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SUMMARY

The goal of the first part of this thesis is to obtain a high-level theoretical un-

derstanding of how some alliances (for example, air cargo alliances) can be managed such

that their resources are used in an optimal manner. We propose a pricing mechanism to

manage the interactions of carriers, through the allocation of alliance resources and prof-

its, in a manner that encourages individual carriers to make decisions that are optimal for

the alliance as a whole. We assume that carriers act to optimize profit, and model this

profit-maximizing behavior using multi-commodity flow linear programs. These models are

incorporated into a mechanism that manages carrier interactions by setting resource prices

such that an appropriate allocation of both alliance resources and profits is attained. Be-

cause the behavioral models are used to determine the impact of resource prices on carrier

behavior, the allocations of resources and profits achieved by the mechanism are heavily

dependent on the underlying model employed. Thus it is important to consider the impact

of the model selected on the overall performance of the mechanism. After introducing two

distinct behavioral models, the performance of the mechanism using each model is analyzed

for its ability to ensure alliance optimal behavior is attained. We find that the behavioral

model selected can significantly impact the characteristics of allocations obtained using the

mechanism.

In the second part of the thesis, we seek to establish practical insights regarding how the

characteristics of potential partners impact the benefit that can be gained by collaborating

with these partners. Computational experiments are conducted to evaluate the impact of

network size, fleet capacity, demand distribution, and network compatibility on the benefit

associated with collaborating. A comprehensive study for simulated two and three-carrier

alliances establishes general insights regarding the compatibility of carriers with varying

network sizes and fleet capacities. The impact of increasing hub-to-hub connectivity between

partnering carriers is then investigated, followed by a study of the effect of market overlap on

x



alliance success. Finally, a real-world cargo alliance is analyzed, demonstrating the validity

of the observations obtained from studying the simulated alliances.

In the third and final part of this thesis, we develop new approaches for determining and

inducing fair profit allocations in alliances, providing alternatives to traditional approaches

which equate minimum acceptance requirements and satisfaction. The mechanism estab-

lished in the first part of the thesis is adapted to more precisely control the profit allocations

obtained, in particular so that an allocation as close to some predetermined “fair” allocation

is obtained. Several measures of fairness are proposed and implemented, and their perfor-

mance analyzed for each of the behavioral models discussed in the first part of the thesis.

The results lead to further practical insights regarding the compatibility of various types of

carriers, as well as confirm the importance of pursuing the notion of fairness in allocation.
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CHAPTER I

INTRODUCTION

Consider a group of independent cargo carriers (for example, in the air cargo, sea cargo, or

trucking industries) who each wish to improve their own profitability. They may choose to

integrate some portion of their transportation networks in order to make better use of their

capacity by delivering more-valuable cargo loads. A group of carriers working together

in such a manner is referred to as an alliance. There are a variety of circumstances in

which the formation of an alliance among cargo carriers might be preferable to a merger

or acquisition; for example, carriers operating in different countries (or even in the same

country, depending on the industry) might face significant legal barriers to both merging

and acquisition. Second, carriers who operate under significantly different business models

might prefer autonomy to merging. Regardless of the motivation, it is reasonable to assume

that carriers considering forming an alliance are interested in designing that alliance to

function as well as possible, from the standpoint of both profitability and sustainability

over time. The challenge in achieving these goals lies in the tradeoff between decisions that

are good for the alliance versus decisions that are good for an individual carrier: decisions

that are good for the alliance are not always good for an individual carrier within the

alliance, and vice versa. In order for an alliance to operate in a manner that achieves

maximum profit, this discrepancy must be resolved.

To illustrate the questions that must be addressed when a potential alliance among cargo

carriers is considered, examine the simple case demonstrated in Figure 1. In this simplified

air cargo system, a time-expanded network with two cities and four time periods is depicted;

two flights operate between city 1 and city 2, both of which are operated by carrier A and

have one unit of capacity. There are four loads, each of unit size, that need to be accepted

or rejected for transport, and we assume that carriers individually make decisions to accept

or reject their associated loads. All loads originate in city 1 and are shown at their earliest
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available departure time. The destination of every load is city 2. The carrier and revenue

associated with a load, as well as the delivery deadline for that load, are as shown in the

figure. Finally, the ground edges are fictitious edges that represent the ability of a load to

wait in a location over time.

Figure 1: Air Cargo Example with 3 Carriers and 4 Loads

Let us examine the case where each carrier operates independently. Carrier A owns the

capacity on the flights, and therefore can deliver both of his loads, for a total revenue of

$4. Carriers B and C have no capacity, and therefore must reject their loads and earn no

revenue. If carriers A and B choose to collaborate by sharing capacity, then two loads worth

a total of $8 can be accepted. Similarly, if carriers A and C collaborate, then two loads

worth a total of $5 can be accepted. If all three carriers collaborate, then the two highest

value loads can be accepted, for a total revenue of $9.

Throughout this thesis, we are assuming that earning the maximum amount of revenue

is the primary goal of the alliance. Clearly there is benefit to be gained by collaborating in

the above example; there is $5 in extra revenue that can only be captured by the alliance.

Yet, if carriers receive revenue only by delivering their loads, carrier A has no incentive to

participate in this collaboration because he can earn more revenue operating alone. One

possibility is to arrange for a payment as compensation for the loss of revenue carrier A

experiences by joining the collaboration. This could easily be accomplished if we assume

2



a centralized decision-maker exists and can distribute payments. But given that a collab-

oration is composed of autonomous carriers who make independent operational decisions,

influencing the interaction among the carriers in reality is more challenging.

1.1 Contributions and Organization of Thesis

The goals of this thesis are threefold. First, we seek to obtain a high-level theoretical under-

standing of how an alliance can be managed such that its resources are used in an optimal

manner. Second, we seek to establish practical insights regarding how the characteristics

of potential partners, in particular network structure and demand distribution, impact the

benefit that can be gained by collaborating with these partners. Third, we seek to develop

new approaches for determining and inducing fair profit allocations in alliances, providing

alternatives to traditional approaches which equate minimum acceptance requirements and

satisfaction.

In the remainder of this chapter we introduce air cargo alliances as well as present an

overview of literature related to air cargo alliances. Chapter 2 addresses the first major

goal of the thesis: we propose a mechanism to manage the interactions of carriers, through

the allocation of alliance resources and profits, in a manner that encourages individual

carriers to make decisions that are optimal for the alliance as a whole. We assume that

carriers act to optimize profit, and model this profit-maximizing behavior using multi-

commodity flow linear programs. These models are incorporated into a mechanism that

manages carrier interactions by setting resource prices such that an appropriate allocation

of both alliance resources and profits is attained. Since the behavioral models are used to

determine the impact of resource prices on carrier behavior, the allocations of resources and

profits achieved by the mechanism are heavily dependent on the underlying model employed.

Thus it is important to consider the impact of the model selected on the overall performance

of the mechanism. After introducing two distinct behavioral models, the performance of the

mechanism using each model is analyzed for its ability to ensure alliance optimal behavior is

attained. A significant portion of the analysis is conducted using concepts from cooperative

game theory; a brief discussion of related game theory literature is included in the chapter.
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We find that the behavioral model selected can significantly impact the characteristics of

allocations obtained using the mechanism.

In pursuit of the second goal of the thesis, Chapter 3 contains results and analysis of

computational experiments conducted to evaluate the benefit to be gained by collaborating

for alliances comprised of various types of carriers. The chapter begins with a description

of how the alliances used in the experiments are generated, and results for two and three-

carrier alliances are then presented and analyzed. The chapter concludes with the analysis

of a real-world alliance, conducted by simulating an alliance based on the WOW cargo

alliance comprised of Lufthansa, SAS, Singapore Airlines, and Japan Airlines.

The experiments conducted in this chapter utilize the mechanism developed in Chapter

2. The results confirm that the mechanism performs as expected, but also demonstrate

that the mechanism may allocate alliance benefit among alliance members in an arbitrarily

disproportionate manner. Consequently, Chapter 4 focuses on adapting the mechanism to

more precisely control the profit allocations obtained. After discussing literature related

to fairness in allocation, several measures of fairness are proposed. The measures are then

implemented using the adapted allocation mechanism, and their performance analyzed for

each of the behavioral models discussed in Chapter 2. The results lead to further practical

insights regarding the compatibility of various types of carriers, as well as confirm the

importance of pursuing the notion of fairness in allocation. Conclusions are presented in

Chapter 5, as well as a description of some additional high level research questions and

more technical extensions that are motivated by this work.

1.2 Air Cargo Alliances

As is implied by the previous example, our motivating application is the air cargo industry.

Air cargo is assumed to be any freight, excluding mail and passenger baggage, transported

using aircraft. More specifically, we focus on combination carriers, which are those carriers

transporting cargo using passenger aircraft. As carriers take steps to improve the profitabil-

ity of their cargo business, they are increasingly considering collaborations for cargo that

are independent of those already established for the passenger industry. The first cargo

4



alliance, SkyTeam Cargo, formed in 2000 and was comprised of the cargo components of

Aeromexico, Air France, Delta, and Korean Air [27]. These four airlines were already part

of the SkyTeam passenger alliance, but SkyTeam Cargo was formed as an independent

strategic cargo alliance. Similarly, the WOW Alliance formed in 2002 with the cargo busi-

nesses of Lufthansa, Scandinavian Airlines, and Singapore Airlines. Again, these carriers

were already partners in the passenger industry, under the Star Alliance. However, a car-

rier outside the Star Alliance, Japan Airlines, was added later in 2002 [32]. Cargo alliances

among carriers that are not already partners in the passenger business are likely to become

more common, since carriers compatible for passenger alliances may not be compatible for

a cargo alliance. This is due to differences in flow patterns: passengers typically complete

a round trip, resulting in balanced flow, while cargo flow follows unbalanced trade patterns

[36].

We assume that service network design is determined according to other business con-

siderations (for example, in the airline industry, combination carriers set their schedules

and fleet assignments based on passenger demand); the alliance network is comprised of the

service networks operated by each participating member, or possibly some portion of each

member’s network. The key decisions for a cargo alliance therefore include, similar to the

passenger setting, how to share space and revenue among members. An additional consid-

eration in the cargo setting, however, is that of route selection. In contrast to passengers,

cargo is relatively insensitive to routing decisions; therefore the decision of how to route

cargo through the alliance network becomes a relevant factor in considering collaborations

among air cargo carriers. Determining the overall most profitable set of cargo to deliver,

and how this cargo should be routed through the combined network, requires a centralized

perspective. Full centralization is generally not an option, however, given the technical and

legal challenges associated with integrating the information systems of autonomous carriers.

Thus the maximum benefit will only be attained if the participating carriers can be encour-

aged to make their own acceptance and routing decisions in accordance with the centralized

optimal decision.
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1.3 Related Literature

This work unites concepts from optimization, cooperative game theory, and mechanism

design, all of which have substantial dedicated bodies of literature. Whereas cooperative

game theory studies properties of cost or benefit allocations among players, mechanism

design is focused on how to design a system such that a given allocation, typically one

that maximizes some system benefit, is achieved even when individual players are acting to

maximize their own gain. An introduction to the concepts of optimization and mechanism

design can be found in [7] and [18], respectively; cooperative game theory will be discussed

in Section 2.5.2. In this section we will focus on literature related to carrier collaboration.

There is very little available in the literature relating to air cargo alliances, most likely

since alliances among air cargo carriers are a very recent development. Most literature con-

cerning air cargo is related to dedicated cargo carriers, cargo operations, or the relationship

between the cargo and passenger industries. For example, the network design problem for

dedicated cargo carriers is addressed by [14] and [17], and short-term capacity planning is

studied in [10]. Analysis of airline alliances in the passenger industry is more prevalent,

but no existing literature uses a similar methodology or addresses the same questions as in

this work. [26] investigates the impact of international alliances on the passenger market

by comparing alliances comprised of airlines with complementary and parallel networks; it

is predicted that an alliance that joins complementary networks will be more profitable. In

response to a concern that alliances would lead to a situation where major carriers would

have a monopoly, [21] finds instead that alliances have merely allowed carriers to preserve,

not increase, their narrow profit margins through an increase in load factors and produc-

tivity. [13] in fact finds that consumers benefit from the formation of passenger alliances;

in the two domestic alliances that were studied fares decreased on the markets impacted by

the alliance, in part due to increased competition from rivals competing with the alliance.

[1] analyzes potential international alliances among carriers, applying non-cooperative game

theory to determine the profitability of an alliance under a given level of competition. The

primary issue addressed is the selection of international hubs to maximize the profit of

merging airlines.
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There is also limited research available on the impact that an alliance in one industry (air

cargo or passenger) can have on the other. [20] studied a passenger alliance between KLM

and Northwest and found that, ultimately, the effects on cargo service were positive. From

the other perspective, [35] investigates the effect of an air cargo alliance on the passenger

market, finding that cargo service integration can increase outputs in both the cargo and

passenger markets.

A widely studied topic in the passenger airline industry that is only recently being ap-

plied in the alliance setting is that of revenue management. Literature in this field seeks

to maximize revenue through management of seat capacity. [19] provides a review of rev-

enue management literature, but is focused primarily on revenue management implemented

by a single carrier. [8] describes the technical challenges associated with alliance revenue

management; in addition to addressing challenges, [30] discusses how coordination of seat

pricing and capacity planning are currently executed in the alliance setting. [33] provides

a more formal analysis of alliance revenue management mechanisms in which a free sale

scheme and three types of dynamic trading schemes are discussed. The mechanisms are

analyzed to determine their effect on the equilibrium behavior of alliance members and the

potential for the mechanism to maximize alliance revenue. Revenue management applied

to the air cargo industry is even more limited; differences between the cargo revenue man-

agement problem and the passenger yield management problem are discussed in [16], as are

complexities in developing additional models to facilitate cargo revenue management.

Outside the airline industry, carrier collaboration has also been studied in the ocean liner

shipping industry. [3] addresses issues related to the formation of alliances in the sea cargo

industry; in addition to the distribution of alliance revenue, design of the alliance network

is of critical importance. [28] demonstrates that alliances among sea cargo carriers lead to

increased service frequency and ship size, as well as increased similarity of service routes

among carriers. [29] provides a conceptual framework for the application of game theory

to alliances in the liner shipping industry. The ability to explain the instability of strategic

alliances using cooperative game theory is discussed, as well as the practical limitations of

applying game theory to the industry. For an overview of issues related to carrier alliances,
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including alliances in both the ocean liner and air cargo industries, we refer the reader to

[4].
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CHAPTER II

DESIGNING A MECHANISM TO MANAGE ALLIANCE BEHAVIOR

Even small introductory examples like that of Chapter 1 give rise to important challenges

that must be addressed when considering an alliance among carriers:

• How can resources be utilized such that the overall system profit is maximized?

• Given that this utilization will not necessarily be optimal for individual carriers in the

alliance, what incentives are necessary to encourage carriers to not only participate,

but make decisions that lead to system optimal performance?

• How can these incentives be distributed to the carriers, without relying on a centralized

decision-maker?

To address these challenges, we propose a mechanism that manages carrier interactions

by setting resource prices such that an appropriate allocation of both alliance resources and

profits is attained. These resource prices are henceforth referred to as capacity exchange

prices. We assume that carriers act to optimize profit, and model this profit-maximizing be-

havior using multi-commodity flow linear programs. These models are incorporated into a

mechanism that manages carrier interactions by setting resource prices such that an appro-

priate allocation of both alliance resources and profits is attained. Because the individual

carrier models are used to determine the impact of resource prices on carrier behavior, the

allocations of resources and profits achieved by the mechanism are heavily dependent on

the underlying model employed. Thus it is important to consider the impact of the model

selected on the overall performance of the mechanism. In this chapter we analyze the per-

formance of our proposed mechanism when two distinct models are employed, comparing

the mechanism output from a practical and theoretical standpoint. The models discussed

differ in how the actions of other carriers are acknowledged in the model for an individual

carrier within the alliance. Subsequently these models will be referred to as behavioral
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models, since they represent different ways to model the behavior, or interaction, of carriers

in the alliance.

After introducing a centralized model to determine the optimal solution from the cen-

tralized, or alliance, perspective, the framework for modeling the perspective of an indi-

vidual carrier within the alliance is discussed. Two behavioral models are introduced, and

a methodology for finding capacity exchange prices using these models is then described.

In the remainder of the chapter we analyze the effectiveness of each model with respect to

ensuring optimal alliance behavior. This analysis is conducted from three perspectives:

1. Centralized feasibility: does the model yield individual carrier solutions that remain

feasible when aggregated? Clearly an infeasible solution (for example, an aggregate

solution that utilizes more capacity on a leg than is available) is undesirable, as it

cannot be optimal for the alliance as a whole.

2. Cooperative game theory: does the model yield solutions that exhibit desirable game-

theoretic properties (i.e. being budget-balanced and stable)? Understanding the

potential for each model to yield such solutions is important because these properties

are desirable in an alliance setting.

3. Secondary markets: do the capacity exchange prices obtained using the model give

carriers incentive to buy capacity on a leg from a carrier who is not the operator of

that leg? Secondary markets lead to behavior that is detrimental to some members

of the alliance and, consequently, jeopardize alliance optimality.

The contributions of this chapter are both practical and theoretical. First, naturally, is

a demonstration that it is possible to develop a mechanism that can influence participating

carriers to behave in an alliance-optimal manner, and do so without relying on a central-

ized distributor for allocation of alliance revenue. Second, the majority of the chapter is

devoted to comparing the results obtained using two distinct models for the perspective of

an individual carrier within the alliance; that the solutions obtained under the two models

have different characteristics leads to an important insight: model selection can significantly
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impact alliance recommendations. Third, we prove that overestimating the amount of con-

trol wielded by individual carriers makes it more difficult to control the aggregate solution

obtained. A fourth contribution is the complete characterization of allocations obtained

under each model with respect to the core of the carrier alliance game, which is a valuable

application of the concepts of cooperative game theory. Finally, limitations of the notion

of the core are exploited in exploring the potential for resale of capacity in a secondary

market, and the negative impact this behavior has on the sustainability of the alliance.

2.1 Centralized Model

An important motivation for the formation of an alliance among carriers is the recognition

by those carriers that the alliance will yield benefit beyond what each carrier can accomplish

individually. Given that increasing the revenue earned by the alliance increases the benefit

that can be distributed among the participating members, it is reasonable to attempt to

determine the set of cargo loads to deliver, and the optimal routing of these loads, that

will maximize the alliance profit. This information is obtained by solving a network flow

problem from the centralized, or system, perspective; that is, the network and demand from

each participating carrier are integrated to create one large pseudo-carrier. The network of

a carrier is determined according to the amount of cargo capacity available on each flight

leg operated by that carrier; the demand associated with each carrier is presumed to be a

set of loads that the carrier must accept or reject for delivery. Note that a freight forwarder

can be incorporated into this modeling framework by introducing a carrier with a set of

associated loads, but no network capacity.

Because the focus of this work is on developing a methodology to manage the inter-

actions among carriers such that alliance-optimal behavior is achieved, several simplifying

assumptions are made to improve tractability. First, it is assumed that both cargo loads

and flight capacity have single dimension units and are deterministic. In reality, both cargo

and capacity are multi-dimensional, and the actual capacity available for cargo is dependent

on several factors including the weight of passengers, baggage, fuel, and mail shipments.

Furthermore, shipments may not be known or finalized until very close to departure time,
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therefore the deterministic demand is a fairly strong assumption. Second, it is assumed

that origins and destinations for loads correspond to airports, which implies that we are

not considering door-to-door pick-up and delivery services. This assumption is minor, and

implies that the responsibility of carriers is limited to transportation by air only. Third,

costs incurred by operating the network are ignored. While this assumption is reasonable

for combination carriers, as it is assumed that the flight schedule for an individual carrier

is motivated by the passenger industry and is therefore fixed, it would be strong in other

industries such as the ocean-liner shipping or trucking industries. Finally, load splitting is

permitted in order to obtain a standard multi-commodity flow linear program. This as-

sumption is reasonable if the standard unit of measure for a cargo load is small relative to

the capacity of a plane, both of which depend on the specific carrier(s) studied.

The length and units of the time horizon considered are intentionally not specified,

because these should be determined according to the needs and preferences of the alliance.

For example, in order to determine the long-term compatibility of a group of carriers or

other strategic decisions, it may be appropriate to consider a longer horizon with larger units

of time, as exact flight schedules and fleet assignments are only known for the immediate

future. On the other hand, a shorter time horizon with more exact flight information (and

hence shorter units of time) is required to effectively determine capacity exchange prices,

routing, and other operational decisions; these types of decisions should therefore be made

at appropriate intervals on a rolling time horizon. In practice, the frequency with which

capacity exchange prices are updated will depend on how robust the prices are with respect

to variability in demand; this topic is identified in Chapter 5 as a direction for future

research.

Let N denote the set of carriers, and Ei the set of legs operated by each carrier i ∈ N .

The set A contains all airports covered by the legs in E. Given a planning horizon of T

time periods, let V denote the set of nodes (a, t) for each a ∈ A and t = 1..T . Each leg

e ∈ E has capacity ke. Each carrier has a load set Li in which an individual load (o, d, i)

is characterized by an origin o and destination d. The size and per unit revenue of load

(o, d, i) is d(o,d,i) and r(o,d,i), respectively. The centralized goal is to find a flow of loads f
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such that the system revenue is maximized, which is accomplished by solving the following

multi-commodity flow problem:

(C) : max
∑

(o,d,i)∈L

r(o,d,i)f
(o,d,i)
(d,o,i) (1)

s.t.
∑

(u,v)∈E

f
(o,d,i)
(u,v) −

∑

(v,w)∈E

f
(o,d,i)
(v,w) ≤ 0 ∀v ∈ V,∀(o, d, i) ∈ L (2)

∑

(o,d,i)∈L

f (o,d,i)
e ≤ ke ∀e ∈ E (3)

f
(o,d,i)
(d,o,i) ≤ d(o,d,i) ∀(o, d, i) ∈ L (4)

f (o,d,i)
e ≥ 0.

(1) reflects the centralized goal of maximizing the amount of revenue earned from deliv-

ering loads; the flow variable f
(o,d,i)
(d,o,i) represents flow on a fictitious edge from the destination

d to the origin o of load i, which is introduced to account for the amount of load (o, d, i)

that is delivered. (2) are flow balance constraints, enforcing that every unit accepted for

shipment must be appropriately routed through the network. (3) are capacity constraints

for each flight, while (4) ensure that the amount of a load delivered does not exceed its size.

Let f∗ be the optimal solution to C; from f∗ we obtain the optimal accept-reject decision

for each load, as well as the optimal routing for the set of accepted loads.

2.2 Capacity Exchange Prices and Resulting Allocations

In order for the alliance to realize its maximum profit, carriers must make their accept-reject

and routing decisions in accordance with f∗. We seek to provide a structure to encourage

the exchange of capacity among carriers, as carriers will clearly need incentive to allow their

capacity to be used by other carriers so that f∗ can be achieved. A natural way to provide

this incentive is by establishing a system in which carriers receive payments in exchange for

capacity used by other carriers. We refer to these payments as capacity exchange prices.

How to determine capacity exchange prices will be discussed later in this section.
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If ce is the capacity exchange price on leg e, the net profit from capacity exchanges for

carrier i is then given by:

si =
∑

e∈Ei

ce

( ∑

(o,d,k)/∈Li

f (o,d,k)
e

)
−

∑

e/∈Ei

ce

( ∑

(o,d,i)∈Li

f (o,d,i)
e

)
. (5)

The term si is essentially a side payment provided to carrier i to compensate i for the value

of capacity being used by other carriers. If si is negative, then carrier i can be thought of

as a net consumer of capacity value.

Let qi be the revenue carrier i earns by delivering loads in accordance with f∗:

qi =
∑

(o,d,i)∈Li

r(o,d,i)f
∗(o,d,i)
(d,o,i) . (6)

The net profit xi earned by carrier i is given by xi = qi + si. We say that xi is carrier i’s

allocation.

2.3 Individual Carrier Behavioral Models

What should the value of the capacity exchange prices be in order to ensure that each

carrier’s allocation is such that the carrier will willingly participate in the alliance? Given

that a carrier chooses to participate in the alliance, how can he be encouraged to abide by

the centralized solution f∗?

In this section we discuss two distinct ways to model the perspective of an individual

carrier in an alliance. The goal in establishing these models is to understand how capacity

exchange prices impact the acceptance and routing decisions of an individual carrier. First,

however, we discuss a key component in developing alternative behavioral models.

2.3.1 Recognizing the Use of Capacity by Partner Carriers

A critical consideration in modeling the perspective of an individual carrier within an al-

liance is the fact that a carrier does not operate in isolation. Rather, a carrier must consider

the use of capacity by other carriers when making routing decisions. To demonstrate why a

model which ignores the use of capacity by other carriers is invalid, consider the following

example.
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Figure 2 illustrates the time-expanded network, with two capacitated edges (edges (1, 3)

and (2, 4)) that represent flights operated by carrier B. The capacity on each of these edges

is two. Edges (1, 2) and (3, 4) are ground edges, representing the ability of a load to wait

in a location over time, and therefore have unlimited capacity. The loads are described in

Table 1. For example, load (1, 4, A) represents a load associated with carrier A with ready

time and origin location corresponding to node 1, and delivery deadline and destination

corresponding to node 3. The revenue r(1,3,A) associated with this load is 1, and the size

d(1,3,A) of the load is two units.

