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•SUMMARY 

An extensive finite element analysis has been undertaken to 

verify the integrity of a many-sided fracture toughness test, 

namely the double torsion test. Previous experimental work with 

this test has shown that: the use of relatively thin sectioned 

specimens can be permitted. The section thickness is considerably 

less than that associated with conventional techniques, while 

the test examined also simplifies the determination of the fracture 

toughness (K _ ) . KT_ values, which are independent of the crack 

length, have been obtained for glasses, ceramics, polymers, and 

a variety of metals and alloys. The finite element analysis 

involved shows that excellent correlation between the numerical 

and experimental results can be obtained. The maximum stress 

intensity factor is shown to be almost independent of crack length 

over a considerable range. A generalized calibration equation is 

provided for this test. 

Since the double torsion test specimen usually contains a 

curved precrack and a non-planar loading condition, an extensive 

three-dimensional elastic analysis has been performed to investi

gate the dependence of the stress intensity factors upon specimen 

geometry and loading condition as well as crack size and shape. 

The complicated stress distribution, side-groove effect and free 

surface effect have also been included in the analysis. In order 



to assure a high degree of accuracy of the results, a special wedge 

element embedded in the elastic crack front singularity has been 

developed for this elastic analysis. 

To sa t i s fy the small-scale yielding fracture c r i t e r i o n , the 

crack front p l a s t i c i t y was invest igated through a two-dimensional 

equivalent model and through a J - i n t e g r a l evaluat ion. Results show 

that the crack s ize requirement of ASTM standard t e s t s can be held 

for the double torsion t e s t . However, for th is t e s t , the crack 

s ize requirement i s seen to be an extremely conservative requi re

ment as compared with the ASTM standard fracture toughness t e s t s . 

In addit ion, the role of fracture toughness c r i t e r i a and of the 

specimen thickness requirement, as well as of the fracture growth 

surface appearance have also been discussed a t some length. 
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CHAPTER I 

INTRODUCTION 

The double torsion test technique was originally developed by 

Outwater and Gerry [1]* at the University of Vermont to determine the 

fracture toughness of glass. The test has been successfully applied 

to other materials, such as ceramic materials [2,3] polymers [4,5], 

composite materials [5,6], zinc based die casting alloys [7], cast 

and wrought aluminum base alloys [8,9,10], steel, titanium [11,12], 

certain cast irons [13,14,15], and tool materials such as tungsten 

carbides [16,17]. As a whole, the results obtained have correlated 

well with those provided by standard ASTM methods. 

The double torsion (DT) specimen is essentially an elastic 

plate containing a crack with a curved profile. Based on the prin

cipal of conservation of energy, Outwater and Gerry [1,10] derived a 

fracture toughness (Kj^) calibration equation for the DT test. The 

basic calibration equation which will be discussed in Chapter III, 

implies that the stress intensity factor (SIF) is independent of the 

crack length. This feature could have some valuable assets, for 

example, simplifying the measurement of KJQ when compared with current 

standard ASTM tests. Additionally, several. Kj^ values may be obtained 

^Numbers in brackets designate references at the end of the disser
tation. . 
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from a single specimen. This in turn leads to the exciting possibi

lity of mapping KJC values along a particular orientation, for example, 

along or across the rolling or forging direction in a wrought part. 

It will also be seen that a further advantage of the test arises from 

the fact that it permits the measurement of Kj£ after or before a sub-

critical crack growth test [18,19]. The DT test has thus become in-' 

creasingly popular especially with investigators working in ceramics 

[20,21,22] and indeed has been recognized in several texts in the 

area of brittle fracture mechanics as a widely accepted technique, see 

for example Lawn and Wilshaw [23]. 

The somewhat complex nature of the crack front configuration, 

the loading conditions and various other factors, such as the side 

grooving and the plastic zone size, render the interpretation of the 

stress state, and the nature of both crack formation and extension 

difficult. The main objective of the present investigation is to 

verify the integrity of this versatile fracture toughness test as well 

as to provide a fuller understanding of the factors mentioned above. 

An extensive finite element analysis has been performed to meet this 

objective. In order to assure a high degree of accuracy of the 

results, a special wedge element has been developed to represent the 

elastic crack-tip singularity. The double torsion finite element 

model assembled is composed of these special wedge elements around the 

usually curved crack front and regular isoparametric solid elements 

elsewhere. The stress intensity factor, K, is calculated from the 

displacements in the special elements. The new special collapsed 



fifteen-node elements used in the present analysis were modified 

from a former special collapsed six-node element which has been 

developed by D. M. Tracey [24]. 

Chapter I will serve as an overview of the DT test. Chapter 

II deals with the basic concepts of linear fracture mechanics and 

a brief survey of different finite element techniques that have been 

already developed for the fracture analysis. 

For a valid KJQ test, the testing procedures and specimens 

need to be appropriately specified. Some important features are pre

sented in Chapter III ranging from the testing calibration to the 

KJC criterion. Some other fracture toughness tests are also included 

for comparison. In view of the stage of development of fracture 

toughness testing, a certain degree of speculation could not be 

avoided. This is due to difficulties in understanding the observed 

phenomena. Where appropriate, speculative discussions presented in 

Chapter III are limited to the explanation of size effects and using 

the KJC criterion for the mixed mode application. It should be noted 

that in testing tough materials of moderate yield strength, the 

required dimensions of the ASTM specimens generally are a major 

limitation in determination of Kic• 

Chapter 17 contains a complete description of the formula

tion of the three-dimensional finite element model as well as the 

special wedge element. In Chapter Vjthe solutions obtained using thi 

new approach are compared with. TraceyTs six-node element solutions 

and other published numerical solutions. In addition to using this 
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s p e c i a l e lement , i n a few c a s e s , the s t r e s s i n t e n s i t y f a c t o r s for 

the specimens cons idered a re a l s o c a l c u l a t e d by a method of u s ing 

d i s t o r t e d co l l apsed q u a d r a t i c e lements [25] and a l s o by u s ing d i s t o r t e d 

n a t u r a l q u a d r a t i c e lements [ 2 6 ] . The d i s t o r t e d q u a d r a t i c e l e m e n t s , 

which a r e shown to embody the i n v e r s e square roo t s i n g u l a r i t y c h a r 

a c t e r i s t i c , a re s i m i l a r to those developed by Henshe l l and Shaw [27] 

and Barsoum [25 , 2 8 ] . The DT model wi th a q u a r t e r - e l l i p t i c a l or a 

s t r a i g h t crack f ron t i s analyzed by the f i n i t e element technique 

developed i n Chapter IV. The r e s u l t s and d i s c u s s i o n s a r e p re sen ted in 

Chapters VI and VII . The groove e f f e c t i s d i scussed in Chapter V I I I . 

The s u b j e c t of the crack t i p p l a s t i c zone s i z e , p resen ted in Chapter 

IX, i s examined by a two-dimensional (2-D). e l a s t i c - p l a s t i c a n a l y s i s . 

This e l a s t i c - p l a s t i c a n a l y s i s was a ided by a genera l purpose f i n i t e 

element computer code developed by the Westinghouse E l e c t r i c 

Corpora t ion [29] . With a minor m o d i f i c a t i o n , t h i s computer code i s 

capable of hand l ing a 2-D e l a s t i c - p l a s t i c f r a c t u r e problem. Con

c l u s i o n s a re p r e sen t ed i n Chapteir X. 

Af te r the complet ion of the work p re sen ted h e r e , t h e paper of 

T ran t ina [30] became a v a i l a b l e . In t h i s paper T r a n t i n a used the 

r e g u l a r c o n s t a n t s t r a i n f i n i t e element model to analyze t h e DT t e s t . 

His DT model, i n many a s p e c t s , i s s i m i l a r to t he model with a s t r a i g h t 

crack f r o n t . There fo re , h i s r e s u l t s w i l l be d i scussed in Chapter VII 

which d e a l s with the a n a l y s i s of t he DT model wi th a s t r a i g h t crack 

f r o n t . I t should be mentioned t h a t t o d e s c r i b e t h e s t r e s s or d i s -
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placement distributions near the crack front, the finite element 

model with embedded singularity is more reliable than the finite 

element model with regular elements only. 



CHAPTER II 

COMPUTATIONAL. METHODS FOR 
LINEAR FRACTURE MECHANICS 

The concept of applying linear elastic fracture mechanics 

(LEFM) to the prediction of strength and life of cracked structures 

has become a widely adopted engineering practice. The basic assump

tion made in LEFM is that all engineering materials possess flaws or 

mechanical defects no matter how carefully they are fabricated. The 

concept is to focus attention in a small, region around the front edge 

of a particular crack where fracture is most likely to take place 

and to ensure that the surrounding material has adequate toughness. 

LEFM provides a means for investigating flaw sensitivity and resis

tance of materials to flaw growth. 

The theory of linear elastic fracture mechanics is based on 

the idea of Griffith's energy criterion [31,32] which states that 

the increase in potential energy due to the surface energy require

ments of crack extension must be balanced by a decrease in the strain 

energy and the potential of the applied forces. This energy balance 

concept is utilized to determine whether the crack will grow or not 

for a particular geometry of the structure, loading condition and 

material properties. It was shown by Irwin [33] that Griffith's 

energy criterion of the cracked structure can be characterized by a 

singular stress distribution around the crack tip. In other words, 
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the presence of a crack in a structure is essentially a problem of 

mathematical singularity of stresses at the crack tip. Irwin also 

showed that the stress distribution in the neighborhood of the crack 

tip is proportional to the inverse square root, of the distance from 

the crack tip and is also characterized by a set of parameters called 

stress intensity factors, which represent the strength of the 

singularity. 

The Stress Distribution at the Crack Front 

A crack in a solid can be propagated in three different modes 

as illustrated in Fig. 1. Normal stresses give rise to the "opening 

mode" denoted as mode I. In-plane shear results in mode II or 

"sliding mode". The "tearing mode" or mode III is caused by out-of-

plane shear. The superposition of the three modes describes the 

general case of cracking. 

The near crack-edge and displacement fields associated with 

each mode were derived by Irwin [33] based on the method of Westergaard 

[34]. Modes I and II can be analyzed as two-dimensional plane ex-

tensional problems which are subdivided as symmetric and skew-

symmetric, respectively, with respect to the crack plane. Referring 

to Fig. 2 for notation, the near field stress components ff'xx> tfyy, 

and a which are same for all plane strain, plane stress, and 

generalized plane stress are given below: 



Symmetr ic Case (Mode I ) 

a K I e - ,- . . 6 . 3 6 , , n M . 
xx = —r-7-5— cos y 1.1 - s i n y s i n y - / + 0 ( 1 ) 

(•2irr)±/Z Z 

K 
c 1 9 f i i • 9 • 3 6 1 l _ / 1 N 

yy = TJI— c o s "2 *• s i n "2 S l n T~ ' ' 

( 2 - 1 ) 

(27rr) 

a K I . 9 9 36 , n M v 
xy = 7 7 5 — s m y cos — c o s y - + 0 ( 1 ) 

(27rr)1/Z z z 

Skew-Symmetric Case (Mode II) 

<? - K H . 6 / 0 , 9 36 , , n , l V 
XX = - r-rr- Sin y {2 + COS y COS y - > + 0(1) 

z 0 N 1/ L A A A 
(27rr) 

<* K I I . 6 6 39 . n M v , 0 0v 
yy = r-pr s m y c o s y c o s y - + 0 ( 1 ) (2*2) 

( 2 7 r r ) 1 / 

a K I I 8 - ,- .. 9 . 39 , , n M . 
xy = y y y cos y {1 - s i n — s m y— } + 0 ( 1 ) 

(27rr) 

where Kj and KJ-J- are the stress intensity factors corresponding to 

the opening and sliding modes of fracture and the term 0(1) indicates 

the order of magnitude 1. 

As discussed in Appendix A, it may be found that in the 

absence of body forces, the stress intensity factors Kj and KJJ in 

isotropic elasticity are independent of the elastic constants if the 

loads are self-equilibrating (the resultant: force vanishes on each 



boundary). Also, Kj and KJJ are the same for plane strain and plane 

stress cases.* Additional discussion may be found in references 

[35, 36]. 

It should be remembered that the z-component stress and general 

state of displacement for plane strain and plane stress are diff

erent. In plane strain, o"zẑ 0 and w=0 while, in plane stress, 

a z=0 and w^O where w is the displacement in z direction. 

Mode III also can be regarded as the 2-D anti-plane shear (or 

torsion) problem. The elastic stress field near the crack border is 

a K I I I XZ = " 7TTI72 sin -J + 0(1) 
(2-rrr) 

a K I I I 6 , n / 1 . 
y Z = , 0 \ l / 2 ~ COS 2 + ° ( 1 ) 

(2irr) 

(2 -3) 

where KJJJ is known as the stress intensity factor for the tearing 

mode fracture. The K-factors (Kj, K-j-j, KJ-̂ J-) govern the intensity 

or magnitude of the local stresses. Alternatively,they may be mathe-

mal 

the crack edge and then can be defined as 

.tically viewed as the strength of the '/r stress singularities at 

lim . .1/2 I 
KT = ^ a (2fTr) L n I r-»0 yy '0=0 

*The term "plane stress" is used, whereas "generalized plane 
stress" is implied. A discussion distinguishing "plane stress" from 
which "generalized plane stress" can be found in Appendix A. 
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lint- /r> ^ l / 2 I 
K-r-r = n a (2^) L _ 
II r->0 xy ' 9=0 

K__ = _ a (2irr) 
III r+0 yz '0=0 

(2-4) 

For a general three-dimensional (3-D) crack with an arbitrary 

smooth crack front, the stress state near the ,crack border was first 

carried out by Kassir and Sih [37]. Referring to a triple orthogonal 

system x, y, z with origin at 0 and x-axis normal to the crack front 

as shown in Fig. 3, the 3-D stress distribution around the crack 

front is given below. 

a K I 9 ,. . . 9 . 3( 
xx = cos -z (1 - sin -x sin -;—) 1/2 2 (27rr)1/Z Z 

V 

sin -=• (2. + cos -=• cos -x—) + 0(1.) ,0 ,1/2 °-Lii 2 w" ' ̂ ° 2 "wo 2 
(2irr) 

a - K I 6 ,, , . 6 .. 39, 

yy = Y/2 cos ~2 ^ sin "2 Sin T~ 
2(-rrr) 

j . K H . .9 9 39 , n,lV + _ _ s i n _ c o s _ c o s __ + 0(1) 
(2Trr)1/2 2 2 

... T a • • 9 9 

a = -r-rz 2v cos -« T-TZ 2v sin -r- + 0(1) 
Z Z ( 2 ^ r ) 1 / 2 2 (2Trr)i/2 2 



' - ;: Ki . e e 39 
xy = T-pr sin y cos y cos y-

(2^r) 1 / Z Z Z '" 

K 
+ ;yy cos *2 (1 - sin y sin •«-) + 0 (1) 

(27tr) 

a K11I 9 _̂  n M . 
y Z = „ ,1/2 C O S 2 + 0 ( 1 ) 

(2irr) 

(2-5) 

a zx 

K I I I 

(2Trr) ̂
y2— sin ~2 + °̂ 1^ 

where r and 8 are defined in xy plane as shown in Fig. 3, and v is 

Poisson's ratio. Comparison of the stresses in Eq. (2*5) with those 

given by Eqs. (2*1), (2*2), and (2*3) shows that for any small region 

surrounding the outer boundary of a plane of discontinuity, the 

stresses correspond locally to a state of antiplane shear super

imposed on a state of plane strain. Note that the stresses a , 
XX 

o*w, and a__ in Eq. (2*5) satisfy the 2-D plane strain relationship, yy z z 

i.e. 

a = v(a + a ) (2-6) 
zz xx yy 

In three-dimensional problems, however, the stress intensity factors 

also depend on the curvature of the crack front. At sharp edges such 

as corners on the crack border, stress singularities of orders other 



-1/2 than r may exist, hence Eq. (2*5) is no longer valid. 

The corresponding local displacement may be found as 

K I /r~~ 9 •• ,, . 2 8' 
U = — • / - " ' " C 0 S ~ f"1- ~ "̂V + S l n "o 1 

(2 -7) 

y / • 2TT 

+ ^11 IT_ s i n | [2 - 2v + cos 2 | ] + 0 ( r ) 
y / 2ir 

K I / r ~ - . 9 r o 0 2 8 , 
v = — / - x - s i n -r [2 - 2v - cos — J y v 2ir 2 r 

^ _ 
/-r— cos — [k - 2v - s i n -r- ] + 0 ( r ) 

y V 2ir 2 2 

K I I I /2r" . 6 , n , , 
w '"H"-/— S l n 2 + 0 ( r ) 

where displacement components u, v, w are referred to the local 

coordinate system x, y, z as shown in Fig. 3, y is the shear 

modulus and 0(r) denotes the order of magnitude r. 

The, Need, for the Finite: Element Method 

A variety of methods have been developed to determine the 

stress intensity factor. In cases of a simple idealized geometry use 

can be made of closed form analytical methods. But for a relatively 

complicated geometry or boundary condition., even in the 2-D case, 

the closed form solution becomes extremely difficult if not im

possible. 



