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English

Notation

NOMENCILATURE

[f”(O)]lﬁB, transformation parameter, function of g only
curvature parameter

N - 4, function of @ and ¥

bebx = [, function of o and yx

f/C, a transformed function, function of g and [

f'/C2, function of ¢ and (

[

o

metric measurement along g-line

value of hu at the surface

metric measurement along g-line

1 M UE/E, Bernoulli constant

A(y 1n hu/ba*}’ an integration constant of equation
(III-3)

pressure

pressure at the boundary of the boundary-layer
pressure at the surface

pressure at free stream

Reynolds number based on radius R

radii of curvature of y-lines and B-lines, respectively
distance from the forward stagnation point measured

along the surface of the cylinder



English

Notation

u, Vv

Greek

Notation

o

P

> =3 a

viii

velocifty components along g-lines and B-lines, res-
pectively

potential flow velocity at the boundary of the boundary-
layer = 2 sin ¢

free stream velocity

components of two-dimensional rectangular coordinates

orthogonal coordinate in the direction of flow
orthogonal coordinate perpendicular to the direction
of flow
1
; 2
B(R,)
boundary-layer thickness
Cx, a transformed independent variable
. L
B /a®
. »*
ha/he, a function of ¢ and B
A, but a function of ¢ and 7
viscosity of the fluid
distance normal to the surface
skin friction
angle formed with the line joining the forward stagnation
point and the center of cylinder with the latter as the

axis of rotation.

Y t/ntemi an



ix

Greek

Notation

U = stream function

w = vorticity in the direction of the axis of the cylinder



SUMMARY

This thesis constitutes an investigation of a laminar boundary-
layer flow of a compressible fluid around a circular cylinder with the
application of numerical methods. Suitable equations of motion are
developed and approximated for the boundary-layer in a curvilinear
orthogonal coordinate system. Simplification has been achieved by the
application of order of magnitude comparison. Difficulties encountered
and their effects on the solution are discussed. A search has been made
to obtain numerical solutions of velocity profiles and skin friction at
several positions along the surface of the cylinder. Results are com-

pared with other existing solutions.



CHAPTER T
INTRODUCTION

Laminar boundary-layer flow around a circular cylinder for a
compressible fluid has been a topic of research for many years. The
problem of placing a cylindrical body in a fluid stream moving perpen-
dicular to its axis, with the consideration of boundary-layer, has been
investigated by many researchers.

The method of solution was first given by H. Blasius [1]. It was
developed further by H. Hiemanz [2] and L. Howarth [2]. The velocity of
the potential flow is assumed to have the form of a power series in X,
the distance from the stagnation point along surface. The velocity
profile in the boundary-layer is also represented as a similar power
series in x, where the coefficients are assumed to be functions of the
coordinate y, measured at right angles to the wall (Blasius series).
Although the solutions are exact and of high accuracy, the methods are
quite tedious and time-consuming. t is, therefore, important to devise
approximate methods which would in such cases quickly lead to an answer
even if their accuracy were to be inferior to that of the numerical
methods and exact solutions. Following Theodore von K4rmdn and X,
Pohlhausen [27], it is possible to devise such simplified methods if it
ig agreed to satisfy the differential equations of boundary-layer flow
only in the average and over the bourdary-layer thickness rather than
to try to satisfy the boundary conditicns for every individual fluid

particle. With the use of the digital computers for scientific research,



numerical methods have been developed by W. Schoenauer, Hartree and
Womersley [3], Smith and Clutter [4], etc. Numerical methods minimize
the time of solution greatly while retaining its accuracy. However,
sometimes due to the lack of appropriate methods, difficulties develop
in the attempts to produce numerical results.

The purpose of this thesis is to investigate the flow field around
a circular cylinder for a compressible laminar fluid by applying numerical
methods to the solution. Theories in this direction have been developed
by many researchers. However, very few have tried to obtain solutions
for this particular case with the consideration of curvature effects.
Although due to certain difficulites, accurate solutions were not obtained
in this thesis, the development of theories and methods of solution can
be used for further research.

The problem is formulated with the use of orthogonal coordinates
(see Appendix A). Constant g-lines are taken %o be along and parallel
to the surface. Constant o-lines are orthogonal to the B-lines and the
surface. Instead of solving for the pressure distribution, which is the
usual approach, an experimental surface pressure distribution (see Appen-
dix B) is used as a known quantity. Therefore, the Reynolds number of
53000 at which the pressure distribution was measured is used throughout
this thesis for the numerical calculations. Veleccity profiles and skin
friction are obtained at certain positions and are compared with other

existing results.



CHAPTER IT

THEORY OF IAMINAR COMPRESSIBLE FLOW

AROUND A CIRCULAR CYLINDER

The problem to be examined is the laminar flow of a compressible
fluid around a circular cylinder. Its flow direction is perpendicular
to the axis of the eylinder. A set of orthogonal coordinates is used
which must satisfy the Gauss orthogonality equation. BRadii of curvature
of the g-lines and B-lines can be given from the above relation. The
Navier-Stokes equations are applied to govern the flow field in the
vicinity of the cylinder. The elimination of pressure terms from both
equations result in the vorticity equation, where the vorticity in the
direction of the axis of the cylinder is already defined. A new variable
A 18 introduced as the ratio of hy to hB. It turns out that the value
for A can be used as velocity profile. An equation of )\ can be obtained
and 1t leads to the solution with appropriate boundary conditions and

transformations.

A. Gauss Orthogonality Equation 51

Let o(x,y) and B(x,y) be two functions with

(B)(E)+(2)(2)-0

g|
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Fig. 1 Transformation of Coordinates

Let hada and thE be the elements of length along the g-lines and

B-lines respectively. One can show that

W [(2) ()] (-
2 Pk

g =[(F) +(§F)] (11-3)

E-l— %:3&1 (TT-})
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(II-5)
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where Ra and R, are the radii of curvature of @-lines and the B-lines,

3

respectively. The two functions h, and h satisfy the Gauss equation

B
ole] oh
212 DL 8Y. (1T
bB(hB B)-’-ba(habcr) . (IT-6)

B. Navier-Stokes Equations [6]

If the g-lines are so chosen to be along the stream lines, B can
be equalized to the stream function, 8 = {§. The equation of continuity
which is identically satisfied by the stream function can be substituted

by the following expressions:

(IZ-T7)

LV (11-8)



Then the Navier-Stokes equations of motion are given by

npa_ _L13p, ék.ik.( __L_.Effzﬁl ] (II-9)

h, do hy RehB.-h B ol3]
lb_u____l.'.ﬁb_(fl__t_l_):_L.b_E_-}—_l_ir_—;_b(hau) (II-10)
hy %8~ Bghy OB hy o ~ e h o L By 08

C. The Vortiecity Equation [57

The vorticity in the direction of the cylinder axis is given by

B . (ZT-211)

Eliminating p from equation (II-9) and (II-10) the vorticity equation is

obtained

Re (EEsde)

QS’}IDD‘
gl
%
:?S‘lQD‘
1

I
2R

€3]

D. Introduction of ) [5]

For the convenience of coperations a new variable )\ is introduced.



It is defined as

e s (o) i

Therefore, the vorticity equation becomes

AR B0E)-eE w

and the Gauss equation can be written as

blnh
c%r - %[ bsa}

-2 2 TT1
[ ko ( %)

o

For potential flow, ) = 1, equations (II-14) and (II-15) are satisfied
automatically.

