drift) Models 

3.1.1 Analytical Methods and Models 

It was discussed in Section 1.2 and illustrated in Figure 1 that 

the most important characteristic of two-phase flow systems is the pres­

ence and the effect of interface between the phases. The topography of 

the interface serves not only to divide structured flows into three 

classes, i.e., separated, mixed and dispersed flows, but it gives also 

rise to processes and problems specific to each class. Furthermore, this 

topography compels the application of a different method of analysis to 

each class. This differentiation of analytical methods stems from the 

fact that a two-phase region is not simply connected, i.e., the variables 

in the region of integration are not continuously differentiable. In 

fact, a two-phase region can be considered as a field which is subdivided 

into simply connected, i.e., single phase regions with moving boundaries 

separating the constituent phases, 

In theory, the problem could be formulated in terms of field equa­

tions applicable to each continuous subregion with matching boundary 

conditions at the moving interface. Such a formulation would result in 

a multiboundary problem with the position and the condition at the boundary 

being unknown. It is evident that unless the topography of the interface 

is simple, as it is for example in separated flows of Figure 1, such 

an approach would encounter unsurmountable mathematical difficulties. 



Consequently, different methods of analysis must be applied to the 

different classes of structured flows. 

For separated two-phase flows, the problem can be formulated by 

considering two-cont inua coupled by the appropriate ''_jump'' conditions 

at the boundary, i.e.., at the interface. It is evident that these "jump" 

conditions will play a most important role in such a formulation. 

However, for dispersed flows in order to eliminate the mathematical 

difficulties caused by the discontinuities of the variables, it is useful 

to transform the entire field to a continuum. This can be accomplished 

by a time averaging procedure or by means of Boltzman's equation applied 

to the dispersed phase. In two-phase flow systems the velocities of the 

two phases are never equal, i.e., there is always a relative velocity 

V , between the phases. Consequently, there is always a dynamic inter­

action between the phases. For this reason a two-phase flow problem 

should be formulated always in terms of two velocity fields. 

However, depending on the magnitude of the difference between 

these two velocities as well as the difference between the two densities, 

both separated flows and dispersed flows can be formulated in terms of 

a two-fluid model and of a diffusion model, both of which have specific 

advantages as well as disadvantages which are discussed below. 

3.1.2 The Two-Fluid Model 

The two-fluid model is formulated by considering each phase 

separately. Therefore, the formulation is expressed in terms of two sets 

(one for each phase) of conservation equations, i.e., in terms of six 

field equations: two continuity equations, two momentum equations and two 

energy equations. 
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In effect, the two-fluid model follows the model proposed by 

Landau [45], for analyzing the superfluidity of helium II. In a dis­

cussion of this phenomenon Prigogine and Mazur noted in reference [ 44] 

that the two-fluid model will yield satisfactory results whenever the 

two components of a mixture are weakly coupled so that the equilization 

of velocities does not take place. This can be expected whenever there 

is a large difference between the densities and velocities of the two 

components. 

In two-phase flow it can be expected, therefore, that the two-

fluid model will be applicable to separated flows. Furthermore, this 

model will be most useful in problems concerned with the dynamics of 

the interface and othar interactions between the two phases. Since a 

formulation based on ;his model is represented in terms of two equations 

of continuity, two momentum equations and two energy equations, an 

analysis based on this model may encounter mathematical difficulties. 

The model is therefore not well suited for analyses of system dynamics. 

Neither can it be used effectively to determine the mixture properties 

(in particular the entropy) and the similarity groups. 

3.1.3 The Diffusion or Drift Model 

In contrast to the two-fluid model, the diffusion model is form­

ulated by considering the entire mixture. Therefore, the formulation is 

expressed in terms of four field equations: three for the mixture (con­

tinuity, momentum and energy) plus the diffusion (or void propagation 

equation references [4, 6, 7]) for one of the phases. 

It is evident that the diffusional model follows the approach used 

to analyze the dynamic jehavior of a mixture of gases or of miscible 



liquids reference [49], It is applicable whenever the two components of 

the mixture are closely coupled, i.e., whenever they interact so that 

the difference between the velocities and other properties of the two 

components are small. 

In two-phase flow it can be expected therefore, the diffusional 

model will be applicable to dispersed flows and in particular to the 

bubbly and slug flow regimes. 

In the diffusion model the interactions between the phases are 

specified by appropriate constitutive equations; for example, an appro­

priate diffusion or drift velocity is specified for a particular flow 

regime, reference [6.'. This drift velocity in turn specifies a drift 

stress in the momentum equation for the mixture as well as an energy 

transport term by drift in the energy equation for the mixture (refer­

ence [6]) . 

When expressed in terms of the center of mass of the mixture,, the 

diffusion model is most useful for analyses of system dynamics as shown 

in references [6, 7], Furthermore, as the results of this investigation 

show, the diffusion or drift model can be used effectively for deter­

mining the set of similarity groups appropriate to two-phase flow systems. 

We note that since the diffusion model is expressed in terms of 

the conservation equations for the mixture, it is of utmost importance 

to correctly define the properties of the mixture. 

Since both the two-fluid and the diffusion models have their own 

specific advantages, disadvantages and applications, both will be used 

in formulating the thermo-fluid dynamic equations for separated two-phase 

flows. 
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3.2 Physical Model 

The general separated two-phase flow system we shall investigate 

in the following sections is illustrated in Figure 2, where the two-

phases'- are distinguished by subscript 1 and 2**. 

Figure 2. The General Separated Flow Model 

"Since the mathematical description of the two-phase one-com­
ponent, two-phase two-component or single-phase two-component flows are 
identical, we shall use the expression two-phase flow throughout the 
development of the field and constitutive equations. 

'"ATt is a usual practice in the literature to identify the heavy 
phase by subscript 1, whereas the lighter phase by subscript 2, 
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Phases identified by 1 and 2 are flowing separately in a duct in 

the main flow direction which is taken to be X. A mass transfer at the 

external boundaries TTL̂  , leaves the K-th phase through the porous wall, 

and a mass flux m . leaves it at the interface. Here K takes on the 
Ki 

value 1 and 2 identifying phase 1 and 2, respectively. 

We shall frequently refer to Figure 2 and the notation employed 

on it, therefore it becomes necessary to define rigorously a few terms 

appearing on it. 

A is the external surface of the K-th phase contact with the Ke 

external i.e., fixed boundaries. 

A. is the interfacial, i.e., contact area between two-phases. 

A„T is the internal cross-sectional area of the K-th phase per­

pendicular to the main flow direction. 

Arp is the total cross-sectional area of the duct bounded by solid 

boundaries. A is not necessarily constant. From Figure 2 it is 

evident that 

1 

A T „ = ^ T *k< 

?K is the intersection curve of A„ and A„ . 

§. is the intersection curve of A-j, and A.. 

TL, • is the unit normal vector at the internal surfaces bounding the 
Ivl 

K-th phase and directed always outward from the K-th phase. 

nv is the unit normal vector at the external surfaces bounding 

the K-th phase and directed outward from the same phase. 

3.3 Integral Relations 

It v/as seen in the preceding chapter that the conservation equations 



for two phase flow were usually derived in the literature by applying 

the conservation concept to a control volume. These equations were used 

in turn to define terms which represent various effects, interactions or 

mixture properties. These definitions were based most often on spurious 

arguments rather than on fundamental principles. It was seen how this 

procedure lead to incorrect definitions of mixture properties and other 

two phase flow parameters. 

In order to obtain a rational formulation it is necessary to re­

turn to the basic lavs of dynamics and thermodynamics and to make clear 

the various fundamental aspects of the phenomenon through consistent 

definitions of averages, variables and mixture properties. Indeed, the 

formulation must be turned around: the basic parameters which characterize 

two-phase flow should be first properly defined, and then, after correctly 

averaging the field equations, the variables which appear in these equa­

tions must be defined explicitly in terms of these basic parameters. 

We stress again, that the proper definition of mixture properties 

is of particular importance to the diffusion model because, as discussed 

above, this model is formulated in terms of the three conservation equa­

tions for the mixture and the diffusion equation. 

In view of the foregoing we shall start by considering the averag­

ing procedure and the definition of mixture properties appropriate to 

separated two phase flow. 

3.3.1 Averages 

In order to derive the field and constitutive equations appro­

priate to structured, multi-phase media it is necessary to describe the 

local macroscopic properties by means of an appropriate averaging 



procedure. In separated flows, the two phases can be considered as two 

continua connected by an interface across which the properties change 

discontinuously. The appropriate averaging procedure consists there­

fore of area-averaging the two, local continua and coupling them by 

means of the appropriate "jump" condition at the gas-liquid interface. 

This approach used in references [24, 25, 39] is well known approach 

used in deriving the hydraulic equations for open channel flow, the 

Reynolds lubrication equation etc. 

Let us consider therefore a quantity \|; (x,y,z,t) -scalar, vector 
K 

or higher order tensor- of the K-th phase, (K = 1,2), and also consider 

a volume l/„ enclosing the K-th phase cross-sectional plane. Then we 

define the volume-ayeraged value of the quantity ft , by 
K 

<«+^> U) = - L _ ((( ^Al? (3.D 

By expressing the volume as/l/"(t) = A Ax and by considering the 

limits of Equation (3.1) as Ax -» 0, we obtain the definition of the area-

averaged value of the quantity iff , i.e., 
K 

« 1 - K » U ^ W - L - (( *tvU.a,%.iW* (3-2) 

A^tx.i) 

Two observations can be made with respect to Equation (3.2). 

First, we note that since the integration is performed over the cross-

sectional plane perpendicular to the main flow direction designated by 

x, the resulting area-averaged quantity <£ 'J; *>> must be function of x 

and time, t. We note, further, that Equation (3.2) is an averaged quantity 



of the K-th phase, obtained by weighing the quantity by the cross-

sectional area of the K-th phase. Consequently, the averaged value 

«i|) >> applies to the center of area, or more meaningfully it applies 
K. 

to the center of volume of the K-th phase. 

Although the definition given by Equation (3.2) may be useful in 

some two-phase flow analyses, sometimes it may be more advantageous to 

formulate the problem with respect to center of mass instead of center 

of volume. Ultimately, we are led to consider the mass-weighted, area-

averaged value of the quantity i]f„, defined by 

— — K 

<+*>(*,*)» ff e.+.cU / f( i^Ak (3.3) 

where upon applying the area-averaged v a l u e s , i . e . , Equation ( 3 . 2 ) , we 

ob ta in 

<'V k>Cx,t )^ «e^.tK>/«eKv> (3.4) 

where< tyv> applies to the center of mass of the K-th phase and not to the K. 

center of volume. In effect, comparison of the two definitions,«r » 
K 

and < tyv> r evea l s tha t unless « P j r » = P K , the area-averaged value 

« ty„» , and the mass-weighted area-averaged value < ^ > , of the q u a n t i t y 

'tyy, a re d i f f e r e n t . In the a n a l y s i s of incompressible f l u i d s or in those 

analyses where the mass dens i ty v a r i a t i o n over the c r o s s - s e c t i o n a l plane 

is n e g l i g i b l e , i . e . , « " p K
> : > ~ p „ , only then 

<V> = « % > (3.5) 

3.3.2 The Covariance 

The introduction of averaged system variables into the non-linear 



equation of continuity momentum and energy increases the analytic 

problem complexity because the average of a product is not the same as 

the product of the averages of the variables such as iju and m^. That is 

ft e*V&JA 
< V rK> = -to. * <%>• <%> (3>6) 

Si ^ J A 

In particular 

unless V is constant over the cross-sectional plane over which averag-
K 

ing is taken. 

However, such a relation between the average of a product and the 

product of the averages of the variables ijv and cp can be accomplished 
K- K 

by recalling the definition of covariance, see for example reference 

[46, pp. 215-222], given by 

Co* (***%}« < V ^ - ^ K V < ? K > (3.8) 

We note that in Equation (3.8), '̂ may differ from, or equal to 

c?£, as well. If they are equal, then Equation (3.7) expresses the average 

2 
value of ^i>(= r$v) squared, i.e., of '̂ V̂  > > i-n terms of the square of the 

2 
a r e a a v e r a g e v a l u e of <Jf, i . e . , of < t l f

K
> . Hence, we r e c o v e r the d i f f e r e n c e 

between the right and the left hand sides of inequality (3.7). 

For a laminar flow of an incompressible fluid in a circular duct 

of radius R, for example, one has the parabolic velocity distribution 



In this particular example, 

A
 WL' 

whereas 

1 ^ A V L / 3 

Difference between them indicates that the covariance 

Cov^y-vO^ <vv>-<y>'a*= i <\>>* 

2 
can be important as much as 33 percent of <v> . In turbulent flow, 

however, it is expected that Cov (v-v) would not be as important as 

is in laminar flow because in turbulent flow velocity profile is almost 

flat. 

3.3.3. Integral Transformations 

In derivations that follow we shall integrate the basic con­

servation equations in the local forms over the respective cross-

sectional planes A , (K = 1,2). It is necessary, therefore, to con­

sider certain integral transformation theorems which will be encountered 

frequently. 
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The Divergence Theorem Over Surfaces. Let us consider a volume 

element *\}t of the K-th phase contained within two parallel planes A I and 

A^ | infinitely close together, with distance Ax, perpendicular to 
KClx4Ax 

x - axis. According to Figure 2, the volume element cuts the internal 

and external boundaries with the surfaces designated by A^, and A , 

respectively. 

The divergence theorem over the volume element]y is 
K 

IB i . ^ d y ' s f K ' « k c H (3.9) 

ik ** 
Here, F is a first or higher order tensorial quantity associated with 

the K-th phase. n^ is the unit normal vector directed outward from the 

surface, A^. Finally, A is the total area enclosing the volume element 

\L. According to Figure 2 it is evident that 

A * = AK-|x + *K*|x**,t * k ^ * ^ <3'10> 

In view of Equation (3.10), the right hand side of Equation 

(3.9) may be expanded to yield 

U\ V-•£*<=*& = ?*• w* «=U + J ? „ • * „ « ! * v ^ " UfAvL iAc3. i l ) 

where the summation i s taken over the i n t e r n a l boundary, i . e . , i n t e r -

f a c i a l area which i s i d e n t i f i e d by the subsc r ip t i , and the ex t e rna l 

boundary, i . e . , so l id boundaries which i s i d e n t i f i e d by subsc r ip t e . 

Area elements a t the boundar ies can be expressed by 

JA = ( * * • ^*}) J i K <=U (3.12) 

where K is the wetted perimeter, and n _ the unit normal vector to the 

UfAvLiAc3.il
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perimeter located in the cross-sectional plane, A 

If the surface were given by 

Kc 
•.. 

3 = M * > < 4 ^ (3.13) 

then the area elemert would be expressed by 

J'-ht£H£)1U (3.14) 

Finally, from Figure 2 it is easy to see that 

A 
X + &X. - nM* = (3.15) 

Using Equation(3.12) and (3.15) in Equation (3.11), we obtain 

x̂ -ix. 

I 1 ' V - f K c A A J * = 
/ ^ 
F* • fl * d A - f^'^Ak* (3.16) 

£=e.c S£ 
This equat ion can be s impl i f i ed in the following manner. The 

volume i n t e g r a l on the l e f t s ide and the l a s t surface i n t e g r a l on the 

r i g h t s ide a re f i r s t es t imated by the mean-value theorem for i n t e g r a l s 

Thus 

x-v LK 

Y- f v^cAA.J*^ k x 11 V - ^ <=U 

*VcC*,t) AuaUo»i) 

(3 .17) 

x + Ai 

• - * • A •„ / A A - 1 i v i * 

(?*•**} (Afc*Wk^«ij (3,18) 

leu.o J{>*»U 



Here, x and x must lie between x and x+Ax. Next, Equation (3.16) is 

divided by Ax and the limit Ax ~+ 0 is taken. During this process x~ and 

x takes on the values x. Then 

fj !-~vKAk = J L Jj ?*-V«iA ^ [ (.?fc-«<H^-flM")JS(3-i9) 
^KcC»,^ JVfccUrt) t ' e - i ^l 

An alternative form of Equation (3.17) can be written in view of 

Equation (3.12), and of the area averaged variables defined by Equation 

(3.2). Hence, the divergence theorem valid for surfaces becomes: 

[f v - ? * - u = ^ ( * K c * F t t * ^ * ^ l^ K ' **Ar (3*20) 

A ^ *«e,l *l 

In which F *n = F was used since, by definition, n^ - i. 

The Leibnitz's Theorem Over Surfaces. The generalized Leibnitz's 

theorem for a volume element v is 
K. 

i^L i^= A jjj ^ i ^ - ff \ r » r ^ ^ o.2D 

where v. is the velocity of the surface surrounding the volume element^„• 

Use of Equation (3.8) in (3.21) yields: 

K V A * / , x^t 

^ JAJ* = JL ( ff ̂ 4^-11(^^0^^(3.22) 
X 

-ff C^-^J+KJA-^ r*7(%M^i 

On the right-hand side the time derivative is taken inside the 



i n t e g r a t i o n over JC and the i n t e g r a l i s then es t imated by means of the 

mean-value theorem tor i n t e g r a l s . Tin us 

*L f ([ t ^ c U i x ^ L* | . j j +H«U (3.23) 
)f AKC Ai^UoiO 

For the last integral in Equation (3.22), Equation (3.18) is used. 

After substitution Equations (3.18) and (3.23) in Equation (3.22) the 

resulting equation is, then, divided by Ax and the limit Ax ~* 0 is taken. 

During this process x_ and x. take on the value x. Thus 

(( V r ^ - r J f ^ - I f ^ ^ f c (3-24) 
A K C U A ) A*.&l*/t) Ue.t. \ 

which is the desired Leibnitz's theorem valid for surfaces. Finally, in 

terms of area averages it can be expressed as: 

v*v. Ak=± (A^«+k^_J f i"V"*t+*j£ (3'25) 

It should be noted that in arriving at this equation it has been 

assumed that the external boundary can move with time. If it is fixed, 

(3.26) 

i . e . , v = 0, then the L e i b n i t z ' s theorem over sur faces becomes: 

ff i±SL Ak » A Owt «*V»)- ( ( V ^ V , ^ 
jy * t * i ' ' dK 

A*c.C*»i) Si 

3.4 Characteristics of Two-Phase Flow Field 

As it was noted in Section 3.1, there are certain parameters 

which characterize the two-phase flow field. Therefore, it is necessary 

to define these parameters carefully for a separated flow structure 



and to discuss their interrelations. In what follows we shall present 

these parameters under the following topics: 

1. Concentrations in two-phase flow, 

2. Mixture properties in two-phase flow, 

3. Velocity fields in two-phase flow, 

4. Flux fields in two-phase flow. 

3.4.1 Concentrations in Two-Phase Flow 

Concentrations can be defined properly only in terms of static 

parameters, although one finds in the literature on two-phase flows 

definitions of concentrations defined in terms of kinematic*, i.e., 

flowing parameters. In the former case one restrict the attention to a 

region in the flow field and then observes the fraction of a static 

element of volume (or mass) which is occupied at any instant by a given 

phase. Whereas in the latter case, one directs his attention to a sur­

face in the flow field and then measures the fraction of the total flow, 

by mass or by volume, across the given surface area which is composed 

of two phases. 

Usually in the literature, the kinematic and static concentrations 

have been used interchangeably or simultaneously without proper defini­

tions. Such a carelessness leads to errors and difficulties which are 

*The kinematic parameters, i.e., the "flowing" volumetric concen­
tration 3 , and the quality X> are defined in Appendix A where we show 
their relation to the static parameters, i.e., the volumetric concentra­
tion a, and the mass concentration C. The errors which stem from such 
improper formulation in terms of the "kinematic" flowing volumetric con­
centration 3, and of the flowing mass concentration X» (quality), are 
discussed in Appendix A. 
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discussed further in Appendix A. 

Static Concentrations. As noted above, in order to define properly 

static concentrations one directs his attention to a static volume 

element, however small, in the mixture. For example, one can select a 

volume element in such a way that it may be occupied by both phases in 

variable proportions or that it may be occupied alternately by one and 

only one phase. In the latter case it would be necessary to use time 

averages in order to define the local occurrence of a phase whereas in 

the former case, it is possible to define a local area-average. 

In view of the geometrical appearance of the separated flow, a 

definition of concentration in terms of local occurrences is not meaning­

ful. However, a meaningful definition of concentration can be made by 

considering a volume element which includes the total cross-sectional 

area of the channel. Following this point of view we can define the 

volumetric concentration of phase 2, a , i.e., the void fraction as the 

volume of phase 2 per unit volume of the mixture. Thus 

°LV~ \ ) l l l/% < 3' 2 7> 

Here,/l/l is the volume element of the mixture consisting of two volumes, 

y^ and 1/T, occupied by phase 1 and 2, respectively. 

As noted in previous section we shall use the area averages 

rather than the volume averages; therefore, it is necessary to define 

the area void fraction, For this purpose, let us consider the volume v 

-In the literature the symbol o/ is used loosely to represent the 
volumetric void fraction as well as the area void fraction. In order to 
avoid possible confusion between these two definitions we distinguished 
the former one by subscript ^representing the void based on volume. 
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contained between two parallel planes cutting along two-cross sections 

A ] and A I infinitesimalIy close together, distant from Ax, 
C x ic x+Ax 

perpendicular to x axis, see Figure 2. Hence from Equation (3.27) it 

can be written that 

X+&* 

* * = • - ^ & ( 3 - 2 8 > 

( 
k^i.*^) <**• 

in which the i n t e g r a l s can be est imated by means of the mean-value 

theorem for i n t e g r a l ? . Thus 

oct.i*..*,±)~—iKxM- ( 3- 2 9 ) 

kTz t*o) 

where x.~ and x.„ must l i e between x and x *- Ax. 

By taking the l i m i t Ax -* 0, i . e . , x Q , x 2 -* x , we ob ta in the a r e a -

averaged void f r a c t i o n , a, a s : 

« l » , i U L * » - ^ » , i ) ( 3 . 3 0 a ) 

From this equation it is evident that 

lu.)M. *' ' ( , | t l < 3 - 3 0 b > 
^T& U ) 

which represents the area concentration of the second phase. 

The mass concentration of phase 2, C, is defined as the mass of 

phase 2 per unit mass of the mixture. Thus, 

M JH **A* 
C^^Jli-J^ (3.31) 



where >L is the total mass of the mixture while M , (K = 1,2), is the 

mass of the K-th phase in volume \^, and p is the mass density of the 
i K 

K-th phase. 

The derivation of the area mass fraction follows closely the 

method used in derivating the area void fraction thus the area-vzeighed 

mass concentration, C, becomes 

°c«e»» 
C U,0 = (3.32a) 

0-co «e> * *«e»>> 
and consequently 

O - C K X ^ (!-*)« e.» (3.32b) 
^-oc) &£p * o6-«efc?> 

which represents the area-weighted mass concentration of the second 

phase. 

it should be noted that both Qf and C are defined in terms of the 

static parameters of the mixture and, therefore, do not depend on the 

kinematics of the flow field and constitutive equations for the two-

phase system. 

Having defined the static concentrations we can define now the 

correct mixture density in terms of static parameters. Again, by taking 

a volume element and isolating it from the rest of the miture we can 

write the instantaneous mixture mass as: 

A 

Ksl 

which can be expanded in terms of volumes and mass densities to 

yield 
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e„ = 4 ~ 2 e*^ (3-34) 
Vj- te*i 

where p is defined as the mixture dens ity. 

Using the relation between area and volume void fractions, in the 

limit as Ax -» 0, the mixture density can be expressed in terms of the 

volumetric concentration a3 thus 

c^ =. d-*) «e> + **«e> (3.35) 

in which (1 -o/)«p» and o/«p » are nothing but partial densities or 

peculiar densities, used by some authors, of phase 1 and 2, respectively, 

Substitution of Equation (3.35) in (3.32), gives compact expres­

sion for the mass concentration as: 

c «, c* <<ex» / (3.36a) 

* - c - o « ^ ^ c ^ / e ^ (3.36b) 

Dividing Equation (3.36a) by « p » and (3.36b) by « P l » and 

then adding, we obtain the mixture density expressed in terms of the 

mass concentration, C, thus 

< __ * - c c 
= — + (3.37) 

e~v «€,» « e ^ 
3.4.2 Mixture properties 

For analyzing a two-phase flow problem as a mixture, it is essen­

tial to express the results in terms of the center of mass. This is re­

quired, as Prigogine pointed out in connection with the thermodynamics of 

gas mixtures, in order to express correctly the properties of the mixture, 



If this is not done, one can not express properly the thermodynamic rela­

tions for the mixture. 

For this purpose let I|F be a mixture quantity associated to a unit 

mass of the mixture and tjr„ be a quantity related to a unit mass of the 

K-th phase. Applying the principle of an additive set of functions to 

express the properties, we obtain 

ft e.^JV-5 \\\ e,V*»- (3.38) 

yM *•' i^u) 
Using the mean-value theorem for integrals and then taking the 

limit as Isx — 0, we can express the volume integrals in terms of area 

integrals, thus 

t. = U-~> ***** + «- -*5i2> (3.39a) 
e„ e„ 

which can be expressed also in terms of the mass concentrations, C, thus 

tW=s C^-C) «g**> + C
 <<e-t^ (3.39b) 

«e> «eo» 
Introducing Equation (3.4), we can express the mixture property 

m 
, in terms of mass-weighted averages , thus 

t ^ « CA-C") < t t > ^ C <t^> (3.40b) 

Equation (3.40) expresses any mixture property applied to the 

center of gravity in terms of individual phase properties and of static 



concentrations. By substituting proper identifications for ^ , we obtain 

the mixture density, internal energy, enthalpy, entropy, etc., which are 

summarized in Table 1. 

Table 1. Mixture Properties 

Mixture P r o p e r t i e s 

j Densi ty «„* u-«o «e> + « <*ea» 
-L « (4-c) / «e,v> + C / « ^ » 
e* 

( i n t e r n a l 
Energy 

L J em 
= ( 4 - C ) < U i > * C < U a > 

1 Enthalpy 

lEntropy 

3.4.3 Velocity Fields in Two-Phase Flow 

Since in a two-phase flow system, the velocities of the two phases 

are never equal, a two-phase flow problem always must be formulated in 

terms of two velocity fields. However, there are several velocity fields 

that are useful in analyzing various aspects of a two-phase flow system. 

Depending upon the particular aspect, one can select a frame of reference 

and formulate the problem in terms of the velocity fields that are most 
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representative of, and appropriate to, the solution of that particular 

problem. In the following we shall present these velocity fields which 

can be used in a two-phase flow problem analysis. 

The flow field in two-phase system can be formulated either by 

considering each phase separately or by considering the entire mixture. 

In the first case, the velocity fields are expressed in terms of the 

velocities of the individual phases. This formulation leads therefore 

to the two-fluid model. In the second case, the velocity fields are 

expressed in terms of the relevant velocities of the mixture (the veloci­

ties of the center of mass and the center of volume) and of the relative, 

i.e., diffusional velocities of the two phase with respect to these mix­

ture velocities. Therefore, the latter formulation is more suitable for 

application to the diffusional model. 

In order to derive the velocities for the individual phases let 

—* —> 

VK = ^ ^ s y ) 2 ^ ) ke the local velocity of the K-th phase, then substitut­

ing for in Equation (3.4) we obtain the velocity of the center of mass of 

the K-th phase <V >s I.e., mass-weighed, area-averaged velocity of the 

K-th phase, thus 

< V> i<M = « e K v :
t t » / «eK> (K = 1,2) (3.4i) 

In order to derive the expression for the velocity of the mixture 

we consider the additivity principle for set of functions which, in the 

case of linear momentum states that the total linear momentum of the 

mixture in any region is the sum of the linear momenta of the constit­

uents presently occupying that region. This principle can be formulated 

as; 



f[U*.-A*-i KfeA^ 
\?T *fo V* 

We note that this expression gives rise to the definition of the 

local mixture velocity v , acting on the center of gravity of the volume 

element'Vrj.. Considering a volume element contained between two parallel 

planes A„ and ̂ Tc x+Ax» infinitesimally close together, we can express 

the mixture velocity in terms of area averages. As before reduce the 

volumetric averages to area averages, by considering the limits as 

Ax-^0, thus 

j ( , , ^ U . , ) «<•»'» + „ « ' » " f o (3.43a) 

e~ c. 

»,(«-^Ji&l*.+ cJLSt*». (3.43b) 
«e,* «-e1» 

In t roducing the d e f i n i t i o n s of the mass-weighed average v e l o c i t y , we can 

express the mixture v e l o c i t y , thus 

% = u-«) * i * < v * * *!> <̂ >* (3-44a) 

= tA-C) <VX> * C <\^> (3.44b) 

The following observation can be made with respect to Equation 

(3.44). We note that Equation (3.44b) is an averaged velocity of the 

mixture, obtained by weighing the respective velocities of the two phases 

*For the purpose of simplicity we have dropped the symbols (x,t) 
representing the dependence of x and t. The dependence on x, t is assumed 
to be understood. 



by the weight factors (1-C) and C, which are proportional to the masses 

occupied by phase 1 and 2, respectively. Consequently, Equation (3.44) 

can be interpreted as the velocity of the center of mass of the mixture. 

In multiphase or multi-component systems one is frequently inter­

ested in the velocity of a given phase with respect to the center of 

gravity of the mixture. This leads to the definition of the diffusion 

velocity V„ , of the K-th phase with respect to the center of mass, 

given by 

V K^ - OTu> - VW , K* l , 2 (3.45) 

By means of Equations (3.44) and (3.45), it can be easily shown 

that the diffusion velocities of phase 1 V , and phase 2 V„ , can be 

expressed also by 

V=,ci=..i^ *Vr (3.46a) 
e-. 

v l M = u - e y 3 , = «Sj»u-*Vvr (3.46b) 

where V is the r e l a t i v e v e l o c i t y , defined by 

(3 .47) 

From Equation (3.46) it can be, further, shown that the following 

relations hold: 

V-_ = _ ±Ll V,„ (3.48) 
i« C 

Mr = Vlvn-M \** (3.49) 
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It can be seen from Equations (3.46), (3.47) and (3.49) that, 

when the effect of the relative velocity is neglected as it is in the 

case of homogenous flow model, then 

and it follows from Equation (3.42) that 

thus, the two phases have the same velocity, which is equal to the 

velocity of the center of gravity of the mixture. 

If we are interested, for example, in determining the response 

of the volumetric concentration to changes of pressure, power, etc., it 

may be advantageous to formulate the problem in terras of the velocity of 

. + . -*• -*• 

the center of volume i, and of the drift velocities V, and V of phase 
lj 2j 

1 and 2 with respect to j. 

We define the volumetric flux densities of phase 1 j , and of 

phase 2 j« by 

~ *, i *&jk 

4, - ~ ±± =U-^<V> (3.52a) 

[\ e,«U 
K i , 

M. 

a f.v.^A 
T = " x ^- A ^ •= c* <Vi> (3.52b) 
4 ] , » 

^ (( tfc-u 
Ale 

and the volumetric flux density of the mixture by 

7= T.+I» (3.53) 



or in view of Equation (3.52), by 

j = (t-<*)<\jr> + <* < ^ > (3.54) 

Two observations can be made with respect to Equations (3.52) and 

(3.54). First, it should be noted that these equations correspond mathe­

matically to the definitions of the number velocities in the kinetic 

theory of gases. We note, further, that Equation (3.54) is an average 

velocity of the mixture, obtained by weighing the respective velocities 

of the two phases by the weight factors (1-tt) and a, which are propor­

tional to the two volumes occupied by the liquid and the vapor phase, 

respectively. Consequently, Equation (3.54) can be interpreted either 

as the volumetric flux density of the mixture or the velocity of the center 

of volume of the mixture. 

In analogy with the kinetic theory of gases and of mixtures, we de-

fine the. drift velocity V„. , of the K-th phase with respect to the 

center of volume of the mixture by 

vK^ = <vK> - 7 (3*55) 

By means of Equations (3.52) through (3.55) it can be shown that 

the drift velocities of phase 1 and 2 can be expressed by 

-* _^ 
V,j =t - M. V r (3.56a) 

V ^ = (4-oc)~V,r (3.56b) 

Vr = ^aj -^ I j (3-57) 

I t can bo seen from Equations (3.56) and (3.57) t h a t , i f V _ Q, 



then 

V.i = V,; = o !U = ^ i j = 0 (3.58) 

and i t follows from Equation (3.56) tha t 

<Vi>= <$i>^J (3.59) 

thus, the two phases have the same velocity, which is equal to the 

volumetric flux density of the mixture. 

It can be seen, further, from Equations (3.51) and (3.59) that 

which shows that in case of homogenous flow velocities of the center of 

mass and of volume of the mixture are equal. 

However, when the effect of relative velocity is taken into account, 

then from Equations (3.44) and (3.54) it is easy to derive that 

7-V^r, oc(i-c4\ Le ~Vr- Ca-r) ^ e e~ V . (3.61) 
d <?* «ft4»«e»» 

which states that, the center of mass and the center of volume of the 

mixture move with different velocities. For example, it can be expected 

that in separated flow systems the center of mass will move with a velocity 

close to that of the heavy phase (which accounts for most of the mass), 

whereas the velocity of the center of volume will move with a velocity 

that is closer to that of the vapor (which accounts for most of the 

volume). 

It can be expected, further, that this difference between the 

velocities of the center of mass and of the volume will effect the dynamic 



characteristics of a two-phase mixture. 

Relations Between the Velocity Fields. After having defined 

different velocity fields in two-phase flow system, we shall discuss 

briefly how these fields can be used in a formulating of a two-phase 

flow problem, 

Mathematically speaking, any two of the preceding velocity fields 

are adequate for all two-phase flow problems but each has certain advan­

tages. For example, one could formulate the problem in terms of area 

averaged velocities, <V]> and "̂ vo-̂  A s another alternative, however, 

one could eliminate <v?>, for example, by means of the relative velocity 

V and formulate the. problem in terms of <rv-i> and of V,., etc,, 

It is advantageous, however, to follow the well-established method 

developed in the kinetic theory of gas mixtures, and formulate the 

problem in term- of the velocity of the center of mass v and of the 

velocities relative to this moving frame of reference, i.e., the 

diffusion velocities. However, since the expressions for the drift 

velocities have been studied and established for different two-phase 

flow regimes, references I 47 and 48] , it may be more advantageous to use 

the drift velocities instead of the diffusion velocities. 

In Table 2 we summarized the vel«-K-.xt} fields for six independent 

—t 

sets of velocities. Two independent velocity fields are <"v-r> and < v ? > 

in the second column, v and V, in the third column, v and V0 in the 
' m 1m m Im 

fourth column, v and V„ . in the fifth column, j, and j~ in the sixth 

column, j and V,. in the seventh column and j and V~. in the eighth 

column. 



Table 2. Velocities in Terras of Different Velocity Fields 

IDependen 
(Velocity 

Independent Ve loc i ty F i e l d s IDependen 
(Velocity 

<\?,> and <"V^ V\* and M»-» NL, and M,.^ 

<V,> <v>> [ «b,-4>'VMH 

1 "3 - c "7, 
_ "v « * f * > "M-

1 — »™ — ———- — — "I'm 

< ^ > <tft> 

t-Jgs-"?-. 
7m*V»^ 

v„ 
e« P-V. 

i~ 5-

* * , 
V Mi 

l a - T S T - ^ 
u « f. •» "0 

a - " I M 

v4„ 
1« 

t - c ^ 

- - l~ ,* ^ g t > > "V* 
l i a 

"i U-«\<W> U - » 0 t V W v M v ^ 

i, «x * V A > 
o< V K _ • Vim « t V « t V l r t l 

7 l l - (X) <"$,•» + o* ̂  tf^ 1T̂ > u - « i A i _ v m ! 

" ^ 
-<* (<^>-<T,>) e~ 15 

; *%*A 

% cv-«t)UVb
1>~'<vM i 

1-0* P-S " J Vk*A P*i "*T 
V i«n 

"N. < v ^ > - <."$> 
> U 

« - - c 

7 - Mm 
<x « f^V 

= * ^ — V ^ i 
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T.;bU . . Velocities in Terms of Different Velocity Fields (Continued) 

I n d e p e n d e n t V • l o c i t y F i e l d s ! 

\T^ and V ^ and T* and N ^ 4 and V» j 

JL 
*-* 1+H f--£r'* 

v*> + ™ 5 — * 
erf. T- -^f- ** 1 * ^ 

Ira 7+^M^ 
C*i 

I- - £ *«* 

X <t CiV> ^J" . A!I? Nta 
U ot p^ ^ 

A!I? Nta 

<*e,w "Cj . «e,v> rr. 
v^ 

^f '̂il i c»-*ui>*o U - « > ^ - « N x ^ 

" 1*^**1 Jv <*7 - i*-*i ^ - iT*^> 

4i* t» J, i 1 

N i j 
1- rf Ha \ 11 

I - <K Q 

s CM ii 

£r*< 
7.i 

CM 



3.4.4 Flux Fields 

a) With Respect to Fixed Frame of Reference 

The mass flow rates for the two phases are 

W, = j j ? i V,»AA = A>U «(>\T^ (3-62a) 

Mc 

%=(/ e t v a . J A = ^ « e ^ (3-62b) 

and combining Equation (3 .41) with Equation (3.62) we ob ta in 

% = ^ ^ « 6 , » <V lK> (3.63a) 

W x « Aa.c « £ ,» <\TaK> (3.63b) 

We def ine the mass f lux of each phase by 

G, - Wt / A - ^ (3.64a) 

G x = Wx / A T o (3.64b) 

S u b s t i t u t i n g Equation (3.63) in Equation (3.64) 

Gn=r {<-<*.) «e ;>> < \ > , ^ (3.65a) 

k a ^ oc « 6 a » <VTXK> (3.65b) 

For the mixture we have thus 

w T = w< + w a - A T C . e^ w** <3-66> 

and 



G I X ^ G H - V G ^ S S e*, V W <3-67) 

Thus the latter mass flux Gm is the sum of the two linear momenta of the 

phases. 

The volumetric flow rates for the two phases are 

I! e.VuJ 
Q , = _ ^ 

The total flow rate for the mixture is 

(3.68a) 

\{ evJA 
"Ave 

Jj e»va,jA 
Q i = _ J ^ ± (3.68b) 

ff e t JA 
A i t . 

which, in view of Equation (3.41) becomes 

Q\ = ^U <^x> (3.69a) 

(3.69b) 

QT=: AT<i [U-*) <*,»>**<*,.,>] O.70) 

In view of Equations (3.69) and (3.52), the volumetric flux densi­

ties , which were already defined in relation with the velocity fields, 

become 

L=— « l<-«0<»,«> (3.71a) 
fcv*. 
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j „ « -Si « * <*\,> (3.71b) 

F i n a l l y , the volumetr ic f lux dens i t y of the mixture become 

i , - — a*i i«'»i**-^—)-< t f i«*+ *•<*«> (3.72) 
Arrfc 

b) Volume Flux with Respect to the Center of Volume 

As j-j and j« represent volumetric fluxes with respect to a fixed 

frame of reference, we can define also a volumetric flux with respect 

to a moving frame of reference say with a frame which moves with 

velocity j, i.e., with the velocity of the center of volume, thus 

Uj= **-i , K = 1,2 (3.73) 

which, in view of Equations (3.71 and 72) and of the relations summarized 

in Table 2 becomes 

i. - U-oO V»t s- <*t*-«) Vy. (3.74a) 
4 

and 

i«i* * V * i » - C U - M ) V T - (3.74b) 

These two volume fluxes have the important property that their 

sum is zero which follows directly from Equation (3.74) 

j . j * (3.75) 

c) Mass Flux with Respect to the Center of Mass 

As Gn and G~ represent the mass fluxes with respect also to a 

fixed frame of reference, we can define two mass fluxes with respect to 

the center of mass, i.e., with respect to a reference frame moving with 
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velocity vmJ thus 

& K * v - & * - *™ ,K = 1,2 (3*76> 

However, in view of Equations (3.64 and 3.67) and the relations sum­

marized on Table 2, mass fluxes with respect to the. center of mass can 

be expressed as: 

G^ = u-*o «e(* ViM - e* U~e)NC=-e,Heu-c)Vr 0.77a) 

and 

&**=. * « e 4 > V ^ « c*,c:>/w- e^cu-clVr (3.77b) 

It can be seen that the sum of these two mass fluxes is zero, that 

1 -" 

^ ^ + ̂ = 0 (3.78) 

3.5 Fundamental I d e n t i t y 

I t w i l l be seen in what follows t h a t a f t e r i n t e g r a t i n g the f i e l d 

equa t ions over the c r o s s - s e c t i o n a l plane of each phase we ob ta in from 

the i n t e g r a t i o n of the convect ive f lux terms two area-averaged f luxes 

( l - a ) < < P 1 ^ V i > > and Qt«p2V2^2>> ' Note tha t these two terms are 

f luxes with respec t to the cen te r of mass of phase 1 and phase 2 , r e spec t 

Ive ly , The fundamental ques t ion which a r i s e s when we conds icier the 

mixture is to determine the r e l a t i o n which e x i s t s between the mean con-

vec t i ve f lux P„.v 'I' , wi th respec t to the cen te r of mass of the mixture 
m m m * l • 

and the area averaged fluxes (1-Qf) «p.v i{/ »and Q«p„V-^ 2» with 

respect to the centers of mass of the Individual phase. 



In order to de r ive t h i s r e l a t i o n , l e t us cons ider the mean f lux of 

the mixture P ^ ^ ^ . From the d e r i v a t i o n s in the previous s e c t i o n i t i s 

obvious t h a t 

**.^**V* [ 0~eO«e iV<vW+* «ea>V<V>] [ t w n ) £ ! £ <+ (V+««ij£ <^>"| (3 .79) 

By expanding the right side of Equation (3.79), and then using 

the mixture density definition, we obtain 

e^v^^^ u-*) «e,v>< .̂> <+,> + * «e^<^> <**> - o.so) 

•L oc 0-*) «?,»««> [ (<+a>-<*,>) (/*a> - <^> ) ] 

In view of Equations (3.4), (3.8), and (3.47), it can also be expressed by 

^ 5 w + „ - 0-*o « el?,i',»+ * «e»£*.*,> - 1 wi«-«) «il^«ily> ^ A<*f>-(3.81) 
P*H 

U-*c) 4ee,^ C*»(1?,-^ - ^ ^ M ^ v t ? ^ ^ ) 

where we have defined the difference in mass-weighted quantities &<$> by 

By means of Equation (3.36), it can be shown that the relation 

derived above can be also expressed in terms of the mass concentration 

C, thus 

*„$*+,* a O-C) e . a ^ . W C ^ <****>-CD-C)^, V"r A<*>- (3.83) 

(i-c) 6 - i C * * t V l M - fi^Go^Cv^^) 

Equation (3.81) or (3.83) is the fundamental identity which is of 



great importance because all field equations for two-phase mixture are 

based on this identity, 

The second term on the right hand side shows the effect of the 

relative velocity, can be interpreted easily by using the diffusion 

-*» 
velocities V , (K = 1,2). In effect it follows from Equations (3.48) 

and (3.49) t h a t 

U-z)<°^v?( %> + ce^<Mv>= e^~*~*[(<-c>oL<^>*c eJL, W>]* (3.84) 

(»-c)e,Cp»-i?l.i',) * c ^(UUvtJ 

which states that, the total convective flux per unit area of the total 

channel cross-sectional area is equal to the mixture flux with respect 

to stationary coordinate system plus the diffusional fluxes with respect 

to the center of the gravity of the mixture. 

Actually, the diffusive transport at the velocity V , (K = 1,2), 
Km 

of the quantities associated with the K-th phase takes into account the 

actions on the mixture if the mixture is conceived as a body in motion 

with the velocity v . 
J in 

The result expressed in Equation (3.84) is consistent with the con­

ceptual basis of the kinetic theory of gas mixtures. Finally, the covari-

ance terms shows the effect of the velocity and of the quantity distribu­

tion across the channel cross section. 

An alternative expression for the fundamental identity was given 

by Truesdell, reference [23, pp. 87] , in which the material derivative 

of the mean value is expressed in terms of the mean value of the material 

derivative, 
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3.6 Summary 

In this chapter we have discussed the general characteristics 

and aspects of separated two-phase flow and furthermore we have pre­

sented the basic relations and parameters relevant to this flow regime. 

In particular: 

1) The analytical methods and models applicable to separated two-

phase flows were discussed. The formulations based on the two-fluid and 

on the diffusion models were described. The characteristic of each 

model as well as the specific advantages of each model were enumerated. 

2) The applicability of a time average and of a space average 

was discussed. For separated flow two expressions for averaged proper­

ties were derived, one based on the area-averaged and the other on the 

mass-weighed area-avetraged value. 

3) The difference between the concentrations based on static 

and oji kinematic parameters was noted. It was stressed that only the 

first one can be used to describe correctly the. mixture properties of 

a two-phase system. 

4) The importance was stressed of expressing the mixture proper­

ties in terms of the baricenter of the mixture. The relevant thermo­

dynamic properties have been derived and expressed therefore in terms of 

the static volume (or mass) concentration and of the baricenter. 

5) Various velocity fields which can be used to describe a two-

phase system were presented together with relations that exist between 

them. The significance of these fields was discussed also. 

6) Expressions for the flux fields associated with these velocity 

fields were derived and discussed. 



the mixture to the area averaged fluxes with respect to the centers of 

mass of the individual phases. 
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CHAPTER IV 

DERIVATION OF AREA AVERAGED GENERAL BALANCE EQUATIONS 

4,1 Introduction 

It is well known in continuum mechanics reference [22], that the 

conservation equations can be derived from the general balance equation. 

It was discussed in Section 1.2 and illustrated in Figure 2 that 

in the separated two-phase flow, the flow field of each phase is simply 

connected, i.e., the variables in each region of integration are con­

tinuously differentiable. It is to be expected, therefore, that in 

separated two phase flow, the conservation equations of each phase could 

be derived from such a balance equation, provided that we account, proper­

ly, for the interaction between the phases. It is evident that these 

interfacial effects expressed by jump conditions, will play a most 

important role in such a formulation. 

In this chapter we shall list first the local field and constitu­

tive equations for each phase together with the local expression for the 

general balance equation. From these and the appropriate "jump" condi­

tions we shall derive the general one-dimensionalized balance equations 

appropriate to the two-fluid and to the diffusion models. 

4.2 Local Formulation 

4.2.1 Field and Cons ti.tut iye Equations 

As usual, each phase flow field is formulated in terms of three 

field equations. These three field equations are conservation equations 



for the K-th phase , (K = 1,2)*: 

1. The continuity equation 

— -v V- eK \^-o , K = 1,2 (4.1) 

where p represents the mass density and v the velocity vector. 

2 . The l i n e a r momentum equat ion 

L ^ ^ V - e ^ ^ V - T T * * <VSH , K = 1 , 2 (4.2) 
9 X 

= — > 

where ^„ is the stress tensor, g^ is the external body force per unit 

mass. It is customary to separate the stress tensor, TT, into thermo­

dynamic pressure P, and a viscous stress tensor T, according to 

S-k»-P„.I*?fc , K= 1,2 (4.3) 

where 5 is the Kronecker delta. 

3. The energy equation 

^ ^U*.-* 5£) * V - ^ l t U w , ^ ^ ^ - %** (4.4) 

v- C T T * - ? ^ + eK J K - * * . , K = 1,2 

where uK denotes the specific internal energy and q" the heat flux. 

These three field equations can be summarized in a single equation 

known as the general balance or general conservation law, reference [22], 

According to this law a quantity \Jj , (representing scalar or higher 

order tensorial quantity), is balanced as: 

*In the two-phase flow literature it is a common practice to iden­
tify the heavier phase by 1 and the lighter one by 2. 
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^ ete+K + v. e , v» ** = - ' • « \ t e* «v , K = 1,2 (4.5) 

where 0 indicates influx of the quantity '<)/, and ty the rate of genera­

tion of the quantity per unit mass at each point throughout the field. 

In order to obtain three field equations from Equation (4.5), 

the proper identifications for \lr, 0 and ijf are summarized in Table 3, 

Table 3. Proper Identifications for the Generalized Functions 

N o t a t i o n t 4> * 

C o n t i n u i t y \ 0 0 

Momentum tf -Tt ? 
Energy u * sr%ti ?-7f-*\r 1-V-

The additional equations used in the formulation are the con­

stitutive equations. These are: 

1. The thermal, constitutive equation of state 

<?*= <v ( p * > T 0 , K = 1,2 (4.6) 

where T is the temperature. 

2. The caloric constitutive equation of state 

iXw.= XL*. I Cu * T v ^ 
(4.7) 

, K = 1,2 

3. The mechanical constitutive equation: By assuming the fluids 

are Newtonian, one can express the stress tensor as 

€ K = ( p t e - £ ^K) v-"5U I + r*[ v ^ + t v ^ f ] , K - i,2 (4.8) 



• / . ' 

where ^ is the dynamic viscosity, and y the dilatational or bulk visco­

sity. The bulk viscosity is identically zero for low density monatomic 

gases and is probably not too important in dense gases and liquids, and 

therefore, in a great majority of engineering analysis it is simply 

ignored. 

4. The energetic constitutive equation: By using the Fourier 

law of heat conduction for isotropic media, one can express the heat 

flux vector by 

^ = - U K VTK , K = 1,2 (4.9) 

This system of equations constitues the field and constitutive 

equations involving thirty variables in thirty equations. To complete 

the system, it is necessary to consider end values, i.e., the initial 

and boundary conditions of the flow field. 

4.2.2 Boundary Conditions 

In two-phase flow systems the boundary conditions must be specified 

not only at the external boundaries, i.e., at the fixed or solid bound­

aries, but also at the internal boundaries, i.e., at the moving boundaries 

or interfaces. The external boundary conditions can be specified as in 

single phase flow problems, i.e., by specifying the velocity and the heat 

flux, etc., at the boundaries. 