Several numerical techniques have been developed to determine 

the stress intensity factors of the crack problem in fracture mech

anics with acceptable accuracy. They include boundary collocation 

[38, 39], approximate conformal mapping [40, 41], boundary integral 

equation [42, 43] and finite element method. On account of mathe

matical difficulties, boundary collocation and conformal mapping 

methods are limited in application to two-dimensional problems. The 

boundary integral equation method is not a general purpose solution 

tool with different element capabilities, such as the finite element 

method and has some other limitations [43]. Because of the complica

tion of the 3-D specimen geometry, crack configuration and loading 

condition of the DT test, the finite element approach is probably 

the most suitable method presently available to interpret the DT 

results. The method has great versatility: it permits treatment of 

3-D problems, it allows the analysis of complicated geometries, 

arbitrary boundary conditions, and rather general material properties, 

it alos permits the use of elastic-plastic elements to include crack 

tip plasticity. 

The application of the finite element method to determine the 

stress intensity factors has seen rapid progress. Excellent reviews 

of this method, as well as other analytical or numerical methods were 

given by Sih [35] and Rice and Tracey [44]. Comprehensive surveys 

for the finite element method were compiled by Gallagher [45], 

Hilton and Sih [46], and Pian [47]. The most recent discussion on 

3-D finite element fracture problems has been contributed by 



Kathiresan [48]. A brief discussion of the various finite element 

procedures to derive stress intensity factors will now be presented. 

Finite Element Methods in Fracture Mechanics 

Based on choosing the unknown parameters, the finite element 

method can be classified into three different approaches, namely the 

displacement approach, the force approach, and the hybrid approach. 

The displacement approach is the most common technique used to deter

mine the stress intensity factors for cracked structures. Most 

techniques discussed in this section are based on the displacement 

approach. 

In order to insure convergence to the correct solution, it is 

necessary that the elements which immediately surround the crack edge 

are capable of representing the corresponding singularity. The early 

finite element calculations for stress intensity factors, involving 

the use of relatively small standard elements in the vicinity of the 

crack edge, have been found to be unreliable and are not mentioned 

here. A number of special crack tip elements, which admit the crack 

tip stress singularity, have been developed and used to yield accu

rate solutions for fracture problems. 

1. Circular Crack Tip Element 

This element, in the shape of small circular disk centered at 

the crack tip, was developed by Wilson [49] for elastic problem, and 



extended to e l a s t i c - p l a s t i c problems by Hilton and Hutchinson [50]. 

The s t i f fness of the element i s formed by in tegra t ing the s t r a i n -

-1^2 energy density of the dominant r ' s ingu la r i ty over the c i r cu l a r 

cross section of the element. Regular elements cover the remainder 

of the model. The undetermined parameters in the formulation are K 

and the displacements of nodes not lying on the c i r cu la r crack- t ip 

element boundary. An improved version of the specia l crack t ip e l e 

ment has been developed by Wilson [51] who includes higher order 

terms of the asympototic e l a s t i c expansion. A polygonal crack t ip 

element which i s also based on the asymptotic solut ion has been pre

sented by Byskov [52]. 

2. Pie-Shaped Element 

Tracey [53] has proposed the use of pie-shaped elements to 

surround the crack t i p . Each of these isoparametric elements con

tains an in te rpola t ion function which varies as the square root__of 

the distance from the crack t i p . Tracey [24] has improved the 

pie-shaped element for 3-D geometries. Raju and Newman [54] also 

used Tracey's 3-D element to analyze some fracture specimens. 

Recently, Blackburn and Hellen [55] have developed a 3-D wedge 

element s imi la r , in many respec ts , to Tracey's elements. 

3. Hybrid Element 

A hybrid finite element procedure was developed and applied to 

crack problems by Pian et al. [56]. They used an assumed stress-
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hybrid model to develop a. special element at the crack tip. The 

assumed variables in this model are the interior stresses and the 

boundary displacements. Atluri et al. [57, 58] developed a displace

ment hybrid finite element for treatment of plane crack problems. 

Singular behavior of tractions and displacements is taken into account 

in the hybrid elements. Recently, Atluri and his associates have ex

tended the displacement hybrid element to study the elastic-plastic 

stress states around cracks [58], the stress intensity factors in 

plate structure [59], and as mentioned before, 3-D cracked structures 

[48, 60] . 

4. Distorted Quadratic Element 

Distorted quadratic elements, which are shown to embody the 

inverse square root singularity characteristic, have been developed 

by Henshell and Shaw [27] and Barsoum [25]. The singularity of the 

distorted element is obtained by distorting the regular quadratic 

isoparametric element by moving the midside nodes near the crack edge 

to the quarter points. It has been shown that this distortion approach 

is effective for both collapsed and natural isoparametric elements 

[26]. The distorted collapsed element is formed by collapsing one 

side of a distorted quadrilateral element to a triangular element 

(2-D elements) or by collapsing one face of a distorted solid ele

ment to a wedge element (3-D elements). The distorted natural ele

ment originally has triangular or wedge shape and is formulated in 

terms of triangular coordinates. 



K^Estimates from the Finite Element Method 

Once the numerical solution has been obtained for a parti

cular finite element representation, crack-tip stress intensity 

factors can be estimated by the use of established crack tip rela

tions. The methods of estimation are based on the fact that dis

placement, stress, strain energy, and other parameters are directly 

related to the stress intensity factors. These methods were origi

nally developed for coupling with the results obtained from the con

ventional finite element model. Clearly, if the finite element 

model with embedded singularity is used, a more accurate K-estima-

tion can be obtained. 

(1) Displacement Method 

The displacement method involves a correlation of the finite 

element nodal point displacements in the vicinity of the crack tip wi 

the well-known crack tip displacement equations. The procedure here 

1/2 
is to plot the product or r with some displacement component (say 

v), as a function of distance along a ray emanating from the tip, 

and to extrapolate this as a smooth curve to the tip, so as to 

estimate K. Kobayashi et al. [61] and Chan et al [62] found that 

displacements at.a number of nodes on the crack surface give a good 

estimate of stress intensity factor. The same approach with the 

elements with an embedded singularity were carried out by Tracey 

[24, 54], Blackburn and Hellen [55], and Kathiresan [48]. If sing

ular elements are used, only one or two nodal displacements near the 

tip are required to estimate the stress intensity factor with ex-



ce l l en t accuracy. 

(2) S t r e s s Method 

The stress method for determining stress intensity factors is 

similar to the displacement method. The nodal point stresses are 

correlated with well-known crack tip stress equations. Chan et al. 

[62] found that good results could be obtained from the ayy stress 

component on the 0=0 plane. 

(3) Energy Method 

As shown by Irwin [33], the crack tip stress intensity factor 

can be related to the elastic energy rate, G, by the following re

lation in a 2-D problem 

G = -^jpi [|C ( K l
2 + KI:[

2) + K m
2 ] (2-8) 

where E is Young's modulus, 

and 

(2-9) 

The elastic energy release rate can be related to the rate of change 

of compliance C, the inverse spring constant,, with crack extension 

by the equation 

K = (1-v) for plane strain, 

K. = i , — for plane stress. 
1+v r • . 
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• G - f f (2-10) 

where P is applied load and A is the crack area. Dixon and Pook [63] 

calculated the compliance of a cracked structure for a number of 

different crack lengths by the finite element technique and.then by 

means of equation (2*10) calculated the energy release rate. 

This method is strictly applicable to pure mode I, mode II, 

or mode III case in which the crack is assumed to propagate along the 

original crack plane. The disadvantage of this method is that it 

demands at least two separate finite element solutions of the struc

ture. Parks [64], keeping this disadvantage in mind, suggested the 

novel concept that the rate of change of total potential energy with 

respect to crack length can be expressed in terms of the rate of 

change of the global stiffness matrix. Thus by considering the change 

of very few element stiffness matrices at the crack tip, the strain 

energy release rate can be estimated. Hellen [65] also used the 

same approach terming it the method of virtual crack extension. He 

also pointed out that this method can be used to determine the 

direction of maximum energy release rate in the case of mixed mode 

problems. 

(4) J-Integral Method 

The energy line integral, J, as formulated by Rice is defined 

for 2-D problems as [66] 



r r / 3 u 3 v j „ N -
J = / ((w c - a - ^ - a -r- dy) s xx 3x xy 3x 

+ (a - | S + o ^ ) d x > 
yx 3x yy 3x 

(2-11) 

where w is the elastic strain energy density, and F is an arbitrary 

contour surrounding the crack tip. The integral has a value which is 

independent of the particular path chosen; there is no restriction 

that the material be linearly elastic, but instead only that its 

stress-strain relations be consistent with the existence of a strain-

energy function. The physical interpretation of J is as that of the 

elastic energy release rate, G. In the case of a linear elastic 

material [66], one has 

(1+v) 2 2 2 
J = G = y^-± [K (K^ + KJJ ) + Kzlin (2-12) 

where K is defined in Eq. (2*9). By numerically evaluating the 

J-integral for the finite element solution over a path surrounding 

the crack tip, an estimate of the crack tip stress intensity 

factor can be made by use of equation (2*12). This method was em

ployed by Chan et al. [62]. Since the general 3-D relationship 

between K and G (or J) is still not available, the J-integral and 

energy method are restricted to 2-D problems. However, the displace

ment and stress methods are in principle applicable to any 2-D or 3-D 

crack problems provided that the near field character of the dis

placement or stress is known. 
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CHAPTER III 

AN APPRAISAL OF THE DOUBLE TORSION 
TEST AND RELATED TOPICS 

The advantages of the DT test procedures have been mentioned 

in Chapter I. However, the major effort of this research is the 

theoretical study of the validity of the DT test. The validity of 

results may depend on many factors, especially, the testing criterion, 

calibration procedure, and specimen dimensions. This chapter 

appraises the basic concepts of these factors. For the most, the 

apprasials are based on the results obtained from other fracture 

toughness tests, such as the ASTM standard tests and the double 

cantilever beam (DCB) test. Consequently, the comments of the 

appraisal are applicable to these tests or to the fracture mechanics 

in general. 

The Calibration Equation of the Double Torsion Test 

The Griffith energy criterion for, fracture [32] indicates that 

a crack will grow if the energy required to form an additional crack 

surface dA can just be delivered by the system. Consequently, the 

equilibrium condition is defined as that for which the change in 

energy for the system is zero, i.e., 
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4 T - (W - W + W ) = 0 (3-1) 
dA„ s e c 

where Ws is the strain energy contained in the system, We is the work 

performed by the external loads and Wc is the energy for crack ex-

dW 
tension. Usually c is replaced by Gc and then Eq. (3*1) becomes 

dA 

d 
dA Ga = ̂ r- (We - Ws) (3-2) 
c 

where G is called the elastic energy release rate (also referred to 

as the crack driving force), and the subscript c represents the crit

ical value. 

The double torsion specimen is essentially a thick plate con

taining a crack with a curved profile. Each half of the specimen can 

be regarded as a prism with rectangular cross-section rigidly held at 

one end and subjected to a torque, Mt, at the other end (see Figure 4) 

Under the action of the torque, the load-application end undergoes a 

relative angle 9. When the crack increases in size by an amount dA, 

the angle will increase by an amount d9. Each half of the specimen is 

loaded by a torque,;Mt, therefore the total work done is 2Mtd6. It 

follows that: 

G c= 2 M t ^ - - f ! i _ (3-3) 
c dAc dAc 
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If deformations are elastic, the strain energy contained in the 

specimen is then 

W s =-| (2Mt)9 (3-4) 

Using a t o r s i o n a l compliance, C t , the ang le 0 can be r ep laced by 

= C t Mt. (3-5) 

Substituting Eqs. (3'4) and (3*5) into Eq. (3*3) yields 

d(CfM.) d(C.M 2) 
G. = 2M 
c dA„ dA 

c c 

' 8C 9M 2 3C 3M 

= 2tT •—- + 2 c<- M^ TJT ~ K T*r ~ 2 C A TT- ( 3 * 6 ) 
t 3A t t 3A t 3A t t 3A 

c c c c 

3M 
The terms containing -rr— cancel. This means that Gc is independent 

oAc 

of whether or not the load is constant: 

2 d Ct 
Gc " V dT (3'7) 

c 

Experimentally, it is found that the DT cracks propagate, with 

the crack front taking up a curved form. Some investigations [8, 9, 

10, 16, 17] have observed that initial fatigue cracks do not penetrate 

the upper surface. However, other results [30] have been reported 
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that the crack can penetrate the upper surface. Figs. 5*a and 5*b 

illustrate crack fronts for the penetrated and unpenetrated DT speci

mens, respectively. It has also been observed that the shape of the 

crack front is independent of crack length, i.e. it.remains unaltered 

during crack propagation [67]. Then the critical crack propagation 

area, dAc, can be expressed as 

dA = t dc, (3*8) 
c c ' 

for the penetrated specimen, and 

dAc = b dc, (3-9) 

for the unpenetrated specimen, where tc, b, and c are defined in 

Figure 4 or 5. Almost all reported unpenetrated cracks propagate 

with a distance very close to the upper surface, i.e., b - tc. Eqs. 

(3*8) and (3*9) become identical. Also, the critical crack area AG 

can be expressed by 

Ac =. tc ce (3-10) 

where c„ is the effective crack length which can be treated as the e ° 

length of the torsional prism. Then, the angle of twist in one-half 

of the DT specimen is 
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M c 
t e (3-11) 

V 

Where Ip is the polar moment of inertia of one half, of the DT speci

men. The torsional compliance becomes 

c^=C* 
t Mt I u 

From Eq. (3*8), the derivative of the compliance is of the form 

dC . dC 
— ^ - i ^= - ^ — (3-12) 
dA t dc t I M K } 

c c e c p 

When the DT specimen is loaded as shown in Figure 4, the torque 

is 

p w 
M = c m 

W 
where P„ is the critical load, and m is the distance between the 

c T" 
closed bottom support and the load. 

dC 
Substituting in Eq. (3*7) for Mt and — — yields 

G = ( PcV 2 (3-13) 
C 16tcV 



As shown in Fig. 4, the DT test involves a four-point bending 

type of loading, with theoretically no shear stress between the 

central loading points. Thus, it would appear to possess only a mode 

I type fracture. If a plane strain situation is assumed, using Eq. 

(2-8), it follows that: 

K IC 
EG 
c 

l-v2 

1/2 E V2 
= P w r =—r-——i 

c m L 16(l-vz)t I yJ c p 

Since y = ? n v> the above equation becomes, 

•, 1/2 
KTP = K = P W [-rr-—r—~ ] (3*14) 
IC cal c m 8(I-v)t I 

v ' c p 

This is the form of the calibration equation, first, given by 

Outwater and Gerry [1] and discussed In depth by Outwater, Murphy, 

Kumble and Berry [10], although the approach taken above differs in 

several aspects. The calibration equation is, of course, only a 

rough approximation of the stress intensity factor. The numerical 

verification of this equation will be presented in Chapter VII. 

The Interdependence of KQ and Specimen Geometry 

It has been widely observed in fracture toughness testing 

generally that the magnitude of the critical SIF (K^) depends 

strongly on the nature of the fracture growth surfaces involved. 

Surfaces are normal (flat) or are slanted at approximately 45 to 



2 

to the direction of loading or further are sometimes made up of 

both slant and flat fracture types. Fig., 6 schematically displays 

the various fracture surface appearances of a given metal. These 

different patterns may be obtained by either changing the temperature 

or the specimen thickness relative to the crack length [68,69]. When 

the predominantly slant fracture pattern (Fig. 6*a) is observed, the 

material exhibits a maximum KQ. Alternately, as the thickness in

crease (keeping temperature constant), the predominantly flat frac

ture surface (Fig. 6*c) is developed and the Kc drops sharply to a 

level that may be one-third (or less) than that of the maximum 

value [69] . One very, important aspect of this lower level of K^ is 

that it does not decrease further with increasing thickness. There

fore, this minimum KQ value can be considered as a material property, 

KJC, and depends only on metallurgical factors. The usual dependence 

of KQ upon the fracture surface appearance and specimen thickness in 

fracture toughness tests is given diagrammatically in Fig. 6*d. 

Since LEFM can only be used with good accuracy when the crack 

size is a multiple of the plastic zone size, the standard ASTM 

(American Society for Testing and Materiails) procedure requires that 

the crack size c must be [70, 71] 

K 2 

c > 2.5 ,10, (3-15) 

K 2 
where , IC\ is proportional to the plastic zone size radius. A 

a 
y 



similar ASTM requirement holds for the thickness ( t ) : 

K 2 

t _> 2.5 A & (3-16) 
y . 

Nevertheless, there is still no satisfactory explanation for 

the fracture appearance or thickness dependence of K^, although some 

models for the thickness effect have been proposed [69,72]. The 

shape of the curve in Fig. 6*d or the ASTM thickness requirement Eq. 

(3*16) was explained plausibly by a concept of crack tip plastic 

zone under plane stress or plane strain conditions [72] . However 

in small scale yielding fracture mechanics, plane stress elastic-

plastic solutions should not be used to analyze the state of affairs 

near crack front. This can be envisaged from Eqs. (2*5) and (2*6), 

and also_can be deduced using treatments which are shown in 

Appendices A and B in defeail. Additionally, misleading and 

sometimes incorrect attempts have been made to quantify the actual 

3-D nature of the crack growth pattern on the basis of 2-D plasticity 

models. A detailed discussion of such misleading attempts using 

2-D analysis to describe fracture appearance in ASTM approved frac

ture toughness tests is presented in Appendix B. 

It also needs to be pointed out that in addition to being 

influenced by a change of thickness or temperature, slant fracture 

can be prevented by providing the specimen with side grooves as 

illustrated in Fig. 4 for a DT specimen and in Fig. 7*b for a com

pact specimen. 



