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SUMMARY

The objective of this thesis is to present a robust watermarking algorithm

for H.264 and to address challenges in compressed-domain video watermarking. To

embed a perceptually invisible watermark in highly compressed H.264 video, we use

a human visual model. We extend Watson’s human visual model developed for 8× 8

DCT block to the 4×4 block used in H.264. In addition, we use P-frames to increase

the watermark payload. The challenge in embedding the watermark in P-frames

is that the video bit rate can increase significantly. By using the structure of the

encoder, we significantly reduce the increase in video bit rate due to watermarking.

Our method also exploits both temporal and texture masking.

We build a theoretical framework for watermark detection using a likelihood ra-

tio test. This framework is used to develop two different video watermark detection

algorithms; one detects the watermark only from watermarked coefficients and one

detects the watermark from all the ac coefficients in the video. These algorithms can

be used in different video watermark detection applications where the detector knows

and does not know the precise location of watermarked coefficients. Both watermark

detection schemes obtain video watermark detection with controllable detection per-

formance. Furthermore, control of the detector’s performance lies completely with

the detector and does not place any burden on the watermark embedding system.

Therefore, if the video has been attacked, the detector can maintain the same de-

tection performance by using more frames to obtain its detection response. This is

not the case with images, since there is a limited number of coefficients that can be

watermarked in each image before the watermark is visible.
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CHAPTER I

INTRODUCTION

The advent of digital television, the appearance of digital versatile disks (DVI), and

the transfer of video files over the internet demonstrate the importance of digital

video. Despite the success of MPEG-2 in the video coding industry, a new standard,

H.264, with higher compression efficiency, is poised to replace it. As H.264 digi-

tal video becomes more prevalent, the industry will need copyright protection and

authentication methods that are appropriate for it.

Since video signals are usually stored and distributed in a compressed format, it

is often impractical to first decode the video sequence, embed a watermark, and then

reencode it. An alternative approach is to embed the watermark in the compressed

domain, which produces a lower-complexity video watermarking algorithm. Unfortu-

nately, the large body of MPEG-2 video watermarking algorithms cannot be applied

directly to H.264 because of the differences in the standards.

The goal of this thesis is to present a robust watermarking algorithm for H.264 and

to address challenges in compressed-domain video watermarking. We give overviews

of H.264 and digital watermarking in Section 1.1 and 1.2, respectively. Section 1.3

presents the organization of this thesis.

1.1 H.264 Standard

As with previous standards, H.264 does not explicitly define an encoder/decoder

pair (codec), but defines the syntax of an encoded video bitstream and the method of

decoding this bitstream. With the exception of the deblocking filter, most of the basic

functional elements are present in the previous standards. The important differences

in H.264 occur in the details of each functional block. We review some of these

1



differences in the following subsections. More details can be found in [2, 45, 55, 73].

The block diagram of an H.264 encoder is shown in Figure 1.
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Figure 1: H.264 encoder block diagram.

1.1.1 Intra-Prediction

Unlike previous standards in which there is no prediction in their I-frames, I-frames

of H.264 are predicted in an intra-prediction mode. Intra-prediction means that the

samples of a macroblock are predicted by using only information of already transmit-

ted macroblocks of the same frame. In H.264, two different types of intra-prediction,

intra 4× 4 and intra 16× 16, are possible for the prediction of the luminance compo-

nent Y. The intra 4×4 mode is based on predicting each 4×4 luma block separately

and is well suited for coding the detailed areas of the frame. The intra 16× 16 mode,

on the other hand, performs prediction of the whole 16 × 16 luma block and is more

suited for coding the smooth areas of the frame. There are nine different prediction

modes in the intra 4×4 mode. One is dc prediction where one value is used to predict

the whole 4 × 4 block. In addition to the dc prediction mode, there are eight other

prediction modes, each for a specific prediction direction. All possible directions are

shown in Figure 2. There are four different prediction modes for the intra 16 × 16:

vertical prediction, horizontal prediction, dc prediction, and plane prediction. These

2



prediction modes are shown in Figure 3.

Figure 2: 4 × 4 luma prediction modes.

Vertical Horizontal DC Plane

Mean

(H+V)

HHHH

VVVV

Figure 3: 16 × 16 luma prediction modes.

1.1.2 Inter-Prediction

Inter-prediction creates a prediction model from one or more previously encoded video

frames or fields using block-based motion compensation. In previous standards, only

16 × 16 and 8 × 8 blocks are supported. However, in H.264, a range of block sizes

(16 × 16, 16 × 8, 8 × 16, and 8 × 8) are supported. For an 8 × 8 sub-macroblock,

one additional element specifies whether the corresponding 8 × 8 sub-macroblock is

further divided into partitions with block sizes of 8 × 4, 4 × 8, or 4 × 4.

Each partition or sub-macroblock partition in an inter-coded macroblock is pre-

dicted from an area of the same size in a reference picture. The offset between the

two areas (the motion vector) has quarter-sample resolution for the luma component

and one-eighth-sample resolution for the chroma components. The luma and chroma

samples at sub-sample positions do not exist and they are created using interpolation

3



from nearby samples.

In previous standards, B-pictures are pictures that are encoded using both past

and future pictures as references. The prediction is obtained by averaging the forward

and backward prediction signal. However, H.264 uses a linear combination with

arbitrary weights, regardless of the temporal direction. Furthermore, using H.264 it

is possible to use images containing B-slices as reference images for further prediction,

which was not possible in previous standards.

1.1.3 Transform Coding

Similar to previous standards, H.264 uses transform coding of the prediction residuals.

Previous standards such as MPEG1 and MPEG2 apply an 8 × 8 two-dimensional

discrete cosine transform (DCT). However, in H.264, an integer transform is applied

to 4 × 4 blocks. H.264 uses three different types of transforms. The first one is

applied to all 4 × 4 blocks of luminance and chrominance components of inter- or

intra-macroblocks. The second transform is a Hadamard transform for the 4×4 array

of luma dc coefficients of 16×16 intra-predicted macroblocks. The third transform is

also a Hadamard transform for the 2 × 2 array of chroma dc coefficients. H.264 also

has an option to use an 8 × 8 transform in addition to the 4 × 4 transform.

The H.264 4 × 4 integer transform is based on the DCT, but with several advan-

tages:

• It is an integer transform; thus, all the operations can be carried out using

integer arithmetic without loss of decoding accuracy. The core part of the

transform can be implemented using only additions and shifts.

• The mismatch between the encoder and decoder is avoided. This has been a

problem with the 8 × 8 DCT transform used in previous standards.

• The smaller 4 × 4 transform has visual benefits, resulting in less noise near

edges.
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1.1.4 Entropy Coding

H.264 specifies two alternative methods of entropy coding: a low-complexity technique

based on context-adaptive variable length coding (CAVLC) and a more computa-

tionally demanding algorithm using context-based adaptive binary arithmetic coding

(CABAC). Both methods represent major improvements in terms of coding efficiency

compared to the statistical coding traditionally used in video coding standards.

1.1.5 In-Loop Deblocking Filter

The block-based structure of the H.264 architecture can cause severe blocking arti-

facts. H.264 defines an adaptive in-loop deblocking filter to reduce blocking distortion,

where the strength of the filtering is adjustable. When the filtering process is carried

out in the loop, the filtered image is used for motion-compensation prediction of fu-

ture frames. This can improve compression performance because the filtered image

is often a more faithful reproduction of the original frame than a blocky unfiltered

image.

1.2 Digital Watermarking

Digital watermarking is a technique used for protecting the intellectual property rights

of digital media owners. Watermarking embeds a signal into the data stream that is

imperceptible to the human observer, but can be detected by a watermark detector,

hence identifying the owner and possibly the customer to whom this copy was origi-

nally distributed. The watermark does not prevent a user from listening to, viewing,

examining, or manipulating the content. One advantage of embedding the protection

directly in the signal is that the protection cannot be removed without affecting the

signal quality. While cryptographic techniques protect the data from eavesdroppers

during transmission, digital watermarking was introduced to leave a mark in the sig-

nal to protect it after transmission. Thus, these two fields together provide complete
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protection of the digital data.

Watermarking is a special case of data hiding or steganography. Steganography is

the practice of encoding secret information in a communication channel in a manner

such that the existence of the information is concealed. Typically, in steganography,

the secret information contains all the values, and the communication channel used

to hide it is not of value itself. However, in digital watermarking, the secret message

(watermark) is of little or no value on its own, and the communication channel (digital

image and video) is of value.

1.2.1 Video Watermarking Applications

With the wide application of digital video, watermarking can add value to various

video applications. Video watermarking applications are presented extensively in [16].

Some of these applications are summarized in Table 1.

Table 1: Applications of video watermarking.

Application Purpose of the embedded watermark
Copy control Prevent unauthorized copying.
Broadcast monitoring Identify the video being broadcast and check usage.
Fingerprinting Trace back a malicious user.
Video authentication Insure that the original content has not been altered.
Copy protection Prove ownership.
Enhanced video coding Bring additional information e.g. for error correction.
Advertisement Verify the frequency of display of an advertisement.
Content ID and archive Add meta-data (e.g. owner, date, etc.) for archive.

1.2.2 Video Watermarking Requirements

When designing a watermarking algorithm, trade-offs exist among three parameters:

payload, fidelity, and robustness. Data payload is the number of bits that can be

embedded in the digital data, the fidelity is the degradation introduced into the

signal, and the robustness is the ability of the watermark to remain readable after
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innocent or malicious signal processing operations on the signal. These parameters

are conflicting, and they should be chosen to meet the requirements of the application.

When designing watermarking algorithms for video, there are additional conflict-

ing parameters, such as the need for low complexity and constant bit rate. In some

video applications, watermark embedding or detection needs to be performed in real

time. Thus, video watermarking algorithms should have low complexity. Because of

the large size of video files, they are usually stored and distributed in a compressed

format. Video watermarking algorithms should not increase the bit rate of the com-

pressed video.

1.2.3 Video Watermarking Attacks

There are many challenges when designing a video watermarking algorithm. Simple

signal processing enhancement techniques, such as gamma correction, sharpening,

and filtering, and geometric attacks, such as cropping, resampling, and rotation, alter

the performance of watermarking algorithms. Transcoding, which involve changing

the compression ratio to adapt to the storage capacity, converting the video format,

and chrominance resampling, are likely to remove the watermark. Spatial desynchro-

nization, such as changes in display formats (4/3, 16/9, and 2.11/1) and changes

of resolution (NTSC, PAL, and SECAM), and temporal desynchronization such as

frame rate modification may also affect watermark detection algorithms. Also, video

editing, such as the addition of a commercial into the middle of a movie, a transition

between scenes, and superimposition, such as picture-in-picture technology, subtitles

and logos, degrade the performance of watermarking algorithms.

A more serious problem with video or audio signals, which are long, is the possi-

bility of a self-collusion attack. A collusion attack is a very powerful attack for still

images. There are two types of collusion attacks. If the same watermark is embedded

in different data, the watermark data can be estimated from each occurrence and
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the average of those estimates will be a refined estimate. If different watermarks are

embedded in the same data, several users can collude by averaging their decoded

signals to reduce the strength of the watermark and possibly render it unreadable.

However, with video one video sequence is enough to remove the watermark. If the

same watermark is embedded in all the frames, the first type of collusion can be used

to remove the watermark from different scenes. If a different watermark is embedded

in each frame, the second type of collusion can be used to remove the watermark

from correlated scenes. Recognizing these possibilities, the watermarks inserted in

two video frames should be as similar as the two frames are.

1.2.4 Classifications of Watermarking Techniques

In terms of their robustness to attacks, watermarking techniques can be classified

as fragile, robust and semifragile. Fragile watermarks do not survive lossy transfor-

mations to the original host signal; their purpose is tamper detection of the original

signal. Placing the watermark information into the perceptually insignificant portions

of the data guarantees imperceptibility, but provides a fragile watermark. Robust wa-

termarks are used for security applications and copyright protection. The technical

challenge is to provide transparency and robustness, which are conflicting require-

ments. For a watermark to be robust, the watermarks should be embedded into the

significant portions of the data. Semifragile watermarks should be insensitive to some

common innocent transformations, such as compression, but should be sensitive to

image transformations that alter the information, such as replacing a portion of the

image. The challenge for semifragile watermarking from a signal processing perspec-

tive is to provide a watermark that can distinguish between information altering and

simple signal processing transformations.

Watermarking techniques are also classified as public and private. Public or blind

watermarking algorithms do not require the original image to detect the watermark.
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Public watermarks are typically used for applications requiring a robust watermark,

such as identifying the buyers to prevent illegal duplication and distribution. Pri-

vate or non-blind watermarking algorithms do require the original image to verify the

watermark. Private watermarks are necessary for some fragile watermarking applica-

tions, such as authentication and tamper detection.

In terms of the domain in which the watermark is inserted, watermarking tech-

niques can be classified as spatial-domain, transform-domain or compressed-domain

watermarking algorithms. We will expand on these algorithms below. An overview

of a large number of watermarking techniques in the different domains can be found

in [18].

1.2.4.1 Watermarking in the Spatial Domain

In spatial domain watermarking systems, the watermark is embedded directly in the

spatial domain (pixel domain). Many of the spatial watermarking techniques provide

simple and effective schemes for embedding an invisible watermark into an image,

but are less robust to common attacks. Watermarking schemes in the spatial domain

are in general less robust toward noise-like attacks, such as lossy JPEG compression.

However, a big advantage is that the watermark may easily be recovered if the image

has been cropped or translated. Here we summarize a small portion of the proposed

spatial domain methods. More details about these algorithms can be found in a review

paper by Hartung et al. [18]. The abundance of spatial-domain methods results from

their simplicity and efficiency.

Tanaka et al. introduced the idea of tagging images to secretly hide information

and assure ownership rights first in 1990 [64, 65]. Then, in 1993 Caronni [11] described

an overall system to track unauthorized image distribution. He proposed marking

images using spatial signal modulation and called the process tagging. A tag is a

square with a constant value proportional to the maximum image brightness within
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the square and decaying outside the border. A selected image area is tagged by

adding or subtracting the tag and a random, zero mean, noise pattern. In the same

year, Tirkel et al. recognized the importance of digital watermarking and possible

applications for image tagging, copyright enforcement, counterfeit protection, and

controlled access to image data [67]. In their approach, the watermark in the form of

anm-sequence-derived PN code is embedded in the least significant bit (LSB) plane of

the image data. This method is actually an extension to simple LSB coding schemes

in which the LSBs are replaced by the coding information. The idea of using m-

sequences and LSB addition was extended and improved by the authors through the

use of two-dimensional m-sequences, which resulted in more robust watermarks [68].

A modified version of the method was presented by Schyndel et al. in [70] explicitly

mentioning the term digital watermarking. About the same time Matsui and Tanaka

proposed several watermarking techniques [34]. Their first method is based on a

predictive coding scheme for gray scale images; their second method modifies the

ordered dithering scheme for binary pictures; and their third scheme embeds the

watermark in facsimile documents.

Since the above techniques were introduced, interest and research activities in

watermarking have increased significantly. In some recent work, Bender et al. pro-

posed two methods for data hiding [5]. In the first method, called “Patchwork,”

randomly selected pairs of pixels are used to hide 1 bit by increasing one pixel by

one and decreasing the other pixel by one. In the second approach, called “Texture

Block Coding,” the watermark is embedded by copying one image texture block to

another area in the image with a similar texture. To recover the watermark, the

autocorrelation function has to be computed. Pitas et al. proposed signature casting

on digital images [36, 48, 49], which is based on the same basic idea as the patch-

work algorithm proposed by Bender et al. in [5]. Langelaar et al. proposed an

improved version of this idea in [29, 30]. The image is tiled into square blocks with
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a size being a multiple of eight. A single bit is embedded by iteratively modifying a

pseudorandomly selected block. To increase the performance of spread-spectrum wa-

termarking in the spatial domain, Kutter et al. proposed a method which exclusively

works with the blue image component (in the RGB color space) to maximize the

watermark strength, while keeping visual artifacts minimal [27]. Extensions to this

method allow increased robustness and even watermark recovery after geometrical

attacks and printing-scanning [26]. Macq et al. introduced watermarking adapted

to the human visual system (HVS) using masking and modulation [14, 15]. In their

scheme, the watermark in the form of a spatially limited binary pattern is low-pass

filtered, frequency modulated, masked, and then added to the host image. Wolfgang

et al. proposed a watermarking technique to verify image authenticity [74, 75] based

on an approach similar to the m-sequence approach suggested by Schyndel et al. for

the one-dimensional case [70] and Tirkel et al. for the two-dimensional case [68].

Watermark embedding based on quantization has been proposed by Chen and

Wornell [12]. Their method is called quantized index modulation (QIM) and is based

on a set of N -dimensional quantizers. Maes et al. proposed modifying geometric

features of the image [32]. The method is based on a dense line pattern, generated

pseudorandomly and representing the watermark. Fractal image compression, an idea

similar to spatial domain watermarking, was first proposed in [53]. In fractal image

compression, the image is coded using the principles of iterated function systems and

self similarity [56]. A drawback of this technique is the slow speed caused by the

fractal compression scheme.

1.2.4.2 Watermarking in the Transform Domain

In transform domain watermarking systems, watermark insertion is done by trans-

forming the image into the frequency domain using a discrete Fourier transform

(DFT), full-image DCT, block-wise DCT, wavelet, Hadamard, Fourier-Mellin, or
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other transforms. It is often claimed that embedding in the transform domain is

advantageous in terms of visibility and security. It has been shown that for maxi-

mum robustness, watermarks should be embedded into the same spectral components

that the host data already populate. For images and videos, these are typically the

low frequencies. Designing watermarking algorithms in the transform domain is not

as simple as in the spatial domain. However, there are many block DCT-domain

algorithms, because this transform is used by many compression standards such as

JPEG, MPEG2, and H.263, and etc.

Efficient watermarking in the DCT domain was first introduced by Koch et al.

[10, 23, 24]. As in the JPEG compression scheme, the image is first divided into square

blocks of size 8×8 for which the DCT is computed. From a pseudorandomly selected

block, a pair of midfrequency coefficients is selected from 12 predetermined pairs.

To embed a bit, the coefficients are then modified such that the difference between

them is either positive or negative, depending on the bit value. Bors and Pitas [8, 9]

suggested a method that modifies DCT coefficients satisfying a block site selection

constraint. The image is first divided into blocks of size 8×8. Certain blocks are then

selected according to a Gaussian network classifier decision. The middle range fre-

quency DCT coefficients are then modified, using either a linear DCT constraint or a

circular DCT detection region, to convey the watermark information. Swanson et al.

[61, 62] suggested a DCT-domain watermarking technique, based on frequency mask-

ing of DCT blocks, which is similar to methods proposed by Smith and Comiskey [58].

Tao and Dickinson [66] introduced an adaptive DCT-domain watermarking technique

based on a regional perceptual classifier with assigned sensitivity indexes. Podilchuk

et al. [52, 51] introduced perceptual watermarking using the just noticeable difference

(JND) to determine an image-dependent watermark modulation mask. The water-

mark is embedded into selected coefficients in either the DCT or wavelet transform

domain. For DCT coefficients, the author suggests using a perceptual model defined
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by Watson, based on utilizing frequency and brightness sensitivity as well as local

contrast masking. This model provides image-dependent masking thresholds for each

8 × 8 DCT block. Piva et al. described another DCT-based method which exploits

the masking characteristics of the HVS [50].