However, the specification of the boundary conditions at the in­

ternal surfaces, which are moving with time, should be formulated properly. 

Particularly, for the separated flow regime, the structure and the dynamics 

of the interface greatly influence the rates of mass, heat and momentum 

transfer as well as the stability of the system. 



In Appendix B, we discuss the motion of interfaces and the exist­

ing theories which have been constructed to analyze the interfacial 

mass, momentum and energy transports. For a singular surface* with 

the distributed source, the general balance equation at the interface 

was derived by Slattery [41 ] and used by Delhaye [40 ]; it is expressed by 

means of Equation (B.10) in Appendix B, i.e., by 

]> «*•["e fctf*-v^ * t e+ -*-]=-v,- e (4.io) 

where the various variables, which appeared before, have their usual 

meanings. The new variables are defined as follows: ru, is the unit 

normal vector at the interface directed outwardly from the K-th phase, 

Y^ is the interfacial velocity vector defined by Equation (B.7) and V*. 

is defined as the divergence operator on the surface in order to differ­

entiate it from the divergence operatorV, in the space. Finally, 

is the surface flux tensor inwardly directed through the interfacial 

boundary curve. Values of 8 for mass, momentum and energy are discussed 

in more detail in Appendix B**. 

In order to obtain mass, momentum and energy balances at the 

interface from Equation (4.10), the expressions for ij; and 0 should be 

taken from Table 3 whereas the V *6 term should be taken from Appendix 

B. If this is done, one finds Equation (B.13) for mass balance 

^Singular surface is defined as a surface of a limiting value of 
a quantity at a point on a path restricted to one side of the surface 
differs from that obtained by approaching this point from the other side 
of the surface. 

**We note that if the surface source term 9, is neglected in 
Equation (4.10), then this equation reduces to the well known Kotchinefs 
"jump" conditions given in reference [ 22 ]. 



; 

Kt 

K** 

Equation (B.25) for momentum balance, 

a. 

X 

^ *vi • e^tv^-Vf) =o (4.ii) 

(4.12) 

"if?,(ca^iU(Ei-Fl\]r 

and Equation (B.37) for energy balance, 

^ **•„•[ e l tlvK-vO(uKv^) + (^*pfc7fc--%:lt-\?fct)J== (4.i3) 

&<KQ* VvV^-LJ r J c i L - V>- U f f c ( E i ^ i \ l . c U; 
H1- L "^Ui > u * J dU> d U i ' J 

The terms appearing in these equations as well as their implica­

tions are discussed In detail in Section B.2.2 of Appendix B. 

The field and constitutive equations listed in Section 4.2.1 

together with the interfacial balance equations, i.e., Equations (4.11)-

(4.13) complete the formulation in terms of local parameters, of a 

separated two-phase flow system. Of course, boundary conditions at the 

external surfaces and the initial conditions must be given in order to be 

able to solve the problem. 

4.3 Averaged General Balance Equation for Individual Phases 

In the previous paragraph the partial differential equations 

which describe the local conservation of mass, linear momentum and 

energy were set forth. In order to close this system of field equations 

we also listed the necessary constitutive equations. In effect, we 

described the field of the K-th phase by the general balance equation, 

Equation (4.5), and accounted for the actions of one phase upon the 



other by general baLance equation at the interface, Equation (4.10). 

These equations are exact and valid throughout the flow fields 

of the two phases, however, it is not feasible to seek a detailed solu­

tion for this system of equations. The difficulty sterns from the fact 

that they involve three space coordinates, a time variable (in problems 

involving transients) and a large number of dependent variables. There­

fore, even for most simple cases, these equations must be solved numeric­

ally. 

However, for nany engineering applications these equations can 

be simplified by means of proper averages. The advantage of such an 

approach is two-fold. First, the variables appearing in the final equa­

tions will have explicit definitions in terms of averaged values. Con­

sequently, it will be easy to compare predicted results with experi­

mental data (which in two-phase flow are most often presented in terms 

of average values). Secondly, by means of space averages it will be 

possible to reduce the number of space variables and to treat the 

problem as an one-dimensional flow of problem. 

For the purpose of averaging, let us consider the cross sectional 

plane A« , of the K-th phase, (see Figure 2 ), which cuts the inter-

facial surface along the curve §., and the solid boundaries along the 

curve F . Let us integrate the general balance equation (4.5) over 
"Ke 

A^c, thus 

jj A ek*K JA + jj v - ( e A ^ 4 J =>*= ([e^dA. K = I,*4.IA) 
A ^ At_ A*„ 



The equation is simplified in the following manner. On the left-

hand side the first integral is estimated by means of the Leibnitz's 

theorem over surfaces derived in Section 3.3.3, Equation (3.25), thus 

II M **** Ak * u ^A*- «****>)-^T f ( S A v j ^ - ^ 
""*<• C = e,tXt 

whereas the second integral can be estimated by means of the divergence 

theorem over surfaces, Equation (3.20), thus 

ft V - ( e , v t ^ + ^)dA= ^[A^(*e^.t^,«^>)]+(4.16) 

]>_ [ ( e A + t + ^ ) . £ t dx 

Finally, the integral on the right-hand side can be expressed in terms 

of area averages, Equation (3.2) as: 

li e K ^ J A = Âvtc « e ^ * > (4.17) 
Ak;c 

Inserting Equations (4.14)-(4.17) in Equation (4.13) and re­

arranging we obtain 

i - (**««vn>)+£- ( A i u ^ e ^ v ^ ) — ^ . ( A ^ i c + ^ W ( 4 . 1 8 ) 

Awc«eK%>- y j fi*L-[efcl**-$)l**+ +K] =£ 
t.e.t **< 

We note that for the case when the cross sectional areas of the duct is 

constant, then Equation (4.18) reduces to that derived previously by 

Delhaye reference [24] . Division of Equation (4.18) by the total cross-

sectional area A , of the channel yields by use of Equation (3.4) the 



following equation expressing the general balance equation for the indi­

vidual phases, i.e., for K - 1 and K = 2, in terms of mass-weighed averages 

4 ( — «^<*K>WX(-**s- «*fc*<^w*K>\= <4-19> 
M \ t,r^ * i a * V. AT t ' 

= _1L(-A*- ^^^^Jm ^p^^^-^ f^e^^^x^ 
* * v AT* ' AT^ A T * 

* * * , * * «fK^ eoy(vk^>M]ic«V- - - y f «*«[ew.(\?H-̂ )V 

AT, 
5 l i A . l [.Aii «?w» c^t^ to] 

* J e l * * * L A_ *" J 

where the covariance defined by Equation (3.8) has been used in order to 

express average of product in terms of product of averages. 

Equation (4.19) which is applicable to each phases, i.e., K = 1,2 

represents the one-dilmensionalized area-averaged general balance equation 

for a quantity t- The various terms which appear in this equation have 

the following meaning: The terms on the left side represent, respectively, 

the time rate of change of quantity '^-mass, momentum or energy-per unit 

volume of the channel, and the convectlve flux of the quantity with respect 

to the fixed frame of reference. The right side terms are interpreted, 

respectively, as the flux of the quantity with respect to the baricenter 

of the K-th phase, the generation of the quantity, the effect of area 

change of the channel, interaction at the internal and external boundaries, 

and finally effect of the distribution of the velocity as well as the 

quantity ̂ . 

The general balance equations for each phase can be obtained from 

Equation (4.19) by assigning to the K the values 1 and 2. Thus by taking 
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d* 

into account the void fraction definition, Equation (3.30), we obtain 

from Equation (4.19) the following averaged general balance equations for 

the phase 1, K = 1: 

i . U-*} <t£ V> O.V * X. C\-x*i <^t1v><^l*> <*,> = : , i . U-*) <k«$» v> + (4.20a) 

o-oO «e,>v <s*,> - o-<*.)[ «.pt »><*,*> <*,> * *+.*>> + 

«̂ v> e^c*,*-*.)] d i a i ^ _ J L / S 1 ^*-[*»ft£»a-^^t*4i4la4 

d* ^ t V t ** 
A. [ t\-*) «e> ^ c v „ . ^ ] 
b* L 

and for the phase 2, K = 2: 

1 . P< < t P * ^ a > + i * <*evV> < V ^ < * % > a - i ** * 4 X » * (4.20b) 

*«<e,>< % > - *[«e„?><v/ t„> <*»>+ **,„•*> -V «.e^vCoo- i»x£ * v j ] ^ f r ^ -
JU 

-L. Y ( «»«•[eHL^ t-^ *»i + +a»] §* _i.[«u?,» C^CYWW] 

inmX ! ^ 

We note that in order to express the averaged general balance equa* 

tions in terms of mass concentration C, rather than area concentration a, 

one can use the relationship between C and a given by Equation (3.36). 

4.4 General Balance Equation for the_ Mixture 

In the previous section we considered each phase, i.e., fluid 

separately. The term, which accounts for the actions of one phase upon 

the other, emerged naturally as a result of the proper averaging process. 

Besides this "two-fluid" point of view, we may consider the diffusion 

model in which the mixture is regarded as being in motion as a "single" 



fluid. In order to obtain the general balance equation which governs the 

total mixture flow field, we shall add two general balance equations de­

rived for each phase, i.e., Equations (4.20a and b), thus 

-Mlv-*) a.e^V'* <*«̂ ><**>l -t ̂- [U-M*e>^*>^> + (4*21> 

*«?J><V**> <*a>]̂  -i[(»-K) <<^VW^] v[o.«)^^<^«<^]-

Cwc«.^]^A3fc.i^J_ [ VlA,0>w,-^*W\,]£-
'fi.e.L K*l Y „ j^g 

JL C**.(.V.+} 
*x 

where t h e c o v a r i a n c e t e r m Cov (v»tjr) i s d e f i n e d by 

Cotf CV>.*} « tt~»M *e ,vvCo* lOt»»»V^ •* •c^e^VyGot f -U* *^ (4 .22) 

Substituting the mixture property definition, Equation (3.40), 

the fundamental identity, Equation (3.81) and the general balance equa­

tion at the interface, Equation (4.10) in (4.21) we obtain 

( Yt' ̂  57 - T- 1. ( *«£'*.IV*W *«* +«] &- r > ^ 
li *T* TIT 'TK« 

where we defined <h as the mixture flux given by rmx 

+W,. *°—° ̂ ^u^ * " «*,.*» (4.24) 

We note that since the mixture is conceived as a single fluid in 

motion with the velocitv v , the diffusive transport Vv of the quantities 
m r Km 

a s s o c i a t e d w i t h t h e K- th p h a s e i s t a k e n i n t o a c c o u n t in t h e t e rm 

frC^flO « * ' » " * * * M r , U ^ x U - c ) ? ^ t M K ^ ^ C * M N * . ~ * < * » > ( 4 < 2 5 a ) 

P** 

JL 
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vU.****^**** VrxMt> ̂  t K l ^ V ^ , ^ ^ ^ ^ ^ (4.25b) 
e** 

in which (1-C) p V, and C n Vn represent the diffusion mass fluxes v nn 1m Hm 2m 

with respect to the center of gravity of the mixture for phase 1 and 2, 

respectively. Therefore, by expressing the mixture general balance 

equation with respect to center of mass of the mixture, an additional 

term arises in the equation due to the effect of the relative velocity, 

between the two phases. As will be seen in the further chapters this 

term will give rise to the diffusion mass flux, diffusion momentum flux, 

(drift stress), diffusion energy flux in the continuity, momentum and 

energy equations, respectively. 

Now we impose the requirement, reference [23] that the mixture 

as a whole i.e., as a "single" fluid model does not know whether it is 

simple or heterogeneous. To do so, we shall modify the mixture flux 

term (h , by introducing the total flux I defined as 
Ta J m 

-f̂  ~Zm +U-C) e^V^<V^C^V^<^> (4.26) 

Substituting Equation (4.26) in (4.23) yields the one-dimension-

alized mixture balance equation, thus 

^ e„ +1 + J . e„ %«. +« = - ^ •£„* + «~ V-. - (4.27) 

The first term on the right hand side accounts for the effect of 

the relative velocity between phases; the second is the source term; 



the third accounts for the effect of changes of the cross sectional area 

(as in nozzles, etc.); the fourth term accounts for the effect of the 

interfacial source, i.e., surface tension; the fifth accounts for the 

effect of transport of quantity at solid boundary (as in porous film 

cooling); the last term expresses the covariance terms. 

If the one-dimensionalized general mixture equation, Equation 

(4.27) is compared with that of the single phase equation, we obtain 

additional term due to the interfacial source, otherwise the general 

balance equation of the mixture will have the same form as that of the 

one-dimensional single phase flow in a conduit. 

In reference [23] the mixture balance equations were derived from 

the continuum point of view. For the reason of comparison we can put 

them into our notation and express as a general balance equation as 

follows: 

^ e * ^ + v - e ^ * * v = - ^ - ^ + e ^ (4.28) 

Comparison of Equation (4.27) with Equation (4.28) reveals that 

Equation (4.28) does not account for the interfacial source which is 

taken into account by Equation (4.27). The reason for the disagreement 

emanates from the fact that in the derivation of Equation (4.28), the 

author postulated the Kotchine's "jump" condition 

i 

^ e,LlVk^)^^1wr?„A;-0 (4.29) 
fc«< 

as a constitutive equation to be satisfied at the interfaces. By com­

paring Equation (4.29) to Equation (4.10) it is seen that Equation 

(4.29) does not account for the surface effects. 



4.5 Two-Dimensional Flow Field 

It was discussed in Section 1.2 and illustrated on Figure 1, that 

the class of separated flows can be divided into plane flows and quasi-

axisyrometric flows. If the flow can be approximated by two-dimensional 

field, then the line integrals appearing in the balance equations, i.e., 

Equations (4.20), (4.21) and (4.27), can be estimated immediately. This 

will be done for two-dimensional plane and axisymmetric cylindrical 

flow systems. 

4.5.1 Plane Flow 

Two-dimensional plane flow is illustrated in Figure 15 and the 

essential geometric relations appropriate to the plane flow are derived 

in Appendix C.l. By taking the width as unity, i.e., ?. = Z-, = §9 - 1; 

A = H, and substituting Equations (C.ll) and (C.13) in Equations (4.20), 

(4.21) and (4.27), we obtain: 

Plane flow general balance equation for phase 1, 

ot ox. 
(4.30) 

Plane flow general balance equation for phase 2, 

A Un-«l) «ê <̂ >]-*|-[CW-1) ̂ ^ ^ V ^ K M l H ) *****> (4 

Plane flow general balance equation for the mixture, 



1 U K + A. ̂  »„K ̂  =r - 1- -£ Y e^ ** + (4.32) 

In these equations 1") is the thickness of phase 1, and H is the half 

distance between two parallel plates, see Figure 15. 

4.5.2 Annular Flow 

Axisymmetric annular flow, i.e., §. = TTD., illustrated in Figure 

16 and the essential geometric relations are derived in Appendix C.2. 

Substituting Equations (C.22), (C.26) and (C.27) in Equations (4.20), 

(4.21) and (4.27), we obtain: 

annular flow general balance equation for phase 1, 

i~ 0~*)«6><lK>+^« u-x>v,ev$><\>lA><%,>~-l. u - x w < ^ > ^ (4.33) 

Ci-^)4ce,S><^1>-ti'*)[<*ei»<Vu><H'i>+ tt*^*^* U * ^ . ^ ^ i = *-"* Ut 

be 

annular flow general balance equation for phase 2, 

i_ « «cet*><%>* ̂ - *t«^v><^o<^> *- — <* «4\H2>**«p,v> <*»>- (4.34) 

*\ «e.» <***> <*»> + «4»4.v> * «?**> ^o»uw**}] ^ - ^ -
L a * 

*. ««^C.H*.-"M-«*i.t*ui3ki-W*»*?.iM<*[^(fiffi)]if'*g 

annular flow mixture general balance equation 

C0>t*.-o]ii^i* • Mi iv ' ) { i+ l± K {^ ) f f*-
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In these equations De is the variable pipe diameter, see Figure 16. 

4.7 Summary 

1. By considering the flow field of each phase as a continuum, 

the time dependent, separated two-phase flow problem was formulated in 

terms of a) the fundamental conservation equations applicable to the 

flow field of each phase, b) the constitutive equations describing the 

behavior of each constituent, and c) of the internal boundary conditions 

prescribing the interfacial balance. The difficulty of seeking a solu­

tion of such set of equations was noted and discussed. 

2. Using this formulation the mass-weighed area-averaged general 

balance equations for each phase were derived. They describe the fields 

of each phase in terms of area-averaged variables and take into account 

the effects of interactions at the internal boundaries between the 

phases and of the transport of the quantities at the external boundaries. 

3. By adding the area-averaged general balance equations for each 

phase, the mixture general balance equation was obtained. It was noted 

that this equation differs from those available in the literature 

(applicable to single phase flow of mixtures) by the presence of an 

interfacial source term. It was shown further that expressing the mix­

ture general balance equation with respect to the baricenter of the 

mixture gives rise to diffusive fluxes with respect to the baricenter 

of the mixture. 



CHAPTER V 

CONTINUITY, DIFFUSION AND VOID PROPAGATION EQUATIONS 

5.1 Introduction 

It was seen in Chapter 2 that the conventional formulation of a 

two-phase flow problem has been expressed in terms of only one continuity 

equation. Furthermore, it was discussed briefly in there that a two-

phase flow problem with a phase change should be formulated in terms of 

two continuity equations. In order to substantiate this statement let 

us look at the well-established field of transport phenomena. 

It is well known that in the analyses of multi-component chemically 

reacting mixtures, the number of continuity equations, is equal to the 

number of components. In addition to these two continuity equations, 

two constitutive equations - one for the rate of chemical reaction and 

the other for the diffusion coefficient - are required to completely de­

fine the kinematic requirements of the reacting systems. 

If, instead of a single phase, two component chemically reacting 

system, we consider now the present problem, namely a single component, 

two-phase flow system in thermodynamic non-equilibrium, we could expect 

that a similar number of equations will be required to describe the 

kinematic field of the latter system regardless of what model we have 

chosen. 

In this chapter we shall formulate the kinematic field of a two-

phase flow system in two-fluid and the diffusion models. It will be 
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seen that although forms of the field and constitutive equations in both 

models are slightly different from each other, the number of the field 

and constitutive equations are the same. Finally, from the differential 

equations we shall derive the relevant similarity groups which can be 

used for purposes of scaling. 

5.2 Two-Fluid Model Formulation 

A formulation based on the two-fluid model should be expressed 

in terms of two continuity equations for the individual phases. There­

fore, in what follows we shall derive the continuity equation for each 

phase and discuss the additional requirements which are necessary in 

order to complete the kinematic description of a separated two-phase flow 

field. 

5.2.1 Phase Continuity Equations 

A. Derivation 

To obtain the mass weighted area-averaged continuity equations 

from the averaged general balance equation, Equation (4,20), we use the 

proper identifications for ijf, ̂  and 0. According to Table 3, for mass 

transfer they are given by 

t = 1, mass per unit mass, (5.1) 

ljj = 0, no distributed mass generation 

0 = 0, no mass flux with respect to the baricenter of gravity 

of each phase, 

Substituting Equation (5.1) in Equations (4.20a and b), we obtain 

the mass-weighted area-averaged continuity equations for phase 1, 
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> 1 ( V-e„cV^ £ 
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and for phase 2, 

A . ( < x . « e » ) +-^-- ( o t < * e , * < V » » > ) = a - * * € a > < ^ x > J . ^ A T t - (5.2b) 

~fc 2 ( "it- ^^u-vo ^ 
T ' < ^ i t 

The first term on the right hand side accounts for the effect of changes 

of cross sectional area (as in nozzles, etc,), the second term accounts 

for the effect of mass injection at the external boundaries (as in 

porous film cooling) as well as the mass transfer at the internal sur­

faces (as evaporation or condensation). Defining by m , and in ,, the 

mass flux outward from the K-th phase at the external and internal sur­

faces, respectively, it follows that 

**Kl = *kl" efct (7kjl- \ ) ; K = 1,2; I = ei^.3) 

Furthermore, defining by r ., and T , the mass formation of the K-th 
° Ki Ke 

phase per unit volume of the mixture from internal and external surfaces, 

respectively, the line integrals appearing in Equation (5.2) can be 

interpreted as 

_J_ f «ici-eK lt^-^^i=--L I A K ^ * ritl (5-4) 

AT. I A* AT- ]
X 

I K £ *vci 

in which K takes the values 1 and 2 whereas & assumes the values e and 

i. The conservation of mass at the interface, i.e., Equations (4,9) 



together with Equation (4.10), requires that 

2 *w-j> P «- 0 (5'5) 

tC*l K*l 

Using Equation (5.4), we obtain from Equation (5.2a and b) alter­

native forms of the mass-weighted area-averaged continuity equations 

for phase 1 and 2, thus 

A. u-flO<te -̂*-JL u ~ ^ ^et»<^>=-u-^K<el»'c^u>^- ^ ^ + 5 " Hi <5-6a) 

** w x fa* 

i - *«e » * ^ - **e»*^*9A>»-^<*e^<»»*>j£< UfcT^^> p., (5.6b) 
2*e* 

which can be expressed in terms of mass concentration C, rather than 

void fraction a. To do so, we shall simply use the relation between 

a and C, which are given by Equation (3.36); thus from Equations (5.5) 

and (3.36) we obtain 

JL ( U ) e , v i ti-c)Cw|-cM5il>»-(t-c)M^>AjUATt+5 1c ( 5 '7 a ) 

— C e + i : c e„ <• *u>—ce«<^> *L IU Kr. + "> t\* o . 7b > 
Yl *̂* JH -f- . 

In the above set of equations, i.e., Equations (5.6) and (5.7), 

we need to discuss only the significance of the source term fv> because 
K 

all other terms appearing in these equations are self-explanatory. This 

will be done in the section which follows. 
B. Discussion 

We note here that in a two or three dimensional analysis of 



separated flow regimes such as annular or the jet flow where each phase 

can be considered separately, i.e., as a single phase flow problem, the 

source term T } does not appear explicitly in the continuity equation 

i.e., Equation (4.1), but will appear as a boundary condition at the 

internal and external boundaries. In the one-dimensionalized formula­

tion, however, the source term appears, see Equation (5.7), as a con­

sequence of the boundary conditions and of the area averaging procedure. 

By comparing the averaged continuity equations, Equations (5.6a 

and b) with one-dimensional continuity equations for a given species 

undergoing chemical reaction, reference [50], it can be recognized that 

the source term T , corresponds to the rate of production of a K-th 

constituent of a single phase multi-component chemically reacting flow. 

It is well-known that in analysis of multi-component flow systems, the 

source term is specified by an appropriate constitutive equation for 

chemical reaction. Consequently, even if the mass injection T , at 

the external surfaces is known a priori, in order to specify the 

vaporization or condensation rate Tv. > at the internal surfaces, it will 
Ki 

be still necessary to specify the constitutive equation for net vapori­

zation (or of net condensation), which in thermal non-equilibrium two-

phase systems, depends on the structure of the vapor-liquid interface, 

reference [51]. 

5.2.2 Two-Dimensional Flow 

Although above formulation is general and applicable for a 

general flow field, it may be of interest to express the formulation 

in the practical separated flow problems, i.e., plane and annular flow 

regimes, 



A. Plane Flow 

Plane flow continuity equations can be obtained either from 

plane flow general balance equation, i.e., Equations (4.29) and (4.30) 

• -* 
with appropriate identifications for ijr, \Jr and 0, i.e., Equation (5.1) 

or from Equations (5.6a and b) together with the relations derived in 

Appendix B. Here we shall obtain them directly from the general balance 

equations. Therefore, in view of Equations (4.29), (4.30) and (5.1) 

we can express the continuity equations for phase 1 as 

-̂ - 1 «e,»+-*L ^ « e x » ^ l A > « _ W,i \ k±[ ^ L \ _ *Ue (5.8a) 
\t ^$* L \ b*- i J 

whereas for phase 2 as 

t . 

\ \ i 1 

JL U - 7 ) 4tê > + i . Lu^^«txv><\)-^> = - ^ ^ r *-*• / ¥L i (5. 
fct * * |_ \ &X J J 

8b) 

where we have used Equation (5.3) for vi « 

In the presence of long interfacial waves 

Vt « ^.0 (5.9) 

which in turn implies that 

( — 

J. 

^ ~ 0 (5.10) 

a* 
and it can be neglected in Equations (5.8a and b). 

B. Annular Flow 

Similarly, to obtain the annular flow equations. We shall use 

the general balance equations appropriate to two dimensional axially 

symmetric flow, i.e., Equations (4.31) and (4.32), together with Equa­

tion (5.1). In this case we find for phase 1 
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eft*. 

(5.11a) 

whereas for phase 2 

JL *4t£j>*-k o t « 0 ^ > = : - . o t « e i > < V ^ > — A^Ql -V rv; (5.11b) 
^•t ^ x <d* 

where 

ft— r*.-^E ^ [ u d ; ^ ) 1 ] ^ (5.12a) 

and 

[-^-[-li# (5.12b) 
t>fe 

Again if the interfacial waves are long compared with a character­

istic length in longitudional direction then a similar approximation to 

Equation (5.10) can be done, thus 

/ * . i s s y ~ o <5.i3) 
\ * * a. / 

5.3 Diffusion Model Formulation 

A kinematic formulation based on the diffusion model is represented 

in terms of again two continuity equations. However, in analogy with 

the chemically reacting binary mixture the continuity equations appro­

priate to the diffusion model are: the mixture continuity equation and 

the diffusion equation or the void propagation equation for one of the 

phases. In the following sections we shall derive these equations in 

order to describe the kinematics of a two-phase flow in terms of the 

diffusion model. 
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5.3,1 Derivation of Mixture Continuity Equation 

In order to derive the mixture continuity equation we shall use 

the one-dimensionalized general balance equation for the mixture, i.e., 

Equation (4.27), together with the proper identifications expressed 

by Equation (5.1). In view of these identifications for ty> I|J and for 

0 , Equation (4.23) yields the mixture continuity equation, thus 

v 3-

—!n + A. e^v x̂ = - ê *-*x 4- UfsTc^5" r** (5-14) 

>t ** ^ -fr, 
where we have made use of the conservation of mass requirement at the 

interface, which is mathematically expressed by Equation (5.5). 

We note that in the absence of the external mass injection term 

F , and of the change in channel area, Equation (5.14) reduces to one-
Ke 

dimensional continuity equation for a single phase flow in a pipe. By 

substituting the definition of the material derivative following the 

motion of the baricenter of the mixture given by 

tU ^ Ah ^ 

Ti -Ti ^ *"** (3'15) 

into Equation (5.8), the mixture continuity equation can be expressed 

also as 

tit ** «** -fz, 

In the case of two-dimensional plane flow where A = H x 1, 

and r = 0, (see Figure 15), the mixture c o n t i n u i t y equat ion reduces 
2e 

to 

f — t ^ « - f * e . (5.17) 
* t ** 
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e 
whereas for the annular flow where ^ = "~7 , and F = 0 , (see Figure 

16), the mixture continuity equation becomes 

^*- * ̂- e„^* » **«. - U *-* -P (5.18) 

= - - ^ [ ^ ¥ n - « ~ ^ ^ De 

We shall proceed now with the derivation of the diffusion equa­

tion. However, since this equation is expressed in terms of mixture 

properties, i.e., in terms of either the velocity of the center of mass 

or of the center of volume we must first derive the appropriate expression 

for the latter velocity. 

5.3.2 Volumetric Flux of the Mixture 

The kinematic aspects of a mixture can be analyzed by consider­

ing either the velocity of the center of mass or of the center of volume. 

Since these two velocities are related by Equation (3.58), it is 

necessary to consider only one of the two. 

If we are interested in determining the response of the volumetric 

concentration to various perturbations, then it may be advantageous to 

formulate the problem in terms of velocity of the center of volume of 

the mixture j, and of the drift velocities V and V of phase 1 and 2 

with respect to j. Expressions for these velocities are given by Equa­

tions (3.54), (3.56a), and (3.56b). In order to derive this relation 

we shall start with Equations (5.6a and b). Carrying out the differ­

entiations on these two equations and eliminating the-r-p term between 
H 

the resulting equations and in view of the conservation of mass at the 

interface, i.e., Equation (5.5), we obtain 
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^ A* _ v. &e \-* tM<evv> 
- \fc4 1 (5 .19) 

* Da. «eo» <sc ^** I <i G~ ^ 

We note here that in arriving at Equation (5.19), we have used expres­

sions for the volumetric flux j given by Equation (3.64), and of the 

material derivative given by 

fe-&•**•*& 'K=1'2 (5-20) 
Equation (5.19), implies that, in general, the change of the 

volumetric flux density in the x-direction is proportional to the rate 

of vapor mass formation per unit volume of the system, to the com­

pressibilities of the phases and to the total cross-sectional area 

change along the channel. Under certain conditions Equation (5,19) can 

be integrated easily to obtain the axial distribution of the volumetric 

flux density. For instance, in the case of adiabatic two-phase flow of 

the incompressible fluids without mass injection at the external 

boundaries, from Equation (5.19), after integration we obtain 

i*U,t) AT«.UO 

Lu.,0 AT. to 

Consequently, j is a known function of x and t because j (x ,t) and 

AT (x ) are known functions denoting the pipe inlet conditions. It is 

important to recognize that for constant area pipe, j becomes only a 

function of time, which may be very useful relation in the analysis of 

adiabatic flows, 

In general case, however, the volumetric flux density is obtained 

by integrating Equation (5.19), thus 



4xu.i)=ixu,, i) Assisi - . - J— LTJr* -J tL_-

' -*- C)̂ «evv> * _ &a,̂ e1v> _̂ TT- fie, 1 j j , 

(5.22) 

ê̂ > bt « t 

From Equation (5.22) two observations can be made: First, the 

volumetric flux density j , of the mixture, i.e., the velocities of 

the center of volume at a given point in the system, depends on the in­

let velocity, and on the integrated effect of the mass generation (due 

to mass injection and phase change) decreased by the effects of the 

compressibilities of the two phases. Second, in order to evaluate j 

it is necessary to specify the constitutive equation for interfacial 

source term V . , the significance of which was discussed in Section 5.2.1 
Ki 

5.3.3 Diffusion Equations 

A. Derivations 

In order to derive the diffusion equation, we follow the standard 

procedure used in the multi-component systems, namely we replace the 

convective fluxes by the appropriate expressions involving diffusions. 

We start with the continuity equation for phase 2 and express the 

velocity <\V> , of phase 2 in terms of the diffusion velocity V„ , and 

of the baricenter velocity 0* » of the mixture; thus from Equations (3,45) 

and (5.7b) we obtain after arrangement 

* Cp + A, C P V- - . 1 Ce V + (5.23a) 
t̂ fc* ** 

;> P*<-e^( .^vo ^ 
Ue.L 

or using Equation (3.36), above equation can be equally expressed in 
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terms of a, thus 

2 r^ - * <*«*» Ci^^+V^^ ^ktet 
tsfc.fc 

The various terms of Equation (5.23) account for the change of 

the mass of the second phase with time, and for the effects due to con­

vection, diffusion, production at the internal and external surfaces and 

finally for the effect of a variable area of the pipe. 

In the literature, dealing with mass transfer (see, for example, 

reference [50]), it is conventional procedure to express the diffusional 

mean flux by means of the Fick's first law of diffusion, which is given 

by 

CcVw^-e^fc ^ - <5 - 2 4> 
•o * 

where D is the diffusion coefficient. Furthermore, mass concentrations 

of components of a mixture are stated with reference to unit of volume, 

namely partial densities of components. Partial density of the K-th 

constituent is defined as the mass of the K-th constituent per unit 

volume of the mixture., Consequently, in two-phase flow system partial 

densities p * can be expressed by 

e*= u-cu*,= u-*) «£*» (5.25a) 

e*= c u - **u» (5-25b) 

Inserting Equation (5.23) and (5.24) in Equation (5,22) we get 

the following two-phase flow diffusion equation expressed in terms of 
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partial density thus 

*er >i. e^-A^ks.) +S ra-

(e:u_-e.^) i 
OIK 

which is completely equivalent to binary diffusion equation used in the 

analysis of the binary mixtures. In effect, in the absence of last two 

terms, which account for the mass production at the internal and ex­

ternal boundaries of the second phase, and for the area change of the 

duct, respectively, one can recover the equivalent Fick's second law of 

diffusion written for a one-dimensional binary mixtures of non-reacting 

systems. 

As in binary diffusion, the two phase flow diffusion equation can 

be expressed in a variety of forms. In the following paragraphs we shall 

express It in terms of concentration diffusions, i.e., in terms the mass 

concentration and the void diffusion equations. 

In order to obtain the diffusion equation in terms of mass con­

centration we use the mixture continuity equation in Equation (5.26); 

thus from Equations (5.14) and (5.26) we obtain, after some arrangement: 

TT "• ̂  7„ V* U - & T r H " ^ ^ T — V (5-27) 

-L r ra; * c t - c i r v t - c r , t ] 

Similarly we can derive the void diffusion equation. To do so, 

we shall follow the basic pattern which was used in the derivation of 

the diffusion equation. We start with the continuity equation for phase 
—> 

2 and express the velocity <vr>> °f the second phase in terms of the 
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drift velocity V , and of the velocity j, of the center of volume, i.e., 
^ J 

the volumetric flux density of the mixture; thus from Equations (3.55) 

and (5.6b), we obtain 

-A ««&,» * ̂  «.«e3>j„=-.i^«eo»% + (5.28a) 

CsCili 

which can be also expressed in terms of the mixture velocity v ._, thus 
mK 

(5.28b) 

29) 

2 Ha - -««.» 1 ^ . + J ^ v j J±J^ 
e=«.i e - ' J K 

which corresponds to Equation (5.23). 

Differentiating Equation (5.28a), and using Equation (5.19), 

results in 

i± vLk-i^v^^tMili . Mf£-J- M&»V(5-

where the material derivatives used in the second term on the right side 

are defined by Equation (5.20). 

Expressing the drift flux in terms of the diffusion coefficient 

D^~the subscript 1̂  is used in order differentiate the drift flux from 

the diffusion flux which is expressed in terms of D- the Fick's first 

law can be expressed by 

\1 . ft 0 * (5.30) 
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Inserting Equation (5.30) in (5.29), we obtain the void diffusion 

equation, thus 

tk J K * * ^ V » * * / ' \ * e ^ b^ «u»~t ) ( 5*31) 

ê  f . + ci»^w<etv>rAe~^«e^»P,ft -v D^ AfL ^ ^ ^ 
«evv>«.^y>

 tu <^e,v>«exv> *̂ ^* 

If we neglect the source term and the effects of the area change 

and of compressibility we obtain again Fick's second law of diffusion 

"TT + i* — - - ^ V ^ T T ) (5.32) 
<fci 

B . Discussions 

In the proceding section we have derived various forms of the 

diffusion equation, i.e., Equations (5.23), (5.26), (5.27) and (5.29) 

or (5.31), appropriate to a two-phase flow system. Although each of 

these equations describes the concentration profile in a two-phase mix­

ture, from the appearance of these equations it is obvious that those 

which are expressed in terms of a will be advantageous for analyzing two-

phase flow of inc ompressib1e fluids, whereas those which are expressed 

in terras of C will be more useful to two-phase flow of compressible fluids 

Otherwise these equations are fairly general and valid for systems with 

variable mixture density and concentrations and variable diffusivity. 

In order to use these equations expressed in the various forms, 

some information must be available on the diffusion flux Q«p2>:> ^ m . 

This brings us to the specification of the diffusion coefficient D, or 

drift coefficient Dy-, by a constitutive equation. 

It was noted in the preceding sections that we can describe the 

kinematics of a two-phase flow field in terms of two field equations 



(one for the mixture and the other for a phase, namely the diffusion or 

drift equations), together with two constitutive equations: one for the 

vapor generation r„., and the other for the diffusion flux. This formu-* 
Ki 

lation is, therefore, completely in agreement with the formulation of 

a multi-component chemically reacting mixtures. 

However, the present lack of a constitutive equation for diffu­

sion of the type given by Equation (5.24) restricts the usefulness of 

the diffusion coefficient because experimental data on the diffusion 

coefficient for two-phase mixture are almost non-existent. Furthermore, 

an additional difficulty may arise when the diffusion coefficient depends 

on the concentration; such a case Equations (5.27) and (5.29) become a 

non-linear partial differential equations for which solutions are not 

usually available, 

For many two-phase flow regimes (bubbly, churn turbulent, slug 

flow etc.) the vapor drift velocity is known, reference [51]. Conse­

quently, it is advantageous to formulate the problem in terms of the 

void diffusion equation or in terms of the void propagation equation 

derived in the section that follows. 

5.3.4 The Void Propagation Equations 

A. Derivation 

It was shown in reference [51] that for most flow regimes of 

practical interest the second phase drift velocity V„., is either a con­

stant or a function of the void fraction a. For such cases it is ad­

vantageous to transform the continuity equation for the second phase 

into void propagation equation rather than into diffusion equation and 

analyze it in terms of kinematic waves. Consequently, we can express 



the first term on the right hand side ofEquation (5.29) as 

&«v-tv—£*)*= (5-33) 
By s u b s t i t u t i n g Equation (5.33) in Equation ( 5 . 2 9 ) , we o b t a i n 

the genera l form of the void propagat ion equat ion for a two-phase flow 

system with a change of phase , thus 

(5 .34) 

&, p H - o O ^ . ^ ^ e - <X P,e v, . eHU^Ta 
I x\ v oi -*x^ — 

where we have defined the velocity of the kinematic wave C , by 

C-j^i. («*»*«) -i.*^.*" 4 ^ (5-35) 

which in view of Equation (3.53b), can be also expressed by 

0*^4,+^- Kii-^Vr.* « i * * ^ * * - «••! ti-^)^rK (5.36) 

Expressing the volumetric flux density j in Equation (5.35) by 

means ofEquation (5.22), we obtain the complete form of the kinematic wave 

velocity C , thus 
K. 

37) 

"uiS T* **> ** £r **** 
Finally, we obtain from Equations (5.34) and (5,37) the following 

expression for the void propagation equation in a two-phase flow system 

with an internal and external mass transfers, thus 



— • + \ J*lx<»|-t> ; + Y * "1— + *tL*** (5.38) 

c4-^i t>i«g>» _ * D^gQ* ^ We 1 j K i ^ *_ ^ 
*e4v> fct ^ e ^ D * ^ . * e K * J J **. 

U-ocXHQfrlU-xlU _ u v ^ ( U K T . 

< ( « ^ < t e ^ ^ «U 

The rate of propagation of the voids as well as the change, i.e., 

the distortion of the void as it propagates along the duct can be deter­

mined by means of this equation. 

B. Discussions 

Following observations can be made with respect to Equation (5.34), 

(5.37) and (5.38). 

First, from Equation (5.34) it can be seen that variations in 

volumetric concentration a, are propagated through the flowing mixture 

by the kinematic waves whose velocity C^, is given by Equation (5.37). 

These variations in a are attenuated or amplified as they flow upstream 

depending on the local effects of the mass generation at the internal 

and external surfaces, the compressibilities of the two phases and on 

the cross-sectional area of the conduit. 

Secondly, it can be observed from Equation (5.37) that the velocity 

of the kinematic waves depends on the inlet conditions and on the in-

tergrated effect of the mass generation at the boundaries decreased by 

the effect of the compressibilities of the two phases. Dependency on 

the flow regime, however, is reflected by the effect which a flow regime 

has on the drift velocity. 
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Finally, it can be seen from Equation (5.38) that the void propa­

gation equation predicts the void response as function of time and of 

space to variations of inlet volumetric flux density j(x ,t) , flow regime, 

compressibility of the each phase, the constitutive equation for the 

vaporization T„.t and of the cross-sectional area change of the duct. 

If we neglect the effect of compressibilities and of the area 

change, and if we set the source terms equal to zero, for such a system 

the void propagation equation reduces to 

1*. *C,,i£i = 0 (5.39) 

which indicates that changes of volumetric concentration 04 propagate 

with respect to a fixed frame of reference with velocity C given by 
K. 

Equation (5.35). In other words, the void a/, is constant on waves which 

propagate with velocity C„. 

In this form theory of kinematic waves was developed by Kynch [ 52] , 

for analyzing the problem of sedimentation and, independently by Lighthill 

and Whitham [8], for analyzing flood waves and traffic flow on highways. 

In the former reference, the waves propagating with the velocity CTT, 

were called continuity waves because they were generated by the equation 

of continuity whereas in the latter, they were called kinematic waves 

in order to differentiate them from dynamic waves which depend on the 

second law of motion. As Lighthill and Whitham pointed out, in reference 

[8]the important differences between these two systems of waves is that 

kinematic waves have only one velocity whereas dynamic waves have at 

least two (forwards and backwards). Consequently, the kinematic waves 

can propagate in one direction. 



109 

5.3.5 Scaling Criteria 

Thus far in this chapter we have derived and discussed the set 

of equations which describe the kinematics of a two-phase flow field. 

Next we shall consider the dimensionless forms of these equations, so 

that the dimensionless groups obtained from the differential equations 

can be used for the purposes of the order of magnitude and of similarity 

analyses in separated two-phase flow systems. 

In order to obtain the dimensionless forms of the mixture con­

tinuity and the diffusion equations, it is convenient to define the, 

following variables: 

X = X/L = dimensionless coordinate, (5.40) 

v = v /v = dimensionless mixture velocity, m m mo J ' 

^21 = ^2"'^2io ~ dimensionless drift velocity, 

t = t v„/L - dimensionless ti 
mo lme 

p = Pm/pmo
 = dimensionless mixture density 

p„ = « p »/p = dimensionless K-th phase density, K = 1,2 

r„.+ = r^./r = dimensionless mass transfer, K = 1,2; 1 = e,i 

in which L, v , n , pr. , and F,,„ represent, respectively, any con-
' mo' ^mo» KKoJ KXo ' v J ' J 

venient characteristic length, velocity, mixture density, density of the 

K-th phase, and a characteristic mass generation. We note that depending 

upon the purpose, the characteristic variables can be defined in a 

slightly different way. Turning our attention now to the scaling the 

2c 
concentration, it can be observed that a = - — , can be scaled in ditfer-

V 
ent ways. For instance, the characteristic scaling parameter for it can 

be difference of concentration between inlet and exit of the pipe if 

heat transfer problem is considered to be important or it may be scaled, 



in terms of an average film thickness if the dynamic of interfaces is 

important. 

Since both the plane flow and the annular flow can be described 

with the equations of the same type, in the following we shall use the 

general equation which, with proper substitution, can be applied to 

both cases. 

Introducing the characteristic scaling parameters given by 

Equation (5.40) into the mixture continuity equation, Equation (5.14), we 

obtain on rearrangement 

i g . * 4 . C «C = - C < 4 ¥ ^ «, <£ We. M ^ (5. 41) 

Since the diffusion model is formulated in terms of two continuity equa­

tions, to be consistent one more continuity equation is needed for 

scaling purposes. In view of the discussion made in Section 5.3.3, 

however, the void diffusion equation in the form of Equation (5.28b) will 

be used for the purpose of scaling because it does not introduce an unknown 

diffusion coefficient. Hence, introducing the scaling parameters in 

Equation (5.28b) we obtain in dimensionless form of the void propagation 

equation. 

_i_ *•£•-*. **£ vdo=-Ne, M0 1_ w AiL ^ (5.42) 

v p* ' A*. °i„ N ' e ; 

In these equations we have defined 

The Phase Change number by 

^-mi±\ V*\o\l L. \ (5.43) 



The Drift number by 

ND« -1&- (5.44) 
ft. 'fMO 

The Supply numbers by 

/ r _ \ / i \ 
K = 1,2 (5.45) "—fe) (t.l • Ko 

The Density Ratio groups by 

€ * = -J , K = 1,2 (5.46) 
v*<3 

We note t h a t the "frequency of phase change"J7 , defined by 

51 = " **° (5.47) 

e** 
sca le s the r a t e of phase change. Indeed, i t has the same meaning as the 

r e a c t i o n frequency in chemical k i n e t i c s . The r a t i o L/v , s c a l e s the H J mxo5 

res idence time of a p a r t i c l e in the mix tu re . We can express t h e r e f o r e , 

the _Phase Change number as : 

V \fcmJ 

(5-48) 

Expressed in this form, i.e., as the product of the character­

istic frequency and of the residence time, the Phase Change number is 

of a similar form to the Damkohler first group, reference [53], which 

is one of the most important similarity group used in scaling chemical 

reactors and rocket engines. It can be expected therefore, that for 

two-phase flow with a change of phase, the phase change number will play 

the same role as Damkohler first group in chemically reacting systems. 

In fact, the equality of the Phase Change number in two different systems 

file:///fcmJ


ensures that the phase change has progressed equally in both. If this 

is not satisfied, the dynamic conditions in the two systems will not 

be similar, since the phase change in one would have progressed further 

than in the other. 

The Drift number No, plays the same role in two phase flow as 

Damkohler's second group in chemical kinetic. It scales the effect of 

the relative velocity between the phases. Since the drift velocity Vo^x, 

or its equivalent the diffusion velocity V~ , depends on the flow regime, 

this group characterize the flow pattern. 

It is to be noted here that the characteristic concentration a , 
o 

comes as an independent group from the boundary conditions. Actually, 

the equality of this number between two different systems ensures that 

the geometric similarity is accomplished in both. 

The significance of the Supply number given by Equation (5.45) is 

similar to that of the Phase Change number whereas the significance of 

the density ratio groups are self explanatory. In fact, they scale the 

relative importance of the densities. However, we note that these two 

density groups are not independent from each other. Recalling the 

definition of the mixture density it can be shown that 

U-«), JlL. + oL.-hz. = \ (5.49) 
£*!<» G^O 

It is evident that if N$4 is chosen as independent density ratio group, 

then the other density ratio group NpA, is specified by means of Equa­

tion (5.49), or vice versa. 

5.4 Summary 

1) The kinematic aspects of a two-phase flow field were formulated 
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by considering a two-fluid model and a diffusion model. The first was 

expressed in terms of the continuity equations of the two phases, where­

as the diffusion model was described by means of the continuity equa­

tion for the mixture and the diffusion or void propagation equation for 

one of the two phases. 

2) From these formulations it was concluded that any formula­

tion based on these two models should be expressed in terms of two field 

equations and two constitutive equations. In the two-fluid model these 

two constitutive equations were given by the equation for net vaporiza­

tion and the interfacial kinematic coupling equation, i.e., the inter-

facial mass balance equation. In the diffusion model, the constitutive 

equations are the equation for net evaporation, and the equation for the 

diffusion flux or the drift flux. 

3) The equations in their dimensionless form were used to obtain 

similarity groups. The significance of these groups was discussed and 

in particular, that of the Phase Change number, the Drift number and the 

Supply number. It was noted that the first two numbers are of great 

importance as scaling parameters. 

4) Finally, it was seen that, in the absence of data on diffusion 

coefficient, an alternate formulation in terms of the kinematic waves 

is preferable. Such a formulation leads to the void propagation equation 

which should be used in place of the diffusion equation. 



114 

CHAPTER VI 

MOMENTUM EQUATIONS 

6.1 Introduction 

It was discussed in detail in Chapter 2, that the momentum equa­

tions which have been proposed in the literature were not complete and 

are inappropriate for the dynamic system analysis of a separated two-

phase flow. In view of these deficiencies it is desirable to derive 

here the momentum equations from the general balance equations derived 

in Chapter 4. 

In a development similar to that of the previous chapter, the 

formulation will be expressed in terms of the two-fluid model and of the 

diffusion model. As before the two-fluid model formulation will be ex­

pressed in terms of two field equations, however, the diffusion model 

will be in terms of one field equation, i.e., that of the mixture. 

Furthermore, the effects of diffusion or drift stress and of interfacial 

dynamic interactions on the mixture flow will be demonstrated. Finally, 

similarity groups and scaling criteria will be derived and their signi­

ficance will be discussed in detail. 

6.2 Two-Fluid Model Formulation 

6.2.1 Derivation of Phase Equations 

It was noted in. Section 3.1, that two-fluid model formulation 

is always expressed in terms of two field equations for each field. 

Following this principle we shall derive the averaged phase momentum 
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equations. 

To obtain the mass-weighted area-averaged momentum equations from 

the general balance equation, i.e., Equation (4.20), we use the proper 

—* 
identifications for ty, ijj and 0. According to Table 3, for momentum 

transport they are given by 

f — Va momentum per unit mass, (6*1) 

V = "g, distributed momentum generation or sink per unit mass, 

0 = - rr= -(-Pc+T^j molecular momentum flux with respect to center 

of mass of the fluid. 

Introducing Equation (6.1) in Equations (4.20a and b), we obtain 

the mass-weighted area-averaged momentum equations for phase 1: 

^- U-oO«e,v><\>,> * -i- U-*U*e><V;„>uri>=A U-«o(-fctVfrt + 4c:%,,*>Vi* (6.2a) 

— 3" ( [*»i^i"l-^ tM'M37" ,|;Ggrt*1^0 

" T t ^ — ' T 

CmC.l *\t 

and for phase 2; 

A *«e,1>0>:>*— x ^ ^ ^ a ^ * ( -«*»»!* <<fc%V>}*i«. (6#2b) 

_L V j [ ^ *^-(-fU *-*^0"*»*] — - ~ e<*-t*»*oQ 
4*e»i ^ifc 

where 

Cov-C*»»"> <) - U-*1 «tfi Cov l v t ^ \ ; Cov(,wr«**,a^-ot«.e^ £ ° H v a ; \ r j (6.3) 



Equations (6.2a and b) which represent the averaged momentum equa­

tions for phase 1 and 2, respectively, are fairly general. The first term 

on the right hand side accounts for the effects of the pressure and viscous 

stresses; the second is the source term, i.e., gravitational force; the 

third accounts for the effect of changes of cross sectional area; the 

fourth term accounts for the effect of momentum transfers at the internal 

and external surfaces due to the mass transfer and the molecular action, 

the last term expresses the effect of velocity distribution over the cross 

sectional areas. 