Recently, based on a 3-D finite element analysis, the ASTM 2-D 

calibration (see Appendix B) has been modified by Shih [73] for the 

side-grooved compact specimen. Using this modified calibration, Shih 

et al. [73,74] examined ASTM A533-B steel. They found experimentally 

that a side grooved specimen of only 4 inches in thickness (t) pro

vided a valid K-̂ p value. The yield strength, a , and the fracture 

toughness, K-j-̂ , of A533-B steel are about 50 ksi and 180 ksi/in., 

respectively. If the ungrooved ASTM specimen is used, according to 

Eq. (3*16), a specimen thickness greater than 33 inches is required 

for a valid KJQ test [72]. It should be borne in mind that the net 

specimen thickness at the groove (tc) is less than the specimen 

thickness (t) for grooved specimens (see Fig. 7*b). In addition to 

the compact specimen, the use of the side-grooves has been frequently 

included with other specimens, especially, the DCB type specimen. 

Mostovoy et al. [75] used this specimen to evaluate the fracture 

toughness of 7075-T651 aluminum alloy,. This work showed that the 

minimum net specimen thickness (te) is less than 0.075 in. However, 

the corresponding specimen thickness for the ASTM fracture toughness 

tests should be about 0.35 in. Similar results can also be found in 

Reference [76] for determining the fracture toughness of beryllium 

and Reference [77] for mild steel. 

Some consistent results have also been found in the DT test. 

Kumble et al. [9,10] compared valid ASTM and DT fracture toughness 

test values from wrought 2124-T851 aluminum alloy and found them to 

be in precise agreement, even though the grooved DT specimens were of 



half the recommended ASTM thickness. Murphy, Kunble, Berry and 

Outwater [8] obtained reasonable double torsion fracture toughness 

values with a 1/3-in. specimen prepared from a 1.0-in. 357-T6 cast 

aluminum alloy, which would have required an ASTM type specimen 

of at least twice the size tested. Moreover, the experimental 

results of Ten Haagen and Berry [13,14,15] have shown that the mini

mum net specimen thicknesses are 0.15 in. for a ferritic ductile 

cast iron and 0.04 in. for the 2124-T851 wrought aluminum alloy. 

These values represent only 8% of a valid ASTM specimen thickness. 

Thus, it may be concluded that, by the introduction of the 

side grooves, only a relatively thin specimen is needed for measuring 

K-££ compared with ASTM approved test specimens. This implies that 

in fracture toughness testing, the critical SIF will not vary with 

decreasing thickness as long as the crack forms an essentially flat 

fracture surface. Furthermore, it follows that the formation of 

the flat fracture growth surfaces may be obtained either with or 

without the aid of side grooves. This conclusion reinforces the 

urgent need for the development of some realistic criteria, which 

could lead to guidelines to regulate specimen geometry. These should 

adequately explain the dependence* of KQ upon the surface appearance 

of fracture growth associated with the specimen thickness and side-

grooving, or upon a plastic instability which will be discussed in 

the following paragraph. 

Returning to the DT test, it should be noted that the speci

men concerned is essentially a cracked plate in which localized 



31 

yielding and rupture need to occur before, they are propagated on a 

general (large) scale. To 'fully achieve this condition, i.e. to avoid 

a plastic instability condition, a minimum specimen thickness may be 

required to satisfy a particular situation. As mentioned earlier, 

Ten Haagen and Berry observed that the minimum net specimen thickness 

is about 8% of the ASTM requirement and the same of order of magni

tude of the commonly recognized crack front plastic zone size.* They 

also observed a distinct drop in Kc value as the specimen thickness 

fell below the minimum size. The drop of Kc values is apparently 

due to the plastic instability effect. Therefore, based on the ex

perimental results of Ten Haagen and Berry, a requirement of the 

net specimen thickness of the DT test may be specified as: 

K 2 

tc > 0.25 , IC. (3-17) 

A safety factor of approximate 1.3 has been incorporated into the 

above requirement. This requirement still represents a 90% saving 

in this dimension when compared with a valid ASTM specimen. 

Comments on the KJC Criterion 

The concept of the stress intensity factor has been introduced 

in Chapter II. KJC is measured in terms of the opening mode stress 

intensity factor K-r. The important distinction between the mathe-

*It will be shown that this estimated crack front plastic zone 
size is adequate. This analysis is presented in Chapter IX. 
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matical quantity Kj and the material property KJ_Q is similar to the 

distinction between the elastic stress and the yield strength of a 

material. According to the Griffith criterion, the fracture toughness 

is characterized by the amount of crack growth surface and the surface 

energy generated. As shown in Fig. 6, the slant fracture is a mixed 

mode fracture growth. Also, in most structural components, cracks 

are seldom aligned perpendicularly to the direction of loading. Since 

the KJC fracture criterion is based on the assumption that the crack 

must always be oriented normally to the applied tensile stress 

(Mode I fracture), the KJQ criterion is thus not applicable 

to such structures. Therefore, to explain the above stated dependence 

of Kc and to analyze the mixed mode fracture problem, a general 

fracture criterion, Kc, which combines K-£, KJJ, and KJJJ is required. 

The general criterion may be expressed by the following mathematical 

statement 

Kc = K (Kr K n , K m ) (3-18) 

The general criterion in fracture analysis may be seen to be ana

logous to the von Mises criterion in yielding analysis. The von Mises 

stress can be directly related to the principal stresses or stress 

components. The material is yielded when effective stress* reaches 

some critical value. Similarly, the material is fractured when the 

effective stress intensity factor K reaches the critical value Kc. 

*See Eq. (6-2) for definition. 



Sih [78] defined a factor , the s t ra in-energy-densi ty fac tor , 

which involves a l l three s t r e s s in tens i ty fac to r s . This s t r a i n -

energy-density factor c r i t e r i o n has been applied to several f racture 

problems in a mathematical sense [35]. However, the hypotheses made 

in th is c r i t e r i o n s t i l l requires a physical ve r i f i ca t ion . 

In principle, the energy release rate'(G ) concept can be 

applied to the mixed mode situation. In pure Mode I fracture situa

tion, Eq. (2*8) can be reduced as 

2. „ 2 
r (1-v ) Kj for plane strain 

J E 
T 2 
I _1 ^1 ^or pl a n e stress 

G =J E (3'19) 

K-r may be solved from this equation, 

G E 1 / 2 

F ("i 2") for plane strain 

*I H 1/2 (3-20) 

I (GE) ' for plane stress 

Also, for a pure Mode I fracture Eq.' (3*18) may becomes 

Kc = KIC or K = Kx (3-21) 

On using Eq. (3-20) this becomes 

r G E 1 / 2 

v _ v _ l ( ' i "l) f o r plane strain 
K - K ^ 1-v (3.22) 

L (GE) / z for plane stress 
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Applying Eq. (2*8) for G, the effective stress intensity factor can 

be expressed 

K = (K^ + Klz
2 + v* KIIT

2) (3-23) 

where 

v* J (1"v) 
for plane strain 

(1+v) for plane stress 

More generally, Eq. (3*23) becomes 

K = (Kj2 + A2 Klz
2 + A3 v* K I I ] ; )

1 / 2 (3-24) 

where A2 and A3 are constants and may depend on the appropriate 

structure geometries. 

The merit of this energy release rate concept is that the 

critical effective stress intensity factor Kr directly equals the 

fracture toughness Kjp as shown in Eq, (3*21). By simply assuming 

A2=A3=1, the energy release rate criterion (Eq. 3*24) has been 

applied to predict the structure failure for a mixed mode condition 

[79]. As with the strain-energy-density criterion, Eq. (3*24) awaits 

physical and experimental verification. However, the objective of 

the current study does not attempt to investigate this criterion 

further but rather to propose an idea here. Also, the writer wishes 
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emphasize that a great deal of research remains to be done in the 

general area of fracture mechanics. 
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CHAPTER IV 

FINITE ELEMENT FORMULATION'FOR ELASTIC CRACK ANALYSIS 

Finite element methods can be formulated from the variational 

principles of solid mechanics by relaxing the continuity requirements 

along inter-element boundaries. The combination of different varia

tional principles and different boundary continuity conditions yields 

numerous types of approximate methods. An approach based on the prin

ciple of minimum potential energy as appropriate in conjunction with 

the Rayleigh-Ritz procedure has been the most successful and versatile 

method for structural analysis and was employed to formulate the 

finite elements in the present analysis. The following sections con

tain the relevant derivations used in the development of the computer 

program. A more detailed description may be found in Reference [80], 

for instance. 

The Displacement Approach as a Minimization of 

Total Potential Energy 

The principle of minimum potential energy is the basis for de

rivation of the displacement element. If the displacement shape func

tions are chosen such that internal continuity and compatibility 

between elements across common'boundaries is insured, neither internal 

nor external equilibrium need be considered. Application of the prin

ciple of minimum potential energy then furnishes external equilibrium 



in terms of the generalized forces and the element stiffness equa

tion. Equilibrium need not exist on the boundaries except at the 

nodal points. The potential energy ( I O of a structure is given by 

the strain energy (Ws) plus the potential energy for surface trac

tion (Wt), surface point loads (Wp), and body forces (W5), respect

ively; i.e., 

TT = W + W + W + W, . (4-1) 
p s t p b 

The strain energy, Ws, can be written as the sum of the strain 

-1 (m) 

energy in each element, ws ; i.e., 

M , , 
Ws = I ! w s

W dV (4-2.) 
m=l V m 

where M is the number of elements, and V m is the volume of the m 

element. For an elastic body, the strain energy becomes* 

M 
W = Z / ^ (£>T [E] {e}- dV (4-3) 

m=l Vm-
 2 

where {e} is the strain column vector 

T 
{e} is the transpose of the strain vector 

[E] is the symmetric matrix of elastic constants 

'Initial strains are left: out for simplicity. 
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In the present Rayleigh-Ritz displacement approach, displace

ments are the unknown function to be assumed. The assumed displace

ment function should be kinematically admissible in using the 

Rayleigh-Ritz method. This means that the displacement function 

should be selected so that it satisfies the displacement boundary 

conditions prescribed for the problem itself. However, except for 

relatively simple problems, it is generally difficult to construct a 

function that will satisfy these conditions and still be simple enough 

to permit the necessary mathematical calculations to be carried out. 

At this point, the advantages of the finite element method become 

apparent. The key to the finite element method lies in relating the 

primary unknown function to the individual element, rather than to 

the total problem. Hence, the geometry of the overall body and the 

system boundary conditions are of no concern when choosing the unknown 

function. 

Let the displacement {f} , of an arbitrary point within the 

element, m, be given by 

{f}= [N] {d} (4-4) 
m 

where {d} is the array of nodal displacements of the element m and 

[N] is the shape function matrix which defines the nature of the 

assumed displacement. The detailed discussion of the shape functions 

for both the regular and singular element is presented in the next 

two sections. 
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Using the small deformation strain-displacement relations, the 

strain may be gathered into matrix form and symbolized as 

{£>= [D] {d} (4-5) 
m 

where [D] is obtained from derivatives of [N] and will be discussed 

later. 

Substituting of Eq. (4*5) into Eq. (4*3) yields the strain 

energy: 

• • M T 

W = I {d} [k] {d} (4-6) 
s . m m m 

m=l 

where [k] , the stiffness matrix of element m, equals 

j^ [D]T [E] [D] dV 
m 

The work done (potential lost) by the element surface trac

tion (force per unit area) is equivalent to a generalized traction 

vector {T} acting on the surface nodes of the element. The potential 

of the surface tractions can be expressed as 

M-
W = -Z / {f}1 {T} dS (4-7) 

m=l ST 



where S1 is the portion of the surface on which tractions are pres

cribed. 

Substituting Eq. (4*4) into E'q. (4*7), Wt becomes 

M. _ M 
W « . - 2 {d}T / [N-] {T} dS = -E {d}T { r J ( 4 - 8 ) 

t n m ,, t , m t m 
m=l S m=l 

where 

bjm = 4» [N]'T (T>dS. c m b 

The vector {r } is the force vector associated with the nodal 

displacement, {d} , of nodes on the surface of loaded elements. It 
m 

is understood that the equivalent traction vector {T} is zero for the 

element not in contact with S'. In the same manner, the potential of 

the body force can be expressed as 

M 
W, = -E {d}T 7 [ N ] T {B} dV 

m=l V 
m 

o r 
M T 

W, = -E {dT { r , } ( 4 - 9 ) 
b • _ m b m 

m=l 

w h e r e { r , } = /._ [ N ] T {B} dV. 
b m vm 



Here the vector {B} is the equivalent body force vector acting 

through all the nodes of the element m. If surface point loads {P} 

are applied to nodes of the element m by some external agency, the 

potential of point load is 

M T 

w = -t m m 
m=l m m 

or 

W = -E {d>T {r, } (4-10) 
m-1 m p m 

whe re the nodal load vector (rD}m equals the applied load vector {P} 
H m 

and the component of {r } is taken as positive when acting in the 
p m 

same direction as the corresponding nodal displacement. If the point 

loads {P} act on the element but not at nodal points, the equivalent 
m 

nodal loads (r } may be found by viewing the integral of Eq. (4*8) 

as a summation of forces {T} AS, where large tractions {T} act on 

small separated area AS. 

Substituting Eqs. (4-6), (4-8) , (4-9), and (4-10) intoEq. 

(4»1), the total potential energy, TT , becomes 

M _ 
IT = Z {d}T ( l / 2 [ k ] {d} - { r J m - {r }m - : ir.y ) p -, m m m. i-m P m b m 

m=l 

o r , more u s u a l l y 
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M 

IT = 2 {dT ( l / 2 [ k ] { d } ' - { r } ) 
p m m m m 

m=l 

(4-11) 

where 

{r} = {r } + {r } + {r,} 
m t m p m b. m 

A global numbering system is introducted for the nodal dis

placement components. In other words, the summation of Eq. (4*11) 

implies the expansion of element matrices to "structure size", 

followed by summation of overlapping terms. Thus, the total 

potential energy of the structure, as approximated by the finite 

element procedure, is expressed in terms of the nodal displacement 

components of the global system as 

rrp = \ {U}T [K] {U} - {U}T (R) (4-12) 

The potential energy T\ is then minimized with respect to the unknown 

nodal displacement components thereby obtaining a set of linear 

algebraic equations as follows form: 

^ p 

a{u} 

Sir 

3U]_ 

^ aw
 = ° 

dTT 
P 9U 
n 

(4-13) 



where U^ is the nodal displacement component,, i refers to the global 

system, varying from 1 to n, the total number of nodal displacement 

components (or degrees of freedom). Substituting Eq. (4*13) into the 

expression for potential energy, Eq. (4*12), yields 

[K] (U) = {R} (4-14) 

where [K] is the total stiffness matrix of the structure and {R} is 

the generalized load vector. The solution of Eq. (4*14) gives the 

nodal displacement values. Stresses and strains within an element 

can be determined directly from the corresponding displacement shape 

functions. 

Mondkar and Powell [81] have employed a Crout reduction pro

cedure to develop a computer program for solving a set of simultan

eous algebraic equations. This program is able to solve a large 

system of equations with reasonable in-core storage, and is used for 

solving the simultaneous equations Eq. (4*14), in the present finite 

element analysis. The details of the Crout reduction procedure and 

the computer program listing can be found in the reference cited. 

Note, the above derivation is based on the total potential 

energy without constraints imposed. Because the constrained nodal 

displacement components in the current research are all specified as 

zero, the potential energy contributed from the constrained nodal 

displacement components can be neglected. Only unconstrained 

(unknown) nodal displacement components need to be determined. The 



above derivation can then be used in the present analysis. However, 

using a Lagrange multiplier concept, the above procedure can be 

modified to treat generalized constraint conditions. A detail dis

cussion of this modification as well as the Lagrange multiplier con

cept can be found in Reference [82], for instance. 

The Three-Dimensional Regular Isoparametric Element 

In the preceding section, the basic formulation for the dis

placement finite element method was presented. The interpolation 

functions for the regular isoparametric element are discussed in this 

section. 

The name of "isoparametric" is derived from use of the same 

interpolation functions to define the element shape as are used to 

define displacements within the element. Isoparametric element con

struction represents the "mapping" of a nondimensionalized rectangular 

element into the actual curved-boundary element geometry. The mapping 

applies generally, providing some one-to-one correspondence between 

Cartesian and curvilinear coordinates can be established. Once such 

coordinate relationships are known, shape functions can be specified 

in local coordinates, and, by suitable transformations, the element 

properties established. 

The basic element used in the present 3-D elastic analysis is 

the twenty-node isoparametric brick element. This sixty degree of 

freedom element is defined in,"the three-dimensional space coordinates 

(£> HJ O associated with twenty shape functions Nj_. If x, y, and z 

are the global Cartesian coordinates, the relation used to define the 
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mapping as shown in F ig . 8 

x = [Nq, n, ,Q 1 {x} 

y = |NU, n? t) 1 (y> (4-15) 

2 = |N(g» n, c) 1 © 

with 

{ ^ " K X2 X20 f 

{y} = \h y
2 —

 y 2 o l T 

{z} = \ z± z2 z 2 0 |T 

ISl* h, N2 N20 I 

where N-, N2 are shape functions given in terms of the local 

coordinates, x^, y., z- are the Cartesian coordinates of the i node 

of the element. The displacement of any point within the element 

can also be expressed by the same shape functions as used to define 

the element shape: 

u = (_|| {u} 

v = (J] {v} (4-16) 

w = |JJ {w} 
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w i t h 

{iD 

{w> 

U l u 2 — " " U 20 ! 

v l V 2 — V 20 I 

•w l W2 - — " W2Q f 

w h e r e u . , v . , and w. a r e t h e n o d a l d i s p l a c e m e n t s of t h e e l e m e n t . 
1 1 1 

Using m a t r i x r e p r e s e n t a t i o n , t h e above e q u a t i o n s y i e l d Eq. ( 4 * 4 ) . 