Thus 1f a viscous flow over a rigid surface, on which { chosen
to be zero, approaches a potential flow at free stream,the proper boun-

dary conditions to be used for } are



A=0at y =0 (II-16)
A—-las § - e (TT-27)

and in view of equation (II-11)

= A DA (
P OA II-18)
p- P
o
O\

ke 0 as § —» o (I1-19)

The boundary conditions for h, may be chosen to be

hy = known value at § = O (II-20)
and from equation (II-2)
A bha
= - 1 at ¢ = 0 for a circular cylinder (I1-21)
n® OB

o



CHAPTER ITI

DEVETLOPMENT OF EQUATIONS FOR TWO--DIMENSTONAL

TAMINAR COMPRESSIBLE FIOW AROUND A CYLINDER

After the establishment of the theoriess the next necessary step
is to develop a general equation which can be applied in the case of &
two-dimensicnal, laminar, compressible flow around a cylinder. The order
of magnitude of each term in the equations formulated in Chapter IT are
compared. The terms of order of Ré are to be neglected while those of
order of Re or larger are retained. By doing so, the curvature effects
are being considered. It i1s important to find an expression for hg,
which appears in the equations frequently, such that h, can be expressed
in terms of the independent variables. Therefore, the appearance of hy
in the equations will not create a problem during the process of solution.
Moreover, a curvature parameter Ca(a) must be defined in order to empha-
size the curvature effects. The basic equations are obtained from the
Navier-Stokes equations. Three steps of transformation are performed
to simplify the basic equation to a neater form. Solutions then are

obtained from this equaticn.

A. Boundary-layer Approximations [5]

The boundary-layer approximation is carried out in the generalized

coordinates by intreducing the transformation

" 3 _
B = Rg B (III-1)
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From equations (II-14) and (II-15), the first-order boundary-layer

equations are obtained by neglecting small magnitude terms

BY.2T,2 (1d
B ( hS a8 )]

ol

The boundary condition (II-21) becomes

y Yo

—2 *:Re’ B:CI
o

=

(ITI-2)

(111-3)

(ITI-k4)

Thus, the surface curvature would appear in the first order boundary-

layer approximations (the C-approximation).

B. Curvature Parameter and Metric Measurement

Equation (III-3) is integrated and with N(«) as the integration

constant, a function of « only, one obtains

dlnhy
A — = Na)
OB

(III-5)
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Further integration of equation (III-5), gives

B
In by = | Wa) 45* 4+ 1n by, (IT1-6)

where hyo is a function of « only and is the value of h, at E* = 0 for

a given B*-line. Therefore,

B g
b = ho(a) e [ N(@) I') £ ] (II1-7)

From boundary condition (III-L4), one has

1
-5 *
HL ( m ‘) =R, at 87 =0 (I1I-8)

The above relation is substituted into equation (III-5), to obtain

o
R

s

(@) (111-9)

=
@
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Define

Cyle) = [ o N(a) (ITI-10)

As the curvature parameter and with equation (III-9) it becomes

J o h,o
C (o) = —2r— 5 b B
[+

The effect of C, (o) on the solution will be discussed later.

C. Derivation of Momentum Equation [6]

With the use of boundary-layer approximations, equation (II-9)

and (II-10) become

d(h u)
aowm 1w, 1.d 1 LA (ITI-12)
By o By da By 87 [ Boftg  pg* -
n
PR . a( ai) = - hi w {rrr03)
B B @B ¥ B o8
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and equation (III-13) can be further simplified to

L L ETL‘ e ‘ (TII-1%4)

by expanding the differentiation of the second term.
The effects of curvature become significant when the pressure

gradient QB; grows up to the order of one. By retaining terms of order

B

one or larger, curvature effects are considered.

Equation (II-11), the definition of vorticity is expanded to give

w:_igli__’:}_.__c_"'. (III-15)

and equations (ITI-14) and (III-15) are combined to obtain

. 'ﬁJ:‘ 21 wp (IIT-16)

From equation (II-7), it is given that

s

By

mw =



1k

therefore,

. B 1w (ITT-17)

The expressions for g from equations (III-17) and (II-18) are

equated, and

Sl AN .
ue = 3 2 o (111-18)
o
or Sa B - LB (111-19)
08 h, 8

The above equation is integrated in the region inside the boundary-

layer, and one obtains

*
5 .‘ B =5
A8 a"=[1u®+0 ], (I11-20)
o h, ® 7B =0

where § is the boundary-layer thickness.



B

The boundary conditions to the above equation are

= at B =6 (IIT-81)
¥

1% = 0, at B =0 (IIT-22)
*

P=p, at B =3 (I11-23)
*

P =D at B =0 (TIT-24)

where U is the potential wvelocity on the boundary and Pq and p, are
pressures at the boundary and surface respectively. With these boundary

conditions equation (III-20) is evaluated, thus

)
J‘ LB " 1P +p - (III-25)
o b o )
ré A DA * AL R
or | S cas =30+ (R, -2) - (P, ~2) (T1T-26)
: "0 hy, B

where Pm is the pressure at free stream. The boundary conditions for

A and h, are the same as already specified by equations (T1-16), (IT-1T)
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and (TT-19).

The Bernoulli edquation is

i P, = constant (ITI=27)

=

for a potential flow and, therefore a constant is defined as

K=1% 4 (P i P ) (III-28)

gsince P 1is also a constant.
[==]

Finally the momentum equation is obtained

)
J' A D gg* =k - (2, - P) (III-29)

The paremeter ) goes to unity at the boundary and retains the
same value outside the boundary layer. Consequently, the derivative

Ql; goes to zero on and outside the boundary. Therefore the upper limit
[
of the integral can be extended to infinity and equation (III-29) becomes
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- P) (III-30)

At the stagnation point ha approaches infinity and this point is
considered as a singular point. Therefore, its neighborhocd is not being
considered in the solution.

With the condition that

hy » = as o -0 (ITT-31)

the left-hand side of equation (III-30) becomes zero,

Therefore,

(ITI-32)

Let AP, = B, - P (I11-33)

where Pi is any pressure inside and on the boundary-layer. Consequently

equation (ITI-30) becomes
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==}
[ Roag* =k
‘o h, b

(ITT-34)

The values for QPS, the surface pressure distribution, are given in a

tabulated form and they are to be used in the solution.

D. TFirst Transformation

In order to reduce the boundary-layer equation, equation (III-2),

to a neater form, the following transformation is carried out. ILet

M == (II1-35)

*
where G(g) is a function of o. The function A(®, B ) becomes a new

function A, M). Let

Gla) = [ (ITI-36)

then i = (ITI-37)
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*
The new variable T is substituted for B , and equation (ITI-2) becomes

c -
[2A(A%)" + (n - Uey) (A%)']' - 2 =2 [2a(A%)" + (1 - bg,) (a%)"]

- B H 2y A
s — - 2(A In h TII-38
@ [ o (A7) - 2(a%)" 2 (1n ) ] (111-38)
with boundary conditions
A=0 at N =0
A=1 at T=o (III-39)

where the prime (') indicates differentiation with respect to T» There-

fore

M am
b, = R () exp{ c_ () [ d—j:"L} (ITI-L0)
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—

E. Second Transformation

A further simplification in the equation can be achieved through

another transformation. A new variable ¥ is introduced as follows:
N
— i (ITI-41)

as well as a new function f(a,y)

4

fla,x) =1 - % ¢y (T1I-k2)

Therefore, £1o= ) (TII-k43)
£ = M= (A7) (IT1-bb)

fo= 3 A(45)" (II1-45)

where the prime (') indicates differentiation with respect to y. Equation

(ITT-40) can now be written as



hy = hac(a) exp [C,(a)x] (ITI-46)

Then equation (III-38) becomes

rer™ & Ir')" - 2y rartr £ 1t

ac

a o
3 By o Ti?') ] (TIT-47)

= 2af! [ %Ez - op" (

and the boundary conditions become

f=-U4c, at x=0
£ =0 at x=0

(IIT-48)
£t =1 as Y — @
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Finally, equation (III-34) transforms to

oc

h&i e 2CH(@)X o1 o dy = K - AP (TII-49)
"o

With equations (ITI-47) and (III-49) and the specified boundary

conditions (III-48) the problem is ready to be solved.