3

1 2

4

Figure 2: Alliance Network for Example Ignoring Capacity Use by Partner Carriers

Table 1: Loads for Example Ignoring Capacity Use by Partner Carriers

Load Per-Unit Revenue (r(o,d,k)) Size (d(o,d,k))
(1, 4, A) 1 2
(1, 3, B) 1 1
(2, 4, B) 1 1

Clearly, the centralized optimal solution is to deliver all loads: f
∗(1,4,A)
(4,1,A) = 2, f∗(1,3,B)

(3,1,B) =

f
∗(2,4,B)
(4,2,B) = 1. The optimal routing is for load (1, 3, B) to travel on leg (1, 3), load (2, 4, B)

to travel on leg (2, 4), and for load (1, 4, A) to be split, with one unit travelling on leg (1, 3)

and one unit on (2, 4). A behavioral model for carrier A which ignores the use of capacity

by carrier B is as follows:

(ModelA) : max f
(1,4,A)
(4,1,A) − c(1,3)f

(1,4,A)
(1,3) − c(2,4)f

(1,4,A)
(2,4) (7)

15



s.t. f
(1,4,A)
(4,1,A) − f

(1,4,A)
(1,2) − f

(1,4,A)
(1,3) ≤ 0

f
(1,4,A)
(1,2) − f

(1,4,A)
(2,4) ≤ 0

f
(1,4,A)
(1,3) − f

(1,4,A)
3,4) ≤ 0

f
(1,4,A)
(2,4) + f

(1,4,A)
(3,4) − f

(1,4,A)
(4,1,A) ≤ 0

f
(1,4,A)
(1,3) ≤ 2 (8)

f
(1,4,A)
(2,4) ≤ 2 (9)

f
(1,4,A)
(1,4,A) ≤ 2

f
(1,4,A)
(4,1,A) , f

(1,4,A)
e ≥ 0 ∀e ∈ E

where c(1,3) and c(2,4) in (7) are the capacity exchange prices that carrier A must pay for

the use of capacity on legs (1, 3) and (2, 4), respectively. Notice that the only flow variables

in the above model pertain to the load associated with carrier A, and that the capacity

constraints (8) and (9) imply that carrier A has full use of the alliance capacity.

Let solution S1 be the solution in which f
(1,4,A)
(1,3) = f

(1,4,A)
(3,4) = f

(1,4,A)
(4,1,A) = 2, and solution

S2 be the solution in which f
(1,4,A)
(1,2) = f

(1,4,A)
(2,4) = f

(1,4,A)
(4,1,A) = 2. That is, in solution S1 both

units of load (1, 4, A) are travelling on leg (1, 3), while in solution S2 both units of the

load are travelling on leg (2, 4). If c(1,3) < c(2,4), then S1 is optimal for ModelA, while if

c(1,3) > c(2,4), then S2 is optimal for ModelA. If c(1,3) = c(2,4), then both S1 and S2 are

optimal for ModelA. The centralized optimal solution, in which load (1, 4, A) is delivered

using both leg (1, 3) and (2, 4), does not in fact correspond to a basic solution for ModelA,

and therefore cannot be obtained using a standard LP solver even when c(1,3) = c(2,4).

Given that the goal of establishing a behavioral model is to find a set of capacity exchange

prices that will encourage each carrier to behave in an alliance-optimal manner, ModelA is

clearly not sufficient: no matter how the exchange prices are set, carrier A will never choose

to route load (1, 4, A) in accordance with the centralized optimal solution.

Although it is clear in principal that capacity used by other carriers must be acknowl-

edged in the model for an individual carrier, it is not clear mathematically how this can

best be accomplished. In the remainder of this section we present two behavioral models,

each with a distinct method for incorporating the use of capacity other carriers. In the first
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model, the capacity utilized by other carriers is protected by introducing appropriate capac-

ity restrictions. In the second model, the use of capacity by other carriers is acknowledged

by including flow variables for loads associated with other carriers.

2.3.2 Limited Control Model

We have developed the Limited Control model to represent realistic restrictions on the

decisions available to an individual carrier participating in an alliance. In the model, the use

of capacity by other carriers is acknowledged by limiting carrier i’s use of capacity on each

flight. Pre-determining capacity allotments is a realistic approach given current industry

practice; a carrier typically dedicates space on each flight to specific partnering carriers

and freight forwarders. Intuitively, the capacity available on a flight can be partitioned

according to the centralized solution f∗; if carrier i uses ki
e units of capacity on leg e in f∗,

then the individual model for carrier i will restrict carrier i to at most ki
e units of capacity

on leg e. As is typically the case in reality, the operator of a leg has use of all capacity that

is not set aside for other carriers (or forwarders). More specifically, we use the following

rules to determine the amount of capacity allotted to each carrier (or forwarder):

• For each edge e utilized at full capacity in f∗ (
∑

(o,d,i)∈L

f
∗(o,d,i)
e = ke), allot

∑
(o,d,i)∈Li

f
∗(o,d,i)
e to each carrier i.

• For an edge e that is not utilized at full capacity (
∑

(o,d,i)∈L

f
∗(o,d,i)
e < ke), allot

∑
(o,d,i)∈Li

f
∗(o,d,i)
e to each carrier i such that e /∈ Ei. Allot ke −

∑
(o,d,i)/∈Lk

f
∗(o,d,i)
e to the

operating carrier k.

• Ground edges are not subject to capacity allotments, as they are assumed to have

infinite capacity.

Given an allotment of capacity ki
e on every leg e ∈ E, the Limited Control model for

carrier i is as follows:

(LCi) : max
∑

(o,d,i)∈Li

r(o,d,i)f
(o,d,i)
(d,o,i) −

∑

e/∈Ei

ce

( ∑

(o,d,i)∈Li

f (o,d,i)
e

)
(10)
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s.t.
∑

(u,v)∈E

f
(o,d,i)
(u,v) −

∑

(v,w)∈E

f
(o,d,i)
(v,w) ≤ 0 ∀v ∈ V,∀(o, d, i) ∈ Li (11)

∑

(o,d,i)∈Li

f (o,d,i)
e ≤ ki

e ∀e ∈ E (12)

f
(o,d,i)
(d,o,i) ≤ d(o,d,i) ∀(o, d, i) ∈ Li (13)

f (o,d,i)
e ≥ 0. (14)

Like the Centralized model C, the Limited Control model is a multi-commodity flow

LP. The objective function value (10) is equal to the total revenue earned from delivered

loads minus the sum of capacity exchange prices paid. Note that this value is a lower bound

on xi, the actual profit allocated to carrier i, because it excludes exchange prices that will

be paid to carrier i.

2.3.3 Strict Control Model

The second model we discuss is based on a model utilized by [3] for one component of their

work in the liner shipping industry. In this alternative model, the flow variables for all

the loads in the system, including loads associated with other carriers, are included in the

model for carrier i. Thus the use of capacity by other carriers is acknowledged explicitly

through the flow variables of their associated loads. The Strict Control multi-commodity

flow LP is as follows:

(Stricti) :

max
∑

(o,d,i)∈Li

r(o,d,i)f
(o,d,i)
(d,o,i) +

∑

e∈Ei

(ce

∑

(o,d,i)/∈Li

f (o,d,i)
e )−

∑

e/∈Ei

(ce

∑

(o,d,i)∈Li

f (o,d,i)
e ) (15)

s.t
∑

(u,v)∈E

f
(o,d,i)
(u,v) −

∑

(v,w)∈E

f
(o,d,i)
(v,w) ≤ 0 ∀v ∈ V, ∀(o, d, i) ∈ L (16)

∑

(o,d,i)∈L

f (o,d,i)
e ≤ ke ∀e ∈ E (17)

f
(o,d,i)
(d,o,i) ≤ d(o,d,i) ∀(o, d, i) ∈ L (18)

f (o,d,i)
e ≥ 0. (19)

The second term of the objective function (15) reflects the capacity exchange prices received

by carrier i as other carriers use capacity operated by carrier i. Therefore when capacity
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exchange prices are high enough, carrier i is encouraged to leave capacity open for use

by other carriers. We refer to this model as the Strict Control model (Stricti) because

it implies mathematically that a single carrier has full control over the decisions of other

carriers.

2.4 Using Inverse Optimization to Find Capacity Exchange Prices

Given a model to represent the behavior of an individual within the alliance, we seek capacity

exchange prices ce such that the optimal solution to the individual model for carrier i will

correspond to the centralized optimal solution f∗. This can be accomplished using inverse

optimization. In traditional optimization, optimal values for variables are identified based

on a given set of model parameters, whereas in inverse optimization we seek a set of model

parameters that will make a particular feasible solution optimal [5]. Because a solution

f∗ must be optimal when it satisfies primal feasibility, dual feasibility, and complementary

slackness conditions, the inverse problem for a carrier is a formulated using the dual of his

individual problem, making modifications to the constraints to ensure that a feasible dual

solution will satisfy complementary slackness conditions with f∗.

In this section we formulate the inverse optimal problem under each behavioral model,

and prove that the problem is feasible for any alliance. The section concludes with an

example demonstrating the methodology.

2.4.1 The Inverse Problem Under the Limited Control Model

As described previously, the inverse problem for carrier i under the Limited Control model

will be formulated using the dual of LCi, which is as follows:

(DLCi) : min
∑

e∈E

ki
eα

i
e +

∑

(o,d,i)∈Li

d(o,d,i)βi,(o,d,i)
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s.t. πi,(o,d,i)
v − πi,(o,d,i)

u + αi
(u,v) ≥ 0 ∀(o, d, i) ∈ Li, (u, v) ∈ Ei (20)

πi,(o,d,i)
v − πi,(o,d,i)

u + αi
(u,v) ≥ −c(u,v) ∀(o, d, i) ∈ Li, (u, v) /∈ Ei (21)

πi,(o,d,i)
o − π

i,(o,d,i)
d + βi,(o,d,i) ≥ r(o,d,i) ∀(o, d, i) ∈ Li (22)

πi,(o,d,i)
v ≥ 0 ∀v ∈ V, ∀(o, d, i) ∈ Li (23)

αi
(u,v) ≥ 0 ∀(u, v) ∈ E

βi,(o,d,i) ≥ 0 ∀(o, d, i) ∈ Li (24)

where πi, αi, and βi are the dual variables associated with the flow balance constraints,

capacity constraints, and demand constraints, respectively, for carrier i. Constraints (20)-

(21) correspond to each flow variable f
(o,d,i)
(u,v) . When carrier i operates leg (u, v), he is not

required to pay to use capacity for transporting load (o, d, i) on (u, v), hence the right-hand

sides of (20) are 0. When carrier i does not operate leg (u, v), he must pay the capacity

exchange price c(u,v) for each unit of load (o, d, i) transported on (u, v), therefore the right-

hand sides of (21) are −c(u,v). (22) correspond to the variables f
(o,d,i)
(d,o,i) ; for each unit of load

(o, d, i) delivered, carrier i earns r(o,d,i) in revenue. For this reason, the right-hand sides of

(22) are r(o,d,i).

The inverse problem for carrier i based on the Limited Control model, InvLCi, is formed

by modifying the constraints of DLCi in order to ensure that complementary slackness

conditions will be satisfied for (πi, αi, βi) and f∗. For each variable that is positive in the

centralized optimal solution f∗, the corresponding dual constraint must hold with equality.

In addition, the following constraints are included in InvLCi:

αi
e = 0 ∀e ∈ E :

∑

(o,d,i)∈Li

f∗(o,d,i)
e < ki

e (25)

βi,(o,d,i) = 0 ∀(o, d, i) ∈ Li : f
∗(o,d,i)
(d,o,i) < d(o,d,i) (26)

ce ≥ 0 ∀e ∈ E. (27)

(25) invokes the complementary slackness condition for (12) in LCi; when carrier i does

not use his full allotment of capacity on a leg, the dual variable corresponding to that leg

must equal 0. Similarly, (26) enforces the complementary slackness condition for constraint

(13) in LCi; when a load is not fully delivered, the dual variable corresponding to that

20



load must equal 0. Intuitively, it makes sense to restrict the capacity exchange prices ce to

non-negative values; this assumption is reflected in (27).

Because the parameters of interest, the capacity exchange prices ce, appear only in

the constraints of the inverse problem (InvLCi), it follows that our interest in the inverse

problem is in finding a set of prices ce and dual variables πi, αi, and βi that will make

the set of constraints in the inverse problem feasible. Any vector ce that, together with

(πi, αi, βi), satisfies the constraints of InvLCi will make f∗ optimal for LCi. Thus, to

ensure f∗ is optimal for every carrier, we must find one common vector c and dual vectors

(πi, αi, βi) that satisfy InvLCi for every carrier i. Let InvLC be the constraint set created

by combining the constraints of InvLCi over all carriers i.

Theorem 1. A feasible solution (πi, αi, βi, and c) to InvLC is guaranteed to exist.

Proof. Associate dual variables f
(o,d,i)
(u,v) and y(o,d,i) with constraints (20)-(21) and (22), re-

spectively. Now consider the dual of InvLC when an objective function of min 0 is added:

max
∑

(o,d,i)∈L

r(o,d,i)y(o,d,i) (28)

s.t.
∑

(u,v)∈E

f
(o,d,i)
(u,v) −

∑

(v,w)∈E

f
(o,d,i)
(v,w) ≤ 0 ∀(o, d, i) ∈ L, v ∈ V : v /∈ {o, d} (29)

y(o,d,i) −
∑

(o,w)∈E

f
(o,d,i)
(o,w) ≤ 0 ∀(o, d, i) ∈ L (30)

∑

(v,d)∈E

f
(o,d,i)
(v,d) − y(o,d,i) ≤ 0 ∀(o, d, i) ∈ L (31)

∑

(o,d,i)∈L

f
(o,d,i)
(u,v) ≤ 0 ∀(u, v) ∈ E, ∀i ∈ N (32)

y(o,d,i) ≤ 0 ∀(o, d, i) ∈ L (33)
∑

i∈N :(u,v)/∈Ei

∑

(o,d,j)∈Lj

f
(o,d,j)
(u,v) ≤ 0 ∀(u, v) ∈ E (34)

f
(o,d,i)
(u,v) ≥ 0 ∀(o, d, i) ∈ L, (u, v) ∈ E : f

∗(o,d,i)
(u,v) = 0

f
(o,d,i)
(u,v) unr. ∀(o, d, i) ∈ L, (u, v) ∈ E : f

∗(o,d,i)
(u,v) > 0

y(o,d,i) ≥ 0 ∀(o, d, i) ∈ L : f
∗(o,d,i)
(d,o,i) = 0

y(o,d,i) unr. ∀(o, d, i) ∈ L : f
∗(o,d,i)
(d,o,i) > 0.
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Equations (29)-(31) are associated with π
(o,d,i)
v , (32) with αi

(u,v), (33) with β(o,d,i), and

(34) with c(u,v). Assuming all load revenues r(o,d,i) are non-negative, (33) implies that the

objective function (28) is bounded. Furthermore, the solution y = f = 0 is clearly feasible.

Because the dual is bounded and feasible, InvLC must also be feasible.

2.4.2 The Inverse Problem Under the Strict Control Model

As in the Limited Control model, the inverse problem under the Strict Control model is

based on the dual of the Strict Control model for carrier i. The constraints of this dual,

DStricti, can be obtained by adding the following constraints to DLCi:

πi,(o,d,j)
v − πi,(o,d,j)

u + αi
(u,v) ≥ c(u,v) ∀(o, d, j) /∈ Li, (u, v) ∈ Ei (35)

πi,(o,d,j)
v − πi,(o,d,j)

u + αi
(u,v) ≥ 0 ∀(o, d, j) /∈ Li, (u, v) /∈ Ei (36)

πi,(o,d,j)
o − π

i,(o,d,j)
d + βi,(o,d,j) ≥ 0 ∀(o, d, j) /∈ Li. (37)

In addition, (23) and (24) are constrained over all (o, d, i) ∈ L. When carrier i operates leg

(u, v) he receives capacity exchange price c(u,v) for each unit of load (o, d, j) transported on

(u, v), since carrier j must pay for the use of carrier i’s capacity. As a result, the right-hand

sides of (35) are c(u,v). When carrier i does not operate leg (u, v), he neither receives nor

pays for the transportation of load (o, d, j); correspondingly, the right-hand sides of (36)

are 0. The right-hand sides for (37) reflect that carrier i receives no direct revenue from

delivery of load (o, d, j).
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The inverse problem InvStricti is formulated as follows:

(InvStricti) :

πi,(o,d,i)
v − πi,(o,d,i)

u + αi
(u,v)




≥
=





0 ∀(o, d, i) ∈ Li, (u, v) ∈ Ei (38)

πi,(o,d,j)
v − πi,(o,d,j)

u + αi
(u,v)




≥
=





c(u,v) ∀(o, d, j) /∈ Li, (u, v) ∈ Ei (39)

πi,(o,d,i)
v − πi,(o,d,i)

u + αi
(u,v)




≥
=





−c(u,v) ∀(o, d, i) ∈ Li, (u, v) /∈ Ei (40)

πi,(o,d,j)
v − πi,(o,d,j)

u + αi
(u,v)




≥
=





0 ∀(o, d, j) /∈ Li, (u, v) /∈ Ei (41)

πi,(o,d,i)
o − π

i,(o,d,i)
d + βi,(o,d,i)




≥
=





r(o,d,i) ∀(o, d, i) ∈ Li (42)

πi,(o,d,j)
o − π

i,(o,d,j)
d + βi,(o,d,j)




≥
=





0 ∀(o, d, j) /∈ Li (43)

αi
(u,v) = 0 ∀(u, v) ∈ E :

∑

(o,d,i)∈L

f
∗(o,d,i)
(u,v) < k(u,v) (44)

βi,(o,d,i) = 0 ∀(o, d, i) ∈ L : f
∗(o,d,i)
(d,o,i) < d(o,d,i) (45)

πi,(o,d,i)
v ≥ 0 ∀v ∈ V, ∀(o, d, i) ∈ L (46)

αi
(u,v) ≥ 0 ∀(u, v) ∈ E (47)

βi,(o,d,i) ≥ 0 ∀(o, d, i) ∈ L (48)

c(u,v) ≥ 0 ∀(u, v) ∈ E (49)

where the constraints (38)-(41) hold with equality for every (o, d, i) ∈ L, (u, v) ∈ E :

f
∗(o,d,i)
(u,v) > 0. Similarly, constraints (42)-(43) hold with equality for every (o, d, i) ∈ L :

f
∗(o,d,i)
(d,o,i) > 0.

In order to ensure f∗ is optimal for all individual problems Stricti, we combine the

constraints InvStricti over all carriers, obtaining InvStrict, and search for a feasible set of

capacity exchange prices. That a feasible solution to InvStrict must exist can be confirmed

23



by examining a result in [2], in which a multi-commodity flow game with multiple owners on

an edge is studied. It is proved that edge prices must exist that satisfy a problem formulated

by aggregating the inverse problem of each owner. Because the carrier alliance game is a

simplified version of the multi-commodity flow game in [2], the result follows.

2.4.3 Example: Finding Capacity Exchange Prices

In this section we present an example to illustrate feasible exchange prices under each model

presented in Section 2.3, and the resulting profit allocations. Characteristics of allocations

obtained using the Limited and Strict Control models will be discussed in detail in Section

2.5.

Figure 3 illustrates the alliance network; carrier A operates legs (1, 3) and (2, 4), each

with one unit of capacity. (The capacity on the ground edges (1, 2) and (3, 4) is unlimited.)

The set of loads is described in Table 2. The unique centralized optimal solution is to deliver

load (1, 4, B) using leg (1, 3) and ground edge (3, 4), and to deliver load (2, 4, C) using let

(2, 4). Mathematically, f
∗(1,4,B)
(4,1,B) = f

∗(2,4,C)
(4,2,C) = f

∗(1,4,B)
(1,3) = f

∗(1,4,B)
(3,4) = f

∗(2,4,C)
(2,4) = 1, and all

other variables are zero. The optimality of this solution can be confirmed by solving the

centralized problem C for this example.

3

1 2

4

Figure 3: Alliance Network for Allocation Example

Table 2: Loads for Allocation Example

Demand Per-Unit Revenue (r(o,d,k)) Size (d(o,d,k))
(1, 3, A) 2 1
(2, 4, A) 2 1
(1, 4, B) 6 1
(2, 4, C) 3 1

The Limited Control model for carrier A is presented below, with the associated dual
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variables defined next to each constraint. The capacity on legs (1, 3) and (2, 4) is fully

utilized by carriers B and C in the centralized optimal solution; consequently, carrier A is

allotted no capacity on these legs.

(LCA) : max 2f (1,3,A)
(3,1,A) + 2f

(2,4,A)
(4,2,A)

s.t.

(πA,(o,d,A)
v )

∑

(u,v)∈E

f
(o,d,A)
(u,v) −

∑

(v,w)∈E

f
(o,d,A)
(v,w) ≤ 0 ∀v ∈ V, ∀(o, d, A) ∈ LA

(αA
e )

∑

(o,d,A)∈LA

f (o,d,A)
e ≤ 0 ∀e ∈ {(1, 3), (4, 2)}

(βA,(o,d,A)) f
(o,d,A)
(d,o,A) ≤ d(o,d,A) ∀(o, d, A) ∈ LA

f (o,d,A)
e ≥ 0 ∀e ∈ E, ∀(o, d, A) ∈ LA.

LCB and LCB are formulated in a similar manner. The inverse problem InvLC is for-

mulated using the duals of LCA, LCB, and LCC together with complementary slackness

conditions. The constraints comprising InvLC are as follows:
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(InvLC) : π
(1,3,A)
3 − π

(1,3,A)
1 + αA

(1,3) ≥ 0

π
(2,4,A)
4 − π

(2,4,A)
2 + αA

(2,4) ≥ 0

π
(1,4,B)
2 − π

(1,4,B)
1 ≥ 0

π
(1,4,B)
3 − π

(1,4,B)
1 + αB

(1,3) = −c(1,3)

π
(1,4,B)
4 − π

(1,4,B)
2 + αB

(2,4) ≥ −c(2,4)

π
(1,4,B)
4 − π

(1,4,B)
3 = 0

π
(2,4,C)
4 − π

(2,4,C)
2 + αC

(2,4) = −c(2,4)

π
(1,3,A)
1 − π

(1,3,A)
3 + β(1,3,A) ≥ 2

π
(2,4,A)
2 − π

(2,4,A)
4 + β(2,4,A) ≥ 2

π
(1,4,B)
1 − π

(1,4,B)
4 + β(1,4,B) = 0

π
(2,4,C)
2 − π

(2,4,C)
4 + β(2,4,C) = 0

β(1,3,A) = 0

β(2,4,A) = 0

π, α, β, c ≥ 0.

Note that the constraints and dual variables associated with ground edges (1,2) and (3,4)

have been excluded from LCi and InvLC; since ground edges have infinite capacity, the

dual variables associated with these edges must always be zero.

The capacity exchange prices c(1,3) = 6, c(2,4) = 3 are one feasible solution to InvLC

(this can be verified by solving InvLC with the objective function max c(1,4) + c(2,4)). The

side payments si resulting from these exchange prices are computed as follows:

sA = c(1,3)f
∗(1,4,B)
(1,3) + c(2,4)(f

∗(1,4,B)
(2,4) + f

∗(2,4,C)
(2,4) ) (50)

sB = −c(1,3)f
(1,4,B)
(1,3) − c(2,4)f

(1,4,B)
(2,4) (51)

sC = −c(2,4)f
(2,4,C)
(2,4) (52)

which simplify to sA = 9, sB = −6, and sC = −3. The carriers also receive direct revenue qi

from delivering loads: qA = 0, qB = 6, qC = 3. Recall that the profit xi allocated to carrier
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i is the sum of qi and si. The capacity exchange prices c(1,3) = 6, c(2,4) = 3 therefore result

in the following allocations: xA = 9, xB = 0, xC = 0.

When using the Strict Control model, capacity exchange prices are found by solving

the constraints InvStrict. StrictA is presented below, with the associated dual variables

defined next to each constraint:

(StrictA) : max 2f (1,3,A)
(3,1,A) + 2f

(2,4,A)
(4,2,A) + c(1,3)f

(1,4,B)
(1,3) + c(2,4)(f

(1,4,B)
(2,4) + f

(2,4,C)
(2,4) )

s.t.

(πA,(o,d,j)
v )

∑

(u,v)∈E

f
(o,d,j)
(u,v) −

∑

(v,w)∈E

f
(o,d,j)
(v,w) ≤ 0 ∀v ∈ V, ∀(o, d, j) ∈ L

(αA
e )

∑

(o,d,j)∈L

f (o,d,j)
e ≤ 1 ∀e ∈ {(1, 3), (2, 4)}

(βA,(1,3,A)) f
(o,d,i)
(d,o,i) ≤ d(o,d,i) ∀(o, d, i) ∈ L

f (o,d,i)
e ≥ 0 ∀e ∈ E, ∀(o, d, j) ∈ L.

While the constraints for StrictB and StrictC are identical to those of StrictA, the dual

variables π, α, and β have superscripts B and C, respectively, in the place of A. The

objective functions are as follows:

(StrictB) : max 6f (1,4,B)
(4,1,B) − c(1,3)f

(1,4,B)
(1,3) − c(2,4)f

(1,4,B)
(2,4)

(StrictC) : max 3f (2,4,C)
(4,2,C) − c(2,4)f

(2,4,C)
(2,4) .

The inverse problem for carrier A, InvStrictA, is formulated using the dual of StrictA

together with complementary slackness conditions. The constraints comprising InvStrictA

are as follows:
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(InvStrictA) :

π
A,(1,3,A)
3 − π

A,(1,3,A)
1 + αA

(1,3) ≥ 0

π
A,(2,4,A)
4 − π

A,(2,4,A)
2 + αA

(2,4) ≥ 0

π
A,(1,4,B)
2 − π

A,(1,4,B)
1 ≥ 0

π
A,(1,4,B)
3 − π

A,(1,4,B)
1 + αA

(1,3) = c(1,3)

π
A,(1,4,B)
4 − π

A,(1,4,B)
2 + αA

(2,4) ≥ c(2,4)

π
A,(1,4,B)
4 − π

A,(1,4,B)
3 = 0

π
A,(2,4,C)
4 − π

A,(2,4,C)
2 + αA

(2,4) = c(2,4)

π
A,(1,3,A)
1 − π

A,(1,3,A)
3 + βA,(1,3,A) ≥ 2

π
A,(2,4,A)
2 − π

A,(2,4,A)
4 + βA,(2,4,A) ≥ 2

π
A,(1,4,B)
1 − π

A,(1,4,B)
4 + βA,(1,4,B) = 0

π
A,(2,4,C)
2 − π

A,(2,4,C)
4 + βA,(2,4,C) = 0

βA,(1,3,A) = 0

βA,(2,4,A) = 0

π, α, β, c ≥ 0.