From t h e same above e q u a t i o n s , t h e m a t r i c e s {f}, [N] , and {d} d e f i n e d 

i n Eq. (4*4) can b e e x p r e s s e d a s ' 

l t } - \ : 

[N] = 

( 4 - 1 7 ) 

|Nj 0 0 

0 | J j 0 

0 0 ill 

and 

{d} = 

{u7 

{v> 

l(w)J 

The three-dimensional mapping for the 20-node regular iso

parametric element is schematically shown in Fig. 8. In £ri? space 

the element is a cube and bounded by planes £, n, C = +!• ^he 



corresponding shape functions can be found from Reference [80] 

Corner nodes 

N. = ~ (i+SS') (l+nn.) (1+^;,) ( £ £ , + ^ , + ^ - 2 ) 
1 0 1 1 1 1 1 1 

for i = 1, 

Mid-side node where £. = 0 
l 

Ni = J (1 -C2)(l+nni)(l+CCi) 

for i = 9, , 12 

Mid-side node where r\. = 0 
l 

Ni = i d-n2)( 1+55^(1+5 Si) 

for i = 13, , 16 

r 
Mid-side node where . = 0 

Ni = \ (1 -c2)(l+CC i)(l+nTi i) 

(4-18) 

for i = 17, , 20 

where £. , r\., and £. are the coordinates a t node i in £rv£ space, i . e . . 

+1 or -1 (see Fig. 8 ) . The shape functions have the property that Nj_ 

is unity at node i and zero a t a l l other nodes. 

3 
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As shown in the previous section, to construct an element 

stiffness matrix, the strains which are derivatives of the displace

ments with respect to x, y, and z axes must be found. The displace

ments, however, are now functions of the £, n,. and 5 coordinates. 

Hence, a relationship between the derivatives with respect to x, y, 

and 2 and the derivatives with respect to £, n, and £ should be 

obtained. By the chain rule of differentiation, the relation is 

'( ) *C 
<( ) 'n 

( ) •c 

x, *5 

x, y> 

"S y'C 

z, 

z, 

z, 

5 ' . ( ' ) , x ' 

n 
< ( ) , y 

4 

( ) , z 
1 -< 

( ),X 

= [J] i ( ),y 

( )>z 

(4-19) 

where the parentheses represent any differentiable function (dis

placement, for instance), the subscript "," denotes partial differ

entiation, and [Jj is the Jacobian matrix. Taking derivations 

appropriately in Eq. (4*15) and arranging the terms in the form of 

the Jacobian leads to: 

:J] = 

x , e y z, 5 " Z ' C : 

x , „ y. z, 

x , • y » ^ » 

N m5 

= 
» n 

! * 5 
J J 

[{x} {y} {z}] (4-20) 

Thus, using the inverse relation from Eq. (4-19), we may write 



u, 

u. 

X 

i v, 

w, 

w,. 

w, 

[J] 
-1 0 

[J] 

0 

-1 

[J] 
-1 

u, 

u, n 
u, c 
v, 

C 

1 v ' nf 
v, c 
w, 

I 

w, n 
w, 

(4-21) 

where [J] is the inverse of matrix [J]. 

All three displacements u, v, w are variables in the 3-D 

element, as are the six strains 

{£> = 
— T 

s e e : e e e 
xx yy xx xy yz zx 

(4-22) 

Linear strain-displacement relations e = u, , , e = u, 
^ xx x zx z 

+ w, are 'x 

{e} = [SD] I u, u, u, v, v, v, w, w, w, L L J ' x y z x y z x y ' z (4-23) 

where 



[SD] = 

1 0 0 0 0 0 0 ' 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 1 

0 1 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 1 0 

0 0 1 0 0 0 1 0 0 

and, from Eq. (4*16) , 

'*S 

u, 

"C 

v, 

v, n> = 

v, 

w *5 

• w , 

w, 

m> 
Illv 
H i , 

0 

0. 

0 

0 

0 

0 

0 

0 

0 

I N ] , 

I N J . 

I l l , 
0 

0 

0 

0 

0 

0 

0 

0 

0 

D, 

ilk 

LEJ, 

{u} 

{*} 

(4-24) 

Combination of Eqs. (4*2,1) through (4-24) y i e l d s t he Eq. ( 4 - 5 ) , i . e . , 

{£>= [D] {d} (4-25) 

where 
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{ -

[D] = [SD] 

Hi. e 0 0 

llL n 
0 0 

t J ] - 1 0 o 

N. til. 
0 

s 
o 0 

0 

0 [ J ] - 1 0 0 S>n 0 

0 0 [ J ] ' 
-1 0 

0 

LU,C 

0 

0 

• 1 1 1 - , 

0 0 I I I , 

0 0 I N I , 

Having established the matrix [D], the stiffness matrix for 

the element can be computed according to the relationship Eq. (4*6), 

i.e., 

[k] =/ [D]1 [E] [D] dV (4'26) 

where [E] is the elasticity matrix mentioned in Eq. (4*3). For 

isotropic material, matrix [E] has the form: 

[El = 

(1-v) V V 0 0 0 

V (1-v) V 0 0 0 

E V V (1-v) 0 0 0 
( l+v)( l -2v) . 

V V (1-v) 0 0 

0 0 0 (l-2v) 
2 

0 0 

(4-27) 0 0 0 0 (l-2v) 
2 

0 

0 
s. 

0 0 0 0 (l-2v) 
2 



The element region (volume) similar to the matrix [D] has to 

be transformed before integration using 

dV = dxdydz = det [J] d£dr|d<; (4-28) 

Also, limits of integration become -1 and +1. More explicitly, we 

can write Eq. (4*26) as 

He] = i\ f\ f}± [D]T [E][D] de t [J] d^dndC ( 4 ' 2 9 ) 

where det [J] symbolizes the determinant of [J]. 

Clearly, exact integration of Eq. (4*29) will be in general 

a tedious if not impossible matter and numerical integration is a 

necessary part of the process. As shown in Eq. (4*29), the numer

ical integration is performed in every region in which each variance 

ranges from -1 to +1. The simplest performance of this is to use 

Gaussian points distributed on a regular basis, along the £, n> C 

directions. A three-point Gaussian quadrature formula is selected 

to evaluate the volume integration. The description of the Gaussian 

method appears in most finite element texts, Ref. [82], for instance. 

The concept of using such element shape functions for 

establishing the isoparametric elements was first mentioned by 

Taig [83] and later generalized by Irons [84]. As shown in Reference 

[80], it has been proven that this well-defined 20-node isoparametric 

element satisfies the conformability requirements, i.e., requirements 
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for convergence and continuity. 

The Three-Dimensional Special Isoparametric Element 

A 3-D special element that embeds the appropriate stress 

singularity at the crack edge has been developed for the DT analysis. 

The special collapsed fifteen-node element which is modified from 

Tracey's [24] collapsed six node element enables a precise solution 

without requiring an extremely fine element mesh near the crack edge. 

The finite element model assembled is composed of these special 

wedge elements focused into crack front and regular isoparametric 

solid elements elsewhere. Fig. 9 demonstrates the modeling geometry. 

1/2 
The elements nearest to the crack front have r and r variations 

of displacement specified, while the adjacent elements allow the 

regularly linear and quadratic variations. 

The special displacement element is formed by collapsing one 

face of a special twenty-node brick element (bounded by planes 

£ = 0,1 and n, K, - +1) and shown in Fig. 10. The interpolation para

meters £, n>' C are related to the physical coordinates x, y, z through 

a mapping of a brick in £, -n, £ space onto the physical triangular 

prism. The shape functions Ni of the special element are as follows: 

N , = k(l-^2)a+r]r].ya+^)(-/2^2 •+ nn, + « , - l ) ' for i = l , . . . , 4 
X X X X X 

N± = ^ ( l + n n i ) ( l + ^ i ) { ( 2 + / 2 ) ^ +nn ± •+« ± -3 -Jl > for i = 5 , . . , 

N i = ^\ +hnha~&a+m±)a+^±) for 1=9,...,12 



N ± = Ji(l-S
Is)(l-n2)(l+5?1) for i=13, 14 

N i = ht2a-r)2) (l+^±) for i=15, 16 

N± = %(l-^)(l+nni)(l-c
2) for i=l79 18 

\ = ̂ ^ ( l + n n i ) ( l - C
2 ) for i=19, 20 

where N^ equals unity at node i and zero at all other nodes. 

The special shape functions corresponding to that in the 

regular element are given in Eq. (4*18). The remaining development 

is quite similar to that in the previous section. 

From Eqs. (4*30), it can be shown that 

20 
Z N. = 1 (4-31) 
i-1 X 

Then the special elements satisfy the constant strain ahd rigid body 

motion conditions, i.e. the necessary conditions for convergence [80]. 

It will be seen that only the surface, where £>1, of the 

special element can be joined to a surface of the regular element 

(Fig. 9). The special shape functions on this surface, i.e. letting 

£=1 in Eq. (4'30), become 

N± =
 1<(l+nni)(l+^i)(nni+^i-l)> for i=5,...,8 

N± = ̂ (l-r^Xl+CCJ, for i=15, 16, 

54 

(4-30) 
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N± = ^(l-C
2)(l+nni), for i=19, 20, (4-32) 

and 

N. = 0 , for all remainder 

On the £=1 surface the regular shape functions, Eq, (4*18) 

also can be reduced to Eq. (4*32). This indicates both special and 

regular elements have the same shape functions on the surface at 

£=1. As mentioned previously, the well-defined regular shape func

tions satisfy the inter-element continuity requirements. Therefore, 

continuity exists between the £=1 surface of the special element 

and any adjacent surface of the regular element. 

From Eq. (4*30), it is obvious that the same special shape 

functions exist either on the surfaces of n~l and -1 or on the sur

faces £=1 and -1. If special isoparametric elements are assembled as 

shown in Fig. 9, it can be readily shown that continuity exists 

between any adjacent special elements [80]. 

As was stated above, the special element not only represents 

precisely the crack singularity, but also satisfies the conditions 

for convergence and inter-element continuity. 

The Computation of the Stress Intensity 
Factor by Displacement Method 

In Chapter II several methods have been introduced to evalua

te the SIF in the finite element analysis. For a number of reasons, 
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only the displacement method may be considered in the 3-D elastic 

analysis. First of all, the displacement method is applicable to a 

3-D analysis. Secondly, the nodal displacements are the most accurate 

quantities obtained from the displacement finite element scheme. 

Finally, if it is necessary, the displacements can easily be checked 

experimentally. This displacement method actually is only a form of 

the crack opening displacement (COD) concept. As one of the fracture 

criteria, the COD concept can be utilized to evaluate the stress in

tensity factor Kj by considering the displacements at the nodes near 

the crack tip. If the finite element solution for displacements 

reflects the true nature of the singular behavior of stresses and 

strains around the crack tip, then the COD would provide an accurate 

estimation of the stress intensity factor. The finite element solu

tion obtained by using a conventional model for crack problems 

requires very small element sizes at the crack tip, relatively large 

degrees of freedom and does not: incorporate the correct displacement 

behavior near the crack tip. Therefore, this method cannot be ex

pected to provide an accurate estimation of the stress intensity 

factor evaluated by the COD even at the nodal point closest to the 

crack front. Thus, for a more meaningful and accurate estimation of 

stress intensity factor through COD procedure, the singular nature of 

the stresses and strains need to be incorporated or embedded in the 

finite element procedure. All the methods using special singular 

elements at the crack tip, including the special element developed in 

this chapter, possess the true nature of the singular behavior of the 
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stresses and strains around the crack tip. Thus, the displacement 

procedure can be utilized very effectively to estimate the stress 

intensity factor from the present finite element displacement solu

tion. From Equation (2*7) and using the displacement method, the 

stress intensity factors for two-dimensional problems can be expressed 

as 

K = ( 2 + /!)E / J (2v.-V (4-33) 
1 4(l-v2) . J r m V 

where vm and vv are displacements at the mid-side and the vertex 

nodes, respectively. The mid-side and the vertex nodes locate at the 

distances 1/2 r and r from the tip, respectively. 

Kathiresan [48] has recently extended this procedure to 

three-dimensional problems. The stress intensity factor can be 

estimated by using the displacement of five nodes on the crack sur

face close to the crack front. It will vary, of course, quadratically 

within an element along the crack front. Details of this 3-D 

procedure, for convenience sake, is outlined in Appendix C. This 

procedure has been found to provide an accurate estimation of the 

SIF along a crack front [24, 48, 55], 
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CHAPTER V 

VERIFICATION OF THE SPECIAL ISOPARAMETRIC ELEMENT 

To demonstrate the superiority of the proposed special element, 

two fracture specimens were considered. In addition to using the 

special elements, the SIFs for these specimens were also calculated 

by a method of using distorted collapsed quadratic elements or by 

using distorted natural quadratic elements. A brief discussion of 

these distorted elements was given in Chapter II. Results based on 

different finite element schemes are presented for comparison. 

Examination of the Idealized Compact Specimen 

An idealized fracture toughness test specimen with uniform 

crack depth c was designed for the 3-D finite element analysis. As 

shown in Fig. 11.a, the thickness, half-width, and half-height were 

all taken equal to c. The loading condition was a uniformly dis

tributed force of p per unit length through the thickness, applied 

at the crack ends and normal to them. Because of the double symm

etry of the specimen and the loadings, only one quarter of the speci

men was modelled as shown in Fig. 11. The global coordinates (x,y,z) 

are defined in this figure. The model consists of 499 nodes and 96 

elements as shown in Fig. ll*b. Except in the internal region, the 

nodes were arranged at the following distance from the crack front, 



r/c =0.01, 0.02, 0.04, 0.1, 0.26, 0.30, 

0.40, 0.60, 0.80, 1.00. 

Away from the front, the nodal density across the half-thickness is 

decreased to four nodes along the crack end. 

The stress intensity factors obtained from the finite element 

solutions are compared with the 2-D boundary collocation solution. 

For the 2-D version of the present model, Brown and'Srawley [71] / 

found that 

K2D = 7.20 pjc"'1 (5-1). 

The variation of SIF across the specimen is given in the plot 'K-2D 

z / 
vs. 'c as shown in Fig. 12. At the center (z=0) the SIF obtained 

2/ 

from the method developed in Chapter IV is 4% over K^. At 'c-0.5, 

the free surface, K decreases to 0.75 K.2£). The present results have 

been compared with those obtained by Tracey [ 24] using his six-node 

special element. As shown in Fig. 12, the present results at the 

center are about 5% higher than those evaluated by Tracey, but 5%. 

lower than at the free surface. The difference between these two 

results may be partially due to the fact that the present fifteen-

node special element allows quadratic variations along the crack 

front, however, Tracey's element only permits linear variations along 

the crack front. It should be noted that the difference of mid-

surface and planar K values in the present results is consistent with 

Kathiresan's [48] study. Based on a hybrid finite element analysis 
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of a center through-the-thickness crack plated, he found ~/K2D=1.05 

at the mid-surface. The center through-the-thickness cracked plate 

was also investigated by Ayres [85] and Sih et al. [86]. However, 

both Ayres' finite difference and Sih's finite element results suggest 

that the elevation of K over K£D i-s about 10%. It is noteworthy that 

free surface effects remain a controversial issue with various in

vestigators (for recent discussions, see Sih [102], Folias [87], and 

Beuthem and Koiter [88]). Therefore, results for the region near the 

free surface will not be discussed further. 

In addition to using the special element, the SIF variation 

was also calculated by a method of using distorted natural quadratic 

elements. Fig. 12 shows that the SIFs estimated by the distorted 

elements are below those calculated from, the present special element 

by about 1.5% over the entire specimen. Because of the absence of 

exact solutions to meaningful 3-D crack problems, at present it is 

very difficult to judge the accuracy of the numerical solutions 

mentioned here. To gage the possible error bound on the 3-D analysis, 

an artifical boundary constraint on all displacements in the z-

direction equal to zero, is applied. The constrained 3-D model 

becomes, in point of fact, a plane strain model. The results are 

then 5% below ^-21)% Hence, 5% is a candidate degree of error for the 

3-D analysis using the present special element. A result some 6.5% 

below K.2D was found by using the distorted natural element. Tracey 

reported a result 6% below K2D for a similarly constrained model. 
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As discussed in Chapter III, the specimen is neither 

vanishingly thin (plane stress) nor are the interior points far from 

the outer surfaces (plane strain), therefore the analysis has to con

sider the three-dimensional character of the stress field. The varia

tion of the constraint factor a = zz/v(cr:xx+cr) is considered in 

Fig. 13, where v is Poisson's ratio and equals 0.3. For a plane 

r / 

strain state a=l and for plane stress a=0. At /c=0.005 from mid-

plane to /c=0.4, a is nearly constant at 0.90. Such proximity to 

the plane strain value is, of course, expected so near to the crack 

front [see, Eqs. (2.5)and (2.6) for details.]. From /c=0.4 to the 

free surface, a drops rapidly. The midplane values of a at 

r/c=0.04, 0.02, 0.04, 0.1, and 0.26 are 0.86, 0.78, 0.69, 0.52, and 

0.33, respectively. These data indicate the shift to a plane stress 

type field away from the front. The above stress state behavior is 

quite similar to those Tracey reported. However, in the region 

2 
0.4 < — < 0.5, the constraint factor a of the present results is not 

- c - r 

like Tracey's results which converged to zero but disjointed randomly. 