CHAPTER IV

METHODS AND SOLUTIONS

Although the fundamental equations (III-L7) and (III-49) have
been derived, some further simplifications will be carried out to achieve
a mumerical solution. Such simplifications are necessary for two reasons.
First of all, some terms are comparatively of small magnitude and their
elimination will reduce the numerical effort. In the second instance,
it has not been possible to find a proper method to numerically evaluate
some of the terms in the differential eguations. For this case, the
solution obtained with these terms results in certain deviation and the
effects will be discussed later.

Another problem appears when it is observed that a differential
equation must be accompanied by all its initial conditions in order to
be solved by numerical methods. Therefore, a transformation i1s needed
to transfer some of the boundary conditions at infinity to the starting
point. The remainder unknown initial conditions will be assumed and a
trial and error solution will be applied. An inverse transformation 1s

alsc necesgsary in order to represent the solution in a useful form.

A. First Simplification

As it was discussed above, equation (III-L7) will be simplified
by eliminating terms of comparatively small magnitude. The term y(dCy/dy)
in equation (III-L7) is then compared with d(In h,o)/dy. The order of

magnitude of (dC,/dx) is approximately .0005 for s greater than m/180,



2l

and y ranges from O to approximately 5. Therefore,

max [y(d(e)da)] = .0025 (Iv-1)

While for the other term,
0 d(1n hy /da] = 5 (1v-2)
Therefore, 0 [d(1n hge)/da] >> O [x(dC,/dn)] (IV-3)

Evidently, the term X(dca/da) can be neglected. However, the term was
retained in the solution in some trials, but there was no noticeable

change in the solution.

With the above simplification, the basic equation becomes

per™ & £ - 20y [2f™ + ££"]

" 1
- op f- In hyo (Iv-k)
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B. BSecond Simplification

With the term %éf- included in equation (IV-4), it is a partial

differential equation. Although many numerical approximations for the
partial differentiation term have been developed, it has been recommended
that such an approach be avoided [7]. Under certain situations, the
approximations give large error and therefore the solution diverges. It
is a great risk to leave the term in the eguation while trying to sclve
it. The function to be differentiated is first approximated by a multi-
degree polynomial. Even 1f the polynomial approximates the function
closely, the slopes at the same coordinate can be substantially differ-

ent.

real function

approximating polynomial

Fig. 2 Discrepancy of Numerical Differentiation
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It can be seen from Figure 2 that the slopes of the real function
and the approximating polynomical are quite different. Thus if the par-
tial differentiation is of equal order of magnitude as the other terms,
the approximated value will effect the solution considerably. Sometimes,

it is possible that the sclution diverges. With the above consideration,

o
%

The differentiation with respect to « at a given point is approxi-

the term is dropped from equation (IV-4).

mated by the values at the previocus two solutions. Therefore, the solu-
tion should be from the stagnation point. &ince the stagnation point is
a singularity, it is not apparent where the solution should start sco that
the term to be calculated is not effected. It will be seen later from
the results that even at 1°, the profile diviation from the Blasius sol-

"
ution is considered to be very small. With the removal of term of 5

Dy

equation (IV-4) becomes

[BE™ & LT - 20y [BF™ + "] = - ba 2 £ é% In W, (IV-5)

Z. TFinal Transformation

In the use of numerical methods for solving differential equations,
it is reqﬁired that all the boundary conditions at the starting point are
known. However, a numerical solution can be carried out even if some of
the known boundary conditions are at infinity. In this instance, a
trial and error solution is necessary. The rest of the unknown boundary

conditions at zero are assumed values and trials are performed until the
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known boundary conditions at infinity satisfy the solution. For the
present case, it is desired to transform the original equation to a
state where all except one of the boundary conditions at zero are known.
The remaining unknown boundary condition is then assumed a value and the
trial and error solution can be initiated. Therefore, a transformation

is applied to equation (IV-5). ILet

£ =Ly (1Tv-6)
and g = f'/C (IV-'?)
r2
then g' = £1/a (Iv-8)
"o " 3 TR
g" = f"/c (Iv-9)
g”r = fnr/rcj‘{’ (IV—].O)

where C is a function of « only and the prime (') for f denotes differ-
entiation with respect to X whereas the prime (") for g denotes differ-

entiation with respect to [. The above relations are substituted into
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equation (III-L7), and give

(cg™ + gg")' - 2(cy/C) (28" + gg")

n
= oaet | BB - pgm L g
= o [ B B o Iy, ] (IV-11)
The boundary conditions then become
g =-ho,/C at =0
g =0 at =0
(Tv-12)
g‘zl/02 as f =
g" =0 as [ - =
1
Also if &= FEY0)] /3 (Iv-13)

an additional boundary condition is obtained at the surface as follows:
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g"=1 at =0 (1v-1k)

Therefore, in summary, the boundary conditions have been rearranged as

g =~ UCy/C at =0
g' =0 at =0
(IV-15)
g" =7 at £ =0
g" = 0O a8 C - 03

If g"'(0) is known, then equation (IV-11l) can be solved. There-
fore, the value of g'"'(0) must be assumed. The solution is then checked

by the condition

g = [£"0)723 =02 as yoe (TV-16)

for a particular C. The trial and error procesgs is continued until the

condition (IV-16) is satisfied.
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D. MNumerical Solution

l. Estimation of hao and o

The evaluation of hao and o 1s a trial and error process. For this
it is necessary to use equations (III-49) and (IV-11). However, as a
first step, it is necessary to transform equation (III-49) by the use

of equations (IV-6) through (IV-10)

' g'g" df = K - APs (zv-17)

To initiate the evaluating process for huo and ¢, initial values
are assumed for both quantities. Equations (IV-11) is then solved and
the values of g' and g" are substituted into equation (IV-17) to obtain
a new value of h,, . The trial and error process is continued until the
assumed hao and the calculated hac agree within 1 percent of error.

After the computation for the first few profiles, it is flound
that the integral at the left hand side of equation (IV-17) is approxi-
mately .53 in each case. Therefore, for subsequent profiles, it can

initially be assumed that

1
b, (s) = ['h97°u9 = &PS(S)] ) (1v-18)

B w33
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where s is the diatance along the surface of the cylinder from the for-

ward stagnation point, and the corresponding «(s) value can be evaluated

by

ofs) = [ n 2(s) as (IV-19)

With this process, the values of hwo and o that will satisfy both equations
(IV-11) and (IV-17) can be obtained.

2. Calculation of g'"' (0) by Iteration

Equation (IV-11) is solved directly by use of the Runge-Kutta
Method, and an initially assumed value for g'" (0). The Newton-Raphson
iteration method is then used to evaluate the true g"'(0) which will

vield a solution that can satisfy the boundary condition

g' =0 as [ -« (Iv-15)

The method of iteration is discussed in detail in Appendix D. For each
particular value of g(0), a corresponding value for g™ (0) should be
obtained through iteration. At the same time, a corresponding Reynolds
nuuber can be computed.

The Reynolds number is calculated by
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g'(e) ¢ h
Re = go (IV-20)
(c,/c)
where C,/C = - (1/4) g(0). Since the known surface pressure distribution

selected for this problem was measured at a Reynolds number of 53,000 [8],
it is necessary that the R, calculated from (IV-20) agrees with 53,000
within 5. A set of values for g(0) and hao which will give a Re of
53,000 is searched. The process of finding a proper set of g(0) and

h{},O may be summarized as follows:

(1) A value of g(0) is assumed.

(2) Values of h,, and o are then assumed through the use of
equations (IV-18) and (IV-19).

(3) Equation (IV-11) is solved.

(4) vValues of g' and g" obtained from the previous step are sub-
stituted into eguation (IVal?), and a new value of hao is cobtained.

(5) Going through the trial and error process mentioned in the
previous section, a set of values of hao and &, which satisfy equations
(Iv-11) and (IV-17), is obtained.

(6) The Reynolds number is calculated through the use of equation
(IV-20), and it is compared with 53,000.