Frequency-domain watermarking was first introduced by Boland et al. [7] and Cox

et al. [13], who independently developed perceptually adaptive methods based on

modulation. Cox et al. drew parallels between their technique and spread-spectrum

communication since the watermark is spread over a set of visually important fre-

quency components. The watermark consists of a sequence of numbers x = x1, ..., xn

with a given statistical distribution, such as a normal distribution N(0, 1) with zero

mean and variance one. The watermark is inserted into the image V to produce the

watermarked image V ′. Three techniques are proposed for watermark insertion, but

the one most commonly used is

v′i = vi(1 + αxi) (1)

where α determines the watermark strength and the vis are perceptually significant

spectral components. The scheme can be generalized by introducing multiple scaling

parameters αi to adapt to the different spectral components and thus reduce visual

artifacts. To verify the presence of the watermark, the similarity between the recov-

ered watermark, given by the difference between the original image and the possibly

tampered image, and the original watermark, is measured.

Ruanaidh et al. proposed watermarking by modification of the phase in the fre-

quency domain [43]. To embed a bit the phase of a selected coefficient of an N1 ×N2,

DFT is modified by adding a small δ. The phase must satisfy negative symmetry

for the watermarked image to be real, which leads to the additional modification.

In another publication, Ruanaidh et al. explicitly design a watermarking technique

invariant to translation, rotation, and scaling [44]. The method is a hybrid between

DFT and log-polar mapping. A variation of their idea based on the Radon transform
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was proposed by Wu et al. [78].

Embedding the watermark using a multiresolution decomposition has first been

proposed by Boland et al. [7]. As for schemes working in other transform domains,

the watermark is usually given by a pseudo-random 2-D pattern. Both the image and

watermark are decomposed using a 2-D wavelet transform, and in each subband of the

image a weighted version of the watermark is added. Watermark decoding is, as usual,

based on a normalized correlation between the estimate of the embedded watermark

and the watermark itself. Various wavelet-based schemes have been proposed [21, 25,

79, 81]. The differences between the schemes usually lie in the way the watermark is

weighted in order to decrease visual artifacts.

1.2.4.3 Compressed-Domain Video Watermarking

Since video signals are usually stored and distributed in a compressed format, it

is often impractical to first decode the video sequence, embed the watermark, and

then reencode it. Thus, designing low-complexity video watermarking algorithms

that embed the watermark in the compressed domain is attractive. Most of the

previous work on compressed-domain video watermarking focused on embedding the

watermark into the MPEG2 bitstream. The residual blocks in the MPEG2 standard

are compressed using the DCT transform, quantized, reordered, run-level coded, and

then variable length coding is applied.

Langelaar et al. proposed two real-time watermark embedding methods [28]. Both

methods embedded the watermark directly into the MPEG compressed bitstream.

The first method embedded the watermark by changing the variable length codes

(VLCs). The watermark is embedded by selecting suitable VLCs and forcing their

least-significant bits (LSB) to match the corresponding watermark bits. The second

method discarded some of the high-frequency DCT coefficients of the bitstream to
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embed the watermark. Hartung et al. proposed a method for embedding the water-

mark in the uncompressed video and an extension of that method for embedding the

watermark in the MPEG2 video [17]. The authors’ method, which is based on spread

spectrum watermarking [13], spread the watermark bits by a large factor called the

chip rate to obtain the spread sequence. The spread sequence is amplified with an

adjustable factor and is modulated by a binary pseudo-noise sequence and added to

the video signal. Alattar et al. proposed an MPEG4 compressed-domain video wa-

termarking method, and its performance is studied at low video bit rates [3]. This

approach is similar to the approach in [17]; however, the authors used a synchroniza-

tion template to combat geometric attacks. Their method also featured a gain control

algorithm that adjusts the embedding strength of the watermark, depending on local

image characteristics. Simitopoulos et al. proposed another compressed-domain video

watermarking algorithm that operates directly on the MPEG2 bitstream [57]. The

proposed algorithm altered only the quantized ac coefficients of luminance blocks that

belong to intra-frames. Perceptual models combining perceptual analysis and block

classification are used during the embedding to preserve the video quality. In [76],

Wolfgang et al. proposed an image adaptive DCT-based (IA-DCT) approach that

used the visual model described in [72]. This model consists of an image-independent

part based on frequency sensitivity and an image-dependent part based on luminance

sensitivity and contrast masking. They have extended their IA-DCT technique to

video. The best visual quality was obtained by using the IA-DCT watermarking

technique at every I-frame and applying a simple linear interpolation of the water-

marks to the frames between two consecutive I-frames.

A few recently published papers have concentrated on embedding a watermark in

the H.264 bitstream sequence. Qiu et al. proposed a hybrid watermarking scheme

that embedded a robust watermark in the DCT domain and a fragile watermark in

the motion vectors [54]. Their technique embeds the watermark in the compressed
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H.264 video, but it is not robust against common watermarking attacks. Wu et al.

presented a blind watermarking algorithm by embedding the watermark in the H.264

I-frames [77]. Their scheme survives H.264 compression attacks with more than a

40:1 compression ratio in I-frames. However, their scheme requires decompressing

the video to embed the watermark.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 presents a watermarking algorithm

that is robust to self-collusion attacks. Chapter 3 introduces a robust watermark

embedding method for H.264 using Watson’s human visual model. In Chapter 4, we

build a theoretical framework for watermark detection based on a likelihood ratio

test. This framework is used to obtain video watermark detection with controllable

detection performance when the precise location of the watermark is known to the

detector, a detector we call location-aware. In Chapter 5, we introduce a watermark

embedding algorithm that controls the video bit rate increase in compressed-video.

This algorithm makes watermark embedding in P-frames possible. Chapter 6 presents

a variation on the watermark detection algorithm presented in Chapter 4 that does

not depend on where the watermark signal is embedded called the location-unaware

detector. Finally, Chapter 7 summarizes this work and suggests future research di-

rections.
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CHAPTER II

SELF-COLLUSION RESISTANT WATERMARK

EMBEDDING

Watermarking digital video introduces challenges that are not present when water-

marking digital images. The large amount of data and inherent redundancy between

frames makes video watermarking algorithms susceptible to self-collusion attacks.

The self-collusion attack is one of the most powerful attacks for video. If the same

watermark is embedded in all the frames, the watermark data can be estimated from

each frame, and the average of those estimates will be a refined estimate. If different

watermarks are embedded in similar frames, the attacker can average those frames to

reduce the strength of the watermark and possibly render it unreadable. Therefore,

the watermarks inserted in two video frames should be as similar as the two frames

are.

The collusion problem was first addressed by Swanson et al. [63], who presented a

scene-based video watermarking technique that is robust to self-collusion attacks. In

their technique, the video sequence is segmented to different scenes and a temporal

wavelet transform is applied to the frames in each scene. The watermark is added to

the low-pass and high-pass frames of the temporal wavelet transform. They compute

the 8 × 8 DCT of those frames and use the perceptual masking properties of the

human visual model to embed an invisible and robust watermark. Their method uses

a two-level hierarchy of transforms and is considered to be highly complex. Recent

work by Trappe et al. [69] has focused on collusion-resistant digital fingerprinting

that can identify colluders; their work makes use of effective anti-collusion codes for

CDMA-type watermarking using the theory of combinatorial designs. In [60], Su et
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al. present a theoretical framework for the linear collusion analysis of watermarked

digital video sequences, and derive a new theorem equating a definition of statistical

invisibility, collusion-resistance, and two practical watermark design rules. In [59],

the authors develop a novel video watermarking framework based on their collusion-

resistant design rules formulated in [60]. They propose employing a spatially-localized

image dependent approach to create a watermark whose pairwise frame correlations

approximate those of the host video. To characterize the spread of its spatially-

localized energy distribution, the notion of a watermark footprint is introduced. They

explain how a particular type of image dependent footprint structure, comprised of

subframes centered around a set of visually significant anchor points, can lead to

two advantageous results: pairwise watermark frame correlations that more closely

match those of the host video for statistical invisibility, and the ability to apply image

watermarks directly to a frame sequence without sacrificing collusion-resistance.

In this chapter, we design a novel low complexity watermarking algorithm that is

robust to self-collusion attacks [38]. The algorithm embeds the watermark into the

quantized ac residuals of the H.264-compressed video. It achieves collusion resistance

by embedding the watermark in the same location in similar frames and different

locations in dissimilar frames. The coefficient within a macroblock that holds the

watermark is determined by a key that is specific to that macroblock. This requires a

long key stream sequence. To avoid this problem, the key is generated using a public

key extracted from some features of the macroblock and the copyright owner’s secret

key. It is proposed that the relative difference of the dc coefficients of the 4×4 blocks

in a macroblock is a robust feature for public key extraction.

2.1 Proposed Method

Our proposed H.264 watermarking algorithm works at the macroblock level of I-

frames. A macroblock contains a 16 × 16 sample region of a video frame. I-frames
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are chosen for watermark embedding because their existence is crucial for the video

signal. Also, P- and B-frames are highly compressed by motion compensation and

there is less capacity for embedding a watermark in them. The luminance component

of macroblocks in an I-frame is intra-coded in 16×16 or 4×4 intra-prediction modes.

Each 4 × 4 block of residual data is transformed by an integer transform after intra-

prediction. If the macroblock is coded in the 16 × 16 intra-prediction mode, the

dc coefficients of all 4 × 4 blocks are transformed by a 4 × 4 Hadamard transform

after the 4 × 4 integer transform to decorrelate these coefficients further. We only

embed the watermark in the quantized ac residuals of the luma component of 4 × 4

intra-predicted macroblocks. We do not embed the watermark in the 16 × 16 intra-

predicted macroblocks for two reasons. First, the 16×16 intra-prediction mode is used

for smooth regions of the frame, and watermark embedding causes visible artifacts

there. Second, the extra Hadamard transform for this macroblock decorrelates the

dc coefficients even more, and many of these coefficients are zero.

Our proposed algorithm embeds the watermark in one quantized ac residual of

a macroblock. The security of the algorithm is based on the randomness of the

selected coefficient for watermark embedding. Embedding the watermark in only one

coefficient in a macroblock does not induce visible artifacts. However, the attacker

cannot identify which coefficient has been selected. Therefore, he/she has to change

at least half of the coefficients to make watermark detection impossible. However,

changing half of the coefficients results in visible artifacts in the video signal and

renders the video useless.

The selection of the coefficient in the ith macroblock for watermark embedding is

under the control of a key. If the same key is used for every frame, the watermarking

algorithm becomes vulnerable to a self-collusion attack. Thus, a very long key stream

sequence is required. Transmitting a long key, however, would make the algorithm

impractical. This problem is solved by generating the key from a combination of
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a public key, Kpi, extracted from some features of the macroblock, and a secret

key, Ks, possessed by the copyright owner. The public key is extracted from each

macroblock and passed as the plaintext to a cryptographic system with the secret

key, Ks. The ciphertext generated by the cryptographic system is the key for that

macroblock. Since the security demands of watermarking systems are less than those

of cryptographic systems, a fast and simple cryptographic scheme can be used for this

purpose. We used a shift cipher with modulus 2, key Ks, and plaintext Kpi. Two

bits of this key determine the selected 8×8 block in the macroblock, b8i, another two

bits determine the selected 4×4 block in the 8×8 block, b4i, and four bits determine

the selected ac quantized residual in that 4× 4 block, cwi, for watermark embedding.

Kp should be extracted from some features of the macroblock that cannot be changed

by the attacker without degrading the perceptual quality of the video. In the next

section, we describe the public key extraction procedure. Figure 4 shows the structure

of our proposed watermarking algorithm.
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Figure 4: A watermark embedding algorithm robust to self-collusion attack.

2.1.1 Extracting the Public Key

To make the extracted public key robust, a feature of the macroblock should be used

to which the human eye is sensitive. One such feature is the set of dc coefficients of

the 4 × 4 blocks. If the dc coefficients themselves are used for public key extraction,

the attacker could change the dc coefficient of every block by the same amount, which

would make watermark detection impossible. This would result in a darker or brighter
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frame, but the perceptual quality of each frame would be preserved. However, if the

relative difference of the dc coefficients of 4×4 blocks is used to determine the public

key, the attacker has to increase or decrease the dc coefficient of one block or more

to make the public key extraction impossible for the copyright owner. This results in

visible artifacts.

To determine the public key, Kpi, the quantized dc residuals of 4×4 blocks of the

ith 4 × 4 intra-coded macroblock are extracted and put in a vector of dc coefficients,

DCi, in a key-scrambled fashion. DCi can have up to 24 elements, 16 elements from

the luma component, Y, and four components from each of the chroma components,

Cb and Cr. The structure of the public key generation is shown in Figure 5. The jth

bit of Kpi is derived from DCi as follows:

Kpi(j) =











0 DCi(j) > DCi(j + 1)

1 DCi(j) ≤ DCi(j + 1)
(2)

Luma

Cb Cr

DCi

Kpi

Figure 5: Structure of public key generation.

To show the robustness of the extracted public key, one of the dc coefficients in a

macroblock is changed to erase one bit of Kpi. The resulting I-frame and one of the

following P-frames are shown in Figure 6. It can be observed that changing only one

dc coefficient in a macroblock lowers the perceptual quality of the video.
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(a) Original I-frame (b) I-frame after attack

(a) Original P-frame (b) P-frame after attack

Figure 6: Robustness of the extracted public key.

2.1.2 Watermark Embedding

If a compressed video bitstream is to be watermarked, it has to be decoded to some

extent. The closer the watermark embedding operation is to the entropy coding

level, the less computationally complex and more suitable for real-time application

the algorithm becomes. However, the closer the embedding is to the DCT transform

operation, the less the degradation induced by watermark embedding becomes. We

embed the watermark in the reordered quantized ac residuals. Because quantization

is a lossy operation, it is desirable to embed the watermark after quantization to

avoid possible erasure of the watermark. Furthermore, entropy coding and decoding

are fast procedures, and watermark embedding and detection can be done in real

time.

As discussed in Subsection 2.1.1, several bits of Kpi are used to select the coef-

ficient, cwi, in the macroblock for watermark embedding. Kpi has more bits than

required. Thus, the extra key bits can be used to make the algorithm more secure

and robust. To embed the watermark Wi in macroblock i, cwi is modified as follows:
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if Wi = 0,

cwi =











cwi − 1 if cwi mod 2 = 1

cwi if cwi mod 2 = 0
(3)

if Wi = 1,

cwi =











cwi if cwi mod 2 = 1

cwi − 1 if cwi mod 2 = 0
(4)

The maximum change made to the quantized coefficient selected for watermark

embedding is one level. Thus, the modification of the unquantized DCT coefficient is

as large as the quantization step size for that block. Consequently, the degradation

induced by watermark embedding is proportional to the quantization error.

Entropy coding produces short codewords for frequently occurring values and

longer codewords for less frequently occurring values. Generally, the values closer to

zero occur more frequently. The watermark embedding method moves some values

closer to zero and some values further. Thus, the average bit rate remains more or

less the same. There is a coded block pattern parameter in H.264 that indicates which

blocks within a macroblock contain coded coefficients. This parameter is computed

before watermark embedding. Thus, if the watermarking algorithm selects a block of

all zero coefficients to embed the watermark, this parameter does not let the change

take place and helps to control the bit rate. When the detector finds that the coef-

ficient selected to hold the watermark bit is in an all-zero block, it knows that the

watermark has not been embedded in that macroblock.

2.1.3 Watermark Decoding

Watermark decoding is performed after entropy decoding. The decoder uses the dc

coefficients of the macroblock with its secret key to find the location of the watermark.

The watermark bit in the macroblock is determined as follows:
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Ŵi =











0 if cwi mod 2 = 0

1 if cwi mod 2 = 1
(5)

2.2 Simulation Results

Our proposed watermarking algorithm was implemented in the H.264 reference soft-

ware version JM86 [1]. The standard video sequence carphone (QCIF, 176×144) at

the rate of 30 frames per second was used for simulation. Figure 7 shows the fidelity

of our proposed watermarking algorithm. The frames on the left are an I-frame and

one of the following P-frames of this video sequence coded with the H.264 codec. The

frames on the right are the watermarked version of these frames.

(a) Original I-frame (b) Watermarked I-frame

(a) Original P-frame (b) Watermarked P-frame

Figure 7: Fidelity of the self-collusion resistant watermark embedding algorithm.

The number of watermark bits embedded in an I-frame of six standard video

sequences, the percentage of watermark bits recovered after an H.264 reencoding

attack, and the percentage increase in the video bit rate after watermarking are

given in Table 2. The reencoding attack encodes the watermarked video again with

an H.264 encoder, which has the same encoding parameters as the original encoder
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Table 2: Number of watermark bits per frame, watermark recovery rate after reen-
coding attack, and percentage increase in video bit rate of collusion resistant water-
marking algorithm for six standard video sequences.

Video Watermark bits Reencoding Bit rate

sequence per frame recovery rate increase

carphone 54 68.42% 0.82%

claire 28 88.23% 1.53%

mobile 90 84.70% 0.22%

mother 48 76.47% 1.05%

table 35 82.75% 0.21%

tempete 80 86.30% 0.32%

used to watermark the video, and decodes the watermark in the H.264 decoder. On

average, the watermarking process increased the size of the compressed video by only

0.69%.

Two examples of a hypothetical adversary’s attempt to remove the watermark are

shown in Figure 8. One ac residual and half of the ac residuals in each 4 × 4 block

were modified in the frame on the left and right, respectively. While the first attack

only erases a few bits of the watermark, the second one erases half of the watermark

bits. Both attacks result in a significant degradation in video quality. The proposed

algorithm is not robust against signal processing attacks, because any simple signal

processing operation, such as filtering, changes the prediction modes and subsequently

the residuals in the I-macroblocks of H.264. However, the algorithm is robust against

modifications in the H.264 bitstream domain.

2.3 Conclusion

In this chapter, a novel, low complexity watermarking algorithm robust to self-

collusion attack was presented. The coefficient in a macroblock to be embedded

with the watermark is selected by a key. The key is generated from a robust feature

extracted from the macroblock and a secret key possessed by the copyright owner.
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(a) One coefficient (b) Half of the coefficients

Figure 8: Examples of adversary’s attempt to remove the watermark by modifying
a certain number of quantized ac residuals in a 4 × 4 block.

The relative difference of the dc coefficients of 4×4 blocks is used as a robust feature.

Using macroblock features for watermark embedding makes the algorithm more ro-

bust against self-collusion attacks by embedding the watermark in the same location

in similar frames and different locations in dissimilar frames. The algorithm is fast

and appropriate for real-time applications. Simulation results show that watermark

embedding preserves the perceptual quality of the video. On average, the proposed

algorithm increased the video bit rate 0.69%. The algorithm is robust against modifi-

cation in H.264 bitstream domain, however, it is not robust against signal processing

attacks, because they change the prediction modes and subsequently the residuals in

the I-macroblocks of H.264. The result of this work appears in [38].
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CHAPTER III

PERCEPTUAL WATERMARK EMBEDDING

The main challenge in designing digital watermarking schemes is to balance trans-

parency, robustness and payload, which are conflicting parameters. When embedding

a watermark in compressed videos, it is desirable to obtain transparency while embed-

ding the largest number of watermark bits with the maximum watermark strength.