Again, the free surface effect is not clear. No attempt will be 

made here to explain the difference between these two results at the 

region close to the free surface. 

Test for Typical Double Torsion Specimen 

To provide more information about the accuracy of the present 

special element, a DT specimen with a straight crack front was 

selected for the second model demonstration. The mesh design of the 

model is similar to the mesh shown in Figure 14, with the dimensions, 
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2t/W - 1,.c/L = 1/2, and W/L = 1/5. The loading conditions are 

shown in Figure 4, where an infinitesimal distance between the 

applied loads £. is assumed in this 16 element model. In addition to 

using the present special elements, the SIFs of this model were cal

culated by a method using distorted collapsed quadratic elements,and 

by a method of using distorted natural quadratic elements. Using the 

form of the calibration equation determined in Chapter III, the 

normalized SIF K* can be expressed conveniently in terms of 

„ _5L_ y s t c y i - v j i 1 7 2
 (5.2) 

Kcal " PW-

where Kca]_ is the SIF directly calculated from the calibration equa

tion (Eq. 3*14), and Kj is the SIF calculated from the finite element 

method. 

The finite elements results show that the SIF variation along 

the straight crack front is almost linear. Only the maximum 

normalized SIF's obtained from those three different finite elements 

schemes are listed in Table 1. 

The differences among the results listed in Table 1 are within 

one half of one percent. The result using the presently developed 

special elements is a little higher than others. The normalized SIF 

results obtained from these three different schemes were also com

pared with each other for the higher degree of freedom model (see 

Figure 15). The results calculated using the special element scheme 



Table 1. Maximum Normalized SIF for the 
Idealized DT Specimen 

(2t/W=l; c/L=l/2; W/L=l/5) 

Js.^ 
Type of Elements max 

Special elements (developed 1.657 
for the DT analysis) 

Distorted collapsed 1.654 
quadratic elements 

Distorted natural 
quadratic elements 

1.648 
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are higher than the results obtained from using the distorted natural 

quadratic element scheme by about 2% on the average. 
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CHAPTER VI 

THE DOUBLE TORSION MODEL WITH A 

QUARTER-ELLIPTICAL CRACK FRONT 

A finite element analysis using the properties of 2124-T851 

wrought aluminum alloy was selected to investigate the double torsion 

test numerically. The fracture toughness of this material had been 

studied by Outwater, Murphy, Kumble and Berry [10] using the double 

torsion test. 

The previously cracked 2124-T851 specimens used in the above 

double torsion test have been examined to provide the information on 

the crack front geometry of double torsion specimens. The shape of 

the fatigue crack front is very close to a quarter-ellipse, only 

slightly different at the end region of major axis. 

The quarter-elliptical or semi-elliptical models are commonly 

chosen models for the corner or surface cracks investigations [89, 

90, 91]. It is reasonable and convenient therefore to use the quarter-

elliptical corner models for the finite element double torsion test 

analysis. 

Due to the symmetry of the DT test, only half of the DT speci

men was considered in the finite element analysis. Five different 

specimen geometries have been selected to investigate the DT test. 

The dimensions of these five specimens are: 
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Specimen 1: ~ = 1/6, —• == 1/3, ~ = 9/10,.- = 0.45 
r L w t c 

Specimen 2: f = 1/3, ~ = 1/3, \ - 9/10, - = 0.225 
L W t c 

Specimen 3: f = 1/2, —• = 1/3, ̂  = 9/10, - = 0.15 
Li W t C 

Specimen 4: £ = 1/6, .— = 1/3, ̂  = 9/10, - = 0.225 L w t c 

Specimen 5: f = 1/3, :— = 1/6, ̂  = 9/10, - = 0.1125 
J_i W t C 

W 
where L is the length of the specimen, -«• is the half width of the 

specimen, t is the thickness of the specimen, b is the minor axis of 

the quarter-elliptical crack, and c is the major axis of the crack. 

As mentioned previously, along the surface of symmetry of the 

DT specimen, only Mode I fracture occurs. For convenience of the 

finite element analysis, an infinitesimally small distance between 

the applied loads e was assumed (Fig. 4). The effect of the varia

tion of the distance between the applied loads e was considered 

separately. The effects of the side grooves have also been investi

gated and are discussed in a later chapter. 

Five sets of the finite element' mesh were designed to represent 

those five specimens as accurately as possible. The mesh was designed 

to represent to Specimen 2 as shown in Figure 15. Eight layers of 

quadratic elements make up the crack region. Each layer has four 

special wedge elements at the crack tip, the shortest being 1/9 of the 

minor axis of the quarter-elliptical crack. Ten layers of quadratic 



67 

elements comprise the remaining part of the specimen. This typical 

higher degree of freedom model consists of 195 elements and 1115 

nodes. Figure 16 shows details of the crack area mesh. 

The results calculated from Specimens 1, 2, and 3 with the 

loading conditions, e=0, show the influence of the variation of the 

ellipse major axis c in Figure 17. Figure 17 shows a plot of the 

normalized SIF K* versus the elliptical angle <£ for aspect ratios 

(—), 01.5, 0.225 and 0.45. The corresponding variation of the 

normalized SIF, due to increasing the distance between the applied 

2« 
loads e, is shown in Figure 18 for — ^ 0, 0.0333, 0.1167 and 0.2 As 

seen in Figure 18, the loading location factor e affects the SIF 

significantly in the region adjacent to the anchorage of the loads. 

Away from the location of the loads, the normalized SIF is almost in

dependent of the variation of the loading location factor e. As 

noted in Fig. 18, it is believedthat the high normalized SIF for the 

TT 

elliptical angle approaching — decreases to a small value as long as 

the loading location factor e greater than zero. Therefore, the 

maximum normalized SIF Kmax for Specimens 1, 2, and 3 with the loading 

location factor e>0 is approximately equal to unity (see Figure 17). 
IT 

The local maxima at -r result from assuming e=0 and should, therefore, 

be ignored. 

The thickness effect may be examined in part from the results 

with Specimens 2 and 5, as shown in Figure 19. The maximum SIF 

results shown in Figure 19 are not sensitive to the thickness varia
nt* 

t i o n ( — ) , from 1/3 to 1/6 as w e l l as b / c changes from 0.225 to 
w 
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0.1125. Almost identical stress intensity factor results have been 

obtained from Specimens 2 and 4. Because of similarity, the results 

for Specimen 4 are not presented here. However, such findings suggest 

that the length effect (end effect) of the test specimen can be 

viewed as negligible as long as the specimen length is greater than 

triple the crack length along the major axis. 

From the above finite element analyses, which have been per

formed for most typical currently utilized test specimen geometries 

as well as the crack geometries, the maximum normalized SIF's are seen 

to be almost equal to unity for a. true four point bending (e>0) DT 

test. As mentioned before, the. free surface effects are still a con

troversial issue with various investigators. However, Sih [102] pre

dicted that the SIF approaches zero at the point where the crack inter

sects the free surface and that a thin boundary layer is expected at 

the free surface across which the SIF decreases rapidly. If Sih's 

prediction is true, the present results may be overestimated in regions 

which approach the free surface. This overestimation makes the maximum 

normalized SIF for Specimen 1 closer to 1. However, the DT crack 

aspect ratios for b/c used in those tests [10] are within the range 

from 0.1125 to 0.30. The results for Specimen 1 (b/c = 0.45) should 

thus not be used in comparison with the experimental results. 

It is reasonably assumed that fracture commences in the DT 

specimen whenever the maximum stress intensity factor reaches a crit

ical value, i.e. critical stress intensity factor [72]. From the 

present finite element analysis, the critical stress intensity factor 
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(maximum stress intensity factor) was found to be almost equal to 

the measured critical stress intensity factor directly calculated 

from the calibration equation, Equation (3*14), i.e. K* * 1. It has 
n ' . max 

also been noted from previous experimental investigations that per

fectly flat fracture surfaces are invariably present in DT specimens. 

The appearance of the flat fracture surface further suggests that the 

maximum SIF becomes KJC as a critical loading is applied. It should 

be noted that the SIF variations shown in Figs. 17, 18, and 19 are not 

only an essential part in providing an in-depth understanding of the 

double torsion KJQ test but also yield useful information in pre

dicting the crack front profile and the crack velocity in the sub-

critical crack growth test [67].. ' 

The corresponding elastic stress fields were also calculated 

for the quarter-elliptical cracked DT specimens. The normalized 

stress components along the lower line of symmetry (A-A') is shown in 

Figure 20 for Specimen 2, The normalized stress components a*, are 

defined as 

*• a . ; a . .' • 

iJ - - p ^ — (6-1) 
max m 

2gWt2 

where a. . are the calculated stress components, T is the maximum 
ij r max 

shear stress developed in the equivalent rectangular torsion bar with 

a thickness-to-width ratio —— by a twisting moment (torque) m, and 
4 

2t 
3, a numerical factor, euqal to 0.267 for••— = 1/3 [92], Fig. 20 
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also shows that the stress component o"zz (in the thickness direction) 

converges very rapidly to zero, being negligible beyond a distance, 

7-̂ — = 0.1, from the crack front. For an uncracked body, of course, 
L-c 

this component is zero on free surfaces. Thus, the region of signi

ficant departure from the free surface condition is highly localized. 

In this localized region, it is also seen that azz does not directly 

decrease to zero, but falls to a negative value and then increases 

to zero. This depressed behavior may be due to the effect of the 

free surface or curved crack front. However, such effects are not 

yet fully resolved. 

The variation of the effective stress ae normalized as before 

[see Eq. (6*1)] is given in Fig. 21 for Specimen 1, 2, and 3. As 

shown in Appendix E, the effective stress is a measurement of the 

yield surface of material and defined as 

1 2 2 2 

0 = [(a _a ) + (a _a ) - + (a _a ) + 
e /r xx yy yy zz zz xx 

2 2 2 
6(a + a + a )] 

xy yz zx 

(6*2) 
1/2 

From the information in Fig. 21, near the crack front A, the plastic 

zone size of Specimen 2 may be expected to be larger than that for 

Specimen 3 but smaller than that of Specimen 1. A detailed plastic 

zone analysis is presented in Chapter IX. 
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CHAPTER VII 

VERIFICATION OF THE CALIBRATION EQUATION 

The calibration equation of the DT test (Eq. 3*14) results 

from an approximate treatment involving the principle of conservation 

of energy* and based on the assumption of a straight crack front 

orthogonal to the plane of the specimen (Fig. 5). Discrepancies occur 

due to the fact that the DT test, incurs a corner crack, and also due 

to the fact that the equivalent torsion bars are not rigidly fixed at 

their ends but supported by an elastic hinge. To verify the calibra

tion equation, the DT specimen with a straight crack front has been 

studied by the same finite element technique used in the previous 

Chapter. 

In the straight crack front DT analysis, no constraints were 

assumed on the crack surface. This assumption yields a negative SIF 

and material overlap in the upper half of the specimen. Although, 

this material overlap can never occur physically, the assumption was 

made mainly to be consistent with the conditions used in deriving the 

calibration equation. 

Several results obtained from using this assumption was compared 

with the results obtained from using a non-material overlap condition. 

*The elastic energy of the double torsion specimen which is 
beyond the crack front was assumed as zero for the calibration equa
tion derivation. 
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The former results are higher than the latter results by approximately 

3%. 

The results -evaluated from the straight crack front finite 

element models (hereafter this model will be called the idealized DT 

model to distinguish from the DT model with a corner crack) were also 

compared with the results of corner crack specimens. A generalized 

DT calibration equation was made for both the corner and the straight 

crack front specimens * 

A finite element model with a relatively few degrees 

.of freedom could be made of the idealized DT specimen due to the fact 

that the crack front was assumed straight. These relatively coarse 

mesh models can be handled by the computer x̂ ithout the aid of out-rof-

core storage accessories. A good deal of computer time is thus 

saved due to the use of these coarse mesh models. 

Reliable accuracy of the relatively coarse mesh models was 

achieved by selecting an optimum size of special elements. A sixteen 

element idealized DT finite element model with the dimensions, 

2t 
TT~ ~ 1» c/L = 1/2, and W/L = 1/5 was studied by varying the special 

O-L 

element size parameter, rr-, from 0.1 to 0.4 (h is the characteristic 

length of the triangle cut from the. special wedge elements, and c is 

the crack length, b becomes infinity). Proof that the optimum 

special element size is about 10% of the crack length has been pro

vided by Tong and Pian [93], however this may not be applied to the 

idealized DT finite element analysis. In this idealized DT model 

(^ = 1, ̂  = 1/2, and ~ = 1/5), 10% of the crack length (~ = 1/10) 
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is equivalent to half of the thickness. This is obviously too large. 

Using a refined mesh model that contains 68 elements, it was 

found that•the maximum SIF values approximately equal 1.66 for various 

?Vi 

77-, from 0.05 to 0.15. This value is considered more accurate than 
w 
results obtained from the 16-element models. Comparing this value 

with the results from the relatively coarse mesh models, it is found 

the fj— = 0.2 is indeed the "optimum" special element size. This 
w 

analysis is summarized in Table 2. 

Four different finite element models, with e=0, have been used 

to analyze the idealized DT specimens. The dimensions for these four 

models are: 

(1) —• = 1, | = 1/5, ̂ varying from 1/10 to 9/10, 

(2) 7j— = 1, — = 1/3, — varying from 1/6 to 5/6, 

(3) j=r = 1/2, j - = 1/3, f varying from 1/6 to 5/6, 
W Li lj 

and 

(4) —• = 1/3, £ =1/2, ~ varying from 1/6 to 5/6 

A typical idealized DT model is shown in Figure 14 with the dimensions, 

|^ = 1/3, j - =1/2, and ~= 1/3. 

To verify the calibration equation, only the maximum SIF's are 

of interest, the K* results for the four models are shown in Fig. ' max ° 

22. These K* values are almost independent of the crack length over max . ° 

a substantial range. In Fig. 22, the solid lines represent a maximum 



Table 2. The Maximum Normalized SIF for the 
Optimum Special Element Size Analysis 

Special Element Size 
2h/W 

0.1 1.789 

0.2 1,657 

0 .3 1.638 

0.4 1.612 

Normalized SIF K* 1.66 
max 

of Refined Mesh Model 

Max. Normalized SIF 
16 Element Model 

K* 
max 



of 5% variation in K* . Comparing Model 2 with Model 3, it can be 
max 

seen that the ranges which provide nearly constant K* value for 
J max 

2t 
each model are nearly independent of the ratio — . It also can be 

c W 
found that the range of — is highly dependent on the ratio — 

Li Li . 

Based on the results shown in Fig. 22, for the Kmax to be within 5% 

of the "crack length independent" Kmax values, the following condi

tions need to be satisfied. 

For crack length: 

j - _> 0.35 x ~ , or c > 0.35W (7-1) 
i-i Li *~~ 

and for ligament length: 

1 - f > 0.65 x -• , or L-c > 0.65W (7-2) 
Li "~ Li ~ 

2t 
The K* is also shown to be increased as rr- is decreased. 

max W 

It is reasonble to surmise that this is due to the fact that the 

2t 
deformation energy of the elastic support increases as — decreases 

[94]. Then the calibration equation can be modified as 

KI " A P Wm C8t /(l-v)' (7"3) 

c pv 

where A is the modification factor. A is seen to be approximately 

W 
equal to 1.65+0.14 ln(-r-) for a reasonable range of the width-to-

W 
thickness ratio, -r , for the idealized DT specimen and to 1.0 for the 



corner crack DT specimen. 

Equation (7*3) would appear to have sufficient flexibility and 

accuracy in form for describing the nature of the DT test. It is, 

of course, similar to the well known generalized form 

K-j. = B a/c (7-4) 

which represents the problem of an infinite solid containing a crack 

under unaxial tension. Where the crack is a central crack through 

the infinite solid with 2c crack length, the factor B equals /n . 

For an embedded elliptical crack, B becomes [72] 

r»2 2 A + • 2 * / / 4 

I—•=• c o s <J> + s i n <f> } 
c z 

where c is the major axis and b is the minor axis of the ellipse, <S> 

is an elliptical integral, and <j) is an elliptical angle. 

It is worth noting that Srawley and Gross [39] have used 

boundary collocation analysis to modify the calibration equation of 

the double cantilever beam specimen which is also derived from the 

principle of conservation of energy. This is essentially similar 

to what has been done here for the DT specimen. 

Recently, a finite element analysis which, in some respects, 

is similar to the present idealized DT analysis, was reported by 

Trantina [30]. In addition to consideration of the idealized DT 

model (the straight crack front is perpendicular to the specimen 

^b 
Tt— 
C 
$ 
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surface), Trantina also considered several other configurations, for 

which the crack fronts were orientated 30° and 45° to the specimen 

surface. As quoted from Trantina, these orientated crack front 

models were tried to simulate the lower 'half of the penetrated 

specimen.* For the upper half of the penetrated specimens, the crack 

fronts are really too skew to simulate by using the finite element 

scheme. If the dissimilarity of the crack front in the upper part of 

the specimen can be ignored, Trantina provided very useful informa

tion on the penetrated specimen. Trantina found that if the straight 

crack fronts are orientated between 30° and 40°, the K* values are 
max 

approximately reduced to unity. This finding gives a theoretical 

explanation why the valid KJQ can be obtained from a penetrated 

specimen. 
Trantina used 176 regular constant strain elements to build 

his models and the displacement method to estimate the SIFs. The 

2t 1 W 1 c 
dimensions used were -rj— = •-=-, y = -=-,and y varying from 0.2 to 0.8. 