(7) If they agree within 5, the process is accomplished. Other-

wise, a new value of g(0), which can be approximated by



33

1
2

g(0) = hhao lg'(w) @/53,0007 (Tv-21)

is used. The process 1s then repeated from the first step until the cal-
culated Re is within 5 of 53,000.

3. Inverse Transformation

After the solution for g, g', g, and g'"" have been obtained, they
are transformed back to f, f', £", and ™. From equation (IV-16) C is

given by the relation

Az,
¢ = [g'(=)]7 (Tv-22)

and consequently the values of £, £', £", and £'"" can be calculated with-
out difficulty. The inverse transformation is based on the transformations
given by equations (IV-6) through (IV-10).

4, Change of the Independent Variable

In order to be able to compare the results calculated by the met-
hod presented here with existing solutions, the independent variable X

is changed to n where

,_,

s

i

b= i
Tk

B
I thB (Tv-23)

@)
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s
and is proportional to gReg where g is the non-dimensionalized distance

normal to the surface. With the use of equation (II-13) h, and ) are

substituted for hB and

ap (Tv-24)

The parameter B is also eliminated with the help of equations (III-1) and

Ll- o O aln ne ] Oowlng expression 1n erms o
(IIT-36) to obtain the followi ion in t £
1M By
= &2 J i Tv-25
il ) T 1 ( 5)

Finally, through the use of equations (TII-40) and (ITI-L1) the expression

in equation (IV-25) is transformed with respect to X and 3

1 i x Bxp [Cox] 58]
= AV =
=0 By | o Mo X) hax

which is integrated to give
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N 2ET) [Exp (CX) - 1] (Tv-27)

The definition of C,(a) was given by equation (III-11) as

i I

a® h

o
—_—t = C
R_2 *
-

and therefore

¥

7 = Rea [Exp (Cox) - 1] (1v-28)

With these changes carried out, it is now possible to plot f' versus 7
profiles and compare these with existing results.

5. &kin Friction

Skin friction is defined as

T, = R;l ( B (Iv-29)
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which can also be written as

T, = n 4 .Q%‘_)%Q DX (IV-30)

Re =0 bo

where U 1s the potential welocity.

In terms of f" and C, from equations (IV-11), (IV-9) and (ITI-11)

B #0)
o TE, T e
Since
U=2 sin s (Iv-32)

where s is the non-dimensionalized distance along the surface from the

forward stagnation point, then

_2£"(0)

e

(Iv-33)

T
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and

2 £7(0) " (TV-3k)
Sln
= ——:—-—-—
T A\

NJ
©
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CHAPTER V

RESULTS AND DISCUSSION

The numerical results are calculated using the procedure outlined
in Chapter IV and they are converted to a suitable form for comparison
with some results published in the lifersture. The results used for com-
parison are the Blasius solution and the Pohlhausen solution. The former
is a series solution with very high accuracy while the latter is an approxi-
mation method with some departure from the exact solution. The results
are given in tabulated form in section A and they are compared in Figures
3 through 8 at 1°, 5°, 15°, 30°, 45° and 60° from the forward stagnation
point respectively. Profiles exceeding 60° were not obtained due to the
calculation. The skin friction is compared in both tabular form, Table

L4, and praphical form, Figure 9.
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A. 'Tabulated Results

Table 1 The Blasius Series Solution
Table 2 The Pohlhausen Approximate Solution
Table 3 Present Numerical Solution

Table 4 Skin Friction Comparison
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Table 2 The Pohlhausen Approximate Solution

u/U

5 Degree 15 Degree 30 Degree 45 Degree 60 Degree
0.02 0.033264 0.032859 0.031270 0.028684 0.024955
0.05 0.081691 0.090820 0.076894 0.070664 0.061643
0.10 0.158574 0.156973 0.149592 0.137883 0.120825
0.13 0.202468 0.200490 0.191252 0.176597 0.155168
0.16 0.24k730 0.242k19 0.231480 0.214123 0.1886L7
0.20 0.298602 0.295911 0.282934 0.262341 0.231958
0.30 0.k21ko6 0.418073 0.401076 0.374090 0.333719
0.50 0.620655 0.616940 0.595863 0.562291 0.510L6k
0.75 0.795411 0.792365 0.771748 0.738595 0.684843
1.00 0.90L4600 0.902695 0.886346 0.859505 0.813015
1.85 0.96502L 0.964162 0.953685 0.93568k 0.9013uk4
1.50 0.992045 0.991827 0.986962 0.977625 0.956664
1.75 0.999582 0.999575 0.998552 0.995649 0.986282
2.00 1.000000 1.000000 1.000000 0.999908 0.997976

TH



Table 3 Present Numerical Solution

Lo

1 Degree

n u/u
0.052765  0.842h7
0.105543  0.163582
0.211130 0.307730
0.316769  0.433153
0.422456  0.540919
0.528191  0.63235k
0.633974  0.708955
0.739805  0.772308
0.845685  0.82Lo2k
0.951615 0.865680
1.05759k  0.898780
1.163617 0.924718
1.269691  0.944757
1.375818  0.960016
1.L81988 0.97146L
1.588210  0.979927
1.694477  0.986081
1.800755  0.990493
1.907162  0.99360k4
2.013579 0.995762
2.1200k2  0.997236
2.333117 0.99879
2.599739  0.999669
3,026961  0.999963

5 Degree
n u/U

0.054336  0.08L11kL
0.108685 0.163334
0.217h22  0.307308
0.326210 0.432620
0.435050  0.540329
0.543941  0.631752
0.652883  0.708373
0.761877 0.77169

0.870923  0.8235kL2
0.980020 0.965262
1.089168 ©.898L27
1.198368  0.92uk428
1.307616  0.94L523
1.416918 0.959832
1.526276  0.971322
1.635692  0.979817
1.745139  0.986002
1.854647  0.990435
1.96L207  0.993563
2.073822  0.99573k
2.183485  0.997217
2.457874  0.999108
2.732585  0.999742
3.062669 0.999950

012635

0

15 Degree

n u/U
0.054425  0,083181
0.108867 0.161597
0.217782  0.304331
0.326752 0.438852
0.435770  0.536154
0.544843  0.627h77
0.65396L  0.704233
0.763140  0.767928
0.872367 0.820100
0.9816Lk6  0.862270
1.090976 0.895895
1.200354  0.922338
1.309787 0.942838
1.419275  0.958502
1.528812  0.97029k
1.638397 0.979039
1.748038  0.98542L
1.857732  0.990015
1.96747h  0.993262
2.077270  0.995523
2.187119 0.997072
2.k51964  0.999055
2.737138 0.999725
3

-999928
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Table 3 (Continued)
30 Degree 45 Degree 60 Degree
n w/U n u/U n u/U
0.055761  0.080207 0.058768 0.075794 0.064552  0.070632
0.111535 0.156048 0.117558 0.147786 0.129121 0.138080
0.223126  0.294781 0.23515 0.280k57 0.258314  0.263466
0.334771  0.416712 0.352828 0.398345 0.387579 0.376322
o0.446h67  0.52263L 0.470559 0.501991 0.581612 0.522792
0.558222 0.613565 0.588349  0.592112 0.711058 0.605896
0.670028 0.690686 0.706197 0.667579 0.840577 0.678056
0.781890  0.755284 0.824111  0.7352377 0.970168 0.739985
0.893802 0.808706 0.942079  0.790571 1.09983L4  0.792483
1.005773 0.852307 1.060100 0.836276 1.229569  0.836415
1.117796  0.887h17 1.178200 0.973621 1.359380 0.872689
1.229873  0.915298 1.296351 0.903716 1.489262 0.902223
1.342005 0.937126 1.414563  0.927626 1.619217 0.925924
1.45%193 0.953969 1.532836  0.9463L6 1.749247  0.94Lk662
1.566431  0.966772 1.651168 0.960783 1.879349  0.959251
1.678728  0.976357 1.769562  0.971748 2.009523  0.9704k33
1.791076  0.983L23 1.88801%  0.9795L6 2.139769 0.978866
1.903479 0.988550 2.006527 0.985979 2.270090 0.985125
2.015939 0.992211 2.125103  0.990346 2.hook8l  0.989692
2.128451  0.994783 2.303078  0.99h6Lk 2.530949  0.992970
2.241019  0.996560 2.5L0589  0.997691 2.661490 0.995282
2.353638 0.997767 2.956819  0.999548 2.922789  0.997977
2.748245  0.999567 3.194996  0,999838 3.184382  0.999189
3.087013 0.999910 3.552722  0.999969 3.774038  0.999919