To obtain InvStrictB, replace π
A,(o,d,i)
v with π

B,(o,d,i)
v , αA

(u,v) with αB
(u,v), and βA,(o,d,i) with

βB,(o,d,i). Furthermore, the vector of right-hand sides for equations (53)-(53) becomes

[0, 0, 0,−c(1,3),−c(2,4), 0, 0, 0, 0, 6, 0, 0, 0]. Similarly, to obtain InvStrictC replace π
A,(o,d,i)
v

with π
C,(o,d,i)
v , αA

(u,v) with αC
(u,v), and βA,(o,d,i) with βC,(o,d,i). The right-hand side vector for

InvStrictC is [0, 0, 0, 0, 0, 0,−c(2,4), 0, 0, 0, 3, 0, 0].

InvStrict is formed by combining the constraints of InvStrictA, InvStrictB, and

InvStrictC . One feasible set of capacity exchange prices is c(1,3) = c(2,4) = 2, which

can be verified by adding the objective function min c(1,3) + c(2,4) and solving InvStrict to

optimality. The side payments si are computed according to equations (50)-(52), which now

simplify to sA = 4, sB = −2, sC = −2. The direct revenue from delivering loads is not de-

pendent on the behavioral model employed, and therefore remains qA = 0, qB = 6, qC = 3.
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Thus the allocations resulting from the capacity exchange prices c(1,3) = c(2,4) = 2 are as

follows: xA = 4, xB = 4, xC = 1.

It is an interesting observation that the set of capacity exchange prices in which c(1,3) =

c(2,4) = 2 is feasible for InvLC, which implies that the allocation xA = 4, xB = 4, xC = 1

may also be obtained when using the Limited Control model. However, the set in which

c(1,3) = 6, c(2,4) = 3 is not feasible for InvStrict, implying that the allocation xA = 9, xB =

0, xC = 0 may only be obtained when using the Limited Control model. Differences in

allocations obtained using the two models will be characterized for the general case in the

following section.

2.5 Comparison of Models

Having established two distinct models for the behavior of an individual carrier within the

system and the methodology for obtaining capacity exchange prices using each of the models,

we now focus on the characteristics of allocations obtained using each model. What are the

advantages and disadvantages of the Strict and Limited Control models? Qualitatively, it

can be argued that the Limited Control model offers a more realistic view of the decisions

available to an individual carrier. Quantitatively, this section focuses on analyzing the

allocations obtained under each model to determine their respective ability to ensure alliance

optimal behavior is attained. This analysis will be conducted from the perspective of (1)

centralized feasibility, (2) cooperative game theory, and (3) secondary markets for capacity.

2.5.1 Centralized Feasibility

In this section we demonstrate that when using the Strict Control model, the aggregated

individual solutions may be suboptimal or even infeasible from the centralized perspective.

In contrast, centralized feasibility is guaranteed under the Limited Control model. The

inability to ensure feasibility of the aggregation of the individual solutions obtained when

each carrier solves Stricti for a given set of capacity exchange prices is an obvious limitation

of the Strict Control model. It is perhaps counterintuitive, as one might expect that as the

level of control represented in a given model increases, the ability to produce the desired

action (in this case, behavior consistent with the alliance optimal solution) would also
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increase. Instead we find that it is exactly this increased control on the part of an individual

carrier that leads to behavior inconsistent with the centralized solution.

Theorem 2. Given a set of capacity exchange prices feasible for InvStrict, it is possible

that optimal solutions exist for Stricti that create infeasibility in the centralized setting.

Proof. This proof is by counterexample. Consider the simple system depicted in Figure 4

in which carrier A operates a leg with origin o, destination d, and capacity 2. Each carrier

has one associated load, described in Table 3. For example, load (o, d, A) represents a load

associated with carrier A, with ready time and origin location corresponding to node o, and

delivery deadline and destination corresponding to node d.

d

o

Figure 4: Alliance Network for Feasibility Example

Table 3: Load Descriptions for Feasibility Example

Load
Per-Unit Revenue Size

(r(o,d,k)) (d(o,d,k))
(o, d,A) 2 1
(o, d,B) 1 2

The centralized optimal solution is to deliver one unit of each load. That is, f
∗(o,d,A)
(d,o,A) =

f
∗(o,d,A)
(o,d) = f

∗(o,d,B)
(d,o,B) = f

∗(o,d,B)
(o,d) = 1. The constraints for the inverse problem under the Strict

Control model are written below, with the primal variable corresponding to each constraint

indicated to the left of the constraint:
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(InvStrict) :

(f (o,d,A)
(o,d) ) π

A,(o,d,A)
d − π

A,(o,d,A)
o + αA

(o,d) = 0

(f (o,d,A)
(d,o) ) π

A,(o,d,A)
o − π

A,(o,d,A)
d + βA,(o,d,A) = 2

(fB
(o,d)) π

A,(o,d,B)
d − π

A,(o,d,B)
o + αA

(o,d) = c(o,d)

(fB
(d,o)) π

A,(o,d,B)
o − π

A,(o,d,B)
d = 0

(f (o,d,A)
(o,d) ) π

B,(o,d,A)
d − π

B,(o,d,A)
o + αB

(o,d) = 0

(f (o,d,A)
(d,o) ) π

B,(o,d,A)
o − π

B,(o,d,A)
d + βB,(o,d,A) = 0

(fB
(o,d)) π

B,(o,d,B)
d − π

B,(o,d,B)
o + αB

(o,d) = −c(o,d)

(fB
(d,o)) π

B,(o,d,B)
o − π

B,(o,d,B)
d = 1.

The only value of c(o,d) that is feasible for InvStrict is c(o,d) = 1. Now consider the Strict

Control model for carrier B, written in standard form:

StrictB : max f
(o,d,B)
(d,o,B) − c(o,d)f

(o,d,B)
(o,d)

s.t f
(o,d,A)
(d,o,A) − f

(o,d,A)
(o,d) + s1 = 0

f
(o,d,A)
(o,d) − f

(o,d,A)
(d,o,A) + s2 = 0

f
(o,d,B)
(d,o,B) − f

(o,d,B)
(o,d) + s3 = 0 (53)

f
(o,d,B)
(o,d) − f

(o,d,B)
(d,o,B) + s4 = 0 (54)

f
(o,d,A)
(o,d) + f

(o,d,B)
(o,d) + s5 = 2

f
(o,d,A)
(d,o,A) + s6 = 1

f
(o,d,B)
(d,o,B) + s7 = 2

f (o,d,i)
e ≥ 0

sj ≥ 0 ∀(j = 1..7).

From (53), if f
(o,d,B)
(d,o,B) > f

(o,d,B)
(o,d) then s3 < 0. Similarly, from (54), if f

(o,d,B)
(d,o,B) < f

(o,d,B)
(o,d) then

s4 < 0. Because sj must be nonnegative, it follows that f
(o,d,B)
(d,o,B) = f

(o,d,B)
(o,d) in any feasible
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solution to StrictB, which then implies that all feasible solutions have an objective function

value of 0.

Consider the following solutions:

S1: f
(o,d,A)
(d,o,A) = f

(o,d,A)
(o,d) = f

(o,d,B)
(d,o,B) = f

(o,d,B)
(o,d) = 1, s7 = 1, s1 = s2 = s3 = s4 = s5 = s6 = 0;

S2: f
(o,d,A)
(d,o,A) = f

(o,d,A)
(o,d) = 0, f

(o,d,B)
(d,o,B) = f

(o,d,B)
(o,d) = 2, s6 = 1, s1 = s2 = s3 = s4 = s5 = s7 = 0.

We claim that S1 and S2 are basic feasible solutions, and it follows that each of these

solutions is an optimal solution that may be obtained by using a standard LP solver such as

CPLEX. Assuming carrier i will implement only those decisions pertaining to his associated

loads, the aggregate alliance solution is formed by retaining the optimal value of f (o,d,i)

from Stricti, while the optimal value of f (o,d,j) from Stricti is ignored. The unique optimal

solution to StrictA is f
(o,d,A)
(d,o,A) = f

(o,d,A)
(o,d) = f

(o,d,B)
(d,o,B) = f

(o,d,B)
(o,d) = 1; therefore the contribution

of carrier A to the aggregate solution is f
(o,d,A)
(d,o,A) = f

(o,d,A)
(o,d) = 1. The contribution of carrier

B based on S1 is f
(o,d,B)
(d,o,B) = f

(o,d,B)
(o,d) = 1; S1 therefore leads to an aggregate solution which

is in fact the centralized optimal solution. The contribution of carrier B based on S2 is

f
(o,d,B)
(d,o,B) = f

(o,d,B)
(o,d) = 2, which implies an aggregate solution in which load (o, d,A) and both

units of load (o, d, B) are delivered. This aggregate solution is infeasible from the centralized

perspective because it requires three units of capacity on leg (o, d).

It remains to prove our claim that S1 and S2 are basic feasible solutions. Given a

system of linear equations Ax = b, where A is m x n, x is n x 1, b is m x 1, and n ≥ m, a

basic solution can be obtained by setting n−m variables equal to zero and solving for the

remaining m variables, assuming that the columns in A corresponding to the m variables

are linearly independent [31]. Any basic solution in which all variables are nonnegative is a

basic feasible solution.

The constraints of StrictB, excluding the nonnegativity constraints, can be written in

32



the form Ax = b, where

A =




1 −1 0 0 1 0 0 0 0 0 0

−1 1 0 0 0 1 0 0 0 0 0

0 0 1 −1 0 0 1 0 0 0 0

0 0 −1 1 0 0 0 1 0 0 0

0 1 0 1 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 1




, x =




f
(o,d,A)
(d,o,A)

f
(o,d,A)
(o,d)

f
(o,d,B)
(d,o,B)

f
(o,d,B)
(o,d)

s1

s2

s3

s4

s5

s6

s7




, and b =




0

0

0

0

2

1

2




.

Let B be an m x m matrix made up of m linearly independent columns of A, xB be an

m x 1 vector containing the variables corresponding to the columns in B, and xN be an

(n−m) x 1 vector containing the remaining n−m variables. Then xB = B−1b,xN = 0 is

a basic solution.

We will now examine the solutions S1 and S2 and verify that each is a basic solution.

For each solution, we state the vector of basic variables (xB) and the basis matrix B which

contains the columns of A corresponding to the variables in xB. To verify that B has m

linearly independent columns, we calculate the determinant of B; det(B) 6= 0 if and only if

the columns of B are linearly independent [7]. Finally, we calculate the value of the basic

variables in xB by solving xB = B−1b (the remaining n−m variables are equal to zero).

S1: xB =




f
(o,d,A)
(d,o,A)

f
(o,d,A)
(o,d)

f
(o,d,B)
(d,o,B)

f
(o,d,B)
(o,d)

s1

s4

s7




,B =




1 −1 0 0 1 0 0

−1 1 0 0 0 0 0

0 0 1 −1 0 0 0

0 0 −1 1 0 1 0

0 1 0 1 0 0 0

1 0 0 0 0 0 0

0 0 1 0 0 0 1




,det(B) = −1, B−1b =




1

1

1

1

0

0

1




.
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S2: xB =




f
(o,d,B)
(d,o,B)

f
(o,d,B)
(o,d)

s1

s2

s3

s4

s6




,B =




0 0 1 0 0 0 0

0 0 0 1 0 0 0

1 −1 0 0 1 0 0

−1 1 0 0 0 1 0

0 1 0 0 0 0 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0




, det(B) = 1, B−1b =




2

2

0

0

0

0

1




.

Finally, note that for each solution, the values of the basic variables are nonnegative. Since

the values of the non-basic variables are also nonnegative, we conclude that each of the

solutions is a basic feasible solution.

Due to the possibility of multiple optimal solutions for Stricti, there is no guarantee

that carrier i will behave in accordance with the centralized solution, even when there is a

single set of exchange prices c that is feasible for InvStrict. A set of basic feasible solutions

must exist that are optimal, and therefore also feasible, from the centralized perspective.

However, there is no clear way to ensure that these basic feasible solutions will be obtained,

since it is not known in general which objective function can be used. The inability to

ensure centralized feasibility is clearly a practical limitation of the Strict Control model;

in contrast, we show in the following theorem that the Limited Control model can in fact

ensure that centralized feasibility is maintained.

Theorem 3. Any solution obtained using the Limited Control model is feasible from the

centralized perspective.

Proof. A flow balance constraint for load (o, d, i) and node v is contained in LCi, ∀(o, d, i) ∈
L, v ∈ V . Because a solution feasible for InvLC satisfies the flow balance constraints

(11) ∀i ∈ N , all flow balance constraints (2) in the Centralized model C are satisfied.

Similarly, the demand constraint f
(o,d,i)
(d,o,i) ≤ d(o,d,i) is contained in LCi, ∀(o, d, i) ∈ L, and

a feasible solution for InvLC satisfies the demand constraints (13) ∀i ∈ N . Consequently,

the demand constraints (4) are satisfied. Non-negativity must be satisfied by all variables

in LCi, ∀i ∈ N ; non-negativity is therefore satisfied in the centralized case as well. Finally,
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the Limited Control model employs capacity restrictions ki
e for each carrier i and leg e that

are constructed to ensure that
∑

i∈N ki
e ≤ ke. We therefore conclude that (3) must also be

satisfied, and every aggregate solution obtained using the Limited Control model will be

feasible from the centralized perspective.

We have shown that from the practical standpoint of ensuring feasibility of an aggregate

solution, it is advantageous to use the Limited Control model. This conclusion was reached

by evaluating the optimal solution for individual carriers, assuming they are already partic-

ipating in an alliance. In the following discussion we evaluate the potential of each model

to ensure that all carriers will in fact choose to participate.

2.5.2 Comparing Allocations Using Cooperative Game Theory

In this section we compare the allocations, rather than acceptance and routing decisions,

obtained using each model. It it is important to understand how an allocation is perceived

by alliance members. Is the allocation for carrier i enough to convince him to participate in

the alliance? Are certain allocations perceived to be better than others by some members of

the alliance? The concepts of cooperative game theory provide a framework for measuring

and comparing the benefits of various allocations.

In a cooperative game, rational agents attempt to maximize their individual benefit in a

setting in which cooperation among agents is allowed. An alliance in which carriers make

and receive payments for the use of capacity fits into the structure of a cooperative game

with transferrable payoffs, or a game in which participants are allowed to exchange utility

among each other; in the carrier alliance setting payoffs take the form of money and are

transferred via capacity exchange prices. An outcome of a cooperative game is described by

an allocation of benefits to each participant; in the carrier alliance game the allocation xi

is comprised of direct revenue from delivering loads plus the net sum of capacity exchange

prices paid and received. Of particular interest is the notion of the core, which is the set of

allocations that are (i) budget-balanced, meaning that all benefits are allocated, and (ii)

stable, meaning that no subset of participants can benefit by leaving the alliance. Let v(S)

be the total profit that a subset of carriers S can earn on their own; that is, v(S) is the
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optimal objective function value when the centralized problem C is solved for the subset S.

The core is defined as follows:

∑

i∈N

xi = v(N) (55)

∑

i∈S

xi ≥ v(S) ∀S ⊂ N (56)

where (55) is the budget-balance condition and (56) is the stability condition. We call the

subset of stability equations (56) in which |S| = 1 rationality constraints, as they ensure

that each individual carrier will earn at least as much in the alliance as they could earn

operating alone.

Basic cost allocation methods are discussed in [34]; a more detailed discussion about

allocation methods and the core of a cooperative game is available in [24]. Key observations

from these works include that the core of a cooperative game is often empty, and the core

of a game may contain many allocations. Production games based on linear programming

models were studied in [23]; flow games were later specifically considered in [15] and [12].

In [15], networks with a single commodity and capacitated edges owned by players were

studied. It was shown that such problems have a nonempty core. [12] extended these

results into the multi-commodity flow arena by showing that the result applied to networks

with many commodities, but one common source and sink. [2] considers multiple sources

and sinks and multiple owners on an edge.

The properties of a core allocation are clearly desirable for a carrier alliance. We will

ultimately prove in the following discussion that while a core allocation can be obtained

regardless of the individual behavioral model employed, a greater number of core allocations

are feasible under the Limited Control model. We begin by analyzing the relationship of

allocations obtained using the Strict Control model with respect to the set of core alloca-

tions.

First, any set of capacity exchange prices feasible for InvStrict will define an allocation

in the core of the carrier alliance game. A result in [2] proves that for a simple multi-

commodity flow game where every edge has a unique owner, edge prices that satisfy the
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aggregation of the owners’ inverse problems yield an allocation in the core of the multi-

commodity flow game. We can apply this result to InvStrict because the carrier alliance

game in which the Strict Control model is employed is equivalent to the simple multi-

commodity flow game studied. However, as we prove in the following theorem, every core

allocation is not feasible under the Strict Control model.

Theorem 4. The set of feasible capacity exchange prices for the Strict Control model might

exclude some core allocations.

Proof. This proof is by counterexample. Consider the example discussed in Section 2.4.3.

Refer to Figure 3 and Table 2 for the alliance network and load descriptions, respectively.

From equation (51), sB = −c(1,3)f
(1,4,B)
(1,3) −c(2,4)f

(1,4,B)
(2,4) . Since d(1,4,B) = 1, it must be true

that f
(1,4,B)
(1,3) + f

(1,4,B)
(2,4) ≤ 1, which implies sB ≥ min{−c(1,3),−c(2,4)} = −max{c(1,3), c(2,4)}.

Solving InvStrict with an objective function of max c(1,3), an optimal objective function

value of 3 is attained. Solving InvStrict with an objective function of max c(2,4) also yields

an optimal objective function value of 3. Because the maximum feasible value of either leg’s

capacity exchange price is 3, the minimum value of sB under the Strict Control model is -3.

It can be easily verified that the allocation xA = 7, xB = 1, xC = 1 is a core allocation,

as it satisfies equations (55) and (56). Because vA = 0, vB = 6, and vC = 3, in order to

obtain this allocation the capacity exchange prices must lead to the following side payments:

sA = 7, sB = −5, and sC = −2. Since this contradicts the minimum attainable value of sB,

this core allocation cannot be obtained using the Strict Control model.

We will now characterize the relationship between the core of the carrier alliance game

and allocations obtained using the Limited Control model. An important step in accom-

plishing this is establishing the relationship of allocations obtained using the Limited Control

model to those obtained using the Strict Control model, which is described in the following

theorem:

Theorem 5. The set of allocations that may be obtained using the Strict Control model is

a subset of the set of allocations that may be obtained using the Limited Control model.
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Proof. We first show that any set of capacity exchange prices obtained using the Strict

Control model can also be obtained using the Limited Control model. Let |N | = n, and

consider f
(o,d,i)
(u,v) . Assume, without loss of generality, that leg (u, v) is operated by carrier

j 6= i. In InvStrict, there are exactly n constraints corresponding to f
(o,d,i)
(u,v) :

πi,(o,d,i)
v − πi,(o,d,i)

u + αi
(u,v)




≥
=





−c(u,v) (57)

πj,(o,d,i)
v − πj,(o,d,i)

u + αj
(u,v)




≥
=





c(u,v) (58)

πk,(o,d,i)
v − πk,(o,d,i)

u + αk
(u,v)




≥
=





0 (59)

where each equation holds with equality if f
∗(o,d,i)
(u,v) > 0. Constraint (57) is from InvStricti,

constraint (58) is from InvStrictj , and constraint (59) is from InvStrictk, where k /∈ {i, j}.
In InvLC, there is exactly one constraint corresponding to f

(o,d,i)
(u,v) , which is constraint (57).

Similarly, consider f
(o,d,i)
(d,o,i) . In InvStrict there are again n constraints corresponding to

f
(o,d,i)
(d,o,i) :

πi,(o,d,i)
o − π

i,(o,d,i)
d + βi,(o,d,i)




≥
=





r(o,d,i) (60)

πk,(o,d,i)
o − π

k,(o,d,i)
d + βk,(o,d,i)




≥
=





0 (61)

where each equation holds with equality if f
∗(o,d,i)
(d,o,i) > 0. Constraint (60) is from InvStricti,

while constraint (61) is from InvStrictk, where k 6= i. In InvLC there is only one constraint

corresponding to f
(o,d,i)
(d,o,i) , which is (60). We conclude that the constraint set InvLC is a

subset of the constraint set InvStrict, which implies that any solution that is feasible for

InvStrict must also be feasible for InvLC. It follows directly that any allocation obtained

under InvStrict can also be obtained under InvLC.

To demonstrate that the set of allocations that may be obtained using the Limited

Control model is not equal to the set of allocations that may be obtained using the Strict
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Control model, consider once again the example used in Section 2.4.3. The set of capacity

exchange prices c(1,3) = 5, c(2,4) = 2 is feasible for InvLC, and results in the allocation

xA = 7, xB = 1, xC = 1. However, it was demonstrated in the proof of Theorem 4 that this

particular allocation cannot be obtained using the Strict Control model. It follows that the

set of allocations obtained using the Strict Control model must be a subset of the set of

allocations obtained using the Limited Control model.

Because of Theorem 5 we know that it is possible to obtain a core allocation using the

Limited Control model. But is one guaranteed a core allocation? We in fact show in the

next theorem that non-core allocations may be obtained when using the Limited Control

model.

Theorem 6. The set of feasible capacity exchange prices for the Limited Control model

define a set of allocations that may contain allocations outside the core.

Proof. The capacity exchange prices c(1,3) = c(2,4) = 0 are a feasible solution for the problem

InvLC corresponding to the example in Section 2.4.3. c(1,3) = c(2,4) = 0 implies sA =

0, sB = 0, sC = 0. The resulting allocation, xA = 0, xB = 6, xC = 3, clearly does not satisfy

the set of stability equations 56, as v(A) = 4, and is therefore not contained in the core.

That one may obtain an allocation outside the core when employing the Limited Control

model is at first disconcerting, as an allocation in which some subset of members is actually

receiving less profit than they could earn on their own is clearly undesirable. However, by

adding stability constraints to InvLC it can be assured that such an allocation will not be

obtained. The number of stability constraints of type (56) required is 2|N | − 1. Based on

the relatively small number of carriers participating in an air cargo alliance (for example,

the SkyTeam Cargo alliance is currently comprised of 8 carriers, while the WOW alliance is

comprised of 4 carriers), the total number of stability constraints will not be prohibitively

large. However, if the enumeration of all stability constraints does become a concern, one

possibility is to incorporate stability constraints for subsets of size m or smaller, where

m < |N |. This is reasonable under the assumption that carriers have limited information

about other carriers participating in the alliance.
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An important consequence of Theorem 5 is the following corollary, which implies that

it is possible to guarantee a core allocation when using the Limited Control model. Let

InvSLC be the model formed by adding stability constraints (56) to InvLC. We refer to

the Limited Control model with this enhancement to the inverse problem as the Stabilized

Limited Control model.

Corollary 7. InvSLC is feasible, and all feasible solutions define a core allocation.

Let {S} be the set of allocations that may be obtained using the Strict Control model,

{L} be the set of allocations that may be obtained using the Limited Control model, and

{C} be the set of core allocations. It has been established thus far that {S} ⊆ {C} and

{S} ⊆ {L}. Theorem 6 shows that {L} * {C}. It is also true that {C} * {L}, which is

demonstrated with the following example.

Consider an example in which a single (o, d) is operated by carrier B and has two units

of capacity. The set of loads is described in Table 4. In this example the notation is changed

to differentiate among multiple loads between origin o and destination d associated with

carrier i.

Table 4: Loads for Infeasible Core Allocation Example

Demand Per-Unit Revenue (r(o,d,k)) Size (d(o,d,k))
(o, d, A1) 2 1
(o, d, A2) 5 1
(o, d, B) 2 1

The centralized optimal solution is to deliver both of the loads associated with carrier A,

for a total revenue of 7 units. The local optimal solution for carrier A (that is, the maximum

revenue carrier A can earn operating alone) is 0, while carrier B can earn 2 units of revenue

by operating alone. Therefore any allocation in which xA ≥ 0, xB ≥ 2, and xA + xB = 7 is

a core allocation. Recall that InvLC is constructed to ensure that for any set of capacity

exchange costs feasible for InvLC, the optimal solution for LCi is to act in accordance with

the alliance optimal solution. It can easily be verified that the maximum feasible value for

co,d = 2, since for any co,d > 2 carrier A will choose to reject load (o, d,A1). It follows that
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xA ≥ 3, and any core allocation in which xA < 3, for example xA = 0, xB = 7, cannot

be obtained using the Limited Control model. (Neither can such an allocation be obtained

under the Strict Control model.)

There are some instances, however, for which the set of allocations that may be obtained

using the Limited Control model is in fact a subset of the core of the carrier alliance game.

Theorem 8 below characterizes conditions that are necessary in order for this to be the

case; these conditions are especially interesting because they imply that in order for the

Limited Control model to produce an allocation that is guaranteed to be in the core of

the carrier alliance game with transferrable payoffs, the carrier alliance game with non-

transferrable payoffs must have a non-empty core as well. (A game with non-transferrable

payoffs corresponds to an alliance in which the allocation for carrier i is equal to the direct

revenue earned by carrier i, or xi = qi ∀i ∈ N .) This is the case because, as is proven below,

a solution in which all capacity exchange prices are zero is always feasible for InvLC.

Theorem 8. Given a set of carriers N , the set of feasible solutions for InvLC defines a

set of allocations that is a subset of the core only if v(S) ≤ ∑
i∈S vi ∀S ⊂ N .