W 
For the idealized DT specimen with -sn• = 5, the K* estimated by 

r 2t max J-
Trantina and by Eq. (7*3) are equal to 2.0 and 1.88, respectively. 

The difference between 2.0 and 1.88, about 6%, may be due to the use 

of different finite element schemes. Trantina also showed that the 

K* is nearly independent of crack length over a certain range for 
max r ° & 

the crack front orientated specimen. He concluded that for a valid 

KJC calibration, the crack length, c, and ligament length, L-c, must 

*For some ceramic materials, penetrated crack fronts are often 
observed in relatively thin specimens. 



78 

be greater than 0.55W and 0.65W, respectively. Comparing this with 

the present Eqs. (7*1) and (7*2), Trantina's solution is consistent 

with the ligament length requirement, however, it is too conservative 

for the crack length requirement. In general, there is good agree

ment between Trantina and the present results especially considering 

differences in the models, crack shapes, geometries, and the finite 

element schemes. It should again be noted that the use of regular 

elements at the crack front is not normally desirable if high accuracy 

information is sought on stress intensification patterns. 
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CHAPTER VIII 

THE GROOVE EFFECT AND THE DOUBLE TORSION SPECIMEN 

When using double torsion specimens, it often happens that the 

crack path deviates from the line of symmetry. It is also possible 

that shear lips might occur at the fracture surface. In order to 

ensure a symmetric cracking path and obtain a flat fracture surface, 

a side grooved specimen is normally used in the DT test. The effect 

of the side grooving on measurement of the stress intensity factor 

will be discussed in this chapter. 

The straight crack front finite element model used in the 

previous chapter was modified to analyze the groove effect. In order 

to maintain a small number of elements to represent the high stress 

concentration at the groove edge and near to the crack region, special 

elements are also used in that part of groove region which is close 

to the interception point of the crack front. Regions of the groove 

away from the crack front use conventional elements to compensate for 

the overestimate of stress concentration by special elements. 

The grooved DT specimens usually contain two side grooves, one 

along the upper face (upper groove) and the other along the lower face 

(lower groove) as shown in Figure 4. The effects of the upper and 

lower grooves were calculated separately. To minimize the end effect, 

2t c W 
the geometry used in this analysis is -— = 1 , r- =1/2, — = 1/5, and 

W Li Li 

-J=. = 9/10 for each groove analysis. The effect of the variation of 
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the groove angle fy was also considered. The calibration equation 

(Eq. 3*14) in which tc is the only one parameter to account the groove 

effect, does not, of course, reflect the groove angle variation. 

The numerical results using the above finite element model 

associated with a loading condition, e=0, are summarized in Table 3. 

From Figure 22, the maximum normalized SIF for the present 

geometry without groove effects is 1.657. If the calibration equa

tion takes the groove effect fully into account, the maximum normal

ized SIF still equals 1.657 for grooved specimens. Based on the pre

sent finite element results, the calibration equation precisely des

cribes the groove effect for the upper grooved type specimens, but 

may provide an overestimate of about 10% for the lower grooved type 

specimens. In other words, the lower groove decreases the maximum 

stress intensity factor for a DT specimen with a straight crack front. 

For the specimens with a quarter-elliptical crack front, and the minor 

to major axis ratio b/c less than 0.3, the locations of these maximum 

stress intensity factors are away from the lower groove region there, 

thus the groove effect can be viewed as negligible (see Figs. 17, 18, 

and 19). As mentioned previously, a specimen with b/c greater than 

0.3 is rarely observed with the DT test and is also not recommended 

from the present results. 

Table 3 also shows that the maximum stress intensity factor 

increases as the groove angle \p is increased. For a groove angle \p 

variation from 30° to 90 , the maximum stress intensity factors in

crease 0.6% and 2.0% for the upper grooved and lower grooved specimens, 
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Table 3. The Maximum Normalized SIF 
for the Groove Effect Analysis 

Maximum Normalized SIF K * Values 
max 

Groove Angle Upper Grooved Specimen Lower Grooved Specimen 

30 1.650 1.415 

45 1.654 1.423 

60 1.655 1.431 

90 1.660 1.448 

NOTE: The normalized stress intensity factor 
for ungrooved specimen is 1.657. 

Zl 



respectively. 

It should be noted that the groove effect may depend upon the 

sharpness of the groove, the crack and the groove geometries, as well 

as the loading conditions. The present analysis only provides pre

liminary results for this problem. Furtherniore, the present results 

only describe the groove effect on SIF evaluations. They may not 

directly explain the fact that with the aid of grooves, the flat 

fracture growth surface can be formed for a relatively thin specimen. 

As discussed in the second section of Chapter III, the formation of 

the flat fracture growth surface is a much more complex matter. 
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CHAPTER IX 

CRACK FRONT PLASTIC ZONE ANALYSIS \ 

• . 

The preceding finite element analysis is, of course, based on 

the LEFM. The SIF is a parameter which characterizes the singularity 

of stress field in the immediate vicinity of the crack tip. However, 

for real materials, the stress is frequently bounded by the plastic 

yielding in the region of elevated stress. If the zone of plastic 
i 

flow is small, the stress distribution, by and large, will not be 

seriously disturbed. Irwin [33] pointed out that as long as this 

plastic zone is small compared with crack length, the linear elastic 

fracture mechanics can be used with reasonable accuracy. A DT 

plastic zone analysis as well as related topics will be presented in 

this chapter. 

Crack Size Requirements 

From the above discussions, it is evident that the crack size. 

should be a multiple of the size of the plastic zone. If the 

von Mises criterion is used, the size of the plastic zone (rp) of 

Mode I crack can be roughly determined from the elastic asymptotic 

solution, Eq. (2-1), thus [72]: 

2 
Plane s t r e s s : r D (9 ) = ~ ( — > [1 '+ - | s i n 2 8 •+•cos8] (9-1) 

v 4 IT a v i 
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2 
Plane strain: rD(0) = ~ (~) [\ sin2 9 + (l-2v) 2(l+cos6) ] (9 • 2) 

where 0 is defined in Fig. 2. The plastic zone in plane strain is 

appreciably smaller than plane stress plastic zone. According to Eq 

(9*2), the farthest point of plastic boundary is at 8=90°. For 

0=90 and v=0.3125, the plane strain plastic zone becomes 

• K 2 

r_ = 0.13 (~) (9-3) 
P ay 

Comparing the above equation with Eq, (3*15)-, it is seen that 

the recommended ASTM crack size requirement is about 19 times the 

plane strain plastic zone size. The requirement of Eq. (3*15) 

perhaps may hold for all specimens deduced from the LEFM concept. 

An analysis which shows this requirement is suitable to the DT test 

will be presented in the next section. 

In order to apply Eq. (3*15) to the DT test, an effective (or 

equivalent) crack size which characterizes a crack with a curved 

front needs to be found. Following the idea revealed in Eq. (3*10), 

the effective crack length ce may be expressed as 

cA =
 Ac (9-4) 

e 
t c 

where Ac is the crack surface and may be given as 



7T 

f T be for unpenetrated specimen 

<• atc + T- (c-a) tc for penetrated specimen 

where a, b* c, and tc are defined in Fig. 5. Substituting Eq. (9*5) 

into Eq. (9*4) the effective crack size becomes 

(—— tor unpenetrated specimen 

- < * - { : • * . (9-6) 
l T*(c.+0.27a) for penetrated specimen 

Similarly from Eq. (3*15), a requirement for the effective 

crack size is 

K 2 

ce > 2.5 f IC, (9-7) 

°y 

Also, through the relation of implied in Eq. (9'6) the range of 

approximately constant Kmax value which has been developed for the 

idealized DT specimen may be extended to the curved crack front 

specimen. Thus, Eq.s. (7*1) and (7*2) become 

ce > 0.35W (9-8) 

and 

L - ce 2-0.65 W (9-9) 
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Eqs. (9*8) and (9*9) imply that the range of approximately constant 

W Kmax depends on the r a t i o of width-to-length, —. For instance, if 

the range of near constant K^x is required over than 50% of the 

specimen length, the width-to-length ratio should be less than 1/2. 

Compared with the rigorous ASTM requirements, the DT size re

quirements which were established, in Eqs. (9*7) through (9*9) and Eq. 

(3*17) apparently are much more readily achievable. It should be 

noted that the crack size criterion for the DT test developed here 

has been based partly upon the profile of the Kmax variation over 

the specimen length rather than solely upon plastic zone size. 

An Equivalent 2-D Model Used in Plastic Zone Analysis 

To assess the validity of the DT crack size requirement, i.e. 

Eq. (9*7), a crack front plastic 2ione analysis will be performed. 

Based on the following reasons, a 2—D finite element model may be 

used for the plastic zone analysis. 

1. As has been noted earlier, the crack front plastic zone 

K 2 

size is proportional to (—) . It is reasonably assumed, therefore, 
aY 

that for a particular material, the variation of plastic zone size 

along the curved crack front, will depend on the local SIF and the 

curvature of crack front. Furthermore, if the radius of curvature of 

the curved crack front is larger compared with the related specimen 

dimension, the local plastic zone size may only be considered de

pendent on the local magnitude of SIF. 

2. From the earlier elastic analysis (Chapter VI), the maxi-

7T IT 

mum SIF occurs at the elliptical angle between -r- and y for a DT crack 



87 

aspect ratio, (b/c), less than 0,225 (see, Fig. 17). For this small 

aspect ratio (— _< 0.225), the radius of curvature of the elliptical 

angle between '4 and '2 is much larger than the effective crack size 

In this region, the local plastic zone size then, can be assumed 

dependent on the local magnitude of SIF only. 

3. Since only the maximum p l a s t i c zone need be estimated, the 

cross-sect ion containing the maximum SIF need only be considered. 

Thus, an equivalent plane s t r a i n model can be designed to r e 

present a cross-sect ion of the DT specimen which contains the e l l i p 

t i c a l angle of the crack between '4 and '2 (see Fig. 23). 

The 2124-T851 wrought aluminum alloy was again selected for 

the plastic zone analysis. The material properties are listed as 

follows: 

Fracture Toughness (KIC): 28.4 ksi/ln (31.2M.Pa/m~) 

Yield Stress (ay): 67.0 ksi (462.0 MPa) 

Young's modulus (E): 10.5xl03ksl (72.4xl03 MPa) 

Poisson's ratio (v): 0.3125 

From the above data and the calibration equation of the DT test, a 

critical load (Pc) of 3,488.8 lbs. (15,518.2 Newtons) can be calculated 

2t 1 
for a specimen with a cross-section, — = -~- and ̂ =Wm=3.0 in. (7.62 

cm.). This cross-section is consistent with the geometry of Specimens 

1, 2, 3, and 4 in Chapter VI. 

31.2M.Pa/m~
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It is also to be noted that because of the linear nature of 

the elastic results and the small variation of Poisson's ratio, with 

same specimen dimensions, the deflections plotted in Fig. 23 can be 

approximately converted to that of other elastic materials by 

utilizing a factor of ( '^-A^AO >• where the E and KJC are the 

Young's modulus and fracture toughness, respectively, of the material 

to be converted, and E^£ and K^£ are for the 2124-T851 aluminum alloy. 

Analytical Procedure and Results 

Crack Tip Stress and Strain Field 

In the case of small scale yielding, the asymptotic singularity 

was found by Rice and Rosengren [95] and Hutchinson [96] . Their 

analysis determined the crack tip stress and strain singularities for 

materials having a power law relationship between effective stress 

and effective strain. In this case, the near crack tip stress a. 
ij 

and strain e^ variations are given by 

-n/(mO a#_(e) 
1J 1J 

(9-10) 

E-t/(HtO * 9 ) 

1J 1J 

where n is the power hardening coefficient. For n=l, Eq. (9*10) 

reduces to the linear elastic case and is in agreement with the 

inverse-square-root singularity equations given in Chapter II. For 

elastic-perfectly plastic materials, n equals zero, and Eq. (9*10) 

degenerates to 
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(9-11) 

' j 

(9-12) 

The functions a.. (8) and e.. (9) are similar to the elastic solutions 
ij iJ 

and are determined by the solution of equilibrium, compatibility and 

constitutive equations subject to a traction free boundary condition. 

Finite Element Model 

For a conservative and simplified approach of the plastic zone 

analysis, the 2124-T851 aluminum alloy was treated as an elastie-

perfectly plastic material. The distorted collapsed quadratic ele

ments were selected to model the near crack tip region. 

If the collapsed nodes (at the crack tip) of the distorted 

collapsed element are constrained to have the same displacements, the 

element can be shown embodying the ( '/r ) singularity of elastic 

fracture mechanics. However, if the collapsed nodes are left free 

(sliding node) to displace independently of each other, the inverse 

singularity of Eq. (9*12) can be obtained ['28]. The finite element 

analysis concerned used these distorted elements adjacent to the 

crack tip and hence guarantees the results having reliable accuracy, 

given the previously stated assumptions. 

The finite element mesh of the equivalent 2-D model is shown 

in Fig. 24. It contains 4 distorted collapsed quadratic elements 

around the crack front and 50 regular quadratic elements elsewhere. 

a. .. -> r a . . (0) 
ij ij 

s. . -»- r- 1 e. . (6) 
•iJ ' iJ 
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The 3-D elastic results of 2124-T851 aluminum alloy were 

utilized to determine the loading condition for the equivalent 2-D 

model. Under the critical loading, deflections along the upper 

symmetric line (line B-BT in Fig. 23) of Specimens 1, 2, and 3 are 

plotted in Fig. 23. If Specimen 2 is chosen for the plastic zone 

analysis, as shown in Fig. 17, the maximum SIF occurs at <f>=55° or 

y/L = 0.19. Therefore, a 2-D model which represents the cross-section 

located at y/L = 0.19 can be constructed for this typical plastic 

zone analysis. 

The relative deflection of the upper symmetric line to the 

outer edge locations (line C-C' in Fig. 23) may be superimposed on 

the equivalent 2-D model as the loading condition. In the cross-

section considered (y/L = 0.19) , the relative deflection, d, as shown 

in Fig. 23, equals 0.022 in. (0.056 cm) for Specimen 2. The dashed 

line shown in Fig. 23 represents the deflection along the outer edge 

locations for Specimen'2 .. 

The 2-D model based on the above concept may now be formu

lated. The dimensions of the model are depicted in Fig. 24. The 

equivalent crack length equals 0.368 in. (0.935 cm) at the cross-

section of y/L = 0.19. As discussed previously, the equivalent 

loading condition is a displacement (d) equal to 0.22 in. (0.56 cm) 

loaded at the upper symmetric line. The complexity of the above 

model formulation is due to the attempt of resolving a 3-D problem 

using 2-D viewpoints and is clearly unavoidable. 
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Elastic Verification of the Equivalent Model 

The above model was first examined by a plane strain elastic 

analysis. The plane strain elastic results were compared with the 

3-D results. This comparison provided essential data to evaluate the 

accuracy of using the equivalent plane strain model to simulating 

the 3-D DT problem. 

The SIFs of the plane model were estimated by using the re

lationship of Eq. (4*33), the COD criterion, and by calculating the 

J-integral over several paths surrounding the crack tip. It is to 

be noted that the crack size of this equivalent 2-D model is somewhat 

deep and beyond the limit prescribed by the ASTM bend specimen cali

bration (see Fig. 7). 

The J-integral as introduced in Chapter II can be utilized 

over range of conditions from essentially elastic to fully plastic. 

Begley and Landes [97] have been shown that the magnitude of J can 

be used as a fracture criterion for cracked bodies. The J-integral 

evaluated from the elastic solution is thus not only used for veri

fication of the equivalent model, but also for providing a numerical 

measure of the plastic zone effect. The definition and computation 

procedure of J-integral is described in Appendix D. 

The results are summarized in Table 4, where K^Q is the maximum 

SIF of Specimen 2 and equals 27.3 ksi/ir" (30.0 MPa/m) for 2124-T851 

aluminum alloy, and Paths 1, 2, and 3 are defined in Fig. 24. As 

shown in the table, the 2-D model is in good agreement with the 

simulated DT specimen, the extent of the agreement depending upon the 
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TABLE 4 

STRESS INTENSITY FACTOR OF THE EQUIVALENT 

PLANE STRAIN MODEL 

K-est imated 
method 

J r , f t - l b . / i n 
2 

.(J/nT) 

K , k s i / i n 

(MPa ViiP) K3D 

COD DNA* 27.08 
(29.76) 0.99 

Path 1 6.46 
(5.65E-3) 

30.04 . 
(33.01) 1.10 

i P a t h 

I n t e g r a l 
2 

6.34 
(5.55E-3) 

29.76 
(32.71) 1.09 

Path 3. 
7.43 

(6.50E-3) 
32.22 

(35.41) 1.18 

Does Not A p p l y . 

** , JE v^ 

it "kit r— 
K = 2 7 . 3 k s i v i n ( 3 0 . 0 MPa/m) 



approach taken. The SIF calculated from the COD method is within 

1% of the 3-D critical value. This 2-D SIF value is particularly 

significant, since the 3-D critical value is also calculated from the 

COD method. The J-integral values are reasonably path independent. 