Human visual models are needed to determine a perceptual upper bound on the

watermark signal strength in each portion of the signal.

Different techniques have been developed that incorporate perceptual knowledge

into watermarking schemes to provide robustness and transparency. Wolfgang et al.

used the visual models developed in [72] for still images to find the just noticeable dif-

ference (JND) for each coefficient, based on frequency sensitivity, luminance masking,

and contrast masking [76]. They embedded the watermark only in those coefficients

that exceeded their JNDs. They extended their method to video by using the algo-

rithm on every I-frame and applying linear interpolation of the watermarks to the

frames between consecutive I-frames. Simitopoulos et al. proposed a watermarking

scheme that embeds the watermark directly into the MPEG stream [57]. To make the

watermark imperceptible, perceptual analysis [72] and block classification techniques

were combined.

In this chapter, we develop a perceptual watermarking algorithm for H.264 that is

robust to common signal processing attacks [39, 41]. Since H.264’s high compression

performance leaves little room for an imperceptible signal to be inserted, we employ

a human visual model to increase the payload and add robustness while limiting

visual distortion. Watson et al. derived a model for distortion perception in 8 × 8
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DCT blocks [46, 72]. This perceptual model has been used in [57, 76] to design

watermarking algorithms for still images and MPEG-2 video. However, H.264 uses a

4× 4 transform [33] instead of an 8× 8 transform. The 4× 4 transform is an integer

orthogonal approximation to the DCT. Since the transform is defined by exact integer

operations, inverse-transform mismatches are avoided. In this work, we extend the

human visual model to the 4×4 DCT block. If all the coefficients with visual capacity

for watermark embedding are used, the visual quality of the video will be degraded.

We propose embedding the watermark in a selected subset of the coefficients that have

visual watermarking capacity by using a key-dependent algorithm. This makes the

algorithm more robust to malicious attacks. Furthermore, we design our algorithm

so that the watermark is spread over frequencies and blocks. This reduces the error

pooling effect described by Watson [72]. Error pooling has not been considered in

previous perceptual watermarking algorithms [57, 76].

The algorithm we proposed in Chapter 2 embeds the watermark in the compressed

video, but this algorithm is not robust against common watermarking attacks. This

is because the watermark is embedded in and extracted from the I-frame residuals.

Any simple processing, such as filtering followed by reencoding by an H.264 encoder

changes the intra-macroblock prediction modes, and thus the residuals, which makes

watermark recovery impossible. In this chapter, we present a robust watermarking

algorithm for H.264. To achieve this goal we embed the watermark in the quantized

DCT residuals to avoid decompressing the video and also to reduce the complexity of

the watermarking algorithm. However, the watermark is extracted from the decoded

video sequence to make the algorithm robust to intra-prediction mode changes.
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3.1 A Human Visual Model for the 4 × 4 DCT

The DCT coefficients Xi,j of an M ×M block of image pixels x(n1, n2) expand the

block in terms of the DCT basis functions as follows:

x(n1, n2) =
M−1
∑

i=0

M−1
∑

j=0

Xi,jcicj cos

(

π(2n1 + 1)i

2M

)

cos

(

π(2n2 + 1)j

2M

)

, (6)

where

ci =











√

1/M i = 0
√

2/M i > 0.
(7)

Human visual sensitivity for each DCT basis function varies as a function of its

frequency. Peterson et al. measured quantization error thresholds at various DCT

frequencies in an 8 × 8 DCT block [47]. Here, we extend the quantization error

visibility thresholds for an 8 × 8 DCT block to those appropriate for a 4 × 4 DCT

block.

The basis functions of a 4 × 4 DCT are defined as

ci4cj4 cos

(

π(2n1 + 1)i4
2 × 4

)

cos

(

π(2n2 + 1)j4
2 × 4

)

0 ≤ i4, j4 ≤ 3, (8)

and the basis functions of an 8 × 8 DCT are defined as

ci8cj8 cos

(

π(2n1 + 1)i8
2 × 8

)

cos

(

π(2n2 + 1)j8
2 × 8

)

0 ≤ i8, j8 ≤ 7. (9)

Comparing equations (8) and (9) suggests that the basis function i4j4 of a 4 × 4

DCT will have the same frequencies as the basis function i8j8 of an 8 × 8 DCT, if

i8 = 2 × i4 (10)

j8 = 2 × j4

hold. Since for all 0 ≤ i4, j4 ≤ 3, there exists an i8 and j8 in the range 0 ≤ i8, j8 ≤ 7,

the visibility thresholds of a 4×4 DCT basis function can be derived from the known

visibility thresholds of an 8× 8 DCT basis functions. The factors ci and cj cause the
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amplitude of the errors for a 4×4 DCT to be twice the size as those of an 8×8 DCT.

Thus, to obtain invisibility, the visibility threshold of the i4j4 basis function of a 4×4

DCT is obtained by dividing the visibility threshold of the 2i42j4 basis function of an

8 × 8 DCT by 2. We used the quantization matrices given in [47] for an 8 × 8 DCT

block in the Y CbCr color space to derive the quantization matrices for a 4 × 4 DCT

block. The actual visibility threshold ti,j is half the quantization step size qi,j .

To obtain an image-dependent quantization matrix, two other effects from [72],

luminance masking and contrast masking, are exploited. A simple solution to ap-

proximate luminance masking is with a power function as

ti,j,k = ti,j(X0,0,k/X̄0,0)
aT . (11)

X̄0,0 is the dc coefficient corresponding to the mean luminance of the display and

X0,0,k is the dc coefficient of block, k. aT controls the degree to which this masking

occurs. We choose aT = 0.649 as suggested in [72]. Finally, contrast masking gives

the masked threshold, mi,j,k, for a DCT coefficient Xi,j of block k (Xi,j,k) as

mi,j,k = max[ti,j,k, |Xi,j,k|wi,jti,j,k
1−wi,j ] (12)

where wi,j is between 0 and 1. We choose wi,j = 0.7 as the authors of [72] recommend.

The image-dependent approach ensures that each error falls below a threshold.

Furthermore, Watson noted that the visibility of an error is not based solely on the

visibility of the largest error, but instead reflects a pooling of errors over frequency

and within a block. We spread the watermark over frequencies and blocks to reduce

error pooling, which has not been done in the previous perceptual watermarking

algorithms [57, 76].

3.2 Proposed Method

We compute the masked error visibility threshold, mi,j,k, for each coefficient Xi,j in

block k. This threshold is divided by the H.264 quantization step size for that block,
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Qk, to determine the capacity of that coefficient, si,j,k, for holding the watermark:

si,j,k = floor(mi,j,k/Qk). (13)

We denote the set of coefficients with visual capacity for watermark embedding (i.e.

capacity greater than zero) as

CV = {c1, ..., cn} = {Xi,j,k|si,j,k 6= 0, ∀ i, j, k}. (14)

Inserting the watermark in all of the coefficients in CV creates visible artifacts. The

algorithms in [57, 76] only embed the watermark in those coefficients in CV that are

greater than their corresponding visibility thresholds, mi,j,k. However, this signifi-

cantly limits the number of watermarked coefficients. If more coefficients need to be

watermarked in the video frame, the parameters in the visual model that define the

impact of masking need to be increased (aT and wi,j)[72]. The danger is that this

may assume a greater benefit from masking than is actually available, resulting in

noticeable visual artifacts. Furthermore, an adversary can more easily determine the

locations of the watermarked coefficients, making the algorithm less robust to attacks.

A coefficient-selection algorithm chooses a subset of the coefficients in CV . A se-

cret key controls the coefficient-selection process. The algorithm generates a palette

that contains the actual locations of the watermarked coefficients. The owner can

keep this palette for watermark detection or can compute the palette again using

the watermarked video. This palette can be considered as an automatically gener-

ated confirmation number or password. Since the coefficient-selection algorithm is

controlled by a key, the attacker does not know the actual location of watermarked

coefficients in CV . To be confident of eliminating the watermark, an attacker needs

to modify most of the coefficients in CV , which creates visible artifacts.

We designed the coefficient-selection algorithm to spread the watermark over fre-

quencies and blocks. For each 4×4 block, each coefficient is ranked by a key. However,

to spread the watermark over frequencies, we give a higher ranking for watermark
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embedding to those frequencies with the fewest coefficients in CV more frequently.

We embed the watermark only in those coefficients whose magnitude is greater than

a threshold, Tcoef . The algorithm spreads the watermark over blocks by limiting

the number of watermarked coefficients, Tblock, that can be embedded in each block.

Therefore, the algorithm embeds the watermark in the Tblock highest ranking coeffi-

cients in CV that are greater than Tcoef . One advantage of this strategy is that we can

easily increase the watermark payload by increasing Tblock or decreasing Tcoef . Our

experiments show that moderate relaxation of these thresholds increases the number

of watermarked coefficients without impairing the visual quality, because the error

pooling effect is limited. Furthermore, Tblock, and Tcoef can be adaptively adjusted to

control the number of watermarked coefficients in a frame.

3.3 Watermark Embedding

We embed the watermark in the quantized DCT residuals of I-frames. Thus, only

entropy decoding is required to embed the watermark, and the watermark embedding

algorithm has low computational complexity. We use a bipolar watermark W ∈

{−1, 1} with mean zero and variance one.

After any simple attack applied to the decoded video followed by reencoding,

the residuals will change because the I-macroblock prediction modes will change.

However, the linearity property of the DCT guarantees that the watermark is still

present in the decoded video sequence, and we can still detect it with high probability.

In the following, we denote the original pixel values by iijk, the prediction by pijk,

the residual by rijk, and their corresponding DCTs by Iijk, Pijk, and Rijk. Assume

s is a DCT coefficient, then, s̃, s′, and ŝ represent the quantized, watermarked, and

attacked coefficient, respectively. The addition of the prediction and residual is equal

to the original pixel. This can be written as

iijk = pijk + rijk. (15)
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By the linearity property of the DCT,

Iijk = Pijk +Rijk. (16)

The watermark is inserted onto the quantized DCT residual as

R̃′
ijk = R̃ijk +Wijk, (17)

and

R′
ijk = (R̃ijk +Wijk) ×Qk. (18)

Thus,

I ′ijk = Iijk +WijkQk, (19)

and the addition of the watermark to the quantized DCT residuals is the same as

the addition of the watermark times the quantization step size to the original DCT

coefficients. When common signal processing operations or watermarking attacks on

the video change the prediction mode of the block, the residual and prediction will

change to r̂ijk 6= r′ijk, and p̂ijk 6= pijk. However, if the video quality is still acceptable,

then r̂ijk + p̂ijk = îijk ≈ i′ijk, and the watermark can still be extracted from the

decoded video sequence.

3.4 Two Compressed-Domain Video Watermark Embedding

Scenarios

When embedding a watermark in compressed video, there are two different possible

scenarios. In the following two subsections, we show the structure of watermark

embedding using the human visual model for these two scenarios and discuss their

differences.

3.4.1 Watermark Embedding in the Encoder

In one scenario, the watermark is inserted in the encoder. This scenario is shown in

Figure 9. If we ignore the top path in this block diagram, this is the structure of
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an H.264 encoder. Each macroblock of the current frame is predicted in either intra

or inter prediction mode. The difference between the current macroblock and the

prediction signal is the residual. The residuals are transformed, quantized, reordered

and entropy coded and finally written to the bitstream. There is a backward path

in the encoder that reconstructs the current frame. The perceptual model finds the

location of coefficients with watermarking capacity, CV , using the original video

frame. The coefficient selection algorithm selects a subset of coefficients from the

coefficients with watermarking capacity and the watermark is added to the quantized

DCT residuals at those locations.

In this case, the error induced by watermarking will be corrected in future pre-

dictions and will not propagate within I-frames or to P-frames. Consequently, more

coefficients can be watermarked in the compressed video while maintaining high per-

ceptual quality. However, there will be an increase in the bit rate of the macroblocks

that are predicted from the watermarked macroblocks.
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Figure 9: Perceptual watermark embedding in the encoder.
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3.4.2 Watermark Embedding in the Bitstream

In the other scenario, the watermark is embedded into the bitstream. This scenario

is shown in Figure 10. In this case, error propagation makes maintaining high vi-

sual quality a bigger problem than the increase in video bit rate. Since H.264 uses

intra-prediction in I-frames, the error propagates both within I-frames and to P-

frames, with the error propagation in I-frames more severe than in P-frames. One

watermarked coefficient in an I-frame is likely to affect only one pixel in each of the P-

frames predicted from that frame. However, one watermarked coefficient can change

a whole 4×4 or 16×16 block predicted from the block that has the watermarked co-

efficient in an I-frame. To have acceptable visual quality, a drift compensation signal

needs to be added in the decoder to compensate for the error as suggested in [17].
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Figure 10: Perceptual watermark embedding in the bitstream.

3.5 Exploring the Visibility of Propagated Artifacts in P-

frames for Bitstream Watermarking

When the watermark is embedded in the bitstream, the watermark signal in I-frames

may propagate within I-frames and to the following P- and B-frames and produce

undesirable artifacts. Hartung et al. used drift compensation to compensate for

propagated errors in P- and B-frames [17]. However, the computational complexity

of this solution limits its applicability. Nonetheless, it is important to embed the

watermark so that the propagated artifacts in P- and B-frames are as small as possible.

In this section, we propose using drift compensation as suggested in [17] to compensate
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for the error in I-frames but not P-frames. The error propagation in I-frames is more

severe than P-frames as mentioned in the Subsection 3.4.2. Since the frequency of I-

frames is low in the video sequence, the computational complexity cost will be smaller

than using drift compensation for the whole video sequence.

Our intuition suggests that the propagated artifacts in P-frames are often more no-

ticeable in moving areas because watermark errors can move from locations with high

spatial masking thresholds in I-frames to locations with lower spatial masking thresh-

olds in P- and B-frames. Furthermore, moving errors are usually more objectionable

than static errors, and the human eye naturally pays more attention to moving areas.

On the other hand, temporal masking suggests that the moving areas in a frame have

higher masking thresholds. Therefore, in this section we find the moving areas in the

video frame to explore the visibility of propagated artifacts in those areas. We make

the number of watermarked coefficients in those areas adaptive by changing Tblock

and Tcoef , and we observe the visual quality of the video. Although the information

inferred from motion estimation does not represent true motion, it still carries useful

information for finding an estimate of motion characteristics. In the following two

subsections, we show how to find the moving areas using motion intensity in a frame

and a motion history image (MHI) inferred from motion estimation.

3.5.1 Motion Intensity

P-frames in H.264 contain intra-coded, inter-coded and copy macroblocks. The copy

mode indicates a macroblock is a direct copy of the macroblock at the same location in

the previous reference frame. In inter-coded macroblocks, each partition is predicted

from an area of the same size in a reference frame. Inter-coded macroblocks in a

P-frame are predicted from a previously coded frame using motion compensation. In

intra-coded macroblocks each 16 × 16 or 4 × 4 luma region and each 8 × 8 chroma

region is predicted from previously-coded samples in the same slice. Macroblocks
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Table 3: Number of macroblocks coded in each mode for the first P-frame of six
standard video sequences.

Sequence Copy Intra Inter

claire 71 0 28

carphone 30 5 69

mobile 7 0 92

mother 70 0 29

salesman 85 0 14

table 66 0 33

encoded in intra-coded mode often represent uncovered background. The number of

macroblocks of each prediction type represents the amount of motion versus static

background in each video frame. For example, video sequences with a large fraction

of static background can be expected to have a larger number of macroblocks coded

in copy mode. We denote the number of macroblocks coded in copy mode as Ncopy.

Table 3 shows the number of macroblocks coded in each mode for the first P-frame

of six standard video sequences in QCIF (176× 144) format. In this resolution, there

are 99 macroblocks per frame.

In video sequences with large static backgrounds such as claire, mother, table

and salesman, a large number of macroblocks are coded in copy mode. In video

sequences where most of the frame is moving, such as mobile, few macroblocks are

coded in copy mode. The motion of the video sequence carphone lies between these

extremes.

3.5.2 Spatial Motion Distribution

The motion history image (MHI) has been used in [31] to control motion estimation.

Each pixel (i, j) in an MHI corresponds to the spatial (i, j)th block in a sequence.

The pixel intensity describes how long since there has been motion detected at that

location. Let If (i, j) be the pixel intensity at time index f , with I0(i, j) = 0. At each
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frame, the pixel intensity is updated as follows:

If(i, j) =











If−1(i, j) + 1 |mvfx(i, j)| + |mvfy (i, j)| = 0

0 |mvfx(i, j)| + |mvfy (i, j)| 6= 0
(20)

where (mvfx(i, j), mv
f
y (i, j)) is the motion vector of block (i, j) at frame f . The MHI

can be considered as a histogram of non-moving regions.

We use the MHI to find the motion history in I-frames from the motion estimation

information in the previous GOP P-frames. The intra period is set to four, and we

modify equation (20) such that the blocks with |mvfx(i, j)| + |mvfy (i, j)| < Tmv are

considered static. The algorithm adaptively calculates Tmv based on the motion

intensity of the current GOP as follows:

Tmv =











3 Ncopy ≥ 70,

3 + 3(7 − floor(Ncopy/10)) Ncopy < 70.
(21)

This equation, found experimentally, provides a tradeoff between finding enough mov-

ing and static blocks. We assume that copy-mode macroblocks have nearly zero mo-

tion vectors and that intra-coded macroblocks have large motion vectors. The first

and second I-frames of two standard videos with their corresponding motion vectors

from the P-frame before the second I-frame and their MHI are shown in Figure 11.

For display purposes, each pixel of the MHI is depicted as one block. The pixel inten-

sity is normalized between 0 and 255. The black areas in the MHI indicate there has

been motion in those areas in the previous P-frame and they correspond to the non-

white areas in the image that is constructed from the magnitude of motion vectors of

4 × 4 blocks, what we call MV. We observe that the motion history image not only

contains motion history information, but it also gives a good estimate of the spatial

motion distribution.
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3.6 Simulation Results

We implemented our proposed watermarking algorithm in the H.264 reference soft-

ware version JM10.2 [1]. We considered the scenario that the watermark was embed-

ded in the encoder. To compare the perceptual quality of our proposed watermarking

algorithm with the algorithm in [76], an I-frame and the following P-frame from

the standard video sequence carphone (QCIF, 176 × 144) are shown in Figure 12.

The frames on the top are watermarked using our algorithm, and the frames on the

bottom are watermarked using the approach in [76]. Note that only the I-frame is wa-

termarked, but adding a watermark to an I-frame will affect its dependent P-frames.

This figure shows that the perceptual qualities of the watermarked frames from the

two algorithms are comparable. However, there are 929 watermarked coefficients in

the I-frame watermarked with our algorithm whereas the I-frame watermarked with

the algorithm in [76] has only 642 watermarked coefficients.

We used six standard QCIF video sequences (176 × 144) at the rate of 30 frames

per second for our simulation. We choose Tblock = 2 and Tcoef = 10. Table 4 shows the

percentage of the watermarked coefficients from the set of coefficients with visual wa-

termarking capacity, CV , and the average number of watermarked coefficients in each

I-frame for each video sequence for our algorithm versus the algorithm in [76]. The

results show that our algorithm increases the number of watermarked coefficients for

all video sequences except the video sequences mobile and table. These video se-

quences are highly textured. Thus, they have a large number of DCT coefficients with

watermarking capacity. However, our algorithm limits the number of watermarked

coefficients in each block to Tblock = 2, which decreases the number of watermarked

coefficients in those video sequences. The performance of our detection algorithm

proposed in Chapter 4 depends on the number of watermarked coefficients in each

interval. Since these video sequences already have many watermarked coefficients in

each frame, this does not influence the performance of our detection algorithm. It
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Table 4: Percentage of watermarked coefficients from the set of coefficients with
visual watermarking capacity and the average number of watermarked coefficients in
each I-frame for six standard video sequence.