Proof. Assume that c = 0 is a feasible solution to InvLC. The allocation xi received by

carrier i is then equal to vi, the amount of revenue carrier i receives by delivering loads

in accordance with the centralized solution f∗. If there exists a subset S ⊂ N such that

v(S) >
∑

i∈S vi, then it must also be true that v(S) >
∑

i∈S xi and x cannot be a core

allocation since it violates (56).

It remains to show that c = 0 is a feasible solution to InvLC. Consider the Limited

Control model for carrier i when c = 0:

LCi
c=0 : max

∑

(o,d,i)∈Li

r(o,d,i)f
(o,d,i)
(d,o,i)

41



s.t.
∑

(u,v)∈E

f
(o,d,i)
(u,v) −

∑

(v,w)∈E

f
(o,d,i)
(v,w) ≤ 0 ∀v ∈ V,∀(o, d, i) ∈ Li (62)

∑

(o,d,i)∈Li

f (o,d,i)
e ≤ ki

e ∀e ∈ E (63)

f
(o,d,i)
(d,o,i) ≤ d(o,d,i) ∀(o, d, i) ∈ Li (64)

f (o,d,i)
e ≥ 0. (65)

Let f∗i be the vector of components of f∗ pertaining to the loads of carrier i. That

is, f∗i is comprised of f
∗(o,d,i)
(d,o,i) and f

∗(o,d,i)
e , ∀e ∈ E. We know that f∗i is a feasible

solution to LCi
c=0, since the capacity limits ki

e were constructed in a manner that en-

sures
∑

(o,d,i)∈Li f
∗(o,d,i)
e ≤ ki

e. Let f̂ i be an optimal solution to LCi
c=0, and assume f∗i

is not optimal for LCi
c=0. f = f̂ i ∪ ⋃

j∈N,j 6=i f
∗j must be a feasible solution to the cen-

tralized problem C, since the capacity limits ki
e were also constructed to ensure that

∑
i∈N ki

e ≤ ke ∀e ∈ E. Furthermore,
∑

(o,d,i)∈Li r(o,d,i)f̂
(o,d,i)
(d,o,i) >

∑
(o,d,i)∈Li r(o,d,i)f

∗(o,d,i)
(d,o,i)

(which must be true due to the optimality of f̂ i) implies that
∑

(o,d,i)∈Li r(o,d,i)f
(o,d,i)
(d,o,i) +

∑
j∈N,j 6=i

∑
(o,d,j)∈Lj r(o,d,j)f

∗(o,d,j)
(d,o,j) >

∑
i∈N

∑
(o,d,i)∈L r(o,d,i)f

∗(o,d,i)
(d,o,i) , which contradicts the

optimality of f∗. We conclude that f∗i must be optimal for LCi
c=0.

Now consider the dual of LCi
c=0:

DLCi
c=0 : min

∑

(u,v)∈E

keα
i
(u,v) +

∑

(o,d,i)∈L

d(o,d,i)βi,(o,d,i) (66)

s.t. π(o,d,i)
v − π(o,d,i)

u + αi
(u,v) ≥ 0 ∀(o, d, i) ∈ Li, (u, v) ∈ E (67)

π(o,d,i)
o − π

(o,d,i)
d + β(o,d,i) ≥ r(o,d,i) ∀(o, d, i) ∈ Li (68)

π(o,d,i)
v ≥ 0 ∀v ∈ V, ∀(o, d, i) ∈ Li (69)

αi
(u,v) ≥ 0 ∀(u, v) ∈ E (70)

β(o,d,i) ≥ 0 ∀(o, d, i) ∈ Li. (71)

Because LCi
c=0 has an optimal solution, (namely, f∗i), DLCi

c=0 must also have an

optimal solution. Let (π∗i, α∗i, β∗i) be optimal for DLCi
c=0. Then f∗i and (π∗i, α∗i, β∗i)

must satisfy the following complementary slackness conditions:
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π∗(o,d,i)
v


 ∑

(u,v)∈E

f
∗(o,d,i)
(u,v) −

∑

(v,w)∈E

f
∗(o,d,i)
(v,w)


 = 0 ∀v ∈ V, ∀(o, d, i) ∈ Li (72)

α∗ie


 ∑

(o,d,i)∈Li

f (o,d,i)
e − ki

e


 = 0 ∀e ∈ E (73)

β∗(o,d,i)
(
f

(o,d,i)
(d,o,i) − d(o,d,i)

)
= 0 ∀(o, d, i) ∈ Li (74)

f
∗(o,d,i)
(u,v)

(
π(o,d,i)

v − π(o,d,i)
u + αi

(u,v)

)
= 0 ∀(o, d, i) ∈ Li, (u, v) ∈ E (75)

f
∗(o,d,i)
(d,o,i)

(
π(o,d,i)

o − π
(o,d,i)
d + β(o,d,i) − r(o,d,i)

)
= 0 ∀(o, d, i) ∈ Li. (76)

That f∗i and (π∗i, α∗i, β∗i) satisfy (72)-(76) and are feasible for LCi
c=0 and DLCi

c=0

implies that f∗i and (π∗i, α∗i, β∗i) must also satisfy the following set of inequalities:

π∗(o,d,i)
v − π∗(o,d,i)

u + α∗i(u,v) = 0 ∀(o, d, i) ∈ Li, (u, v) ∈ E : f
∗(o,d,i)
(u,v) > 0 (77)

π∗(o,d,i)
v − π∗(o,d,i)

u + α∗i(u,v) ≥ 0 ∀(o, d, i) ∈ Li, (u, v) ∈ E : f
∗(o,d,i)
(u,v) = 0 (78)

π∗(o,d,i)
o − π

∗(o,d,i)
d + β∗(o,d,i) = r(o,d,i) ∀(o, d, i) ∈ Li : f

∗(o,d,i)
(d,o,i) > 0 (79)

π∗(o,d,i)
o − π

∗(o,d,i)
d + β∗(o,d,i) ≥ r(o,d,i) ∀(o, d, i) ∈ Li : f

∗(o,d,i)
(d,o,i) = 0 (80)

π∗(o,d,i)
v = 0 ∀v ∈ V,∀(o, d, i) ∈ Li :


 ∑

(u,v)∈E

f
∗(o,d,i)
(u,v) −

∑

(v,w)∈E

f
∗(o,d,i)
(v,w)


 6= 0 (81)

π∗(o,d,i)
v ≥ 0 ∀v ∈ V,∀(o, d, i) ∈ Li :


 ∑

(u,v)∈E

f
∗(o,d,i)
(u,v) −

∑

(v,w)∈E

f
∗(o,d,i)
(v,w)


 = 0 (82)

α∗i(u,v) = 0 ∀(u, v) ∈ E :


 ∑

(o,d,i)∈Li

f (o,d,i)
e < ki

e


 (83)

α∗i(u,v) ≥ 0 ∀(u, v) ∈ E :


 ∑

(o,d,i)∈Li

f (o,d,i)
e = ki

e


 (84)

β∗(o,d,i) = 0 ∀(o, d, i) ∈ Li :
(
f

(o,d,i)
(d,o,i) < d(o,d,i)

)
(85)

β∗(o,d,i) ≥ 0 ∀(o, d, i) ∈ Li :
(
f

(o,d,i)
(d,o,i) = d(o,d,i)

)
. (86)

Inequalities (81) can be eliminated; (62) are flow balance constraints and therefore must

all hold at equality, which implies that the condition for (81) will never be met. It then

follows that inequalities (77)-(86) are equivalent to the constraints of InvLCi when c = 0.

It therefore follows that (π∗i, α∗i, β∗i, c = 0) must be feasible for InvLCi.
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We have shown that c = 0 must be feasible for InvLCi. Because InvLC is constructed

by combining the constraints of InvLCi for all i ∈ N , and the exchange prices c are the only

components common among the constraints InvLCi and InvLCj ,
⋃

i∈N (π∗i, α∗i, β∗i), c = 0

must be feasible for InvLC.

In addition to those conditions that are necessary for the set of allocations that may be

obtained using the Limited Control model to be a subset of the core, we have also identified

a set of conditions that are sufficient for this to be the case.

Theorem 9. Given a set of carriers N , the set of feasible solutions for InvLC defines a

set of allocations that is a subset of the core if v(S) = 0 ∀S ⊂ N .

Proof. InvLC is constructed such that for any set of exchange costs c that are feasible for

InvLC, f∗i is optimal for LCi for all i ∈ N . Assume r(o,d,i)f
∗(o,d,i)
(d,o,i) <

∑
e/∈Ei

cef
∗(o,d,i)
e for some

(o, d, i) ∈ L : f
∗(o,d,i)
(d,o,i) > 0. (This implies that the per unit cost of delivering a load is more

expensive than the per unit revenue earned by delivering the load.) But then it cannot be

optimal for f
∗(o,d,i)
(d,o,i) > 0, since carrier i is better off by not delivering the load at all. Because

this is a contradiction, it must be true that r(o,d,i)f
∗(o,d,i)
(d,o,i) ≥ ∑

e/∈Ei

cef
∗(o,d,i)
e ∀(o, d, i) ∈ L :

f
∗(o,d,i)
(d,o,i) > 0. This implies that

∑
(o,d,i)∈Li

r(o,d,i)f
∗(o,d,i)
(d,o,i) − ∑

e/∈Ei

ce

( ∑
(o,d,i)∈Li

f
∗(o,d,i)
e

)
≥ 0.

Consider the allocation for carrier i:

xi = qi+si =


 ∑

(o,d,i)∈Li

r(o,d,i)f
∗(o,d,i)
(d,o,i) −

∑

e/∈Ei

ce

( ∑

(o,d,i)∈Li

f∗(o,d,i)
e

)

+

∑

e∈Ei

ce

( ∑

(o,d,k)/∈Li

f∗(o,d,k)
e

)
.

Since c ≥ 0, it follows that xi ≥ 0.

If v(S) = 0 ∀S ∈ N , we must have
∑

i∈S xi ≥ v(S). We conclude that if v(S) = 0 ∀S ∈
N , then x is a core allocation. (

∑
i∈N xi = v(N) must be satisfied by optimality of f∗.)

The relationship among the set of allocations that may be obtained using the Limited

and Strict Control models and the core of the carrier alliance game is depicted in Figure 5.

In summary, we have shown that a core allocation can be obtained using either behavioral

model, but that in general the solution space for the Limited Control model includes more
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Figure 5: General Relationship of Allocations

core allocations than does the solution space for the Strict Control model. Furthermore, even

though it is possible to obtain allocations outside the core when using the Limited Control

model, the model can easily be adapted (to the Stabilized Limited Control model) to ensure

a core allocation is obtained. Thus the Limited Control, model in addition to offering the

practical advantage of centralized feasibility, offers desirable theoretical properties as well.

2.5.3 Secondary Markets for Capacity

In this section we examine the potential for a given set of capacity exchange prices to

create a secondary market for capacity. It is assumed that while capacity exchange prices

are determined up front (by solving the inverse problem InvStrict, InvLC, or InvSLC,

depending on the behavioral model used), carriers do not pay for capacity until it is used.

Furthermore, it is assumed that a carrier is allowed to purchase (from the operator of a

leg) any amount of capacity on the leg up to the amount of capacity used by the carrier

in the centralized optimal solution, but no more. Because carriers are not required to pay

for all capacity up front, the time that elapses between when capacity exchange prices are

set and when capacity is used gives carriers an opportunity exists to exchange information

and determine profitable ways to trade capacity, at the expense of other members of the

alliance. Capacity traded in such a manner is referred to as a secondary market, since

trading occurs after capacity has first been purchased from the leg operator. The initial

exchange of capacity, in which capacity is sold only by the operator of a leg, is referred to
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as the primary market.

Traditionally, secondary markets have been studied in the context of markets for used

goods, such as automobiles and books. Our interpretation here is slightly different, since

the capacity is being sold as “unused” in the secondary market. However, similar to sec-

ondary markets in more traditional applications, we find that understanding the impact of

secondary markets on the overall system is critical to ensure that the system will operate

optimally. After an example illustrating the mechanics of a secondary market and why

the existence of the secondary market is detrimental for the alliance, we will show that a

secondary market can never occur when capacity exchange prices are determined using the

Strict Control model.

Consider an example in which carrier A operates three legs, each with one unit of

capacity. The alliance network is depicted in Figure 6, and load descriptions are given in

Table 5. In the unique centralized optimal solution, load (1, 4, B) is delivered using leg (1, 3)

and ground edge (3, 4), load (2, 4, C) is delivered using ground edge (1, 2) and leg (2, 4),

and load (3, 5, D) is delivered using leg (3, 5). The centralized optimal revenue is $10. The

capacity exchange prices c(1,3) = 6, c(2,4) = 3, c(3,5) = 1 are feasible for InvLC, which can

be verified by solving InvLC with the objective function max c(1,3) + c(2,4) + c(3,5). These

exchange prices result in the following allocations: xA = 10, xB = xC = xD = 0.

3

1 2

4

5

Figure 6: Alliance Network for Secondary Market Example

Assume that carrier B and carrier C exchange information about their respective loads,

which leads carrier B to realize that rather than paying carrier A $6 for a unit of capacity

on leg (1, 3), he can instead offer carrier C $y for a unit of capacity on leg (2, 4), where
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Table 5: Loads for Secondary Market Example

Demand Per-Unit Revenue (r(o,d,k)) Size (d(o,d,k))
(1, 5, A) 3 1
(2, 4, A) 2 1
(1, 4, B) 6 1
(2, 4, C) 3 1
(3, 5, D) 1 1

$3 < y < $6. This sale of capacity from carrier B to carrier C, if executed, occurs in the

secondary market, since the capacity in question has already been purchased from carrier

A at a price of $3. The resulting allocations realized by the carriers after this exchange are

given in Table 6.

Table 6: Allocations After Secondary Market Exchange

Carrier
Direct Capacity Net Value of Allocation

Revenue Sold/Purchased Exchange Prices (si) (xi)
A 0 (2,4) and (3,5) sold 3 + 1 4
B 6 (2,4) purchased from C -y 6-y

C 0
(2,4) purchased from A,

-3+y -3+y
sold to C

D 1 (3,5) purchased from A -1 0

Secondary markets are clearly detrimental for the owner of capacity that is unsold

because of a trade in the secondary market, in this case the capacity on leg (1, 3). In fact,

in this example carrier A will earn less revenue than he could earn by operating alone, which

implies that the alliance will not be sustainable because carrier A should not continue to

participate. Our original analysis, however, which considered the primary market only,

predicted the allocations xA = 10, xB = xC = xD = 0, which is in fact a core allocation

and therefore stable in the game-theoretic sense.

Observation 1. Capacity exchange prices may lead to a secondary market even when the

allocation predicted by analysis of the primary market is a core allocation.

The implication of this observation is that traditional game theoretic tools alone are not

enough to evaluate the sustainability of an alliance. Because secondary markets lead to
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behavior that is suboptimal for the alliance, it is valuable to understand how they can be

prevented. In the following theorem we show that capacity exchange prices obtained using

the Strict Control model never lead to a (profitable) secondary market for capacity.

Theorem 10. Given a set of capacity exchange prices feasible for InvStrict, a profitable

secondary market for capacity will not exist.

Proof. In order for a capacity exchange in the secondary market to be profitable for the

seller of capacity on leg (u, v), he must be able to sell (u, v) for a price c(u,v), where c(u,v) >

c(u,v). Let f ′ represent the aggregate solution once a secondary capacity exchange has

taken place. There must exist some carrier i and leg (u, v) /∈ Ei : δ =
∑

(o,d,i) inLi

f
′(o,d,i)
(u,v) −

∑
(o,d,i) inLi

f
∗(o,d,i)
(u,v) > 0. InvStrict is constructed such that for any set of exchange costs c

feasible for InvStrict, f∗ is optimal for Stricti. Because f ′ is feasible for the centralized

model C, it must also be feasible for Stricti, which implies that, for Stricti, the objective

function value of a solution in which
∑

(o,d,i) inLi

f
′(o,d,i)
(u,v) units of capacity are purchased at cost

c(u,v) is no greater than the objective function value of a solution in which
∑

(o,d,i) inLi

f
∗(o,d,i)
(u,v)

units of capacity are purchased at cost c(u,v). Since purchasing δ more units of capacity on

leg (u, v) at cost c(u,v) is not beneficial for carrier i, neither can it be beneficial for carrier i

to purchase δ units of capacity on leg (u, v) at a cost which is greater than c(u,v). Because

c(u,v) > c(u,v), it therefore cannot be beneficial for carrier i to purchase capacity on the

secondary market. Given that it is never beneficial for a carrier to purchase capacity in the

secondary market, we conclude that a profitable secondary market will not exist.

Essentially, secondary markets are prevented under the Strict Control model because

any solution feasible for the alliance is feasible for Stricti. This is not the case, however, for

LCi; capacity restrictions ki
e in LCi render infeasible any solution that uses more capacity

on leg e than what is used by carrier i in the centralized optimal solution. The opportunity

to purchase capacity in the secondary market effectively increases ki
e, which creates a larger

solution space for LCi. Because the feasible region for LCi changes when capacity is

purchased on the secondary market, it is possible for these purchases to be profitable.
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2.6 Summary

A tradeoff has now been established between the Limited Control and Strict Control models.

Not only does the Limited Control model ensure that centralized feasibility is maintained,

but it also affords a much larger solution space for capacity exchange prices, and therefore

more flexibility in allocations which may be obtained under the model. This flexibility,

however, may lead to secondary markets, which create opportunities for behavior that is

not optimal for the alliance as a whole. The Strict Control model, meanwhile, is able to

prevent the emergence of secondary markets, but in so doing, greatly restricts the range of

allocations that are possible. In addition, centralized feasibility cannot be guaranteed.

In the next chapter experimental results are presented for alliances comprised of various

types of carriers. For each alliance, the Strict Control model, Limited Control model, and

Stabilized Limited Control model are each used to determine capacity exchange prices.

Analysis of the resulting allocations demonstrates that the mechanism behaves as predicted

with regard to the characteristics of allocations obtained under each model. However, it will

also become evident that more influence over the allocations obtained is needed, inspiring an

investigation into how fairness may be incorporated into the mechanism, which is the subject

of Chapter 4. The tradeoffs between the Limited and Strict Control models will present

themselves again in this chapter; depending on how fairness is defined, a fair allocation may

lie outside the range of allocations feasible for the Strict Control model. In such a case, it

may benefit the alliance to contractually prohibit the selling of capacity by anyone other

than the operator of the leg. This effectively eliminates secondary markets while leaving the

benefits of the Limited Control model (i.e. centralized feasibility and flexibility of solution

space) in tact.
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CHAPTER III

COMPUTATIONAL STUDY OF CARRIER COMPATIBILITY

The primary goal of this chapter is to gain an empirical understanding of carrier compati-

bility. To this end, we examine three sets of experiments designed to investigate the benefit

to be gained by collaborating in a variety of alliance circumstances. The first two sets of

experiments are a general study of how the network size and fleet capacity of the partnering

carriers impact the alliance; in the first set of experiments all carrier hubs are connected,

while in the second set the impact of network integration and complementarity among part-

nering carriers is also investigated. The third set of experiments is an empirical analysis of

the compatibility of carriers currently involved in the WOW cargo alliance.

The first section of this chapter describes how data is generated for the first two sets

of experiments. The results and insights pertaining to alliances in which the networks

of partnering carriers are fully integrated are presented in Section 3.2, while results and

analysis for alliances in which network integration varies are discussed in Section 3.3. The

experimental procedure, results, and insights pertaining to the WOW alliance are described

in Section 3.4.

3.1 Data Generation

Using data publicly available from the Bureau of Transportation Statistics [9], we identified

5 classes of combination carriers. The data set used was the “T-100 Segment (All Carriers)”

from July 2006; the description of the data set is as follows:

This table combines domestic and international T-100 segment data reported

by U.S. and foreign air carriers, and contains non-stop segment data by aircraft

type and service class for transported passengers, freight and mail, available

capacity, scheduled departures, departures performed, aircraft hours, and load

factor...[9]
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where “freight” excludes all passenger baggage. The data was filtered to select only domes-

tic data for US carriers (that is, flight segments operated by US-owned carriers for which

both endpoints of the segment lie within the United States or US-owned territories). Fur-

thermore, only segments of service class “F” (scheduled passenger and/or cargo service)

were considered.

Our goal was to identify classes of carriers based on network size and capacity of fleet.

To accomplish this, for each carrier the sum over all segments flown by that carrier was

calculated for the following statistics: number of scheduled departures for the segment,

number of passengers transported on the segment, and the amount of freight (in pounds)

transported on the segment. In addition, the number of distinct (origin, destination) pairs

was calculated for each carrier. In order to ensure that primarily combination carriers were

represented in the sample, the results were filtered to retain only those carriers performing

more than 1000 departures, delivering more than 10,000 passengers, delivering more than

100,000 pounds of freight, and maintaining an average of more than 15 passengers per depar-

ture. (Average passengers per departure for a carrier = sum of passengers flown during month
sum of departures performed during month .)

The resulting data is presented in Table 7.

Based on the information in Table 7, classifications for network size and fleet capacity

were determined. Network size is approximated by the number of (origin, destination) pairs

served by a carrier, while fleet capacity is approximated by the average number of passengers

per departure. For each classification listed in Tables 8(a) and 8(b), the range (from Table

7) represented by the classification is described in the second column.

Using these classifications, we obtain the 5 general classes of carriers in Table 9. These

carrier classes were used to generate carriers for the experiments described in Sections 3.2

and 3.3. In the following discussion, the procedure for generating the network and loads

associated with each carrier is described.

Each carrier operates a pure hub-and-spoke network, in which the network size and

fleet capacity are scaled to reflect, approximately, the relative size relationships among

the classes. The number of hubs depends on the size of the carrier; carriers with a large,

medium, and small network size operate 3, 2, and 1 hubs, respectively. The number of spoke
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Table 7: Selected Carrier Data Obtained Using BTS Segment Data

Carrier Name Total Total Total Total Passengers
(o,d) pairs Departures Passengers Freight per Departure

AirTran Airways 100 12,752 1,241,375 1,087,916 97.3
Alaska Airlines 165 14,400 1,556,547 10,168,571 108.1
Aloha Airlines 16 4,082 295,147 439,085 72.3
America West Airlines 187 16,583 1,876,737 3,225,398 113.2
American Airlines 366 47,466 6,286,265 27,795,820 132.4
American Eagle Airlines 278 34,535 1,221,852 130,591 35.4
ATA Airlines 20 1,053 154,963 206,477 147.2
Atlantic Southeast Airlines 292 22,991 997,246 257,137 43.4
Comair 225 15,153 609,590 117,013 40.2
Continental Air Lines 345 26,585 3,223,248 12,657,114 121.2
Delta Air Lines 506 41,679 5,784,421 31,561,559 138.8
Era Aviation 49 2,709 40,763 159,867 15.0
Expressjet Airlines 278 28,259 1,093,912 247,095 38.7
Frontier Airlines 71 7,338 797,671 1,738,511 108.7
Hawaiian Airlines 40 4,797 562,193 5,067,573 117.2
Horizon Air 152 13,452 572,053 813,321 42.5
JetBlue Airways 16 1,896 267,163 116,484 140.9
Mesa Airlines 147 9,335 521,621 164,424 55.9
Mesaba Airlines 190 11,428 322,328 135,748 28.2
Midwest Airline 41 3,576 291,675 600,215 81.6
Northwest Airlines 424 36,079 4,144,176 6,713,743 114.9
PSA Airlines 131 9,944 424,455 177,627 42.7
Southwest Airlines 775 92,766 9,481,851 26,546,173 102.2
United Air Lines 454 41,669 5,330,278 27,239,513 127.9
US Airways 259 23,611 2,696,865 3,923,946 114.2

legs operated by a carrier in class C1 is 12n, the number of spoke legs operated by a carrier

in class C2 or C3 is 5n, and the number of spoke legs operated by a carrier in class C4 or

C5 is n, where n = 5. The origins for spoke legs operated by carrier i are approximately

equally distributed among the hubs operated by carrier i, and every spoke destination is

served by exactly one hub. Spoke legs operated by carriers with small fleet capacity have 2

units of capacity, while carriers with large fleet capacity operate spoke legs with 5 units of

capacity.

The level of integration of the networks of partnering carriers is defined by the number

of hubs that are connected. Further details of integration will be discussed for each set of

experiments. The capacity of inter-hub legs is large enough to ensure that the benefit of

collaborating is not restricted. In this pure hub-and-spoke system, it can easily be seen
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Table 8: Class Descriptions
(a) Network Size

Network # of (o,d)
Size Pairs
large 400 - 775

medium 131-366
small 16-100

(b) Fleet Capacity

Fleet # of Passengers
Capacity per Departure

large 95-150
small 15-90

Table 9: Carrier Classifications

Class Network Fleet # of Carriers
Size Capacity in Class

C1 large large 4
C2 medium large 5
C3 medium small 8
C4 small large 5
C5 small small 3

that the benefit associated with collaborating increases as the capacity on inter-hub legs

increases, because any load associated with carrier i that has a destination outside the

network of carrier i must travel on an inter-hub leg. It is therefore assumed that carriers

participating in an alliance will increase inter-hub capacity to a level that ensures sufficient

benefit. Furthermore, in order to simplify analysis, the network is generated such that the

decisions about whether to accept a load and how to route that load are dependent solely

on network geography and capacity, and not on time. This is accomplished by orienting

all spoke legs from hub to spoke, and then setting the origin and destination time of every

hub-to-spoke leg as 1 and 2, respectively. Every inter-hub leg has an origin time of 0 and

destination time of 1, and every load as an origin time of 0 and a destination time of 2,

respectively.