Table 4 Skin Frictlion Comparison
ToM Re
ARELE Numerical Blasius Pohlhausen

ne Solution Solution Solution

1 Degree 0.055879 0.060719
5 Degree 0.278020 0.3203347 0.293362
15 Degree 0.814715 0.889271 0.854228
30 Degree 1.479218 1.635111 1.580910
45 Degree 1.871789 2,118596 2.,048763
60 Degree 1.938523 2.254226 2.178529

L

L
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B. Graphical Results

Figure 3 Velocity Profiles at 1 Degree
Figure 4 Velocity Profiles at 5 Degree
Figure 5 Veloeity Profiles at 15 Degree
Figure 6 Velocity Profiles at 30 Degree
Figure 7 Velocity Profiles at L5 Degree
Figure 8 Velocity Profiles at 60 Degree

Figure 9 ©Skin Friction Comparison

C. Discussion of Results

The results obtained in this thesis involve several approximations
and simplifications. BSome of them were done to transform the fundamental
equation (IV-4) to a form such that it can be solved more easily. These
did not cause significant discrepancy in the solution. However, the
other did. They were done simply because no known method could be
applied to retain the term %55 in the equation when the solution was
sought. Without any doubt, this omission caused a significant discre-

L)

pancy. Nevertheless, %i;—was neglected and the discrepancy can be
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observed when it is compared with other existing results. Generally speak-
ing, three major approximations were carried out in order to make the
solution of equation (IV-4) possible. First of all, the partial differ-
entiation tenn-%ig‘was dropped. Secondly, f' was used in place of u/U.
Thirdly, U, the reference velocity, is the potential velocity at each
individual location within the boundary layer instead of the potential
velocity at the boundary of the boundary layer which is used in the other
results. The effects of these approximations are discussed in more detail
belaw,

Since the potential velocity U does not vary more than 1 percent
within the boundary layer, there is not much sacrifice of accuracy if one
treats U roughly constant within the boundary. Therefore, it does not
matter whether the local potential wvelocity or the boundary potential
velecity is used. Thus, the two sets of results can be compared without
much discrepancy.

The welocity profile u/U‘is not exactly the same as £' or A. It

is found that the actual velocity profile is related as follows [9]

[==]
Thus, the ratio of u/U to f' is the exponential term Exp{ca(a)f (g:— l)ldx?.
.- = Yy =
It is desirable that Ca(u}f (g-— 1\ldx be very small, and consequently for
W /
b

the exponential quantity to epproach unity. Then f' can be used in place
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of %. It is estimated that Ca values range from O to .003, while the
o

integral Jx (g - i)hdx is less than one. Therefore, the use of f' in
place of u/U will produce at most a 0.3 percent error. If an error of
less than 1 percent is considered to be small, then f' can be used in
place of ufU’as the wvelocity profile,

t can be seen from equation (III-49) that h,, goes to infinity
at the forward stagnation point. The stagnation point, then, becomes a
singularity and solutions are not obtained at this point. It is needed,
therefore, to consider how far from the stagnation point should one start
to seek a sclution. For the problem presented here solutions were sought
starting from 1° from the stagnation point. The inability to obtain a
solution starting from the stagnation point provides one with difficulty

to solve equation (IV-h) with the partial differentiation term %EF included.

"
It can be explained more clearly in the following manner. The term %
o

can be approximated by

_ﬂl _ ?Jf (QB:Xi) e }'Lf (@25}':1) + (Q’ljxi) (v_g)
CCY Q’3X' Q'?) - Q’l

an

where f”{a3,xi), f"(ﬂgaxi) and f (Ql,xi) are values of f'" along a constant

f”
x line at o = @15 Upo ags respectively. In order to evaluate Q~—|

b&’ 03 ’KO’

it is necessary to know the exact values of f"(@3,xi), f(ae,xi), and

f”(al,xi). Since the solution is not started from the beginning, one

aii
can only obtain solutions of the first two steps without the o in there.

Doy
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rn

Therefore, the values of f obtained are not exact. There is no guarantee

" i
we can depend on those values to evaluate %i;. If the term o2 is small

dor
compared with other terms for the region prior to 1°, neglecting of the
term will not affect the solution significantly. However, from Figure 3,
one can see that even at 1° the numerical and the Blasius solutions are
well apart, especially in the middle range. In these calculations the

"
term %?—-was neglected from equation (IV-U4). One can see from Figures 3
o

through 8 that the discrepancy becomes larger at larger degrees. The
bfﬂ
m 3

in each of the Figures 3 through 8 are very close together near the sur-

neglect of indeed, cause some appreciable errors. Although the curves
face, there is significant difference in their slopes at n = 0. Looking
at equation (IV-34), one can realize why the skin frictions differ as
they are compared in Table L and Figure 9.

With h&i versus s, the distance along the surface from the forward
stagnation point, a diagram is plotted as shown in Figure 10. It is
observed that the curve is quite linear Ffor s < 26°. Therefore, for

s < 26° we can let

h = = C.s (v-3)

where Cl is a constant. Since

d.S = 1’]_ G_ o (V-J‘l')
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it can also be written as

da = hgy ds (V-5)
Therefore,
s
o :J‘ h, (z) dz (v-6)
o]

Where z is a dummy variable. Substituting relation (V-3) in equation

(V-6), one finds

5 (v=7)

Reconsider equation (IV-4)

' .1 1 o n d
[or™ + ££"] - 2C, [2e™ + e = 2o’ [ B -2t T nmy, |

"
If one treats DE;—&S small compared to ¥f" 2, In h__, then one can drop
Do dy Qo



the term and the right hand side of the equation becomes

d
- T 7 pren
[-be = inh,12E

58

To evaluate (-ha 2, 1n hao]’ the relation (V-3) is again used. One finds

dey

i FR——
h = — 8
oo
%
th In h = ln-EL 1n s
. oo gL,
1
h
and d TH R . = lds _ oo
dor @© T s dy s

Combining equations (V-7) and (V-10), one obtains

3
a .
ag I == sy
Since h—l = 0.8

(v-8)

(v-9)

(v-10)

(v-11)
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equation (V-11) becomes

ago by, =-3% (v-12)
Consequently,
b2 inh =2 (V-13)
do oo
and equation (IV-4) becomes
[er™ + %] « @, [EE™ + ££7] = 2'E" (v-14)

Equation (V-14) is an ordinary differential equation for a specified C.
The boundary conditions in (III-48) are known for C, being specified.
Therefore, it can be solved directly by using the Runge-Kutta method.
The known pressure distribution used in this thesis fluctuates
violently beyond 60°, and solutions beyond 60° were not sought. There-
fore, flow separation was not reached.
Although neglecting the partial differentiation term %E; gave

comparatively less accurate results, there are certain other contributions
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from this thesis. First of all, a numerical method was generated as out-
lined in detail for the solution. It gives a good example of how to sclve
some flow problems by using numerical methods. As it was said in Chapter
I, mumerical methods are far more accurate and time-saving than the approxi-
mate solutions and series solution. Secondly, the equations were derived
in generalized orthogonal coordinates corresponding to the flow direction.
Therefore, there is only one velocity component. Alsc, the differential
equation for this problem was derived and is available for solving. Fur-
ther development may be based on this fundamental equation (Iv-4). Thirdly,
the curvature effect was considered in this thesis. Although, in some of
the literature, people also discussed the curvature effect, they only dis-
cussed it on the surfaces where a similar solution can be obtained. How-
ever, along a cylinder a similar scolution is not applicable.