However, a significant variation in J occurs for Path 3. This path 

is through the single loading point and partially on the outer boun

dary of the specimen. The variation in J on this path may well 

reflect the inability of the 2-D model to adequately represent the 

/"r stress and strain singularities at the loading point [92] . 

Furthermore, there will also be small error in calculating the stresses 

on traction free boundaries. These errors are to be expected with 

the displacement finite element model. From the above study, the 2-D 

equivalent model may be considered to be accurate to within 10% in 

simulating the DT test arrangement. 

Results for Plastic Zone and J-Integral 

In plastic zone analysis, the equivalent 2-D plane strain 

model was examined by mean of a modified version of a finite element 

computer program developed by Westinghouse Electric Corporation [29]. 

The elastic-plastic stress-strain relations used in this program are 

based upon the small deformation incremental theory of plasticity, 

using the von Mises yield criteria,and the associated flow rule, the 

Prandtl-Reuss equations. The approach for the elastic-plastic finite 

element analysis uses the method of successive elastic approximations, 

or the initial strain method. A discussion of the theory and the 

approach of the finite element analysis may be found in Appendix E or 
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Reference [98] . 

From the e l a s t i c -pe r f ec t l y p l a s t i c f in i t e element ana lys i s , the 

calculated r e l a t ive p l a s t i c zones are shown in Fig. 24 for deflect ion 

loadings equal to 0.011" (0.028 cm) and 0.022" (0.056 cm). As shown 

in the f igure, the maximum p l a s t i c zone size near the crack front for 

the c r i t i c a l def lect ion loading condition i s approximately 0.018" 

(0.46 cm) in rad ius . This p l a s t i c zone s ize equivalent to 0.10 

K 2 (——) which represents 80% of the value determined from Eq. (9 .3 ) . 
y 

Compared with the refined estimates of Larsson and Carlsson [99] 

for the plastic zone size in corresponding standard ASTM specimens, 

the above results is indeed of a highly appropriate magnitude. They 
used a rigorous finite element analysis and show that the maximum 

K/ 2 
plastic zone sizes of the. ASTM specimens are between 0.11 ( a ) and 

K, 2 

0.14 ( a ) . From this comparison, it can be deduced that if Eq. 
y 

(9 .7 ) , the crack size requirement for the. small scale yielding c r i t e r 

ion, i s appropriate for the ASTM standard t e s t , th is equation i s also 

su i tab le for the DT t e s t to sa t i s fy the small scale yie lding c r i t e r i o n . 

In order to present a numerical estimate of the scale of the 

p l a s t i c i t y effects in the small scale yielding condi t ion, a J - i n t eg ra l 

evaluation based on the plane s t r a i n e l a s t i c -pe r f ec t l y p l a s t i c 

r e su l t s i s also provided. The effect of the p l a s t i c i t y on the J -

in tegra l i s shown in Table 5. The calculated values of J are 
p 

normalized by the elas tically calculated J values which were also 
e J 

s e reported in Table 4. The deviat ion from 1.0 of the r a t i o - ' J i 

a measure of the effect of p l a s t i c i t y . The maximum deviat ion of 
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TABLE'S 

J-INTEGRAL OF THE EQUIVALENT PLANE STRAIN MODEL 

2 2 
J - I n t e g r a l , f t - l b / i n ( J / m ) 

Path Elastic (J ) Elastic-Perfectly Plastic (J ) p/J 
e P ' 

1 6.46 (5.65 E-3) 5.98 (5.23 E-3) 0.93 

2 6.34 (5.55 E-3) 6.17 (5.40 E-3) 0.97 

3 7.43 (6.50 E-3) 6.68 (5.85 E-3) 0.90 
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( P/Je) in Table 5 is 10% for Path 3. As mentioned in the pre

viously subsection, the value calculated from Path 3 must be neglected. 

If only Paths 1 and 2 are considered, the average deviation is 5%. 

However, this 5% deviation in J-integral is equivalent to a 2.5% 

plasticity effect in the SIF. It should be noted that this 2.5% 

plasticity effect is evaluated in a cross-section where the crack 

front plastic zone size is considered:to.be the largest. In-other'words,-

the plastic effect should be much less than 2,5%, if the whole specimen 

is considered. It is also to be noted that the present finite ele

ment analysis is fairly conservative due to neglect of the strain 

hardening effect. An analysis similar to the above, but for the AISI 

M7 high speed steel, is presented in Ref. [100]. In this reference, 

it has also been concluded that the maximum plastic zone size for M7 

high speed steel in the DT test, genuinely satisfies the small scale 

yielding restriction. 

to.be
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CHAPTER 

CONCLUSIONS 

This dissertation examines a highly versatile and simplistic 

fracture toughness test configuration using a specially developed 

finite element technique. The finite element analysis involved shows 

that excellent correlation between the numerical and experimental 

results can be obtained for the DT test described in this dissertation. 

The maximum stress intensity factor is shown, to be almost independent 

of crack length (c) over a considerable range. A generalized cali

bration equation is provided for this test. 

The variation of the stress intensity factor along the curved 

or straight crack fronts of the DT specimen was also presented. The 

complex stress field, groove effects, and plastic zone size were 

similarly discussed. An elastic analysis procedure was instituted 

for the accurate investigation of the 3-D aspects of the DT pre-

cracked specimen. The elastic-perfectly plastic crack front deforma

tion was also investigated through a 2-D equivalent model which was 

designed to allow the 'r shear singularity and through a J-integral 

evaluation. In this plastic zone analysis, some additional insight 

into the area of elastic-plastic fracture mechanics is also provided. 

In the elastic analysis, a special 3-D wedge element was devel

oped to represent the elastic crack front singularity. This special 
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element has been demonstrated to be highly effective and efficient 

through a 3-D compact specimen analysis. The comparison between the 

present results and other published results is also given. Con-

squently, a great deal of fundamental information was revealed from this 

comparison. This is, of course, important to interpretation of frac

ture test results which are typically obtained on this kind of speci

men. It is also of interest for the information it sheds on the 

actual 3-D aspects of what is commonly treated as a 2-D problem. 

From the finite element results, some conclusions can be made 

as follows regarding the DT test: 

(1) The basic premise that KJC values obtained using the test, 

following the admittedly approximate analysis of the calibration 

equation, are independent of crack length is essentially true, if 

the crack length is greater than 0.35 of the specimen width and 

ligament length is greater than 0.65 width. 

(2) The above statements imply that if the range of near 

constant K^Q value is required for more than 50% of the specimen 

length, the width-to-length ratio should be less than 1/2. 

(3) The normalized stress intensity factor can be seen to 

vary around the curved crack front, however for typically utilized 

geometries, SIF variation is such that no serious error should be 

incurred in using the calibration equation to determine KJC. 

(4) To form a flat crack growth surface for a relatively thin 

specimen and to maintain a crack path upon the line of symmetry, the 

use of both upper and lower grooves is recommended. From the present 



analysis, the groove effect on the maximum SIF can be neglected for 

a specimen with quarter-elliptical crack front. 

(5) Based on the experimental results of Ten Haagen and 

Berry, the minimum specimen thickness to avoid a plastic instability 

condition is specified in Eq. (3*17). This thickness requirement 

represents a 90% saving in this dimension when compared with a valid 

ASTM specimen. This is important since in testing tough materials 

of moderate yield strength, the required thickness of the ASTM 

specimen is, of course, a major limitation in determination of K-J-Q. 

(6) To satisfy the small-scale yielding fracture criterion, 

it is recommended that the crack size requirement of the ASTM stan

dards, Eq. (9*7) should be held for the DT testing. However, the 

corresponding crack size of the DT specimen can be defined from Eq. 

(9-6). 

(7) Based on the elastic-perfectly plastic analysis, the 

ASTM crack size requirement is seen to be an extremely conservative 

requirement for the DT test, particularly as compared with the ASTM 

standard tests. 

(8) A crack aspect ratio b/c smaller than 0.3 is desirable 

(This would not imply any practical difficulty). The crack aspect 

ratio b/c of cracked double torsion specimens of which the writer 

is aware is almost always smaller than 0.25. 

(9) A four-point bending loading technique is recommended. 

For effective loading, the distance between the loads should be made 

as small as possible. 
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The above information may be applied to other cracked struc

ture analyses or to fracture tests involving similar loadings and to 

specimens precracked in this way. 

The present elasto-plastic technique can also be extended, 

with some modifications, to three-dimensional elasto-plastic analysis, 

which would provide a more realistic fracture criterion for real test 

materials, wherein the plastically yielded region near the crack front 

is no longer small. 

The finite element results obtained for the idealized double 

torsion specimen and for the groove effects are still awaiting 

supportive experimental data. Experimental techniques for providing 

a crack front approximating a straight line and for measuring the 

groove effect are currently made development. 

Finally, to explain the dependence of KQ upon fracture growth 

surface appearance and to analyze mixed mode fracture problems, a 

generalized fracture criterion is also proposed in this dissertation. 

However, this criterion also awaits physical and experimental veri

fication, since the problems involved are still far from being com

pletely understood. 
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APPENDIX A 

BASIC CONCEPTS OF THE PLANE THEORY OF ELASTICITY 

Using the Cartesian coordinates (x, y, z), the equations of 

elasticity reduce to a two-dimensional form in three special cases 

which are of interest: 

1. Plane Strain: In this case, the displacement component in 

z—direction, w, is identically equal to zero, and none of the phy

sical quantities depends on z. 

2. Plane Stress: In a state of plane stress parallel to the 

xy-plane, the stress components a , a , a all vanish but the com-
• r xz yz zz 

ponents of the displacement vector are not, in general, independent 

of z. 
3. Generalized Plane Stress: This is a state of stress in a 

thin plate -h<z<h when a =0 throughout the plate but a =a =0 only 
- - zz xz yz 

on the surfaces z = +h of the plate. 

In view of these definitions, the stress components for plane 

stress are 

a = a (x,y), 
XX XX 

a -a (x,y), 
yy yy 

(A-l) 



a = a (x,y), 
xy xy \J'' 

a = a = a = 0, 
zz xz yz 

and for plane strain are 

a = a (x,y) xx xx y 

a = a (x,y) 
yy yy J 

t \ (A* 2) 
a = a (x,y) y 

xy xy 

a = v (a + a ) 
zz xx yy 

a = a = 0 xz yz 

The equilibrium equations for plane strain and plane stress in the 

absence of body forces become 

da 
XX 

3x 
. +-. 

3a xy 
3y = o, 

3 a xy 
0 „ + 

3a 
yy = o, 

(A-3) 

In the case of generalized plane stress,, we treat the equili

brium equations in terms of mean values a . a t a of stress 
n xx yy xy 

components (a , a , a ) defined as follows xx yy xy 
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1 Vi 

5xx(x'y) = "2h ' axx(x'y'z) d z 

-h 

1 h 

°yy(x'y) = 2h '-.. V X ' 7 ' 2 ) dZ (A-4) 
—n 

3xy ( x' y ) " ^ f l °xy(x'y'z) dz 

-n 

where bars over the letters denote mean values. Since 0 , 0 , 
zz xz 

and a are zero on the ends, i.e. z - +h, in the absence of body 
yz - - J 

f o r c e s , i t can be shown t h a t [101] 

a = 0 zz 

h ( 5
X Z ) • ° <A-5> 

3 (a ) = 0 
Ti yz 

where a and a are similarly defined as Eq. (A*4). The equili-
xz yz y ^ 

brium equations for generalized plane stress are 

3a 3a 
x x + *y = 0 3x 3y 

(A-6) 

3a 3a 
_^£X —ZL =o 
3x 3y 
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Comparison of Eq. (A*3) with Eq. (A*6) shows that the mean values of 

the stress components (a , a , a ) satisfy the same equations which 
xx yy xy 

govern the cases of plane strain and plane stress. We may write the 

equations of generalized plane stress without bars over the symbols 

and then Eq. (A*6) becomes Eq. (A*3). We merely keep in mind that 

components of stress are mean values. Often, when the term "plane 

stress" is used, "generalized plane stress" is actually implied. 

However, if the stress components, a and a , are considered, the 
r xz yz 

"generalized plane stress" is to be distinguished from the "plane 

stress". 

If only the stresses (or forces) are specified in the boundary 

surface, the boundary condition can be expressed as 

T (x ,y) = £„a + JL-a x ^ w / x x x y x y 

(A-7) 

T (x ,y) = i o + £ v a y x xy y yy 

where Tx and Ty are the components along the axes of the applied 

stresses. &x'and A are the direction cosines of the exterior unit 

normal to the surface. Considering the elastic deformation of the 

plane body, the mathematical formulation of the condition for com

patibility of stress distribution with the deformation may be found as 



(72+7"2 )'<0= + V " ° (A'8) 

9x 3y JJ 

The equations of equilibrium (A*3) or (A*6) together with the boun

dary conditions (A*7) and the above compatibility equation give one a 

system of equations that is usually sufficient for the complete 

determination of the stress distribution. The solution subject to 

the stress boundary conditions (A*7) is usually referred to as the 

stress boundary value problem. In the stress boundary value problem, 

the equations determining stress distribution do not contain the 

elastic constant of material. Hence, the stress distribution is same 

for all isotropic materials.* 

It should also be noted that the compatibility equations (A*8) 

and equilibrium equations (A*3) hold for all the three cases, i.e. plane 

strain, plane stress, and generalized plane stress. The stress dis

tribution is hence the same in these three cases, provided the stress 

boundary conditions (A*7) are the same. Mathematically, the existence 

of single-valued stress components a , a and a can be proved 
xx yy xy 

for both the simply and the multiply connected regions [101]• 

*For a multiply-connected body, if the resultant of the forces 
(stresses) applied to each boundary is zero, this conclusion still 
holds. Nevertheless, if the resultant of the applied forces does not 
vanish on each boundary, quantitatively, the effect of the moduli on 
the maximum stress is usually very small, and in practice it can be 
neglected [92]. 



APPENDIX B 

SOME. COMMENTS ON ASTM FRACTURE 
TOUGHNESS TESTS AND RELATED SPECIMEN DIMENSIONS 

The test procedure for fracture toughness testing is standard

ized by the ASTM [70]. The recommended ASTM specimens are three-

point bend specimen and compact (tension) specimen. Because of the 

difficulty of undertaking a complete 3-D stress analysis, the cali

bration equations of these specmens were derived by a 2-D boundary 

collocation method [70,71]. The planar calibration equations which, 

of course, hold the same forms for both the plane strain and plane 

stress cases*, are for the bend specimen: 

PS o 1 / 2 c 3 / 2 c 5 / 2 

K I = ^ 3 7 2 - [2-9(l> "4-6^ +21-8(£> 
(B-l) 

7/2 9/2 
" 37.6(f) + 38.7(f) ] 

and for the compact (tension) specimen 

p 1/2 3/2 5/2 
Ki = - 1 7 2 [ 2 9 - 6 ( t } " 1 8 5 - 5 ( l } + 6 5 5- 7 ( t> 

tW 
• • 7/2 9/2., 

-1017.0(f) + 638.9(f) J 

(B-2) 

:See some discussions in the first: section of Chapter II. 



where the symbols are defined in Fig. 7. Physically, without sub

stantial error, the above calibration equations are confined to 

specimens whose thicknesses, as compared with the crack length and 

other specimen dimensions, are relatively either large (plane strain) 

or small (plane stress). However, it is specified by the ASTM that 

the specimen thickness, t, the specimen width, W, and the crack 

length, c, be of the same order of magnitude [70] . Naturally, to 

develop a valid plane strain test, a specimen whose thickness is 

relatively large as compared with the crack length or specimen width 

is required. This is frequently quite impracticable. It should be 

noted that near the crack edge in a plate (except on the surfaces of 

the plate per se), the stress is always in a state of plane strain 

[102]. The conditions for plane stress, therefore, would seem to be 

violated for any cracked plate. To ensure high accuracy testing 

results, any such test relies strongly on the availability of a 3-D 

analysis. It is noteworthy that an effective and efficient 3-D 

analysis has been developed in this research. 

To describe a state of stress, a terra "semi-plane" will be 

used here for convenience. This state of stress will be defined as 

a condition for which loading and geometry are not variable in thick

ness direction and therefore can be described mathematically as a 

plane strain or plane stress condition.* However, it is associated 

with a thickness too small to satisfy the plane strain condition, and 

*A mathematical description of Plane Strain or Plane Stress 
may be referred in Appendix A. 



too large for the plane stress condition,. As discussed above, the 

ASTM "plane strain" fracture toughness specimens are not genuinely 

plane strain specimens per se but: are "semi-plane" specimens. In the 

ASTM standard testing procedure, we usually apply the 2-D calibrations 

to the semi-plane specimens, i.e.. we ignore the specimen thickness 

effect. In other words, as long as the specimens provide straight 

crack fronts and flat crack surfaces, i.e. the semi-plane conditions, 

the 2-D calibrations can be applied. As will be gathered, the ASTM 

semi-plane specimens are designed for Mode I fracture toughness 

testing. From the fracture loads and the calibration equations, the 

critical stress intensity factors, KJ_Q, can be estimated. It is 

suggested here that the estimated critical stress intensity factors 

are independent of the specimen thicknesses as long as the testing 

specimens satisfy the semi-plane condition. The above condition is 

based on the fact that the variance due to using the 2-D calibrations 

are not considered here. Srawley [103] predicted that the SIF is 

underestimated, probably, 5%, from using the 2-D calibration. Based 

on the 3-D finite element results presented in Chapter V, it can be 

seen that the maximum SIF for an idealized compact specimen is 4% 

higher than that obtained from a 2-D analysis. Compared with the 

3-D result, Srawley's prediction is adequate. 