Percentage of watermarked Average number of watermarked

coefficients from CV coefficients in an I-frame

Sequence Our alg. Alg. in [76] Our alg. Alg. in [76]

carphone 19.0% 8.8% 891 609

claire 6.6% 5.0% 450 346

mobile 19.0% 22.4% 2291 2699

mother 7.6% 3.7% 630 309

salesman 20.0% 13.3% 953 626

table 8.0% 8.8% 810 897

is more important to increase the number of watermarked coefficients in those video

sequences that have few DCT coefficients with watermarking capacity. On average,

watermark embedding using our algorithm increases the bit rate of the video by about

5.6% versus 4.3% using the algorithm in [76]. Since these algorithms use human vi-

sual models, the PSNR is not an appropriate metric to compare the visual quality.

However, readers might find it useful to know that the PSNR of the watermarked

video decreases 0.58 dB compared to the compressed (but unwatermarked) video for

our algorithm versus 0.48 dB for the algorithm in [76].

To explore the advantage of using motion characteristic to reduce the visibility of

propagated artifacts in P-frames when the watermark is embedded in the bitstream,

we implemented our proposed watermarking algorithm in the H.264 bitstream using

the reference software version JM10.1 [1] with an intra period of four. To distinguish

between watermarking artifacts from intra-prediction in I-frames and motion estima-

tion in P- and B-frames, we prevented the H.264 encoder from using intra-prediction

in I-frames. We found the moving areas of the video frame using the motion in-

tensity and motion history images. To explore the advantage of using the motion

activity model, we ran the following experiment. We set Tcoef = 10 and Tblock = 2
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for static areas, and we changed Tcoef and Tblock in the moving areas. Our simula-

tion results showed that no significant change in visual quality was observed when

Tblock was changed from zero to five and Tcoef was changed from one to 10. Thus,

exploiting motion characteristics did not have any advantage in terms of improving

the perceptual quality of the video in this case.

In Chapter 4, we develop a watermark detection algorithm with controllable per-

formance and we use it to detect the watermark embedded in the compressed video

using the algorithm presented in this chapter. Our simulation results show that we

achieve the desired detection performance in Monte Carlo trials. The simulation re-

sults also show that our proposed watermarking scheme is robust to 3 × 3 Gaussian

filtering, 50% cropping, addition of white noise, N (0, 0.001), and a trivial deliberate

attack.

3.7 Conclusion

In this chapter, we proposed a watermarking algorithm for H.264 that is robust to

common signal processing attacks. We achieved this goal by employing Watson’s

human visual model adapted for a 4x4 DCT block to obtain a larger payload and

a greater robustness while minimizing visual distortion. We used a key-dependent

algorithm to select a subset of the coefficients with visual watermarking capacity

for watermark embedding to obtain robustness to malicious attacks. Furthermore,

we spread the watermark over frequencies and within blocks to avoid error pooling.

Our simulation results show that we increased the payload and robustness without

a noticeable change in perceptual quality by reducing this effect. We embedded

the watermark in the coded residuals to avoid decompressing the video. However,

we detected the watermark from the decoded video sequence in order to make the

algorithm robust to intra-prediction mode changes. The result of this work appears

in [39, 41].
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(a) First I-frame (b) Second I-frame

(c) Previous P-frame MV (d) carphone’s MHI

(e) First I-frame (f) Second I-frame

(g) Previous P-frame MV (h) table’s MHI

Figure 11: carphone and table video sequences with their corresponding motion
vector (MV) and motion history images (MHI).
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(c) Our alg.’s watermarked I-frame (d) Our alg.’s Watermarked P-frame

(c) Watermarked I-frame from [76] (d) Watermarked P-frame from [76]

Figure 12: Comparison of the visual quality of our perceptual watermark embedding
algorithm with the algorithm in [76].
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CHAPTER IV

LOCATION-AWARE DETECTION (LAD)

The performance of any watermarking scheme relies heavily on the design of the wa-

termark detector. Zeng et al. argued that for the particular application of resolving

rightful ownership using invisible watermarks, it is crucial that the original image not

be directly involved in the watermark detection process [80]. The true owner should

be able to detect the watermark without using a second image, since its authenticity

is also questionable. Hernandez et al. presented a watermark detection algorithm

where the embedding domain is the DCT coefficients except the dc term [19]. Their

algorithm assumes a generalized Gaussian distribution for the ac coefficients of the

DCT and an additive embedding rule. In [35], Nikolaidis et al. considered watermark-

ing in the DCT and DWT domains and the same pdf assumption for the coefficients

as in [19]. The authors employ a Rao test that is equivalent to a generalized like-

lihood ratio test. The resulting detector is asymptotically optimal, meaning that it

is optimal under the assumption of a large data record. Huang et al. presented a

new detection structure for transform domain additive watermarks based on Huber’s

robust hypothesis testing theory [20]. The statistical behaviors of the image subband

coefficients are modeled by a contaminated generalized Gaussian, which tries to cap-

ture a small deviation of the actual situation from the idealized generalized Gaussian.

The performance of these algorithms has been tested on different images.

In this chapter, we build a theoretical framework for watermark detection using

a likelihood ratio test, and we use this framework to obtain video watermark de-

tection with controllable performance [41, 42]. We show that performance of our

video watermark detector depends upon three parameters: the average of the squares
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of the H.264 quantization step sizes of watermarked DCT coefficients, the standard

deviation of watermarked DCT coefficients, and the number of watermarked DCT co-

efficients, Nw, over which the detector response is computed. We cannot control the

standard deviation of the DCT coefficients or the quantization step size, but, when

detecting watermarks in video, we can control the number of watermarked coefficients

used to compute the detector response. This is not the case with images, since there

is a limited number of coefficients that can be watermarked in each image before the

watermark is visible. Therefore, our video watermark detection algorithm calculates

Nw to obtain the desired probability of a detection, PD, for a given probability of a

false alarm, PF . Our simulation results show that the theoretically chosen value for

Nw does lead to the desired values of PD and PF in Monte Carlo trials.

4.1 Theoretical Framework

Watermark detection is a classical detection problem [71] where one hypothesis states

that the watermark is present and the other states that the watermark is not present.

Detecting the watermark requires choosing between the two hypotheses. The obser-

vations under the two hypotheses are as follows:

H0 : yℓ = Iℓ ℓ ∈ CW,

H1 : yℓ = Iℓ +WℓQℓ ℓ ∈ CW,
(22)

where CW is the set of watermarked coefficients, Iℓ is the selected DCT coefficient of

the video frame, Qℓ is the H.264 quantization step size selected by the video encoder

for that coefficient and Wℓ is chosen from a bipolar watermark sequence with mean

zero and variance one. The index ℓ denotes the ℓth watermark bit or the ℓth DCT

coefficient. It has been shown that the ac coefficients of the DCT are well modeled

by a generalized Gaussian distribution [6, 22] with mean zero, which can be written

as

pIℓ(I) = ae−|b(I)|c , (23)
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where a and b are defined as

a =
bc

2Γ(1
c
)
, (24)

b =
1

σw

√

Γ(3
c
)

Γ(1
c
)
, (25)

and Γ(.) is the gamma function. A value of c = 0.8 models the ac coefficients reason-

ably well. The value of c = 2 results in a normal Gaussian distribution. For simplicity,

we assume that c = 2 and show that it results in low complexity watermark detection

algorithm with controllable detection performance. The performance and results of

the detector when c 6= 2 are still valid, but, in this case the detector is suboptimal.

The ac coefficients probability distribution with c = 2 is

pIℓ(I) =
1

σw
√

2π
e
− (I)2

2σ2
w . (26)

The optimal detector compares the likelihood ratio to a threshold

py|H1
(Y |H1)

py|H0(Y |H0)

H1

≷
H0

η (27)

where η controls the tradeoff between missed detections and false alarms [71]. As-

suming that the watermarked DCT coefficients have Gaussian distribution, and they

are statistically independent and substituting the joint probability density into the

likelihood ratio test in (27) gives

Nw
∏

ℓ=1

1
σw

√
2π
e
− (Yℓ−WℓQℓ)2

2σ2
w

Nw
∏

ℓ=1

1
σw

√
2π
e
− (Yℓ)

2

2σ2
w

H1

≷
H0

η. (28)

Algebraic simplification reduces this to the equivalent test

Y =

Nw
∑

ℓ=1

YℓWℓQℓ

H1

≷
H0

σ2
w ln η +

NwQ̄
2
w

2
, (29)

where Nw is the number of DCT coefficients from CW and Q̄2
w = (1/Nw)

Nw
∑

ℓ=1

Q2
ℓ . We

see that we can detect the watermark by multiplying the DCT coefficients in CW of
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the decoded frame, Yℓ, by the original watermark bits, WℓQℓ, calculating the sum of

those terms, and comparing the result with a threshold.

Assuming that the DCT coefficients are independent and applying the central

limit theorem, Y is N (0, NwQ̄
2
wσ

2
w) under H0, and Y is N (NwQ̄

2
w, NwQ̄

2
wσ

2
w) under

H1, where σw is the standard deviation of DCT coefficients in CW . Multiplying (29)

by 1/(σw
√

NwQ̄2
w) to normalize the Gaussian distribution, we have

ψ =
1

σw
√

NwQ̄2
w

Nw
∑

ℓ=1

YℓWℓQℓ

H1

≷
H0

σw ln η
√

NwQ̄2
w

+

√

NwQ̄2
w

2σw
, (30)

where the threshold, T , is

T =
σw ln η

√

NwQ̄2
w

+

√

NwQ̄2
w

2σw
. (31)

Then, ψ is N (0, 1) under H0 and is N (
√

NwQ̄2
w/σw, 1) under H1. These probability

densities are shown in Figure 13. The distance between the means of the two densities

is d , (
√

NwQ̄2
w)/σw.

d ,
√
NwQ̄2

w

σw

pψ|H0(Ψ|H0) pψ|H1
(Ψ|H1)

PF

T

Figure 13: Probability densities pψ|H0
(Ψ|H0) and pψ|H1

(Ψ|H1) for a location-aware
detector.

To evaluate the performance of the watermark detector, we compute the proba-

bility of a detection, PD, and the probability of a false alarm, PF . PD and PF are as
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follows:

PD =

∫ ∞

T

1√
2π
e−

(x−d)2

2 dx = erfc(T − d), (32)

PF =

∫ ∞

T

1√
2π
e−

x2

2 dx = erfc(T ) (33)

To achieve the specified value of PD and PF , the detector selects the threshold

to agree with the value of PF and then selects d to achieve the target values of PD.

Recall that d is a function of three parameters and is defined as

d ,

√

NwQ̄2
w

σw
. (34)

Q̄2
w is the average of the squares of the H.264 quantization step sizes of the DCT

coefficients in CW and is chosen by the encoder. σw is the standard deviation of the

DCT coefficients in CW and is a property of the video. Therefore, the watermark

detector cannot change either of these two parameters. However, the third parameter,

Nw, is the number of DCT coefficients in CW used to compute the detector response,

and it can be chosen by the detection algorithm to obtain the desired value of d. The

detector finds the value of Nw by solving (34) for it. The detector then computes the

detector response, ψ, over Nw coefficients in CW . The stream of Nw watermarked

DCT coefficients may extend across several I-frames or may be contained within a

fraction of an I-frame. Note that if Qℓ = Q is fixed for all the watermarked DCT

coefficients, then, (34) simplifies to

d ,

√
NwQ

σw
. (35)

Our watermark detection scheme has several advantages. First, the error rate of the

detector can be maintained regardless of the video sequence given that the video

is long and the detector response latency can be arbitrary. The detector response,

ψ, has the same probability distribution regardless of the video sequence. However,

based upon Nw and the number of watermarked DCT coefficients in each I-frame, the
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number of I-frames needed to compute ψ varies. This means that the detector will

produce results more frequently for some videos than others. We believe that this is

acceptable since nearly every video should have a sufficient number of watermarked

DCT coefficients to produce detector responses at an acceptable rate. Another ad-

vantage is that the responsibility of choosing the value of Nw lies completely with the

detector and does not place any burden on the watermark embedding system. For

example, if the watermark detector notices that the video sequence has been attacked

to remove the watermark, it can increase the value of Nw to obtain more reliable de-

tector response. Notice that we are taking advantage of the large amount of data in

video sequences compared to images to obtain more robust watermark detection. An-

other advantage is that computing the detector response, ψ, has low computational

complexity. Recall that ψ is defined as

ψ =
1

σw
√

NwQ̄2
w

Nw
∑

ℓ=1

YℓWℓQℓ. (36)

The watermark sequence is a bipolar sequence of {−1, 1}, and usually Qℓ is constant

within a subset of DCT coefficients that are used to compute one detector response.

Thus, computing the detector response requires only the addition or subtraction of

the DCT coefficients with few multiplications. However, choosing Nw requires com-

puting the standard deviation of coefficients in CW , which has high computational

complexity, but this standard deviation varies over a small range. Thus, if the com-

putational complexity of computing σw for the video frames is undesirable, one can

always assume an upper limit on the value of σw and set Nw accordingly.

4.2 Simulation Results

To test the performance of our watermark detection scheme, we implemented our

watermark embedding scheme proposed in Chapter 3 in the H.264 reference software

version JM10.2 [1]. We considered the scenario that the watermark was embedded in

the encoder, and we used six standard video sequences in the QCIF (176×144) format
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at the rate of 30 frames per second. To compare the experimental results with the

theoretical framework derived in the previous section, a large number of watermarked

coefficients are required to compute the detector response many times. Thus, we

coded and watermarked I-frames of every video sequence 80 times by an H.264 encoder

with an intra period of one (group of pictures: I B I). Note that the more detector

responses we have, the more smoothly we can estimate their distribution. The H.264

encoder used a fixed quantization step size Q = 16 for I-frames.

The goal of our first experiment is to obtain PD = 0.99 and PF = 0.01. Solving

(32) and (33) analytically, these probabilities can be achieved for T = 2.325 and

d = 4.65. Comparing the watermarked coefficients from the decoded video with

their values before the watermark was added, we notice that the difference is not

exactly equal to the quantization step size, because the encoding process is lossy. On

average, the difference between the watermarked coefficients and their values before

watermarking is Q̂ instead of Q, where Q̂ is generally smaller than Q, but close to it.

Therefore, we have to solve

d ,

√
NwQ̂

σw
, (37)

to find Nw. This equation suggests that the smaller the values of the quantization

parameter are, the larger Nw must be to obtain the desired performance. Also the

larger the value of σw, the larger Nw must be to obtain the desired performance.

Table 5 shows the average value of Q̂ and σw calculated over 80 watermarked

sequences for each video and the corresponding Nw to obtain d = 4.65. We detect

the watermark by computing the detector response over Nw watermarked coefficients

for each video. The threshold is set at T = d/2 = 2.325. We calculate the probability

of a detection and probability of a false alarm based on this threshold. PD and PF

and the mean value of the detector response, mψ, obtained from our experiments

are also shown in Table 5. Our results show that PD is close to 0.99, PF is close

to 0.01, and mψ is close to d = 4.65 for all the video sequences. In Figure 14, we
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Table 5: Experimental results when the target is to achieve PD = 0.99 and PF = 0.01
for a location-aware detector.

Sequence Q̂ σw Nw mψ PD PF

carphone 14.40 59.17 365 4.68 0.9898 0.0108

claire 13.52 81.73 790 4.67 0.9905 0.0114

mobile 15.37 51.86 246 4.71 0.9917 0.0121

mother 12.91 63.65 526 4.64 0.9877 0.0140

salesman 14.33 54.60 314 4.67 0.9913 0.0109

table 14.95 59.45 342 4.70 0.9920 0.0107

plot the probability distribution of the detector response under H0 and H1 for the

video sequence carphone. We have a total of 31978 detector responses from coding

this video sequence 80 times. The symbols ◦ and ⋄ reflect the number of detector

responses in the intervals centered around them. We have scaled the number of

detector responses in each interval so that their largest value has the same value as

the peak of a Gaussian distribution with variance one. This figure shows that the

experimentally determined p(Ψ|H0) and p(Ψ|H1) approximate a normal Gaussian

distribution with a variance of one. This justifies our assumption that the detector

response has a normal Gaussian distribution.

In the next experiment, the target is to obtain PD = 0.999 and PF = 0.001.

Solving equations (32) and (33) analytically, these probabilities can be achieved with

T = 3.09 and d = 6.18. Table 6 shows the average values of Q̂ and σw and the corre-

sponding Nw to obtain d = 6.18. PD and PF and the mean of the detector response,

mψ, obtained from our experiments are also shown in Table 6. Again our results

show that PD is close to 0.999 and PF is close to 0.001 for all the video sequences.

In Figure 15, we plotted the probability distribution of the detector response under

H0 and H1 for the video sequence carphone. This figure shows that p(Ψ|H0) and

p(Ψ|H1) are further apart than p(Ψ|H0) and p(Ψ|H1) in Figure 14.

In the next experiment, the target is to obtain PD = 0.99 and PF = 0.001. From
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Figure 14: Detector response probability distribution of a location-aware detector
to achieve PD = 0.99 and PF = 0.01 for carphone video sequence.

Table 6: Experimental results when the target is to achieve PD = 0.999 and PF =
0.001 for a location-aware detector.

Sequence Q̂ σw Nw mψ PD PF

carphone 14.40 59.17 645 6.21 0.9992 0.0009

claire 13.52 81.73 1395 6.20 0.9995 0.0014

mobile 15.37 51.86 435 6.25 0.9990 0.0014

mother 12.91 63.65 928 6.16 0.9991 0.0015

salesman 14.33 54.60 554 6.20 0.9992 0.0009

table 14.95 59.45 604 6.23 0.9993 0.0016

(33), we find that T = 3.09 achieves PF = 0.001. Then, from (32), we find that

d = 5.416 achieves PD = 0.99. Finally, we solve (37) to obtain the required Nw for

each video sequence. Table 7 gives PD, PF and the mean of the detector response, mψ,

for each video sequence. Figure 16 shows p(Ψ|H0) and p(Ψ|H1), and the threshold T

for the video sequence carphone for this case. Since the probability of a false alarm

is smaller than the probability of a missed detection, the threshold is to the right of

where p(Ψ|H0) and p(Ψ|H1) intersect.

Finally, we look at the effect of different attacks on detection performance. We first

52



N (0, 1)
p(Ψ|H0)

p(Ψ|H1)

p(
ψ

)

ψ

T

-6 -4 -2
0

0 2 4 6 8 10 12

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 15: Detector response probability distribution of a location-aware detector
to achieve PD = 0.999 and PF = 0.001 for carphone video sequence.

Table 7: Experimental results when the target is to achieve PD = 0.99 and PF =
0.001 for a location-aware detector.