Generally speaking, in this thesis the emphasis was placed on the

methods of solution.
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CHAPTER VI
CONCLUSTONS AND RECOMMENDATTONS

Due to the singularity property of the forward stagnation point a
difficulty developed in obtaining exact solutions for the first two steps.
It prevents the starting of the solutions at the stagnation point. Since
exact solutions are not available during the first two steps, the numerical
differentiation method does not generate a good approximation for the

steps thereafter. The negligence of the term %?— is done with relatively

o

large sacrifice of accuracy. However, the approximation of f' for u/U
and the treatment of U as local potential velocity is without noticeable
effect on the solution.

A simpler process of soltulon can be applied to obtain profiles
near the forward stagnation point. TFor each specified value of C,, the
fundamental equation (IV-4) can be solved directly using Runge-Kutta
method. In other words, for a specified @, since Ca is a function of «,
a profile can be obtained easily.

It is recommended that the solution be sought starting from a
point very close to the forward stagnation point with an interval of

n "
5 B i f
about .1°. For convenience, — can be transformed to %E; as follows:

o

fTT fl? -
S ()
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Since
% = hao (VI-2)
f” flr
then °—M— =h Db? (VI-3)

Therefore, the numerical differentiation can be taken at an increment As
instead of Ay. The smaller the increment is taken, the more accurate the
results will be. Because of tha limitation of the computer time, it was
not done for this thesis.

The pressure distribution used in this thesis was obtained in a
gituation where the cylinder i1s placed in a bounded stream. However, if
the boundary is far enough from the cylinder surface, there will not be
a noticeable difference in the pressure distribution. In this case, the
boundary is about two feet away from the cylinder surface and it is six-
teen times the cylinder radius. The curve fluctuates lrregularly beyond
60°., Therefore, the results become doubtful beyond that point. These
results were used because they are the best that could be found in the
literature. Tt seems to the author that a search for a better pressure
distribution 1s highly desirable.

Since the pressure distribution used in this thesis is experimental,
readings avallable are only accurate to the third significant figures.

Moreover, most of the pressure readings were obtained from interpolation.
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In the region close to 0°, where the values (K - QPS) in equation (III-L9)
are small, the accuracy of aPS is deadly required. Therefore, the pressure
distribution near the forward stagnation point has to be in a more precise
form.

Although there still are things to be improved in order to achieve
a more accurate solution, this thesis gives a general idea of how to solve
this kind of flow problem. The required equations are derived. The con-
sideration of the curvature effect of a circular cylinder contributes to

the research in this fileld.
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APPENDIX A
COORDINATE SYSTEM

The coordinate system used in this thesis is the generalized ortho-

gonal coordinates [10]. Let the elements of length at (xl, X5 x3) in

the directions of increasing Xqs X Xg’ respectively, be hqul’ hgdxe,

and h3dx3 Tet (al, s> a3} denote the components of a vector a in the

directions of increasing Xqs X5y Xg, respectively. Then

b
hlh2h3 {bxl ohg?y) + (hl 2o) * Lha 3)} (a-1)

and the components of b = curl a are given by

5 il ) (
b, = —— 383 ) - (h )+, ete. (A-2)
1 hlh3 {bxg dx4 }

The components of the gradient of a scalar ¢ are

¥ 12 %
Rt (a-3)
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In this thesis only a two-dimensional problem is considered. Therefore,

h3 is treated as 1 while hl is ha and.h2 is ha. Then
PR S D } (A
V2T kg b (hge,) + 55 (homy) ()
while

5 i 2 y
by = @g{ % (nge,) - (haal)} (A-5)
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APPENDIX B
DIMENSTIONLESS GROUPS

Every variable in this thesis is non-dimensionalized. The radius
of the cylinder, a, is taken to be the characteristic length. The free
stream velcolity, U_, is taken to be the characteristic velocity. The

pressures and stresses are non-dimensionalized by &Umg. The Reymolds
LU a

number is defined as . The vorticity is non-dimensionalized by

Um/a.
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-0.25929
-0.28500
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APPENDIX D

NUMERICAL METHODS

1. Newton-Raphson Iteration Method [117]

This method is used to find the proper g''(0) for a specified
g(0) in equation (IV-11) with boundary conditions (IV-12).

LE

g=28 (D-1)
where z = g"'(0), and define
8" =gl (p-2)
g' = %é. (p-3)
then
CCUNE - (D-1)
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& _ g (D-5)

and so forth.

Differentiating equation (IV-11) with respect to z, gives

Co

2q'" +g™q +gq™ - g'a" - g"a’ - k(c /0) q™ - 2 - aq"

e}

- 2(Cy/C) 8"a =0 (D-6)

with additional boundary conditions

q(0) =0

q'(0) =0
(p-7)

g"(0) =0

qlr!(o) = 1

First a value for g'"'(0) is obtained which may be called Zq .

After computation, g"(0) is obtained as [ goes to infinity and it is
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compared with 1. If it is not satisfied, another value z, for o)

is assumed with the following relationship

g"(=),
22 = Zl - E"-(;E (D—S)
:
| ', I 1 )
%y f s | “n
1 | '
l : !
| I :
| |
| | ;
|
L () = g"() ()
0 1 e \® g 18\ g 1

Fig. 11 The Determining of g™ (0)

It can be seen from Fig. 11 that for each new assumed value of
FRO Y. Zys Zos o ow v g By g"(eo) will approach a certain value. Only
one value of g'"'(0), z, which makes g"{o) approach 1 will be accepted.
In order to Dbtain z in a more rapid way, the Newton-Raphson Iteration
Method is applied. Figure 12 represents a plot of g"(e) versus z. It
can be seen that if z 1 1is selected for g'"(0), [g"(m)]m_l is obtained,
which is different from 1. By drawing a tangent to the curve at the
point where z = z ., 1t intersects with the line g"(w) = 1 at the
point (zm, 1). A line drawn parallel to the g"(e)-axis through the

point (zm, 1) will intersect the curve at the point [zm, [g”(m)]m).



TL

Fig. 12 Newton-Raphson Tteration Method

The value of z, can always be calculated by

[l
1l
Il

m = Zporm (823, /12"(=)] 4 (p-9)

By following the same procedure at this point, another value of g'"'(0)
will be found closer to Zye The iteration converges to z, very radidly.
In the computer program used in this thesis, at most six trials were

needed to get z, where g'"(») would be within .0000005 from 1.

2. DNumerical Integration [117

In this thesis, quadratic numerical integration was used instead
of linear numerical integration. It is considered that the gquadratic

form yields enough accuracy. In figure 13, f(x), a function of x
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£(x)
4\
T T T
T | ‘ | ! !
1 ' 1 | | | !
B
| [
', | ' ! | | |
| | l | | | |
T A A S
1 [ | | | | l
pe D Do D oae o e b 1ok
1 | | 1 ] I ! 5 X
0 X % X, x3 Xy, x5 Xg K? Xg

Fig. 13 DNumerical Integration

is given. It is desired to integrate f(x) between the limits X and Xg

FXS fx) dx (D-10)

The interval is divided into eight subintervals of equal size each with

a width of Ax. For a quadratic form the area under f(x) between x = x

n
and X, + 2 are given by the relation
*a+e 5 E . ¥ o B | (D-11)
Jx (%) dx = §-g& [f(xn+2) + f(xn+1; + f(xn)] -
n

Therefore, the integral



73

4 =
F & f(x) dx = % AX E:
% n=0,2,4,6,8

[f{xn+2} + hf(xn+l) + f{xn)] (D-12)

The accuracy of the numerical integration depends largely on the

0.1 was used for each step.

inerement size Ax. In the present work Ax
The same step size was lso used for the integration. The method was

used to integrate a polynomial and the numerical result came out pretty

much the same as the result obtained by applying the integration formula

3. Runge-Kutta Method [127

This is a subroutine stored in the Univac 1108 Math-pack. It

computes the numerical solutions for a system of n first order differ-

ential equations using a modified Runge-Kuhta method. The entry is

CALL RKDE (DY,Y,Z,H,W,Q,N)

where DY is the name of a function subprogram used to evaluate
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o f.(x, yl(x)’ YE(X): s e e YH(KD (D-13)

Y is a one-dimensional array containing the initial conditions

Y(1) is the initial value of abscissa {xo). Therefore, for n
equations there are n + 1 elements in the Y array. The dimension of
array Y 1s N.