APPENDIX C 

COMPUTATION OF Kj BY A 3-D CRACK OPENING DISPLACEMENT METHOD 

A 3-D crack opening displacement method has been developed by 

Kathiresan [48]. This method can be utilized very effectively to 

estimate the stress intensity factor from the displacement solution 

of the finite element models where special elements with a correctly 

embedded singularity are used. 

As shown in Chapter IV, the present 3-D special element allows 

for proportional to the distance from the crack edge and to the 

square root of the distance from the crack edge and allows for linear 

and quadratic variations along the edges. Referring to'Fig. 9 •• a and 

assuming that the surface abed (n=l) represents the crack surface, 

the binormal (y-direction) displacement v on the surface abed can be 

expressed as 

i- 2 ^ J" 2 
v = a. + a2r

2 + a~Q + a,r + a,-C + afir \ + a_rC + a„r 2£ (C«l) 

where r is exactly the same as £ in Fig. 9«a. The values of 

a.......an can be calculated by substituting the nodal displacements 

of nodes a, b, c, d, e, f, g, and h. Now considering the displace

ments of the nodes relative to the displacements of the crack front, 

Eq. (C«l) may be reduced to 
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i- i- U 2 
v = a£r

2 + a^r + a r \:+ ayr? + agr."*C
fc (C«2) 

Here, the five constants a«, a,, a., a.,, and aQ can be evaluated 
2 4 6 7 8 

from the near crack front nodes c, d, f, g, and h. 

From the asymptotic near field solution for displacements, 

i.e. Eq. (2'7), for the crack surface where 9=TT (refer to Fig. 3), 

we get 

K i 
v = ̂  ( f ^ (2-2v) (C3) 

As defined in Eq. (2*4), mathematically, the stress intensity factors 

are meaningful only for r approaching zero. Equating Eq. (C«2) and 

(C-3) and letting r-K), it follows that 

Ki " T i V (T> * (a2 + V + V*> <•**> 

where £ is the non-dimensional coordinate along the crack edge 

varying between -1 and +1. The COD method thus yields an equation 

in which the SIF varies quadratically along the crack front. 



APPENDIX D 

J-INTEGRAL AND THE COMPUTATIONAL PROCEDURE 

Consider a 2-D cracked body with a Cartesian coordinate 

system (x.y) as shown in Fig. 25. Letting the x-axis parallel to the 

flat surface of the crack, the path integral J can be expressed as 

Eq. (2*11). This integral is evaluated in a counterclockwise sense 

starting from the lower flat notch surface and continuing along the 

path T to the upper flat surface. The strain energy density ws is 

defined as 

w s 
= / a d£ + a de + a d£ (D*l) 

xx xx yy yy xy xy 

For a 2-D linear or nonlinear elastic body free of body 

forces, Rice [66] have shown that J is path independent. In effect, 

this means that the line integral has the same value for all paths 

surrounding the crack tip. Therefore, by calculating J over a path 

remote from the crack tip, a number which characterizes conditions 

at the crack tip can be calculated. 

Path independence has also been proven for paths passing 

through the plastic zone when a deformation plasticity theory is 

employed [66]. For the incremental theory of plasticity as used in 

the present plastic zone analysis, the path independence has never 
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been rigorously proven. It has been numerically demonstrated by 

a number of investigators [104,105] that for purposes of engineering 

application J can be assumed to be path independent for incremental . 

plasticity. ; 

Eq. (2*11) is evaluated numerically by assuming that the 

components of both the stress and displacement gradients and the 

strain energy vary linearly over each straight linear segment which 

joins two adjacent nodes i and j making up the selected path T, i.e., 

axx = CTxx|, + <axx Ij - " x x ^ f ^ i - ) e t c . (D-2) 

and 

_9u. _ _9u I , , 9u I _9ii I . / y y j 

3x ~ 3x ' . ^3x l. 3x ' / S r - 7 ~ } e t c - (D'-3) 
i J i yy i 

Once this assumption is made, the integral can be mathematically 

represented in closed form over each segment of the path. There

fore, the contribution of each segment to total path integral can 

be directly calculated and then summed to give the value of J over 

the path. 

It should be noted that the J-integral expressions shown in 

Eqs. (2*11), (D«2), and (D*3) are valid only if the coordinate axis 

x is parallel to the flat surfaces of the crack. In the present J-



integral evaluations, the crack surface parallel to x-axis is 

always arranged. 

For a linear elastic.analysis, the strain energy density is 

computed from the current: stress and strain result. Thus, Eq. (D'l) 

becomes 

w = — (a e + a ' e + a e ) (D'4) 
s 2 xx xx yy yy xy xy 

For an elastic-plastic analysis, the strain energy density is com

puted by the expression of Eq. (IKl) throughout the history of the 

loading. It should be noted that: the strains £.. used in the 

present plastic zone analysis include strains due to elastic and 

plastic deformations. The numerical procedure considering both the 

elastic and plastic strain components for J calculation is given in 

Ref. [106]. 



APPENDIX E 

THEORETICAL BASIS OF THE ELASTIC-PLASTIC ANALYSIS 

This appendix outlines the theory and solution procedure used 

in the WECAN (Westinghouse Electric Computer ANalysis) computer 

program which was utilized in the present DT plastic zone analysis. 

Verification of the plastic capabilities of this program may be found 

in Ref. [29] . 

Elements of the Theory of Plasticity 

Three ingredients in addition to the elastic stress-strain 

relation, are needed in order to describe elastic-plastic material 

behavior. These are: (1) a yield surface, which plastic flow 

begins, (2) a flow rule which relates the plastic strain increments 

to the stresses and stress increments after initial yielding, and 

(3) a hardening rule, which specifies the modification of the yield 

surface during plastic flow. The theory outlined here applies only 

to a 2-D problem with an isotropic non-hard€>ning material. 

Elastic Stress-Strain Relation 

From the elasticity, the stress-strain relation can be found as 

(a}= [El {e6} (E-l) 



where {a} is the stress vector, {s^ the elastic strain vector, 

as defined as {e} in Chapter IV and'[E] the elasticity matrix which 

is similar to Eq. (4*27). 

Yield Surface 

It is quite generally postulated, as an experimental fact, that 

the yield surface is given by some function of the stress components, 

f(a..) = constant (E«2) 

According to the von Mises criterion, yield begins under any 

state of stress when the effective stress a equals the yield stress 

(<jy) measured in a uniaxial test. The yield surface becomes 

1 2 2 2 2 1/2 
f = a = — [(a -a ) + (a -a ) + (a -a ) +6 (a ) ] 

e jx xx yy yy zz zz xx xy 

(E-3) 

P 
An effective plastic strain increment: ds is defined as a r e 

combination of the separate plastic strain increments: 

P /? P P P P 
d£ = -=: [(d £ - d£ ) + (d£ - dz ) 
e 3 xx yy yy zz 

2 2 1/2 
P P I p^-1-/^ 

+ (d£ - de .) + 4 (der ) ] (E-4) 
zz xx 2 xy 

P 
With this expression in mind, the effective plastic strain e is 

the integral of Eq. (E*4) taken along the loading path so that all 
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of the increments of plastic strain are included. 

The Flow Rule 

Prandtl and Reuss suggested the basic constitutive relation 

defining the plastic strain increments in relation to the yield 

surface. At the present time this relation is generally accepted and 

can be written as 

P 3<Je 

or for components 

8a „ ' 8a 
P e P e 

d e = dA -z , de . = dA etc. (E-6) 
xx da I- yy 3cvv 

xx • JJ yy 

where dA is a proportionality constant and a Poisson's ratio of 1/2 

has been introduced. This equation states that the plastic strain 

increment vector is parallel to the normal to the yield surface at 

the current stress point on the yield surface. Using the relations 

established in Eqs. (E\3) and (E*4), dA can be written as 

dA = dee (E-7) 

da -
Q 

If H' = -rnp- is the slope of the uniaxial stress-plastic strain 
e 

P 
curve at the current value of ap, dte_ can be expressed as 



da -|_ 8a 

P 

Using Eqs. (E'$) for-de and substituting Eq. (E'7) into Eq. (E*5), 

the increment of plastic strain components become 

d {£p} = w Sr d W ' I T I - (E'9) 

During an infinitesimal increment of the stress, changes of 

strain are assumed to be divisible into elastic and plastic parts. 

Thus, 

d {e} = d {ee}+ d {eP} (E-10) 

The elastic strain increments are related to stress increments by 

a symmetric elasticity matrix [E] as defined in Eq. (E'l) and the 

plastic strain has been derived in Eq. (E*9). We can thus write 

Eq. (E-10) as 

- 1 J , , ^ 1 9 Q e 8 a e d {a} ( E - l l ) 
d { £ } = [E] d{<* + s r . ^TJ-^ 

This results in an explicit expansion which determines the 

stress changes in terms of imposed strain changes with 

d {a} = [ E ] e p d {g} (E-12) 
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where 

d°e K I 
[ E ] e P = [ E ] ' _ [ E ] 3{a> l3{g}-J [E] 

f3a IT 3 a 

H' + f e r ' [E] M'J [E] 3{J 

ep 

The elasto-plastic matrix [E] takes the place of the elasticity-

matrix [E] in incremental analysis. It is symmetric and positive 

definite. Explicit formulation of plasticity in this form was first 

introduced by Yamada et al. [107]. For elastic-perfectly plastic 

material H' equals zero and [E] can be written as 

T 
rTn1 da (da V rm [E] e_ | e_J [E] 

[ E ] e p = [ E ] _ 3{a) \Ho} J (E-13) 

\da ] T .3a 
J e l r„ n '•— e W\ L*J Jia~} 

On differentiating Eq. (E*3), it can be found that 

3a 3S 3a 3S 
e_ xx , e _ yy 

3a 2a 3a 2a 
xx e yy e 

da 3S 3a 3a 
e _ zz _e _ xy 

3a 2a ' 3a a 
zz e xy e 

in which S ^ stands for so-called deviatoric stress 

(E-14) 
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S a (gxx + gyy + g
2 2

) etc. (E-15) 
XX = XX - ;—n

 J J  

Hardening Rule 

Several different types of hardening rules have been developed, 

However, only the elastie-perfectly plastic problem is considered in 

the present analysis. The hardening effect is not discussed in this 

appendix. 

The Method of Successive Elastic Approximations 

In recent years two principal approaches for the elastic-

plastic analysis of complex structures by the finite element method 

have emerged. Both are widely used and generally accepted, and each 

has its advantages and disadvantages for specific problems, depending 

on such factors as the type of finite element used, the shape of the 

stress-strain curve, and the modeling of the structure involved. In 

the first approach, the "tangent modulus method", the stress-strain 

relations are modified for each plastic load increment. Since the 

stiffness of each element: may change for every load increment, the 

total stiffness matrix must be assembled and triangularized for each 

of these increments. In the second approach, the "method of 

successive elastic approximations", or the '"initial strain method", 

the stress-strain relations stay the same throughout the computations, 

The stiffness of the elements does not change and thus is is not 

necessary to repeatedly triangularize the total stiffness matrix; 

however, it is usually necessary to iterate on the solution in order 
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to obtain the correct results. The effect of plastic deformation 

during a load increment is taken into account by introducing a set 

of fictitious body forces into the equations. These body forces are 

the result of "initial" strains or "initial" stresses which arise due 

to the difference between elastic and elastic-plastic material be

havior. Some discussions of the method may be found in Refs. 

[80,98]. The WECAN program uses the method of successive elastic 

approximations as the basis for an elastic-plastic analysis. 

In small strain linear elastic problems formulated by the 

displacement approach one always arrives at the final solution by 

solving the assembled stiffness equation, Eq. (4'14) 

[K] {U} = {R> (E-16) 

in which the vector {R} lists all the loads. In general, the material 

within the element boundaries may be subjected to initial strain, eQ, 

such as may be due to temperature changes. 

The internal work done by the initial strain can be similarly 

treated as the work done by the body force [80] shown in Eq. (4*9), 

M T 
W = - 2 {dE . {r,} (E-17) 
£ i m e m o m=l 

where 

{r. } = L [D]T [E] {ej dV (E-18) 
£ V m m 
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Consequently, the vector {R} in Eq. (E'16) needs to be supplemented 

by the load due to initial strain, i.e. 

M 
{R*} = {R} + Z {rP }•- ' (E-19) 

_ =- m 
m=l 

Here {R*} is the vector including this force due to initial strain. 

In an elastic plastic problem, the stress level may be deter

mined in terms of strain., Thus, symbolically 

{<?}= F({e} ) - (E-20) 

For a linear elastic problem, the above equation can be 

reduced as 

{Q}= [E]({e}- (ej) (E-21) 

Now, the equality between Eq. (E*20) and the elastic relation 

Eq. (E*21) can be obtained by adjusting {SQ} . As {sj affects the 

forces {R*}we are left with an iterative process of solving 

[Eq. (E'16)] 

[K] Q {tf- R* ({U}) = 0 (E-22) 

in which we proceed as follows. One solves first 
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{ifl = [K]""1 {R*> (E-23) 
0 0 0 

in which {R*}- corresponds to the actual loads applied ({R^ = {R} ) . 
o o 

One determines the level of {€cl required to bring the elastic 

solution into coincidence with the true strains corresponding to the 

stresses reached. Using Eqs. (E'18) and (E"19), the corresponding 

{R*} can then be calculated. Taking the new {R*i we obtain 

(U^ = [K]~\ { R ^ (E-24) 

and repeat the process with 

(U)> = [K] - 1 {R*> (E-25) 
n o n 

until no further changes occur. 

Adaptation of the initial strain method in plasticity problems, 

through fairly straight forward, is complicated by two facts: 

(a) The incremental stress-strain relation, Eq. [E-12] is 

only valid from the instant when stresses reach the yield surface, 

oe=Oy. If o*e < :o"y, purely elastic behavior continues. 

(b) The incremental relation Eq. [E"12] is valid only for 

infinitesimal strain increases. For finite steps it is possible for 

stresses to depart somewhat from the yield surface. To guard against 

this stresses should be reduced to the yield condition after each 

iteration. 
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APPENDIX F 

ILLUSTRATIONS 



(a) Opening Mode 
(Mode~I) 

(b) Sliding Mode 
(Mode II) 

(c) Tearing Mode 
(Mode III) 

Figure 1. Basic Modes of Crack Extension 
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Figure 2. Nomenclature of Plane Crack 

to 

m 



\<&¥ 

Figure 3. Nomenclature of 3-D Crack 
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Figure 4. The Double Torsion Test Specimen Under Testing Conditions 



dc = dc, 

(a) Penetrated Specimen 

dc = dc, 

(b) Unpenetrated Specimen 

Figure 5. Typical Double Torsion Crack Front Profiles 



Slant Fracture b) Mixed Mode c) Flat Fracture 

slant fracture 

flat and slant fracture 
(mixed mode) 

flat fracture 

P—I 
d) Effect of Specimen Thickness Thickness 

Figure 6. The Dependence of Kc Upon the 
Surface Appearance of Fracture Growth 
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(a) ASTM Compact Specimen (b) Grooved Compact Specimen 

(c) ASTM Bend Specimen 

Figure 7. Fracture Toughness Testing Specimens 



Figure 8. Three-Dimensional Regular Isoparametric Element Mapping 



crack front, r-0 

(a) Special Wedge Element 

crack front 

(b) Crack Front Mesh 

Figure 9. Crack Front Mesh Geometry Using Special Wedge Elements 
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F i g u r e 10 . S p e c i a l Wedge Element Mapping 
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(a) Idealized Compact Specimen 

- A 

(b) Finite Element Mesh 

Figure 11. Model Used in Idealized Compact Specimen Analysis 
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Figure 12. Crack Front Variation of Normalized 
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Specimen Analysis 
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Figure 13. Variation of Constraint Parameter 
Across the Idealized Compact Specimen 
at Several Radial Positions from the 

Crack Front 



Figure 14. A Typical Coarse Mesh Utilized in Current Idealized Double Torsion Specimen 



Figure 15. Basic Mesh Utilized for Double Torsion Analyoic 

(Specimens 2, j - - 1/3, ̂  - 1/3, ̂  = 9/10, £ = 0.225) 
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Figure 16. Detail of Elements Around the Quarter-Elliptical Crack Profile 
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Figure 17. Variation of Normalized Stress Intensity Factor 
Along the Quarter-Elliptical Crack Front 

(e = 0, 2t/W = 1/3, b/t = 9/10) 
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Figure 18. Influence of the Distance Between the Applied Loads e 
(c/L - 1/3, 2t/W =1/3, b/t =9/10, b/c = 0.225) 
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Figure 20. Variation of Normalized Stress Components Along the 
Lower Line of Symmetry (A-A*) from Crack Tip to the End of Specimen 

.(e = 0, c/L = 1/3, 2t/W = 1/3, b/t = 9/10, b/c = 0.225) 
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Figure 21. Variation of the Normalized Effective 
Stress Along the Lower Line of Symmetry (A-A') 

from Crack Tip to the End of Specimens 
(e-Q, 2t/w=l/3, b/t=9/10) 
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Figure 24. Plastic Zones for the Equivalent Plane Strain 
Analysis of Double Torsion Specimen at Two Load Levels 
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Figure 25. A 2-D Cracked Body and a Contour 
for J-Integral 
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