The number of loads associated with a carrier is equal to the number of spoke legs

operated by that carrier, which approximates a proportional relationship between the size

of a carrier’s network and the number of cargo loads booked by that carrier. Because any

load originating at a spoke must be transported to the hub of that spoke before it can

be transported anywhere else, the system is simplified by generating the origin of a load
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associated with carrier i randomly from the set of carrier i’s hubs. For each carrier, the

maximum size of a load, Si, is equal to the capacity of that carrier’s legs, and the maximum

per-unit revenue of each load is 3. The size and per-unit revenue of each load associated

with carrier i are generated according to a uniform distribution over the ranges [1, Si] and

[1, 3], respectively. Two classes of freight forwarders are used in the experiments; a large

freight forwarder is represented by class F1, and is associated with 12n loads. A small

freight forwarder is represented by class F2, and is associated with 5n loads. The maximum

sizes of loads associated with forwarders of type F1 and F2 are 5 and 2, respectively.

Obtaining accurate demand distributions is very difficult, and for this reason we test

our mechanism using two different distributions. In the first distribution (D1), a high

proportion of a carrier’s loads have destinations within his network, while in the second

demand distribution (D2) the proportion of loads a carrier can serve using his own network

is low. Let pi represent the probability that the destination of load (o, d, i) is within the

set of destinations reached by spoke legs operated by carrier i. All destinations within the

network of carrier i are equally likely with probability p
spokesi where spokesi is the number

of spoke legs operated by carrier i. For a load associated with carrier i, all destinations

outside the network of carrier i have an equal probability of being selected; this probability

is 1−pi∑
j 6=i spokesj . Consequently, loads associated with freight forwarders have destinations

that are uniformly distributed throughout the network.

The probability pi is calculated for each demand distribution as follows:

D1: pi = ai

ai+1
, where ai is the size of carrier i’s network relative to n (ai = legsi

minj∈N legsj ).

In alliances where only one carrier operates legs (because the remaining partners are

forwarders), pi = 1 for this carrier.

D2: pi = legsi∑
j∈Nk legsj where Nk is the group of carriers in instance k.

To aid in analysis, information regarding the distribution of loads for a two-carrier alliance

is contained in Table 10. Note that under demand distribution D1, the probabilities for

Carriers A and B do not sum to 1 across a row; this is because the probability that the

destination of a load associated with Carrier A is in the network of Carrier A is independent
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of the size of Carrier B. On the other hand, under distribution D2, the probability that the

destination of a load associated with Carrier A is in the network of Carrier A is in fact

dependent on the size of Carrier B, and consequently, the probabilities for Carriers A and

B sum to 1.

Table 10: Probability that Load Destination is in Network of Associated Carrier

Distribution D1 Distribution D2
Instance Class Carriers pA pB pA pB

1 C1,C1 12/13 12/13 1/2 1/2
2 C1,C2 12/13 5/6 12/17 5/17
3 C1,C3 12/13 5/6 12/17 5/17
4 C1,C4 12/13 1/2 12/13 1/13
5 C1,C5 12/13 1/2 12/13 1/13
6 C1,F1 1 0 1 0
7 C1,F2 1 0 1 0
8 C2,C2 5/6 5/6 1/2 1/2
9 C2,C3 5/6 5/6 1/2 1/2
10 C2,C4 5/6 1/2 5/6 1/6
11 C2,C5 5/6 1/2 5/6 1/6
12 C2,F1 1 0 1 0
13 C2,F2 1 0 1 0
14 C3,C3 5/6 5/6 1/2 1/2
15 C3,C4 5/6 1/2 5/6 1/6
16 C3,C5 5/6 1/2 5/6 1/6
17 C3,F1 1 0 1 0
18 C3,F2 1 0 1 0
19 C4,C4 1/2 1/2 1/2 1/2
20 C4,C5 1/2 1/2 1/2 1/2
21 C4,F1 1 0 1 0
22 C4,F2 1 0 1 0
23 C5,C5 1/2 1/2 1/2 1/2
24 C5,F1 1 0 1 0
25 C5,F2 1 0 1 0

For each experiment, the results reported for an instance class represent the average from

30 instances generated with the same class parameters. The mechanism was implemented

using C and CPLEX (ver 9.0.0) callable libraries. A solution for an instance was obtained

by (1) solving the centralized problem, (2) solving InvStrict, InvLC, and InvSLC, and

(3) using the resulting capacity exchange prices to calculate the corresponding allocation.

In order to obtain the benefit gained by collaborating, the local problem for each carrier

was solved as well.
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3.2 Analysis of the Impact of Network Size and Fleet Capacity on Al-
liance Success

The goal of this first set of experiments is to explore the benefit to be gained from collabo-

rating for alliances comprised of carriers with various network sizes and fleet capacities. It is

assumed that the alliance is formed by completely integrating the networks of participating

carriers. That is, all alliance hubs are directly connected: there is a leg from each hub of

carrier i to each of hub of carrier j for all pairs of carriers i and j. Figure 7 depicts the

system network for an alliance comprised of one carrier with a large network and one carrier

with a medium network. In this example, carrier A operates all inter-hub leg originating

from HA
1 , HA

2 or HA
3 , while carrier B operates all inter-hub legs originating from HB

1 or

HB
2 .

Figure 7: Integrated Hub-and-Spoke Network

3.2.1 Results and Insights from Two-Carrier Alliances

Rounded results pertaining to the alliance optimal solution are contained in Table 11. The

“Carriers” column indicates the class from which each carrier is selected; in instance class

1, for example, both carriers in the alliance are carriers from class C1. The increase in

system revenue is calculated as the total revenue earned by the alliance minus the sum of
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the revenue each carrier earns by working independently. The percent increase in accepted

loads measures the percent difference in the number of loads that can be completely delivered

in the local (independent) solution for a carrier and the number of loads associated with

that carrier that are completely delivered in the centralized alliance solution. Table 12

contains rounded results pertaining to the allocations received by each carrier. Specifically,

the table shows the benefit each carrier receives by joining the alliance, calculated as the

difference between the allocation for carrier i and the revenue carrier i could earn operating

alone, or xi − v(i).

Table 11: System Revenue and Accepted Loads for Two-Carrier Alliances

Demand Distribution D1 Demand distribution D2

Class
Carriers Chg. in System Chg. in Loads Chg. in System Chg. in Loads

(A,B) Revenue Accepted Revenue Accepted
Actual % A B Actual % A B

1 C1,C1 40.1 7.2% 7.2% 5.9% 266.1 81.6% 72.4% 71.2%
2 C1,C2 33.0 8.4% 6.7% 16.7% 167.2 65.3% 29.7% 242.0%
3 C1,C3 19.6 5.9% 2.2% 12.8% 84.7 34.5% 8.5% 205.0%
4 C1,C4 30.6 10.2% 6.2% 62.7% 42.3 14.7% 5.8% 1018.2%
5 C1,C5 14.6 4.9% 1.9% 44.9% 24.1 8.3% 1.7% 861.5%
6 C1,F1 206.4 68.0% -24.2% N/A 206.4 68.0% -24.2% N/A
7 C1,F2 55.1 18.2% -6.5% N/A 55.1 18.2% -6.5% N/A
8 C2,C2 33.6 15.3% 14.5% 14.7% 113.4 79.7% 64.9% 81.0%
9 C2,C3 17.8 11.3% 3.6% 18.1% 60.8 62.8% 18.3% 91.3%
10 C2,C4 33.6 28.9% 14.2% 88.5% 42.3 39.0% 13.5% 568.4%
11 C2,C5 15.3 13.2% 4.4% 86.4% 19.9 17.7% 3.8% 535.0%
12 C2,F1 157.9 124.8% -44.7% N/A 157.9 124.8% -44.7% N/A
13 C2,F2 54.1 43.9% -16.2% N/A 54.1 43.9% -16.2% N/A
14 C3,C3 16.3 15.8% 15.8% 14.5% 54.5 82.9% 72.5% 73.7%
15 C3,C4 18.7 29.3% 20.2% 26.8% 22.6 41.1% 18.7% 126.1%
16 C3,C5 13.0 22.3% 15.1% 36.6% 18.6 35.0% 14.1% 409.5%
17 C3,F1 79.6 134.9% -56.8% N/A 79.6 134.9% -56.8% N/A
18 C3,F2 35.0 60.7% -28.0% N/A 35.0 60.7% -28.0% N/A
19 C4,C4 23.4 90.1% 58.8% 78.0% 23.4 90.1% 58.8% 78.0%
20 C4,C5 11.1 52.0% 10.4% 55.7% 11.1 52.0% 10.4% 55.7%
21 C4,F1 48.0 185.7% -95.5% N/A 48.0 185.7% -95.5% N/A
22 C4,F2 33.2 116.9% -59.8% N/A 33.2 116.9% -59.8% N/A
23 C5,C5 9.8 72.9% 66.7% 65.6% 9.8 72.9% 66.7% 65.6%
24 C5,F1 17.7 147.4% -98.2% N/A 17.7 147.4% -98.2% N/A
25 C5,F2 16.9 159.4% -88.2% N/A 16.9 159.4% -88.2% N/A
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Analyzing the results in Tables 11 and 12, we obtain several observations and insights:

• Not surprisingly, the benefit associated with collaborating increases as the probability

that a load can be served by its associated carrier decreases. Note that when the

benefit under distribution D2 is not higher than the benefit under distribution D1,

it is an instance in which the probability that a load can be served by its associated

carrier is the same under both distributions.

• The benefit associated with collaborating, measured by the increase in system revenue,

increases with the size of the network and fleet capacity. Under demand distribution

D1 there are slightly diminishing returns, as the percentage increase in profit declines

as network size and fleet capacity increase, while under distribution D2, the percentage

increase in profit increases with network and fleet size. Thus we conclude that the

marginal benefit associated with increasing network and fleet sizes in collaborating

partners increases as the proportion of loads that a carrier can serve using only his

network decreases.

• Under distribution D1, fleet capacity has more impact than network size on the bene-

fit associated with collaborating. Furthermore, a carrier with large fleet capacity does

not experience a significant increase in the number of loads completely accepted for

delivery when collaborating with a carrier with small fleet capacity. These observa-

tions lead to an interesting insight: consider the relationship between a large national

carrier and a smaller subsidiary. If the subsidiary carrier can serve a high proportion

of its own demand (as is the case under demand distribution 1), the parent carrier

stands to benefit more by increasing the fleet size of its subsidiary than by increasing

the size of the subsidiary network.

• The benefit associated with collaborating, measured both by the percentage increase in

the number of loads completely accepted for delivery as well as by an improvement over

v(i), is strictly positive when a carrier collaborates with another carrier. The number

of loads completely accepted strictly decreases, however, for a carrier collaborating

with a freight forwarder. This result suggests that carriers may want to negotiate
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rules regarding priority of the carrier’s loads relative to the forwarder’s loads in order

that the carrier’s customer service level does not decline as a result of entering into

collaboration with a forwarder.

• Given that an allocation in which both carriers receive non-negative benefit is a core

allocation, our proposed allocation mechanism is behaving as expected with regard to

the results of Section 2.5. Namely, every allocation under the Strict Control model

is a core allocation, while for some instances, the Limited Control model yields an

allocation outside the core. Adding stability constraints to the Limited Control model

results in a core allocation.

Although the results confirm that allocations obtained under the Strict and Limited Control

models are as expected with respect to the core, closer inspection reveals that the mecha-

nism can apportion alliance benefit in an arbitrarily disproportionate manner. For example,

under the Limited Control model, the second carrier in the alliance always receives more

benefit, proportionally, than does the first carrier. This behavior occurs because the mech-

anism has been designed to be indifferent when selecting among all feasible settings for the

capacity exchange prices; when implemented using a standard LP solver, therefore, default

pivoting rules will have a large impact on the final solution obtained, in this case resulting

in a tendency to favor the second carrier. Clearly, then, it is desirable for an alliance to

have more control over the allocations obtained when implementing the mechanism; this

can be accomplished by guiding the choice of capacity exchange prices towards those prices

that result in desired allocations. Establishing rules for selecting among feasible capacity

exchange prices, and the adaptation of the mechanism for incorporating these rules, will be

discussed in Chapter 4.

3.2.2 Results and Insights from Three-Carrier Alliances

The results presented for alliances consisting of three carriers pertain only to the system

revenue and loads accepted, which are calculated similarly to the two-carrier case. Table 13

contains rounded results obtained when demand distribution D1 is implemented, while

Table 14 contains the rounded results obtained when distribution D2 is implemented. For
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each instance class, the results reported again represent the average from 30 instances gen-

erated with the same class parameters. Allocation results are omitted because, as discussed

in the previous section, while they demonstrate that the mechanism behaves as predicted,

they can arbitrarily favor one carrier over another. This will be addressed in Chapter 4.

Some observations regarding the experiments with three carrier alliances are as follows:

• Under demand distribution D1, the benefit associated with adding a third carrier to

an existing (or potential) two-carrier alliance varies greatly. For example, when two

carriers of type C5 collaborate, both carriers are helped by the addition of a third

carrier with large fleet capacity. For an alliance comprised of C1 and C4, adding a

third carrier helps C4, but not C1, if the third carrier has a large fleet capacity. Given

an alliance comprised of two C1 carriers, adding a third carrier yields no benefit to

the original two C1 carriers. This result suggests that some pairs of carriers are in fact

better off (in terms of the number of loads accepted) by not adding a third carrier.

• Under distribution D2, it is in general beneficial to all carriers to grow the alliance.

• As in the two carrier experiments, we observe that under distribution D1, higher fleet

capacity seems to yield higher benefits from collaborating than does size of network.

• While the number of loads each carrier accepts does not always decrease when two

carriers collaborate with a freight forwarder, we still observe a dramatic decline in the

number of carrier loads accepted as compared to when two carriers collaborate with

a third carrier.

We also see even more pronouncedly in the three-carrier alliances that collaborating

yields much higher benefits as the proportion of loads that can initially be served entirely

by their associated carrier decreases. This effect, in addition to the first two observations

discussed above, implies that the properties of demand experienced by carriers can greatly

impact how much the carriers can benefit by collaborating. Before evaluating the bene-

fits of a potential alliance or additional partner, therefore, it is important to consider the

characteristics of the demand associated with each carrier.
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Table 13: System Revenue and Accepted Loads for Three-Carrier Alliances (Distribution
D1)

Instance Carriers Chg. in System Chg. in Loads
Class (A, B, C) Revenue Accepted

Actual % A B C
1 C1,C1,C1 57 7% 6% 6% 7%
2 C1,C1,C2 52 8% 7% 4% 14%
3 C1,C1,C3 42 7% 4% 5% 18%
4 C1,C1,C4 48 8% 4% 6% 74%
5 C1,C1,C5 48 8% 6% 5% 126%
6 C1,C1,F1 270 49% -9% -7% N/A
7 C1,C1,F2 97 17% 4% 2% N/A
8 C1,C2,C2 55 11% 5% 15% 12%
9 C1,C2,C3 35 8% 5% 11% 11%
10 C1,C2,C4 43 11% 7% 12% 58%
11 C1,C2,C5 40 10% 5% 13% 98%
12 C1,C2,F1 250 63% -12% -3% N/A
13 C1,C2,F2 89 22% 3% 3% N/A
14 C1,C3,C3 28 7% 2% 16% 12%
15 C1,C3,C4 27 8% 1% 17% 65%
16 C1,C3,C5 25 7% 2% 12% 66%
17 C1,C3,F1 207 60% -16% -19% N/A
18 C1,C3,F2 76 23% -1% 6% N/A
19 C1,C4,C4 42 13% 5% 86% 75%
20 C1,C4,C5 31 10% 4% 71% 61%
21 C1,C4,F1 239 82% -20% 34% N/A
22 C1,C4,F2 84 28% -2% 44% N/A
23 C1,C5,C5 24 8% 1% 83% 89%
24 C1,C5,F1 221 77% -19% 8% N/A
25 C1,C5,F2 71 24% -7% 59% N/A
26 C1,F1,F1 332 111% -39% N/A N/A
27 C1,F1,F2 243 80% -28% N/A N/A
28 C1,F2,F2 108 35% -14% N/A N/A
29 C2,C2,C2 49 15% 14% 11% 14%
30 C2,C2,C3 33 12% 7% 12% 14%
31 C2,C2,C4 46 20% 11% 13% 95%
32 C2,C2,C5 41 19% 11% 15% 116%
33 C2,C2,F1 234 106% -23% -16% N/A
34 C2,C2,F2 95 42% 3% 5% N/A
35 C2,C3,C3 28 13% 6% 15% 13%
36 C2,C3,C4 29 17% 4% 15% 57%
37 C2,C3,C5 22 13% 2% 16% 52%
38 C2,C3,F1 175 110% -26% -27% N/A
39 C2,C3,F2 70 46% -6% -5% N/A
40 C2,C4,C4 40 29% 16% 60% 71%

Continued on next page
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Table 13 – continued from previous page
Instance Carriers Chg. in System Chg. in Loads

Class (A, B, C) Revenue Accepted
Actual % A B C

41 C2,C4,C5 28 21% 9% 33% 85%
42 C2,C4,F1 207 174% -41% -15% N/A
43 C2,C4,F2 90 77% 3% 68% N/A
44 C2,C5,C5 20 16% 5% 105% 76%
45 C2,C5,F1 180 154% -39% 11% N/A
46 C2,C5,F2 66 58% -12% 18% N/A
47 C2,F1,F1 220 170% -66% N/A N/A
48 C2,F1,F2 179 139% -54% N/A N/A
49 C2,F2,F2 98 80% -22% N/A N/A
50 C3,C3,C3 22 15% 13% 11% 14%
51 C3,C3,C4 21 19% 10% 12% 42%
52 C3,C3,C5 20 18% 7% 13% 86%
53 C3,C3,F1 117 118% -35% -30% N/A
54 C3,C3,F2 57 55% -9% -2% N/A
55 C3,C4,C4 26 31% 19% 27% 35%
56 C3,C4,C5 21 28% 10% 62% 60%
57 C3,C4,F1 126 196% -42% -51% N/A
58 C3,C4,F2 58 92% -12% 17% N/A
59 C3,C5,C5 17 25% 16% 49% 59%
60 C3,C5,F1 99 169% -44% -23% N/A
61 C3,C5,F2 52 92% -19% 28% N/A
62 C3,F1,F1 110 190% -79% N/A N/A
63 C3,F1,F2 88 151% -67% N/A N/A
64 C3,F2,F2 58 98% -43% N/A N/A
65 C4,C4,C4 36 94% 90% 76% 103%
66 C4,C4,C5 22 66% 31% 53% 63%
67 C4,C4,F1 129 540% -56% -39% N/A
68 C4,C4,F2 66 219% 22% 3% N/A
69 C4,C5,C5 18 62% 13% 67% 76%
70 C4,C5,F1 94 434% -66% -53% N/A
71 C4,C5,F2 53 240% -26% 15% N/A
72 C4,F1,F1 51 212% -100% N/A N/A
73 C4,F1,F2 49 192% -98% N/A N/A
74 C4,F2,F2 45 179% -88% N/A N/A
75 C5,C5,C5 16 81% 70% 90% 61%
76 C5,C5,F1 72 460% -71% -44% N/A
77 C5,C5,F2 43 333% -29% -9% N/A
78 C5,F1,F1 17 134% -100% N/A N/A
79 C5,F1,F2 18 153% -98% N/A N/A
80 C5,F2,F2 18 155% -96% N/A N/A
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Table 14: System Revenue and Accepted Loads for Three-Carrier Alliances (Distribution
D2)

Instance Carriers Chg. in System Chg. in Loads
Class (A, B, C) Revenue Accepted

Actual % A B C
1 C1,C1,C1 558 171% 139% 149% 147%
2 C1,C1,C2 420 139% 111% 100% 342%
3 C1,C1,C3 340 111% 82% 81% 416%
4 C1,C1,C4 316 101% 79% 84% 5400%
5 C1,C1,C5 297 96% 75% 84% 4033%
6 C1,C1,F1 508 160% 51% 51% N/A
7 C1,C1,F2 332 99% 70% 62% N/A
8 C1,C2,C2 315 133% 61% 291% 246%
9 C1,C2,C3 225 100% 38% 196% 327%
10 C1,C2,C4 197 77% 34% 190% 1030%
11 C1,C2,C5 178 70% 31% 214% 1333%
12 C1,C2,F1 387 143% 5% 115% N/A
13 C1,C2,F2 217 83% 24% 173% N/A
14 C1,C3,C3 164 82% 19% 285% 231%
15 C1,C3,C4 118 50% 15% 213% 889%
16 C1,C3,C5 100 42% 11% 180% 5850%
17 C1,C3,F1 277 115% -14% 187% N/A
18 C1,C3,F2 143 59% 5% 165% N/A
19 C1,C4,C4 84 32% 11% 918% 707%
20 C1,C4,C5 57 21% 8% 746% 1110%
21 C1,C4,F1 251 88% -18% 388% N/A
22 C1,C4,F2 94 34% -3% 800% N/A
23 C1,C5,C5 45 16% 2% 1786% 1036%
24 C1,C5,F1 227 81% -23% 790% N/A
25 C1,C5,F2 76 26% -5% 762% N/A
26 C1,F1,F1 347 118% -40% N/A N/A
27 C1,F1,F2 239 79% -31% N/A N/A
28 C1,F2,F2 110 36% -13% N/A N/A
29 C2,C2,C2 227 153% 142% 136% 144%
30 C2,C2,C3 168 141% 95% 91% 177%
31 C2,C2,C4 141 105% 82% 82% 892%
32 C2,C2,C5 131 107% 87% 77% 1036%
33 C2,C2,F1 314 227% 13% 30% N/A
34 C2,C2,F2 177 127% 60% 51% N/A
35 C2,C3,C3 121 126% 52% 148% 156%
36 C2,C3,C4 91 95% 26% 113% 691%
37 C2,C3,C5 82 84% 26% 117% 883%
38 C2,C3,F1 222 219% -23% 27% N/A
39 C2,C3,F2 116 114% 10% 79% N/A
40 C2,C4,C4 71 69% 28% 581% 489%

Continued on next page
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Table 14 – continued from previous page
Instance Carriers Chg. in System Chg. in Loads

Class (A, B, C) Revenue Accepted
Actual % A B C

41 C2,C4,C5 54 51% 17% 220% 443%
42 C2,C4,F1 218 201% -39% 238% N/A
43 C2,C4,F2 100 92% 2% 381% N/A
44 C2,C5,C5 37 35% 8% 656% 467%
45 C2,C5,F1 185 163% -39% 207% N/A
46 C2,C5,F2 74 69% -12% 307% N/A
47 C2,F1,F1 220 170% -66% N/A N/A
48 C2,F1,F2 179 139% -54% N/A N/A
49 C2,F2,F2 98 80% -22% N/A N/A
50 C3,C3,C3 104 143% 143% 124% 128%
51 C3,C3,C4 68 103% 75% 79% 195%
52 C3,C3,C5 67 107% 79% 87% 1600%
53 C3,C3,F1 150 225% -2% 9% N/A
54 C3,C3,F2 90 130% 35% 39% N/A
55 C3,C4,C4 46 84% 34% 256% 188%
56 C3,C4,C5 39 77% 29% 281% 395%
57 C3,C4,F1 133 241% -40% -8% N/A
58 C3,C4,F2 63 114% -14% 144% N/A
59 C3,C5,C5 35 73% 27% 304% 613%
60 C3,C5,F1 105 193% -43% 136% N/A
61 C3,C5,F2 56 108% -20% 228% N/A
62 C3,F1,F1 110 190% -79% N/A N/A
63 C3,F1,F2 88 151% -67% N/A N/A
64 C3,F2,F2 58 98% -43% N/A N/A
65 C4,C4,C4 50 208% 164% 214% 155%
66 C4,C4,C5 34 150% 75% 117% 216%
67 C4,C4,F1 124 406% -49% -62% N/A
68 C4,C4,F2 72 306% 32% 8% N/A
69 C4,C5,C5 25 142% 52% 211% 135%
70 C4,C5,F1 97 448% -65% -59% N/A
71 C4,C5,F2 54 257% -25% 18% N/A
72 C4,F1,F1 49 188% -100% N/A N/A
73 C4,F1,F2 50 205% -100% N/A N/A
74 C4,F2,F2 46 194% -89% N/A N/A
75 C5,C5,C5 22 162% 122% 149% 211%
76 C5,C5,F1 71 473% -62% -62% N/A
77 C5,C5,F2 42 318% -20% -17% N/A
78 C5,F1,F1 18 151% -100% N/A N/A
79 C5,F1,F2 17 131% -99% N/A N/A
80 C5,F2,F2 17 139% -96% N/A N/A

65



3.3 Analysis of the Impact of Network Integration and Compatibility
on Alliance Success

In this second set of experiments we explore how the level of network integration among

alliance members impacts the success of the alliance. The goal of one experiment is to gain

an understanding of how increasing connectivity between hubs of partnering carriers impacts

alliance revenue and accepted loads. In the second experiment the impact of common service

points is explored. For example, suppose carrier i is considering two potential partners. One

potential partner serves 10% of the same destinations as carrier i, while the other potential

carrier has 20% of destinations in common with carrier i. Thus an alliance with the first

partner will serve a more diverse set of locations than an alliance with the second partner,

but the alliance with the second partner will have more transfer points between the networks

of each carrier. Which partner will form a better alliance with carrier i?

Recall that each carrier operates a pure hub-and-spoke network, and that a hub-to-

hub route exists between every pair of hubs operated by carrier i. Furthermore, all loads

associated with carrier i originate at one of the hubs operated by carrier i; the destinations

are randomly generated from the set of spoke destinations according to distribution D1 or

D2, as defined in Section 3.1.

3.3.1 Hub-Hub Connectivity

To investigate the impact of hub-to-hub connectivity, an alliance comprised of two carriers

of class C1 is considered. The number of hub-to-hub connections is increased from 0 to 9; as

each carrier operates 3 hubs, 9 is the maximum number of connections. The case in which 0

hubs are connected is equivalent to the case in which each carrier is working independently.

Let HA
1 ,HA

2 , and HA
3 be the hubs operated by carrier A, and HB

1 ,HB
2 , and HB

3 be the

hubs operated by carrier B. The hub-hub connections are added in the following order:

(HA
1 ,HB

1 ), (HA
1 ,HB

2 ), (HA
1 ,HB

3 ), (HA
2 ,HB

1 ), (HA
2 ,HB

2 ), (HA
2 , HB

3 ), (HA
3 , HB

1 ), (HA
3 , HB

2 ),

(HA
3 ,HB

3 ). (Changing the order of hub-hub connections does not significantly impact the

results.)