These momentum equations should be compared to those proposed in 

the literature and reviewed in Chapter 2. It will be seen that these 

relations do not account for most of the effects which are accounted for 

by the various terms on the right hand side of Equations (6.2a and b). 

We note also that if the total cross sectional area is constant and no 

mass injection occurs at the solid wall, then these equations can be 

reduced to those reported by Delhaye [24], 

By expanding th<i left hand side of Equations (6.2a and b) and 

using the continuity equations, Equations (5.2a and b) we get the 

equation of motion for phase 1; 

(6.4a) 



(X «t>* ( ig> * «t.> *J&) = 2. [ * (- « t»»t * *.*.») -1\ . (6.4b) 

JL *> [ [^Iv^-^j^LTltl^fc^V^^^--^^^*! 
^Tc ̂ - x J d x *A 

^ ; 'aft 

As it is evident from the above derivations that the momentum 

balances are vectorial equations, therefore, for each phase we have 

essentially three components x, y and z. Furthermore, these field equa­

tions must be supplemented by the interfacial balance of momentum trans­

fer which couples the dynamic fields of the two-phases. Such a relation 

was derived in Appendix B and given by Equation (4.12). Further discus­

sion about the constitutive equations will be made in relation to the two-

dimensional flow problems. 

6.2.2 Two-Dimensional Flow 

Our purpose here is to reduce the general momentum balance equa­

tions to the simplest form possible. At the same time, however, we shall 

retain the terms which account for the essential physical processes. As 

a first step of the simplifications, we restrict the developments to two-

dimensional flow fields which is equivalent to the assumption that all 

the components of vectors following one of the three directions are negli­

gibly small in comparison with the other two directions. With this 

restriction in mind we shall simplify the momentum equations for two major 

flow fields, i.e., plane and annular flows. 
'.. Plane Flow 

Plane flow momentum equations can be obtained from the general 

balance equations appropriate to the plane flow geometry i.e., Equations 



(4.30) and (4.31) with proper identifications for ijf, ^ and 0, i.e., 

Equation (6.1), Therefore, substituting Equation (6.1) in Equation 

(4.30) we obtain the momentum equation for phase 1 as: 

-^ ( i fce .^v) -v 1-(*£ <<.e%*<tf;-><̂ \>) ~-\ ^^>%A^k i&p-i * (6.5) 
fc-fc ^K 1*- >x 

1 4 I ^ J - [ A U ^ L H ^ 5 - ^ H V V ] [A* [ ^ i f ] ! 

and substituting Equation (6.1) in Equation (4.30) we obtain the momen­

tum equation for phase 2 as: 

1. [ LH-»I) <*e,><vv>| * A. fu-^i <<e^<\r^<v>U_^- U-^WI»SM+(6.6) 

W -L C^u-L^^w^iX 
^ K 

In view of the geometric relations derived in Appendix B.l, vector 

multiplications appearing in Equation (6.5) and (6.6) can be carried out, 

For example, it can be shown that at the phase boundaries following 

relations hold: 

['* I S t f ( - p , : ' ¥ ^ ^ - t - l - ^ M ^ tt,li]t* <6-7) 

0 Jt 



[^(3g^(-p f c i i^»iV*u-[t-P*w*fc^U)U -t*.A\;]i* (6.8) 

[t^^-P^^I;)]! 

(-Re S t-bl̂ .yile = -t.u^ei-.C-^t^UU
 (6'9) 

Furthermore, no-slip condition at the external surfaces requires that 

*KtK = 0 (6.12) 

When we substitute Equations (6,7) through (6.12) resulting 

equations will be too complicated for the purpose of practical applica­

tions. Therefore, further simplifications are desirable in order to use 

the momentum equations which we have derived. 

For this purpose we shall utilize the Prandtl's boundary layer 

theory according to which the Navier-Stokes equations can be simpli­

fied to yield approximate solutions. As it is well-known Prandtl's 

approximation is based on the order of magnitude analysis through which 

the order of magnitude of the terms of the equations can be determined 

with repsect to the thickness 6 « 1 , known as the dimensionless boundary 

layer thickness, reference [54, 55]. 

Motivated by the Prandtl's boundary layer analysis, we shall carry 
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out now a similar order of magnitude analysis for the two-dimensional 

flow of a compressible viscous fluid. For a two-dimensional fluid the 

continuity equation for the K-th phase (K = 1,2) is 

— *r- te*.v^.*;L teKv* \^o <6.i3) 
} \ **- ^ ^ « 

whereas the x and y components of the equation of motion are given 

respectively by: 

'-(^"'-^-^.^V-^r.lr.l'^- "'"' 

f^'T^H^^r^*'"'-
and 

^(^•""•^"^l-^iWA-" 

Since for most practical separated two-phase flow systems liquid 

flows in a film adjacent to the heated or cooled walls we can make the 

"thin film" formulation which is based on the assumption that the film 

thickness is small compared to the longitudinal dimension. Thus, if 

TU denotes a typical value of the film thickness TL(x,t), and L denotes 

a typical longitudinal dimension, we introduce 

fc» s H1}Z « 4 (6.16) 



as a perturbation parameter which is similar to the dimensionless bound­

ary layer thickness 5 used in the Prandtl's argument. Of course, we could 

have identified L with a typical wave-length of inter facial waves, then 

this would lead to the long-wave approximation. 

Turning our attention now to the vapor or the gas phase, that 

is to phase 2, we observe that the second phase is moving over the 

liquid which is in motion. However, we can treat the second phase as 

the flow over a rough surface. It is well known even if the second 

phase is mostly in turbulent motion, then in the immediate neighborhood 

of a wall the apparent turbulent stresses are small compared with the 

viscous stresses. It follows therefore, that there exists a very thin 

layer next to the interface which, in essence, behaves like a boundary 

layer. For the purpose of scaling we can choose a typical laminar 

boundary layer thickness TL . which satisfies 

£*= -2if. « 4 (6.17) 
L 

We note that this particular choice will be very useful for the non-

dimensionalization of the interfacial momentum balance and for the 

determination of the various terms appearing on it. 

We want to compare the magnitudes of the various terms in Equa­

tion (6.13)-(6.15). For this purpose let us first introduce the follow­

ing dimensionless coordinates defined by 

**= JL ; V K = —
 (6-18) 

L *2*. 

Introducing a reference velocity U , and a reference density n , the 
K " Ko 

dimensionless velocity in the mean flow direction and the density become 
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**.« i£i -, e^-I*. (6.19) 
Uw «*. 

Upon measuring the time in units of L/U , the scale for the y-component 
K 

of the velocity is obtained by substituting Equations (6 .16)-(6.19), 

in the continuity equation, Equation (6.13), and requiring the terms in 

the resulting dimensionless form of the continuity equation be order of 

unity we obtain 

v-, v;.. = Jjju ka T ^ T (6-20) 

which is in agreement with the boundary layer approximation. 

2 
Furthermore, measuring the pressure in unit of P^0^ v , we can 

reduce Equations (6.14) and (6.15) to dimensionless form. It is found 

that (6.14) remains of the same form, i.e., 

„ W ^ V K * ^ U W K .y* W l „ \ ^P£ \ { * K f 1 ̂ ** (6.21) 

if^^^^lU^i- I ^ r:(^k.^^k\Uiiii i ^ T I ^ T F l J i £ ; R ; L*^r* v w *** )] T* 

whereas Equation (6.15) in dimensionless form becomes 



where 

K e * = (&.23) 
**< 

i s t he Reynolds number and 

P r R « - _ (6 .24) 

iaT 
i s the Froude number. 

The boundary layer theory is an asymptotic approximation for a 

2 
large Reynolds number whose magnitude is 0(l/e. ). Furthermore, if we 

K 

assume that the Froude number is 0 (£ ) , the zero-th order approximation 
K 

in £ is obtained from Equations (6.21) and (6.22) by neglecting the 

terms of order £ and higher, and reverting to tie unstarred original 
K 

variables, thus 

tJj^+V^ ****+%*^U- ^ , ^ , e ^ (6.25a) 

and 

0=-iSLve,^ (6.25b) 

It should be noted here that Equations (6.25a and b) are equivalent to 

the hydraulic approximation. 

Furthermore, it can be shown from Equation (6.21) that the magni­

tude of the stress terms are: 

^ * k < . « O U i ) (6-26) 

-LfckM4 * O U + £ l } (6.27) 
* 4 * 

— IK ~0{E*) (6 .28) 
b* 
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From these equations it is evident that the normal stress T^XX , can be 

dropped from the averaged momentum equations in comparison with the 

5TI ̂  shear stress *r , similarly, (-r—') can be neglected when compared with Kxx ox 

unity. 

Using the approximations expressed by Equations (6.26) through 

(6.29), we obtain the averaged momentum equations for phase 1 and 2 in 

the x-direction, thus 

.A- f i? «e,* <\n.>W^-(li«e^<^^) ^-^- *i«*** (6.29a) 

«e lv>7,gx-^u U i u ^ i - * * * * ^ T!: " H l ^ * ^ * ^ ) 

i_ rtH-f) «e><va*>U — \CH"^ «ev»<V>xW|- cu-^«^»+(6.29b) 

where T„. and T, are, respectively, the shear stresses at the inter-
li le 

facial and the external surfaces. 

We note that the averaged pressure « p „ » and the interfacial 

pressure P , (K = 1,2), appearing in the averaged momentum equations 
Ki 

can be related by integrating Equation (6.26), thus 

« P;» •=: Pv; _ -L « $ > \ %l (6.30a) 

«c*l» -= R* + ± «K»L*-^ 4a (6'30b) 

Finally, using Equation (6.30a) for P,, and (6.30b) for P„., we 

*T| for T\ and (H - T\) tor TL were used. 



ob ta in from Equation (6.29) the averaged momentum equat ions expressed 

in terms of the averaged p ressures only, thus 

and 

^•[ iH-^)^ex>u^>c>]Hr|-[cw-iH<ex>><^^]=-cu^i\i^^ (6.3ib) 

2 . >* A ft \j o x» 

By expanding the left hand side of Equations (6.31a and b) and 

using the continuity equations, Equations (5.8a and b) we obtain the 

equation of motion for phase 1: 

^ P i < V ^ * « f i » , j « e M i V I + (6.32a) 

*l *Ci* g x - ™ u ^ ; K - < ^ * > W ^ - ^ < t - V \ A- CB*I.*I->"0 

and for phase 2: 

C H - ^ * ^ * ^ ^ " - a - C W - ^ ^ ! i * + i fcUHH-Dj ^ U (6.32b) 

CH-1, ) <<e=k» ^ - ^ l i C ^ u - <«i*
>>) - t w , - w 1^ CU-I-MO*, a) 
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where the material derivatives are defined by Equation (5.18). 

In order to complete the dynamic description of the field, these 

two field equations must be supplemented by expressions for the wall 

stress T and either one of the interfacial stresses T, . or T 0. , In 
le li 2L 

addition to these two constitutive equations dynamic coupling, i.e., 

interfacial interactions between the two phases should be specified. 

As usual coupling can be specified by means of the "jump" conditions 

which are derived in Appendix A for general three dimensional flow field, 

Equation (B.25) or (4.12). In what follows we shall perform an order of 

magnitude analysis on the "jump" equations. 

In Appendix C.1.4, the interfacial balance appropriate to the two-

dimensional plane flow is derived and given by Equation (C.17). As ex­

pected, it is a vector expression. In our one-dimensionalized analysis 

we shall use the components of it in x- and y-directions. Therefore, it 

will be necessary to obtain the x- and y-components of the interfacial 

momentum balance equation, Equation (C.17). However, for the purpose of 

simplicity we shall derive the normal and tangential components instead 

of x~ and y-components. 

To obtain the normal and tangential components, respectively, we 

/N ^ 
shall multiply Equation (C.17) throughout by unit vectors n and t., 

and using the resulting relations together with Equations (C.4), (C.5) 

and (C.6) it can be easily shown that the normal and tangential com­

ponents of the interfacial balance are given by: 

Mi, ^-xt , 



[-(^.-t^iJ-atHft^^ct^^vi'-l^fBM^ft (6-33b) 

where we made use of Equation (B.27) for the velocity differences in the 

normal direction. 

The surface conditions that are consistent with Equations (6.25) 

and (6.26) will be obtained by applying the boundary layer approximation 

to Equation (6.32). Using the scaling parameters, we can reduce Equa­

tions (6.33a) and (6,33b) to dimensionless form. It is found that Equa­

tion (6.33a) is identical to its dimensionless form 

*~ Ux r / ( r i ^ L . i / ^ i l ^ i Z i \ l £.- ( ^1i\fc 

(6.34a) 

f-L A2* + *•+***. * i : 

5 (^^IH^USTf-
ft,, l L >** JUi* hg l\ V 4*« 1 U , 4S* a**/ 

[i^-i/^.^iirw^f^rft-^-^ ^ 

•-wvify 
w 1 

whereas Equation (6.35) in dimensionless form becomes 



• • • 

(6.34b) (.!»?"»•)-£ J_U — - i f ^ + ^ U i 2 L + 

r * *£i _ i (_*»« * *3L w isl«. 
l ^ * * V "W **^ ' >«•* 

/ - L - A ^ £ J ^ k . \ \i-(*<.\%e:] } -

ik(l*L + l * i \ er J ^ J i W , + £ v ^ _ \ r A _ ( v c \ l
e j | L 

= _L irp^/j^rff 
We >*•* L *** ' I 

In these equations N-p is the Density Ratio group defined by Equation 

(5.50) whereas We is the Weber number defined by 

W e = ^lo L U ^ (6.35a) 

Before assessing the magnitude of the various terms, we can make 

several observations with respect to Equation (6.34). First it may be 

pointed out that the pressure is non-dimensionalized so as render the 

pressure gradient and the inertia effects of equal magnitude, a fact 

that is well known in the boundary layer analyses. Furthermore, noting 

that the pressure drops in both phases are the same it can be seen that 

6 w u r ~ **«u£ (6.35b) 

Second, we note that the Weber numbers encountered in the experi­

ment with water and alcohol film flows are quite small. Therefore, we 

can suppose that We is of 0(£ ) . 
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Finally, since in the separated two-phase flow systems the center 

of mass of the mixture moves closely with the center of the liquid from 

the definition of the phase change number given by Equation (5.47) it 

is evident that the first term in Equation (6.34a) is closely related to 

the phase change number 

*> 

Npc^ci (6.36) 
^oUt 

which can be assessed from the diffusion equation to be of the order of 

unity i.e. , 0(1). 

If we use Equations (6.35b) and (6.36) with Wo=i0(f,)f N , «* 
e l pch 

0(1) and Re -= 0(7 J) i then the terms of Equation (6.34a) representing 
K K 

the contribution of 0(1) yields in the dimensional form 

Ri -P»; = Atf — -V 1%X- (6.37a) 

fti e*i 

whereas for the major contribution of the tangential shear stress jump 

condition we have from Equation (6.34b) the following result in dimen­

sional form 

Uix^-C, x^|- = _ — (6.37b) 

In Equation (6.37) *• i s the mean curvature of the su r f ace . Under the 

boundary layer approximation i t is given by 

X% =L - (6.38) 
> x v 

Equations (6.37a and b) specify the conditions which the shear 

stresses and the pressures must satisfy at the interface. 

Several observations can be made with respect to Equations 
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(6.37a and b): First, we note that the temperature of the interface 

may not be uniform, giving rise to a non-uniform surface tension and 

consequently, according to Equation (6.37b) to a shear at the interface. 

This thermo-capillary effect induces a flow from the region of high 

temperature to the region of low temperature, i.e., from the region of 

low surface tension to the region of high surface tension. It can be 

seen that in the case of film flow, as the film becomes thinner the con­

tinuous flow from the hollow to the peaks may lead to serious problems, 

such as a destruction of the film. Secondly, as the mass transfer, 

either in the form of evaporation or condensation, takes place at the 

interface, according to Equation (6.37a) there is always a thrust exerted 

by the vapor towards the liquid phase. Again in the case of film flow 

this vapor-thrust may lead to the destruction of the film. Finally, we 

note that in absence of mass transfer and of the temperature gradient 

along the interfacial surface, the two equations, Equations (6.37a and b) 

reduce to standard expressions, reference [56, 57J« 

Before closing this section it is appropriate to recall here the 

conventional formulation of momentum equations which have been reviewed 

in detail in Chapter 2. These formulations have not included the right 

hand sides of the last two equations. The significance of omitting these 

terms now becomes clear, that the equations available in the literature 

cannot account for the correct interfacial interactions, such as for the 

effects due to the interfacial surface curvature, surface shear and due 

to the vapor thrust. Consequently, effect of interface dynamics on the 

two-phase flow system can not be determined by means of conventional 

heretofore available formulations. 



As a conclusion of this section we can summarize that the dynamic 

formulation based on the two-fluid model can be expressed in terras of two 

field equations, Equations (6.31a and b) or Equations (6.32a and b) , and 

four additional equations, one for the specification of the wall shear 

Tle ' o n e ^ o r t*ie specification of either phase interfacial shear T . or 

T~2̂  and the other two for the dynamic coupling of the two phases, i.e., 

Equations (6.37a and b) , 

B. Annular Flow 

Annular flow momentum equations can be obtained from the general 

balance equation appropriate to the annular flow structure, i.e., from 

Equation (£-.33) and (4.34), together with the identifications for 1JJ , 

ir and 0 which are given by Equation (6,1), However, for the reason 

of brevity we shall not repeat the developments leading to final results 

we shall write only the final equations. 

The order of magnitude analysis which is based on the assumption 

3n 
of ~~~ « 1.0 can be carried out equally for the purpose of simplication 

of the annular flow model. it is an easy matter to show that the Hirst 

order approximation yields the x-component momentum equation similar to 

the type of Equation (6,2 5) meanwhile the radial component for a vertical 

annular flow results in 

11 = 0 (6.39a) 
>y-

which in turn yields 

-UP*>=* P * * P*i , K « 1,2 (6.39b) 

In view of these approximations and in view of the general momentum 



balance equation given by Equation (4.33) and (4.34) together with Equa­

tion (6.1), it can be shown that the appropriate annular flow momentum 

equations for phase 1 and 2 are, respectively, given by: 

iL u-«o «e,»<^i*> ^— u-«o «e,v> <ylH>x = - u-«0 ^-5- -V (6.40a) 
"&K 

ly 

*i.t v-„.r* + ( J StYT-i* ̂ t 4 - i U - i C . » u « 4 
L \ J K ^ / ] t)& fte x>e * * 

-^- ou<e,» * ^ *> + ?L <* «e^> <^xx>
1'--«. ^ * - * **e^>> Q X - (6.40b) 

[ oc «e v> < * „ * H, C * U«« ^ 1 i ? 2 ^ - rfi^ fr*u * £ L - SpL fcrf-i C»U»«a) 
L * J d K >e. fte, *«. 

Again, by expanding the left hand side of Equations (6.3a and b) 

and using the continuity equations, Equations (5.11a and b) equation of 

motion appropriate for annular flow structure can be derived, thus for 

phase 1 

(,.*) ««,» ^ ^ = - u - o *3_ * o-o *i* ^ (6-41a) 

ft K u - *».*>) T r,«.u»«- <*v»>̂  + tu * i i -
Ue. 

X * -4 L A . DeCoVL*M»*U} 
be ^ ^x. 

and for phase 2 
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D-b ^* 

Rl (*aU - < V ^ - **l ±J* - J- 1 Di C.* C^o.i] 

where we used Equation (5.4) in order to express nu. in terms of Y„, 

To complete the description of the dynamic field of the two-phase 

flow problem, the same comments made in the preceding section apply to 

the annular flow case. In this case, however, the appropriate inter­

facial momentum balance is given by Equation (C.36). From this equa­

tion it can be shown that the interfacial momentum balance in the normal 

and tangential direction are given, respectively, by 

-AS -AiL + tP.1-^1) + { C Wfc.«V, [ & ( « ) ] 1 . (6-42a) 

"li "a I 

2 c w Wfc |_ ( s ^ + (t^-^Ai) [i. ( i ^)f 

= a*.«-

tt.„-t.„^ A ( 5S«\ - (t.^-fe,^; ̂  ( ̂ SBU (6.42b) 

Introducing the long wave or boundary layer type of approximation into 

Equations (6.42a and b), yields the interfacial pressure condition as 



F\i - ?U = - aXG--* «!• & g l • (6.43a) 
e*i ex; 

and the i n t e r f a c i a l cond i t ion as 

( * x « . ^ t ^ U ^ - M T (6.43b) 
^ J C 

which must be satisfied at the interface. In these equations x is given 

by Equation (C.37) which in view of the approximation is simplified to 

X%— °- _ _*1 (_^GL\ (6.44) 
fc*^ >^ V % ] 

The "jump" conditons given by either Equation (6.42) or (6.43), 

together with the field equations given by Equation (6.41) and two con­

stitutive equations for wall and interfacial shear formulate two-fluid 

model annular flow problem consistent with the approximations introduced 

in the previous section. 

C. Film-Flow Discussion 

Thus far, the dynamic field description based on two-fluid model 

was formulated in terms of two momentum equations - one for each phase -

and of two interfacial coupling equations representing the influence of 

one phase upon the other. Furthermore, to complete the system specifica­

tion of two additional constitutive equations - one for external surface 

shear and the other for interfacial shear - was pointed out. However, 

in order to see the effects of various parameters upon the liquid film 

flow dynamics, we can express the formulation in terms of single field 

equation. For example, substituting Equations (6.37a and b) in Equa­

tion (6.32a) we obtain the equation of motion applicable to a liquid film 

flowing on a plane surface, thus 
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,*C4>v P , * y M > =-v ±- {?>i+<JtlL - c - . * S \ - (6. 45) 

^ 

c>t — c, t — --^ — W — C,y t^o** 0 
ft S O X 

in which T«, andT.. should be specified by means of constitutive equations 

This equation can be used to evaluate the effects of various 

parameters on the dynamics of the thin liquid film flowing over a plate, 

1) The Effect of Flow Regimes 

Thus, the effect of the liquid flow regime is reflected in the 

wall shear stress T i ^ , the covariant term and two momentum sink terms in 

Equation (6.45). While the importance of the velocity distribution in 

determining the values of T, and of the covariance term are well known, 

reference [58], it can be seen from Equation (6.45) that the effects of 

mass transfer on the film flow dynamics depend also on the velocity 

profile.. 

For example, for plane flow in a laminar flow regime, the effect 

of the momentum sink amounts to approximately 

K i * - <*K*>) <*ni - ^ <.U\*> "*« (6.46) 

whereas for a turbulent, i.e., a flat profile the contribution of this 

term is almost nil. 

2) Thermo-Capfllary Effects 

The effects of surface tension are accounted for by two terms in 

Equation (6.45), one affects the pressure distribution the other the shear. 



136 

The importance of these two terms will depend on the particular applica­

tion. For example, it is well known that for heat pipe application, the 

thermo-capillary effects are most important. 

3) The Effect of the Vapor Phase 

It can be seen from Equation (6.45) that the motion of the vapor 

phase influences the motion of the liquid through two terms: the pressure 

gradient and the vapor shear stress at the interface. In fact, for an 

upward flowing film the liquid flow is due to the action of the vapor 

only. 

4) The Effects of Heat and Mass Transfer 

Of particular interest is to evaluate the effects of heat and 

mass transfer on the liquid film. It was noted already that when m,£ 

is positive as in evaporation, the effect of mass transfer is to reduce 

the pressure distribution as well as to reduce the momentum, i.e., it has 

an effect of a momentum sink. In order to determine more precisely this 

effect, it is necessary to consider in more detail the mass flow ITL, ., 
11. 

in Equation (6.45). 

By examining the continuity equations it can be seen that in the 

case of evaporation the mass f lux m , , acts as a sink, indeed, as it 

was noted in Chapter 5, it plays the same role as the sink (or source) 

terms in the continuity equations of chemically reacting mixtures. 

Whereas in chemically reacting mixtures, the sinks (or sources) are 

specified by appropriate constitutive equations of chemical kinetics, in 

two phase flow they are specified the appropriate constitutive equations 

of phase change, i.e., of evaporation or condensation, references 

[4, 42, 51 ]. Indeed, it was shown that the constitutive equation of 
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evaporation a) depends on the flow regime and b) determines the 

thermodynamic non-equilibrium of the two-phase mixture. 

For example in the present problem, the expression for m ., will 

depend on the particular application. Thus, it will have a different 

form depending on whether the evaporation from the liquid film is effected 

by exposure to hot gases (as in rocket engines), or by decreasing the 

system pressure (as in flash evaporators), or by heat transfer through 

the liquid film (as in boilers, evaporators or nuclear reactors). Let 

us consider briefly this last application. 

The simplest expression for the constitutive equation of evapor­

ation can be obtained by assuming that the two phase mixture is in 

thermodynamic equilibrium. For such a two-phase system m. ., can be 

obtained from an energy balance, see, for example, Chapter 7, thus 

*,l Likx= * (6.47) 

where Ai-.., is the latent heat of vaporization and q is the heat flux 

at the solid wall. Assuming for simplicity, that heat flux through the 

liquid film is by conduction only, we obtain from Equation (6.47) the 

expression for m, ., thus 
li 

*V-= *' T t & - T s (6.48) 

kin 1 

where T-, and T are the wall and saturation temperatures, and k, is the le s r 1 

coefficient of thermal conductivity. 

Substituting Equation (6.48) in Equation (6,45) we obtain the 

following expression for the equation of motion of a liquid film evaporat­

ing from a heated plane surface 



W ^=-nA lP, l . . |x + (^li)'-iM;- (6.„: 

k X T 

&JLn T * * * -

tM - fclc - i r _ H - i . c* ^0»* o 

With reference to this equation, we can make several important observa­

tions. First, we note that as for evaporating films the film thickness 

decreases, the effects of inertia and gravitational forces become less 

and less important, whereas those due to evaporation become dominant, 

Second, since the gradient of the film thickness, is negative for 

evaporating films, the evaporation thrust acts in the opposite direction 

to the vapor shear T , Consequently whether in upward or downward 

flow, the evaporation thrust can induce an interruption of the liquid 

flow which results in a local dryout. Note, that this dryout is not 

brought about by the total evaporation of the film, but it can occur 

with a finite film thickness because of the dynamic effects in the film 

and at its interface. 

We close by observing that because the liquid dryout can impose 

an operating limit on nuclear reactors, evaporators desalination plants 

etc., it is one of the most important (unresolved) problems in the 

nuclear reactor and chemical process industries. This and other dynamic 

problems, based on these equations, will be. treated in Part II of the 

thesis . 

6.3 Diffusional Model Formulation 

6.3.1 Mixture Equation 

In order to derive the mixture momentum equation we shall use 



the one-dimensionalized general balance equation for the mixture to-

• —> 
gether with the identifications for i[, ty and 0 which for the case of 

momentum transport assume values given by Equation (6.1). Hence, ex-

» — • 

pressing i|r , ̂r and 0 in Equation (4.27) by means of Equation (6.1) we 

obtain from Equation (4.27) the following expression for the mixture 

momentum equation ir, a two-phase flow system with an interfacial inter­

action, thus 

fr\ OK * *, 

[ e„ C - TT;M * <wi«....-n ] ±i»22± * -f ( v !,«..) j ^ 
1 <jx *T t Vi J * 

rVT\- ' 

(6.51) 

AT. 
•^a f 1 

Hft 
Ka4 T 

i l 

where the terms are explained as follows: 

Vs"^(mom) is t*ie surface contribution to the over-all mixture 

momentum conservation and given by Equation (B.19). 

= T 
rr is the total momentum flux with respect to the baricenter of 
m * 

the mixture, i.e., total stress tensor. Using the definition of the 

generalized total flux $ , of the mixture given by Equation (4.26) we 
obtain from Equations (6.1) and (4.26) the following expression for the 

=T 
total momentum flux TT , with respect to the baricenter of the mixture, 

thus 

TtT* = T U -TT„ (6.52) 

where n i s the mixture s t r e s s t ensor whereas TT is the d i f fus ion s t r e s s 
m u 

t e n s o r . 



Expressing (t> by means of Equation (6.1), Equation (4.24) defines 

the mixture stress tensor TT as 
m 

TT*, = O - * ) {- «PV^> f - K c ? ^ * * (~ «F̂ y>. £ * <<<*:*>) (6.53) 

Defining by P , and T the mixture -pressure and the mixture viscous 

stress tensor, it follows that 

PM ^ U - « 0 «P^> + *.<<"S\» (6.54) 

?*, s= U-*) «*fc,>V + <K «1FX» (6.55) 

A brief comment is appropriate here with respect to these equa­

tions. Several researchers have proposed a stress tensor for the mix­

ture, which was obtained by multiplying the stress tensors of the 

individual phases by the mass concentration instead of volume concentra­

tion as in Equation (6.55). Since these mixture stress tensors were 

defined by these authors and not derived as the one given by Equation 

(6.55) we conclude that these arbitrary definitions are incorrect. 

The analysis above clearly shows that all terms in the mixture which 

depend upon density are weighed by mass concentration, whereas those 

which depend upon surfaces are weighed by volume concentration. In fact, 

if we recall the thermodynamic analysis of gas mixtures, we realize that 

(1 ~ Q ) « P 1 » an<^ <y«^2>:> a r e noth:mg but the partial pressure of phase 

1 and 2, respectively, whereas (1 - a) «T71» and a«rr2» are the 

partial stresses. In view of Equations (6.53, (6.54) and (6.55) mixture 

stress tensor can be also expressed by 



Whereas from Equations (6.1) and (4.26), the diffusion stress can 

be expressed by 

fr0« ci-ci e^v^av^ + CeJ/^sv^ (6.57a) 

which in view of the relation between V-t and V~ , i.e., Equation (3.59) 

can be also expressed as 

_ _ - * - • * 

Tti> « - £ — e M VXy^ ® V t« (6.57b) 

—* —> 

where (g) stands for the dyadic product. Since (1 - C)p V^m and Cp V„ 

represent, respectively, the diffusion mass fluxes of phase 1 and 2 

with respect to the center of gravity of the mixture, Equation (6.57) 

expresses the momentum transfer by diffusion with respect to the bari-

center of the mixture. Therefore, by expressing the mixture momentum 

equation with respect to the center of mass, an additional term arises 

due to the relative velocity between the two phases. 

Instead of expressing the stress due to relative velocity in terms 

of a diffusion velocity with respect to center of mass, as it is usually 

done in analysis of single phase mixture, it is advantageous in two-

phase flow to express it relative to the center of volume because as 

it was shown in reference [51] the drift velocity results in simple 

expressions which, for a given flow regime, is either constant or 

function of Q* only. In terms of the drift velocities V,. and V ., the 

momentum transfer by diffusion can be expressed in various forms. Using 

the relations given on Table 1, it can be shown that 



*,•.«»-«) ««>««•* CV^-V^.Cv^-7^ (6.58) 

The covariance term appearing in Equation (6.54) is defined by 

means of Equation (4.22). Substituting Equation (6.1) in Equation 

(4.22) we obtain Cov (mom) term, thus 

(6.59) 

Lov- C <*a««*.T^ = Cov-L***"«0 ^Cov-l^o**.!) 

= C»v[ c<-*i nep cvm-^wl + *4>z+i><*v%K'V%K)] 

Finally, the external line integral over § in Equation (6.51) 

accounts for the effects of the momentum transfer at the external 

boundaries which may be due to convective as well as molecular momentum 

transfer. 

In view of the mixture continuity equation, i.e., Equation (5.14) 

the momentum equation can be also expressed as the mixture equation of 

motion, thus 
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[ ̂  - ̂ - K * TTft^ * Co^ t««T) ] -LkAls * J- f 75- Sw.„> iA. -
J* AT*. / ** 

J*. C O W C ** o **.T ) 
^x. 

where the material derivative-— is defined by Equation (5.15). 

The constitutive equations appropriate to the. diffusional 

dynamic formulation of the problem will be given in the following section 

where we shall also simplify Equation (6.51). We note in closing that 

the mixture momentum equation can not be equivalent to the ordinary 

momentum equation in continuum mechanics as postulated in reference [231. 

If there were no surface source term, i.e., if V̂ -0trt,ort))-= 0 , only then 

Equation (6.51) would become equivalent to the ordinary single phase 

momentum equation with the proper definitions of the relative momentum 

= T 
flux TT with respect to the baricenter of the mixture. 

6.3.2 Two-Dimensional Flow 

A. Plane Flow 

Mixture momentum equation appropriate to the plane flow geometry 

can be obtained either from the general balance equation, Equation (4.30) 

or from the momentum equation given by Equation (6.51). For the reason 

of brevity, in derivations we shall obtain it directly from Equation 

(4.30) by means of the proper identifications for ty, ty and 0. Therefore, 

substituting Equation (6.1) in Equation (4.30) and in view of the dis­

cussions made in Section 6.2.2 retaining only the x-component we obtain 



the mixture momentum balance, thus 

* ^ , K ***« _ (6.61) 
*x ot & K «** 

«,4.-i (**••"»«.+If M [ « * ^ n v -

H l L J x̂-

By using Equation (6,12) for v , Equation (C.5) for n, . , Equation (C.7) 

for n, Equation (C.4) for t£, and Equation (C.16) together with Equa­

tion (6.38) for V *6/mom'\, and finally using the Prandtl's type of 

approximation given :>y Equations (6.29) through Equation (6.31), we ob­

tain from Equation (6,61) simplified mixture momentum equation applicable 

for plane flow geometry, thus 

^ { P \ 3 - \ -*- "̂  ( e \ > X \ ^ ^ ^ (6.62) 

* f _£L_ <^<^» \ . c q j _ , r -<H^ \ i i + i r A-
T* {T^: eZ } ^ " H L l ^ | u + > J 

5i*_ - A . Co^ u ^ T ) 
u ^x v 

where Equation (6.58) has been used for expressing the drift stress in 

terms of the drift velocity of the second phase. The reason for ex­

pressing it here with respect to the center of volume stems from the 

fact that this definition of the drift velocity results in simple ex­

pressions, reference [51]. 

In view of the mixture continuity equation, Equation (5.18) one 

can obtain also the equation of motion for the mixture, thus 



A ^*^«« - _ ^"^ - — T * «?t»«e> V^ 1 A- (6.63) 
* DV " ** ' a*. I *-<* ^ *** 1 

5i« - J*- Qwi«*o**rr\ 

In order to complete the description of the two-phase flow field 

based on the diffusion model, one additional constitutive equation is 

necessary to determine the shear at the wall. However, as it will be 

seen in Chapter 9, where the over-all formulation in terms of the 

kinematic, dynamic and the thermal fields of the general problem will 

be given, we shall need one more equation relating two pressure fields 

P| and P„. In order to justify for such a need let us investigate the 

implication of Equation (6.62). First of all, this equation is written 

in the x-direction without taking into account the y-direction momentum 

transport. In the two-fluid model formulation such an equation is given 

by Equation (6.32). Integration of this equation for both phases yielded 

the pressure differences between the two phases. Therefore, a relation 

which involves the pressure differences must be supplemented in order to 

complete the stratified two-phase flow field where there exists a pres­

sure differences tween two phases. In effect, we have already derived 

such a relation in Section 6.2.2. It is given by Equation (6.37a). 

Finally, in closing we note the difference In formulations. 

By comparing the formulations based on two different models, i.e., two-

fluid and diffusion models, we observe that in the case of the two-fluid 

model two constitutive aquations - one for T and one for either T-t-

or T ,- and two additional jump conditions summing up four additional 



relations are needed for closing the system of equation. On the other 

hand, in the case of diffusional model only one constitutive equation 

for?-, and one additional equation for interfacial pressure summing up 

two additional relations are needed for closing the dynamic field of 

the mixture flow. 

B. Annular Flow 

Momentum equation of the annular flow can be developed in a 

manner similar to that of the plane flow. Therefore, we shall not re­

peat the calculations here but we shall give only the final equations. 

In view of Equation (6.1) and of the geometric relations derived 

in Appendix C.2, from Equation (4.33) the mixture momentum equation of 

the annular flow can be obtained thus, 

1 U , ^ , l l e , ^ = . ^ - i ( ^ ^ ^ (6.64) 

M.-f e„ vi. • P„ • JL. *J^L ^ + tw^> ->*!-

* £ (-4K.C-A. hi* + ±r\ ^ r, t» ieK + ^_ p, ^ * 
fce x a* a. as J Oe <** 

A t t e - — Go* L***o0 

which in view of Equation (6.54) and Equation (6.44) can be also ex­

pressed as 



fcu-^fci^ «•«> 

^cr, ^ ^ _£ VJ* \ q- X M ^ + iS 1 -y-

JL (P,~P*\ i l i - « 4 - fclft -A- C * ^ - * T ) 
V>t A*. De. ^^ 

from which one can obtain also the equation of motion of the mixture, 

thus 

e~ - ^ TT'T; \Tr* eZ ^ V ) * ^ * * - (6.66) 
r «. «€,»«efc» vl* r . _.-i n i n , 

— ^r vx ' ^ Cov C^^^T^ _£_ «=* U e -
M - < C^ ^ J De dK 

±St \ (__£_ ,PJL *£ii\ <r A. [ ^ \ ^ r i r u - v \ 
0 e ^ ^r* TT*- ~1T ) ^xl~5— ) + T£ ] ^ l ^ ^ M t 

— t*\-V^ jfL^ -AL ^1G _ __*_ CO^^^T^J 
Ue .Ax. && * * . 

We note that the discussion made concerning the additional rela­

tions for the plane flow case exactly applies to the annular flow case. 

In fact, the need for the specification of the pressure difference now 

becomes clear from Equation (6.65). 

6.3.4 _ Scaling Criteria 

As in Chapter 5 where the dimensionless groups necessary for the 

kinematic similarity of the system were derived, in this section we 

shall derive the similarity groups arising from the dynamic field of a 

separated two-phase flow mixture. However, for the simplicitly plane flow 

and annular flow momentum equations will be brought into a single equa­

tion so that the general similarity groups can be derived from it. 
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It can be seen from Equations (6.63) and (6.66), equation of 

motion for a constant area duct can be expressed as 

e ^ . e . w ^ - = - l^^i^^^tht^X <6-

P q _fo. Ji - Flft V**- iiS. ̂ >e - — Cov(.^t»^x^ 

67) 

(6.68) 

(6,69) 

where F^ Is the capillary force per unit interfacial area. 

For the plane flow 

J\ e_ _ Xl _ \ 

rr--c- *v* \n Y ^ 

For the annular flow 

J L = ±J± 

I* _ 4 
AT.." Oe 

* - « L J L - + J £ D C ^ WjL/ fc iM+JLS: (6.72) 
V Dt^. 5k*v / *.» V * / *x 

In addition to the dimensionless scaling parameters introduced 

in connection with the kinematic field of the system, i.e., Equation 

2 

(5.40), by measuring the system pressure in units of p v , the ex­

ternal surface shear in units of T, , the gravity in units of g, and 

the capillary forces in units of F_ , we can reduce Equation (6.67) 

to dimensionless form. It is found that Equation (6.67) is identical 

to its dimensionless form 

(6.70) 

(6.71) 
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0+ \*t» . «* ^ W«T* - ^ ^ _ (6.73) 

*x* frx+ &*v 

_^_ M f i K e t < [ ^ - J ^ L V ^ - L . e:8:-Mr«;-

1 * * * L 

°do W§v _L [ <** C ^COVCMO*,!)] 
^ X * 

I t can be seen that in addition to the dr i f t number Nn - V . / v 

D g j o moJ 

the density ra t io groups N v- = PKO^P » ^ = ^ » ^ ' t n e supply number group: 

N = &uJ = (—jp—) (~rr~ i an<3 the geometric s imi lar i ty group ov0 , which were 
S U p K / w i 0 Vrrto 

introduced previously in connection with the kinematic field of the 

system, i.e., with the dimensionless form of the mixture continuity equa­

tion, the dynamic field expressed by Equation (6.73) introduces additional 

dimensionless groups given below: 

A ) _ . 
Fr

 = ——- , the Froude number for the mixture (6.74) 
m n;—» 

fm =—-- -• — , the Friction Factor for the mixture (6.75) 

»i 1 
V the Flow Regime groups (6.76) 

MCCV U , M ^ = "* C ° ^ ^ ^ / 

These four simi.larity groups are in common in both the plane flow 

and the annular flow. However, other groups appearing in Equation (6.73) 

take different forms for the different cases. It is an easy matter to 

show that for the plane flow 
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e "̂ - J L =: JL_ (6.77) 

\s:(m^L^;] (6.78) F>o E^ I 

5« V1 We 

On the other hand, for the annular flow 

Iiî **5JL~ 4&.J«1 (6.79) 
AT<. £& 
V L ^ 4-Jr. —±__ (6.80) 
^ T f r & « • ^ o 

*g. *f , L r u j ^ ^ ^ t f t ^ ^ W*vf i%^l (6.8D 

where we d e f i n e d 

WG = P m o ̂  L/cr~0, t h e Weber number f o r t h e m i x t u r e . ( 6 . 8 2 ) 

£1 = ^ 1 //L' ̂ H ~ H//;L; = £ D ^ L » t h e Kinematic groups, (6.83) 

In section 5.3.5 it was shown that the Density Ratio group Np , 

K. 

(K = 1)2), is not independent. Once the groups Np and «.<, are specified 

Np can not be changed freely. A similar argument holds for the kinematic 

group £ rj. It can be shown from Equation (6.83) and the definition of 

that 

6u - H - J L and p t>e _ _ £ ! /« Q N 
1 T T L fc»~ T" "" ~7=^ (6.8 ) 

therefore, they are not independent from ^ a n d £ , and £. of which property 

was discussed in Section 6.2.2 as a perturbation parameter. 

Since CO>J (mom K) ro Cou-(V * V^ ) depends on the K-th phase flow 

regime it becomes evident that this group reflects the effects of the 

flow regimes. For example, it can be expected that for turbulent flow 



this number may be order of zero whereas for laminar flow can be large 

enough to be effective on the mixture flow behavior. 

It is evident from Equations (6.73) through (6.84) that in view 

of so many similarity groups, an exact scaling of two systems can not 

be achieved in practice. However, for different applications not all 

groups will have the same importance. Consequently, Equation (6.73) 

can be used to determine the importance of the various groups and select 

the appropriate scaling parameters. 

6.4 Summary 

1) The momentum equations for separated two-phase flow problem 

were formulated based on the two-fluid and the diffusional models. 

2) From the simplified formulations it was concluded that the 

formulation based on the two-fluid model should be expressed in terms of 

two-field equations - one for each phase and four additional equations -

two constitutive equations for T,. and T, and two interfacial coupling 

equations; whereas the formulation based on the diffusion model should 

be formulated in terms of one field equation for the mixture and two 

additional equations - one constitutive equation for T, and one for 

interfacial pressure coupling. 

3) From the general formulations a Prandtl type,i.e., a boundary 

layer approximation was used, and the appropriate forms for the momentum 

equation were derived for both the plane flow and the annular flow. 

4) From the equations for plane flow using the "thin film" 

approximation the momentum equation for liquid films was derived which 

describes the dynamics of flowing films and take into account the effects 

of a) body and thermo-capillary forces, b) shear and pressure forces of 
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the flowing vapor phase, c) mass addition and/or removal at the external 

as well as the internal boundaries, d) heat flux at the boundaries, 

and 3) flow regimes. 

5) The importance of various processes and parameters was dis­

cussed in relation to the liquid films. It was shown in particular that 

the evaporation thrust can interrupt the flow of the liquid and induce 

a local dryout. 

6) The mixture equations for the plane flow as well as the 

annular flow were expressed in diraensionless form and used to obtain 

similarity groups. 



CHAPTER VII 

ENERGY EQUATIONS 

7.1 Introduction 

It was discussed in Chapter 2, that there is great disagreement 

about the correct form of the energy equations. Some authors weighed 

the energy equations for each phase by the appropriate mass flow rates 

whereas others weighed them by means of the static weight which would 

exist if there were no flow. 

In view of the controversy concerning the correct form of the 

energy equations for two-phase flow systems and in view of the import­

ance of such systems, it seems desirable to present the exact general 

macroscopic energy balance equations for these systems. The equations 

will be derived in a manner similar to that developed in the previous 

chapters, i.e., the energy formulation will be based on both models: 

the two-fluid and the diffus ional model. 

It will be observed that when effects of diffusion and of motion 

are neglected the mixture total energy equation will be reduced to those 

derived by Gibbs. To the writer's knowledge, this is the first time that 

the field equations for two-phase flow have been reduced to those of 

classical thermodynamics of mixtures, 

Furthermore, auxiliary energy equations, such as the internal 

energy, enthalpy and the mechanical energy equations will be derived to­

gether with the appropriate jump conditions. 



7.2 Two-Fluid Model Formulation of the Energy Equation 

Since the total energy equation is a conservation law, it can be 

obtained from the general balance equations developed in Chapter 4. 

7.2.̂ 1 Derivation of Phase Equations 

As usual the two-fluid model will be formulated in terms of two 

energy equations, one. for each phase. To obtain the mass-weighted area-

averaged total energy equations from the general balance equation, we 

• —> 
use the proper identifications for i|r, ijr and 0. From Table 3 it can be 

seen that, for total energy transport they are given by: 

2 
i|r = u -t- "Z— , e n e r g y p e r u n i t mass ( 7 . 1 ) 

. —» —• 
ijr = g*v , distributed energy source or sink per unit 

mass 

0 = q - TT*v , total energy flux with respect to the center 
of mass of the fluid. 

where u and q are, respectively, the specific internal energy and the heat 

flux vector. Other terms have their usual meanings. 

Introducing Equation (7.1) in Equations (4.20a) and using the co-

variance definition given by Equation (3.8) for the second time for <z v2:> 

term, we obtain the mass-weighted area-averaged energy equation for 

phase 1: 
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2 . 1— 

i - Cl-tf) <*€,*> l < U t w l £ L ) + — C4-c)<t t 4 »W w >(<u.V+ i ^ 2 ) = (7 .2) 

- _ A. ci-*> M«> + — u-*\ lMv\JL*h\*&x> * u—«)̂ e.* ?• <$>-

C n ^ o ] i^Al^ a Y f [ ^ U a ^ J ^ c V ^ ^ M r 

Cov-C^e-^Vt K ) _. A _ G « » ^ e ^ A ' ) 

in which Cov(mech 1) and Gov(en 1) are defined as fol lows: 

C«*-l*i*cU K) =r U ~ * ) ^ev>> ^ ( * v " ^ (7.3a) 

C a v CeM A) •= Cov- C & ° * T M ) * C « * CU\ *J-CWCw««*V.\} (7.3b) 

where 

CtfV* CCO^O-l) =; ( * - * ) <st^> C « * ( * U ~ ) V <*!*> C«*t***«.V *) (7.H 

U l w U ) = c<- a*) *.e4*> Co^ C>,*-Uv) (7.4b) 

C** L w o ^ ) = U-«0 ^ [ ^ - L V V , ] ( 7 - 4 C > 

The terms on the left hand side of Equation (7.2) stand for the 

rate of change of energy and the rate of energy input by convection 

whereas the first, second and the third terms on the right side are, 

respectively, the rati:1 of energy input by conduction, rate of work clone 

by viscous and pressure and gravitational forces. The fourLh and sixth 

terms account for the effect of area change and of the energy distri 

tion whereas the line Integral gives the energy contribution of the 
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processes occurring on the internal and external phase boundaries. It 

is seen from the integrand that these contributions are due to the con-

vective mass flux, the heat flux by conduction, the surface work by 

pressure and viscous forces. 

It should be noted here that the energy equation can be expressed 

also in terms of the enthalpy i, instead of the internal energy u. In 

order to do this we simply expand the stress tensor TT, by means of Equa­

tion (4.3) and then use the thermodynamic definition of the enthalpy 

t̂- U K^A , K = 1,2 (7.5) 
"*c 

Averaging of Equation (7.5) yields 

<*f»» ,-, c\ 
<*.«> = <Ut> + - <7'6) 

ue^» 

Substituting Equation (7.6) in Equation (7.2), and rearranging one ob­

tains the energy equation expressed in terms of the enthalpy rather than 

the internal energy, thus 

- i , <<-*) ^e kv>(<^- — W 4 - <*-«)«*,»**i*H<^>* i l l ) « <7-7a) 

c4-«o «e,» ^ - <"?,> - [ u - * \ <*e4^ <*u.> ( < L ^ + ^pV)-^ <•*-*> k^ .o* -

5ifi 

A , Co v(«46^ I) . i C* »-Cen 0 

<H ax. 
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Similarly application of Equations (7.1), (4.20) and of (7.6) 

yields the energy equation for the second phase 

= - 1 . x << V^> - A . od «. 4 ^VV -v — * & ? SL*^> • < *»> * * « 8*> 5 * *•**"> -

r « «e1y> <^x> lv<U> + - i ^ )^**<« »-*<<^VL»-oJfc>*u*ce*Ail i^AL 

— y r ** tu,v ^^L-L- ie^^i^v^i . 
Le,; 

-A Co^^ w^.c^ a) - iL. G** u^j.^ 
di a* 

where covariance terms have the same form as Equations (7.3) and (7.4) 

except (1 - a) and 1 are replaced by <* and 2. 

In order to complete the energetic description of the two-phase 

flow field based on two-fluid model, an additional equation representing 

the interfacial coupling, of the two fields, should be added to the field 

equations, Equations (7.7a and b). The interfacial coupling effects are 

expressed by the appropriate energy "jump" condition given by Equation 

(B.34) in which the surface energy contribution is expressed in a general 

sense. With the surface stress expressed only in terms of the surface 

tension 0", the "jump" condition for the energy is given by Equation 

(B.37). 

As it is seen from this equation it is necessary to specify 

surface velocity v. by an additional relation. This can be accomplished 



by using Equation (B.6) and the n o - s l i p requirement a t the i n t e r f a c e . 