Sequence Q̂ σw Nw mψ PD PF

carphone 14.40 59.17 495 5.44 0.9904 0.0012

claire 13.52 81.73 1071 5.43 0.9895 0.0009

mobile 15.37 51.86 334 5.48 0.9921 0.0012

mother 12.91 63.65 713 5.40 0.9882 0.0012

salesman 14.33 54.60 426 5.44 0.9916 0.0009

table 14.95 59.45 464 5.46 0.9924 0.0013

consider a 3×3 Gaussian filtering attack. We choose Nw and the threshold, T = 3.09,

as in Table 6 to approximate PD = 0.999 and PF = 0.001 without any attack.

Table 8 gives Q̂, σw, mψ, PD and PF after the Gaussian filtering attack. Comparing

Table 8 with Table 6 shows that after the Gaussian filtering attack the variance of

the video sequences remains approximately the same, but Q̂ becomes significantly

smaller. Thus, if we choose Nw as before, p(Ψ|H1) moves towards p(Ψ|H0) because

the mean value of ψ under hypothesis H1, mψ, becomes smaller. Since we set the

threshold T as before, we still obtain the desired PF = 0.001, however PD is lower
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Figure 16: Detector response probability distribution of a location-aware detector
to achieve PD = 0.99 and PF = 0.001 for carphone video sequence.

Table 8: Experimental results after the 3 × 3 Gaussian filtering attack when the
target is to achieve PD = 0.999 and PF = 0.001 for a location-aware detector.

Sequence Q̂ σw Nw mψ PD PF

carphone 10.02 60.12 645 4.25 0.9118 0.0009

claire 9.56 81.01 1395 4.42 0.9300 0.0014

mobile 9.43 51.92 435 3.79 0.8300 0.0014

mother 9.62 65.11 928 4.49 0.9400 0.0015

salesman 10.08 54.57 554 4.36 0.9380 0.0009

table 9.35 59.59 604 3.85 0.8500 0.0016

than 0.999. Comparing Table 8 with Table 5 shows that the mψ’s obtained for each

video sequence are similar. Thus, we can still achieve PD = 0.99 and PF = 0.01 by

choosing T as we did for Table 5.

Increasing Nw further, we can still achieve PD = 0.999, and PF = 0.001. Suppose

that after the Gaussian filtering attack, Q̂ becomes as small as 9 and suppose that the

variance of the video sequences remains the same. We use these values to calculate the

required Nw for each video sequence. Table 9 shows the assumed Q̂, the calculated

value for Nw, and PD and PF after the 3 × 3 Gaussian filtering attack. Since we
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Table 9: Experimental results after the 3 × 3 Gaussian filtering attack with new
values of Nw when the target is to achieve PD = 0.999 and PF = 0.001 for a location-
aware detector.

Sequence Q̂ σw Nw mψ PD PF

carphone 9 59.17 1650 6.79 > 0.9998 0.0017

claire 9 81.73 3149 6.65 > 0.9992 0.0007

mobile 9 51.86 1268 6.47 > 0.9999 0.0011

mother 9 63.65 1910 6.44 > 0.9997 0.0009

salesman 9 54.60 1405 6.94 > 0.9999 0.0011

table 9 59.45 1666 6.40 > 0.9998 0.0007

assumed that Q̂ gets smaller than it actually does and we set the threshold as before,

we always do better in detection than PD = 0.999. We did not find any missed

detections for any of the video sequences in our experiment. Therefore, the only

statement that we can make is that the probability of missed detection, PM , is smaller

than one over the number of detector responses we computed, and PD is greater than

1 minus this value.

We also consider a cropping attack. In our experiment, we crop each video frame

to approximately 50% of its original size from the four sides. We assume that the

detector can determine how the video is cropped by using either the original video

sequence or synchronization templates. The simulation results show that the cropping

attack does not affect the detection performance, however, it does affect the number of

detector responses that can be extracted for each video sequence. Table 10 shows Nw

and the number of QCIF (176 × 144) I-frames, F , required to compute the detector

response for different detection performance scenarios and after Gaussian filtering

and cropping attacks. Assume that video is displayed at the rate of 30 frames per

second and an I-frame is sent once per second. Then, this table suggests that we will

be able to extract one detector response in every F seconds. We see that the largest

value of F = 7.41 happens for the claire video sequence after the Gaussian filtering

attack. Note that the QCIF format (176 × 144) has one of the smallest resolutions;
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Table 10: Number of I-frames required to compute the detector response for differ-
ent detection performance scenarios and after the 3 × 3 Gaussian filtering and 50%
cropping attacks for a location-aware detector.

No attack No attack Filtering Cropping

PD = 0.99 PD = 0.999 PD = 0.999 PD = 0.999

PF = 0.01 PF = 0.001 PF = 0.001 PF = 0.001

Sequence Nw F Nw F Nw F Nw F

carphone 365 0.46 645 0.82 1650 2.09 645 1.37

claire 790 1.85 1395 3.28 3149 7.41 1395 5.69

mobile 246 0.12 435 0.21 1268 0.61 435 0.37

mother 526 0.95 928 1.64 1910 2.67 928 3.47

salesman 314 0.39 554 0.70 1405 1.78 554 1.01

table 342 0.46 604 0.82 1666 2.26 604 1.41

these results improve for higher resolution videos. Furthermore, we only embed the

watermark in the luminance component of I-frames. The number of watermarked

coefficients and subsequently the frequency of the detector response can be increased

by embedding the watermark in P-frames and/or chroma components.

Next, we consider the effect of additive white noise. We add white noise of mean

zero and variance 0.001 to each frame of the video sequence. We chose this variance

experimentally so that the noise is visible, but the video is not useless. We choose Nw

as in Table 6 to obtain PD = 0.999 and PF = 0.001. Table 11 shows Q̂, σw, mψ, PD

and PF after the additive white noise attack. The results shows that the proposed

algorithm is robust to an additive white noise, N (0, 0.001), attack without increasing

Nw.

Finally, we examine a trivial deliberate attack to erase the watermark. The adver-

sary does not know which coefficients from the set CV have been watermarked, nor

does he know the value of the watermark inserted in each watermarked coefficient.

Recall that the set CV is the set of coefficients with visual watermarking capacity. To

be confident that he has erased the watermark, he has to modify all the coefficients

in CV. Since he does not know the value of the watermark, a trivial way to erase the
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Table 11: Experimental results after the additive white noise attack when the target
is to achieve PD = 0.999 and PF = 0.001 for a location-aware detector.

Sequence Q̂ σw Nw mψ PD PF

carphone 14.39 59.17 645 6.19 0.9989 0.0009

claire 13.26 81.77 1395 6.08 0.9988 0.0014

mobile 15.33 51.86 435 6.18 0.9991 0.0014

mother 12.84 63.65 928 6.14 0.9984 0.0015

salesman 14.32 54.60 554 6.19 0.9994 0.0009

table 14.84 54.45 604 6.14 0.9990 0.0016

watermark is to add the H.264 quantization step size, Q, to all the coefficients in CV

or randomly add +Q or −Q to all the coefficients in CV . In both cases, he can only

erase half of the watermark bits, and at the same time he increases the strength of

remaining watermark bits by a factor of two. Since the detector response is a sum

of the products of the watermark and watermarked coefficients scaled by their H.264

quantization step size, the average value of the detector response remains the same.

The watermark detector can detect the watermark with the same performance with-

out increasing Nw. Figure 17 shows a watermarked I-frame on the left and attacked

version of that I-frame on right. The visual quality of the attacked I-frame is not

severely degraded because the adversary only modified the coefficients with visual

watermarking capacity. However, there are some small artifacts around the right side

of the person’s face, the left side of color of his coat and more artifacts are visible in

the white and blue slats on the left. Note that in the watermarked frame 13.4% of

coefficients in CV were watermarked with a strength of Q, and the attacked frame

corresponds to a frame that has 86.6% of its coefficients in CV watermarked with

a strength of Q and 6.7% of its coefficients watermarked with the strength of 2Q.

Therefore, we expect that the visual quality of the attacked I-frame to be worse than

the watermarked I-frame. This agrees with our earlier observation that inserting the

watermark in all the coefficients in CV results in visible artifacts.
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We have compared our detection scheme with soft decision Viterbi decoding. Our

results show that the detection performance is better when N = 1500 than when we

construct a rate 1/3 convolutional code with N = 500.

(a) Watermarked I-frame (b) Attacked I-frame

Figure 17: Comparison of the visual quality after an adversary’s attempt to remove
the watermark by randomly adding +Q or −Q to all the coefficients in CV .

4.3 Discussion

We showed that the problem of watermark detection for video signals is different

from images because of the large watermarking capacity in videos. By appropriately

choosing the number of coefficients to compute the detector response, we can achieve

any probability of detection and false alarm.

In our experiments, we assume that we know the values of Q̂ and σw. If memory

is not an issue, the owner can save these values in his records for different video

sequences. Furthermore, if computational complexity is not an issue, the detector

can calculate σw. Otherwise, since they vary only over a small range, the detector

can assume a minimum value for Q̂, and a maximum value for σw and choose Nw

accordingly.

We assume that the detector can synchronize after any attack that causes desyn-

chronization. However, if the original video sequence is not available, appropriate

synchronization templates [3] are required to synchronize. Furthermore, we have not
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considered the effect of a self-collusion attack, which is one of the most powerful at-

tacks for video. Our technique presented in Chapter 2 can be used as one solution to

combat the self-collusion attack. The watermark can be embedded in different coef-

ficients in CV by using the public and secret key proposed in Chapter 2. In [39], we

showed that a similar watermark embedding technique to the technique in this paper

is fairly robust to H.264 requantization. However, because of the computational com-

plexity of this attack, it was not investigated in this chapter. Furthermore, we only

showed the robustness of our algorithm to a trivial deliberate attack. Implementing

more complex adversarial attempts to erase the watermark is a subject of further

study.

4.4 Conclusion

In this chapter, we built a theoretical framework for watermark detection using a

likelihood ratio test and used it to obtain video watermark detection with control-

lable detection performance. We detected the watermark by multiplying the possibly

watermarked DCT coefficients of the decoded frame by the original watermark bits,

calculating the sum of those terms, normalizing the result, and comparing it with a

threshold. We have proved that the performance of the watermark detector only de-

pends upon the conditional mean of the detector response under the hypothesis that

the watermark exists in the DCT coefficients. This mean depends on three param-

eters: the H.264 quantization step size, the standard deviation of the watermarked

DCT coefficients, and the number of watermarked DCT coefficients used to compute

the detector response, Nw. We cannot control the first two parameters, however, we

can control Nw. This is not the case with images, since there is a limited number of

coefficients that can be watermarked in each image before the watermark is visible.

Therefore, our video watermark detection algorithm calculates the number of DCT

coefficients needed to compute the detector response to obtain the desired probability
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of detection, PD for a given probability of a false alarm PF . Our simulation results

show that the theoretically chosen value for N does lead to the desired PD and PF

in Monte Carlo trials. Furthermore, even after watermarking attacks, we can obtain

any PD and PF by making worst case assumption on the first two parameters and

computing Nw accordingly. The result of this work appears in [41, 42].
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CHAPTER V

WATERMARK EMBEDDING WITH CONTROLLED

VIDEO BIT RATE INCREASE

Most video watermarking algorithms embed the watermark in I-frames, which are

essential for the video signal, but refrain from embedding in P- and B-frames, which

are highly compressed by motion compensation. However, P-frames appear more

frequently in the compressed video and their watermarking capacity should be ex-

ploited, despite the fact that embedding a watermark signal in P-frames can increase

the video bit rate significantly.

In this chapter, we show that by limiting the watermark to nonzero quantized ac

residuals in P-frames, the video bit rate increase can be held to reasonable values

[37, 40]. Since the nonzero quantized ac residuals in P-frames correspond to non-flat

areas that are in motion, temporal and texture masking are exploited at the same

time. We also show that by embedding the watermark only in nonzero quantized ac

residuals that have spatial masking capacity in I-frames, the number of watermarked

coefficients in I-frames doubles with an increase in video bit rate that is no greater

than previous compressed-domain video watermarking algorithms.

5.1 Problems Associated with Embedding the Watermark

in P-frames

The algorithms proposed in [41, 57, 76] embed the watermark in I-frames because

I-frames are crucial for the video signal. Note that our algorithm in [41] is the same

as the algorithm presented in Chapter 3. Furthermore, P- and B-frames have less

capacity because they are highly compressed by motion compensation. However,

P-frames occur more frequently than I-frames in the compressed video. We used
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Table 12: Percentage increase in video bit rate and the average number of wa-
termarked coefficients per frame when I- or P-frames are watermarked using the
algorithms in [41] and [76] for the scenario that the watermark is embedded in the
encoder.

Percentage increase Average number of

in video bit rate watermarked coefficients

I P I P

Sequence [76] [41] [76] [41] [76] [41] [76] [41]

carphone 3.85% 5.60% 12.40% 18.27% 588 851 527 750

claire 7.90% 10.56% 17.35% 20.94% 270 342 252 303

mobile 5.47% 5.01% 19.32% 16.93% 2664 2252 2315 1944

mother 4.99% 9.22% 8.92% 20.58% 261 499 229 447

salesman 3.42% 5.04% 10.88% 17.69% 597 893 413 621

soccer 1.83% 2.54% 4.50% 7.73% 430 609 399 589

table 3.44% 3.60% 12.30% 11.88% 894 788 557 529

tempete 3.66% 4.20% 14.01% 18.23% 1328 1682 1215 1528

Average 4.32% 5.72% 12.46% 16.53% 879 990 738 839

the algorithms proposed in [41, 76] to embed the watermark in I- or P-frames. Our

simulation results show that we can embed the watermark in a large number of

coefficients in P-frames while preserving high visual quality, but the video bit rate

can increase significantly. We set Tblock = 2 and Tcoef = 10 for the algorithm in

[41] using a group of picture (GOP) structure of I B P B P B I, which has twice as

many P-frames as I-frames. Since the video sequences are short, we used this GOP

structure to obtain a sufficient number of watermarked I-frames, but a typical H.264

GOP would have more P-frames. Tables 12 and 13 show the increase in video bit

rate and the average number of watermarked coefficients in an I- or P-frame when

the watermark is embedded in the encoder and bitstream, respectively.

Tables 12 and 13 show that the increase in video bit rate is very significant when

P-frames are watermarked for both watermark embedding scenarios. This increase

in video bit rate has two sources. First, there is an increase in the bit rate of the

macroblocks that were watermarked. Changing zero-valued coefficients to nonzero
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Table 13: Percentage increase in video bit rate and the average number of wa-
termarked coefficients per frame when I or P-frames are watermarked using the al-
gorithms in [41] and [76] for the scenario that the watermark is embedded in the
bitstream.

Percentage increase Average number of

in video bit rate watermarked coefficients

I P I P

Sequence [76] [41] [76] [41] [76] [41] [76] [41]

carphone 1.80% 3.19% 9.95% 15.10% 589 858 515 731

claire 4.50% 5.92% 14.97% 18.04% 265 339 251 297

mobile 1.96% 2.33% 16.96% 15.18% 2668 2259 2299 1934

mother 2.95% 6.59% 7.78% 18.30% 268 533 232 446

salesman 1.79% 2.94% 9.73% 15.83% 607 915 417 630

soccer 0.97% 1.48% 3.40% 5.85% 435 634 396 590

table 1.26% 1.83% 9.98% 9.96% 895 790 552 533

tempete 1.59% 2.09% 11.52% 15.32% 1331 1688 1209 1523

Average 2.10% 3.29% 10.53% 14.19% 882 1002 734 835

values can significantly increase the video bit rate because H.264 uses a run-length

code. Since the number of nonzero coefficients in P-frames is very small compared

to I-frames, there is a high probability that a zero coefficient changes to a nonzero

coefficient. Thus, the increase in video bit rate is more significant when P-frames are

watermarked. Second, if the watermark is embedded in the encoder, there will be an

increase in the bit rate of the macroblocks that are predicted from the watermarked

macroblocks. This is confirmed by comparing the results of Table 12 and 13, which

shows that the increase in video bit rate when the watermark is embedded in the

bitstream is smaller than when it is embedded in the encoder.

The reason for the slight difference in the number of watermarked coefficients in I-

frames when the watermark is embedded in the encoder for the algorithms in [41, 76]

with the values reported in Chapter 3 is as follows. H.264 has an option of using

both 4 × 4 and 8 × 8 transforms. The watermark detection algorithm in Chapter

4 [41] computes the location of watermarked coefficients based on Watson’s human
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visual model assuming that all blocks use a 4×4 transform, since the majority of the

blocks usually use 4 × 4 transforms. However, the information about the transform

used for each block is no longer available after the video is decoded. Therefore,

the watermark detector assumes that the coefficients in 8 × 8 transformed blocks

are watermarked and uses them with other watermarked coefficients to detect the

watermark. This causes the value of Q̂ used in the watermark detector to be further

from the quantization step size (Please see Chapter 4 for explanation of Q̂.) In this

chapter, to have a fair comparison of the actual number of watermarked coefficients

in these algorithms, and because our new watermark detection algorithm does not

depend on the location of watermarked coefficients, we do not count the number

of coefficients in 8 × 8 transformed blocks that the watermark detector thinks are

embedded with a watermark.

5.2 Proposed Method

The significant increase in video bit rate when the watermark is embedded in P-frames

is probably unacceptable for video watermarking applications; thus, it is important

to develop a watermarking scheme for P-frames than can hold the increase in video

bit rate to reasonable values. To control the increase in video bit rate, it is important

to not change the zero-valued coefficients in P-frames. Therefore, our proposed wa-

termarking algorithm only embeds the watermark in nonzero quantized ac residuals

in P-frames. Since the number of nonzero quantized ac residuals that have spatial

masking capacity in P-frames is small, we embed the watermark in all the nonzero

quantized ac residuals without using Watson’s human visual model. We do not em-

bed the watermark in dc coefficients because the human eye is highly sensitive to

the dc value. Furthermore, embedding the watermark in dc coefficients increases

the computed video sequence variance significantly. To maintain the performance of
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our watermark detector presented in Chapter 6, which is a variation of the water-

mark detector in Chapter 4, the number of watermarked coefficients would have to

be increased so much as to negate any benefit from using the dc coefficients.

In Chapter 3, when embedding the watermark in I-frames, we saw that the algo-

rithms in [41, 57, 76] embed the watermark in a subset of coefficients in CV (coeffi-

cients with visual capacity for watermark embedding) because embedding in all of the

coefficients in CV creates visible artifacts. In this chapter, when embedding the wa-

termark in I-frames, we propose embedding the watermark in the coefficients in CV

only if their corresponding quantized DCT residuals are non-zero. In the simulation

results section, we show that this will double the number of watermarked coefficients

in I-frames without an additional increase in video bit rate while preserving the per-

ceptual quality of the video.

The watermark is a two-dimensional bipolar matrix, W ∈ {−1, 1}, the same size as

the video frame with mean zero and variance one. However, the watermark embedder

inserts the watermark in a subset of the DCT coefficients, CW , as described before.

The watermark is inserted into those coefficients as

R̃′
ijk = R̃ijk +Wijk, (38)

where R̃ijk is the quantized residual and R̃′
ijk is the watermarked quantized residual.

Thus,

R′
ijk = (R̃ijk +Wijk) ×Qijk, (39)

and

I ′ijk = Iijk +WijkQk, (40)

where R′
ijk is the watermarked unquantized residual, Qijk is the quantization step

size for coefficient ij in block k, Iijk is the original DCT coefficient, and I ′ijk is the

watermarked DCT coefficient. The addition of the watermark to the quantized DCT

residuals is the same as the addition of the watermark times the quantization step
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size to the original DCT coefficients. When common signal processing operations

or watermarking attacks on the video change the prediction mode of the block, the

residual and prediction will change. However, if the video quality is still acceptable,

the watermark can still be extracted from the decoded video sequence.