For each instance class, where an instance class is defined by the number of hub-to-hub
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connections, 30 random instances were generated and solved. The results are summarized

in Figure 8; for each instance class, the percent improvement in system revenue and number

of loads accepted (over the total amount of revenue earned and loads accepted when each

carrier works independently) are shown for both demand distributions.
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Figure 8: Impact of Hub-Hub Connectivity on {C1,C1} Alliance

As depicted in these graphs, the benefit associated with hub integration increases

steadily with the number of interconnected hubs. Not surprisingly, the impact is much

more pronounced when carriers must rely on their partner to deliver a high proportion of

their associated loads, as is the case in demand distribution D2. The results of this experi-

ment imply that regardless of the distribution of demand, an alliance will be more successful

as access between the hubs of partnering carriers is increased.
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3.3.2 Complementarity of Markets

In this experiment we investigate how the number of common service points impacts the

overall success of the alliance, again in terms of system revenue and loads accepted. In

order to allow for loads to be routed from the network of carrier i to carrier j, the set of

legs for this experiment is expanded to include legs oriented from spoke-to-hub as well as

legs oriented from hub-to-spoke. More specifically, for each pair of hubs h1, h2 for which

a hub-to-hub route exists, two hub-to-hub legs are generated; one leg originates at time 0

and arrives at time 1, while the second leg originates at time 3 and arrives at time 4. For

each (hub, spoke) pair, two hub-to-spoke legs are generated; one leg originates at time 1

and arrives at time 2, while the second leg originates at time 4 and arrives at time 5. Also

for each (hub, spoke) pair, one spoke-to-hub leg is generated; this leg originates at time 2

and arrives at time 3. Ultimately, this allows a load to flow along a path comprised of the

following legs: (h1, h2), (h2, s1), (s1, h3), (h3, s2), where h1 and h2 are operated by carrier A,

s2 is a destination in common between both carriers, and h3 and s2 are operated by carrier

B.

For this experiment, an instance class is defined by the number of spoke destinations in

common between two carriers. For all pairs of carriers, the number of common markets was

increased from 0 to the maximum number of common markets possible, which is the number

of spoke legs operated by the carrier with the smaller network. The results are summarized

in Figures 9-13; for a given carrier i, the graphs show the impact of increasing the number of

common service points from 0% to 100% when carrier i partners with each of the five classes

of carriers. Note that the peak changes as the partner for a given carrier varies–both the

optimal percent of market overlap as well as the resulting percent improvement in alliance

revenue change with the composition of the alliance. It can be seen in Figure 9 that the

impact of common markets is very similar for alliance revenue and accepted loads; this is in

fact the case for every carrier. Consequently, only alliance revenue results are summarized

here for carriers C2-C5.
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Note that these results are based on evaluating the benefit experienced by the alliance

as a whole, judged by the percent increase over the total revenue that can be earned when

the alliance partners operate independently. We use this measure in favor of measuring

the actual increase in alliance revenue because it offers better perspective on the relative

gain; a gain that would be considered small for one alliance may be significant for another.

Consequently, a partner for which the actual alliance benefit is very high may be consid-

ered less attractive than a partner for which the actual alliance benefit is less, but the

percent benefit experienced by the alliance is high. This is reasonable, however, given the

circumstances under which it occurs. For example, an alliance comprised of a large carrier

and a small carrier would experience greater alliance benefit than an alliance comprised of

two small carriers. The alliance comprised of two small carriers, however, will experience

a higher percent benefit. From the perspective of the small carrier, arguing that another

small carrier makes a more attractive partner is not unreasonable, as it is likely that a large

alliance partner would command a high proportion of alliance benefit.

Evaluating the impact of increasing the percentage of common markets between alliance

partners leads to the following insights pertaining to the optimal level of market overlap,

as well characteristics of an attractive alliance partner:

• The results suggest that it is not beneficial for carriers to have more than 60% of

their markets in common. This is because increasing the number of common markets

essentially increases access to another carrier’s network, and as partners’ networks

more closely resemble each other, the impact of forming an alliance decreases. Con-

sequently, increasing access between the networks is less valuable.

• When a carrier with a large or medium-size network (C1, C2, or C3) collaborates

with another carrier with a large or medium-size network, the results suggest that the

optimal level of market overlap is approximately 20%. When a carrier with a large

or medium-size network collaborates with a carrier with a small network (C4 or C5),

the maximum alliance benefit occurs at 40% or 60% market overlap. Because overlap

is measured as the percentage of destinations that the smaller carrier has in common
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with the larger carrier, it is reasonable that the optimal overlap percentage is higher

when partnering with smaller carriers.

• For a carrier with a small network size, the maximum percentage alliance benefit

occurs at 20% market overlap when collaborating with a carrier with similar network

size and fleet capacity, but at 40% or 60% when collaborating with other types of

carriers.

• Under demand distribution D1, carriers of type C4 are more attractive partners than

carriers of type C3, demonstrating once again that high fleet capacity is a very desir-

able characteristic in a potential alliance partner.

• Under distribution D2, the most attractive partner for a carrier is always a carrier

of similar network size and fleet capacity, yielding an percentage increase in alliance

benefit between 40% and 60% for the optimal market overlap of 20%. For other

potential partners, the percent alliance benefit decreases with network size and fleet

capacity, and the optimal market overlap can vary between 20% and 60%.

The results of this set of experiments demonstrate that for a given carrier, an ideal

alliance partner is typically a carrier of similar network size and fleet capacity who serves

approximately 20% of the same destinations. The results also imply that for other alliance

partners, alliance results can vary greatly according to market overlap, as well as demand,

network size, and fleet capacity.

3.4 Analysis of a Real Alliance

In this section a real-world alliance is analyzed; the goal is to evaluate the decisions to

both form and grow the alliance. The subject of the analysis is the WOW cargo alliance,

which was selected because at the time of this study it is the only cargo alliance for which

the set of participating carriers is not a subset of a passenger alliance. This alliance was

initially formed in 2002 by Lufthansa, Scandinavian Airlines, and Singapore Airlines, who

are currently members of the Star Alliance. Japan Airlines, who is not a member of the
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Star Alliance, was later added. After describing how the alliance network was constructed

for the experiment, revenue and load acceptance results are presented and discussed.

3.4.1 Data Generation

In order to construct the alliance network, the actual networks operated by the individual

members of the alliance were duplicated, subject to the following approximations:

• With the exception of flights between major cities, domestic flights are ignored. For

Scandinavian Airlines, intra-Baltic flights (except between major cities) are also ig-

nored. This approximation simplifies the alliance network without significantly com-

promising the integrity of the study; it is assumed that the formation of an interna-

tional cargo alliance will not significantly impact strictly domestic (or intra-Baltic)

cargo service.

• Networks are approximated as pure hub-and-spoke networks, with only major hubs

being considered. Information about the hubs for each carrier is contained in Table 15.

While Japan Airlines, Lufthansa, and Scandinavian Airlines each have cities that are

the base for around 5-10 flights, the great majority of the destinations served by these

“minor” hubs are also served by at least one of the carriers’ major hubs. Ignoring

minor hubs therefore has minimal impact on the overall study. Furthermore, a few

cities are reachable only via a stopover, rather than directly from a hub. For the

purposed of this study, these cities (fewer than 15) are included as destinations directly

accessible from a hub.

• In general, subsidiary airlines are not included in the study. The exception is Lufthansa;

flights operated by both Lufthansa and Lufthansa Regional are considered. Lufthansa

Regional operations are considered because they comprise a significant proportion

of the overall operations of Lufthanasa. In contrast, the operations of subsidiaries

of Japan Airlines (Japan Transocean Air, JAL Express, Japan Air Commuter, J-

Air, Hokkaido Air System, JALWays), Singapore Airlines (Silk Air, Tiger Airways),

and Scandinavian Airlines (Spanair, Blue1, Air Baltic, Widerøe), as well as other
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Table 15: Network Information for Approximated WOW Alliance

Carrier Hubs
# of Dest. Total # of (#,%)* of

Served from Dest. Destinations in Common
Each Hub Served JAL LH SAS SIA

JAL Tokyo 41 41 – 23, 56% 22, 54% 25, 61%Osaka 17

LH Frankfurt 139 160 23, 56% – 39, 62% 38, 63%Munich 79

SAS Copenhagen 41 63 11, 27% 39, 62% – 16, 27%Stockholm 17
SIA Singapore 60 60 25, 61% 38, 63% 16, 27% –

* percentage is calculated based on smallest number of destinations, then rounded

Lufthansa subsidiaries (Eurowings, Lufthansa City Line, Air Dolomiti, Augsburg Air-

ways, Contact Air) are relatively insignificant compared to the operations of the parent

carriers.

Information regarding hubs, the number of destinations served by each carrier, and the

number of destinations in common among the carriers is contained in Table 15. More

detailed information regarding the approximated networks can be found in Appendix A.

The following abbreviations are used in Table 15, Appendix A, and the remainder of this

section: “JAL” for Japan Airlines, “LH” for Lufthansa, “SAS” for Scandinavian Airlines,

and “SIA” for Singapore Airlines.

The legs are generated according to the network operated by each carrier, with the

origin and destination times being set in a similar manner as in the experiment investigating

complementarity of markets (Section 3.3.2). That is, the (origin, destination) time of hub-

to-spoke legs is (1,2) and (4,5), the (origin, destination) time of spoke-to-hub legs is (2,3),

and the (origin, destination) time of hub-to-hub legs is (0,1) and (3,4). This allows cargo to

use the networks of at most two carriers; given that each pair of carriers has at least 27%

of destinations in common, it is feasible for cargo to travel between any pair of destinations

served by the alliance. Note that generating legs in this manner implies that every city

serviced by a carrier is serviced with the same frequency.
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In this experiment the hubs operated by a single carrier are connected, but hub HA,

operated by carrier A, and hub HB, operated by carrier B, are connected only if a route

exists between HA and HB in the network operated by carrier A or carrier B. Finally, the

capacity on each leg is scaled to 5. Each of the four carriers studied has a fleet containing

planes with varying capacities. However, all fleets contain a significant number of high-

capacity planes, and it is assumed that the higher capacity planes are used on international

routes. Therefore, the assigned value reflects the capacity used for carriers with large fleet

capacities in Section 3.1.

For this experiment, the loads are generated as described in Section 3.1. The relative

size for each carrier, determined according to the number of spoke legs operated by each

carrier, is as follows: JAL = 1, LH = 3.5, SAS = 1.5, SIA = 1.

3.4.2 Results and Analysis

We constructed the original three-carrier WOW alliance consisting of LH, SAS, and SIA,

as well as the current four-carrier WOW alliance with JAL also included. In addition

to evaluating the benefit that the carriers experience by participating in the alliance as

compared to working independently, the decision to include JAL in the alliance can also be

evaluated. Information pertaining to revenue and load acceptance for each carrier’s local

(independent) solution is contained in Table 16, along with load acceptance results for the

three and four-carrier alliances. The results are the rounded average from 30 instances

generated as described in the previous section. Table 17 contains the rounded, averaged

results comparing the total revenue for the local solutions and the three and four-carrier

alliance solutions.

Based on the alliance revenue and load results, we make the following observations:

• The results for the 3-carrier alliance are as expected when the results of Section 3.2.2

are considered; the 3-carrier alliance of LH, SAS, and SIA, with relative sizes of (3.5,

1.5, 1) is best compared to a {C2,C4,C4} alliance. A {C2,C4,C4} alliance experiences

an increase in alliance revenue of 29% over the sum of independent carrier solutions

under demand distribution D1, while the increase in revenue is 69% under D2. The
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Table 16: Revenue and Load Acceptance Results for Local and Alliance Optimal Solutions
(a) Demand Distribution D1

Carrier
Local Solution 3-Carrier Alliance 4-Carrier Alliance

Revenue
Loads

Chg. in Loads
Chg. in Loads

Accepted v. local v. 3-carrier
JAL 126.1 20.4 N/A 140.1% N/A
LH 917.0 152.1 22.4% 25.9% 2.9%
SAS 245.7 39.8 94.6% 99.7% 2.6%
SIA 264.5 43.7 26.7% 29.1% 1.9%

(b) Demand Distribution D2

Carrier
Local Solution 3-Carrier Alliance 4-Carrier Alliance

Revenue
Loads

Chg. in Loads
Chg. in Loads

Accepted v. local v. 3-carrier
JAL 105.9 17.1 N/A 188.3% N/A
LH 877.0 143.4 29.0% 30.2% 0.9%
SAS 200.9 32.1 137.6% 143.0% 2.3%
SIA 201.9 34.0 55.5% 61.8% 4.0%

Table 17: Change in Revenue for Alliance Before and After JAL

# of Carriers Distribution D1 Distribution D2
in Change v. Change v. Change v. Change v.

Alliance Sum of Local 3-Carrier Sum of Local 3-Carrier
3-Carrier alliance 39.2% – 53.6% –
4-Carrier alliance 52.1% 19.0% 68.5% 18.7%

3-carrier WOW alliance, meanwhile, experiences a 39% benefit under distribution D1

and a 53.6% benefit under D2. However, as the relative sizes of carriers become closer,

the difference between D1 and D2 becomes less pronounced. Consequently, we expect,

and do in fact observe, that the gap in benefit between the distributions narrows as

well.

• As we would expect based on the results in Sections 3.2.1 and 3.2.2, the number of

loads accepted is impacted by the distribution of demand more significantly for the

smaller carriers in the alliance. This is not surprising, because the distribution of

loads changes more for a small carrier than for a large carrier. This result implies

that a small carrier needs to exercise more caution in joining a potential alliance than

does a larger carrier, who is impacted less by variation in demand distribution and

can therefore be more confident that the expected benefit will be realized.
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• Two carriers, JAL and SAS, benefit significantly more from collaborating than do

LH and SIA. The reason is different for each carrier, however. SAS has the lowest

amount of overlap with the networks of partnering carriers, and therefore experiences

significant benefit from gaining access to the other markets. This result makes sense

intuitively, as well as in light of the results of Section 3.3.2; note that the network

overlap between SAS and JAL, as well as between SAS and SIA, is 27%. JAL, on

the other hand, has between 50% and 60% of markets in common with other carriers.

However, JAL also serves the fewest number of destinations of any carrier in the

alliance, and therefore stands to gain the most (percentage-wise, at least) from access

to other markets.

• Based on the percentage increase in accepted loads, LH, SAS, and SIA benefit only

marginally from JAL joining the alliance. JAL, on the other hand, experiences a

large increase in the number of accepted loads by joining the alliance. This disparity

suggests that careful distribution of alliance benefit is necessary to ensure that LH,

SAS, and SIA experience measurable gain from the growth of the alliance.

3.5 Summary

In this chapter we have explored different types of alliances, and drawn conclusions per-

taining to the potential for success as factors such as demand distribution, network size,

fleet capacity, hub integration, and market overlap vary. Implementing the management

mechanism developed in Chapter 2 confirms that the mechanism yields allocations within

the core of the carrier alliance game when the Strict Control and Stabilized Limited Control

behavioral models are employed. However, analysis of allocations obtained for two-carrier

alliances demonstrated that refinement was necessary to avoid arbitrary apportionment of

alliance benefit.

Several interesting insights were obtained regarding the relationship between demand

distribution, network size and fleet capacity. First, the distribution of demand has a large

impact on the potential for alliance success. When a high proportion of loads require the

use of a partner’s network, the benefit associated with collaborating is more substantial,
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which is to be expected. Alliances must be evaluated more carefully in the case where

a greater proportion of demand can be served by a single carrier; in these cases, it may

not even be beneficial to grow the alliance. Second, variation in distribution of demand

impacts the expected increase in accepted loads for small carriers much more than for

large carriers, implying that larger carriers can be more confident regarding the expected

benefit (in terms of an increase in accepted loads) associated with collaborating. Third,

depending on the distribution of demand, fleet capacity can be a more important factor

in determining the benefit associated with collaborating than network size, implying that

partners–or subsidiaries–with high fleet capacity may be more valuable than those with

smaller fleet capacity but a larger number of markets served.

Regarding the compatibility of member networks, it was demonstrated that increasing

hub-to-hub connectivity increases the benefit associated with collaborating in a surprisingly

linear fashion. This suggests that carriers in an alliance should take steps to increase access

to one another’s hubs in order to attain maximum alliance benefit. In a separate study, it

was determined that in a majority of cases, ideal partners are those who (1) have similar

network size and fleet capacity, and (2) serve 20% of the same destinations.

Analysis of the WOW cargo alliance confirmed that JAL, LH, SAS, and SIA are in-

deed compatible, experiencing a significant increase in alliance revenue under both demand

distributions studied. The addition of JAL to the original alliance of LH, SAS, and SIA in-

creased total alliance revenue around 20%, although the original three carriers experienced

only modest gains in the number of loads accepted.
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CHAPTER IV

FAIRNESS IN ALLOCATION

In Chapter 2, allocations were examined for their ability to motivate carriers to participate

in an alliance. From a game theoretic point of view, any core allocation is desirable, since

every subset of participants receives at least as much revenue as it would earn by forming

a separate and independent alliance. By examining the allocation results in Table 12 of

Section 3.2.1, however, it becomes evident that not all core solutions are equally desirable.

Consider the instance class comprised of carriers C1 (large network size and large fleet

capacity) and C5 (small network size and small fleet capacity). The mechanism, when

implemented as developed in Chapter 2 and using demand distribution D2, dictates the

allocation results contained in Table 18. For each carrier and each behavioral model, the

table shows the amount of alliance benefit allocated to each carrier.

Table 18: Allocation Results for {C1,C5} Alliance
Behavioral Model C1 Benefit C5 Benefit

Strict Control 8.5 15.6
Limited Control 11.9 12.2

Stabilized Limited Control 19.7 4.3

Carrier C1 is contributing 92.3% of alliance loads and capacity. Yet, under the Strict

Control model, C1 is only receiving 35.3% of the total benefit of 24.1 units of revenue gained

by the alliance. Under the Limited Control model C1 receives 49.4% of the total benefit, and

under the Stabilized Limited Control model C1 receives 81.7% of the total benefit. Because

each carrier is receiving non-negative benefit by collaborating, each of these allocations is

a core allocation. That the Limited Control model apportions benefit more evenly, or that

the Stabilized Limited Control model apportions more benefit to carrier C1, is arbitrary, as

any of the above allocations is feasible using any of the behavioral models. (It was shown

in Chapter 2 that any solution feasible for the Strict Control model is also feasible for the
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Limited Control. Furthermore, because the Stabilized Control model eliminates only non-

core allocations from being obtained, any core allocation feasible under the Limited Control

model is also feasible under the Stabilized Limited Control model.)

In this chapter we explore how the mechanism developed in Chapter 2 can be adapted to

incorporate various notions of fairness. After a brief discussion of literature related to fair-

ness in allocation, we describe a methodology that modifies an inverse problem (InvStrict,

InvLC, or InvSLC) to favor an allocation that achieves fairness according to some prede-

termined measure. Several basic fairness measures are then proposed, and their performance

analyzed for the alliances studied in Sections 3.2 and 3.3 of Chapter 3.

4.1 Related Literature

The problem of fairness in allocation has been most widely studied in classic economic

applications dealing with the allocation of costs or benefits of publicly owned goods or ser-

vices. [22] offers a detailed discussion on equity principles that are often applied in theory,

but points out that in many applications these principals lead to contradictory or otherwise

unsatisfactory solutions. The conflict of selecting from among allocation mechanisms that

satisfy some, but not all, desirable properties is also addressed in [34]. In this work several

allocation methods are discussed, but two emerge as being particularly suitable when con-

sidering principles of equity. The Shapley value is shown to be monotonic, which is desirable

because allocation schemes exhibiting this property ensure that as a player’s contribution

to a coalition changes, his allocation will change accordingly. This property is especially im-

portant in situations where allocations are periodically reassessed as relevant data changes,

such as in the carrier alliance game. However, [34] also demonstrates that monotonicity is

contradictory with staying in the core of a game, implying that the Shapley value is not in

general a core allocation. An alternative allocation method, which is guaranteed to produce

an allocation in the core (when the core is nonempty), is the nucleolus. The Shapley and

nucleolus allocations will be further discussed in Section 4.3.

Unfortunately there is a disconnect between the theory and practice of fairness in allo-

cation. Allocation schemes with desirable theoretical properties are often computationally
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or conceptually difficult to implement in practice. Meanwhile, allocation schemes that are

commonly used in practice do not often achieve the goals for which they were designed. For

example, distribution of revenue based on the relative distance travelled on each carrier’s

network is a scheme often used among code-sharing partners in the passenger airline indus-

try. It can be easily shown however (see [8], for example), that this scheme leads to very

inequitable allocations. [25] addresses both theoretical and practical considerations of cost

allocation in the context of transportation procurement networks. In this work, practical

limitations of mechanisms that perform well in theory are discussed, and mechanisms are

developed that exhibit properties that are desirable in the specific setting addressed. Once

again it is shown that no mechanism can satisfy all properties at once.

Outside the realm of traditional cooperative game theory, fairness in assignment of

costs or benefits is a relevant consideration in the design of auctions. In classic auction

literature, an auction mechanism is designed to maximize the seller’s expected revenues.

However, auctions are increasingly being used in the public sector, where it is inappropriate

to maximize the revenue earned by the seller, or conversely, the prices paid by the bidders.

One possibility to increase fairness in the public setting is to design an auction such that

outcomes are evaluated with respect to submitted bids, rather than for their ability to simply

maximize the seller’s revenue. This idea is explored in [6]. [11] proposes a mechanism in

which the total payments made by bidders are minimized. The mechanism yields outcomes

which are in the core, and can be implemented for auctions dealing with a large number of

items.

4.2 Methodology

Before discussing specific fairness measures and how target allocations are computed ac-

cording to those measures, we introduce notation and discuss the general methodology for

adapting the mechanism developed in Chapter 2. Let x denote some target allocation, and

zi = xi − xi be the distance of carrier i′s actual allocation xi from the target allocation for

carrier i. zi > 0 indicates that carrier i has been allocated an amount that is strictly greater

than targeted allocation amount for him; zi < 0 indicates that carrier i’s actual allocation
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falls short of the target allocation amount. Let yS denote the benefit subset S ∈ N will

experience if the target allocation x is attained: yS =
∑
i∈S

(xi − v(i)). Similarly, yS is the

actual benefit experienced by subset S: yS =
∑
i∈S

(xi − v(i)). Note that since all mechanism

solutions attain the maximum alliance profit,
∑
i∈N

xi =
∑
i∈N

xi, implying that yN = yN .

In order to adapt the mechanism to favor a particular target allocation x (where x is

known a priori), we introduce for every carrier i the following constraint into InvStrict,

InvLC, or InvSLC:

∑

(o,d,i)∈Li

f
∗(o,d,k)
(d,o,k) r(o,d,k) +

∑

e∈Ei

ce

( ∑

(o,d,j)/∈Li

f∗(o,d,j)
e

)−
∑

e/∈Ei

ce

( ∑

(o,d,i)∈Li

f∗(o,d,i)
e

)−xi = zi. (87)

The first three terms of (87) constitute carrier i’s actual allocation xi. By solving the new

constraint set using the objective function min
∑

i(z
i)2, a set of capacity exchange prices will

be found that defines an allocation where, overall, carriers are as close as possible to their

target allocation. This approach can be easily modified to accommodate alliance needs. For

example, if it is more important for some carriers rather than others to achieve their target

allocation, which may be the case when some carriers have more bargaining power than

others, weights may be incorporated to reflect the relative importance of carriers. In this

case one might use the objective function min
∑

i w
i|zi|, where

∑
i w

i = 1 and wi represents

the weight assigned to carrier i.

4.3 Proposed Fairness Rules

In this section, several notions of fairness are proposed. In most cases, the proposed measure

is used to allocate the alliance benefit v(N) − ∑
i v(i) among the alliance members. The

final notion of fairness discussed, however, enforces a minimum service level for each carrier,

where service level is defined as the number of loads accepted. This measure can therefore

be used alone or in combination with one of the other measures discussed.

Clearly, the appropriateness of a measure of fairness is dependent on the characteristics

of the alliance partners and the underlying network. More sophisticated measures may be

defined as necessary, but may require the incorporation of additional data into the model.

Of critical importance is understanding the effect that a proposed measure will have on

83



actual allocations; recall for example that the fare proration scheme described in Section

4.1 can lead to allocations that are unstable.

4.3.1 Equal Benefits

A simple definition of fairness might be the following: every carrier in the alliance should

receive equal benefit from collaborating. While clearly this would not always be perceived

as fair by all participating carriers, the simple equal benefits rule is interesting to explore

as a base case. In order to achieve fairness according to the equal benefits rule, let xi =

v(i) + 1
|N |y

N . Applying the equal benefits rule to the example in the introduction to this

chapter would allocate half of the 24.1 units of alliance benefit to each carrier. Since the

amount of revenue carriers C1 and C5 can earn by operating independently are 289.6 and

1.5, respectively, the resulting allocations would be as follows: xA = 301.65, xB = 13.55. In

general, the equal benefits rule distributes the total alliance benefit as equally as possible

among all alliance members.

The equal benefits rule is similar in concept to the nucleolus, which maximizes the value

of the minimum benefit yS over all subsets S ∈ N . Intuitively, the nucleolus can be thought

of as the “center” of the core. A practical difficulty with the nucleolus is that it cannot

in general be efficiently computed. In contrast, the equal benefits allocation can be easily

computed and, like all other measures discussed in this section, can be implemented with

the addition of |N | constraints.