Z 1s the value of the sbscissa at which the solutions are sought.

H is the step size used to increment Xy

W is a one-dimensicnal array of N elements used as temporary
storage for the K parameters.

Q 18 a one-dimensional array of N elements used as temporary
storage for the q parameters.

N is one plus the number of equations to be solved (i.e., if
there are n equations to be sclved, N =n + 1). N is the dimension of
arrays Y, W and Q.

For a nth order ordinary differential equation it can be divided
into n simultaneous first order differential equations with n variables.

Take the differential equation to be the form of

v (}:) = an_jy\_n-l)(}{} i an }r(n—g)(}() + . . .+ aoy{x) (D-lh)

-2
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If we let

y(x) = y1(x)
7' (x) = y,(x)
y ™) =y, () (0-15)

then we have n simultaneous first order differential equations with n

variables,

t{ e
y3(x) = y,(x)

cq-.
I
'_lﬂ
"
I
e
2
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Therefore, it is ready to be solved by using this method directly

if all the initial conditions yi(xo) are known.



APPENDIX E

COMPUTER PROGRAM

@ RUN PRPGRM, 53C12015, HSU-H-W, 2, 100/500

@ FPR IS PRPGRM

31
68

DIMENSI@N Y(9), W(9), a(9), Fg(9), F(5), FF(5)
cHMPN S, B

REATL INTGR

EXTERNAL FN, REKDE

M = 100

=
1
’_l

H= .10

READ (5,50) S
READ (5,601) S

- b.o*8

o
—
Mo
g
i}

0.0

o
—
H
g
i

Y(6) = 0.0
Y(7) = 0.0
Y(8) = 0.0

o
R
O
I
=
@]

7



1000

78

i

701

702

20

703

704

30

53

35

D@ 1000 I = 1,9
FG(I) = ¥(I)
READ (5,601) ALFHA

READ (5,601) HAL@

B = 2. ¥ EXP(-.50 % ALPHA)
K =1

Z =0

%, =% +H

G¢ @ (701,702), MG

WRITE (6,200) ¥@(2), Fg(5), S, HALH, ALPHA
WRITE (6,251)

J=1

CALL RKDE (FN, Y, Z, H, W, Q, 9)

IF (ABS(Y(3) .GT. 100000.) G¢ T¢ 8

Gf T¢ (703,704), MG

WRITE (6,300) (¥(I), I = 1,5)
Z = Z+H

J=J+1

TF (J-M) 20; 53, 53

A =Y(L)

IF (ABS(A) .IT. 0.0000005) G T@ 5
F@(5) = FH(5) - A/1(8)

IF (X .GT. 6) G T8 6

DF 35 T = 1,9

¥(I) = FH(I)

K=K+ 1

78



Gg T¢ 15
RE = (Y(3) * ALPHA * HALZ ** 2)/5 *x 2

G ¢ (705,706), MG

705 WRITE (6,141) RE

706

5000

DRE = RE - 53000.

IF (ABS(DRE) .LT. 5) G T@ 7

S = HAL$ * SQRT (ALPHA * Y(3) (53000.0)
F(2) = - 4.0 * 8

D@ 5000 I = 1,9

Y(I) = 7E(T)

Gp 18 78

& WRITE (6,500)

7

2000

EN = HAL$/SQRT (RE)
DELTAP = .497049 - PS

¢ = 1.0/8QRT (Y(3))

T

1]

2.0 * SQRT (ALPHA) * EN/C
DY 2000 I = 1,9

Y(I) = F4(I)

707 WRITE (6,200) F@(2), Fg(5), S, HAL@, ALPHA

WRITE (6,251)

708 J =1
Z =H
L=2

23

SUM = .03333333
CALL RKDE (FN, Y, Z, H, W, Q, 9)

INTGR = EXP(-T #* v(1)) * ¢ %% L % v(3) * v(L)

9



25

G@ T¢

SUM =

(55,60), L

SUM + INTGR * H/3.0

709 WRITE (6,350) (Y(I), I = 1,5), SuM

710

60
711
Ak

7O

51

T3

715

3000

16

SUM =
L=2
Gp ¢
SUM =
WRITE
L=1
Z =2
J=4d
IF (J
HALG

DHA =
WRITE
D@ 30
Y(I)
H =

FF(2)
FF(L)
FF(5)

WRITE

SUM + INTCR * H/3.0

70
SUM + 4.0 * INTGR * H/3.0

(63300) (Y(I)a I= 135)

+ H

+ 1
-M) 25,25,51
2 = SQRT (SUM/DELTAP)

HALY - HALY 2

(6,260) HAL@, HATLY 2, DHA
00 I =1,9
= FP(1)

10 * C

= C * F(2)

n

¢ *% 3

o %% Lo F¢(5)

(6,130) FF(2), FF(4), FF(5), RE, ALPHA

+ 01

(6,250)

80
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17 CALL RKDE (FN, Y, Z, H, W, @, 9)
F(1) = ¥(1)/c

Y(3) * ¢ #* 2

F(3)
B(h) = F(h) 0 g

F(5) = Y(5) * C ** L

DELTA = (EXP (SQRT (ALPHA) * EN * F(1)) - 1.0) * SQRT (RE)
WRITE (6,150) F(1), F(3), F(L), DELTA, F(5)

Z = .10 % (J+2) * C

J=J+1

IF (J-M) 1k, 4, L
4 17 (N-70) 8, 18, 18
BN=N+1

G¢ 7@ 38

18 sT¢p

141 rgRMAT (//, 10X, 16H REYNYLDS NUMBER = , F13.4)
130 FPRMAT (1HL1, L4OX, 58H SPLUTI@N $F D (2*D3F + F*D2F) -2% CALPHA *
(2¥D3F + F*D2
1 F) = B¥DF¥D2F,/,k1X,58(1H-),//,9X,5HF(0)=,F12.8,3X, 7THDF(0)=0,3X,
7HD2
2 ¥(0)=,F12.8,3X, THD3F(0)=,F12.8,3X, 3HRE=,F11. 3, 3X ,(HALPHA=,F12.8)
250 FYRMAT (25X,1HX,18X,2HDF,18X,3HD2F, 15X, SHDELTA , 16X, 3HD3F)
150 FPRMAT (10X,5F20.8)
50 FYRMAT (F12.5)
601 FYRMAT (F13.8)

200 FPRMAT (I1HI,LOX,53HSPLUTION @F D(2¥DIY+Y¥D2Y)-2¥S*(2¥D3V+Y*D2Y )-B*
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1 DY*D2Y,/,h1x,53(1H-),//,9%X,5HY(0)=,F13,8,3X, THDY (0)=0,3X,8HD2Y (0 )=
2 1,3X,7HD3Y(0)=,F13.8,3X,2HS=,F13.8,2% ,5HHAL$=,F13.8,2X ,(HALPHA=, F1
3 3.8)