Equation (B.6) s p e c i f i e s the normal component v . of the i n t e r f a c i a l 

v e l o c i t y 

aV 
V i n « l ? i . ^ L « - 2J (7.8) 

\VU\ 

where h ( x , y , z , t ) = 0 desc r ibes the surface in i m p l i c i t form, whereas tht 

t a n g e n t i a l component v•. i s given by n o - s l i p condi t ion 

(» i* -» i t ) - t» f c V -» iO-o 

Consequently, two-f lu id model f i e l d equat ions t oge the r with the 

energy "jump" cond i t ion a t the i n t e r f a c e and the i n t e r f a c i a l v e l o c i t y 
—* 
v

i 5 desc r ibe the energy t r a n s f e r aspec ts of the two-phase flow systems. 

Fur the r d i s cus s ion about the c o n s t i t u t i v e equat ions w i l l be given in 

conjunct ion wi th the two-dimensional flow fo rmula t ions . 

Energy equations derived so far are quite general and can be 

simplified to apply to engineering systems in the manner developed 

the previous chapter which will be done in the following section. 

7.2.2 Two-Dimensional Flow 

Two-dimensional. flow simplifications appropriate to the plane 

flow as well as the annular flow case can be made in view of the geo­

metrical relations derived in Appendix C. 

A. Plane Flow 

Using the relations derived in Appendix C.l, it can be shown 

Equation (7.1) and the general balance equation, Equation (4.28), 

the plane flow energy equation for phase 1 can be expn 
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^ i «e^ Utv> * ^ t \ * ^ n «e* <^**> I**** ^ 1 - C7a0a) 

•U a ' ^< 

[w,elites ^ ) - ( f i - ^ « * ^ * ^ *"i" ^ C, .»^*^^- i < U»UnO 

and for phase 2 can be expressed as: 

JL u - i ) ««»»(«!»>• ^ V l U-v,uv»^ Ui.>* i2t»V <7'10b) 

i . tW-vA fc'ft>-^ LV4"^ * W » * ~ U-*l) < ( i ^ ^ > M « - l ] ^ | . < V t > 
^ i d * "&x 

i - U * L~e*W I") - >-̂  C o H e , ^ 
""hi 

These two equations describe the energy conservation of a 

separated two-phase flow system. The only restriction is the assumption 

of two dimensionality. Equations (7.10a and b) are valid for systems 

with variable density and variable T. 

Because Equaticns (7.10a and b) are fairly general, they are rather 

complex. However, by using the Prandtl's boundary layer simplification 



which is valid for a single-phase viscous fluid, we can eliminate 

certain terms, such as certain derivatives of the heat flux as well as 

the rate of work done by viscous forces. The procedure used here is 

essentially the same as that used in Section 6.2.2 in connection with 

the Navier Stokes equations, 

Before starting it is proper to note here that in the theory 

of boundary layer a distinction has been made between the hydrodynamic 

and thermal boundary layers. It is well-known that their orders depend 

upon the property group, i.e., upon the Prandtl number. However, in 

our analogy to the boundary layer theory, for the liquid film we do 

not make such a distinction. Since we are concerned with liquid films 

which are thin when compared to a characteristic longitudional dimen­

sion, we shall assume that the both layers are scaled with a character­

istic fluid thickness Ui«. On the other hand, since for the gas phase 

the Prandtl number is order of unity, both the thermal and hydrodynamic 

boundary layers are order of unity. Therefore, it is possible to scale 

both layers with the hydrodynamic boundary layer thickness "\Q* 

Now considering the two-dimensional flow of a compressible 

viscous fluid over a flat surface, one can write the energy equation 

in the following form. 



(7.11) 

v 

f* r* KTT' * *" TT * * *T^ ) 

* ( L ^ * *». 1 ^ 3 . Mva A 2 * ^ \ = 
*" V. a* ** * *A ' 

= A. ( k ^ U i OkiIa.U|BljTll*&._ 

hl^^-^- T^^i^-^h 

^If^w 
^ [ ^ V ^ - f c n ^ C ^ ^ 

w^(4£^ i ^ 
£3 fcx ' 

where 6 is the coefficient of volume expansivity, and k is the conduc­

tion coefficient, 

We shall scale the temperature by the temperature difference AT, 

between the external surface temperature Tc and the interfaciai surface 

temperature T., thus 

T*= T / *T (7.12) 

Furthermore, since V* = v^2 + Vv ' an<^ since v is scaled by£U, 

then the scale for the kinetic energy becomes U (1 + £ ) . However, in 
Chapter 6, we neglected the second order effects in £, then we shall 

2 
scale the kinetic energy with U /?. 

Introducing the scaling parameters defined in Section 6.2.2 to­

gether with Equation (7.12), it can be shown that the dimensionless form 
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of Equation (7.11) becomes 

vr: 

« J _ f J- (w\HiU_L l.fkVi3B.M + Ecrf>*Ti^_ 

: < = • * . 

I *** L a o - 2> \ ^** *H+ I Re. f c L *** »- a*^ \ i K * ^ ^ 

<(A£**^)1' 
^ ^ " ^ K V ^ & V ' 

3 \£lb&* * « • * /J J 

where 

P e K = P r - t • Re. K. = . " L l * S P e c l e t number(7.14) 

i . 

E c K — ^ * , Eckert number (7.15) 
C?. AT 

which sca les the r e l a t i v e importance of the compression and f r i c t i o n a l 

hea t ing aga ins t the thermal energy. 

From Equation (7.13) it can be seen t h a t 

2ii. «, £* ; ±Al % 1 (7a6) 

d»c ^ 4 



— C^**M * £" (7.17a) 

| , t * ^ M * e (7.17b) 

— l^^O x £ *^ r L ^ (7-17c) 

L (tx« W ) Ci l*£.v (7.17d) 

It was seen in Section 6.2.2 that in the momentum equation, those 

terms which are order oft-2 or higher were neglected in the "thin film" 

approximation. In order to be consistent, the same approximation must 

be introduced in the energy equation. 

Therefore, by neglecting the second and higher order terms in 

Sqy 
Equations (7.16) and (7.17) only two terms remain, i.e., terms, :r̂ " 

5 
and ^~ (T v ) which are order of unity. Consequently, neglecting 

the terms of order €. and higher and reverting to the unstarred original 

variables, we obtain from Equation (7,13) in enthalpy form the follow­

ing first order approximation for a two dimensional compressible flow: 

± eKC^* ^ ) - ^ e f c ^ ( . ^ % ^ < 7 - 1 8 > 

| . efcvk4c^+^)=-^jt ^ ^ l u ^ v w -

In view of Equations (7.1.6) and (7.17) and (7.18), our averaged 

energy equations, i.e., Equations (7.8a and b) become 
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— 1 «C.»C< i »>+ — % — *l « e , » < ^ » > (.<*•!>+ SsJ^S =r (7.19a) 

_ i-

[ ^ ^ 1 , ; + r i ) v ^ i i^ iL 3 ^ f t l ^ - t ^ l l ^ ^ ] -

[ A lf t (>•** J5£)+. ^ ^ ^ ^ P i t ^ - t ^ ^ V . ^ w ^ * ] ^ 

r - C o ^ t ^ * ^ ^ _-Z- C D * C * * 0 

-i . G»"»j)«W»(<ta>* ^ > ^ ^ JL U - ^ ^ e ^ ^ ^ C ^ A ^ f S : ^ (7.19b) 

=- 1 U - f ) <<**>-* U - ^ ) ttf^ ^K <***>-
O X 

i. 

£*»».; I ̂  ~ ) + ^***a *p*; ^ - ^ - a U ^ * * ^ * ] -

A, Ciou-(.̂ »*cv» a ) - -̂ - Co^Cena) 
^t ' a * 

In view of the approximations genera l express ion for Cov(en 1 ) , i . e . , 

Equation (7.3b) reduces to 

Coy- {jtA R ) — Cow C " ^ * It) V Coi>CU"tW.) (7 .20) 

whereas Cov(mech K) has the same form as Equation (7.3a). 

To complete the formulation based on the two-fluid model, the 

external heat flux q, ^ and either q, ., or <^2V± ™ u s t be given by means 

of an energetic constitutive equation. Whereas the energy "jump" condi­

tion can be expressed by Equation (C.20). Using Equations (C.20) and 

(7.4) in Equation (C.20) and neglecting the second order terms we ob­

tain interfacial "jump" condition appropriate for the plane flow analysis, 

thus 
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( W i ^ . - W ^ «,,=-<> **L »u vVk- i | i 

where v. is specified by Equation (B.6) which in the case of two-

dimensional plane flow reduces to 

^ U = Ov*.i = i l r u ( ^ V l - ~ (7.22) 
>t L ^ ^KJ J *t 

and the normal vectors are given by Equations (B.5), (B.6) and (B.8) 

reduce to 

W a = - ^ / . - - - ± , L t J ', viu* = -V»^-^-rtv<lT^-WR«3 (7.23) 

It is interesting to note that the first term in Equation (7.21) 

accounts for the net convective energy transport; the second represents 

the net heat flux by conduction whereas the third and last terms on the 

left hand side stand for the net work done by the pressure and the 

viscous shear forces. The first term on the right accounts for the re­

versible part of the surface energy, i.e., surface dilatational work 

whereas the second accounts for the irreversible part of the surface 

energy. 

B. Annular Flow 

In view of Equation (7.1) from the general balance equations, 

Equations (4.31) and (4.32) we obtain the annular flow energy equation 

for each phase, thus for phase 1: 



i 

- 1 U-*) <<e i»(^»-^+ ^ ^ \ + - i - U - * ><*«;»<«•,*> W > * ^ L M = (7.24a) 
a t s a / a^ N i*, * 

o * ) «€x.w».<"J> +Cou-u*ol <±hJ>L -

.* , ' '* 

[^(î ^vcf.-^-'̂ -Mî Ac^n îi-
i t d x 

and fo r p h a s e 2 : 

-i- *«e.» C< v̂ * s&>v) + i- - «ej» <*-> 1<L*>* ^ ) - (7 '24b) 

£V a. a * a 

d x d* 

64 « e*> $* <0"**> - [ ** *e** <*».*> (/.L^ + i2*> ^ ̂  x u ^ * ^ -

-* d X. 

i - (iov> C - n t ^ a.) - ^- Cou-^e^a.) 

where Cov(mech 1) and Cov(en 1) a r e d e f i n e d by E q u a t i o n s ( 7 . 3 a ) and 

( 7 . 3 b ) r e s p e c t i v e l y . 
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These equations are valid for a general two-dimensional flow of 

an arbitrary interfs.cial structure. However, by introducing the 

boundary layer apprcximations we can simplify these equations to obtain 

x. ^« 

A U-°0 « e > C<t>+ — \ -v ̂ - U-*J ̂ «^<0i*>(<^>+ ̂ r ) * (7.25a) 

[*,,, C.t,*+ l ! aK lV— n ' * ' - ^ " , - u * l m - * , * ' ^ | - cWi iVn-

Z_ Cov ^m«.c^ \ \ - J L C f t w C t A O 

25b) 

= j L <* <•< *V*> +• ** «.e.» ft K. <**.*> -

[ * ««,> <*x-> L^i*> + %V " ) + Co* L * A U ] ^ ^ -

[ Ax-. I U; -v ^ W C V - v i h r + vv. ̂  -Vu -tLXHA; VUK * ^ ) 1 ^ ~ 

JL Co v c^«-^ a ) - ^- Co u- Law xl 
d t * > • 

where Cov(mech 1) i s s t i l l defined by Equation (7.3a) whereas Cov(en 1) 

i s defined by Equation ( 7 . 2 0 ) . 



j.o cuiTipJ.eLc Lut ayaLeu) cue eneigy oaiancc ac ens mce rzace snoujLCL 

be g iven . For two-dimensional flow f i e l d s i t i s given by Equation 

(C.39) which in view of the boundary layer approximat ion, can be r e ­

duced t o 

A<[U,i*Jj5o-U«*j£n*tta.-W) *,,-(P„-ivivu- o.2v 

( w u ^ w - t ^ l i ^u)= ( ^ - i l 5sfi)«-*i,*ti-is2i 
% Defw- ^x* 2 ' * s 

where v^n is specified by Equation (B.6). As a consequence of the 

boundary layer approximation this latter equation can be simplified to 

(7.27) 

whereas the normal vac tors can be approximated by 

V-c*»"&j.fi»l =: A. h*Z (7.28a) 

** SL 
fcu - - ^ * i . ^h a. - a . (7.28b) 

The field equations, Equations (7.2 5a and b) together with equa­

tions (7.26) through (7,28) and with the additional constitutive equa­

tions for q-, and for either q-^ or q2j_ constitute the complete descrip­

tion of the energy field for an annular flow. 

7.3 Diffusion-Model Formulation of the Energy Equation 

7.3.1 General Mixture Energy Equation 

Formulation based on the diffusion model is expressed in terms of 

only one energy equation, i.e., of the mixture energy equation. To 



obtain it we use the identifications for t, t and 0 given by Equation 

(7.1) in conjunction with the general balance equation, Equation (4.27), 

thus 

iru--o«e,*><u,i-?L> * *• <*e»*«Ai+ *?>> ( 7 '2 9 ) 

i.[o-*o«c^*> < \rlM (,uv+ V^> + *«.*»s><o-,.*U*+ ?£)>]-

u?.*m + < I ? v 5 w 4i __ 
3-

K.1 'J •.: 

Equation (7,29) is not suitable for the purpose of the diffusion 

model formulation because it is not expressed with respect to the center 

of mass of the mixture. Since the basic assumption of this model is 

to conceive the mixture as a single fluid in motion with the velocity 
—4 

vmJ the diffusive transport at the velocity V ^ , of the quantities 

associated with the K-th phase must be taken into account with the 

proper definitions. 

In order to see the effects of the diffusive transport let us 

evaluate various terms in Equation (7.29): 

i [ o - e i ) <tfl » < * i * ^ * > * ** <-<fV» <>*v* * £ > " l a i . P t U ^ t ^ \ t (7 .30) 
J | L * JL * . 4 a t *̂  *• 

-1 f cA-«)«e,» — v * «e*v> ^ 1 v iL Co* u t c k i ] 
» * L *- •»- -1 a t 



where Cov(mech T) is defined by 

Co>c<wecAiT) = U~«) «.tv» Cow- ( ¥rll) .̂ x<^e v» C«^ C^k^>) (7.31) 

In Equation (7.30), the first two terms appearing on the right 

side are, respectivaly, the rate of change of the total energy of the 

mixture, and of the net diffusional mechanical energy of the mixture. 

The last terra accounts for the effect of the velocity distribution which 

depends on the flow regimes. 

Consider now the second term on the left hand side of Equation 

(7.29) it can be expressed as 

A r u-«) «^ <^K ^ ^ ^ ) > **«e*»^** Uxt ^£)>]« (7.32) 

Coo-c t̂T)] *i.^ [ n-ot) «g,»(<uk> + ^ ) U * * * t M ^ * T ^ » * J 

where Cov(conv T) and Cov(int T) are defined by 

( W {.C-OA* Y) — V*^K Co- C**«c.\*T} -v U-^-ue,^ C**^v>»A- ^ + (7.33a) 

««e > C»C^- £ ) * JS. i ±? «, v ^ c * [ ^V?o. 0^2] 
* * ' A-*. «e4v>

 L a J 



Co*Ci*tT^- i.\-*) M^vyCw IV^U^ -v^ êj.v> C** U „ - M (7.33b) 

In Equation (7.32), the first two terms represent the convective 

total energy and the diffusional mechanical energy with respect to a 

fixed frame of reference. The third term denotes the work done by the 

diffusional stresses, nv.. The fourth term gives the energy flux with 

respect to the center of mass of the mixture. Finally, the last term 

accounts for the effect of the specific internal energy and of the velocity 

distributions, 

Finally, work terms in Equation (7.29) can be combined to give 

7.34) i- r u-«) «ivt • *,* * * «ivt • *,*]« Xliu.t)-tt*+ ( 

A . r C * - « ) << Tft- L * > ' V 4 M + M U T T i - L V V ' V ^ ] -̂  i C«V ( . w o r k T) 

where Cov(work T) is defined by 

C0vr t w a r W T ) ^ Ct-<*j C o - l t ^ . - t ) - ^ ] * * C o * [ U f c - t i < ^ ] (7.35) 

In Equation ( 7 . 3 4 ) , the f i r s t two terms on the r i g h t s ide account 

for the energy fluxes due to the mixture s t r e s s TT and due t o the r e l a ­

t i v e v e l o c i t y . F i n a l l y the l a s t term accounts for the d i s t r i b u t i o n of 

the v e l o c i t y and of the s t r e s s e s . S u b s t i t u t i n g Equations (7,30) through 

(7.34) in Equation (7.29) r e s u l t s in 



v - . , vA (7.36) 

=:-2irsi + i- r (j^-t)-$*] * e*"5.v* -

JL ^[o-*)^et» Nli^v,,****.^ Vwx>J iM}.^}~ 

.i_ r o-«> ^£,* ( < u ^ * ^ ) v m w * * ^ ^ ^ ^ + ^ \ M ^ i + 

j=L [ U-*J <<* Si't,^ • v^ * * « ;st1*tv>.^^'].J e„ c * - * ^ j ^ 

[o-»o *«,» % * * «e^» —* ] v~* +• $„R -v L V 1 ^ ^ * 

[ tt-*o <*ê > ^V«K v^ * <* « e ^ ^ ^ \ ^ ] • v „ * 

f o - ^ ^ . i * -Nil* v ^ ^ . t » . V x « l l i i ^ * . JL ( 7&- (L , ,^ 

-jL-jjT [ [AhlH.^lUV^-Mk-
«•••-=: J i K-e 

- * - C o y C«t*oV T } - j L Covr Ce^T^ 

However, in accordance with the kinetic theory of mixtures, we 

can define new variables as follows: 

_ 9 
<iii> = <u(c>̂ " I/2 v km » total specific internal (7.37) 

energy of the K-th phase, 

- T - "* 
«q » = « q ^ » - «rTk»"vian

+ » total heat flux of the (7.38) 
K-th phase with respect 

•f «p^»<ii^> V ^ to the center of gravicy of 
the same phase. 



Since the total internal energy is a mass weighted quantity we can 

use Equation (3,74) to define the corresponding total specific internal 

energy ^m, of the mixture, thus 

e^U*^ L\~H) «€,*> < u,v *• M « e >> <uxv (7.39) 

Since the heat flux is an area-weighted quantity, we can define 

corresponding total heat flux of the mixture similar to Equation (6.57), 

thus 

a T - C i - a* ) « <3* "** + ot «. 2l**> 
(7.40) 

Using these expressions together with the total mixture stress 

= T 
tensor r , defined by Equation (6,55) in Equation (7,36), we obtain 

the mixture energy equation in the desired form, thus 

i- e ^ U ^ l l J ) + #- e-.u^Ctu* A £ ) ~ - -iSL* _ (7.4i) 
dt a. ' ** a a* 

i. [CT; .t)»K,] * e„f •£*- {e.^iun* ^) v {^* 

[ Cir; .* )•*»•.] + C«» te.T) v c»[cir-t>-v] J ^Ml^ * 

A C«\XC»V\*&VT) - iL C a v t ^ T 1 } 
fcl *>c 

The energy equation expressed in the form of Equation (7.41) is 

easy to interpret. The left side members give the rate of change of the 

mixture energy and of input of energy by convection. The first term on 

the right is the mixture energy flux with respect to the baricenter of 



the mixture, the second is the rate of work done by the pressure, viscous 

and the diffusive forces, the third is the rate of work done by gravita­

tional forces; the fourth term accounts for the effect of the area changes, 

the sixth gives the energy contribution at the external boundaries, the 

last two terms account for the distribution of the various variables. 

Finally, the fifth term accounts for the contribution by the internal 

surfaces. 

Now defining the total specific enthalpy i, of the K-th phase by 

TK^ U K + !JL = Lfc+lV^, (7.42) 

we can a l s o express the mixture energy equat ion in terms of the t o t a l 

en tha lpy r a t h e r than the t o t a l energy. Therefore , from Equation (7.35) 

we ob ta in 

£ e„ C in.* <£) * 1- C »„ IT.* 4 ) = - - ^ L . (7.43) 

3 T . [ ( f c M ) - V „ ] + CavCe-T^-k C.»-[l t . t l .V-- ' l}i l2i2fe-» 

_L_ ( v 8«„ p. _ 

Re 
j L C « V U e c V T i - X C L u - t e * ^ 
» i * * 

where the mixture pressure P is defined by Equation (6.57) whereas the 

total mixture viscous stress tensor is defined as follows 
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Zl= TTl * P ^ (7.44) 

i l , - fc*-T?* (7.45) 

in which the mixture v i scous s t r e s s T , and the mixture difrfusional s t r e s s 
m' 

tensor TT are given by Equations (6.58) and (6.60), respectively. 

In order to express the mixture energy equation in terms of the 

material derivative we simply expand the left hand side of Equation 

(7,43) or (7,41) and then use the mixture continuity equation, Equa­

tion (5.14). For example, from Equation (7.43) we obtain 

a* b*, t 

Ot 
• 

«-, r *- ' 

e„ J h ( T „ * <) «_ ML * A. r cVL-tV*-"U (7-4 

C O ^ M T ) • e * * n ? - t ) - u«l iii^Lb + _ L ( v , .e t . . ,4* _ 

-i_y ( [<(;«4),ii,rvuAHj-i-
r w.* 

1 _ Co\)-twccWT) A.CUv-Le^T) 

In terms of the total internal energy U , we can express Equa­

tion (7,46) as 

i, J^(u»* § } . - ! £ » . * * [ t i r l - t l - 'S-^t .T.^- <7-47> 

[ fc.-1*^-*-* c " ^ l ̂ + k Lvi->£-
- i - T f [**el«* 6 *%W(L t t - '<W^e}-*^l j f -
^- fc %, 

A - Cov-C^tcVf T^ - — C>»v> L e v i ) 
M a* 



UX. Lilt: L C t|UclL i.U W , £jqUc±L J-ULli \ / t H-1, J t ^ / , 4 - J J j t 1 / » £ 4 D ^ Q i \ I mH- / ) 

describes the conservation of total energy for the diffusional model. 

We note that only one additional equation is required, i.e., the con­

stitutive equation for the external heat flux q, . If we compare the 

formulation based on the diffusional model with the two-fluid model we 

recognize that in the two-fluid formulation two constitutive equation-

one for q-̂ e and other for either q-^ or q2i~ together with the jump condi­

tion are required. Since in the diffusional model the balance between 

q^i and qo^ is accounted for by means of the energy jump condition, there 

is no need to specify either q or q„.. 

7.3.2 Discussion: 

Several observations can be made with respect to the final form of 

the mixture energy equation: 

1) It can be noticed that the mixture energy equation can not 

be expressed in the form identical to that of the single phase energy 

equation, as it was shown in reference [23], As it is demonstrated by 

(7.41) or (7.43), due to the internal, surface effects the mixture as a 

total, knows that it is heterogeneous rather than single continuum. 

However, if interfacial effects are neglected, i.e., if V •!/ s - 0 
* " ' 5 {G.'ft} 

only then the mixture energy equation becomes equivalent to the ordinary 

laws of balance in one-dimensional continuum mechanics. 

2) If we neglect the effect of interface, we recover from Equa­

tion (7.41) or (7.43) the energy balance of continuum mechanics, 

3) It should be noted that when the effect of diffusion and of 

motion are neglected the energy equation reduces to that derived by 

Gibbs for the heterogenous binary mixtures. 
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In order to demonstrate this fact we shall dot product the vector 

form of the mixture equation of motion, i.e., vector form of Equation 

—> 

(6.63) by the mixture velocity v and then substract it from the mix­

ture energy equation, Equation (7.47). This procedure yields in the 

absence of external mass transport the following mixture total internal 

energy um, equation 

L ^ _ ^ A oT p A_ ^ t f « * (7.48) ***** ^T — fe k* S « - p-^ ^ 
ATt t ^ - £ ) * ^ -*- I" C?s> © c ^ l - 1^ ' t7* . I^~o l ^—-

y [ W + *** " ^ ?k^l * *** - ^ ~ 
* . l ^ ^ . f t f c * , ) 

A f t Cou- Ce*\"0 V \ \ ^ • __ A T C O V L M O ^ T ] 
bx d * & 

where we used Equatian (3.12) in order to express — . In view of Equa-
dx 

tions (B.36) and (B.L9) 

? » • §ce^r ^ H - ^ U • § ! « • , > ) = 8 L * « - C ? i - ^ ) * V f c * (7.49) 

l̂ c-BL) --Jr[n (fc-iL-FiL ) , ^ ( 6 i . f i ) ] r t 

H*- L ^ u , a i * i , ' v * ^ v * * , J J 

Furthermore, we recall the physical meaning of the divergence of the 

velocity. From the fluid mechanics considerations it is well-known that 

the divergence of the velocity field physically corresponds to the rela­

tive rate of change of the dilatation following a particle path. In our 

one-dimensionalized motion in the x-direction, as a result of a variation 

in the mixture velocity in the direction of motion an element of Init ial 

length dx is stretched in the time increment dt to the new length 
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ov 
n\ 

dx + d(dx) where d(dx) = d x ( T ~ ) d t . Therefore , s ince we are comparing 

the i n i t i a l l eng th dx, then 

^ ~ I - - L h>J£± (7.50) 
%* A*. t>t 

Similarly from the surface dilatation definition it is also well-known 

that, references [62,63] 

-L- r r, ((k± .pi- U^(£i. _FA.\1.*;« (7.51) 

= _±_ Q ^ ^ ; l _ / P* U A O 

t fi»i • ^ i j ) 

Substituting Equation (7.50) and (7,51) in Equation (7.47), and then 

integrating over the initial length x , we obtain 

£=- { C.*U A r .d * — f TU AT. ^ i i * 

f f AX(r(V;- V„) • vi,- +(Vi-?^) - -LJntc i - . f i 'l 
JKo i w l L •&», a i t . . ' 

? % U i - F i U.V;1 *l 4i *-» ^ 

(7 .52) 

S-( X { (L.**«* <•*.-»,..> - **. *~ JK_ 
*° *--' Site <•**£• *>*.«*) 

J 4" A>T CovKewT) * i * + ( 7 ^ - X ^ C„* C.™O*.T) J. 
' OK J 3)L ' " 



We note t h a t from Equation (3.12) 

«U = <iM ; b i d « = JAyc, (7.53) 
( A A A A . 

^Ki. • ^ V u j ) V ^ k . e ^ w e i ) 

Furthermore, we observe that since the relative motion and gradients in 

the system do not appear in the equations of thermostatics, then 

<T*» = U ^ (7.54) 

?~ = 0 

H«<? 

similarly all the covariance terms disappear in Equation (7.50). 

In view of Equations (7,53) and (7.54), Equation (7.52) reduces 

I 

lib «_ f R, KT. *aU*U f q ii Jx^ffr^UMcT.ss) b^U. 
D 

where U is the. total internal energy contained in the initial volume. 
m 

In view of Equation (6.57) we have Am P = A. P, + An P~ and since 
Tc m l c 1 2c 2 

the p r e s su re s P, and P?> are uniform a t any t ime, then the i n t e g r a t i o n s 

in Equation (7.55) can be performed immediately to y i e ld 

J L U = - P , cNv -P X JV, . -V V c U i - d Q , (7.56) 

where we used 

Alfc - U - a J V , -, A ^ J K ^ J V J . ;( [\ ^ tiAw}«it^J« (7.57) 

We note tha t Equation (7.56) i s the well-known Gibbs equat ion 



which was derived originally for analyzing the classical thermodynamics 

of mixtures. We note that the reduction above was made possible by ex­

pressing the formulation in terms of the center of mass of the mixture. 

This confirms a statement made by Prigogine regarding the importance of 

formulating a thermodynamic problem in terms of the center of mass. 

7.3.3 Two-Dimensional Flow 

In this section we shall simplify the mixture total energy equa­

tion for two-dimensional flow geometries. 

A. Plane Flow 

By introducing the geometric relations defined in Appendix C.l, 

we obtain from EquatLon (7.43), the plane flow mixture total energy 

equation 

i { iL+!:) t i e„\>.,x(.̂  ^.wlik + (7.58) 
at -L 3 x a a * 

_L r * „ ( i l t + %) + ( v - S . e - ^ l - *,«.]-

Now the var ious terms can be s i m p l i f i e d by means of the boundary 

layer approximations in t roduced in Sect ion 7 . 2 . 2 . I t 'can be shown from 

Equations ( 7 . 1 6 ) , (7.38) and (7.40) t ha t 

Lin* - ~r\ ^-"O *e,s> * r i > W «<<^<^V*V 7 ' 5 9 ) 

J j O X l> J 

whereas from Equation (7.17) and (7.45) 



181 

~ [ C t l - t ) ' » » ] 2 0 (7.60) 

In view of Equations (C.17) and (C.18) it can be shown that under 

boundary layer assumption 

[V§«.,] [u(V0lV«%*«-l'-S! c«) 
where v-̂ n is given by Equation (7.23). 

Introducing Equations (7.59) through (7.61) in Equation (7,58) 

and using the no-slip condition at the external boundaries, i.e., 

V]_e - 0, we obtain the plane flow mixture total energy equation, thus 

i P U f ^ U i P )> ( Z v VJt\ — ^.^ _ (7.62) 

— [ ̂ t C t , ^ ^ ) - i e J - - C o w C ^ ^ T ) - ^ - C c M ) 

where Cov(mech T) is still defined hy Equation (7.3a), whereas under 

the approximation of boundary layer Gov(en T) reduces to 

Co ^ U ^ T ) - C o O - l w V T ] -y Go>> U O A V - T ) (7.63) 

The second term in Equation (7.62) accounts for the mixture total 

enthalpy transport by diffusion, the third accounts for the effect of 

work by diffusion stresses TTT), the fifth and the sixth terms account for 

the effects of the interfacial energy source and the energy transport 

at the external surfaces. 
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Equation (7.62) together with the constitutive equation for q, 

specifies the conservation of total energy for plane flow. 

To obtain the energy equation in terms of the total mixture 

internal energy um rather than the enthalpy ^m, Equation (7.42) can be 

used in Equation (7.62). 

B. Annular 'Flow 

Following the same procedure, annular flow mixture total energy 

equation results in 

|-• e^tut S£) -v^ S^^* LT^tl) « <^T_ (7.64) 

^ x •- •* 

it;j„M.^^|[i4.(¥)]fv 
1 • ^r 1 -1.1 **^ *-i > ^ %^-^}H^)i: 

iL Covc**ee.viT) - ^- z*+ U * T ^ 

where v. is given by Equation (7.27), 

Equation (7.64) together with an additional constitutive equation 

formulates the energy field of an annular flow. 

7.4 Auxiliary Energy Equations 

7.4.1 Local and Interfacial Balance Relations 

The energy conservation equations derived in the previous sections 

are mathematically rigorous but not very convenient for application to 

several problems of practical interest. In fact, the total energy equa­

tion includes both terms that account for the mechanical and the thermal 
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energy transfers. For example, mechanical energy transfer may not be 

important in some applications where the thermal effects dominate or 

vice versa. Consequently, it is often desirable to use either mechanical 

or thermal energy transfer equation alone rather than the complete equa­

tion of energy. Since these forms of energy transfer effects are implicit 

included in the complete equation of energy they are called auxiliary en­

ergy equations. 

For the derivations of the auxiliary energy equations, we can still 

use the area-averaged mass-weighted general balance equation provided 

that we use the proper identifications for the quantity ty , the influx 0 

of i|r and the rate of generation y of y. By comparing the local form of 

the general balance equation given by Equation (4,5) with the mechanical 

energy, internal energy and the enthalpy equations we observe that the 

identifications given in Table 4 hold. 

Table 4. Proper Identifications for the Auxiliary Energy Equations 

Nota t ion t % 
• 

Mechanical 
Energy 

2 
3."v -tt:V? * £• tf 

I n t e r n a l 

Energy iX 
\ 

% :?7 

Enthalpy l-i 
P 1 IT : V 7 



The identifications summarized in Table 4 can be also used to 

obtain the interfacial balance equations by using general interfacial 

balance equation given by Equation (B.10). It is evident from this 

equation that we need to separate the surface total energy contribution 

into the mechanical and the thermal energy parts. In the bulk fluids, 

the mechanical effects can be easily separated from the thermal effects 

by substracting the mechanical energy equation from the total energy 

equation obtaining thereby the thermal energy equation which is applica­

ble locally in the continuum. To obtain, however, thermal and mechanical 

surface contributions we can follow the single phase flow analogy. 

We note that in the single phase flow the mechanical energy equa­

tion is obtained by taking the dot product of the equation of motion with 

the local fluid velocity. It is expected that the same will be true for 

the surface contribution to the mechanical energy. Thus, multiplying 

the momentum surface term given by Equation (B.19) and using it for the 

mechanical energy surface source term in Equation (B.10), we obtain in 

conjunction with the first line of Table 4 the fallowing interfacial 

mechanical energy balance equation 

]> e^C^kl-^V^^ H^--(lTk;-^»0.^^tM.fi)s (7.65a) 

where (M.E.) is the surface mechanical energy contribution and given 
s 

by 

(M.E),= SHUT V£ '£IL+Ji.r"r l(,c1i--*X \ ^ * ( t | . - r l yi<r(7.65b) 



By substracting Equation (7.65a) from the total energy inter-

facial balance equation given by Equation (B.37) we obtain the inter-

facial internal energy balance equation, thus 

a 
^ PHiCV|t;-»i)-«»!. tt|t; 4 ̂ .-ftui * (I.B) a (7.66a) 

fc=tl 

where (I.E.) is the surface thermal energy contribution and given by 
s 

lx..u„r [* i ^ . s i O » M « t - ^ P (7-66b) 

It is an easy matter to obtain the enthalpy balance from the 

internal energy balance. For this, we simply use the thermodynamic 

relation between the internal energy and the enthalpy. Therefore, 

using Equation (7.5) in Equation (7.66) we obtain 

% 

]T eKl i^-^O-n*; t*; * V / ^ - ^ l ^ ^ , l l i 1 s <7-67) 
v--\ 

For two-dimensional flow case the interfacial mechanical energy 

balance reduces to 

X «htC»lU-^V
8^^^5w'^^*a*'"^*VU *f (7.68 

(Ml 

whereas for the internal energy and the enthalpy, respectively, reduce 

to 

j> l?ul I V t t„Vrt ' ^ Ufci, -V ^ ; .fik: *- t i - -77 (7.69) 
fc»» 

and 



V ewt»te-^*^M Ui+^IH:v5w.-«Vvt»ii-?t)-aki-rti-^. (7-70) 
K.M 

—> 

After obtaining the proper identifications for iff, \!f , 0 and the 

interfacial balance relations, auxiliary energy equations will be derived 

in the sections which follow. 

7.4,2 Enthalpy Equations 
A. Two-Fluid Model Formulation 

To ob ta in the mass-weighed area-averaged en tha lpy equa t ion from 

the genera l balance equa t ion , i . e . , Equation ( 4 , 2 0 ) , we use the proper 

i d e n t i f i c a t i o n s for iff, $• and <p which are given in Table 4 , In t roduc ing 

them in Equations (4.20a and b ) , we ob ta in the mass-weighed area-averaged 

en tha lpy equat ions for each phase , thus for phase 1: 

-L u -* )«e><MW^ u-*o «e> <*u> <^v= (7.71a) 
hi ** 

- A . C4- CX ) «\K^+ — U " * ) « * * > + — U~*) <\J„> <<f\>-r 

• # 

a-*) ($>4iL -* % u a ) - [ c <-«)«e(» <#i¥> <o * u-«o <^ iA^-

OoO <\>,*> « ^ * Coo-ie^ O - I <-*0<^* C^-v>,^"\ dJb-*Is-

3 J O 

3 - CQV>. tev\i i ) 4 ^~*)C0» C ̂ > v\>A 
*x. ** 
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and for phase 2 

:L * « ? S> <i^ + 3L « «e,» <**.*> <tx̂ > = 

= - JL * <<"$L*^> V — <*«*V>> + ^ _ « Atf^V ^<*Yfc -V 
^x fr* at a * 

04 (^aft^ * « * ) - [ ^ *p** < ^ < i » > * * ^ M * -

* <tfa*> <*?,> -v Co* UAU) ,« C** t Vtfv*}] ^ > i i _ 

(7.71b) 

ft \ fc. "* i_« 

a 
dA 
J * 

i _ Co* (.*** O * ^- * CWt f\- V-,,) 

where 

^lafT 4 t S * s 7 ' l t * > a s T t 11 l * * : 7 " ^ J A -K-1,2 (7.72) 
KVc 

represents the irreversible rate of the thermal energy increase per unit 

volume of the K-th phase by viscous dissipation, 

4\,0=*-<<***'^>~- — (((*>* V-Xfk) Ak , K-1,2 (7.73) 
RR A 
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represents the revers ible rate of the thermal energy increase per unit 

volume of the K-th phase by volume expansion, 

CotfCe*U)= O * ) fce,» C o * (^»'ii) (7.74a) 

Qou-i^i l\= tx «£j>V £«* t^i^) (7.74b) 

Let us consider the reversible increase of the thermal energy. 

Recalling the defini t ion of the covariance, from Equation (7.73) 

% s - f c f > t ? - ? ! > » - *PtV> <V-~?t> - C . ^ t ^ v / i ? , ) (7.75) 

By using the divergence theorem over surfaces given by Equation (3.20), 

i t can be evaluated as 

{!-*) 4 ^ ^ „ « ^ v > [ A U--0 <\riM> +y I VVM>4£+ (7.76) 
P.e/u -MG 

O-*) <v u > ^ ^T- 1 , U-x ) COT> [ P, (J -^) ] 
«4x J 

The corresponding relation for the second phase can be similarly 

derived. Substituting Equation (7.75) in Equation (7.71a), and its 

corresponding form valid for the second phase in Equation (7.71b), and 

then expressing the resulting equations in terms of the convective 

derivative we obtain 



U-°0 <<e,V> i ? < l t > = -..J- t\-*0 M » + ^ . U-*) «P;^ + (7.77a) 
Di »* V * Dt 

I 

AT. 
j [**M (Ml- <*i>)+fa-*\t~+i\{<^S-^i)-%*'\4gL-

— Cou- Ce^ 0 - t w « ) Clc^ C^."? FJ) 
fcx 

oc « f >v ~ - v •= - * °< < ^ > W - ^ * « ^ V > * (7.77b) 
1 Dt 

AT. J 

i- Co^uwi a) -*c<>» C^-vP.) 
dx. 

where k, (K = 1,2) is the convective derivative following the K-th phase 
D t 

center of mass, i.e., Equation (5.18). 

Equation (7.77a) for the first phase and Equation (7.77b) for the 

second phase describe the thermal field description of a separated two-

phase flow based on the two-fluid model. For the completeness these 

two field equations must be supplemented by an additional relation ex­

pressing the interfacial enthalpy balance i.e., Equation (7.67) and by 

two constitutive equations - one for the external heat flux q1 , and one 

for the conduction heat flux of either one phase, i.e., q, , or q... and 
^li 2L' 

one for the conduction heat flux of either one phase, i.e., q or q2•? 

In order to express the enthalpy equation appropriate for the 
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two-dimensional p lane flow, the geometric r e l a t i o n s der ived in Appendix 

C.l w i l l be used. Consequently from Equation (7.77a) for t he f i r s t 

phase we ob ta in 

7 « P w .Vfo « - i - 1? ^ 9 , >̂> -v ̂ i. i « n > w (7*78a) 

-j4; - [*»'* iLu'<^>)^ ^ a - ^ - ^ H l ^ - ^ i V V ^ ^ C ^ ) ] -

" ̂ ie ( It*- 4«M>) * ? l t • ̂ »t - ^ (,<v5>-^0 • fti€. ] -

M JL C O * u*i 0 - *{ Cou- Ltfl- Vf») 
«i* 

whereas from Equation (7.77b) for the second phase we obtain 

(H-^H<e>V>-^i^ *- A U - 7 ) M.*>>-V ^ CH-^)«PiVV + (7-78b) 

H a* Dt 

l«-^#*~[**U^^>KV;-V^^ 

U A. Covi- Ĉ A-t a.) „ C H - ^ ) ^u-tVi,.??^ 
OK 

In view of the boundary layer approximations further simplifica­

tions are possible. Let us consider the last covariance term. For two 

dimensional flow it can be expressed as 

Co*[ Ut. tVPj] = «. U*. !?k * V». 13&. > - (7.79) 
L J a* * *^ 

3 « ax du * 



However, it was seen in Chapter 6 that 

i Z a O i O ; v . x o u ) (7.80a) 
*a 

whereas 

^ 55 OCA) \ V*A X. O C O (7.80b) 
^ x 

Consequently, to be consistent with the boundary layer analysis the 

terms having order of £ and higher can be neglected from Equation (7.79), 

and we obtain 

CooT 3 k.(VP}]^ fcVu,, ̂fil»- < « W > - « i A . » (7.81) 
L J ^< ^* 

Furthermore, we note that in view of the hydraulic approximation, i.e., 

of Equation (6.30), we have: 

ifit. - i f s i - « ! - ( « e k » ? ) - $ (*>t) (7.82) 

which is only function of x and t not of y. Therefore, from Equa­

tion (7.81) 

C c v [ ^ - l Y P i c ^ ^ O (7.83) 

By expanding the material derivative of the pressure and using 

Equation (7.22) it can be shown that 

^ i - »} « ^ W V Ptn ( ^ ^ - " U Q ) -%t= (7.84a) 
Dt L f~ 

ice. t 

a,Mft> + C < < 9>^_P,\ M 
bfc 0t 
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b: lH-4f) fcP^wV P * l C < ^ - ^ ) - ^ i Q « (7.84b) 

= iu-,j ^ ^ > _ U v i * - ^ Jbl 
0-t ' Di 

3q 
By using Equation (7.16) for , Equation (7.83) for the co­

ax 

variance and Equation (7.84a) for the material derivative from Equa­

tion (7.78a) we obtain 

* u PtsN ^ ll>"> - nn ^ < < f i > + ^ 4 _ (7 .85a) 

[**u ( / u - < ^ > ) * 1 , ; ] - [ ^ i t l U - < t ^ ) - W + 

[4L ^ - P;^ !Ll - H A. Co^ u ^ o 
EH a* 

Similarly, we obtain from Equation (7.78a) 

(*-«>) «e>» h i h ^ u - ^ k±B> + u - ^ ) 4 x t ; <7-85b> 
fcl H 

[" *»*t ( £*; - <L^) - ^ i ] -

( *. *>,> -*\ .0 5 i l - W i Co^ U^i a) 

Equation (7.85a) for the first phase, and Equation (7.85b) for 

the second phase together with the interfacial balance condition and 

with the two constitutive equations for q, and either for q and q 
^ nle li 2i 

constitute the thermal formulation for a plane flow structure consistent 

with the boundary layer approximations. 



For the annular flow similar equations can be obtained. However, 

in this case by Equation (6.42) pressure distribution becomes uniform 

oP 
in the r-direction. Using ̂ T = 0, and applying the boundary layer simpli' 

fications it can be shown that the enthalpy equations appropriate for 

the annular flow can be given by 

c*-«) « e * iLiii? = o*} .M- + u-«) 4 , T - (7-86a) 

« «v> Mil? = * » ^ + 4 , . . - (7-«b) 
ot ot i R 

±SZ [ *Ul (. t»I - < *»>>* ^,; ] - f-x C-* Uni a) 

These two equations describe thermal field of an annular flow. 

Of course, as in the case of the plane flow q, and either q.. or q„. 
Ue ^li 2i 

should be given by a constitutive equation, and the interfacial balance 

given by Equation (7.70) should be also used. 

As a conclusion it can be stated that a two-fluid formulation 

of the thermal field of a two-phase flow can be described two field and 

two additional constitutive equation. 
B. Diffusion Model Formulation 

To formulate the problem based on the diffusional model we need 

to consider the mixture enthalpy equation which can be obtained by 
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adding the individual phase equations. Consequently, by summing Equa­

tions (7.71a and b^ and using the enthalpy interfacial balance, the 

mixture enthalpy equation can be given by 

(«-«o «9^> ^J±ii + oL«t%h££ +r*iUix>-<\t>U C7-87) 

*- i . [ u-*) <t ̂ » + * « ^ ^>s] + I 1 [ u-«) « p,y> * * « &>]+ 

r< L ^"^ <Uu> «^» ** * <ov*> «^v>H -v 

m*-*) ^fy*^* ^ ^ ^ j - f o-^<v>i*>^P>^*«^^«p^]+ 

r C o w t ^ n i O + Coi^Ce^-t a ) l + 

[ u-*0 Co* t Pt. ^O * * CW L ^ - ^ 0 ] \ d f l A ^ - -

4 - ( t i . G ) « ^ A - - ^ - y [^K*cii«-*^>)-
AT,, / * , d x - ATC ^— L 

i t k - i 

A . [ Cow (.awl 0 + C0\r U*t SLI] + 
O K 

A. [ n - o c» c P. • ir,̂  * x c.» iP,. o ] 
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where (I.E) is the interfacial thermal energy contribution given by 

Equation (7.66b). 

The significance of the various terms, which appear in Equation 

(7.87), are as follows. The first two terms on the left hand side account 

for the lack of thermodynamic equilibrium (i.e., for the subcooling or 

superheating) in the first and in the second phase. The second term 

represents the energy required to generate a given mass of vapor per 

unit time per unit volume. The first term on the right hand side repre­

sents the irreversible rate of the mixture thermal energy increase per 

unit volume of the mixture by volume expansion and by viscous dissipation. 

The fourth term accounts for the effects ofarea variation along the duct. 

The fifth and sixth term accounts for the thermal energy transport at 

the internal and external surfaces respectively, whereas the last two 

terms account for the non-uniform distribution of the velocity, enthalpy 

as well as the pressure. 

It can be seen from Equation (7.87) that when the terms on the 

right hand side are given then the vapor source term can be determined 

if it is assumed that the both first and second phases are in thermodynamic 

equilibrium. However, if thermodynamic equilibrium is not attained, then 

information on the constitutive equation, appropriate to the particular 

flow regime, is required. 

By using the mixture variables and the fundamental identitys 

Equation (7=87) can be expressed also with respect to center of gravity 

of the mixture, thus 
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L PU + 3L ^ I ^ . £«==- A i ^ . + i S i * A P . ^ ^ ( 7-88) 

R* >***-[ ti-«0 «Pt*V1WMk +^«PvV>V ivl<ltJ^ C ^ U - ^ ) ' 

L J cix 

JU f Cx.e)« ^ -
A T . J 5 I *** 

a. 

AT K.-i i ^ e * M *»*e 

A Co* U«*"0 + i . f ^-•OC.osrlP, - *v>0 * x C.w L P v ' ^ , ) ] 

In Equation (7.88), i , q and P are respectively, the mixture 
m mx m 

enthalpy, mixture conduction heat flux and the mixture pressure, and 

are given by Table 2, Equation (7.40) and by (6.54). <%> Tn i-
s the total 

viscous dissipation per unit volume of the mixture and given by 
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**»!*= °"°° * t i * * **• ^ i a (7.89a) 

whereas 4 n is the reversible increase of the thermal energy and given mK. 

by 

4 ^ = Ci-«) £^l- x | ^ (7.89b) 

The fourth term on the right hand side is the enthalpy transport by 

diffusion with respect to the baricenter of the mixture. It can be 

also expressed as 

O-ftO 4 c € , * 4 t , > V | M A * * * < , » 4£»>Vfe»Ka * « ^ » V»*,w C<i*v-•<£,>! (7 .90) 

a a . C t - * ) * ^ * 4 " * * C V ^ . - V ^ ^ i . V - ^ 
6-* 

^ v x ^ y ^ \/ . / • v 
= ot—'•— *— V ^ C<i»>- <(-,>) 

the remaining terms in Equation (7.88) accounts for the diffusional 

effects of the pressure variations on the energy content of the system, 

the total area change, the enthalpy transport at the surfaces, and for 

the non-uniform distribution of the variables. 

It is important to note further that in the absence of diffusion 

and of the interfacial surface effects the mixture enthalpy equation 

expressed by Equation (7.88) reduces to the one-dimensional single phase 

flow equation. 

For the purpose of the practical application, this equation can 

be simplified for two-dimensional plane and annular flow regimes. 

For the plane flow model, see Figure 15, 



ATc=Hx( ; tv-«)= i /H •, w«=-J (7.91) 

±*i=0 i * = J ^ . ; ^ - V = ' - l ^ i (7.92) 
«4K * fc* 

Inserting Equations (7.91) and (7.92) in Equation (7.88) and 

using Equation (7.16), mixture enthalpy balance for the plane flow can 

be expressed as 

4 /o i . ^ P « L ^ ^ + 4, «, p + i „ i - (7.93) 

f* Ct-«0 ^P,» Mm* v «* «*V» V ^ ^ l - i «-*;•—± -

J - [ m , e t i e - Re_ V u - * i * -V ̂ , e « S i a ] -
H 

^ C o ^ U ^ T > - ij <L [ci-«) C O ^ L R . ^ ) •«. * e0» I P X - ^ O ] 

If P, ~ « P., >>, then the last covariance terms drop, and the <fe _ 
Y— K. r mR 

term can be evaluated very easily from Equation (7.76) to obtain 

* . * « <-«>*,. * - * „ — ^f HC^)<»- l xV-P.|^<^>-(7.94) 

y [ («,. «i,o p, ±L 
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Substituting Equation (7.94) in Equation (7.93) and dropping the 

last covariance terms, we obtain 

* l *" dn 6 t ** ** 

**x* bx L 4 

— [ P, V(; • iij •* >\ 5 iV- Jv; ] - | ^ Coo- U A 4 T ] 

Furthermore if we assume P, ~ P„ ~ P , then we obtain 
1 — 2 — m 

n* ^ u + r ^ *m* u** ~ .T ~ ^^ift."" 