4.3.2 Value of Contribution: Capacity Value and Load Value

An alternative way to define fairness is in terms of the value each individual member con-

tributes to the alliance. If value was measured only by capacity, then the more valuable

the capacity an individual member contributes to the alliance, the more benefit he should

receive from participating. This measure might be appropriate when capacity is a scare

resource, for example, if airport capacities limit airlines from obtaining landing rights at

new locations. Let R(o,d,i) = r(o,d,i)f
∗(o,d,i)
(d,o,i) , or the actual amount of revenue earned from

load (o, d, i) in the centralized solution f∗. Let n(o,d,i) =
∑

(e∈E:ke<∞)

f∗(o,d,i), or the total

amount of capacity (over all flights) used by load (o, d, i) in f∗. Then we can allocate the
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revenue R(o,d,i) over all legs used to deliver load (o, d, i) such that each leg is allocated an

amount of revenue proportional to the contribution of that leg’s capacity to n(o,d,i). That

is, the amount of revenue from (o, d, i) allocated to leg e is R(o,d,i) f
∗(o,d,i)
e

n(o,d,i) . If exactly one

path is used to deliver a load, then the load’s revenue will be equally allocated among every

leg in the path. The total value of capacity on leg e is calculated as
∑

(o,d,i)∈L

R(o,d,i) f
∗(o,d,i)
e

n(o,d,i) .

Let valuei denote the total value of carrier i’s capacity, which is
∑

e∈Ei

∑
(o,d,i)∈L

R(o,d,i) f
∗(o,d,i)
e

n(o,d,i) .

The amount of alliance benefit allocated to carrier i is determined by carrier i’s pro-

portion of capacity value: yi = valuei∑
i valuei y

N . Hence the target allocation for carrier i is

xi = v(i) + valuei∑
i valuei y

N .

If instead value was measured only by loads, then the more valuable the loads an indi-

vidual carrier brings to the alliance, the more benefit he receives. This measure would be

appropriate when loads are a scarce resource, for example, in situations where local carri-

ers retain the majority of local business. To implement this measure, we allocate carrier

i an amount of benefit according to the proportional value of his loads. The proportional

value of carrier i’s loads is P i =

∑
(o,d,i)∈Li

r(o,d,i)d(o,d,i)

∑
(o,d,i)∈L

r(o,d,i)d(o,d,i) , and the target allocation for carrier i

is therefore xi = v(i) + P iyN . Note that in this measure, a carrier is rewarded for all the

loads he brings to the alliance; the carrier is not penalized for an alliance decision to reject

a load.

For alliances in which some carriers have more local business but do not operate flights

to all desired locations, while other carriers operate in-demand flights but do not attract

many loads, it makes sense to value both capacity and loads. To this we can assign weights

wc and w` to the value of capacity and loads, respectively, where wc + w` = 1. Let xc be

the target allocation vector computed according to the capacity value rule described above,

while x` is the target allocation vector computed according to the load value rule. Then

the target allocation for carrier i under a fairness measure that values both capacity and

loads is xi = wcx
i
c + w`x

i
`.

Computing a target allocation based on the value a carrier brings to an alliance is

similar in concept to the Shapley value, since the Shapley value for carrier i is the average
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marginal contribution of carrier i to each subset of the alliance. However, choosing to define

an allocation based on the value of a carrier has two distinct advantages: in addition to

the conceptual appeal of defining an allocation based on the setting in which it is applied,

the capacity value and load value measures are easy to compute. (Like the nucleolus, the

Shapley value in general cannot be efficiently computed.)

4.3.3 Minimum Service Level

The computational experiments performed in Chapter 3 do not indicate that carriers in

general suffer a decline in the number of loads accepted, the notable exception being alliances

in which one or more partners is a freight forwarder. Even for alliances not containing freight

forwarders, however, there is value in exploring the notion of enforcing minimum service

levels.

A minimum service level may be defined in two different ways:

(1) a carrier i must deliver at least as many loads as he could deliver by working inde-

pendently.

(2) every load delivered in carrier i’s independent solution must also be delivered in the

alliance solution.

The first definition is implemented by adding the following constraints to C:
∑

(o,d,i)∈Li

f
∗(o,d,i)
(d,o,i) ≥

∑
(o,d,i)∈Li

f
′(o,d,i)
(d,o,i) ∀i ∈ N , where f ′ is the optimal solution to carrier i’s independent problem.

The second definition is implemented by instead adding constraints f
∗(o,d,i)
(d,o,i) ≥ f

′(o,d,i)
(d,o,i) ∀(o, d, i) ∈

L. The latter definition is thus more constraining than the former, but has the appeal of

protecting carrier i’s existing customers, ensuring that they will not suffer when carrier i

joins an alliance.

Because the aggregation of all independent solutions must be feasible from the alliance

perspective, enforcing a minimum service level in either of the two ways proposed above does

not impact the feasibility of C. The functionality of the mechanism itself is not impacted by

changing the alliance optimal solution, since the mechanism is designed to ensure that some

alliance solution f∗ is attained. As a result, a minimum service level can be implemented
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(and in fact achieved) in conjunction with one of the revenue allocation methods discussed

in Sections 4.3.1 and 4.3.2.

4.4 Computational Analysis of Fairness Measures

In this section we analyze the performance of the equal benefits, capacity value, and load

value fairness measures. The goal is to gain a general understanding of (1) how both

the targeted and realized allocations change with each measure of fairness, (2) how the

appropriateness of the measures changes with the composition of the alliance, and (3) how

the choice of behavioral model impacts the success of achieving the targeted allocation. To

achieve the first goal, results are presented for two-carrier alliances and the WOW alliance

describing in detail the target allocation for each carrier under each rule. (The target

allocation is not impacted by the choice of behavioral model). The second and third goals

are accomplished by analyzing, for each measure and each model, how close the allocations

achieved by the mechanism are to the target allocations.

4.4.1 Two-Carrier Alliance Fairness Results

For each measure of fairness, the target allocation according to that measure, as well as the

percent of alliance benefit each carrier will receive if the target allocation is met, are shown

in Tables 19 and 20; Table 19 contains the target allocations for instances generated using

demand distribution D1, while Table 20 contains the allocations for instances generated

using distribution D2. Recall that xi denotes the target allocation for carrier i, and yi

denotes the benefit carrier i will receive if he is allocated xi. The target benefit under the

equal benefits rule is always 50%, and is therefore omitted from the tables.

The target allocations under the capacity value and load value fairness measures behave

as we would expect as the network size and fleet capacity of the carriers comprising an

alliance change. For example, when two carriers with similar network size and fleet capacity

collaborate, the target benefit allocated to each carrier is roughly 50%. When dissimilar

carriers collaborate, the larger carrier (in terms of network size or fleet capacity) is targeted

to receive more benefit under both measures. We also observe that the distribution of

demand has little impact on the percent benefit each carrier will experience if the target
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allocation is achieved. This is not surprising since changing the distribution of demand does

not change the network operated by a carrier or the value of loads associated with a carrier.
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Figures 14-16 summarize the performance of each fairness rule. For each instance and

each carrier, the percentage distance between the actual allocation xi and the target alloca-

tion xi was computed. The graphs depict how many times an allocation missed the target

by the given range; the number of total trials is 1500 for each behavioral model because

25 instance classes were tested (all two-carrier alliance combinations), with 30 instances

generated for each class, and 2 allocations (one for each carrier) per instance.
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Figure 14: Performance of Equal Benefits Rule for Two Carrier Alliances

In general, the Limited Control and Stabilized Limited Control models are very effective

at achieving the target allocation. As expected based on the analysis conducted in Chapter

2, the smaller feasible region of the Strict Control model compromises the performance of

the model with regard to fairness. We also observe that the results do not vary significantly
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(b) Capacity Value (D2)

Figure 15: Performance of Capacity Value Rule for Two Carrier Alliances
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(a) Load Value (D1)
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(b) Load Value (D2)

Figure 16: Performance of Load Value Rule for Two Carrier Alliances
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d

o

Figure 17: Alliance Network for Fairness Example

Table 21: Load Descriptions for Fairness Example

Load
Per-Unit Revenue Size

(r(o,d,k)) (d(o,d,k))
(o, d, A1) 2 1
(o, d, A2) 1 1

depending on the distribution of demand. A theoretical analysis of the ability of the mech-

anism to achieve a target allocation computed according to the Equal Benefits rule using

the Strict Control model is conducted for a simple example in Appendix B.

The computational results suggest that the neither the composition of the alliance nor

the distribution of demand has significant impact on the performance of the Limited Control

and Stabilized Limited Control models, and they have only minor impact on the performance

of the Strict Control model. For this reason, we reserve more in depth analysis for three-

carrier alliances. However, it is appropriate to note that in this experiment, every equal

benefits target allocation was achieved exactly when the Limited Control and Stabilized

Limited Control models were implemented. This is not in general always true; consider

the simple example depicted in Figure 17 and Table 21. For this example the notation

is modified to differentiate between two loads with the same origin and destination, both

associated with carrier A.

Leg (o, d) is operated by carrier B and has a capacity of two units. The centralized

optimal solution is to deliver both (o, d, A1) and (o, d, A2), and the total alliance benefit is

3. Given that neither carrier can earn any revenue by working alone, a target allocation

computed according to the equal benefits rule will allocate 1.5 units of revenue to each

carrier. However, the maximum feasible value for c(o,d) is 1, since for any c(o,d) > 1 carrier

A will not deliver (o, d,A2). The maximum allocation for carrier B is therefore 2, and the
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equal benefits target cannot be satisfied.

4.4.2 Three-Carrier Fairness Results

The performance of the equal benefits fairness measure for three carrier alliances is sum-

marized for all instances in Figure 18. Similarly to the results for two-carrier alliances, we

observe that the behavior of each measure and model combination changes very little with

the distribution of demand. For this reason, only the results for distribution D1 are pre-

sented in the remainder of the section. Figures 19(a) and 19(b) summarize the performance

of the Capacity Value and Load Value fairness measures, respectively, over all three-carrier

instances. Over all instances, target allocations are hardest to achieve for the Capacity

Value rule, followed by Equal Benefits and then Load Value. Again as expected, the Lim-

ited Control and Stabilized Limited Control models are more successful at achieving the

target allocations than the Strict Control model.

Figures 20 and 21 summarize the performance of fairness measures and behavioral mod-

els for alliances comprised of three similar carriers (i.e. three carriers of the same classifica-

tion) and alliances comprised of three carriers with dissimilar network sizes (i.e. one carrier

of type C1, one carrier of type C2 or C3, and one carrier of type C4 or C5). Compar-

ing the results, we observe that relative success in achieving the target allocation does not

change significantly between the two sets of instances. This implies that varying network

size and fleet capacity of collaborating carriers does not substantially impact the relative

performance of a particular fairness measure.

Finally, Figure 22 summarizes the results for each fairness measure and model for al-

liances containing at least one freight forwarder. The performance of the Strict Control

model is markedly worse for these instances, while the Limited Control and Stabilized Lim-

ited Control models perform slightly worse for the Equal Benefits and Load Value measures,

and marginally better for the Capacity Value measure. (The improved performance for the

Capacity Value rule occurs because it is feasible to allocate no benefit to freight forwarders

under both the Limited Control model and the Stabilized Limited Control model.)

Overall, the Limited Control and Stabilized Limited Control model perform substantially
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(b) Equal Benefits (D2)

Figure 18: Performance of Equal Benefits Rule for Three Carrier Alliances
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Figure 19: Performance of Capacity Value and Load Value Rules for Three Carrier Al-
liances
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Figure 20: Performance of Fairness Measures for Three Carrier Alliances Containing
Similar Carriers
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Figure 21: Performance of Fairness Measures for Three Carrier Alliances Containing
Carriers with Dissimilar Networks
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Figure 22: Performance of Fairness Measures for Three Carrier Alliances Containing
Forwarders
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better for three-carrier instances than does the Strict Control model.

4.4.3 WOW Alliance

When applied to the WOW alliance example, the equal benefits, capacity value, and load

value fairness measures perform very well under the Limited Control and Stabilized Limited

Control model. In fact, for all 30 instances generated for the four-carrier alliance, the target

allocation was exactly matched under these two behavioral models.

The performance of the fairness measures under the Strict Control model was not tested.

First, the results of the previous experiments indicate that the Limited Control and Stabi-

lized Limited Control are more appropriate models to use when adapting the mechanism.

Second, on even this scaled-down version of a real-world alliance, the Strict Control model

yields an inverse problem so large that it cannot be easily solved on a machine with 16G

of memory. (Recall that in Section 2.5.2 it was shown that the Strict Control model con-

tains approximately n times the number of constraints as the Limited Control model, where

n = |N |.)
In order to gain insight into how alliance benefit is allocated under each fairness measure,

the target allocations are summarized in Table 22. For each carrier, the target allocation

and percent of alliance benefit allocated to the carrier are shown for each fairness measure,

where “EB” denotes the Equal Benefits rule, “CV” denotes the Capacity Value rule, and

“LV” denotes the Load Value rule. Once again, the results represent the rounded average

over 30 generated instances.

As with the two and three-carrier alliances analyzed in the previous section, demand

distribution has very little impact on how alliance benefit is apportioned; carriers are allo-

cated a very similar percentage of alliance benefit under both distributions. The capacity

value and load value rules in general behave as expected, with LH commanding the largest

portion of alliance benefit due to its larger size. (As can be seen in Table 15 in Section

3.4.1, LH operates approximately 55% of all alliances legs, while JAL, SAS, and SIA each

operate approximately 15%.)
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Table 22: Target Allocations for WOW Alliance
(a) Distribution D1

Meas- JAL LH SAS SIA
ure xJAL yJAL / yN xLH yLH / yN xSAS ySAS / yN xSIA ySIA / yN

EB 325.5 25.0% 1105.6 25.0% 438.1 25.0% 481.0 25.0%
CV 227.1 12.8% 1324.4 52.0% 388.4 18.9% 410.1 16.3%
LV 230.6 13.3% 1312.9 50.6% 412.6 21.9% 394.0 14.3%

(b) Distribution D2

Meas- JAL LH SAS SIA
ure xJAL yJAL / yN xLH yLH / yN xSAS ySAS / yN xSIA ySIA / yN

EB 339.7 25.0% 1107.2 25.0% 422.6 25.0% 448.4 25.0%
CV 220.7 12.6% 1369.8 52.4% 363.2 18.8% 364.1 16.2%
LV 227.6 13.3% 1352.1 50.6% 392.5 21.9% 345.7 14.3%

4.5 Summary

It is clear from the performance of the fairness measures under each behavioral model

that the Limited Control and Stabilized Limited Control models are more successful at

ensuring a target allocation can in fact be obtained. Furthermore, they are more practical

from an implementation standpoint; because the inverse problems InvLC and InvSLC are

significantly smaller than InvStrict, they require less memory to solve.

The allocations dictated by the fairness measures change appropriately with the charac-

teristics of the carriers, indicating that choosing to allocate revenue using a measure based

on characteristics of the alliance setting is a reasonable approach. That the performance

of the measures is not significantly impacted by distribution of demand is also promising,

implying that the measures may be suitable for a wide variety of alliance circumstances.

Finally, the equal benefits, capacity value, and load value fairness measures are all easy to

compute, offering another practical advantage over the Shapley and nucleolus allocations.

102



CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This chapter summarizes the primary contributions of this thesis and describes both tech-

nical extensions and high level research questions motivated by this work.

5.1 Summary

In Chapter 2 a mechanism is proposed that manages the interactions of carriers in an alliance

such that the alliance optimal acceptance and routing of loads is attained. The mechanism

allocates alliance resources and profits through the use of capacity exchange prices; after

appropriate capacity exchange prices are determined, the allocation of revenue is achieved

without the need for a centralized manager.

Two distinct ways of modeling the perspective of an individual carrier within an alliance

are proposed: a Strict Control model requiring the oversight of a centralized authority, and

a Limited Control model that is self-managing. The ability of the mechanism to achieve

alliance optimal behavior under the different behavioral models is analyzed, leading to

several interesting practical and theoretical insights:

• Surprisingly, the Limited Control model can guarantee centralized feasibility while

the Strict Control model cannot; this is a clear practical advantage of the Limited

Control model.

• The Strict Control model always defines an allocation in the core, but many core

allocations are excluded from the feasible region of the inverse problem defined by

this model. On the other hand, the feasible region for the inverse problem defined by

the Limited Control model defines more allocations in the core, but may also include

non-core allocations. (The Stabilized Limited Control model is proposed to eliminate

from the feasible region any allocation outside the core.)

• It is shown that secondary markets will not exist when the Strict Control model is
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employed, which is a practical advantage of this model since secondary markets lead

to behavior that is detrimental to the alliance as a whole.

• Overall, the discovery that differences in modeling can significantly impact the per-

formance of the mechanism is itself a key insight.

The compatibility of carriers and the potential for alliance success is studied in Chapter

3. In addition to confirming that the management mechanism proposed in Chapter 2

performs as expected, the computational results lead to interesting insights regarding how

the characteristics of the associated demand, network, and fleet of collaborating carriers

impacts the benefit to be gained by collaborating. In addition to two and three-carrier

alliances comprised of various types of carriers, the WOW cargo alliance is also studied.

The most notable insights are as follows:

• The benefit to be gained by collaborating increases with the network and fleet size of

a partnering carrier, and fleet size is the more important factor.

• Results suggest the benefit associated with collaborating increases in an approximately

linear fashion with the number of hub-to-hub routes between hubs of partnering car-

riers.

• The ideal level of market overlap varies between 20% and 60% depending on the

characteristics of the partnering carriers.

The notion of fairness in allocation is the subject of Chapter 4, in response to observing

that more control is necessary over the allocations obtained from the mechanism proposed

in Chapter 2. Several measures of fairness are proposed, two of which (capacity value and

load value) are based on characteristics of the carriers participating in the alliance. In

addition to the appeal of allocation methods defined based on the setting in which they

are applied, the proposed measures can be efficiently computed, in contrast to traditional

allocation schemes studied in the cooperative game theory literature. A methodology for

enforcing a minimum service level for each carrier is also proposed.

Key insights from Chapter 4 include the following:
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• Computational results suggest that the Limited Control and Stabilized Limited Con-

trol model are more suitable than the Strict Control model for adapting the mecha-

nism to incorporate fairness, since these models have a much higher success rate for

achieving the desired “fair” allocation.

• Achieving a target allocation using the Strict Control model is especially difficult when

freight forwarders are involved in the alliance.

• The equal benefits and load value fairness measures have the highest success rate

among the allocations; the capacity value fairness measure is more difficult to achieve.

• The distribution of demand, network size, and fleet capacity of collaborating carriers

seem to have minimal impact on the success of a particular fairness measure.

5.2 Future Research Directions

The primary technical extension that follows naturally from this work is the incorporation

of time into the centralized model and behavioral models. The decision to represent flight

networks through geography only was made in order to simplify analysis; geography was

the primary consideration since timing of flights can be more easily adjusted than landing

rights can be acquired. The most important impact of including time in the analysis is

that frequency of flights between a particular origin and destination can be more easily and

accurately be accounted for.

A second technical extension is related to the proposed measures of fairness in Chapter

4. The performance of the measures was explored from a primarily computational perspec-

tive; interesting insights may be gained from conducting a thorough theoretical analysis of

conditions that restrict the ability of the mechanism to achieve a target allocation. For

example, a theoretical analysis of the ability of the Strict Control model to achieve a target

allocation computed according to the Equal Benefits fairness measure is conducted for a

small example in Appendix B. The conditions impacting whether a target allocation can be

achieved will likely vary for various combinations of fairness measure and behavioral model.
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Third, there are interesting extensions to explore concerning the definitions of the pro-

posed fairness rules. The proposed rule in which fairness is measured according to the value

of loads can be refined to discount loads that are not delivered when all carriers work alone.

In addition, using shadow prices for capacity should be explored as a method for defining

a measure which values both the capacity and loads associated with a carrier.

There are several interesting high-level research questions motivated by this work. First,

it is important to explore how secondary markets for capacity can best be prevented. In

Chapter 2 it is shown that the Strict Control model prevents secondary markets, but in

Chapter 4 it becomes clear that the Limited Control model (or Stabilized Limited Control

model) is a more appropriate modeling choice when fairness in allocation is considered.

While trading capacity in the secondary market may be contractually eliminated, a more

elegant approach is to identify a way that they can mathematically be prevented. Can

the Limited Control model be adapted to prevent a profitable secondary market while

maintaining the advantage of a larger feasible region for capacity exchange prices?

Second, this work explores how the characteristics of a carrier’s existing network and

fleet impact the success of an alliance. While it is important for carriers to be able to

identify existing synergies with potential partners, it is also important to understand how

a carrier can make strategic decisions to improve the benefit associated with collaborating.

For example, what steps can a small carrier take to make himself an attractive partner for a

larger carrier? Are there certain markets that the small carrier should add to his network,

or on the other hand, markets for which the carrier should discontinue service? Answering

questions such as these will not only aid carriers in making business decisions for long-term

profitability, but help alliance partners continuously evolve, ensuring sustainability of the

alliance.

A third interesting question is the following: how robust are capacity exchange prices

with respect to variability in demand? Answering this question will lend insight to how

the methodology developed in this thesis can be applied in practice. If capacity exchange

prices are shown to be robust, then a stronger argument can be made for the applicability

of this work in the real world. If, on the other hand, small changes in demand result in
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significant changes to the capacity exchange prices, then there is value in exploring whether

the methodology can be changed to make it more robust. For example, can the inverse

problem be adapted to drive the mechanism towards solutions that are more robust, similar

to how the mechanism was driven towards a particular fair allocation in Chapter 4?

Fourth, it is interesting from a theoretical perspective to question if the centralized ob-

jective of maximizing alliance revenue is the best choice. Are there other objectives that

perform better for some, or perhaps all, secondary considerations such as fairness and pre-

vention of secondary markets? While it can be argued that maximizing revenue is a primary

concern for cargo carriers, it may be the case that pursuing other objectives significantly

improves alliance performance for secondary considerations with minimal impact on alliance

revenue.

Finally, there is value in exploring if the general results or insights from this work

can be applied in other contexts. Natural candidates include collaborative ventures that

can be modeled using networks or linear programs. Because the methodology is based on

collaborative relationships in which decentralized control is desirable (i.e. alliances rather

than mergers or acquisitions), applications in which there is are barriers to total integration

are the most promising.
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APPENDIX A

DESCRIPTION OF APPROXIMATED NETWORKS FOR WOW

ALLIANCE

Table 23: Destinations Served by JAL

Destination
From From

Destination
From From

Tokyo Osaka Tokyo Osaka
Amsterdam x London x x

Bangkok x x Los Angeles x
Beijing x x Manila x

Brisbane x Mexico City x
Busan x x Milan x

Chicago x Moscow x
Dalian x x New York x
Delhi x Paris x

Denpasar x x Qingdao x x
Frankfurt x Rome x

Guam x x San Francisco x
Guangzhou x x Sao Paulo x
Hangzhou x x Seoul x x

Hanoi x x Shanghai x x
Ho Chi Minh City x Singapore x x

Hong Kong x x Sydney x
Honolulu x x Taipei x x

Jakarta x Vancouver x
Kaohsiung x Xiamen x

Kona x Xian x
Kuala Lumpur x
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Table 24: Destinations Served by LH

Destination
From From

Destination
From From

Frankfurt Munich Frankfurt Munich
Abu Dhabi x Donetsk x

Abuja x Dubai x x
Accra x Dublin x

Addis Ababa x Edinburgh x
Alexandria x Ekaterinburg x

Almaty x Faro x
Amman x Florence x x

Amsterdam x x Gdansk x x
Ancona x Geneva x x
Ankara x Genoa x

Ashgabat x Gothenburg x x
Asmara x Graz x x
Athens x x Guangzhou x
Atlanta x Helsinki x x

Baku x Ho Chi Minh City x
Bangalore x Hong Kong x x
Bangkok x x Houston x

Barcelona x x Hyderabad x
Bari x Istanbul x x

Basel x x Izmir x
Beijing x x Jakarta x
Beirut x Jeddah x

Belgrade x x Johannesburg x
Bern x Kattowice x

Bilbao x Kazan x
Billund x c Khartoum x

Birmingham x x Kiev x x
Bologna x x Krakow x x

Bordeaux x Kuala Lumpur x
Boston x Kuwait x

Bratislava x Lagos x
Brussels x x Larnaca x

Bucharest x x Linz x
Budapest x x Lisbon x x

Buenos Aires x Ljubliana c c
Cairo x London x x

Calgary x Los Angeles x x
Cape Town x Lyon x x

Caracas x Madrid x x
Casablanca x Malta x

Charlotte x Manchester x x
Chennai x Manila x
Chicago x x Marseille x x

Copenhagen x x Mexico City x
Dallas/Ft. Worth x Miami x

Dammam x Milan x x
DC x x Minsk x

Delhi x x Montreal x
Denver x Moscow x x
Detroit x Mumbai x x

Dnepropetrovsk x Muscat x
Continued on next page
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Table 24 – continued from previous page

Destination
From From

Destination
From From

Frankfurt Munich Frankfurt Munich
Nagoya x Sofia x
Naples x St Petersburg x

New York x x Stavanger x
Nice x x Stockholm x

Nizniy Novgorod x Strasbourg x
Osaka x Talinn x x

Oslo x x Tbilisi
Paris x x Teheran x x
Perm x Tel Aviv x x

Philadelphia x Timisoara x
Pisa x Tokyo x x

Port Harcourt x Toronto x x
Portland x Toulouse x

Porto x Trieste
Poznan x x Tripoli x x
Prague x x Tunis x

Riga x Turin x c
Riyadh x Ufa x
Rome x x Valencia x

Rostov x Vancouver x x
Samara x Venice x x

San Fancisco x x Verona x
Sana’a x Vienna x x

Santiago de Chile x Vilnius x x
Sao Paulo x Warsaw x x
Sarajevo x Wroclaw x x

Seoul x Yerevan x
Shanghai x x Zagreb x
Singapore x Zurich x
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Table 25: Destinations Served by SAS