251 FPRVAT (21X,1HX,17X,1HY,16X,2HDY,16X,3HD2Y,15X,3HD3Y, 15X, 3HSUM)

260 FPRMAT (//,10X,L4HHAT@,11¥,5HHAIB2,10X , 3HDGA, /, 3K, 3F15.8)

300 PPRMAT (10X,5F18.8)

350 PPRMAT (10X,6F18.8)

500 FYRMAT (10X ,24x,2LHNG CHNVERGENCE UNTIL K = 6)

END

@ FPR, IS SUBI
SUBRGUTINE RKDE (DY, ¥, Z, H, W, Q, N)
DIMENSISN Y(N), W(N), Q(N), A(L), c(k), B(M)
DATA (A(T), ¢(I), B(I), I = 1,4) /ox,5,2.,2%,292893283,1., 2%
1.70710671,
1 1.,.166666666,.5,2./

C ________________________
¢ DX- IS THE INTERVAL SIZE.
¢ W- IS THE ARRAY USED T¢ ST@RE THE
& VALUE @F YPRIME (X). W(1) = F@(X) = 1
C ______________________
DX = H
W(l) =1
¢
c FR THE FIRST INTERVAL THE Q'S ARE SET T¢ ZER®

c FPR SUBSEQUENT INTERVALS THE PREVIPISLY C@MPUTED



c Q'S ARE USED

2

5 QI) = 0.

10 pg 20 J

1L

Dg 15 X

I

2,N
15 W(K) = DY(Y,K-1)

DB 20 K = 1,N

Y(K) = Y(K) + DX*A(J)*(W(K)-B(J)*Q(K))
20 Q(X) = Q(®)+3.*A(J)*(W(X)-B(J)*(K))-c(I)W(J)
o
c TEST IF VALUE (F INEDPENDENT VARTIABLE
C HAS BEEN REACHED.
B e e s s s s g o
25 RETURN
END
@ FgRr, IS N

REAL FUNCTI@N Y(1)

COMMgN S, B

cf ¢ (35,40,45,50,55,60,65,70), T
35 FN = Y(3)

G# T¢ 100
Lo PN = ¥(&)

cg T¢ 100
45 FN = Y(5)

83



G T 100
50 FN = (L.O*S*Y(5)+2.0%S*y (2)*y (L )+(B-1.0)*Y(3)*Y(4)-v(2)*Y(5))/2.0
Gf 1@ 100
55 FN = Y(7)
Gf T¢ 100
60 FN = Y(8)
af T¢ 100
65 FN= Y(9)
Gf T¢ 100
70 FN = ((B-1.0)%r(4)*Y (7)+(B-1.0)*(3)*Y(8)+4.0¥5*¥ (9)+2.0%5*y (L) *Y (6)
1 +2.%S*¥Y(2) %Y (8)-Y(5)*¢(6)-Y(2)¥¥(9))/2.0
100 RETURN

END



85

APPENDIX F

GENERATION OF OTHER RESULTS

1. Blasius Series Solution [1]

The ideal velocity distribution in a potential irrotational flow
past a circular cylinder of radius R and free-stream wvelcoity Um parallel

to the x-axis is given by

(F-1)

Fig. 14 Potential Flow Over a Circular Cylinder

The power expansion is obtained by expanding sin (%a, so that

i (9,3 + L {'33\' 1 (E 4 TR (r-2)



The true velocity distribution is given by

A S @A @ ] e

where the values for f’, £ h!, etec. are tabulated with respect to

3* 850 Bs
T where T are given by

n=yv2 (L) TR (F-1)

D

The wvalues Tor f!

5 f', etc. are to be evaluated by using the

tabulated values.

The rest of fi's are given by

5 =8 * 30

t _ T t 70 { ]
tp SEg TRt Ny
126
P +12n' + =—k' + 84 3' + 280 g’ (-5
g &g a " K T g K
o 25 + 66 Ky, #1220 41, # L2 iy (contimued)

11 5813 T 5 byt
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11 3 Ty (F-8)

Therefore, the potential flow velocity is a function of x alone,
while the true velocity is a function of both x and y. The velocity

profile for a particular value of x can be determined.

Since we are going to plot u/U versus % i Re , the wvalues of
T/ « 2 instead of 7 are used. This must be done in order that the

results can be compared.

The shear stress, according to its definition

10
To = ~ K % (F-7)
can be found to be
Al UR / 3 5
[s) ® x\ ; X x y
2 \/ = = 6.973 1@ 2.732 (R) + 0.292 (if{\ (7-8)

7 9 11
- 0.0183 (;"é\ + 0.000043 (%ﬂ - 0.000115 (%) + ... (7-9)
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where every variable is in dimensional form

UR

=
2

T
It is required to plot _U%J versus (%\
Pre

2. Karman, Pohlhausen Approximation Method [17

This method is applied to the general problem of a two-dimensiocnal
boundary-layer with pressure gradient. The method in its original form
was first indicated by K. Pohlhausen. The succeeding description of the
method is based on its more modern form as developed by H. Holstein and
T. Bohlen.

It is given that

In the case of a flow over a cylinder, the potential flow velocity is

U=2 s8in x (F-11)
We obtain
62 B IS - O-O]'I'TECOS X + 0j376 Siﬂ-6 5 -,-388 cOo8 X
° sin” x sin- x  (continued)



4 .188 cos> x (F-12)
sin” x
Since the second shape factor
T e (P-13)
e "2 dx

we can evaluate K for a given value of x.

From the following equation

L (37 1 Lok JONE (F-1h)
fr3s @ h-rr) A

the corresponding value for p, the shape factor, can be found.

It is given that the velocity profile

L

1
(-2 e+ f =3+ 3’ - ") (F-15)

cils



Table 5 TFunctional Coefficients for the Blasius Series

O T T g M o & B “g

0 0 0 0 0 0 0 0 0 0 0

0.4 L41ks 2129 L1778 .0117 1563 .0030 00hk L1413 .0079 .0112
0.8 .0659 .2997 .2366 L0177 1994 L0637 o17k .07ho L0760 0501
1.2 8L67 3133 2341 .oll2 1896 1102 0369 . 160k L1157 o'7ok
1.6 .9223 2975 2123 . 0504 1665 1114 0506 375 110 - 0649
2,0 .9732 2775 .1916 .0k06 1469 0839 .0510 .1195 .0798 0460
2.4 -9905 .2632 1781 .0257 1349 0507 .0ko2 .1087 .0l70 0267
2.8 9970 2554 712 .0133 1288 0254 0257 .1033 .0231 0129
3.2 .9992 2519 .1682 .0057 1263 .0107 .0135 L1011 .0096 .0053
3.6 .9998 2506 1672, .0021 1254 0038 0059 .1003 .0034 0019
4.0 1.0000 2501 .1668 . 0006 .1251 .0011 0021 .1001 .0010 .0006

06



Table 5 (Continued)

2 Ja % €11 Byy By 11 1 By Ty
0 0 0 0 0 0 0 5 0
0.h 0288 0124 1299 0145 -.0368 .0371 L0514 ~ 0721 0206
0.8 0833 .0262 1553 0816 w o TI8T .0992 L1267 -.1489 .0ko6
1.2 .1480 .0k23 1397 1152  -.1520 L1641 .1995  -.2288 0595
1.6 1829 0567 1175 .1055 -.1330 .1919 .2266  -.2874 o747
2.0 1718 L0625 1008 o746 -.0912 J731 .2001 -.2982 .0822
2.4 1290 0568 .0910 .0k32 -.0516 .1263 L1436 = 0575 0790
.8 L0795 .0L26 .0863 .0210 -.0246 0761 L0854 -.1858 L0655
3.2 ko6 0265 0843 .0087 -.0100 .0383 .0kps -.1121 .0bA3
3.6 0173 .0137 .0836 .0030 -.0035 .0162 .0178 -.0565 0275
4.0 .0062 .0059 0834 0009 -.0010 .0057 .0063 -.0238 137

T6



where T = y/&.

92

It is found that the boundary layer thickness § = ﬁ/E,J_Eé cos X

and it can be calculated directly for a given x.

In order for the results to be able to be compared, it is necessary

to use another variable

go M5
M 5

1l

The shear stress at wsll is given

(F-16)
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