Embedding the watermark in all the nonzero quantized ac residuals without using

Watson’s human visual model in P-frames does not sacrifice visual quality because

these coefficients correspond to non-flat moving areas. To show that the number of

nonzero quantized ac residuals in each frame correspond to the amount of motion,

we compute the global motion intensity in each P-frame. This is found by computing

the weighted average magnitude of the motion vectors of all 4 × 4 blocks as follows:

MVG(f) =
1

W4H4

W4
∑

w4=1

H4
∑

h4=1

|mvf (w4, h4)|
|reff (w4, h4) − f | , (41)

where |mvf (w4, h4)| is the magnitude of the motion vector of block (w4, h4) at frame

f , and reff(w4, h4) is the reference frame number for this block. W4 and H4 are the

width and height of the frame measured in 4 × 4 blocks. Figure 18 shows the global

motion intensity of eight standard video sequences.

The plots show that the video sequences claire, mother and salesman are

mostly static with limited motion in some frames. This is expected since these are

videos of a person on a static background who occasionally moves his head or hand

while talking. The video sequence carphone shows a person in a moving vehicle.

Therefore, the background moves frequently and the subject moves his whole upper

body twice towards the end of the video. Thus, it is not surprising that the mo-

tion intensity plot of this video sequence shows higher motion. The video sequences

mobile and tempete have slow continuous motion, and the motion intensity plots

demonstrate that. The video sequence soccer has considerable motion; thus the

motion intensity of all of its frames is at least 250 and reaches as high as 2500. The

video sequence table shows the variation in motion intensity very well. This video

sequence starts with movement of a table tennis player’s hand followed by a scene
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Figure 18: Weighted average magnitude of motion vectors, MVG, in every P-frame
of eight standard video sequences. Notice that the vertical scales vary significantly
from image to image.

change. Figure 19 shows the number of nonzero quantized ac residuals, ν, which

correspond to the number of watermarked coefficients in every P-frame of the eight

standard video sequences. Comparing Figures 18 and 19 shows that the plots of

the number of nonzero quantized ac residuals resemble the global motion intensity

patterns.

5.3 Simulation Results

We implemented our proposed watermarking algorithm in the H.264 reference soft-

ware version JM10.2 [1]. We used eight standard video sequences in QCIF format

(176×144) at the rate of 30 frames per second for our simulation results. We compare

the video bit rate increase and the perceptual quality using the visual quality metric

(VQM) of the algorithm proposed in this Chapter with the algorithms in [41, 76].

We computed the video bit rate increase in our algorithm when only I-frames
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Figure 19: Number of nonzero quantized ac residuals, ν, in every P-frame of eight
standard video sequences. Notice that the vertical scales vary significantly from image
to image.

were watermarked and when only P-frames were watermarked. Table 14 shows the

video bit rate increase and the average number of watermarked coefficients for our

proposed algorithm when the watermark is embedded in the encoder and bitstream.

Comparing this table with Table 12 shows that by embedding the watermark in only

nonzero quantized ac residuals in P-frames instead of using the human visual model,

the increase in video bit rate reduces from 12.46% in [76] and 16.53% in [41] to 1.54%,

when the watermark is embedded in the encoder. This reduces the average number

of watermarked coefficients in a P-frame from 738 in [76] and 839 in [41] to 559.

Comparing this table with Table 13 shows that by embedding the watermark in only

nonzero quantized ac residuals in P-frames, the increase in video bit rate reduces from

10.53% in [76] and 14.19% in [41] to 0.66%, when the watermark is embedded in the

bitstream. This reduces the average number of watermarked coefficients in a P-frame

from 734 in [76] and 835 in [41] to 542. Moreover, by embedding the watermark only

in nonzero quantized ac residuals with spatial masking capacity in I-frames, we can
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Table 14: Percentage increase in video bit rate and the average number of water-
marked coefficients per frame when the watermark is embedded in the encoder and
bitstream.

Percentage increase Average number of

in video bit rate watermarked coefficients

Encoder Bitstream Encoder Bitstream

Sequence I P I P I P I P

carphone 4.54% 1.56% 1.17% 0.27% 1235 461 1199 449

claire 7.40% 1.89% 1.81% 1.46% 474 73 460 69

mobile 6.28% 1.22% 2.54% 0.75% 6191 1426 6197 1388

mother 5.93% 2.92% 2.04% 2.30% 501 92 476 87

salesman 3.58% 1.55% 1.00% 1.15% 1106 140 1083 134

soccer 2.14% 0.83% 0.41% −1.04% 813 841 799 822

table 4.02% 0.98% 1.05% 0.23% 2038 390 2037 379

tempete 4.27% 1.37% 1.64% 0.20% 2629 1052 2609 1010

Average 4.77% 1.54% 1.45% 0.66% 1709 559 1857 542

watermark twice as many coefficients in I-frames as [41, 76] with a similar increase in

video bit rate for both watermark embedding scenarios.

Table 14 gives the percentage increase in video bit rate and the average number

of watermarked coefficients in an I- or P-frame. However, since there are two param-

eters, it is hard to compare how different algorithms perform when embedding the

watermark in I- or P-frames. We define the watermark cost, δ, as the increase in the

number of bits used to encode the watermarked video per watermark bit

δ =
TBwatermarked − TBorig

Lf
∑

f=1

Nw(f)

, (42)

where TBwatermarked is the number of bits used to code the watermarked video se-

quence, TBorig is the number of bits used to code the original video sequence, and
Lf
∑

f=1

Nw(f) is the total number of watermarked coefficients in that video sequence.

In Tables 15 and 16, we have calculated watermark cost, δ, when the watermark is

embedded in the encoder and bitstream, respectively.
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Table 15: Watermark cost, δ, when the watermark is embedded in the encoder.

I-frame P-frame

Sequence [76] [41] New [76] [41] New

carphone 2.75 2.76 1.54 4.94 5.12 0.71

claire 4.53 4.77 2.41 5.26 5.27 1.98

mobile 2.15 2.33 1.06 4.32 4.67 0.44

mother 4.01 3.87 2.48 4.04 4.78 3.40

salesman 1.95 1.92 1.10 4.49 4.86 1.88

soccer 2.54 2.50 1.58 3.33 3.86 0.29

table 1.60 1.90 0.82 4.54 4.60 0.52

tempete 2.29 2.08 1.35 4.79 4.95 0.54

Average 2.72 2.76 1.54 4.46 4.76 1.22

Table 16: Watermark cost, δ, when the watermark is embedded in the bitstream.

I-frame P-frame

Sequence [76] [41] New [76] [41] New

carphone 1.28 1.56 0.41 4.06 4.34 0.13

claire 2.62 2.70 0.60 4.55 4.63 1.62

mobile 0.77 1.08 0.43 3.82 4.07 0.28

mother 2.31 2.59 0.89 3.48 4.26 2.70

salesman 1.00 1.10 0.31 3.98 4.28 1.48

soccer 1.34 1.40 0.31 2.51 2.90 −0.37

table 0.58 0.96 0.21 3.71 3.84 0.12

tempete 0.99 1.03 0.52 3.95 4.17 0.08

Average 1.36 1.55 0.46 3.75 4.06 0.75
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These tables show several facts.

• The watermark cost, δ, of the algorithm in this chapter is significantly smaller

than the algorithms in [41, 76] when embedding the watermark in both I- and

P-frames for both scenarios.

• The watermark cost, δ, of the algorithms in [41, 76] is significantly smaller when

embedding the watermark in I-frames than P-frames. Thus, the watermarking

capacity of I-frames should be exploited completely before embedding the wa-

termark in P-frames for these algorithms. However, we cannot conclude that

embedding the watermark in either I- or P-frames has an advantage in terms

of increase in video bit rate over the other for the algorithm proposed in this

chapter.

• The watermark cost, δ, is significantly smaller when embedding the watermark

in the bitstream than the encoder for all algorithms.

Table 15 shows the watermark cost, δ, of our proposed algorithm in this chapter

versus the algorithms in [41, 76] when the watermark is embedded in both I- and

P-frames. Our simulation results show that the watermark cost, δ, of our algorithm

in this chapter is 1.50 versus 3.96 for [76] and 4.16 for [41] when the watermark is

embedded in the encoder. The δ of our algorithm reduces to 0.51 when the watermark

is embedded in the bitstream compared to 2.83 and 3.08 for the algorithms in [41, 76],

respectively. The average increase in video bit rate of the proposed algorithm is 8.26%

and 2.42% when the watermark is embedded in encoder and bitstream, respectively.

To compare the perceptual quality of our proposed watermark embedding algo-

rithm in this chapter with the algorithms in [41, 76], we calculated the video quality

metric (VQM) for these algorithms. The VQM software compares an original video

clip and a processed video clip and reports a video quality metric (VQM) that cor-

relates to perception. This metric is between zero and one with zero being no im-

pairment and one being nominally maximum impairment. We used the compressed
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Table 17: Watermark cost, δ, when the watermark is embedded in both I- and
P-frames.

Encoder Bitstream

Sequence [76] [41] New [76] [41] New

carphone 4.21 4.39 1.34 3.03 3.23 0.35

claire 4.97 5.39 2.40 3.89 3.91 0.96

mobile 3.87 3.97 1.11 2.69 2.92 0.38

mother 4.33 4.68 2.66 3.15 3.64 1.46

salesman 3.54 3.66 1.56 2.76 2.97 0.65

soccer 3.12 3.46 0.66 1.94 2.32 −0.16

table 3.60 3.59 1.09 2.37 2.68 0.18

tempete 4.09 4.17 1.18 2.83 2.97 0.33

Average 3.96 4.16 1.50 2.83 3.08 0.51

but not watermarked video sequences as the original video clips and the watermarked

video sequences as the processed video clips. Table 18 shows the VQM metric for

these algorithms when only I-frames and when only P-frames are watermarked. This

table shows that the algorithm in this chapter can embed twice as many watermark

coefficients in each I-frame as the algorithms in [41, 76] with similar perceptual qual-

ity. Moreover, the algorithm in this chapter has the same perceptual quality as the

algorithms in [41, 76] for P-frame only watermarking, although it does not use the

spatial human visual model for embedding in P-frames. The VQM metric when the

watermark is embedded both in I- and P-frames is similar to when only I-frames are

watermarked.

To compare the perceptual quality of our proposed watermark embedding algo-

rithm in this paper with the algorithms in [41, 76], we calculated the video quality

metric (VQM) [4] for these algorithms. The VQM software compares an original

video clip and a processed video clip and reports a video quality metric (VQM) that

correlates to perception. This metric is between zero and one with zero being no im-

pairment and one being nominally maximum impairment. We used the compressed
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Table 18: Visual quality metrics (VQM) for the proposed algorithm and the algo-
rithms in [41, 76] compared to compressed, but not watermarked videos.

I-frames P-frames I and P-frames

Sequence [76] [41] New [76] [41] New [76] [41] New

carphone 0.12 0.13 0.13 0.04 0.04 0.04 0.12 0.13 0.13

claire 0.10 0.10 0.10 0.03 0.03 0.03 0.10 0.10 0.10

mobile 0.05 0.05 0.06 0.04 0.03 0.03 0.06 0.05 0.06

mother 0.15 0.15 0.14 0.04 0.05 0.04 0.15 0.15 0.15

salesman 0.14 0.14 0.15 0.04 0.04 0.04 0.14 0.14 0.15

soccer 0.08 0.08 0.09 0.05 0.05 0.04 0.08 0.09 0.09

table 0.15 0.16 0.16 0.05 0.05 0.05 0.16 0.16 0.16

tempete 0.08 0.07 0.08 0.04 0.05 0.04 0.07 0.07 0.08

Average 0.11 0.11 0.11 0.04 0.04 0.04 0.11 0.11 0.11

but not watermarked video sequences as the original video clips and the watermarked

video sequences as the processed video clips. Table 18 shows the VQM for these algo-

rithms when only I-frames, only P-frames and both I and P-frames are watermarked.

This table shows that the algorithm in this paper can embed twice as many water-

mark coefficients in each I-frame as the algorithms in [41, 76] with similar perceptual

quality. Moreover, the algorithm in this paper has the same perceptual quality as

the algorithms in [41, 76] for P-frame only watermarking, although it does not use

the spatial human visual model for embedding in P-frames. The VQM when the

watermark is embedded both in I- and P-frames is similar to when only I-frames are

watermarked.

Furthermore, we computed the VQM between the original video and the com-

pressed video, which we denote as CM, and the VQM between the original videos

and the watermarked-compressed videos when only I-frames, only P-frames and both

I- and P-frames are watermarked. Table 19 shows the VQM metric for these cases.

This table shows that the average VQM between the original and compressed videos

for these eight video sequences is 0.14. This table also shows that the average VQM
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Table 19: Visual quality metrics (VQM) for the compressed video, proposed algo-
rithm and the algorithms in [41, 76] compared to original videos.

I-frames P-frames I and P-frames

Sequence CM [76] [41] New [76] [41] New [76] [41] New

carphone 0.16 0.16 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16

claire 0.13 0.13 0.13 0.13 0.12 0.13 0.13 0.13 0.12 0.13

mobile 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

mother 0.16 0.18 0.17 0.17 0.17 0.17 0.16 0.17 0.16 0.16

salesman 0.17 0.16 0.16 0.16 0.16 0.16 0.17 0.16 0.15 0.15

soccer 0.12 0.13 0.12 0.13 0.12 0.13 0.12 0.12 0.13 0.13

table 0.21 0.20 0.20 0.21 0.21 0.21 0.21 0.20 0.21 0.20

tempete 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

Average 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13

between the original and watermarked-compressed videos when only I-frames, only

P-frames and both I- and P-frames are watermarked is also 0.14, This shows that

the visual quality of the watermarked-compressed videos is the same as the com-

pressed videos when compared to the original video sequences, i.e. watermarking

plus compression did not increase the perceived distortion over compression alone.

5.4 Conclusion

In this chapter, we explored watermark embedding in P-frames. The challenge in

embedding the watermark in P-frames is that the video bit rate increases signifi-

cantly. Thus, we only embedded the watermark in nonzero quantized ac residuals

in P-frames. Since these coefficients correspond to non-flat areas that are in motion,

temporal and texture masking were exploited at the same time. We showed that the

number of nonzero quantized ac residuals in each frame resembles the motion inten-

sity plots in different video sequences. We also proposed embedding the watermark

in nonzero quantized ac residuals with spatial masking capacity in I-frames. Our sim-

ulation results showed that the bit rate increase per watermark bit of our algorithm
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in this chapter is significantly smaller than the previous compressed-domain video

watermarking algorithms when embedding the watermark in both I- and P- frames.

The result of this work appears in [37, 40].
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CHAPTER VI

LOCATION-UNAWARE DETECTION (LUD)

In some applications, the watermark detector does not know which coefficients are

embedded with the watermark. For example, our watermark embedding algorithm in

Chapter 5 embeds the watermark in the nonzero quantized ac residuals. The identity

of those locations is lost when the video is completely decoded. Furthermore, a

reencoding or a deliberate attack that inserts additional nonzero coefficients would

cause desynchronization and consequent failure in watermark detection. For these

applications it is important that the watermark detection algorithm not depend on

the precise location of the watermark signal.

Thus, the video watermark detection algorithm in this chapter looks at all the ac

coefficients to detect the watermark [37, 42]. Our algorithm calculates the number

of frames, F , required for the watermark detector to obtain the desired probability

of a detection, PD, for a given false alarm probability, PF . This is not the case for

images, since there is a limited number of coefficients that can be watermarked in

each image before the watermark becomes visible. Our simulation results show that

the theoretically chosen value for F does lead to the desired values of PD and PF in

Monte Carlo trials.

6.1 Theoretical Framework

Our new watermark detection algorithm, which is a modification of the watermark

detection algorithm in Chapter 4, looks at all the ac coefficients to detect the water-

mark. Assume that the total number of coefficients used to detect the watermark is

N . From these N coefficients, the watermark signal will be embedded in Nw of them
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and No will not be watermarked. Thus,

N = Nw +No. (43)

The observations under the two hypotheses are as follows:

H0 : yℓ = Iℓ ∀ ℓ (44)

H1 : yℓ =











Iℓ ℓ /∈ CW

Iℓ +WℓQℓ ℓ ∈ CW.

where CW is the set of watermarked coefficients, Iℓ is the DCT coefficient of the video

frame, Qℓ is the H.264 quantization step size selected by the video encoder for that

coefficient and Wℓ is chosen from a bipolar watermark sequence with mean zero and

variance one. The index ℓ denotes the ℓth watermark bit or the ℓth DCT coefficient.

The ac coefficients outside of CW are irrelevant to the detection problem and

could have been discarded if the location of watermark signal were known. This can

also be verified by writing the likelihood ratio test for all the ac coefficients. However,

since the watermark detector does not know the exact locations of the watermarked

coefficients, it can compute the detector response over all ac coefficients instead of

only the possibly watermarked coefficients. This does not create a problem because

the mean of the detector response over the coefficients outside CW is close to zero.

In Chapter 4, we saw that the performance of the detector depends on the distance

between the means of the detector response under the two hypotheses. Thus, we have

Y =
N

∑

ℓ=1

YℓWℓQℓ

H1

≷
H0

λ. (45)

Expanding the summation, the detector response under the two hypotheses is

H0 : Y =
N

∑

ℓ=1

IℓWℓQℓ (46)

H1 : Y =

Nw
∑

ℓ=1

(Iℓ +WℓQℓ)WℓQℓ +

No
∑

ℓ=1

IℓWℓQℓ.
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Therefore, Y is N (0, NQ̄2σ2) under H0, and Y is N (NwQ̄
2
w, NQ̄

2σ2) under H1, where

σ is the standard deviation of the ac coefficients in the video, Q̄2 = (1/N)
N
∑

ℓ=1

Q2
ℓ and

Q̄2
w = (1/Nw)

Nw
∑

ℓ=1

Q2
ℓ . Note that although the mean of Y under the two hypotheses is

equal to the mean of the detector response in (29), its variance is now NQ̄2σ2 instead

of NwQ̄
2
wσ

2. Multiplying (45) by 1/(σ
√

NQ̄2) to normalize the Gaussian distribution

gives

ψ =
1

σ
√

NQ̄2

N
∑

ℓ=1

YℓWℓQℓ

H1

≷
H0

T, (47)

where T = λ/(σ
√

NQ̄2). Then, ψ is N (0, 1) under H0, and ψ is N ( NwQ̄
2
w

σ
√
NQ̄2

, 1) under

H1. These probability densities are shown in Figure 20. The distance between the

means of the two densities is now

d ,
NwQ̄

2
w

σ
√

NQ̄2
. (48)

Notice that if Qℓ = Q is fixed for all the DCT coefficients, then (48) simplifies to

d , NwQ̄
2
w

σ
√
NQ̄2

pψ|H0(Ψ|H0) pψ|H1(Ψ|H1)

PF

T

Figure 20: Probability densities pψ|H0
(Ψ|H0) and pψ|H1

(Ψ|H1) for a location-unaware
detector.

d ,
NwQ

σ
√
N
. (49)

If the ratio of watermarked coefficients to the total number of coefficients is equal to

78



ρ, then we can write (49) as

d ,
ρ
√
NQ

σ
. (50)

If we use the same embedding algorithm for the location-unaware detector as for

the location-aware detector, the ratio of watermarked coefficients to the total number

of coefficients, ρ = Nw

N
would be the same for both detectors. Then, comparing (50)

with (35), we can conclude that to get the same detection performance (same d) for

the same video sequence and same encoder parameters, we need to have

Nw =
Ǹwσ

2

ρσ2
w

, (51)

where Nw and Ǹw are the number of watermarked coefficients required to compute

the detector response for the location-unaware detector and location-aware detector,

respectively.