Destination
From From

Destination
From From

Copenhagen Stockholm Copenhagen Stockholm
Aberdeen x Madrid x

Amsterdam x x Malaga x
Athens x x Manchester x x

Bangkok x Milan x x
Beijing x x Moscow x x
Bergen x x Munich x x
Berlin x x New York x x

Birmingham x Nice x x
Bologna x Nuremberg x
Bristol x Oslo x x

Brussels x x Palanga x
Budapest x Palma Mallorca x
Chicago x x Paris x x
Cologne x x Poznan x

Copenhagen x Prague x x
DC x Pristina x

Dublin x x Reykjavik x x
Dusseldorf x x Riga x
Frankfurt x x Rome x x

Gdansk x Seattle x
Geneva x x Split x

Glasgow x St. Petersburg x x
Gothenburg x x Stavanger x

Hamburg x x Stockholm x
Hanover x Stuttgart x x
Helsinki x x Tallinn x
Istanbul x Tokyo x

Kangerlussuaq x Venice x
Kristiansand x Vienna x x

London x x Warszaw x
Luxembourg x Zurich x x

Lyon x
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Table 26: Destinations Served by SIA (from Singapore)

Adelaide Jakarta
Ahmedabad Jeddah
Amritsar Johannesburg

Amsterdam Kolkata
Athens Kuala Lumpur

Auckland London
Bandar Seri Begawan Los Angeles

Bangalore Male
Bangkok Manchester
Barcelona Manila
Beijing Melbourne

Brisbane Milan
Cairo Moscow

Cape Town Mumbai
Chennai Nagoya

Christchurch Nanjing
Colombo New York

Copenhagen Osaka
Delhi Paris

Denpassar Penang
Dhaka Perth
Dubai Rome

Frankfurt San Francisco
Fukouka Seoul

Guangzhou Shanghai
Hanoi Sydney

Ho Chi Minh City Taipei
Hong Kong Tokyo
Hyderabad Vancouver
Istanbul Zurich
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Table 27: Common Destinations for Pairs of Carriers in WOW Alliance

JAL, LH JAL, SIA LH, SAS LH, SIA SAS, SIA
Amsterdam Amsterdam Amsterdam Amsterdam Amsterdam
Bangkok Bangkok Athens Athens Athens
Beijing Beijing Bangkok Bangalore Bangkok
Chicago Brisbane Beijing Bangkok Beijing
Delhi Delhi Birmingham Barcelona Copenhagen

Ho Chi Minh City Frankfurt Bologna Beijing Frankfurt
Jakarta Guangzhou Brussels Cairo Istanbul

Kuala Lumpur Hanoi Budapest Cape Town London
London Ho Chi Minh City Chicago Chennai Manchester

Los Angeles Jakarta Copenhagen Copenhagen Milan
Manila Kuala Lumpur DC Delhi Moscow

Mexico City London Dublin Dubai New York
Milan Los Angeles Gdansk Ho Chi Minh City Paris

Moscow Manila Geneva Hong Kong Rome
New York Milan Gothenburg Hyderabad Tokyo

Paris Moscow Helsinki Istanbul Zurich
Rome New York Istanbul Jakarta

San Fancisco Paris London Jeddah
Seoul Rome Lyon Johannesburg

Shanghai San Francisco Madrid Kuala Lumpur
Singapore Seoul Manchester London
Toulouse Shanghai Milan Los Angeles

Vancouver Sydney Moscow Manchester
Taipei New York Manila

Vancouver Nice Milan
JAL, SAS Oslo Moscow
Amsterdam Paris Mumbai
Bangkok Poznan Nagoya
Beijing Prague New York
Chicago Riga Osaka

Frankfurt Rome Paris
London Stavanger Rome
Milan Stockholm San Francisco

Moscow Tallinn Seoul
New York Tokyo Shanghai

Paris Venice Tokyo
Rome Vienna Vancouver

Warszaw Zurich
Zurich
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APPENDIX B

THE STRICT CONTROL MODEL AND EQUAL BENEFITS

FAIRNESS MEASURE: A SMALL FEASIBILITY ANALYSIS

Consider the following simple system, System S, in which carrier A operates a leg with

origin o, destination d, and capacity k. There are two loads in the system, also with origin

o and destination d; one load is associated with carrier A and one load is associated with

carrier B. The revenue and size of each load, as well as the capacity of leg (o, d), are strictly

positive.

d

o

Figure 23: System S

Throughout this analysis we will make use of simplified notation for ease of exposition.

The revenue associated with load (o, d, i), r(o,d,i), will be denoted as ri, size d(o,d,i) as di,

flow f
(o,d,i)
(o,d) as f i

(o,d), and fictitious flow f
(o,d,i)
(d,o,i) as f i

(d,o).

Theorem 11. Under the Strict Control model, a target allocation for System S computed

according to the Equal Benefits rule can be achieved if and only if neither of the following

mutually exclusive conditions is satisfied:

1. rB > rA, dB ≥ k, dA < k, and rA > rBk
2k−dA

2. rA ≥ rB, dA < k, dA + dB > k.

Proof. The allocations for each carrier are as follows: xA = rAfA + cfB, xB = rBfB − cf b.

The benefit for carrier B is yB = xB − v(B) = xB since carrier B does not operate any
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capacity. Under the Equal Benefits rule, yB = 1
2yN = 1

2 [xA + xB − v(A) − v(B)] =

1
2 [xA + xB − v(A)]. Because there are only two carriers in this system, x = x if and

only if yB = yB, which implies xB = 1
2 [xA + xB − v(A)], or xB = xA − v(A). Therefore

x = x ⇔ ∃c : (rBfB − cfB) = (fAfA + cfB) − v(A), or c = v(A)−rAfA+rBfB

2fB . Henceforth

the equation

c =
v(A)− rAfA + rBfB

2fB
(88)

will be referred to as the key equation.

The inverse problem constraints under the Strict Control model for System S are written

in general form below, with the primal variable corresponding to each constraint indicated

to the left of the constraint:
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(InvStrict) :

(fA
(o,d)) πA,A

d − πA,A
o + αA




≥
=





0 (89)

(fA
(d,o)) πA,A

o − πA,A
d + βA,A




≥
=





rA (90)

(fB
(o,d)) πA,B

d − πA,B
o + αA




≥
=





c (91)

(fB
(d,o)) πA,B

o − πA,B
d + βA,B




≥
=





0 (92)

(fA
(o,d)) πB,A

d − πB,A
o + αB




≥
=





0 (93)

(fA
(d,o)) πB,A

o − πB,A
d + βB,A




≥
=





0 (94)

(fB
(o,d)) πB,B

d − πB,B
o + αB




≥
=




− c (95)

(fB
(d,o)) πB,B

o − πB,B
d + βB,B




≥
=





rB. (96)

Inequalities (89)-(92) correspond to carrier A; these inequalities ensure that f∗ will be

optimal for carrier A. Similarly, inequalities (93)-(96) are associated with carrier B. The

variable c represents the capacity exchange price on leg (o, d).
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InvStrict simplifies to the following four inequalities:

αA




≥
=





rA − βA,A (97)

βA,B




≥
=





c− αA (98)

αB




≥
=





−βB,A (99)

c + αB




≥
=





rB − βB,B (100)

where (97) follows directly from inequalities (89) and (90), (98) follows directly from (91)

and (92), (99) follows directly from (93) and (94), and (100) follows directly from (95) and

(96).

Note that f∗i(o,d) = f∗i(d,o), where f∗ is the centralized optimal solution for System S. As

a result, (97) and (99) must hold with equality when f∗A(o,d) = f∗A(d,o) > 0, and are inequalities

otherwise. Similarly, (98) and (100) must hold with equality when f∗B(o,d) = f∗B(d,o) > 0,

and are inequalities otherwise. Furthermore, in order to satisfy complementary slackness

conditions as described in Section 2.4, βi,j = 0 when f∗j < dj .

The 13 cases depicted in Figure 24 are mutually exclusive and represent all possible rela-

tionships among the problem parameters ri, di, and k for System S. Table 28 summarizes,

for each case, the values of f∗, v(A), and c in terms of the parameters ri, di, and k, where

c is computed according to the key equation (88).

For each of the 13 cases we will further simplify InvStrict for System S and find the

feasible range for c. We will then analyze if the value of c which satisfies the key equation

(88) is within this feasible range. If so, then the target allocation x can always be satisfied

for that case.

Case 1

In System S, fA = 0 < dA implies that βA,A = βB,A = 0, and that (97) and (99) are

inequalities. 0 < fB < dB implies that βA,B = βB,B = 0, and that (98) and (100) must
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Figure 24: Case Diagram

Table 28: Case Descriptions

Case f∗i † v(A) c = v(A)−rAfA+rBfB

2fB

1 fA = 0, fB = k < dB rAdA c = rAdA+rBk
2k

2 fA = 0, fB = k < dB rAk c = rAk+rBk
2k = rA+rB

2

3 fA = 0, fB = k = dB rAdA c = rAdA+rBk
2k

4 fA = 0, fB = k = dB rAk c = rAk+rBk
2k = rA+rB

2

5 fA = dA ≤ k − dB rAdA

c = rAdA−rAdA+rBdB

2dB = rB

2fB = dB < k

6 fA = k − dB < dA rAdA

c = rAdA−rA(k−dB)+rBdB

2dB = rA(dA+dB−k)+rBdB

2dBfB = dB < k

7 fA = k − dB < dA rAk
c = rAk−rA(k−dB)+rBdB

2dB = rA+rB

2fB = dB < k

8 fA = k ≤ dA, fB = 0 rAk 0 = 0
9 fA = dA < k rAdA

c = rAdA−rAdA+rBdB

2dB = rB

2fB = dB ≤ k − dA

10 fA = dA rAdA

c = rAdA−rAdA+rB(k−dA)
2(k−dA)

= rB

2fB = k − dA < dB

11 fA + fB = rAk =
c = rA(fA+fB)−rAfA+rBfB

2fB = rA = rB

k < dA + dB rBk

12 fA + fB = rAdA =
c = rAdA−rAfA+rBfB

2fB = rB(dA−fA+fB)
2fBk < dA + dB rBdA

13 fA = dA, fB = dB rAdA c = rAdA−rAdA+rBfB

2fB = rB

2
†f i = f i

(o,d) = f i(d, o)
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hold with equality (=). Consequently, inequalities (97)-(100) further reduce to rA ≤ c ≤ rB.

The key equation (88) for this case simplifies to c = rAdA+rBk
2k . We will first show that

this value of c is never greater than rB:

rAdA+rBk
2k ≤ rB ⇒ rAdA ≤ rBk ⇒ rB ≥ rA(dA

k ) which must be true since rB > rA and

dA

k < 1.

However, c = rAdA+rBk
2k can in fact be less than rA; this occurs when rA > rBk

2k−dA . We have

therefore established that in Case 1, the target allocation for System S will be satisfied if

and only if rA ≤ rBk
2k−dA .

Case 2

In System S, fA = 0 < dA implies that βA,A = βB,A = 0, and that (97) and (99) are

inequalities. 0 < fB < dB implies that βA,B = βB,B = 0, and that (98) and (100) must

hold with equality (=). Consequently, inequalities (97)-(100) further reduce to rA ≤ c ≤ rB.

The key equation (88) for this case simplifies to c = rA+rB

2 . We will first show that this

value of c is never greater than rB:

rB+rA

2 ≤ rB ⇒ rA ≤ rB, which must always be true since we are in Case 2.

Next, we show that this value of c is never less than rA:

rB+rA

2 ≥ rA ⇒ rB ≥ rA, which again must always be true since we are in Case 2.

We have established that in Case 2, there always exists a c feasible for InvStrict that results

in an allocation that exactly satisfies the target allocation for System S.

Case 3

In System S, fA = 0 < dA implies that βA,A = βB,A = 0, and that (97) and (99) are in-

equalities. 0 < fB < dB implies that (98) and (100) must hold with equality. Consequently,

inequalities (97)-(100) further reduce to rA + βA,B ≤ c ≤ rB − βB,B, which in turn reduces

to rA ≤ c ≤ rB since βi,B ≥ 0.

As in Case 1, the key equation (88) for this case simplifies to c = rAdA+rBk
2k . Again, this
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value of c is never greater than rB:

rAdA+rBk
2k ≤ rB ⇒ rAdA ≤ rBk ⇒ rB ≥ rA(dA

k ) which must be true since rB > rA and

dA

k < 1.

However, c = rAdA+rBk
2k is less than rA when rA > rBk

2k−dA . We have therefore established

that in Case 3, the target allocation will be satisfied for System S if and only if rA ≤ rBk
2k−dA .

Case 4

In System S, fA = 0 < dA implies that βA,A = βB,A = 0, and that (97) and (99) are

inequalities. 0 < fB < dB implies that (98) and (100) must hold with equality (=).

Consequently, inequalities (97)-(100) further reduce to rA + βA,B ≤ c ≤ rB − βB,B, which

in turn reduces to rA ≤ c ≤ rB since βi,B ≥ 0.

As in Case 2, the key equation (88) for this case simplifies to c = rA+rB

2 . This value of

c is never greater than rB:

rB+rA

2 ≤ rB ⇒ rA ≤ rB, which must always be true since we are in Case 4.

Furthermore, this value of c is never less than rA:

rB+rA

2 ≥ rA ⇒ rB ≥ rA, which again must always be true since we are in Case 4.

We have established that in Case 4, there always exists a c feasible for InvStrict that results

in an allocation that exactly satisfies the target allocation for System S.

Case 5

In System S, 0 < fA = dA implies that (97) and (99) must hold with equality (=). 0 <

fB = dB implies that (98) and (100) must hold with equality (=). Consequently, InvStrict

reduces to

αA = rA − βA,A

αA = c− βA,B

αB = −βB,A = 0 (101)

αB = rB − c− βB,B

where the last equality in (102) holds because αB ≥ 0 and βB,A ≥ 0. InvStrict therefore

120



further reduces to rA−βA,A +βA,B = c = rB−βB,B. Because αA ≥ 0, it must be true that

rA − βA,A ≥ 0, which implies that InvStrict ultimately reduces to 0 ≤ c ≤ rB. Note that

these bounds on c imply nothing about the relationship between rA and rB. This makes

intuitive sense because of the conditions of Case 5; because dA ≤ k−dB and dB < k, it must

be true that dA + dB < k. Therefore, in the Centralized solution for System S, both loads

are completely delivered. Because carrier A owns the capacity on leg (o, d), he can also

completely deliver his own load when working alone. Carrier A therefore earns the same

revenue from delivering loads in both the Centralized and local case. As a result, any solu-

tion in which c ≥ 0 will be feasible for the inverse problem associated with carrier A, which

is described by equations (89)-(92). On the other hand, carrier B earns no direct revenue

by working alone, and therefore any c for which carrier B’s allocation xB = rBfB
(d,o)−cfB

(d,o)

is non-negative will be feasible for the inverse problem associated with carrier B, described

by equations (93)-(96). It follows that any c ≤ rB is feasible for (93)-(96), and we have the

desired result that 0 ≤ c ≤ rB.

The key equation (88) for this case simplifies to c = rB

2 . Since rB > 0, it follows that

0 ≤ c ≤ rB, and there always exists a c feasible for InvStrict that results in an allocation

that exactly satisfies the target allocation for System S.

Case 6

In System S, 0 < fA = k − dB < dA implies that βA,A = βB,A = 0, and that (97) and

(99) must hold with equality (=). 0 < fB = dB implies that (98) and (100) must hold with

equality (=). Consequently, InvStrict reduces to rA + βA,B = c = rB − βB,B, which in

turn reduces to rA ≤ c ≤ rB since βi,B ≥ 0.

The key equation (88) for this case is c = rA(dA+dB−k)+rBdB

2dB . We will first show that

this value of c is never greater than rB:

rA(dA+dB−k)+rBdB

2dB ≤ rB

⇒ rA(dA + dB − k) + rBdB ≤ 2rBdB
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⇒ rA ≤ rB( dB

dA+dB−k
)

Since we are in Case 6, dA+dB−k > 0. Furthermore, dA < k implies that dA+dB−k > dB.

We conclude that rA ≤ rB( dB

da+dB−k
) must always be true since rA < rB.

Next, we show that this value of c is never less than rA:

rA(dA+dB−k)+rBdB

2dB ≥ rA

⇒ rA(dA + dB − k) + rBdB ≥ 2rAdB

⇒ rAdA − rAk + rBdB ≥ rAdB

⇒ rA(dB − dA + k) ≤ rBdB

⇒ rA ≤ rB( dB

dB−dA+k
)

⇒ rA ≤ rB( dB

dB−k+k
) (because dA < k)

⇒ rA < rB which must always be true since we are in Case 6.

We have established that in Case 6, there always exists a c feasible for InvStrict that results

in an allocation that exactly satisfies the target allocation for System S.

Case 7

In System S, 0 < fA = k − dB < dA implies that βA,A = βB,A = 0, and that (97) and

(99) must hold with equality (=). 0 < fB = dB implies that (98) and (100) must hold with

equality (=). Consequently, InvStrict reduces to rA + βA,B = c = rB − βB,B, which in

turn reduces to rA ≤ c ≤ rB since βi,B ≥ 0.

The key equation (88) for this case simplifies to c = rA+rB

2 . Since we are in Case 7,

rA < rB and it can easily be verified that rA < rA+rB

2 < rB. It follows that there always

exists a c feasible for InvStrict that results in an allocation that exactly satisfies the target

allocation for System S.

Case 8

The key equation reduces to 0 = 0 because v(A) = rAk, fA = k, and fB = 0. The key

equation (88) is therefore satisfied by any c which is feasible for InvStrict. From Section
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2.4.2 we know that a feasible solution to InvStrict must exist, so we conclude that the

target allocation for System S can always be satisfied in this case.

Case 9

In System S, 0 < fA = dA implies that (97) and (99) must hold with equality (=). 0 <

fB = dB implies that (98) and (100) must hold with equality (=). Consequently, InvStrict

reduces to

αA = rA − βA,A

αA = c− βA,B

αB = −βB,A = 0 (102)

αB = rB − c− βB,B

where the last equality in (102) holds because αB ≥ 0 and βB,A ≥ 0. InvStrict therefore

further reduces to rA − βA,A + βA,B = c = rB − βB,B. Because αA ≥ 0, it must be true

that rA − βA,A ≥ 0, which implies that InvStrict ultimately reduces to 0 ≤ c ≤ rB. The

intuitive argument made in Case 5 regarding the bounds on c applies in this case as well.

The key equation (88) for this case simplifies to c = rB

2 . Since rB > 0, it follows that

0 ≤ rB

2 ≤ rB, and there always exists a c feasible for InvStrict that results in an allocation

that exactly satisfies the target allocation for System S.

Case 10

In System S, 0 < fA = dA implies that equations (97) and (99) must hold with equality.

0 < fB = k − dA < dB implies that βA,B = βB,B = 0, and that equations (98) and (100)

must hold with equality. Consequently, InvStrict reduces to

αA = rA − βA,A

αA = c

αB = −βB,A = 0 (103)

αB = rB − c
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where the last equality in (103) holds because αB ≥ 0 and βB,A ≥ 0. InvStrict therefore

further reduces to rB = c = rA−βA,A, and finally c = rB ≤ rA. Intuitively, it is reasonable

that c cannot be less than rB, because then it would be optimal for carrier B to deliver more

than fB of load B. (Recall that under the Strict Control model, the capacity available to

carrier B in his individual problem is k.) Likewise, if c > rB, carrier B’s optimal solution

would be fB = 0, since carrier B loses money by delivering load B.

The key equation (88) for this case simplifies to c = rB

2 . Because rB > 0, it is not pos-

sible for c = rB. We conclude that in this case there cannot exist a c feasible for InvStrict

that results in an allocation that exactly satisfies the target allocation for System S.

Case 11

For this case, instead of reducing inequalities (97)-(100) based on the characteristics of f∗,

we instead propose a solution that satisfies InvStrict. The solution c = rA = rB, αA =

αB = βB,A = βB,B = 0, βA,A = rA, βA,B = rB satisfies (97)-(100) at equality, and is

therefore feasible. As c = rA = rB is always a feasible solution for InvStrict, it follows that

in this case the target allocation can always be satisfied for System S.

Intuitively, in this case the centralized profit for System S is the same amount as the

profit carrier A can earn alone. Therefore if any capacity is used by carrier B, carrier A

must be compensated at least rA per unit of capacity used by carrier B. That is, c ≥ rA.

Since rA = rB, c ≥ rB. On the other hand, if c > rB it cannot be optimal for carrier B to

use any capacity, since he would lose money by doing so, so c ≤ rB. (Note that in this case,

multiple optimal solutions exist for the Centralized problem, so it is possible for fB > 0.)

Case 12

We first analyze five subcases for the relationship of f i and di in System S and demonstrate

for each case that the only value of c feasible for InvStrict is c = rB.

Case 12a

In System S, 0 < fA = dA implies that equations (97) and (99) must hold with equality.
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0 < fB < dB implies that βA,B = βB,B = 0, and that equations (98) and (100) must hold

with equality. Consequently, InvStrict reduces to

αA = rA − βA,A

αA = c

αB = −βB,A = 0 (104)

αB = rB − c

where the last equality in (104) holds because αB ≥ 0 and βB,A ≥ 0. InvStrict therefore

further reduces to rB = c = rA − βA,A, and finally c = rB ≤ rA.

Case 12b

In System S, fA = 0 < dA implies that βA,A = βB,A = 0, and that equations (97) and

(99) are inequalities. 0 < fB = dB implies that equations (98) and (100) must hold with

equality. Consequently, inequalities (97)-(100) further reduce to rA+βA,B ≤ c ≤ rB−βB,B,

which in turn reduces to rA ≤ c ≤ rB since βi,B ≥ 0. Since we are in Case 12, rA = rB and

we have that c = rB.

Case 12c

In System S, 0 < fA < dA implies that βA,A = βB,A = 0, and that equations (97) and (99)

must hold with equality. 0 < fB = dB implies that equations (98), and (100) must hold

with equality. Consequently, InvStrict reduces to rA + βA,B = c = rB − βB,B, which in

turn reduces to rA ≤ c ≤ rB since βi,B ≥ 0. Again, since rA = rB, c = rB.

Case 12d

In System S, fA = 0 < dA implies that βA,A = βB,A = 0, and that equations (97) and

(99) are inequalities. 0 < fB < dB implies that βA,B = βB,B = 0, and that equations (98)

and (100) must hold with equality. Consequently, inequalities (97)-(100) further reduce to

rA ≤ c ≤ rB, and it follows that c = rB since we are in Case 12.
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Case 12e

In System S, 0 < fA < dA implies that βA,A = βB,A = 0, and that equations (97) and (99)

must hold with equality. 0 < fB < dB implies that βA,B = βB,B = 0, and that equations

(98) and (100) must hold with equality. InvStrict therefore reduces to rA = c = rB.

The key equation (88) for Case 12 is c = rB(fB−fA+dA)
2fB . If c = rB then we have the follow-

ing:

rB(dA−fA+fB)
2fB = rB

⇒ rB(dA − fA) = rBfB

⇒ dA = fA + fB.

As we are in Case 12, dA < k. Therefore, dA = fA + fB implies fA + fB < k, which is a

contradiction on the optimality of fA and fB. We conclude that in this case there cannot

exist a c feasible for InvStrict that results in an allocation that exactly satisfies the target

allocation for System S.

Case 13

In System S,0 < fA = dA implies that (97) and (99) must hold with equality (=). 0 <

fB = dB implies that (98) and (100) must hold with equality (=). Consequently, InvStrict

reduces to

αA = rA − βA,A

αA = c− βA,B

αB = −βB,A = 0 (105)

αB = rB − c− βB,B

where the last equality in (105) holds because αB ≥ 0 and βB,A ≥ 0. InvStrict therefore

further reduces to rA − βA,A + βA,B = c = rB − βB,B. Because αA ≥ 0, it must be true

that rA − βA,A ≥ 0, which implies that InvStrict ultimately reduces to 0 ≤ c ≤ rB. The

intuitive argument made in Case 5 regarding the bounds on c applies in this case as well.

The key equation (88) for this case simplifies to c = rB

2 . Since rB > 0, it follows that
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Table 29: Case Summary

Case f∗i †
Feasible Range Conditions When

for c Key Eqn. (88) Satisfied

1 fA = 0, fB = k < dB rA ≤ c ≤ rB rA > rBk
2k−da

2 fA = 0, fB = k < dB rA ≤ c ≤ rB always satisfied
3 fA = 0, fB = k = dB rA ≤ c ≤ rB rA > rBk

2k−da

4 fA = 0, fB = k = dB rA ≤ c ≤ rB always satisfied
5 fA = dA ≤ k − dB, fB = dB < k 0 ≤ c ≤ rB always satisfied
6 fA = k − dB < dA, fB = dB < k rA ≤ c ≤ rB always satisfied
7 fA = k − dB < dA, fB = dB < k rA ≤ c ≤ rB always satisfied
8 fA = k ≤ dA, fB = 0 N/A‡ always satisfied
9 fA = dA < k, fB = dB ≤ k − dA 0 ≤ c ≤ rB always satisfied
10 fA = dA, fB = k − dA < dB c = rB ≤ rA never satisfied
11 fA + fB = k < dA + dB c = rA = rB always satisfied
12 fA + fB = k < dA + dB c = rB never satisfied
13 fA = dA, fB = dB 0 ≤ c ≤ rB always satisfied

†f i = f i
(o,d) = f i(d, o)

‡ A feasible range for c exists, but the specific range is irrelevant since (88) reduces to 0 = 0.

0 ≤ rB

2 ≤ rB, and there always exists a c feasible for InvStrict that results in an allocation

that exactly satisfies the target allocation for System S.

The results of the thirteen cases are summarized in Table 29. As the table shows,

the conditions which prevent the Strict Control model from achieving the Equal Benefits

allocation for System S are either (1) rB < rA, dB ≥ k, dA < k, and rA > rBk
2k−dA or (2)

rA ≥ rB, dA < k, and dA + dB > k.
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