(7.96) 

— r ti-°o «?v> M ^ , <^> +« «^v>vw^<i%>*\\i-*o N ^ * - o d v ^ i ^ b 

**; I 

•— C a V C.£*>"t~0 

Using Table 2 for expressing the diffusion velocities V and 

V„ in terms of the vapor drift velocity V_. , and the mixture con-
2mx 2jx 

tinuity equation for the left hand side we obtain from Equation (7.96) 
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, KL, m b„P„ . A 1 / « « , » * M » y A<i>\_ (7 97) 
" Dt 01 " ***• p~ 

* AL v*. iSi _ J_ «-ti • iS . *n . ( i . . - ; - ) -

J _ 4,*.*.* * p ^ ^ - ^ i - - -r- C « ^ T > 

where 

A < t v = <*\>~<i»> (7-98) 

Equation (7.97) is the plane flow mixture enthalpy equation de­

rived under the concition of equal pressures, i.e., P, ̂  P„ ~ P . 
n 1 — 2 — m 

Similarly for the annular flow the mixture enthalpy equation can 

be expressed by 

e„ ^ k = l ^ . i * (~ «^«g>» v»u *<i>). (7.9 9) 

04 A! V û i S a . . Afi. ^ t i - i ^ i + r. t t i .«- U ) -
n« - ^_. ^ e * ° % x 

-± Cie-*.e + ft, T^ „^e\ _ A_ CoO-C^iT^ 

We note that in order to use the enthalpy equation, it is necessary 

to know the power Input q . It is the only constitutive equation re­

quired for the formulation based on the diffusion model. 



201 

7.4,3 Internal Energy Equations 

For the analysis of the incompressible fluids, the specific in­

ternal energy is often a more convenient variable to use than the specific 

enthalpy, since it involves the temperature directly. 

We will now derive the forms of the internal energy balance equa­

tions required for the both two-fluid as well as the diffusion model 

formulations, 

A. Two-Fluid Model Formulation 

No new calculation is necessary; it is sufficient to merely trans­

pose the results obtained for the enthalpy equations. By using the 

thermodynamic relation expressed by Equation (7.5) in Equation (7.71a and 

b) the mass-weighted are-averaged internal energy equations for each 

phase can be expressed as: 

a 
U-ct) «e » <U,> -t ̂ - Ct-w) «e,V> <^,K> <U,>= (7.100a) 

• 6 * 

9M. * 

[ li-oi) <£? ^ <V\S> <W,> + U-*) *{,*»• + Co? CUt t)] i i i A L : 

?=. I, 



i - * «ej> <u,> + 1 . * <*?.> < ^ * > <u».> - (7.100b) 
^ t ** 

[<* « e * » <***> < u 4 > -v <x «^a>tS> * Co* CU»4 a ) ] ^ A T- -

— >̂~ ( r * u tt*i *W'^«] 4 * - I; e^c^iAi 
AT. f - ' ^ * ' ^ 

where Cov(int K) i s given by Equation ( 7 . 4 b ) . 

It is important to note that, if we neglect the effects of 

compressibility 

* « = * , * - = (7.101) 

It is obvious that In this case it is more convenient to use the internal 

energy equation than the enthalpy equation. In fact, as in the case of 

the single phase flow thermal field can be treated independently from 

the dynamic flow field. 

However, in general we can use Equation (7.76) for ̂> in Equa-

tion (7.100b), and expressing the left hand side in terms of the 

material derivative for phase 1 we obtain 

q->0 «g,V> b> < U '* ^ - A « o , »> - «?>^ ^ - ^ - « } < . u ^ > + (7.102a) 

Ci-dc) 4 , i e - [ t t - ' O ^ ^ ^ + t i -*0 <4P,*<*.»v* CoV C U i O ] ^ ^ A > -. 

- 5 " f [ ™**tu l t- <u,>) + ̂ a . 5in + «?,s> û-vw* ] i A „ 
Av. 

A Cc^c^i 0 , ci-«) c°*[ Pi • tv-"?,)] 
^x 
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whereas for phase 2 we obtain 

x «9 v> D * < U j > - - i , x « q ^ - « P x * i x < ^ M (7.102b) 

°* *ix«. "*[ .** W * * * ****'*• ***** >Gov> t****)] ^ ^ ^ -

-L.y ( [^.a^^MMu-^o^4^^-5^]^--
AT't^c u 

i . Cow Llwi A) - * *:«*[ t»». l v . v*)l 
^ x u 

These equations can be used to derive the energy equations appli­

cable to the separated flow of compressible fluids for the plane and 

annular flow structures. 

In view of the Prandtl's type of approximations it can be shown 

that the plane flow internal energy equations can be expressed as 

«P(V>>2 M * £ « - * * > | L ^ < » u > * 4 a | L _ (7.103a) 

V [ w l t (. u n - <u4>) * <?; + P»; J?*-*.*] +• -j «?,*> §3 '7 (3i;-*i;-*»*-**)-
fsft.i 

w .L CU*cut 0 - 1 Co* [ pi • tv.\7\)] 

[ «ixi ( lu; - <wx>)- *JX; * Pxl^xi- ***] - ± CW-D$ «e> 5 t; • **;-
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«(?XV>CH^) S±i i i£ , . 4 P ^ 1 - U-*n <*«> * * « u - (7.103b) 
(H fc* 

[ <*u; Cu,.;- <u*>) - ^ + Pii 7a;- * * ; ] - 1 «e> t w - i ) ^ v?xi - V L -

w i u c u - u ) - <-w-^ Coo- [ Pa-(.7-a,.")] 

Equations (7.103a and b) are the internal energy equations for 

two-phase systems with a change of phase. They are of the same form 

as the equations of the single phase flow. For the complete thermal 

field description these two field equations must be supplemented by 

two constitutive equations - one for the external surface heating and 

the other for the internal surfaces. In relation to the internal sur­

face constitutive equation, if we assume vapor is in itself in thermo­

dynamic equilibrium, i.e., if the vapor follows through the saturation 

line, then q̂ . can be taken zero, which specifies one of the constitutive 

equations . 

Similar equations can be obtained for thecase of annular flow by 

using the two-dimensional flow approximations. Consequently, we obtain 

for the annular flow 

O - * ) «P » ki < u ^ ^ _ f» JL (\-<x) <v,x1 + 4 , - (7.104a) 

[ O - * ) P, <\r^> * <-»*• cU-tO ] a. dD. 
t>e *A. 

b e 
[^uCUtL- <a»>) - q ^ ^ ^ v & ; . & « ; ] -

D t 
[ ™i* l U l t - <tt»>) v ^ l t + Plft ?<e- 5 ^ ] - — Cav Uvt 0 



a«^» iiiti ^ . P l _1 O K A O . * 4 a t ( L _ (7.104b) 

L J De «dx 

* * * [ «*; ^ ; + ^ ; + P I ; ?»:•**;].. 3L Co» IUU) 

The same comments concerning the additional constitutive equa­

tions which made with respect to the plane flow case, apply also for 

the annular flow case. 

B. Diffusion Model Formulation 

As it is usual, the diffusion model formulation is based on the 

mixture equation. To obtain it, we can use 

U,s U « - iii (7.105) 

in the mixture enthalpy equation, Equation (7.88), thus 

tUliU „ M - * . £ * A . - (7.106) 
" Ot A* 

_ i l l* «»>» y*. A<u>]_ [« «''»«"'» V W 

c^cuiT) l i i - ^ - J - fT u - € ^ d & -
J «u Axt I: *** 

AT.Z- hj - ^ 

The significance of the various terms appearing in Equation (7.106) 

are as follows. The term on the left side accounts for the rate of 
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change of the mixture internal energy as following the center of mass 

of the mixture. The first term on the right hand side accounts for the 

effects of the axial heat flux, and the following two terms account, 

respectively, for the reversible and irreversible rate of increase of 

the thermal energy. The fourth term represents the internal energy 

transfer by diffusion, remaining terms account, respectively, the 

effects of the change of area, transport of the thermal energy at the 

internal and external boundaries, and finally, effects of the non-uniform 

distribution of velocity and internal energy. 

Simplification of the mixture equation can be achieved in a way 

similar to that used Ln connection with the enthalpy equation, there­

fore, we shall not go through the derivations here. 

7.4.4 Mechanical Energy Equations 

A. Two-Fluid Model Formulation 

Mechanical energy equations appropriate to the two-fluid model 

formulation can be obtained either by using the general balance equa­

tions derived in Chapter 4 in conjunction with the identifications for 

'r , t* and 4> given in Table 4 or by substracting the averaged internal 

energy equation from the total energy equation. Although both methods 

give the same result, we shall use the former method. 

From Table 4 it can be seen that 

4,, V* (7.107) 
a. 

+ = - (IT -.7?) + 1*7 



Using these identifications for *T , 41 and + in the mass-weighed 

area-averaged general balance equation, Equation (4.20a and b), averaged 

mechanical energy equations can be expressed for phase 1 as follows: 

_L tl-*)«.Py> i ^ i > \ A. U-«) «e,V> <*»»> 12L>1"= (7.108a) 
>t a.. »* * 

= i_[ci-*) <<i f -1 '^ . <£»>] _ tw*0 « I K * v T j ^ + 0-*) <*e(*^ •<?,>-
• A 

" o-«.i «e,» <*,*> ̂ ^ - o-*) «S1-t»-<7,> + U t ^ H ) ' 

c.K*.rk<ii i ^ i i - i V f r *,< 2&. t ? ( r ^ v ^ ] ^ -

—— U J - t^«.cVl 4} _ ^ _ Co\> C « * * ^ v A. Co\> ^uoo«-W i) 
ot dx dx 

whereas for the second phase we obtain 

A. * « P » £ ^ * *- * «e>> <*»*> <^>"- (7.108b) 
"it ^ i dt *• 

T=T \ r D< «Tr t . 1 >% * <\^>) - «• « i a t v " ^ ^ p< «pxs> £ . < i£>-

r « «e.v> <vx*>
 <uv> - »< <sor*- L » . <\\> -v e.* t ^ y . ^ _ L x. 

o*B,i J*e 

— Co* (.^«t\*\ l ) - .&. Ca * (.CO** <*} + ^ _ Qotf C^o^-t. i } 
St ^x 6K 
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where Gov(mech 1), Cov(conv 1), and Cov(work 1) are defined by Equa­

tions (7.3a), (7.4a) and (7.4c), respectively. Corresponding second 

phase covariance terrr.s can be obtained by using the definitions given 

for the first phase by replacing (1 - «*•) by <* and the subscript 1 by 

2 

Equations (7.108a and b) together with the interfacial balance 

relation, Equation (7.66) formulate the mechanical energy equation 

based on the two-fluid model. 

It is important to note that for the case of two-dimensional flow 

if the boundary layer analysis is used, the first term on the right hand 

side reduces to 

« ltk *t % '<7H> = « P « > < V V A > (7.109) 

whereas the second term becomes 

« f , t ? ? ( * = £ l f c +*i X a
 ( 7 - 1 1 0 ) 

and as a r e s u l t of (7.109) Cov(work K) term becomes 

Co» t««»rW 0 •= ^X"*) Ct>u" C * » ' **^ (7 „ I l i a ) 

C » V U S r k a J 3 ^ C o * L^a . - ^* ) (7.111b) 

F i n a l l y , from the order of magnitude a n a l y s i s on Equation (7.108) the 

g r a v i t a t i o n a l work term becomes 

^e*^?* . - <**>^= «P**> 3* <^ .> (7.H2) 

Substituting Equations (7.109) through (7.112) in Equation (7.108) 
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and express ing the l e f t hand s ide in terms of the m a t e r i a l d e r i v a t i v e we 

ob ta in for two-dimensional flow 

U - o O « e » - ^ ^ = - . 1 U-*) < c p > < ^ > + (7.113a) 
' 0t 3. ^x 

0-«0 ( # l f t + i l I R ) + C\~*0 « ? , » §* <v«> - [ Ct—il <fc*V* <tf\«S+ 

and 

C»*(c,o** M - U u - t w o r l t O ] d ^ ^ T < - _ 

V A i l [mu }*k - [IT,* -"?>*)- J i . s l -

(sfc/ i 

Co\> {**\9.cM {) — A_ C o v (. e.av\^ I ) •+ J _ C a v L u J o t - W 4 J 
d-t a * &* 

o ^ « e s > — 1 2 ± ? " « - i L « « P x » < ^ > t ( 7 . U 3 b ) 

C 0 * t « - i » a) - C » c».-W a ) 1 ^ A T * _ 
J < J < 

*N~ J L I [ A U 2*i _ C^a.*-"Va.fi V **«•*}-

Pre,: 

JL Gov c*»*«^*4 - — e-* * i«**a} -v- JL. c.<»* c^o**w a.̂  
a t a * d* 

where f, represents the perimeter of the K-th phase on the -£-th surface, J K e 

( I = c,i). 

-%22Va.fi


Further, simplifications on the each phase mechanical energy 

equations are possible for the particular geometries. For example, if 

dATc 
the cross-sectional area is constant then —: = 0 . If the fluids 

dx 
are incompressible, <3> = 0. If any of the phase is not contact with 

IVLV 

the solid wall, as in the case of the annular flow, one of the terms in 

the summation sign disappear, so on. 

For the simplifications for the particular flow structure one can 

use the geometrical relations derived in Appendix C. However, we shall 

not go through these derivations, 

B. Diffusion Model Formulation 

Summing up the individual mechanical energy equations, Equations 

(7.108a and b), and using the fundamental identity Equation (3.62) to­

gether with the interfacial mechanical energy balance relation, Equa­

tion (7.66), we obtain for the mixture mechanical energy equation 
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^ U C ^ ^ h f J e - ^ t ^ ^ ) ] - (7-114) 

je^ K (<4>\ IS?)- C^t)-? . -> 

C o y M ^ o r k T ) \ £ ^ I r _ J _ ( CtA.t^ <*£ _ 
1 «U *T_ ' I ; J * 

^ f [*̂  ^-Itkft.v^.^Jii.iutu**^). 
x 

J_ 
AT 

A fO- r f )*?^ C0tf C^.**—V) **«<V» Cg*U»i ^ ) U - W t w r U ) 
"d* *- a. x 'J a» 

where (ME) is the surface contribution to the mechanical energy balance 

and expressed by Equation (7.65b). 

Although this equation expresses the mechanical energy balance 

for the mixture it is not consistent with the diffusion model in which 

the independent velocity fields are the mixture velocity and one of the 

diffusion velocities or one of the drift velocities. In order to express 

Equation (7.114) in terms of the diffusion velocities we apply the 

fundamental identity once more and use the relations tabulated in 



Table 2. As a result we obtain the following mixture mechanical energy 

equation expressed with respect to the center of mass of the mixture 

JL f e v ^ - ^ o - x i ^ e * ^ * flt^e-w î2t "U (7.115) 
at L ** * * -1 

s i . [ c€J--1) . $*"]-[ it-*) «^i •? v»»*«. «8a-.*vi>3* 

ê  g . vL,- ± J cw«o[-.*.f/i *-v%«. + «e,» ^ Vu%. ] + 

ex. r_ «ir>*'c>v - v ^ + «efc» lis N/J.̂ H ]-v <̂ "* c<=.«vv* T ) _ 

U C w o r k T ) ! J U ^ - _ i _ ( C M . t ) ^ . 

Co » i /M* oM T" 1 — 
- J- " C * d t 

C o \ > L ^ O A O - T ^ •+ ^ L C W C. wov-W T ) 
^ M . £ X-

A T o f — 'T 

=T 
where TT is the total stress tensor including the drift stresses. Ex-

m 

pression for it is given by Equation (7.44). 

The terms appearing in Equation (7.115) are easy to interpret. 

The first term on the left hand side accounts for the mechanical energy 

changes of the center of mass whereas the second term accounts for the 

effect of the drift between the phases which arises as a result of ex­

pressing the mixture quantities with respect to the center of gravity 
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of the mixture. The first term on the right hand side accounts for the 

total work done by viscous as well as drift stresses whereas the second 

term represents the part of the mechanical energy dissipated into in­

ternal energy. Third term is the work done by the gravitational forces. 

Fourth accounts for the diffusional transport of the energy. Fifth 

term shows the effects of the total area change on the mixture mechanical 

energy balance. The seventh and the eighth term represents, respectively, 

effects of the mechanical energy transfer at the internal and the external 

surfaces. Finally, covariance terms represent the effect of the flow 

regimes, i.e., effect of the velocity profiles in the each phase. 

Simple cases of the mixture mechanical energy equation can be 

obtained by using the geometric relations derived in Appendices B and 

C. However, for the purpose of brevity we shall not go through the 

derivations here. 

7.5 Scaling Criteria 

As in Chapter 5 and Chapter 6 where the dimensionless groups 

necessary for the kinematic and dynamic similarity of the system 

were derived, in this section we shall derive the similarity groups 

arising from the thermal field of a separated two-phase flow mixture. 

However, for the simplicity plane flow and annular flow enthalpy equa­

tions will be brought into a single equation so that the general similar­

ity groups can be derived from it. 

It can be seen from Equations (7.96) and (7.99), the mixture 

enthalpy equation for a constant area duct can be expressed as 



^ li«. + ̂  V^ 5J- a 15- + V*„ ̂  * $ M U - (7.116) 
ox »T 

1 / «.«?•»•»«»» M • K ; > W * ±™» *2z + L a . <* i e _ 
a* v. e„ N J e„ »* *T„ >,e 

i l B-4L - ̂  ,. I\. v>„ AIL _ 1- <w U ^ T ^ 

where we have used P. 2TP~ ~ P . It means we have neglected the effects 
1 2 m 

of pressure jump across the interface on the mixture enthalpy balance. 

Defining additional dimensionless parameter i = L/i . and 

introducing it together with the dimensionless groups defined in Sections 

5.3.5 and 6.3.4, we can reduce Equation (7.116) to dimensionless form. 

it is found that Equation (7.116) is identical to its dimensionless 

form 

K # : « - « - Me. N t l N, ^ («* J l | L V^. *«t>*^ 

«»lM f l -"eJ No e - i5~ * Mst <£, -
J i * . * 

•V. r * it- i l l * £& NP .N, r%-. P„ ( _L. _ _L N£. \ _ 

N , ' v L * [ l , " ' ° * e* M—'»"»*>]-N«» ! ;* [ •** er W~„<.<«w>] 

It can be seen that in addition to the dimensionless groups obtained 

from the kinematic similarity (see Section 5.3.5) and from the dynamic 
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similarity (see Section 6.3,4), the thermal field expressed by Equa­

tion (6.117) introduces additional dimensionless groups below: 

E & = - ^ 1 Eckert number (7.118) 
ftrti 9 

Ni*= _JjJL e Stanton number (7.119) 

* T t "»*• v*to Lwa 
* 

Ntf - ^ ^ I K ^ O Dissipation group (7.120) 

"v-io vv**o tw»w / L. 

M ^ _ K S"o Surface Energy group (7.121) 

N , ix d * \ C O N T U , * - ^ T (7.122) 
NcovUntOr U-*M<, ;  

\>*v0 U , j I Flow Regime groups 

V** » t w o 

The dimensionless Eckert number scales the relative importance of 

the heat generation due to compression against the thermal energy. As in 

the case of single phase flow, it is possible to conclude that heat due 

to compression is important for the calculation of the thermal field when 

the mixture velocity as seen at the center of mass of the mixture is so 

large that the thermal energy increase is of the same order of magnitude 

as the prescribed thermal energy increase. 

Expressed in the form of Equation (7.110), i.e., as the ratio of 

the heat transfer at the solid boundaries to the convective energy flux, 

the dimensionless Stanton number has the same meaning as the single 

phase flow. 

The Dissipation group expressed by Equation (7.120) scales the 

relative importance of the dissipation of mechanical energy, i.e., frictional 

heat, into the thermal energy. It is well-known that in the case of single 

phase flow this group is related to Eckert and Reynolds numbers. From 



this analogy it is now possible to conclude that the frictional heat 

is important for the calculation of the thermal field when the velocity 

of the center of mass is so large that the thermal energy increase is of 

the same order of magnitude as the prescribed thermal energy increase. 

Hie Surface Energy group, expressed by Equation (7.121) compares 

the relative importance of the interfacial surface energy with the 

thermal energy. We note that one can express it in the following form 

Nr.,a( »«:) I ^ J L _ \ (7,123) 

where the first term is Eckert number while the second term is related 

to Weber number which was obtained from the dynamic similarity require­

ments in Section 6.3.4. It is evident, therefore, that the Surface 

Energy group does not: introduce any additional dimensionless group. 

Finally, since Cov(ent K) ~ Cov(v *i ) depends on the K-th 
Kx K 

phase flow regime it becomes evident that the Flow Regime group reflects 

the effects of the flow regimes. 

In accordance with the preceding argument as well as the arguments 

made in Section 5.3.5 and 6.3.4 it is to be expected that one needs so 

many similarity groups to obtain an exact scaling of two systems. How­

ever, for different applications not all groups will have the same 

importance. Consequently, Equations (5.41) and (5.42) for the kinematic 

similarity, Equation (6.73) for the dynamic similarity and finally Equa­

tion (7.117) for the thermal similarity can be used to determine the 

importance of the various groups and to select the appropriate scaling 

parameters. 



7.6 Summary 

1) The total energy equations for separated two-phase flow 

problem were formulated by considering a two-fluid model and a diffu­

sional model. The first was expressed in terms of two field equations, 

one for each phase, whereas the diffusional model was described by means 

of the mixture energy equation. 

2) From the general formulation a Prandtl type, i.e., a boundary 

layer approximation was used, and the appropriate forms for the total 

energy equation were derived for both the plane flow and the annular flow. 

3) When the effects of diffusion and of motion are neglected the 

mixture total energy equation reduces to that derived by Gibbs for the 

heterogenous binary mixtures. 

4) For the purpose of practical applications, the auxiliary energy 

balance equations, i.e., internal energy, mechanical energy, and enthalpy 

balance equations, were derived together with the appropriate "jump" 

conditions. 

5) The mixture enthalpy equation in its dimensionless form was 

used to obtain similarity groups arising from the thermal field of a 

two-phase mixture. 
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CHAPTER VIII 

ENTROPY EQUATIONS 

8.1 Introduct ion 

Thus far all the balance equations which are necessary for the 

solution of a separated two-phase flow system were derived from the 

single-phase flow equations - by matching the conditions at the inter­

face. As it is well-known in single-phase flow analysis these balance 

equations are supplemented by the entropy equation or the second law of 

thermodynamics which specifies the direction of a particular transport 

process. 

Following the same principles of the single-phase flow equations, 

it is the purpose of this chapter to derive the entropy equations based 

on the both two-fluid and diffusion models. 

8.2 Two-Fluid Model Formulation 

8.2.1 Derivation of Phase Equations 

Defining by S, and T, the local specific entropy and the local 

temperature, respectively, the local differential form of the entropy 

balance for the K-th phase, (K = 1}2), can be expressed as 

e*TV & ^ a _ v . ? + ***. - vvL (8.D 

which gives an equation for the rate of change of entropy. Dividing 

through Equation (8.1) by the temperature T, and rearranging yields 



^ **** * V- U , V ^ . -7. (It) * |K. ?(±J ^VV k(8. 2) 
T * 

It is customary to express Equation (8.2) as 

4T ^ s ^ v . t e J W ^ - v-a* * efc* (8.3) 

—s where q is the entropy flux with respect to the center of gravity of 

the fluid and defined by 

u 
r= TK 

(8.4) 

whereas S is the rate of entropy production per unit mass associated 

with the energy transport and with the momentum transport and defined by 

i k = _i_ ( t . 1±. + _!_ \- V Vk) (8.5) 

If the proper identifications 

+ =, S. (8.6) 

+- r - -f 
are used, it can be seen that Equation (8.4) has the same form as the 

local form of the general balance equation, Equation (4.5). Consequently, 

Equation (4.20) can be used in conjunction with Equation (8.6) to obtain 

the mass-weighed area-averaged general balance equations applicable for 

each phase. In view of Equation (8.6), Equation (4.20) yields for 

phase 1: 
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i - 0 - . * ) « e t V > <*<*> + ^ U-oc) « e ^ < \ > . . > < ^ i > = (8,7a) 

ju-*) «e,» <\>u> <s.4> * c<-oiKft%* "*• Covu**^ O] ^ ^ *Tc-

whereas Equation (4.20b) yields for phase 2: 

-^r * <*e>>> < S * > + J L « « U » < ^ X K > < ^ x > = (8.7b) 
" dx. 

«- « e i . » < * * * > < S X > + ^ « ^ \ A V > - v C ^ C e v v t ^ a ^ ^ ^ kfc. -

— V " J trt»xt S ^ * " f t . B^»-0 — -— ^ U . \ r i ) 
fcT<,-<- V „ ** ' «i^ dx ^fe '^ where 

CoV-C^^^^ 0 t s ^ - ^ H ^ . ^ ^ ^ C ^ V C ^ i ^ \ C o v C e ^ U A)sdf a«^C»vO^K*&a.) (8 .8 ) 

Expanding the left hand side of Equations (8.7a and b) , and using 

the continuity equations, Equation (5.2a and b) entropy equations can be 

also expressed in terms of the material derivatives defined by Equation 

(5.18), thus 

(4-oO «?tV>
 D*,4Si> = _ i_ U - O <&fl*<fe+U-«*«et»<*tV- (8.9a) 

Tu-oo «<fc^ * e ° v Cewsir ^ } J ^A T" -
^ dx 

J - ^ ~ f [ A i i C s . t - t s . ^ + ^ A i ] ^ - | -C . vU« i r - 0 

l=e,i. J,. 
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*«e,» * *- =_iL *«i*a,>+- «:«evv> <sa>-f * «i* »+ (8-9b) 

U C u U l i ] i i i A l : : _ _ L y f [ A t t l s l Q - < s f c > ^ £ • * > * « ] ± * - - | C ^ C ^ v . a ) 

<J x- Ate £=ftl;
 J J l t t 

Averaged e q u a t i o n s , E q u a t i o n ( 8 . 9 a ) f o r phase 1 , and E q u a t i o n 

( 8 . 9 b ) f o r p h a s e 2 , d e s c r i b e t he e n t r o p y f i e l d of a s e p a r a t e d t w o - p h a s e 

f low f i e l d . These f i e l d e q u a t i o n s must be s u p p l e m e n t e d by t h e i n i t i a l 

and t h e boundary c o n d i t i o n s . 

Boundary c o n d i t i o n s a t t h e e x t e r n a l s u r f a c e s a r e r e l a t i v e l y e a s y 

t o s p e c i f y and b a s i c a l l y f o l l o w s the l i n e s f r e q u e n t l y used i n t h e s i n g l e 

p h a s e f low a n a l y s i s . C o n d i t i o n t o be s p e c i f i e d a t t h e i n t e r f a c e s i s t h e 

i n t e r f a c i a l e n t r o p y c o u p l i n g of t h e two p h a s e s , which i s a l s o c a l l e d 

t h e e n t r o p y jump c o n d i t i o n . I t can be o b t a i n e d from the i n t e r n a l e n e r g y 

jump c o n d i t i o n E q u a t i o n ( 7 . 6 6 a ) by r e p l a c i n g t h e i n t e r n a l e n e r g y by 

means of the thermodynamic E u l e r e q u a t i o n . C o n s e q u e n t l y , we o b t a i n from 

E q u a t i o n ( 7 . 6 6 ) t he f o l l o w i n g r e l a t i o n 

1 

T̂ ?*i<A;- ^-^Ri^wi+^i^-^il'^^i^-^"). ( 8 . 1 0 ) 
^ K ; " - * » - - ' — — - " v " - * - ' - -p*. — - - ' * 

where (I.E) is specified by Equation (7.66b). 

Now it will be assumed that the local thermal equilibrium between 

the two phases, that is, T, . = T2_. = T- in the immediate neighborhood of 

the interface. It is proper to stress here, however, that the equality 

of temperatures at the interface does not imply the thermal equilibrium 

of the two-phase mixture. For example, for heated ducts first phase 

adjacent to the external surfaces can be superheated in the bulk with a 

temperature gradient allowing the no-temperature slip at the interface. 
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The same may be true for the second phase which may be subcooled in the 

bulk with the temperature gradient so that the temperatures match at 

the interface. 

Therefore, dividing through Equation (8.10) by the common inter-

facial temperature the following relation can be obtained for the inter-

facial entropy balance 

x a. 

*)> "»*;. ̂ ^^^•^,i = ̂ -t) s-X-^L(u
r
t t-v

:0-^; = CeKT)s (8.11) 

where (ENT)s can be evaluated by means of Equation (7.66b), thus 

UHT)..^[ nCG^.FiU^^-^M-^- (8.12) 

x 
VL C V^-frO-V* 

w.= i 

w 

T; 

8 . 2 . 2 Two-Dimensional Flow 

A. P l a n e Flow 

To be consistent with the Prandtl's type of approximations which 

have been used for the simplifications of the momentum and of the energy 

equations, we shall neglect the effect of the axial entropy flux changes 

because this terms directly proportional to the axial heat flux. As it 

is demonstrated by Equation (7.16) it is proportional to the second order 

in £ which was neglected in the derivation of the two-dimensional energy 

equations. Furthermore, using the geometric simplifications, i.e., 

(-̂—) « 1 , it can be shown that the entropy equations appropriate for the 

two-fluid model formulation of a two-dimensional plane flow problem can 

be given by 



«i «e,s> Biil£ « i «e,v> <&,->-[«,; Uv. -M* (8a3a) 
W In 

(U-?)&tV* ̂ LLit^=CW-^]«^V><i1>-[^a'L(kS3L-t-<Sa>)+ (8.13b) 

?>-*x;] —H A, Cov-u^r-a} 

The significance of the terms which appear in these equations 

are as follows: The term on the left hand side represents the growth 

of entropy following the center of the mass of the phase. The first 

term on the right hand side accounts for the effects of the internal 

heating on the entropy growth, whereas the. following terms account for 

the effects of the entropy transport at the external and the internal 

surfaces, and finally of the entropy distribution. 

B. Annular Flow 

In view of the geometric relations and of the approximations 

introduced in the previous chapters, it can be shown that the annular 

flow entropy balance gives for each phase the following relations: 

(*-*)«* » hlllL = U-*K<et»<^i>~ ^ 5 - r ft»ul*ii-<*>) * (8.14a) 
* CHr D « L L 

fcAil--±.rA,el*.*-<*i>)*li-M--k ^ fc&^YM) 
' J tc J &e *K 

u «e%v> ]**-
<&a> ̂  CL « { > < ^ > - t i i f ^»;ts4i-<sa>)+ (8.14b) 

Di be L 

*Xfc J be" d * 
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Significance of the terms can be interpreted by analogy to the 

plane flow case. 

8.3 Diffusion Model Formulation 

From the diffusional model concept underlined in the previous 

chapters, formulation will be made in terms of the mixture entropy equa­

tion which can be obtained by adding the individual phase equations. 

Consequently, by using the interfacial entropy balance, entropy equa­

tion for the mixture can be given by 

( 4 - 0 «e,» k><s>>
 + M « * » b t < s ^ - ^ (.<**> - **.>)« ( 8 a 5 ) 

_ M 
*' « X. A T T > ^ * V J * 4^ i/, 

{ > L * r ) U e S K < t + S5 , • O i fce) ^ A . „ J ^ _ Cov- U * W T ) 
^ ^ Pfce a x ^ * 

which can be expressed a l so in terms of the mixture p r o p e r t i e s . For 

t h i s purpose the fundamental i d e n t i t y with ISJ = s , can be used in Equa­

t i o n ( 8 . 1 5 ) , thus we ob ta in 

5. 

e„ iL^±2 = _ J ! i n _ + e ^ ^ - - ^ - \ u - M <<e,»<^>N/w^ (8.i6) 
Ot 

d M t « U T ) l i ! ^ _ _ i _ ( C E N T ) ^ ^ . -

a. 

^7t]E f [<s,"-t*«-<fc^*^v*-Ii!-lic-*t*A'-'rl 
* s < 3 W 
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s 
where q is the mixture entropy flux and defined by 

U = u - ^ M > * < «~%\» (8.17) 

S is the generation of the entropy per unit mass of the mixture due 

to the internal heating and defined by 

em**i = o-*o^e,v><*>-*• ««ev» <**> (8.18) 

The third term accounts for the entropy flux by diffusion. The fourth 

term gives for the effects of the variable duct area. The fifth term 

accounts for the entropy generation due to the interfacial dissipation 

of energy. Finally, the sixth and the seventh terms account respectively 

for the entropy transport at the external surfaces and for the entropy 

distribution. It is important to note that due to the existence of the 

interfaces there is another mode of the entropy generation. 
D. <St > 
k k 

It is important to note that the growth of entropy TTT ~ , of the 

K-th phase, K = 1,2, can be any amount so long as the total growth of 

entropy for the mixture remains non-negative. Since locally at every 

point in the bulk fluids S 5?0, by averaging resulting term S for the 
lv m 

mixture must be positive. Consequently from Equation (8.16) it follows 

that 

^ ^ - ^ * - £ - U T . f „ . ) - f C«MT),iA_ (8-15) 
a t **• V - u 

^ > J [ *>fc.e( S k r ^ ) + ^* • « * * ] S 7 - — ATCCOIKCTUT) 

It fee 
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If the mixture reduces to a single phase or a single constituent, 

that is, if no diffusion and no interfaces, then we recover the Clausius-

Duhem inequality, reference [23] with the difference of covariance term. 

Furthermore, in the absence of the external mass flow Equation (8.19) does 

not reduce to the simple form which was found in reference [23] . Differ­

ence eminates from the fact that the second term appearing in Equation 

(8.19) does not appear in the derivations in reference [23]. 

To obtain the two-dimensional plane flow we shall use Equation 

(8.16) with the usual approximations. Consequently, we get 

(8.20) ^ fr*^* = e„ *«« - — r o-*o «e, ,» <*»> ̂ * + 
ot * * L 

««o » <*>*> V*«i*l L CEMT) S_ _L [ yv) l e . C ^ « " ^ 
1 J t-t H u 

l*c-«.»1 -A. 0„„ L « U T) 

Similarly for the annular flow we obtain 

^ ^ = ^ *_ r 0 - a l l « e ,»<s,>v v ^ <8-21> 

oc «e»» <s,> V lmJ _T u-*> «e»^<«^ V ^ ^ u e ^ ^ V ^ * ] . * . 

C o ^ C e w ^ T ) ] A - c U e _ * ^ C B H T ) & -
J b e <=** \>e_ 

— r ^ * e l ^ e - s .~ \ ) -f V * v\^e _ A _ C o ^ L e v i \ ^ T ^ 
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Equation (8.20) for the plane flow and Equation (8.21) for the 

annular flow formulates the entropy equations based on the diffusion 

model. 

8.4 S umma ry 

1. The local entropy balance was put into the form of local 

general balance equation by defining the entropy flux and the entropy 

generation. 

2. In view of the proper definitions, the entropy equations for 

separated two-phase flow problem were formulated based on the two-fluid 

model and the diffusional models. 

3. Using the thermodynamic relation between the internal energy 

and the entropy, the entropy "jump" condition was derived from the 

internal energy "jump" condition. 

4. From the general formulations, the appropriate forms for the 

entropy equation were derived for both the plane flow and the annular 

flow. 



CHAPTER IX 

SUMMARY TO PART I 

The analysis which was presented in preceding chapters was 

directed at providing a general thermo-fluid dynamic formulation of 

separated two-phase flow. The results can be summarized in three major 

topics: 

1. Models, Basic Definitions and Relations, 

2. Two-Fluid Model Formulation, 

3. Diffusion Model Formulation. 

9.1 Models, Basic Definitions and Relations 

In Chapter 3, we have discussed the general characteristics and 

aspects of separated two-phase flow together with the basic relations 

and parameters relevant to this regime. In particular: 

1. The formulations based on the two-fluid and on the diffusion 

models were described. It was concluded that depending on the magnitude 

of the relative velocity as well as the difference between the two densi­

ties, both separated flows and dispersed flows can be formulated in terms 

of a two-fluid model and of a diffusion model. 

2. In discussing statistical and spatial averages, it was con­

cluded that for separated flows only the latter was applicable. In 

view of this conclusion, two expressions for spatial averaged proper­

ties were derived one based on the volume, i.e., area-averaged value 
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« * V » U , * > » _ $ _ j y * * (*.*,*.UdA , K=l,2 (3.3) 

the o ther on the mass-weighed area-averaged value 

CfcU'Sifc.t) +h .U. A l % , i ) clA 
< * k > t x , i ) - __**; (3.4) 

l j fiic^^.i.OJA 

If <:<Pjr>> ~ P^, only then the two averages expressed by Equations 

(3.3) and (3.4) become identical. 

3. The difference between the concentrations based on static 

and on kinematic parameters was noted. It was stressed that those which 

are defined in terms of static parameters instead of kinematic parameters 

should be used to describe correctly the mixture properties of a two-

phase system. 

4. The importance of expressing the mixture properties in terms 

of the baricenter of the mixture was emphasized. The relevant thermo­

dynamic properties have been derived and expressed therefore, in terms 

of the static volume (or mass) concentration and of the baricenter. 

5. Various velocity fields which can be used to derive a two-

phase flow system were noted. The significance of these fields was 

discussed and the relations that exist between them were derived and 

summarized on Table 2. Furthermore, expressions for the flux fields 

associated with these velocity fields were derived and discussed. 

6. The fundamental identity which relates the mean flux of the 

mixture property to the mean fluxes of the phases was derived. In 
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particular, the transport by diffusion (or by drift) was observed. 

In Chapter 4, the flow field of each phase was considered as a 

continuum, and the separated two-phase flow problem was formulated in 

terms of a) the local fundamental conservation equations applicable 

to the flow field of each phase, b) the constitutive equations describ­

ing the behavior of each constituent, and c) of the internal boundary 

conditions prescribing the interfacial balance. 

However, in view of the difficulty of seeking a solution of such 

a set of equations, the mass-weighed area-averaged general balance equa­

tions for each phase as well as for the mixture were derived. These 

balance equations were later used for the formulations based on the two-

fluid and on the diffusion models. In what follows we shall summarize 

the formulations based on the two-fluid and on the diffusion models. 

9.2 Two-Fluid Model Formulation 

9.2.1 General Formulation 

The mass-weighed area-averaged general balance equations for each 

phase are given by 

i : CJ-W) «e,*» <*»> -*• ^- u - * ) «e,*> <\>\*> <%> = - ( 4 * 2 0 a ) 

r*_ A a-*) «<t> » + a-*o «e ,» <**.>-
fcx. 

U-oO [ *<e,v> < ^ > <.H\> + «4;Kv> * « e > C - ^ C ^ ^ 1 d_k*r< 

AT. 
£=e,L lit 

A- U - w ) « P » Coy (.\>i*-+,) 



A u«^^<\> + jL x « e ^ < ^ x V <*,> « _ 1 _ ««<*v v>̂ r (4.20b) 

•e^c^cn..^] £Mi,-±_5; K, . [ M ^)W 

+ *̂ « J 3T " T ; "<4f-* c «» t v ^**^ 

The above two equations describe the field of each phase in terms 

of mass-weighed area-averaged variables and take into account the effects 

of the interactions £.t the internal boundaries between the phases and of 

the transport of quantities at the external boundaries. 

These two general balance equations were supplemented by the 

boundary conditions at internal surfaces, i.e., by the "jump" conditions. 

The general "jump" condition which can be used to derive mass, momentum 

and energy interactions between the two phases are given in Appendix B and 

expressed by 

a 

]£ fikf[ ekl lVhR;-^) *ki*?w:]~-V,-f (B.IO) 

—* == 

With the proper identifications for iji, 'J/, 0 and §, these general 

balance equations were used to derive: a) the continuity equations for 

the individual phases as well as for the interfacial mass balance, b) 

the momentum equations for the individual phases as well as for the 

interfacial momentum balance, c) the energy equations for the individual 

phases as well as for the interfacial energy balance, and d) the entropy 

equations for the individual phases as well as for the interfacial 

entropy balance. 
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In their general form, the six field equations, three for each 

phase, and the three interfacial "jump" conditions are: 

The equation of continuity of each phase: 

A. u-x) *<e(> -*• A - (l-x^ «p»<^x> = 

=. - u-<x) <<e,» <̂ ,x> ^^^T<- + V Hi 

= — <u 

z-
In these equations !„.. is defined by 

(5.6a) 

— * «efcv> + — <* « e ^ > < * « > = (5*6b) 

The interfacial mass balance: 

a 
H: = 0 (5.5) 

H^ s- i_ nkl- CKi (7^-^je) 4A «_ JL U W J dL(5.4) 
AT^ /* J*. fcT, '* d * AT. > K ( J* *Tt .f 

ti 

The interfacial source term F , must be specified by an appro-

priate constitutive equation for net vaporization, (or of net condensa­

tion). Functional form of this term depends on the structure of the 

interface as well as the temperature fields in the phases. 

The momentum equation of each phase: 
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L t l ^ l « e > < i f l ) + A . U-«> « e , » < îx> <*V> = (6.2a) 
* t a* 

=a _l_[u-*>(- <<?:» 1 + «S,v>\. i] * u-x) uc,^ |*_ 

J" a-*) F «etv> <̂ IK> <?,>- (_ « ? > ? + (i^^yiJ + Cauu^oj^i K 

— Go tf" L^o** 1) 

A- * « e , » < ^ > ^ X ^ <*e^<V a H> <"£4> -m (6.2b) 

B i f « ^ P ^ i + <i £*») .1 ] * at ê̂v> "£-

l.a.i 5** 
i CovLM0^ft) 

The interfacial momentum balance: 

^T ***; £*; + (PRI * - £ * ) • *W; = axe- *u ^ 

ifr,(6i..fiU(Ei.Fi\]r 

The total energy equation of each phase: 

(B.25) 



1 . 1 4 - « 1 « ( < , » ( < L I > + - £ £ ? ) * - 1 . U-^W<e)y><^>(<i1> + ^ i l L \ = (7.7a) 
dt v a. ' ** v a. I 

=s A, U-x) 4L^>>- A. Ct-*)<<« » + JL (<-<x}«f ,-iv>- <$tV + Ci-»0 £ .<$,>_ 

C o - U * A) I ^ * T f c _ 
J J x 

— y f [ A<* (***$)+ (i<- n̂-̂ i - *•»«)-M j * . -
*T« - —* ' " W *» 

^_ Co* CM*C.V» <) - -^- C ° * l e * 0 

| - * « e 4 » ( <i%> + -££2L) + J L . M * ^ » 4*„>(<i\>* <MV)= (7. 7b) 

_ * 

j «[«em»<***> ( < o + ^ ) * « f ^ » - « £*«!?>. <?,>]* 

C**Ce* a.) I «*Q« ^ _ 

* U*ti
 5 a 

•=- Cov C ^ ^ O - — Co^Cevx O 

The interfacial total energy balance: 

jJT * * ( * « • ^ W ( f >
K . + PKi5J-*r t«» f c : ) .wu- (B-37> 

= 9.Xr Vt-n l i + - L ! « ; ( t i . - i : i U r , ( E i L - F J u V L r ? ; 
H 1 L fcU, ^ u J V dUi. ^u, ' J 
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These equations listed above are the basic field equations and the 

interfacial "jump" conditions. The additional equations which were 

derived are the mechanical energy, the internal energy, the enthalpy 

equations and the entropy equation together with proper "jump" condi­

tions. We shall give here only the enthalpy and the entropy equations 

The enthalpy equation of each phase: 

-L [ U-oO « i>< t l >]^ . -L [ C<-«) « ^ < i , > ] = - i t M « y > + (7.71a) 

fct L r * 

c u M t o ] i h ^ . J L . y f j> l£ Lt<-?•«>,-
d* AT- £;, U 

FK(L C<tfJ >-<3fc) -v i . i l — - ^ C o ^ C e v t i O - O - - 0 C ^ C ^ - V V ^ 
•J olx bx. 

A. r « «P »u*>i + l_r* «ev»<^>] =-*- » «<kj»+ <7-7 

ot 

pu C<~£ > - V ) ' * * i l 4^ - ^ e ^ < ^ a.) - «. < U * ( ^ . T M 

lb) 

The in te r fac ia l enthalpy conditions: 

^ ** *" *f*u'*^~ ^A^r^O = (7.67) 

-vi.il


The entropy equation of each phase: 

1 H ^ ) ^ e , v > < ' i , > + ^ - U - * ) « e , » < V V * > < ^ W (8 .7a) 

[ u-oo «evv> <u\*> <s,> +• u - * ) «<^v> * e0»ievi^^"]i^LAl&_ 

- a « e ^ < s 1 > + i <*««,> <\^> <**> = (8.7b) 
5t o* 

e>* 

f * <!te^V> < V i A > < S t > + c* < t 0 ^ + C o V U ^ r a ) " ] ^ L ^ I i r -

^ ^— J > * « < * * ** 

The entropy "jump" cond i t ion 

X 

1 
* * » * • 

Equations listed above are quite general. For the purpose of 

practical applications these equations were reduced to the simplest form 

possible. At the same time, however, the terms which account for the 

essential physical processes were retained. As a first step of the 

simplifications, we restricted the developments to two-dimensional flow 

fields. With this approximation the general equations can be simplified 

to plane and annular flows geometries which are summarized below. 



9.2.2 Plane Flow Formulation 

For this particular flow geometry, the field and interfacial 

"jump" conditions are: 

The equation of continuity of each phase: 

i . ^ f c ^ w * i<ie/k<\^~-*ur4+( ^2 - t l -^e <5-8a> 

| j (.H-i\<*t4^|.itU-'v1i«tefcv><*«> = - * > ; \ i ^ ( ^ l t ] / > ( 5 , 8 b ) 

2 
If fcrb « 1.0, then (S^) can be neglected. 

OX ( IX 

The interfacial mass balance: 

m a * * * - * (5"5) 

The momentum equation of each phase: 

• i j ' 7 « e ( > ^ < ^ ^ > * ^L *X «f(V> < » I ^ • = - * . *\ «ViV>+ (6.31a) 
a t oX ^ A 

fc 

X •* O A a * 

The in ter fac ia l momentum balance: in normal direct ion 

Pu - t \ l = *ia ± £ -<T £ l (6.37a) 

in tangential direct ion: 



fc^i- ±iX , -|£ (6.37b) 
o< 

The total energy equation of each phase: 

i- i^^i^ti^tine^^l^f^V (7a9a) 

=. CH--^) ̂ e v » g x < " - > * |- tM-^) <fcP,V>.- [ m x ; ( L x L ^ ^ t ) « 
or u **• 

J . - Pfc; U-u * **»,.); **ul- -̂ C « K i * ^ a) - JL C O * U-I a.) 

The interfacial total energy balance: 

m,;[Uu-t\c) + (_£i_J^L)^ C ^ - ^ ) ^ ^ ^ V-;n-(7.2 

^S 1\ *C\K 
( ^ h ^ - ^^1;V>.U)=-^^ ^! 

0 ^ "**-

It can be seen that the plane flow is expressed in terms of six 

field equations (three for each phase), and four interfacial conditions, 

(one for mass, one for energy, and two for momentum transport). However, 

counting the number of variables we observe that the mixture is described 

in terms of nine main variables which are <yt « p » , « p „ » , «?•,»,<£:?„$> 

<vi£>, <Vo >, <i,> and <i2>> and eighteen boundary values of various 

variables which are p u , p2 . , P^, P2±, v U x , v ^ , v ^ i^, l ? 1, T U , 

T2i> Tle» clli> lie? mli> m2 i anc* °"* Therefore, additional seventeen 
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relations must be specififed for the complete description of the system 

based on the two-fluid model. 

In order to make the problem tractable it was assumed that the 

density variations over the cross sectional planes are negligible, i.e., 

«Pj>> ~ p , and that the vapor phase is at saturation temperature. 

With these assumptions the additional relations that are needed to com­

pletely describe the system reduces to fifteen and they are: 

The thermal constitutive equation of state for the liquid 

«P,?>U,*)- -«ety>(<^>* <<
p.V) (4*6) 

which relates the density of the liquid to the averaged enthalpy of the 

liquid and to the pressure. 

The thermal constitutive equation of state for the vapor: 

«exv>u,t) = «e t v>(*^*) <4-6> 

which relates the vapor density to the local saturation pressure. 

The caloric equation of state for the vapor: 

which specifies the vapor enthalpy in terms of the vapor pressure. 

The constitutive equation of net vaporization: 

m^ a.- mai A <viu { <iv> , M , <<Pt») (9.1) 

which specifies the net rate of vapor formulation per unit of interfacial 

area as function of the liquid enthalpy, concentration and pressure. 

Mechanical constitutive equation: 



Z^t* 4 «Z^<*>S (9.2) 

which relates the shear stress in terms of the liquid density and velocity, 

The energetic constitutive equation: 

W,e = Vl (<*»> ,<* , <;,>, «f>») (9-3) 

which specifies the heat transfer coefficient as a function of liquid 

phase main variables. 

Constitutive equation for surface tension: 

cr^ <r U U > ) (9*4) 

which specifies the surface tension as a function of the vapor enthalpy. 

Interfacial motion: 

V ; „ = ^ l (7.22) 

which relates the normal component of the interfacial velocity, v., to 

the volumetric concentration (1 - a) = T)/H, 

Interfacial Pressures:: 

« P , » ^ P v i _ j L «ei>>»?9M (6.30a) 
*- a 

«n.V> sPxi + i ^ e ^ C M - ^ ) 3 a (6.30b) 

which relate the interfacial pressure to the area-averaged pressures. 

Interfacial velocities: 

Velocity profile depends on the flow regime, i.e., laminar or 

turbulent regimes, experienced by an individual phase. Therefore, de­

pending on the flow regime interfacial value of the velocity can be 
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r e l a t e d to the averaged value and to the c o n c e n t r a t i o n , i . e . , 

* » * = l* lU I * , <*>xV) <9"5> 

and 

**U = »»!« t<* . <VXlx>) ( 9 - 6 ) 

I n t e r f a c i a l shear; 

E i the r Ti-: or T . must be a l so supplemented for the completeness 

of the formulat ion based on the two-f lu id model. This can be expressed 

as 

%l = JL £ ; *€>» V* (9.7) 

Finally, since the vapor is at the saturation condition, then 

<i»>*. i» * A J <9-8> 

and 

j[V ~ 0 (9.9) 

It concludes that the system becomes complete with the six field 

equations, four internal boundary conditions, and fifteen additional 

constitutive equations. 