The above analysis assumed that the ratio of watermarked coefficients to the total

number of coefficients, ρ, is a constant. However, if the watermark is embedded in

nonzero quantized ac residuals, the number of watermarked coefficients may vary

from frame to frame and consequently ρ will no longer be a constant. Consider N in

(50) to be expressible as N = F ×Nf , where F is the number of frames required to

compute the detector response and Nf is the number of ac coefficients in each frame

for a certain video resolution. Assuming that Nw(f) ac coefficients in frame f are

watermarked, we can define the total number of watermarked coefficients in the ith

group of F frames as

NF
w (i) =

F
∑

f=1

Nw(f + (i− 1)F ), (52)

and

ρF (i) =
NF
w (i)

FNf

i = 1, 2, 3... (53)

where ρF (i) is the ratio of the number of watermarked coefficients to the total number

of ac coefficients in F frames. Then, (50) becomes

d(i) ,
NF
w (i)Q

σ
√

FNf

. (54)
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Thus, the probability distribution of the detector response under the hypothesis that

the watermark exists, H1, is no longer a normal Gaussian distribution, but is a Gaus-

sian mixture model. We form the histogram of NF
w divided into K clusters where the

jth cluster, clj, has a centroid of Nj, and

p(NF
w (i) ∈ clj) = αj j = 1, 2, ..., K, (55)

where αj > 0 for j = 1, 2, ...K and
K
∑

j=1

αj = 1. We have

ψ|NF
w (i) ∈ clj ∼ N (µj, 1), (56)

where µj =
NjQ

σ
√
FNf

. The distribution of ψ under hypothesis H1 is a mixture of K

Gaussian distributions

p(ψ|H1) =

K
∑

j=1

αj
1√
2π
e−

(x−µj )2

2 j = 1, 2, ...K. (57)

However, the probability distribution of ψ under the hypothesis that the watermark

does not exist is still a normal Gaussian distribution N (0, 1). These probability

distributions are shown in Figure 21. To evaluate the performance of the watermark

detector, we need to compute the probability of detection, PD, and the probability of

false alarm, PF . PF is computed the same way as for the location-aware detector

PF =

∫ ∞

T

1√
2π
e−

x2

2 dx = erfc(T ). (58)

To compute PD , we first define the probability of detection for each Gaussian distri-

bution with mean µj as

PDj =

∫ ∞

T

1√
2π
e−

(x−µj )2

2 dx = erfc(T − µj). (59)

Then, PD is

PD =

K
∑

j=1

αjerfc(T − µj). (60)

To achieve the specified value of PD and PF , the detector selects the threshold

to agree with the value of PF and then selects d to achieve the target values of PD
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pψ|H0(Ψ|H0) pψ|H1
(Ψ|H1)

T

µ1 µ2 µ3

Figure 21: Illustrating the Gaussian mixture model and the probability densities
pψ|H0(Ψ|H0) and pψ|H1(Ψ|H1) for the location-unaware detector.

assuming the probability distribution of the detector response under hypothesis H1

is still a Gaussian distribution. We use the mean number of watermarked coefficients

in each frame, E{Nw} to roughly estimate the number of frames, F , required to get

the desired performance from

d ,
E{Nw}

√
FQ

σ
√

Nf

. (61)

The computed value of F gives us a starting point. We calculate PD from (60) and

if PD is smaller or greater than the desired PD, we increase or decrease F by one

until we reach the desired value of PD. Our simulation results show that we reach the

optimum value of F in a few iterations in most cases. Since knowing the optimum

value of F does not compromise security or robustness of our watermarking algorithm,

F can be made publicly available.

Our watermark detection scheme has several advantages. First, the error rate of

the detector can be maintained regardless of the video sequence given that the video

is long and the detector response latency can be arbitrary. However, the number

of frames, F , required to obtain a certain detection performance depends on the
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histogram of the number of watermarked coefficients per frame in the video sequence.

This means that the detector will produce results more frequently for some scenes or

some videos than others. We believe that this is acceptable since nearly every video

should have a sufficient number of watermarked DCT coefficients to produce detector

responses at an acceptable rate. Another advantage is that if the watermark detector

notices that the video sequence has been attacked to remove the watermark, it can

increase the value of F to obtain more reliable detector responses. Notice that we are

taking advantage of the large amount of data in video sequences compared to images

to obtain more robust watermark detection. Another advantage is that computing

the detector response, ψ, has low computational complexity. Recall that ψ is defined

as

ψ =
1

σ
√

NQ̄2

N
∑

ℓ=1

YℓWℓQℓ. (62)

The watermark sequence is a bipolar sequence of {−1, 1}, and usually Qℓ is constant

within a subset of DCT coefficients that are used to compute one detector response.

Thus, computing the detector response requires only the addition or subtraction of the

DCT coefficients with few multiplications. Notice that the location-aware detector in

Chapter 4 computed the sum in (62) over a smaller set of coefficients that are used to

embed the watermark, Nw. However, finding the location of watermarked coefficients

can have a high computational complexity, particularly if a human visual model is

used. Thus, for some applications, where these locations have to be found every time

a watermark is detected, the watermark detection algorithm in this section has a

significantly lower complexity.

6.2 Simulation Results

To test the performance of our location-unaware detector (LUD), we used this detector

to detect the watermark from P-frames of eight standard video sequences that were

watermarked with the watermark embedding algorithm in Chapter 5. Subsection 6.2.1
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gives the performance of the location-unaware detector and shows the robustness of

the watermark embedding algorithm in Chapter 5 to several common signal processing

attacks when LUD is used to detect the watermark. To compare the performance

of location-aware and location-unaware detectors, we embedded the watermark in

I-frames of six standard video sequences using our perceptual watermark embedding

algorithm presented in Chapter 3. In Subsection 6.2.2, we compare the performance of

our location-unaware detector with the location-aware detector presented in Chapter

4.

6.2.1 Watermark Detection from P-Frames

To evaluate the performance of location-unaware detector and to test the robustness

of our watermark embedding algorithm in Chapter 5, we watermarked every P-frame

of eight standard video sequences in the QCIF (176 × 144) format at the rate of 30

frames per second using the watermark embedding algorithm in Chapter 5. We imple-

mented our watermark embedding algorithm in the H.264 reference software version

JM10.2 [1]. The H.264 encoder used a fixed quantization step size Q = 16 and an

intra period of 3 (group of pictures: I B P B P B I). We detected the watermark from

P-frames of these video sequences using the location-unaware detector. To compare

the experimental results with the theoretical framework for watermark detection de-

rived in the previous section, a large number of watermarked coefficients are required

to compute the detector response many times. Thus, we coded and watermarked

every video sequence 100 times with an H.264 encoder. Note that the more detector

responses we have, the more smoothly we can estimate their distribution.

In our first experiment, our goal is to obtain PF = 0.01 and PD = 0.99. From

(58), we find that we can achieve PF = 0.01 with T = 2.325. Then, to get a rough

estimate of the number of frames required to achieve the desired PD, we first assume

PD has a Gaussian distribution and we calculate d from (32) and we solve (61) to
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obtain a starting point for F . Then, we calculate the correct value of PD from

(60) and if PD is not close to the desired PD, we increase or decrease F until it

is. Note that the difference between the watermarked coefficients from the decoded

video with their values before the watermark was added is not exactly equal to the

quantization step size because the encoding process is lossy. On average this difference

is Q̂ instead of Q, where Q̂ is generally smaller, but close to, Q. Table 20 shows the

standard deviation of the ac coefficients in the video sequence, σ, Q̂, and the number

of iterations, t, that it takes to find the number of watermarked frames, F , to calculate

the detector response for the desired performance. It also shows the total number

of detector responses #ψ, the theoretically computed probability of detection from

(60) that we denote as PDt , and the probabilities of detection, PD, and false alarms,

PF found from Monte Carlo trials. Our results show that PD is close to 0.99 and

PF is close to 0.01. Note that the larger #ψ is, the more exact PD and PF will be.

In Figures 22 and 23, we plot the probability distribution of the detector response

under H0 and H1 for the video sequences carphone and mobile. We have a total of

839 detector responses for carphone and 4949 detector responses for mobile from

coding these video sequences 100 times. The symbols ◦ and ⋄ reflect the number of

detector responses in the intervals centered around them. These figures show that

the experimentally determined p(Ψ|H0) approximates a Gaussian distribution with a

variance of one, however, p(Ψ|H1) no longer has a Gaussian distribution.

Now we show the effect of different attacks on detection performance. We first

consider a 3 × 3 Gaussian filtering attack. We choose F and the threshold as in

Table 20 to achieve PD = 0.99 and PF = 0.01. Table 21 gives σ, Q̂, the theoretically

determined PDt from (60), and PD and PF computed from the simulation results.

Table 21 shows that after the Gaussian filtering attack both σ and Q̂ become smaller.

However, the reduction in the value of Q̂ is more significant. Thus, for the same

F as Table 20, p(Ψ|H1) moves towards p(Ψ|H0) because the mean value of ψ under
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Table 20: Experimental results when the target is to achieve PD = 0.99 and PF =
0.01 for a location-unaware detector.

Sequence Q̂ σ t F #ψ PDt PD PF

carphone 15.18 15.99 13 15 839 0.9935 0.9940 0.0083

claire 14.88 15.68 7 104 159 0.9894 > 0.9937 0.0191

mobile 15.45 29.80 2 2 4949 0.9989 0.9988 0.0123

mother 14.46 11.58 17 55 179 0.9895 0.9888 0.0056

salesman 15.14 13.72 5 26 569 0.9901 0.9877 0.0141

soccer 15.02 13.62 3 3 1633 0.9960 > 0.9993 0.0104

table 15.11 19.53 8 13 761 0.9926 0.9908 0.0158

tempete 15.39 20.79 2 2 2099 0.9982 0.9962 0.0148

Table 21: Experimental results after the 3 × 3 Gaussian filtering attack when the
target is to achieve PD = 0.99 and PF = 0.01 for a location-unaware detector.

Sequence Q̂ σ F PDt PD PF

carphone 10.27 13.88 15 0.9844 0.9774 0.0083

claire 10.39 14.78 104 0.9620 0.9427 0.0191

mobile 9.88 24.91 2 0.9911 0.9808 0.0123

mother 10.56 10.20 55 0.9819 0.9777 0.0056

salesman 10.49 12.19 26 0.9816 0.9684 0.0141

soccer 10.51 12.43 3 0.9838 0.9890 0.0104

table 10.23 15.82 13 0.9918 0.9803 0.0158

tempete 10.54 17.84 2 0.9494 0.9228 0.0148

hypothesis H1 becomes smaller. Since we set the threshold T as before, we still obtain

the same PF , but PD is lower than its value when not under attack. Increasing F

further, we can still achieve PD = 0.99. Suppose that after the Gaussian filtering

attack, Q̂ becomes as small as 10. We use this value to calculate the required F for

each video sequence. Table 22 shows the assumed value for Q̂, the new values of F

that give the desired PD = 0.99, and PD after the 3 × 3 Gaussian filtering attack.

We also look at a cropping attack. In our experiment, we crop each video frame

to approximately 50% of its original size from the four sides. We assume that the

detector can determine how the video is cropped by synchronization templates or by
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Figure 22: Detector response probability distribution of a location-unaware detector
to achieve PD = 0.99 and PF = 0.01 for carphone video sequence.

shifting the watermark array on top of each frame. If the detector can detect the

watermark for one specific position of the watermark, then it can conclude that the

watermark exists. The simulation results show that the detection performance even

improves for some video sequences because cropping can increase ρ and therefore a

smaller F suffices to give the desired PD. This usually happens for the video sequences

that have most of their activity in the middle of the frames like claire, mother

and salesman. Since these video sequences have a small ρ (they have little motion

and texture), they required a larger number of frames compared to the rest of the

video sequences to detect the watermark under no attack. Thus, we do not want

to increase F further for these video sequence after a cropping attack. Table 23

shows σ, Q̂, the theoretically determined PDt from (60), and values of PD and PF

from simulation results. In this case, we achieve the desired performance without

increasing F , because most of the watermarked coefficients are in the middle of the

video frames. If the watermark was uniformly distributed, ρ would remain the same

after the cropping attack, and we would need twice as many frames as when under
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Figure 23: Detector response probability distribution of a location-unaware detector
to achieve PD = 0.99 and PF = 0.01 for mobile video sequence.

no attack to obtain the same detection performance.

Next, we consider the effect of additive white noise. We add white noise of mean

zero and variance 0.001 to each frame of the video sequence. We chose the variance

experimentally so that the noise is visible, but the video is not useless. Table 24 shows

σ, Q̂, the theoretically determined PDt from (60), and values of PD and PF after the

additive white noise attack. The simulations results show that the detector achieves

the desired performance after the additive white noise attack without increasing F .

Finally, we examine the robustness of the proposed algorithm to a requantization

attack. We change the quantization step size from 16 to 26. Table 25 shows σ, Q̂, the

theoretically determined PDt from (60), and values of PD and PF after the requanti-

zation attack. Studying Table 25 shows that Q̂ becomes significantly smaller after the

requantization attack, and this reduction is more significant for those video sequences

that have fewer nonzero quantized ac residuals (less texture and motion). Although

we do not obtain the desired probability of detection PD = 0.99, the probability of

detection is PD = 0.86 on average for these video sequences after changing Q = 16
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Table 22: Experimental results after the 3 × 3 Gaussian filtering attack with new
values of F when the target is to achieve PD = 0.99 and PF = 0.01 for a location-
unaware detector.

Sequence Q̂ σ F PDt PD PF

carphone 10 13.88 17 0.9929 0.9906 0.0135

claire 10 14.78 137 0.9903 0.9832 0.0081

mobile 10 24.91 2 0.9919 0.9808 0.0123

mother 10 10.20 61 0.9915 0.9938 0.0060

salesman 10 12.19 30 0.9907 0.9899 0.0176

soccer 10 12.43 4 0.9949 0.9975 0.0098

table 10 15.82 13 0.9912 0.9803 0.0158

tempete 10 17.84 4 0.9957 0.9914 0.0148

Table 23: Experimental results after the cropping attack when the target is to
achieve PD = 0.99 and PF = 0.01 for a location-unaware detector.

Sequence σ Q̂ F PDt PD PF

carphone 15.22 16.65 15 0.9809 0.9797 0.0083

claire 15.01 13.79 104 0.9999 > 0.9937 0.0191

mobile 15.41 30.57 2 0.9652 0.9590 0.0123

mother 14.50 9.40 55 0.9992 > 0.9944 0.0056

salesman 15.17 15.56 26 0.9980 > 0.9982 0.0141

soccer 15.01 14.63 3 0.9371 0.9345 0.0104

table 15.12 19.05 13 0.9981 0.9974 0.0158

tempete 15.26 21.80 2 0.8726 0.8642 0.0148

Table 24: Experimental results after the additive white noise attack when the target
is to achieve PD = 0.99 and PF = 0.01 for a location-unaware detector.

Sequence Q̂ σ F PDt PD PF

carphone 15.17 17.79 15 0.9871 0.9845 0.0083

claire 14.76 17.43 104 0.9680 0.9618 0.0191

mobile 15.39 30.78 2 0.9984 0.9986 0.0123

mother 14.45 13.96 55 0.9583 0.9497 0.0056

salesman 15.44 15.79 26 0.9664 0.9701 0.0141

soccer 15.01 15.69 3 0.9912 0.9945 0.0104

table 15.05 20.98 13 0.9848 0.9803 0.0158

tempete 15.37 22.20 2 0.9964 0.9948 0.0148
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Table 25: Experimental results after changing the quantization step size from 16 to
26 when the target is to achieve PD = 0.99 and PF = 0.01 for a location-unaware
detector.

Sequence Q̂ σ F PDt PD PF

carphone 7.58 15.29 15 0.9625 0.8868 0.0083

claire 5.28 15.20 104 0.7174 0.7389 0.0191

mobile 8.76 28.20 2 0.9900 0.9709 0.0123

mother 3.46 10.84 55 0.7229 0.7039 0.0056

salesman 5.63 12.70 26 0.8405 0.7944 0.0141

soccer 10.31 12.80 3 0.9922 0.9902 0.0104

table 8.89 18.68 13 0.9543 0.9054 0.0158

tempete 8.80 19.47 2 0.9875 0.9381 0.0148

Table 26: Experimental results after changing the quantization step size from 16 to
26 with new values of F when the target is to achieve PD = 0.99 and PF = 0.01 for
a location-unaware detector.

Sequence Q̂ σ F PDt PD PF

carphone 7.58 15.29 37 0.9999 0.9941 0.0083

claire 5.28 15.20 538 0.9999 > 0.9666 0.0191

mobile 8.76 28.20 3 0.9987 0.9945 0.0123

mother 3.46 10.84 252 0.9999 > 0.9743 0.0056

salesman 5.63 12.70 90 0.9999 0.9939 0.0141

soccer 10.31 12.80 3 0.9922 0.9902 0.0104

table 8.89 18.68 37 0.9995 0.9945 0.0158

tempete 8.80 19.47 4 0.9998 0.9933 0.0148

to Q = 26. Increasing F further, we can still achieve PD = 0.99. Table 26 shows the

new values of F that give the desired PD = 0.99 after changing the quantization step

size from 16 to 26.

6.2.2 Comparison of Location-Aware and Location-Unaware Detectors

We embedded the watermark in the H.264 reference software version JM10.2 [1] us-

ing our perceptual watermark embedding algorithm in Chapter 3. We used six stan-

dard QCIF video sequences (176 × 144) at the rate of 30 frames per second for our
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simulation. To compare the experimental results with the theoretical framework, a

large number of detector responses is required. Thus, we coded and watermarked

I-frames of every video sequence 80 times by an H.264 encoder with an intra period

of one (group of picture: I B I). Note that the more detector responses we have, the

more smoothly we can estimate their distribution. The H.264 encoder used a fixed

quantization step size Q = 16 for I-frames. On average the difference between the

watermarked coefficients and their values before watermarking is Q̂ instead of Q be-

cause the encoding process is lossy. In this subsection, we detect the watermark from

I-frames of those video sequences using location-aware detector (LAD) and location-

unaware detector (LUD), and we compare the performance of those detectors. Note

that the results for LAD case has been extensively reported in Chapter 4. However,

we summarize those results here for comparison purposes.

The goal of our first experiment is to obtain PD = 0.99 and PF = 0.01. We first

consider the LAD case. Solving equations (32) and (33) analytically, these proba-

bilities can be achieved for T = 2.325 and d = 4.65. We detect the watermark by

computing the detector response over Nw watermarked coefficients for each video.

We use the values of Q̂ and σw given in Table 27 to compute Nw from (35). We

calculate PD and PF based on this threshold. The total number of detector responses

obtained from coding each video sequence 80 times, #ψ, the mean value of the detec-

tor response, mψ, PD and PF obtained from our experiments are shown in Table 27.