9.2.3 Annular Flow 

For this flow geometry, the field and the interfacial "jump" con­

ditions are: 

The equation of continuity of each phase: 



— U-oO ^e » •*• — Cl-*(.i <*e.» <^-> = (5.11a) 
at * a*. 

- _ u-*> «ev*> <̂ >ix> ^ ***** v Hi + £* 

i_ ««ov> + i . *«t>><***> • * - * 4ce^v<^K>4^^ + r ^ (s.iib) 
a t ' < * * *** 

The interfacial mass balance: 

Pa+lVl»0 (5.5) 

The momentum equation of each phase: 

(6.40a) 

i t ^ * 6 K 

u-*) « « > ^ - j ' c<~°o <* e,» <u-,x> •+ ̂ * c * « # o | ^ ^ 

Ht \>u, * He uie* -v A^ **u- -±- * , * - A_ U^L^OA,.) 

\iu De ^ * 

—- t* « f , > < \)-^> + A. "X « C ^ » < ^ V " = - ^ 1 ^ Y « *<?> a,~ (6.40b) 
d t o * &*, 

!"*«*,* <nx>fc v ' C o K ^ i ) * ! «iM^_ +rxL V«.;*-±£. ^xi-^- ^ > ^ ^ ) 
L J - U &e d x 

The interfacial momentum balance: in normal direction 

ft -p„; _ _r _*_ - ^ 1 MTl<r+^J±. 
L DcNfo *** -1 P , t ^ i 

(6.43a) 

in tangential direction: 

t u -*fcu=s ^£l (6.43b) 
^x-



The energy equation of each phase: 

i - U~*) « € , » (<i,V-* ^~) -+ ^ L i - ^ ) < ^ 1 » ( ^ i > t < - ^ V ^ ^ = (7.25a) 

= .1 tt-«) H, + cA^) <<?> gK < ^ x > -
«t 

rd Cc,;v » £ ) _ [ _ « , ; * V , i v u + ^ l ; t ; , ] 4 d L _ 

r,tc^4u- ^ i x ^ n V 
i - Cow L**««^t 4) - ^ - CUo-CeA O 
at a« 

A. M «e>> ( <u>+ i ^ ) + 1 - * «e»»{4L»>« i^y" )<^>» (7.25b) 

»t 

[ at « P j > <^M^ ( <L>* i ^ ) * Cvi -U^H ] «* ^ Oe _ 

r^cv* -^)-[ ^ - ^ i ^ - ^ - u ^ . i *•£ -
—. C»*C*v«.c>ia) - . A_ Co* C e ^ i ) 
d-t £*_ 

The interfacial energy balance: 

A,; [ C h;~t*;) + ̂  (Urt-^)] - C^.;-^,.) - (7-26) 

CP» - K: ) *i« - CfclM^; |>4U- ̂ w l ; * x U ) a 

"~ I T — = , : - ^ ^ U m t, • _2_ S~ \>; 
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Similar to the plane flow case, consistency of the system can be 

accomplished by counting the variables and equations. It can be shown 

that the same kind of constitutive equations are needed for completeness. 

However, annular flow geometry does not allow the pressure variations 

over the cross secticnal planes, i.e., 

« f V » = F^ =. P* ; , K = 1,2 (6.39b) 

Hence, the number of variables reduces by two so does the number of 

additional equations. 

In view of the complexity of the problem, for practical applica­

tions it is desirable to reduce the system to the diffusion model. 

9.3 Diffusion Model Formulation 

9.3.1 General Formulation 

The general balance equation of the mixture is given by 

* 9 * ^ p \ > H - - ^ X > p * - (4-27) —- v^ r*. + —- v^ v*^ T ^ - —~_ «j> + ^ T M -
St dx o*-

re„ *.»,+,+ *„ x * c»c».H-n 4 k ^ ¥ 

AT. k J" ^ £ JUe 
J= 1 ̂ A. i_ Coo-O-'M 
^ K * J «u a* 

where <£ is the total mixture flux of a particular property ^, which com­

posed of two parts, molecular and diffusion (or drift) parts. It is 

defined by Equation (4.26). 



Equation (4.27) describes the mixture field as a whole and takes 

into account the effects of the interactions at the internal boundaries 

between the phases and of the transport of quantities at the external 

boundaries. 

This general balance equation was used to derive: a) the con­

tinuity equation of the mixture, b) the momentum equation of the mixture, 

c) the energy equations of the mixture, and d) the entropy equation of 

the mixture. In their general form they are: 

The equation of continuity of the mixture: 

i*a. + 1 - e., »•„. - - «„ WH, i i s i a , * f Pwt (5.14) 

We note that the kinematic field of a two-phase mixture is 

described in terms of two continuity equations. As discussed in Chapter 

5, the additional continuity equation can be given in form of the diffusion 

equation or in the form of the void propagation equation. 

The diffusional type of continuity equation was expressed in 

various ways. In terms of the drift velocity V„. it was shown that 

diffusion equation can be expressed by 

* « «et» + JL « *e.» ( . - - £ - « *?>» v ^ + (5'28a) 

AU *Tc 

Another a l t e r n a t i v e was der ived by express ing the d i f fus ion (or d r i f t ) 

f lux in terms of the d i f fus ion c o e f f i c i e n t . However, i t was shown t h a t 

t h i s method of r e p r e s e n t a t i o n was not useful in two-phase flow systems 



because the diffusion coefficient has not been available. 

The void propagation equation was obtained by making use of the 

kinematic wave velocity C , and in general it was given by 
K 

:5.34) ^ + CK * i = „< Cv-0 [ - i - b ' W ' * ' Sh*&>> (5. 
b\ ^* L ue,v> b i *f^v, bl 

where the velocity of kinematic waves C , is given by 
K 

ck= i, • ! UV^i-^v^T^ (5-35) 

It is evident that for the flow of the incompressible fluids this equa­

tion can be reduced greatly. 

The momentum equation of the mixture: 

* P \> i B I)1 - ^ irT p a (6.51) 

[ e*vi. -*I« * ^ ^ M I ] ^ * i s « i- ( v S ^ ^ . 

i- J I [ **Ke V^^^.^V^l^-J;^^-'^ 

The total energy equation of the mixture: 



i^C^ ^V^^U^^W-^k- (7.43) 

^ 'ft 

k«i i Ke 

-5- Co o- C MiwHi } - 1- C » » U - I T ] 

In addition to the total energy equation, auxiliary energy equa­

tions together with the entropy equations were derived. In what follows 

we shall only list the enthalpy and the entropy equations. These are 

given respectively by: 



^c.U+£t^.L--^^*±u.*.w (7. 

^ « ^ < i * > V l M ] - PM Vw*-[U-*) HHvV^-v *«6fV>v*-*]* 

C0^ ceA-t r) - [ i.\-«) C K ^ . ^ ^ U * - L n . ^ 4 ] \ ± - l A S + 

j__ ( cx.E)di-| f f r*^^*[^liA)*vVMSr 
A T J d x A\«.^- L *- L ' J c jx 

* < > *ke 

A . . C-t>v UwtT) + A. f ( , l - ^ C**t*» ,\> 5 * * C * * Q V * ^ 
bx * * L J 

• \ a ^ 

A. e S , U (?„ UMlt S*, = 3L*1± * €^ **» - (8.16) 

— [ 0-**<*e,* <*i> ^w*«+ <*«e><*-*> V^JJ^^v^&v* ^ K > 

X ( - * 

_L f ttKTK 4A -1 V \ (w^^evf^^jiA-iUHe^^) 
" I; K=1 *** 
Furthermore, it was shown that when the effect of diffusion and 

of motion are neglected the energy equation reduces to that derived by 



9.3.2 Plane Flow Formulation 

For plane flows geometry, the four field equations reduce to 

The equation of continuity of the mixture: 

* s Sv*.*-*—*• (5.16) 

The equation of continuity of the vapor phase can be expressed as the 

diffusional type equation, that is 

JL « «o » * X * <H * iM = - *. oi «. $> * M A* +• Pw (5.2 9) 

or as the void propagation equation: 

»«t f »«.„..-„» f 1 h»«.»__l »»»«>] (5.34) 

e« n w Ti, 
f l ; _ 

The momentum equation of the mixture: 

-̂ P u- ** P v* _ ^ ^ 1. r ^ «e,*> <-e»>* w- -| (6.62) 

M*~ T H ^ ^ I T ? ) * * ] -
— ^DV-^ w\o*w T] 

U *x 

The total energy equation of the mixture: 



( 7 - 6 2 ) 

JL « , tX ,v § > - f x I , ••« I T . • % ) - ^ -

-LV <W tUv+ ?i) - 4u A l - — <—* Lmav-VT^-'i, LoO- 1^0 

I t can be seer tha t the plane flow is expressed in terms of four 

f i e l d equat ions involving e ighteen v a r i a b l e s which are (^> « p - , » , « P 2 » > 

Ptf <<Pf>>' < < P 2 >=5 V ^ f * . ^ ^ V v m x - v 2jx ' v i n . r2i> l i e ' T l e ' CT 

and j x . Therefore , a d d i t i o n a l four teen r e l a t i o n s must be supplemented 

for the complete description of the system. 

In what follows we shall assume that the density variations over 

the cross sectional planes arc negligible , i.e., «p. » ~ p , and that 
iv rC 

the vapor phase is at saturation temperature. With these assumptions 

the additional relations that are necessary to completely describe the 

system are: 

The thermal constitutive equation of state for the liquid: 

which relates the. density of the liquid to the averaged enthalpy of the 

liquid and to the pressure. 

Thermal constitutive equation of state for the vapor: 
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* e » * U i t ) « « e o » ( « K?>) (4.6) 

which relates the vapor density to the local saturation nressure, 

The thermal constitutive equation of state for the mixture: 

e^C*,i) = U-")«€,» >* «{j> (3.55) 

which relates the mixture density p , to the volumetric concentration 
J Km' 

and to the two densities « p » and « p ? » . 

The caloric constitutive equation of state for the vapor: 

*-*U,il« i^«?M (4.7) 

which specifies the v-'; or enthalpy in terms of the vapor pressure. 

The caloric constitutive equation of state for the mixture: 

U u . i U u-*)±I£<t»>-H*^- <^> <Table 3-D 
v** 

which expresses the enthalpy of the mixture in terms of concentration 

and enthalpies of both phases. 

The c o n s t i t u t i v e equat ion for the mean p r e s s u r e : 

P ^ U . ^ r U ^ X t P ^ v ^ ^ ^ (6.54) 

which expresses the mean pressure in terms of concentration and of 

pressures of both phases. 

The equation for the pressure difference: 

«f>,»-«^,= H*t£ i i i - i. e„« a . - «• — ( 9 a o ) 

which is obtained by combining Equations (9.28) and (9.19a). 

The kinematic constitutive equation: 
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Vl̂ j, S= V x̂ V C U,^ , Ai , Bv^ (9.11) 

which specifies the vapor drift velocity in terms of the baricentric 

velocity v , concentration and pressure. 
mx 

The constitutive equation of net vaporization: 

P,; = <V- ( <t> . * . P - ) (9.12) 

which specifies the net rate of vapor mass formation per unit volume as 

function of the liquid enthalpy, concentration and pressure. 

The mechanical constitutive equation: 

^<™ - l« i- ^ ^~*. (9.13) 

which expresses the shear s t r e s s in terms of the loca l mixture dens i ty 

and b a r i c e n t r i c v e l o c i t y . 

The e n e r g e t i c c o n s t i t u t i v e equat ion: 

Defining by h, the heat t r a n s f e r c o e f f i c i e n t , i t follows t h a t , in 

genera l 

h = Vi I v ^ , *. , <in>tvO (9 .14) 

which specifies the heat transfer coefficient as a function of bari­

centric velocity, concentration, liquid enthalpy and pressure. 

The constitutive equation for the surface tension: 

r - cr t <lx^) (9.15) 

which specifies the surface tension as a function of the vapor enthalpy. 

The interfacial motion: 

VT- - ^ (7.22) 
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which relates the normal component of the interfacial velocity V. , to the 

volumetric concentration, (1 - «) = *7/H. 

The velocity relation for j • 

L = VrtA" •*" * T ~ ^ H * (Table 3.2) 
**» 

The system is therefore, complete and consists of four field equa­

tions, and fourteen additional constitutive equations involving eighteen 

variables. 

9.3.3 Annular Flow 

For this flow geometry, the four field equations are: 

The equation of continuity of the mixture: 

1 ^ V *- U * W . « - U » . « ~ ^ >^- (5.18) 

The equation of continuity of the vapor phase: 

JL t ^ ^ i . i . ( « < ^ » i . U - i - t ^ i ^ \ > V (5-28b) 

which can be a l s o expressed as the void propagat ion equat ion: 

a t d* U L ^?(V> a t M k » &* ] 

9*. p . * f.t M . ^ 4M ft* 
U « N ^ _ 

The momentum equat ion of the mixture: 
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(6.65) 

^ 4K- K ^ * TT- <^»^» V - <^^r>] ^ i^ \>\ 

*^ ( r , ^_ * Afc ( Mi\] <r A. r ^ s u ^ U 

Tvt \>vA + i- m-p \ clj^ _ ^ *%,_- i L.wt-.̂ D 
0c d x be. ** 

The total energy equation of the mixture: 

A. « t u ^ U - « - . T ^ Li«- i£a\ • *-*~ - (?-64> 

ABfr_h_ - 1 1 (!fc£)l «"*u • ^ . i £ l ; l _ 
\>« l L bê Ti SM.- v i '1 i>, .1 

i. C ^ C ^ L \ A A ) - ^ £* o- t «.* v ) 
at ; d-* 

As for the case of plane flow, it can be shown that the same kind 

of constitutive equations are needed for completing the total system of 

equat ions. 
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PART II 

STABILITY ANALYSIS 



CHAPTER X 

INTRODUCTION 

10.1 Significance of the Problem 

The flow of liquid films is a separated two-phase flow pattern 

of great interest to various technologies because many engineering 

operations and systems are greatly affected by the behavior of such films. 

In the aerospace technology, for example, the performance of a rocket 

engine cooled by a liquid film, depends on the protective effectiveness 

of the film. In the chemical process, nuclear reactor and power 

generating industries the performance of distillation and absorption 

plants; of condensers, boilers and evaporators, of desalination plants; 

of nuclear reactors, etc., are greatly affected by the film because the 

process of mass and heat transfer which occur in these systems, are 

intimately connected to fluid motion. 

One of the most important problems in this area is concerned with 

the stability and the destruction of liquid films flowing over heated 

surfaces. The appearance of large dry patches in liquid films flowing 

over surfaces heated cr unheated have been recently observed and reported 

by several researchers, references [64-66j. The appearance and behavior 

of these vapor patches in two-phase systems with heat addition is im­

portant for several reasons. First, the destruction of a liquid film 

which covers a heated surface results in abrupt decrease of heat transfer 

coefficient and attendant overheating of the surface which may cause 

the burn-out of the heated duct. In addition to this possibility, the 



destruction of the liquid marks a change in the flow regime from the 

annular to the drop flow regime. Since it is known that the steady 

state parameters (the pressure drop, the heat transfer coefficient, etc.) 

as well as the transient response of a system depend on the flow regime, 

it is of interest to obtain criteria which could be used to predict 

such a change of flow pattern. 

10.2 Previous Work 

Two kinds of stabilities are involved in the liquid film flow. 

One is related to the stability of flow within the liquid film, known 

as flow stability whereas the other is related to the disturbances on 

the interface of the liquid film, known as interface stability. 

Flow stability is similar to that involved in pipe or channel 

flows, Tollmien-Schlichting instability. It occurs when a fluid is 

undergoing transition from laminar to turbulent flow as a result of 

amplification by visccsity of infinitesimal disturbances in the fluid. 

These disturbances originate either inside or outside the film as has 

been demonstrated by changing the turbulence level of the flow external 

to the boundary layer or film. This type of instability in boundary 

layers of a homogenous fluid has been extensively studied by Lin [67], 

see also reference [54], The criterion for the onset of this stability 

is that the Reynolds number exceed a certain value called the minimum 

critical Reynolds number, 

However, the interface stability is peculiar to film flow and can 

be subdivided into inception of inter facial disturbances and inception 

of liquid entrainment Leading to the breakdown of the liquid film. There 

is no doubt that these instabilities are interrelated and have important 



effects on the flow pattern, pressure drop and heat transfer of the flow 

system. The interfacial instability which governs the liquid film flow 

is our basic concern, and we shall now review the existing work which 

has been carried out in the past. 

Falling film flow in which the velocity of the gas phase is 

negligible, can be considered as a special case of two-phase flow. In 

fact, many important contributions have resulted from the study of such 

films. Theoretical work on this subject was primarily concerned with 

the inception of the interfacial waves. Although there has been many 

publications, mainly two approaches have been used to analyze the be­

havior of such liquid film: 

1. Periodic Solutions of Steady State 

2. Linear Stability Analyses. 

We shall review them briefly below. 

10.2.1 Periodic Solutions of Steady State 

The former theory was developed first by Kapitza [68], and known 

as the Kapitza's theory of film flow description. Kapitza considered 

equation of motion and boundary conditions for thin films and he took 

into account surface tension effects. The author developed as a first 

approximation, a linearized treatment yielding the differential equation, 

1± i!± * (Cr-<tf>) (Cr-JL<V>)5>±-
 (10a) 

e, A*1 <° - u 
J£ (C-%<v>)+. + 3- 3 ^ v > - o 

where C is the velocity of the wave propagation, <v> is the average 



velocity, and 0 is the free surface deformation function defined by 

* ? = ^ ( 4 - f < H (L0'2) 

In order for an undamped periodic solution to exist it is necessary that 

the constant term in Equation (10.1) and the coefficient of 0 be equal 

to zero, so that, to the first, approximation 

-h-9 

C r = % <V"> (10.4) 

< V > ^ < 3 (io.3) 
-h-9 

Using Equations (10.3 and 10 .4 ) , Equation (10.1) becomes 

.£! Al± + 4.2<*>d± = 0 (10.5) 
« a * J J * 

from which the function 0 defining the surface profile is 

+ = * s>u [ <\r> (A-, a e / ^ 7 ) (*- er-fcy] (io.6) 

where a is the dimensionless wave amplitude. 

Kapitza has also attempted to predict the equilibrium wave 

amplitude and the critical Reynolds number by minimizing the viscous 

energy dissipation, and further has provided some experimental data for 

qualitative verification of his theory. It is fair to say that his 

theory still lacks consistency and rigor, although many attempts have 

been made by others, references [56, 69, 70 among others], to rectify 

such objections. First of all, the third order equation, Equation (10.1), 

is not consistent because some of the terms are left out from the original 

derivation, and because the variation of the film thickness J\ with the 
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longitudional coordinate x, was neglected, in most of the derivations. 

Second of all, what is even more disconcerting is the fact that the 

equilibrium wave amplitude and the critical Reynolds number are not 

the deductive consequences of the third order equation, Equation (10.1). 

Rather, they were deduced from a physical argument. 

Recently, Lee [71] presented the derivation of Kapitza's third 

order equation by applying the boundary layer approximation to the 

Navier-Stokes equations, kinematic surface condition, and tangential and 

normal shear stress continuity conditions. Finally, the equilibrium 

wave amplitude was deduced entirely from the dynamic equations by in­

vestigating the non-linear effect on the isolated class of basic wave 

motions pertaining to the linear system. The wave speed and amplitude 

so obtained as the first-order approximation are shown to provide better 

comparison with the experimental data than those of references [56, 68, 

69 and 70 J . 

10.2.2 Linear Stability Analyses 

The analyses which belong to this group, i.e., to the linearized 

stability analysis, attempted to investigate the stability of Nusselt's 

solution in terms of the linearized theory of small perturbations, 

references [72, 73 and 74]. The general method of dealing with the 

problem is to set up the main equations of flow, i.e., the Navier-Stokes 

equations, on which small perturbations are imposed, leading to an equa­

tion of the Orr-Sommerfeld type, which is then solved by various approxi­

mate means to determine the conditions for stability to exist. 

In his early paper, Yih [72] carried out numerical calculations 

for stability in the case of flow on a vertical wall with no surface 
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tension effects, frorr which it appears that there exist a critical 

Reynolds number, Re=1.5. 

Benjamin [73] has given a detailed treatment of the onset of two-

dimensional instability in film flow, taking capillary effects into 

account. It was deduced that surface tension has a stabilizing effect, 

especially at short wavelengths, but instability can not be converted 

to stability merely by increasing the surface tension. It was found 

that, for a vertical slope the critical Reynolds number found to be 

zero. Obviously this result contradicts Yih's result. 

In order to resolve the controversy, recently, Yih [74] has given 

a detailed treatment of the stability of film flow on an inclined plane. 

Three cases are considered in detail: small wave number, i.e., large 

wave-length, small Reynolds numbers, and large wave numbers. In the 

first case the results are in agreement with the results of Benjamin, 

but large wave numbers and zero surface tension, Benjamin's conclusions 

are shown to be invalid. 

Recently Bankoff [75] extended the Yih-Benjamin analysis of the 

stability to small surface perturbations of a thin liquid film falling 

down an inclined plane to take into account the effects of evaporation 

or condensation. In his formulation the inter facial kinematic condition 

was not used correctly. Furthermore, it was found there that evaporation 

destabilizes the film, whereas condensation stabilizes. This conclusion, 

however, as it will be demonstrated in Chapter 12, is not correct. 

Phase change at the ir.terface, either in the form of condensation or in 

the form of evaporation, always destabilizes the liquid film. 

It is important to point out here that there is a kind of reciprocal 



relation between the conventional linearized stability analysis and 

Kapitza's method of analysis. In the former, a sinusoidal traveling 

wave is imposed along the mean flow direction and then the eigen value 

problem across the film is formulated to solve for the dispersion rela­

tion, i.e., the imaginary wave speed expressed in terms of all other 

parameters involved in the formulation. On the other hand, in the 

latter, i.e., in the Kapitza's method, the boundary condition for the 

2 
laminar film flow are fulfilled approximately by the factor (y-y /2"n) 

and the periodicity conditions along the flow direction were sought. 

In addition to the above analyses, the stability of flow in open 

channels has been investigated theoretically from a more macroscopic 

or hydraulic point of view by several authors. Most of these stability 

criteria are expressed in the form of a numerical value for the critical 

Froude number. Most of these treatments refer to flow in channels of 

very small slope, and under these circumstances, surface instability 

usually comes into existence in the turbulent regime. Hence, the re­

sults, which are based mainly on the Chezy or Manning coefficient, for 

turbulent flow, are not directly applicable in the case of thin film 

flow on steep surfaces, where the instability of laminar flow is usually 

in question. 

10.2.3 Experimental Investigations 

In spite of its importance to various technologies, unfortunately, 

published literature on the subject of the inception of interfacial dis­

turbance for a film flow adjoining to a gas or vapor flow is scarce. 

This is probably due to the fact that, in most cases of such flows, tine 

interface is easily disturbed by the existence of the relative velocity. 



Thus, it may be very difficult to define the point of instability. 

Some of the experimental results will be discussed here. 

Among the experimental studies, Gazley [76] indicates that the 

formation of the interfacial disturbances for a given pair of fluids 

depends on the relative velocity of the two fluid streams, while the 

depth of the liquid film has only slight effect. A relative velocity 

of the order of 10-15 ft/min. was required for the formation of the in­

terfacial disturbances. 

The extensive experimental observations made by Dukler [77] in 

a vertical tube with downward annular flow led him to conclude that 

the liquid Reynolds number was not a significant parameter that deter­

mines wave motion or wave height, although he noted an increase in 

amplitude of the interface waves with an increase in the liquid velocity. 

Kinney et al. [78] observed visually the annular liquid flow 

with the concurrent turbulent air flow in horizontal transparent tubes. 

The surface of the liquid film was observed to be relatively smooth at 

low liquid-flow rates.. However, the liquid film becomes wavy when a 

critical flow rate was exceeded. Furthermore, for more viscous liquid 

films this critical flow rate was higher. Now, it can be inferred that 

in contradiction to Dukler's result the liquid Reynolds number is 

indeed an important parameter. 

In a similar development Knuth [79] observed that small disturb­

ances with wave lengths ten times the film thickness were present for 

all flow rates investigated. These observations are certainly contra­

dicts the observations of reference [78] where a critical liquid flow 

rate was ascertained. Furthermore, according to Knuth's observations 



for liquid flow rates larger than some critical value a second type of 

surface wave, one with a long wave length, appeared. Knuth, however, 

agreed with Kinney that the instability depended primarily on the liquid 

Reynolds number. We recall that this disagrees with Dukler's conclusion. 

Furthermore, Kinney and Knuth are in agreement that the gas Reynolds 

number has a negligible effect on interfacial stability. 

Although existing work seemingly contains contradictions and 

disagreements, it does indicate that flow characteristics change and 

that objectionable phenomena can occur in two-phase flows when the gas-

liquid interface becomes wavy. 

10.2.4 Conclusions 

The survey presented here is by no means complete. However, it 

is intended to serve as an indication of the scope of the research 

accomplished thus far, and to draw attention to the deficiency of our 

knowledge on the subject. 

As it was observed the majority of research efforts thus far have 

been experimental. On the other hand, only qualitative trends have 

been indicated by the analytical approach to the falling film flow 

where the effects of the adjoining phase is neglected. Particularly, 

the effects of heat and mass transfer at the film boundaries were not 

considered at all. Thus, most investigations which were concerned with 

dynamic aspects of the interface, were formulated for adiabatic flows 

and neglected the effects of mass transfer. Furthermore, only the in­

cipient point for the appearance for the waves are concerned. They 

did not consider the instability of the interfacial waves, i.e., when 

they will be effective to change the flow regime. 
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10.3 Effect of Heat and Mass Transfer 

It is important here to stress the effects of heat and mass 

transfer on the stability of the liquid films. 

The effects of the vapor shear and pressure forces on the entrain-

ment of drops and on the subsequent destruction of the liquid film are 

present in flows with heat addition as well as in adiabatic flows. How­

ever, in nonisothermal systems additional mechanisms of liquid film 

destruction must be considered. It becomes of interest, therefore, to 

investigate the mechanism of film destruction by thermal effects. 

Referring to 2iuber and Staub [80] , where the thermal effects were 

discussed in a concise way and the numerical evaluation of the vapor 

thrust on the Kelvin-Helmholtz instability were analyzed by expanding 

the method of Lamb [57], there are three mechanisms arising from thermal 

effects that can lead to the destruction of a liquid film flowing over 

a heated surface: 

First, the temperature of the liquid-vapor interface may not be 

uniform, giving rise to a non-uniform surface tension and consequently, 

to a shear stress at the interface. This thermo-capillary effect, ex­

pressed by Equation (6.3 7b), and shown on Figure 3.a, induces a flow from 

the region of high temperature to the region of low temperature, i.e., 

from the region of low surface tension to the region of high surface ten­

sion. It can be seen that as the film becomes thinner the continuous 

flow from the furrows to the peaks will lead to the destruction of the 

film, 

Second, as the vaporization takes place at the interface there 

is a thrust exerted by the vapor in the direction perpendicular, i.e., 

toward the heating surface. This vapor thrust mechanism, expressed by 
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b) Vapor-Thrust Effect 
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Equation (6.37a), and shown on Figure 3.b can lead to the destruction of 

the film because the vaporization and, consequently, the destabilizing 

effect of the vapor thrust increases as the liquid film becomes thinner. 

Finally, bubble nucleation may lead to the destruction of the film 

as shown on Figure 3.c. Whether or not the bubble nucleation will lead 

to the destruction of the film will depend on the relative dimensions of 

the bubble and of the film as well as on the heat flux density and the 

liquid flow. 

We note that for a liquid film in the turbulent flow regime the 

variations of the temperature of the liquid-vapor interface may become 

too small and short lived to generate a dry patch. It can be added here 

that the process of vaporization at the interface together with the flow 

of a turbulent vapor at saturation temperature will also tend to minimize 

the temperature variations at the interface. Consequently, under these 

conditions whether or not the thermo-capillary effect is important re­

mains to be determined from experiments because any formulations of this 

problem must be based on assumptions that need verification. 

In contrast to the thermo-capillary force, the vapor thrust due 

to vaporization does not depend on temperature variations along the inter­

face. Consequently, the destabilizing effect of the vapor thrust can be 

present when either the liquid or the vapor or both are in turbulent flow. 

It is important to emphasize here that, whereas the vaporization at the 

interface has a destabilizing effect on a liquid film, it has a stabilizing 

effect on a vapor film, see Equation (6.37) where it changes its sign from 

the liquid film to vapor film. This difference is a consequence of the 

change in the direction of the vapor thrust: toward the heating surface 



in liquid films and away from it in vapor films. It is expected, there­

fore, in the Rayleigh-Taylor instability vapor thrust will have a 

stabilizing effect whereas in Kelvin-HeImholtz instability vapor thrust 

will have a destabilizing effect. 

It can be concluded from the preceding discussion that any one of 

the three mechanism which arise from thermal effects may lead to the 

formation of dry patches in liquid films flowing over a heated surface. 

10.4 Purpose of Part II 

It appears from the foregoing that for liquid film flows, in 

addition to dynamic effects there are thermal effects which can lead to 

the destruction of liquid films. In Part I a formulation which takes into 

account these effects as well as dynamic effects were developed with 

respect to the two-fluid and the diffusion models. 

Based on the two-fluid model formulation it is the purpose of 

Part II of thesis: 

1. To develop a stability theory so that the conditions under 

which disturbances will grow can be calculated by determining the neutral 

stability condition, 

2. To calculate the most unstable growth rate factor so that a 

criterion can be derived for the point where interfacial waves lead to 

unfavorable phenomena such as liquid entrainment leading to the break-up 

and flow plugging leading to change of flow regime, 

3. To apply the criterion to analyze two specific cases such as 

the stability of the free film flow where the second phase velocity is 

neglected and the stability of two inviscid fluids. 



CHAPTER XI 

GENERALIZED STABILITY THEORY 

11.1 Introduction 

The equations of hydrodynamics, in spite of their complexity, 

allow some simple patterns of flow as stationary solutions. These 

patterns of flow can, however, be realized only for certain ranges of the 

parameters characterizing them. Outside these ranges, they can not be 

realized. The reason for this lies in their inherent instability, i.e., 

in their instability to sustain themselves against small perturbations 

to which any physical system is subject. The question then may be 

asked, for a given flow: is it stable relative to infinitesimaly small 

disturbances? This is the problem of hydrodynamic stability. 

The mathematical treatment of such a problem generally proceeds 

along the following lines. 

We start from an initial flow which represents a stationary state 

of the system. By supposing that the various physical variables describ­

ing the flow suffer infinitesimal increments, we first obtain the equa-

tionsgoverning these increments. To solve the problem of hydrodynamic 

stability, one must, therefore, obtain the solution of a system of non­

linear partial differential equations, in general a very difficult task. 

In order to render the problem manageable, the mathematical formulation 

is cast in a different way. We assume that, for small disturbances, 

the equations may be linearized; that is, we shall neglect terms quadratic 

or higher in the disturbances and their derivatives. The theory derived 



on the basis of such linearized equations is called the linear stability 

theory in contrast to non-linear theories which attempt to allow for 

finite amplitudes of the perturbations. 

It is the purpose of this chapter to use the linearized perturba­

tion theory on the two-fluid model balance equations describing a 

separated two-phase flow system. An infinitesimal disturbance will be 

applied to the balance equatons, and the conditions under which these 

disturbances will grow will be calculated by determining the neutral 

stability condition. Furthermore, a criterion for determining the break­

up length of a liquid film into drops will be suggested in terms of most 

rapidly growing waves. 

11.2 Generalized Stability Criterion 

11.2.1 Two-Fluid Model Conservation Equations 

Consider the generalized separated two-phase flow system shown 

in Figure 2. The motion is assumed to be two-dimensional flow of in­

compressible fluids. The x-axis is taken in the main flow direction. 

For the two-fluid model formulation, the equations governing the 

flow system were derived in the preceding chapters. For compressible 

fluids, the field equations appropriate for a two-phase flow in a con­

stant area duct are given as follows: 

The equation of continuity of each phase: 

&H-OL) * O-oQ <̂ <*> ̂  fc (11.1a) 

^«. ^ * <^*> _ J[U_ (n. ib) 

The interfacial mass balance: 
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hi. + H,; =0 (11.2) 

The equation of motion of each phase: 

e,(Ai^ w^>i^U_i£B>^F^_L_ icon—o <u-3a) 

f f i i ! ^ < ^ ^ \ « - 3 ^ < t F x - - J - A. C*tm.«4 dl.3b) 

where F, and F_ stand for the generalized forces including the effect of 

one phase on the other. 

In view of Equations (11.3) and (6.32) for the plane flow con­

figuration without external mass transfer, m = 0, F and F can be 

given by: 

P* = e,H^ *iii*J + sa^I± l*%iir <*„>)+JSiL . t » (ii.4a) 
1 ^ * ** <-* HO--*) H U - " ] 

and 

xe. (11.4b) 

whereas for the annular flow configuration in view of Equations (11.3) 

and (6.41) F-i and F? can be given by: 

4-«. T) e *-* t)e. 

and 

F X = eaq + HLV t ¥•*»*- <v-„>) + J£*L *** (n.5b) 

Finally, the covariance terms are defined by 

Covtv»ow,4)= <<-*o €»€•«-C^M-V-,.)- u--oe,(<\to*,*>-<^><M ( 11-6a) 
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and 

Cov-Cvnomfl.)= ocfx CU»C^.; V ^ -=. <* ̂ ( ^ i * ^**>-<*«>• <^*>) (11.6b) 

For the plane flow, the momentum "jump" conditions in the normal 

and the tangential directions are, respectively given by: 

FU-P^= *4 -Al -<r £ l (n.7a) 

fcri-ta* Â T di.7b) 

whereas for the annular flow, the momentum "jump" conditions can be 

given by: 

> .-> . "br* 

R;-Pai = *;S A ! -trf-l_-il *«<=:} (11.8a) 

"%»* (11.8b) 

It will be assumed that the vapor phase is at the saturation con­

dition so that the temperature variation along the interface can be 

neglected which implies, in turn, the surface tension variation along 

the interface can be neglected. Under this condition Equations (11.9) 

and (11.7) reduce to 

**«, = ^al (11.9) 

The entha lpy equat ion of each phase: 

(4 -PO ei
 D t < i ' > + Hi <JL|> ^ U-rt) M < P > + U - * ) i - (11.10a) 

P I Di * IR 



ot p __± + l 4fc <ta>^D<. i- + o<. A 4 T O -

We n o t e t h a t f o r t he p l a n e f low 

Hi = _L • l is -
AT„ " ' A ^ 

and 

whereas for the annular flow 

JL. = 4-^ * l e A 
A T ^ Da AT*. ^e-

and 

The interfacial enthalpy "jump" condition 

X 

y "Vi V> + U -̂ ui - PHV tfm - VO •**; = rV. • *£. 

(11.10b) 

(11.11a) 

«*v»-vv. = - 1 e4u-«o u ^ j «*v»-*Vv= I e„*»^ (a.nb) 

(11.12a) 

«F\^-V\;.= « , P ^ - P f c l _ 0 (11.12b) 

(11.13) 

The set of equations listed above are the basic field and the 

interfacial coupling equations which describes the complete separated 

flow formulation of incompressible fluids based on the two-fluid model. 

11.2.2 Interfacial Mass Transfer 

By examining the continuity equations it can be seen that in 

the case of evaporation the mass flux T = - E, ., acts as a sink for 
2i li* 

the liquid film, indeed, as it was noted in Chapter 5, it plays the 

same role as the sink (or source) terms in the continuity equations 
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of chemically reacting mixtures. Whereas in chemically reacting mixtures, 

the sinks (or sources) are specified by appropriate constitutive equations 

of chemical kinetics, in two-phase flow they are specified by the appro­

priate constitutive equations of phase change, i.e., of evaporation or 

condensation, references [ 4 , 42, 51 }. Indeed, it was shown that the 

constitutive equation of evaporation a) depends on the flow regime and 

b) determines the thermodynamic non-equilibrium of the two-phase mixture. 

For example in the present problem, the expression for F _, will 
K.i 

depend on the particular application. Thus, it will have a different 

form depending on whether the evaporation from the liquid film is effected 

by exposure to hot gases (as in rocket engines), or by decreasing the 

system pressure (as in flash evaporators), or by heat transfer through 

the liquid film (as in boilers, evaporators or nuclear reactors). Let 

us consider briefly this last application. 

Under certain conditions, the interfacial mass transfer V„.. can 
Ki 

be calculated directly from the energy balance. In order to demonstrate 

the implications of si_ch an approach, it is instructive to consider 

the addition of the enthalpy equations expressed as 

U-«) e, **<*> » i g . * » < l » > + r t i t<i»>- < i i ^ » (u.14) 
t>t fct 

11 ^T P . it? -Tr-\ *. c-'i: . ^ V ; 

K»» 4 

f_ ( « P > - P , ; ) K±± + ( fcP,»_P»v\ 5 i l l - i - C» C«^T1 
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where Equation (11.13) and Equation (11.2) were used for the i n t e r f a c i a l 

energy balance and for the i n t e r f a c i a l mass ba l ance . 

The s ign i f i cance of the var ious terms in Equation (11.14) as 

fo l lows: The f i r s t two terms on the le f t -hand s ide account for the 

thermodynamic non-equi l ib r ium of the l i q u i d and of the vapor , r e s p e c t i v e l y . 

The t h i r d term is the energy requi red to genera te a mass, r of vapor 
2i 

per unit volume. The first term on the right-hand side of Equation 

(11.16) represents the power input per unit volume. The other terms, 

respectively, account for the effects of system pressure variations on 

the energy content, viscous dissipation, interfacial energy transfer, 

pressure variations over the cross-sectional planes and for the enthalpy 

variation over the cross sectional planes. 

In practice, the right-hand side of Equation (11.14) is known from 

the kinematic and the dynamic fields and as well as from the constitutive 

equations whereas the three terms on the left-hand side are not. In 

other words, for a given energy input to the mixture, i.e., for a given 

value of the right-hand side, we do not know how much of that energy is 

used to superheat the liquid, to superheat the vapor or to generate an 

unknown amount, r«. °*' vaPor« 

For a mixture where the entire energy transferred to the mixture 

is used, immediately, i.e., without any time delay to vaporize the liquid, 

the convective thermal energy transport can be neglected. The rate of 

vapor formation T9•, therefore, can be computed directly from Equation 

(11.14), thus 

P. 5x* 1'C (11.15) 
lit, = « 
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where the effects of the pressure variations and of the surface tension 

were neglected in conparison with thermal effects. 

We note that neglecting convection within the liquid film and 

thus assuming heat transfer by conduction only, it is possible to write 

the heat balance within the liquid film as follows: 

where ki is the conduction coefficient of the liquid, and T, and T 
J- ie s 

are, respectively, temperature of the solid boundary and of the inter­

facial surface, 

Combining Equation (11.16) with Equation (11.15) we obtain 

l\;= J[l̂ _ '̂e = J*_
 W> ̂ T (11.17) 

AT<, -Ux>-Ui> K T t *l(«<i,>-<M>) 

Furthermore, since the vapor enthalpy is determined at the local 

saturation condition, and since 4±-£> ^ i-, , then the enthalpy difference 

can be taken as the heat of vaporization, Ai,«, and Equation (11.17) 

bee ome s 

*%i = — -= - ^ - r- (11.18) 
^Tt ^i-i*. M v n ^j - i^ 

which can be used as a constitutive equation for the rate of interfacial 

vaporization per unit mixture volumea 

11.2.3 Disturbed Equations 

In order to determine under what conditions waves appearing on the 

interface lead to instability the behavior of a very small disturbance 

in a uniform flow will be examined. An equation for such a disturbance 

may be obtained by substituting the following into the basic equations 
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derived in the preceding section: 

<*= o^-Voi.1 (11.19a) 

< V > = <Vfc>* AT^ K = 1,2 (11.19b) 

Ht;= ffcl + ^ K - 1,2 (11.19c) 

-< P*> = < *V> * Pjt K = 1,2 (11.19d) 

F * - F H * ^ K = 1,2 (11.19e) 

CoV(.wo**K) =• Co^C*vto*w^) -t Gov- (.**•** *^ (11.19f) 
,K = 1,2 

The barred quantities are time averages, and the primed quantities are 

the disturbances on the uniform flow. The disturbances will be assumed 

to be small enough that second order terms in the primed quantities may 

be neglected. If it is considered that the mean flow itself satisfies 

the basic field and the constitutive equations, after substituting Equa­

tions (11.19a-f) in Equations (11.1 and 2), for the disturbed continuity 

equations we obtain 

- ^ - Ob 1̂ 1 * U-*)i^l -iB V/- ̂ ^ *»-! P/ (11.20a) 
h-i ^* ^x AK J K (?, 

**! + <vw> ±«L + s i ^ ^ iH ui v ii*L> ^ = i Pj (n.20b) 
M >* ±* <AX J x e,. 

whereas for the equations of motions we obtain 

<\ ( M U <X> M + i<^> V;U _ ̂ K v ?/ _ (11.21a) 

__i JL C*v t**o*i4) 
i-oi. ^* 
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ex ( i £ + <ui> **k + i±£> *%°U_ *BU?:-
V ^ t ^ x . e i * ' «*X. 

( 1 1 . 2 1 b ) 

i_ A civ.t. .*v»owt a } 

It is demonstrated in Appendix D that this thinning effect of 

the phase change in the x-direction is very small. Therefore, one can 

consider the mean flow to be quasi-fully developed flow in which the 

time averaged quantities are not varying appreciably in the x-direc­

tion so that the multiplication of the primed quantities with the x-

derivatives of the mean quantities can be assumed to be second order. 

To be consistent with the linearization these terms can be neglected 

in comparison with the first order effects, and we obtain from Equa­

tions (11.20 and 11.21), following simplified expressions: 

-A*!- <Vn*> — + C4-*0 i^L - — ?A (11.22a) 
hi ** fcx ^ 

A ^ * ̂ - > ^ J + c* AH± = _i_ Tx; (11.22b) 
at ^x ^* e^ 

P f IS! + <VV> iL^l.\ = - AJjl + *,' - -JL. A. CUt^o.O (H.23a) 

P ( 1£ «. <^> **h = - 1 £ + ^ - - L - A. eUl^a^ii-2^) 
* V ^ a»x ; *>* <* *x 

Differentiating Equations (11.22a and b) with respect to x and 

then substracting the resulting equations we obtain 

p, - Vv - e f c •* ** < v )*«> — L - e,. < ^ > i J i L -̂  (11.24) 

= - A l A Z ' + AAI* ! _ 1 . Clw C«owi 4) a.—1— £ * t««-nA) 
^ x* £rx (-&*&*. <* 

*For the purpose of simplicity bar over quantities was dropped, 
It is understood that unprimed quantities belong to the mean flow. 
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where 

& p * = P ; , R j (11.25) 

i ^ s ^ - V i . (11.26) 

Depending upon the p a r t i c u l a r a p p l i c a t i o n , A F, A^P> and the 

covar iance terms can be expressed in terms of the mean flow v a r i a b l e s . 

However, in view of Equations (11 .4 , 11 .5 , 11 .7 , 11 .8 , 11.11 and 11 .12) , 

we can assume t h a t 

k P = * F ( * , OVV ,<\IV» , V « \ ( U . 2 7 ) 

& < ? > = t<P> {* , i * . ^ 2 * \ (11.28) 
d- )L d x *• ' 

Co\/ t f f low fc)= C & ^ L « » ^ K ) ( °* j <^»> > <^"o.>\ K = 1,2 (11.29) 

and in view of Equation (11.17) 

T*; = He; (*) K = 1,2 (11.30) 

Expanding Equations (11.27-11.30) into Taylor expansion, and keeping 

only the first order terms, it can be shown that 

** V,\r(> *<->V v . ,**\ ^* 
(11.31) 

> (11.32) 
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C o v - t ^ o ^ *<•) = * Cov(.yv»owvW) * * V — C.»*CM«~VU^\>\ + ( 1 1 . 3 3 ) 

JL— C.VKMO* VO \>i K - 1,2 

and 

P l dPKi . 

'lET W = J 7 ^ K - 1,2 (11-34) 

Introducing Equations (11.31-11.34) in Equation (11.24), making use of 

the interfacial balance I«- = ^ = T, and rearranging the resulting 

equation, we obtain 

i, £ 1 - tfcJ£* • *,«.> £ i -e,<*> £•* = (n.35) 

~~ * ( ^ *** ~H5\ *** *- *̂ *H^J 
^x* 

* JL0.*l«w4} ^ ^ - — — C.*L«*o«A> ^ i * 

In view of the disturbed continuity equations, i.e., Equations 

(11.22a and b), we can form the derivatives of v^' and v2 in terms of 

those of & . Therefore, differentiating Equations (11.22a and b) with 

respect to time as well as x, we can form 

^L » J _ ( *s£ + <*(> ±± . _L_ i l j) 
>t 4 - * * u a* et d<K / 

(11.36a) 
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(11.36c) 

** ~ \ Vt * *x * ft. J* J (11'36b) 

*x^ *-* \ u^"** **1 " e, «**• ^ ] 

= __L_ L J & * L , < v i > J & l * J - ^ ^ (n.36d) 
* ^ n ^ x * x ^ e% ̂ * *x J 

K-oL \ ^ ' ^V^K e» d*. ** ' 

X̂ 
fcx^ 

V " ^ 
^ X . 

(11.36e) 

(11.36f) 

*u* <* \ viv *" **^x ê  Jo* a-t / 
Introducing Equations (11.36a-f) in Equation (11.35), and rearranging, 

we obtain 

X, £ £ * x* £ - U x, £ - \ x.*L±+K%>LjiL+ ai-37> 
^x* *X* ^x 1 a* U *t v 

XtA*L + X7 J s l + Xg *>=0 
5>* U 

where X's a re defined as fol lows: 

y ^ ^ A < P > (11.38a) 

. t^) 
X , ~ * * < * > > ( U . 3 8 b ) 

X ^ - : ( _1 11 + - i L' + +• (11.38c) 
\ t - ot <* * ~b<* fc( V*N 



282 

X* = i ( A <*> + Ai£> ^ _i_ 1_ (W^^a-lc^c^ 
\ Uoc »< C^-IK)1" K \ r > rt***^ 

_ Coy-t«v\om i) 4-— -— Covcwo^a-'i 

( 1 1 . 3 8 d ) 

c * 0 - & 0 ^<V^> t * ( . U ° 0 d<V;> 

X € = = l
 P^ (11.38e) 

k-at <* 

Xt = _/_*_ <tf** \ ^ __i£i_ <vr,> V f̂_ + -w>itA£ 
\ 4- ot °i I Ac* } * 4 - « *< t f> * ^<v,i> 

- t - (11 .38f ) 

_ J A e**i«m*o !̂L i L , e6*u»„*SL} ^ £ -
faoto-o<) ^ ; > J * e,*o-*o <̂\>> ^ 

_ ! _ i Covc«o«^^IL+ ! L_ C ^ c ^ ^ ^ -

J__^ * \ J r _ _ _ * 4 A F ^ _ ^ V 6 ^ ( l l a 3 8 g ) 
X T . - ( _J_ + _L \ J 

V 4-ot * / J 
X a = s _ i _ AAf ̂ L ! _ A i £ _̂ LL (n.38h) 

Equation (11.37) is the required characteristic equation from 

which the stability of the system under consideration can be determined. 

Now, the task of the stability theory consists in determining whether 

the disturbance is amplified or decays for a given time averaged mean 

motion; the flow is considered stable or unstable depending on whether 

the former or the latter is the case. 

11.2.4 Mathematical Form of the Disturbance 

The mean flow with a concentration & is assumed to be influenced 

by a disturbance which is composed of a number of discrete partial 

fluctuations, each of which is said to consist of a wave which is propa­

gated in the x-direction. Therefore, analyzing the disturbance into 

normal modes, we seek solutions whose dependence on x and t is given by 

file:///Jr___*
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<*' — a; eKp[i (Wx-Ckl)] (11.39) 

where any arbitrary disturbance is assumed expanded in a Fourier series, 

each of whose terms represents a partial oscillation. In Equation (11.39) 

k is a real quantity which is called the wave number and 

A = 2.TT / k (11-40) 

is the wavelength of the disturbance. The quantity C is complex 

C =Cr. + iCi ( i i .4 i ) 

where Cr denotes the velocity of propagation of the wave in the x-direc-

tion whereas C.k is the growth factor which determines the degree of 

amplification or damping. The disturbances are damped if 

Ci U < 0 (11.42a) 

and the mean flow is stable, the disturbances are amplified If 

C ^ k > 0 (11.42b) 

and the mean flow is unstable. Finally, the mean flow is said to be 

neutrally stable, in which the disturbances are neither damped nor 

amplified, if 

C; U=0 
(11.42c) 

The meaning of the various terms can be seen by considering the 

real part of Equation (11.39): 

^-ai e*P (Cfc.4) C«[k (*-£*•*•)] (ll.43a) 
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which describes a sinisoidal wave of amplitude 

a = a t e*f (.Cik*) (11.43b) 

of velocity C , and of wave length X given by Equation (11.40). 

Introducing Equation (11.39) in the characteristic equation given 

by Equation (11,37), the following algebraic relation is obtained between 

the governing variables: 

(11.44) 
^ x* x s k ' x* x s x5u l 

which can be also expressed as 

_ C X + i (Vl+VfcX) C -I- Y 3 + V ^ = 0 (11.45) 

where we defined 

X Y i = _ l ^ . Y 5 = J ^ k x L̂ + 
£X-> x5 x 5 x 5 w u (11.46) 

X - * 7 • Y - X i k 
' a. — — — .. f »4 — — 1*-

*-*L 
i x ^ w x«j x5w 

Substituting Equation (11,41) in Equation (11.44), and separating the 

real and imaginary parts, we obtain two algebraic equation for C and 

C., thus 

(C;-Yj- (C-\,r* X"- V*+ ̂  = 0 (u.47) 

-z( .c . -y,) (C;-Y„) + a.v,Y»+\* = o (U.48) 

which in a condensed notation can be expressed as: 



Ci - C r + A = 0 (11.49) 

- X ClC^ -v fc = O (11.50) 

where we defined 

A « Y - Y j V Y 3 (n.51) 

e> = 2 V , Y i + > r * (U.52) 

C^C.-Y, (11.53) 

C; = Gi- X (11.54) 

In these equations the parameters A and B depend on the particular 

flow system. Therefore, as soon as system is specified A and B can be 

calculated in terms of the mean flow variables. After this one can 

proceed to solve the important variables C and C.. The former yields 

the velocity of propagation of the wave in the x-direction whereas C. 

determines the degree of amplification. 

11.2.5 Stability Criterion 

Since the stability of the interfacial waves depends on the sign 

of C^, we should evaluate C^ from Equations (11.49 and 50) and then 

analyze the conditions under which the disturbances grow or decay. 

Solving Equation (11.50) for Cr and then using this value, Equation (11.49) 

yields 

C^-U-A+f^T?) (11.55) 

which in view of Equation (11.54) gives 
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d~ X + -±- (_ A ^ ** + &*" ) (11.56) 

By definition C is a real quantity and since | V A^ + B I ̂ -JAj , then 

d = Y x + _ L - /_ A + ^ A S a1-') (11.57) 

the minus sign in front of the square root can be eliminated leaving 

(_ A+^+e^ i 
MI 

Substituting C. back either in Equation (11.49) or in (11.50) gives C , 

which, in turn, in view of Equation (11,53) yields the velocity C , of 

propagation of the wave. 

Although the parameters A and B, in general, depend on the particu­

lar application, we can interpret Equations (11.49 and 50) geometrically. 

If we consider the case in which A >0, C and C. behave as they are shown 

on Figure. 4. 

It can be seen from the figure that for each value of the parameters 

A and B, there exist a pair of solutions for C. and C.. Although these 

solutions are equal in numerical value they are different in sign. This 

situation is not surprising because we are analyzing the dynamic waves 

which propagate the downstream as well as the upstream directions. Posi­

tive value of C .., therefore corresponds to the wave train propagating in 

+ x - direction with respect to Y-i , see Equation (11.53) for the defini­

tion of C , whereas negative value of C corresponds to the wave propagat­

ing - x - direction, i.e., propagating upstream. As a result it can be 

concluded that the upper half portion of Figure 4 corresponds to down­

stream moving waves whereas lower half corresponds to upstream moving 

waves, 

According to Equation (11.55), C. can be expressed as 
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»C 

A = const. 

B = const >0 

= const.<0 

Figure 4. Stability Curves for A>0 



const O0 

B = const. <0 

Figure 5. Stability Curves for A<0 
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Ci = Ci + Yx (11.58) 

Therefore, the requirement for stability becomes 

Ci=Ci + ^<± <0 (11.59) 

It is evident from Figure 4 and Equation (11.59) that the positive values 

of C^ is more dangerous then the negative values of It. Therefore, the 

discussion can be confined for the case where C->0. In this case, how­

ever, in order to be able to satisfy Equation (11.59), Y~ must be nega­

tive. Now we can state the necessary condition for the stability of the 

system as 

Vx <0 (11.60) 

Of course, the sufficient condition follows immediately from Equation 

(11.40) as 

Ci <0 (11.61) 

If we consider the case in which A <0, according to Equations 

(11.49 and 50) C and C. behave as they are shown on Figure 5. 

In general appearance of Figure 4 and Figure 5 are similar. Only 

difference is that the A = Constant hyperbola changes axis. However, 

the same discussions which was done for the previous case applies to 

this case. The necessary and the sufficient conditions expressed by 

Equations (11.60 and 61) respectively, remains the same. 

Finally, the neutral stability condition can be obtained either 

from Equations (11.49) and (11.50) or from Equation (11.57) by simply 

substituting C. = 0, thus 



Ya.% AYj"-^!" =0 (11.62) 
4-

which, upon substituting Equations (11.51) and (11.52), gives for the 

neutral stability condition: 

%-±m-Hk)-° 
This is the condition under which disturbances propagate without ampli­

fying or decaying. 

11.3 Break-Up of Liquid Films 

It should be emphasized here that developing valid stability 

criteria and growth rates represents only the first step in identifying 

and eliminating undesirable phenomena associated with two-phase flows. 

This information indicates the conditions under which interfacial waves 

occur and what their growth rates are. However, the appearance of the 

wave on the interface does not necessarily mean that harmful phenomena 

will occur. To answer completely the question of whether the waves are 

harmful or not, it will be necessary to predict either the time or the 

length which is required for these waves to grow enough so that liquid is 

entrained in the vapor or the gas phase or, in the annular flow, the 

liquid waves sometimes becomes so large that they essentially join to­

gether from opposite sides and form liquid plugs. Although, the analysis 

which has been carried out in the preceding sections is applicable for 

both cases we shall be primarily concerned with the former one, i.e., 

with liquid entrainment which essentially leads to the break-up the thin 

liquid film. 

A mathematical model is proposed here to predict the point at 



which undesirable conditions such as film break-up will be attained under 

given conditions, 

If an interface of two fluids is perturbed by disturbances of all 

wave lengths, then the disturbances having the maximum positive growth 

rate dominates the interface. However, since the maximum growth rate 

disturbance can originate at any point along the interface, it will be 

assumed that only those formed at the furthest upstream distance will 

dominate. This situation is illustrated on Figure 6 where the continuous 

formation of maximum growth rate waves are originated at x = 0. 

Figure 6. Maximum Growth on a Liquid Film 

In the preceding section we have calculated C. from which the 

growth rate C.k for an individual wave can be formed. Since the growth 

rate will depend on the wave length A , or equally on the wave number 

k = -r— , the wave number km, or the corresponding wave length Ar*i, which 

makes the growth rate maximum can be calculated by differentiating the 

growth rate factor with respect to k and then forming 
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-^r^° (u*64) 

k found in such a way can be s u b s t i t u t e d in the growth r a t e express ion 

to find the maximum growth r a t e C . k . i n terms of other flow v a r i a b l e s . This 
1 in 

will be the rate at which amplitude of the disturbances will grow fastest. 

For most unstable waves the amplitude becomes 

a^a.i e*v>(C; ̂-t) (11.65) 

logarithm of which results in 

Ctk.^l= £*-£- (11.66) 
a: 

If tu denotes the time at which the waves lead to unfavorable phenomena 

such as liquid cntrainment and flow plugging, the from Equation (11.66), 

t, becomes 

t^-J iLJ*> (11.67) 

where a, is the amplitude at which either entrainment or plugging occurs. 

To determine a, , the amplitude for tearing of the interfacial waves can 

be obtained from experiments, whereas for plugging it is clear that the 

amplitude plus the film thickness must be of the order of one-half the 

flow passage diameter. 

Since the waves travel with the wave speed C , a more practical 

quantity can be obtained by considering the length L^ instead the time 

t, , thus from Equation (11.67) 

\ L ^ £**• L> Qb (11.68) 

C: L^ ^ 
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where L, denotes the point where the waves lead to unfavorable phenomena 

such as liquid entrainment leading to the break-up and flow plugging 

changing the flow regime from annular to plug flow. One can estimate 

thereby, the length for formation of dry spots in the liquid film. 

In the remaining two chapters of this dissertation the stability 

criterion derived above will be applied to the particular problems so 

that the predicted results can be compared to experimental data. 

11.4 Summary 

The stability problem of a general separated two-phase flow system 

was analyzed. Instability and wave formation criterion at the interface 

were established in terms of the generalized parameters which depend on 

the particular flow system. Furthermore, assuming that the most unstable 

wave mode is responsible for the break-up of a thin liquid film a method 

for determining the break-up length was developed. Results obtained 

in this chapter are general so that one can use them for a particular 

separated flow configuration provided the coefficients such as F's, 

X's, Y's, A and B are calculated properly. 
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CHAPTER XII 

STABILITY OF LIQUID FLOW DOWN A HEATED INCLINED PLANE 

12.1 Introduction 

The free film flow, where the velocity of adjacent gas or vapor 

phase is negligible, has been studied as a purely fluid-mechanical 

problem. In the absence of the heat and mass transfer, work done by 

Benjamin L73 J and Yih L72, 74] are well-known and were discussed briefly 

in Chapter 10. The latter obtained analytical neutral-stability curves, 

which established that free surface flow down a vertical plane is un­

stable for all Reynolds numbers. 

For the purpose of the stability analysis of such liquid films, 

we shall follow here the general framework provided in Chapter 11 in 

which the analysis was extended to take into account the effects of 

evaporation or condensation, 

12.2 Undisturbed Flow 

The laminar flow whose stability is to be examined is a uniform 

two-dimensional stream bounded on one side by a free surface and on the 

other by a fixed wall which is inclined at an angle 9 with the horizontal. 

A liquid film of thickness 7], draining steadily down on the heat plane is 

illustrated on Figure 7 ,, 

Let x be the distance in the direction of mean flow, and y the 

distance from the heated wall. The fluid is assumed to have constant 

density and viscosity,. 
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Figure 7. Sketch of the Undisturbed Flow 

For a uniform Laminar flow, the boundary layer equations, i.e., 

Equations (6.25) and (6.26), reduce to 

f-v. 
A*. 

JF? 

3 

* 2 * = ° 
(12.1) 

(12.2) 

where g and g are the components of the gravity in the x and y direc-
y 

tions, respectively. From Figure 7 it is evident that 

= q ^\AQ and 
%*-% % . _ s c .»e (12.3) 

Equations (12.1) and (12.2) are subject to the folLowing boundary condi­

tions: at the solid wall, (y = 0), 

*̂i = 0 ; no-slip (12.4) 

at the free surface, (y - T|) 

*£ . t= tu ' ̂ 7 Q ; zero interfacial shear 

"" ' ••a 
(12.5) 



*t » *il ; interfacial pressure (12.6) 

It can be shown on integration of Equations (12.1) and (12.2) 

that: 

^-•^[(^wu-n 
and 

R i ^ = f t i - u - ^ e ^ 4 (i2.8) 

Averaging over the film thickness T), the averaged velocity <v-,>can be 

calculated as: 

<V,> = . ? * "- (12.9) 

whereas the averaged pressure can be given as: 

<*>- ^ - 1 €.T8j (12.10) 

By substituting y =^in Equation (12.7), the Interfacial velocity 

V,. can be given as 

a »">• 

tf.; — d * - (12. 1L) 
SLY* 

which in view of Equation (12.9) can be also expressed in terms of the 

averaged velocity, thus 

\ ) \ l = s i <.\T,> (12.12) 
X 

Finally, from Equations (12.7) and (12.9) it can be shown that the 

wall shear stress Tie>
 c a n be expressed as: 
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^-ig" ^ gt V | < V* V (12.13) 

12.3 Calculation of A F , A < P > and Covariance Terms 

After establishing the undisturbed flow variables we can calculate 

now AF,A< P^ and Cov(mom K.) , (K = 1,2), terms which are necessary to 

proceed with the stability analysis which was developed in Chapter 11. 

In order to be consistent with the general development of the 

preceding chapter, the variables should be expressed in terms of the di-

mensionless concentration a rather than the film thickness Tj. To do so 

we shall use the plane flow notation because the problem on hand is a 

special case of the general plane flow configuration, thus 

<V\>=_Li_ O-oO^W1- (12.14) 
* * ! 

<Pt>= P,i- i rO-oe) W qy (12.15) 
a. v ^ J 4 

t^m±L*L<*£- (12.16) 

Substituting Equations (12.12, 14, 15, 16 and 11.11) in the plane 

flow force function F- which is given by Equation (11.3a), we obtain 

after some rearrangement 

F, = . u « j ^ t e ! ae, v; <vr,v k, &T ( 1 2 a 7 ) 

Since by assumption effects of the vapor or gas phase notion on the 

liquid film flow is negligible, then it can be shown from Equation (11.3b) 

that 

F \ = 0 (12.18) 
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Combining E q u a t i o n ( 1 2 , 1 7 ) w i t h E q u a t i o n ( 1 2 . 1 8 ) y i e l d s 

A P = C < (12.19) 

Since < P 2 > = ?2i = P 2 ' t n e n i n view of Equation (12.15) the 

averaged pressure difference can be expressed in terms of the inter­

facial pressure, thus 

A<p> = < p v > - < * V > = - ± e t i - * ) H a a * l « \ i - ^ (12.20) 

Using t h e i n t e r f a c i a l p r e s s u r e d i f f e r e n c e e x p r e s s e d by E q u a t i o n ( 1 1 . 6 ) 

in E q u a t i o n ( 1 2 . 2 0 ) we o b t a i n 

A<P>rr C-H i ! i - ± P d - ^ H Q . t ( J i l A I ) - A ! ! (12-21) 

F i n a l l y , r e c a l l i n g t h e d e f i n i t i o n of Cov(mom K) , (K = 1 , 2 ) , g i v e n 

by E q u a t i o n ( 6 , 3 ) , we o b t a i n 

C o V t ^ o m i) = _ L P U - * ) <V\V" (12.22) 
5 

Since by assumption the vapor phase is not in motion, it is evident 

that 

Coo-Cno^a,) = 0 (12-23) 

12.4 Stability Criterion 

By introducing the expressions for £<P>, AF and for Cov(mom K), 

(K = 1,2), in Equation (11.36) we have calculated the X's in Appendix E, 

from which in view of Equation (11.46) one can obtain Y's, thus 



V,« £ <*k> (12.24a) 

Y a» _L W'*T _ 3 *T (12.24b; 

* e,^ *i l a> a e^u. 
Y*=* 111 k*_ A <*,>"- *1QU- -Lf

 k'M ( A , (12.24C) 

(12.24c) 

In Chapter 11, the necessary and the sufficient conditions for the 

stability of the interfacial disturbances were derived. Therefore, 

utilizing Equation (12.24b) in Equation (11,60) we obtain for the 

necessary condition the following inequality: 

yL- <_ k, LI a tr ^ 0 (12.25) 
4 (.rii^ A e.n»w 

which can be a l s o expressed as 

JL - J i l i l W ^0 (12.26) 
& fci.u 

We note that for the adiabatic free film flow, where the first 

term in Equation (12,26) drops out, the necessary condition is automatic­

ally satisfied. 

As a sufficient: condition for the stability we obtain from Equa­

tions (12.24), (11.51), (11.52), (11.57), (11.61) the following condition 



. i < ^ - l 9 l - * ( > 4 T f i L , 

e.̂ w et«fAL„.k L c ^ * w * / tr J 
/ . J fctAT x / WiAT 

Sfc / * ?c ft U|A \ ^ S_ ' + TCL, ] < V i > ^ 0 

v * r: cu,, / > 6 r̂  *U 

2 
Dividing through by <v-j_>, the stability condition can be put into 

dimensionless form, thus 

a'"* lT_ _L_ q- _ i S i Ai_i_!l („i^a'Ui2.28) 
o'li p.* *« ft*/* P. (W"*W>V ' W 

^ J 
s 

In this relation, we have defined: 

The Reynolds number by 

The Froude number by 

(12.29) 

R- — ^ ^ (12.30) 

The property group by 

I = r e ,
3 " > y - ^ (12-3D 
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The dimensionless heat flux group by 

o> -, -hAL A* C C* *''* = - i ^ - &'*e7 8> *'J (12.32) 

Furthermore, k+ and g "*" are, respectively, are dimensionless wave number 
y 

and the dimensionless gravity. They are defined by 

k*~ U % (12.33) 

and 

Q+ §* (12.34) 

*% " % 

In view of Equations (12.9, 29 and 30)^ it is evident that 

P * » 3: ^ (12-35) 

so that only the Reynolds number can be chosen independently, 

If we express Equation (12.26) in terms of the dimensionless groups 

defined above, the necessary condition can be expressed by 

-~ ^Te k^ ^ ! (12'36> 

It is of interest to find out the range of the Reynolds number which 

satisfy this condition. For example, taking the values appropriate to 

water at 100°C: v} = 0.002944 Cm2/Sec; p1 - 1 Gram/Cm
3; g = 981 Cm2/Sec; 

Aifg = 560 Calori e/Gramj O" = 59 Dyne/Cm. and the wall heat flux q, - 7.53 

Calorie/Cm2 Sec(= 105 Btu/hr.ft2), we get from Equation (12.32) qIc
+ = 

0.01362. Substituting this numerical value in Equation (12.36), for the 

limit of Reynolds number we obtain 

Re. <£ 4 40. t> (12.37) 



This value is well above the Reynolds numbers that are encountered in the 

free liquid film flow analysis. Consequently, it can be said that the 

necessary condition for the stability of the film is always satisfied 

even with high heat transfer flux. 

We note that since Equation (12.36) is true for every case, we 

i /1 

can neglect the terms which are order of l/6q, +Re ' , and from Equa­

tion (12.28) we obtain for the sufficient condition 

2>_L k*''- 5 - i i - J i _ S k _ i£-a 3'V ^a (12.38) 
k t > S* k^ %?t* «V IU'^I." 

In arriving to Equation (12.38), we made use of Equation (12.35) in order 

to express the Froude number in terms of the Reynolds number. 

It is evident from Equation (12.3) that 

Jk. = - Cot & (12.39) 

a; 
Substituting Equation (12.39) in Equation (12.38), and rearranging one 

can show that 

a'd J C % C^CotG fc.2*- l a^ kl fU*_ (12.40) 

i R 1 " ) L - - a ^ > o 

This is the stability criterion which can be used to investigate the 

stability of the free surface of the liquid film flow, 

Before going ir.to numerical evaluation of this equation, several 

observations can be made with respect to this inequality: 

1. Since by definition ; is proportional to the surface tension, 

see Equation (11.31), due to the first term in Equation (12.40) it is 
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obvious that the surface tension has stabilizing effect, 

2. Consiering now the second term it is evident that if 9< 90 °, 

the gravity has stabilizing effect, whereas if 6»0 , the gravity has 

destabilizing effect, 

3. Since by definition, q. + > 0 for evaporation then it can be 

seen that due to the heat flux terms in Equation (12.40) the evaporation 

has destabilizing effect, 

4. Since for condensation heat flux changes its sign, i.e., q, < 0, 

the condensation has dual effect on the stability. Due to the third term 

Lt has destabilizing effect whereas due to the fifth term it has stabiliz­

ing effect. Relative order of stabilizing and destabilizing effects can 

be determined by comparing the third and the fifth terms. Hence, if 

<U 4 r *••' < T (12-41) 

then it is evident that the stabilizing effect overcomes the destabiliz­

ing effect. If we trace back to the origin of these two terms it can 

be seen that the term which contributes to the stability arises from the 

kinematic field whereas the term which promotes the instability originates 

from the dynamic field, i.e., from the interfacial vapor thrust term in 

the two phase pressure difference. 

The critical condition, i.e., the neutral stability condition, can 

be obtained from Equation (12.40) by setting it to zero and analyzing the 

relation between various mean flow parameters, thus 

***J C + (a Ct» «u"- ltf-±± *»*-**?)£: (12A2) 

"a. 

3 « . ; = ° 



Under this condition, i.e., when C. = 0, the velocity of propagation 

of the wave in the x-direction can be obtained from Equation (11.42c) by 

using the growth factor C.k = 0, thus 

C**=_ ^ (12.43) 

*x 
Substituting the expressions Y~ and Y , and making non-dimensional by 

dividing through the averaged velocity <v, > , we obtain for the dimension-

less velocity of propagation as 

C,= _ = i ^--! rr.—• (12.44) us 
<*i> * - i- ^ 4 Re 

which in view of the approximation introduced by Equation (12.36), we 

obtain 

c*=.a (12.45) 

which agrees with the result found by Kapitza who used a different form 

of argument applicable only to very long waves. This also agrees with 

the result of Lighthill and Whitham's kinematic wave propagation which 

can be demonstrated as follows: from Equation (12.9) the volumetric flow 

rate can be expressed as 

a = i i r ^ < 1 2 - 4 6 ) 

Hence, the existence of an explicit relation between flow rate and the 

depth of the fluid suggests that any gradual or long-wave disturbance 

from the uniform state would be propagated downstream with a dimension-

less velocity. 
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W e - (12.47) 
<*% 

which leads to the same result as that given by Equation (12.45). This 

simple result provides an interesting check on the analysis which by a 

totally different method has shown that the very long periodic waves are 

indeed propagated with a velocity equal to 3 <v,>. 

Returning now to the stability criterion, we can analyze the 

effects of various parameters such as Reynolds number, heat flux and 

the property group by taking into consideration some special cases. 

Major contribution can be achieved by differentiating two cases, the 

adiabatic and the diadiabatic cases, separately. 

12.4.1 Adiabatic Film Flow 

Adiabatic case where there is no heat flow in or out of the liquid 

•f 

film can be obtained by simply equating q ^ to zero in Equation (12.42). 

Hence, for an adiabatic flow of a liquid film over an inclined plane we 

obtain 

(12.48) 

where k ) , s tands for the c r i t i c a l wave number for a d i a b a t i c ca se . 
cr ad 

Some spec ia l cases following from Equation (12.48) deserve to be 

noted . In the absence of the surface t ens ion tha t i s to say for very 

long wave-length X, i . e . , for very small wave number k, we can neg lec t 

the quadra t i c term in k in determining the c r i t i c a l Re 

F U ) c r = CotQ (12.49) 

Hence, for plane flow with inclination 8 there is a critical Re given by 

Equation (12.49), above which flow will be unstable. Consequently, the 
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stabilizing effect of the gravity is confirmed. 

We note that this result compare favorably with the result obtained 

by Yih [74] from a s o l u t i o n of the Orr-Sommerfeld equat ion for small 

•f 

values of the wave number k , thereby, giving support to the simple 

analysis with integral equations. Restating his criteria for the critical 

condition in nomenclature used in this work one gets 

R*ifir.= ^ Got© (12.50) 

It can be seen that Yih's result can be expressed in an exactly similar 

form, apart from replacing the coefficient 1 in Equation (12.49) by 5/6. 

Let us now consider the case of a vertical plane, i.e., 9 = 90°. 

The term involving Cot £ in Equation (12.48) vanishes, and the critical 

wave number can be expressed as 

tf ) - B * * ? • 
• * « • ) . * - =» — (12.51) 

According to this equation, for various values of the property 

group g, Figure 8 show.i the relation between the Reynolds number and the 

+ -f-
dimensionless wave length \ = l/kc>, . The curves shown in the figure 

are curves of neutral stability; and it can be inferred that, for a 

particular £, the region lying below the respective curve represents 

stability, while that above it represents instability. The following 

properties of Figure 8 may be particularly noted: 

Every curve for T>0, goes to a> as Re -* 0. Therefore, for all 

finite values of Re there is a finite range of unstable \ , and therefore, 

the flow is never completely stable, i.e., there is no absolute stability 

region, although as it was shown above there was an absolute stability 

region for 9<90: . 
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5 10 20 30 40 Re =~^~ 

Figure 8. Curves of Neutral Stability for Laminar 

Flow Down a Vertical Plane with Various 

Values of the Parameter J. 



The stabilizing effect of the surface tension is demonstrated 

by the fact that the stable region below the curves increases as t in­

creases. However, consistent with Benjamin's results surface tension 

can not induce a complete stability, although it may stabilize waves 

whose wave-length is less than a certain critical value. 

Before concluding this section, we can look at another special 

case for which 0>90°, that is liquid film stream runs down underside of 

the plane; therefore, it is expected that the action of gravity promotes 

the instability. This effect can be confined from Equation (12.48) in 

which gravitational terms becomes negative when 0>90°. A special case 

can be investigated by letting Q = 180°. From Equation (12.9) <v,> = 0 

yielding the case of stability of a stationary liquid film underside of 

a horizontal plane, known as Rayleigh-Taylor instability. From the 

dimensional stability criterion with 0= 180°, <v*> = 0, and q = 0, the 

stability condition becomes 

Cx ll (12.52) 
<T 

or in terms of more practical parameter the wave-length the criterion 

becomes 

A ^ - (12.53) 

{^TZc-
This is seen to check with the result obtained by Chandrasekhar [81, 

Equation 51, pp. 435], who calculated the effect of surface tension on 

the Rayleigh-Taylor instability of the boundary between two fluids. 

12.4.2 Diabatic Film Flow 

Including heat transfer effects, and solving Equation (12.42) for 



k )di, we obtain 
UlT 

Wr.r)4; . » 1 | ( 4 £ _H «1» + ftS'.CU R*)* (12.54) 

I/* ^-^e^^-c^^r.^i^ff 

which reduces to the adiabatic case critical wave number when q , = 0 . 
n le 

For a vertical flow, i.e., 9= 90°, by comparing Equations 

(12.54) with (12.51), it can be seen that for a given Reynolds number 

and the property group given by Equation (12.31), following relation 

holds 

k«"-tai. > £<*«- ]«u (12.55) 

O:' 

>*-U < i ^ j (12-56) 

This indicates that the critical wave-length appropriate for the adiabatic 

flow is less than that of the diadiabatic flow. Since in Figure 8, the 

stable region corresponds to the area below the curves then it can be 

seen from Equation (12.56) that the mass transfer reduces the stable 

region. 

For an illustrative example let us consider a water film flowing 

steadily down a vertical wall, i.e., 0= 90°, at the atmospheric pressure, 

with the free liquid surface being at the saturation temperature as the 

result of a uniform wall heat flux, q . . The following table, based 

upon Equations (12.54) and (12.51), compares the behavior of the water 
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film for different Reynolds numbers, 

Figure 5. Effect of the Heat Transfer on the Dimensionless Critical 
Wave Length, 

qle 
Cal/Cm2Sec Re 

qle 
Cal/Cm2Sec 

1 5 25 50 

qle 
Cal/Cm2Sec 

+ 
X cr 

0 82.625 22.609 5.662 3.071 

0.0753 65.605 21.562 5.563 2.916 

0.753 43.600 20.165 5.541 2.914 

7.53 25.791 18.623 5.528 2.913 

From Table 5, one can infer that the effect of the interfacial mass 

transfer, which is proportional to the heat flux, on the critical wave­

length are larger at low Reynolds number, however, as the Reynolds number 

increases it decreases and at high enough Reynolds numbers effect is 

almost nil. 

12.5 Growth Factor 

We consider now the growth rate factor which was derived in 

Chapter 11. In view of Equation (11.47), the dimensionless growth rate 

can be given by 

cr C = Y; W* * JL. (_ A* £ \ [ CA* e ) l ^ c** tf n"v f" (i2-") 

+ + + 

in which A , B and Y are determined in terms of the coefficients cal­

culated in Section (11,2). From Equation (12.24b) and in view of the 
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+ 
approximation introduced by Equation (12.26) Y can be given by 

Yx*,-,_at _J (12.58a) 

ft*. W-

and 

V tf%=- h. _L (12.58b) 
* 3- r, 

From Equations (11,24a, b, c, and 11.41) and in view of Equation (12.26) 

A can be expressed by the following relation 

A v _ £ _̂ _J ^ U _J5_ _ 5L _±i. (12.59a) 

and 

A*tr= -A ^ C _̂_ _ jU v^ \ i^i i _i_ (12.59b) 

Finally, from Equations (11.24a, b, d, and 11,42) for B we get 

&•*-« _H _! (12.60a) 
5 Re tf 

and 

B*k+1"=* *1 _tl (12.60b) 

+ + + 
Accord ing to E q u a t i o n s ( 1 2 . 5 7 - 1 2 . 6 0 ) , C ,k -* 0 a s k -* 0 and 

T "T T 

C ,k < 0 as k -» co. There exists, therefore, a mode of maximum in-

stability that is to say there exists a maximum growth rate at which the 

wave amplifies most rapidly. To determine this most dangerous wave 

number km , which makes C.k maximum, Equation (12.57) can be differ­

entiated and then set to zero, thus 
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C + ~*i C - A*. C- [ M ^ W '- ^ ±4"U° (12.61) 
J. A, A . L » V ^ ' A- A v ^ v J 

where we defined 

y 

A 1 = i " 5 (12.62a) 
k e

S ' 3 

A - L = iL _ 3a _ * ^g. ( i2 .62b) 
s F / u^ria 

A4--( .1 J- ^ i J l ) 
4- ^ k< 

(12.62c) 

feN= _ ? 2 _ i _ (12.62d) 
•6 V<«_ 

Equation (12.61) can be solved by comparing it with 

a x S ^ x S e x + J ^ O (12,63) 

whose r e a l root i s given by 

x=~ T + { _ $ + ( V ^ T i ^ l - V l V ^ M (12-64) 

where q and p are defined as 

*« t - ^ r (12.66) 

In view of Equations (12.64-66), Equation (12.64) can be solved 

for k , and upon substituting k in Equation (12.57) one obtains the 
m m 

+• + + 

maximum growth rate factor C .k as functions of F, Re and q , 
i m n le 

In order to compare and evaluate the destabilizing effect caused 

by local evaporation, it is advantageous to calculate the maximum growth 

+ + 
rate for adiabatic film and C .k ) for dlabatic films. The ratio 

l m n . 
d L 

gives the relative increase of instability caused by evaporation at the 



liquid film surface. 

For this purpose consider the motion of a water film on a 

vertical surface at atmospheric pressure with the interface at the 

saturation temperature. The following table is based upon Equations 

(12.57-12.63) compares the behavior of the film for different heat 

fluxes. 

Table 6. Relative Effect of Evaporation on the Stability of a Vertical 
Water Film 

Reynolds Number 

Calorie 

Cm Sec 

10 50 100 200 
Calorie 

Cm Sec 
C+.k+ )H.A

+.k+) , 
i m di' I m ad 

0.753 1.031 1.0082 1.0015 1 .0002353 1.00009 

7.53 1.204 1.0743 L.0090 1.0038755 1.00187 

75.3 3.601 1 . 7480 1.3785 1.2225135 1.11243 

it can be seen from Table 6 that the ratio is always greater than 

one, which implies that the evaporation enhances the instability. How­

ever, it can be seen also that this effect even becomes significant at 

high Re numbers provided the heat flux is high enough. 

12.6 Film Break-Up Criterion 

The liquid film break-up length L, was derived in Chapter 11, and 

given by Equation (11.68). This equation can be made dimensionless by 

dividing through by Tr-:.v > Hence, for the dimension! ess break-up length 

L, we obtain the following expression: 
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"i cr c *•* 
where C is the dimensionless velocity of propagation and given by 

r 

C* =- SZL. (12.68) 
<W> 

whereas — is the ratio of the amplitude at the length L, to the initial 
ai D 

amplitu de. In view of Equations (12.24a, b, and d), (11.52), (11.50) and 

the approximation introduced by Equation (12.36), it can be shown that the 

wave propagation velocity can be expressed as 

u ft**^ 
Cr a __E LHh + .|_ <*t> (12.69) 

^CCI + A J L . ) 

which in dimensionless form becomes 

C^. ^ il ^ A (12.70) 
4* (£*(!?£,) s 

By s u b s t i t u t i n g Equation (12.70) in Equation (11.67) y i e l d s for the 

break-up l eng th : 
a7 

(12.71 ) 

b 
5 + 

\ \ -

b 
5 + l o t a / * * C i * C ) p £b_ 

•"• W — 
«* iv a; 

It is evident from the above equation that in order to determine 

.k , a 
l m b 

+ + 
the break-up length one needs to know C .k , a and a.. By the method 

1 l m u i 
+ + 

presented in the previous chapter C .k , can be calculated for given 

conditions. However, in order to determine explicitly afe, the wave 

amplitude leading to break-up of the liquid film, it is necessary to resort 

to experiments. For the case of liquid entrainment it has shown in 

reference [82] that the wove heights approach the magnitude of the average 
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liquid film thickness. Therefore, the waves may break-up when the wave 

amplitude become comparable to the film thickness. Finally, it is also 

necessary to know the initial wave amplitude a., in order to determine 

ab 
L . Weber [83] states that In — reaches a constant value for the break-up 

i 
of moving liquid sheets. We note that this configuration is not the 

same as the one of Interest here. The dependence upon the initial 

dimensionless wave amplitude is, however, logarithmic, so that for large 

values of the argument of the logarithmic function, changes in the argu­

ment result in very small changes in the functional value. Therefore, in 

the absence of any data fitting for the case investigated here we shall 

use the value given by Weber, which is 

L J*l -= 4-1 (12.72) 
4L 

to illustrate orders of magnitude from existing data. Hence substituting 

Equation (12.69) in Equation (12.68), finally we obtain 

L\, =. ' ^ ^ * ~ ls/» + <^-)1 Q2.73) 

+ +• 
Once the most dangerous growth rate C .k , is calculated from 

i m 

the preceding section's results, one can determine from Equation (12.73) 

the dimensionless length L, . 

For the isothermal flow of water on vertical plane, dimensionless 

break-up length versus Reynolds number is plotted on Figure 9 with Z 

as parameter. It is evident from the figure that the dimensionless 

length is very strong function of the Reynolds number at the lower values 

of Re. As F increases for a given Re, the length increases delaying the 
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Figure 9. Break-Up length Versus Reynolds Number; q = 0 
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formation of dry spots, 

Experimental data are available in reference [84] where the 

minimum stable film thickness for an annular film of water on the inside 

of a 1-inch diameter smooth copper pipe was measured. The test section 

used in this study was 6 inches, and the break-up was always observed 

at the end of the test: section. For different fluid temperatures with 

no interfacial mass transfer, the minimum stable thickness was measured. 

On Table 7, experimental results of reference [84] is compared 

with Figure 9. 

Table 7. Film Thickness of Water versus Break-Up Length 

Properties Results of Ref[84,Fig.4]Fig.9 
Temp . 
(°C) 

Surface 
Tension 
(Dyn/Cm) 

Viscosity 
(Cent i-
po i s e) 

Density 
(Gram/ 
CmJ) 

Property 
Group 

Film 
Thick­
ness 
(Cm) 

Re 

S T, 
L b 

30 

45 

60 

75 

71.2 

68.8 

66.2 

63.5 

0.801 

0.599 

0.469 

0.380 

0.996 

0.990 

0.983 

0.975 

4470 

6360 

8490 

10780 

0.0148 

0.0115 

0.0098 

0.0083 

12.8 

12.5 

12.5 

12.5 

1027 

1323 

1546 

1826 

1119 

13 79 

1612 

1850 

It can be seen from Table 7 that the agreement is quite good even 

in view of the obvious limitations of linearized theory in this type of 

investigations. Most Important of all, the comparison with experiment 

justifies that the break-up of thin liquid films is governed by the growth 

of the most unstable surface waves. Of course, the analysis will cease 
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to apply as soon as thin dry spots are formed on solid surfaces. 

Beyond this point, however, the contact angle which is the measure of 

the wetability of the liquid plays an important role for the stability 

of the dry spots. 

In order to see the dynamic effect of the interfacial phase 

change on the break-up length we can form the ratio of two lengths, 

one without mass transfer and the other with mass transfer. Hence, 

from Equation (12.73) for the ratio we obtain 

17 < 

U U T *o ^vCri^U; Gi L^)ai (12.74) 

L*t)«*J & + — K U li U: 

-r -r 
Since C .k <1.0, then the propagation velocity can be taken equal in 

I m 

both cases, and from Equation (12.74) we obtain 

L W ) J L G* Icin )oa 

U»W C; W^U; 
Now we note that according to Table 6 

(12.75) 

.*• v 

> 1.0 (12.76) 

C-i* ^ ) Oci 

Therefore, in view of this inequality it can be seen from Equation 

(12.75) that 

U*J«l; = — — U ) a ^ U ) a d (12-77) 
<-i W~ Jdl 

which states that due to the destabilizing effect of the interfacial mass 

transfer the break-up length of the film with mass transfer shorter than 

the corresponding break-up lengths in a system where interfacial mass 



318 

transfer does not occur. 

12.7 Conclusions 

1. An evaluation of the importance of various parameters on 

the instability of free liquid films has been made. 

2. The results indicate that, a) the surface tension has 

stabilizing effect irrespective of the configuration of the plate, b) 

the gravity has a stabilizing effect when9<90°, and a destabilizing 

effect when Q>90", c) evaporation from the surface of a liquid film 

has a destabilizing effect, while condensation has dual effects-one 

destabilizes and the other stabilizes, Relative importance of these 

two opposite effects was given by Equation (12.41). 

3. It was shown rhat, as the Reynolds number decreases, i.e., as 

the film thickness decreases, and the heat flux increases, the thermal 

effects become important and may become the dominant destabilizing 

factor , 

4. The effect of evaporation is to decrease both the critical 

and the most dangerous wave length and to increase therefore the growth 

rate of disturbances. 

5. An immediate result of the previous conclusion is that as the 

growth rate increases, the break-up length of the most dangerous wave 

decreases. 



319 

CHAPTER XIII 

STABILITY OF TWO INVISCID FLUIDS 

13.1 Introduction 

The interaction of two fluids moving along a continuous inter­

face is encountered In many industrial applications, see Chapter 1. 

A velocity difference between the two fluids encourages the growth of 

waves until eventually one fluid mass may disintegrate and be swept 

away in the other. This kind of instability that is the instability 

set up by the relative velocity between two phases is called the Kelvin-

Hel.mholtz instability, and has been studied entirely from the fluid-

mechanical point of view, see for example, Lamb [57]. 

In this chapter we shall consider the stability of two inviscid 

fluids flowing parallel to each other in which the effect of vaporiza­

tion or condensation will be accounted for. Following the general frame­

work described in Chapter 11, we shall investigate effects of inter-

facial mass transfer on the stability of interfacial waves. 

13.2 Undisturbed Flow 

Consider two incompressible, inviscid fLuids confined between two 

parallel planes which are located a distance of H apart from each other. 

The liquict film, i.e., phase 1, has a thickness of T| whereas the vapor 

or gas, i.e., phase 2, has a thickness of II —T as described on Figure 10. 

We shall consider a heat conduction through the thin liquid film 

and assume that the velocities v. and v0 of the liquid and of the vapor 
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are uniform permitting a vortex sheet at the interface. This assumption 

renders the analysis approximate; however, they make it also tractable 

and simple. 

<xH 
Phase ( | ) 

i t t t r 
1 = (!-«) H 

l i 

Phase© 

2 P, 

I 1 — ' I 'A 

l l e 

_?LA 
a 

Figure 10. Undisturbed Flow of Two Inviscid Fluids 

13.3 Stability Criterion 

After having calculated X's and Y's in Appendix F, now we can 

proceed with the investigation of the stability criterion within the 

general framework of Chapter 11. 

Using Equations (F.15c, I5d, 16a and 16b) in Equations (11.51, and 

52) for A we obtain 
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(13. i) 

A , *'" * " " . 4- I [ sr H UT* H Ae a -

( J L * J±.V e* • *-
1 - at cat 

: f k AT V" _i_ .AL - ( iii^ * ML \] 

which upon re-arranging yields 

A= i [(rHk'tHif^/jL.ii.U (13'2) 

I i-i. V Zc } 

a f _AAI_V _J î_ (_L_ ^ li\l 

whereas for B we obtain 

B = 0 (13.3) 

In Equation (13.2), V_ is the relative velocity defined by 

Vv.=r VT„- \>, (13.4) 

In view of Equation (13.3), Equation (11.50) becomes 

C; Cr =r Q (13.5) 

Hence, Equation (11.49) can be expressed as 

( Cr 1*1 5; T-A -.G (13.6) 
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square root of which yields 

Z. +iCi«**A (13-7) 

In view of Equations (F.15a) and (11.53) 

— et ^ _£^£. 
Cr = C - * -* 2£ ( 1 3 . 8 ) 

f - — 
whereas in view of Equations (F.16a) and (11.54) 

Cl = Ci (13.9) 

Therefore, substituting (13.8) and (13,9) in Equation (13.7) we obtain 

e, * e . v to 

C ^ ^ L C L - S — — !L_ s \J7 (L3.io) 
_A + Ji. 
*- <* at 

As it is discussed in Chapter 11, C_ denotes the velocity of 

propagation of the wave in the X-direction, whereas C. determines the 

degree of amplification of disturbances on the interface. 

There are several points to be noticed with respect to Equation 

(13.10): 

1 . If 

A > 0 (13.11) 

that is, if 

( e U k " + H * e a } ( A + J i \ (13.12) 

A ( — h L * L _ \x _L_ _Af_ (_1_ + M _ A!i v;>o 



then the right hand side of Equation (13.10) becomes pure real number, 

t hu s 

C v = 0 (13.13) 

and the waves propagate with the real velocity 

e, 2 L* i-t* o< / L ^ ' \ «-N « / 
4) 

1 - ot a< 

2(_AAL_ f _ i_ _*t ( JL. + J±.\_ e'g- v; i"k l 
^ LL^U-*)* I «-<* e.ek

 v <-* * ' - i . - a i J J 

We note that the "interfacial waves propagate downstream as well 

as upstream with respect to a mean velocity V defined by 

**v. ^ e ^ 
V = — ± ^ « (13.15) 

JL.. L, 

which shows that the two fluids are coupled in parallel not in series. 

We note, furthermore, that for sufficiently small values of the wave 

number k, that is to say, for sufficiently large values of the wave­

length \ the second term in the square root of Equation (13.14) is 

large compared with the first term; the force governing the motion of the 

waves is mainly that of gravity, which is the case for shallow water 

waves. On the other hand, when k is very large, i.e., A is very small, 

the first tern dominates, and the motion is mainly governed by the 

surface tension; the capillary waves. Finally, we note that in the 

absence of the surface tension and of the Inter facial mass transfer 
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Equation (13.14) reduces to the result of Long [85] where the method of 

characteristics was used to obtain the wave speed. 

2. If 

A < Q (13.16) 

then the right hand side of Equation (13.10) will be complex, thus 

Ci =* <TT (i3.i7) 

which, in view of Equation (13.1) yields a positive growth factor C.k 
:. 

k— r . ^ H ^ ^ ^ i H - L ^ f . ^ (l3-18) c ^ = . U
c [-(̂ wl

 + « i e s ) ( - ^ 
+ -- - -

1-Ot .Jt 

I ( k,4T ..f - ^ - ^ (-fi.>Ji.U-!iiiv;ffc 

which in turn gives rise to the instability of interfacial waves. 

Furthermore, note that the interfacial mass transfer whether in form 

of evaporation, AT> 0 or in the form of condensation /\T< 0 always pro­

motes the growth factor which in turn helps instability. As it is well 

known from the Kelvin-Helmholtz instability the relative velocity en­

hances the instability whereas the surface tension and the gravity act 

in the direction of stabilization. 

3. The critical condition is obtained from Equation (13.10) by 

setting 

A = 0 (13.19) 
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which implies the neutral stability, that is 

C i ^ g (13.20) 

Hence, in view of Equations (13.19) and (13.1) the critical condition 

can be given by 

- (<r H k% w a e a) * a ( U'*T f _i_+_Jili_ J^L ,o (i3.2i) 

We note that the critical condition expressed above can be put into 

dimensionless form, thus 

f kV; i ^ e _ X. 
V Wa Pr" ^ 

where we have d e f i n e d : 

t h e Weber number: 

\~T)(-&*$)-K'° (13-22) 

0-
(13.23) 

the Froude number: 

C Nl-
*"t- = — = = = — (13.24) 

W 
the heat flux number 

^e = - — T ^ (13-25) 

which in view of Equation (11.16) can be expressed in terms of q-, 

rather than AT, thus 

flv - 21^ (13.26) 



and the dimensionless wave number k is defined by 

U = k C<-*) H = 2-7T ± — (13.27) 

We note that since for low system pressure operations 

PJL_ « 1.0 (13.28) 
e. 

P2 
therefore, neglecting terms which are order o f — and solving Equa-

Pi 
tion (13.22) for the critical wave number k ., we obtain 

C , v't (- -L- -5- + **--*• * tf f <13-29> 

This equation gives the critical wave number. It can be seen from Equa­

tion (13,28) that, in adiabatic system, the critical wave number is 

smaller than the corresponding wave number in a system where evaporation 

takes place. This statement can be equally expressed as the critical wave 

length, in adiabatic systems, are longer than the corresponding wave 

lengths in a system where phase change occurs. 

13.4 Growth Rate 

Growth rate expressed by Equation (13.10) can be put in dimension-

less form, thus 

crt» = / « u ** I" £ n-^l_^_M. ( i 3-3o) 

M - <* + ^ 7 

M:.' A L J I ^ . - I - ) . . ] 
''* 
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As it is seen from this equation there are seven dimensionless 

groups rendering 

C:WV=[ (_£_ ; P^W*; ̂ h;i ;U) (13.31) 

However, some s i m p l i f i c a t i o n s can be accomplished by making some 

p o 
approximat ions . F i r s t of a l l , as noted above —- «4 , so t h a t 11 

can be neg lec t ed . Of course , t h i s approximation w i l l cease to apply 

when we approach to the c r i t i c a l p r e s s u r e . Secondly, s ince we are 

dea l ing with very t h i n l iqu id films with high speed vapor phase , i . e . , 

with la rge r e l a t i v e v e l o c i t y i t can be seen from Equation (13.24) t h a t 

the Froude number w i l l be so la rge t ha t the inverse of i t can be neglected 

with respec t to sur face t ens ion e f f e c t s . Under these two assumptions 

Equation (13.30) becomes 

whereas Equation (13.31) y i e ld s 

C-re= [ ( ^ _ , W . i ^ j J i -, U.') (13.33) 

There are stilL five groups which CT^k depends on. However, the 

most convenient graphical presentation of the dimensionless growth rate 

can be accomplished by taking, for example, adiabatic flow of the air-

water system. For this case 

<^e-
c and JLt_^O.OCHX (13.34) 

Equation (13.32) can be presented with C+
ik

+ versus X = ~T by and 
' 

treating We and :——as parameters, as in Figures 11 and 12. Figure n 
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shows the effect of the Weber number We, on the growth rate when the two 

fluids are air and water of which density ratio is given by Equation (1.3.34) 

Figure 12 shows the effect of volumetric concentration ratio on the growth 

rate when the Weber number is 2. 

Figure 11 shows that the growth rate has a decided maximum for a 

given Weber number, particularly at higher Weber numbers. A disturbance 

of that wave-length will dominate the interface and probably will lead 

to the break-up of the liquid film before any other disturbances could, 

Figure 11 shows that a definite lower limit exists for A , below which 

the interface is stable. This means that short wave lengths of disturbance 

on thick sheets are stable unless the Weber numbers are high. Decreas­

ing the interfacial tension increases the Weber number and increases the 

growth rate correspondingly. For disturbances of long wave length, the 

Weber number becomes less significant and the growth rates are smaller. 

Figure 12 shows the effect of the volumetric concentration ratio , 
l-a 

and increase in this ratio yields smaller peaks which means less danger­

ous growth rates. 

After seeing various effects on the growth rate C . k , we can 

proceed now with obtaining the most unstable growth factor. The rate 

of growth of the distarbance depends on the growth factor which is a 

function of the wave number k . It can be expected that the motion of 

the interface will be determined by the disturbances whose growth is the 

, 4 . + 

tastest. Since CT" •k is a function of A the wave length which maximizes 

the growth factor CT*". k+ given by Equation (13.30), will be, therefore, 

the dominant disturbance. Maximizing Equation (13.30) with respect to 
_ l _ i 

k , and solving for k we obtain 
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C«« (̂ *)''*[_J L_ itl^i^Jklf*' (13.35) 

The first two terms on the right hand side of Equation (13.35) is 

the contribution of the adiabatic flow instability whereas the third term 

is due to the destabilizing effect of evaporation. It can be seen, there­

fore, from Equations (13.29) and (13.35) that, in adiabatic systems, both 

the critical wave length ^ and the most dangerous wave length A. , are 
cr m 

longer than the corresponding wave lengths in a system where evapora t ion 

takes p l a c e , 

Before concluding t h i s s e c t i o n , we can cons ider an i n t e r e s t i n g 

s p e c i a l c a s e . In the absence of the r e l a t i v e v e l o c i t y , Vr - 0, consider 

now the s t a b i l i t y of an incompress ib le , i nv i s c id f lu id layer of depth 

o/H and dens i ty pn on top of another layer of incompress ib le , i n v i s c i d 

f l u id of depth (1 - o)H and dens i ty p i . The s t a b i l i t y cond i t ion of the 

i n t e r f a c i a l d i s tu rbances can be obtained from Equation (13.18) with 

Vr - 0, thus 

- {{-*) H r U1"- U - * ) V4 fce £ * x( h l A I — j i i ^ O (13.36) 

Thus when the l i qu id on top is heavier than the one below, we have wel l 

known Raleigh-Taylor i n s t a b i l i t y . The e f f ec t s of surface t ens ion and 

g r a v i t y have been well documented in Chandrasekhar 's book, re fe rence [ 8 1 ] . 

Here we address ourse lves to the e f f ec t of i n t e r f a c i a l mass t r a n s f e r on 

the s t a b i l i t y of such a c o n f i g u r a t i o n . 

Since the heavy f lu id i s s i t u a t e d on top of the l i g h t f lu id then 

5t _ g ^ A e <0 (13.37) 
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and the second and the third terms in Equation (13.36) changes their 

sign. The stability condition, therefore, can be expressed 

(<-*) H ce . -e , ) a ^ u-*)«e- ^+ *-( ^ - ^ \ e*"e> (13.38) 

It is evident from Equation (13.38) that the surface tension together 

with the interfacial mass transfer stabilizes the interfacial waves 

whereas the gravity destabilizes. We note particularly, that the effect 

of interfacial mass transfer. Although its effect, in the case of the 

light fluid on top, is in the direction of discouraging the stability, 

it encourages the stability of a system where the heavy fluid is on top 

of the light fluid. Therefore, when there is an interfacial mass transfer, 

the growth rate of the Rayleigh-Taylor instability may be greatly reduced 

whereas the growth rate of the Kelvin-Helmholtz instability, i.e., light 

fluid on top, is increased. 