This table shows that the theoretically chosen value for Nw does lead to the desired

PD = 0.99 and PF = 0.01.

To obtain the same detection performance for the LUD case, we set the threshold

as before; T = 2.325. To roughly estimate the number of frames required to achieve

the desired PD, we first assume PD has a normal Gaussian distribution, we calculate

d from (32) and we solve (61) to obtain a starting point for F . Then, we calculate the

correct value of PD from (60), and if PD is not close to the desired PD, we increase
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Table 27: Experimental results when the target is to achieve PD = 0.99 and PF =
0.01 for a location-aware detector.

Sequence Q̂ σw Nw #ψ mψ PD PF

carphone 14.40 59.17 365 31978 4.68 0.9898 0.0108

claire 13.52 81.73 790 10328 4.67 0.9905 0.0114

mobile 15.37 51.86 246 97432 4.71 0.9917 0.0121

mother 12.91 63.65 526 12086 4.64 0.9877 0.0140

salesman 14.33 54.60 314 44168 4.67 0.9913 0.0109

table 14.95 59.45 342 24912 4.70 0.9920 0.0107

Table 28: Experimental results when the target is to achieve PD = 0.99 and PF =
0.01 for a location-unaware detector.

Sequence Q̂ σ F #ψ PDt PD PF

carphone 14.40 16.06 1 14799 0.9859 0.9817 0.0101

claire 13.52 15.78 3 6399 0.9819 0.9706 0.0123

mobile 15.37 29.85 1 11599 0.9999 0.9999 0.0127

mother 12.91 11.76 1 11599 0.9895 0.9888 0.0110

salesman 14.33 13.88 1 17599 0.9993 0.9985 0.0122

table 14.95 19.47 3 3866 0.9804 0.9889 0.0142

or decrease F until it is. Table 28 shows the standard deviation of the ac coefficients,

σ, the number of frames, F , required to obtain the desired performance, and the

theoretically computed probability of detection from (60) that we denote as PDt, and

the probability of detection, PD, and the probability of false alarms, PF , obtained

from Monte Carlo trials. Our results show that PD is close to 0.99 and PF is close to

0.01.

In the next experiment, the target is to obtain PD = 0.999 and PF = 0.001. From

(32) and (33), these probabilities can be achieved with T = 3.09 and d = 6.18. Tables

29 and 30 show the average value of Q̂, σw, Nw, σ, F for the LAD and LUD cases.

Again our results show that PD is close to 0.999 and PF is close to 0.001 for both

detectors. However, comparing the total number of detector responses, #ψ, in Table

27 with Table 28 and Table 29 with Table 30 shows more frequent detector responses
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Table 29: Experimental results when the target is to achieve PD = 0.999 and
PF = 0.001 for a location-aware detector.

Sequence Q̂ σ Nw #ψ mψ PD PF

carphone 14.40 59.17 645 18095 6.21 0.9992 0.0009

claire 13.52 81.73 1395 5848 6.20 0.9995 0.0014

mobile 15.37 51.86 435 55099 6.25 0.9990 0.0014

mother 12.91 63.65 928 6856 6.16 0.9991 0.0015

salesman 14.33 54.60 554 25033 6.20 0.9992 0.0009

table 14.95 59.45 604 14105 6.23 0.9993 0.0016

Table 30: Experimental results when the target is to achieve PD = 0.999 and
PF = 0.001 for a location-unaware detector.

Sequence Q̂ σ F #ψ PDt PD PF

carphone 14.40 16.06 2 7399 0.9990 0.9993 0.0009

claire 13.52 15.78 7 2742 0.9998 0.9989 0.0015

mobile 15.37 29.85 1 11599 0.9999 0.9999 0.0009

mother 12.91 11.76 3 3866 0.9999 > 0.9997 0.0010

salesman 14.33 13.88 2 8799 0.9999 > 0.9998 0.0014

table 14.95 19.47 7 1657 0.9982 0.9988 0.0018

can be obtained when the location of watermark is known.

In Figures 24 and 25, we plot the probability distribution of the detector response

under H0 and H1 for the video sequence carphone for both detectors. Figure 24

shows that for a location-aware detector, the experimentally determined p(Ψ|H0) and

p(Ψ|H1) approximate a normal Gaussian distribution with a variance of one. This

justifies our assumption that the detector response has a normal Gaussian distribu-

tion. Figure 25 shows that for a location-unaware detector, p(Ψ|H0) still has a normal

Gaussian distribution, however, p(Ψ|H1) no longer has a normal Gaussian distribu-

tion. The greater the change in the number of watermarked coefficients from frame

to frame, the further the distribution will be from normal Gaussian.

Finally, we look at the effect of different attacks on detection performance. We

first consider a 3 × 3 Gaussian filtering attack. We choose Nw as in Table 29, and
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Figure 24: Detector response probability distribution of a location-aware detector
to achieve PD = 0.999 and PF = 0.001 for carphone video sequence.

F as in Table 30 and we set the threshold T = 3.09 to obtain PD = 0.999 and

PF = 0.001 without an attack. Table 31 gives Q̂, σw, σ and PD obtained from both

detectors after the Gaussian filtering attack. Comparing Table 31 with Tables 29 and

30 shows that after the Gaussian filtering attack, σw and σ remain approximately the

same, but Q̂ becomes significantly smaller. Thus, if we choose Nw and F as before,

p(Ψ|H1) moves towards p(Ψ|H0) because the mean value of ψ under hypothesis H1,

mψ, becomes smaller. Since we set T as before, we still obtain the desired PF = 0.001,

but PD is lower than 0.999.

Increasing Nw and F further, we can still achieve PD = 0.999. Suppose that

after the Gaussian filtering attack, Q̂ becomes as small as nine, and suppose that the

variance of the video sequences remains the same. We use these values to calculate

the required Nw and F for each video sequence. Table 32 shows the calculated

value for Nw and PD for a location-aware detector. Since we assumed that Q̂ gets

smaller than it actually does and we set the threshold as before, we always have

PD > 0.999. We did not have any missed detections for any video sequence in our
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Figure 25: Detector response probability distribution of a location-unaware detector
to achieve PD = 0.999 and PF = 0.001 for carphone video sequence.

experiment. Therefore, the only statement that we can make is that the probability

of missed detection, PM , is smaller than one over the number of detector responses

we computed, and PD is greater than 1 minus this value. Table 32 also shows the

number of frames F required to still achieve PD = 0.999 and the PD obtained from

simulation results for the location-unaware detector.

We also apply a cropping attack by cropping each video frame to approximately

50% of its original size from the four sides. We assume that the detector can determine

how the video is cropped by using either the original video sequence or synchroniza-

tion templates. The simulation results show that the cropping attack does not affect

the detection performance, however, it does affect the number of detector responses

that can be extracted for each video sequence. For a location-aware detector, Nw is

the same as before, however more frames are required to obtain Nw watermarked coef-

ficients. For the location-unaware detector, we need twice as many frames to achieve

the same performance as without an attack assuming that the watermarked coeffi-

cients are uniformly distributed within a frame. Note that the perceptual watermark
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Table 31: Comparison of location-aware and location-unaware detectors after the
3 × 3 Gaussian filtering attack when the target is to achieve PD = 0.999 and PF =
0.001.

LAD LUD

Sequence Q̂ σw Nw PD σ F PD

carphone 10.02 60.12 645 0.9118 13.90 2 0.9751

claire 9.55 81.01 1395 0.9300 14.83 7 0.9847

mobile 9.43 51.92 435 0.8300 24.84 1 0.9919

mother 9.62 65.11 928 0.9400 10.28 3 0.9961

salesman 10.08 54.57 554 0.9380 12.27 2 0.9998

table 9.38 59.59 604 0.8500 15.73 7 0.9958

Table 32: Comparison of location-aware and location-unaware detectors after the
3 × 3 Gaussian filtering attack with new values of Nw and F when the target is to
achieve PD = 0.999 and PF = 0.001.

LAD LUD

Sequence Nw #ψ PD F #ψ PD

carphone 1650 6220 > 0.9998 3 4933 0.9980

claire 3149 2511 > 0.9992 11 1745 > 0.9994

mobile 1268 17491 > 0.9999 2 5799 > 0.9998

mother 1910 2848 > 0.9997 4 2899 0.9996

salesman 1405 9546 > 0.9999 2 8799 0.9998

table 1666 4734 > 0.9998 9 1288 > 0.9992
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Table 33: Comparison of location-aware and location-unaware detectors after the
cropping attack when target is to achieve PD = 0.999 and PF = 0.001.

LAD LUD

Sequence Q̂ σw Nw PD σ F PD

carphone 14.53 60.54 645 0.9990 16.73 4 0.9962

claire 14.45 80.01 1395 0.9997 13.86 14 > 0.9992

mobile 15.42 49.81 435 0.9997 30.62 2 0.9991

mother 12.77 50.06 928 0.9997 9.51 6 0.9444

salesman 14.87 54.51 554 0.9996 15.77 4 > 0.9994

table 14.92 59.99 604 0.9984 18.96 14 0.9964

embedding algorithm presented in Chapter 3 distribute the watermarked coefficients

more uniformly than the watermark embedding algorithm presented in Chapter 5,

which embeds the watermark in the nonzero quantized ac residuals. Table 33 shows

Nw, F and PD for both detectors. The total number of detector responses in this

table is approximately half of their corresponding values in Table 29 and 30 since the

video sequences have been cropped to approximately 50% of their original size. Note

that we used the QCIF format (176 × 144) for our simulation results, which has one

of the smallest resolutions; the results improve for higher resolution videos.

Finally, we consider the effect of additive white noise. We add white noise of mean

zero and variance 0.001 to each frame of the video sequence. We chose the variance

experimentally so that the noise is visible, but the video is not useless. We choose N

as in Table 29 and F as in Table 30 to obtain PD = 0.999 and PF = 0.001. Table 34

shows Q̂, σw, σ, and PD of both detectors after the additive white noise attack. Our

simulation results show that the proposed algorithm is robust to the additive white

noise, N (0, 0.001), attack without increasing Nw and F .

6.3 Conclusion

For some watermark embedding algorithms like when embedding the watermark in

nonzero ac residuals, the location of watermark is lost after the video is decoded.
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Table 34: Comparison of location-aware and location-unaware detectors after the
additive white noise attack when the target is to achieve PD = 0.999 and PF = 0.001.

LAD LUD

Sequence Q̂ σw Nw PD σ F PD

carphone 14.39 59.17 645 0.9989 17.85 2 0.9922

claire 13.26 81.77 1395 0.9988 17.51 7 0.9960

mobile 15.33 51.86 435 0.9991 30.83 1 0.9999

mother 12.84 63.65 928 0.9984 14.09 3 0.9979

salesman 14.32 54.60 554 0.9994 15.93 2 0.9997

table 14.84 54.45 604 0.9990 20.92 7 0.9982

Thus, it is important that the watermark detection algorithm not depend on the exact

location of the watermark signal. In this chapter, we built a theoretical framework for

a watermark detection algorithm based on a likelihood ratio test that does not depend

on the exact location of watermarked coefficients. This framework was used to obtain

video watermark detection with controllable detection performance. We used this

detector to detect the watermark from P-frames of eight standard video sequences

that were embedded with the watermark using our watermark embedding algorithm

presented in Chapter 5. Our simulation results showed that the theoretically chosen

value for F did lead to the desired values of PD and PF in Monte Carlo trials. We

tested the robustness of our proposed algorithm to several common signal processing

attacks such as filtering, 50% cropping, addition of white noise, N (0, 0.001), and a

requantization attack. Our simulation results showed that our proposed algorithm

was robust against these attacks. We also compared the performance of location-

unaware detector with the location-aware detector presented in Chapter 4. While

both detectors could achieve any probability of detection and false alarm, the location-

aware detector could generate detector responses more frequently than the location-

unaware detector. The result of this work appears in [37, 42].
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CHAPTER VII

CONCLUSION

The goal of this dissertation was to present a robust watermarking algorithm for H.264

and to address challenges in compressed-domain video watermarking. In Section 7.1,

we summarize our contributions and in Section 7.2, we suggest avenues for future

study.

7.1 Contributions

Watermarking digital video introduces challenges that are not present when water-

marking digital images. The large amount of data and inherent redundancy between

frames makes video watermarking algorithms susceptible to self-collusion attacks.

The self-collusion attack is one of the most powerful attacks for video. In Chapter

2, we designed a novel low complexity watermarking algorithm that was robust to

self-collusion attacks [38]. The algorithm embedded the watermark in the quantized

ac residuals of the H.264-compressed video. It achieved collusion resistance by em-

bedding the watermark in the same location in similar frames and different locations

in dissimilar frames. The coefficient within a macroblock that holds the watermark

was determined by a key that was specific to that macroblock, but this could require

a long key stream sequence. To avoid this problem, the key was generated using a

public key extracted from features of the macroblock and the copyright owner’s secret

key. It was proposed that the relative difference of the DC coefficients of the 4 × 4

blocks in a macroblock is a robust feature for public key extraction.

The algorithm we proposed in Chapter 2 embedded the watermark in the com-

pressed video, but this algorithm was not robust against several common watermark-

ing attacks besides the self-collusion. The watermark was embedded in and extracted
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from the I-frame quantized ac residuals, so any simple processing, such as filtering

followed by reencoding by an H.264 encoder, changes the intra-macroblock predic-

tion modes, and thus the residuals, which makes watermark recovery impossible. In

Chapter 3, we presented a perceptual watermarking algorithm for H.264 that was

robust to common signal processing attacks [39, 41]. To achieve this goal we em-

bedded the watermark in the residuals to avoid decompressing the video and also to

reduce the complexity of the watermarking algorithm. However, the watermark was

extracted from the decoded video sequence to make the algorithm robust to intra-

prediction mode changes. Since H.264’s high compression performance leaves little

room for an imperceptible signal to be inserted, we employed a human visual model

to increase the payload and add robustness while limiting visual distortion. Watson

et al. derived a model for distortion perception in 8 × 8 DCT blocks [46, 72], and

we extended this human visual model for the 4 × 4 DCT block used in H.264. If all

the coefficients with visual capacity for watermark embedding were used, the visual

quality of the video would be degraded. We proposed embedding the watermark in

a selected subset of the coefficients that have visual watermarking capacity by using

a key-dependent algorithm. This makes the algorithm more robust to malicious at-

tacks. Furthermore, we designed our algorithm so that the watermark is spread over

frequencies and blocks to reduce the error pooling effect described by Watson [72].

In Chapter 4, we presented our video watermark detection algorithm when the

precise location of watermark signal is known to the detector, a detector we call

location aware [41, 42]. We built a theoretical framework for watermark detection

based on a likelihood ratio test and used it to obtain video watermark detection with

controllable detection performance. We detected the watermark by multiplying the

possibly watermarked DCT coefficients of the decoded frame by the original water-

mark bits, calculating the sum of those terms, normalizing the result, and comparing
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the sum against a threshold. We proved that the performance of our watermark de-

tector only depends upon the conditional mean of the detector response under the

hypothesis that the watermark exists in the DCT coefficients. This mean depends

upon three parameters: the average of the squares of the H.264 quantization step

sizes of watermarked DCT coefficients, the standard deviation of watermarked DCT

coefficients, and the number of watermarked DCT coefficients, Nw, over which the

detector response is computed. We cannot control the first two parameters, but we

can control Nw. This is not the case with images, since there is a limited number

of coefficients that can be watermarked in each image before the watermark is vis-

ible. Therefore, our video watermark detection algorithm calculated the number of

watermarked DCT coefficients needed to compute the detector response to obtain the

desired probability of detection, PD for a given probability of a false alarm PF . Our

simulation results showed that the theoretically chosen value for Nw does lead to the

desired PD and PF in Monte Carlo trials. Furthermore, even after watermarking at-

tacks, we can obtain any PD and PF by making a worst case assumption on the first

two parameters and computing Nw accordingly. We used this watermark detector

to detect the watermark from I-frames of six standard video sequences watermarked

with the algorithm presented in Chapter 3. Our simulation results showed that our

watermarking scheme presented in Chapter 3 is robust to 3 × 3 Gaussian filtering,

50% cropping, addition of white noise N (0, 0.001), and a trivial deliberate attack.

In Chapter 5, we explored watermark embedding in P-frames [37, 40]. The chal-

lenge in embedding the watermark in P-frames is that the video bit rate increases

significantly. Thus, we only embedded the watermark in nonzero quantized ac resid-

uals in P-frames. Since these coefficients correspond to non-flat areas that are in

motion, temporal and texture masking were exploited at the same time. We showed

that the number of nonzero quantized ac residuals in each frame resembles the motion
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intensity plots in different video sequences. We also proposed embedding the water-

mark in nonzero quantized ac residuals with spatial masking capacity in I-frames.

Our simulation results showed that the bit rate increase per watermark bit of our al-

gorithm in this chapter is significantly smaller than the previous compressed-domain

video watermarking algorithms [41, 76] when embedding the watermark in both I-

and P- frames.

In some applications, the watermark detector does not know which coefficients are

embedded with the watermark. For example, our watermark embedding algorithm

in Chapter 5 embedded the watermark in the nonzero quantized ac residuals. The

identity of those locations is lost when the video is completely decoded. Furthermore,

a re-encoding or a deliberate attack that inserts additional nonzero coefficients would

cause desynchronization and consequent failure in watermark detection. Thus, for

some applications it is important that the watermark detection algorithm not depend

on the precise location of the watermark signal. In Chapter 6, we proposed a new

variation on the watermark detection algorithm developed in Chapter 4 that does

not depend on where the watermark signal is embedded, called the location-unaware

detector [37, 42]. Our algorithm calculated the number of frames, F , required for the

watermark detector to obtain the desired probability of a detection, PD, for a given

false alarm probability, PF . We used this detector to detect the watermark from

P-frames of eight standard video sequences that were embedded with the watermark

using our watermark embedding algorithm presented in Chapter 5. Our simulation

results showed that the theoretically chosen value for F did lead to the desired values

of PD and PF in Monte Carlo trials. We tested the robustness of our proposed

algorithm to several common signal processing attacks such as filtering, 50% cropping,

addition of white noise N (0, 0.001), and a requantization attack. Our simulation

results showed that our proposed algorithm was robust against these attacks. We

also compared the performance of location-unaware detector with the location-aware
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detector presented in Chapter 4. While both detectors could achieve any probability

of detection and false alarm, the location-aware detector could generate detector

responses more frequently than the location-unaware detector.

7.2 Suggestions for Future Work

There are many avenues for pursuing further work in this area. Some of those avenues

are as follows:

• Exploring how far the Gaussian distribution model is from the optimal gener-

alized Gaussian distribution model.

• Predicting how different attacks will affect Q̂ and the variance of the DCT

coefficients and adjusting the detector accordingly.

• Testing the robustness of the proposed algorithm to more severe attacks such

as changing the video format.

• Exploring the watermarking capacity of chrominance components.

• Developing a watermarking scheme that avoids error propagation in I-frames

when the watermark is embedded in the H.264 bitstream.

• Looking into security measures for watermarking that are similar to what exists

in cryptography. For example, answering the questions: Is it possible to develop

a security framework based on the computational complexity of attacks? Can

this lead to a solid framework to evaluate and compare different watermarking

schemes?
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