If one lets k-> 0 in Equation (13.38), i.e. , A. -* a , as for very 

long waves, then the instability condition becomes 

4, 1 ( l» LT ) (13.39) 4-*)HS 4, 2. ( _ b ± L _ \ _j 
* Ct-atJ H &Lt^ ' tt 

Thus, when Equation (13.39) is just satisfied, very long waves (k ~*0) 

become stable. 

These results rray be relevant to the problem of boiling heat 

transfer. It is well known that the state of nucleate boiling will go 

over to stable film boiling when the temperature gradient in the film 

exceeds certain critical value. For the film boiling, a fairly stable 
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layer of vapor, i.e., light fluid, lies underneath the heavier liquid 

contrary to the criterion of Rayleigh-Taylor instability. Although, 

our result, Equation (13.38) shows the instability will still persist 

at large wave numbers, yet the growth rate can be greatly reduced. 

13.5 Comparison of the Destabilizing Effects 

In order to compare and evaluate the destabilizing effects caused 

by the adiabatic flow instability and by the evaporation, it is ad­

vantageous to calculate the ratio of the most unstable growth factor of 

the diadiabatic system to that valid for an adiabatic system, 

Substituting Equation (13.35) in Equation (13.30) and re-arrang­

ing we obtain for the most unstable growth factor 

f "i- \ 

QlJm)A.^ ( " J IJTJ 5 f - J L_Ai.,^ Ael(l3. 40) 
" + „ ~ A-- S, 

For adiabatic flow, by substituting q"1", = 0, we obtain from Equation 

(13.40) 

ten*)" { C? £ \ v ' - a ' \ s> I \ We r < t he -i 

"*•*" - e- T ' L ^ - . l t P ; *> J 
•* — < - < * p 

A - * e 

Dividing Equation (13.40) by Equation (13.41) wc obtain 

(13.41) 
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C; L M )& 4ic 
^ (13.42) 

& ^«Ud -i J ^e 
w1- e, 

l-u* <?, 

Finally, introducing the approximation involving the Froude number and 

the density ratio the growth rate, ratio becomes 

U; k-* J *«* 

u- (13.43) 
1~* T* 

The values of this ratio are given in Table 8 for several typical 

cases employing water and liquid metals. 

Table 8. Relative Effect of Evaporation on the Stability 

Liquid Saturation. qle a V C+ik+m)di 
Temperature Btu/hr ft I - a ft/Sec M- . y.-t \ , 

F° 

Water 212 

Water 2.12 

Water 495 

Sodium 1200 

Sodium 1200 

Sodium 1700 

Potassium 1500 

Potassium 1500 

105 100 20.0 1,295 

105 100 100.0 1.012 

105 100 3.6 1.012 

10 100 500.0 1.657 

10 100 100.0 1.164 

10 100 25.0 3.630 

105 100 10.0 2.127 

5 x 10 100 50.0 1.782 

It can be seer from Table 8 that for water the effect, of evapora­

tion can become significant only at relatively low vapor velocities. For 
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sodium and potass ium, however, t h i s e f f ec t is s i g n i f i c a n t even at high 

vapor v e l o c i t i e s and becomes dominant a t lower v e l o c i t i e s , 

13,6 Break-Up Length 

The l i q u i d film break-up length L, , was der ived in Chapter 11 , and 

given by Equat ion ( 1 1 . 6 6 ) . By express ing i t in dimensionless form, wc 

ob ta in 

L\ « .J±- , _5 : . U -**. (13.44) 
i <_: w\. "• 

where C is the dime :is ionless velocity of propagation of the most un­

stable wave, and defiled by 

Ct - -£r_ (13.45) 
Vr 

Since the concern here is with the maximum growth rate wave, the 

corresponding values of C r and CT̂ k̂ should be inserted in Equation 

(13.44). CT5- • k+m was evaluated in the preceding section, and expressed 

by Equation (13.41). In accordance with Equation (13.77) and (13.7), 

however, 

C,. =0 

In view of Equation (L3.8) this equation yields 

(13.46) 

e,v, J^tfv 

C . = — ^ (13.47) 
P D 

I - M. aC 

which, upon non-d imens iona l i za t ion , gives for the wave v e l o c i t y : 
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V. ** V. 

C. = ! (13.48) 
QC Py 

4-* e> 

Substituting Equations (13.48) and (13.41) in Equation (13.44) 

y i e l d s 

/ j»_ .. J i V1 ( « fy 6> \'" We" »'" 

This i s the genera l express ion for the length a t which the unfavorable 

phenomenon can occur . We note t h a t ex i s t ence of many dimensionless 

groups appear ing in Equation (13.49) makes i t d i f f i c u l t to p resen t Equa­

t i o n (13.49) in g raph ica l form. However, approximations introduced in 

the preceding sec t ions involving the dens i t y r a t i o and the Froude number, 

and furthermore noting t ha t 

^ - i (13.50) 

V. 

we obtain from Equation (13.49) following simple form 

L\ -*(-£)(-£• f *• (-^ - Mf-) u & (13-51) 

u 

j£n —r - 12 which was found in re ference [831 i-S more s u i t a b l e 
a i 

for t h i s problem than t ha t for the free f a i l i n g film where we used 
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this value, and obtained satisfactory result. Therefore, using this 

value in Equation (13,51), we obtain finally 

L =̂ ^ ( ^ u ^ r ^ ^ ^ ^ r (i3-52) 
This equation ;i,ives the break-up length of a liquid film flowing 

under the action of an adjacent vapor phase. There are five basic di-

mensionless groups which affect on the occurrance of, undesirable phenomena 

in a given flow length. It is evident also from Equation (13.51) that, 

in adiabatic systems, the break-up length is larger than the correspond­

ing length in a system where evaporation takes place. Once again this 

shows the unfavorable dynamic effect of the interfacial mass transfer 

on the destruction of the liquid films. 

The break-up of Liquid films inside closed conduits by wave 

formation was the basic idea leading to the derivation of Equation (13.52). 

However, the experimental, information available is not sufficient to en­

able a comparison with the theory. Available experimental measurements 

have been carried out for the purpose of either the rate of entrainment 

or the stability of dry spots which were formed already. Neither of 

these concerns the mechanism which lead to the break-up. Thereforet 

Equation (13.52) is open for experimental confirmation. 

13.7 Conclusions 

1. A mathematical analysis based on the instability theory has 

led to dimensionless equation which explains the mechanism of break-up 

of thin liquid layers flowing under the action of an adjacent vapor or 



gas flow. This analysis is presented algebraically and graphically 

which facilitate its use. 

2. Particularly, an evaluation of the importance of evaporation 

on the instability of thin films has been made. 

3. The results indicate that, the inter-facial phase change whether 

in the form of evaporation or condensation enhances the Kelvin-HelmhoIt2 

instability whereas it affects the Rayle igh-Taylor instability in the 

direction of stabilization, 

4. As an immediate result of the previous conclusion, for the 

case of the light fluid on top of a heavy one, the effect of evaporation 

is to decrease both the critical and most dangerous wave length and to 

increase therefore the growth rate of disturbance. In contrast, for the 

case of the heavy fluid on top configuration the effect of evaporation 

is to increase the wave length and to decrease therefore the growth rate 

of disturbance. 

5. For water, the destabilizing effect of evaporation can be 

significant only at very low velocities. For liquid metals, however, 

this effect is significant at high vapor velocities and becomes dominant 

at low velocities. 

6. In view of the experimental observations which have shown 

that the rupture of liquid jets occurred through the instability of a 

wave at the interface, an analysis was carried out, which predicts the 

break-up length of thin liquid layers flowing under the influence of an 

adjacent vapor or gas flow. This result predicted by the analysis, how­

ever, has not been tested against experiments because quantitative data 

are not available yet. 



CHAPTER XIV 

SUMMARY AND CONCLUSIONS 

Part I: Thermo-Fluid Dynamic Formulation of Separated Two-Phase Flow 

1) The separated two-phase flow problem was formulated by con­

sidering two continua coupled by the appropriate "jump" conditions at 

the internal boundary, i.e., at the interface. 

2) From this formulation the mass-weighted area-averaged field 

equations which were expressed both in terms of the two-fluid and of the 

diffusion, i.e., drift model were derived. 

3) The two-fluid model was formulated by considering each phase 

separately. Therefore, the formulation was expressed in terms of two 

sets (one for each phase) of conservation equations, i.e., in terms of 

six field equations: two continuity equations, two momentum equations and 

two energy equations. 

4) In contrast to the two-fluid model, the diffusion model was 

formulated by considering the entire mixture. Therefore, the formula­

tion was expressed in terms of four field equations: three for the 

mixture (continuity, momentum and energy) plus the diffusion (or void 

propagation equation) for one of the phases. 

5) The conservation equations, derived from the appropriate 

averaging procedure, take into account the effects of surface phenomena 

such as surface tension and surface shear and of surface processes such 

as momentum, heat and mass transfer at the interface. 

6) The diffusional model field equations in their dimensionless 



form were used to establish the similarity groups appropriate to separated 

flows. The significance of these groups was discussed. 

7) In addition to the continuity, momentum and the total energy 

equations, auxiliary energy equations, such as the internal energy, 

enthalpy and the mechanical energy equations were derived together with 

the appropriate "jump" conditions, 

8) It was observed that when the effects of diffusion and of motion 

are neglected the mixture total energy equation reduces to those derived 

by Gibbs for thermostatics. 

Part II: Stability Analysis 

1) The two fluid model formulation of Part I was used to develop 

a stability theory fcr a general separated two-phase flow system. 

2) The analysis takes into account the effects of surface tension 

and liquid viscosity, of mass and heat transfer at the interface as well 

as the dynamic effects of the vapor on the liquid film. 

3) Instability and wave formation criteria at the interface were 

established in terms of the generalized parameters which depend on the 

particular flow system. 

4) Furthermore, assuming that the most unstable mode is responsi­

ble for break-up of a thin liquid film a method for determining the break­

up length was developed. 

5) Results obtained are general so that one can use them for a 

particular flow configuration provided the coefficients are calculated 

properly. 

6) These results were applied to stability of 

a) viscous liquid flow down a heated inclined plane, and 



b) twc inviscid fluids over a heated surface. 

7) Viscous liquid film in free flow over a heated surface results: 

a) the surface tension has stabilizing effect irrespective 

of the configuration of the plate, 

b) the gravity has a stabilizing effect whenG <90 , and a 

destabilizing effect when9<90°, 

c) evaporation from the free surface of the liquid film 

has a destabilizing effect, while condensation has dual effects-one 

destabilizes the other stabilizes, and the relative importance of these 

effects was determined, 

d) as the Reynolds number decreases, i.e., as the film 

thickness decreases, and the heat flux increases, the thermal effects be­

come important and may become the dominant destabilizing factor, 

e) the effect of evaporation is to decrease both the 

critical and the most dangerous wave length and to increase therefore the 

growth rate of disturbances, 

7) Two-Inviscid liquids in parallel flows over a heated surface 

results: 

a) the interfacial phase change whether in the form of 

evaporation or condensation enhances the Kelvin-Helmholtz instability 

whereas it affects the Rayleigh-Taylor instability in the direction of 

stabilization, 

b) as an immediate result of the previous conclusion, for 

the case of the light fluid on top of a heavy one, the effect of evapora­

tion is to decrease both the critical and most dangerous wave length and 

to increase therefore the growth rate of disturbance. In contrast, for 

the case of the heavy fluid on top configuration the effect of evapora­

tion is to increase the wave length and to decrease the growth rate of 

disturbance. 
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APPENDICES 



APPENDIX A 

KINEMATIC CONCENTRATIONS 

The volumetric flow concentration of phase 2, 0 , is defined as 

the volumetric flow rate of phase 2 per unit mixture volumetric flow 

rate. Hence, by definition 

Jj SL-JLJA 
6 ~ - ^ . *** (A. l ) 

Qx ^ jjf ^ - n ^ A 

where Q^ and Q , (K = 1,2), are the total and K-th phase volumetric 
i K 

flow rates, respectively, while v is the K-th phase velocity vector 
K 

and n is the unit normal vector to the cross-sectional plane, A . 

Introduction of the area averages into Equation (A.l) results 

: :i 

(A.2) 
It - u) « >A « >> t <* «f.V-K»̂  

Similarly the mass flow concentration of phase 2, X , the quality, 

is defined as the mass flow rate of phase 2, VJ , per unit mixture mass 

flow rate, W , and can be expressed by: 

^ WA _ «.<4.»fc»> <\r^> (A.3) 

WT U-oO «ev-J» <\r,/> * x.<Aei>/<.o-iX> 

In Section 3.4.2, the mixture velocity v of the center of 
m 

gravity of the mixture Ls defined in terms of the total linear momentum 
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considerations. Substituting that expression in Equation (A,3) we can 

express the quality in terms of v . Thus, 
• , 

X = L C < «?»» <"•»-> (A.4) 

e^ v„ 
In the literature flowing quantities, though wrong, have been 

used very often to define the mixture properties. For example, the 

mixture density is defined by: 

o . 2l- (A.5) 
"> Q-, 

which in terms of averages can be expressed as: 

f,= U-*W<^v><vu> + * ̂ y><v»*v (A 6) 

U-°0 «V,*>\4 »t «.^**> 

Mien « p » "- p (K = 1,2) then the density defined by Equation 
K " K, 

(3.42) becomes: 

f j * n - * ) e,+ * e* (A-7) 

or in terms of the quality %, p becomes 
b 

r _ ' - •* , * (A.8) 

^ f. fx 

Static Parameters vs. Kinematic Parameters; 

From Equation (3.30, 32, 35) and (A.2, 4, 7), it is easy to see 

that in general 

oc (A.9) * P s c * * ; e*. - p, 

In effect after some algebraic manipulations it is not difficult to show 
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that 

tx^ : (A.10a) 

Q _ f (A.lOb) 

(A.lOc) 

where Ap = p1 - P2-

From Equation (A.10), it is evident that if and only if 

< V,̂ > - <V^> (A.11) 

and 

-4ceK̂ > - e K , K = 1,2 (A.12) 

which imply that the flow is homogenous i.e., the relative velocity 

between phases is zero, and that the mass density variations over cross-

sectional plane is negligible, only then 

*m A i c* * -t e ^ - e * (A-13) 

Although the latter condition, i.e., Equation (A.12), can be 

satisfied for incompressible fluids, the former one, i.e., Equation 

(A.11), never holds in two-phase flow systems. Therefore, the kinematic 

parameters B, X and p can never be used to represent the static parameters 
P 

OL C and p as it has been done in the literature. 
m 

Furthermore, Since a and C are expressed in terms of the local 
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parameters only irrespective of the past history of the fluid particles, 

they are only sensitive to local variations. However, 0 and x depend 

upon the past history of the fluid particles, and even under certain 

conditions 3 and \ ara entirely insensitive to the local variations but 

the channel or pipe input variations. This aspect can be best demon­

strated in the adiabatic two-phase flow of incompressible fluids. In 

view of the continuity requirements and in view of the definitions given 

by Equations (A.l) and (A.3), it is evident that at every section of the 

channel Band x. will be constant no matter what the local static con­

centration variations are. Consequently 6 and X will not be affected 

by local disturbances such as interfacial surface waves. However, since 

& and C depend on only on local parameters, they will be affected by 

local disturbances. 

From this brief discussion it can be concluded that unless we are 

not interested in over-all flow field rather than the local one, to use 

the "kinematic parameters in two-phase flow dynamic analyses will be 

incorrect. 



APPENDIX B 

INTERFACIAL BALANCE EQUATIONS 

B.l Interfacial Motion 

In general we can represent the motion of a surface by 

"?« r ^U, <\x%il) (B.l) 

In which 7 is the position vector whose components x,y,z define a point 

on the surface, and (u,,u„) stands for a pair of surface coordinates 

identifying a surface point. It is important to note that in the case 

of interfacial mass transfer the surface point (u..,u?) is not necessarily 

identified with a material surface. 

The velocity of the surface point having the surface coordinates 

u and u„ is defined by 

'U|iU*=cofl»t. 
* i * Jill 1 

By eliminating the surface parameters, u and u„ in Equation 

(B.l), we can express the surface in the implicit form 

^ X , ^ a > M -O (B.3) 

Differentiating Equation (B.3) with respect to time while keeping 

u and u? constant, we obtain 

^L+V^S0 < B- 4) 

u 
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in which we have used Kquation (B.2) for v_ , in view of the unit normal 
i • 1 

vector defined by 

A Vh 
n = (B.5) 

IVhl 

Equation (B.4) can be rearranged to yield the normal component of the 

interfacial velocity vector, thus 

avi 

IVVil 

It is interesting to note that since the right hand side of 

Equation (B.6) is determined from Kquation (B.3) alone, it is independent 

of our choice of the surface coordinates, (u , u ). Hence, for all 

possible surface coordinates, (u , u Q ) , normal component of the velocity 

of the moving surface is the same. 

B.2 General Balance Equation at the Interface 

The purpose of the balance equations for mass, momentum and energy 

at an interface is to provide connecting conditions between the solu­

tions to the mass, momentum and energy balances applicable in the separate 

phases i.e., fields. A number of theories have been proposed for deriving 

the general balance equation at the interface. However, depending upon 

the description of the interfaces, the balance equation has been developed 

along four principal lines. 

1. Some researchers, such as Gibbs [59] and Buff [60] viewed the 

interface from the continuum stand point. Interface was considered as 

a three-dimensional region in which all quantities are continuously 

changing and matching the bulk flow variables at the edges of this region. 



Later this point of view is extended by Slattery [41] to the more 

pract ical case, the dynamic situation. In his analysis Slattery assumed 

the interface as a three-dimensional region which separates the bulk 

portions of two phases, and in which the constitutive equations speci­

fying the material behavior differ from those applicable in the bulk 

portions of each phase. Evidently, this point of view requires the 

exact limits of the interfacial region and the knowledge of the constitu­

tive equations applicable in this region. However, lack of experiments 

confirming the limits of the interfacial region and as well as the lack 

of experimental data on the constitutive equations in this region at 

the present time limit the applicability of this theory to practical 

problems. 

2. In the second approach, which was developed by Scriven [61], 

(see also Aris [62, pp. 232-244]), the phase interface is regarded as a 

two-dimensional surface (possibly) containing mass. For this deforming 

surface Scriven wrote mass and momentum balances under the assumption 

that there was no mass interaction between the two-dimensional surface 

and the surrounding bulk phases. Although this approach was rigorous 

from the mathematical point of view, its full impact on the technology 

has not been realized yet because the Theological constitutive equations 

for the interface have not been established yet. Furthermore, the inter­

facial mass transport which was not accounted for in this approach can 

not be neglected in two-phase flow systems with a phase change. 

3. The third approach, which was initiated by Kotchinc and later 

rederived by Truesdel and Toupin [22, pp, 525-529], differs from the 

others in that the interface was visualized as singular surface with 
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respect to the quantities which are transported from one phase to another 

via interface. However, the derived general balance equation which is 

known as Kotchine's theorem does not take into account for the surface 

source term which contribute the over-all balance equations of the 

mixture. 

4. In an effort to unite these approaches Slattery [41] and Del-

haye [40] have considered the phase interface as a singular surface 

containing a distribu:ed source term. The derivation of the interfacial 

general balance which follows is an alternative approach to that given 

by Slattery and Delhaye, the discussion for this derivation is based on 

a similar development presented by Truesdell and Toupin [22]. 

Consider a material volumeV(t) which contains a singular surface 

A.(t), Figure 13; the general balance equation for a quantity lean be 

wr i 11 en as 

A . ((( e W i ^ - (( -? - ft JA**"(l(e *A{y~ f ®' "T A~ (B,7) 

l/Li) AW UU) Ult) 

where 0 indicates influx of the quantity (' through the bounding surface 

» 
A(t) ofV(t), ty the rate of generation of the quantity per unit mass at 

each point throughout the material volume U~(t), and n the unit normal 

vector directed outwardly with respect to the boundary surface A(t). 

Finally, n„, is the outward unit normal vector to the boundary curve, F.(t), 
•f » g • r 

located in the plane tangent to the interfacial surface, A.(t), and ~\ is 

the surface flux tensor inwardly directed through the interfacial bound­

ary curve, |.(t). Indeed 9 takes into account for the possible 



distributed surface source term which Kotchine's theorem does not 

contain. 

Figure 13. Material Volume Element V(t) 

A (t) 

Figure 14. Element asV(t)—*-0 

Using the divergence theorem for surfaces on the line integr 

and the generalized Reynolds transport theorem on the left side of 



Equation (B . 7) , we obtain 

l?U) AW MW)Kl 

A 

jj + . « =iA H- f J f t d l > . j v».§ =U 

AW u-ai A-u> 

where 7 is the divergence operator on the surfaces. 

We now assume that in the neighborhood of A.(t), the quantities 

in the volume integrals are bounded while on each side of A.(t) the 

quantities in the surface integrals approach limits that arc continuous 

fanetions of position. These assumptions are not arbitrarily brought 

but they are entirely consistent with the singular surface model. Under 

these conditions, we let the areas A (t) and A„(t) shrink down to A.(t), 

so that the total volumes (t) -+ 0 while the area of the interface, 

A. (t)3 remains finite in the limit, Figure. 14. The volume integrals 

vanish in the Limit, and Equation (B.8) becomes 

ft r y *»K* &*- *o-a* *+*-**+
 V , . G ] J ^ ^ G (B.9) 

" z: 
*iM 

Since this relation holds for any area A.(t), and since the 

integrand, by assumption, is continuous, it must vanish identically to 

yield the general balance equation at the interface. Thus 



352 

Z_ ^ C * * - * 0 • n * * * + * *v **• ** - v - * e 

ttat 

This is the extended Kotchine's theorem including the distributed 

surface source term, §, From Equation (B.IO) the balances concerning 

mass, momentum and energy can be obtained with the proper identifica-

—> — 
tions for 'i',0 and 6. 

B.2.1 The Mass Balance at the Interface 

To obtain the overall mass balance from Equation (B.IO), we use 

the identifications for i|i and 0, which are given in Table 3, and Equa­

tion (B.IO) takes the form 

J eK iww-s-o •** — *=•• Si—> (B-U) 

in which v*&. . stands for the surface source term concerning with 
(ma s s) 

mass capacity of the surface. However, by hypothesis, surface is 

singular, i.e., surface has no mass capacity, then it is evident that 

e ^ i-° (B'12) 

Under this condition the inter facial balance follows as 

1 

^ ^{*K~*i) ' ^ - 0 
(B.13) 

K = v 

•"-Since this section involves primarily with surfaces, we dropped 
the subscript i indicating the variable evaluated at the interface. 
Nomenclature is assumed to be understood. 



Defining by *&«, the mass flux outward from the K-th phase, if: 

follows that 

- » --» ™k = ^ C ^ - U - ; ) - * t , K = 1,2 (B.14) 

With t h i s n o t a t i o n Equation (B.13) r e q u i r e s t h a t 

vn4 + vv\ fc - o (B.15) 

which simply states that the mass of phase 1 which leaves the phase 1 

across the intorfacial area element is equal to the mass of the phase 2 

which enters the phase 2 across the same interfacial area element. It 

should be noted, further, that Equation (B.13) is the same as the 

Stokes-Christoffel condition, which has been used for the condition 

-* ^ 
across the shock waves moving with the speed, v.-n.. 

B.2.2 The Momentum Balance at the Interface 

To obtain the general momentum balance at the interface, we use 

the identifications for '!' and 0 given in Table 3 , together with the 

general balance equation, i.e., Equation (B.10). Thus 

JL 

L OJW-*\)-fc* V* - *T*.?U..a_^. 9ima^. (B.16) 5 
k-l 

rhich in view of Equations (B.14) and (2.3), can be expressed as: 

m 2 -.. 
kci 

K+ ^ * • $ ! » - * » • « * — v , . ^ . , , ( B - 1 7 ) 

in which the terms appearing on the left side represents, respectively, 

the momentum exchange between two phases due to the interfacial mass 
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transfer and due to the thermodynamic pressure and the viscous stresses 

while the term on the right side stands for the interfacial momentum 

source term having the dimension of force per unit area. 

In reference ft>i ] » see also references ["41 and 62, pp. 230-244], 

the argument, which has been used in constructing a constitutive equa­

tion for the Newtonian fluid, was modified to the moving surfaces in 

order to express the effects of the surface stress tensor, 9, 
(mom) 

For a Newtonian interface, the appropriate expressions for the inter-

facial stress have been derived. For example, Equation (10.23.3) of 

reference [62] expresses the surface stress tensor in terms of the 

most general linear function of the surface rate-of-deformation tensor 

with the proportionality coefficients of the surface tension and of 

the surface dilatational and shear viscosity. Basically these three 

coefficients are the surface transport properties and should be supplied 

as functions of the thermodynamic state variables. However, from 

practical application standpoint the general expression for surface 

stress tensor Is limited because experimental data are not available on 

surface shear and dilatational viscosities. Thus, although the effects 

of these two surface viscosities can be formally considered their 

effect at present, cannot be evaluated quantitatively. Consequently, 

in this work we shall consider only the static effects, i.e., the effects 

of the surface tension, .-., since the values of c arc available. 

With the surface stress expressed only in terms of the surface 

tension <j, the stress tensor becomes 

C ^ *- *- * (B-18) 



where a is the metric tensor of the surface, a characteristic term of 

which is given by 

— AJL _1A _̂ JL .̂ *- l i t ** + 

where a, 3 = 1 and 2 . 

Taking the components of the surface stress tensor in the space 

and then evaluating the surface divergence of it, one can express the 

surface momentum source term as: 

19) V,- ^ W ) — [ i Jtp JU -L [$ ( c i . » i ^ t« i . F l \1 rl" (B. 

Here r is the position vector defining the surface and is defined by 

The vector r which is defined by 

* <* \ 
" -- , (B.21) 

£ \^K /U.t : wOv\st, 

— j — > 

is tangential to the curve u~ = constant at the point r. Similarly Ty 

is tangential to the curve u, = constant and given by 

(B.22) 

The quantities denoted by E,F,G,H are called the fundamental magnitudes 

of the first order, and they are given by 

''•Detailed discussions of surfaces may be found in Weatherburn [63] 
while use of the surface tensors in fluid dynamics may be found in 
Aris [62 ]. 
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Es r, .rt iP 3 r,.r, •, w = ̂ .^ ; w -.* I n*n.l (B.23) 

3£ is the mean curvature of the surface at the point, which may be de­

fined in terms of the principal curvatures,^, and £«, as: 

JL*» L I k.t * X-.) (B.24) 
gi. 

Referring to the surface momentum source term it is easy to see 

that Equation (B.19) expresses the resolution of the surface resistance 

into tangential and normal components. Although the surface stress is 

defined on the interfacial surface, because of the curvature it gives 

rise to the normal interfacial shear. Finally, to obtain the momentum 

balance at the interface we substitute Equation (B.19) in (B.17). Thus 

i. 

™vc ^K + ^„. "» * * \w- "£w*$w « i X. C' vv; + ( B . 2 5 ) 

i f - i lu i . f i ) vr.Ui.-r » }]*-
HiL au, i u * aa* **i , J 

Since the momentum balance equation is a vector expression, it 

is interesting to see the normal and tangential components of it. 

Norma1 Compcneat. To obtain the normal component we multiply 

Equation (B.25) throughout by n,, the second term on the right hand 

side disappears since n-i-r-, = n, Tn = 0, and using the resulting rela­

tions together with Equations (2.3), B.14) and (B.15) it can be easily 

shown that the normal component of the interfacial balance is given by: 

A , C £, -"?*) ' «* •• L^, -f.) V v/".̂ ,.. - Z * = JL K. •.- (B.26) 



357 

Further application of Equation (A.14) results in 

U -£>) . *,=- A> M - (B.27) 
e*e> 

where Ap = Pi~P-? , which is by definition, see footnote on page 4-0 

is positive. 

Finally, substitution of Equation (B.27) in (B.26) and re­

arrangement yieLds the pressure difference at the interface, thus, 

P, - K -- C ^ , * * - ' * ^ } * vSC-AL v J.X.P- (B.28) 

which states that for the mechanical equilibrium at the interface pressure 

difference in the bulk phases must be balanced by forces due to the 

normal contribution of the viscous shears, the mass transfer and due to 

the capillary. It is interesting to note that whether m,>0, i.e. evapo­

ration, or rru<0, i.e. condensation, force due to the interfacial mass 

transfer acts only in one direction. This force is called the "vapor 

thrust" at the interface. Furthermore, we note that the sign of the 

capillary force depends upon the curvature of the interface, which be­

comes very important for those flow geometries where the area to the 

volume ratio is large, i.e., thin liquid film flow. In effect, for a 

static film with no interfacial mass transfer, m^ = IT^ = 0, the first 

and second terms on the right side drop; thus we obtain from Equation 

(B.28) 

P» -fr\ -= -l KZ~ 

which means there must be a difference in normal force (that is, pressure) 

on either side of a film equal to 2" times the mean curvature if the 
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film is to be kept stationary. 

Tangential Components. To obtain the tangential component of 

the momentum balance at the interface we shall multiply Equation (B.25) 

throughout by the tangential vector at the interface. However, on the 

interface one can define two principal tangential vectors, one in the 

U-. direction whereas the other in the U2 direction. For the present 

purpose this difference is immaterial because we can always define a 

tangent unit vector t, in the tangent plane as a linear combination of 

—' ~~* A 

r-j and i"2. Therefore, multiplying Equation (B.25) through by t, the 

first term on the right side disappears since t-n = 0, and we obtain 

•fti(.».-£*)-t + ^«*•-vo <- *-*>.} • t - U ' . - ^ - M - * • = ( E - 2 9 ) 

-. L f ?, • t ( *. * . - f. k. | + ? k i ( E i _ * i. \ 1 vr 
m- *- K auv eu^ ' v du». out, i J 

Since 

^ i ; =s 0 i f i * j 
(B.30) 

- 4 i f L = j 

then 

( I - n i * t = 0 (B.3i) 

Furthermore, n o - s l i p cond i t ion for the t a n g e n t i a l components of 

the v e l o c i t y vec to r s at the i n t e r f a c e r equ i r e s the f i r s t term on the 

l e f t s ide of Equation (B.30) to van i sh . Hence, from Equation (B.30) 

wc ob ta in the t a n g e n t i a l momentum balance as : 



which states that due to the surface tension gradient there must be a 

stress difference between the bulk phases. Therefore, the variation in 

surface tension from one point to another leads to the appearance of 

tangential stresses on the interface as described by Equation (B.28). 

The effect of surface motion due to the temperature gradient at the 

surface (thermo-capillary action) and due to the surface active sub­

stances is discussed in detail by Levich [56 f pp. 384-393]. 

B.2.3 The Energy Balance at the Interface 

— > 
Using the proper identifications for ^and 0 given in Table 3 

together with the general balance equation given by Equation (B.10), 

the general energy balance at the interface is obtained as: 

Y_ [ e k ^ - 5 0 U ^ } ^ - i v f . ] . ^ — v.-*«,, <B-33) 
Kxl 

which, in view of Equations (B.14) and (4.3), can be expressed as: 

I 

™* l ^ + K) ¥ ? ,3 * v ^ S ^ A ^ - C ^ - S O - S ^ - V * . ^ 
* (B.34) 

Here, the term on the left side represents the energy exchange at the 

interface due to the mass transfer, mechanical work and finally due to 

the conductive heat transfer while the terms on the right side accounts 

for the interfacial source term. 

Parallel to the single-phase flow theory, where the rate of work 

per unit volume of the fluid is expressed by divergence of the term 

(z-u), we can express the energy source term on the interface by: 

I 



7 * - 8 U N « ^ - L o ^ / ^ ] (B.35) 

which in view of Equation (B.18) can be expressed as 

36) ^ - G u ^ - U ^ - ^ - ^ j ^ r ^ u i L .si. v ^ l £ ^ - v ^ YU*;1 (B< 

Combining Equations (B.30) and (B.32) we obtain the energy 

balance at the interface. Thus 

V [ e* t **•+., I U„v V5) v („ + *-fc Jfc-t*w- ?.]- «*. = (B.37) 

-s 1 Jt«- Jr-J*%* -J— f f i ^ . t j U t a l E l - f i \ 1 .V J; 
H*. L obi, ^ ^ J ^u K 1 ^ ' J 

4 It vr \?i . fu * 5Z f r J w v i - * ^ ^ . v « \ ( f e * . _ £ *- \ ; - V1; 

The terms on the left hand side of Equation (7.2) stand for the 

convective energy transport, the energy transport by conduction and the 

work done by the surface forces. Whereas the terms on the right hand 

side stand for the part of the energy used in increasing the internal 

energy, and part of the energy used in. setting up the motion. 
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APPENDIX C 

TWO-DIMENSIONAL GEOMETRIC RELATIONS 

Here we shall derive two-dimensional geometric relations in 

Cartesian and cylindrical coordinates so that they can be used in the 

analysis of two-dimensional plane flow and the axially symmetric annular 

flow. As it was discussed in Section 1.2 and illustrated on Figure 1, 

these two flow regimes are separated flow patterns of great interest to 

various technologies. 

C.l Cartesian Coordinates, i.e., Plane Flow 

Physical system appropriate to plane flow analysis is illustrated 

on Figure 15. 

Figure 15. Typical Plane Flow Model 



A liquid, i.e.., phase 1, flows downward on a plate and concurrently* 

with the vapor phase, i.e., phase 2. A liquid mass flux m n e, leaves the 

liquid film through the porous wall, and a mass flux m,., leaves it at 

the interface, i.e., evaporation process, or a vapor mass flux rru . leaves 

the vapor phase at the interface, i.e., condensation process. 

Plane flow illustrated in Figure 15 is general and, therefore, 

applicable to external as well as internal flow systems. In internal 

plane flow situation Figure 15 represents a typical element of a system 

which consists of a series of parallel plates, such as packed-tower 

systems used very frequently in chemical processes. Therefore, symmetry 

axis between two plates located on distance H, from the plates are just­

ifiable. In external plane flow situations, however, distance 2H, be­

tween two plates, can be taken as infinite such as film cooling of 

external surfaces. 

Considering a typical plate, we shall derive the following geomet­

rical relations appropriate to two-dimensional plane flow, i.e., any 

variations in the z-direction will be neglected. 

C.l.l Unit Vectors 

From Figure 15 it is easy to see that the interfacial unit tangent 

A 
vector t^, can be written as 

i; -- Co. 9 I * ^.-v 0 l ^ Lo,0 U * fc»«S I) ( C , 1 ) 

where 8 is the angle between tangential direction and the x-axis. 

Defining by f], the liquid thickness measured from the plate, it 

*Wfe note that since the formulation is general, the flow of liquid 
downward or upward and the flow of vapor concurrently or countcrcurrently 
are immaterial. 
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follows tha t 

l^u, ±1 (C-2) 

c-s-ixfcrf* (c-3) 
Using these expressions in Equation (C.l), interfacial unit tangent ex­

pression becomes 

^-M&)4f'[**l£Wl < c - 4 > 
From Figure 15 and view of Equation (C.4) the interfacial unit 

normal vector n-i • , directed outward from the liquid, can be expressed as 

M^rfr-tur-n ^ 
Since ^ ^ =-nii> then 

«--[•• t-^Tt i £ r - n (c-6) 

Unit normal vector n., at the external surfaces, i.e., at the 
le ' ' 

bottom plate is simply given by 

*L , , j (C7) 

Similarly perimetrical unit normal vector n^*F, (K = 1, 2; 

•£ = e, i) , defined as the unit normal vector to the perimeter ^ a , directed 

outward from the K-th phase and located in the cross-sectional plane A 

can be expressed frorr Figure 15 as 



A A *V 'V ,\. A 

n,ij-~ nfc:j = 4 *» ̂ 5 = Wi«.a-4 (c.8) 

C.I.? Concentrations 

Using the area fractional concentration expression, i.e., Equa­

tion (4.30), from Figure 15 we obtain 

ex -^ H~V « 4- 1 (C9a) 
H H 

and 

I - x - -. f (C.9b) 

C.1.3 Area Elements 

General expression for an area element at the boundaries was given 

by Equation (4.12). Using Equations (C.5) and (C.8) in Equation (4.12) 

we obtain the interfaeial area element, thus 

«U|i«|\*(il)tfk J J J . <c-10> 

and 

3 7 l : " L ' * t - ^ ) J ^2 ( c a i ) 

We note tha t in two-dimensional plane flow 

J Si -^ J 4> (C.12) 

Similarly, using Equation (C.7) in Equation (4.12), it can be 

shown that the area element at the external boundaries are given by 
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J A , | e ^ J lt 4> (C.13a) 

d A ^ - - . 0 (C.13b) 

Equation (C.13b) simply s t a t e s t ha t the second phase , does not come in 

contac t wi th the e x t e r n a l sur faces which can be seen from Figure 15. 

C.1.4 Surface Balance Equations 

From Figure 15 i t can be seen tha t i n t e r f a c i a l surface coord ina tes 

( u , ^ u p ) , app rop r i a t e to two-dimensional Ca r t e s i an coord ina tes can be 

taken as u-, - s and U2 = z, where s i s defined as the a r c - l e n g t h along 

the i n t e r f a c e . With t h i s n o t a t i o n and in view of Equation (B.20) , i n t e r -

—> —> 
f a c i a l tangent vec to r s r j and r 2 , defined by Equations (B.21) and (B.22) 

become 

?,> i l t t l ; , Ci (C.14a) 

A 

^ - It (C.14b) 

By means of these equations, the fundamental magnitudes of the 

first order defined by Equation (B.23), can be written as 

* (±^W. f i L \ \ » < f 3 o (c.i5) ~ ITT) + I T T i " < 

»n(feM£r/"- •> " . 4 

In view of Equations (C.14) and (C.1.5), from Equation (B.19) this 

i n t e r f a c i a l momentum source becomes 

^•i^-u^^'Su) (ca6) 



F i n a l l y , s u b s t i t u t i n g Equation (C.16) in (B.25) we ob ta in the 

i n t e r f a c i a l momentum balance equa t ion , i . e . , momentum "jump" condi t ion 

app rop r i a t e to two-dimensional Ca r t e s i an c o o r d i n a t e s , thus 

1 A 

Y " ^ K I l,rKi * *Vh S ' W K i ' ^ ; ' ^ ; .* JL*sr o,; v ± £ 4 ; (C17) 

where fc. is the mean curvature of the surface at a point of interest and 

given in reference [56, pp. 379] 

Similarly, from Equation (B.36) together with Equations (C.14) and 

(C.15) the interfacial energy source becomes 

^ • © i « ) « -( JLK^- tf;«*.L * I;- ̂ ^J3 ) (C.19) 

and the interfacial energy balance equation becomes 

>̂ m , ; t U R l t i L ) t ( V V u ^ > . t ; . ^ i ^ , (C20) 

- j. it ̂  \>; • * u +• t; -

where X is given by Equation (C.18) . 

C.2 Cylindrical Coordinates, i.e. Annular Flow 

Physical system appropriate to annular flow analysis is illustrated 

in Figure 16. 
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I 
• 

Figure 16. Typical Annular Flow Model 

Considering the annular flow model illustrated on Figure 16, we 

shall derive the necessary geometrical relations to be used in the 

annular flow analysis;. It is assumed that flow is axisymmctric, i.e., 

nothing changes in the circumferential direction 0. 

C.2.I Concentrations 

Using the area fractional concentration expression, i.e., Equa­

tion (4.30), from Figure 16 we obtain 



,,..,. <!^ir-o-^r 
and 

*-
ĉ  :._- JlL (C.21b) 

where D, is the internal, i.e., interfacial diameter whereas D is the 

external, i.e., pipe diameter. 

C.2.2 Unit Vectors 

Following the same path taken in Section C.1.1 we obtain: 

A 
interfacial unit tangent vector t^, 

^ M ^ l f l - ^ i ) - ] (c-22) 

where e and e represent the unit vectors in the axial and radial direc x r 

tions, respectively. By means of Equation (C.21b), Equation (C.22) can 

be expressed in terms of a, thus 

t; = [u(i.Mi)J [fc^i. *£)*,] (c. 23) 

interfacial unit normal vectors, n-j. and n„ . , 

«--^K<K^n^( f .—*)- - - ] (c-24) 

external unit normal vector, 
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" - - L ' ^ ( i u f ) ' J " ' L - ( ^ r ) - ^ ' J ^-25> 

A 
perimetrical unit normal vectors, n„._ 

Kit 

C.2.3 Area Elements 

(C.26) 

Using the general area element expression given by Equation (4.12) 

we obtain: 

interfacial area element, dA/i 

J A | ; -, [ u ( i ^ £ }*]"'* J I J K (c.27) 

we note that in annular flow geometry p£ is given by 

J.V-. kd-t - &*£ J 4" (C.28) 
* J. 

In view of Equation (C.28), Equation (C.27) 

JA|; . [ u ( £ ^p-)*]'^ ^~- J+ J - < c - 2 9 > 

consequently 

^11 -- h + ( - ^ IS^ f 'ShS -i + (c.3o) 

Externa l a rea element dA,/e 



dA,L.[(v(J.%)l]"tJt6J* (c.31) 

But 

JJ.= h.A+ (C.32) 

Substituting Equation (C.32) in Equation (C.31) we obtain 

^ It. L * ciK i. / J •»• 
^AJI , r , * f 4 fc^v-r ^ j±, (c.33) 

Since the second phase has no external surfaces, then 

^ ,e-0 (C.34) 

C.2.4. Surface Balance Equations 

Similar developments made in Section C.1.4 can be followed to 

derive the axially symmetric cylindrical coordinate representation of 

the interfacial balance equations. As a result it can be shown that the 

interfacial momentum source term becomes 

7.-0c^,--li)tr^+ If tO 

and the interfacial momentum balance equation becomes 

(C.35) 

^ * * ; V , v ( H k ; * - * * . ; ) • *wi - ± ^ ' * . ; v *_" t ; (C.36) 

K-.i 

where the mean curva ture?c > is given in re fe rence [56, pp. 337] 
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i! ( Mr \ 
JL* , _ £ "X ^ ' (C37) 

j ^ / Kr« 
<Jx*" V J. 

wi~ f r ^ / o . ^ \ iM^ W[h(^)}'\ 
Finally, the luterfacial energy source and the energy balance 

are given, respectively, by 

¥.•&««., = - (/**- ^.tty^U- ̂ pk ) (C.38) 

u. 

^ •**;(."*;* ̂ - ) ̂ f * ; * H; 5* - i«-^«)-*w- (C"39) 

-*» * 'J ^ c 5 
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APPENDIX D 

ESTIMATE OF INTERFACIAL EVAPORATION 

In order to estimate the thinning of the liquid film along the 

flow length L, we use. the steady state liquid film continuity equation, 

thus from Equation (5,8a) and Equation (11.18) for a liquid film flow­

ing on a flat plate we can write 

— 17 *,<*.»>) - — -- - * IY.. - - - i ^ (D.i) 
kt-l<_ 

where G is the flow r a t e per u n i t l eng th . Equation (D.l) expresses the 

decrease in the flow r a t e per un i t length t h a t r e s u l t s from vapo r i za ­

t ion a t the i n t e r f a c e . I n t e g r a t i o n of Equation (D. l ) r e s u l t s in the 

follow i ng express ion 

% b > p - U w ^ __LLl L (D.2) 
A t-u 

In order to estimate the percentage change of the initial flow rate G , 

Equation (D.2) is written 

L <D*3> 
c . 
about the thinning effect of 

calculation. Using following 

ô M u 

For the purpose of having some idea 

vaporization, we can make a representative 

values: 
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Wall heat flux, qn . Cal/cm
2Sec 0.753 

*le 
Heating length, L, Cm 50 

Initial liquid flow rate, G , Gram/Cm Sec 10 

Heat of vaporization, Ai-,2» Cal/Gram 560 

Substituting these numerical values in Equation (D.3), one can 

find the fractional change of initial flow rate G 
o 

'*"'"* ^ - 0 . OObfl (D.4) 
v*c 

Since G = T\p~<V->t then approximating <V,> - <v\. i-, i t can be 

seen t h a t , in terms of the i n i t i a l fi lm t h i c k n e s s , the change due to 

v a p o r i z a t i o n can be approximated by 

'? " ̂  - o. o o fa^ (D.5) 

n* 
This calculation demonstrates that the thinning effect of vaporiza 

tion is small enough to be neglected. 
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APPENDIX E 

DETERMINATION 01 X's FOR THE INSTABILITY OF THE FREE FILM FLOW 

In Section 12.3, AF, A«P»and Cov(mom K) , K - 1,2, are calculated, 

Here, we shall use them in Equation (11.36) in order to evaluate X's. 

Performing the differentiations which are necessary for the de­

termination of X's, aiid expressing (1 -a) in terms of the film thick­

ness 1] we obtain from Equation (12.19) 

^ £ P 6i?<tf,> k.AT <tf,> 

I1, *t14 Y ^ X *7X
 L L , , V I * -

6 < J\ > 

.-—— « - i e. i q (E.4) 
ikP 

whereas from E q u a t i o n ( 1 2 . 2 1 ) we o b t a i n 

X 
j >*. 

( E . l ) 

1 ^ 1 , - i V j (E.2) 

* AC ( E . 3 ) 

T Pi 1 S a (E.5) 

J_^A!2 - 0 (E.6) 



= & \ ( E . 7 ) 
^ t **Ji \ 

and f i n a l l y i'rom Equal i n n ( 1 2 . 2 2 ) 

i L c ^ U o M 4 ) = , ? <»»>fc Cfi.8) 
tic* ' 5 

i _ u « n v--< j - \ e, <*i> (E-9) 

J _ ^ N K ^ ^ J - O (£-10> 

Substituting Equations (E.l-10) and (11.23) in Equation (11.36)one 

can show that X's are given by 

Xi * V '1J ( E . l l a ) 

X A ^ 0 (E.ll .b) 

w t * r \- ^ (E. l ie ) 
4 ^ 'I L i u ' ' . U 

X4 . s jLf t, <.--,, (B.iw) 

X,- = g, (E-ne) 

x t t = •? 5.il£ «. J . > u </,•> (E-nr> 
r (o -i Li,. 



x7 -_- 1 1*1 *T __ 
x f iu, 

( E . l l g ) 

X , -* - 3 W, LT V» Wy &T ^ _ J _ . „ ^ _ ^ _ , ( E . l l h ) 



APPENDIX F 

DETERMINATION OF X's AND Y's FOR THE INSTABILITY OF TWO INVISCID FLUIDS 

Since the flow configuration fits to the horizontal plane flow 

model, see, Figure 10, under the assumption stated in Section (13.1) it 

can be shown from Equations (11.3a and b) that the generalized force 

functions F^ and F^ are given by 

F, _, _ _L e, H g 

i. OK. 

whereas averaged pressures can be given by 

<*V>« h i - I e ^ u - . j * 

(F.l) 

(F.2) 

(F.3) 

Furthermore, since the velocities are uniform within both phases, in 

view of Equation (6.3), it is evident that 

i-ci\?-L*i0*v>K)— O , K = 1,2 (F.5) 

Forming differences of generalized force functions and pressures, 

we obtain 

r ^ - i H g Af i i (F.6) 

A<w>*= ( W v - ^ 0 - 1 e. w ̂  [ s , i M M e ^ j <F-7> 
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In v iew of E q u a t i o n ( 1 1 . 6 ) , A<P> becomes 

A<V-> , <TH V * t. j " . ^ LV
 t 1 v a U t . ( F > 8 

i * * L. ^ - v ) H & - ] £ - i « # t » — . " r.j(F. 

Performing the necessary differentiations which will be used in the 

derivation of X's, we obtain from Equation (F.6) 

V 4 F ..U^j (F.9) 

v aJ 

and 

whereas from Equation (IT, 8) we obtain 

» ^ (F.10) 

*A<*> s a. /. J i ^ I f __» Ai , u a ^ (F*U) 

*> ^ < H > - - M (F.12) 

»( **£') 

<* A <H> _ (F.13) 

Substituting Equations (F.9-F.13), (F.5) and (11.11) in Equation 

(11.36) one can express X's as follows: 

X^ — V" W (F.14a) 

X -. 0 (P.14b) 
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X*-, a / AiL v It** \ <F-1 4 d) 

X* » . A - «. _>_*•_ (F.14e) 
t - ^ 

x u - : _ f ^ t »+.) hAL _i (F.i4f) 
\ <- •* < / i i 1 L u - <r rt1-

x 7 , _ ;' _ j _ + . j _ j J i iAL „ J (F,i4K) 

Xg --- 0 (F.14h) 

After having calculated X's above, now we can proceed with the 

calculation of Y's. In view of Equation (11.46) and X's derived above 

one can show the Y's can be given as follows: 

(F.15a) \ r -
ML + 

ffc vv 

\ 
-is- „ _ t ^ _ 

v i= 

*_L VI 
4 A (F.15b) 

i V » - » / H ' K "lyt-^J g^ 

(F.15e; 
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Vi y 

Y* = _ *'x *"* Wi.^T (Ftl5d) 

We note that in the absence of the inter facial mass transfer, that 

is, when q = 0, then Y^ and Y, become zero. However, with the intro­

duction of even very small heat transfer these two terms become different 

from zero, and Yo >0 for evaporation. Hence, according to the necessary 

stability condition the interface will be unstable no matter what effects 

of other variables are. This is inconsistent with our first model, the 

free film flow, where it was seen that viscous effects dominates Yn and 

Y,, and according to Chapter 12 Yo is always negative whereas Y, was 

positive. Furthermore, we note that the effects of the interface mass 

transfer on Y2 and Y, were so small that they could be neglected in com­

parison with the viscous effects. 

In order to be consistent within the present model we shall assume 

that 

Y ^ O (F.16a) 

and 

Y* ^ 0 (F.16b) 
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